
GUARDIAN
Operating System
·Programming
Manual
Volume 1

P/N 82336 AOO

GUARDIAN (TM) OPERATING SYSTEM

PROGRAMMING MANUAL

Volume 1

Tandem Computers Incorporated
19333 Vallee Parkway

Cupertino, California 95014

April 1982
Printed in U.S.A.

PREFACE

This manual describes the interface between user programs and the
GUARDIAN operating system on the Tandem Nonstop and Nonstop II
systems.

Specifically, the manual discusses:

• calling the procedures provided by the GUARDIAN operating
system for file management, process control, general utility,
and checkpointing

• using traps and trap handling

• using the features provided for security of files and processes

• performing advanced memory management on Nonstop systems
and managing extended data segments on Nonstop II systems

• using the sequential i/o procedures and the i/o formatter

• interfacing between application programs and the GUARDIAN
command interpreter

This manual is for systems and applications programmers with
special needs to call operating system procedures from their
programs. Familiarity with the Tandem Transaction Application
Language (TAL) or some other programming language, such as
FORTRAN or COBOL, is recommended. Before using this manual,
it is suggested that users read:

• Introduction to Tandem Computer Systems for a general overview of
the system

• GUARDIAN Operating System Command Language and Utilities Manual,
sections I and 2, for information about logging on to the system
and running programs in general

The "advanced" subsections in sections 2, 5, and 8 discuss
advanced features and require a knowledge of the system hardware
registers, machine instructions, and/or operating modes.

iii

For Nonstop II systems only:

• Non Stop II System Description Manual

• Nonstop II System Operations Manual

• Non Stop II System Management Manual

• GUARDIAN Operating System Messages Manual (Nonstop II systems)

• DEBUG Reference Manual (Nonstop II systems)

For both systems:

• GUARDIAN Operating System Command Language and Utilities Manual

• Transaction Application Language Reference Manual

• ENSCRIBE Programming Manual

• EXPAND Users Manual

• ENVOY Byte-Oriented Protocols Reference Manual

• ENVOYACP Bit-Oriented Protocols Reference Manual

• AXCESS Data Communications Programming Manual

• SORT/MERGE users Guide

• Spooler/PERUSE users Guide

• Spooler System Management Guide

e UPDATE/XREF Manual

For a combined index to subjects covered in Tandem technical manuals,
identifying the manual and page number for each reference, refer to
the following publications:

• Master Index (Nonstop systems)

• Master Index (Nonstop II systems)

For a complete list of technical manuals and manual part numbers for
Tandem Nonstop systems and Tandem Nonstop II systems, refer to the
following publication:

• Technical Communications Library

v

CONTENTS

Volume 1

SECTION 1. INTRODUCTION
Process Control •••.••

Process Structure.
Process Pairs •.••••

TO THE GUARDIAN OPERATING SYSTEM •• .. 1-1
.1-5

. .1- 7
.1-8
.1-9

. l-10

.1-13

.1-13

Process Control Functions
File System ••••••••
Utility Procedures.
System Messages .•••
Checkpointing Facility (Fault-Tolerant
Traps and Trap Handling.
Security .••...•••.•..•.••

Programming}

Command Interpreter .•
Debug Facility •...••.
External Declarations for Operating System Procedures •.

SECTION 2. FILE SYSTEM.
INTRODUCTION ••

Files••.•••
Disc Files ••
Non-Disc Devices .•.
Processes (Interprocess

Console •. Operator
File Access •..

Disc Files.
Terminals ••
Processes ..•

Communication)

Access Coordination Among Multiple Accessors.
Loe king ...•..•.••.••.••...

Wait/No-Wait I/O •.......••..
File System Implementation.

File and I/O System Structure ••
File System Procedure Execution ..
File Open •••..•••
File Transfers •••
Buffering .•..••..
File Close •••.•.
Automatic Path Error
Mirror Volumes •••••.

Recovery for Disc Files.

. .1-14
.1-16
.1-17
.1-18
.1-18
.1-18

.2.1-1

.2.1-1

.2.1-1
..2.1-1
.2.1-3

..2.1-4
.2.1-7

.. 2.1-7
. •.•.• 2. 1-8

. .2.1-10

. .2.1-10
. .. 2.1-11
• .. 2.1-12
.•• 2. 1-13

.2.1-16
.. 2.1-16

. .. 2.1-21

. .. 2.1-21
. .•. 2.1-24

.2.1-26
. •• 2.1-27

.2.1-28
...••.. 2.1-34

vii

MONITORNEW Procedure (Nonstop II systems only} •••••••.•••••• 2.3-62
NEXTFILENAME Procedure (disc files) •••••.••••••••.•••••••••• 2.3-63
OPEN Procedure (all files) •••..•
POSITION Procedure (disc files}
PURGE Procedure (disc files) ••••••••••••.
READ Procedure (all files) •.•••.•••..•.•
READUPDATE Procedure (disc and $RECEIVE files).
RECEIVEINFO Procedure ($RECEIVE file) ••••••••••

.2.3-65

.2.3-73

.2.3-75
• •• 2. 3-7 6

• ••• 2.3-79
• ••• 2.3-82

. 2.3-85 REFRESH Procedure (disc files) ••.•
REMOTEPROCESSORSTATUS Procedure ••.•.••••.•••.•••••• ••. 2.3-86
RENAME Procedure (disc files) 2.3-88
REPLY Procedure ($RECEIVE file) ••••••••••••••••.•••••••••.•• 2.3-89
REPOSITION Procedure {disc files) •.• • ••• 2.3-91
SAVEPOSITION Procedure (disc files) ••••••••••••••••••••••.•• 2.3-92
SETMODE Procedure {all files) ••••••••••••.•••••••••••••••••. 2.3-93
SETMODENOWAIT (all files) •.•••••••• 2.3-95
SETMODE Functions Table (all files) ••••••••• • •••••• 2.3-97
UNLOCKFILE Procedure (disc files) •••••.•••••••••••••••••.•• 2.3-107
WRITE Procedure (all files) •••••••••••••••••••••••••••••••• 2.3-108
WRITEREAD Procedure {terminal and process files) •••••.••.•• 2.3-110
WRITEUPDATE Procedure (disc and magnetic tape files) ••••••• 2.3-112

FILE SYSTEM ERRORS AND ERROR RECOVERY •••••••••••••••.•••.•••••• 2.4-1
Error List ..•.• 2.4-2
E~ror Recovery •••.••••.•..•.•••

Device •.••••.••••••••••••••••
. 2.4-29

Path Errors (Errors 200-255) •
No-Wait I/O •.••••••••••••••••••••.•.••.•

File System Error Messages on the Operator Console ••••

• ••• 2.4-29
• ••••• 2.4-29

•• 2.4-32
.2.4-32

TERMINALS: CONVERSATIONAL MODE/PAGE MODE ••••••..•.••••••••••••• 2.5-1
General Characteristics of Terminals •••••••••••••.••••••••••• 2.5-1
Summary of Applicable Procedures........ • ••••••••••••••• 2.5-3
Accessing Terminals .•••.•••••••••••••

Transfer Termination when Reading ••••.
Transfer Modes •••••••••••••••

........... 2. 5-4
. 2. 5-5

. 2. 5-6
Conversational Mode .•••••••••••••••••.••.••••••••••.••••••• 2.5-8
Page Mode.· . .•......••.•..••..•...•.•.••...•..•.••••....... 2. 5-16

Transparency Mode (Interrupt Character Checking Disabled) ••• 2.5-22
Checksum Processing (Read Termination on ETX Character) .2.5-22
Echo .•••.•
Timeouts ..•••••..•••

.2.5-22

.2.5-23
Modems ••.•••.••••.••••••••••••.•••••••••.•.•.••••••••••••••• 2. 5-23
Break Feature ••••••••••••••••.••••••••.•••••••••••.•••••••.• 2.5-25

BREAK System Message •••••••••••••••••••••.•••••••• ~·······2.5-26
Using BREAK {Single Process per Terminal)........ ..2.5-26
Using BREAK {More than One Process per Terminal) •.•••••••• 2.5-28
Break Mode •••••••••••.••••••••••••••.•.••••••••••••••••••• 2.5-29

Error Recovery •••••••••••••••••••.••••••••••••••••••••••.••• 2.5-34
Operation Timed Out (Error 40) ••••••.••••••••••••••••••••• 2.5-34
BREAK (Errors 110 and 111) •••••••••••••••••••••••••••••
Preempted by Operator Message (Error 112)
Modem Error (Error 140) ••••••••••••••••••••••••••••••••

••• 2.5-34
.2.5-35

••• 2.5-36

ix

CARD READERS •••••••••••••••••••••••••••••••
General
Summary

Characteristics of Card Readers.
of Applicable Procedures ••

Read Modes .••..•...•..•
Accessing a Card Reader
Error Recovery.

Not Ready •...
Motion Check .•.
Read Check ...
Invalid Hollerith ..
Path Errors•..

.2.8-1
• • 2. 8-1

• ••. 2.8-1
........ 2 . 8- 2

.2.8-4
•• 2.8-5
.2.8-5

..2.8-6

..2.8-7

..2.8-7
. 2 . 8- 7

INTERPROCESS COMMUNICATION ••••.••.•••.••.•...•..•••••.•• .2.9-1
General Characteristics of Interprocess
Summary of Applicable Procedures.
Communication •..••.••••••

Synchronization •.
$RECEIVE FILE .•.

Communication •••••••• 2.9-1
•• 2.9-4
• • 2. 9-5
..2.9-6

No-Wait I/O .•
OPEN, CLOSE, CONTROL, SETMODE, RESETSYNC,

Messages ••..•..••
Communication Type.

Process Files•.
Sync ID for Duplicate Request Detection •.
Interprocess Communication Example •.
System Messages .•
Error Recovery.

OPERATOR CONSOLE ..•..••.•..•..••.••••.•..

and

. 2. 9- 7

CONTROLBUF
•• 2. 9- 7

.2.9-8
..2.9-9
..2.9-9
.2.9-12
.2.9-19

. •••••• 2.9-25
.2.9-31

General
Summary
Writing
Console

Characteristics of the Operator
of Applicable Procedures ••

Console ..
..2.10-1
.2.10-1
.2.10-2
.2.10-2 a Message •••..••

Message Format.
Error Recovery •....••••
Console Logging to an Application Process ••••

FILE SYSTEM ADVANCED FEATURES ••.
Reserved Link Control Blocks.

RESERVELCBS Procedure .•••.••
Resident Buffering (Nonstop systems

SECTION 3. PROCESS CONTROL •.
INTRODUCTION •..••....

Process Definition •.
Process States.

Creation ...
Execution ..
Deletion.

ID. Process
Creator ..••
Process Pairs ..

only)

Named Processes (Process-Pair
Primary Process .•.

Directory)

Backup Process •..

..2.10-3
.2.10-3

• •• 2.10-3

.2.11-1
..2.11-1
.2.11-3

..2.11-5

........ 3.1-1
..3.1-1

• •• 3.1-1
.3.1-5

• • 3 .1-5
. 3.1-6

..3.1-7
• ••• 3.1-8

..3.1-9

.3.1-10

.3.1-12

.3.1-12

.3.1-12

xi

INITIALIZER Procedure ••
LASTADDR Procedure.
NUMIN Procedure ••••
NUMOUT Procedure •••
SHIFTSTRING Procedure ••
TIME Procedure ••••••••
TIMESTAMP Procedure •••
TOSVERSION Procedure ••

SECTION 5. CHECKPOINTING FACILITY ••••••••
INTRODUCTION •••••••••••••••••••••••••••

Overview of Checkpointing Procedures ••
Overview of Nonstop Programs ••
Overview of Checkpointing ••

Data
Data
Sync

Stack •••
Buffers •••
Blocks .•••

CHECKPOINTING PROCEDURES ••
CHECKCLOSE Procedure •••
CHECKMONITOR Procedure ••••••••
CHECKOPEN Procedure •••••••••
CHECKPOINT Procedure ••••
CHECKPOINTMANY Procedure.
CHECKSWITCH Procedure.
GETSYNCINFO Procedure (disc files)
MONITORCPUS Procedure •••••••••••
PROCESSORSTATUS Procedure •••••••
RESETSYNC Procedure (disc files)
SETSYNCINFO Procedure (disc files)

USING THE CHECKPOINTING FACILITY ••
Nonstop Program Structure ••••••

Process Startup for Named Process Pairs •••••••
Process Startup for Non-Named Process Pairs.
Main Processing Loop ••

File Open •••••••••••••••
Checkpointing ••••• o••••

Guidelines for Checkpointing ••
Example of Where Checkpoints Should Occur.
Checkpointing Multiple Disc Updates ••
Considerations for No-Wait I/O ••
Action for CHECKPOINT Failure.

System Messages ••••••
Recommended Action.

Takeover by Backup •••
Opening a File During Processing.
Creation of a Descendant Process (Pair)

ADVANCED CHECKPOINTING ••••••••••••••
Backup Open •••••••••••••••••••••••
File Synchronization Information.

..4-13
.4-17
.4-18
.4-21

..4-23
.4-24

..4-25
.4-26

. 5. 1-1
• • 5 .1-1
.5.1-1

••••• 5.1-2
• •• 5.1-4
..5.1-5

•••• 5.1-5
•• 5.1-5

•• 5.2-1
..5.2-3

. •••••••••••• 5. 2-5
• •• 5.2-9
.5.2-12

. 5. 2-14
• •••••••• 5.2-17

.5.2-18

.5.2-19

.5.2-21

.5.2-22

.5.2-23

•• 5.3-1
•• 5. 3-1

• ••••• 5.3-1
• •••• 5.3-9

.5.3-13
•• 5. 3-13

• •• 5.3-14
•••• 5.3-15

..5.3-17
• • 5. 3-21

• •• 5.3-21
• •• 5. 3- 21

.5.3-22
• ••• 5.3-23

• •• 5.3-25
• •• 5.3-27
• •• 5.3-28

••••• 5.4-1
..5.4-1
• • 5. 4-2

xiii

SECTION 9. SEQUENTIAL I/O PROCEDURES ••
Procedure.

Procedure ••
Procedure ••
Procedure.

CHECK"'BREAK
CHECK"'FILE
CLOSE"'FILE
GIVE"'BREAK
OPEN"' FILE
READ"'FILE

Procedure ••
Procedure ••••••••••••••••

SET"'FILE Procedure •••
TAKE"'BREAK Procedure.
WAIT"'FILE Procedure •••
WRITE"'FILE Procedure.
Errors •••.•.••••••••••
FCB Structure ••••••.••

Initializing the File FCB.

. 9-1
•••• 9-4

• •• 9-5
••• 9-12

•••• 9-14
.9-15

•• 9-21
• 9-23

. 9-33
.9-34

• •• 9-36
•••••• 9-38

.9-41
• •••••• 9-42

Interface With INITIALIZER and
INITIALIZER-Related Defines ••

ASSIGN Messages •• • ••• 9-46

Usage Example ••••••••••••••••
Usage Example Without INITIALIZER Procedure.
NO"'ERROR Procedure ••
$RECEIVE Handling ••

$RECEIVE Data Transfer Protocol •••
No-Wait I/O······~······
Summary of FCB Attributes ••

SECTION 10. FORMATTER •••••
FORMATCONVERT Procedure ••
FORMATDATA Procedure ••

Errors •••••••••
Example ..•••••••.
Format-Directed Formatting.

Format Characteristics ••••
Edit Descriptors ••••••••••
Non-Repeatable Edit Descriptors ••

Tabulation Descriptors ••
Literal Descriptors •••••
Scale Factor Descriptor (P)
Optional Plus Descriptors (S,SP,SS)
Blank Descriptors (BN, BZ)
Buffer Control Descriptors (/,:)

Repeatable Edit Descriptors ••
"A" Edit Descriptor.
"D" Edit Descriptor •••
"E" Edit Descriptor ••
"F" Edit Descriptor
"G" Edit Descriptor.
"I" Edit Descriptor •••
"L" Edit Descriptor ••
"M" Edit Descriptor •••

Modifiers ••••••••••••••
BZ} Field Blanking Modifiers (BN,

Fill Character Modifier (FL)
Overflow Character Modifier
Justification Modifiers (LJ,
Symbol Substitution Modifier

(OC}
RJ}
(SS)

• ••• 9-46
• • 9-50
..9-54

• ••••• 9-56
•••••• 9-60

• •••• 9-60
• •• 9-63

•• 9-64

• •• 10-1
........... . 10-2

• .10-5
.10-9

• .10-10
. 10-13

• .10-14
.10-17

• ••••••• 10-20
• .10-20
• .10-21

• •••••• 10-22
••• 10-23

•••• 10-24
......... . 10-24

•• 10-26
• .10-26

. 10-28
• •••••••• 10-28

• .10-31
........... 10-32

.10-34
• .10-35
.10-37

• .10-40
.10-40

•••• 10-40
.10-41

•• 10-41
........... . 10-42

xv

FIGURES

Volume 1

1-1.
1-2.
1-3.
1-4.
1-5.
2-1.
2-2.
2-3.
2-4.
2-5.
2-6.
2-7.
2-8.
2-9.
2-10.
2-11.
2-12.
2-13.
2-14.
2-15.
2-16.
2-17.
2-18.
2-19.
2-20.
2-21.
2-22.
2-23.
2-24.
2-25.
2-26.
3-1.
3-2.
3-3.
3-4.
3-5.
3-6.
3-7.

GUARDIAN Operating System: Mirror Volumes ..••.•.••.•....... 1-2
A Primary/Backup Process Pair •••.•••.••.••......•..•...•..•. 1-9
Files .. 1-11
Checkpointing .. 1-15
Files Open by a Primary/Backup Process Pair .•••••••.•..••.• 1-16
Disc File Organization ••••..•.•..•..•.•..•••.••••..••.•..• 2.1-2
Communication with a Process via Process ID ••..•.••••.•.•. 2.1-5
Communication with a Process Pair via Process Name .•..•••. 2.1-6
$RECEIVE File ... 2.1-6
Wait versus No-Wait I/0 •.••••.•..•••••••••••••.•••....... 2.1-13
No-Wait I/O (Multiple Concurrent Operations)•.•••..•. 2.1-15
Hardware I/O Structure •••••••...•...•....•••••.•••••••... 2.1-17
Primary and Alternate Communication Paths•. 2.1-19
File System Procedure Execution .••.•••••.•••••.••••.••..• 2.1-20
Fi 1 e Open .. 2 . 1- 2 3
File Transfer ••••••••••••.•.••••...••••...••..•.•.•.•.•.. 2.1-25
Buffering .. 2 .1-26
Mirror Volume •••..•.••.•..•..•.•••••••.••••••••.•.••..•.• 2.1-34
Action of AWAITIO •...••.•••••••••.••...••.••••••.•.•• · •••• 2. 3-10
File Security Checking •.••••••••••••••.•.•••....•.•.••••• 2.3-70
File System Path Error Recovery ••••••••.•••.••••.•..••••• 2.4-30
Transfer Modes for Terminals ••.••.••••••••••••••••••....•. 2.5-7
Conversational Mode Interrupt Characters •••••••••.•.•..•. 2.5-11
Page Mode Interrupt Characters •••••••••••..•.••.••••..••• 2.5-17
BREAK: Single Process per Terminal .•••••••••.•••.••••.•. 2.5-28
Break Mode •..•••••••.•..•.•••••••••••••••••••••••••••.••• 2.5-32
Exclusive Access Using BREAK •••••••••••••••••••••••.....• 2.5-34
Column-Binary Read Mode for Cards •.•.••.•.•..•••••••.•.... 2.8-3
Packed-Binary Read Mode for Cards ••••••••.••.•••••.••••••• 2.8-4
Link Control Blocks ••••.•••••••••••••••••••••••.•••••.... 2.11-1
Resident Buffering (Nonstop systems only) .••••••.•••••... 2.11-5
Program versus Process .••••••••••••••••••••••••..•....•.•. 3.1-2
A Process (Nonstop systems) ••••••••••.•••••••••••••••••••• 3.1-3
A Process (Nonstop II systems) ••...••••••••.•••••••.•.•••. 3.1-4
Process Pairs ••••••••••••••••••.•.••••••••••••••.•••.•..• 3.1-11
Home Terminal ••••••••.••..••••••••••.••.••.••••••.••••••. 3 .1-18
Effect of STEPMOM ••••••••.•.•••.••••••......•••.••••••••• 3.2-47
Execution Priority Example •.••••••••••••••••••••.••••••..• 3.4-3

xvii

SYNTAX CONVENTIONS IN THIS MANUAL

The following is a summary of the characters and symbols used in the
syntax notation in this manual.

NOTATION

UPPER-CASE
CHARACTERS

<lower-case
characters>

Brackets

Braces

Ellipses

MEANING

All keywords and reserved words appear in capital
letters. (A keyword is defined as one that, if it
is present at all in the context being described,
must be spelled and positioned in a prescribed way,
or an error will result. A reserved word is one
that can only be used as a keyword.) If a keyword is
optional, it is enclosed in brackets. If a keyword
is required, it is underlined.

All variable entries supplied by the user are
shown in lower-case characters and enclosed in angle
brackets. If an entry is optional, it is enclosed
in brackets. If an entry is required, it is
underlined.

Brackets, [],enclose all optional syntactic
elements. A vertically-aligned group of items
enclosed in brackets represents a list of selections
from which one, or none, may be chosen.

A vertically-aligned group of items enclosed in
braces, { }, represents a list of selections from
which exactly one must be chosen.

An ellipsis (•••) following a pair of brackets that
contains a syntactic element preceded by a separator
character indicates that that element may be
repeated a number of times. An ellipsis following a
pair of braces that contains a series of syntactic
elements preceded by a separator character indicates
that the entire series may be repeated, intact, a
number of times. (NOTE: In coding syntax of this

xix

<parameters> are described as follows:

<parameter>,<type> : {ref } [: <num elements>],
{value}

<type> is INT, INT(32), or STRING

"ref" indicates a reference parameter. Note that
if a parameter is a "STRING:ref" parameter, a word
addressed variable (e.g., INT) can be passed for
that parameter; the TAL compiler will produce
instructions to convert the word address to a byte
address. Note, however, that on Nonstop systems,
an invalid address will result if the word address
is greater than 32767.

<num elements> indicates that the procedure returns
a value of <type> to <parameter> for <num
elements>. An asterisk "*" in this position
indicates that the number of elements returned
varies depending on the number of elements
requested.

"value" indicates a value parameter.

xxi

SECTION 1

INTRODUCTION TO THE GUARDIAN OPERATING SYSTEM

The basic design philosophy of the Tandem Nonstop and Nonstop II
Systems is that no single module failure will stop or contaminate the
system. This capability is referred to by Tandem Computers as
"Nonstop" operation.

Overseeing Nonstop system operation is the Tandem GUARDIAN
operating system. The GUARDIAN software provides the multiprocessing
(parallel processing in separate processor modules), multiprogramming
(interleaved processing in one processor module), and Nonstop
capabilities of the system.

In a typical system, master copies of the GUARDIAN operating system,
configured for the specific application, are kept in a "system" area
(for Nonstop systems) or a specially named "SYSnn" subvolume (for
Nonstop II systems) on a "mirrored" disc volume. (See figure 1-1.)
Critical and frequently used parts of the GUARDIAN operating system
are resident (i.e., always present) in each processor module's memory.
As such, the system's capabilities are maintained even if a processor
module, i/o channel, or disc drive fails. Non-critical or less
frequently used parts of the GUARDIAN operating system are virtual,
and are brought into a processor module's memory from disc only when
needed.

1-1

INTRODUCTION TO THE GUARDIAN OPERATING SYSTEM

• The capability for processes to communicate with each other
regardless of the processor module where they are executing

• Providing the virtual memory function by automatically bringing
absent memory pages in from disc when needed

• Scheduling processor module time among multiple processes according
to their application-assigned priorities (a "process" is an
executing program)

The GUARDIAN operating system provides an additional and extremely
important function. Concurrent with application program execution,
the GUARDIAN operating system continually checks the integrity of the
system. This is accomplished as follows: The GUARDIAN operating
system in each processor module at a predefined interval transmits
"I'm alive" messages to the GUARDIAN operating system in every
processor module (this interval is typically one second) . Following
this transmission, the GUARDIAN operating system in in each processor
module checks for receipt of an "I'm alive" message from every other
processor module. If the operating system in one processor module
finds that a message has not been received from another processor
module, it first verifies that it can transmit a message to its own
processor module. If it can, it assumes that the non-transmitting
processor module is inoperative; if it can't, it takes action to
ensure that its own module does not impair the operation of other
processor modules. In either case, the operating system then informs
system processes and interested application processes of the failure.

An application program "sees" operating system services as a set of
library procedures. The library procedures have names such as
"READ", "WRITE", "OPEN", etc. To request an operating system service
(e.g., input), a call to the appropriate operating system procedure is
written in the application program (e.g., "READ"). (The operating
system library procedures exist in the system code area and therefore
are shared by all processes) •

The operating system services that can be requested programmatically
or that affect application program design are categorized as follows
(overviews of each of these services are given in the remainder of
this section) :

• Process Control (run, suspend, and stop programs). Process control
services are described in detail in

Section 3. PROCESS CONTROL

• File system (perform input/output operations) . File system
services are described in detail in

Section 2. FILE SYSTEM

• System Messages (communicate information from the GUARDIAN
operating system to application processes) . System messages are
described in detail in

1-3

INTRODUCTION TO THE GUARDIAN OPERATING SYSTEM

PROCESS CONTROL

A "process" is the execution of a program under control of the
GUARDIAN operating system. It is the basic executable unit known to
the operating system. Specifically, the term "program" indicates a
static group of instruction codes and initialized data -- the output
of a compiler; the term "process" denotes the dynamically changing
states of an executing program. The same program file can be
executing concurrently a number of times; each execution is a separate
process.

The executing environment of a given process is a single processor
module (the processor module where a process executes is specified at
run time). A process~s environment consists of a code area,
containing instruction codes and program constants, and a separate
data area, containing variables and hardware environment information.
A given code area is shared by all processes that are executing the
same program file. This is permissible because information within the
code area cannot be modified. Each process, however, has its own
separate, private data area.

The following terms referring to processes are used throughout this
manual (for a more complete explanation, refer to section 3,
"Process Control"):

• Process Creation

The term "process creation" refers to the action performed by a
special system process called the "System Monitor" when a program
is initially prepared for execution. Process creation is initiated
by application programs or by the Command Interpreter (COMINT)
through the process control NEWPROCESS procedure.

When the Command Interpreter is used to run a program, a "startup"
interprocess message is sent to the newly created process. This
message contains default disc volume and subvolume names, names of
input and output files, and any application-dependent parameters
specified through the RUN command. The startup message can be read
by the new process via standard GUARDIAN file management
procedures. (See "Interprocess Communication" in section 2.9.)

• Creator

Another term, "creator", refers to the process that initiated a
process creation (by calling the NEWPROCESS procedure) • For
example, the Command Interpreter is the "creator" of processes it
starts when the RUN command is given.

Certain attributes are associated with being a creator:

A creator receives a notification if a process it has created is
deleted.

1-5

INTRODUCTION TO THE GUARDIAN OPERATING SYSTEM

Process Structure

The process structure provided by the GUARDIAN operating system allows
a program to be written as though it could run on a processor of its
own. This abstraction is possible because

• each process executes independently of and without interference
from all other processes

• each process's environment is private from all other processes

The process structure allows program functions (whether they are
operating system or application functions) to be modularized. Modules
can be written and tested independently of other modules. If a module
is known to execute correctly when run by itself, it will be assured
of running when run concurrently with other modules.

The GUARDIAN operating system is essentially a collection of
processes, each process performing a specific function. For example,
a memory manager process provides the virtual memory function for its
processor; an i/o process (of which there are many) controls one or
more similar i/o devices.

Processes communicate information among one another via messages.

(Pl)-------~ MESSAGE--------.... (P2)

(P) = process

For example, a GUARDIAN memory manager process may request that a
GUARDIAN disc i/o process bring an absent memory page in from disc.
The request is sent in the form of an interprocess message:

(MMP)------BRING IN PAGE N------... (DISCP)

Applications are structured in much the same way as the operating
system. That is, specific functions are performed by independent
processes which communicate with each other via interprocess messages.

A common structure for applications is the "requestor/server"
process relationship. With this structure, one or more "requestor"
processes make requests of a common "server" process (an application
may consist of several of the requester/server relationships) • A
request is made in the form of an interprocess message (sent via the
file system). The server makes a reply to the message via the file
system (the reply usually consists of the requested data) •

(RP) (SP)

(RP) = requester process (SP) = server process

1-7

INTRODUCTION TO THE GUARDIAN OPERATING SYSTEM

PRIMARY
PROCESS

(PERFORMS THE WORK)

BACKUP
PROCESS

(MONITORS THE PRIMARY)

(A)----- CHECKPOINT MESSAGES (A')

(GUARDIAN SYSTEM MESSAGES
OPERATING SYSTEM)

Figure 1-2. A Primary/Backup Process Pair

A process pair is typically identified by a single process name. A
process pair's process name is entered into the Process-Pair Directory
(PPD) when the first process of the pair is created. Also at this
time, the identity of the "ancestor process" is entered into the PPD.
(An "ancestor process" is the process responsible for creation of the
first member of a process pair). The PPD provides capabilities that
are useful for Nonstop programming. For example, one member of a
process pair is notified if the other member stops executing; the
ancestor process is notified when the process name is deleted from the
PPD (the latter occurs when the last process associated with a process
name stops or fails) • There are also Nonstop aspects of
communicating with named process pairs (see "File System", section 2).

Process Control Functions

Process control operations are performed by calling the GUARDIAN
process control procedures. These procedures include:

NEWPROCESS creates a process (runs a program) and, optionally,
gives it a name (if a name is given, the name is
entered into the Process-Pair Directory)

MYTERM provides the file name of a process's home terminal

DELAY suspends the calling process

PRIORITY changes the calling process's execution priority

STOP deletes a process with a normal indication

ABEND deletes a process with an abnormal indication

1-9

INTRODUCTION TO THE GUARDIAN OPERATING SYSTEM

F
I
L
E

s
y

FILES
r' ____ ,...,.....,, ----,

e.g. "$VOL 1 SVOL 1 FNAME"

e.g. "$TERM 1"

LINE
PRINTER

e.g."$LP"

s 14----...
T
E
M

e.g. "$TAPE1"

$RECEIVE

process ID

OPERATOR CONSOLE

OR

"$0"

Figure 1-3. Files

DISC FILES

NON-DISC DEVICES

INTERPROCESS FILES

OPERATOR CONSOLE

1-11

INTRODUCTION TO THE GUARDIAN OPERATING SYSTEM

Then to write (output) to the file, the file system WRITE
procedure might be called in the following manner:

CALL WRITE(filenumber,buffer,count):

"buffer" is an array in the program's data area containing the
information to be written. "count" is the number of bytes to be
written.

Or to read (input) from the same file:

CALL READ(filenumber,buffer,count,numread):

Several other procedures are provided for performing device-dependent
operations.

UTILITY PROCEDURES

As part of the operating system, procedures are provided to perform
utility operations. These include:

DEBUG

FIXSTRING

HEAPS ORT

calls the system debug facility

is used to edit a string of characters based on
information supplied in an editing template

sorts an array of equal-size elements in place

INITIALIZER reads the startup message and, optionally, the ASSIGN
and PARAM messages to prepare global tables and
initialize File Control Blocks {FCB's)

LASTADDR

NUMIN

NUMOUT

TIME

SYSTEM MESSAGES

provides the global ('G'[O] relative) address of last
word in the application's data area

converts the ASCII representation of a number into its
binary equivalent

converts the internal machine representation of a
number to its ASCII equivalent

provides the current date and time

The operating system sends messages directly to application processes
to inform the application of certain system conditions. These are
referred to as "system messages". System messages are read using the
GUARDIAN file system procedures. Examples of system messages are:

• CPU Down - processor module failed.

1-13

INTRODUCTION TO THE GUARDIAN OPERATING SYSTEM

PRIMARY
PROCESS

READ entry from terminal

I
READ record from disc

I
update record in memory

I
CHECKPOINT

I
WRITE updated record to disc

I

~ ~

£_

"""

BACKUP
PROCESS

CHECKMONITOR

•
...... , .

•
READ •••

•
READ. .

•
update •••

•
CHECKPOINT •••

• ---
WRITE •••

•

THE BACKUP STAYS IN CHECKMONITOR WHILE THE PRIMARY IS OPERATIONAL.
IF THE PRIMARY FAILS, THE BACKUP LEAVES CHECKMONITOR AND BEGINS
EXECUTING AT THE POINT INDICATED BY THE LAST CALL TO CHECKPOINT BY
THE PRIMARY.

Figure 1-4. Checkpointing

-

When the checkpointing facility is used, each process in a process
pair has the same set of files open, as shown in figure 1-5. This
ensures that the backup process has immediate access to the files in
the event of the primary~s failure.

1-15

INTRODUCTION TO THE GUARDIAN OPERATING SYSTEM

• Uncorrectable Memory Error

• Map Parity Error (Nonstop systems only)

Generally, the first four trap conditions are caused by coding errors
in the application program. The last four errors indicate a hardware
failure or, in the case of "no memory available", a configuration
problem. These are beyond control of the application program.

A procedure, ARMTRAP, is provided so that, if a trap occurs, control
is returned to the application program. The application program is
notified of the particular trap condition.

SECURITY

The GUARDIAN operating system's security capability is designed to
fulfill four objectives:

• To prevent inadvertent destruction of files through purging or
overwriting

• To prevent unauthorized access to sensitive data files by
programmers or operations personnel

• To prevent unauthorized interference with running programs
(processes)

• To provide a means of controlling intersystem accesses between
network nodes

Security is enforced by assigning a group name, a user name, and
(optionally) a password to individuals that are to access the system.
File security may be set at three levels:

• User -- Only the user that created a file (a file's owner) may
access the file.

• Group -- Only members of the group associated with the file's owner
may access the file.

• Any -- Any user of the system may access the file.

For each file, file access at each level may be restricted to reading,
writing, executing, and/or purging.

To provide control over system security, a system has a single user
designated the "super ID". The super ID is responsible for creating
new groups in the system. Each group has a single user that is
designated the group manager; the group manager is responsible for
creating new users in its group. The super ID additionally has full
access to any file in the system.

1-17

INTRODUCTION TO THE GUARDIAN OPERATING SYSTEM

?SOURCE $SYSTEM.SYSTEM.EXTDECS (OPEN, READ, WRITE, CLOSE,
? NEWPROCESS, ABEND, STOP, MYTERM

compiles only the external declarations for the OPEN, READ,
WRITE, CLOSE, NEWPROCESS, ABEND, STOP, and MYTERM procedures.

1-19

SECTION 2

FILE SYSTEM

This section provides a general overview of the following:

• Files
• File Access
• Access Coordination among Multiple Accessors
e Wait/No-Wait I/O
• File System Implementation
• Error Indication
• Error Recovery

FILES

Input/output operations are performed by transmitting blocks of data
between an application process and files. A file can be all or a
portion of a disc, a device such as a terminal or a line printer, a
process (i.e., running program), or the operator console.

A file is referenced by the symbolic file name that is assigned when
the a file is created. A file name consists of two to twenty-four
characters.

Disc Files

The ENSCRIBE (TM) Data Base Record Manager, an integral part of the
GUARDIAN operating system, provides access to and operations on disc
files. The ENSCRIBE software supports the following four file types:

• Key-Sequenced Files (records are placed in a file in ascending
sequence according to the value of a "key field" in the record)

• Relative Files (records are stored relative to the beginning of
the file)

• Entry-Sequenced Files (records are appended to a file in
the order they are presented to the system)

2.1-1

used by other files.

FILE SYSTEM
Introduction

Also specifiable at disc file creation is an optional "file code".
This is an integer whose meaning is entirely application-dependent
{except that codes 100 through 999 are reserved for use by Tandem
Computers Inc.).

For a disc drive having a removable pack, the disc file can be
designated at SYSGEN (system generation) time to have a "logically"
removable volume. (A disc drive may, in fact, have a "physically"
removable volume that will never be removed.) To mount a new volume in
place of a currently mounted volume, the MOUNT command of the
Peripheral Utility Program (PUP) is used. Logical int~rlocks exist in
the file system to ensure that an in-use volume cannot be demounted
(this interlock can be overridden) and that once the command is given
to mount a new volume, further accesses to the mounted volume are
prohibited.

Operations with disc files are described in detail in the ENSCRIBE
Programming Manual.

Non-Disc Devices

Non-disc devices are items such as terminals (both conversational and
page mode), line printers, magnetic tape units, card· readers, and data
communications lines. A file representing a non-disc device is
referenced by a symbolic "device name" or a "logical device number".
Device names and their corresponding logical device numbers are
assigned at SYSGEN time.

What constitutes an input/output transfer with non-disc devices is
dependent on the characteristics of the particular device involved.
On a conversational mode terminal, for example, a transfer is one
line of information; on a page mode terminal, a transfer is one page
of information; on a line printer, a transfer is one line of print;
on a magnetic tape unit, a transfer is one physical record on tape.

Operations with non-disc devices are described in detail in

• Section 2.5. TERMINALS
• Section 2.6. LINE PRINTERS

• Section 2.7. MAGNETIC TAPES
• Section 2.8. CARD READERS

Note: The ENVOY (TM) Data Communications Manager, an extension to the
GUARDIAN operating system, provides an interface between
application programs running in Nonstop and Nonstop II systems
and data communications networks. Some features of ENVOY are:

2.1-3

ONE-WAY MESSAGE:

ORIGINATOR

(A)

TWO-WAY MESSAGE:

ORIGINATOR

{A)

MESSAGES

REQUEST

REPLY

FILE SYSTEM
Introduction

DESTINATION

... {B)

SERVER

(B)

Figure 2-2. Communication with a Process via Process ID

The process name form of the process ID uniquely identifies a
process or a process pair in the system. Process names can be
predefined so that processes can be known throughout the system in the
same manner as other device types (e.g., line printer) are known
throughout the system. If a process [pair] is to be identified by
the process name form of the process ID, its process name (which can
be either application-defined or system generated) is assigned before
the new process is created. A process name consists of a dollar sign
"$" followed by one to five alphanumeric characters (the first must be
alphabetic) , optionally followed by one or two "qualification" names
(see "File Names", section 2.2).

As shown in figure 2-3, there are certain Nonstop aspects involved if
communicating with a process pair. The primary process of the pair,
while it is operable, receives (and replies to) all communications.
If the primary process or its processor module fails, the backup
process becomes the primary process and receives {and replies to)
communications. The switch from the primary process to the backup
process as the destination of a communication is performed
automatically by the file system and is invisible to the originator of
the message.

2.1-5

FILE SYSTEM
Introduction

Several interprocess messages can be read and queued by the
application process before a reply need be made. If one or more
messages are to be queued, the maximum number of messages that the
application process expects to queue must be specified. To identify
each incoming message and direct a reply back to the originator of the
message, a "message tag" must be obtained in a call to a file
system procedure. When reply is sent for a particular message,
the message""s associated "message tag" is passed back to the system.

Interprocess communication is described in detail in

e Section 2.9. INTERPROCESS COMMUNICATION

Operator Console

A process may log messages on the operator console through a special
file referenced by the file name $0 (verbally, "dollar zero"). The
operator console is a write-only file (i.e., can be written to only}.
Console messages are prefixed with the current date and time and the
ID of the process that logged the message. There is no special format
imposed for logging messages on the operator console.

Operations with the operator console are described in detail in

• Section 2.10. OPERATOR CONSOLE

FILE ACCESS

Communication between an application process and a file is established
through the file system OPEN procedure. An array in the application
process""s data area, containing the symbolic file name of the file to
be accessed, is passed as a parameter to the OPEN procedure. In
return, OPEN provides a process-unique "file number" that is used to
identify the file when making subsequent file system procedure calls.

For example, to establish communication (open a file) with a terminal
referenced by the device name "$TERM1", the following would be written
in an application program:

INT .filename[O:ll] := ["$TERM1" ,9 * [" "]],
filenum,numxferred,
.buffer[0:35];

data declarations.

Communication is established using the OPEN procedure:

CALL OPEN(filename,filenum);

OPEN establishes communication with the terminal identified by
$TERM1. A process-unique file number is returned in "filenum".

2.1-7

CALL OPEN (discAfname,filenum);

FILE SYSTEM
Introduction

opens a disc file referenced by the file name in "discAfname".

Associated with each open disc file are three pointers: a
"current-record" pointer, a "next-record" pointer, and an
"end-of-file" pointer. Upon opening a file, the current-record and
next-record pointers are set to point to the first byte in the file.
A read or write operation always begins at the byte pointed to by the
next-record pointer. The next-record pointer is advanced with each
read or write operation by the number of bytes transferred; this
provides automatic sequential access to a file. Following a read or
write operation, the current-record pointer is set to point to the
first byte affected by the operation. The next-record and
current-record pointers can be set to an explicit byte address in a
file, thereby providing random access. The end-of-file pointer
contains the relative byte address of the last byte in a file plus
one. The end-of-file pointer is automatically advanced by the number
of bytes written when appending to the end of a file.

Sequential access to an unstructured disc file is implied. A data
transfer operation with an unstructured disc file always starts at
the location pointed to by the current setting of the next-record
pointer:

CALL READ(filenum,buffer,512,numxferred);

transfers 512 bytes from the disc file starting at relative byte
zero into "buffer". The next-record pointer is incremented by
512, the current-record pointer points to relative byte zero.

CALL READ(filenum,buffer,512,numxferred);

transfers 512 bytes from the disc file starting at file byte 512
into "buffer". The next-record pointer is incremented by 512
and now points to relative byte 1024; the current-record pointer
points to relative byte 512.

Random access to a disc file is provided by the file system POSITION
procedure. This procedure is used to set the current-record and
next-record pointers:

CALL POSITION(filenum,40960);

positions the file pointers to point at relative byte 4,096.

2.1-9

FILE SYSTEM
Introduction

ORIGINATOR (A) DESTINATION (B)

CALL OPEN (pidb,bfnum);
rname ':=' "$RECEIVE";
CALL OPEN (rname,rfnum);

"pidb" contains B's process ID

CALL WRITE(bfnum, ••) ;--MESSAGE--~CALL READ(rfnum, •••) ;

A sends a message to B via B's process ID. B reads the
message via its $RECEIVE file.

A two-way message could occur with a process identified by the
process name form of process ID as follows:

ORIGINATOR (A) SERVER ($SERVE)

sname ':=' "$SERVE";
CALL OPEN (sname,snum);

rname ':=' "$RECEIVE";
CALL OPEN (rname,rnum,,l);

.---REQUEST MESSAGE---~CALL READUPDATE (rnum, •.) ;

CALL WRITEREAD (snum, ••); the message is processed

L by the server and a reply is
generated

REPLY MESSAGE --- CALL REPLY (•.) ;

A sends a request to $SERVE and waits for a reply in the call to
WRITEREAD. $SERVE reads the message from its $RECEIVE file via a
call to READUPDATE. When the reply is ready, it is sent back to
A via a call to REPLY. When A receives the reply, WRITEREAD
completes and A resumes processing.

ACCESS COORDINATION AMONG MULTIPLE ACCESSORS

A file may be accessed by several different processes at the same
time. In order to coordinate simultaneous access, each process must
indicate, when opening the file, how it intends to use the file. Both
an access mode and an exclusion mode must be specified.

The "access mode" specifies the operations that will be performed by
an accessor. The access mode is specified as one of the following:

• Read/Write (default access mode)

• Read-Only

• Write-Only

2.1-11

WAIT/NO-WAIT I/O

FILE SYSTEM
Introduction

The file system provides the capability for an application process to
execute concurrently with its file operations.

Two definitions:

• Wait I/O (the default)

"Wait" i/o means that when designated file operations are performed
(i.e., via file system calls), the application process is
suspended, waiting for the operation to complete.

• No-wait I/O

"No-wait" i/o means that when designated file operations are
performed, the application process is not suspended. Rather, the
application process executes concurrently with the file operation.
The application process waits for an i/o completion in a separate
file system call.

The operation of wait and no-wait i/o is illustrated in figure 2-5.

WAIT 1/0

INITIATE

COMPLETE

NO-WAIT 1/0

INITIATE

COMPLETE

OPENED AS A "WAIT" FILE

} CALL READ (fl, ...);

OPENED AS A "NO-WAIT" FILE

CALL READ (f2, ...);

CONCURRENT
EXECUTION

CALL AWAITIO (f2, ...);

Figure 2-5. Wait versus No-Wait I/0

2.1-13

FILE SYSTEM
Introduction

MULTIPLE CONCURRENT OPERATIONS
ONE FILE:

f=file number

INITIATE 1 CALL WRITE (f3, ...);

INITIATE2 CALL WRITE (f3, ...);

COMPLETED
IN THE ORDER
AS INITIATED

COMPLETE 1 CALL AWAITIO (f3, ...);

COMPLETE2 CALL AWAITIO (f3, ...);

TWO FILES, ONE CONCURRENT
OPERATION EACH (I.E., TWO TOTAL):

INITIATE f4

INITIATE f5

CALL READ (f4, ...);

CALL READ (f5, ...);

I

I
I

I
I

!_. -
COMPLETED IN THE

anyfile: = -1;

SAME ORDER AS
INITIATED

COMPLETE
FIRST DONE

CALL AWAITIO

(anyfile, ...);

CALL AWAITIO

(anyfile, ...);

I
I

I
I

I

FIRST DONE OF
"f6 1" OR "f7"

TWO FILES, ONE CURRENT OPERATION WITH
ONE, TWO CONCURRENT OPERATIONS WITH
THE OTHER (I.E., THREE TOTAL):

INITIATE f6 1 CALL WRITE (f6, ...);

INITIATE f7 CALL READ (f7, ...);

INITIATE f62 CALL WRITE (f6, ...);

anyfil9: = -1

COMPLETE CALL AWAITIO(anyfile, ...);

COMPLETE .CALL AWAITIO (anyfile, ...);

COMPLETE CALL AWAITIO (anyfile, ...);

Figure 2-6. No-Wait I/O (Multiple Concurrent Operations)

2.1-15

connected to a single channel.)

• The i/o controller

FILE SYSTEM
Introduction

The i/o controller provides the electrical interface between an i/o
device and the i/o channel. (I/O controllers are generally capable
of controlling multiple devices.)

Two physically independent communication paths are accomplished as
follows:

• The two interprocessor buses provide two independent communication
paths between processor modules. If either bus fails, the other is
still available.

• I/O controllers have two interface ports and are connected to the
i/o channels of two processor modules. If one channel fails,
control of the i/o controller is accomplished via the i/o channel
connected to the other processor module.

The hardware i/o structure is depicted in figure 2-7.

tNTERPROCESSOR BUSES

0 2

1/0 CHANNEL p p 1/0 CHANNEL
-----1 O DUAL-PORT O_ __ __.

R CONTROLLER R
T T

A B

TERMINAL

Figure 2-7. Hardware I/O Structure

2.1-17

FILE SYSTEM
Introduction

original primary processor module is reloaded. (See the Nonstop
System Management Manual or the Nonstop II System Management Manual
for an explanation of "cold load" and "reload".)

Figure 2-8 depicts the primary and alternate communication paths to a
device. While the primary path is operable, all i/o transfers occur
via that path. Only when a failure of the primary path is detected
does the alternate path come into use. Once an alternate path is
brought into use, it becomes the primary path and is used exclusively.

PRIMARY PATH

ALTERNATE PATH

e = PRIMARY SYSTEM 1/0 PROCESS

@ = BACKUP SYSTEM 1/0 PROCESS

© = APPLICATION PROCESS

Figure 2-8. Primary and Alternate Communication Paths

2.1-19

File System Procedure Execution

FILE SYSTEM
Introduction

File system procedures reside in operating system code, but execute in
the application process's environment. When a file system procedure
(or any operating system procedure, for that matter) is called by an
application process, the system procedure's local storage is allocated
in the application process's data stack, as shown in figure 2-9. The
maximum amount of local storage required by a call to a system
procedure is approximately 400 words.

File Open

The OPEN procedure establishes a communication path to a file. The
symbolic file name that identifies a file is used to search a table, a
copy of which resides in each processor module, called the Logical
Device Table. The Logical Device Table contains an entry for each
device connected to the system. Each entry contains a device name or,
in the case of disc files, a volume name, the process ID of the
primary system i/o process that controls the device/volume, and the
process ID of the backup system i/o process that controls the
device/volume.

2.1-21

N

I-'
I

N
w

t"%j
~·
\Q
c
l"1
<D

N
I
I-'
0

t"%j
1:-'•
1--'
<D

!ff
<D
::3

I SYSTEM DAT~ I
OR DESTINATION I CONTROL TABLE (II) I
l~I I LDEV 3

LDEV 4

I
I

~ unvnUt' r-1-----»?_ ftTCCJU1 »>

APPLICATION PROCESS I I I ,------,
I '"'t'"'~""l~·~ I I I

I
~ INT fllenum I I I I
\ \ I I I

I 1, : '---;)----~:rr
LABEL I CALL OPEN (file"name, fllenum,.); / / I b •

L

1
__/ / ACCESS >>> ~· ;;;

CONTROL I -- =-_/;- ~~~~:
.-- FILE NAME
I CUR-REC PTR

I
FILE NEXT-REC PTR I

TABLE

~ ACB ADDRESS I
1 i I
I MAIN MEMOR~ RESIDENT OPERATING SYSTEM IN APPLICATION I
I PROCESS'S PROCESSOR MODULE
L.:....:.:.: -- -- --- --- --- --- -- --- -

LDEV6

\

\

§

I: Tandem Nonstop Systems
II: Tandem Nonstop II Systems

H
::3 t"%j
rt H
l'"1 L'
0 t::i:j
OJ
c Ul
(1 i-<
rt Ul
~-~
0 t:rj
::3 s:

N .
~
I

N
U'l

~ .-.
lO
c
l"1
<1>

N
I
I-'
I-'

~ .-.
I-'
<1>

1-3
l"1
Sl)
::J
C/l
Hi
<1>
l"1

,-

I
----sY'STEM DATA !if!

OR DESTINATION
CONTROL TABLE (II) I

$VOLUME I
APPLICATION PROCESS 11

I I
I I
I I

PRIMARY j --1-----------~

~bu::;:] ---
BACKUP

I INT rnoo~:;;- - ----.
1

+ I

I
'-----. I

CALL READ (l11lnum,buffer,256,.);

-~===::1J J I
L

_J -I J ~ I

I uAIN MEMORY RESIDENT OPERATING SYSTEM _J
L..::= --- --- ---- ---- ---- --- ---

§
FILE

CONTROL
BLOCK

EOF PTR

DATA ADDRESS

LOCK QUEUE

I: Tandem Nonstop Systems
II: Tandem Nonstop II Systems

H
::J ~
rt H
l"1 t-1
0 ttj
0..
c (Jl
(') Kl
rt (/)
t-· t-3
0 tJCj
::J :::<

At this point, the file system {executing on behalf of the

FILE SYSTEM
Introduction

application process) moves the data from the resident File System
buffer to an array in the application process's (virtual) data area.

On Nonstop systems, File System Buffers are obtained from a memory
space pool, called SHORTPOOL, in the operating system's data area.
Processes requiring File System Buffers compete for this space on a
first-come, first-served basis. If space is not available when
needed, the application process is suspended until either the needed
space becomes available or a configured timeout period expires; in the
latter case, an error indication is returned to the application
process. When an i/o transfer is completed, the space in use by the
File System Buffer is returned to SHORTPOOL for use in subsequent data
transfers.

On Nonstop systems, there are three types of I/O Buffers {the type of
buffer that a device uses is specified at system generation time):

• Pooled buffers - buffer space is secured from an i/o buffer pool,
called IOPOOL, in the operating system's data area. I/O processes
controlling devices using pooled buffers compete for space on a
first-come, first-served basis. If space is not available when
needed, the i/o process is suspended until either the needed space
becomes available or a configured timeout expires; if a timeout
occurs, an error indication is returned to the application process.
When an i/o transfer is completed, the i/o buffer space is returned
to IOPOOL for use in subsequent data transfers.

• Shared buffers - buffer space in the operating system data area is
shared among two or more i/o devices on the same eontroller.

• Dedicated buffers - buffer space in the operating system data area
is dedicated to a single device.

On Nonstop II systems, File System Buffers are obtained from the
process's Process File Segment (PFS). I/O Buffers are obtained from
the i/o segments as needed by the i/o process. Processes that require
dedicated buffers obtain buffer space during initialization. Once a
process has obtained dedicated buffer space, it keeps that space until
it terminates execution.

File Close

When a file is closed, the communication path to the file is broken.
The Access Control Block is deleted, and the space that it used is
returned for use as another Access Control Block. In the case of disc
files, if no other opens are outstanding for the file, then the File
Control Block is also released, and information such as the
end-of-file pointer and addresses of allocated extents is updated on
the physical disc from the information that was maintained in the File
Control Block.

2.1-27

FILE SYSTEM
Introduction

The backup i/o process, when notified of the primary's failure, takes
over the primary's duties. The first action that the backup performs
is to execute the i/o operation indicated by the latest checkpoint
message received from the primary i/o process (this occurs regardless
of whether the operation had been completed by the primary).

When the file system receives notification of the primary's processor
module failure, after an operation has been requested but before it
has been notified by the i/o process of a successful completion, it
reinitiates the operation, this time sending the i/o request message
(containing the data, sync ID, requester ID, and disc address) to the
backup i/o process.

Following a takeover from its primary, the backup i/o process checks
the sync ID and requester ID in the i/o request message for a match in
the list of completed operations. If there is a match, the requested
operation has already completed, and the backup i/o process returns
the associated completion status to the file system; no other action
is taken. If there is no match, the backup i/o process has not
performed the operation. The operation is performed in its entirety,
and the operation's completion status is returned to the file system.

The first operation is performed without incident:

CALL WRITE(fnum, •••);

1. The file system sends an i/o request message to the primary
disc i/o process.

(A) = APPLICATION PROCESS

-I o SYNC ID IN ACB

1/0 REQUEST MESSAGE (DATA, SYNC ID, REOUESTOR ID)

I
1/0 = PRIMARY BACKUP = (1/0')

1-m SYNCIDINFCB

2. In the primary i/o process:

* The sector to be updated is read from disc.

(1/0)

I

The sector image in memory is updated.
The next sync ID (1) is saved.

m SYNC ID IN FCB

* performed only if partial-sector write

(l/O')

I
SYNC ID IN FCB m

2.1-29

6. The file system increments the sync ID in the ACB.

(A)

1-m SYNC ID IN ACB (INCREMENTED)

FILE SYSTEM
Introduction

The next operation encounters a failure:

*

CALL WRITE (fnum, •••);

1. The file system sends an i/o request message to the primary
disc i/o process.

(A)

- m SYNC ID IN ACB

(l/O) REQUEST MESSAGE (DATA, SYNC ID, REOUESTOR ID)

I
(l/O) (l/O')

2. In the primary i/o process:

The sector to be updated is read from disc.
The sector image in memory is updated.
The next sync ID (0) is saved.

(l/O) (l/O')

I I
m SYNC ID IN FCB SYNC ID IN FCB IT]

* performed only if partial-sector write

2.1-31

FILE SYSTEM
Introduction

5. The file system, on behalf of the application process,
reinitiates the request, this time to the backup process.

(A)

-I 1 SYNC ID IN ACB

1/0 REQUEST MESSAGE (DATA, SYNC ID, REQUESTOR ID)

I
(l/O')

I
SYNC ID IN FCB 0

6. The backup i/o process compares the requester ID and sync ID
in the i/o request message with that of operations it has
already performed. {*) The backup recognizes that this is a
request to perform an operation it has already completed.
Therefore, the operation is not performed. Rather, the
completion status from the completed operation is returned to
the file system.

(A}

-[I] SYNC ID IN ACB

1/0 REQUEST MESSAGE (COMPLETION PART)

I

(l/O')

I
SYNC ID IN FCB 0

7. The file system increments the sync ID in the ACB.

(A)

l-1 0 SYNC ID IN ACB ! INCREMENTED

* performed only if partial-sector write

2.1-33

FILE SYSTEM
Introduction

When a write is performed to a mirror volume, the (primary) i/o
process automatically writes the data on the two disc devices
comprising the volume. Both devices, when both are operable, are used
by the i/o process for reading. If one of the devices becomes
inoperable, the i/o process performs all subsequent reading from the
operable device.

When an inoperable device is repaired, the information on the
previously inoperable pack is brought up to date by means of the PUP
(Peripheral Utility Program) "REVIVE" command. The REVIVE command
copies the information from the operable pack onto the previously
inoperable pack in groups of one or more tracks. This copying
operation is carried out concurrently with requests to read or update
data in files on this volume. (An optional parameter to the REVIVE
command specifies a time interval between copying groups of tracks.
This permits the revive operation to take place without a significant
degradation of system performance.)

Four options are provided to optimize mirror volume performance when
both devices of a mirror volume are operable. These options, which
are specified at system generation time, are:

e for reading, SLAVESEEKS or SPLITSEEKS

SLAVESEEKS specifies that both devices of a mirror volume are to
seek (i.e., perform head positioning) together. The device that is
to be used for reading data is selected at random.

SPLITSEEKS specifies that the device with its head positioned
closest to the desired cylinder is the device to be used for
reading. The alternate device~s head is not repositioned.

• for writing, SERIALWRITES or PARALLELWRITES
(10 MB and 50 MB discs only; available only on Nonstop systems)

SERIALWRITES specifies that both devices are to seek together when
preparing to write. The actual data transfer completes on one
device before beginning for the other.

PARALLELWRITES specifies that both devices are to seek together
when preparing to write. Data transfers to both devices occur
concurrently. This option is allowed only if each device is
controlled by a separate hardware controller.

ERROR INDICATION

For all devices, each file system procedure sets the hardware
condition code to indicate the outcome of an operation. The condition
code settings have the following meanings:

< (CCL)
= (CCE)
> (CCG)

indicates that an error occurred
indicates that the operation was successful
indicates a warning

2.1-35

FILE SYSTEM
Introduction

returns, in "error", the error number associated with the last
operation with the file represented by "filenum".

Specific errors are described in detail in the following sections of
this manual:

• Section 2.4. FILE SYSTEM ERRORS AND ERROR RECOVERY

• Section 2.5. TERMINALS

• Section 2.6. LINE PRINTERS

• Section 2.7 • MAGNETIC TAPES

• Section 2.8. CARD READERS

• Section 2.9 • INTERPROCESS COMMUNICATION

• Section 2.10. OPERATOR CONSOLE

ERROR RECOVERY

In general, errors can be categorized as follows:

1. No error

2. Informational

3. Soft (recoverable)

4. Hard (not recoverable)

5. Path errors (recoverable)

The "informational" errors are those classified as "warnings". For
example:

1 logical end-of-file encountered
6 system message received

The "soft" errors are those for which programmatic recovery is
possible or the error condition can be expected to go away. These
include errors such as

10 file already exists
11 file not in directory
40 operation timed out
73 file locked

100 device not ready
101 no write ring (magnetic tape)
102 paper out (line printer)
110 only BREAK request allowed to terminal
111 terminal operation aborted because BREAK key typed

Errors 100 - 102 require operator intervention to correct the error
condition.

The "hard" errors are those for which programmatic recovery is not
possible. These include

2.1-37

FILE SYSTEM
File Names

File names are used to access devices, disc files, processes, and the
operator console through the file system OPEN procedure.
Additionally, file names are used when creating new disc files,
purging old disc files, and renaming disc files.

There are two forms of file name - external and internal. The
"external" form is used when entering file names into the system from
the outside world (e.g., by a user to specify a file name to the
Command Interpreter). The external form is described in section 11,
"COMINT/Application Interface". The "internal" form is used within
the system when passing file names between application processes and
the operating system. This section describes the internal form (see
the EXPAND Users Manual for the internal form of the network file
names) •

The conversion from external to internal form is performed
automatically by the Command Interpreter for the IN and OUT file
parameters of the RUN command (see section 11). For general
conversion of file names from the external to the internal form, the
FNAMEEXPAND procedure is provided.

The internal form of file names is:

<file name> 12 words, blank filled.

where

to access permanent disc files, use

<file name> [0 : 3] =
<file name> [4: 7] =
<file name>[8:11] =

$<volume name><blank fill>
<subvol name><blank fill>
<disc file name><blank fill>

to access temporary disc files, use

$<volume name><blank fill> <file name> [0 : 3] =
<file name>[4:11] = the <temporary file name> returned by

CREATE (which is blank filled)

to access non-disc devices, use

<file name>[O:ll] = $<device name><blank fill> or
$<logical device number><blank fill>

to communicate with other processes, use

<file name>[O:ll] = $RECEIVE<blank fill>

to perform READ, READUPDATE, and REPLY operations, and
~

2.2-1

Examples

Permanent disc file:

INT .fname[O:ll] := "$STORE1 ACCTl MYFILE

Temporary disc file:

INT .fname[O:ll] := ["$STORE1 ", 8 * [" "]];

" . I

FILE SYSTEM
File Names

only the volume name is supplied. The temporary file name is
returned from CREATE.

CALL CREATE(fname);

DEVICE NAMES

Device names identify particular input/output devices in the system.
They are assigned to the logical devices at system generation time. A
device name must be preceded by a dollar sign "$" and consists of a
maximum of seven alphanumeric characters; the first character must be
alphabetical.

Example:

INT .fname[O:ll] := ["$TERM1", 9 * [" "]];

LOGICAL DEVICE NUMBERS

Logical device numbers identify entries in the logical device table
which, in turn, identify particular input/output devices in the
system. Logical device numbers are assigned to physical i/o devices
when system generation occurs (SYSGEN). A logical device number must
be preceded by a dollar sign "$" and consists of a maximum of four
numerical characters; the maximum logical device number is 2047.

A process can determine the logical device number of its home terminal
by calling the MYTERM utility procedure.

Example:

INT .fname[O:ll] := ["$0012 " 9 * [" "]];

$RECEIVE

$RECEIVE is a special file name used to receive and reply to messages
from other processes.

Example:

INT .fname[O:ll] := ["$RECEIVE", 8 * [" "]];

2.2-3

FILE SYSTEM
File Names

If a process name represents a process pair and the process accessing
the pair is a member of the pair, then the process name references
the opposite member of the pair.

OPTIONAL QUALIFICATION OF PROCESS NAMES. The process name form of
a process ID can be further qualified at file open time by the
addition of one or two optional "qualifier" names. This provides for
process file names of the form:

word:
[0:3] [4:7] [8:11]
$<process name> #<1st qualif name> [<2nd qualif name>]]

where

#<1st qualif name>

consists of a number sign "#" followed by one to seven
alphanumeric characters, the first of which must be
alphabetical.

<2nd qualif name>

consists of one to eight alphanumeric characters, the first
of which must be alphabetical.

Note that only the process name has meaning to the file system (it
indicates the particular process [pair] being opened). The qualifier
names have no particular meaning to the file system (they are,
however, checked for being of the proper format). Instead, their
meaning must be interpreted by the process being opened (these names
are passed to the process being opened in an "OPEN" system message) .

Obta~n~ng a Process ID

A process ID can be obtained from a number of sources:

• When the process control NEWPROCESS procedure is called to create a
new process, the process ID of the newly created process is
returned. If a process name was also entered into the PPD in the
call to NEWPROCESS, the process ID returned consists of

<process designator>[0:2] = $<process name>
<process designator>[3] = <cpu,pin>

• A process can obtain the process ID of its creator by calling the
process control MOM procedure. If a process~s creator is in the
PPD, the information returned is in the same form as that described
above for the NEWPROCESS procedure.

2.2-5

FILE SYSTEM
File Names

NETWORK FILE NAMES

File names can optionally include a system number that identifies a
file as belonging to a particular system on a network. (See the
EXPAND Users Manual for information regarding networks of Tandem
systems.}

In this context, a file name beginning with a dollar sign, "$", is
said to be in "local" form, to distinguish it from a file name
beginning with a backslash, "\", which characterizes the "network"
form. Specifically, the network form of a file name is:

<network file name>

word[0].<0:7> =
word[0].<8:15> =
word[l:3] =

word [4: 11] =

where

<system number>

12 words, blank filled

\ (ASCII backslash)
<system number>, in octal
<volume name>, <device name>, o,r
<process id>
same as local file name

is an integer between 0 and 254 that designates a
particular system. The assignment of system numbers is
made at system generation (SYSGEN) time.

<volume name>

consists of at most six alphanumeric characters, the first
of which must be alphabetic.

<device name>

consists of at most six alphanumeric characters, the first
of which must be alphabetic.

<process id>

is in either the timestamp form or the process name
form, both of which are described below.

Note that names of disc volumes and other devices, when embedded
within a network file name, are limited to having six characters, and
do NOT begin with a dollar sign. Similar restrictions apply to the
network form of the process ID, as follows.

2.2-7

FILE SYSTEM
File System Procedures

The file system procedures are:

AWAIT IO

CANCELREQ

CLOSE

CONTROL

CONTROLBUF

CREATE

DEVICE INFO

EDI TREAD
EDITREADINIT

FILEERROR

FILE INFO

FNAMECOLLAPSE

FNAMECOMPARE

FNAMEEXPAND

GETDEVNAME

GETSYSTEMNAME

LASTRECEIVE

LOCATE SYSTEM

waits for completion of an outstanding i/o operation
pending on an open file

cancels the oldest outstanding operation, optionally
identified by a tag, on an open file.

stoos access to an open file and purges a temporary
disc file

executes device-dependent operations on an open file

executes buffered device-dependent operations on an
open file

creates a new disc file (permanent or temporary)

provides the device type and physical record size
for a file (open or closed)

read text records from an edit format file

is used to decide if an i/o operation should be
retried

provides error information and characteristics about
an open file

collapses an internal file name to its external form

compares two internal format file names within a
local or network environment

expands a partial file name from the compacted form
to the standard twelve-word internal form usable by
the file system procedures

returns the $<device name> or $<volume name>
associated with a logical device number if such a
device exists. Otherwise the name of the next
higher logical device is returned

supplies the system name corresponding to a system
number

provides the process ID and, optionally, the
message tag associated with the last message taken
from the $RECEIVE file

provides the system number corresponding to a system
name

2.3-1

SAVEPOSITION

SETMODE

SETMODENOWAIT

UNLOCKFILE

WRITE

WRITE READ

WRITEUPDATE

CHARACTERISTICS

FILE SYSTEM
File System Procedures

is used to save disc file positioning information so
that a return to that position can be made in a
subsequent call to REPOSITION

sets device-dependent functions in an open file

sets device-dependent functions in a no-wait manner
for an open file.

unlocks an open disc file currently locked by the
caller

writes information to an open file

writes, then immediately reads back from an open
terminal or data communications file

For interprocess communication, WRITEREAD is used to
originate a message to a designated process then
wait for a reply message back from that process

is used for open disc files to update data in the
location read by the last call to READ or READUPDATE
(i.e., the position indicated by the setting of the
current record pointer)

For magnetic tapes, WRITEUPDATE is used to replace
an existing record on tape (except on 5106 Tri
Density Tape Drive)

For Procedure Usage by Device Type

ALL DEVICE TYPES. The following basic set of procedures apply to all
aevTce types:

DEVICEINFO, GETDEVNAME, OPEN, READ, WRITE, AWAITIO, CANCELREQ,
SETMODE, SETMODENOWAIT, CONTROL, CONTROLBUF, FILEINFO, and CLOSE

UNSTRUCTURED DISC FILES. In addition to the basic set of procedures,
llie followrng procedures are used with unstructured disc files:

CREATE, NEXTFILENAME, POSITION, READUPDATE, WRITEUPDATE, LOCKFILE,
UNLOCKFILE, RENAME, PURGE, REFRESH, SAVEPOSITION, and REPOSITION

2.3-3

<tag> Parameters

FILE SYSTEM
File System Procedures

An application-specified double integer - INT(32) - tag can be passed
as a calling parameter when initiating an i/o operation (e.g., read or
write) with a no-wait file. The tag is passed back to the application
process, through the AWAITIO procedure, when the i/o operation
completes. The tag is useful for identifying individual file
operations and can be used in application-dependent error recovery
routines.

<buffer> Parameter

The data buffers in an application program used to trarisfer data
between the application process and the file system must be integer
(INT) or double integer (INT(32)) and must reside in the program's
data area ('P' relative read-only arrays are not permitted).

<transfer count> Parameter

The transfer count parameter of file system procedures always
refers to the number of BYTES to be transferred. The number of bytes
that can be transferred in a single operation is dependent on the
device involved:

device type transfer count range

disc
terminal

line printer

magnetic tape

interprocess
operator console

{0:4096}

1

0:4095}
0:32767}
0:4095}
0:32767}

{0:4095}
{0:4096}

{

0:32767}
0:32000}
0:102}

(Nonstop systems)
(Nonstop II systems)
(Nonstop systems)
(Nonstop II systems)
(Nonstop systems, 3201 Controller)
(Nonstop systems, 3202 Controller)
(Nonstop II systems)

The above figures are file system/hardware maximums for the indicated
devices. The actual maximum transfer count for a given device may be
less than the above due to the physical characteristics of a
particular device and/or the amount of buffer space assigned to the
device at system generation time (SYSGEN).

For devices permitting odd count transfers, such as terminals and
magnetic tapes, the value of the byte following the last byte of an
odd count read is not meaningful.

The count of bytes is rounded up to an even number for transfers
with unstructured disc files.

2.3-5

FILE SYSTEM
AWAITIO Procedure (all files)

The AWAITIO procedure is used to complete a previously initiated
no-wait i/o operation. AWAITIO can be used to:

• Wait for a completion with a particular file. Application process
execution is suspended until the completion occurs. A timeout is
considered to be a completion in this case.

• Wait for a completion with any file, or for a timeout to occur. A
timeout is not considered to be completion in this case.

• Check for a completion with a particular file. The call to AWAITIO
immediately returns to the application process regardless of
whether there is a completion or not. (If there is no completion,
an error indication is returned.)

• Check for a completion with any file.

If AWAITIO is used to wait for a completion, a time limit can be
specified as to maximum time allotted to completing the waited-for
operation.

The call to the AWAITIO procedure is:

CALL AWAITIO <file number>

where

, <buffer address>
, <count transferred>
, <tag>
, <time limit>

<file number>, INT:ref:l,

if a particular file number is passed, AWAITIO applies to
that file. The specific action depends on the value of the
<time limit> parameter. If <time limit> is a nonzero
value, the application process is suspended until a
completion occurs or the time limit expires. If passed
as OD, a completion check is made.

if passed as -1, the call to AWAITIO applies to the oldest
outstanding operation pending on any file. The specific
action depends on the value of the <time limit> parameter.
If <time limit> is a nonzero value, the application process
is suspended until a completion occurs or the time limit
expires. If passed as OD, a completion check is made. In
either case, if an operation completed, AWAITIO returns to
<file number> the file number associated with the completion.

2.3-7

FILE SYSTEM
AWAITIO Procedure (all files)

CONSIDERATIONS

• Normally, the oldest outstanding i/o operation is always completed
first: therefore AWAITIO completes i/o operations associated with
the particular open of a file in the same order as initiated.

Specifying SETMODE 30 allows no-wait i/o operations to complete in
any order. When initiating an i/o operation, an application
process employing this option can use the <tag> parameter to keep
track of multiple operations associated with an open of a file.

Note: if SETMODE 30 is used, no-wait operations do not necessarily
complete in the order they are returned by the i/o process, or in
any other implied order.

• If ~n error indication is returned (i.e., condition code is CCL or
CCG} , the file number that is returned by AWAITIO can be passed
to the FILEINFO procedure to determine the cause of the error. If
<file number> = -1 (i.e., any file) is passed to AWAITIO and an
error occurs on a particular file, AWAITIO returns, in <file
number>, the actual file number associated with the error.

• Each no-wait operation initiated must be completed with a
corresponding call to AWAITIO.

If AWAITIO is used to wait for completion (i.e., <time limit><>
OD) and a particular file is specified (i.e., <file number><>
-1) , then completing AWAITIO for any reason is considered a
completion.

- If AWAITIO is used to check for completion (<time limit> = OD}
or used to wait on any file (<file number> = - 1), completing
AWAITIO does not necessarily indicate a completion. If an error
indication is returned and a subsequent call to FILEINFO returns
error 40 (i.e., a timeout), then the operation is considered
incomplete (AWAITIO must be called again} • Any indication other
than error 40 (i.e., CCE, CCG, CCL and <error> <> 40) indicates
a completion.

• If AWAITIO is called and a corresponding no-wait operation has
not been initiated, an error indication is returned (CCL) and a
subsequent call to FILEINFO returns error 26 (no outstanding
operation) .

• The contents of a buffer being written should not be altered
between a no-wait i/o initiation (e.g., call to. WRITE) and the
corresponding no-wait i/o completion (i.e., call to AWAITIO).
If the buffer is altered, application error recovery can become
difficult, if not impossible. In addition, some programs which
alter the buffer before AWAITIO completion may operate correctly
on Nonstop systems but fail on Nonstop II systems.

The action of the AWAITIO procedure is illustrated in figure 2-14.

2.3-9

FILE SYSTEM
CANCEL Procedure (all files)

The CANCEL procedure is used to cancel the oldest outstanding
operation on a no-wait file.

The call to the CANCEL procedure is:

CALL CANCEL <file number>

where

<file number>, INT:value,

identifies the file whose oldest outstanding operation is to
be canceled.

condition code settings:

< (CCL) indicates that an error occurred (call FILEINFO) •
= (CCE) indicates that the operation was cancelled.
> {CCG) is not returned by CANCEL.

example:

CALL CANCEL { someAfile);
IF< THEN ••••• ! no operation outstanding.

CONSIDERATIONS

• The function of CANCEL is a subset of those functions provided by
CANCELREQ.

2.3-11

FILE SYSTEM
CLOSE Procedure (all files)

The CLOSE procedure is used to terminate access to an open file.

When a permanent disc file is closed, if it is not open concurrently,
the file label on disc is updated with pertinent information from the
main-memory resident File Control Block, and the space in use by the
FCB is returned to a system main-memory space pool. When a temporary
disc file is closed, if it is not open concurrently, its name is
deleted from the volume's directory, and any space that had been
allocated to the file is made available for other files.

For any file close, the space allocated to the Access Control Block
is returned to the system.

The call to the CLOSE procedure is:

CALL CLOSE <file number> , <tape disposition>

where

<file number>, INT:value,

identifies the file to be closed.

<tape disposition>, INT:value,

specifies mag tape disposition:

where

<tape disposition>.<13:15>

0
1
2
3
4

=
=
=
=
=

rewind and unload, don't wait for completion
rewind, take offline, don't wait for completion
rewind, leave online, don't wait for completion
rewind, leave online, wait for completion
don't rewind, leave online

condition code settings:

< (CCL) indicates that the file was not open.
= (CCE) indicates that the CLOSE was su~cessful.

> (CCG) is not returned by CLOSE.

example:

CALL CLOSE (tapeAfile, 1);

2.3-13

FILE SYSTEM
CONTROL Procedure (all files)

The CONTROL procedure is used to perform device-dependent i/o
operations.

If the CONTROL procedure is being used to initiate an operation with a
file opened with no-wait i/o specified, the operation must be
completed with a corresponding call to the AWAITIO procedure.

The call to the CONTROL procedure is:

CALL CONTROL <file number> , <operation> , <parameter>

, <tag>

where

<file number>, INT:value,

identifies the file that is to execute the CONTROL operation.

<operation>, INT:value,

is defined by device in table 2-1.

<parameter>, INT:value,

is also defined in table 2-1.

<tag>, INT{32):value,

for no-wait i/o only, if present, is stored by the system,
then passed back to the application process by the AWAITIO
procedure when the CONTROL operation completes.

condition code settings:

< (CCL} indicates that an error occurred (call FILEINFO) •
= (CCE) indicates that the CONTROL was successful.
> (CCG} for magnetic tape, indicates that the end-of-file was

encountered while spacing records; for a process
file, indicates that the process is not accepting
CONTROL system messages.

example:

CALL CONTROL printer, formAcontrol, vfuAchannel) ;
IF< THEN •.•• ! error occurred.

2.3-15

FILE SYSTEM
CONTROL Procedure (all files)

Table 2-1. CONTROL Operations

Note: This table gives only a partial list of CONTROL operations,
namely, those used with the i/o devices discussed in this manual.
CONTROL operations used with other Tandem software products, such
as ENVOY and AXCESS, are described in the manuals for those
products.

<operation>

1 = terminal/line printer forms control

<parameter> for terminal or line printer (printer subtype 3)

0 = form feed (send %014)
1 - 15 = vertical tab (send %013)
16 or greater = skip <parameter> - 16 lines

<parameter> for line printer (subtype 0 or 2)

0 = skip to VFU channel 0 (top-of-form)
1 - 15 = skip to VFU channel 1 (single space)

16 - 79 = skip <parameter> - 16 lines

<parameter> for line printer (subtype 1 or 5)

0 (top-of-form)
1 (bottom-of-form)

0 = skip to VFU channel
1 = skip to VFU channel
2 = skip to VFU channel 2 (single space, top-of-

3 = skip to VFU channel
4 = skip to VFU channel

5 = skip to VFU channel
6 = skip to VFU channel
7 = skip to VFU channel
8 = skip to VFU channel
9 = skip to VFU channel

10 = skip to VFU channel
11 = skip to VFU channel

16 - 31 = skip <parameter>

form eject)
3 (next odd-numbered line)
4 (next third line: 1, 4,

7, 10, etc.)
5 (next one-half page)
6 (next one-fourth page)
7 (next one-sixth page)
8 (user-defined)
9 (user-defined)

10 (user-defined)
11 (user-defined}
16 lines

<parameter> for line printer (subtype 4) (default DAVFU)

0 = skip to VFU channel 0
1 = skip to VFU channel 1
2 = skip to VFU channel 2

3 = skip to VFU channel 3
4 = skip to VFU channel 4

(top of fo~m/line 1)
(bottom of form/line 60)
(single space/lines 1-60,
top-of-form eject}

(next odd-numbered line)
(next third line: 1, 4,
7, 10, etc.)

2.3-17

FILE SYSTEM
CONTROL Procedure (all files)

Table 2-1. CONTROL Operations (cont~d)

10 = mag tape, space backward records

<parameter> = number of records {0:255}

11 = terminal or line printer (subtype 3 or 4), wait for modem
connect

<parameter> = none-

12 = terminal or line printer (subtype 3 or 4), disconnect the
modem (i.e., hang up)

<parameter> = none

20 = disc, purge data (write access is required)

<parameter> = none

21 = disc, allocate/deallocate extents (write access is required)

<parameter> = 0 = deallocate all extents past the
end-of-file extent

1:16 = number of extents to allocate

Note: A write end-of-file to an unstructured disc file sets the
end-of-file pointer to the relative byte address indicated by
the setting of the next-record pointer, and writes the new
end-of-file setting in the file label on disc.

2.3-19

FILE SYSTEM
CONTROLBUF Procedure (all files}

condition code settings:

< (CCL} indicates that an error occurred (call FILEINFO} •
= (CCE) indicates that the CONTROLBUF was successful.
> (CCG) for a process file, indicates that the process is

not accepting CONTROLBUF system messages.

example:

CALL CONTROLBUF (printer, loadAvfu, vfuAbuffer, 132);
IF< THEN... ! error occarred

CONSIDERATIONS

• If a "wait" CONTROLBUF is executed, the <count transferred>
parameter indicates the number of bytes actually transferred.

• If a "no-wait" CONTROLBUF is executed, <count transferred> has no
meaning and can be omitted. The count of the number of bytes
transferred is obtained when the i/o completes via the <count
transferred> parameter of the AWAITIO procedure.

CONSIDERATIONS FOR INTERPROCESS COMMUNICATION

• The issuance of a CONTROLBUF to a file representing another process
causes a CONTROLBUF system message (i.e., system message -35) to
be sent to that process. If the object of the CONTROLBUF operation
is not accepting CONTROL/CONTROLBUF/SETMODE system messages, the
call to CONTROLBUF completes with a condition code of CCG; a
subsequent call to FILEINFO returns error 7 (process not
acce·pting CONTROL/CONTROLBUF /SETMODE messages) .

• Any value may be specified for the <operation> parameter, and any
data may be included in <buffer>. An application-defined protocol
should be established for interpreting non-standard parameter
values.

e CONTROLBUF is not valid for the $RECEIVE file.

2.3-21

FILE SYSTEM
CREATE Procedure (disc files}

The CREATE procedure is used to define a new disc file. The file can
be either temporary (and therefore automatically deleted when closed)
or permanent. If a temporary file is created, CREATE returns a file
name suitable for passing to the OPEN procedure.

To create a structured disc file, refer to the ENSCRIBE Programming
Manual. The call to the CREATE procedure for unstructured files is:

CALL CREATE <file name>

where

, <primary extent size>
, <file code>
, <secondary extent size>
, <file type>)

<file name>, INT:ref,

is an array containing the name of the disc file to be
created:

To create a permanent disc file, <file name> must be of
the form

<file name>[0:3] is $<volume name><blank fill>
or \<system number><volume name><blank fill>

<file name>[4:7] is <subvol name><blank fill>
<file name>[8:11] is <disc file name><blank fill>

To create a temporary disc file, <file name> must be of
the form

<file name>[O:ll] is $<volume name><blank fill>

When CREATE completes, a temporary file name is returned
in <file name>[4:7]. The temporary file can then be
opened by passing <file name> to OPEN.

<primary extent size>, INT:value,

if present, is the size of the primary extent in 2048-byte
units (maximum extent size is 134,215,680 bytes). If
omitted, a primary extent size of one (2048 bytes) is
assigned.

2.3-23

example:

CALL CREATE (filename);

IF< THEN •••

CONSIDERATIONS

• File pointer action:

end-of-file pointer := OD;

FILE SYSTEM
CREATE Procedure (disc files)

primary extent size = 1,
file code = 0,
secondary extent size = 1.

CREATE failed.

• Execution of the CREATE procedure does not allocate any disc area;
it only provides an entry in the volume~s directory indicating that
the file exists.

• CREATE does not provide access to the new file; the OPEN procedure
must be called.

• If the CREATE fails (i.e., condition code other than CCE returned),
the reason for the failure can be determined by calling the file
system FILEINFO procedure and passing -1 as the <file number>
parameter.

• The file is created with the user~s default security. A file~s
security can be altered by opening the file and issuing the
appropriate SETMODE functions.

• An unstructured disc file can be created for either even
unstructured or odd unstructured access. On reads to and writes
from even unstructured files, odd read counts and write counts
are rounded to the next even number (3 becomes 4, 5 becomes 6,
etc.); and a POSITION for such a file must be to an even byte
address. An odd unstructured file permits reads and writes of
odd byte counts and positioning to an odd byte address. If
<file type>.<13:15> passed to CREATE is all zeros (specifying an
unstructured file) and <file type>.<12> is 0, an even unstructured
file is created. If <file type>.<13:15> is all zeros and
<file type>.<12> is 1, an odd unstructured file is created.
(If the FUP CREATE command is used to create the file, it will
create an even unstructured file unless the ODDUNSTR parameter
is given.)

2.3-25

FILE SYSTEM
DEVICEINFO Procedure (all files)

Table 2-3. Device Types and Subtypes

device type,
<device type>.<4:9>,

0 = Process

1 = Operator Console

2 = $RECEIVE

3 = Disc

(Note: For discs,
<device type>.<0> = 1
denotes a removable
disc volume;
<device type>.<l> = 1
denotes a TMF audited
disc volume.)

4 = Magnetic Tape

5 = Line Printer

6 = Terminal
(conversational or
page mode)

device subtype,
<device type>.<10:15>,

0

0

0

0 = 10 MB capacity
(Nonstop systems only)

1 = 50 MB capacity
(Nonstop systems only)

2 = 160 MB capacity
(Nonstop systems only)

3 = 240 MB capacity
4 = 64 MB capacity

(P/N 4105, 4106)
5 = 64 MB capacity, movable

head portion (P/N 4109)

6 = 540 MB capacity (P/N 4116)
(Nonstop II systems only)

7 = 1.45 MB capacity, fixed
head portion (P/N 4109)
(Nonstop systems only)

8 = 128 MB capacity
(P/N 4110, 4111)

0 = Nine-Track
1 = Seven-Track
2 = Tri-Density Tape Drive

(P/N 5106)

0 = Belt Printer
1 = Drum or Band
2 = Current-Loop, Belt Type
3 = Matrix Serial (P/N 5508)
4 = Matrix Serial (P/N 5520)
5 = Band, extended char. set

0 =
1 =
2 =
3 =
4 =
5 =

6-10 =

32 =

Conversational Mode
Page Mode (6511, 6512)
Page Mode (6520, 6524)
Page Mode (Remote 6520)
Page mode (6530)
Page mode (Remote 6530)
Conversational Mode
(various screen sizes)
Hard-Copy Console

2.3-27

FILE SYSTEM
DEVICEINFO Procedure (all files)

Table 2-3. Device Types and Subtypes (cont~d)

device type, device subtype,
<device type>.<4:9>, <device type>.<10:15>,

59 = AX CE SS Data 0 = AM6520 Access Method
Communication Line

60 = AX CE SS Data 0 = AM3270 Access Method
Communication Line 1 = TR3271 Access Method

61 = AX CE SS Data 0 = X25AM Access Method
Communication Line (any subtype 0-63 is

accepted with no effect)

62 = EXPAND Network 0
Control Process (NCP)

63 = EXPAND Line Handler 0 = Single-Line Path
1 = Path Entry, Multi-Line

Path
2 = Line Entry, Multi-Line

Path

2.3-29

FILE SYSTEM
EDITREAD Procedure (edit-type files)

<buffer length>, INT:value,

is the length, in bytes, of the <buffer> array. This
specifies the maximum number of characters in the text line
that will be transferred into <buffer>.

<sequence number>, INT(32) :ref,

is the sequence number multiplied by 1000, in double-word
integer form, of the text line just read.

example:

count := EDITREAD(controlAblock, line, length, seqAnum);

The following extended example illustrates the use of EDITREADINIT and
EDITREAD.

The data is declared as follows:

LITERAL bufAsize = 512, !EDITREAD's internal buffer size in bytes
length = 80; !length of the application's buffer (bytes)

INT fnum,
fcode,
error,
count,

.controlAblock[O: (39+bufAsize/2)];

STRING .line[O:length-1];

INT(32) seqAnum;

global data declaration.

application's buffer.

First the text file is opened and verified that it is an edit format
file:

CALL OPEN(fname,fnum, •..);
IF< THEN •.• ;
CALL FILEINFO(fnum,,,,,,,,,fcode);
IF fcode <> 101 THEN ••• ! not edit format file.

Then EDITREADINIT is called to initialize the edit control block and
specify EDITREAD's internal buffer size:

2.3-31

FILE SYSTEM
EDITREAD Procedure (edit-type files)

For example:

INT controlAblock[0:(39+bufAsize/2)],
position[0:2];

EDITREADINIT and one or more EDITREADs are called

position ':=' controlAblock[l] FOR 3; save current position

more EDITREADs

controlAblock[l] ':=' position FOR 3;
controlAblock.<0> := l;

restore saved position

next EDITREAD returns same record returned after position
was saved

2.3-33

example:

FILE SYSTEM
EDITREADINIT Procedure (edit-type files)

INT .controlAblock[O: (39+256/2)];
n := EDITREADINIT(controlAblock, fnum, 256);

An extended example using both EDITREADINIT and EDITREAD is given
in the syntax description of the EDITREAD procedure.

2.3-35

FILE SYSTEM
FILEERROR Procedure (all files)

entered (signalling that the condition cannot be corrected),
FILEERROR returns a zero indicating that the operation should not
be retried. If any other data is entered {typically, carriage
return), it signals that the condition has been corrected, and
FILEERROR returns a one, indicating that the operation should be
retried.

• If the error is caused by an ownership error (error 200) or a
path down error {error 201) and the alternate path is operable,
FILEERROR returns a one, indicating that the operation should be
retried. If the alternate path is inoperable, a zero is returned.

• Any other error results in the file name being printed on the home
terminal, followed by the file system error number. A zero is
returned, indicating that the operation should not be retried.

An example:

error := l;
WHILE error DO

BEGIN
CALL WRITE(fnHm,buffer,count);
IF < THEN

BEGIN
IF NOT FILEERROR{fnum) THEN CALL ABEND;

END
ELSE error := O;

END;

It may be desirable to check for certain errors before calling
FILEERROR. In this case, the program itself should first call
FILEINFO. For example:

2.3-37

FILE SYSTEM
FILEINFO Procedure (all files}

The FILEINFO procedure is used to obtain error and characteristic
information about an open file.

The call to the FILEINFO procedure is:

CALL FILEINFO <file number>

where

, <error>
, <file name>
, <logical device number>
, <device type>
, <extent size>
, <end-of-file location>
, <next-record pointer>
, <last mod time>
, <file code>
, <secondary extent size>
, <current-record pointer>
, <open flags> }

<file number>, INT:value,

identifies the file whose characteristics are to be returned.

<error>, INT:ref:l,

if present, is returned the error number associated with the
last operation on the file (see "Errors and Error Recovery"}.

<file name>, INT:ref:l2,

if present, is returned the file name of this file. See
"File Names" for the file name format.

<logical device number>, INT:ref:l,

if present, is returned the logical device number of the
device where this file resides (in binary). (If your files
are partitioned, use the value 16 instead of l~)

<device type>, INT:ref:l,

if present, is returned the device type of the device
associated with this file. See "DEVICEINFO Procedure",
table 2-3.

2.3-39

FILE SYSTEM
FILEINFO Procedure (all files)

<open flags>.<12:15> is the maximum number of concurrent
no-wait i/o operations that can be in progress on this
file at any given time. <open flags>.<12:15> = 0 implies
wait i/o.

<open flags>.<9:11> is the exclusion mode:

0 = shared access
1 = exclusive access
3 = protected access

<open flags>.<8> = 1 indicates that, for process files,
the OPEN message is to be sent no-wait.

On Nonstop systems only, <open flags>.<6> = 1 indicates that
resident buffers have been provided by the application
process for calls to file system i/o routines (see "OPEN
Procedure" and "File System Advanced Features").

<open flags>.<3:5> is the access mode:

0 = read/write access
1 = read-only access
2 = write-only access

<open flags>.<l> = 1, for the $RECEIVE file only, means
that the process wants to receive OPEN, CLOSE, CONTROL,
SETMODE, RESETSYNC, and CONTROLBUF system messages.

condition code settings:

< (CCL) indicates that an error occurred; the error number is
returned in <error>.

= (CCE) indicates that FILEINFO executed successfully.
> (CCG) is not returned by FILEINFO.

example:

CALL FILEINFO (infile, errAnum) i

CONSIDERATIONS

• The error number of a preceding AWAITIO on any file or waited OPEN
that failed can be obtained by passing a -1 in the <file number>
parameter. The error number is returned in <error>.

• 32 is returned in <error> (if <error> is a parameter present in the
call) if a process has never opened any files and -1 is specified
in the <file number> parameter.

2.3-41

FILE SYSTEM
FNAMECOLLAPSE Procedure (all files)

The FNAMECOLLAPSE procedure converts a file name from its internal to
its external form. The system number of a network file name is
converted to the corresponding system name.

The call to the FNAMECOLLAPSE procedure is:

! <length>
CALL

FNAMECOLLAPSE <internal name>

, <external name>

where

<length>, INT,

is returned the number of bytes in <external name>.

<internal name>, INT:ref:l2,

is the name to be converted. If this is in local form, it
is converted to external local form; if it is in network
form, it is converted to external network form. Network
file names are discussed in the "File Names" section.

<external name>, STRING:ref:26 or STRING:ref:34

contains, on return, the external form of <internal name>.
If <internal name> is a local file name, <external name>
contains 26 bytes; if a network name is converted,
<external name> contains 34 bytes.

example:

length := FNAMECOLLAPSE (internal, external) ;

Examples:

local: $SYSTEM SUBVOL MYFILE
is converted to "$SYSTEM.SUBVOL.MYFILE"

network: \<sysnum>SYSTEMSUBVOL MYFILE
is converted to "\<system name>.$SYSTEM.SUBVOL.MYFILE

2.3-43

FILE SYSTEM
FNAMECOMPARE Procedure (all files}

The FNAMECOMPARE procedure compares two file names within a local or
network environment to determine whether these file names refer to the
same file or device. For example, one name may be a logical system
name or a device number, while the other reference is a symbolic name.
The file names compared must be in the standard twelve-word internal
format that is returned by FNAMEEXPAND.

The call to the FNAMECOMPARE procedure is:

where

<status>, INT,

is a value indicating the outcome of the comparison.
Values for <status> are:

-1 = (CCL} : the file names do not refer to the same
file.

0 = (CCE}: the file names refer to the same file.
+l = (CCG): the file names refer to the same volume

name, device name, or process name on the same
system; however, words [4:11] are not the same:
<file name 1>[4] <> <file name 2>[4] FOR 8.

A value less than -1 is the negative of a file system
error code. This indicates that the comparison is not
attempted due to this error condition.

That value returned from the program function determines
the condition code setting.

<file name l>, INT:ref:l2,

is the first comparable file name. Each <file name> array
may contain either a local file name or a network file
name. Definitions of file names are found in the
"File Names" section.

<file name 2>, INT:ref:l2,

is the second comparable file name.

condition code settings:

See <status> parameter.

2.3-45

FILE SYSTEM
FNAMECOMPARE Procedure (all files)

In a non-network system, execution of the example just given returns a
status of -1 and the condition code (CCL).

Whether a system is a network node or not, execution of

fnamel "":="" [11 $SERVR #START UPDATING"] ;
fname2 "": ="" [11 $SERVR #FINISH UPDATING"] ;
status:= FNAMECOMPARE (fnamel, fname2);

returns a status of +l and the condition code (CCG).

In any system, execution of

fnamel "":="" [11 $0013 11
, 9 * [11 11

]];

fname2 "": ="" [11 $DATAX", 9 * [11
"]] ;

status := FNAMECOMPARE (fnamel, fname2) ;

returns a status of zero and condition code (CCE) if the device
name $DATAX is defined as logical device number 13 at SYSGEN
time; otherwise, a status of -1 and the condition code (CCL) is
returned.

FNAMECOMPARE can also verify the specified file names as follows:

assume all variables and procedures have been
properly defined and initialized elsewhere

also assume LITERAL legal = O;

IF FNAMEEXPAND (externalAname, internalAname, defaultAnames) THEN
BEGIN
! something reasonable was entered.
IF FNAMECOMPARE (internalAname, internalAname

! it may not exist, but looks okay.
BEGIN

END
ELSE

normal processing.

! the format is not legal.
BEGIN

! error processing.

END;
END;

= legal THEN

2.3-47

FILE SYSTEM
FNAMEEXPAND Procedure (all files)

<internal file name>, INT:ref,

is an array of twelve words where FNAMEEXPAND returns the
expanded file name. This cannot be the same array as
<external file name>.

<default names>, INT:ref,

is an array of eight words containing the default volume and
subvol names to be used in file name expansion. <default
names> is of the form:

<default names>[0:3] = default <volume name> (blank
filled on right)

<default names>[4:7] =default <subvol name> (blank
filled on right)

<default names>[0:7] corresponds directly to <word>[l:8] of
the Command Interpreter param message. See section 11,
"COMINT/Application Interface", for the param message format.

example:

length := FNAMEEXPAND(inname,outname,pmsg[l]);

FNAMEEXPAND converts local file names to local names, and network file
names to network names. Network file names are described under
"File Names", section 2.2. When network file names are involved, in
addition to expanding the local part of the name using the defaults,
FNAMEEXPAND converts the system name to the appropriate system number.
(If the system name is unknown, FNAMEEXPAND supplies 255 for the
system number.)

FNAMEEXPAND expands file names as follows:

<disc file name> is returned as

<file name>[0:3] = $<default volume name><blank fill>
<file name>[4:7] = <default subvol name><blank fill>
<file name>[8:11] = <disc file name><blank fill>

<subvol name>.<disc file name> is returned as

<file name>[0:3] = $<default volume name><blank fill>
<file name>[4:7] = <subvol name><blank fill>
<file name>[8:11] =<disc file name><blank fill>

2.3-49

FILE SYSTEM
FNAMEEXPAND Procedure (all files)

SCAN ext"'name WHILE " " -> @p; ! skip leading blanks.
@p := FNAMEEXPAND(p, infile, defaults) + @p;

on the completion of FNAMEEXPAND, <infile> contains

"$voll svoll f ilea "

which is suitable for passing to the file system CREATE,
OPEN, RENAME, and PURGE procedures, as well as the process
control procedures NEWPROCESS and NEWPROCESSNOWAIT.

"~" is incremented by the number of characters in the external
file name.

SCAN p WHILE " " -> @p; ! skip intermediate blanks.
CALL FNAMEEXPAND(p, outfile, defaults);

on the completion, "outfile" contains

"$system svoll f ileb "

Another example:

Suppose that system \NEWYORK is assigned system number 4. Then
the external file name n\NEWYORK.$DATA.SUB.MYFILE" is converted
by FNAMEEXPAND to

\<%4>DATA SUB MYFILE

where "<%4>" denotes 4 in the second byte.

The use of FNAMEEXPAND in programming network applications is
discussed further in the EXPAND Users Manual.

2.3-51

FILE SYSTEM
GETDEVNAME Procedure (disc files and non-disc devices)

<device name>, INT:ref:4,

is returned the device name or volume name of the
designated device if it exists, or the next higher logical
device if the designated device does not exist. If
end of LDT is encountered, <device name> is unchanged.

<system number>, INT,

if present, specifies the system (in a network) whose
Logical Device Table is to be searched for <logical device
no.>.

If absent, the local system is assumed.

condition code settings:

The condition code setting has no meaning following a call to
GETDEVNAME.

example:

! get the names of all logical devices.
ldev := 0:
WHILE NOT GETDEVNAME (ldev , devname DO

BEGIN
CALL print (ldev, devname):
ldev := ldev + 1:

END:

CONSIDERATIONS

• If the device specified by <logical device no> is remote, its
device name is returned in network form: otherwise, the device
name is returned in local form.

If the <system number> parameter is supplied, devices whose names
contain seven characters are not accessible using this procedure.

2.3-53

FILE SYSTEM
LASTRECEIVE Procedure ($RECEIVE file)

The LASTRECEIVE procedure is used to obtain the process ID and/or
the message tag associated with the last message read from the
$RECEIVE file. This information is contained in the file~s main
memory resident Access Control Block; therefore, the application
process is not suspended because of a call to LASTRECEIVE.

Note: A call to LASTRECEIVE must immediately follow the call to
READUPDATE of $RECEIVE or the AWAITIO that completes it.
Otherwise, the information returned may be invalid.

The call to the LASTRECEIVE procedure is:

CALL LASTRECEIVE <process id> , <message tag>

where

<process id>, INT:ref:4,

if present, is returned the ID of the process that sent the
last message read through the $RECEIVE file. If the process
is in the PPD, the information returned consists of

<process id>[0:2]
<process id>[3]

= $<process name>
= <cpu,pin>

If the process is not in the PPD, the information returned
consists of

<process id>[0:2] = <creation time stamp>
<process id>[3] = <cpu,pin>

<message tag>, INT:ref:l,

is used when the application process performs message
queueing. If present, <message tag> is returned a value
that identifies the request message just read among other
requests currently queued. To associate a reply with a
given request, <message tag> is passed in a parameter to the
REPLY procedure. The value of <message tag> will be the
lowest integer between zero and <receive depth> - 1,
inclusive, that is not currently being used as· a message tag.
When a reply is made, its associated message tag value is
made available for use as a message tag for a subsequent
request message.

2.3-55

FILE SYSTEM
LOCATESYSTEM Procedure

The LOCATESYSTEM procedure provides the system number corresponding to
a system name, and returns the logical device number of the line
handler controlling the path to a given system.

The call to the LOCATESYSTEM procedure is:

where

<ldev>, INT,

returns a value as follows:

-1 =
0 =

>O =

all paths to the specified system are down.
the system is not defined.
the logical device number of the
line handler in the specified system.

<system number>, INT:ref,

if <system name> is provided, is returned the system number
corresponding to <system name>. If <system name> is not
provided, <system number> should contain the system number
to be located.

<system name>, INT:ref:4,

if present, specifies the system to be located, and causes
the corresponding system number to be returned in <system
number>.

example:

ldev := LOCATESYSTEM(sysAnum, sysAname);
IF NOT ldev THEN .•• ! trouble

CONSIDERATIONS

• Note that if <system name> is provided by the caller, <system
number> is returned the corresponding number; but if <system
name> is omitted, <system number> must be provided by the caller.

2.3-57

FILE SYSTEM
LOCKFILE Procedure (disc files)

condition code settings:

< (CCL) indicates that an error occurred (call FILEINFO) •
= (CCE) indicates that the LOCKFILE was successful.
> (CCG) indicates that the file is not a disc file.

example:

CALL LOCKFILE (f ileAnum) ;
IF< THEN ••••• ;

CONSIDERATIONS

error

• Locks are granted on an open file (i.e., file number) basis.
Therefore, if a process has multiple opens of the same file, a lock
of one file number excludes accesses to the file through other
file numbers.

e If a call to CONTROL, WRITE, or WRITEUPDATE is made and the file is
locked but not through the file number supplied in the call, the
call is rejected with a "file is locked" error indication (error
73) •

• If the default locking mode is in effect when a call to READ or
READUPDATE is made and the file is locked but not locked through
the file number supplied in the call, the caller of READ or
READUPDATE is suspended and queued in the "locking" queue behind
other processes attempting to lock or read the file.

Note that a deadlock condition occurs if a call to READ or
READUPDATE is made by the process having a file locked but not
via the file number supplied to READ or READUPDATE.

• If the alternate locking mode is in effect when READ or READUPDATE
is called and the file is locked but not through the file number
supplied in the call, the call is rejected with a "file is locked"
error indication (error 73) •

• The locking mode is specified via the SETMODE procedure,
function 4.

• Locks are not nested.

For example:

CALL LOCKFILE (fileAa);

"fileAa" becomes locked.

2.3-59

FILE SYSTEM
MONITORNET Procedure

The MONITORNET procedure enables/disables receipt of system messages
concerning the status of processors in remote systems.

The call to the MONITORNET procedure is:

CALL MONITORNET <enable>

where

<enable>, INT,

has the following meaning:

example:

0 = disable receipt of messages.
1 = enable receipt of messages.

CALL MONITORNET (1);

CONSIDERATIONS

• A process that has enabled MONITORNET receives a system message via
$RECEIVE whenever a change in the status of a remote processor
occurs. The format of this message is:

word[O]:
word[l].<0:7>:
word[l].<8:15>:
word[2]:
word[3]:

-8
system number
number of cpu's in system
current processor status bit mask
previous processor status bit mask

The processor status bit masks have a one in bit <cpu number> to
indicate that the processor is up, and a zero to indicate that the
processor is down.

• MONITORNET only provides notification of status changes for remote
processors. To receive notification of status changes for local
processors, an application process must still call MONITORCPUS.

2.3-61

FILE SYSTEM
NEXTFILENAME Procedure (disc files)

The NEXTFILENAME procedure is used to obtain the names of disc files
on a designated volume. NEXTFILENAME returns the next file name in
alphabetical sequence after the file name supplied as a parameter.
The intended use of NEXTFILENAME is in an iterative loop, where the
file name returned in one call to NEXTFILENAME is used to specify the
starting point for the alphabetical search in the subsequent call to
NEXTFILENAME. In this manner, a volume~s file names are returned to
the application process in alphabetical order through succeeding calls
to NEXTFILENAME.

The call to the NEXTFILENAME procedure is:

<error> := NEXTFILENAME <file name>

where

<error>, INT

is a file system error number indicating the outcome of
the call. Common error number returns are

0 =no error, next file name in alphabetical sequence is
returned in <file name>.

1 = end-of-file, there is no file in alphabetical
sequence following the file name supplied in <file
name>.

13 = illegal file name specification.

<file name>, INT:ref:l2,

on the call, is passed the file name from which search for
the next file name begins. <file name> on the initial call
can be one of the following forms:

<file name>[O:ll] = $<volume name><blank fill>
or \<system number><volume name><blank fill>

This form is used to obtain the name of the first file
on $<volume name>.

<file name>[0:3] = $<volume name><blank fill>
or \<system number><volume name><blank fill>

<file name>[4:11] = <subvol name><blank fill>

This form is used to obtain the name of the first file
in <subvol name> on $<volume name>.

2.3-63

FILE SYSTEM
OPEN Procedure (all files)

The OPEN procedure establishes a communication path between an
application process and a file. When OPEN completes, a "file number"
is returned to the application process. The file number identifies
this access to the file in subsequent file system calls.

The call to the OPEN procedure is:

CALL OPEN <file name> , <file number>
---- - ----------- - -------------

, <flags>
, <sync or receive depth>
, <primary file number> , <primary process id>

where

<file name>, INT:ref,

is an array containing the name of the file to be opened
(see "File Names").

<file number>, INT:ref:l,

is returned from OPEN and is used to identify the file in
subsequent file system calls.

<flags>, INT:value,

if present, specifies certain attributes of the file. If
omitted, all fields are set to zero. The bit fields in the
<flags> parameter (<flags>.<O> being the leftmost, or high
order, bit) are defined as follows:

<flags>.<0>

<flags>.<l>

<flags>.<2>

<flags>.<3>

<flags>.<4>
<flags>.<5>

= unused: must be 0

= opener wishes to receive OPEN, CLOSE,
CONTROL, SETMODE, RESETSYNC, and
CONTROLBUF messages ($RECEIVE only)

0 = no 1 = yes
(must be 0 for all other files)

= unstructured access
(ENSCRIBE structured files only)

0 = no 1 = yes
(must be 0 for all other files)

= unused: must be 0

access mode
0 = read/write
2 = write-only

1 = read-only

2.3-65

For write to a process pair,

FILE SYSTEM
OPEN Procedure {all files)

the state of this parameter indicates whether or not a
write to a process pair is automatically redirected to the
backup process if the primary process or its processor
module fails. If this parameter >= 1, then a write is
automatically redirected in a manner invisible to the
originator of a message. If this parameter = 0 and a
write cannot occur to the primary process of a process
pair, an error indication is returned to the message's
originator. On a subsequent retry by the originator, the
file system will redirect the write to the backup process.

For other device types, this parameter is ignored.

The next two parameters are supplied only if the open is by the
backup process of a process pair, the file is currently open by
the primary process, and the Checkpointing Facility {described in
section five) is not used.

<primary file number>, INT:value,

is the file number returned to the primary process when it
opened this file.

<primary process id>, INT:ref,

is an array which contains the <process id> of the
corresponding primary process. The primary process must
already have the file open.

condition code settings:

< {CCL) indicates that the OPEN failed {call FILEINFO) •
= {CCE) indicates that the file opened successfully.
> {CCG) is not returned from OPEN.

example:

CALL OPEN {filename, filenum): wait i/o, exclusion mode

IF< THEN •.••

= shared, access mode =
read/write, sync depth = O.
OPEN failed.

2.3-67

FILE SYSTEM
OPEN Procedure (all files)

For a non-process or waited (no-wait depth = 0) file, <flags>.<8>
is reset to zero internally and ignored. A call to FILEINFO after
the call to OPEN can return the value of the internal flags~ if
bit 8 = 1, then a call to AWAITIO must be performed to complete
the open.

When a process file is opened in a no-wait manner, that file is
checkopened in a no-wait manner. See "CHECKOPEN Procedure",
section 5 in this manual, for further discussion of no-wait
checkopens. Otherwise, all errors are returned by OPEN.

• See "Errors and Error Recovery" for considerations when using
no-wait i/o.

• When a disc file open is attempted, a file security check takes
place. The accessor's (i.e., caller's) security level is checked
against the file's security level for the requested access mode.
(File security is set via the SETMODE procedure or the File Utility
Program, FUP, SECURE Command.) If the caller's security level is
equal to or higher than the file's security level for the requested
access mode, then the caller passes the security check. If the
caller fails the security check, the open fails, and a subsequent
call to FILEINFO returns error 48. See figure 2-15.

2.3-69

FILE SYSTEM
OPEN Procedure (all files}

Table 2-4. Exclusion/Access Mode Checking

OPEN
ATTEMPTED FILE CURRENTLY OPEN WITH
WITH

Exclusion s s s E E E p p

Mode c
L
0 R R w R R w R R

Access s I I I
Mode E w w w

D

s R/W y y y y

s R y y y y y y

s w y y y y

E R/W y

E R y ALWAYS FAILS

E w y

p R/W y I y

p R y y y

p w y y

Exclusion Mode: Access Mode:
s = Sharable R/W = Read/Write
E = Exclusive R = Read only
P = Protected w = Write only

Y = Yes, OPEN successful
Blank = No, OPEN fails.

Notes:
• BACKUP opens the file currently being backed up

with R, P.

p

w

y

• BACKUP with "OPEN" option specified opens the file
with R, S.

• RESTORE opens the file currently being restored
with R/W, E.

• When a program file is running it is opened with
the equivalent to R, P.

2.3-71

FILE SYSTEM
POSITION Procedure (disc files)

For unstructured disc files, The POSITION procedure is used to set
the current-record and next-record pointers to a specific address in
the file. Any subsequent i/o transfer will begin from that point.
Note that the caller is not suspended because of a call to POSITION.

A call to the POSITION procedure will be rejected with an error
indication if there are any outstanding no-wait operations pending
on the specified file.

The call to the POSITION procedure is:

CALL POSITION <file number> , <record specifier>

where

<file number>, INT:value,

identifies the file to be positioned.

<record specifier>, INT(32) :value,

is a relative byte address that specifies the new
setting for the current-record and next-record pointers.
For even unstructured files, this must be an even byte
address (see CREATE procedure) , or the operation fails
with error 2 (operation invalid for this type file).

Specifying -lD indicates that subsequent writes should occur
at the end-of-file location (i.e., until a new record
specifier is supplied) •

condition code settings:

< (CCL) indicates that an error occurred (call FILEINFO) •
= (CCE) indicates that the POSITION was successful.
> (CCG) indicates no operation; not a disc file.

example:

CALL POSITION (infile, 10000) ;
IF< THEN .•••

CONSIDERATIONS

• File pointer action:

error occurred

current-record pointer := next-record pointer :=
if rba = -lD then end-of-file pointer else rba

2.3-73

FILE SYSTEM
PURGE Procedure (disc files)

The PURGE procedure is used to delete a closed disc file. When PURGE
is executed, the disc file name is deleted from the volume~s
directory, and any space previously allocated to that file is made
available to other files.

The call to PURGE is:

CALL PURGE <file name>
----- - ----------- -

where

<file name>, INT:ref,

is an array containing the name of the disc file to be purged:

To purge a permanent disc file, <file name> must be of the form

<file name>[0:3] is $<volume name><blank fill>
or \<system number><volume name><blank fill>

<file name>[4:7] is <subvol name><blank fill>
<file name>[8:11] is <disc file name><blank fill>

To purge a temporary disc file, <file name> must be of the form

<file name>[0:3] is $<volume name><blank fill>
or \<system nurnber><volurne name><blank fill>

<file name>[4:11] is <temporary file name>

condition code settings:

<

=
>

(CCL) indicates that the PURGE failed (call FILEINFO). Note,
however, that in the case of a disc free space error
(such as File System Errors 52, 54, 58), the file will
be purged and an error will be returned.

(CCE) indicates that the file was purged successfully.
(CCG) indicates that the device is not a disc.

example:

CALL PURGE (oldfilename);
IF< THEN •••

CONSIDERATIONS

PURGE failed.

• If PURGE fails, the reason for the failure can be determined by
calling FILEINFO, passing -1 as the <file number> parameter.

• If the file is a TMF audited file and there are pending transaction
mode record or file locks, the purge fails with file error 12,
whether or not openers of the file still exist.

2.3-75

FILE SYSTEM
READ Procedure (all files}

condition code settings:

< (CCL} indicates that an error occurred (call FILEINFO}.
= (CCE) indicates that the READ was successful.
> (CCG) for disc and non-disc devices, indicates that the

end-of-file was encountered; for the $RECEIVE file, a
system message was received. (Call FILEINFO.)

example:

CALL READ (filenum, inbuffer, 72 };
IF < THEN ! READ failed.

CONSIDERATIONS

• If a "wait" read is executed, the <count read> parameter indicates
the number of bytes actually read.

• If a "no-wait" read is executed, <count read> has no meaning and
can be omitted. The count of the number of bytes read is obtained
when the i/o operation completes via the <count transferred>
parameter of the AWAITIO procedure.

• If the read is from a non-disc device, the right half of the last
word of an odd count transfer will be garbage.

CONSIDERATIONS FOR DISC FILES

• For a read from an unstructured disc file, data transfer begins
at the position indicated by the next-record pointer.

• <count read> determination

<count read> := $MIN (<read count> , end-of-file pointer
- next-record pointer

• File pointer action:

CCG := if next-record pointer = end-of-file pointer then 1
else O;

current-record pointer := next-record pointer;
next-record pointer := next-record pointer + <count read>;

• If the read is from an even unstructured disc file, the value of
<read count> is rounded up to an even number (see CREATE
procedure}.

2.3-77

FILE SYSTEM
READUPDATE Procedure (disc and $RECEIVE files)

The READUPDATE procedure is used to read data from a disc or
interprocess file in anticipation of a subsequent write to the
file.

For disc files, READUPDATE is used for random processing. Data is
read from the file at the position of the current-record pointer. A
call to this procedure typically follows a corresponding call to
POSITION. The values of the current- and next-record pointers are not
changed by the call to READUPDATE.

For interprocess communication, READUPDATE is used to read a message
from the $RECEIVE file that will be replied to in a later call to
REPLY. Each message read via READUPDATE must be replied to in a
corresponding call to REPLY.

If the READUPDATE procedure is being used to initiate an operation
with a file opened with no-wait i/o specified, the operation must
be completed with a corresponding call to the AWAITIO procedure.

The call to the READUPDATE procedure is:

CALL READUPDATE <file number> , <buffer> , <read count>

where

---------- - ------------- - -------- - ------------
, <count read>
, <tag>)

<file number>, INT:value,

identifies the file to be read.·

<buffer>, INT:ref:*,

is an array where the information read from the file is
returned.

<read count>, INT:value,

is the number of bytes to be read: {0:4096} for disc files,
{0:32000} for $RECEIVE.

<count read>, INT:ref:l,

for wait i/o only, if present, is returned a count of the
number of bytes returned from the file into <buffer>.

2.3-79

FILE SYSTEM
READUPDATE Procedure (disc and $RECEIVE files)

via the file number supplied to READUPDATE.

• If the alternate locking mode is in effect when READUPDATE is
called and the file is locked but not through the file number
supplied in the call, the call is rejected with a "file is locked"
error indication (error 73).

• The locking mode is specified via the SETMODE procedure, function
4.

CONSIDERATIONS FOR INTERPROCESS COMMUNICATION

• Each message read in a call to READUPDATE, including system
messages, must be replied to an a corresponding call to the REPLY
procedure.

• Several interprocess messages can be read and queued by the
application process before a reply need be made. The maximum
number of messages that the application process expects to read
before a corresponding reply is made must be specified in the
<receive depth> parameter to the OPEN procedure.

• If more than one message is to be queued by the application process
(i.e., <receive depth> > 1), a message tag that is associated
with each incoming message must be obtained in a call to the
LASTRECEIVE procedure following each call to READUPDATE. To direct
a reply back to the originator of the message, the message tag
that was associated with the incoming message is passed back to the
system in a parameter to the REPLY procedure. If messages are not
to be queued, it is not necessary to call LASTRECEIVE.

2.3-81

FILE SYSTEM
RECEIVEINFO Procedure ($RECEIVE file)

inclusive, that is not currently being used as a message
tag. When a reply is made, its associated message tag value
is made available for use as a message tag for a subsequent
request message.

<sync id>, INT(32) :variable,

if present, is returned the sync ID associated with this
message.

<file number>, INT:ref:l,

if present, is returned the file number of the file in the
requesting process that is associated with this message.

<read count>, INT:ref:l,

if present, is returned the number of bytes requested in
reply to the message. If the message is the result of a
request made in a call to WRITE, <read count> will be zero
(0) • If the message is the result of a request made in a
call to WRITEREAD, <read count> will be the same as the
read count value passed by the requestor to WRITEREAD.

condition code settings:

< (CCL) indicates that $RECEIVE is not open.
= (CCE) indicates that RECEIVEINFO was successful.
> (CCG) is not returned by RECEIVEINFO.

example:

CALL RECEIVEINFO (reqAsyncid, reqAfnum, reqAreadcount);
IF< THEN ••••

CONSIDERATIONS

• The process ID returned by RECEIVEINFO following receipt of a
preceding OPEN, CLOSE, CONTROL, SETMODE, RESETSYNC, or CONTROLBUF
system message identifies the process associated with the
operation.

• The high-order three words of the process ID are zero following the
receipt of system messages other than OPEN, CLOSE, CONTROL,
SETMODE, RESETSYNC, and CONTROLBUF.

• A sync ID is a doubleword, unsigned integer. Each process file
that is open has its own sync ID. Sync ID~s are not part of the
message data; rather, the sync ID value associated with a

2.3-83

FILE SYSTEM
REFRESH Procedure (disc files)

The REFRESH procedure is used to write control information contained
in File Control Blocks (FCB~s), such as the end-of-file pointer, to
the associated physical disc volume. (While a file is open, its
control information is kept in its main-memory resident FCB: this
control information is normally written to the physical volume only
when the last process having the file open closes the file.) This
procedure or the equivalent Peripheral Utility Program {PUP) REFRESH
command should be performed for all volumes prior to a total system
shutdown.

For further information, see the section on unstructured disc files
in the ENSCRIBE Programming Manual.

The call to the REFRESH procedure is:

{ <error> := } REFRESH (<volume name>)
{ CALL } -------

where

<error>, INT,

is a file system error number indicating the outcome of
the call.

<volume name>, INT:ref:4,

is either

$<volume name> or \<system number><volume name>

<volume name> specifies a volume whose associated FCB~s
should be written to disc. $<volume name> can be specified
as a full twelve-word <file name>: <file name>[4:11] is
ignored.

If omitted, all FCB~s for all volumes are written to their
respective discs.

example:

CALL REFRESH:

CONSIDERATIONS

• When REFRESH is called without a <volume name>, the error return
is always zero.

2.3-85

FILE SYSTEM
REMOTEPROCESSORSTATUS Procedure

• The bits in the low-order word are ordered from 0 to 15, from left
to right:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

I I I 11IIIII11II11 I
• REMOTEPROCESSORSTATUS can also be used to obtain the status of

local processors:

INT(32) myAprocessorAstatus;
myAprocessorAstatus := REMOTEPROCESSORSTATUS(MYSYSTEMNUMBER) ;

2.3-87

FILE SYSTEM
REPLY Procedure ($RECEIVE file)

The REPLY procedure is used to send a reply message, via the $RECEIVE
file, to a message that was received earlier in a corresponding call
to READUPDATE.

The REPLY procedure can be called even if there are any outstanding
no-wait i/o operations pending on $RECEIVE.

The call to the REPLY procedure is:

CALL REPLY <buffer> , <write count>
<count written>

, <message tag>
, <error return>

where

<buffer>, INT:ref,

if present, is an array containing the reply message.

<write count>, INT:value,

if present, is the number of bytes to be written: {0:32000}.
If omitted, no data is transferred.

<count written>, INT:ref:l,

if present, is returned a count of the number of bytes
written to the file.

<message tag>, INT:value,

is the <message tag> returned from LASTRECEIVE that
associates this reply with a message that was previously
received. This parameter can be omitted if message queueing
is not performed by the application process (i.e., OPEN
procedure <receive depth> = 1) •

<error return>, INT:value,

if present, is an error indication that is returned to the
originator associated with this reply when the originator's
i/o operation completes. This indication appears to the
originator as though it is a normal file system error
return. The originator's condition code is set according to
the relative value of <error return>:

2.3-89

FILE SYSTEM
REPOSITION Procedure (disc files)

The REPOSITION procedure is used to position a disc file to a saved
position (the positioning information having been saved by calling
the SAVEPOSITION procedure) • The REPOSITION procedure passes the
positioning block obtained via SAVEPOSITION back to the file system.
Following a call to REPOSITION, the disc file is positioned to the
point where it was when SAVEPOSITION was called.

A call to the REPOSITION procedure will be rejected with an error
indication if there are any outstanding no-wait operations pending
on the specified file.

The call to the REPOSITION procedure is:

CALL REPOSITION <file number> , <positioning block>

where

<file number>, INT:value,

identifies the file to be positioned to a saved position.

<positioning block>, INT:ref,

indicates a saved position to be repositioned to.

condition code settings:

< (CCL) indicates that an error occurred (call FILEINFO) •
= (CCE) indicates that REPOSITION was successful.
> (CCG) indicates that the file is not a disc file.

example:

CALL REPOSITION (fileAnum, positionAblock);
IF< THEN •••.• ; ! error

2.3-91

FILE SYSTEM
SETMODE Procedure (all files}

The SETMODE procedure is used to set device-dependent functions.

A call to the SETMODE procedure will be rejected with an error
indication if there are any outstanding no-wait operations pending
on the specified file.

The call to the SETMODE procedure is:

CALL SETMODE <file number> , <function>

where

------- - ------------- - ----------
, <parameter l>
, <parameter 2>
, <last params>

<file number>, INT:value,

identifies the file to receive the SETMODE <function>.

<function>, INT:value,

is one of the device-dependent functions listed in
the "SETMODE Functions" table (table 2-5) •

<parameter l>, INT:value,

is one of the parameters listed in the "SETMODE Functions"
table. If omitted, the present value is retained.

<parameter 2>, INT:value,

is one of the parameters listed in the "SETMODE Functions"
table. If omitted, the present value is retained.

<last params>, INT:ref:2,

if present, is returned the previous settings of <parameter
l> and <parameter 2> associated with the current function.
The format is:

<last params>[O] =old <parameter l>
<last params>[l] = old <parameter 2> (if applicable)

2.3-93

FILE SYSTEM
SETMODENOWAIT Procedure (all files}

The SETMODENOWAIT procedure is used to set device-dependent functions
in a no-wait manner, on no-wait files.

Whereas the SETMODE procedure is a waited operation, and suspends the
caller while waiting for a request to complete, the SETMODENOWAIT
procedure returns to the caller after initiating a request. A call to
SETMODENOWAIT is completed in a call to AWAITIO.

The call to the SETMODENOWAIT procedure is:

CALL SETMODENOWAIT <file number> , <function>

where

------------- - ------------- - ----------
, <parameter l>
, <parameter 2>
, <last params>
, <tag> }

<file number>, INT:value,

identifies the file to receive the SETMODENOWAIT
<function>.

<function>, INT:value,

is one of the device-dependent functions listed in the
"SETMODE Functions" table (table 2-5).

<parameter l>, INT:value,

is one of the <parameter l> values listed in the "SETMODE
Functions" table. If omitted, the present value is
retained.

<parameter 2>, INT:value,

is one of the <parameter 2> values listed in the "SETMODE
Functions" table. If omitted, the present value is
retained.

<last params>, INT:ref:2,

if present, is returned the previous settings of
<parameter l> and <parameter 2> associated with the
current <function>.

2.3-95

FILE SYSTEM
SETMODE Functions Table (all files)

Table 2-5. SETMODE Functions

Note: This table gives only a partial list of SETMODE functions,
namely, those used with the i/o devices discussed in this manual.
SETMODE functions used with other Tandem software products, such as
ENVOY and AXCESS, are described in the manuals for those products.

<function>

1 = disc, set file security:

<parameter l>

.<O> = 1, for program files only. Set accessor's ID to
program file's ID when program file is run •

• <l>, clearonpurge file attribute; if set, clear
data in the file before purging the file •

• <4:6>, ID allowed for read •

• <7:9>, ID allowed for write .

. <10:12>, ID allowed for execute •

• <13:15>, ID allowed for purge.

For each of the fields from .<4:6> through .<13.15>,
the value may be any one of the following (see
section 7 for further information) :

0 = any user (local)
1 = member of owner's group (local)
2 = owner (local)
4 = any user (local or remote)
5 = member of owner's community i.e. , member of

owner's group (local or ,
6 = member of owner s user

owner (local or remote)
7 = super ID only (local)

<parameter 2> is not used.

2 = disc, set file owner ID:

<parameter l>.<0:7> = group ID
.<8:15> = user ID

<parameter 2> is not used.

remote)
class -- i.e. ,

2.3-97

FILE SYSTEM
SETMODE Functions Table (all files)

Table 2-5. SETMODE Functions (cont~d)

8 = terminal, set system transfer mode (default mode is
configured) :

9 =

10 =

11 =

<parameter l> = 0, conversational mode
= 1, page mode

<parameter 2> sets the number of retries of i/o operations.

Note: <parameter 2> is used with 6520 terminals only.

terminal, set interrupt characters:

<parameter l>.<0:7> = character 1
.<8:15> = character 2

<parameter 2>.<0:7> = character 3
.<8:15> = character 4

(Default for conversational mode is: backspace, line
cancel, end-of-file, and line termination. Default for
page mode is page termination.)

terminal, set parity checking by system (default is
configured):

<parameter l> = 0, no checking
= 1, checking

<parameter 2> is not used.

terminal, set break ownership:

<parameter l> = o, means break disabled (default setting)
= <cpu,pin>, means enable break

and terminal access mode after break is typed:

<parameter 2> = 0, normal mode (any type file access is
permitted)

= 1, break mode (only break-type file access
is permitted)

2.3-99

22 =

23 =

24 =

25 =

FILE SYSTEM
SETMODE Functions Table (all files)

Table 2-5. SETMODE Functions (cont'd}

line printer (subtype 3 or 4) or terminal, set baud rate:

<parameter l> = 0, baud rate = 50
1, baud rate = 75
2, baud rate = 110
3, baud rate = 134.5
4, baud rate = 150
5, baud rate = 300
6, baud rate = 600
7, baud rate = 1200
8, baud rate = 1800
9, baud rate = 2000

10, baud rate = 2400
11, baud rate = ,3600
12, baud rate = 4800
13, baud rate = 7200
14, baud rate = 9600
15, baud rate = 19200

<parameter 2> is not used.

terminal, set character size:

<parameter l> = 0, character size = 5 bits
1, character size = 6 bits
2, character size = 7 bits
3, character size = 8 bits

<parameter 2> is not used.

terminal, set parity generation by system:

<parameter l> = 0, parity = odd
1, parity = even
2, parity = none

<parameter 2> is not used.

line printer (subtype 3} ' set form length:

<parameter l> = length of form in lines

<parameter 2> is not used.

2.3-101

FILE SYSTEM
SETMODE Functions Table (all files)

Table 2-5. SETMODE Functions (cont~d)

36 = allow requests to be queued on $RECEIVE based on
process priority:

<parameter l>.<15> = 0, use first-in-first-out (FIFO)
ordering (default)

1, use process priority ordering

<parameter 2> is not used.

37 = line printer (subtype 1, 4, or 5), get device status:

<parameter l> is not used.

<parameter 2> is not used.

<last params> = status of device. Status values are:

<last params>. for printer (subtype 1 or 5)
(only <last params>[O] is used)

.<5> = DOV, Data overrun
1

0 = no overrun
1 = overrun occurred

.<7> = CLO, Connector loop open
1

0 = not open
1 = open (device

} unplugged)

.<8> = CID, Cable ident
1

0 = old cable
1 = new cable

.<10> = PMO, Paper motion 1 0 = not moving
** RESERVED FOR LATER USE ** 1 = paper moving

.<11> = BOF, Bottom of form
1

0 = not at BOF
1 = at bottom

.<12> = TOF, Top of form
1

0 = not at top
1 = at top

.<13> = DPE, Device parity error
1

0 = parity OK
1 = parity error

.<14> = NOL, Not on line 1 0 = on line
1 = not on line

.<15> = NRY, Not ready 1 0 = ready
1 = not ready

All other bits are undefined.

2.3-103

FILE SYSTEM
SETMODE Functions Table (all files}

Table 2-5. SETMODE Functions (cont,d}

37 = line printer (subtype 1, 4, or 5), get device status
(cont,d):

<last params>[l] for printer (subtype 4) (cont,d)

.<14:15> } always 3

All other bits are undefined.

38 = Terminal, set special line termination mode and character:

<parameter l> = 0, set special line termination mode.
<parameter 2> is the new line termination
character. The line termination character
is not counted in the length of a read. No
carriage return or line feed is issued (the
cursor is not moved) at the end of a read.

= 1, set special line termination mode.
<parameter 2> is the the new line termination
interrupt character. The line termination
character is counted in the length of a read.
No carriage return or line feed is issued (the
cursor is not moved) at the end of a read.

= 2, reset special line termination mode.
The line termination inter~upt character is
restored to its configured value.
<parameter 2> must be present, but is not
used.

<parameter 2> = the new line termination interrupt character
if <parameter l> = 0 or 1.

<last params>, if present, returns the current mode in
<last params>[O] and the current line
termination interrupt character in
<last params>[l].

2.3-105

FILE SYSTEM
UNLOCKFILE Procedure (disc files)

The UNLOCKFILE procedure is used to unlock a disc file that is
currently locked by the caller. Unlocking a file allows other
processes to access the file. If any processes are queued in the
locking queue for the file, the process at the head of the locking
queue is granted access and is removed from the queue (the next read
or lock request moves to the head of the queue). If the process
granted access is waiting to lock the file, it is granted the lock
(which excludes other processes from accessing the file) and resumes
processing. If the process granted access is waiting to read the
file, its read is processed by the file system.

If the UNLOCKFILE procedure is being used to initiate an operation
with a file opened with no-wait i/o specified, the operation must be
completed with a corresponding call to the AWAITIO procedure.

The call to the UNLOCKFILE procedure is:

CALL UNLOCKFILE <file number> , <tag>

where

<file number>, INT:value,

identifies the file to be unlocked.

<tag>, INT(32) :value,

for no-wait i/o only, if present, is stored by the system,
then passed back to the application process by the AWAITIO
procedure when the unlock operation completes.

condition code settings:

< (CCL) indicates that an error occurred (call FILEINFO).
= (CCE) indicates that the UNLOCKFILE was successful.
> (CCG) indicates that the file is not a disc file.

example:

CALL UNLOCKFILE (f ilenum) ;
IF< THEN• error occurred.

2.3-107

FILE SYSTEM
WRITE Procedure (all files)

example:

CALL WRITE (outfile, outbuffer, 72) ;
IF< THEN.... ! error occurred.

CONSIDERATIONS

• If a "wait" write is executed, the <count written> parameter
indicates the number of bytes actually written.

• If a "no-wait" write is executed, <count written> has no meaning
and can be omitted. The count of the number of bytes writte~ is
obtained when the i/o operation completes via the
<count transferred> parameter of the AWAITIO procedure.

CONSIDERATIONS FOR DISC FILES

• If the write is to an unstructured disc file, data is transferred
to the record location specified by the next-record pointer. The
next-record pointer is updated to point to the record following
the record written.

• File pointer action:

current-record pointer := next-record pointer;
next-record pointer :=next-record pointer + <count written>;
end-of-file pointer :=max (end-of-file pointer,

next-record pointer);

• If the write is to an even unstructured disc file, the value of
<write count> is rounded up to an even number (see CREATE
procedure).

• If a call to WRITE is made and the file is locked but not locked
through the file number supplied in the call, the call is
rejected with a "file is locked" error indication {error 73).

• No block may span more than two extents.

CONSIDERATIONS FOR INTERPROCESS COMMUNICATION

• If the write is to another process, successful completion of the
WRITE (or AWAITIO if no-wait) indicates that the destination
process is running.

2.3-109

FILE SYSTEM
WRITEREAD Procedure (terminal and process files)

<count read>, INT:ref :l,

for wait i/o only, if present, is returned a count of the
number of bytes returned from the file into <buffer>.

<tag>, INT(32) :value,

for no-wait i/o only, if present, is stored by the system,
then passed back to the application process by the AWAITIO
procedure when the write/read operation completes.

condition code settings:

< (CCL) indicates that an error occurred (Call FILEINFO) •
= (CCE) indicates the the WRITEREAD was successful.
> (CCG) indicates that control-Y was struck on the terminal.

example:

CALL WRITEREAD (termfnum, inoutAbuffer, 1, 72, numAread) ;
IF< THEN •.•. ! error occurred.

CONSIDERATIONS

• If a "wait" read is executed, the <count read> parameter indicates
the number of bytes actually read.

• If a "no-wait" read is executed, <count read> has no meaning and
can be omitted. The count of the number of bytes read is obtained
when the i/o operation completes via the <count transferred>
parameter of the AWAITIO procedure.

CONSIDERATIONS FOR TERMINALS

• There is no carriage return/line feed sequence sent to the terminal
after the write part of the operation.

2.3-111

FILE SYSTEM
WRITEUPDATE Procedure (disc and magnetic tape files)

<tag>, INT(32) :value,

for no-wait i/o only, if present, is stored by the system,
then passed back to the application process by the AWAITIO
procedure when the write operation completes.

condition code settings:

< (CCL) indicates that an error occurred (call FILEINFO) .
= (CCE) indicates the the WRITEUPDATE was successful.
> {CCG) is not returned by WRITEUPDATE.

example:

CALL WRITEUPDATE (outfile, outbuffer, 512):
IF= THEN.... ! successful.

CONSIDERATIONS

• If a "wait" write is executed, the <count written> parameter
indicates the number of bytes actually written.

• If a "no-wait" write is executed, <count written> has no meaning
and can be omitted. The count of the number of bytes written is
obtained when the i/o completes via the <count transferred>
parameter of the AWAITIO procedure.

CONSIDERATIONS FOR DISC FILES

• If the write is to an unstructured disc file, data is transferred
to the record location specified by the current-record pointer.

e A call to WRITEUPDATE following a call to READ, without
intermediate positioning, updates the record just read.

• File pointer action for unstructured files: unaffected.

• If the write is to an even unstructured disc file, the value of
<write count> is rounded up to an even number (see CREATE
procedure).

• If a call to WRITEUPDATE is made and the file is locked but not
locked through the file number supplied in the call, the call is
rejected with a "file is locked" error indication (error 73).

2.3-113

FILE SYSTEM
File System Errors

The GUARDIAN file system provides indications of a number of errors
and other special conditions. These conditions may occur during
execution of almost any user application or Tandem-supplied program,
since most programs use the file system.

Each file system procedure sets the hardware condition code to
indicate the outcome of the operation. The condition code should be
checked immediately following each call to a file system procedure.
Typically this is done as follows:

CALL READ (filenum,buffer,72,numxferred};
IF <> THEN •••

If the "not equal" condition is detected, an error or warning
condition occurred; the program should then check the error number and
take appropriate action.

The error number associated with the last operation on a particular
open file can be obtained by calling the FILEINFO procedure and
passing the file number of the file in error:

CALL FILEINFO(inAfile, errAnum);

The error number associated with an operation on a file that is not
open (such as a disc file creation or a file open failure} can be
obtained by passing the file number as -1 to the FILEINFO procedure
immediately following the call to the operation in question:

CALL FILEINF0(-1, errAnum);

Note that the OPEN procedure returns -1 to <file number> if the open
fails.

ERRORS

The GUARDIAN file system error numbers are grouped into four major
categories:

Error

0

1-9

10-255

Category

No error. The operation executed successfully.

warning. The operation executed with the exception
of the indicated condition. For warning 6, data is
returned in the application process's buffer.

Error. The operation encountered an error or a
special condition which the application must
recognize -- for instance, an aborted transaction
on a TMF audited file.

2.4-1

FILE SYSTEM
File System Errors

If a device type number includes a dot (.),the digits to the left of
the dot are the device type, and the digits to the right of the dot
are the device subtype. Device subtypes are listed in table 2-3
(in the "File System Procedures" section, under the DEVICEINFO
procedure).

The error explanations given here are intentionally general. The
state of the system and the appropriate corrective action often depend
on the application, the device, and/or the Tandem-supplied programs
being used when the error occurred. For more information on errors
related to terminals, line printers, tape drives, card readers,
interprocess communication, and the operator console, refer to
sections 2.5 through 2.10 of this manual. For additional information
on errors related to Tandem subsystems such as ENSCRIBE, PATHWAY, TMF,
ENVOY, or AXCESS, refer to the manuals on those subsystems.

In par-ticular, file system errors returned by the data communication
subsystems (device types 6, 7, 9, 10, 11, 12, 26, and 59 through 63)
may have special meanings depending on the particular subsystem,
access method, or protocol being used. If one of these device types
is involved, refer also to the appropriate one of these manuals or
sections:

• Section 2.5 of this manual (device type 6, Tandem model 6511, 6512,
6520 and 6530 terminals only)

• AXCESS Data Communications Programming Manual (device type 6 models
other than listed above; also device types 9, 10, 59, 60, and 61)

• ENVOY Byte-Oriented Protocols Reference Manual (device type 7)

• ENVOYACP Bit-Oriented Protocols Reference Manual (device type 11)

• Tandem to IBM Link (TIL} Reference Manual for Tandem users
(device type 12)

• Tandem HyperLink Reference Manual (device type 26}

• EXPAND Users Manual (device types 62 and 63)

Refer to the ENSCRIBE Programming Manual for information on structured
and unstructured disc files. For information on PUP and the operator
console, refer to the Tandem Nonstop System Operations Manual or the
Tandem Nonstop II System Operations Manual. For information on system
configuration, refer to the Tandem Nonstop System Management Manual or
the Tandem Nonstop II System Management Manual.

Note: Unless otherwise specified, all information applies to both
Nonstop systems and Nonstop II systems. "I only" means the
information applies only to Nonstop systems; "II only" means
it applies only to Nonstop II systems.

2.4-3

FILE SYSTEM
File System Errors

5 (%5) FAILURE TO PROVIDE SEQUENTIAL BUFFERING (I only)
(device type: 3)

A structured disc file was opened for sequential block buffering,
but the specified sequential block buffer length was not sufficient
to contain a data block from the file. The open succeeds, but
normal system buffering is used. Correct the program to satisfy
criteria for sequential buffering.

6 (%6) SYSTEM MESSAGE RECEIVED (device type: 2)
The process received a system message from another process. This is
generally not an error, but an indication that the message just read
from $RECEIVE is a system message. Data is returned in the
application process's buffer. Program action on receipt of a system
message depends on the application.

7 (%7) PROCESS NOT ACCEPTING CONTROL, SETMODE, RESETSYNC OR
CONTROLBUF MESSAGES (device type: 0)

CONTROL, SETMODE, RESETSYNC or CONTROLBUF was called for a process
file, but the latter process did not open its $RECEIVE file with
<flags>.<l> set to 1 to enable receipt of these messages. Open the
process with <flags>.<l> set to 1, correct the file operand on the
procedure call, or eliminate the call.

8 (%10) OPERATION SUCCESSFUL (EXAMINE MCW FOR ADDITIONAL STATUS)
(device type: 11.40, 11.42)

An operation to an ENVOYACP data communication line (SDLC or ADCCP)
completed successfully, but additional status information was also
received. Retrieve information from the Message Control word (MCW)
before proceeding.

CONDITION CODE < (CCL) : ERRORS

10 (%12) FILE OR RECORD ALREADY EXISTS (device type: 3)
An operation requested creation of a new disc file, insertion of a
new record in a key-sequenced file, or insertion of a new record
with a unique alternate key in a structured disc file, but a file by
that name or a record with that primary key already existed.
Corrective action is application-dependent.

11 (%13) FILE NOT IN DIRECTORY OR RECORD NOT IN FILE
(device type: 3)

An operation referred to a nonexistent disc file or record.
Corrective action is application-dependent; for "record not in
file", it depends on the positioning mode.

12 (%14) FILE IN USE (device type: any except 2)
Specified file was being used, with exclusive or protected access,
by another process. Corrective action is application-dependent.
user processes can reply with this error if they have opened
$RECEIVE to enable receipt of OPEN and CLOSE system messages {OPEN
<flags>.<0> = 1) and with a receive depth greater than zero.

2.4-5

FILE SYSTEM
File System Errors

21 (%25) ILLEGAL COUNT SPECIFIED (device type: any except 2)
An illegal count parameter was specified in a file system call, or
the operation attempted to transfer too much or too little data.
For structured disc files, this may also occur for creation of a
file with an invalid record length or alternate key length, or for a
file access specifying an inconsistent key length or compare length.
This is a coding error; corrective action is dependent on the device
or the application.

22 (%26) APPLICATION PARAMETER OR BUFFER ADDRESS OUT OF BOUNDS
(device type: any)

An out-of-bounds application parameter or buff er address parameter
was specified in a file system call; that is, a pointer to the
parameter or the buffer has an address which is greater than the
MEM associated with the data area of the process. This is a coding
error; corrective action is application-dependent.

23 (%27) DISC ADDRESS OUT OF BOUNDS (device type: 3)
A disc address specified in a file system call was too large or too
small. This error generally indicates corrupt data or a corrupt
alternate key file. Corrective action is application-dependent.

24 (%30) PRIVILEGED MODE REQUIRED FOR THIS OPERATION
(device type: any)

A non-privileged user or process attempted to perform an operation
requiring privileged mode. Have the system manager license the
program file.

25 (%31) AWAITIO OR CANCEL ATTEMPTED ON WAIT FILE
(device type: any)

AWAITIO or CANCEL was called for a file opened for wait i/o.
Open the file for no-wait i/o, correct the file number, or
make another correction appropriate to the application.

26 (%32) AWAITIO, CANCEL, OR CONTROL 22 ATTEMPTED ON A FILE WITH NO
OUTSTANDING REQUESTS (device type: any)

AWAITIO, CANCEL, or CONTROL 22 was called, but no i/o requests were
outstanding on the file. Corrective action is application
dependent.

27 (%33) WAIT OPERATION ATTEMPTED WHEN OUTSTANDING REQUESTS PENDING
(device type: any)

A wait operation (that is, an operation that cannot be performed
no-wait, such as SETMODE, POSITION, KEYPOSITION, or SETPARAM) was
attempted on a file that was opened no-wait, and outstanding no-wait
i/o requests were pending on that file. Corrective action is
application-dependent.

2.4-7

FILE SYSTEM
File System Errors

33 (%41) I/O PROCESS UNABLE TO OBTAIN IOPOOL SPACE FOR I/O BUFFER,
OR COUNT TOO LARGE FOR DEDICATED I/O BUFFER (I only)
I/O PROCESS UNABLE TO OBTAIN I/O SEGMENT SPACE (II only)
READ FROM UNSTRUCTURED DISC SPANS TOO MANY SECTORS (both)
(device type: any except 2)

Insufficient buffer space was available for the i/o process; the
count parameter for a dedicated i/o buff er was too large (Nonstop
systems only); or a read from an unstructured disc file spanned more
than eight sectors. For an insufficient space error, wait and try
again; if the problem persists, check the system for processes that
are using too much memory for i/o. For a "count too large" error,
make the buffer smaller. If the error is due to reading too many
sectors from disc, re-code the application to read fewer sectors.

34 (%42) UNABLE TO OBTAIN FILE SYSTEM CONTROL BLOCK (II only)
(device type: any)

All file system control blocks were in use, so the given operation
could not be performed. Wait and try again. If the problem
persists, check the system for processes that are using too many
open files.

35 (%43) UNABLE TO OBTAIN I/O PROCESS CONTROL BLOCK (II only)
(device type: any except 2)

All i/o process control blocks were in use, so the given operation
could not be performed. Wait and try again. If the problem
persists, check the system for processes that are performing too
many concurrent i/o operations.

36 (%44) UNABLE TO OBTAIN PHYSICAL MEMORY (II only)
(device type: any)

Insufficient physical memory was available to perform the specified
operation. Wait and try again. If the problem persists, check the
system for processes that are using too much memory.

37 (%45) UNABLE TO OBTAIN PHYSICAL MEMORY FOR I/O (II only)
(device type: any except 2)

Insufficient physical memory was available to perform the specified
i/o operation. Wait and try again. If the problem persists, check
the system for processes that are using too much memory for i/o.

38 (%46) OPERATION ATTEMPTED ON WRONG TYPE OF SYSTEM
(device type: any except 2)

A program running on a Nonstop system specified an operation
available only on Nonstop II systems, or a program running on a
Nonstop II system specified an operation available only on Nonstop
systems. Recode the application to eliminate the illegal
operation.

2.4-9

FILE SYSTEM
File System Errors

47 (%57) KEY NOT CONSISTENT WITH FILE DATA (device type: 3)
For some reason (such as no disc space available), the alternate
key file could not be updated on an insert, update, or delete
operation to the primary file. The data is inserted in (or
deleted from) the primary file, so the alternate key file is no
longer consistent with the primary file. Corrective action is
application-dependent.

48 (%60) SECURITY VIOLATION, OR REMOTE PASSWORD ILLEGAL OR DOES NOT
EXIST (device type: 3)

Specified operation (read, write, execute, or purge) was not
permitted on the given disc file by the given user, because of the
way the file was secured when created or because of an illegal or
nonexistent password in an EXPAND network environment. Re-secure
the file or re-code the application; if access is across a network,
ensure that matching user ID's and remote passwords are established
at both nodes.

49 (%61) ACCESS VIOLATION (device type: any except 2)
Specified type of access (read, write, or execute) was not permitted
on the given file by the given process. This error may occur
because that process did not open it for that kind of access, or
because another process had it open in protected or exclusive mode.
Corrective action depends on the application.

50 (%62) DIRECTORY ERROR (device type: 3)
A severe problem occurred with the directory on a disc volume.
The file associated with the error is no longer accessible, although
other files on the volume may be. It may be possible to recover
some files by using the PUP REBUILDDFS command. Call your Tandem
representative.

51 (%63) DIRECTORY IS BAD (device type: 3)
A severe problem occurred with the directory on a disc volume.
The file associated with the error is no longer accessible, although
other files on the volume may be. It may be possible to recover
some files by using the PUP REBUILDDFS command. Call your Tandem
representative.

52 (%64) ERROR IN DISC FREE SPACE TABLE (device type: 3)
A severe problem occurred on a disc volume. The file associated
with the error is no longer accessible, although other files on the
volume may be. It may be possible to recover some files by using
the PUP REBUILDDFS command. Call your Tandem representative.

53 (%65) FILE SYSTEM INTERNAL ERROR (device type: 3)
A severe problem occurred on a disc volume used by the file system.
The file associated with the error is no longer accessible, although
other files on the volume may be. It may be possible to recover
some files by using the PUP REBUILDDFS command. Call your Tandem
representative.

2.4-11

FILE SYSTEM
File System Errors

60 (%74) VOLUME ON WHICH THIS FILE RESIDES HAS BEEN REMOVED, DEVICE
HAS BEEN DOWNED, OR PROCESS HAS FAILED SINCE THE FILE WAS
OPENED (device type: any except 1 and 2)

Specified file resided on a volume that was removed or a device that
was downed since the file was opened: or for a process file, the
specified process failed after the open but before this i/o
operation. Ensure that the device (if any) is up, close the file
and re-open it, then try again. In particular, this error is
returned by a server written in COBOL, FOih'RAN, or MUMPS if it
receives a message from a process that it does not recognize as
having previously opened it. The server maintains a table of
processes from which it has received an OPEN message. Suppose a
server named $X dies after a requestor opens it, and that another
process also named $X is then created. The new $X knows nothing
about the previous open from the requestor. If the requestor sends
a message to "$X", the new $X receives it, then automatically
replies with error 60 if it is written in COBOL, FORTRAN, or MUMPS.

61 (%75) NO MORE FILE OPENS PERMITTED ON THIS VOLUME
(device type: 3)

The system operator had inhibited file opens on this volume by means
of a PUP STOPOPENS command, or the number of open files on the
volume had reached the maximum. Retry when opens are allowed.

62 (%76) VOLUME HAS BEEN MOUNTED, BUT MOUNT ORDER HAS NOT BEEN GIVEN
(device type: 3)

Specified disc volume was physically mounted, but the mount order
had not yet been given: the file could not be opened. Retry after
the mount completes.

63 (%77) VOLUME HAS BEEN MOUNTED AND MOUNT IS IN PROGRESS (WAITING
FOR MOUNT INTERRUPT) (device type: 3)

Specified disc volume was physically mounted and the mount order
had been given, but the mount had not completed: the file could not
be opened. Retry after the mount completes.

64 (%100) VOLUME HAS BEEN MOUNTED AND MOUNT IS IN PROGRESS
(device type: 3)

Specified disc volume was physically mounted and the mount order
had been given, but the mount had not completed: the file could not
be opened. Retry after the mount completes.

65 (%101) ONLY SPECIAL REQUESTS PERMITTED (device type: 3)
Specified disc volume was upped in special request mode by the
system operator. Retry after the volume is upped in normal
mode.

2.4-13

FILE SYSTEM
File System Errors

76 (%114) TRANSACTION IS IN THE PROCESS OF ENDING
(device type: 3 or none)

For systems with TMF, the transaction was ending, so it could not
be aborted or resumed. See the TMF users Guide.

77 (%115) A TMF SYSTEM FILE HAS THE WRONG FILE CODE
(device type: 3)

For systems with TMF, a serious error occurred with a TMF system
file. The cause of this error may be a user program that has
corrupted a TMF system file, a catastrophic system failure, or an
internal software error. Call your Tandem representative.

78 (%116) TRANSID IS INVALID OR OBSOLETE
(device type: 3 or none)

For systems with TMF, the transaction was invalid or obsolete.
See the TMF users Guide.

79 (%117) ATTEMPT MADE BY TRANSID TO UPDATE OR DELETE A RECORD IT
HAS NOT PREVIOUSLY LOCKED
(device type: 3)

For systems with TMF, the transaction failed to lock a record before
attempting to change or delete it. See the TMF users Guide.

80 (%120) INVALID OPERATION ATTEMPTED ON AUDITED FILE OR NON-AUDITED
DISC VOLUME (device type: 3)

For systems with TMF, an invalid operation was attempted on an
audited file or a non-audited disc volume. See the TMF users Guide.

81 (%121) ATTEMPTED OPERATION INVALID FOR TRANSID THAT HAS NO-WAIT
I/O OUTSTANDING ON A DISC OR PROCESS FILE
(device type: 2 or none)

For systems with TMF, the attempted operation was invalid because
the transaction had one or more outstanding no-wait i/o operations
on a disc or process file. See the TMF Users Guide.

82 (%122) TMF IS NOT RUNNING (device type: 0, 3, or none)
BEGINTRANSACTION failed because TMF was not running on this system;
or an i/o operation to an audited disc or a process file on a remote
system was part of a TMF transaction, but TMF was not running on the
remote system. Ensure that TMF is running on all systems involved
in the transaction.

83 (%123) PROCESS HAS INITIATED MORE CONCURRENT TRANSACTIONS THAN
CAN BE HANDLED (device type: none)

For systems with TMF, BEGINTRANSACTION failed because the process
had reached its maximum number of concurrent transactions -- a
number equal to TFILE-depth, or i if the TFILE was not open. See
the TMF users Guide.

2.4-15

FILE SYSTEM
File System Errors

98 (%142) TRANSACTION MONITOR PROCESS'S NETWORK ACTIVE TRANSACTIONS
TABLE IS FULL (device type: 0, 3, or none)

For systems with TMF, BEGINTRANSACTION failed because the TMF
Network Active Transactions Table on this system was full; or an i/o
operation to an audited disc or a process file on a remote system
was part of a TMF transaction, but the TMF Network Active
Transactions Table on the remote system was full. See the
TMF users Guide.

99 (%143) ATTEMPT TO USE MICROCODE OPTION THAT IS NOT INSTALLED
(device type: any except 2)

Attempt was made to use features in a microcode option that was not
installed in the system (such as ENSCRIBE structured disc files on a
Nonstop system). Ensure that the system has the required microcode.

100 (%144) DEVICE NOT READY (device type: any except 2)
Device was not powered up, not on line, or (for a card reader) out
of cards. Make device ready.

101 (%145) NO WRITE RING (device type: 4)
Mounted tape could not be written to because it had no write ring.
Remove tape, put a write ring on it, remount tape and try again.

102 (%146) PAPER OUT OR BAIL NOT PROPERLY CLOSED (device type: 5)
Printer could not continue because it was out of paper, or because
the paper bail was not in place. Load more paper or close the bail.

103 (%147) DISC NOT READY DUE TO POWER FAILURE (device type: 3)
Disc device was not ready because of a system power failure. Wait
and try again.

104 (%150) NO RESPONSE FROM DEVICE (device type: 5.4)
Pri~ter did not return the requested status; either the printer
power was off or a hardware problem occurred. Power up the device
or repair it.

105 (%151) VFU ERROR (device type: 5.4)
The printer DAVFU buffer was invalid. This can occur for the
following reasons: 1) more than one stop was defined for channel 0
(top of form); 2) no stops were defined for one or more channels;
3) bits 12 through 15 of each word were not zeros. Correct the
programming error.

110 (%156) ONLY BREAK ACCESS PERMITTED (device type: 6 or 61)
Specified terminal could not be accessed because BREAK was typed and
break mode had been specified when BREAK was enabled. No data was
transferred. The terminal is inaccessible (unless this process uses
SETMODE to signal its operations as break access) until the process
processing the break calls SETMODE function 12 to allow normal
access to the terminal. If this process is not the one that enabled
BREAK, retry the operation periodically. If this process enabled
BREAK, check $RECEIVE for the system BREAK message and take
appropriate action.

2.4-17

FILE SYSTEM
File System Errors

130 (%202) ILLEGAL ADDRESS TO DISC (device type: 3)
The requested address was too large for disc, or (for disc subtypes
>= 5 on Nonstop systems or any disc subtype on Nonstop II systems)
an error occurred while the disc was being formatted. Correct the
coding error or reformat the disc.

131 (%203) WRITE CHECK ERROR FROM DISC (device type: 3.0 or 3.1)
An internal circuitry fault was detected by the disc hardware. Call
your Tandem representative.

132 (%204) SEEK INCOMPLETE FROM DISC (device type: 3.0 or 3.1)
The disc read/write heads did not reach the desired cylinder address
after a retry. Call your Tandem representative.

133 (%205) ACCESS NOT READY ON DISC (device type: 3.0 or 3.1)
The disc read/write heads did not reach the desired cylinder
address. Call your Tandem representative.

134 (%206) ADDRESS COMPARE ERROR ON DISC (device type: 3)
A header search failure or header miscompare occurred on the disc.
This indicates either a request for a bad address or, possibly, a
head alignment or .formatting problem. Call your Tandem
representative.

135 (%207) WRITE PROTECT VIOLATION WITH DISC (device type: 3)
An attempt was made to write to a write-protected disc. Reset the
write-protect switch to allow writes.

136 (%210) UNIT OWNERSHIP ERROR (DUAL-PORT DISC) (device type: 3)
A hard error occurred in the disc port logic. Call your Tandem
representative.

137 (%211) CONTROLLER BUFFER PARITY ERROR
(device type: any except 2)

A parity error occurred in the controller buffer. Call your Tandem
representative.

138 (%212) INTERRUPT OVERRUN (device type: any except 2)
Device interrupted the processor more quickly than the software
could respond. Wait and try again. If retries do not recover from
this error, call your Tandem representative.

139 (%213) CONTROLLER ERROR (device type: any except 2)
Controller failed its internal diagnostics. Call your Tandem
representative for a replacement.

140 (%214) MODEM ERROR, OR MODEM OR LINK DISCONNECTED
(device type: 6, 7, 10, 11, 12, 59, 60, 61, or 63)

A modem error occurred; for instance, the communication link was not
yet established, a modem failure occurred, a momentary loss of
carrier occurred, or the modem or link was disconnected. Corrective
action is device-dependent.

2.4-19

FILE SYSTEM
File System Errors

155 (%233) ONLY NINE-TRACK TAPE PERMITTED (device type: 4)
A seven-track tape device was specified for an operation requiring
nine-track tape (most Tandem subsystems require nine-track). Retry,
specifying a drive configured for nine-track tape.

156 (%234) TIL PROTOCOL VIOLATION DETECTED (device type: 12)
Either a connect request (CONTROL 11) was made after the TIL link
had already been connected, or an internal link error occurred. The
call is aborted and the link is disconnected. In the first case,
correct the coding error~ in the second, call your Tandem
representative.

157 (%235) I/O PROCESS INTERNAL ERROR
(device type: any except 2)

An internal system error occurred. Call your Tandem representative.

158 (%236) INVALID FUNCTION REQUESTED FOR HYPERLINK
(device type: 26)

Operation specified an invalid Tandem HyperLink function code.
Supply the correct function code.

160 (%240) REQUES~ IS INVALID FOR LINE STATE
(device type: 6, 7, 10, or 11)

MORE THAN 7 READS OR 7 WRITES ISSUED (device type: 11)
A protocol error occurred. Corrective action is device-dependent.

161 (%241) IMPOSSIBLE EVENT OCCURRED FOR LINE STATE
(device type: 7, 10, or 11)

An event occurred that was impossible for the current line state~
this probably indicates a hardware problem~ Corrective action is
device-dependent.

162 (%242) OPERATION TIMED OUT (device type: 7, 10, or 11)
Specified operation timed out after several retries. Corrective
action is device-dependent.

163 (%243) EQT RECEIVED (device type: 7.0, 7.1, 7.2, 7.3, or 7.8)
POWER AT AUTO-CALL UNIT IS OFF (device type: 7.56 or 11)

An EQT was received while waiting for a line bid or for a message,
or the power at the auto-call unit was off. Corrective action is
device-dependent.

164 (%244) DISCONNECT RECEIVED
(device type: 7.0, 7.1, 10, 11, or 61)

DATA LINE IS OCCUPIED (BUSY) (device type: 7.56 or 11)
A disconnect was received or a send disconnect call was issued while
a request was outstanding, or the data line was busy. Corrective
action is device-dependent.

165 (%245) RVI RECEIVED (device type: 7.0, 7.1, 7.2, or 7.3)
DATA LINE NOT OCCUPIED AFTER SETTING CALL REQUEST
(device type: 7.56 or 11)

An RVI was received, or the data line was not occupied after
setting the call request. Corrective action is device-dependent.

2.4-21

FILE SYSTEM
File System Errors

173 (%255) MAXIMUM ALLOWABLE NAKS RECEIVED (TRANSMISSION ERROR)
(device type: 6, 7, or 10)
INVALID MCW ON WRITE (device type: 11)

Specific meaning and corrective action for this error are device
dependent. For a 6520, 6524 or 6530 terminal, check power and
turn on if necessary.

174 (%256) WACK RECEIVED AFTER SELECT (device type: 7.2 or 7.3)
ABORTED TRANSMITTED FRAME (device type: 11)

A WACK sequence was received as the text acknowledgment; or a
link request occurred while the request was pending, possibly
causing loss of data. Corrective action is device-dependent.

175 (%257) INCORRECT ALTERNATING ACK RECEIVED
(device type: 7.0, 7.1, 7.2, or 7.3)

COMMAND REJECT (device type: 11)
An incorrect alternating ACK was received, or a command reject
condition was generated. Corrective action is device-dependent.

176 (%260) POLL SEQUENCE ENDED WITH NO RESPONDER
(device type: 7.3, 7.8, 7.9, or 11.40)

The poll sequence ended, but no message was received in response.
Corrective action is device-dependent.

177 (%261) TEXT OVERRUN (device type: 7, 10, or 11)
Data received on a read exceeds the amount allowed by the read
count. Corrective action usually involves increasing the read
count; refer to the manual for the device for more information.

178 (%262) NO ADDRESS LIST SPECIFIED
(device type: 7.2, 7.3, 7.8, 7.9, 11.40, or 61)

An address list was required for this operation, but none was speci
fied. Corrective action depends on the device and the application.

179 (%263) APPLICATION BUFFER IS INCORRECT (device type: 10 or 61)
CONTROL REQUEST PENDING OR AUTOPOLL ACTIVE
(device type: 11.40)

For an AXCESS communication line, an error was encountered in the
application buffer; for an ENVOYACP line, the operation could not be
performed because a control request was pending or the auto-poll
feature was active. Corrective action depends on the device and the
application.

180 (%264) UNKNOWN DEVICE STATUS RECEIVED
(device type: 5.3, 6.6 through 6.10, or 10)

An invalid device status was received and could not be translated
into a usable error number. Use CUP to determine the status
received.

181 (%265) STATUS RECEIPT CURRENTLY ENABLED FOR SUBDEVICE
(device type: 10)

Data was sent to the subdevice when it expected to receive status
information. Corrective action is application-dependent.

2.4-23

FILE SYSTEM
File System Errors

201 (%311) CURRENT PATH TO THE DEVICE IS DOWN
(device type: any except 0 and 2)
ATTEMPT WAS MADE TO WRITE TO A NONEXISTENT PROCESS
(device type: 0)

For a process file, an attempt was made to write to a nonexistent
process, or a pending WRITE or WRITEREAD was aborted because the
server process read the request using READUPDATE but died before it
replied. For a device, the current path to the device was down.
Either the operation never got started, or the operation completed
but the path failed before a reply could be made. For a process
file opened with a sync depth of zero, if the process file is a
process pair, the primary process failed; retry the operation once
to cause communication with the backup process. If a second error
201 occurs, no backup exists (both paths are down), and programmatic
recovery is impossible. (For disc server processes, the latter
error recovery scheme may be risky; to avoid problems, open these
processes with a sync depth greater than zero.) Take corrective
action appropriate to the device and the application.

210 (%322) DEVICE OWNERSHIP CHANGED DURING OPERATION
(device type: any except 2)

A path switch to a hardware device controller occurred while this
operation was in progress. This error is associated with concurrent
operations involving more than one unit connected to a multi-unit
controller. It occurs when an operation is in progress with one
unit on a multi-unit controller and an error is detected during an
operation with another unit on the same controller. (The other
operation could have been on behalf of this or another application
process.) The associated medium might have moved. Corrective
action depends on the device and the application.

211 (%323) FAILURE OF CPU PERFORMING THIS OPERATION
(device type: any)

The processor module controlling the device associated with this
file operation failed (path error). The file operation itself
stopped at some indeterminate point, and the associated medium might
have moved. Corrective action depends on the device and the
application.

212 (%324) EIO INSTRUCTION FAILURE (I only)
(device type: any except 2)

A controller failure occurred (path error). The file operation
stopped at some indeterminate point, and the associated medium might
have moved. Corrective action depends on the device and the
application.

213 (%325) CHANNEL DATA PARITY ERROR
(device type: any except 2)

A controller or channel failure occurred (path error).
operation stopped at some indeterminate point, and the
medium might have moved. Corrective action depends on
and the application.

The file
associated
the device

2.4-25

FILE SYSTEM
File System Errors

221 (%335) CHANNEL PAD-IN VIOLATION (I only)
CONTROLLER HANDSHAKE VIOLATION (II only)
(device type: any except 2)

A controller or channel failure occurred (path error).
operation stopped at some indeterminate point, and the
medium might have moved. Corrective action depends on
and the application.

222 (%336) BAD CHANNEL STATUS FROM EIO INSTRUCTION
(device type: any except 2)

The file
associated
the device

A controller or channel failure occurred (path error). The file
operation stopped at some indeterminate point, and the associated
medium might have moved. Corrective action depends on the device
and the application.

223 (%337) BAD CHANNEL STATUS FROM IIO INSTRUCTION
(device type: any except 2)

A controller or channel failure occurred (path error). The file
operation stopped at some indeterminate point, and the associated
medium might have moved. Corrective action depends on the device
and the application.

224 (%340) CONTROLLER ERROR (I only)
(device type: any except 2)

A controller failure occurred (path error). The file operation
stopped at some indeterminate point, and the associated medium might
have moved. Corrective action depends on the device and the
application.

225 (%341) NO UNIT OR MULTIPLE UNITS ASSIGNED TO SAME UNIT NUMBER
(device type: any except 2)

A path error occurred because no unit or multiple units were
assigned to the unit number being used. The file operation stopped
at some indeterminate point, and the associated medium might have
moved. Corrective action depends on the device and the application.
If the device is a disc, check the UNITS plugs on the drive.

226 (%342) CONTROLLER BUSY ERROR (I only)
(device type: any except 2)

A controller failure occurred (path error). The file operation
stopped at some indeterminate point, and the associated medium might
have moved. Corrective action depends on the device and the
application.

230 (%346) CPU POWER ON DURING OPERATION
(device type: any except 2)

CPU power failed, then was restored during this operation (path
error). At least one path, and possibly both paths, were operable.
The file operation stopped at some indeterminate point, and the
associated medium might have moved. Corrective action depends on
the device and the application.

2.4-27

FILE SYSTEM
Error Recovery

ERROR RECOVERY

The programmer must consider a number of items when writing error
recovery routines:

• The type of device (e.g., disc, magnetic tape, line printer, etc.)

• The type of error (i.e., whether it is recoverable
programmatically)

• If not a disc, whether or not medium movement took place

• The number of no-wait operations outstanding when the error was
detected

Device

Disc - For disc files, if a file is opened with a sync depth
greater than or equal to 1, all recoverable errors are automatically
retried by the file system.

Terminals - Usually, errors occurring when writing to a terminal
can simply be retried. Some errors occurring when reading, however,
indicate a failure at some indeterminate point. In those cases, a
message should be sent to the terminal operator indicating that the
last entry should be retyped before retrying the read=

Printers - The medium may or may not have moved when certain errors
occurred. Simply reprinting a line associated with an error could
result in lines being duplicated or, if no-wait i/o is used, printed
out of order.

Magnetic Tapes - As with printers, the medium (tape) may or may not
have moved when certain errors occurred. For error recovery, the
application program should keep track of the number of records read or
written. In some cases it may be necessary for the application
program to rewind the tape, then space forward to the record prior to
where an error occurred.

Interprocess - For the $RECEIVE file, there are no recoverable errors.
For WRITE or WRITEREAD to a process, if the file is opened with a sync
depth greater than zero, all recoverable errors are automatically
retried by the file system.

Operator Console - All recoverable errors are automatically
retried by the file system.

Path Errors (Errors 200-255)

Figure 2-16 illustrates a path failure, the error returned to the
application process, the retry by the application process, and the
successful outcome of the retry.

2.4-29

FILE SYSTEM
Error Recovery

3. For disc files, and also for process files when the process or
its cpu fails, the file system has the capability to recover
automatically from path failures. This capability is in effect
if a sync depth greater than zero is specified when the file is
opened. For a more detailed explanation of this feature, see
"Automatic Path Error Recovery for Disc Files" in section 2.1.

Note that the file system retries at most one time per
operation. This one-retry limit is not a real concern for
disc files, because cpu failures are infrequent and disc
process requests are usually processed very quickly. However,
an i/o request to a server process may be outstanding for a
long time, perhaps several hours~ If the primary server
process dies, the file system redirects the WRITE or WRITEREAD
operation to the backup server process. But even if the
backup re-creates a new backup, the file system will not retry
the operation a second time if the new primary also fails.

Table 2-6 summarizes path error recovery for procedures applicable to
non-disc devices.

Table 2-6. Path Error Recovery for Devices Other than
Discs and Processes

Path Error Recovery Path Error
Procedure Performed by: Not Possible

System Application

AWAIT IO x
CANCELREQ x
CLOSE x
CONTROL x
CONTROLBUF x
FILE INFO x
OPEN x
READ x
SETMODE x
SETMODENOWAIT x
WRITE x
WRITE READ x
WRITEUPDATE x

For those procedures listed under "System", if an error 200 or
greater is returned, programmatic error recovery is not possible.

For those procedures listed under "Application", the application
program must perform path error recovery. The application program
should keep track of the number of times any of the path errors from

2.4-31

• I/O Messages

FILE SYSTEM
Error Recovery

These messages log transient and hard (i.e., unrecoverable) i/o
failures, log the up/down state of i/o devices, and log device
statistical information.

• Resource Allocation Messages

These messages log transient and hard resource allocation failures,
and indicate potential resource allocation problems and unusual
resource allocation conditions. The principal reason for these
messages is twofold: to aid in the diagnosis of configuration
errors in the areas of Link Control Block (LCB) allocation and
resident memory pool allocation, and to help pinpoint application
processes that are being allocated an unusual number of LCB's
and therefore are potentially detrimental to system operation.

Both types of console messages are described in the Nonstop System
Operations Manual and the Nonstop II System Operations Manual.

2.4-33

FILE SYSTEM
Terminals: Conversational Mode/Page Mode

The GUARDIAN file system can communicate with virtually any
conversational mode or page mode termina~ whose characteristics can be
defined through the system generation program (SYSGEN) •

The file system provides for data transfers between application
processes and terminals in blocks of 0 to 4,095 bytes.

Topics covered in this section are:

• General Characteristics of Terminals
• Summary of Applicable Procedures
• Accessing Terminals

Transfer Termination when Reading
Transfer Modes

• Transparency Mode
• Checksum Processing
• Echo
• Timeouts
• Modems
• Break Feature
• Error Recovery
• Configuration Parameters
• Summary of Terminal CONTROL and SETMODE Operations

GENERAL CHARACTERISTICS OF TERMINALS

• Terminals are accessed by

$<device name> or

$<logical device number>.

• The maximum number of concurrent opens permitted a given terminal
is eight (8).

• The .logical device number of the home terminal where an
application process was created can be obtained through the MYTERM
utility procedure.

• Conversational mode/page mode terminal device type is 6.

• The asynchronous terminal multiplexer hardware has the capability
to examine each character received from a terminal and compare the
characters with four programmable "interrupt" characters. These
characters are called interrupt characters because the receipt of
one of these characters by the terminal multiplexer causes a
hardware i/o interrupt to occur (the interrupt is invisible to
application processes) • The interrupt results in the system i/o
process controlling the terminal being notified of the character~s
reception. Action appropriate for the particular interrupt
character is then taken (in some cases this means notifying the
application process).

2.5-1

FILE SYSTEM
Terminals: Conversational Mode/Page Mode

Conversational mode line termination character
Conversational mode backspace type
Conversational mode CR/LF delay
Conversational mode forms control delay
Page mode page termination character
Page mode pseudo-polling trigger character

• Tandem-supplied programs using terminals open them with share
access.

• Default file system spacing mode is "post-space" (i.e., space after
printing). The spacing mode can be set to "pre-space" (i.e., space
before printing) via a SETMODE function.

SUMMARY OF APPLICABLE PROCEDURES

The following procedures are used to perform input/output operations
with terminals:

DEVICE INFO

OPEN

READ

WRITE

WRITE READ

CONTROL

AWAI TIO

CANCE·LREQ

FILE INFO

SETMODE

provides device type and configured record length

establishes communication with a file

reads information from an open file

writes information to an open file

writes, then waits for data to be read back from an
open terminal

is used for forms control and modem connect/disconnect

waits for completion of an outstanding i/o operation
pending on an open file

cancels the oldest outstanding operation identified by
a tag on an open file

provides error information and characteristics about
an open file

sets/clears the following functions:

• single spacing
• conversational/page mode
• parity checking
• access mode
• read termination on

interrupt character
• baud rate
• system parity generation
• reset to default values

• auto line feed
• interrupt characters
• break ownership
• read termination on ETX
• echo
• character size
• spacing mode

(pre/post-spacing)

2.5-3

FILE SYSTEM
Terminals: Conversational Mode/Page Mode

only one buffer, "termAbuffer", is specified; the data is returned
there): .

termAbuffer := ". ". . ' ! prompt.

CALL WRITEREAD (homeAtermAnum, termAbuffer, 1, 72, numAread) ;

Writes ":" on the terminal then waits for input.

Note: WRITEREAD does not issue a carriage return/line feed character
sequence to the terminal after the write phase of the
write/read sequence.

The WRITEREAD procedure is also useful for issuing control commands to
a terminal. For example, to read a seven-character cursor address
from a terminal that requires a control character sequence of "ESC, a,
DCl" (escape character followed by lower-case "a" character, followed
by a device control 1 character), the following could be written in an
application program:

termAbuffer ':=' [%015541, % 010400] ; ! "ESC a DCl".

After the WRITEREAD completes, "termAbuffer" contains the cursor
address and seven is returned to "numAread".

Transfer Termination when Reading

A READ or WRITEREAD from a terminal is terminated when any of the
following conditions is encountered:

• Interrupt character checking is enabled and a line termination
character is input from a conversational mode terminal (see "Line
Termination Character"). On return from READ or WRITEREAD,
<buffer> contains <count read> characters, and the condition code
indicator is set to CCE. The receipt of the line termination
character is not reflected in the <count read> value.

• Interrupt character checking is enabled and an EOF character is
input from a conversational mode terminal. On return from READ or
WRITEREAD, nothing is transferred into <buffer>, <count read> = O,
and the condition code indicator is set to CCG.

• Interrupt character checking is enabled and an application-
def ined interrupt character is input. If the application-defined
character differs from the system-defined interrupt characters,
then on the return from READ or WRITEREAD, <buffer> contains <count
read> characters, the last character being the interrupt character,
and the condition code indicator is set to CCE.

2.5-5

CONVERSATIONAL MODE

TANDEM
PROCESSOR

FILE SYSTEM
Terminals: Conversational Mode/Page Mode

TERMINAL

- READ UNTIL LINE TERMINATION
EACH

BUFFER ~- -I
CHARACTER

PAGE MODE

TANDEM
PROCESSOR

-

PAGE MODE (PSEUDO POLLED)

TANDEM
PROCESSOR

BUFFER tc-....
\
I
I
I
I
\

SENT AS
TYPED

TERMINAL

BUFFER FILLS
WITH

-I
CHARACTERS

AS TYPED

1
BLOCK SENT
WHEN XMIT

TYPED

TERMINAL

BUFFER Fl LLS

READ OF 1 CHARACTER
WITH

CHARACTERS I"'
(WAIT FOR XMIT) AS TYPED

I
CONTROL

WRITE OF 1 CHARACTER
CHARACTER _,
SENT WHEN

(TRIGGER) XMIT TYPED

I
BLOCK SENT

,,... WHEN TRIGGER
RECEIVED

-------~--------../'

Figure 2-17. Transfer Modes for Terminals

2.5-7

FILE SYSTEM
Terminals: Conversational Mode/Page Mode

LINE TERMINATION CHARACTER. The line termination character, when
received from a terminal, signals the computer system that the current
line transfer is completed. Line termination characters for each
conversational mode terminal connected to the system are specified
(i.e., configured) at system generation time.

There are special characteristics associated with receiving the line
termination character:

• It is not counted in the <count read> returned from the READ or
WRITEREAD procedures, although it is transferred into the
application's buffer if an odd-byte-count read is executed.

• If carriage return (%015) is the configured line termination
character, another device configuration parameter specifies whether
or not the file system should provide automatic line spacing on the
terminal. This is done by automatically issuing a line feed
character (%012) to the terminal after receiving the carriage
return character. (Typically, the line feed character is issued if
the terminal does not provide its own line feed.)

Automatic issuance of the line feed character can be changed
programmatically through SETMODE function 7.

• If any character other than carriage return is the configured line
termination character, the file system always issues a carriage
return/line feed sequence to the terminal.

• The line is terminated automatically when the number of characters
specified in the <read count> parameter are input. If termination
on <read count> occurs, the file system does not issue a carriage
return/ line feed sequence to the terminal.

Here are some examples.

Carriage return is the configured line termination character, and a
read of 72 characters is issued to a terminal:

Then the terminal operator types in the following information:

NOW IS THE TIME<cr>

- initial cursor position

"NOW IS THE TIME" is returned in "buffer", 15 is returned in
"numftread", and the file system issues a line feed to
"home~term~num".

If, instead, operator just typed in a carriage return:

2.5-9

FILE SYSTEM
Terminals: Conversational Mode/Page Mode

PREDEFINED FUNCTIONS
FOR CONVERSATIONAL MODE

BACKSPACE LINE CANCEL EOF

CONFIGURED
I

/
LINE
TERMINATION

DEFAULT
SETTING .. % 10 %30 % 31 CONFIGURED

CONVERSATIONAL MODE INTERRUPT CHARACTERS

ACTION OF PREDEFINED FUNCTIONS AND LINE TERMINATION:

(BACKSPACE CURSOR) INVISIBLE TO APPLICATION
• BACKSPACE: DELETE LAST CHARACTER }

• LINE CANCEL: DELETE LINE PROGRAM
(@ CR LF ON TERMINAL)

• END-OF-FILE: CCG, error= 1, AND count read= 0 TO APPLICATION
(EOF' CR LF ON TERMINAL)
-COMPLETES TRANSFER

• LINE TERMINATION: - COMPLETES TRANSFER
- LINE TERMINATION CHARACTER IS NOT TRANSFERRED

INTO APPLICATIONS BUFFER
- CR LF ON TERMINAL IF LINE TERMINATION NOT

CARRIAGE RETURN(% 15)
- LF ON TERMINAL IF LINE TERMINATION IS CARRIAGE

RETURN AND AUTO LINE FEED IS ON

TO CHANGE INTERRUPT CHARACTERS
CA LL SET MODE (file number . function . parameter 1, parameter 2 , l<1st function I;

function _c 9
p<1r<1meter 1. bits 0-7

APPLICATION
DEFINED ..

parameter 1, bits 8-15

parameter 2. bits 0-7 parameter 2. bits 8-15

CONVERSATIONAL MODE INTERRUPT CHARACTERS

ACTION WHEN NOT PREDEFINED OR LINE TERMINATION:

• COMPLETES TRANSFER
• INTERRUPT CHARACTER IS TRANSFERRED INTO BUFFER

Figure 2-18. Conversational Mode Interrupt Characters

2.5-11

FILE SYSTEM
Terminals: Conversational Mode/Page Mode

CALL SETMODE (homeAtermAnum, setAsig, iintchars, iintchars[l]) ;

Then a read is issued to the terminal:

CALL READ (homeAtermAnum, buffer,. 72, numAread) ;

The terminal operator enters the following information:

TODAY IS THE DAY<cntl-I>

t - initial cursor position

<cntl-I> is the horizontal
tab character.

"TODAY IS THE DAY<cntl-I>" is returned in <buffer>, 17 is
returned in <numAread>. No line feed occurs on the terminal.

Next, the application checks the last character received to determine
if, in fact, a <cntl-I> was entered:

IF buffer[numAread - l] = %011 THEN •• horizontal tab.

Assuming that the application needed to move the cursor (indicating
tabulation had occurred) to column 30, a call to SETMODE is issued to
turn off single spacing, then a call to WRITE is issued to write
blanks (%040) to the terminal:

CALL SETMODE (homeAtermAnum, setAspace, noAspace); ! no spacing.

CALL WRITE (homeAtermAnum, blanks, 30-numAread, numAwritten) ;

After the write, the information on the terminal appears as:

TODAY IS THE DAY ---
t - cursor position

Then another read is issued to the terminal. This time the operator
enters:

FOR BEGINNING<cr>

t - cursor position

"FOR BEGINNING" is returned in "buffer" (writing over the
previous contents) and 13 is returned in "numAread". <er> is
not transferred into "buffer" or reflected in "numAread",
because it is the line termination character.

2.5-13

FILE SYSTEM
Terminals: Conversational Mode/Page Mode

WHAT EVER HAPPENED TO

t - initial and final cursor position

Because the application program, rather than the file system, is
supplying the carriage return character, a delay (dependent on the
particular terminal involved) may be needed to give the terminal ample
time to perform the carriage return operation. This can be
accomplished by writing a number of null characters to the terminal
or calling the DELAY utility procedure (if no-wait i/o is used, the
null character method must be used) •

CONTROL operation 1 can be used to cause a form feed or vertical
tabulation to occur on a terminal (provided, of course, that the
terminal has the capability). The CONTROL <parameter> values for
these operations are

0 =
1 or greater =

form feed
vertical tab

For example, to cause a top-of-form advance on a hard-copy terminal,
the following call to CONTROL is written in the application program:

LITERAL formsAcont = 1,
formAfeed = O;

The file system automatically delays subsequent access to the same
terminal for a configured period of time after performing forms
control through the CONTROL procedure.

If the configured delay is not suitable, the application program can
issue a form feed (%014) or vertical tabulation (%013) character
through a WRITE procedure. However, in this case, a delay must be
included in the application program to permit the actual forms
movement to complete:

DEFINE twoAseconds = 200D#;
INT formAfeed := %014 ~<<~ 8;

CALL WRITE (homeAtermAnum, formAfeed, 1, numAwritten) ;
CALL DELAY { twoAseconds);

The application process is suspended for two seconds after the
form feed character is issued to the terminal.

2.5-15

FILE SYSTEM
Terminals: Conversational Mode/Page Mode

• The <count read> parameter includes the interrupt character.

Note that special application-dependent interrupt characters can be
mixed with the page termination character.

DEFAULT
SETTING

ACTiON OF BLOCK TERMINATION:

• COMPLETES TRANSFER

CONFIGURED
I

/
BLOCK
TERMINATION

CONFIGURED CONFIGURED CONFIGURED

PAGE MODE SIGNAL CHARACTERS

• NOT TRANSFERRED INTO BUFFER

TO CHANGE SIGNAL CHARACTERS:

CALL SET MODE (file number, function, parameter 1, parameter 2, last function);

function= 9
parameter 1 • bits 0-7 ,

APPLICATION
DEFINED

parameter 1, bits 8-15

parameter 2, bits 0-7

PAGE MODE SIGNAL CHARACTERS

ACTION WHEN NOT BLOCK TERMINATION

• COMPLETES TRANSFER

• SIGNAL CHARACTER IS TRANSFERRED INTO BUFFER

parameter 2, bits 8-15

Figure 2-19. Page Mode Interrupt Characters

2.5-17

FILE SYSTEM
Terminals: Conversational Mode/Page Mode

Then the file system transfer mode for the terminal is returned to
conversational mode:

When returning to conversational mode, the interrupt characters
are restored by the file system to their initial values:
backspace, line cancel, end of file, and carriage return.

Note: When changing the interrupt characters through SETMODE, all
four characters must be specified. Therefore, if less than
four are needed, some character(s) must be duplicated.

PSEUDO-POLLED TERMINALS. During system generation, each
pseudo-polled terminal is configured as to whether or not the file
system automatically issues the trigger character when reading. To
indicate automatic triggering, the actual trigger character is
specified. To indicate that the application program will handle
triggering, a trigger character with a value of zero (null) is
specified.

The advantage of having the file system handle the triggering, of
course, is that the operation is invisible to the application program.
The automatic triggering only applies, however, when issuing a READ
(not a WRITEREAD} to the terminal. WRITEREAD can still be used for
such things as cursor sensing.

The advantage to having the application program handle the triggering
is that practically no system buffer space (just one word) is used
while the terminal operator is actually typing in information. The
buffer space is allocated after the operator types the ENTER (or
equivalent) key. (Terminals operating in normal page mode require
that the entire system buffer space be allocated while waiting for a
transfer to take place.)

Here's how it works:

The application program issues a read of one character to the
pseudo-polled terminal (this read waits for the ready character):

.
CALL READ (homeAtermAnum, buffer, 1, numAread);

Reading one byte causes one word of system buffer space to be
allocated.

The terminal operator types in the page of text, then types the ENTER
key. Typing ENTER causes a ready character (e.g., device-control-2)
to be sent to the computer system (causing the READ to complete).

2.5-19

FILE SYSTEM
Terminals: Conversational Mode/Page Mode

conv"'mode
page"'mode

=
=

0,
l· ,

set mode param 1, set conversational mode.
set mode param 1, set page mode.

put the file into page mode.
CALL SETMODE (term"'num, change"'mode, page"'mode) ;
IF< THEN ••• ; ! error.

sets the file system transfer mode for the terminal to "page
mode".

clear the screen, put the terminal into block mode, then wait
! for function key typed.
scontrol"'buf ':=' [esc, clear"'spaces, esc, tblock"'mode] ;
CALL WRITEREAD (term"'num, control"'buf, 4, 2) ;
IF = THEN ! function key typed.

BEGIN

The returned data in the buff er can be examined to determine
which function key was typed.

END
ELSE
IF < THEN ! error.

This call to WRITEREAD clears the terminal screen and puts the
terminal into "block mode" (ESC ";", ESC "B"). The call to
WRITEREAD completes when a function key is typed.

! read the screen.
sbuffer ' : =' [esc, sendall] ;
CALL WRITEREAD (term"'num, buffer, 2, readcount , count"'read) ;
IF< THEN ••• ; ! error.

This call to WRITEREAD transfers a "send page unprotected"
escape sequence to the terminal. The terminal responds by
sending the screen from the home position to the previous cursor
position. The WRITEREAD completes with the screen data (and
field and line separator control characters) in "buffer" and
"count"'read" containing a count of all characters returned by
the terminal.

put the file back into conversational mode.
CALL SETMODE (term"'num, change"'mode, conv"'mode);
IF < THEN • • • ; ! error •

sets the file system transfer mode for the terminal to
"conversational mode".

! put the terminal into conversational mode.
scontrol"'buf ':=' [esc, tconv"'mode];
CALL WRITE (term"'num, control"'buf, 2) ;
IF< THEN ••• ; ! error.

2.5-21

FILE SYSTEM
Terminals: Conversational Mode/Page Mode

TIMEOUTS

Operations with terminals require human response, and therefore can
take an indefinite period of time. The <time limit> parameter of the
AWAITIO procedure can be used to ensure that a terminal operator
performs an operation within a given period of time. (The terminal
must have been opened so as to permit no-wait i/o.)

For example, an application program prompts a terminal operator for an
account number. If no entry is made within five minutes, the
application program reminds the terminal operator by re-prompting for
the account number. To do this, the following is written in the
application program:

.
DEFINE fiveAminutes = 300000#;
LITERAL timeout = 40;
INT error, .buffer[0:599];

reAprompt:

buffer ':=' "PLEASE ENTER ACCOUNT NUMBER";
CALL WRITEREAD (termAnum, buffer, 27, 400, numAread) ;
IF< THEN •••
CALL AWAITIO (termAnum, buffer, numAread, tag, fiveAminutes);
IF < THEN ! error occurred

BEGIN
CALL FILEINFO (termAnum, error);
IF error = timeout THEN GOTO reAprompt
ELSE ••••• ;

END;

The message "PLEASE ENTER ACCOUNT NUMBER" is issued every 5
minutes until the operator responds.

Note that, if the call to AWAITIO had been for any file (i.e., <file
number> = -1) and a timeout occurred, the operation pending on the
terminal would have to be cancelled before the WRITEREAD could be
reinitiated.

MODEMS

using terminals connected to the system through modems is, for the
most part, invisible to the application program. However, the
programmer must be aware, when opening a terminal connected though a
modem, that the OPEN procedure does not ensure that a communication
link has been established.

A CONTROL operation is provided that can be used to signal the
application process when a communication link (i.e., incoming call) is
established.

2.5-23

FILE SYSTEM
Terminals: Conversational Mode/Page Mode

BREAK FEATURE

The file system includes special features that permit a terminal
operator to signal a process by typing the BREAK key. An example of
BREAK usage is when running an application program through the Command
Interpreter process; typing BREAK while the application is running
returns the Command Interpreter to the command input mode. Because
BREAK (if enabled) is constantly monitored by the file system
(actually the terminal controller), it is not necessary for the
application process to periodically check a terminal for input.

Some characteristics associated with the break feature are:

• BREAK is initially enabled for a process through a SETMODE function
(the process that has BREAK enabled is referred to as the "owner"
of BREAK) •

• BREAK can be enabled for only one process at a time.

• If the terminal is open by the backup process of a Nonstop
process pair (i.e., via CHECKOPEN by primary or backup open by
backup), the backup process will automatically become the owner of
BREAK if its primary failed while owning BREAK.

• When BREAK is typed, a system message (-20) is sent to the process
(if any) that enabled BREAK. The message is read through the
$RECEIVE file and contains the logical device number in binary
form of the terminal where BREAK was typed.

• The terminal where BREAK was typed can be set into an access mode
(called break mode) so that only operations that have been
associated with BREAK (through a call to SETMODE) are allowed.

• Once BREAK is typed, it is disabled, and further breaks on that
terminal are ignored. BREAK is automatically re-enabled for the
owner when a READ or WRITEREAD procedure is executed to the
terminal.

• After typing BREAK, an application not wishing to issue a READ or
WRITEREAD to a terminal re-enables BREAK via another SETMODE call.

• Any process using the same terminal as the Command.Interpreter, or
any other process using BREAK, must perform error recovery for the
two errors associated with BREAK: error 111 and error 112.

• If BREAK is typed but not enabled, it is ignored.

• If a process owning BREAK is deleted or fails, BREAK ownership is
lost. That is, no process will be informed if the BREAK key is
typed.

2.5-25

FILE SYSTEM
Terminals: Conversational Mode/Page Mode

MYPID is a Process Control procedure that returns the <cpu,pin>
of the caller. Following this call to SETMODE, the file system
monitors "termAnum" for a break signal. If BREAK is typed, a
system BREAK message is sent to this process.

A read is issued to the $RECEIVE file (open as a no-wait file):

CALL READ (recvAfnum, recvAbuf, 132) :

Then, periodically, $RECEIVE is checked:

error := O;
CALL AWAITIO
IF = THEN
ELSE

recvAfnum,, numAread,, OD) ;
user msg received

IF > THEN
BEGIN

IF recvAbuf = - 20 THEN
breakAreceived := 1

system msg received.

BREAK message.

flags the fact that BREAK was typed. The break is
processed in some other part of the program.

ELSE
IF recvAbuf = ... THEN some other system message.

END
ELSE ! error

CALL FILEINFO (recvAfnum, error) ;

if read on $RECEIVE completed, issue another.
IF error <> 40 ! timeout ! THEN

CALL READ (recvAfnum, recvAbuf, 132) ;

Note: If a process has BREAK armed on more than one terminal, it
should check the logical device number returned in the system
BREAK message to identify the source of the break.

Figure 2-20 illustrates the break sequence when a terminal is
controlled by a single process.

2.5-27

FILE SYSTEM
Terminals: Conversational Mode/Page Mode

For example, when an application wanting to use the break feature is
to be run through the Command Interpreter program (which also uses
BREAK), the application should get the <cpu,pin> and break mode of
the current owner when enabling BREAK for itself:

INT lastAowner[O:l],
lastAmode = lastAowner [l];

CALL SETMODE (homeAtermAnum, setAbreakAowner, MYPID, normalAmode,
last"'owner);

An internally defined integer designating the last owner of
BREAK is returned in "lastAowner", and the mode associated with
the last owner is returned in "lastAowner [l]" (= "lastAmode").
If no process previously had BREAK enabled, zero (0) is returned
to "lastAowner". BREAK is now enabled for this process (i.e.,
will receive the BREAK message if break is typed).

Note: The number returned in "lastAowner" is NOT the <cpu,pin>
of the last owner of BREAK.

When the application no longer wants to receive the BREAK message, it
re-enables BREAK for the last owner (the Command Interpreter in this
example) :

CALL SETMODE (home"'termAnum, set"'breakAowner, lastAowner,
last "'mode) ;

At this point, if BREAK is typed, the Command Interpreter will
receive the BREAK message.

If each process using BREAK keeps track of the previous owner, BREAK
ownership can be passed between any number of processes in an orderly
fashion.

Break Mode

By using break mode, a number of processes can access the same
terminal, but one process can take exclusive access to that terminal
~hen BREAK is typed.

This is done in three steps:

1. First, when BREAK is enabled, break mode is specified. This
means that, after BREAK is typed, the terminal is put in break
mode, and only file operations having break access are permitted
with the terminal.

2.5-29

FILE SYSTEM
Terminals: Conversational Mode/Page Mode

If the terminal access mode is "break mode" when
closes the file and the owner has "break access"
terminal access mode is returned to normal mode.
the close is because of a call to the file system
the process control STOP procedure.

the owner of break
specified, the
This applies if
CLOSE procedure or

Note: Unless more than one process is accessing a terminal, normal
access (i.e., <parameter 2> = 0) should be specified.

For example:
LITERAL setAaccess

breakAmode
normalAmode
break A access
normalAaccess =

=
= 12,

1,
0,
1,
O;

=
=

BREAK is enabled and break mode is specified:

CALL SETMODE (homeAtermAnum, setAbreakAowner, MYPID, breakAmode,
lastAowner) ;

Then $RECEIVE is periodically checked for a BREAK message:

CALL READ (recvAfnum, recvAfnum, 132);

error := 0;
CALL AWAITIO
IF = THEN
ELSE

recvAfnum,, numAread,, On) ;
user msg received

IF > THEN
BEGIN

system msg received.

IF buff er = - 20 THEN
BEGIN

break message.

Break access is specified:

CALL SETMODE homeAtermAnum, setAaccess,,
breakAaccess);

At this point, any non-break operations to the
terminal indicated by "homeAtermAnum" will be
rejected.

However, this process, because break access was
specified, can access the terminal.

2.5-31

FILE SYSTEM
Terminals: Conversational Mode/Page Mode

The SETMODE function to gain exclusive access to a terminal is:

<function> = 12, set terminal access mode and file access type.

<parameter l> = 1, terminal access mode = break mode.

<parameter 2> = 1, file access mode = break access.

The SETMODE function to relinquish exclusive access to a terminal is:

<function> = 12, set terminal access mode and file access type.

<parameter l> = 0, terminal access mode = normal mode.

<parameter 2> = O, file access mode = normal access.

Note: An application program should use this feature only if it has
ownership of BREAK. If a process that does not own BREAK is
deleted, break mode is not cleared. Other processes
accessing the terminal with normal access are then prevented
from accessing the terminal.

For example, a process needs temporary exclusive access to a terminal.
The following call to SETMODE is made:

CALL SETMODE homeAtermAnum, setAaccess, breakAmode,
breakAaccess) ;

At this point, any other operations flagged as "normal access"
to the terminal will be rejected.

when the process no longer requires exclusive access to the terminal,
it permits normal access through the following call to SETMODE:

CALL SETMODE (homeAtermAnum, setAaccess, normalAmode,
normalAaccess) ;

Exclusive access using BREAK is illustrated in figure 2-22.

2.5-33

FILE SYSTEM
Terminals: Conversational Mode/Page Mode

Error 110 (only break access permitted): This error indicates that
BREAK was typed and that break mode was specified when BREAK was
enabled (see SETMODE, function 11). The terminal is inaccessible
(unless this process uses SETMODE to signal its operations as break
access) until the process processing the break calls SETMODE (function
12) to allow normal access to the terminal.

If the process receiving error 110 is not the one that enabled
BREAK, then the operation should be retried periodically. If the
process has break enabled, then $RECEIVE should be checked for the
system BREAK message and appropriate action should be taken.

Note: This error implies that no data was transferred.

Error 111 (operation aborted because of BREAK): This error indicates
that BREAK was typed while the current file operation was taking
place. The nature of this error indicates that data may have been
lost.

If the process rece1v1ng error 111 is not the one that enabled
BREAK, then the operation should be retried. If a write operation was
being performed, then the write can simply be retried. If a read
operation was being performed, then a message should be sent, telling
the terminal operator to retype the last entry, before retrying
the read.

Keep in mind, however, that if more than one process is accessing a
terminal and the break feature is used, only break access should be
allowed after BREAK is typed. Therefore, subsequent retries are
rejected with error 110 until normal access is permitted.

If either of these errors is received by a process not having BREAK
enabled, the process should suspend itself for some short period (like
ten seconds) before retrying the operation. This can be accomplished
by calling the process control DELAY procedure.

If the process has BREAK enabled, then $RECEIVE should be checked for
the system BREAK message and appropriate action should be taken.

Preempted by Operator Message (Error 112)

This error can occur only when an application process is using the
same terminal as the active operator console device. If the
application process is reading from the terminal (using either READ or
WRITEREAD) and a message is sent to the operator, the application
process's file operation is aborted and the operator message is
written. (This is necessary so that operator messages are not
inadvertently deferred while some read is occurring on the terminal}.
Any data entered when the preemption takes place is lost. Therefore,
a message should be sent telling the terminal operator to retype the
last entry before retrying the read.

2.5-35

FILE SYSTEM
Terminals: Conversational Mode/Page Mode

SUMMARY OF TERMINAL CONTROL AND SETMODE OPERATIONS

Table 2-7. Terminal CONTROL and SETMODE Operations

Terminal CONTROL Operations

<operation>

1 = forms control:

<parameter> for terminal

0 = form feed (send %014)
> 0 = vertical tab (send %013)

11 = wait for modem connect:

<parameter> = none

12 =disconnect the modem (i.e., hang up):

<parameter> = none

Terminal SETMODE Operations

<function>

6 = set system spacing control:

<parameter l> = 0, no space
= 1, single space (default setting)

<parameter 2> is not used.

7 = set system auto line feed after receipt of carriage return
line termination (default mode is configured) :

<parameter l> = 0, off
= 1, system provides line feed after line

termination by carriage return

<parameter 2> is not used.

8 = set system transfer mode (default mode is configured):

<parameter l> = 0, conversational mode
= 1, page mode

<parameter 2> is not used.

2.5-37

FILE SYSTEM
Terminals: Conversational Mode/Page Mode

Table 2-7. Terminal CONTROL and SETMODE Operations (cont~d)

<parameter 2> is not used.

14 = set system read termination on interrupt characters (default
is configured):

20 =

22 =

23 =

<parameter l> = O, no termination on interrupt characters
(i.e., transparency mode)

<parameter

set system

2>

= 1, termination on any interrupt character
input

is not used.

echo mode (default is configured) •

<parameter l> = O, system does not echo characters as read
= 1, system echoes characters as read

<parameter 2> is not used.

set baud rate:

<parameter l> = O, baud rate = 50
1, baud rate = 75
2, baud rate = 110
3, baud rate = 134.5
4, baud rate = 150
5, baud rate = 300
6, baud rate = 600
7, baud rate = 1200
8, baud rate = 1800
9, baud rate = 2000

10, baud rate = 2400
11, baud rate = 3600
12, baud rate = 4800
13, baud rate = 7200
14, baud rate = 9600
15, baud rate = 19200

<parameter 2> is not used.

set character size:

<parameter l> = O, character size = 5 bits
1, character size = 6 bits
2, character size = 7 bits
3, character size = 8 bits

<parameter 2> is not used.

2.5-39

FILE SYSTEM
Line Printers

The file system provides for data transfers from applicat~on processes
to line printers in blocks of 0 (blank line) to the maximum number of
characters permitted in one line of print.

The following topics are covered in this section:

• General Characteristics of Line Printers
• Summary of Applicable Procedures
• Accessing Line Printers
• Forms Control
• Programming Considerations for the Model 5508 Line Printer
• Programming Considerations for the Model 5520 Line Printer
• Using a Model 5508 or 5520 Printer Over a Phone Line
• Error Recovery
e Summary of Printer CONTROL, CONTROLBUF, and SETMODE Operations

GENERAL CHARACTERISTICS OF LINE PRINTERS

• Line printers are accessed by

$<device name> or

$<logical device number>.

• Default file system spacing mode is "post-space" (i.e., space after
printing). The spacing mode can be set to "pre-space" (i.e., space
before printing) via a SETMODE function.

• A standard VFU tape is supplied with each line printer (see table
2-8 at the end of this section) •

• Procedures available for explicitly controlling forms movement are:

CONTROL

Skip to VFU channel or skip a number of lines.

CONTROLBUF

Load programmable VFU (DAVFU) for model 5520 printer.

SETMODE and SETMODENOWAIT

No-space or single-space after printing.

Disable/enable automatic perforation skip.

• The file system does not provide automatic top-of-form on OPEN or
CLOSE: if this is desired, it must be handled by an application
process via a call to the CONTROL procedure.

• It is the responsibility of application processes to handle "paper
out" and "not ready" conditions.

2.6-1

FILE SYSTEM
Line Printers

CALL OPEN (ptr, fileAnum, exclAacc) ; exclusive access.

Then to print a line of print:

CALL WRITE

prints 132 characters of "ptrAbuffer" on the line printer.

If the printer has a configured line width of 132 characters and the
following call is made:

CALL WRITE (fileAnum, ptrAbuffer, 200) ;
IF<> THEN ••• ;

an error occurs. The first 132 characters of "ptrAbuffer" are
printed. On the return from WRITE, the condition code indicator
is set to CCL. A subsequent call to FILEINFO would return
error 21 (illegal count specified).

If the printer has a configured line width of 132 characters and the
following call is made:

CALL WRITE (fileAnum, ptrAbuffer, 40) ;
IF<> THEN ••• ;

40 characters of "ptrAbuffer" are printed starting at column l;
columns 41 through 132 are left blank.

Note: If the <count written> parameter is present in the call to
WRITE, it is returned a count of the number of characters
actually printed.

FORMS CONTROL

The file system CONTROL and SETMODE procedures provide the
programmer with the capability of controlling forms movement.

The only automatic forms movement provided by the file system is the
perforation skip and single space paper movement. Both of these can
be disabled through use of the SETMODE procedure. Note that any
automatic forms movement always takes place after a line is printed.

The CONTROL procedure is used either to advance forms according to a
vertical format tape installed in the printer (or a programmable
vertical format, or DAVFU) or to advance forms a specified number of

2.6-3

FILE SYSTEM
Line Printers

Overprinting can be accomplished through SETMODE function 6. For
example, to overprint a single line of print, the following calls to
SETMODE and WRITE are made:

LITERAL setAspace
no A space
space

=
=
=

6,
0,
l· '

turns off single spacing.

CALL WRITE (fileAnum, bufferl, .••) :

prints the contents of "bufferl". The form does not advance.

CALL SETMODE (fileAnum, setAspace, space) :

turns on single spacing.

CALL WRITE (fileAnum, buffer2, ..• j:

prints the contents of "buffer2" over the line just printed
(i.e., contents of "bufferl"). The form advances to the next
line.

Note: Application programs should use CONTROL and SETMODE to
accomplish forms control rather than attempting to embed forms
control characters in the print line. The line printer does
not recognize the unprintable characters, and therefore an
error 218 (interrupt timeout) occurs.

PROGRAMMING CONSIDERATIONS FOR THE MODEL 5508 PRINTER

The subtype for the model 5508 line printer is 3.

Programming Form Length and Vertical Tab Stops

The model 5508 line printer has an electronically programmable form
length and vertical tabulation stops.

The number of lines in the form is specified via SETMODE function 25
as an integer within the range of {0:126}. The default for this
setting is 66.

2.6-5

FILE SYSTEM
Line Printers

The model 5508 printer provides programmable forms length and vertical
tab stops, whereas the model 5520 printer provides a 12-channel Direct
Access Vertical Format Unit (DAVFU) internal buffer whose contents may
be changed by the user program. The model 5508 printer allows the
user program to specify forms length and vertical tab stops by means
of SETMODE functions: for the model 5520, the user program specifies
the contents of the DAVFU (if values other than the defaults are
desired) by calling the CONTROLBUF procedure.

User applications which currently run with the model 5508 printer must
be modified to run on the model 5520 if they are affected by any of
the following differences:

• SETMODE 25 (forms length) is not supported on the model 5520.

• SETMODE 26 (set/clear vertical tab stops) is not supported on the
model 5520.

• CONTROL 1 (forms control) is used differently, in some cases, on
the two printers.

• The vertical tab (VT) character is not supported on the model 5520.

• Control characters (%00-%37) should not be included in user data
sent to the model 5520, since they disable parity error recovery.

In the following discussion, it is assumed that line numbers range
from l to 254, character locations range from l to 218, and VFU
channels range from 0 to 11.

using DAVFU

The DAVFU specifies forms length and the functions performed by
CONTROL operation 1 (forms control). The 5520 default DAVFU is
initialized as follows:

VFU channel 0 (top of form/line 1)
VFU channel 1 (bottom of form/line 60)
VFU channel 2 (single space/lines 1-60,

top-of-form eject)
VFU channel 3 (next odd-numbered line)
VFU channel 4 (next third line: 1,4,7,10, etc.)
VFU channel 5 (next one-half page)
VFU channel 6 (next one-fourth page)
VFU channel 7 (next one-sixth page)
VFU channel 8 (line 1)
VFU channel 9 (line 1)
VFU channel 10 (line 1)
VFU channel 11 (bottom of paper/line 63)

The default form length is 66 lines with automatic perforation skip
mode enabled (first 60 lines printed per page).

2.6-7

FILE SYSTEM
Line Printers

The format of each word in the DAVFU buffer is as follows:

ChannelO
Channel 1
Channel 2
Channel 3
Channel 4
Channel 5

1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

0 0 0 0

c Channel 1
Channel 1
Channel9
Channel8
Channel 7
Channel6

1
0

For example, %37400 (default for line 31) indicates that channel stops
are to be set for channels 2, 3, 4, 5, 6, and 7.

Loading the DAVFU causes the top of form to be reset to the current
line.

There must be exactly one channel 0 (top of form) stop defined in the
VFU buffer, and at least one stop defined for each of the other VFU
channels. File system error 105 (VFU ERROR) is returned on an attempt
to load the DAVFU if the VFU buffer is not valid.

The forms length is determined by the number of words in the VFU
buffer. The maximum forms length allowed is 254 lines (508 bytes in
buffer). If the byte count specified in a DAVFU load exceeds this
maximum, or if it is not an even number, file system error 21
(ILLEGAL COUNT) is returned.

Channel 0 is used to indicate which line the printer should skip to if
CONTROL operation 1, <parameter> = 0 is issued, or if the operator
presses the TOP OF FORM button on the printer. Channel 11 is used to
indicate which line the printer should skip to if CONTROL operation 1,
<parameter> = 11 is issued, and also to indicate when "paper out"
should be reported.

upon detecting a paper out condition, the printer waits until the line
defined as "bottom of paper" has been printed or passed over. This
feature makes it possible to complete printing of an entire page
before the paper out condition is reported to the application program.

When using the default DAVFU, line 63 is defined as bottom of paper.
If the paper is properly aligned in the printer, line 63 is the last
line before the perforation and lines 64, 65, and 66 are the first
three lines on the new page. Line 1 (top of form) immediately follows
as the fourth line on the page.

2.6-9

FILE SYSTEM
Line Printers

4. Write a buffer, consisting only of underscore and space
characters, to underline the desired parts of the text written
in step 2.

This procedure must be followed exactly for the partial line feed to
occur. If, for example, the application's second write buffer
includes other text on the same line with the underscore and space
characters, the line is still overprinted, but the partial line
feed is not performed.

The following example illustrates use of the partial line feed for
underlining.

INT .databufl[O:ll] := ["THIS WILL BE UNDERLINED."],
.databuf2[0:11] := [" "];

! Turn off spacing
CALL SETMODE (filenum, 6, 0);

! Write the text
CALL WRITE (filenum, databufl, 24);

! Turn spacing back on
CALL SETMODE (filenum, 6, l);

! Underline the text
CALL WRITE (filenum, databuf2, 24);

Condensed and Expanded Print

The model 5520 printer provides condensed and expanded print
capabilities in addition to the standard spacing of 10 characters
per inch.

The condensed print option allows the 5520 to print with a horizontal
pitch of 16.7 characters per inch. Condensed print may be selected
by calling SETMODE function 68, <parameter l> = 1.

The expanded print option (double width) provides a horizontal pitch
of 5 characters per inch. The user application program may select
expanded print by calling SETMODE function 68, <parameter l> = 2.

Normal printing may be reenabled by calling SETMODE function 68,
<parameter l> = 0.

For example:

! Select condensed print
CALL SETMODE (filenum, 68, l);

2.6-11

FILE SYSTEM
Line Printers

Error 105 (VFU ERROR) indicates that the VFU buffer is invalid.
This can occur for the following reasons: 1) more than one stop was.
defined for channel 0 (top of form): 2) no stops were defined for one
or more channels: 3) bits 12 through 15 of each word were not zeros.

Error 120 (DATA PARITY ERROR) indicates a non-recoverable data parity
error. For details, see "Data Parity Error Recovery" following
this section.

Error 121 (DATA OVERRUN) means that the buffer overflowed while data
was being sent to the printer. This indicates a hardware or microcode
problem.

Error 190 (DEVICE ERROR) indicates one of the following conditions:
1) invalid status returned from printer: 2) "buffer full" status
lasted longer than 10 seconds: 3) no shuttle motion: 4) character
generator absent: 5) VFU fault which is not recoverable: 6) VFU
channel error.

Error 191 (DEVICE POWER ON) indicates that the printer powered on
while the file was open. For details, see "DEVICE POWER ON Error"
following the next section.

Data Parity Error Recovery

Automatic parity error recovery is supported for the 5520 printer.
If a parity error is detected, the i/o software will attempt to
recover unless one of the following conditions exists:

• A parity error persisted after the retry count was exhausted.

• A parity error occurred while the device was in an offline state
(not ready or paper out) •

• A parity error occurred on a request for status immediately
following a write of data (a parity error may also have occurred
in the data).

• A parity error occurred during a write of data that contained
embedded control characters.

control characters (%00-%37) should not be included in data sent to
the 5520 printer, since they disable parity error recovery. The i/o
software provides the appropriate line termination and all escape
sequences. The 5520 recognizes the following control characters:
line feed (%12), form feed (%14), carriage return (%15), and escape
(%33). Any other control characters are printed as a space. Escape
is used as the first character in all escape sequences. Any
unrecognized escape sequence sent to the printer is assumed to
be a five-character sequence, and results in the printing of a
non-standard character (%206), followed by paper movement equivalent
to one line feed.

2.6-13

FILE SYSTEM
Line Printers

CALL CONTROL (filenum, 11): answer the phone

CALL CONTROL (filenum, 12): ! hang up the phone

AUTOANSWER or CTRLANSWER mode can be specified as configuration
parameters in SYSGEN (see the Nonstop System Management Manual
or the Nonstop II System Management Manual) or by using SETMODE
function 29:

CALL SETMODE (filenum, 29, 0): CTRLANSWER mode

CALL SETMODE (filenum, 29, 1): ! AUTOANSWER mode

Unlike other SETMODE functions, this one remains in effect even
after the file is closed.

The following configuration parameters are needed in order to use a
modem with the model 5508 printer:

BAUD300 AUTOANSWER
LP5508M MODEM EIA or or

BAUD1200 CTRLANSWER

The following configuration parameters are needed in order to use a
modem with the model 5520 printer:

BAUD300 AUTOANSWER
LP5520M MODEM EIA or or

BAUD1200 CTRLANSWER

Further information on system configuration for these devices can
be found in the SYSGEN section of the Nonstop System Management
Manual or the Nonstop II System Management Manual.

ERROR RECOVERY

The following errors require special consideration for line printers:

• 100 not ready
• 200-255 path errors

Additionally, consideration is necessary when using no-wait i/o and
permitting more than one concurrent i/o operation. It is possible,
when initiating a number of operations, that some can fail while
subsequent operations do not. In that case, lines may be missing and,
if reprinted, would be out of order.

2.6-15

FILE SYSTEM
Line Printers

SUMMARY OF PRINTER CONTROL, CONTROLBUF, AND SETMODE OPERATIONS

Table 2-8. Line Printer CONTROL, CONTROLBUF, and SETMODE Operations

Line Printer CONTROL Operations

1 = forms control:

<parameter> for printer (subtype O, 2, or 3)

0 = skip to VFU channel 0 (top of form)
1 - 15 = skip to VFU channel 1 (single space)

16 - 79 = skip <parameter> - 16 lines

<parameter> for printer (subtype 1 or 5)

16 -

0 =
1 =
2 =

3 =
4 =

5 =
6 =
7 =
8 =
9 =

10 =
11 =
31 =

skip to VFU channel
skip to VFU channel
skip to VFU channel

0
1
2

(top of form)
(bottom of form)
(single space, top-of-
form eject)

skip to VFU channel
skip to VFU channel

3
4

(next odd-numbered line)
(next third line: 1, 4,

skip
skip
skip
skip
skip
skip
skip
skip

7, 10, etc.)
to VFU channel 5 (next one-half page)
to VFU channel 6 (next one-fourth page)
to VFU channel 7 (next one-sixth page)
to VFU channel 8 (user-defined)
to VFU channel 9 (user-defined)
to VFU channel 10 (user-defined)
to VFU channel 11 (user-defined)
<parameter> - 16 lines

<parameter> for printer (subtype 4) (default DAVFU)

0 = skip to VFU channel 0 (top of form/line 1)
1 = skip to VFU channel 1 (bottom of form/line 60)
2 = skip to VFU channel 2 (single space/lines 1-60,

top-of-form eject)
3 = skip to VFU channel 3 (next odd-numbered line)
4 = skip to VFU channel 4 (next third line: 1, 4,

7, 10, etc.)
5 = skip to VFU channel 5 (next one-half page)
6 = skip to VFU channel 6 (next one-fourth page)
7 = skip to VFU channel 7 (next one-sixth page)
8 = skip to VFU channel 8 (line 1)
9 = skip to VFU channel 9 (line 1)

10 = skip to VFU channel 10 (line 1)
11 = skip to VFU channel 11 (bottom of paper/line 63)

16 - 31 = skip <parameter> - 16 lines

2. 6-17

FILE SYSTEM
Line Printers

Table 2-8. Line Printer CONTROL, CONTROLBUF, and SETMODE Operations
(cont'd)

Line Printer SETMODE Operations (cont'd)

<function>

22 = line printer (subtype 3 or 4) , set baud rate:

<parameter l> = 0, baud rate = 50
1, baud rate = 75
2, baud rate = 110
3, baud rate = 134.5
4, baud rate = 150
5, baud rate = 300
6, baud rate = 600
7, baud rate = 1200
8, baud rate = 1800
9, baud rate = 2000

10, baud rate = 2400
11, baud rate = 3600
12, baud rate = 4800
13, baud rate = 7200
14, baud rate = 9600
15, baud rate = 19200

<parameter 2> is not used.

25 = line printer (subtype 3) , set form length:

<parameter l> = length of form in lines

<parameter 2> is not used.

26 = line printer (subtype 3) , set/clear vertical tabs:

<parameter l> >= O, line where tab is to be set
= -1, clear all tabs (except line 0)

Note: A vertical tab stop always exists at line 0
(top of form) •

<parameter 2> is not used.

27 = set system spacing mode:

<parameter l> = 0, post-space (default setting)
= 1, pre-space

<parameter 2> is not used.

2.6-19

FILE SYSTEM
Line Printers

Table 2-8. Line Printer CONTROL, CONTROLBUF, and SETMODE Operations
(cont'd)

Line Printer SETMODE Operations (cont'd)

37 =line printer (subtype 1, 4, or 5), get device status
(cont'd) :

<last params>[O] for printer (subtype 1 or 5) (cont'd)

.<13> = OPE, device parity error
1

0 = parity OK
1 = parity error

.<14> = NOL, not on line
1

0 = on line
1 = not on line

.<15> = NRY, Not ready
1

0 = ready
1 = not ready

All other bits are undefined.

Note that Ownership, Interrupt Pending, Controller
Busy, and Channel Parity errors are not returned in
<last params>; your application program "sees" them as
normal file errors. Also note that CID must be checked
when PMO, BOF, and TOF are tested, since the old cable
version does not return any of these states.

<last params> for printer (subtype 4)

<last params>[O] =primary status returned from printer:

.<9:11> = full status 0 = partial status
field 1 = full status

2 = full status / VFU fault
3 = reserved for future use
4 = full status / data parity error
5 = full status / buffer overflow
6 = full status / bail open
7 = full status /

auxiliary status available

.<12> = buffer full 1 0 = not full
1 = full

.<13> = paper out 1 0 = OK
1 = paper out

.<14> = device power on l 0 = OK
1 = POWER ON error

2.6-21

FILE SYSTEM
Magnetic Tapes

The file system provides for data transfers between magnetic tape
files and application processes in records of 24 to 4096 bytes.

Topics covered in this section are:

• General Characteristics of Magnetic Tape Files
• Summary of Applicable Procedures
• Accessing Tape Units
• Tape Concepts

BOT and EOT Markers
Files
Records

• 5106 Tri-Density Tape Subsystem
• Error Recovery
• Summary of Magnetic Tape CONTROL Operations
• Seven-Track Magnetic Tape Conversion Modes

GENERAL CHARACTERISTICS OF MAGNETIC TAPE FILES

• Individual files on a magnetic tape are not accessed explicitly;
instead, the magnetic tape unit itself is accessed by:

$<device name> or

$<logical device number>.

• Procedures are provided that permit the application to write,
locate, and read any number of files desired.

• It is the responsibility of the application program to delimit a
file on tape by explicitly writing an end-of-file mark (i.e.,
closing a magnetic tape file following a write to tape does NOT
write an end-of-file mark).

• The CONTROL and CLOSE procedures provide four options for rewinding
tape. These options are fully described in Tables 2-1 and 2-9.

• To ensure the integrity of the data written on tape, the file
system pads write operations of less than 24 bytes with "null" (0)
characters. The number of pad bytes is 24 minus <write count>, so
that the minimum physical record ever written on tape is 24 bytes
(e.g., a <write count> of 0 causes a record containing 24 null
bytes to be written on tape).

• The file system permits reads and WRITEUPDATEs of as few as two
bytes (this permits tapes written on non-Tandem systems to be read
or edited). WRITEUPDATEs are not allowed on the Tri-Density Tape
Drive. To ensure the integrity of data read from tape, however,
the minimum read operation should be for at least 24 bytes.

• Multi-reel files, if desired, must be implemented by the
application program.

2.7-1

SUMMARY OF APPLICABLE PROCEDURES

FILE SYSTEM
Magnetic Tapes

The following procedures are used to perform input/output operations
with magnetic tapes:

DEVICEINFO provides the device type and configured record length
for a designated magnetic tape unit

OPEN establishes communication with a file

READ reads information from an open file

WRITE writes information to an open file

WRITEUPDATE is used to replace an existing record (not supported
on 5106 Tri-Density Tape Drive}

CONTROL executes the following operations to a magnetic tape:
• write end-of-file mark
• rewind (load/unload,online/offline,wait/don't wait}
• record spacing (forward and backward)
• ~ile spacing (forward and backward)

AWAITIO waits for completion of an outstanding i/o operation
pending on an open file

CANCELREQ cancels the oldest outstanding operation, optionally
identified by a tag, on an open file

FILEINFO provides error information and characteristics about
an open file

SETMODE sets/clears the translation technique option (7-track
tape only) and the short write treatment option.
Selects tape density for 5106 Tape Drive.

SETMODENOWAIT is used the same as SETMODE except in a no-wait
manner on an open file

CLOSE stops access to an open file and, optionally, rewinds
the tape

ACCESSING TAPE UNITS

Like any other file, a magnetic tape unit is accessed through the OPEN
procedure. For example, to access a magnetic tape unit that is
assigned the device name "$TAPE1", the following could be written in
an application program:

2.7-3

FILE SYSTEM
Magnetic Tapes

BOT and EQT Markers

The BOT (beginning of tape) and EQT {end of tape) markers delimit the
useful area on tape. When a tape is loaded and initially made ready,
the tape is positioned with the read/write heads located slightly past
the BOT marker.

If a backspace files (CONTROL operation 8) or a backspace records
(CONTROL operation 10) is being executed and the BOT marker is
encountered, tape motion stops and a beginning-of-tape indication
{FILEINFO error 154) is returned to the application process.

crossing the EOT marker in either direction never stops tape motion
and never terminates an i/o operation. However, once the EQT marker
is passed when writing in the forward direction, the application
receives an indication (CCL, FILEINFO error 150) at the completion of
each write operation. This indication is returned with each write
operation until the EQT marker is passed in the reverse direction.

Note: Because the relationship of the read/write head to the
transducer that detects the EQT marker varies from tape unit to
tape unit, bhe EOT indication is not returned when reading. A
convention (such as writing two consecutive EOF marks) should
be established for the computer site to designate the physical
end of tape.

Files

By convention, a file on magnetic tape consists of a number of records
followed by an end-of-file mark. It is the responsibility of the
application program to explicitly write an EOF mark on tape (using
CONTROL, operation 2) to terminate a file.

It is also the responsibility of the application to provide a means of
detecting the last file on tape. Typically, this is, done by writing
two consecutive EOF marks. Naturally, any other programs reading the
tape must be aware of such a convention.

The file system provides {as a parameter to the CONTROL procedure) the
ability to space forward and backward a specified number of files
(i.e., EOF marks).

There are two considerations when spacing files:

• Forward space files stops only after the specified number of EOF
marks have been encountered.

• Backward space files stops only after the specified number of EOF
marks have been encountered or the BOT marker is detected.

2.7-5

FILE SYSTEM
Magnetic Tapes

Data is written to tape using the file system WRITE or WRITEUPDATE
procedure. The WRITE procedure is typically used when sequentially
appending information on the tape. The WRITEUPDATE procedure is used
when changing an individual record on tape.

WRITEUPDATE is not allowed on the 5106 Tri-Density Tape Drive.

It is important to note that the new record written by the WRITEUPDATE
procedure must be exactly the same size as the record being replaced;
otherwise, a subsequent error will occur. Also, there is a practical
limit of five as to the number of times WRITEUPDATE should be
performed on the same record.

Data is read from tape using the file system READ procedure. Any time
a read is executed from the tape (even if 0 bytes is specified), the
tape spaces one full record. Any one read from a tape is limited to
one record on tape.

As an example of tape movement when reading: a file on tape consists
of three records, and each record contains 1024 bytes. Repeated reads
of 2048 bytes are executed, as follows:

LITERAL eof = l;

loop:

CALL READ (tapeAnum, buffer, 2048, numAread);
IF = THEN GOTO loop
ELSE

BEGIN
CALL FILEINFO (tapeAnum, error);
IF error = eof THEN •••• ! end-of-file encountered.
ELSE •••• ; ! trouble.

END;

Reads one through three each transfer 1024 bytes into
"buffer", return 1024 in "nurnAread", and set the condition
code to CCE. Read four encounters an EOF mark. Nothing is
transferred into "buffer", 0 is returned to "nurnAread", and the
condition code is set to CCG.

lsorl I RECORD I I RECORD I I RECORD I I EOF I I RECORD I

i i i
start 2 3 4

eof

2.7-7

FILE SYSTEM
Magnetic Tapes

There are a number of considerations when spacing records:

• Forward space records always stops when an EOF mark is read (the
tape is positioned with the read/write head past the EOF mark). An
indication (CCG, FILEINFO error 1) is returned to the
application program.

• Backward space records always stops when an EOF mark is read (the
tape is positioned with the read/write head preceding the EOF
mark). An indication (CCG, FILEINFO error 1) is returned to the
application program.

• Backward space records always stops when the BOT marker is detected
(the tape is positioned with the read head preceding the first
record on tape). An indication (CCL, FILEINFO error 154) is
returned to the application program.

The following examples show how the tape is positioned in relation to
the read/write heads following various record spacing operations.

Example 1. Repeated space forwards (CONTROL operation 9) of
two records are performed (tape is positioned at BOT):

loop: CALL CONTROL (tapeAfile, 9, 2);
GOTO loop;

I BOT I I RECORD' I RECORD I IEoFI I RECORD I IEoFI I EOFI

i tape runaway
start 2 3 4 5

eof eof eof

Example 2. A space forward of 10 records is performed (tape is
positioned at BOT):

CALL CONTROL (tapeAfile, 9, 10) ;

start finish
(eof)

The operation stops when an EOF mark is read.

2.7-9

FILE SYSTEM
Magnetic Tapes

PROGRAMMING CONSIDERATIONS FOR THE 5106 TRI-DENSITY TAPE SUBSYSTEM

The subtype for the 5106 Tri-Density Tape Subsystem is 2. The 5106
Tape Subsystem provides 800 bpi NRZI, 1600 bpi PE, and 6250 bpi GCR
recording modes. The correct density is automatically determined
during read operations, and allows recording density to be set either
programmatically or through hardware switches on its operator panel.

Downloading the Microcode

The Model 3206 Tape Controller (required for the 5106 Tape Subsystem)
is downloadable. Thus, the microcode that drives the controller can
be loaded from a file on the system disc to the controller over the
input/output channel. Whenever the processor which contains the
primary i/o process is loaded, or after a controller power failure,
the GUARDIAN operating system automatically downloads microcode from
the system disc. Then the controller executes commands using the
downloaded microcode. An explicit request to download the controller
microcode can be made using the PUP LOADMICROCODE command. Refer to
the Nonstop or Nonstop II System Operations Manual.

Download Operation

Associated with the controller is a disc subvolume named
$SYSTEM.M<hpn> that contains all possible microcode files necessary
for all hardware and prom versions of the controller board to be
loaded. This subvolume is placed on the system disc by the INSTALL
program. When downloading is required, the operating system searches
this subvolume for the appropriate file. The names of the individual
files in this subvolume are denoted in this format:

$SYSTEM.M<hpn>.<hhhppp>

where

hpn is the highest assembly part number of the
controller board to be loaded.

hhh is the hardware revision number of the board.

PPP is the prom revision number.

When the processor which contains the primary i/o process is loaded or
when following a controller power failure, or when a PUP LOADMICROCODE
is issued, the operating system attempts to download the microcode as
follows:

1. The operating system interrogates the controller to obtain the
highest assembly part number for the appropriate controller board,
and the proper hardware and prom revision numbers.

2.7-11

Controller Downloading Errors

FILE SYSTEM
Magnetic Tapes

If a controller error occurs during downloading, a MICROCODE LOADING
FAILURE message appears on the operator console. An error indicating
the type of failure will be returned to the application program.

At this point, the controller will be executing its resident
controller microcode. It cannot perform write, status reporting, or
density-setting operations, or several spacing functions. It is still
possible, however, to restore files from the 5106 Tape Drive using the
existing resident controller microcode and operating system simulation
of certain spacing commands.

Selecting Tape Density

On the Model 5106 Tape Drive, READ density is determined automatically
by the tape drive formatter when it reads the "id burst" at the
beginning of the tape. The default WRITE density is read from the
density switches on the operator panel. Programs, however, may
override this default WRITE density by calling the SETMODE procedure,
with a <function> value of of 66 and <parameter l> set to indicate the
density as follows:

<parameter l>

0
1
2
3

Density (bpi)

800 (NRZI)
1600 (PE)
6250 (GCR)
As indicated by switches
on the tape drive

Immediately after a tape is first opened, the tape driver sets the
WRITE density to switch control. A subsequent call to SETMODE 66,
before the tape has moved, causes the driver to pass the new density
selection to the controller. The new density takes effect with the
first write operation after the tape is positioned at the BOT
(Beginning of Tape) marker.

Following a controller power failure, the density selection is passed
to the controller when the controller microcode is reloaded.

Controller Self-Test Failure

While the 3206 controller is otherwise idle, it periodically initiates
several tests against its own hardware. If any test determines
that a fatal controller error has occurred, the controller enters
hard-failure mode. When this mode is in effect, the system rejects
all user requests except the PUP STATUS CONTROLLER command, transmits
the FATAL CONTROLLER ERROR message to the operator console, and
returns File System Error 224 (controller error) to the application
program. To clear the controller's error counters and cause it to
return to normal operation, a PUP LOADMICROCODE command, a controller
power-on, or a processor reset is necessary.

2.7-13

Error 153 {Drive Power On)

FILE SYSTEM
Magnetic Tapes

When power is restored after a drive power failure, the operating
system automatically places the tape drive online again {with the tape
at the BOT marker for the 5106 Tape Subsystem) and returns File System
Error 153 to the application program. For other tape drives, the tape
is left positioned where it stopped. Now, the application program
must either restart the entire tape or reposition to the proper file
and record {using counters that it has maintained).

If the application program receives error 100, 212, or 218 immediately
after recovery from a drive power failure error, either the tape drive
has again lost power or the tape was removed from the drive during the
power failure. The error indicates the point at which power was lost.

Error 193 (Invalid or Missing Microcode Files)

This error applies only to the 5106 Tape Subsystem. If the operating
system cannot locate either of the controller microcode files, cannot
read either of these files because of disc file errors, or cannot
download from them because they are not formatted properly, the
MICROCODE LOADING FAILURE message appears at the console and the
application program receives File System Error 193. (The message
appears once for the primary file and once for the backup.) For
information about corrective action, see "Invalid or Missing
Microcode Files" earlier in this section.

Error 212 (EIO Instruction Failure)

A controller failure failure has occurred (path error). The file
operation stopped at some indeterminate point, and the tape may have
moved. This error may also indicate a possible controller power
failure. (See File System Error 153.}

Error 218 (Interrupt Timeout}

A controller failure or channel failure has occurred. This error may
also indicate a possible controller power failure (See File System
Error 153).

Error 224 (Controller Error}

This error applies only to the 5106 Tape Subsystem. Certain errors
cause the controller to respond with the same error indication until
the controller is reset by a PUP LOADMICROCODE command, processor
reset, or power failure, returning File System Error 224 (controller
error} to the application program. See "Controller Self-Test" below.

2.7-15

FILE SYSTEM
Magnetic Tapes

SUMMARY OF MAGNETIC TAPE CONTROL OPERATIONS

Table 2-9. Magnetic Tape CONTROL Operations

<operation>

2 = write end-of-file:

<parameter> = none

3 = rewind and unload, don't wait for completion:

<parameter> = none

4 = rewind, take offline, don't wait for completion:
(This option is not available on the 5106 Tape Drive)

<parameter> = none

5 = rewind, leave online, don't wait for completion:

<parameter> = none

6 = rewind, leave online, wait for completion:

<parameter> = none

7 = space forward files:

<parameter> = number of files {0:255}

8 = space backward files:

<parameter> = number of files {0:255}

9 = space forward records:

<parameter> = number of records {0:255}

10 = space backward records:

<parameter> = number of records {0:255}

2.7-17

FILE SYSTEM
Magnetic Tapes

Table 2-10. ASCII Equivalents to BCD Character Set

BCD TAPE BCD MEMORY CHARACTER ASCII
(OCTAL) (OCTAL) (OCTAL}

0 Not Used Not Used Not Used
1 1 1 61
2 2 2 62
3 3 3 63
4 4 4 64
5 5 5 65
6 6 6 66
7 7 7 67

10 10 8 70
11 11 9 71
12 0 0 60
13 13 i 43
14 14 @ 100
15 15 ' (apostrophe) 47
16 ·16 = 75
17 17 " 42
20 60 space 40
21 61 I 57
22 62 s 123
23 63 T 124
24 64 u 125
25 65 v 126
26 66 w 127
27 67 x 130
30 70 y 131
31 71 z 132
32 72 \ 134
33 73 ,(comma) 54
34 74 % 45
35 75 (underscore) 137
36 76 > 76
37 77 ? 77
40 40 - (minus} 55
41 41 J 112
42 42 K 113
43 43 L 114
44 44 M 115
45 45 N 116
46 46 0 117
47 47 p 120
50 50 Q 121
51 51 R 122

2.7-19

FILE SYSTEM
Magnetic Tapes

BINARY3T04 converts each block of three 8-bit memory bytes to four
6-bit tape characters.

The following example illustrates the use of this conversion mode.

A0:A7, BO:B7, and C0:C7 represent three 8-bit memory bytes. These
three bytes become four 6-bit tape characters when writing to
tape.

AO Al A2 A3 A4 AS A6 A7
BO Bl B2 B3 B4 BS B6 B7
CO Cl C2 C3 C4 CS C6 C7

becomes

AO Al A2 A3 A4 AS
A6 A7 BO Bl B2 B3
B4 BS B6 B7 co Cl
C2 C3 C4 cs C6 C7

When reading from tape, four 6-bit tape characters become three
8-bit bytes.

AO Al A2 A3 A4 AS
BO Bl B2 B3 B4 BS
co Cl C2 C3 C4 cs
DO Dl D2 D3 D4 DS

becomes

AO Al A2 A3 A4 AS BO Bl
B2 B3 B4 BS CO Cl C2 C3
C4 CS DO Dl D2 D3 D4 DS

The maximum record size using the BINARY3T04 conversion mode is
3072 bytes; parity is odd. Use the number of 8-bit memory bytes
to specify a byte count in a read or write.

2.7-21

FILE SYSTEM
Magnetic Tapes

BINARYlTOl converts each 8-bit memory byte to one 6-bit tape
character. This mode causes the first two bits of every memory
byte to be lost when writing to tape.

For example, when writing to tape, the memory byte

AO Al A2 A3 A4 AS A6 A7

becomes

A2 A3 A4 AS A6 A7

When reading from tape, the first two bits are always zero.
For example,

AO Al A2 A3 A4 AS

becomes

00 00 AO Al A2 A3 A4 AS

The maximum record size in the BINARYlTOl conversion mode is
4096 bytes; parity is odd.

Selecting the Conversion Mode

Function 33 of the SETMODE procedure selects the conversion mode for
7-track only. The values that specify the conversion modes are:

<parameter l> = O, ASCIIBCD
1, BINARY3T04
2, BINARY2T03
3, BINARYlTOl

<parameter 2> is not used.

See section 2.3 for discussion of the SETMODE procedure.

Information on system configuration and selection of the default
conversion mode for the seven-track tape drive is available in the
Nonstop System Management Manual or the Nonstop II System
Management Manual.

2.7-23

FILE SYSTEM
Card Readers

The file system provides for transfers from card readers to
application processes in blocks of 0 (skip card) to the maximum number
of characters required to read a card.

The following topics are covered in this section:

• General Characteristics of Card Readers
• Summary of Applicable Procedures
• Card Reader Access
• Error Recovery

GENERAL CHARACTERISTICS OF CARD READERS

• Card readers are accessed by

$<device name> or

$<logical device number>.

• There are three read modes (ASCII, column binary, and packed
binary) •

• End-of-file indication is available in ASCII read mode. It is
"EOF!" in columns 1-4, followed by 76 blank columns.

• End-of-file is not defined for other read modes.

• Application processes must handle the "not ready" condition.

• All Tandem-supplied programs, when accessing a card reader, open it
with exclusive access (OPEN, <flags>.<9:11> = 1).

• The card reader device type is 8.

SUMMARY OF APPLICABLE PROCEDURES

The following procedures are used when performing input operations
with a card reader:

DEVICE INFO

OPEN

SETMODE

SETMODENOWAIT

READ

returns the device type and record length

establishes communication with a file

is used to set the card reader read mode

is used the same as SETMODE except in a no-wait manner
on an open file

is used to read a card

2.8-1

• Column-Binary

FILE SYSTEM
Card Readers

This mode is set by SETMODE function 21, <parameter l> = 1. In
the column-binary mode, each column image is returned right
justified in one word (i.e., two adjacent bytes). Word.<0:3> is O;
the top row of the card is returned in word.<4>.

ill L

x
x
0
1
2
3
4
5
6
7
8
9 r------

1 1 1 1 1 1
word 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

Figure 2-23. Column-Binary Read Mode for Cards

In the column-binary mode, a <read count> of 160 is required to
fully read an 80-column card.

2.8-3

FILE SYSTEM
Card Readers

LITERAL exclAacc = %20;

CALL OPEN (cardAfname, cardAfnum, exclAacc) ;
IF<> THEN ••• ; ! error.

Then to read a card, the READ procedure is called:

CALL READ (cardAfnum, cardAbuffer, 80) ;
IF > THEN ; end-of-file.
IF< THEN ..• ; ! error.

returns 80 bytes of ascii data to "cardAbuffer".

To change the read mode to packed-binary, the following call to
SETMODE is made:

LITERAL setAreadAmode = 21,
packedAbinary = l;

CALL SETMODE (cardAfnum, setAreadAmode, packedAbinary) ;
IF< THEN ... ; ! error.

further reads of $CARDRDR will return the card image in
packed-binary format.

To close the card reader, the CLOSE procedure is called:

CALL CLOSE (cardAfnum) ;

ERROR RECOVERY

The following errors require special consideration:

• 100 not ready
• 145 motion check
• 146 read check error
• 147 invalid Hollerith
• 200-255 path errors

Not Ready

The "not ready" error indicates

• Power Off or
• Hopper Empty

2.8-5

Read Check

FILE SYSTEM
Card Readers

This indicates that the card reader hardware has signalled a read
check. A possible cause of this condition is a card read hardware
malfunction.

The recovery procedure for this error is to stop reading cards,
instruct the operator to take the last card through the read station
and place it in the input hopper so that it will be the next card
read, then resume reading.

If the error persists, then consider the error to be fatal.

Invalid Hollerith

This error can occur in ASCII read mode only. It indicates that a
column was read that did not contain a valid Hollerith card code.
Specifically, rows one through seven (1-7) contain more than one
punch. If the read was for less than a full card, only the first
<read count> columns are checked for valid Hollerith codes.

There is no recovery procedure for this error except to stop reading
cards, then instruct the operator that the last card through the read
station has an invalid Hollerith code.

Path Errors

If a path error is detected and is either error 200 or 201, the
operation never got started (card did not feed) • These errors can
simply be retried.

If a path error is detected and is one of errors 210-231, the
operation failed at some indeterminate point. Therefore, a card may
have been fed. The simplest way to recover from these errors is to
restart the card read operation from the beginning.

2.8-7

FILE SYSTEM
Interprocess Communication

The file system provides for data transfers between application
processes in blocks of 0 to slightly more than 32,000 characters.
Interprocess communicati0n is accomplished via standard file
system procedure calls.

The programming described in this section requires first that
the processes be created. For the definition of a process and
a description of how processes are created and controlled, see
section 3, "Process Control".

The following topics are covered in this section:

• General Characteristics of Interprocess Communication
• Summary of Applicable Procedures
• Communication
• $RECEIVE File

No-Wait I/O
OPEN, CLOSE, CONTROL, SETMODE, RESETSYNC, and CONTROLBUF

System Messages
Communication Type

• Process Files
e Sync ID
• Interprocess Communication Example
• System Messages
• Error Recovery

GENERAL CHARACTERISTICS OF INTERPROCESS COMMUNICATION

• A file is opened to receive and, optionally, reply to messages from
all other processes, using

$RECEIVE.

The device type for $RECEIVE is 2.

• A file is opened to send messages to a process and, optionally,
wait for a reply, using a "process ID". If the open is to a
process or a process pair whose name is in the Process-Pair
Directory (PPD) , the process ID consists of a symbolic

$<process name> or \ <sys#> <process name>.

If a network ID is used, <sys#> is the system number.

The process name form of the process ID can be further qualified
at file open time by the addition of one or two optional qualifier
names. This provides for process file names of the form:

2.9-1

FILE SYSTEM
Interprocess Communication

The file number of the sender~s file that sent the message.
The file number parameter allows the receiver to identify
separate opens by the same sender. The value returned in <file
number> is the same as the file number used by the sender to
send the message. This parameter is returned by RECEIVEINFO.

The number of reply bytes expected by the sender (i.e., read
count value). The <read count> parameter allows the receiver
process to identify the type of request being made by the
sender. If <read count> = 0, a WRITE request or WRITEREAD
request with a read count of zero was made; if <read
count> > 0, then the requestor performed a WRITEREAD request of
<read count> bytes. This information can be used to determine
if the sender is simply sending data (e.g., if <read count>= 0,
then sender is "listing") or expects a reply (e.g., if <read
count> > O, then sender is "prompting"). This parameter is
returned by RECEIVEINFO.

• Messages from the Command Interpreter (such as the startup
parameter message) are read via the $RECEIVE file.

• System messages are read through the $RECEIVE file. The receipt of
a system message causes a condition code of CCG to be returned when
the read on $RECEIVE completes. Note that messages from the
Command Interpreter are not system messages, and therefore do not
cause a CCG indication.

• A process specifies at file open time whether or not it wishes to
receive OPEN, CLOSE, CONTROL, SETMODE, RESETSYNC, and CONTROLBUF
system messages:

The OPEN and CLOSE system messages are received by a process
when it is opened or closed.

The CONTROL, SETMODE or SETMODENOWAIT, and CONTROLBUF procedures
can be called for files representing processes. The process
referenced by the call is sent a system message containing the
CONTROL, SETMODE, or CONTROLBUF parameters.

For an explanation of the RESETSYNC procedure, see section 5.

If a process elects to receive these messages, the process ID of
the application process that called OPEN, CLOSE, CONTROL, SETMODE,
SETMODENOWAIT, RESETSYNC, or CONTROLBUF is obtained by calling the
LASTRECEIVE or RECEIVEINFO procedure.

2.9-3

FILE SYSTEM
Interprocess Communication

SETMODENOWAIT
is used the same as SETMODE, except in a no-wait manner
on an open file

CLOSE stops access to an open file

COMMUNICATION

There are two types of communication possible between processes:

• One-way communication,

ORIGINATOR DESTINATION

(A)------~MESSAGE------~(B)

CALL WRITE; CALL READ;

where the destination reads a message in a call to the READ
procedure. The originator's WRITE completes when the destination's
READ completes.

Note: If the originator sends a message in a call to the WRITEREAD
procedure, the WRITEREAD completes when the destination's
READ completes. No data is returned to the originator.

• Two-way communication,

REQUESTOR (ORIGINATOR)

~----~~~~~REQUEST~~~~~~~~•

(A)

CALL WRITEREAD;

SERVER

(B)

CALL READUPDATE;

process the request

CALL REPLY;

where the "server" process picks up a message in a call to the
READUPDATE procedure then, subsequently, replies to the message in
a call to the REPLY procedure. The "requester" sends the message
and waits for the reply by calling the WRITEREAD procedure. The
WRITEREAD completes when the server's REPLY completes.

Note: If the requester sends a message in a call to the WRITE
procedure, the WRITE completes when the destination's REPLY
completes. No data is returned to the requester.

It is also possible for the server to queue requests before
replying:

2.9-5

$RECEIVE FILE

FILE SYSTEM
Interprocess Communication

The $RECEIVE file is used by a process to read and optionally reply to
messages from other processes and to read messages from the operating
system.

Like any other file, the $RECEIVE file must be opened to be accessed.
Unlike other input (ie, read) files, however, reading $RECEIVE does
not solicit information from some input device. Instead, unsolicited
messages are sent to a process via its process ID or process name.

The first message {or series of messages) that a process that was
created by a Command Interpreter should expect is the parameter
message. This message, depending on the particular application, may
contain various parameters to be used by the application process. The
first word of the message contains a value of -1. See section 11,
"Command Interpreter/Application Interface", for the message format.

The following should be taken into consideration when opening the
$RECEIVE file:

• Is no-wait i/o desired?

• Are OPEN, CLOSE, CONTROL, SETMODE, RESETSYNC, and CONTROLBUF system
messages desired?

• Is two-way communication to be performed and, if so, is the opener
going to perform message queueing and what is the maximum number to
be queued?

No-Wait I/O

If only the parameter message is to be read or if it is permissible to
have the process suspended while waiting for an incoming message, then
the $RECEIVE file should be opened with wait i/o specified (the
default).

However, if the process must execute concurrently with the receipt of
messages, the $RECEIVE file must be opened with no-wait i/o
specified. If no-wait i/o is specified, a read is issued to the
$RECEIVE file, and the AWAITIO procedure is called periodically to
check for an incoming message. This technique is quite useful for two
reasons:

• Process execution continues with a minimum amount of time wasted
waiting for messages that may not be present.

• If AWAITIO is called for any file (i.e., <file number> = -1), then
an incoming message can be received while waiting for some other
no-wait i/o operation to complete.

For example:

2.9-7

FILE SYSTEM
Interprocess Communication

Communication Type

Whether or not a process is to perform two-way communication via the
$RECEIVE file is indicated by the state of the <receive depth>
parameter of the OPEN procedure.

If <receive depth> = O, one-way communication is indicated. The
receiver can only accept incoming messages; replies cannot be issued.
Incoming messages must be read via calls to the READ procedure. Calls
to READUPDATE and REPLY are not permitted.

If <receive depth> >= 1, two-way communication is indicated. The
receiver can accept and reply to incoming messages. Messages are read
via either the READUPDATE or the READ procedure. Messages read via
READUPDATE must be replied to via the REPLY procedure; messages read
via READ are not replied to.

If <receive depth> > 1, message queueing is indicated. The maximum
number of messages that the application process expects to have queued
at any given moment must be sp~cified in the <receive depth>
parameter. If message queueing is performed, then a message tag
must be obtained in a call to the LASTRECEIVE procedure immediately
following each call to READUPDATE and passed to the REPLY procedure
when replying to the message.

PROCESS FILES

A process ID is used to open a file and to send messages to a
designated process and, optionally, wait for a reply.

A process ID has two forms:

If it references a process not in the Process-Pair Directory (PPD),
it consists of

<process id>[0:2] = <creation time stamp>
<process id>[3] = <cpu,pin>

which is assigned by the GUARDIAN operating system at process creation
time. If this form of process ID is used to open a file, the file
references that process explicitly:

A opens B using B's process ID. Communication occurs explicitly
with B. If B stops or if B's processor module fails, communication
can no longer occur.

If the process ID references a process or a pair of processes whose
name is in the PPD, it consists of

<process id>[0:2]
<process id>[3]

= $<process name>
= • " (two blanks) or <cpu,pin>

2.9-9

FILE SYSTEM
Interprocess Communication

PROCESS PAIR "$SERVE"

xxx FAILED PRIMARY

.___ _______ .,... .. (C') NEW PRIMARY PROCESS

If the process accessing the pair is a member of the pair, then
the process name references the opposite member of the pair. The
<sync depth> parameter is ignored in this case.

For example, each member of the process pair "$SERVE" opens a file
using the process name "$SERVE":

INT .fname[O:ll] :=["$SERVE", 9 *[" "]];

CALL OPEN (fname, fnum) ;

PROCESS PAIR "$SERVE"

(C)----(C')

(C) (C')

C opens the pair using the process name $SERVE. C communicates
with its backup process C'. Likewise, C' opens the pair using
the process name $SERVE. C' then communicates with its primary
process c.

The process name form of the process ID can be further qualified at
file open time by the addition of one or two optional qualifier names.
This provides for process file names of the form:

word:
[0:3] [4:7] [8:11]
$<process name> [· [#<1st qualif name> [<2nd qualif name>]]

where

i<lst qualif name>

consists of a number sign "i" followed by one to seven
alphanumeric characters, the first of which must be
alphabetical.

<2nd qualif name>

consists of one to eight alphanumeric characters, the first
of which must be alphabetical.

2.9-11

FILE SYSTEM
Interprocess Communication

Failure of primary:

REQUESTOR SERVER

xxx ..----REQUEST 1--------~ (S)

(R')---~

This results in the identical request being sent to the server.
The server must recognize the request as a duplicate and return
the latest reply for the requester.

2. By the file system reexecuting the latest request from a requester
process because the primary server process failed:

Normal:

REQUESTOR SERVER

(R)-------- REQUEST 1 (S)
I

CHECKPOINT OF REQUEST = (CKPT}
I

(S')

Failure of primary server (causing the file system to reexecute
the request to (S') on behalf of (A)):

(R)-------- REQUEST 1------. xxx

-----• (S')

The backup server (S') may have executed the request on its
takeover from (S). If so, the backup server must identify the
request as being one it has already executed and return the
appropriate reply to the requester.

Each process file that is open has its own sync ID. A sync ID is a
double-word, unsigned integer that is kept in a process file's ACB.
Sync !D's are not part of the message data; rather, the sync ID value
associated with a particular message is obtained by the receiver of a
message by calling the RECEIVEINFO procedure (the receiver must keep
the sync ID value associated with a message in its data area).

A file's sync ID is set to zero at file open and when the RESETSYNC
procedure is called for that file (RESETSYNC can be called directly
and is called indirectly by the CHECKMONITOR procedure; see section
5, "Checkpointing Facility"). When RESETSYNC is called for a process
file, a RESETSYNC system message is sent to that process file. The
receipt of the message allows the process to clear its copy of the

2.9-13

FILE SYSTEM
Interprocess Communication

REQUESTOR SERVER

(1) (R) (2) (S)-[0] = SYNC ID VALUE
1\-[0J = SYNC ID VALUE I IN DATA AREA

IN ACB
(CKPT) (CKPT)
I I

(4) (R.-) (3) cs--)-[01 = SYNC ID VALUE
\-[0] = SYNC ID VALUE IN DATA AREA

IN ACB

Successful Transaction:

1. Transaction begins. The requester builds the request message,
then checkpoints the request message and current sync ID value
(i.e., 0) to the backup requester.

2. The requester sends the request message to the server. At this
time the file system increments the sync ID value by 1.

3. The server picks up the request via $RECEIVE, then calls
RECEIVEINFO to obtain the sync ID value.

4. The server examines the sync ID value for the requester to
determine if it matches a request it has already received. If it
does not, the server checkpoints the request and the sync ID value
to the backup server (S.-), executes the request, and saves the
reply value for the request.

If the request.-s sync ID does match, the saved reply value is
returned to the requester.

5. The server then returns the reply value to the requester via a
call to REPLY.

REQUESTOR SERVER

(2) REQUEST
(R) (3-5) (S)-[l] = SYNC ID VALUE

REPLY IN DATA AREA
\-[l] = SYNC ID VALUE

IN ACB
(CKPT) (CKPT)
I I

(1) (R.-) (4) cs--> -r11 = SYNC ID VALUE
\-[0] = SYNC ID VALUE IN DATA AREA

IN ACB

Transaction with failure of requester primary (sync ID = 1):

6. Transaction begins. The requester builds the request message,
then checkpoints the request message and current sync ID value
(i.e., 1) to the backup requester.

2.9-15

FILE SYSTEM
Interprocess Communication

(DUPLICATE}
.---REQUEST--------

(11) xxx (13-14) (S) - [2] = SYNC ID VALUE
REPLY~~~~~~~~- IN DATA AREA

(12) (R ...)~---

1\-[2] =

(S ...) - [2] = SYNC ID VALUE
IN DATA AREA

SYNC ID VALUE
IN ACB

Transaction with failure of server primary (sync ID = 1):

6. Transaction begins. The requester builds the request message,
then checkpoints the request message and current sync ID value
(i.e., 1) to the backup requester.

7. The requester sends the request message to the server. At this
time, the file system increments the sync ID value by 1. The sync
ID value is now 2.

8. The server picks up the request via $RECEIVE, then calls
RECEIVEINFO to obtain the sync ID value.

9. The server checkpoints the request and the sync ID value to the
backup server (S ... j, executes the request, and saves the reply
value for the request.

10. The server primary fails (note that this example is valid no
matter when the primary server may fail).

11. The backup server takes over and becomes the primary server. It
executes the latest request that was checkpointed by the failed
primary. The new primary server then attempts to reply to the
request, but because there is no actual request pending for this
process, the reply fails (the failure is ignored).

12. The file system, on behalf of the requester process, sends the
current request to the new primary server.

13. The server picks up the request via $RECEIVE, then calls
RECEIVEINFO to obtain the sync ID value.

14. The server examines the sync ID value for the requester to
determine if it matches a request it has already received.
Because the sync ID does match the sync ID for a request from this
requester, the server knows that it has already executed this
operation. Therefore, it returns the appropriate "saved" reply
value for this request.

2.9-17

FILE SYSTEM
Interprocess Communication

INTERPROCESS COMMUNICATION EXAMPLE

The following is an example of a two-way transmission between a
requester process and a server process. The server accepts OPEN
and CLOSE system messages and rejects CONTROL, SETMODE, and CONTROLBUF
system messages. No message queueing is performed. Only one open is
permitted per requestor process.

The following depicts the call in the requestor process to open the
server process:

INT • sf name [0: 11] : = ["$SERVE", 9 * [" "]] ;

CALL OPEN (sfname, sfnum,, 1) ;

opens a file to the server process. Automatic path error
recovery is specified.

The following depicts the calls in the server process to initialize
the $RECEIVE file:

INT . recv""fname [O·: 11] : = ["$RECEIVE", 8 * [" "]] ;

LITERAL flags = %40001,

recv""depth = l;

enable OPEN, CONTROL, etc. system
messages, no-wait i/o.
reply used; no message queueing.

CALL OPEN (recv""fname, recv""fnum, flags, recv""depth);

opens the $RECEIVE file in the server process.

The server also calls the MONITORCPUS procedure. This is done so that
it will be informed if failure occurs in a processor module of any
process it is serving (see "Checkpointing Facility" for a description
of MONITORCPUS) :

CALL MONITORCPUS (-1);

monitors all processor modules in the system.

The following depicts the action of the server process when reading
the $RECEIVE file:

INT .recv""buf[0:255],
recv""cnt,

• pid[0:3]'
system""message;

INT(32) sync""id,

receive buffer.
receive count •
requester <process id>.
state flag.
request sync ID value.

WHILE 1 DO ! loop on requests.
BEGIN

CALL READUPDATE (recv""fnum, recv""buf, 512);
CALL AWAITIO (recv""fnum,, recvAcnt);
IF >= THEN ! read a message.

$RECEIVE.

2.9-19

FILE SYSTEM
Interprocess Communication

-32 ! CONTROL system message.
replyAerrorAcode := 2; ! invalid operation.

-33 ! SETMODE system message.
replyAerrorAcode := 2; ! invalid operation.

-34 ! RESETSYNC system message.
BEGIN

requestor := lookuppid (pid);

The "lookuppid" procedure is used to look up a
requestor process sync in a local directory. If the
"pid" exists, the entry number in the directory is
returned. If not, a zero is returned.

syncAcount
END;

requestor] := OD;

-35 ! CONTROLBUF system message.
replyAerrorAcode := 2; ! invalid operation.

OTHERWISE ! other system message.
BEGIN

! check for CPU Down message.
IF recvAbuf = -2 THEN CALL delallpids (recvAbuf [l])

The "delallpids" procedure is used to delete all
processes from the local directory associated with
the processor module that failed.

ELSE

END;
END; ! system message case.

! reply to system message.
CALL REPLY (,,,, replyAerrorAcode);

END; ! processAsystemAmessage.

The following depicts the action of the requestor process to send a
request and wait for a reply from the server process.

WHILE 1 DO
BEGIN

A request is generated by the occurrence of an external
event.

format and send request message to "server".
sendAbuffer ~:=~ request FOR requestAlen;

2.9-21

FILE SYSTEM
Interprocess Communication

! return the reply to the requestor.
CALL REPLY (reply"buf [requestor * reply"size],

reply"len [requestor],
I

I

reply"error"code [requestor) ;

If this is a duplicate request, the last reply is returned
to the requestor.

A A t END; ! process user reques •

The following are the procedures in the server process that maintain
the local directory of process Io's. The directory is of the form

INT .pids[5:pid"limit * 5 + 5] := (pid"limit * 5) * [0];

[0] [3] [4]

entry #1

entry #2

entry #3
•
•

entry #piaiimit

entry [O: 2] = process name OR creation time stamp
entry [3] = cpu, pin OF PRIMARY PROCESS
entry [4] = cpu, pin OF BACKUP PROCESS, IF ANY, OR ZERO

INT PROC lookuppid(pid);
INT .pid;

return values:
0 = PIO not in directory.

>O = entry no. of PIO in directory.

BEGIN
INT entryno := 0, ! entry no. in local PID directory.

comp"len; ! compare length for PIO matching.

comp"len := IF pid.<0:7> = "$" THEN ! process name ! 3 ELSE 4;
WHILE (entryno := entryno + 1) <= pid"limit DO

IF pid = pids[entryno * 5] FOR comp"len THEN ! found it.
RETURN entryno;

RETURN 0; ! not found.
END; ! lookuppid.

2.9-23

FILE SYSTEM
Interprocess Communication

PROC delallpids(cpu);
INT cpu; ! processor module number of PID's to be deleted.

BEGIN
INT entryno := 0, ! entry in local PIO directory.

temp;

WHILE (entryno := entryno + 1) <= pidAlimit DO
BEGIN ! check each entry.

! check for match with entry's primary cpu.
IF pids[entryno * 5 + 3] AND

pids[entryno * 5 + 3].<0:7> = cpu THEN! primary down
! delete primary process and maybe the entire entry.
CALL delpid (pids [entryno * 5])

ELSE
! check for match with entry's backup cpu.
IF pids[entryno * 5 + 4] AND

pids[entryno * 5 + 4].<0:7> = cpu THEN backup down.
! clear the backup entry.
pids[entryno * 5 + 4] := O;

END;
END; ! delallpids.

SYSTEM MESSAGES

The following messages from the operating system may be sent to an
application process through the $RECEIVE file.

The first word of a system message always has a value less
than zero. Also, the completion of a read associated with a
system message returns a condition code of CCG (greater than) and
error 6 from FILEINFO.

Note: Like all interprocess messages, system messages read via calls
to the READUPDATE procedure must be replied to in a
corresponding call to REPLY. If the application process is
performing message queueing, LASTRECEIVE or RECEIVEINFO must
also be called immediately following the completion of the
READUPDATE, and the message tag must be passed back to
the REPLY procedure.

The system messages and their formats, in word elements, are as
follows:

• CPU Down Message. There are two forms of the CPU Down message:

<sysmsg>
<sysmsg > [l]

= -2
= <cpu>

This form is received if a failure occurs with a processor
module being monitored. Monitoring for specific processor
modules is requested by a call to the process control
MONITORCPUS procedure.

2.9-25

FILE SYSTEM
Interprocess Communication

This form is received by a deleted process's creator if the
deleted process was not named or by one member of a process
pair when the other member is deleted.

= -6 <sysmsg>
<sysmsg>[l] FOR 3
<sysmsg>[4]

= $<process name> of deleted process [pair]
= -1

This form is received by a process pair's ancestor when the
process name is deleted from the PPD. This indicates that
neither member of the process pair exists.

• Change in Status of Network Nodes

<sysmsg>
<sysmsg>[l].<0:7>
<sysmsg>[l>.<8:15>
<sysmsg>[2]
<sysmsg>[3]

= - 8
= system number
= number of cpu's
= new processor status bitmask
= previous processor status bitmask

This message is received if the process is running on a system
that is part of a network, and has enabled receipt of remote status
change messages by passing "l" as a parameter to the MONITORNET
procedure.

• SETTIME Message (Nonstop II systems only)

<sysmsg>
<sysmsg> [l]

= -10
= <cpu>

This message is received if the interval clock of <cpu> has been
reset by a the system manager or operator, provided the process has
enabled receipt of new messages by a call to MONITORNEW.

• Power On Message (Nonstop II systems only)

<sysmsg>
<sysmsg>[l]

= -11
= <cpu>

This message is received if the indicated processor had a POWER
OFF, then a POWER ON condition, provided the process has enabled
receipt of new messages by a call to MONITORNEW.

• NEWPROCESSNOWAIT Completion Message (Nonstop II systems only)

<sysmsg>
<sysmsg>[l]
<sysmsg>[2] FOR 2
<sysmsg>[4] FOR 4

=
=
=
=

-12
<error>
<tag>
<process id>

This message is received by a process when a call to the
NEWPROCESSNOWAIT procedure is completed.

2.9-27

FILE SYSTEM
Interprocess Communication

Receipt of the following six system messages (OPEN, CLOSE, CONTROL,
SETMODE, RESETSYNC, and CONTROLBUF) is possible only if the process
has opened its $RECEIVE file with <flags>.<l> = 1:

• Process OPEN Message

<sysmsg>
<sysmsg>[l]
<sysmsg>[2]

<sysmsg>[3] FOR 4

<sysmsg>[7]

<sysmsg>[8]
<sysmsg>[9] FOR 4

<sysmsg>[l3] FOR 4

= -30
= <flags> parameter to caller~s OPEN
= <sync or receive depth> parameter to

caller~s OPEN
= 0 if normal open, <process id> of primary

process if an open by a backup process
= 0 if normal open, <file number> of file if

an open by a backup process
= <process accessor id> of opener
= optional #<1st qualif name> of named

process or blanks
= optional <2nd qualif name> of named

process or blanks

This message is received by a process when it is opened by another
process. The process ID of the opener can be obtained in a
subsequent call to LASTRECEIVE or RECEIVEINFO.

Note: This message is also received if the open is by the backup
process of a process pair. Therefore, a process can expect
two of these messages when being opened by a process pair.

• Process CLOSE Message

<sysmsg> = -31

This message is received by a process when it is closed by another
process. The process ID of the closer can be obtained in a
subsequent call to LASTRECEIVE or RECEIVEINFO.

Note: This message is also received if the close is by the backup
process of a process pair. 'Therefore, a process can expect
two of these messages when being closed by a process pair.

• Process CONTROL Message

<sysmsg>
<sysmsg>[l]
<sysmsg>[2]

= -32
= <operation> parameter to caller~s CONTROL
= <parameter> parameter to caller~s CONTROL

This message is received when another process calls the CONTROL
procedure referencing the receiver process file. The process ID
of the caller to CONTROL can be obtained in a subsequent call to
LASTRECEIVE or RECEIVEINFO.

2.9-29

FILE SYSTEM
Interprocess Communication

ERROR RECOVERY

For the $RECEIVE file, there are no error conditions, with the
exception of error 40 (timeout) , for which error recovery should
be attempted.

For a process file opened with a synchronization depth greater than
zero, there are no error conditions, with the exception of error
40, for which error recovery should be retried.

For a process file opened with a synchronization depth of zero, an
operation which returns error 201 ("path down") should be retried
once if the process file is a process pair. An occurrence of error
201 means that the primary process failed. A reexecution of the
call that returned the error causes communication to occur with the
backup process, if any. If no backup process exists, a second error
201 will be returned on the reexecution of the call. At this point,
the error can be considered fatal.

2.9-31

FILE SYSTEM
Operator Console

The operator console is used to log the occurrence of system error
conditions, to log system statistical information, and to log
application-supplied information. Any process can write messages on
the operator console through use of standard file system procedures.

There are three places where console messages may be directed:

1. A console terminal device
This is typically a hard-copy device for Nonstop systems; for
Nonstop II systems, it may be the Operations and Service Processor
(OSP}. Console message logging can be redirected to other
devices, and may be disabled. (See "Console Messages" in the
Nonstop System Operations Manual or the Nonstop II System
Operations Manual.)

2. A disc log file designated $SYSTEM.SYSTEM.OPRLOG
System-generated console messages (and all other messages, for
Nonstop II systems) are also logged to a disc file, if disc file
logging is enabled. Messages are encoded in a special format; the
f ile~s contents can be displayed by means of the Tandem-supplied
DUMPLOG program. (See "Console Messages" in the Nonstop System
Operations Manual or the Nonstop II System Operations Manual.)

3. An a lication process named $AOPR
If an application process named AOPR exists, all console messages
will be logged to it. The console messages are sent by means of
an interprocess message (message -7) • A console logging system
message contains the exact image of the console message. (See
"Console Logging to an Application Process" in this section.)

The following topics are covered in this section:

• General Characteristics of the Operator Console
• Summary of Applicable Procedures
• Writing a Message
• Console Message Format
• Error Recovery
• Console Message Logging to an Application Process

GENERAL CHARACTERISTICS OF THE OPERATOR CONSOLE

• The operator console is accessed by

$0 (dollar sign, zero}.

• It is opened like any other file (including no-wait).

• Maximum message length is the console device record length minus
30 bytes (102 bytes); longer messages are truncated.

• The operator console is a write-only device.

• Operator messages preempt terminal reads on the operator console.

2.10-1

FILE SYSTEM
Operator Console

The message appears on the console as follows:

14:30 07SEP75 FROM 4,24 LOAD TAPE NO. 12345 ON UNIT 2

To terminate access to the operator console, the CLOSE procedure is
used:

CALL CLOSE (opAf ileAnum) ;

CONSOLE MESSAGE FORMAT

The general form of console messages is:

<time stamp> FROM <cpu>,<pin> <message>

where

<time stamp> is the current date and time of day.

<cpu> is the number of the cpu where the process that sent
the message is executing.

<pin> is the process information number associated with the
execution.

<message> was transmitted to the operator from an application
program and begins in column 31 on the console device.

ERROR RECOVERY

The file system automatically retries path errors to the operator
console (i.e., errors numbered 200 or greater); therefore, the
application program can consider these to be permanent errors.

The application program, however, should take care of errors
associated with device operation; these are errors such as "not ready"
or "paper out".

CONSOLE LOGGING TO AN APPLICATION PROCESS

All console messages (both system- and application-generated) are
logged to an application process named $AOPR if such a process exists.
The message is sent by the operator process as an interprocess
message. The application process reads the message via its $RECEIVE
file (see "Interprocess Communication").

2.10-3

FILE SYSTEM
File Management Advanced Features

The features described in this section are considered "advanced
features" because, if misused, they could result in a degradation of
system performance.

The advanced features covered in this section are:

• Reserved Link Control Blocks
• Resident Buffering

RESERVED LINK CONTROL BLOCKS

A Link Control Block {LCB) is a system resource that is used when a
message is sent from one process to another {figure 2-25) • An LCB
contains control information about the message. Before a message
transfer can take place, an LCB must be secured on the sender's side
{a "send" LCB) and another LCB {a "receive" LCB) must be secured on
the receiver's side. This means that a pair of LCB's is required for
each message transfer that is in progress at any given moment. Note
also that a call to most file system and process control procedures
results in a message being transferred between the calling application
process and a system process.

SENDER RECEIVER

(P1) --------------------MESSAGE--------------------_. (P2)

P = PROCESS

Figure 2-25. Link Control Blocks

The reserved Link Control Blocks feature is used so that an
application process will not be suspended, waiting for an LCB to be
allocated.

An application process can reserve Link Control Blocks by calling the
RESERVELCBS procedure. This requires specifying the number of LCB's
to be reserved for receiving messages {i.e., receive LCB's) and the
number to be reserved for sending messages (i.e., send LCB's):

2.11-1

FILE SYSTEM
RESERVELCBS Procedure

The call to the RESERVELCBS procedure is:

CALL RESERVELCBS <no. receive lcbs> , <no. send lcbs>

where

<no. receive lcbs>, INT:value,

specifies the number of "receive" LCB,s to be reserved for
this process: {0:255}.

<no. send lcbs>, INT:value,

specifies the number of "send" LCB,s to be reserved for this
process: {0:255}.

condition code settings:

< (CCL) indicates that not enough unreserved LCB,s are
available to reserve the LCB's specified in this call,
or the amount requested by either parameter is not in
the range of {0:255}. The number of reserved LCB,s
allocated to this process is unchanged.

= (CCE) the requested LCB,s are reserved for this process.
> (CCG) is not returned by RESERVELCBS.

example:

CALL RESERVELCBS (1, 4);
IF< THEN ••• ; ! failed.

CONSIDERATIONS

• A process may call RESERVELCBS multiple times; the latest call is
the one that is used.

• The worst-case values for <no. receive lcbs> and <no. send lcbs>
can be calculated as follows:

<no. receive lcbs> = 1 for each terminal where break is being
monitored

+ 1 for each cpu being monitored (i.e., by
MONITORCPUS)

+ 1 for each process of which this process is
the creator or ancestor

+ 1 for each possible interprocess message
from application processes.

2.11-3

FILE SYSTEM
Resident Buffering (Nonstop systems only)

RESIDENT BUFFERING (Nonstop systems only)

When resident buffering is used (figure 2-26), the data transferred
because of an i/o request is transferred directly between the
application process~s data area and an i/o buffer in the processor
module where the primary i/o process controlling a device is located.
This bypasses the normal intermediate transfer to a file system buffer
in the processor module where the application process is running. In
addition to saving a move operation, using resident buffering also
means that an application process will not be suspended, waiting for
file system buffer space to become available, when performing an i/o
operation.

RESIDENT
BUFFER IN

APPLICATION
PROGRAM

DATA

IN SAME PROCESSOR MODULE

1/0
BUFFER

DATA

IN SAME PROCESSOR MODULE

SAME OR DIFFERENT PROCESSOR MODULE

Figure 2-26. Resident Buffering (Nonstop systems only)

Resident buffers are specified on a file-by-file basis through
<flags>.<6> of the OPEN procedure. If resident buffers are specified,
the application process must make any buffers (i.e., arrays) used with
the file main-memory resident. Additionally, the resident buffer in
the application~s data area must be addressable through the system
data map. Both are done through a call to the LOCKDATA procedure
described in section 8. LOCKDATA can be called only if the
application process is executing in privileged mode; otherwise an

2.11-5

FILE SYSTEM
Resident Buffering (Nonstop systems only)

Then the file is opened. Resident buffering is specified as shown in
the previous call to OPEN.

CONSIDERATIONS

• If resident buffering is to be used, at least lK of system global
data space must be left unassigned when generating the system with
SYSGEN.

• Although resident buffering is specified on a file-by-file basis,
a process may use the same resident buffer for several different
files (if, of course, the structure of the program permits).

• It is not necessary to call LOCKDATA before OPEN is called.
However, LOCKDATA must be called before the first i/o transfer
(i.e., READ, WRITE, CONTROL, etc.) with a file is performed.

• The resident buffer is not used for accesses to structured ENSCRIBE
files.

• For further information, see "Considerations" for the LOCKDATA
procedure in section 8.

2.11-7

SECTION 3

PROCESS CONTROL

This section provides a general overview of the following:

• Process Definition
• Process States
• Process ID
• Creator
• Process Pairs
• Named Processes (Process-Pair Directory) :

Primary Process
Backup Process
Operation of the PPD
Ancestor Process

• Home Terminal
• Elapsed Timeout (Nonstop II systems only}

PROCESS DEFINITION

A "process" is the basic work unit of the GUARDIAN operating system.
A program (either an application or system program) running on the
system is a process. Specifically, the term "program" indicates a
static group of instruction codes and initialized data (like the
output of a compiler), whereas the term "process" identifies the
dynamically changing states of an executing program. The same program
can be executing concurrently a number of times; each execution is
considered a separate process. (See figure 3-1.}

3.1-1

THE SAME PROGRAM EXECUTING AS A PROCESS
IN (VIRTUAL) MEMORY

CALLS TO
OPERATING

SYSTEM
PROCEDURES

" EXECUTING

USER

CODE

AN OBJECT PROGRAM
FILE ON DISC

I

USER
CHANGING I }

I DATAPTR) :

CODE PTR
FILE TABLE

_j
ACCESS

SUSPEND FOR THIS CONTROL
STATE PROCESS BLOCK

FILE TABLE - FILE 0 POINTER

Fl LE 1 ACCESS
CONTROL

FILE 2 BLOCK

PROCESS CONTROL
Introduction

I

I

I

I

I
FILES I

- OPENFOR
THIS

PROCESS

I

I

I
L _____ _

FILE 3

I
_______ J

ACCESS
CONTROL

BLOCK

Figure 3-2. A Process (Nonstop systems)

3.1-3

PROCESS CONTROL
Introduction

PCB contains pointers to the process's code and data areas (real
and virtual) , retains the current state of the process when the
process is suspended, and contains pointers to files open by the
process.

PROCESS STATES

During its existence, a process goes through the following states:

CREATION~~-EXECUTION~---l••DELETION

Creation

The term "creation" refers to the action performed by a system process
called the System Monitor when a program is initially prepared for
execution.. During process creation, the System Monitor performs a
number of operations. Some of these are:

• Locating the program file on disc

• Assigning a process ID

• Allocating and initializing a PCB

• Determining if the code part is being executed by another process
(for code sharing)

• Allocating space for copies of the data and (if not sharing code)
code maps

• Allocating virtual memory space. For code, the program file is
used as the virtual area; for data, space on the same volume as the
program file is used as the virtual area.

• Linking references to external procedures (e.g., calls to file
system procedures) in the application program file to the operating
system. This linking is necessary only the first time the program
is run. Subsequent process creations with the same program file
skip this step.

• If the process is named, an entry is made for the process into the
Process-Pair Directory (PPD). (See "Named Processes") •

Process creation is initiated by either application programs or the
Command Interpreter (COMINT) through the process control procedure
NEWPROCESS or NEWPROCESSNOWAIT. (NEWPROCESSNOWAIT is available only
on Nonstop II systems.) The processor module where the program is to
execute is specified (any module is permitted) along with its
execution priority and the maximum number of data pages permitted.

3.1-5

PROCESS CONTROL
Introduction

To protect the system against excessive loss of throughput due to a
process that (often due to program errors) is extremely cpu-bound, the
GUARDIAN operating system -- on Nonstop II systems only -- includes a
"floating priority" feature. If a single process retains
uninterrupted control of a cpu for a given length of time (determined
at system generation) and other processes of equal or lower priority
are thus prevented from running, the operating system will
automatically reduce the priority of the procedure so that other
processes may run. Each time the process runs uninterrupted for more
than the given time, its priority is reduced by one and timing
begins again, so that the process~s priority is reduced in a stepwise
manner. The PRIORITY procedure can be used to check whether such
reduction of priority has occurred.

The following process control procedures are related to process
execution:

ACTIVATEPROCESS
is used to return a process that is in the suspended
state to the_ ready state

ALTERPRIORITY
is used to alter the execution priority of another
process

DELAY permits a process to suspend itself for a timed
interval

PRIORITY permits a process to dynamically change its own
execution priority

SETLOOPTIMER is used to detect a looping process (i.e., executing,
but not as expected). SETLOOPTIMER permits a process
to set a limit on the total amount of processor time
it is allowed (i.e., total time that the process is in
the active state). If the time limit is reached, a
"process loop timer timeout" trap occurs

SUSPENDPROCESS
is used to put another process into the suspended
state

Deletion

"Deletion" is the act, by the operating system, of stopping further
process execution. The deleted process is removed from its current
execution state (i.e., active, ready, or suspended), files it pas
opened are closed, its associated resources (e.g., PCB, memory stack
space, code space if not shared) are returned to the system, and the
deleted process~s creator is notified (by means of a system message)
of the deletion.

There are two types of process deletion, normal and abnormal:

3.1-7

PROCESS CONTROL
Introduction

where

<process name> must be preceded by a dollar sign "$" and
consist of a maximum of five alphanumeric characters; the
first character must be alphabetic.

• Process Name Form (Network)

For named processes in a network, the form of a process ID is

<process id>[0].<0:7> = ASCII "\" (octal 134)
<process id>[0].<8:15> = system number (in octal)
<process id> [.l: 2] = <process name>
<process id>[3].<0:7> = <cpu>
<process id>[3] .<.8:15> = <pin>

Note that <process name> in words 1 and 2 does not include the
initial dollar sign "$".

The following process control procedures are related to process ID~s:

MYPID provides a process with its own <cpu,pin>

GETCRTPID provides the process ID associated with a <cpu,pin>

GETREMOTECRTPID

provides the process ID associated with a <cpu,pin>
in a remote system

CREATOR

The term "creator" refers to the relationship that exists between a
process that initiated a process creation (i.e., the caller to
NEWPROCESS) and the process that was created.

For example, the Command Interpreter is the creator of the process
created when .. a RUN command is given:

:RUN myprog

command is given to run a program.

(CI) creator, Command Interpreter

l
(A) process created due to RUN command

The purpose of the creator relationship is to designate the process to
be notified when a process is deleted (the notification is in the form
of a Process STOP or Process ABEND system message):

3.1-9

0

PROG1 PROG2

~ ~
I " I \
I " I \
I "' I \
I "' I
;

I \

•

PROCESS CONTROL
Introduction

}

PROGRAM FILES
ON DISC

PROCESS PAIRS
EXECUTING IN
VIRTUAL MEMORY

Figure 3-4. Process Pairs

One process of the pair is designated the primary: the other is
designated the backup. Logic in the program indicates whether the
process is executing in the primary mode or the backup mode.

(A)----- (.A"')

PRIMARY BACKUP

During a process pair"'s existence, it passes through the following
process execution states:

PRIMARY

CREATION---EXECUTION--•-DELETION OR FAILURE

BACKUP

BACKUP

primary creates backup

CREATION---EXECUTION--•~DELETION OR FAILURE

if primary fails, backup becomes
primary and creates a new backup.

CREATION---· ••••• etc.

3.1-11

PROCESS CONTROL
Introduction

entry#

word
[0:2] [3] [4] [5:8]

[0] $<process name><cpu,pin l><cpu,pin 2><ancestor process id>
[l]

[n-1]

Each entry consists of a process name, the <cpu,pin>s of the two
processes comprising the pair, and the process ID of the process or
process pair responsible for creation of the primary.

A process name is entered into the PPD at process creation time via a
parameter to the NEWPROCESS or NEWPROCESSNOWAIT procedure. Any
process may create a process and assign it an unused process name.
Only a primary process, however, may create the second process (i.e.,
the backup} associated with its name. A process can have the system
generate, via a call to the CREATEPROCESSNAME Procedure, a previously
undefined, and unique, process name. The system-generated process
name is used when a process pair need not be known to other processes,
but the fault--tolerant aspects of named processes are desired. {A
process name, either predefined or system-generated, can be assigned
via the Command Interpreter RUN Command.)

When two processes are associated with a name, the two processes
become each other's "creator". One process is notified of the other's
deletion; each process can stop the other.

{$N:C,P 1) --EACH OTHER'S CREATOR--...... ($N:C,P 2)

($N:C,P i) represents a member of a named process pair
(N = process name: C = <cpu>, P = <pin>}

When a process represented in the PPD by a given name is deleted or
its processor module fails, the reference to the particular process
(i.e., its <cpu,pin>) is zeroed in the PPD, and the other process (if
any) becomes the primary. When the new primary creates a new process
having that name, the new process's <cpu,pin> is entered into the PPD.

When the last process associated with a given name is deleted, the
process name is deleted, and the ancestor of the process pair (if
alive) is notified. The deleted process name can then be reused.

Ancestor Process

The "ancestor" relationship can exist between the following:

• A non-named process and a named process pair

3.1-13

• Process abnormal deletion (ABEND) message:

= -6

PROCESS CONTROL
Introduction

<sysmsg>
<sysmsg>[l] FOR 3
<sysmsg>[4]

= $<process name> of deleted process [pair]
= -1

This message is received if the deletion is due to a call to the
process control ABEND procedure, or because the deleted process
encountered a trap condition and was aborted by the operating
system. It is received by a process pair's ancestor when the
process name is deleted from the PPD. This indicates that neither
member of the process pair exists.

Note: If the ancestor process responsible for the original primary's
creation is a member of a process pair, the ancestor
process pair receives this notification regardless of whether
or not the actual creating process still exists.

3.1-15

5. ($A 3,8) creates its backup:

name ':=' "$A ";
CALL NEWPROCESS(••• ,name);

(X) ANCESTOR

. I
• •
•
•
•
•

($A 2, 15)
(MOM = $A3,8)

•
($A 3,8) •

(MOM = $A2, 15) :
• •
•

6. ($A 3,8) stops:

(X) ANCESTOR

. I
• •
•
• ($A 2,15)
: (MOM = $A3,8)

STOP MSG •
•
•
•

• •
•

7. ($A 2,15) stops:

(X) ANCESTOR

I
STOP MESSAGE

Procedures

$A 3,8

PROCESS CONTROL
Introduction

2,15 I x

EACH OTHER'S CREATOR

$A 2,15 0 x I

DELETED

The following procedures are used for performing operations involving
named process [pairs]:

CREATEPROCESSNAME·

is used to have the system generate a process name
suitable for passing to the NEWPROCESS or
NEWPROCESSNOWAIT procedure

LOOKUPPROCESSNAME

NEWPROCESS

returns the PPD entry associated with a process name

creates a new process (runs a program) and,
optionally, enters its application-defined symbolic
process name into the PPD

3.1-17

PROCESS CONTROL
Introduction

ELAPSED TIMEOUT (Nonstop II systems only)

The Nonstop II system allows a process to set timers that count
actual elapsed time. (This differs from process time, or run time,
as counted by the DELAY procedure.) When the set time interval
for a timer has expired, the time list entry allocated for the timer
is queued on the process~ $RECEIVE queue ahead of any other type of
request, but behind any other time list entry. The user process
sees the timeout as a system message (file system error 6, CCG}
with the following format:

<sysmsg>
<sysmsg>[l]

= -22
= <parameterl> supplied to SIGNALTIMEOUT

(if none supplied, 0)
<sysmsg>[2] FOR 2 = <parameter2> supplied to SIGNALTIMEOUT

{if none supplied, OD)

A process may do exact elapsed timings by using the RCLK instruction.

The following procedures are related to the elapsed timeout feature:

SIGNALTIMEOUT sets a timer for a given period of elapsed time

CANCELTIMEOUT cancels a timer previously set by SIGNALTIMEOUT

3.1-19

PROCESS CONTROL
Process Control Procedures

The process control procedures are:

ABEND deletes the calling process and flags the deletion
the result of an abnormal condition

ACTIVATEPROCESS is used to return a process that is in the
suspended state to the ready state

ALTERPRIORITY is used to alter the execution priority of another
process

CANCELTIMEOUT {Nonstop II systems only)

cancels an elapsed-time timer previously set by
SIGNALTIMEOUT

CONVERTPROCESSNAME

converts a process name from local to network form

CREATEPROCESSNAME

is used to have the system generate a process name
suitable for passing to the NEWPROCESS or
NEWPROCESSNOWAIT procedure

CREATEREMOTENAME

DELAY

GETCRTPID

GETPPDENTRY

GETREMOTECRTPID

is used to have the system generate a process name
for a remote system

permits a process to suspend itself for a timed
interval

provides the process ID associated with a <cpu,pin>

returns the PPD entry in a remote system associated
with an entry number {a number specifying an ordinal
position in the PPD)

provides the process ID associated with a <cpu,pin>
in a remote system

LOOKUPPROCESSNAME

MOM

returns the PPD entry associated with a process name.
A PPD entry consists of a process name, the two
<cpu,pin>s of the process pair, and the ancestor~s
process ID

provides a process with the process ID of its creator

3.2-1

PROCESS CONTROL
ABEND Procedure

The ABEND procedure is used to delete the calling process and signal
that the deletion was because of an abnormal condition (i.e., send an
ABEND system message to the deleted process~s creator} •

When ABEND executes, all open files associated with the deleted
process are automatically closed, and if the process had BREAK
enabled, BREAK is disabled.

The call to the ABEND procedure is:

CALL ABEND

example:

CALL ABEND; delete me.

CONSIDERATIONS

• The creator of the aborted process is sent a process abnormal
deletion (ABEND} system message (i.e., system message -6}
indicating that the deletion occurred~ See "Interprocess
Communication", section 2.9, for the format of the message.

3.2-3

PROCESS CONTROL
ALTERPRIORITY Procedure

The ALTERPRIORITY procedure is used to change the execution priority
of a process [pair]. ALTERPRIORITY changes the assigned priority
initially given to the process and sets the current priority equal to
the assigned priority.

The call to the ALTERPRIORITY procedure is:

CALL ALTERPRIORITY <process id> , <priority>

where

<process id>, INT:ref,

is an array containing the process ID of the process whose
execution priority is to be changed. If <process id>[0:2]
references a process pair and <process id>[3] is specified
as -1, then the call applies to both members of the
process pai~.

<priority>, INT:value,

specifies a new execution priority value in the range of
{1:199} for <process id>.

condition code settings:

< (CCL) indicates that ALTERPRIORITY failed, or no process
designated as <process id> exists.

= (CCE) indicates that the priority of the process has
been altered.

example:

CALL ALTERPRIORITY (pid , pri) 1
IF< THEN ••• ! "pid" doesn~t exist.

CONSIDERATIONS

• The caller of ALTERPRIORITY must have the same process accessor
ID as the process [pair] whose priority is it is attempting to
change (see "Security System" for an explanation of "process
accessor ID") or be the super ID.

3.2-5

PROCESS CONTROL
CONVERTPROCESSNAME Procedure

The CONVERTPROCESSNAME procedure converts a process name from local to
network form.

'-
The call to the CONVERTPROCESSNAME procedure is:

CALL CONVERTPROCESSNAME <process name>)

where

<process name>, INT:ref:3,

is passed a process name beginning with "$". On return,
this buffer contains the internal network form of the
process name: "\" in the first byte, the calling process~s
system number in the second byte, followed by the process
name.

Example

If <process name> does not begin with "$", it is left
unchanged.

An example of the action of CONVERTPROCESSNAME, assuming that
MYSYSTEMNUMBER is 3:

name ~:=~ "$proc";
CALL CONVERTPROCESSNAME (name) ;

On return from the call, "name" contains

0 \ %3

1 p R

2 0 c

3.2-7

PROCESS CONTROL
CREATEPROCESSNAME Procedure

CONSIDERATIONS

• The CREATEPROCESSNAME procedure is also useful for creating
"pseudo-temporary" disc file names. This type of naming is used
when a disc file that is created by one process must be accessed by
another process, and that process opens the file with exclusive
access (i.e., the file cannot be open by the process that created
the file). In the normal case with actual temporary files, the
file, because it would be open only by a single process, would be
purged when closed by the other process.

For example:

INT .temp""fname[O:ll] := ["$VOL! ", 9 * [" "]];

CALL CREATEPROCESSNAME (temp""fname[4]);
temp""fname[4].<0:7> := "Z";
temp""fname[8] ':=' temp""fname[4] FOR 4;
CALL CREATE (temp""fname);
IF< THEN ••• ; ! error.

• Under GUARDIAN operating system version "D" or later,
CREATEPROCESSNAME creates a name of the form Zddd; under version
"C", it creates a name of the form Zdddd.

3.2-9

PROCESS CONTROL
DELAY Procedure

The DELAY procedure permits a process to have itself suspended for a
timed interval.

The call to the DELAY procedure is:

CALL DELAY <time period>

where

<time period>, INT(32) :value,

specifies the time period, in .01-second units, that the
caller of DELAY is to be suspended.

A value of less than or equal to OD results in no delay as
such, but changes this process's execution state from active
to ready to permit other processes of the same priority to
run.

example:

CALL DELAY (1000D); suspend for 10 seconds.

3.2-11

PROCESS CONTROL
GETPPDENTRY Procedure

The GETPPDENTRY procedure returns a particular entry in a specific
system's Process-Pair Directory (PPD} •

The call to the GETPPDENTRY procedure is:

CALL GETPPDENTRY <entry number> , <system number>

, <ppd entry>

where

<entry number>, INT:value,

specifies which PPD entry to return. The first entry is 0,
the second is 1, etc.

<system number>, INT:value,

specifies the system whose PPD is to be searched for the
desired entry.

<ppd entry>, INT:ref:9,

returns the nine-word PPD entry specified by the given
entry and system numbers. The format of the <ppd entry> is

<ppd entry>[0:2] = process name (in local form}

<ppd entry>[3] = <cpu,pin> of primary (cpu in
high-order eight bits, pin in
low-order eight bits}

<ppd entry>[4] = <cpu,pin> of backup

<ppd entry>[5:8] = <process id> of ancestor, if any

condition code settings:

< (CCL}
= (CCE}
> (CCG}

the PPD in the given system could not be accessed.
GETPPDENTRY completed successfully.
there is no such entry in the PPD.

example:

CALL GETPPDENTRY(entryAnum, system, ppdAentry)
IF< THEN •••

3.2-13

PROCESS CONTROL
GETREMOTECRTPID Procedure

The GETREMOTECRTPID procedure returns the CRTPID, also known as the
process ID, of a remote process whose cpu, pin, and system number
are known.

The call to the GETREMOTECRTPID procedure is:

CALL GETREMOTECRTPID <pid> , <process id> , <system number>

where

<pid>, INT:value,

is the <cpu,pin> of the process whose process ID is to be
returned.

<process id>, INT:ref:4,

is an array of four words where GETREMOTECRTPID returns the
process ID of <cpu,pin>. If <system number> specifies a
remote system, the process ID is in network form; if <system
number> specifies the local system, the process ID is in
local form. Both forms of process ID are described under
"Process ID" in section 3.1.

condition code settings:

< (CCL) indicates the GETCRTPID failed for one of the
following reasons: no such process exists, or the
remote system could not be accessed, or the process
has an inaccessible name, consisting of more than 4
characters.

= (CCE) indicates that GETREMOTECRTPID was successful.

> (CCG) is not returned by GETREMOTECRTPID.

example:

CALL GETREMOTECRTPID (pid, crtpid, sys~num) ;
IF< THEN ••• ! problems

3.2-15

PROCESS CONTROL
LOOKUPPROCESSNAME Procedure

INT count := -1;
entry[0:8],
done := O;

DO
BEGIN

entry_ : = (count : = count + 1) ;
CALL LOOKUPPROCESSNAME (entry) ;
IF= THEN ••• ! do something with "entry".
ELSE done := l;

END
UNTIL done;

Network Use of LOOKUPPROCESSNAME

Remote PPD entries can be obtained by passing the process name (in
network form) of the process desired. On return, the process name
remains in network form.

This is an example of using LOOKUPPROCESSNAME to get the PPD entry for
the named process "$proc" running on the system "\detroit":

externalAname ~:=~ 17 * [" "]; ! blanks
externalAname ~:=~ "\detroit.$proc";
CALL FNAMEEXPAND(externalAname, internalAname, defaults) ;

! converts "\detroit" to its system number
CALL LOOKUPPROCESSNAME(internalAname) ;

! returns the desired PPD entry

To obtain remote PPD entries using an <entry number>, the GETPPDENTRY
procedure must be used.

3.2-17

• Network consideration:

PROCESS CONTROL
MOM Procedure

If a process~s creator is in a remote system, its process ID is
returned by MOM in network form. A process can use this fact to
determine whether or not it was created locally.

3.2-19

PROCESS CONTROL
MYSYSTEMNUMBER Procedure

The MYSYSTEMNUMBER procedure provides a process with its own system
number.

The call to the MYSYSTEMNUMBER procedure is:

<system number> := MYSYSTEMNUMBER

where

<system number>, INT,

returns the caller~s system number.

CONSIDERATIONS

• If the caller is running in a system that is not part of a network,
MYSYSTEMNUMBER returns O. Since 0 is a legal system number, a
process wishing to determine whether the system it is running in is
part of a network should contain the code

CALL GETSYSTEMNAME(MYSYSTEMNUMBER, name);

A return of all blanks in "name" indicates that the system is not
part of a network.

3.2-21

PROCESS CONTROL
NEWPROCESS Procedure

The NEWPROCESS procedure is used to create and, optionally, assign a
symbolic process name to a new process. Additionally, the execution
priority of the new process, the number of memory pages allotted the
process, and the cpu where the process is to execute may be specified.
On Nonstop II systems, a run-time library and a swap file may also be
specified. When a new process is created, its process ID is returned
to the caller.

The call to the NEWPROCESS procedure is:

CALL NEWPROCESS <filenames>

where

, <priority>
, <memory pages>
, <processor>
, <process id>
, <error>
, <name>

<filenames>, INT:ref:l2 or INT:ref:36,

is an array containing <program file> (the twelve-word file
name of the program to be run) and optionally, for Nonstop
II systems only, two additional fields. (See "File Names" in
the "File Management System" section for file name format.)

The additional Nonstop II fields, which are used only if bit
1 of the <priority> parameter is set to 1, are as follows:

<library file>

<swap file>

the twelve-word file name of a run-time
library to be used by the program
the twelve-word file name of a file to be
used as a swap file

If <library file> is specified, unsatisfied external
references are satisfied first from the specified library,
then from the system library. If <library file> is not
specified but another process has specified a <library file>
for that program, the previously specified library is
used. If <library file> has not been specified at all for
the program, or if the first word of <library file> is all
zeroes, no library file is used. If <swap file> is specified
and a file of that name exists, that file is used for
memory swaps of the user data stack during execution of the
process; if no file of that name exists, a file of that name
and of the necessary size is created and used for swaps.

3.2-23

PROCESS CONTROL
NEWPROCESS Procedure

Both forms of process ID are described under the heading
"Process ID" in section 3.1 of this manual.

If no process was created, zero is returned in <process id>.

<error>, INT:ref:l,

is returned an error number indicating the outcome of the
process creation attempt, where

<error>.<0:7>

0 =no error, process created
1 =undefined external(s)
2 = no PCB available
3 =file management error, then

<error>.<8:15> = file management error number
4 = unable to allocate map
5 = unable to get virtual disc space (Nonstop systems)

swap file error (Nonstop II systems)
6 = illegal file format
7 = unlicensed privileged program
8 =process name error, then

<error>.<8:15> = file management error number
9 = library conflict (Nonstop II systems only)

10 = unable to communicate with System Monitor process

These errors are explained more fully under "Errors for
NEWPROCESS and NEWPROCESSNOWAIT" following the description
of the NEWPROCESSNOWAIT procedure.

<name>, INT:ref,

if present, is a name to be given to the new process. It is
entered into the Process-Pair Directory (PPD). <name> is of
the form

<process id>[0:2] = $<process name>

where

<process name> must be preceded by a dollar sign "$" and
consists of a maximum of five alphanumeric characters:
the first character must be alphabetic. (If the process
is created in a remote system, and it is necessary to be
able to access the process, its name should consist of at
most four characters.)

3.2-25

PROCESS CONTROL
NEWPROCESS Procedure

• The library file for a process can be shared with an arbitrary
number of other processes. However, if the program specified by
<program file> is already running with another library or no
library, a library conflict error {error 9} occurs. All processes
running a given program must use the same library.

3.2-27

PROCESS CONTROL
NEWPROCESSNOWAIT Procedure (Nonstop II systems only}

<priority>, INT:value,

consists of three parts:

<priority>.<O> is the DEBUG bit. If <priority>.<0> = 1,
then a code breakpoint is set in the first executable
instruction of the program's MAIN procedure.

<priority>.<l> indicates the interpretation of the
<filenames> parameter. If <priority>.<l> = 1,
the additional fields in <filenames> are used. If
<priority>.<!> = O, these extra fields are ignored.

<priority>.<8:15> is the execution priority assigned to
the new process {1:199}. If <priority>.<8:15> = O, then
the priority of the caller of NEWPROCESSNOWAIT is used.
If a value greater than 199 is specified, then 199 is used.

If <priority> is omitted, the caller's priority is used.

<memory pages>, INT:value,

specifies the number of 1024-word memory pages to be
allotted the new process. If <memory pages> is omitted or
is less than the value assigned when the program was
compiled (or UPDATEd}, then the compilation value is used.
In any case, the maximum number of pages permitted is 64.

<processor>, INT:value,

specifies the processor where the new process is to run. If
omitted, the new process runs in the same processor as the
caller.

<process id>, INT:ref:4,

is unused by NEWPROCESSNOWAIT.

<error>, INT:ref:l,

is returned an error number indicating the initial outcome
of the process creation attempt. Only errors that
prevented initiation of process creation are reported in
this parameter; if process creation was initiated, any
subsequent errors are reported in the completion message
on $RECEIVE. The error numbers in the <error> parameter
and in the <error> field of the completion message are
identical to the error numbers for the NEWPROCESS

3.2-29

PROCESS CONTROL
NEWPROCESSNOWAIT Procedure (Nonstop II systems only)

• If NEWPROCESSNOWAIT cannot initiate process creation (for instance,
if an invalid cpu number is specified) , no message appears on
$RECEIVE. The <error> parameter is returned a nonzero value
indicating the error.

• Also see "CONSIDERATIONS" for the NEWPROCESS procedure.

3.2-31

6 ILLEGAL FILE FORMAT

PROCESS CONTROL
Errors for NEWPROCESS and NEWPROCESSNCMAIT

<program file> or <library file> failed one of the tests performed
by the System Monitor to determine if the file is actually a program
(these include checking for a file code of 100). No process is
created. Use the FUP INFO command to check the file code (see the
GUARDIAN Operating System Command Language and Utilities Manual).

7 UNLICENSED PRIVILEGED PROGRAM
Program file contained procedures having CALLABLE and/or PRIV
attributes, but the program file was not licensed to execute in
privileged mode and was not being run by the super ID. Program
files are licensed by the super ID by means of the FUP LICENSE
command (see the GUARDIAN C£erating System Command Language and
Utilities Manual). Have the super ID user license program.

8 'PROCESS NAME ERROR
Process name was invalid. The specific reason can be determined by
examining the file management error number in <error>.<8:15>.
Common file management errors and their causes are:

file management error
10 file already exists

13 illegal file name

45 file is full

reason
1. There is one entry for <process

name> in the PPD, and the caller
does not have that name. (The
second entry can only be creation
by a primary process having
<process name>.)

2. Attempt was made to create a
backup process in the same
processor module as the primary.

1. <process name> is not in the
proper form.

1. There are already two entries for
<process name> in the PPD.

No process is created. See "File Management Errors" in section 2.4
for corrective action.

9 LIBRARY CONFLICT (Nonstop II systems only)
<library file> was specified, but this program was already running
with another library or no library. All processes running a
given program must use the same library.

10 UNABLE TO CCMMUNICATE WITH SYSTEM MONITOR
Process was unable to communicate with System Monitor, possibly
because the processor module where the program was to be run did not
exist or was inoperable. No process is created. Select another cpu
and try again.

3.2-33

PROCESS CONTROL
PROCESSINFO Procedure

The PROCESSINFO procedure is used to obtain process status
information.

The call to the PROCESSINFO procedure is:

{ <error>
{ CALL

:= J PROCESSINFO <cpu,pin>

where

, <process id>
, <creator accessor id>
, <process accessor id>
, <priority>
, <program file name>
, <home terminal>
, <system number>
, <search mode>)

<error>, INT,

indicates the outcome of the call.

0 =
1 =

2 =
3 =
4 =

status for process <cpu,pin> is returned.
process <cpu,pin> does not exist. Status for next
higher <cpu,pin> is returned. <process id>[3] =
<cpu,pin> is process for which status is returned.
process <cpu,pin> does not exist and no higher
<cpu,pin> exists.
unable to communicate with <cpu>.
<cpu> does not exist.

5 = the system specified by <system number> could not be
accessed.

99 =parameter error.

<cpu,pin>, INT:value,

specifies the process whose status is being requested.

<process id>, INT:ref:4,

if present, is returned the process ID of the process
whose status is actually being returned. Note that this
may be different than the process whose status was
requested via <cpu,pin> (see <error>) .•

3.2-35

PROCESS CONTROL
PROCESSINFO Procedure

If multiple search conditions are specified, then all must
be met.

example:

! return status for all processes run by me at my terminal.

caid := PROCESSACCESSID;
CALL MYTERM (hometerm) ;
pin : = 0;
mode := %42000;
WHILE PROCESSINFO

BEGIN

pin , pid , caid , paid , pri , prog ,
hometerm , , mode) < 2 DO

pin := pid [3] + l;
END;

CONSIDERATIONS

• If <system number> specifies a remote system, <process id> is
returned in network form; otherwise, <process id> is returned in
local form.

If the process~s home terminal is in a remote system, then <home
terminal> is returned in network form.

If <system number> specifies a remote system, file names (such as
home terminal) are returned in local form (starting with "$").

3.2-37

PROCESS CONTROL
SETLOOPTIMER Procedure

The SETLOOPTIMER procedure has two uses:

1. To abort the caller if the caller begins looping (i.e.,
malfunctioning) •

2. To permit the caller to calculate the amount of processor time it
has used.

A call to the SETLOOPTIMER procedure is used to set the caller's
"process loop timer" value. A positive loop timer value enables
process loop timing by the operating system and specifies a limit
on the total amount of processor time the caller is allowed. If loop
timing is enabled, the operating system decrements the loop timer
value as the process executes (i.e., is in the active state). If
the loop timer is decremented to zero (indicating that the time limit
is reached), a "process loop timer timeout" trap occurs (trap no. 4).
(Loop timing is disabled by specifying a loop timer value of zero).

The call to the SETLOOPTIMER procedure is:

CALL SETLOOPTIMER <new time limit> ' <old time limit>

where

<new time limit>, INT:value,

specifies the new time limit value, in .01-second units, to
be set into the process's loop timer. <new time limit> must
be a positive value.

If zero (0) is passed as the <new time limit> value, process
loop timing is disabled.

<old time limit>, INT:ref:l,

if present, returns the current setting of the process's
loop timer.

Condition code settings:

< (CCL) indicates that the <new time limit> parameter was
omitted or was specified as a negative value. The
state of process loop timing and the setting of the
process's loop timer is unchanged.

= (CCE) indicates that the <new time limit> value was set
into the process's loop timer and that loop timing is
enabled.

> (CCG) is not returned by SETLOOPTIMER.

3.2-39

PROC mainAproc main;
BEGIN

CALL SETLOOPTIMER (%77777);
IF< THEN •••

PROCESS CONTROL
SETLOOPTIMER Procedure

enables loop timing. Time limit value is approximately
five and one-half minutes.

The program executes to completion, then SETLOOPTIMER is called again
to obtain the current setting of the loop timer:

CALL SETLOOPTIMER (0 , oldAval ~ ;
IF< THEN •••
timeAused := %77777 - oldAval;

the total amount of processor time used is calcula-ted by
subtracting the current setting of the loop timer,
"oldAval", from the original loop timer value (%77777) • .

END; ! mainAproc.

3.2-41

PROCESS CONTROL
SETSTOP Procedure

The SETSTOP procedure permits a process to protect itself from being
deleted by any process but itself or its creator.

The call to the SETSTOP procedure is:

where

<last stop mode>, INT,

is returned either the preceding value of <stop mode>,
or -1 if an illegal mode was specified.

<stop mode>, INT:value,

specifies a new stop mode. The modes are:

0 = stoppable by any process

1 = stoppable only by

• the super ID
• a process whose process accessor ID = this process~s

creator
• a process whose process accessor ID = this process~s

accessor ID (this includes the caller to STEPMOM)

2 = unstoppable (privileged users only)

(See "Security System" for an explanation of "super ID" and
"process accessor ID").

example:

lastAmode := SETSTOP(newAmode.);

CONSIDERATIONS

• The default stop mode when a process is created is 1.

• If a process~s stop mode is 1 and a STOP is issued to it by a
process without the authority to stop it, the process does not
stop; it is deleted, however, if and when the stop mode is changed
back to O.

3.2-43

PROCESS CONTROL
SIGNALTIMEOUT Procedure (Nonstop II systems only)

example:

CALL SIGNALTIMEOUT (lOOOD,,, tle) ;
IF > THEN
IF< THEN •••

CONSIDERATIONS

10 seconds

• When a TLE set by a call to SIGNALTIMEOUT times out, a system
message -22 is read from $RECEIVE. The user buffer then contains
a 4-word message, as follows:

<sysmsg> = -22
<sysmsg>[l] = <parameterl> supplied to SIGNALTIMEOUT

(if none supplied, 0)
<sysmsg>[2] FOR 2 = <parameter2> supplied to SIGNALTIMEOUT

(if none supplied, OD)

The READ (or AWAITIO) completes with a CCG and error #6.

• This procedure can be used with CANCELTIMEOUT by a multi-threaded
i/o process to verify that an i/o operation completes within a
certain time. The process calls SIGNALTIMEOUT when initiating
the i/o operation, then calls CANCELTIMEOUT after completion if
the process has not been signalled on $RECEIVE.

• A process may do exact elapsed timing using the instruction RCLK.
This instruction loads registers [D:C:B:Al with a QUAD value of
the current time with a resolution of 1 m1crosecona. For example:

FIXED x, y, z;
CODE (RCLK) ;
STORE x;

CODE (RCLK) ;
STORE y;
z := y - x; z now contains the elapsed time, in

microseconds, from the first RCLK to the
second.

3.2-45

PROCESS CONTROL
STEPMOM.Procedure

• Figure 3-6 illustrates the effect of STEPMOM.

(A)

(B)

(C)

CREATES (B) :

(A)

CREATES (C)

(A)

CALLS STEPMOM AND PASSES

(A)

(B)

MOM = (A)

(B) (C)

MOM = (A) MOM = (B)

(B)'S PROCESS ID:

(B) (C)

MOM= (C) MOM= (B)

(B) RECEIVES A STOP OR ABEND MESSAGE
IF (C) IS DELETED.

LIKEWISE,
(C) RECEIVES A STOP OR ABEND MESSAGE

IF (B) IS DELETED.

Figure 3-6. Effect of STEPMOM

3.2-47

PROCESS CONTROL
SUSPENDPROCESS Procedure

The SUSPENDPROCESS procedure puts a process [pair] into the suspended
state and thereby prevents that process from being active (i.e.,
executing instructions). (A process is removed from the suspended
state and put back into the ready state if it is the object of a call
to the ACTIVATEPROCESS procedure.)

The call to the SUSPENDPROCESS procedure is:

CALL SUSPENDPROCESS t <process id>

where

<process id>, INT:ref,

is an array containing the process ID of the process to be
suspended. If <process id>[0:2] references a process pair
and <process id>[3] is specified as -1, then both members
of the process pair will be suspended.

condition code settings:

< (CCL) indicates that SUSPENDPROCESS failed, or no process
designated <process id> exists. ·

= (CCE) indicates that <process id> has been suspended.

example:

CALL SUSPENDPROCESS (pid);
IF <THEN ••• ! "pid" doesn't exist.

CONSIDERATIONS

• The caller of SUSPENDPROCESS must have the same process accessor
ID as the process [pair] it is attempting to activate (see
"Security System" for an explanation of "process accessor ID"} or
be the super ID.

3.2-49

PROCESS CONTROL
Creating and Communicating with a New Process

The following example shows the use of the NEWPROCESS procedure to run
a program and the use of file management procedures to send and
receive a startup message. The example shows the creation of a single
non-named process. For an example of how to create a named process
pair and the action taken by each member of the pair, see section 5,
"Checkpointing Facility".

EXAMPLE

In this example, an application process creates a new process in its
own processor module. Following creation of the new process, the
creator sends it a startup message (a startup message is the first
message sent to a new process):

(a)~~~~-startup message~~~--(b)

creator new process

The following is written in the "creator" application program:

creator

INT .pfilename[O:ll] := "$VOL1 SVOL3 MYPROG
.pid[O:ll] := 12 * [" "] ,
error,
fnum, .buffer[0:71];

NEWPROCESS is called to run "$VOL1 SVOL3 MYPROG
processor module as the creator:

CALL NEWPROCESS (pfilename,,,, pid, error) ;
IF error.<0:7> > 1 THEN •••• ; ! check "error".

" ,

n in the same

If the process is created successfully, the new process's
process ID is returned in "pid", and zero or one is returned
in "error.<0:7>".

Then a file is opened to the new process using the file management
OPEN procedure:

CALL OPEN (pid, fnum) i
IF< THEN •••• ; ! open failed.

Then a message is sent to the new process:

buffer ':=' "GET TO WORK TURKEY";
CALL WRITE (fnum, buffer, 19);

3.3-1

GENERAL INFORMATION

PROCESS CONTROL
Execution Priority

System processes, such as a process controlling a disc, are subject to
the same priority structure as application processes. Therefore, it is
important that priorities be assigned in a manner that permit
necessary system operations to take place when needed.

For example: Suppose a system process controlling a disc is assigned
a priority of 150, and an application process in the same processor
module that uses the disc is assigned a priority of 200. Initiating a
no-wait operation with the disc does not provide the intended result,
because the disc process, having a lower priority, never gets a chance
to execute. Only when the application process is suspended, because of
a call to the AWAITIO procedure, does the disc process finally execute
and complete the i/o operation.

SUGGESTED PRIORITY VALUES

The following are recommended priority values for user processes:

system processes

disc i/o processes

Memory Manager

Operator
System Monitor
non-disc i/o processes

priority

220

}
210

210
200
200

}

}
150

149

}
145

l
140

}
1

user processes

only processes that do not use
virtual memory (i.e, resident)

command interpreters used to
run application processes

application processes

command interpreters used for
program development

editors used for program
development (this priority is
assigned automatically by
command interpreters running
at priority lSO)

spoolers used for program
development

compilers and background
batch processing

?

3.4-1

CPU
TIME

ASSIGNED
BY

DISPATCHER

INT .prog 1 [0:11] :="$SYSTEM SYSTEM SORT

.prog 2 [0:11] := "$VOL1 SVOL LOG

LI TE RAL pri 200=200, pri 150=150,cpui=1;

INT pid1,pid2,pid3,error;

CALL NEWPROCESS (prog 1,pri 200,3 cpu1,pid1,error);

: (1,7 returned in <pid1>)

CALL NEWPROCESS (prog 1, pri 200,2, cpu1,pid2,error);

: (1,8) returned in <pid2>)

CALL NEWPROCESS (prog 2,pri 150, 4, cpu1,pid3,error);

: (1,9) returned in <pid3>)

PROCESS 7

DATA
FOR
1,7

PROCESS 8 rn. R
.

t I\
: EJ:"LOG"
I . CODE

i

Figure 3-7. Execution Priority Example

PROCESS CONTROL
Execution Priority

DATA
FOR
1,9

3.4-3

INDEX

ABEND procedure 3.2-3
Access Control Block (ACB) 2.1-22
Access coordination 2.1-11
Accessing card readers 2.8-4
Accessing line printers 2.6-2
Accessing tape units 2.7-3
Accessing terminals 2.5-4

termination when reading 2.5-5
ACTIVATEPROCESS procedure 3.2-4
Active state, of a process 3.1-6
ADDUSER command 7.1-10, 7.1-12
Advanced checkpointing 5.4-1
Advanced file system 2.11-1
Advanced memory management 8.2-1
ALLOCATESEGMENT procedure 8.1-4
ALTERPRIORITY procedure 3.2-5
Ancestor process 3.1-13
ARMTRAP procedure 6-4
ASCII character set F-1
ASSIGN command 11-17

assign message 11-20
Attributes summary

FCB 9-64
AUTOANSWER mode for 5508 printer 2.6-6
AWAITIO procedure 2.3-7

Backup process 1-8, 2.9-10, 3.1-12, 5.1-1, 5.3-1
Break feature 2.5-25

break mode 2.5-29
BREAK system message 2.5-26
using BREAK (multiple processes) 2.5-28
using BREAK (single process) 2.5-26

Buffering
i/o system 2.1-26
resident 2.11-5

CANCEL procedure 2.3-11
CANCELREQ procedure 2.3-12
CANCELTIMEOUT procedure 3.2-6

Index-!

CHECKAFILE procedure 9-5
example 9-11
file types 9-7
operations 9-5

CLEAR command 11-25
CLOSE procedure 2.3-13
CLOSEAFILE procedure 9-12
Closing a file 2.1-27
Command Interpreter 1-18, 11-1
Command Interpreter/program interface 11-1
Commands, Command Interpreter

ADDUSER 7.1-10, 7.1-12
ASSIGN 11-17
CLEAR 11-25
DEFAULT 7.1-10, 7.1-12
DELUSER 7.1-10, 7.1-12
LOGOFF 7.1-10
LOGON 7 .1-10
PARAM 11-22
PASSWORD 7.1-10, 7.1-12
REMOTEPASSWORD 7.1-10
RUN 11-12
USERS 7.1-10, 7.1-12
VOLUME 7.1-10, 7.1-12

Commands, FUP
GIVE 7.1-10, 7.1-13
INFO 7.1-10, 7.1-13
LICENSE 7ol-10, 7.1-13
REVOKE 7.1-10, 7.1-13
SECURE 7.1-10, 7.1-13

Communicating with a new process 3.3-1
CONTIME procedure 4-2
CONTROL procedure 2.3-15
CONTROLBUF for 5520 printer 2.6-10
CONTROLBUF procedure 2.3-20
Conversion modes, 7-track tape

ASCIIBCD 2.7-18
BINARYlTOl 2.7-23
BINARY2T03 2.7-22
BINARY3T04 2.7-21
selecting a conversion mode 2.7-23

CONVERTPROCESSNAME procedure 3.2-7
CREATE procedure 2.3-23
CREATEPROCESSNAME procedure 3.2-8
CREATEREMOTENAME procedure 3.2-10
Creating a new process 1-5, 3.1-5, 3.3-1
Creator 1-5, 3.1-9
Creator accessor ID 7.1-5
CREATORACCESSID procedure 7.2-2
CTRLANSWER mode for 5508 printer 2.6-6

DAVFU 2.6-7
DEALLOCATESEGMENT procedure 8.1-6
Debug facility 1-18

INDEX

Index-3

SP, optional plus control 10-23
SS, optional plus control 10-23
T, tab absolute 10-20
TL, tab left 10-20
TR, tab right 10-20
x, tab right 10-20

Edit files 2.3-30, 2.3-34
EDITREAD procedure 2.3-30
EDITREADINIT procedure 2.3-34
Elapsed timeout 3.1-19
Error indication 2.1-35, 2.4-1
Error recovery 2.1-37, 2.4-28
Errors

5520 2.6-12
file system 2.4-1, B-1
FORMATDATA procedure 10-9
NEWPROCESS and NEWPROCESSNOWAIT
sequential i/o procedures 9-38

Example Nonstop program 12.1-1
Executing a process 3.1-6
Execution priority 3.1-7, 3.4-1
Extended memory segments 8.1-1

space management within 8.1-3
External declarations 1-18

sequential i/o D-1

FCB Attributes
summary 9-64

File access 2.1-7
disc files 2.1-8
processes 2.1-10
terminals 2.1-10

3.2-32

File Control Block (FCB), in file system 2.1-22
File Control Block (FCB), in sequential

i/o procedures 9-41, E-1
File management procedures

RESERVELCBS 2.11-3
File names 2.2-1, 11-2

$0 2.2-6
$RECEIVE 2.2-3
default volume and subvolume 11-4
device names 2.2-3
disc file names 2.2-2
external form 2.2-1, 11-2
file name expansion 11-4
internal form 2.2-1, 11-2
logical device numbers 2.2-3
network file names 2.2-7
process ID 2.2-4

network form 2.2-8
obtaining a process ID 2.2-5
process name form 2.2-4
timestamp form 2.2-4

INDEX

Index-5

READ 2.3-76
READUPDATE 2.3-79
RECEIVEINFO 2.3-82
REFRESH 2.3-85
REMOTEPROCESSORSTATUS 2.3-86
RENAME 2.3-88
REPLY 2. 3-89
REPOSITION 2.3-91
SAVEPOSITION 2.3-92
security checking (disc files) 2.3-6
SETMODE 2.3-93
SETMODENOWAIT 2.3-95
UNLOCKFILE 2.3-107
WRITE 2.3-108
WRITEREAD 2.3-110
WRITEUPDATE 2.3-112

FILEERROR procedure 2.3-36
FILEINFO procedure 2.3-39, 2.4-1
Files 2.1-1

disc files 2.1-1
interprocess communication 2.1-4
non-disc devices 2.1-3
operator console 2.1-7

FIXSTRING procedure 4-4
considerations 4-8
implementing an FC command 4-8
subcommands 4-5

Floating priorities 3.1-7
FNAMECOLLAPSE procedure 2.3-43
FNAMECOMPARE procedure 2.3-45
FNAMEEXPAND procedure 2.3-48

expansion summary 2.3-46
network file names 2.3-49

Format, formatter 10-14
FORMATCONVERT procedure 10-2
FORMATDATA procedure 10-5
Formatter 10-1

format characteristics 10-14
"A" edit descriptor 10-26
"D" edit descriptor 10-28
"E" edit descriptor 10-28
"F" edit descriptor 10-31
"G" edit descriptor 10-32
"I" edit descriptor 10-34
"L" edit descriptor 10-35
"M" edit descriptor 10-37
blank descriptors 10-24
buffer control descriptors 10-24
decorations 10-44
edit descriptors 10-17
field blanking modifiers 10-40
fill character modifier 10-40
justification modifiers 10-41
literal descriptors 10-21

INDEX

Index-7

Introduction to GUARDIAN 1-1

LASTADDR procedure 4-17
LASTRECEIVE procedure 2.3-55
LICENSE command (FUP) 7.1-10, 7.1-13
Licensing 7.1-9
Line printers 2.6-1

accessing 2.6-2
applicable procedures 2.6-2
characteristics 2.6-1
CONTROL operations 2.6-17
CONTROLBUF operations 2.6-18
error recovery 2.6-15
forms control 2.6-3
model 5508 programming considerations 2.6-5
model 5520 condensed print 2.6-11
model 5520 expanded print 2.6-11
model 5520 programming considerations 2.6-6
path error recovery 2.6-16
SETMODE operations 2.6-18
using model 5508 over phone lines 2.6-6/14
using model 5520 over phone lines 2.6-14

Link control blocks (LCB's) 2.11-1
LOCATESYSTEM procedure 2.3-57
LOCKDATA procedure 8.2-2
LOCKFILE procedure 2.3-58
Locking disc files 2.1-12
LOCKMEMORY procedure 802-5
Logging on 7.1-4
Logical device numbers 2.2-3
Logical Device Table 2.1-21
LOGOFF command 7.1-10
LOGON command 7.1-10
LOOKUPPROCESSNAME procedure 3.2-16

network use 3.2-17
Loop detection, in a process 3.1-7

Magnetic tapes 2.7-1
accessing 2.7-3
applicable procedures 2.7-3
BOT marker 2.7-5
characteristics 2.7-1
concepts 2.7-4
CONTROL operations 2.7-17
EQT marker 2.7-5
error recovery 2.7-14
files 2.7-5
records 2.7-6
seven-track tape conversion 2.7-18
short write mode 2.7-24

Memory management procedures 8.1-1
advanced 8.2~1
ALLOCATESEGMENT 8.1-4
DEALLOCATESEGMENT 8.1-6

INDEX

Index-9

Non-retryable operations 2.1-28
Nonstop operation 1-1
Nonstop programs 1-8, 2.9-9, 5.1-1, 5.3-1

example 12.1-1
NO~ERROR procedure 9-56

error handling 9-58
NUMIN procedure 4-18
NUMOUT procedure 4-21

OPEN procedure 2.3-65
Opening a file 2.1-21

in a Nonstop program 5.3-13
OPEN~FILE procedure 9-15

example 9-20
flags 9-16

Operator console 2.1-7
Operator Console 2.10-1
Operator console 2.10-1

applicable procedures 2.10-2
characteristics 2.10-1
error recovery 2.10-3
logging to an application process 2.10-3
message format 2.10-3
writing a message 2.10-2

Operator, system 7.1-2

Paired opening of files 2.9-10, 5.1-3, 5.3-13
PARAM command 11-22

param message 11-23
Passing parameter information 11-11
PASSWORD command 7.1-10, 7.1-12
Passwords 7.1-5
Path error recovery 2.1-28, 2.4-29

for card readers 2.8-7
for line printers 2.6-16
for magnetic tapes 2.7-16
for operator console 2.10-3
for process files 2.9-31
for terminals 2.5-36

POSITION procedure 2.3-73
Primary process 1-8, 2.9-10, 3.1-12, 5.1-1, 5.3-1
Printers 2.6-1

accessing 2.6-2
applicable procedures 2.6-2
characteristics 2.6-1
CONTROL operations 2.6-17
CONTROLBUF operations 2.6-18
error r~covery 2.6-15
forms control 2.6-3
model 5508 programming considerations 2.6-5
model 5520 programming considerations 2.6-6
path error recovery 2.6-16
SETMODE operations 2.6-18
using model 5520 over phone lines 2.6-6, 2.6-11

INDEX

Index-11

Process ID 1-6, 2.2-4, 3.1-8
obtaining a 2.2-5

Process name form of process ID
local 1-6, 2.2-4, 3.1-8
network 1-6, 2.2-4, 3.1-9

Process pairs 1-8, 3.1-10
Process-Pair Directory (PPD) 1-6, 3.1-12
PROCESSACCESSID procedure 7.2-3
PROCESSINFO procedure 3.2-35
Processor failure 1-8, 3.1-14, 5.2-1, 5.3-22
PROCESSORSTATUS procedure 5.2-21
Program 3.1-1
PROGRAMFILENAME procedure 3.2-38
Programmatically logging on 7.1-17
Pseudo-polling for terminals 2.5-19

simulation of 2.5-20
PURGE procedure 2.3-75
PUTPOOL procedure 8.1-9

READ procedure 2.3-76
Reading parameter messages 11-26
READUPDATE procedure. 2.3-79
Ready list 3.1-6
Ready state, of a process 3.1-6
READAFILE procedure 9-21
RECEIVEINFO procedure 2.3-82
REFRESH procedure 2.3-85
Remote passwords 7.1-15
REMOTEPASSWORD command 7.1-10
REMOTEPROCESSORSTATUS procedure 2.3-86
RENAME procedure 2.3-88
REPLY procedure 2.3-89
REPOSITION procedure 2.3-91
Requestor ID 2.1-28
Requestors 1-7, 2.9-19, 12.1-1
Reserved link control blocks 2.11-1
RESERVELCBS procedure 2.11-3
RESETSYNC procedure 5.2-22
Resident buffering 2.11-5
Retryable operations 2.1-28, 2.4-29
REVOKE command (FUP) 7.1-10, 7.1-13
RUN command 11-12

SAVEPOSITION procedure 2.3-92
SECURE command (FUP) 7.1-10, 7.1-13
Security system 1-17, 7.1-1

accessor !D's 7.1-5
default security for disc files 7.1-7
defining users 7.1-3
disc file security 2.3-69, 7.1-6

INDEX

Index-13

SETMODENOWAIT procedure 2.3-95
functions 2.3-97
security aspects 7.2-4

SETMYTERM procedure 3.2-42
SETSTOP procedure 3.2-43

security aspects 7.2-7
SETSYNCINFO procedure 5.2-23
SETAFILE procedure 9-23

operations 9-24
Seven-track tape conversion modes

ASCIIBCD 2.7-18
BINARYlTOl 2.7-23
BINARY2T03 2.7-22
BINARY3T04 2.7-21
selecting a conversion mode 2.7-23

SHIFTSTRING procedure 4-23
Short write mode, for magnetic tapes 2.7-24
SIGNALTIMEOUT procedure 3.2-44
Startup message 11-14
STEPMOM procedure 3.2-46
STOP procedure 3.2-48
Super ID 7.1-2
Suspended state, of a process 3.1-6
SUSPENDPROCESS procedure 3.2-49
Sync block 5.1-5
Sync ID 2.1-28, 2.9-12
Syntax summary, of procedures A-1
System messages 1-13, 2.9-25, 3.1-14, 5.3-22, C-1
System name 2.2-8, 2.3-54
System number 2.2-7
System operator 7.1-2

TAKEABREAK procedure 9-33
Tapes 2.7-1

accessing 2.7-3
applicable procedures 2.7-3
BOT marker 2.7-5
characteristics 2.7-1
concepts 2.7-4
CONTROLBUF operations 2.7-18
EQT marker 2.7-5
error recovery 2.7-14
files 2.7-5
records 2.7-6
seven-track tape conversion 2.7-18
short write mode 2.7-24

Terminals 2 .. 5-1
accessing 2.5-4
applicable procedures 2.5-3
characteristics 2.5-1
checksum processing 2.5-22
configuration parameters 2.5-36
CONTROL operations 2.5-37

INDEX

Index-15

VERIFYUSER procedure 7.2-10
VOLUME command 7.1-10, 7.1-12

Wait and no-wait i/o 2.1-13
Waiting state, of a process 3.1-6
WAITAFILE procedure 9-34
Wakeup message 11-28
WRITE procedure 2.3-108
WRITEREAD procedure 2.3-110
WRITEUPDATE procedure 2.3-112
WRITEAFILE procedure 9-36

$0 2.10-1, 2.2-6
$CMON

logon message 11-31
process creation message 11-32

$RECEIVE file 2.9-7
communication type 2.9-9
data transfer protocol 9-60
handling by sequential i/o 9-60
no-wait i/o 2.9-7
system message transfer 2.9-8

INDEX

Index-17

FOLD ,....

FOLD

READER'S COMMENTS

Tandem welcomes your feedback on the quality and usefulness of its publications. Please indicate
a specific section and page number when commenting on any manual. Does this manual have the
desired completeness and flow of organization? Are the examples clear and useful? Is it easily
understood? Does it have obvious errors? Are helpful additions needed?

Title of manual(s): ____________________________ _

FROM:

Name

Company --------------------------------

Address --------------------------------

City/State ------------------- Zip --------

A written response is requested. yes no ?

B.2336 AOO TANDEM COMPUTERS INCORPORATED
19333 Vallco Parkway
Cupertino, CA 95014

