
I

1··:
I 11
I:

l11i
t " I :!!i

"I

il:,11
! "
I: I

.•· ,,
I I' . ' ~ '

BINDER~

User's Manual

82314

I'
!

·1
I, I

11

i' . I ·:1

II: 1!1 I'

!I: :11

I'' 11: 1!

!:11,j,
'' 1
I

:';l!!i

I "

~
,.,'

I' I
, ; ! ~

, I

411 . ' '
II

' II

; : I!
I ·I
I I .

: il
" I
i

i 'I i

"

,.
I '

I, ·I
I

Tandem Nonstop (TM) and Nonstop II (TM) Systems

BINDER (TM) User's Manual

ABSTRACT: Describes BINDER operations and commands needed to
manipulate object files.

PRODUCT VERSION: BINDER A02

OPERATING SYSTEM VERSION: GUARDIAN A06 (Nonstop II systems)
GUARDIAN E07 (Nonstop systems)

Throughout this document, all references to "Nonstop II systems"
indicate the software that runs on Tandem Nonstop II processors
and/or Nonstop TXP processors.

Tandem Computers Incorporated
19333 Vallee Parkway

Cupertino, California 95014-2599

Part No. 82314 BOO
December 1983

Printed in U.S.A.

Edition

1st Edition
2nd Edition

DOCUMENT HISTORY

Part
Number

82314 AOO
82314 BOO

Operating
System
Version

GUARDIAN A04/E05
GUARDIAN A06/E07

Date ·-----

October 1982
December 1983

New editions incorporate all updates issued since the previous
edition. Update packages, which are issued between editions,
contain additional and replacement pages that you should merge
into the most recent edition of the manual.

Copyright @ 1983 by Tandem Computers Incorporated.

All rights reserved. No part of this document may be reproduced
in any form, including photocopying or translation to another
language, without the prior written consent of Tandem Computers
Incorporated.

The following are trademarks or servicemarks of Tandem Computers
Incorporated:

AXCESS BINDER CROSS REF DDL
EDIT ENABLE ENCOMPASS ENCORE
ENSCRIBE ENTRY ENTRY520 ENVOY
EXPAND FOX GUARDIAN INSPECT
Nonstop l+ Nonstop II Nonstop TXP PATHWAY
SNAX Tandem TAL TGAL
TIL TMF TRANSFER XRAY

INFOSAT is a trademark in which both Tandem and American
Satellite have rights.

DYNABUS
EN FORM
EXCHANGE
Nonstop
PERUSE
THL
XREF

HYPERchannel is a trademark of Network Systems Corporation.

IBM is a registered trademark of International Business Machines
Corporation.

New And Changed Information

This manual is the second edition of the BINDER User's Manual. It
includes the following changes:

• Section 1, "Overview," has minor technical corrections as well as
editorial changes.

• Section 2, "Running BINDER," reflects certain enhancements to
BINDER, minor technical corrections, and editorial changes.

• Section 3, "BINDER Commands," reflects enhancements to the BINDER
command set, including the new commands CHANGE, RENAME, and VERIFY
and new options for the DUMP, LIST, MODIFY, and SET commands; minor
technical corrections; and editorial changes.

• Section 4, "BINDER Operation", has minor technical corrections and
editorial changes.

• Appendix A, "Basic Commands," is unchanged.

• Appendix B, "BINDER Error Messages," incorporates new error
messages and minor technical corrections.

• Appendix C, "Syntax Summary for Session Commands," reflects the
enhancements to the BINDER command set documented in Section 3.

• Appendix D, "Nonstop II User-Library Information," has minor
technical corrections.

i i i

CONTENTS

PREFACE.

SECTION 1. OVERVIEW•...
BINDER'S PRIMARY FUNCTION ..
HOW THE BINDER WORKS •..........

Compile-time Binding
Command-driven Binding ..

DEFINING THE TARGET FILE ..
Ordering the Target File.
Specifying Input File Names .•.
Major Commands•..

EXAMPLES•............••
Binding Separately Compiled Object Files ..
Procedure Replacement
Specifying Output Listings

BINDER'S RELATION TO UPDATE
BINDER'S RELATION TO INSPECT AND CROSSREF ..

SECTION 2. RUNNING BINDER.
BIND COMMAND

Interactive Mode •....
Noninteractive Mode

PRINTED OUTPUT ...
Statistics.
Load Maps ...

Entry Point Load Map ..
Data Block Load Map.

Cross-reference Lists ...

SECTION 3 • BINDER COMMANDS.
Syntax Conventions
ADD Command
ALTER Command.
BUILD Command.
CHANGE Command ..
CLEAR Command ...
COMMENT Command ..

for Name Lists as Command Elements.

lX

.. 1-1
1-1

. . 1-2
.1-2

. . 1-4
.1-5

. . 1-6
. •.• 1- 7

1-8
..1-9
. . 1-9

... 1-10
.1-11

.. 1-12
.1-13

. .• 2-1
. . 2-2

• ••• 2- 3
• . 2-3

. .• 2-4
. • 2-4
.2-6
.2-6

. .• 2-8
. .. 2-10

. . 3-1
.3-3

... 3-6
.3-9

.3-11
. . 3-14

. ... 3-16

. ... 3-16

v

Contents

DELETE Command ..
DUMP
FILE
INFO

Command ..
Command ..
Command.

LIST Command.
MODIFY Command.
MOVE Command
RENAME Command.
REPLACE Command ..
RESELECT Command.
RESET Command
SATISFY Command ..
SELECT Command ..
SET Command
SHOW Command .. .
STRIP Command.
VERIFY Command

SECTION 4. BINDER OPERATION ..
OBJECT FILE STRUCTURE ..

Code Blocks•..
Entry Point Names ..
Code Block Attributes.

Vl

Data Blocks
External Data References ..
Types of Data Blocks ..•

Block Naming Conventions.
OBJECT FILE FORMAT.

Header
Code Region

User Code .. .
PEP and XEP.

Data Region ...
INSPECT Region ..
BINDER Region ..

INPUT STAGE
Include Lists ..

Include Code Block
Include Data Block

List •.
List •.

Include Entry Point List.
Omit Li st .. .
Refer List
Search List
Unresolved Reference Lists.
Mod i f y L i st

OUTPUT STAGE•......
Target File Characteristics ..
Target File Construction.

MIXED LANGUAGE BINDING
COBOL and FORTRAN
TAL with COBOL and FORTRAN ..
Example of a COBOL MAIN Skeleton Program Unit.

.••••. 3-17
. •.• 3-18

.3-20
.••• 3-21

.. 3-24

. . 3-27
. •. 3-30

. 3-32
. .. 3-33

.3-35
. ...•. 3-36

. •. 3-38

. .. 3-40
.3-44

. ... 3-47
. . 3-51
.3-50

. . 4-1
.4-1
.4-2

. . 4-2
. .. 4-3
... 4-3
• •• 4-4

. . 4-4
. 4-4

.•••• 4- 5
.4-5

. . 4-7

. . 4-7
.4-7

. . 4-8
. 4-8

. . 4-8
... 4-9

. •• 4-10
. ... 4-10

.. 4-11
.... 4-11

.4-11

.4-12
. . 4-12

. ... 4-13
.4-13

.. 4-14
. ... 4-14
. ... 4-15
.... 4-17

• . 4-1 7
.4-18
.4-18

APPENDIX A. BASIC COMMANDS
FI LE NAME EXP ANS I ON

Expanded Disc File Names ..
Process and Device Names.
Command Entry

BASIC COMMAND DESCRIPTIONS .. .
ENV Command .. .
EXIT Command .. .
FC Command .. .
HELP Command .. .
LOG Command ..
OBEY Command ..
OUT Command
SYSTEM Command ..
VOLUME Command ..

APPENDIX B. BINDER ERROR MESSAGES.

APPENDIX C. SYNTAX SUMMARY FOR SESSION COMMANDS.

USER-LIBRARY INFORMATION .. APPENDIX D. NONSTOP II
GUARDIAN BINDING OF USER-LIBRARY PROCEDURES
OBJECT FILE FORMAT • .••••.•..•.••••••.••••••••••
PREVENTING BINDER RESOLUTION OF LIBRARY CALLS ..

Compile-time Binding
Command-driven Binding

PROGRAM FILE USE OF LIBRARIES.
LIBRARY FILE RESTRICTIONS.
LIBRARY PROCEDURE DATA

1-1.
1-2.
1-3.
1-4.
1-5.
2-1.
2-2.
2-3.
2-4.
2-5.
2-6.
4-1.

FIGURES

External References
Compile-time Binding
Using BINDER in Command-driven Mode.
BINDER'S Major Lists
Procedure Replacement .. .
Object File Statistics ..
Alphabetic Load Map for Code Blocks
Alphabetic Load Map for Data Blocks.
Entry Point Cross-reference Listing (FORTRAN).
Entry Point Cross-reference Listing (COBOL and TAL)
Data Block Cross-reference Listing (TAL) ..
Example of BINDER's Object File Format

Contents

•• A-1
.A-1

• .A-1
.A-2

... A-2
.A-3

• • A-3
• •• A-3
• •• A-3

• .A-4
.A-5

...... A-6
.A-7
.A-8

. A-8

.B-1

.C-1

• • D-1
•••• D-1

•• D-2
•• D-2

. D-2
• • D-2
•• D-3

• •• D-3
.D-4

....... 1-2
..1-3
.1-5

. 1-7
. •..•.. 1- 10

. . 2-5

..2-7

. . 2-9
. • 2-11

.2-11
. ..•.. 2-12

. . 4-6

v 11

Contents

1-1.
3-1.
3-2.
4-1.
4~ -2.
4-3.

Vlll

TABLES

Commonly Used BINDER Commands 1-8
BINDER Session Commands 3-1
Syntax Conventions for Name Lists 3-4
Source Language Names for Blocks 4-2
Code B 1 o ck At tr i but es ... 4 - 3
Commands to Create Control Lists 4-9

PREFACE

This book documents the features of BINDER, one of the program
development tools for Nonstop l+ and Nonstop II software.

BINDER builds all object files for the COBOL, FORTRAN, and TAL
compilers. It can also operate as an independent process when
providing object file update and link functions in interactive mode.

This book primarily describes the use of BINDER as a standalone
program. Each language manual describes the use of BINDER with the
compilers.

Intended users are system and application programmers who want to
exercise explicit control over object file manipulation.

The organization of this book is as follows:

• Section 1 provides an introduction to BINDER and its commands.
This section should provide sufficient information for users who
want only a subset of BINDER functions.

• Section 2 gives information on using BINDER in command-driven mode.
This section also describes output listings.

• Section 3 provides syntax descriptions and examples of the BINDER
commands~

• Section 4 describes the format of object files and the block naming
conventions used by the BINDER. It also describes both stages of
BINDER operation and mixed-language binding.

• Appendix A describes those commands commonly supported by Tandem
software that can be invoked from BINDER.

• Appendix ~ lists error messages that may occur during BINDER
operation.

• Appendix C provides a syntax summary.

• A~pendix ~ provides information about the implementation of user
libraries with BINDER.

lX

Pref ace

~~REREQU IS I TES

This book assumes user knowledge of at least one of these languages:
COBOL, FORTRAN, or TAL.

In addition, familiarity with editing, compiling, and running programs
in the Tandem environment is essential.

The following manuals cover the requirements:

1• Introduction to Tande~ Nonstop Computer ~terns

18 COBOL Programming Manual

• FORTRAN 77 Reference Manual

• Transaction Application Language Reference Manual

• EDIT Manual

• GUARDIAN Operating System Command Language and Utilities Manual

In addition, the following books can be helpful:

• 'randem Nonstop ..!_!_ System Description Manual

• Tandem Nonstop System Description Manual

x

SYNTAX CONVENTIONS IN THIS MANUAL

The following is a summary of the conventions used in the syntax
notation in this manual.

Notation

UPPERCASE
LETTERS

lowercase
letters

Brackets []

Braces {}

Ellipsis

Punctuation

Meaning

Uppercase letters represent keywords and reserved words;
you must enter these items exactly as shown.

Lowercase letters represent variables that you must
supply.

Brackets enclose optional syntax items. A vertically
aligned group of items enclosed in brackets represents a
list of selections from which you may choose one or
none.

Braces enclose required syntax items. A vertically
aligned group of items enclosed in braces represents a
list of selections from which you must choose only one.

An ellipsis immediately following a pair of brackets or
braces indicates that you can repeat the syntax items,
enclosed within the brackets or braces, any number of
times.

All punctuation marks and symbols not described above
must be entered precisely as shown. If punctuation mark
or symbol appears enclosed in quotation marks, it is not
a syntax descriptor; it is a required character, and you
must enter it as shown.

Xl

SECTION 1

OVERVIEW

The BINDER program development tool allows you to examine, modify, and
combine object files written in COBOL, FORTRAN, or TAL. BINDER and
the code it builds run on GUARDIAN operating systems starting with
these releases:

• Nonstop II system, release A04

• Nonstop l+ system, release E05.

BINDER'S PRIMARY FUNCTION

Procedures in source code programs often contain references to other
procedures. These are known as external references.

A major part of the binding process is resolving external references,
that is, locating entry points in other object files if they exist.
BINDER does external-reference resolution by including a copy of any
compiled code and data required by the reference. This is called
satisfying the reference.

If the procedure referred to isn't available, the entry point
reference is not satisfied. In the example shown in Figure 1-1,
Program B can still be in the planning stages when Program A is
compiled. In this case, the reference to Procedure Z remains
unsatisfied.

As in Figure 1-1, the references can be to procedure entry points that
are in the same source file, or they can be to a library of procedures
shared by many users. In either case, the referenced entry point
names are considered external to the procedure.

If an object file does satisfy the reference, BINDER can copy the
referenced code and data into the new object file. If the referenced
code isn't found in a file, BINDER leaves the entry point reference
for later resolution. Resolution can occur later in another binding
operation or in a call that isn't satisfied until program load time.

1-1

How the BINDER Works

Source Program A

PROCEDURE XX PROCEDURE X

CALL X CALLY
Library LIB

CALLY END

CALL Z
PROCEDURE Y

END
Source Program B

PROCEDURE Z

END

Figure 1-1. External References

HOW THE BINDER WORKS

BINDER operates as either of two processes:

• BINSERV, a process that builds object files in cooperation with the
compiler processes; BINSERV's output is controlled by compiler
directives; or

• BIND, an independent process that is command-driven.

In either case, both the input and the output files are in standard
object file format. This allows you to choose the language that best
suits your application and to link program units written in different
languages to form an application. For example, a server program of
COBOL MAIN can have calculations in FORTRAN subprograms and use TAL
procedures for recursive functions, block moves, and scans of data.

~ompile-time Binding

All object files that BINDER manipulates originate either from the
compile-time process BINSERV or from previous BIND sessions. The new
object files produced can then serve as input to further binding
operations, either by BINSERV or BIND. Because of this interrelation,
it is helpful to be familiar with compile-time binding.

1-2

Compile-time Binding

Before the release of BINDER, the COBOL, FORTRAN, and TAL compilers
each built their object files in a unique format. Now, BINSERV has
been integrated with all three compilers, producing object files in a
new standard format. To use BINDER's interactive link and update
functions, you must recompile older programs.

BINSERV's action with the compilers is transparent to users, as shown
in Figure 1-2.

Source Files

TAL
File

FORTRAN
File

-~
I
I
I
I
I
I
I

Object
Files

L-~ Listings

Figure 1-2. Compile-time Binding

Object
File

The familiar compile-and-run command sequence has the same effect as
when the compilers built object files. For example, the following
commands behave exactly as before:

COBOL /IN mainsrc, OUT listfile/cobsrvr
RUN cobsrvr

1-3

Command-driven Binding

~ommand-driven Binding

Both the input files manipulated by BINDER and the output file built
by BINDER are object files. To distinguish between the two, the
output file is called a target file.

BINDER allows you to perform any of the following functions:

• build a target file from separate object files

1e build a target file for use as a library of sharable procedures

• display object file contents

• modify the target file either by patching code or data or by
replacing complete blocks

1e request consistency checks for parameters or for common data blocks

• reorder code blocks in a target file

1• specify external references that should remain unresolved

1e produce optional load maps and cross-reference listings

• reduce the size of object files by stripping them of BINDER
information and symbol tables

i• specify a user run-time library for an object file to be run on a
Nonstop II system.

Pigure 1-3 illustrates BINDER operation in command-driven mode.

1-4

Non interactive
User

Interactive
User

Startup
Message

Commands
or

Command
List

Object
Files

Command-driven Binding

Target
File

Listings

------------------------------- ····-· --- -·- ----.-·--·-··--·-·---..

Figure 1-3. Using BINDER in Command-driven Mode

DEFINING THE TARGET FILE

BINDER commands specify the contents of the target file by giving the
names of code blocks and data blocks to include. If modifications to
the code or data blocks are specified, the changes are made in the
target file only.

The concept of a "block" is fundamental to the BINDER. Blocks are the
smallest units that can be separately relocated. Both code
instructions and data are organized into blocks.

Some block names are directly derived from the source code; for
example, a COBOL program unit with a PROGRAM-ID of NAMEX results in a
code block named NAMEX. If it declares data in Working-Storage, the
resulting data block is also named NAMEX; if it declares data in the
new Extended Storage section, that data block is named NAMEXA. There
is also a program unit control block (PUCB) named NAMEX#. To take
another example, suppose input to the TAL compiler is as follows:

1-5

Defining the Target File

• first declaration is NAME unitAname

• global data declared without a BLOCK construct

• sharable data declared in BLOCK dataAname

• procedure declared as PROC procAname

rrhe resulting code block is named PROCANAME. There are two data
blocks: #GLOBAL and DATAANAME. If private data is declared, a
private data block called UNITANAME (from the initial NAME
declaration) is created. If there is secondary storage, a secondary
data block called .DATAANAME is also created.

An analogous situation exists for FORTRAN.

The compilers' output listings show all the block names for code and
data. (See the appropriate language reference manual for specifics on
block naming.) Section 4 gives comparative information for source
language constructs and the resulting blocks. It also discusses
object file structure and block naming conventions in each language.

9rdering the Target File

'rhe order in which conunands specify code block names can be important.
In general, BINDER assumes that the order specified is the preferred
order that code blocks should appear in the object file. On the other
hand, the ordering of data blocks in the target file cannot be
established beforehand.

Running BINDER interactively facilitates display of BINDER's
interpretation of your conunands. BINDER builds lists of target file
specifications from the conunands and from input object files. The
lists and their contents are:

• Three include lists - one each for the code blocks, data blocks,
and entry point names to include in the target file. These lists
reflect the order of name entry and the order in which BINDER
builds the target file.

• Omit list - contains external references (to entry points) that
BINDER is not to resolve, regardless of the names that are
included.

• Refer list - holds pairs of entry point names; the first name
sat1sf1e5references to the second. For example, an entry point
to a code stub (that is, a block skeleton) can satisfy references
to code that isn't ready.

• Modify list - contains an entry for each patch for a code or data
block.

1-6

Ordering the Target File

• Two unresolved reference lists - one for entry points and one for
data blocks. As you enter each name on an include list, BINDER
removes entries from the unresolved reference lists if the entries
are satisfied by the new name.

• Search list - holds disc file names of object files to search for
unresolved references. Since BINDER searches these files in the
order in which you name them, BINDER uses the first block
encountered if two files contain versions of the same block.

Not all lists are needed for all uses of BINDER, though at least one
include list is required for the binding process. (Normally, an
unresolved reference list is present during some part of the session.)
Each of these lists is described in greater detail in Section 4.

The lists that are commonly present are shown in Figure 1-4.

Code

l Entry Point

l Data Block Name

Name J Entry Point Name

Data Block Name
Block Name

Include Lists Unresolved Reference Lists

Figure 1-4. BINDER'S Major Lists

Specifying Input File Names

BINDER also needs to know where to find the blocks for the include
lists. Therefore, you must give the disc file name of the correct
object file before BINDER accepts the name for an include list.

The file that BINDER uses as the default for block retrieval is the
current file. Either a block must be in the current file or the file
must be specified when the block is added. The current file
designation can be changed as often as required by using the FILE
command.

1-7

Major Commands

~~aj O.£ Commands

BINDER commands allow a broad range of object file manipulations.
~rable 1-1 introduces commands most commonly used.

ADD

BUILD

CLEAR

COMMENT

DELETE

DUMP

FILE

INFO

LIST

REPLACE

SELECT

SET

SHOW

STRIP

Table 1-1. Commonly Used BINDER Commands

names the blocks and entry points to include; replaces
blocks and entry points to delete.

creates the target file after input is completed.

deletes input information without building a file.

enters text commentary for log listings.

removes block names from the include lists.

displays object file contents in ASCII, HEX, ICODE,
OCTAL, or DECIMAL

gives a default disc file name for the current file to
use for retrieval of code or data blocks.

displays information about names on the include and
unresolved reference lists.

specifies load maps and object cross-reference listings.

names replacements for code and data blocks already on
the include lists.

specifies controls for satisfying references or building
the target file; also selects BINDER services such as
parameter checking or compacting the code area.

sets object file characteristics of the target file.

displays the current file name and values in effect for
SELECT and SET; also displays the modify list.

deletes BINDER and INSPECT information from the object
files.

I
ll

Besides its own command set, BINDER provides the basic commands like
OBEY, HELP, and LOG. Automatic file name expansion occurs for all
file names. Refer to Appendix A for more information about the basic
support.

1-8

Examples

EXAMPLES

The examples in this section show some common functions and different
methods of command entry. (Section 3, however, remains the primary
reference for examples of command use.) Command keywords are shown in
uppercase, but BINDER accepts lowercase as well for all commands.

The GUARDIAN Command Interpreter starts BINDER in response to a BIND
command. As with other "run" commands, you can enter BINDER commands:

• as the BIND command-list

• as the BIND IN command-file, naming a file for command input

• in response to a BINDER prompt (the commercial@).

Binding Separately Compiled Object Files

Suppose two object files contain the code and data blocks needed to
make up a large program. Each object file contains multiple program
units or procedures, all of which are needed in the target file. (For
this discussion, the source language doesn't matter.)

You can bind the separate blocks by running the BINDER and then
entering commands in response to the @ prompt.

:BIND
@ADD * FROM objfilex
@ADD * FROM objfiley
@BUILD trgf ilez

"ADD *" causes all the code and data blocks from an object file to be
included in the target file. Therefore, if objfilex contains PROC A,
PROC B, and PROC D, and objfiley contains PROC C, PROC E, and PROC F,
then trgf ilez contains all six PROCs.

If more than one object file includes the same code block name or data
block name, BINDER retains the first one it encounters and displays a
warning message.

1-9

Procedure Replacement

~rocedure Replacement

11his example and Figure 1-5 show replacement of a FORTRAN subprogram
in objfilea by a new subprogram in objfileb. In this case, a command
file contafns the BINDER commands.

FORTRAN /IN newsub2, OUT listfile/objfileb
BIND /IN cmdf ile, OUT listf ile/
RUN trgfilec

cmdf ile contains the following BINDER commands:

COMMENT - all entries from objfilea are needed
ADD * FROM objfilea
COMMENT - sub2 replaced by new sub2 in objfileb
REPLACE CODE sub2 FROM objfileb
BUILD trgf ilec

Contains MAIN, L____
sub1, and sub2 ~

objfilea objfileb
New
sub2

trgfilec

Figure 1-5. Procedure Replacement

1-10

Contains MAIN,
sub1, and sub2

Specifying Output Listings

Specifying Output Listings

You can use the LIST command (or the LIST option of the SELECT or
BUILD commands) to specify load maps in alphabetic or location order.
These commands also have options for object file cross-reference
information.

Either of the following command lines specifies that BINDER should
produce a map of objfilec.

:BIND I OUT listfile I FILE objfilec : LIST LOC

:BIND I OUT listfile I LIST LOC FROM objfilec

"LIST LOC" specifies that a block map in location order and a PEP list
should be printed to listfile. In this case, the map is created
instead of the alphabetic map normally produced for every target file
built by BIND.

1-11

BINDER'S Relation to UPDATE

BINDER'S RELATION TO UPDATE

'rhe UPDATE tool previously provided object file edit and link
functions. COBOL and FORTRAN programmers, however, were restricted in
its use. The list below gives the BINDER commands corresponding to
UPDATE functions.

UPDATE Command

ADD
ADD, KEEP
ADD procs

BUILD file
BUILD file, MAP
BUILD file, XREF

DATA pages

DEL procs
DEL q, ABSENT p

DUMP proc

EXIT

FILE file

LIST

MAIN proc

MOD proc
MOD *D

SET R, proc
SET NR, proc
SET P, proc

BINDER Command

ADD *, DELETE (see Note 1 below)
ADD *
ADD CODE procs, DELETE

BUILD file, LIST * OFF, SATISFY OFF
BUILD file, LIST LOC ON, SATISFY OFF
BUILD file, LIST XREF ON, SATISFY OFF

SET DATA pages

DELETE CODE procs
SELECT REFER q TO p
DELETE CODE q

DUMP CODE proc

EXIT

FILE file

INFO INCLUDE *

ALTER proc, MAIN ON

MODIFY CODE proc offset,
MODIFY DATA dataname

ALTER proc, RESIDENT ON
ALTER proc, RESIDENT OFF
ALTER proc, PRIV ON

NOTE

value

1) In TAL, when there are no named data blocks, you may want to
use ADD CODE *, DELETE in place of ADD *, DELETE. You should
also ADD * from the object file containing all the global data
needed. (In object files with unnamed data blocks the global
data block has the name #GLOBAL. An ADD *, DELETE replaces
the #GLOBAL block from the first object file with the #GLOBAL
block from the second object file; however, you probably want
the #GLOBAL block from the first object file.)

1-12

BINDER'S Relation to UPDATE

2) Refers will be ignored if the SATISFY OFF parameter of the BUILD
command is used.

BINDER'S RELATION TO INSPECT AND CROSSREF

The BINDER, INSPECT, and CROSSREF tools are designed to complement
each other in the program development cycle.

INSPECT allows you to debug a program or multiple programs
symbolically. That is, you can specify debugging commands using the
same symbols you used in the source code. INSPECT must have symbol
tables in the object module to allow this feature. The compilers then
provide the symbol information to BINDER at compile time. Refer to
the INSPECT Users Manual for a description of this product.

You can make incremental changes to code or data blocks in an object
file using BINDER. (Source files do not reflect these changes until
you recompile.) During an INSPECT session, however, you can only
change process data, not code.

To ease the debugging process, CROSSREF provides symbol reference
information in the detail that you specify. Note that the cross
reference information available from the BINDER is for object files
(entry points and common data blocks only). CROSSREF's listings are
source code symbols. Refer to the CROSSREF Users Manual for further
information.

Besides the source languages BINDER supports, INSPECT and CROSSREF
also support SCREEN COBOL. SCREEN COBOL builds object files in the
format needed in PATHWAY'S interpretive environment.

1-13

SECTION 2

RUNNING BINDER

BINDER requires object files compiled with compatible versions of the
COBOL, FORTRAN, or TAL compilers. These are:

• COBOL release EOO or later

• FORTRAN release EOO or later

• TAL release EOl or later.

NOTE

Because of a change in the object file format to support
extensible procedures, previous releases of BINDER do not accept
object files built by the current BINDER release. The current
BINDER, however, supports all object files built by previous
versions of BINDER.

BINDER also requires sufficient disc space for temporary files and the
target file. If insufficient space exists, BINDER does not retain any
of the file-definition tables. BINDER temporary files are placed on
the default volume in effect when BINDER is started (or if PARAM
SWAPVOL is used, on the volume specified).

Object files built by the compile-time BINDER require additional space
when compared with object files built by previous releases of the
compilers. The additional space contains BINDER tables and,
optionally, symbol tables used for symbolic debugging. As a
guideline, allowing an additional 50% of disc space to compile a file
using the new compiler versions is sufficient without symbol tables.
Allow another 150% of old disc requirement if symbol tables are
needed. The symbol tables can be deleted after the debugging cycle is
complete. If desired, you can delete both symbol and BINDER tables by
using the STRIP command, described in Section 3. You may want to use
the BACKUP program to save the files containing these tables before
using the STRIP command.

2-1

BIND Command

BIND COMMAND

The BIND syntax is standard for starting a process under the GUARDIAN
Command Interpreter.

BIND [I [IN command-file] [, OUT list-file] I]

[command [; command] ...]

IN command-file

specifies a file containing BINDER commands. If this parameter
is omitted, BINDER prompts the current input file of the
Command Interpreter, normally the home terminal.

OUT list-file

specifies the file to receive output listings. If this
parameter is omitted, output is directed to the current output
file of the Command Interpreter, normally the home terminal.

command

is any BINDER command. If specified, BINDER executes the
commands and terminates without opening or reading the command
file.

Considerations

e BINDER complies with the COMINT command PARAM SWAPVOL, creating its
work files on the swap volume specified. For a description of the
PARAM command, refer to Volume 2 of the GUARDIAN Operating System
Programm~ Manual. -

• BINDER complies with the COMINT ASSIGN messages that override such
default characteristics of the IN and OUT files as record length.
For a description of ASSIGN messages, refer to Volume 2 of the
GUARDIA~ Operating System Programming Manual.

2-2

Interactive Mode

Interactive Mode

BINDER operates in interactive mode if neither the IN parameter nor a
list of commands is included in the COMINT BIND command. BINDER
prompts with the commercial at sign @ and continues to do so until an
EXIT command is entered.

More than one BINDER command can be entered in response to the prompt.
Multiple commands, however, must be separated by semicolons. For
example:

@ADD * FROM f ilel; REPLACE sub2 FROM f ile2

is equivalent to:

@ADD * FROM f ilel
@REPLACE sub2 FROM f ile2

Noninteractive Mode

If commands are specified by means of an IN file, BINDER executes the
listed commands, terminates, and re·turns control to the GUARDIAN
Command Interpreter. For example:

:BIND /IN building, OUT listfile/

causes BINDER to accept and execute the commands in the file named
building and to direct the output to the file named listf ile. BINDER
terminates when end-of-file is reached or the EXIT command is
encountered in the building file.

No prompts or error messages are displayed at the home terminal if a
command is incorrectly or incompletely specified. Error messages are
put in the OUT file.

As with interactive mode, multiple commands separated by semicolons
can be entered in a single command line.

2-3

Printed Output

PRINTED OUTPUT

Output from BINDER includes warning and error messages (described in
Appendix B) and the following listings about the target file that
accompany successful completion of a BUILD command:

• target file statistics

e load maps in alphabetical order (default)

• load maps in location order (optional)

• cross-reference lists for entry points and data blocks (optional)

Examples of these listings are given in Figures 2-1 through 2-6. In
addition, output is generated in response to the DUMP, INFO, LIST, and
SHOW commands (described in Section 3).

1~he output from the BUILD comrnand is automatically printed to the list
file, if one is specified; otherwise, it is displayed at the home
terminal. In interactive mode, use the OUT parameter to capture the
output of a single command.

Statistics

After a BUILD command is executed, BINDER automatically produces
statistics for the constructed target file. Figure 2-1 shows an
example of these statistics.

2-4

Printed Output

BINDER - OBJECT FILE BINDER - T9621A02 - (01DEC83} SYSTEM \ANY

Object file name is $SVOLL.PRIVATH.OBJECT
User library file name is $SVOLL.PRIVATH.LIB
Number of Binder errors = 0
Number of Binder warnings = 1
Code size= 14642 words (See item 6 below.)

Gap at 32K = 0 words
PEP = 28 words
Procedures = 14614 words
XEP = 49 words

Primary data = 3
Secondary data =
Code area size =
Data area size

words
847 words
15 pages
4 pages

Figure 2-1. Object File Statistics

From the top down, the statistics display provides the following
information:

1. the BINDER banner

2. name of the constructed object file

3. name of the object file to be used as an execution-time user
library, if one exists

4. number of error messages issued

5. number of warning messages issued

6. code size total in number of words; itemized listing for the gap
size at the 32K boundary and, if applicable, for: procedure entry
point (PEP) size, size of global read-only arrays, and storage
occupied by code blocks. Note that the code size total does not
include the XEP size.

7. external entry point (XEP) size

8. number of words of primary data space

9. number of words of secondary data space

10. number of pages required for code area allocation

11. minimum number of pages required for data area allocation.

2-5

Load Maps

~oad Maps

Separate load maps are produced for entry points and data blocks.
BINDER produces alphabetic maps by default. Using the LIST,
BUILD ... LIST or SELECT LIST commands, you can specify maps ordered by
location in addition to, or instead of the alphabetic maps. (Lines
are folded if the output line length is less than 132.)

ENTRY POINT LOAD MAP. The following information is included in load
maps for entry points.

Label

PEP

BASE

LIMIT

ENTRY

ATTRS

NAME

DATE/TIME

LANGUAGE

Description

PEP table number

base address of the code block defining the entry point

end address of the code block d~f ining the entry point

address of the entry point

attributes of the entry point (main, privileged,
callable, resident, interrupt, and variable number of
arguments)

entry point name

timestamp for compilation of the block

source language of the block: TAL, COBOL, or FORTRAN

SOURCE FILE disc file name of source code for the block

Figure 2-2 illustrates a load map for an alphabetically ordered code
block.

2-6

Entry Point Load Map

ENTRY POINT MAP BY NAME

PEP BASE LIMIT ENTRY ATTRS NAME

DATE TIME LANGUAGE SOURCE FILE

005 000454 001371 000470 ATTEMPTPTDISPLAY

10/01/82 15:36 COBOL $LNG.RPDT.QNCBA

002 000006 000040 000014 M COBOL-QUEENS-SOLUTION

10/01/82 16:09 COBOL $LNG.RPDT.QNCBM

004 000212 000453 000220 SOLUTIONDISPLAY

10/01/82 15:56 COBOL $LNG.RPDT.QNCBS

003 000042 000211 000202 SOLUTION"'IW'TAL

10/01/82 16:06 TAL $LNG.RPDT.QNTLS

Figure 2-2. Alphabetic Load Map for Code Blocks

2-7

Data Block Load Map

DATA BLOCK LOAD MAP. The following information is included in load
maps for data blocks.

Label

BASE

Description

base address of the data block (a word address, even
for COBOL Extended Storage)

LIMIT end address of the data block (a word address, even
for COBOL Extended Storage; if blank, the block is
empty)

TYPE type of the data block (own, common, or special)

MODE word or string

NAME name of the data block

DATE date of the compilation

TIME timestamp for the compilation

LANGUAGE source language of the block

SOURCE FILE disc file name of the source code

Pigure 2-3 illustrates a load map for a data block ordered
alphabetically. Note the larger base and limit fields of the final
entry, indicating that it is a COBOL extended data block.

2-8

Data Block Load Map

DATA BLOCK MAP BY NAME

BASE LIMIT TYPE MODE NAME

DATE TIME LANGUAGE SOURCE FILE

000000 000017 SPECIAL WORD #GO

8/31/83 09:26 COBOL $LNG.RPDT.CBLSKEL

100254 SPECIAL WORD #HIGHBUF

8/31/83 09:26 COBOL $LNG.RPDT.CBLSKEL

100000 100114 SPECIAL WORD #RUCB

8/31/83 09:26 COBOL $LNG.RPDT.CBLSKEL

000061 000071 SPECIAL WORD #STACK

8/31/83. 09:26 COBOL $LNG.RPDT.CBLSKEL

000020 000060 OWN STRING ATTEMPTDISPLAY

8/31/83 09:26 COBOL $LNG.RPDT.CBLSKEL

100115 100253 SPECIAL WORD ATTEMPTDISPLAY#

8/31/83 09:26 COBOL $LNG.RPDT.CBLSKEL

0001000000 0001000307 OWN STRING CBLSKEL"'

8/31/83 09:26 COBOL $LNG.RPDT.CBLSKEL

Figure 2-3. Alphabetic Load Map for Data Blocks

2-9

Cross-reference Lists

Cross-reference Lists

The cross-reference lists are produced only if explicitly selected by
the LIST XREF command. Cross-reference lists are generated for both
entry points and data blocks. The entry point listing consists of:

• entry point name

• name of the code block containing the reference

• location of each reference.

Figures 2-4 and 2-5 show partial examples of entry point
cross-reference lists.

2-10

Cross-reference Lists

ENTRY POINT CROSS REFERENCE

REFERENCED ENTRY POINT REFERENCING CODE BLOCK WORD OFFSET
OF REFERENCES

FORMATCONVERT
FORMATTER 00305

FORMATED IT
FORMATTER 02003 02065

07644
FORMATNUMIN

FORMATNUMIN 00150
FORMATTER 00466 00571

00627 01213
07204

FORMATTER"
PRICE 00125 00135

00155 00174

Figure 2-4. Entry Point Cross-reference Listing (FORTRAN)

ENTRY POINT CROSS REFERENCE

REFERENCED ENTRY POINT

ATTEMPTDISPLAY
CLIB"DISPLAY

CLIB"INIT
CLIB"STOP
SOLUTIONDISPLAY
SOLUTION"IN"TAL

REFERENCING CODE BLOCK WORD OFFSET
OF REFERENCES

SOL UT I ON" I N''TAL
ATTEMPTDISPLAY
SOLUTIONDISPLAY
COBOL-QUEENS-SOLUTION
COBOL-QUEENS-SOLUTION
SOLUTION"IN"TAL
COBOL-QUEENS-SOLUTION

00110
00117
00230
00006
00031 00032
00064
00030

Figure 2-5. Entry Point Cross-reference Listing (COBOL and TAL)

2-11

Cross-reference Lists

The data block cross-reference listing consists of:

1D data block name {either a common block name or the TAL special
block, #GLOBAL)

• location and storage type {word, byte) of referenced identifier

• name of each code block containing block references

• location of the reference.

Locations are word offsets in octal from the base of the block.

COMMON BLOCK CROSS REFERENCE

REFERENCED COMMON BLOCK OFFSET TYPE REFERENCING WORD OFFSET
CODE BLOCK OF REFERENCES

APPLY"'DATA 000000 000000 WORD APPLY 00000 00047
00573 00637
00733 00736

APPLY"'PUBLIC 000000 000000 WORD IN"' INITIALIZE 00516
000000 000001 WORD AP"' PERFORM 00357

AP"'REDIRECT 00214
AP"' ST ART"' LOG 00157

000000 000002 WORD APPLY 01305
AP"' ST ART"' LOG 00112 00120

Figure 2-6. Data Block Cross-reference Listing {TAL)

2-12

SECTION 3

BINDER COMMANDS

BINDER commands select the object files to search for input, define
and build the target file, and query the status of BINDER's controls.

This section describes the BINDER commands in alphabetic order. The
basic commands that are supported by BINDER are described in Appendix
A.

Table 3-1 is a summary of all BINDER commands, whether they are
described in this section or in Appendix A.

Table 3-1. BINDER Session Commands

Command Command Description

1---------1--------------------------·------ -··-··· -- ·-·-·- -------.. ---·---!

ADD

ALTER

BUILD

CHANGE

CLEAR

COMMENT

DELETE

inserts new names or replaces old names on the include
lists; replaced names are deleted.

changes attributes of entry points.

creates the target file.

patches the attribute values in an already created
object file.

returns BINDER to the original state without creating
the target file.

enters comments to appear in output listing.

removes names from include lists and removes associated
changes from the modify list.

3-1

BINDER Commands

DUMP displays all or part of the contents of a code or data
block.

ENV displays the current settings of process environment
controls.

EXIT stops the BINDER process.

FC edits or repeats the previous command line.

FILE sets the default object file for the ADD, DUMP, LIST,
and REPLACE commands.

HELP displays the BINDER commands and syntax.

INFO displays information about code blocks, entry points,
and data blocks in the include and unresolved reference
lists.

LIST specifies options for load maps and entry point
cross-reference listings.

LOG starts or stops the recording of BINDER input commands
and output.

MODIFY changes values of code or data block locations in the
target file.

MOVE reorders code blocks in the target file.

OBEY directs BINDER to read commands from the named disc
file.

OUT names the file to receive output listings.

RENAME renames a code or data block.

REPLACE names code or data as replacements if the names are on
the include lists.

RESELECT restores one or more BINDER controls to the original
state.

RESET restores one or more object file attributes to the
default values.

SATISFY attempts immediate resolution of all external
references.

3-2

BINDER Commands

SELECT

SET

SHOW

STRIP

SYSTEM

VERIFY

sets options for BINDER operation control.

sets object file characteristics to use in building the
target file.

displays collected information: current file, modify
list, and controls from the SELECT and SET commands.

deletes BINDER and INSPECT regions from an object file.

sets the default system name for expanding file names.

verifies a code or data value in an object file.

VOLUME sets the default volume and subvolume for expanding disc
file names.

Syntax Conventions for Name Lists as Command Elements

Many BINDER conunands allow lists of names for entry points, code
blocks, or data blocks to be used as part of the command line syntax.
Be sure to note the syntax conventions for forming these lists given
in Table 3-2.

Within lists, BINDER allows ranges of names, so you can specify ranges
of blocks or entry points (on ADD, DELETE, and REPLACE commands, for
example).

Name ranges can apply to input object files. If so, the range is the
span of blocks or entry points between the first name and the second
name. The names must be given in order by location in the file.

You can also specify ranges of names as on include lists (on ALTER,
INFO, and MOVE commands, for example). In this case, a range is
determined by the order in which the names were entered.

The INFO command displays these include lists. Examples of partial
INFO displays follow Table 3-2.

3-3

Syntax Conventions for Name Lists as Command Elements

Table 3-2. Syntax Conventions for Name Lists

Element

code-block

data-block

block-name

block-name-range

block-name-list

entry-name

Definition

one of::
COBOL program unit
FORTRAN program or subprogram
TAL proc

one of:
COBOL program unit's Working-Storage or

Extended-Storage (i.e., its OWN block)
FORTRAN COMMON or SAVE DATA
TAL BLOCK or implicitly-named global

valid language identifier for a code block or for
a data block

for code or data, one of:
block-name
block-name TO block-name
* TO block-name
block-name TO *

for code or data, one of:
block-name-range
(block-name-range [, block-name-range] ...)
*

a valid language identifier for a primary or
secondary entry point name

entry-name-range one of:
entry-name
entry-name TO entry-name
* TO entry-name
entry-name TO *

entry-name-list one of:
entry-name-range

*

name TO name

3-4

(entry-name-range [, entry-name-range] ...)
*

all members of the current include list or input
object file

all members from the first name to the second
name of the include list or object file

Syntax Conventions for Name Lists as Command Elements

* TO name all members from the start of the include list or
object file to the given name

name TO * all members from the given name to the end of the
include list or object file

Below are examples of partial displays generated by the INFO INCLUDE
command. Example 1 shows display for entry points only. Example 2
shows all three include lists; the unresolved reference list is not
shown here.

1. @INFO INCLUDE ENTRY *
INCLUDE ENTRY: 26 ENTRIES

NAME
PRICE
FLIBAINIT
FORMATTER
FORMATTER A

2. @INFO *
INCLUDE CODE: 24 ENTRIES

NAME
PRICE
FLIBAINIT

INCLUDE ENTRY: 26 ENTRIES
NAME
PRICE
FLIBAINIT
FORMATTER
FORMATTER A

INCLUDE DATA: 5 ENTRIES
NAME
#GO
#LOWBUF
#RUCB
COMMON#POINTERS
FOO

OFFSET
43

0
4450
4454

SIZE
289

26

4672

OFFSET
43

0
4450
4454

SIZE
3

608
77

4
10

ATTRIB
M

v
EV

ATTRIB
M

v
EV

3-5

ADD Command

ADD Command

The ADD command inserts names in the three include lists: include
entry point list, include data block list, and include code block
list.

{

CODE entry-name-list}
ADD DATA block-name-list

*
[FROM file-name] [I DELETE]

CODE entry-name-list

specifies code to be included in the target file. Associated
code blocks, entry points, and own blocks are added to the
appropriate include lists for each entry point named. Valid
forms of entry-name-list are given in Table 3-2.

DATA block-name-list

*

specifies FORTRAN COMMON blocks or TAL BLOCKS to include in
the target file. Valid forms of block-name-list are given in
Table 3-2. This parameter is not pertinent to COBOL.

specifies that all code and data blocks in the file are added
to the applicable include lists.

FROM file-name

is the disc file name of an object file to use. The default
is the current file.

DELETE

specifies that any previously inserted occurrences of names
added by this command should be deleted.

To ensure that the target file is built correctly, add names to the
lists in the order that BINDER should build the target file. BINDER
adds names to the include lists in the order that ADD commands specify
them and then uses the include list order to build the target file.

3-6

ADD Command

When you specify an entry name or data block name for a block not
already on the include list, ADD adds the name to the end of the list,
whether the DELETE option is specified or not. When you specify an
entry name or data block name for a block already on the include list,
ADD adds the name to the end of the list only if you also specify the
DELETE option. Otherwise, BINDER ignores the ADD command and issues a
warning message indicating that the specified entry point or data
block is already in the include list.

If a specified entry point or data block is not in the specified FROM
file, an error message is issued and execution of the ADD command is
halted.

Naming an entry point in an ADD command automatically inserts the
containing code block in the include code block list. Usually, data
blocks are added implicitly (by means of references in included code).
Nevertheless, you can add FORTRAN COMMON blocks or TAL BLOCKS
explicitly. This enables you to define a different set of initial
values, if desired.

For COBOL files, ADD CODE is equivalent to ADD*, since COBOL files do
not have separate data blocks.

ADD results in resolution of all previously unresolved external
references that are satisfied by the added entry point or data block.
(If the name is on the omit list, external references remain
unresolved.)

NOTE

It is useful to remember that the REPLACE ~ommand performs
functions similar to those performed by ADD,DELETE. (ADD,DELETE
adds a specified entry name to the end of the include list,
deleting the previous occurrence of the entry; REPLACE removes
the previous occurrence of the entry name and inserts the new
reference in its place.) If an error occurs when you attempt an
ADD command, you may be able to accomplish your goal by using a
REPLACE command.

Examples of the ADD command:

1. @FILE oldfile
@ADD *
@ADD CODE block-1 TO block-5 FROM objfile
@COMMENT newf ile contains oldf ile and
@COMMENT block-1 to block-5 of objfile
@BUILD newf ile

3-7

ADD Command

2. @FILE oldfile
@SELECT REFER proc to proc2
@SELECT OMIT proc
@ADD CODE *
@COMMENT UPDATE equivalent is "DEL proc, ABSENT proc2"
@COMMENT after entering the FILE and ADDs
@BUILD newf ile

3. @FILE oldfile

3·-8

@ADD * FROM oldf ile
@ADD CODE block-1 FROM objfile, DELETE
@BUILD newfile
@COMMENT newfile contains block-1 from obj file and all of
@COMMENT oldf ile except any code block named block-1.

ALTER Command

ALTER Command

The ALTER command changes attributes of code blocks and entry points
in both include code block and include entry point lists. Attributes
that can be changed are CALLABLE, MAIN, PRIVILEGED, and RESIDENT.
MAIN can only be changed for TAL procs. Refer to the TAL Reference
Manual description of "Procedure and Subprocedure Declaration" for
attribute information.

ALTER entry-name-list , alter-spec [, alter-spec] ...

entry-name-list

identifies one or more primary or secondary entry points on the
corresponding include lists. See Table 3-2 for the syntax of
list formation.

alter-spec

specifies a code attribute. It is one of:

CALLABLE { ON I OFF }
LIKE entry-name
MAIN { ON I OFF }
PRIV [ON I OFF }
RESIDENT { ON I OFF }

CALLABLE [ON I OFF }

specifies whether privileged entry points are callable by
nonprivileged procedures. Since CALLABLE applies only to
privileged code, BINDER automatically sets PRIV ON for a
entry point with CALLABLE ON.

LIKE entry-name

specifies that the entry points in entry-name-list are to
have the same attributes as LIKE entri-name, which must be
on an include list. If LIKE occurs, it overrides any
preceding parameters of this ALTER command.

3-9

ALTER Command

MAIN { ON I OFF }

specifies whether the entry points in entry-name-list are
to have the MAIN attribute. MAIN can be specified only for
TAL code; COBOL and FORTRAN MAIN characteristics are set
permanently at compilation time.

PRIV { ON I OFF }

specifies whether entry points in entry-name-list are run
'in privileged mode. If PRIV ON is set, the procedure can be
called only by procedures that also run in privileged mode.

RESIDENT { ON I OFF

specifies whether code blocks are to reside in main memory
during the entire time the process is running. (BINDER
automatically applies RESIDENT to the code block containing
the named entry point.)

Examples of the ALTER command:

1. @ADD CODE subAl FROM objfilel
@ADD CODE subA2 FROM objfile2
@ALTER subAl, LIKE subA2
@COMMENT the attributes of the code block named subAl are
@COMMENT changed to match the attributes of subA2.

2. @ALTER * TO subA5, RESIDENT ON
@COMMENT the RESIDENT attribute is changed to ON for all
@COMMENT code blocks and entry points from the beginning of
@COMMENT the include lists through entry name subA5.

3. @ALTER (subAl, sub5 TO subA8), CALLABLE OFF
@COMMENT the CALLABLE attribute is changed to OFF for
@COMMENT entry names subAl and sub5 through subAB on the
@COMMENT include lists.

3-10

BUILD Command

BUILD Command

The BUILD command is entered after completely defining the target file
with other commands. BINDER then constructs the target file using the
code block names and data block names from the include lists. After
the build, the BINDER returns to the initial state.

BUILD [file-name J [

file-name

[
' set-specification J
, select-specification

is a valid file name for the target file. file-name must not
previously exist unless the ! option is used. If file-name is
omitted, BINDER uses the default file name OBJECT in the
default volume and subvolume.

specifies that BINDER should purge any previously existing
file named file-name.

set-specification

specifies an object file attribute to use for the target file.
This specification overrides, for this command only, any value
previously established for that attribute. set-specification,
as defined for the SET command, is one of:

{ ~*r~K } value [PAGES I WORDS]
EXTENDSTACK

INSPECT { ON I OFF}
LIBRARY file-name
LIKE file-name
PEP number
SAVEABEND { ON I OFF}
SYMBOLS { ON I OFF}

3-11

BUILD Command

select-specification

specifies a BINDER control or option to use in building the
object file. This specification overrides, for this command
only, any value previously established for that parameter.
select-specif icatio~, as defined for the SELECT command, is
one of:

CHECK check-spec
COMPACT { ON I OFF }
LIST list-spec
OMIT entry-name-list
REFER refer-list
SATISFY { ON I OFF}
SEARCH file-list

When you enter BUILD with SATISFY ON, you allow BINDER to resolve any
remaining external references. In this case, BINDER accesses the user
files on the search list and, if it finds any of the unresolved entry
points, adds the corresponding code to the target file it is building.
Entering BUILD SATISFY OFF prevents BINDER from trying to resolve
remaining unresolved references.

BINDER creates the target file in a temporary file and gives the
target file one of the following names:

1. file-name, if a file by that name did not exist already

2. file-name, if a file of that name previously existed, ! was
spec1f 1ed, and the purge was successful

:3. OBJECT, if no file-name was specified (default), or if file-name
already existed and was not purged

4. ZZBinnnn, where nnnn is a random numeric identifier, if the naming
attempts for file=name and OBJECT fail.

NOTE

If the old object file happens to be running when a new object
file of the same name is specified with the ! option, BINDER
does not purge the old file but renames it ZZBinnnn (where nnnn
is supplied by BINDER).

3-12

BUILD Command

The build fails if BINDER cannot name the target file. When this
happens, BINDER issues an error message and, in interactive mode,
prompts for input. The temporary file containing the target file is
lost as well as the information from previous commands. You must
respecify the target file contents by reentering definition commands.
If the build failed because of insufficient disc space, you must
correct the condition before the build can succeed. The only error
condition that does not cause BUILD to clear the lists (and that,
consequently, does not require you to begin again) is ILLEGAL SYNTAX.

Examples of the BUILD command:

1. @COMMENT - in this example, object file "filename"
@COMMENT - is to have code for one entry point "epnamel"
@COMMENT - replaced by code with the same name from newf ile
@ADD * FROM filename
@REPLACE CODE epnamel FROM newf ile
@BUILD objfile, SEARCH (libl, lib2)

2. @COMMENT - this example is equivalent to UPDATE ADDS and BUILD
@ADD CODE subAl TO * FROM objfilel
@ADD CODE * FROM objfile2, DELETE
@COMMENT - use the SATISFY OFF option to suppress resolution
@COMMENT - of code external references
@BUILD newfile, SATISFY OFF

3-13

CHANGE Command

CHANGE Command

The CHANGE command permits the attribute values of an already created
object file to be amended or patched. In this respect, the CHANGE
command is analogous to the SET command, which specifies attribute
values for a target file before it is built. The file being patched
cannot be the current file in BINDER. If you attempt to use CHANGE on
the current file, you must then execute a CLEAR command and start
again. Otherwise, the file remains the current file and repeated
attempts to CHANGE result in the same error.

I DATA value [PAGES I WORDS] I
CHANGE INSPECT { ON I OFF }

LIBRARY file-name
SAVEABEND { ON I OFF }

IN object-file

DATA value [PAGES I WORDS

specifies the amount of data space to be allocated for the
object file. The default data space allocated is the maximum
number of data pages in any of the files from which data is
included, or the amount needed to hold all the data blocks
plus an estimate of the stack space needed for local storage,
whichever is larger. Either a decimal value or an octal value
(preceded by %) is accepted. The default unit for the value
is PAGES. (One PAGE is 1024 WORDS.)

INSPECT { ON I OFF }

specifies whether the INSPECT program or the DEBUG program is
chosen for debugging when the object file is executed. The
default is OFF; that is, the DEBUG program is used. INSPECT
OFF automatically causes BINDER to set SAVEABEND OFF. (The
COMINT SET INSPECT and RUN commands both allow overriding the
INSPECT option.)

LIBRARY file-name

3--14

specifies the name of a Nonstop II user library to be
associated with the object file at run time. This file name
can be overridden at run time by using the LIB parameter in
the COMINT RUN command. The default is no user library.

CHANGE Command

SAVEABEND { ON I OFF }

specifies whether a save file is to be created if the process
terminates abnormally during execution. BINDER automatically
sets INSPECT ON if SAVEABEND ON is on. The default is OFF.

Each successive CHANGE command specifying one of these parameters
overrides the previous specification. The SHOW command can be used to
determine the current values of the file attributes.

Examples of the CHANGE command:

1. @CHANGE SAVEABEND ON IN object

2. @CHANGE LIBRARY libfile IN object

3-15

CLEAR and COMMENT Commands

CLEAR Command

The CLEAR command returns BINDER to the original state without
building an object file. The BINDER clears its internal lists
(include, omit, refer, search, unresolved reference, and modify) and
the current file established by a FILE command.

[CLEAR -·--~·
COMMENT Command

Use COMMENT to enter descriptive text to appear in the output listing.

COMMENT [text]

text

is a string of characters.

If COMMENT is entered on a multi-command line, the COMMENT must be the
last command on the line.

3-16

DELETE Command

DELETE Command

The DELETE command removes named blocks from the include lists. If
any MODIFY commands were previously specified for these names, the
changes are also removed from the modify list.

{
CODE block-name-list}

DELETE DATA block-name-list
*

CODE block-name-list

specifies code blocks to be deleted. Valid forms of
block-name-list are given in Table 3-2.

DATA block-name-list

*

specifies data blocks to be deleted. Valid forms of
block-name-list are given in Table 3-2.

specifies that all blocks are to be deleted.

DELETE has these effects:

• external references to deleted blocks are placed on the unresolved
reference lists

• external references from deleted blocks are removed from the
unresolved reference lists (only if no other blocks refer to those
names)

• parameter checking for deleted blocks is discontinued.

If DELETE * is specified, the SELECT and SET specifications remain in
effect. These lists are cleared:

• all include lists

• the modify list

• the unresolved reference list.

3-17

DUMP Command

DUMP Command

'rhe DUMP command displays all or part of the contents of a code or
data block from the current object file. The display is unformatted.
(There is no default for the block name.)

DUMP
{

CODE code-block-name}
DATA data-block-name

[dump-spec-list] [FROM file-name]

CODE code-block-name

is a code block in either the FROM file-name or the current
file.

DATA data-block-name

is a data block in either the FROM file-name or the current
file.

off set

is an offset in octal from the base of the block.

count

specifies in octal the number of words to display starting from
offset. The default is one word.

TO *

*

3-18

specifies that the rest of the block starting at offset is to
be displayed.

specifies that the entire block is to be displayed.

DUMP Command

dump-spec-list

is one or more format specifiers in the form:

dump-spec
(dump-spec [, dump-spec] ••.)

dump-spec is one of:

ASCII
HEX
DECIMAL
I CODE
OCTAL

Use !CODE with the CODE code-block-name parameter only.
The default is OCTAL.

FROM file-name

is the disc file name of an object file. The default is the
current file.

DUMP displays the current file contents. Therefore, you cannot use
DUMP to display file contents changed with a MODIFY command. (MODIFY
is only effective for the target file.) DUMP DATA does not give
useful information for COBOL data blocks.

Examples of the DUMP command:

1. @COMMENT - dump all of blockl
@DUMP CODE blockl * HEX

2. @COMMENT - dump 8 words from word 12 of block5
@DUMP DATA block5 14,10 ASCII FROM objfile

3. @COMMENT - be sure that the current file corresponds to the dump
@COMMENT - request; in this example, the current file is
@COMMENT - changed.
@FILE filel; ADD CODE blockl TO block5; FILE file2; ADD *
@DUMP CODE block3

***** ERROR ***** Block does not exist in f ile2
@DUMP CODE block3 FROM filel

3-19

r, I LE Command

r,ILE Command

The FILE command establishes the current file for subsequent ADD,
DUMP, LIST, and REPLACE commands. The current file remains in effect
until another FILE, CLEAR, or BUILD command is successfully executed.
There is no default for the current file.

FILE file-name

file-name

is the file name of the object file.

·----------------------··---.. ···--·----·--

3-20

INFO Command

INFO Command

The INFO command displays information about code blocks, entry points,
and data blocks in the include lists and the unresolved reference
lists.

INFO

INCLUDE I CODE block-name-list l
DATA block-name-list
!NTRY entry-name-list

UNRESOLVED {
DATA }
!NTRY

* [, DETAIL]

INCLUDE CODE block-name-list

[, DETAIL]

displays the attributes and lengths of code blocks in the
block-name-list. Valid forms of code or data block-name-list
are given in Table 3-2.

INCLUDE DATA block-name-list

displays the lengths of all data blocks in block-name-list.
Valid forms of block-name-list are given in Table 3-2.

INCLUDE ENTRY entry-name-list

displays the attributes of entry points in entry-name-list.
Valid forms of entry-name-list are given in Table 3-2.

INCLUDE *

displays the attributes of all code blocks, data blocks, and
entry points in the include lists.

3-21

INFO Command

DETAIL

provides further information for blocks in the include lists
such as date and time compiled, source language, and the
source file from which the block was compiled.

UNRESOLVED DATA

displays names of data blocks on the unresolved reference
list.

UNRESOLVED ENTRY

displays the names and default files of entry points in the
unresolved reference list.

UNRESOLVED *

*

3-22

displays the names of entry points and data blocks in the
unresolved reference lists.

displays all include lists and unresolved lists.

INFO Command

INFO Command

The INFO command displays information about code blocks, entry points,
and data blocks in the include lists and the unresolved reference
lists.

INFO

INCLUDE

I
CODE block-name-1 ist)
DATA block-name-list
~NTRY entry-name-list

UNRESOLVED {
DATA }
~NTRY

* [, DETAIL]

INCLUDE CODE block-name-list

[, DETAIL]

displays the attributes and lengths of code blocks in the
block-name-list. Valid forms of code or data block-name-list
are given in Table 3-2.

INCLUDE DATA block-name-list

displays the lengths of all data blocks in block-name-list.
Valid forms of block-name-list are given in Table 3-2.

INCLUDE ENTRY entry-name-list

displays the attributes of entry points in entry-name-list.
Valid forms of entry-name-list are given in Table 3-2.

INCLUDE *

displays the attributes of all code blocks, data blocks, and
entry points in the include lists.

3-21

INFO Command

DE'rAIL

provides further information for blocks in the include lists
such as date and time compiled, source language, and the
source file from which the block was compiled.

UNRESOLVED DATA

displays names of data blocks on the unresolved reference
list.

UNRESOLVED ENTRY

displays the names and default files of entry points in the
unresolved reference list.

UNRESOLVED *

*

3-22

displays the names of entry points and data blocks in the
unresolved reference lists.

displays all include lists and unresolved lists.

INFO Command

Examples of the INFO command:

1. @INFO *

2.

INCLUDE CODE: 27 ENTRIES
NAME
PRICE

INCLUDE ENTRY: 29 ENTRIES
NAME
PRICE

INCLUDE DATA: 5 ENTRIES
NAME
#RUCB

UNRESOLVED ENTRY: 52 ENTRIES

SIZE
289

SIZE
43

SIZE
77

ATTRIB

ATTRIB
M

NAME FILE
INITIALIZER

@INFO *, DETAIL
INCLUDE CODE: 15 ENTRIES

NAME
FORMATTER

SIZE ATTRIB
4672

LANG: TAL TIME: 10/01/82 14:48 SYMBOLS: OFF FILE: $VL.Sl.FMT

INCLUDE ENTRY: 20 ENTRIES
NAME
FORMATTER

OFFSET ATTRIB
4450 v

LANG: TAL TIME: 10/01/82 14:48 SYMBOLS: OFF FILE: $VL.Sl.FMT

INCLUDE DATA: 5 ENTRIES
NAME SIZE
#RUCB 77
LANG: FORTRAN TIME: 10/03/82 19:55 SYMBOLS: OFF FILE: $VL.Sl.FN

3-23

LIST Command

LIST Command -- -----
The LIST command provides load maps and cross-reference data for entry
points and code and data blocks. You must specify an object file with
either a previous FILE command or with the FROM parameter of the LIST
command.

SOURCE

CODE

DATA

{
address-list }
block-name-list

LIST {
address-list }
block-name-list [FROM file-name]

list-option [' BRIEF]

list-option [, list-option] ...
[, BRIEF]

* [, BRIEF]

SOURCE

specifies that the source file be listed for each code and
data block used in creating the object file. The output
shows, by source file, all code blocks (identified by the
letter P) and all data blocks (identified by the letter B)
in the object file.

{
CODE} address-list
DATA

3-24

for each address in address-list, lists the block name of
the code at the given address in code or data spacE~. The
addresses in address-list are word addresses taken from the
load map. The 132-character output gives all the information
shown in a load map from BINDER.

LIST Command

{
CODE} block-name-list
DATA

for each block name in block-name-list, lists the base
address in code or data space. Valid forms of
block-name-list are given in Table 3-2. The 132-character
output gives all the information shown in a load map from
BINDER.

list-option

specifies the type of map to be displayed:

ALPHA
LOC
XREF
*
ALPHA

displays a load map in alphabetic order. The map lists
names and addresses for code blocks and data blocks. The
map also gives the language and name of the source file
which yielded each block, and the date and time of
compilation.

LOC

displays a load map in location order. The map lists
names and addresses for code blocks and data blocks. The
map also gives source information as for ALPHA.

XREF

*

displays an entry point and data block cross-reference
list.

generates all three listings.

BRIEF

requests display of an 80-character load map line rather than
the standard 132-character load map line. The truncated line
omits the DATE, TIME, LANGUAGE, and SOURCE FILE information
for code and data blocks.

3-25

LIST Command

FROM file-name

specifies the file name of an object file to be mapped. The
default is the current file.

The listings are described in more detail in Section 4.

Examples of the LIST command:

1. @COMMENT - The following command outputs to listf ile an entry
@COMMENT - point and data block cross-reference list for the
@COMMENT - current file (assumed to be already established).
@LIST I OUT listf ile I XREF

2. @COMMENT - The following command outputs to the home terminal
@COMMENT - all three load maps (ALPHA, LOC, XREF) for oldfile,
@COMMENT - using the 80-character truncated line.
@LIST * FROM oldfile, BRIEF

3. @COMMENT - The following command outputs to the home terminal
@COMMENT - the ALPHA and LOC load maps for obj file·, using the
@COMMENT - standard 132-character line.
@LIST (ALPHA, LOC) FROM objfile

3-26

MODIFY Command

MODIFY Command

The MODIFY command changes the values of words in the code and data
blocks of the target file. No changes are made to existing files.

MODIFY {CODE code-block-name}
DATA data-block-name

[, value] ...

CODE code-block-name

[modify-spec] [offset]

is the name of a code block in the include code block list to
be modified. Use the INFO INCLUDE CODE * command to display
the include code block list.

DATA data-block-name

is the name of a data block in the include data block list to
be modified. Use the INFO INCLUDE DATA * command to display
the include data block list.

modify-spec

specifies the input format for value and the output format
for the current values. The default is OCTAL. modify-spec is
one of:

ASCII
HEX
DECIMAL
OCTAL

offset

is the offset in octal from the base of the block of the word
to receive value. The default is the base of the block
(offset 0).

3-27

MODIFY Command

value

is an expression for the replacement of the word contents.
BINDER prompts (interactively) for the new value if you omit
it and assumes value is in the same format as dump-spe~; an
ASCII value must be enclosed in quotation marks. If more than
one value occurs, BINDER modifies word locations sequentially .

._ ______________________ , ___ _

PROMPTING SEQUENCE. If you don't specify value, BINDER prompts for
input Tnth1s sequence. BINDER displays the address in octal of the
location and the current value at that location. The location is
offset or the base of block. The display is as shown below where
nnnnn is the offset.

{CODE} BLOCKNAME+nnnnn (oldval)<-
{DATA}

You can select whether the value display is octal, decimal, hex, or
ASCII. BINDER accepts your replacement value in the same form as the
displayed value. Do not specify a prefix for hex or octal values;
BINDER does not accept numbers in the form %nnn.

Prompting continues until a carriage return indicates no further
modifications or until the end of the block occurs.

MODIFYING EXTERNAL REFERENCES. BINDER issues a warning message if you
modify a CALL or a reference to global data. If the modified target
file is included in a subsequent binding operation, BINDER reissues
the warning message.

CONSIDERATIONS. To verify changes, use the SHOW MODIFY command. The
changes are made only to the target file; the input object file is
unchanged.

Examples of the MODIFY command:

1. @COMMENT - this example causes the prompting sequence
@COMMENT - to begin with the base address

3-28

@COMMENT - (The resulting display follows the command.)
@MODIFY CODE block-3
CODE BLOCK-3+00000 (012345) <-- 000000
CODE BLOCK-3+00001 (000000) <-- er ends the MODIFY prompt

MODIFY Command

2. @MODIFY CODE lmAinit
CODE LMAINIT+OOOOO (070402) <-- 70401
CODE LMAINIT+OOOOl (024700) <-- 24701
CODE LMAINIT+00002 (002005) <-- 2006
CODE LMAINIT+00003 (040001) <-- 40000
CODE LMAINIT+00004 (014404) <-- 14403
CODE LMAINIT+00005 (100777) <-- er
@COMMENT verify changes using SHOW
@SHOW MODIFY
@COMMENT BINDER replies with all entries on MODIFY list
MODIFY 5 ENTRIES:
MODIFY CODE LMAINIT+OOOOO = 070401 LADR L+OOl
MODIFY CODE LMAINIT+OOOOl 024701 PUSH 701
MODIFY CODE LMAINIT+00002 = 002006 ADDS +006
MODIFY CODE LMAINIT+00003 = 040000 LOAD G+OOO
MODIFY CODE LMAINIT+00004 014403 BAZ +003

3-29

MOVE Command

MOVE Command

The MOVE command allows you to relocate code blocks within the target
file. For example, if BINDER was unable to fill the gap preceding the
32K boundary because of the order of the include lists or because of
code block sizes, you can establish a more efficient order.

You can also use this command to reduce page faults; however, this
requires careful analysis. Refer to the XRAY Users Manual for
information on obtaining the analytical dara.--needed to analyze program
behavior .

.--~----~--~-~-----------------------~--------·-----·-----------------------------------~

MOVE entry-name-list { AFTER I BEFORE } entry-name

3-30

[, entry-name-list {AFTER I BEFORE J entry-name] ...

entry-name-list

is a list of one or more entry names in the include entry
name list; either a primary or secondary name is permitted.
When a secondary name is specified, BINDER moves the
containing block for the secondary name. See Table 3-2 for
the valid list formats.

AFTER entry-name

specifies the position in the include entry name list after
which entry-name-list should appear; entry-name cannot be
within the range of entry-name-list. Primary and secondary
entry point names are accepted.

BEFORE entry-name

specifies the position in the include entry name list before
which entry-name-list should appear; entry-name cannot be
within the range of entry-name-list. Primary and secondary
entry point names are accepted.

MOVE Command

Examples of the MOVE command:

1. @ADD * FROM objfile
@MOVE block-1 AFTER block-5
@BUILD
@COMMENT the entry name block-1 is moved from whatever
@COMMENT position it currently occupies in the include
@COMMENT list to the position immediately following
@COMMENT block-5.

2. @MOVE (block-1, block-7) BEFORE block-2
@COMMENT the entry names block-1 and block-7 are moved from
@COMMENT whatever positions they currently occupy in the
@COMMENT include list to the positions immediately preceding
@COMMENT block-2.

3-31

RENAME Command

RENAME Command

The RENAME command enables the user to rename a code or data block.

RENAME
{

CODE code-block-name}
DATA data-block-name

CODE code-block-name

TO name

specifies the current name of the code block to be renamed.

DATA data-block-name

specifies the current name of a data block to be renamed.

name

specifies the new name to be assigned to the specified block.

The RENAME command is useful when you must bind together two object
files that contain data blocks with the same name but different types.
RENAME cannot be used when special data blocks are involved.

Examples of the RENAME command:

1. @RENAME CODE blockl TO blocka

2. @RENAME DATA datax TO datay

3-32

REPLACE Command

REPLACE Command

The REPLACE command inserts replacements for named code or data blocks
on the include lists. If the names to be replaced are not already on
the include lists, they are ignored.

{
CODE entry-name-list}

REPLACE DATA data-block-list
*

[FROM file-name]

CODE entry-name-list

specifies the entry points in the file that are to replace
entry points in the include entry name list. Refer to Table
3-2 for the valid forms of entry-name-list.

DATA block-name-list

*

specifies the data blocks in the file that are to replace data
blocks in the include data block list. Refer to Table 3-2 for
the valid forms of block-name-list.

specifies that all entry points and data blocks in the file are
to replace matching entry points and data blocks in the
appropriate include lists.

FROM file-name

identifies the file containing the entry points and data blocks
to replace corresponding ones in the include lists. The
default is the current file.

3-33

REPLACE Command

NOTE

It is useful to remember that the ADD command (with the DELETE
option specified) performs functions similar to those performed
by REPLACE. (ADD,DELETE adds a specified entry name to the end
of the include list, deleting the previous occurrence of the
entry~ REPLACE removes the previous occurrence of the entry name
and inserts the new reference in its place.) If an error occurs
when you attempt a REPLACE command, you may be able to
accomplish your goal by using ADD,DELETE. For example, the
REPLACE command replaces both the direct and the indirect data
blocks in a TAL object file. If a TAL data block that has an
associated indirect data block is replaced with a TAL data block
or FORTRAN common block that does not have an indirect data
block, BIND ends with a fatal error. The ADD command with the
DELETE option can be used successfully in this case.

Example of the REPLACE command:

1. @ADD * FROM oldfile
@REPLACE CODE block-1 FROM objfile
@COMMENT the entry name block-1 now refers to code in objfile
@COMMENT rather than to the code with that entry name in
@COMMENT oldfile.

2. @COMMENT objfile was compiled with a ?SEARCH directive
@COMMENT for library libf ile~ libfile was recompiled
@COMMENT and objfile is to be rebuilt using new libfile
@ADD * FROM objfile
@REPLACE * FROM libfile
@BUILD nobjfile

3-34

RESELECT Command

RESELECT Command

The RESELECT command returns one or more SELECT command parameter
names to the default value. SELECT parameters specify BINDER's
operation during execution of BUILD and SATISFY commands.

RESELECT (;elect-parameter [, select-parameter] ···)

select-parameter

is a valid parameter name for the SELECT command to return to
the default value. select-parameter is one of:

*

CHECK
COMPACT
LIST
OMIT
REFER
SATISFY
SEARCH

specifies that all SELECT command parameters are to be reset
to the default values.

The SELECT command parameter defaults or initial states are:

CHECK
COMPACT
LIST
OMIT
REFER
SATISFY
SEARCH

BLOCK ON, LIBRARY OFF, PARAMETER ON
ON
ALPHA ON, LOC OFF, XREF OFF
empty list
empty list
ON
empty list

Examples of the RESELECT command:

1. @RESELECT *

2. @COMMENT - clear omit and refer lists; use listing defaults
@RESELECT OMIT, REFER, LIST

3-35

RESET Command

RESET Command

The RESET command restores the default value to one or more target
file attributes that were previously specified with the SET command.

RESET {~et-parameter [, set-parameter] ... }

set-parameter

is a valid SET command parameter name to be reset to the
default value. set-parameter is one of:

*

DATA
EXTENDSTACK
INSPECT
LIBRARY
LIKE
PEP
SAVEABEND
STACK
SYMBOLS

specifies that all SET attributes are to be reset to the
default values.

The SET command parameter default values are:

DATA
EXTENDSTACK
INSPECT
LIBRARY
LIKE
PEP
SAVEABEND
STACK
SYMBOLS

PAGES for all data blocks and stack estimate
PAGES estimated
OFF
no user library
(no default)
minimum for entry points in target file
OFF
PAGES estimated
ON

Resetting LIKE causes the four parameters DATA, INSPECT, LIBRARY, and
SAVEABEND to be reset to the default values.

3-36

RESET Command

Examples of the RESET command:

1. @RESET LIBRARY, SAVEABEND

2. @RESET *

3-37

SATISFY Command

SATISFY Command

The SATISFY command attempts immediate resolution of external
references to entry points and data blocks in the unresolved reference
list. BINDER uses the current include lists and the search list.

SATISFY [select-specification [, select-specif icat :ion] . . .]

select-specification

specifies a SELECT command parameter and value to be used for
this statement only. This specification overrides any value
previously established for that parameter.

During execution of a SATISFY command, BINDER searches the object
files listed in the search list in an attempt to resolvE~ any
unresolved external references listed in the unresolved reference
list. Object file names are added to the search list with the SELECT
command, but, if the SEARCH file-name parameter is used with the
SATISFY command, the files spec1f 1ed will be searched instead,
overriding any previously established search list.

In the following example, files objectc and objectd will be searched
for external reference resolution and not files obJecta and objectb,
which have already been added to the search list with the SELECT
command.

@SELECT SEARCH (objecta, objectb)
@SATISFY SEARCH (objectc, objectd)

If BINDER is unable to resolve a reference, the reference remains on
the unresolved reference list until resolved by another SATISFY
command or until execution of the BUILD command.

Note that any select specification used in a SATISFY con@and
temporarily sets a new value to be used only during execution of that
same SATISFY command.

In interactive mode, BINDER prompts for additional target file
definition commands following execution of a SATISFY con@and. Target
file generation does not begin until you enter a BUILD command.

3-38

SATISFY Command

Examples of the SATISFY command:

Example 1 commands cause all references to epnamel in oldf ile to refer
instead to epname2 from newf ile.

1. @COMMENT - "caller" inserted on next command calls epnamel
@COMMENT - the satisfy will result in calling epname2
@ADD CODE caller FROM objfile
@SATISFY SEARCH newf ile, REFER epnamel TO epname2
@ADD CODE epnamel FROM oldf ile
@BUILD newf ile !

2. @COMMENT - this example leaves entry references unresolved
@COMMENT - since SATISFY OFF (a select-specification) is valid
@ADD * FROM objfile
@SATISFY SATISFY OFF

3-39

SELECT Command

SELECT Command

The SELECT command sets parameter values that control BINDER during
execution of subsequent BUILD and SATISFY commands. ThE~ values can be
overridden by the BUILD and SATISFY commands or be reset to default
values by the RESELECT command.

----·---·---------------------

CHECK
{
check-option }
(check-option [, check-option])

COMPACT { ON I OFF }

LIST {list-option)} (list-option , list-option ...
SELECT OMIT {entry-name)} , . . .

REFER

(entry-name [, entry-name]

{
refer-pair \
(refer-pair [, refer-pair] ...) J

SATISFY { ON I OFF }

SEARCH
{
file-name }
(f i 1 e - name [, f i 1 e - name] . . .)

CHECK check-option

selects a type of error checking as follows:

I
~~~~~RY ) { ON I OFF } 
~ARAMETER 

3-40 

BLOCK { ON I OFF } 

specifies whether common blocks are checked for consistency 
in length and addressing (that is, all byte or all word). 
CHECK BLOCK OFF can be used to check FORTRAN procedures for 
adherence to the FORTRAN rules for common blocks. CHECK 
BLOCK ON checks TAL blocks (if a global data block used in 
several object files changes but only some of the object 
files have the new one, BINDER detects the length mismatch 
and issues a warning). The default is ON. 



SELECT Command 

LIBRARY { ON I OFF } 

specifies whether Nonstop II user library checking is in 
effect when BINDER is building the target file. Any 
reference to a data block other than a read-only block or 
any entry point that has the main attribute causes a warning 
message to be issued. The default is OFF. (Note that BIND 
does not perform checking on existing libraries, only on 
libraries that are being built.) 

PARAMETER { ON I OFF } 

specifies whether parameter lists between code blocks are 
checked when the target file is built. Each parameter is 
checked for proper size, type, and mode (value or 
reference); the return type of functions is also checked. 
The default is ON. 

* { ON I OFF } 

specifies whether all check options are to take effect. 

COMPACT { ON I OFF } 

specifies whether the gap at the 32K boundary is to be 
filled when the target file is built. A gap occurs when a 
code block that would be allocated across the 32K boundary 
is relocated to begin at the 32K boundary. The default is 
ON. 

LIST list-option 

specifies the printed output for building the target file: 

I ALPHA I LOC 
XREF 
* 

ON I OFF } 

3-41 



SELECT Command 

ALPHA { ON I OFF } 

specifies whether a load map in alphabetic order is 
produced. The map lists names and addresses for code blocks 
and data blocks: source file information for each code block 
or data block is also listed. The default is ON. 

LOC { ON I OFF } 

specifies whether a load map in location order is produced. 
The map lists names and addresses for code blocks and data 
blocks: source file information for each code block or data 
block is also listed. The default is OFF. 

XREF { ON I OFF } 

specifies whether an entry point and data block 
cross-reference list is produced. The default is OFF. 

* { ON I OFF } 

specifies whether all list options are selected. 

OMIT entry-name 

specifies an entry point name to be added to the omit list. 
The default is an empty omit list. Note that all entry points 
belonging to a particular code block are omitted if any one of 
them appears on the omit list. 

REFER ref er-pair 

3-42 

specifies a pair of entry point names to be added to the refer 
list. The format for refer-pair is: 

entry-name TO entry-name 

The default is an empty refer list. 



SELECT Command 

SATISFY { ON I OFF } 

specifies whether to attempt resolution of rema1n1ng 
unresolved external references for entry points when a BUILD 
or SATISFY command is issued. Data block references are not 
affected by SATISFY. OFF suppresses automatic resolution; the 
default is ON. 

SEARCH file-name 

is a file name to be added to the search list. The default is 
an empty search list. 

Examples of the SELECT command: 

1. @COMMENT - allow gap before 32K; suppress epname resolution 
@SELECT COMPACT OFF, SATISFY OFF 

2. @COMMENT - add three file names to the search list; put all 
@COMMENT - check options in effect. 
@SELECT SEARCH (objfilel, objfile2,objfile3), CHECK* ON 

3. @COMMENT - add two pairs of entry names to refer list; add 
@COMMENT - one entry name to omit list. 
@SELECT REFER (blkl TO blk4, blk2 TO blk3), OMIT blk5 

3-43 



SET Command 

SET Command 

The SET command specifies attribute values to be associated with the 
target file. Attribute values can be overridden by the BUILD command 
or reset to default values by the RESET command. 

{ ~~~~NDSTACK} value [ PAGES I WORDS ] 
STACK 

SET 
INSPECT { ON I OFF } 
LIBRARY file-name 
LIKE file-name 

' . ~· . 
PEP value 
SAVEABEND { ON I OFF } 
SYMBOLS { ON OFF } 

DATA value [ PAGES I WORDS ] 

specifies the amount of data space to be allocated~ The 
default data space allocated is the maximum number of data 
pages in any of the files from which data is included, or the 
amount needed to hold all the data blocks plus an estimate of 
the stack space needed for local storage, whichever is larger. 
Either a decimal value or an octal value (preceded by %) is 
accepted. The default unit for the value is PAGES: one PAGE 
is 1024 WORDS. 

EXTENDSTACK value [ PAGES I WORDS ] 

specifies the number of pages or words to add to BINDER's 
estimate. The allocation is for the total: the default is the 
estimate. Either a decimal value or an octal valuE~ (preceded 
by%) is accepted. (One PAGE is 1024 WORDS.) The default 
unit for the value is PAGES. 

STACK value [ PAGES I WORDS ] 

3-44 

overrides the estimate for stack space computed by BINDER. 
The number of pages or words plus the space required for 
global data blocks is the total number of data pages. (One 
PAGE is 1024 WORDS.) The default is the space estimated for 
local storage. Either a decimal value or an octal value 
(preceded by %) is accepted. The default unit for the value 
is PAGES. 



SET Command 

INSPECT { ON I OFF } 

specifies whether the INSPECT program is chosen for debugging 
when the target file is executed. The default is OFF: that 
is, the DEBUG program is used. INSPECT OFF automatically 
causes BINDER to set SAVEABEND OFF. (The COMINT SET INSPECT 
and RUN commands both allow overriding the INSPECT option.) 

LIBRARY file-name 

specifies the name of the Nonstop II user library to be 
associated with the object file at run time. This file name 
can be overridden at run time by using the LIB parameter in 
the COMINT RUN command. The default is no user library. 

LIKE file-name 

specifies that the DATA, INSPECT, LIBRARY, and SAVEABEND 
attributes for the target object file are to be set identical 
to the attributes of a specified object file. 

PEP value 

specifies the size of the Procedure Entry Point (PEP) table to 
be allocated for the target file. The default value is the 
minimum size necessary for the number of entry points in the 
target file. Any integer value from 1 through 512 is 
accepted. It may be specified either in decimal or in octal 
(preceded by%). 

SAVEABEND { ON I OFF } 

specifies whether a save file is to be created if the process 
terminates abnormally during execution. BINDER automatically 
sets INSPECT ON if SAVEABEND ON is on. The default is OFF. 

SYMBOLS { ON I OFF } 

specifies whether symbol tables in the object files should be 
retained in the target file. The default is ON. 

Only one of the DATA, STACK, and EXTENDSTACK parameters can be set at 
at a time. Each successive SET command specifying one of these 
parameters overrides the previous specification. 

3-45 



SET Command 

COBOL extended data block sizes are set at compile timej, and BINDER 
collects all of these blocks into one extended segment, which is 
automatically allocated at run time by the run-time loader. SET DATA 
does not affect the size of this extended segment. 

Examples of the SET command: 

1. @SET SAVEABEND ON 

2. @SET SYMBOLS OFF, LIBRARY libfile 

3-46 



SHOW Command 

SHOW Command 

The SHOW command displays the current values for the parameters of the 
SELECT and SET commands, the current file, and the set of 
modifications established by the MODIFY command. 

After a BUILD is executed, BINDER resets SELECT, SET, FILE, and all 
lists to the default states. SHOW cannot display information about 
the constructed target file. 

SHOW 

FILE 

FILE 
MODIFY 
SELECT 
select-parameter 
SET 
set-parameter 

requests the name of the current file to be displayed. 

MODIFY 

displays the current set of modifications established by the 
MODIFY command. If code has been modified, the values are 
displayed in !CODE as well as octal. 

SELECT 

displays the current values for all the SELECT command 
parameters. 

select-parameter 

specifies a SELECT command parameter to be displayed: 

CHECK 
COMPACT 
LIST 
OMIT 
REFER 
SATISFY 
SEARCH 

3-47 



SHOW Command 

SET 

displays the current values for all the SET command 
parameters. 

set-parameter 

specifies a SET command parameter to be displayed: 

DATA 
EXTENDSTACK 
INSPECT 
LIBRARY 
LIKE 
PEP 
SAVEABEND 
STACK 
SYMBOLS 

Examples of the SHOW command: 

l~ @COMMENT - the following command results in no display 
@COMMENT - because there are no entries on the OMIT list. 
@SHOW OMIT 

2. @SHOW FILE 
FILE \YOUR.$YVOL.YSUBVOL.YFNAME 

3~ @COMMENT - show display at start of BIND process 
@SHOW SET 

3-48 

DATA (0 PAGES) 
EXTENDSTACK 
INSPECT OFF 
LIBRARY 
LIKE 
PEP 
SAVEABEND OFF 
STACK 
SYMBOLS ON 



4. @COMMENT - show display at start of BIND process 
@SHOW SELECT 
CHECK BLOCK ON, LIBRARY OFF, PARAMETER ON 
COMPACT ON 
LIST ALPHA ON, LOC OFF, XREF OFF 
OMIT 0 ENTRIES 
REFER 0 ENTRIES 
SEARCH 0 ENTRIES 

SHOW Command 

3-49 



STRIP Command 

STRIP Command 

The STRIP command removes the BINDER and INSPECT tables from the named 
object file. Note that STRIP modifies the named file; the file is not 
copied to a target file. If BINDER and INSPECT tables are required 
for future analysis, copy the files to another location (for example, 
magnetic tape). 

To delete only the INSPECT symbol tables, use the SET SYMBOLS OFF 
command and then issue the BUILD command. (This does not change the 
input file on disc; BINDER copies the file to the target file.) 

STRIP file-name 

file-name 

is the disc file name of an object file whose BINDER region is 
to be deleted; INSPECT symbol tables are also deleted if they 
exist. 

After the strip, an attempt to use f ile-narne as input to any BINDER 
operation results in an error message. BI~DER regards the file as if 
it were built by a pre-BINDER version of a compiler or by UPDATE. The 
STRIP command cannot be used on files containing COBOL gxtended Data 
blocks. 

3-50 



VERIFY Command 

VERIFY Command 

The VERIFY command compares the actual value of a code or data word in 
an object file with a value specified by the user. If the value in 
the object file is not identical to that specified, the BIND process 
terminates. 

VERIFY 
{

CODE code-block-name} [ verify-spec ] 
DATA data-block-name 

CODE code-block-name 

[ offset ] , value 

is the name of a code block containing a value to be verified. 

DATA data-block-name 

is the name of a data block containing a value to be verified. 

verify-spec 

specifies the format for value. The default is OCTAL. 
verify-spec is one of: 

ASCII 
HEX 
DECIMAL 
OCTAL 

offset 

is the off set in octal from the base of the block used to 
compute the exact location of the word whose value is to be 
verified against value. The default is the base of the block 
(offset 0). 

value 

is an expression to be verified against the contents of the 
specified word. An ASCII value must be enclosed in quotation 
marks. 

3-51 



VERIFY Command 

The VERIFY command can be used during a noninteractive BIND session to 
verify that the actual value of a code or data word corresponds to the 
value you expect and to terminate the BIND session when discrepancies 
are detected. If the VERIFY command yields a discrepant value, BINDER 
issues the fatal error message "Value specified in VERIFY command not 
equal to current value" and terminates. 

Examples of the VERIFY command: 

1. @VERIFY CODE block-3, 17 

2. @VERIFY DATA block ASCII 50, "ab" 

3-52 



SECTION 4 

BINDER OPERATION 

This section discusses the code and data blocks that make up object 
files, object file format, and the stages of BINDER operation. 
Lastly, this section also includes requirements for binding blocks 
that are written in different languages. 

Briefly, BINDER operates in two stages to create target files: 

1. command input - defines the names of disc files to search for the 
target file contents, names of code and data blocks to extract 
from the searched object files, the order in which to insert 
blocks in the target file, and changes to code and data and 
reference resolution. 

2. target file build - BINDER uses the collected information to 
create a new obJect file on disc. 

OBJECT FILE STRUCTURE 

Remember that target files are object files, just as the input files 
BINDER uses as reference code are object files. Since the following 
discussion pertains to object file structure (both for input code 
files and target files), no distinction is made. 

All BINDER operations are performed on object files. For clarity, the 
following definitions are assumed: 

• block - the smallest separately relocatable unit of code or data. 
Data can be separately compiled in FORTRAN if compiled as COMMON 
and in TAL if compiled as BLOCK structures, respectively. 

• object file - one or more code and data blocks compiled and bound 
together. 

• program - an executable object file. It must contain an entry 
point with the MAIN attribute (in COBOL, this is a "calling 
program"). 

4-1 



Object File Structure 

Table 4-1 gives the corresponding COBOL, FORTRAN, and TAL terminology 
for code and data blocks. 

BINDER 
BLOCK TYPE 

CODE 

DATA 

Own 

Common 

Special 

Table 4-1. Source Language Names for Blocks 

COBOL 
Equivalent 

Program Unit 

Working-Storage 
Extended-Storage 

N/A 

compiler
generated only 

FORTRAN 
Equivalent 

Program Unit 
PROGRAM 

SUBROUTINE 
FUNCTION 

SAVE and DATA 

COMMON 
(named & blank) 

compiler-
generated only 

TAL 
Equivalent 

Procedure 
PROC 

N/A 

BLOCK 
(named & PRIVATE); 
global read-only 
arrays;implicitly
named global data 

N/A 

Compilers provide names for all code and data blocks that are unnamed 
in the source code. "Block Naming Conventions" in this section 
describes the names for different block types. 

BINDER receives from compilers and interactive users the names of disc 
files to search for specific code and data blocks. When the BINDER 
finds each block, it copies the code or data block into the target 
file. The input object file is not affected; it remains on disc in 
its original state. 

Code Blocks 

As shown in Table 4-1, a code block can be a COBOL program unit, a 
FORTRAN program or subprogram, or a TAL procedure. (TAL SUBPROCs 
cannot be separately compiled.) 

ENTRY POINT NAMES. Code blocks can refer to other code blocks at 
named entry points. These are external references that the BINDER 
resolves during binding if the addresses are known. 

4-2 



Code Blocks 

TAL and FORTRAN code blocks can have multiple entry points. If 
multiple entry points occur, the primary entry point name is also the 
name of the code block; secondary entry point names are declared by 
using ENTRY statements. 

COBOL program units can have only one entry point. 

CODE BLOCK ATTRIBUTES. Especially in TAL, code block declarations 
can contain attributes that define execution or relocation 
characteristics. Some attributes can be altered using the BINDER 
ALTER command. The TAL INTERRUPT, EXTENSIBLE, and VARIABLE 
attributes, once set at compile time, cannot be changed. 

The MAIN attribute is used for COBOL, FORTRAN, and TAL compiled code. 
After compilation, however, you can alter MAIN for TAL procedures 
only. 

The following table shows code block attributes recognized by BINDER. 
"yes" indicates that you can explicitly set the attribute in the given 
language compiler. 

Table 4-2. Code Block Attributes 

Alterable in a 
Attribute COBOL FORTRAN TAL BINDER Session 

MAIN yes yes yes TAL only 
CALLABLE yes yes 
INTERRUPT yes 
PRIVILEGED yes yes 
RESIDENT yes yes 
VARIABLE yes 

Refer to the TAL Reference Manual discussion of procedure and 
subprocedure declarations for descriptions of the code attributes. 

Data Blocks 

BINDER recognizes three types of data blocks: own, common, and special 
blocks. Unlike code blocks, which always contain code for exactly one 
program unit, data blocks are simply collections of logically-related 
data. More than one code block can refer to the same data block 
through external references. 

4-3 



Data Blocks 

EXTERNAL DATA REFERENCES. Unlike external references to code blocks, 
data block references must be resolved during binding. Therefore, you 
cannot create an object file until all the necessary data blocks are 
compiled. 

You can modify separately compilable data blocks in an object file 
either by recompiling the block or by using BINDER'S MODIFY command. 
Then, you can build a new object file with the corrected data block 
during an interactive BINDER session. It is not necessary to 
recompile the entire program. 

TYPES OF DATA BLOCKS. Source code statements define own and common 
blocks-.- Compilers generate special blocks that are referred to only 
by compiler-generated statements. The contents of block types are: 

Own blocks consist of data that is accessible only to a single code 
block .. 

COBOL 
FORTRAN -
TAL 

Working-Storage and Extended-Storage sections 
SAVE or DATA that is not COMMON 
none 

Common blocks contain data that can be referred to from multiple code 
blocks. 

COBOL 

FORrrRAN -
TAL 

no common data; LINKAGE SECTION is dynamically allocated 
for local data 
blank or named COMMON; BINDER treats them the same 
BLOCK (named and PRIVATE), global read-only arrays, and 
implicitly named globals 

Special blocks are compiler-generated blocks. Program control blocks 
such as the run-unit control block (RUCB) and program-unit control 
block (PUCB) are special blocks. 

COBOL 
FOR~rRAN -
TAL 

program control blocks 
program control blocks 
none 

Block Naming Conventions 

Code and data blocks must be specified by name with BINDER commands. 
The names are listed on output listings from the compilers and from 
BINDER. 

Block names are established as follows: 

• Code block names. are the source code names for the compilable 
units: PROGRAM, SUBROUTINE, FUNCTION, PROC, NAME. Unnamed FORTRAN 
programs are named MAINA by the compiler. 

4-4 



Object File Format 

• Common data block names are the source code names if specified in a 
stateme~ FORTRAN blank COMMON blocks are named BLANKA by the 
compiler. 

• Own data blocks can have the same name as the corresponding code 
block in the compilable unit. Extended data blocks,which are also 
own blocks, have "A" appended to the code block name. 

• Special block names are assigned by the COBOL and FORTRAN compilers 
and are d1st1nguished by having a pound sign (#) for at least one 
of the characters in the name. Special block names are present in 
the data block output listings. These names are usually not used 
in BINDER commands. 

Examples of special block names are: #HIGHBUF, #GO, #PUCB, #RUCB, 
and COMMON#POINTERS. A COBOL PUCB name has the form PROG-NAME#, 
where PROG-NAME is the name of the code block. 

OBJECT FILE FORMAT 

All object files have the same format, regardless of the number of 
code and data blocks. 

Figure 4-1 shows an example object file made up of several blocks 
copied from different object files. Since both FORTRAN and COBOL 
compiled code is included, the MAIN program unit must be COBOL. 
"Mixed Language Binding" in this section describes the restrictions on 
using COBOL and FORTRAN in the same program. 

On disc, an object file can consist of a maximum of 16 extents. The 
header, code, and data areas must be in the first extent (0). The 
additional extents (1 through 15) can be used for INSPECT symbol 
tables and BINDER tables. 

Header 

The object file header is a block at offset zero containing pointers 
and descriptive information for other blocks in the object file. 

4-5 



Object File Format 

4-6 

Header 

Code 
Region 

Data 
Region 

Object File Directory 

PEP 

COBMAIN - COBOL com pi led 

FRTSUBA - FORTRAN compiled 

TAL"PROC - TAL compiled 

FRTSUBB - FORTRAN com pi led 

COB-SUB - COBOL compiled 

TAL "PROC"1 - TAL compiled,,_ 

XEP 

Special blocks 

COMMON - FRTSUBA, FRTSUBB 

DATA - FRTSUBA 

BLOCK - TAL "PROC, TAL "PROC"1,,. 

WORKING-STORAGE ·- COBMAIN, COB-SUB 

PRIVATE - TAL "PROC"'1 ,,_ 

Special blocks 

~ INSPECT 
Region l(t--_____ s_ym_b_o_I T_a_b_le_s _____ --11 
BIN~ER ~ BINDER Tables ~ 

,,.11 

Region ~--~~~~~~~~·~~~~~~~----~ 

,,. Note that this object file, because it contains three separate entities named 
TAL "PROC"1 (a code block, a data block, and a private data block), must have 
been bound from at least three separate compilations. It could not result from 
any single compilation. Such a compilation, were it attempted, would tEHminate 
with the error** IDENTIFIER DECLARED MORE THAN ONCE**. 

Figure 4-1. Example of BINDER's Object File Format 



Object File Format 

Code Region 

The code region consists of consecutive pages of disc space, starting 
on a page boundary, in the object file. BINDER output statistics give 
the exact number of pages to be allocated for the code area at run 
time. Code region contents, in order, are: 

1. PEP table 

2. global read-only arrays (TAL only) 

3. resident code blocks (TAL only) 

4. nonresident code blocks 

5. XEP table. 

USER CODE. You can define the order of blocks that BINDER should use 
to build the code region. In building the file, BINDER separates 
resident code blocks from nonresident code blocks for you. 

In the completed target file, nonresident code can come before 
resident code if compression of the target file requires it. If 
compressing the file contents, BINDER will move a nonresident block 
that fits in the gap at 32K even if resident code blocks are placed 
above the 32K boundary. The SELECT COMPACT OFF command prevents 
BINDER from performing any compression or filling the gap. 

TAL - global read-only arrays are placed in the code region 
immediately following the PEP. Read-only string arrays cannot 
straddle the 32K boundary. BINDER moves such an array to above the 
boundary to avoid straddling the boundary. If this happens, a warning 
message is issued. 

PEP AND XEP. The PEP and XEP tables are GUARDIAN operating system 
tables whose contents are briefly described here. 

PEP - Procedure Entry Point table, contains the entry point addresses 
for each code block in the code area. The PEP is in the first page of 
the code area. 

XEP - External Entry Point table, is in the last page of the code area 
and contains an entry for each unresolved external reference. The 
GUARDIAN software fills in this table at run time. If the object file 
is a program file, the external references still unresolved are for 
calls resolved at NEWPROCESS time. These can refer to entry points in 
the system library or in the FORTRAN or COBOL libraries. On Nonstop 
II systems, they can also refer to entry points in user library 
segments. 

4-7 



Object File Format 

Data Region 

BINDER determines the minimum number of pages to be allocated for the 
data area and reports the number in the output statistics. The data 
area starts on a page boundary. 

BINDER also determines the order for data blocks so you need not 
specify their order when defining a target file. 

INSPECT Region 

Symbol tables in the INSPECT region contain information on all symbols 
in blocks compiled with the ?SYMBOLS directive. An object file can 
contain symbol tables for some of the blocks and not for others. That 
is, ?SYMBOLS can be turned on and off on a procedure basis. 

During an interactive BINDER session, you can specify whether to 
retain the symbol tables in the target file. You should retain symbol 
tables for blocks still in the development cycle if using INSPECT's 
high--level commands. 

Once symbol tables are deleted, you must recompile if they are needed 
again. Low-level INSPECT commands and DEBUG commands can be used 
whether symbol tables exist or not. Refer to the INSPECT Users Manual 
and the DEBUG Reference Manual for debugging information. 

The space required by symbol tables depends on program 
characteristics. Space requirements for the object file can almost 
double when data requirements are complex. The STRIP command deletes 
both BINDER tables and INSPECT symbol tables. Once STRIP is used on a 
file, BINDER cannot manipulate the file. 

BINDER Region 

The BINDER region contains a header and BINDER's tables. These are: 

• procedure information table 

• entry point table 

• data block information table. 

4-8 



Input Stage 

INPUT STAGE 

During the input stage, BINDER accepts commands and collects the 
information in lists that are used during the output stage. These 
lists are: 

• three include lists 

• one omit list 

• one ref er list 

• one modify list 

• two unresolved reference lists 

• one search list. 

When BINDER is started, all lists are empty. After a build is 
completed, the lists are again empty. Another target file can be 
defined or the session can be ended. 

The unresolved reference lists are automatically maintained by BINDER. 
Table 4-3 lists the commands to create the other control lists. 

ADD 

REPLACE 

SELECT 

MOVE 

SATISFY 

CLEAR 

MODIFY 

Table 4-3. Commands to Create Control Lists 

Inserts names on the include lists. 

Changes code blocks and data blocks in the appropriate 
include lists. 

Adds names to the omit, search, and refer lists. 

Reorders the include entry name list. 

Resolves entry point names in the unresolved entry point 
list and data block names in the unresolved data list. 

Clears (resets to empty) the include, omit, search, 
refer, unresolved reference, and modify lists. 

Creates the modify list by specifying a set of 
modifications to be made when the target file is built. 

4-9 



Include Lists 

Include Lists 

The include lists are ordered lists of code blocks, data blocks, and 
entry points that are to be included in the target file. Code block, 
data block, and entry point names are added to the applicable include 
list by ADD or REPLACE commands in the order specified. Names from 
subsequent ADD or REPLACE commands are added to the end of the list. 

ADD and REPLACE commands can refer to entry points explicitly by name 
or implicitly as part of a range of entry point names. Inserting a 
range of entry points specifies that entry points in the file (in 
physical order) from the beginning to the end of the range are to be 
added to the include list. All primary entry point names within the 
range are added to both the include code block list and the include 
entry point list; secondary entry point names are only added to the 
include entry point list. Names of own data blocks for the code 
blocks are added to the include data block list. 

If a code block added to the include code block list contains a 
reference to an entry point or data block that is not in the 
respective include list, the name is added to the unresolved reference 
list. BINDER attempts to resolve the reference when a SATISFY or 
BUILD command is executed. (You can prevent automatic resolution by 
using the SELECT SATISFY OFF command.) 

INCLUDE CODE BLOCK LIST. A code block name is added to the include 
code block list when one of the following happens: 

• an ADD or REPLACE command refers to the code block (primary entry 
point) name either explicitly or implicitly as part of a range of 
entry points 

• an ADD or REPLACE command refers to the total contents of a disc 
file containing the code block 

• a SATISFY or BUILD command is executed and the following are true: 

an entry point, referenced by an included code block, is in the 
unresolved reference list 

the entry point name is not in the omit list 

the code block containing the entry point that can satisfy the 
reference is in a disc file in the search list. 

The order of code block names in the include code block list 
determines the order in which code blocks are allocated during the 
output phase. 

The include code block list can be reordered during the input phase by 
the MOVE command, which allows code blocks to be ordered in such a way 
that page faults are avoided during execution. (Refer to the XRAY 
Users Manual for diagnostic information to use MOVE in this wa-Y:Y-

4-10 



Include Lists 

INCLUDE DATA BLOCK LIST. A data block name is added to the include 
data block list when one of the following happens: 

• the data block is the own block of a code block in the include code 
block list 

• the data block is a common block and an ADD or REPLACE command 
refers to the data block name either explicitly or implicitly as 
part of a range of data blocks; ordering is not necessary 

• the data block is a common block that is ref erred to by a code 
block in the include code block list 

• the data block is part of a disc file whose total contents are 
ref erred to by an ADD or REPLACE command 

• the data block is a special data block required by a code block in 
the include code block list. 

INCLUDE ENTRY POINT LIST. An entry point name is added to the include 
entry point list if: 

• an ADD or REPLACE command refers to the entry point name either 
explicitly or implicitly as part of a range of entry points, or 

• an ADD or REPLACE command refers to the total contents of a disc 
file containing the entry point. Secondary entry points, as well 
as the primary entry points, are added to the list. 

The order of entry point names in this list corresponds to the order 
of code block names in the include code block list. An entry point 
name is positioned in the order of the ADD or REPLACE command that 
refers to it. 

Omit List 

The omit list contains the names of entry points that are not to be 
included in the target file even if referred to by included code. 
(Likewise, it doesn't matter whether the files on the search list 
contain the entry points.) The omit list can be used to force an 
entry point to be satisfied at run time, either from a system library 
or from a user library on the Nonstop II system. 

An entry point name that is already in the include entry point list 
cannot be specified for the omit list. 

The SELECT OMIT command specifies entries for the omit list. The omit 
list can be overridden by specifying a different omit list in the 
SATISFY or BUILD command. (The SATISFY respecif ication is in effect 
only during execution of the SATISFY command.) 

4-11 



Omit List 

Giving the BUILD command implies a SATISFY command. The exception is 
if SELECT SATISFY OFF is specified, which prevents automatic 
resolution of entry point references. Note that the SMrISFY command 
refers to entry points and data blocks; SELECT SATISFY refers only to 
entry points. 

Clear the current omit list by using the RESELECT OMIT command. 

Ref er List 

The refer list is a list of pairs of entry point names. The first 
entry point name of the pair is the existing name used to refer to an 
entry point (the old name). The second entry point name of the pair 
is the name of an entry point (the new name) that is to be substituted 
for the existing entry point name. They cannot have thE~ same names~ 

When a SATISFY or BUILD command is executed, unresolved entry point 
references are checked against the refer list. If the reference is to 
be changed, BINDER makes the change and then attempts to resolve the 
reference. The refer list does not apply to entry points previously 
added to the include entry point list. 

The refer list is constructed according to specifications in the REFER 
parameter of the SELECT command. If the REFER parameter is specified 
in the SATISFY or BUILD command, however, that refer list overrides 
the refer list of the SELECT command during execution of the SATISFY 
or BUILD command. The refer list can be cleared by the REFER 
parameter of the RESELECT command. 

Search List 

The search list contains the disc file names of object files to search 
in order to resolve entry point and data block referencc=s. This list 
is used during execution of a SATISFY or BUILD command. The files are 
searched in the order in which the file names are listed for blocks 
that define entry points and data blocks in the unresolved reference 
list. 

The search list is constructed according to specifications in the 
SEARCH parameter of the SELECT command. If the SATISFY or BUILD 
command includes the SEARCH parameter, however, the specified file 
names become the search list and, during execution of the SATISFY or 
BUILD command, that list overrides any search list constructed by the 
SELECT command. 

4-12 



Unresolved Reference Lists 

Unresolved Reference Lists 

The unresolved reference lists contain entry point names and data 
block names that are referred to but are not defined by any block in 
the include lists. When a SATISFY or BUILD command is executed, 
BINDER attempts to resolve each entry point name in the unresolved 
reference list as follows: 

1. The refer list is searched for a redirection of the entry point. 

2. The omit list is searched; if the name is found in the omit list, 
the entry point name is not to be resolved. No further action 
takes place for that reference and the entry point name remains in 
the unresolved reference list. 

3. The file containing the code block that referred to the entry 
point is searched and then the object files named in the search 
list are searched for an entry point that satisfies the reference; 
object files are searched in the order of the file names in the 
search list. If the entry point is found, the code block that 
defines the entry point is added to the end of the include coqe 
block list and the entry point name is deleted from the unresolved 
reference list. 

4. If adding a code block to the include code block list introduces 
further unresolved references, the refer list is checked for 
redirection of those entry points. If an entry point is 
redirected and can be resolved by the include entry point list, no 
further action takes place; otherwise, the entry point name is 
added to the unresolved reference list. 

When the target file is constructed, any unresolved entry point 
reference becomes an external reference that must be satisfied either 
by a subsequent BINDER operation or at run time. 

For the languages currently supported by BINDER, no data block names 
should appear in the unresolved reference list. When the unresolved 
reference list contains data block names, BINDER attempts to resolve 
each reference by searching the file containing the code block that 
referenced the common block. 

Modify List 

The contents of an existing code block or data block can be changed 
when the target file is built. During the input stage, modifications 
are specified by the MODIFY command. BINDER saves the set of 
modifications established by this command in the modify list and makes 
the actual changes when the target file is built. Uninitialized data 
blocks cannot be modified. 

4-13 



Output Stage 

OUTPUT STAGE 

The output stage begins when the BUILD conunand causes an implicit 
satisfy for unresolved references. During this stage, BINDER builds 
the target file according to the names in the include lists, writes 
out listings, and clears all of the internal lists (include, omit, 
refer, search, unresolved reference, and modify) in preparation for 
building another object file. 

Target File Characteristics 

BINDER builds the target file using the attributes entered in the SET 
command or in the set-specification parameter of the BUILD command. 
These attributes are: 

DATA - specifies the total amount of data space to be allocated for 
data blocks and for local storage. 

STACK - specifies the amount of stack space to be allocated for local 
storage. This parameter value is added to the amount of space 
required for all data blocks, and the total amount of data space is 
then allocated. 

EXTENDSTACK - specifies an amount of stack space to be added to the 
amount of stack space estimated by BINDER. The total amount of stack 
space and total data block space is then allocated. 

Only one of DATA, STACK, and EXTENDSTACK can be used to override the 
default amount of data space allocated by BINDER: these parameters are 
mutually exclusive. The default data space allocated by BINDER is the 
amount of space required for all of the data blocks plus an estimated 
amount of stack space for local storage .. 

LIBRARY - (Nonstop II systems only) specifies the user library that 
is to be associated with the object file at run time. If the LIBRARY 
parameter is not specified, no user library is associated with the 
object file. This file attribute can be overridden at run time by 
specifying the LIB parameter in the COMINT RUN command. 

PEP - explicitly specifies a larger size for the PEP table. By 
default, BINDER allocates the minimum amount of space needed for the 
number of entry points in the object file. 

INSPECT - specifies whether the INSPECT program or the DEBUG program 
is to be used for debugging when the object code is executed. The 
default is the DEBUG program. 

4-14 



Target File Characteristics 

SYMBOLS - specifies whether the symbol tables of blocks on the 
include lists are to be retained in the target file. (When the 
?SYMBOLS compiler directive is used, BINDER builds a symbol table into 
the object file.) SYMBOLS ON is the default and specifies that the 
tables are to be retained in the object file. 

SAVEABEND - determines whether a save file is created if the process 
terminates abnormally during execution. BINDER verifies that INSPECT 
is selected if SAVEABEND is ON. The SAVEABEND default is OFF. The 
save file is created in the same volume and subvolume as the program 
and has a name in the format of ZZSAnnnn. This file contains 
information on the process environment at the point of termination 
including: 

• names of all open files 

• a copy of the data space at the time the process terminated 

• name of the process and a timestamp for the time of termination. 

The INSPECT tool also provides for saving the environment of a process 
as well as examining save files. Refer to the INSPECT Users Manual 
descriptions of the SAVE and PR commands. 

Target File Construction 

When the BUILD command is executed, BINDER creates the target file 
according to the code block, data block, and entry point names 
currently in the include lists. The following steps are performed in 
creating the target file: 

1. BINDER attempts to satisfy entry point and data block references 
in the unresolved reference list. 

2. Entry points that cannot be resolved are made external references 
for the object file. 

3. Any uninitialized common block is allocated an area preset to 
zero. 

4. Blocks named in the include lists are copied to the target file. 

Code blocks are allocated contiguously in the order in which the code 
block names appear in the include code block list. (The RESIDENT 
attribute overrides the include list order.) Code blocks and 
read-only string arrays cannot straddle the 32K boundary. When this 
would occur, the code block is relocated to begin at the upper 32K 
boundary and a gap is left following the previously allocated code 
block. BINDER issues an informational message when such a gap occurs 
during code block allocation. 

4-15 



Target File Construction 

If the COMPACT parameter of the SELECT command is set to ON (the 
default), BINDER checks each succeeding code block to determine 
whether it will fit in the gap. When a code block that fits in the 
gap is found, the code block is allocated in that gap. This can 
result in nonresident code blocks preceding resident code blocks. 

Another SELECT command parameter that affects construction of the 
target file is the CHECK parameter. This parameter selects the 
different types of error checking that BINDER provides during the 
binding operation. The available options are as follows: 

• The BLOCK option causes common block declarations to be checked for 
the same length and the same type of addressing in every code block 
that refers to the common block. If the length and type do not 
match for each of the references, a warning message is issued. 
Default is ON. 

• The LIBRARY option causes the following checking to occur when a 
user library is being constructed on the Nonstop II System. Code 
blocks being placed into the object file are checked for references 
to common blocks other than read-only blocks. Code blocks are also 
checked for the MAIN attribute. In either case, a warning message 
is issued. Default is OFF. 

• The PARAMETER option causes parameter list checking between code 
blocks. It also controls function return type checking. The 
parameter lists for the respective code blocks are checked for 
consistency in size, type, and mode. Mode checking refers to 
whether the parameter is passed by value or by reference. COBOL 
program units and FORTRAN subprograms receive parameters passed by 
reference only; TAL procedures can receive parameters passed either 
by value or by reference. A warning message is issued if the 
called code block's parameter requirements do not match the passed 
parameters; BINDER does not insert the called block if it is not 
already on the include list. Default is ON. 

4-16 

NOTE 

The parameter checking in BINDER is stricter than in the old 
compilers. You may receive parameter mismatch errors when 
creating an object file with BINDER that you would not 
receive when creating the object file with a pre-BINDER 
compiler. In particular, the parameter mismatch messages are 
likely to occur in mixed-language binding. 



Mixed-Language Binding 

MIXED-LANGUAGE BINDING 

Code blocks written in different languages can be bound together into 
a single object file. There are certain restrictions if COBOL and 
FORTRAN are both used in the same program. Likewise, caution is 
necessary when mixing TAL procedures with COBOL and FORTRAN. These 
restrictions arise because of the differences in the run-time 
environments of COBOL, FORTRAN, and TAL, notably in the area of I/O. 

COBOL and FORTRAN 

When an object file is created using BINDER commands, the program unit 
concepts of the COBOL and FORTRAN compilers are retained. Each COBOL 
code block in the include code block list is a separate program unit. 
All FORTRAN code blocks that are bound together form one program unit. 
Based on these concepts, BINDER constructs all the control blocks 
needed to execute the program. These control blocks include: 

• one run unit control block for the target file 

• one program unit control block for each COBOL program unit in the 
target file; the PUCB includes the file control blocks 

• one program unit control block for the FORTRAN program unit in the 
object file 

• one file control block for each file (logical unit) in the set of 
files for the FORTRAN program unit in the object file 

• FORTRAN logical unit table. 

When COBOL and FORTRAN code is included in the same target file, the 
following restrictions apply: 

• The MAIN program unit must be from COBOL source. (This program 
unit can be a skeleton program containing only an ENTER statement.) 
The COBOL MAIN program unit is needed to perform run time 
initialization. Other code blocks in the target file can be 
written in COBOL, FORTRAN, or TAL. 

• The MAIN program unit initializes all COBOL and FORTRAN file 
control blocks for the run unit. 

• Nonstop processes must provide for checkpoints by both FORTRAN and 
COBOL blocks prior to calling a block in the other language (if 
checkpointing can occur in both COBOL and FORTRAN blocks). The 
checkpoint should include the state of files and data. 

• COBOL and FORTRAN code should not share files; the two languages 
frequently require different protocols for device I/O. 

4-17 



Mixed-Language Binding 

• Parameter passing - care is required if replacing FORTRAN code with 
COBOL code, or COBOL code with FORTRAN. 

TAL with COBOL and FORTRAN 

TAL offers complete flexibility in performing I/0 (via direct calls to 
the GUARDIAN operating system). Therefore, TAL and COBOL or FORTRAN 
mixed--language programs must be written with great care if TAL shares 
files with either COBOL or FORTRAN. TAL procedures must not interfere 
with the COBOL and FORTRAN protocols, especially SETMODEs. 

In mixed-language programs combining TAL with FORTRAN, if FORTRAN 
performs I/0, the main program must be coded in FORTRAN and must have 
the MAIN attribute in order to include the special data blocks 
necessary for I/O. Otherwise, FORMATTER errors occur at run time. 

Example of ~ COBOL MAIN Skeleton Program Unit 

As mentioned earlier, if any COBOL blocks are included the block with 
the MAIN attribute must be a COBOL program unit. Below is a sample 
"skeleton" program unit. In this example, the COBOL blocks are mixed 
with TAL blocks. 

IDENTIFICATION DIVISION. 
PROGRAM-ID. QUEENSCO. 
AUTHOR. PROGRAf.1MER, JOHN R. 
INSTALLATION. TANDEM COMPUTERS, INC. 
DATE-COMPILED. 

ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 
SOURCE-COMPUTER. TANDEM/16. 
OBJECT-COMPUTER. TANDEM/16. 

SPECIAL-NAMES. 
FILE QUEENSO IS TALLIB. 

DATA DIVISION. 

PROCEDURE DIVISION. 
START-UP. 

4-18 

ENTER TAL SOLVE OF TALLIB. 
STOP RUN. 



APPENDIX A 

BASIC COMMANDS 

BINDER supports basic commands and automatic file name expansion 
within BINDER commands. This appendix describes the basic commands in 
alphabetic order. They are: 

ENV 
EXIT 
FC 

HELP 
LOG 
OBEY 

FILE NAME EXPANSION 

OUT 
SYSTEM 
VOLUME 

BINDER assumes that file names supplied for input and output follow 
GUARDIAN naming conventions. Defaults are supplied by the GUARDIAN 
Command Interpreter when BINDER is started. 

File names are assigned to all disc files and devices. Running 
processes can be named at your discretion. Refer to the GUARDIAN 
Operating System Programming Manual for details. 

Expanded Disc File Names 

Disc files of any type are identified, and located, via the expanded 
file name. File name expansion assumes the following: 

\system-name 

$volume-name 

subvolume-name 

disc-file-name 

identifies a system within a network 

identifies a physical disc pack mounted on a 
disc drive 

identifies a group of related files defined by 
the user 

identifies a single file in the subvolume. 

A fully expanded disc file name has the form: 

\system-name.$volume-name.subvolume-name.disc-file-name 

A-1 



File Name Expansion 

If a partial file name is supplied as a command paramete·r, the file 
name is expanded into the internal four-part representation. To 
guarantee correct file name expansion, at least disc-file-name must be 
supplied. 

Process and Device Names 

Each process and each device, such as a tape drive or printer, is 
identified in a similar manner. For example: 

\YOUR.$TAPE1 

might specify a particular tape drive on system \YOUR; when operations 
are already on that system, only $TAPE1 is required. 

Command Entry 

Multiple commands can be entered on the same 1 ine if the?y are 
separated by the semicolon character (;). If a COMMENT command is 
entered, it must be the last command on the line. 

To continue a command on the next line, enter the ampersand (&) as the 
last nonblank character of the current line. The maximum line length, 
including continuation characters, is 132 characters. The maximum 
length of a continued command record is 528 characters. 

A-2 



ENV, EXIT, and FC Commands 

BASIC COMMAND DESCRIPTIONS 

ENV Command 

The ENV command displays the current settings of program environment 
parameters. 

ENV [~~~TEMJ 
VOLUME 

If no options are specified, the values for all parameters are 
displayed. 

EXIT Command 

The EXIT command stops the BIND process. If a previous BUILD command 
has not been issued, no target file is created. 

EXIT J 
Entering CTRL/Y also stops the process immediately. 

FC Command 

The FC command operates the same as the COMINT FC command in allowing 
editing and repetition of the last command line. 

FC 

A-3 



HELP Command 

HELP Command -- _, __ _ 
The HELP command displays BINDER commands and syntax . 

..---------------------------------------~--·-----·---------------~-----------. 

HELP 
[

command-name 
[ < ] param-name 

where 

command-name 

is a valid BINDER command name. 

par am-name 

is a command parameter as displayed in a HELP command-name 
command. 

If no parameters are used, BINDER displays the names of all commands. 

The correct spelling for a particular param name is most easily found 
by first specifying the command-name parameter for the command the 
parameter is associated with. For example: 

@HELP DELETE 
DELETE { { CODE I DATA } <block-list> I * } 
@HELP block-list 

A-4 



LOG Command 

LOG Command 

The LOG command records the session input and output on a permanent 
file. 

LOG 
{

TO file-name } 
STOP 

where 

file-name 

identifies a file to receive the copy of commands and output; 
if the file does not exist, a disc file is created with name 
file-name. 

Logging is initiated when the command specifies a file name. If 
logging is already in progress, the previous log file is closed and 
logging begins on the new file. If file-name is the same as the 
previous log file, the LOG command is ignored and logging continues on 
the same file. 

If file-name has the form of a disc file and the file does not exist, 
an EDIT file is created. If the named file is an existing disc file, 
the output is appended to the file. 

The current log file is closed and all logging is stopped when the LOG 
STOP command is entered. 

A-5 



OBEY Command 

OBEY Command 

The OBEY command causes commands to be read from a specified file. 

OBEY file-name 

where 

file-name 

is the file name of the OBEY file. 

Commands are read from the named file and processed until an 
end-of-file is encountered. At end-of-file, the OBEY file is closed 
and command input reverts to the previous input file, normally the 
home terminal. 

Additional OBEY commands can appear within an OBEY file; OBEY files 
can be nested to a depth of four. 

If the default setting of SYSTEM or VOLUME is changed in an OBEY file, 
it is effective for all following commands. The setting is not 
automatically returned to the previous state when the OBEY terminates. 

If any part of the specification is invalid, if the file does not 
exist, or if the file cannot be opened, an error occurs. BINDER 
displays an error message and prompts for input if the input file is a 
terminal. If the input file was not a terminal, BINDER terminates. 

A-6 



OUT Command 

OUT Command 

The OUT command directs the output listing to a specified file. The 
syntax of the OUT command is: 

{
OUT file-name } 
I OUT file-name I 

where 

file-name 

is a file name. 

The first form of the OUT command causes permanent redirection of the 
output. 

The second form of the OUT command causes temporary redirection of the 
output. This form is specified as part of another command and must be 
positioned immediately after the other command name and before any 
other part of that command. For example: 

HELP/OUT file-name/BUILD 

If the file name has the form of a disc file and the file does not 
exist, an EDIT file is created. If the named file is an existing disc 
file, the output is appended to the file. 

If the file name is invalid or if the file cannot be opened, an error 
occurs. An error message is displayed and the command is not 
executed. 

A-7 



SYSTEM and VOLUME Commands 

SYSTEM Command 

The SYSTEM command sets the default system for expansion of any file 
names. 

SYSTEM [ \system ] 

where 

system 

is a system name of the form \system. 

VOLUME Cormnand 

The VOLUME command sets the default volume and subvolume for expansion 
of any file names. 

VOLUME 
{ 

$volume } 
[ $volume. ] subvol 

where 

volume 

is a volume name of the form $volume. 

subvol 

names a subvolume on volume. 

A-8 



APPENDIX B 

BINDER ERROR MESSAGES 

The Program Development Tools (PDT) all have an error file called 
PDTERROR associated with them. This file must reside on the same 
volume and subvolume as the PDT products. As part of the standard 
release, they are automatically on $SYSTEM.SYSTEM. Users who chose to 
relocate the PDT products on some other volume and subvolume must be 
sure also to relocate PDTERROR (and PDTHELP). When BINDER detects an 
error condition, it searches PDTERROR for the corresponding error 
message (documented below). If PDTERROR is missing, BINDER displays a 
cryptic message of the form BINDER ERROR nn. 

BINDER error messages are listed alphabetically with descriptive 
information and a message severity code. Message severity codes are 
as follows: 

E Error -- command cannot be executed; correct and reenter. 
F Fatal error -- BINDER internal error or temporary file error 

occurred; notify your Tandem representative. 
W Warning -- command was executed; result can be unexpected. 

Messages without a severity code just give information on command 
results. BINDER uses both upper and lower case to display messages. 

E ADD/REPLACE/DELETE may not be used on OWN (SAVE) blocks 

An OWN (SAVE) block cannot be specified separately from its 
associated code block. Adding, replacing, or deleting the code 
block automatically adds, replaces, or deletes, respectively, the 
own block. 

E ADD/REPLACE/DELETE may not be used on PUCB blocks 

These commands cannot refer to a COBOL PUCB by name. 

E Address overflow 

BINDER has run out of virtual memory space. The BIND session may 
simply be too long, in which case it can be broken up into smaller 
sessions. 

B-1 



BINDER Error Messages 

E Alter specification reused 

ALTER options cannot be specified more than once in a command 
line. 

W Alter to CALLABLE and not PRIV means CALLABLE and PRIV: 
entry-poi n t_-::-_~ame 

Callable procedures must also be privileged code; BINDER 
automatically sets PRIV ON if you specify CALLABLE ON. PRIV OFF 
is overridden in this case. (Note that BINDER action is different 
f ram UPDATE. ) 

F An OWN block or COBOL PUCB has been included in the object file 
without the associated code for the data block: block-name 

When an OWN block or COBOL PUCB is included in an object file, the 
associated code for the data block must also be included. 

E Bad object file format version: file-name 

The object file must be in the standard BINDER format. If the 
code was produced by an earlier, incompatible version of the 
compiler, you must recompile. 

E Block does not exist in file: block-name 

No code or data block by the given name was found in the object 
file specified. 

1. Verify block names by using the LIST LOC command, or refer to 
a current compiler listing 

2. Ensure that BINDER searches the correct file by giving the 
file name on the command or use the FILE command. 

E Block has no contents 

'I'he data block specified in the DUMP or MODIFY command is not 
initialized. 

E Block is not on the include list 

B-2 

11 he block specified in the MODIFY command is not in the include 
list (code or data) indicated by the command. 



BINDER Error Messages 

W Block length/address mode error on data-block-name 

The CHECK BLOCK parameter (SELECT command) is set to ON, and 
common or global declarations are inconsistent in length or 
addressing mode. The data block reference is unresolved; you can: 

1. correct the inconsistency, or 

2. use SELECT CHECK BLOCK OFF to allow resolution. 

E Cannot add entry point to omit list if already on include list: 
entry-point-nam~ 

An entry point cannot be on both lists. 
wrong, use the DELETE command. 

If the include list is 

E Cannot alter MAIN attribute of non-TAL PROC code-block-name 

FOR COBOL and FORTRAN code blocks, you cannot change MAIN after 
compilation. (Be sure that the ALTER LIKE command is used only if 
both code blocks have the same MAIN characteristic.) 

W Cannot create file, using OBJECT instead: file-name (error-num) 

file-name failed for the target file. error-num is the GUARDIAN 
f 1le error received. BINDER attempts to use the name OBJECT. 
Refer to the GUARDIAN Operating System Prograrnming Manual for 
information on error-num. 

E/ Cannot create file: vol.subvol.OBJECT (error-num) 
w 

The attempt to use OBJECT to name the target file failed. 
error-num is the GUARDIAN file error received. BINDER then 
attempts to create the target file with a name of the form 
ZZBinnnn. If the attempt fails, the target file definition 
lost---ral1d, in interactive mode, BINDER prompts for input). 
to the GUARDIAN Operating System Prograrnming Manual for 
information on error-num. 

E Cannot satisfy references since include lists are empty 

is 
Ref er 

Code and data block names and entry point names must be added to 
the include lists before a SATISFY or BUILD command is entered. 
If a BUILD cornmand was entered first, BINDER cleared all previous 
specifications, such as SELECT, SET, and FILE entries. 

E CHANGE file cannot be open (use CLEAR command) 

Since the CHANGE command writes to the object file, the object 
file must not be open when this cornmand is executed. BINDER may 
be using the file, in which case the CLEAR command closes it. 

B-3 



BINDER Error Messages 

W Code block already on include list: ent.ry-point-name 

Your ADD command named a code block that is already on the include 
list. An entry point name cannot be on the include list more than 
once. If two object files contain the same code block name, 
BINDER uses the first occurrence. 

w Code block moved to above 32K to avoid straddling 32K: 
code-block-name 

A code block has been moved to begin at the 32K boundary. If the 
COMPACT OFF parameter (SELECT command) is in effect, all code 
blocks that follow on the include list also follow in the code 
area of the target file. If COMPACT ON is selected, smaller 
blocks can be relocated to the gap below 32K. (This may result in 
nonresident code placed before a resident code block.) 

This message is issued only once. 

E Code space overflow in PROC: code-block-name. Code block length 
is: length 

The program exceeded the 64K maximum of code space available. 

W Control data space overflow 

COBOL -- largest possible configuration exceeds available memory. 

W Data block already on include list: data-block-name 

A FORTRAN COMMON or TAL BLOCK of the given name has been inserted 
on the include list already. BINDER uses the first occurrence of 
the block name if two object files contain the same name. 

E Data block cannot be allocated: data-block-name. Data block trying 
to fit data-space-location 

No room is available for the data block in the correct part of 
memory for the block type. Reorganize the data space to make room 
for the specified block. data-space-location can be one of: 
FIXED POSITION, BELOW 256, BELOW 32K, ABOVE 32K, BELOW 32K LAST, 
ABOVE 32K LAST, BELOW 32K PENULT, BELOW 64, ANYWHERE, EXTENDED 
ADDRESS. 

E Data reference failed due to relocation: (code-block-name) + 
(offset) REF TO (data-block-name) + (offset) 

B-4 

TAL -- BLOCK global variable may be moved past TAL limit. 
code-block-name contains the data reference. Rearrange global 
variables, or use the ?INHIBITXX directive. Refer to the TAL 
Reference Manual for information on the ?INHIBITXX directive. 



BINDER Error Messages 

E Effective input record is too long 

The total command line cannot exceed 528 characters, excluding 
continuation characters. Respecify as more than one command. 

W Entry point already on include list: entry-point-name 

The entry point was already inserted on the include list. If the 
second occurrence should be the correct one, use the REPLACE 
command to replace the first occurrence. 

W Entry point cannot be resolved due to conflict with another 
procedure: entry-point-name 

The entry point has also been used as a secondary entry point name 
in another code block that is already on the include list. 

W File already on search list file-name 

The file name was previously used in a SELECT SEARCH command. The 
file name is ignored. 

E File code not 100: file-name 

The indicated file is not an object file. If it is a source file, 
it must be compiled before being passed to BINDER. 

E Identifier too long 

An identifier cannot exceed 31 characters. 

E Illegal ALTER PROC name: proc-name 

The entry point name given as an ALTER LIKE entry point is not on 
the include list. 

E Illegal block range member: name OR * 

If the * option was specified, the include list is empty; 
otherwise, the range specifies a block name that is not in the 
include list. 

E Illegal DUMP offset(s) 

The offset and length specified in the DUMP command exceeds the 
block length. Reenter the command with the * option or with the 
correct length and offset. 

E Illegal DUMP specification 

The ICODE dump specification cannot be specified for a data block. 

8-5 



BINDER Error Messages 

E Illegal log file - ignored 

The LOG file name was used for one of: IN file, OUT file, or OBEY 
file. 

E Illegal MOVE PROC name: code-block-name 

A MOVE command cannot ref er to a block that is not on the include 
code block list or to a block that is inside a range of blocks to 
move. 

E Illegal obey file - ignored 

The OBEY command file name was used as one of: IN file, OUT file, 
or LOG file. 

E Illegal offset for MODIFY/VERIFY command 

The offset specified in the MODIFY or VERIFY command is beyond the 
end of the block. 

E Illegal OUT file - ignored 

The OUT file name was used as one of: IN file, OBEY file, or LOG 
file name. 

E Illegal SELECT REFER pair - ignored 

Both names of a refer pair cannot be the same. Also, a "new" name 
cannot have been used as the "old" name of another refer pair; 
likewise, the "old" name cannot be the "new" name of another refer 
pair. 

E Illegal SET value - ignored 

The maximum values for SET parameters are: 

PEP - 512 DATA ) 
EXTENDSTACK 
STACK 

64 pages (65536 words) 

E Integer conversion error 

Either the number supplied is too large, or an invalid digit was 
received. 

F Internal error at P=%nnnnnn text 

B-6 

This message precedes other information about a BINDER internal 
consistency error; a stack trace usually accompanies the message. 
Contact your Tandem representative. 



BINDER Error Messages 

E Invalid file name file-name 

The file name does not conform to GUARDIAN standards. 

E Invalid subvolume name 

The volume or subvolume name is too long or contains an invalid 
character. 

E Invalid syntax 

The sequence of input characters does not result in a valid BINDER 
command. A caret (A) indicates the detected error. 

E Invalid system name 

The system name is too long or contains an invalid character, or 
the system does not exist. 

F MAIN entry point found in a search file: entry-point-name 

In attempting to include a procedure from a search file (because 
it has been directly or indirectly referenced by the program being 
compiled), BINSERV has discovered that the procedure has the MAIN 
attribute. This is not allowed. 

W MODIFY overrides reference to another block in block-name 

The MODIFY command resulted in a change to a CALL or to a 
reference to global data. This message is issued both at the time 
of the MODIFY and if the block is added to an include list in a 
later BINDER session. 

E More than 510 entry points on include list nnn 

The procedure entry point table can have a maximum of 510 entries, 
one for each entry point. You must restructure the program. 

E More than 512 entry points on unresolved list nnn 

The maximum number of unresolved external references has been 
exceeded. Some of these unresolved references must be satisfied 
before the object file can be built. 

E Multiple MAIN entry points are not allowed: entry-point-name 

Only one entry point may have the MAIN attribute. 

E No current t'ile for ADD/REPLACE/LIST/DUMP 

You must establish a current file before the named commands can be 
executed. Either reenter the command with the FROM file-name 
parameter or use the FILE command. FILE establishes the default 
file for subsequent commands (or until another FILE is entered). 

B-7 



BINDER Error Messages 

E No help available for name 

If a command parameter is queried, it must be specified in the 
form known to BINDER's HELP command. Use HELP command-name to 
verify the parameter forms. HELP with no parameters lists all the 
BINDER commands. 

W No parameter information provided for entry-point-name 

COBOL -- A CANCEL for the entry point name was encountered; 
however, no CALL statement referred to the entry point. 
Therefore, parameters could not be checked. 

E No space left for stack after data block allocation 

Word 12767 is used in the word-addressable data space. BINDER 
cannot allocate the stack. Reorganize the data space. 

E Not enough space for XEP table; n words required, ~ words available 

The External Entry Point table cannot be placed in the code space. 

W Object file is named $vol.subvol.ZZBinnnn 

BINDER assigned an arbitrary name after other file naming attempts 
failed for the target file. nnnn is a numeric suffix that 
uniquely identifies the file.---VOl and subvol are the same as 
would have been used. This is an informative message only. 

E Obey nesting exceeds maximum 

Four levels of nesting is the maximum allowed in an obey. 

E Old format object file: file-name 

1. The file was compiled by an earlier compiler version without 
BINDER. Recompile using the correct version. Check with your 
installation's system support personnel. 

2. The file previously had BINDER tables but has been stripped 
(by a BINDER STRIP command). BINDER cannot manipulate the 
file in any way; recompile. 

W Old object file has been renamed to file-name 

B-8 

This warning indicates the new name of the existing object file. 
The renaming makes way for the new object file to be given the 
name specified by the user. If the old file is not in use, it is 
purged. If the old file is in use, it is renamed. 



BINDER Error Messages 

E Old version of INSPECT information for entry-point-name 

Symbol table incompatible with the current version of INSPECT. 
Recompile the program containing entry-point-name. 

F Paging file error file-error-message(nnn) or ALLOCATESEGMENT 
error-code nnn 

Refer to the GUARDIAN Operating System Programming Manual for a 
description of the indicated error type. 

W Parameter count mismatch on entry-point-name 

SELECT CHECK PARAMETER ON is in effect (default), and the 
consistency check failed. The parameters required by the named 
entry point are inconsistent with the call; the inconsistency is 
in the number of parameters. This message is also issued if calls 
to the same entry point from separately compiled code blocks are 
inconsistent in parameter passing. 

W Parameter mode mismatch on entry-point-name parameter ~ 

SELECT CHECK PARAMETER ON is in effect (default), and the 
consistency check failed. The parameters required by the named 
entry point are inconsistent with the call; the inconsistency is 
in the mode of the parameter. Parameter mode is by-value, 
by-reference, or extended-reference. This message is also issued 
if calls to the same entry point from separately compiled code 
blocks are inconsistent in parameter passing. 

W Parameter type mismatch on entry-point-name parameter n 

SELECT CHECK PARAMETER ON is in effect (default), and the 
consistency check failed. The parameters required by the named 
entry point are inconsistent with the call; the inconsistency is 
in the type of the indicated parameter. This message is also 
issued if calls to the same entry point from separately compiled 
code blocks are inconsistent in parameter passing. BINDER goes on 
to inform the user whether the mismatch was between two external 
declarations of a procedure or between an external declaration and 
the actual procedure declaration. BINDER detects when at least 
one parameter is an INT, INT(32), or STRING and informs the user. 
If only one parameter is an INT, INT(32), or STRING, BINDER 
designates the parameter that is not any of the three types as 
"other". If neither parameter is INT, INT(32), or STRING, BINDER 
outputs more detailed information on the mismatch. This 
information includes one or more of the following: parameter 
storage type, parameter length in bits, number of units, and 
number of digits to the right of the decimal point. Parameter 
checking can be disabled by setting CHECK PARAMETER OFF. 

B-9 



BINDER Error Messages 

E Primary global area overflow 

FORTRAN -- too many variables in FORTRAN COMMON are referenced. 
Recompile using the ?EXTENDCOMMON compiler directive. 

TAL -- Too many global variables defined. 

W Procedure references absolute global data which may be relocated: 
code-block-name 

TAL -- ?RELOCATE compiler directive was used and relocation may 
have occurred. The #GLOBAL block is not at offset zero. The 
compiler and command-driven BINDER issue warnings. 

E Range members in wrong order: name to name 

If ADD or REPLACE command has an incorrect range given, respecify 
block names in ascending order by location in the object file. 
Use LIST LOC command or a current map listing to verify the order 
of blocks in the input file. 

If the command refers to a range in an include list, also 
respecify the command with names in ascending order as on the 
list. The INFO INCLUDE command can be used. 

W Read-only data block moved to above 32K to avoid straddling 32K: 
data-block-name 

TAL -- a string P-relative array was moved. 

F Reference to a block expected, but not in, G-relative address area 
block-name + off set REF TO block-name + off set 

BINDER was expecting a G-relative address reference for a block but 
received an address outside of G-relative space. 

W Reference to string P-relative in wrong half of code space may 

E 

fail: proc-name + offset REF TO block-name + offset 

TAL -- BINDER cannot verify that references to the array are 
valid. Note that proc-name + offset is a fix-up word rather than 
as indicated in the 11st1ng. 

RENAME {code} block is not on the include list 
data 

The code or data block specified in a RENAME command must be on 
the include list. 

B-10 



BINDER Error Messages 

W Return type mismatch on proc-name 

SELECT CHECK PARAMETER ON is in effect (default), and the 
consistency check failed. The return type required by the named 
procedure is inconsistent with the call. This message is also 
issued if calls to the same entry point from separately compiled 
code blocks are inconsistent in parameter passing. Parameter 
checking can be disabled by setting CHECK PARAMETER OFF. 

F Storage file error file-error-message (nnn) 

An error occurred in the temporary work file that BINDER uses to 
hold code and data until the object file is built. Refer to the 
GUARDIAN Operating System Programming Manual for a description of 
the error. 

E STRIP command cannot be used on this file 

A valid old-format object file cannot be constructed for this 
file. 

E STRIP file cannot be open (use CLEAR command) 

BINDER is currently using the file for prior commands (for 
example, FILE). CLEAR resets BINDER to the initial state; if no 
other opens are current for the file, it can then be stripped. 

F Symbol file error: file-error-message (nnn) 

An error occurred in the temporary work file that BINDER uses to 
hold symbol information until the object file is built. Refer to 
the GUARDIAN Operating System Programming Manual for a description 
of the error. 

F The attributes of two FCBS for the same data block do not match 
block-name 

The attributes of FCBs for the same data block must match. This 
could be a user error but is more likely a compiler error. 
Contact your Tandem representative. 

F The compiler has used the same unique ID for two different names 

This message indicates a BINDER internal error. Contact your 
Tandem representative. 

E The MAIN must be in COBOL since COBOL procedures are present 

Mixed-language binding with COBOL code requires that the MAIN 
program be COBOL to allow correct initialization for the COBOL 
syntax error code. Consider adding a skeleton program that 
contains a call to the major entry point. (Only one block with 
the MAIN attribute is allowed.) 

B-11 



BINDER Error Messages 

W TNS/II user library violation: MAIN procedure code-block-name 

SELECT CHECK LIBRARY ON is in effect and a procedure with MAIN 
attribute was encountered. 

W TNS/II user library violation: referencing data block block-name 

A data block with read-write access was added to the include list 
and CHECK LIBRARY ON is in effect. Since this can affect data 
memory organization, the message is issued. 

E Unsatisfied reference to a data block 

Before a BUILD command is entered, the unresolved data reference 
list must be empty. There are still unresolved data block 
references. Use INFO UNRESOLVED DATA command to chieck the 1 ist. 

E Unterminated continuation line 

End-of-file was encountered while scanning for the remainder of a 
continuation line. 

E Unterminated string 

The ASCII input to a MODIFY command is missing the closing 
quotation mark. 

F Value specified in VERIFY command not equal to current value: 
should be %value, is %value 

The VERIFY command can be used during a non-interactive BIND 
session to stop the session if a discrepancy exists between an 
expected code or data value and the actual value. 1rhis message 
indicates what value did not check out. 

W VARIABLE attribute mismatch on proc-name 

TAL -- different callers disagreed about the VARIABLE attribute of 
an entry point, or caller and callee disagreed about the callee's 
VARIABLE attribute. 

F Work file error: file-error-messag~(nnn) 

B-12 

The work file is the object file being constructed. Refer to the 
GUARDIAN Operating System Programming Manual for a description of 
the error type. 



APPENDIX C 

SYNTAX SUMMARY FOR SESSION COMMANDS 

BINDER command syntax is summarized in this appendix. Detailed 
information for each command is referenced by page number. 

{
CODE entry-name-list} 

ADD DATA block-name-list 
* 

[ FROM file-name ] [ ' DELETE ] 

ALTER entry-name-list , alter-spec [ , alter-spec ] ... 

where alter-spec is one of: 

CALLABLE { ON I OFF 
LIKE entry-name 
MAIN { ON I OFF } 
PRIV { ON I OFF } 
RESIDENT { ON I OFF } 

BUILD [ file-name [ ! 
[

' set-specification J 
, select-specification 

where set-specification is one of: 

{ ~*i~K } value [ PAGES I WORDS ] 
EXTENDSTACK 

INSPECT { ON I OFF 
LIBRARY file-name 
LIKE file-name 
PEP number 
SAVEABEND { ON I OFF 
SYMBOLS { ON I OFF } 

3-6 

3-9 

3-11 

C-1 



Syntax Summary 

where select-specification is one of: 

CHECK check-number 
COMPACT { ON I OFF } 
LIST list-spec 
OMIT entry-name-list 
REFER refer-list 
SATISFY { ON I OFF 
SEARCH file-list 

CHANGE { 
DATA value [ PAGES I WORDS 
INSPECT { ON I OFF } 
LIBRARY file-name 
SAVEABEND { ON I OFF } 

l } IN object-file 

CLEAR 

COMMENT [ text ] 

{ 
CODE block-name-1 i st } 

DELETE ~ATA block-name-list 

DUMP 
{

CODE code-block-name} 
DATA data-block-name I :ff set 

[ dump-spec-list ] [ FROM file-name ] 

where dump-spec-list is: 

dump-spec 
( dump-spec , dump-spec ] ... ) 

where dump-spec is: 

ASCII 
HEX 
DECIMAL 
I CODE 
OCTAL 

ENV [~~~TEM] 
VOLUME 

EXIT 

C-2 

[ , count] ) 
TO * 

3-14 

3-16 

3-16 

3-17 

3-18 

A-3 

A-3 



Syntax Summary 

FC A-3 

FILE file-name 3-20 

HELP 
[

command-name J 
[ < ] param-name [ > ] 

A-4 

I CODE block-name-list l 
INCLUDE DATA block-name-list [ , DETAIL ] 

INFO 

LIST 

UNRESOLVED 

~NTRY entry-name-list 

DATA 
ENTRY 
* 

* [ , DETAIL 

SOURCE 

CODE 

DATA 

{
address-list } 
block-name-list 

{
address-list } 
block-name-list 

list-option [ , BRIEF 

list-option [ , list-option] ... 
[ , BR! EF ] 

* [ , BRIEF 

where list-option is one of: 

LOG 

ALPHA 
LOC 
XREF 
* 

{
TO file-name} 
STOP 

3-21 

[ FROM file-name ] 3-24 

A-5 

C-3 



Syntax Summary 

MODIFY 
{

CODE code-block-name } 
DATA data-block-name 

[ , value ] 

where modify-spec is one of: 

ASCII 
HE:X 
DECIMAL 
OCTAL 

[ modify-spec ] [ offset ] 3-27 

MOVE entry-name-list { AFTER I BEFORE } entry-name 3-30 

[ , entry-name-list f AFTER I BEFORE} entry-name ] ... 

OBEY file-name A-6 

{
OUT file-name } 
I OUT file-name I 

RENAME 
{

CODE code-block-name } 
DATA data-block-name 

{
CODE entry-name-list} 

REPLACE DATA block-name-list 
* 

TO name 

[ FROM file-name ] 

RESELECT {;elect-parameter [ , select·-parameter ] ···} 

RESET {;et-parameter [ , set-parameter ] ···} 

A-7 

3-32 

3-33 

3-35 

3-36 

SATISFY [ select-specification [ , select-specification ] . . . ] 3-38 

C-4 



Syntax Summary 

SELECT 

SET 

SHOW 

CHECK 
{
check-option } 
( check-option [ , check-option ] ... ) 

COMPACT { ON I OFF } 

{
list-option 
( list-option [ , list-option 

LIST 

{
entry-name 
( entry-name [ , entry-name ] 

OMIT 

REFER 
{
refer-pair } 
( refer-pair [ , refer-pair ] ... ) 

SATISFY { ON I OFF } 

SEARCH 
{
file-name } 
( file-name [ , file-name] ... ) 

{ ~~~~NDSTACK} value [ PAGES I WORDS ] 
STACK 

INSPECT { ON I OFF 
LIBRARY file-name 
LIKE 
PEP number 
SAVEABEND { ON I OFF 
SYMBOLS { ON I OFF } 

FILE 
MODIFY 
SELECT 
select-parameter 
SET 
set-parameter 

, . . . 

STRIP file-name 

SYSTEM [ \system 

VERIFY 
{

CODE code-block-name} 
DATA data-block-name 

, value 

VOLUME 
{

$volume } 
[ $volume. ] subvol 

[ verify-spec ] [ off set ] 

3-40 

' ... 

3-44 

3-47 

3-50 

A-8 

3-51 

A-8 

C-5 





APPENDIX D 

NONSTOP II USER-LIBRARY INFORMATION 

BINDER corrunands make it easier to use Nonstop II user libraries. This 
appendix contains information needed for effective prograrruning with 
user libraries. The information in this appendix is an overview and 
should not be considered exhaustive. 

A user library contains procedures that the GUARDIAN operating system 
binds to the program file at run time. Run-time binding does not 
include copying the procedure into the program file, and a program 
file can have one (and only one) user library associated with it. 
Therefore, a running program can have 128K words of code space: 64K 
words for the program code space and 64K words for the library code 
space. 

User libraries are sharable by multiple programs. Placing procedures 
that are commonly used in a user library can reduce the storage 
required for object code on disc and in main memory, while using the 
maximum code space. 

GUARDIAN BINDING OF USER LIBRARY PROCEDURES 

At run time, the GUARDIAN operating system searches the optional user 
library to resolve each unresolved external reference before searching 
the system library. (Instructions for specifying user libraries are 
given under "Program File Use of Libraries" in this appendix.) 

GUARDIAN resolves an external reference by changing the call in the 
program file appropriately, that is, to point to the user library or 
to the system library. Then, the program file can be run repeatedly 
without satisfying the references again. 

If no user or system library procedure can be found to satisfy a 
run-time external reference, an error message is displayed as the 
process is started. When the unresolvable external reference is 
reached, the process enters the debug state. (That is, if GUARDIAN 
encounters an unresolvable external reference, it changes the 
reference into a call to DEBUG.) 

D-1 



NONSTOP II USER-LIBRARY INFORMATION 

OBJECT FILE FORMAT 

Since the GUARDIAN operating system binds program files and library 
procedures at execution time, there are no restrictions on object-file 
format. A program file and its library file can exist in any 
combination of new (BINDER) and old (GUARDIAN A03/E04 and before) 
formats. 

PREVENTING BINDER RESOLUTION OF LIBRARY CALLS 

If a user library will be used (for example, to avoid code-space 
overflow), care should be taken to prevent binding of library 
procedures into the object file before run time. 

Compile-time Binding 

The compile-time BINDER attempts to resolve external references if the 
compiler SEARCH directive specifies a list of object files for this 
purpose. One exception to this in COBOL is COBOL's use of the file 
CLIBOBJ (see the COBOL Programming Manual). 

When a search list is present, the BINDER attempts to resolve all 
unresolved external references. If compile-time binding does result 
in a user-library procedure being in the program file, that procedure 
can be deleted from the program file in an independent BINDER session. 

Command-Driven Binding 

During a BINDER session, you can specify names of individual entry 
points that BINDER should not include in an object file. You can also 
build a user-library file of procedures copied from existing program 
files: then, you can build more compact program files by omitting the 
library procedures. 

To specify the external references that BINDER should not resolve, you 
can use these commands as appropriate: 

1. SELECT OMIT commands naming entry points of user library 
procedures. This prevents binding of these procedures in the 
program file. 

2. BUILD command with the SATISFY OFF parameter option. This, 
however, prevents any attempt_ at resolution after the target 
file contents have been specified by other commands. 

3. DELETE command to remove user-library procedures that were 
already bound in the program file. 

D-2 



NONSTOP II USER-LIBRARY INFORMATION 

PROGRAM FILE USE OF LIBRARIES 

Only one user library can be associated with a program file at any 
time. Therefore, all concurrently executing processes created from a 
single program file use the same library file. 

You can specify the user library for a program file by: 

1. the new TAL-compiler directive LIBRARY 

2. the BINDER command SET LIBRARY 

3. the COMINT RUN command LIB option. 

The library remains associated with the program file until explicitly 
changed. (That is, GUARDIAN changes to the program file for 
external-reference resolution remain when the process completes. The 
GUARDIAN operating system again resolves the calls left for resolution 
at NEWPROCESS time if it detects modifications to the program file or 
the user library when another RUN command occurs.) 

To specify a different library with a program file: 

1. write access to the program file is required, and 

2. all processes created from the program file must have stopped. 

LIBRARY FILE RESTRICTIONS 

A library file should not contain a MAIN program. Beginning with the 
A05 release of GUARDIAN, this results in a run-time error. 

Library procedures cannot call procedures in the program file. 

BINDER does not currently support the inclusion of COBOL programs in 
user libraries. FORTRAN user libraries are supported as long as there 
are no DATA statements, SAVE statements or COMMON statements. 
However, both FORTRAN and COBOL programs can call TAL procedures 
contained in user libraries. 

D-3 



NONSTOP II USER-LIBRARY INFORMATION 

LIBRARY PROCEDURE DATA 

The following restrictions on data declarations should be followed. 

1. There is one data space (stack) for a process: the one 
allocated for the program file. 

2. Since the allocation and initialization of global data are 
specified in the program file, if the library file has global 
data, it should match the global data of the program file. (The 
operating system ignores any initialization of global data in 
the library file.) 

3. A TAL library procedure can have its own read-only arrays. 
Nevertheless, a global read-only array must be in the code space 
containing references to the array. If both code spaces contain 
references to such an array, copies of the array must both exist 
in the library and in the program file. 

4. User-library procedures are not allowed to pass read-only array 
arguments to user code or to system code. In particular, a 
user-library call to FORMATDATA cannot pass read-only array 
arguments. 

D-4 



INDEX 

ADD command 1-8, 3-1, 3-3, 3-6/8, 3-34, 4-9/11, C-1 
errors B-1, B-4, B-7, B-10 
examples of 2-3, 3-7/8, 3-10, 3-13, 3-31, 3-39 
UPDATE equivalent 1-12 

Adding code or data 
see ADD command 

Adding names to lists 3-6/7, 3-33, 3-40/43, 4-10/12 
Address overflow B-1 
AFTER parameter of MOVE command 3-30 
Allocation of code area pages 4-7 
ALPHA option 

of LIST command 3-25 
of SELECT command 3-42 

ALTER command 3-1, 3-3, 3-9/10, 4-3, C-1 
errors B-2, B-5, B-6 
examples of 3-10 
UPDATE equivalent 1-12 

ASCII option 
of DUMP command 3-19 
of MODIFY command 3-27/28 
of VERIFY command 3-51 

Attributes 3-9, 3-21/23, 3-36, 3-44/46, 4-3, B-11 
see also ALTER 

BEFORE parameter of MOVE command 3-30 
BIND command 1-9, 1-11, 2-2/3 

examples of 1-9, 1-11, 2-3 
BINDER 

commands 1-8, 1-12, 3-1/3, 3-6/52, 4-9 
error messages B-1/12 
error statistics 2-5 
output 

cross-reference listing 2-4, 2-8/9 
load map 2-4, 2-6/9, 3-11/12, 3-24/26, 3-40/43 
specifying listings 1-11, 2-6, 3-11/12, 3-24/26, 3-40/43 
statistics 2-4/5, 4-7 

primary function 1-1, 1-4, 4-15/16 
prompt 2-3 
relationship to CROSSREF 1-13 
relationship to INSPECT 1-13 
relationship to UPDATE 1-12 

Index-! 



INDEX 

requirements 2-1 
compatibility with compilers 2-1, B-2, B-8/9 

symbol tables 2-1, 3-50, 4-8, 4-14/15 
tables 2-1 
warning statistics 2-5 
with COMINT ASSIGN 2-2 
with COMINT PARAM SWAPVOL 2-2 

Binding 
command·-driven 1-4, 1-9, 2-2/3 
compile-time 1-2/3 
examples 1-9/10 
mixed-language 4-17/18 
object files 1-9 
preventing premature D-2 

BINSERV 1-2/3 
Block 

code 
see also Code block 4-2/3 

common 4-2, 4-4, 4-11 
consistency checking 3-40 
naming 4-4/5 
see also Data block 

data 4--3/4 
see also Data block 

definition of 1-5, 4-1 
importance as a unit of code or data 1-5, 4-1 
name 3--4 

assignment of 4-2, 4-4/5 
list 3-4 
range 3-4 

naming 1-4/5 
naming conventions 4-4/5 
order in target file 1-6 
own 

see Data block 
related to source language constructs 4-2 
relocating 

see MOVE command 
special 

see Data block 
types 4-2 

BLOCK option of SELECT command 3-40, 4-16 
BRIEF option of LIST command 3-24/25 
BUILD command 1-8, 2-4, 3-1, 3-11/13, 3-34, 3-38, 3-40, 4-10, 

4-14/15, A-3, C-1, C-10 
errors 3-13, B-3 
examples of 1-9/10, 3-7/8, 3-13, 3-34, 3-39 
implying a SATISFY operation 4-11/12 
suppressing resolution with D-2 
UPDATE equivalent 1-12 

Building a target file 3-11/13, 3-40/43, 4-1, 4-14/16 
error B-12 

Index·-2 



CALLABLE attribute 3-9, 4-3, B-2 
CALLABLE parameter of ALTER command 3-9 
CHANGE command 3-1, 3-14/15, C-2 

errors B-3 
examples of 3-15 

Changing values of words 3-27/29 
verification of 3-29 

CHECK parameter 
of BUILD command 3-12 
of RESELECT command 3-35 
of SELECT command 3-40/41, 4-16 
of SHOW command 3-47 

CLEAR command 1-8, 3-1, 3-14, 3-16, 3-20, 4-9, B-3, C-2 
errors B-11 

COBOL 
compiler 1-3, 2-1, 4-17 
extended data blocks 1-5, 2-8/9, 3-46, 4-5 
MAIN program unit 1-2, 4-5, 4-17/18, B-11 
PUCB B-2 
use of CLIBOBJ D-2 

Code block 4-2/3 
attributes 3-9/10, 4-3 
equivalents 4-2 
load map 

examples of 2-6/7 
type of information included 2-6 

name 4-4/5 
renaming 3-32 
size 4-15, B-4 

CODE parameter 
of ADD command 3-6/7, C-1 
of DELETE command 3-17, C-2 
of DUMP command 3-18/19, C-2 
of INFO command C-3 
of LIST command 3-24/25 
of MODIFY command 3-27/29, C-4 
of RENAME command 3-32, C-4 
of REPLACE command 3-33, C-4 
of VERIFY command 3-51, C-5 

Code region 4-7 
COMINT RUN command 

LIB option D-3 
Command summary 3-1/3 
Command syntax elements 3-4/5 
Command-driven mode 1-4, 1-9, 2-2/3, D-2 

see also Mode, interactive 
COMMENT command 1-8, 3-1, 3-16, A-2, C-2 

examples of 3-13, 3-19, 3-28 
Common block 

see Block 

INDEX 

Index-3 



INDEX 

COMPACT parameter 
effect on target file construction 4-15/16 
of BUILD command 3-12 
of RESELECT command 3-35 
of SELECT command 3-40/41 
of SHOW command 3-47 

Compile-time binding 1-2/3, D-2 
Compiler errors B-11 
Consistency checks 

for common and parameters 3-40/41 
Constructing a target file 3-11/13, 3-40/43, 4-1, 4-14/16 
Control blocks 4-4, 4-17, B-1 
Cross-reference lists 2-10/12, 3-24, 3-42 
CROSSREF 1-13 
Current file 1-7, 3-47 

clearing 3-16 
displaying contents of 3-18/19 
establishment of 3-20 
name of 3-47 

Data 
external references 

see Data block 
Data area size 3-44, 4-14, B-8 
Data block 3-4 

added implicitly 2-12 
cross-reference list 

examples of 2-12 
type of information included 2-12 

equivalents 4-2, 4-4 
external references 4-3/4 
load map 2-8/9 
names 4-2, 4-4/5 
renaming 3-32 
types of 1-4, 4-2/4 

COMMON 4-2/4, 4-10, 4-13, 4-15 
OWN 3-40, 4-2/4, 4-10 
Special 4-2/5, 4-10 

DATA parameter B-6 
of ADD command 3-6 
of BUILD command 3-11, 4-14 
of CHANGE command 3-14, C-2 
of DUMP command 3-18 
of LIST command 3-24/25 
of MODIFY command 3-27 
of RENAME command 3-32, C-4 
of REPLACE command 3-33 
of RESET command 3-36 
of SET command 3-44 
of SHOW command 3-48 
of VERIFY command 3-51, C-5 

Index-4 



Data space 
format 4-8 
setting the size of 3-13 
size, setting of 3-44 

DEBUG tool 4-8, 4-14, D-1 
DECIMAL option 

of DUMP command 3-19 
of MODIFY command 3-27/28 
of VERIFY command 3-51 

Default values 3-20, 3-35, 3-47, A-6 
Defining a target file 1-5/6, 3-44/46 
DELETE command 1-8, 3-1, 3-3, 3-17, B-2, C-2 

errors B-1 
reversing resolution with D-2 
UPDATE equivalent 1-12 

DELETE parameter of ADD command 3-6, C-1 
Deleting 

BINDER and INSPECT tables 3-50, B-9 
names from lists 3-16, 3-17 
procedures 

see ADD, DELETE commands 
DETAIL parameter of INFO command 3-21, C-3 
Disc file names A-1/2 
Disc space 

BUILD fails for insufficient 3-13 
object file extents 4-5 
requirements 2-1 

Display 
command syntax A-4 
contents of an object file 3-18/19 
current parameter values 3-21/23, 3-47/48 
include lists 3-5 
information about blocks & entry points 3-21/23 

DUMP command 1-8, 3-2, 3-18/19, C-2 
errors B-2, B-5, B-7 
examples of 3-19 
UPDATE equivalent 1-12 

Editing a command line A-3 
Emptying a list 3-16 
Ending a BINDER session A-3 
Entry name 3-4 

list 3-4 
range 3-4 

Entry point 
attributes of 3-9/10 
cross-reference list 

examples of 2-10/11 
type of information included 2-11 

load map 2-6/7 
names 4-2, 4-11/13 
postponing binding until run time D-2 

ENV command 3-2, A-3, C-2 
Error checking 2-5, 3-40/41, 4-16, B-9/10 

INDEX 

Index-5 



INDEX 

Error messages B-1/10 
Examples 

ADD command 3-7/8, 3-10, 3-13, 3-31, 3-34, 3-39 
binding separately compiled object files 1-9 
BUILD command 3-7/8, 3-13, 3-31, 3-34, 3-39 
CHANGE command 3-15 
COBOL MAIN program 4-18 
displays generated by INFO INCLUDE 3-5 
DUMP command 3-19 
FILE command 3-7/8, 3-19 
INFO command 3-23 
LIST command 3-26 
MODIFY command 3-28/29 
MOVE command 3-31 
multiple commands on one line 2-3 
object file statistics 2-5 
procedure replacement 1-9/10 
REPLACE command 3-13 
RESELECT command 3-35 
RESET command 3-37 
SATISFY command 3-39 
SELECT command 3-8, 3-43 
SET command 3-46 
SHOW command 3-48/49 

EXIT command 2-3, 3-2, C-2 
EXTENDSTACK parameter B-6 

of BUILD command 3-11, 4-14 
of RESET command 3-36 
of SET command 3-44, 4-14 
of SHOW command 3-48 

Extents, disc 4-5 
External references 

changes to unresolved list 3-17 
data 

must be resolved 4-3/4 
definition 1-1 
resolution 3-7 

deferred to run time 4-13 
using refer list 4-12/13 
using search list 4-12/13 

satisfaction 3-38/39, 3-43 
unresolved 

recorded in XEP 4-7 
resolved at run time D-1 

Fatal error B-1, B-6, B-9, B-11 
FC command 3-2, A-3, C-3 
FILE command 1-7/8, 3-2, 3-16, 3-20, 3-24, B-2, B-7, C-3 

examples of 1-11, 3-7/8, 3-19 
UPDATE equivalent 1-12 

File name expansion A-1/2 
FILE parameter of SHOW command 3-47, C-5 
FORTRAN compiler 1-3, 2-1, 4-17 

Index-6 



FROM parameter 
of ADD command 3-6, C-1 
of LIST command 3-24/26, C-3 
of REPLACE command 3-33, C-4 

G-relative address area B-10 
Gap at 32K boundary 2-5, 4-7 

cause of 4-15 
filling automatically 3-41, 4-15/16 
filling by means of MOVE command 3-30 
warning message B-3, B-10 

Global data 
in user libraries D-3 

Global read-only arrays 4-7, 4-15, B-10 
in user libraries D-3 

HELP command A-4, C-3 
errors B-8 

HEX option 
of DUMP command 3-19 
of MODIFY command 3-27/28, C-4 
of VERIFY command 3-51 

!CODE option B-5 
of DUMP command 3-19 

Illegal syntax 
effect on BUILD command 3-13 

INDEX 

Include lists 1-6, 3-6/7, 3-11, 3-16, 3-17, 3-21/23, 3-27, 3-30, 
3-38, 4-9/11, 4-14, B-2, B-4 

for code blocks 3-9, 3-27, 4-10/11 
for data blocks 3-27, 4-11 
for entry points 3-9/10, 3-30, 4-11 

INCLUDE parameters 
of INFO command 3-21 

INFO command 1-8, 3-2/3, 3-21/23, B-10, B-12 
examples of 3-5, 3-23 
UPDATE equivalent 1-12 

Input stage 4-9 
INSPECT parameter 

of BUILD command 3-11, 4-14/15 
of CHANGE command 3-14, C-2 
of RESET command 3-36 
of SET command 3-44/45, 4-14/15 
of SHOW command 3-48 

INSPECT tables 3-50, 4-5, 4-8, B-9 
INSPECT tool 1-13, 4-8, 4-14/15, B-9 
Instruction 

see Code block 
Interactive mode 2-3 
INTERRUPT attribute 4-3 

Index-7 



INDEX 

Language, mixed 
binding 4-17/18 

LIBRARY option of SELECT command 3-40/41, 4-16 
LIBRARY parameter 

of BUILD command 3-11, 4-14 
of CHANGE command 3-14, C-2 
of SET command 3-44, 4-14, C-5, D-3 
of SHOW command 3-48 

Library, user 
see User library 

LIKE parameter 
of ALTER command 3-9, C-1 
of RESET command 3-36 
of SET command 3-44 
of SHOW command 3-48 

Limits 
code space D-1 
data space D-1 

Linkage 
see Binding 

LIST command 1-8, 1-11, 2-6, 2-10, 3-2, 3-·24/26, B-2, C-3 
errors B-7 
examples of 1-11, 3-26 

LIST parameter 
of BUILD command 3-12, C-2 
of RESELECT command 3-35 
of SATISFY command C-4 
of SELECT command 3-40/42 
of SHOW command 3-47 

Listing 
of file contents 

see DUMP command 
of include lists 

see INFO command 
Listings 2-4/12 

specifying 1-11 
Lists 

include 1-6/8, 3-1/8, 3-11, 3-16, 3-21/23, 3-27, 3-30, 3-38, 
4-9/11, 4-14 

modify 1-6, 1-8, 3-1, 3-3, 3-16, 3-17, 3-27/29, 4-9, 4-13/14 
of names 

syntactic rules for 3-3/5 
omit 1-6, 3-7, 3-12, 3-16, 3-35, 3-42, 4-9/14 
refer 1-6, 3-12, 3-16, 3-35, 3-42, 4-12 
search 1-7, 3-12, 3-16, 3-35, 3-38, 3-43, 4-12 
unresolved reference 1-7/8, 3-5, 3-16, 3-17, 3-21/23, 3-38, 

4-9/10, 4-12/14 
Load maps 

alphabetical order 3-25, 3-42 
location order 3-25, 3-42 

Load module 
see Code block 

Index-8 



LOC option 
of LIST command 3-25 
of SELECT command 3-42 

LOG command 3-2, A-5, C-3 

MAIN attribute 3-9/10, 4-3, 4-16, B-3, B-7 
disallowed in user library entry points B-12, D-3 

MAIN parameter of ALTER command 3-9/10 
Maintenance of unresolved reference list 4-9 
Mixed-language binding 4-17/18 
Mode 

interactive 2-3 
noninteractive 2-3 

INDEX 

MODIFY command 3-2, 3-17, 3-19, 3-27/29, 3-47, 4-4, 4-9, 4-13, C-4 
errors B-2, B-6, B-12 
examples of 3-28/29 
UPDATE equivalent 1-12 

Modify list 1-6, 1-8, 3-3, 3-16, 3-17, 3-27/29, 4-9, 4-13/14 
MODIFY parameter of SHOW command 3-47 
Modifying object files 4-13 
Module 

see Block, Code block, Data block 
MOVE command 3-3, 3-30/31, 4-9/10, C-4 

errors B-6 
examples of 3-31 

Moving code blocks 3-30/31 

Name lists 3-3/4 
Name ranges 3-3/4 
Naming the target file 3-12 
Noninteractive mode 2-3 
Nonresident code blocks 3-10, 4-7, 4-15 

OBEY command A-6, C-4 
errors A-6, B-8 

Obey files A-6, B-6 
OBJECT 

as a default target file name 3-12, B-3 
Object file 4-1/8 

construction 
see Target file 

definition of 4-1 
format 4-5/8, D-2 

BINDER region 4-8 
code region 4-7 
code region (PEP) 4-7 
code region (user code) 4-7 
code region (XEP) 4-7 
data region 4-8 
header 4-5 
INSPECT region 4-8 

Index-9 



INDEX 

size of 2-1, 2-5 
affected by SYMBOLS option of SET 3-45, 4-14/15 
reduced by COMPACT option of SELECT 3-12, 3-35, 3-40/41 
reducing (see STRIP command) 

structure 4-1/5 
Object module 

see Code block 
OCTAL option 

of DUMP command 3-19 
of MODIFY command 3-27/28 
of VERIFY command 3-51 

Offset 4-5 
Offset option 

of MODIFY command 3-27/28 
of VERIFY command 3-51 

Omit list 1-6, 3-16, 3-35, 3-42, 4-9/14, B-3 
OMIT parameter 

of BUILD command 3-12, C-2 
of RESELECT command 3-35, C-4 
of SELECT command 3-40/42, 3-42, C-5, D-2 
of SHOW command 3-47 

Ordering code and data blocks 
and object file format 4-7/8 
overview 1-6/7 
see also MOVE command 
with ADD command 3-6 

OUT command 3-2, A-7, C-4 
Output stage 4-14/16 
Overflow 

avoiding code space D-2 
Own block 

see Data block 

Page faults 3-30, 4-10, B-9 
reducing 3-30 

Pages 4-7, 4-8 
required for code/data allocation 3-44, 4-7, 4-8 

PAGES option 
of BUILD command 3-11 
of CHANGE command 3-14 
of RESET command 3-36 
of SET command 3-44, C-5 

Parameter checking errors B-11 
PARAMETER option of SELECT command 3-40/41, 4-16 
Patching attribute values 

of object files 3-14 
Patching code or data 

see MODIFY 
PEP 

list 1-11 
in object file statistics 2-5 

table 
description 4-7 

Index-10 



PEP parameter 
of BUILD command 3-11, 4-14, C-1 
of RESET command 3-36 
of SET command 3-44/45, 4-14, C-5 
of SHOW command 3-48 

Printed output 2-4, 3-41/42, A-7 
PRIV parameter 

of ALTER command 3-9/10, C-1 
warning message B-2 

PRIVILEGED attribute of entry point 3-9/10, 4-3 
Procedure replacement 1-9/10 
Program 

definition of 4-1 
Program file 

loading D-1 
see also System Desc. Manual (Section 4) 

Prompt character for BINDER 2-3 

Ranges of blocks and entry points 3-3/5, B-10 
Read-only arrays 

global 4-7, 4-15, D-4 
Recording session input and output A-5 
Refer list 1-6, 3-16, 4-9, 4-12, 4-14 
Refer pair 3-42, 4-12, B-6 
REFER parameter 

of BUILD command 3-12 
of RESELECT command 3-35 
of SELECT command 3-40/42, 3-42, 4-12 
of SHOW command 3-47 

Relocating code blocks 3-30 
Removing 

BINDER and INSPECT tables 3-50 
names from lists 3-16, 3~17 

RENAME command 3-2, 3-32, C-4 
disallowed with special data blocks 3-32 
errors B-10 

Renaming code and data blocks 3-32 
Repeating a command line A-3 
REPLACE command 1-8, 3-2/3, 3-33/34, 4-9/11, C-4 

errors B-1, B-7, B-10 
examples of 3-34 

Replacing code and data blocks 3-33 
see DELETE parameter of ADD 
see REFER option of SELECT command 

RESELECT command 3-2, 3-35, 3-40, 4-12, C-4 
examples of 3-35 

RESET command 3-2, 3-36/37, 3-44, C-4 
examples of 3-37 

RESIDENT attribute 3-9/10, 4-3, 4-15 
RESIDENT parameter of ALTER command 3-9/10, C-1 

INDEX 

Resolving external references 1-1, 3-7, 3-12, 3-38, 3-43, 4-11/13, 
4-15, B-3, B-5 

Returning to original state 3-16, 3-35 
Run-time binding D-1/2 

Index-11 



INDEX 

SATISFY command 3-2, 3-38/39, 4-9/12 
errors B-3 
examples of 3-39 

SATISFY parameter 
of BUILD command 1-12, 3-12, C-2 
of RESELECT command 3-35 
of SELECT command 3-40/43, 3-43, C-5 
of SHOW command 3 ·-4 7 

SAVEABEND parameter 
of BUILD command 3-11, 4-15 
of CHANGE command 3-14/15, C-2 
of RESET command 3-36 
of SET command 3-44/45, 4-15 
of SHOW command 3-48 

Saving a file 3-45, 4-15 
Search list 1-7 
SEARCH parameter 

of BUILD command 3-12 
of RESELECT command 3-35 
of SATISFY command 3-38 
of SELECT command 3-40/43, 3-43, 4·-12 
of SHOW command 3-47 

SELECT command 1-8, 2-6, 3-3, 3-38, 3·-40/43, 3-47, 4-7, 4-9/12, 4-15, 
C-5 

error B-11, B-12 
errors B-3, B-5, B-9/10 
examples of 3-43 
suppressing resolution with D-2 
UPDATE equivalent 1-12 

SELECT parameter of SHOW command 3-47, C-5 
Select-specification parameter 3-12, 3-35, 3-38, 3-47 
SET command 1-8, 3-3, 3-14, 3-36, 3-44/46, 4-14, C-5, D-3 

examples of 3-27 
UPDATE equivalent 1-12 

SET parameter 
of SHOW command 3-47/48, C-5 

Set-specification parameter 3-11, 3-36, 3-44/45, 3-48, B-6 
Setting attribute values 3-9/10, 3-44/46 
Setting parameter values 3-40/43 
SHOW command 1-8, 3-3, 3-29, 3-47/49, C-5 

examples of 3-29, 3-48/49 
SOURcg parameter 

of LIST command 3-24 
Special block 

see Data block 
Specifying input file names 1-7, 3-6/7, 3-33, 3-40/43 
Specifying output listings 1-11 
STACK parameter 

error message B-6 
of BUILD command 3-11, 4-14 
of RESET command 3-36 
of SET command 3-44, 4-14 
of SHOW command 3-48 

Index-12 



Stack space 3-44, 4-14, B-8 
Stages of BINDER operation 4-9, 4-14 
Storage space 

code D-1 
STRIP command 1-8, 2-1, 3-3, 3-50, 4-8, C-5 

errors 3-50, B-11 
Subvolume names A-1/2, A-8, B-7 
SYMBOLS parameter 

of BUILD command 3-11, 4-14/15 
of RESET command 3-36 
of SET command 3-44/45, 4-14/15 
of SHOW command 3-48 

Syntax conventions 
for name lists 3-3/4 

Syntax summary C-1/5 
SYSTEM command 3-3, A-8, C-5 

Tables 

TAL 

BINDER 2-1, 3-50, 4-7/8, 4-14/15 
INSPECT 3-50, 4-5, 4-8, B-9 
PEP 4-7, 4-14, B-6 
XEP 4-7, B-8 

compiler 1-3, 2-1 
LIBRARY directive D-3 

procedures 
in user libraries D-4 

Target file 1-4, 3-29 
attributes 3-11, 3-44/45, 4-14/15 
characteristics 3-36, 3-44/45, 4-2, 4-14/15 
construction 3-11/13, 3-40/43, 4-1, 4-15/16 
definition of 1-4, 4-1 
naming 3-12 
ordering 1-6/7, 3-6, 4-15 

Temporary work file errors B-11 

UNRESOLVED DATA parameter 
of INFO command 3-21/23 

UNRESOLVED ENTRY parameter 
of INFO command 3-21/23 

Unresolved external reference 
resolved at run time D-1 

INDEX 

Unresolved reference list 1-7/8, 3-16, 3-17, 3-21/23, 3-38, 4-9/10, 
4-12/14, B-12 

UPDATE command equivalents 1-12 
UPDATE tool 1-12, 3-50, B-2 
User library 3-14, 3-45, 4-14, 4-16, D-1/4 

error B-12 
file 

building of D-2 
restrictions D-3 

specifying D-3 

Index-13 



INDEX 

VARIABLE attribute 4-3 
error B-12 

VERIFY command 3-3, 3-51/52, C-5 
errors B-6, B-12 

VOLUME command 3-3, A-8, C-5 
Volume name A-1/2, A-8, B-7 

Warnings 2-5, B-1 
WORDS option 

of BUILD command 3-11 
of CHANGE command 3-14 
of SET command 3-44, C-5 

XEP 2-5, 4-7, B-8 
XREF option 

of LIST command 3-25 
of SELECT command 3-42 

ZZBinnnn 
ultimate default name for target file 3-12, B-3 

#GLOBAL 
errors B-10 

I ndex--14 



+ 

YOUR COMMENTS PLEASE 

Tandem Nonstop™ & Nonstop II™ Systems 
BINDER™ User's Manual 

82314 BOO 

Tandem welcomes your comments on the quality and usefulness of its publications. Does this publication serve 
your needs? If not, how could we improve it? If you have specific comments, please give the page numbers with 
your suggestions. 

This comment sheet is not intended as an order form. Please order Tandem publications from your local 
Sales office. 

FROM: 

Name _______________ _ Date 

Company ___________ _ 

Address 

City/State Zip 



111111 

C1Rsr cLA~~S 1P~R~~~o.~a;p L~P~fi'J} cA, u.s.A] 
POSTAGE WILL BE PAID BY ADDRESSEE 

Tandem Computers Incorporated 
19333 Vallco Parkway 
Cupertino, CA 95014-9990 

Attn: Manager-Software Publications 

TAPE TAPE 

NO POSTAGE l 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 


