
m
z
(/)

n
1:;tJ -c:J
m
-c
~..,

l.··o .. if

(D

8
-~

-
3 -· ::J

JO

~ c
::J
c
c -

ENSCRIBE
Programming
Manual

m~"li1i 1 ii I I 11

111111
1111! I

111111.

111111

111111

11 I 1 -

I I I

I I I

11 . , 11
1

11

I JI . ; ·· U1.1i1 _J 1.,1 JI!

P/N 82083

Tandem Nonstop (TM) Systems

ENSCRIBE (TM) PROGRAMMING MANUAL

Copyright (c) 1981

TANDEM COMPUTERS INCORPORATED
19333 Vallco Parkway

Cupertino, California 95014

April, 1981
Printed in U.S.A.

Copyright {c) 1981 by Tandem Computers Incorporated.

All rights reserved. No part of this document may be reproduced
in any form, including photocopying or translation to another
programming language, without the prior written consent of Tandem
Computers Incorporated.

The following are trademarks of Tandem Computers Incorporated:
Tandem, Nonstop, AXCESS, DYNABUS, ENCOMPASS, ENFORM, ENSCRIBE, ENVOY,
EXCHANGE, EXPAND, GUARDIAN, PATHWAY, TGAL, XRAY.

PREFACE

This manual documents ENSCRIBE, Tandem~s data base record manager. It
is written for data base programmers and data base administrators
whose job is to design, develop, and maintain data base applications
for a Tandem Nonstop System or a Tandem Nonstop II System.

The manual contains both reference and background information. The
primary source of reference material is Section 3, File Management
Procedures, and Appendix E, File Management Procedure Syntax Summary.
Section 3 contains detailed syntax descriptions of each of the
ENSCRIBE file management procedures; the syntax descriptions are
listed in alphabetical order.

Section 1, Introduction to ENSCRIBE, lays the foundation for all of
the detailed information that follows. The introduction should be
read at least once.

Section 2, ENSCRIBE Disc Files, describes, in detail, each of the four
types of files supported by ENSCRIBE: key-sequenced files, relative
files, entry-sequenced files, and unstructured files.

Section 3, File Management Procedures, contains syntax descriptions
of all the ENSCRIBE calls.

Section 4, File Access, describes how ENSCRIBE files are accessed.

Section 5, File Creation, describes how to create ENSCRIBE disc files.

Section 6, File Loading, describes how to load data into ENSCRIBE
files.

Appendix A, Sequential I/O Procedures, describes a set of procedures
that can be used to perform common input and output operations on
ENSCRIBE disc files.

An index is included for quick access to the mass of details that
make up this book.

i-1

ENSCRIBE PROGRAMMING MANUAL

Table of Contents

SECTION 1. INTRODUCTION TO ENSCRIBE
Disc File Organization •..••.••.•••••
Structured Files .••••••••.••••••••••

Key-Sequenced File Structure •.••••
Relative File Structure ••••••
Entry-Sequenced File Structure ••..••.•••••
Multi-Key Access To Structured Files
Relational Access Among Structured Files
Automatic Maintenance of All Keys
Data and Index Compression .•...•

Unstructured Files •.••••••••••••••.
Access Coordination Among Multiple Accessors ••••••
Locking •••..••••

File Locking
Record Locking

Wait/No-Wait I/O
Cache•.•.•••
Sequential Access Buffering
Multiple Volume (Partitioned) Files
File Creation
Data Definition Language
File Loading•••••..••
Record Management Functions
File System Implementation .•.••

File and I/O System Structure
Hardware Structure ..•.•.
Software Structure

File System Procedure Execution
File Open
File Transfers
Buffering
File Close
Automatic Path Error Recovery for Disc Files
Mirror Volumes

.• 1-1

. .1-2
.... . 1-3

.1-4

.1-5
. 1-6

. .1-7
.1-11

..• 1-12
.1-12

. 1-13
.1-14
.1-15
.1-15

.• 1-15
.1-16

.• 1-20
.1-20
.1-21
.1-21

•• 1-22
.1-22
.1-23

.• 1-24
.1-24

•. 1-24
.1-26

.• 1-29
.1-30

••••.•. 1-3 3
.1-35

.. 1-37
....... 1-3 7

.1-44

i-3

Table of Contents

i-4

SECTION 2. ENSCRIBE DISC
Structured Files •.••.

Key-Sequenced Files
Relative Files •.••.

FILES

Entry-Sequenced Files ...••
Accessing Structured Files

File
Record
Key
Primary Key
Alternate Key •.••••

Concepts

Specifier
Value and

Current Key
Current Key
Positioning Mode and

and Curren Access
Current Position

Compare Length
Approximate
Generic
Exact

Subset
Alternate Keys •••.•••

Alternate Key Attributes

Path

Alternate Keys in Key-Sequenced Files
Alternate Keys in Relative Files ••.•.
Alternate Keys in Entry-Sequenced Files .••••

Comparison of Structured File Characteristics •.•.•
Unstructured Files

Characteristics •..•..
Relative Byte Addressing and File

SECTION 3. FILE MANAGEMENT PROCEDURES
File Management
Characteristics

Call Summary •.••••
of ENSCRIBE Calls

Completion ..•.•.•••...••
<file number> Parameters
<tag> Parameters
<buffer> Parameter
<transfer count> Parameter
Condition Codes ••..•.•..•••
Errors
Access Mode and Security
Current State Indicators

External Declarations
File Names •••..••••••

Permanent Disc File
Temporary File Names
File Name Examples
Network File Names

Names

Checking

Pointers

.2-1

.2-1

.2-2
..2-5
.2-7
.2-8

••• 2-8
•• 2-8
.2-8
.2-8

• • 2-8
•• 2-9
.• 2-10
.2-11

••• 2-11
••• 2-11
••• 2-11

.2-12
..2-12
.2-14
.2-14
.2-14
.2-15

. 2-15
..• 2-16

.2-16
•• 2-18

.3-1
. .• 3-1

.3-4

.3-4

.3-5
•• 3-5
•• 3-5

..• 3-6
..3-6
.• 3-7
•• 3-8
•. 3-8
.• 3-9
. • 3-10
.3-11

..•.. 3-11
••• 3-12
... 3-12

AWAITIO Procedure
CANCEL Procedure
CANCELREQ Procedure
CLOSE Procedure
CONTROL Procedure
CREATE Procedure
DEVICEINFO Procedure
EDITREAD Procedure
EDITREADINIT Procedure
FILEERROR Procedure
FILEINFO Procedure
FILERECINFO Procedure
FNAMECOLLAPSE Procedure
FNAMECOMPARE Procedure
FNAMEEXPAND Procedure
GETDEVNAME Procedure
KEYPOSITION Procedure .••••
LOCKFILE Procedure (file locking)
LOCKREC Procedure (record locking)
NEXTFILENAME Procedure .••........
OPEN Procedure

Table of Contents

•. 3-14
•• 3-21
.3-22
.3-23

.•• 3-24
•• 3-27
.• 3-39
•. 3-42
•. 3-46

.3-48

.3-51

.3-56

.3-59
.• 3-61
•• 3-65
•• 3-70

.•• 3-72

POSITION Procedure (relative, entry-seq, & unst files
PURGE Procedure

•• 3-78
.3-82
.3-86
.3-88
.3-98

.•• 3-101
.. 3-103 READ Procedure (sequential processing)

READLOCK Procedure (sequential processing,
record locking)

READUPDATE (random processing) •..•.
READUPDATELOCK (random processing,

record locking) .•.•••
REFRESH Procedure
RENAME Procedure
REPOSITION Procedure
SAVEPOSITION Procedure
SETMODE Procedure .••••.
SETMODENOWAIT Procedure
UNLOCKFILE (file locking)
UNLOCKREC (record locking)
WRITE Procedure (insert)
WRITEUPDATE (random replace and delete)
WRITEUPDATEUNLOCK (random processing,

.. 3-108

..3-111

.3-115
•• 3-117
.• 3-118
.3-120
.3-121
.3-123

........... 3-125
•• 3-129
.• 3-130

........... 3-13 2
•• 3-136

record locking) .•.••••.•••••...••.... • 3-140

i-5

Table of Contents

SECTION 4. FILE ACCESS
File Open •...•••.•••.
Access Rules for Structured Files ••••••

Sequential Processing
Random Processing
Inserting Records
Deleting Records
Alternate Keys
Current Position
Current Key Value
Current Primary Key Value
End-of-File Pointers ••••••••
Sequential Buffering Option

Access Rules for Unstructured Files
Relative Byte Addressing and File Pointers
Sequential Access

Encountering EOF During Sequential Reading
Random Access •.•••.•••••••.•.••••
Appending to End-of-File •••.•
Disc Sectors ••••••••••••••••
Resident Buffering (TNS only)

Considerations for Both Structured and Unstructured
Locking--General Concept
File Locking
Record Locking
Locking Modes
File/Record Locking Interaction
Deadlock .•••..•••.•.•.•...•••••••
Record Locking with Unstructured Files
Record Locking Limitation ...•••••
.Purge Data
Verify Write
Refresh •....•
Programmatic Extent Allocation
Extent Allocation Errors ••.•.•.
Programmatic Extent Deallocation

Summary of Disc Control and Setmode Operations
Errors and Error Recovery

File Management Errors
Path Errors ••.•••..•.•
Data Errors .•.••.•••.•.
Device Operation Error
Failure of Primary Application Process
Errors Grouped by Error Number •.•••••

.4-1

.4-2

.4-2

.4-2

.4-3
•• 4-3
•. 4-4
.4-4

•• 4-4
.4-4
.4-5

..4-5
•• 4-6

••• 4-7
.4-9

•• 4-12
•••••• 4-13

•• 4-16
• •• 4-16

.4-18
.• 4-20

Files .4-23
•• 4-23
.4-23
.4-23

•• 4-24
.4-24

.••• 4-26
•• 4-26
.4-27
.4-27
.4-28

..4-28
•• 4-29

.4-29
•• 4-31

.•.••• 4-3 2
•• 4-34

.4-34

.4-35

.4-35

.4-36
..• 4-36
.•• 4-36

Special Considerations for Errors 200, 210, and 211 ... 4-38
.4-39
.4-40

i-6

Error Recovery •..••.•....••..••••.••.•••.•
Error Handling for Structured Files
For Key-Sequenced Files ...•.•
For Files with Alternate Keys
For Partitioned Files ...•.••.•

Action of Current Key, Key Specifier, and Key Length
Access Examples

• •• 4-42
.• 4-42
.4-42

.. 4-43
.4-47

Table of Contents

SECTION 5. ENSCRIBE FILE CREATION .5-1
Considerations for Both Structured

File Type •••••••••••••
Key-Sequenced Files
Relative Files ••••••
Entry-Sequenced Files
Unstructured Files
Extents

and Unstructured Files .5-2
• • 5-2
•• 5-2

File Code
Partitioned (Multi-Volume) Files

Considerations for Structured Files
Logical Records ••••••••••••••••••••
Blocks
Considerations for Key-Sequenced Files

Compression •••
Primary Key
Index Blocks

Considerations for Files Having Alternate Keys
Key Specifier •••••••••
Key Off set and Length
Null Value •••••••••••••
No Automatic Update
Unique Alternate Keys
Alternate Key Files

The File Utility Program (FUP)
Running FUP •.•••••
FUP SET Command •••••
FUP SHOW Command
FUP CREATE Command
FUP RESET Command
FUP INFO Command

CREATE Procedure
Creation Examples

• • 5-2
.5-2

•• 5-3
•• 5-3
.5-3
.5-4

••• 5-5
..5-5

•••••• 5-5
••••• 5-6

.5-6
......... 5-7

.5-8

.5-8

.5-8
•• 5-9

••• 5-9
••• 5-10

.5-10
•• 5-11
.5-12

. 5-13
......... 5-14

..5-23
•• 5-24

.5-25
•• 5-26
•• 5-28

••••••• 5-4 0
Example 1. Key-Sequenced File ••••••••••••••••••••••• •• 5-40

••• 5-42
••• 5-44

• • 5-45
..5-46

Example 2. Key-Sequenced File With Alternate Keys
Example 3. Alternate Key File ••••••••••••••••
Example 4. Relative, Partitioned File •••••
Example 5. Key-Sequenced, Partitioned File ••••••

i-7

Table of Contents

i-8

SECTION 6. ENSCRIBE FILE LOADING
The FUP LOAD Command •.••.••.••
The FUP LOADALTFILE Command
The FUP BUILDKEYRECORDS Command
File Loading Examples •.•.•.•••.•••••••••.

Example 1. Load a Key-Sequenced File
Example 2. Add an Alternate Key to a File

.•. 6-1

..• 6-2

.•. 6-6
..... 6-9

. 6-12
.6-12

Having an Alternate Key ••••..•.•••••.••..•. 6-13
Example 3. Add an Alternate Key to a File

Not Having Alternate Keys
Example 4. Reload a Single Partition of

.6-14

Key-Sequenced, Partitioned File •••.•••••.•• 6-15
Example 5. Load a Single Partition of

Partitioned Alternate Key File ••...•••••••• 6-16

APPENDIX A. SEQUENTIAL I/O PROCEDURES •••••••.••.•
Source Files ••••.••..•••••
CHECKABREAK Procedure
CHECKAFILE Procedure
CLOSEAFILE Procedure •••••
GIVEABREAK Procedure ••••••
OPENAFILE Procedure •••••••••••
READAFILE Procedure
SETAFILE Procedure
TAKEABREAK Procedure
WAITAFILE Procedure .••
WRITEAFILE Procedure •....
Sequential I/O Procedure Errors
FCB Structure•.•••.•
Ln1~1aL1zing the File FCB •.••.•
Interface With INITIALIZER and ASSIGN Messages

INITIALIZER-Related Defines ..•••
usage Example With the INITIALIZER
Usage Example Without INITIALIZER
NOAERROR Procedure
$RECEIVE Handling
NOWAIT I/O .•.•..•..
$SYSTEM.SYSTEM.GPLDEFS
File Control Block Format

.••••• A-1
.A-4
.A-5
.A-6
.A-14

• . A-16
. •• A-17
•. A-23

.A-25
•. A-35

.A-36

.A-38

.A-40
••• A-43

.A-44

.A-48

.A-48
••••. A-52

.A-56
.• A-58

.A-62
. . A-65

.A-66
..•. A-70

APPENDIX B. ASCII CHARACTER SET•.•.••••.•..•••.•.......• B-1

APPENDIX C. STRUCTURED FILE BLOCK STRUCTURE •...•.•...•.....• C-1

APPENDIX D. FILE MANAGEMENT ERROR LIST ••••..••.•.•..•.•...•. D-1

APPENDIX E. ENSCRIBE PROCEDURE SYNTAX SUMMARY E-1

Figure 1-1.
Figure 1-2.
Figure 1-3.
Figure 1-4.
Figure 1-5.
Figure 1-6.
Figure 1-7.
Figure 1-8.
Figure 1-9.
Figure 1-10.
Figure 1-11.
Figure 1-12.
Figure 1-13.
Figure 1-14.
Figure 1-15.
Figure 1-16.

Figure 2-1.
Figure 2-2.
Figure 2-3.
Figure 2-4.
Figure 2-5.
Figure 2-6.

Figure 3-1.
Figure 3-2.

Figure 4-1.
Figure 4-2.
Figure 4-3.
Figure 4-4.
Figure 4-5.
Figure 4-6.

Figure A-1.

LIST OF FIGURES

Disc File Organization .••••••.•••••••••••••••••• 1-2
Key-Sequenced File Structure ••••.••••••••••••••• 1~4
Re 1 at iv e Fi 1 e St r u ct u r e • 1-5
Entry-Sequenced File Structure •••••••••••••••••• 1-6
Access Paths .••••.•••••••••••••••••••••••••••••• 1-9
Approximate, Generic, and Exact Subsets ••••••••• 1-10
Relational Access Among Structured Files •••.••.• 1-11
Wait Versus No-Wait I/O ••••••••••••••••••••••••• 1-18
No-Wait I/O (Multiple Concurrent Operations) •••• 1-19
Hardware I/O Structure ••.••••••••••••••••••••••• 1-26
Primary and Alternate Communication Paths ••••••• 1-28
File System Procedure Execution •••••••••.••••••• 1-29
Fi le Open •.•••••..•.•.••...•••••..••••••••.•• a •• 1-32
File Transfer •.••.••••••••••.•••••••.••••••..••• 1-34
Buffering 1-35
Mirror Volume ..•.•••••••••.•••••.•••.••••••••••• 1-44

Key-Sequenced File Structure •••.••.•••••••••••••• 2-4
Relative File Structure ..••••••••.••••••••••••••• 2-6
Entry-Sequenced File Stucture ..••.••••.•••••••••• 2-7
Key Fields and Key Specifiers .•..•••••••••.•••••• 2-9
Current Position •••...•.•••.•••••.••••••••••••••• 2-10
Alternate Key Position ••••••.••••••.••••.•••.••.• 2-13

AWAITIO Operation •••...•••••.••••.•.•.•••••.•.•.. 3-20
File Security Checking •.••.•••.••..•••••••••••••• 3-94

Example of Encountering EOF •••••..••.•..••••••••• 4-14
Example of Encountering EOF (short read) •••..••.• 4-15
Example of File Pointer Action ••.••..•••••••••... 4-17
Example of Crossing Sector Boundries ••••••.•••••• 4-19
Resident Buffering •....•..••...•••.•.••••••.••••• 4-20
Example Showing Extent Allocation Error •...•••••• 4-30

FC B L i n k i n g • . . • • . . • . • . . • • • • • • • • . • • • • . • • • • • • • A- 4 3

i-9

Table 2-1.

Table 3-1.
Table 3-2.
Table 3-3.
Table 3-4.
Table 3-5.
Table 3-6.
Table 3-7.
Table 3-8.
Table 3-9.

Table 4-1.
Table 4-2.
Table 4-3.

i-10

LIST OF TABLES

File Pointer Action .~ ••.•..•••..•.•••.••..•.....• 2-19

File Management Call Summary •..•.•..•............ 3-1
AWAITIO Action•................... 3-19
CONTROL Operations •..•.•.........•..•........••.. 3-25
<key-sequenced params> Array Format •....•...•.•.• 3-32
<alternate key params> Array Format ..•......•..... 3-33
<partition params> Array Format •.............•.•. 3-36
Device Types and Subtypes••..........•... 3-40
Exclusion/Access Mode Checking .•...•...•........• 3-95
SETMODE and SETMODENOWAIT Functions• 3-127

File Pointer Action •.•..•.••.........•.........•. 4-11
Disc CONTROL and SETMODE Operations 4-32
Action of Current Key, Key Specifier,

and Key Length ••..••......•.................... 4-43

SYNTAX CONVENTIONS IN THIS MANUAL

The following is a summary of the characters and symbols used in the
syntax notation in this manual. For distinctiveness, all syntactical
elements appear in a typeface different from that of ordinary text.

Notation

UPPER-CASE
CHARACTERS

<lower-case
characters>

Brackets []

Braces {}

Ellipses ...

Punctuation

Meaning

Upper-case characters represent keywords and reserved
words. If a keyword is optional, it is enclosed in
brackets. If a keyword can be abbreviated, the part
that can be omitted is enclosed in brackets.

Lower-case characters enclosed in less than/greater
than symbols represent all variable entries supplied
by the user. If an entry is optional, it is enclosed
in brackets.

Brackets enclose all optional syntactic elements.
A vertically-aligned group of items enclosed in
brackets represents a list of selections from which
one, or none, may be chosen.

A vertically-aligned group of items enclosed in
braces represents a list of required elements from
which exactly one must be chosen.

An ellipsis (.•.) following a pair of brackets that
contains a syntactic element preceded by a separator
character indicates that that element may be repeated
a number of times. An ellipsis following a pair of
braces that contains a series of syntactic elements
preceded by a separator character indicates that the
entire series may be repeated, intact, a number of
times.

All punctuation and symbols other than those described
above must be entered precisely as shown. If any of
the above punctuation appears enclosed in quotation
marks, that character is not a syntax descriptor but a
required character, and must actually be entered.

i-11

Conventions for Procedure Calls

Calls to operating system procedures are shown in the following
form:

{CALL } ,<procedure name> (<parameters>}
{<retval>:=]

where

CALL

i-12

is an ENSCRIBE CALL statement.

<retval> :=

indicates that the procedure is a function procedure; it
returns a value of type INT or INT(32) when you reference it in
a statement. All function procedures can be called with a CALL
statement, but the return value will be lost. The return value
is described as:

<retval>,<type>

where

<type>

is INT or INT(32)

<procedure name>

is the name of the procedure.

<parameters>

are described as:

<parameter>,<type> :{ ref } [:<num elements>] ,
{ value }

where

<type>

is INT,INT(32), or STRING.

ref

indicates a reference parameter.

value

indicates a value parameter.

<num elements>

indicates that the procedure returns a value of type to
parameter for num elements.

i-13

SECTION 1

INTRODUCTION TO ENSCRIBE

ENSCRIBE is a data base record manager that provides high level access
to, and manipulation of, records in a data base.

ENSCRIBE operates as an integral part of the GUARDIAN Operating System
in a distributed fashion across multiple processors. As such,
ENSCRIBE ensures the integrity of the application~s data in the event
that a processor module, i/o channel, or disc drive fails.

Important Features of ENSCRIBE are listed below:

• Four disc file structures

Key-Sequenced
Relative
Entry-Sequenced
Unstructured

• Multi-key Access to Records

• Relational Access Among Files

• Record Locking

• Sequential Access Buffering Option

• Record Management Procedures

• Automatic Maintenance of All Keys

• Data Compression for Key-Sequenced Files

• Index Compression

• Multiple-Volume (partitioned} Files

• Cache Buffer

1-1

INTRODUCTION TO ENSCRIBE

DISC FILE ORGANIZATION

A disc file is referenced by the symbolic file name that is assigned
when the a file is created. The symbolic name that identifies an
individual disc file in the system consists of three parts:

1) A "volume" name to identify a particular disc pack in the
system

2) a "subvolume" name to identify the disc file as a member of a
related set of files on the volume {as defined by the
application)

3) a "disc file name" to identify the file within the subvolume.

This disc file organization is illustrated in Figure 1-1 below.

VOLUME NAME

$VOL 1

DISC FILE NAMES

1-2

SUBVOL NAMES

SVOL1 -------SVOL2 -------ACCT1

I (1) I (2) I (3)

---- INFILE

(1) FULL FILENAME= "$VOL1• SVOLh FILEA"
(2) FULL FILENAME = "$VOL h SVOL2• FILEA"
(3) FULL FILENAME = "$VOL 1 • ACCT1 • INFILE"

Figure 1-1. Disc File Organization

INTRODUCTION TO ENSCRIBE

A disc file must be created before it can be accessed. A file is
created by calling the CREATE procedure or by using the File Utility
Program (FUP) CREATE command. When created, a file can be designated
as either permanent or temporary. A permanent file remains in the
system after access is terminated; a temporary file is deleted when
access is terminated.

Also specified when a file is created is the file~s type. ENSCRIBE
supports four file types: key-sequenced, relative, entry-sequenced,
and unstructured files. Taken as a group, key-sequenced, relative,
and entry-sequenced files are known as structured files. The
facilities available with structured files differ significantly from
those available with unstructured files. The following sections
briefly describe each of the four file types, beginning with the
structured files.

STRUCTURED FILES

All data transfers between an application process and a structured
disc file are done in terms of logical records. The placement of and
access to records in a disc file is determined bv the file structure
(a f ile~s structure is specified at file creation time).

For structured files, the maximum length of a logical record (i.e.,
the maximum number of bytes that can be inserted in a single
operation) is specified for each file at file creation time. The
actual number of bytes comprising a logical record can be variable (up
to the specified record length) ; the minimum number of bytes that can
be inserted depends on the file structure.

Each record has a length attribute. The length attribute is a count
of the number of bytes inserted when the record was written. A
record~s length is returned when the record is read.

1-3

INTRODUCTION TO ENSCRIBE

Key-Sequenced File Structure

Records are stored in ascending sequence according to the value of a
field within each record called the "primary key field". The primary
key field is designated when a key-sequenced file is created and may
be any set of contiguous bytes within the data record. Physical and
logical record lengths can be variable; a record occupies only the
amount of space specified for it when inserted into the file.

1-4

KEY SEQUENCED FILE:

PRIMARY ACCESS IS VIA

VALUE IN THE PRIMARY

KEY FIELD.

EXAMPLE:

FIND "KING"-7___

PRIMARY

KEY

ADAMS

BROWN

COLLINS

FISH

JACKSON

KING

MASTERS

OBRIEN

RYAN

RECORD

I

I
I

I
I

I
I

I

_l

l

l

r-WATS~ _ __.____ J I

I ZANTE I)
--· -~__.__ __ _

t
RECORDS ARE STORED

IN ASCENDING ORDER
OF "PRIMARY KEY" FIELD

VALUE.

KEY-SEQUENCED

FILE

Figure 1-2. Key-Sequenced File Structure

INTRODUCTION TO ENSCRIBE

Relative File Structure

file
A

Records are stored in a position relative to the beginning of the
according to a record number supplied by the application program.
record number is an ordinal value and corresponds directly to a
physical record position in a file. Each physical record position in
a relative file occupies a fixed amount of space (although logical
record lengths may be variable).

RELATIVE FILE:
RECORD
NUMBER RECORD
~~~~~~~I~~~~---~ 

PRIMARY ACCESS IS VIA 

"RECORD NUMBER". 

0th 

1st 

2nd 

EXAMPLE: 3rd 

FIND6th-z_ 4 th 

5th 

6th 

7th 

~ • ~ 

nth fl-----~----lr J 
t 

RECORDS ARE STORED 

ACCORDING TO A 
"RECORD NUMBER" 

SUPPLIED BY THE 
APPLICATION PROGRAM 

RELATIVE FILE 

Figure 1-3. Relative File Structure 

1-5 



INTRODUCTION TO ENSCRIBE 

Entry-Sequenced File Structure 

Records are appended to the end of an entry-sequenced file in the 
order in which they are presented to the system. Once added to a 
file, a record~s contents may be updated but the record~s size may not 
be changed and the record may not be deleted (although an application 
program may use a field within the record to indicate that it has been 
logically deleted). Physical and logical record lengths can be 
variable; a record occupies only the amount of space specified for it 
when inserted into the file. 

1-6 

ENTRY-SEQUENCED Fl LE: 

PRIMARY ACCESS 

IS IN SEQUENCE 

THAT RECORDS 

ARE STORED IN 

FILE. 

EXAMPLE: 
READ (READS FIRSTi 

READ (READS SECOND) 
READ (READS THIRD) 

RECORD 

1st 

2nd 

3rd 

4th 

5th 

6th 

7th 

8th 
... i., .. 

....., .., I 

LATEST ,-----------, ) 

RECORDS ARE STORED 

IN ORDER PRESENTED 

TO SYSTEM (I.E., 

CHRONOLOGICAL ORDER) 

ENTRY-SEQUENCED 

FILE 

Figure 1-4. Entry-Sequenced File Structure 



INTRODUCTION TO ENSCRIBE 

Multi-key Access to Structured Files 

A "record" consists of one or more "fields": 

A record in a key-sequenced file: 

CUSTOMER 

fields: f 
I NAME ADDRESS REGION 

f T 
Each record in a file is uniquely identified among other records in 
that file by the value of its primary key. For key-sequenced files, 
the primary key is a byte field within a record; for relative files, 
the primary key is a "record number"; for entry-sequenced files, the 
primary key is a "record address". Records in a file are physically 
ordered by ascending value of the primary key. 

The primary key field for a key-sequenced file: 

NAME ADDRESS REGION 
T 

primary key 

The primary key for a relative file: 

<record number> --> NAME DATE 
t 

primary key 

The primary key field for an entry-sequenced file: 

<record address> -> ITEM DESCRIPTION 
t 

primary key 

A record is located among records of the same file by the value of its 
primary key: 

I JONES, J.A. DAYTON, OHIO 
T 

CENTRAL 

primary key entry 

This is the only record of this record type having the primary 
key entry "JONES, J.A." 

1-7 



INTRODUCTION TO ENSCRIBE 

One or more byte fields within a record may be designated "alternate 
keys". Any structured file can have up to 255 alternate key fields. 
Values in alternate key fields need not be unique. 

NAME ADDRESS REGION 
T 

an alternate key 

Several associated records of the same type may be located by 
their entries in an alternate key field: 

JONES, J.A. DAYTON, OHIO CENTRAL 
MOORE, Q.A LOS ANGELES, CA WESTERN 
SMITH, S.A CHICAGO, ILL CENTRAL 

T 
Two records of this record type have alternate key field 
entries of "CENTRAL". 

Each key in a structured file provides a separate access path through 
records in that file. Records in an access pass are logically 
ordered by ascending access path key values. 

A simple employee file with three seperate access paths, provided by 
three different key fields, is shown in Figure 1-5 on the following 
page. 

1-8 



RECORDS IN ORDER 

OF "EMPLOYEE 
NUMBER" ACCESS 
PATH 

SAME FILE. 

RECORDS IN ORDER 
OF "NAME" ACCESS 
PATH 

SAME FILE. 
RECORDS IN ORDER 
OF "DEPT" ACCESS 
PATH 

INTRODUCTION TO ENSCRIBE 

EMPLOYEE NAME ADDRESS DEPT 
NUMBER (NOT AN 

ACCESS PATH) 

~~ 

008 : ::ADAMS 

010 <BROWN 

011 <:STEVENS < 

013 

016 

I ACCESS I 
I PATH I 

ACCESS 
PATH 

A 

A 

B 

B 

B 

c 
c 
c 
c 
D 

D 

i 
ACCESS 

PATH 

Figure 1-5. Access Paths 

1-9 



INTRODUCTION TO ENSCRIBE 

A subset of records in a designated access path can be described by a 
"positioning mode" and a key value. The positioning modes are: 
"approximate", "generic", and "exact". Approximate means that the 
subset comprises all records whose access path key value is 
equal to or greater than the supplied key value. Generic means that 
the subset is comprised of all records whose access path key value 
matches a supplied partial value. Exact means that the subset is 
comprised of only those records whose access path key value matches 
the supplied key value exactly. Examples of subsets returned with 
these three positioning modes are shown in Figure 1-6 below. 

APPROXIMATE GENERIC EXACT 

FIND "JONES", APPROX. FIND "JONES", GENERIC FIND "JONES, K.A.", EXACT 

>HUNT, H.L. > <HUNT, H.~ .. HUNT, H.L. 

: IRWIN,F.J. < IRWIN, F.J. IRWIN, F.J. 

START JONES, A.B. I START JONES, A.B. } START JONES, A.B. 
)- EXACT 

JONES, K.A. JONES, K.A. GENERIC JONES, K. I\. 
SUBSET 

JONES, M.P. JONES, M.P. SUBSET ·.JONES, M.P. 

JONES, Z.Z. JONES, Z.Z. JONES, Z.Z. 

JORDAN, W.R. JORDAN, W.R. JORDA_N, W.R. 

KANE, C.T. APPROX I- KANE, C.T. 
MATE 

KING, M.L. ::<<: KING, M.L. 
SUBSET 

KING. M.L. 
I I 

LACEY, G.T. I LACEY, G.T. 

LANG, K.L. 

j 
L.£\NG, K.L. LANG, K.L. 

LANG, M.N. LANG, M.N. 

McGRAW, H.E. McGRAW, H.E. 
LAST 

RECORD 
MEYER, D.J. 

IN FILE 

READING THE FILE READING THE FILE READING THE FILE 

SEOUENTIALL Y SEOUENTIALL Y SEOUENTIALL Y 

RETURNS 12 RECORDS, RETURNS 4 RECORDS, RETU~NS 1 RECORD, 

THEN EOF THEN EOF THEN EOF 

Figure 1-6. Approximate, Generic, and Exact Subsets 

1-10 



INTRODUCTION TO ENSCRIBE 

Relational Access Among Structured Files 

Relational access among structured files in a data base is 
accomplished by obtaining a value from a field in a record in one file 
and using that value to locate a record in another file. An example 
of relational access is shown in Figure 1-7 below. 

ORDER HEADER FILE 

ORDER NO. NAME DATE TOTAL 

~ ,----L---.. 

0021 JONES, J.A. 10-17-76 

:. ~q?_2 .: :: ADAMS: ·A.B. :: 
--+-,..,-.......... ~-I 

: 0023 . 

: 0030:: SMITH, C.J. 

' NAME 

KANE, C.T. < : 
~ ORDER DETAIL FILE 

ORDER/ITEM QUAN- ITEM 
NO. PART NO. TITY TOTAL 

,.-~-1 ~~v-~~'~v~--'1'--~v 1 

0021 0001 0201 0001 

0021 0002 0310 0002 

.0022 

0023 

0023• 

J 

CUSTOMER FILE 

ADDRESS 

f INVENTORY FILE 

PART NO. 
...! 

DESC'1_1PTfON ON-HAND PRICE 
"'../ ...I. , V" 

12.50: 

0201 T.V. SET 

:::<:0205 PHONOGRAPH 52 55.00. 

:::::;02os2:::::: RADIO~ .... /://21() 5.50: 

19 37.50 

REGION 

Figure 1-7. Relational Access Among Structured Files 

1-11 



INTRODUCTION TO ENSCRIBE 

Automatic Maintenance of All Keys 

When a new record is added to a file or a value in an alternate 
key-field is changed, ENSCRIBE automatically updates the indices to 
the record (the value of a record~s primary key cannot be changed). 
This operation is entirely transparent to the application program. 

If more key fields are later added to a file, but existing fields in 
that file are not relocated, existing programs that access the file 
need not be rewritten or recompiled. 

Data and Index Compression 

For key-sequenced files, an optional data compression technique 
permits storing more data in a given disc area, thereby reducing the 
number of head repositionings. 

Similarly, an optional index compression technique is provided for key 
indices to data records. 

Both data and index compression may be specified for a file when the 
file is created. 

1-12 



INTRODUCTION TO ENSCRIBE 

UNSTRUCTURED DISC FILES 

An unstructured disc file is essentially a byte array. The 
organization of an unstructured disc file, the lengths and locations 
of records within the file, is the responsibility of the application 
process. 

Data stored in an unstructured file is addressed in terms of a 
relative byte address (rba) • A relative byte address is an offset, in 
bytes, from the first byte in the file, the first byte being located 
at rba zero. 

Associated with each open unstructured disc file are three "pointers": 

• a "current-record" pointer 

• a "next-record" pointer 

• an "end-of-file" pointer 

Upon opening a file, the current-record and next-record pointers are 
set to point to the first byte in the file. A read or write operation 
always begins at the byte pointed to by the next-record pointer. The 
next-record pointer is advanced with each read or write operation by 
the number of bytes transferred; this provides automatic sequential 
access to a file. Following a read or write operation, the 
current-record pointer is set to point to the first byte affected by 
the operation. 

The next-record and current-record pointers can be set to an explicit 
byte address in a file, thereby providing random access. The 
end-of-file pointer contains the relative byte address of the last 
byte in a file plus one. The end-of-file pointer is automatically 
advanced by the number of bytes written when appending to the end of a 
file. 

1-13 



INTRODUCTION TO ENSCRIBE 

ACCESS COORDINATION AMONG MULTIPLE ACCESSORS 

A file may be accessed by several different processes at the same 
time. In order to coordinate simultaneous access, each process must 
indicate when opening the file how it intends to use the file. Both 
an "access mode" and an "exclusion mode" must be specified. 

The access mode specifies the operations that will be performed by an 
accessor. The access mode is specified as one of 

• Read/Write (default access mode) 

• Read-Only 

• Write-Only 

The exclusion mode is used by a process to specify the type of access 
it can tolerate.by other accessors. The exclusion mode is specified 
as one of 

• Share Access (default exclusion mode) 

Share access indicates that the opening process can tolerate 
simultaneous read and/or write access to the file. 

• Exclusive Access 

Exclusive access indicates that the opening process cannot tolerate 
any simultaneous access of any kind to the file. Therefore, if any 
further opens are attempted while the file is open, they are 
rejected. Likewise, if the file is already open, an open 
specifying exclusive access is rejected. 

• Protected Access 

Protected access indicates that the opening process can tolerate a 
simultaneous read access to the file but cannot tolerate a 
simultaneous write access to the file. Therefore, if any further 
opens that specify read/write or write-only access mode are 
attempted while the file is open, they are rejected. Likewise, if 
the file is already open with read/write or write-only access 
mode, an open specifying protected access is rejected. However, a 
simultaneous open that specifies read-only access mode is 
permitted. 

1-14 



INTRODUCTION TO ENSCRIBE 

LOCKING 

The access and exclusion mode operate on a file from the time it is 
opened until the time it is closed. To prevent concurrent access to 
a disc file for shorter periods of time, a locking mechanism is 
provided. Two types of locking are available, file locking and record 
locking. 

File Locking 

File locking is accomplished with the LOCKFILE and UNLOCKFILE 
procedures. Multiple processes accessing the same disc file call 
LOCKFILE before performing a critical sequence of operations to that 
file. If the file is not currently locked, it becomes locked and the 
process continues executing. This prevents other accesses to the file 
until it is unlocked through a call to UNLOCKFILE. If the file is 
locked, a caller of LOCKFILE is suspended until the file is unlocked. 
If a process attempts to write to a locked file, the access is 
rejected with a "file is locked" error indication~ if a process 
attempts to read from a locked file, it is suspended until the file is 
unlocked. 

An alternate mode for file locking is provided. Instead of suspending 
the caller to LOCKFILE if the requested file is locked, the lock 
request is rejected and the call to LOCKFILE completes immediately 
with a "file is locked" error indication. Moreover, if a process 
attempts to read from a locked file, the read is immediately rejected. 
The alternate locking mode is specified via a call to the SETMODE 
procedure. 

Record Locking 

Record locking for ENSCRIBE disc files is accomplished through the 
LOCKREC and UNLOCKREC procedures. Record locking operates in 
essentially the same manner as file locking, however it allows a 
greater degree of concurrent access to a single file than file 
locking. Through a call to LOCKREC, a process locks the current 
record (as indicated by the last operation with the file). If the 
record is currently locked, then the caller of LOCKREC is suspended 
until the record is unlocked. Records are unlocked by a call to 
UNLOCKREC. 

Both record and file locking may be done concurrently to the same 
file. A file lock will wait for all records to be unlocked before it 
will be granted. Similarly, a record lock must wait if the file is 
currently locked. 

1-15 



INTRODUCTION TO ENSCRIBE 

WAIT/NO-WAIT I/O 

The file system provides the capability for an application process to 
execute concurrently with its file operations. 

Two definitions: 

• Wait I/O (the default) 

"Wait" i/o means that when designated file operations are performed 
(i.e., via file management calls), the application process is 
suspended, waiting for the operation to complete. 

• No-wait I/O 

"No-wait" i/o means that when designated file operations are 
performed, the application process is not suspended. Rather, the 
application process executes concurrently with the file operation. 
The application process waits for an i/o completion in a separate 
file management call. 

Whether "wait" or "no-wait" i/o is to be in effect when designated 
file operations are performed is specified on a per OPEN basis when 
files are opened. If "no-wait i/o" is specified, then the maximum 
number df concurrent operations to be permitted must also be specified 
at file open. Disc files are limited to one concurrent operation (one 
outstanding no-wait call) per file open. 

For example, to open a file so that one concurrent file operation is 
permitted (i.e., a "no-wait" file), the following could be written in 
~ ..,...., "!);'I"'"\, Y"'\ 1 ..; ....-. ~ .a... ..: ,..... _ ......., .,.. ...-... ,... _ - - I - __ •• _ _ .L. 1- - .L. II J: ~ , - - - - - 11 - - - ..1... - .! - - - - - - -W .! ..:I ..t:! ! , -
\,U& "'4J::'J::'..1.....L.'-'U.~..L.VU !::".LV~.LC:Ull \Cl..:>.:>Ulllt::: 1...UQI... .l....1..LCUQlllt:: \.,;Ulll...Q.1.111::> a va.L.1.U L.1.J..t:: 

name) : 

CALL OPEN ~£ilename, fnumAl, 1); 

The third parameter, "l", specifies that one concurrent 
operation is permitted (this parameter is also used for other 
purposes, see "OPEN"). 

Any input/output operation involves an "initiation" and a 
"completion". With "wait" files both the initiation and completion 
are performed in the same file management procedure call. For 
example, on a wait file, the call 

. 
CALL READ(fnumAO,buffer, .. ); 

1-16 

initiates the i/o operation, then the application process is 
suspended, waiting for its completion. 



INTRODUCTION TO ENSCRIBE 

With "no-wait" files, the "initiation" is performed in one call, the 
operation is "completed" by another call: 

CALL READ(fnumAl,buffer, .. ); 

initiates the i/o operation. Process execution continues 
concurrently with the i/o transfer. 

CALL AWAITIO(fnumAl, .. ); 

completes the i/o operation. If not complete when AWAITIO is 
called, the process is suspended until completion occurs or an 
application-defined timeout expires. 

Multiple operations (with multiple files) can be in progress 
simultaneously. Concurrent operations associated with a particular 
open are "completed" in the same order as initiated, unless setmode 
30, "Allow no-wait operations to complete in any order", has been 
specified (GUARDIAN operating system version D or later) . Concurrent 
operations associated with separate opens are "completed" as they 
finish. 

The difference between wait and no-wait i/o is illustrated in Figure 
1-8, on the following page. 

1-17 



INTRODUCTION TO ENSCRIBE 

WAIT 1/0 

INITIATE 

COMPLETE 

NO-WAIT 1/0 

INITIATE 

COMPLETE: 

OPENED AS A "WAIT" FILE 

} CALL READ (11, ... ); 

OPENED AS A "NO-WAIT" FILE 

CALL READ (f2, ... ); 

CONCURRENT 
EXECUTION 

CALL AWAITIO (f2 •... ); 

Figure 1-8. Wait Versus No-Wait I/O 

The action of no-wait i/o during multiple concurrent operations is 
shown in Figure 1-9, on the following page. 

1-18 



MULTIPLE CONCURRENT OPERATIONS 
ONE FILE: 

INTRODUCTION TO ENSCRIBE 

f i11e riumoer 

INITIATE 1 CALL WRITE (f3, ... ); 

INITIATE 2 CALL WRITE (f3, ... ); 

COMPLETED 
IN THE ORDER 
AS INITIATED 

COMPLETE 1 CALL AWAITIO (f3, ... ); 

COMPLETE 2 CALL AWAITIO (f3, ... ); 

TWO FILES, ONE CONCURRENT 
OPERATION EACH (l.E.,TWO TOTAL): 

INITIATE f4 CALL READ (f4, ... ); 

/ 

I 
INITIATE f5 CALL READ (f5, ... ); 

I 
I 

I 
;__ ~ 

anyfile . = -1; 

COMPLETED IN THE 

SAME ORDER AS 
INITIATED 

COMPLETE 
FIRST DONE 

NE 

CALL AWAITIO 

(anyfile, ... ); 

CALL AWAITIO 

(anyfile, ... ); 

I 
I 

I 
I 

I 

FIRST DONE OF 
"f6 1" OR "f7" 

TWO FILES, ONE CURRENT OPERATION WITH 
ONE, TWO CONCURRENT OPERATIONS WITH 
THE OTHER (I.E .. THREE TOTAL): 

INITIATE f6 1 

~----
CALL WRITE (f6, ... ); 

INITIATE f7 CALL READ (f7, ... ); 

INITIATE f6 2 CALL WRITE (f6, ... ); 

anyf ile : = -1 

COMPLETE CALL AWAITIO(anyfile, ... ); 

COMPLETE CALL AWAITIO (anyfile, ... ); 

COMPLETE CALL AWAITIO (anyfile, ... ); 

Figure 1-9. No-Wait I/O (Multiple Concurrent Operations) 0878 

1-19 



INTRODUCTION TO ENSCRIBE 

CACHE 

The "Cache" is an area of main memory, whose size is specified at 
system generation time, that is reserved for buffering blocks read 
from disc. 

When a request is made to read a record from disc, ENSCRIBE first 
checks the Cache for the block that contains the record. If the block 
containing the record is already in the cache, the record is 
transferred from the Cache to the application process. If the Cache 
does not contain the block, the block is read from the disc into the 
Cache, then the requested record is transferred to the application 
process. 

If no space is available in the Cache when a block must be read in, a 
a weighted, least-recently-used algorithm (LRU) determines which block 
to overlay. The purpose of the LRU is to, whenever possible, keep the 
most recently referenced blocks in main memory. (For key-sequenced 
files, this weighting favors index blocks.) 

When a request is made to write a record to disc, the block in the 
Cache that contains the record is modified then immediately written to 
disc (if the block to be modified is not in the Cache, it is first 
read from the disc). However, the modified block remains in the Cache 
until it is needed for overlay. 

SEQUENTIAL ACCESS BUFFERING OPTION (Structured Files Only) 

For a program that sequentially reads a file, the access time to 
individual records can be greatly reduced by means of the Sequential 
Access Buffering Option (this option, if desired, is specified at file 
open). Basically, this option allows the record deblocking buffer to 
be located in the application process's data area (rather than in a 
system i/o process). This buffer is then used by ENSCRIBE to deblock 
the file's records. The advantage to this buffering is that it 
eliminates the request to the system i/o process to retrieve each 
record in a block {instead, a request retrieves an entire block of 
records) . This option is allowed only if the file is opened by the 
requesting process with protected or exclusive access. 

1-20 



INTRODUCTION TO ENSCRIBE 

MULTIPLE-VOLUME (PARTITIONED) FILES 

At file creation time, a file can be designated to reside entirely on 
a single volume or may be partitioned to reside on separate volumes. 
Moreover, the separate volumes need not reside on the same system; a 
file can be partitioned accross network nodes. Up to sixteen 
partitions are permitted; each partition can have up to sixteen 
extents. 

In addition to providing a maximum file size of approximately four 
billion bytes, the use of multi-volume files provides for simultaneous 
access to a file~s records: 

• If the file resides on several volumes connected to the same 
control device, seeking (disc head repositioning) can be occurring 
on all volumes simultaneously. 

• If each file resides on a volume that is connected to a different 
control device, several data transfers {as well as seeks) with the 
file can occur concurrently. 

• If each volume~s control device is connected to a different 
processor module, simultaneous processing of the file~s data can 
occur, as well as simultaneous seeking and data transfers. 

FILE CREATION 

Disc files are created {defined) by 

• using the Tandem-supplied File Utility Program {FUP) 

The "creation parameters" {i.e., file type, record length, key 
description, etc.) for a file to be created are set {specified) by 
entering FUP commands. The state of file creation parameters can 
be displayed and modified before the file is actually created. 
Creation parameters can be set to those like another, existing 
file. 

FUP accepts commands entered at an online terminal or from a file 
such as an EDIT-format file. 

• calling the File Management CREATE procedure 

programmatic file creation of disc files is accomplished by 
supplying the appropriate parameters to the CREATE procedure. 

File creation is described in section 5, "ENSCRIBE File Creation". 

1-21 



INTRODUCTION TO ENSCRIBE 

DATA DEFINITION LANGUAGE (DDL) 

The Data Definition Language (DDL) provides a uniform method of 
describing record formats, regardless of the programming language used 
(COBOL, FORTRAN, or TAL) to access the record. DDL also provides a 
system-wide definition of record formats so all programs have a 
consistent definition of a given record format. (See the Data 
Definition Language Programming Manual, Tl6/8034.) In addition to 
data language source, DDL can produce FUP File Creation commands for 
data base files which are then accessible through ENSCRIBE. See File 
Creation described in Section 5. 

FILE LOADING 

The File Utility Program (FUP) can also be used to load data into 
existing ENSCRIBE files. This is accomplished by supplying the set of 
records to be loaded and specifying the f ile~s data and index block 
loading factor. (The loading factor determines how much free space to 
leave within a block). FUP attempts to optimize access to a file by 
placing the lowest level index blocks on the same physical cylinder as 
their associated data blocks, thus reducing the amount of head 
repositioning. 

File loading is described in section 6, "ENSCRIBE File Loading". 

1-22 



INTRODUCTION TO ENSCRIBE 

RECORD MANAGEMENT FUNCTIONS 

Manipulation of records in an ENSCRIBE file is performed by calling 
File Management Procedures. Record management functions and their 
associated procedures are: 

Function 

e Find. 

• Insert 

• Read 

• Update 

• Delete 

• Lock 

• Unlock 

• Define 

Description 

Set the current position, access path, 
and positioning mode for a file. This 
may indicate the starting record of a 
subset of records in anticipation of a 
sequential read of the set, or may 
specify a record for a subsequent update 

a new record into a file according to 
its primary key value 

a subset of records sequentially 

a record in a random position in a file 

the record in a key-sequenced or relative 
file as indicated by a primary key value 

the current record in a file, 
or the file 

the current record in a file, 
or all records in the file 

a new file 

Procedure 

KEYPOSITION, 
POSITION 

WRITE 

READ 

READUPDATE, 
WRITEUPDATE 

WRITEUPDATE 

LOCKREC, 
LOCKFILE, 
READLOCK, 
READUPDATE
LOCK 

UNLOCKREC, 
UNLOCKFILE, 
WRITEUPDATE
UNLOCK 

CREATE 

The Record Management Procedures are described in section 3. 

1-23 



INTRODUCTION TO ENSCRIBE 

FILE SYSTEM IMPLEMENTATION 

This description is intended to provide a basic understanding of the 
internal operation of the file system. In particular, the programmer 
should have a thorough understanding of the action that the file 
system takes when a communication "path" failure occurs and the 
corresponding action that the application program must take to 
recover. 

Topics covered in this description are: 

• File and I/O System Structure 
• File System Procedure Execution 
• File Open 
• File Transfer 
• File Close 
• Automatic Path Error Recovery for Disc Files 
• Mirror Volumes 

File and I/O System Structure 

The file and i/o structure encompasses the following areas: 

• Hardware Structure 

and 

• Software Structure. 

HARDWARE STRUCTURE. The hardware structure of a Tandem System is 
designed so that two physically independent communication "paths" 
exist between any application process and any i/o device. 

The hardware communication path associated with an i/o operation is 
comprised of the following: 

• The interprocessor buses 

Interprocessor buses are used for communicating data and control 
information between processor modules. (The interprocessor bus is 
not part of the communication path if the processor module 
controlling the device is same as one where the application process 
requesting an i/o operation is running) 

1-24 



INTRODUCTION TO ENSCRIBE 

• The processor module controlling the device 

The processor module controlling a device executes i/o instructions 
to command the device to perform designated i/o functions, contains 
the main memory where the i/o transfer takes places, and receives 
completion status from the hardware controller 

• The i/o channel to which the device is connected 

The i/o channel carries the control and data signals between a 
processor module and i/o controllers. (Up to 32 controllers may be 
connected to a single channel) 

• The i/o controller 

The i/o controller provides the electrical interface between and 
i/o device and the i/o channel. (I/O controllers are generally 
capable of controlling multiple devices) 

Two physically independent communication paths are accomplished as 
follows: 

• The two interprocessor buses provide two independent communication 
paths between processor modules. If either bus fails, the other is 
still available 

• I/O controllers have two interface ports and are connected to the 
i/o channels of two processor modules. If one channel fails, 
control of the i/o controller is accomplished via the i/o channel 
connected to the other processor module. 

The hardware i/o structure is shown in Figure 1-10 on the following 
page. 

1-25 



INTRODUCTION TO ENSCRIBE 

INTERPROCESSOR BUSES 

l --I 1 

0 1 2 

i---, r--1 

110 CHANNEL 
p p 

l/OCHANNEL 
0 DUAL-POAT 0 

A CONTROLLER A 
T T 

A B 
~ ~ 

I 
../ -

DISC 

Figure 1-10. Hardware I/O Structure 

SOFTWARE STRUCTURE. The GUARDIAN File Management System is designed 
so that if at any time during a file operation any part of a 
communication path fails, the file operation can still be completed 
successfully. 

The file management system is an integral part of the GUARDIAN 
Operating System. A copy of the operating system resides in 
each processor module in the system. Each copy contains only what is 
necessary to control the input/output devices connected to 
its particular processor module. 

System control of i/o devices is accomplished by means of "system i/o 
processes". The action of an i/o process is to accept a request from 
the file system (the request initially comes from an application 
process), perform the requested action (e.g., read or write), return 
the completion status of the operation (and also data if a read 
operation) to the file system, then wait for another request. 

1-26 



INTRODUCTION TO ENSCRIBE 

There are two system i/o processes for each device (or set of devices 
in the case of terminals or data communication lines) ; one located in 
each of the two processors which are physically connected to a given 
device. One process is designated the "primary" i/o process; the 
other is designated the "backup" i/o process. (This primary/ backup 
designation is made at system generation time.) Either i/o process is 
capable of controlling the device. However, they do not control the 
device simultaneously. Instead, the primary i/o process controls the 
device exclusively and, at the same time, keeps the backup i/o process 
informed (via checkpoint messages) of the activity on the device. 

The communication path (i.e., processor module, i/o channel, and 
controller port) through a primary i/o process to the device that it 
controls is called the "primary path"; the path through through a 
backup i/o process is called the "alternate path". If the file system 
(or the operating system on behalf of the file system) detects a 
failure in the primary path, it shuts down the primary path and 
automatically reroutes subsequent communication to the device via the 
alternate path. The backup i/o process takes control of the device 
and, in fact, becomes the primary i/o process for the device. 

In the case ~f disc files, the error recovery following a failure of 
the primary path is automatic, and this type of failure is completely 
invisible to the application program (see "Automatic Path Error 
Recovery for Disc Files" later in this description). 

When the original primary path is restored to system operation, it 
becomes the current backup path. The original primary path is 
restored to primary operation for the following reasons: the system 
is cold loaded, a failure occurs in the current primary path, a PUP 
"PRIMARY" command is executed to switch control of the device, or 
"return to configured primary" is configured for the device and the 
original primary processor module is reloaded. (See the GUARDIAN 
Operating System Operating Manual for the Nonstop system, or the 
GUARDIAN Operating System Management Manual for the Nonstop II system, 
for an explanation of "cold load" and "reload." 

1-27 



INTRODUCTION TO ENSCRIBE 

Figure 1-11 below shows the primary and alternate communication paths 
to a device. While the primary path is operable, all i/o transfers 
occur via that path. Only when a failure of the primary path is 
detected, does the alternate path come into use. Once an alternate 
path is brought into use, it becomes the primary path and is used 
exclusively. 

1-28 

PRIMARY PA TH 

DISC 

ALTERNATE PATH 

DISC 

e = PRIMARY SYSTEM 1/0 PROCESS 

@ = BACKUP SYSTEM 1/0 PROCESS 

© = APPLICATION PROCESS 

' \ 

;±:; 
l.:iUAHUIAN 

Figure 1-11. Primary and Alternate Communication Paths 



INTRODUCTION TO ENSCRIBE 

File System Procedure Execution 

File system procedures reside in operating system code but execute in 
the application process~s environment. When a file system procedure 
(or any operating system procedure for that matter) is called by an 
application process, the system procedure~s local storage is allocated 
in the application process~s data stack. The maximum amount of local 
storage required by a call to a system procedure is approximately 400 
words. (See Figure 1-12.) 

A 
p 
p 

L 
I 
c 
A 
T 
I 

0 
N 

p 

R 
0 
c 
E 

s 
s 

0 
p 
E 
R 
A 
T 
I 
N 
G 

s 
y 
s 
T 
E 
M 

l 

USER CODE 

!!!i=:=::::::~:~:~~~:-::~:i::::::::::{ 
:::: CALL READ ::: 

!ill 
1
1 I !I 

SYSTEM CODE 

THE READ PROCEDURE. 

EXECUTING ON BEHALF OF THE 
APPLICATION. ACCESSES BOTH 

THE SYSTEM AND THE 
APPLICATION DAT A AREAS 

(APPLICATIONS ACCESS ONLY 

THEIR OWN DATA) 

THE READ PROCEDURE CAUSES THE 

SYSTEM PROCESS CONTROLLING 

THE I 0 DEVICE TO EXECUTE THE 

I 0 PROCESS CONTROLS THE 
TRANSFER OF DATA FROM THE 
PHYSICAL DEVICE TO THE SYSTEM 

BUFFER AREA. THE READ 
PROCEDURE TRANSFERS THE DATA 

FROM THE SYSTEM TO THE 

APPLICATIONS BUFFER 

USER DATA 

BUFFER } 

~11111 

.__ __ oA_T_A ___ } :gRDS 

D 
A 
T 
A 

SYSTEM DATA SPACE FOR Nonstop SYSTEM 

1/0 POOL SPACE FOR Nonstop II SYSTEM 

D 
A 
T 
A 

-{ w:~:=~ } J 
BUFFERS 

Figure 1-12. File System Procedure Execution 

1-29 



INTRODUCTION TO ENSCRIBE 

File Open 

The OPEN procedure establishes a communication path to a file. The 
symbolic file name that identifies a file is used to search a table, a 
copy of which resides in each processor module, called the Logical 
Device Table. The Logical Device Table contains an entry for each 
device connected to the system. Each entry contains a device name or, 
in the case of disc files, a volume name, the process id of the 
"primary" system i/o process that controls the device/volume, and the 
process id of the "backup" system i/o process that controls the 
device/volume. 

In the following illustration, the logical device table is searched 
for an entry corresponding to the volume name "$VOLUME". The entry 
is associated with logical device four and a path is established to 
the primary i/o process controlling the device. 

Next, in the ca9e of disc files, a directory on the disc volume is 
searched for the subvolume name and the the disc file name that was 
supplied to OPEN. The entry associated with a subvolume and disc file 
name is a file label which contains information describing the state 
of the file, including the location of allocated extents, end-of-file 
location, file type, etc. 

In the following illustration, the file label is searched for a 
subvol designated "MYFILES" and a disc file named "FILEA". 

Once the file is located, whether it is a disc file, non-disc device, 
process, or the operator console, an Access Control Block (ACB) is 
created for that file in the processor~s memory where the caller to 
OPEN is running. The ACB is used by other file system functions when 
referencing the file. It contains information such as the logical 
device number of the device where the file resides and, for disc 
files, information "local" to the particular open of the file such as 
the current record pointer and next record pointer. 

If the open is to a disc file and the file is not currently open, one 
File Control Block (FCB) is created in the memory of each of the two 
processor modules that contain the system i/o processes that control 
the volume containing the file. The FCB contains information which is 
"global" to all accessors of the file. This includes a copy of the 
information from the file label, such as allocated extents and 
end-of-file location, along with dynamic control information such as 
which process has the file locked and which processes if any are 
waiting to lock the file. 

1-30 



INTRODUCTION TO ENSCRIBE 

There is a single FCB for each open disc file in the system (in each 
of the two processor modules controlling the associated device) while 
there is an ACB created every time a file is opened. Thus each open 
of a given file provides a logically separate access to that file 
(i.e., separate current-record and next-record pointers), yet the 
end-of-file location is maintained in the FCB so that it has the same 
setting for all accessors of the file. 

In the following illustration, the access control block indicates 
that logical device four is associated with the file indicated by 
"$VOL1 II. 

When OPEN completes, it returns a file number to the application 
process. The file number is an index into a table that contains an 
address pointer to the associated access control block. 

How the File System takes the file name passed with an OPEN procedure 
and builds the control blocks used to control subsequent access to the 
file is illustrated in Figure 1-13 on the following page. 

1-31 



i:r::I 
al 
H 
p:: 
u 
Ul z 
i:r::I 

0 
E-i 

z 
0 
H 
E-i 
u 
:::> 
0 

~ 
E-i z 
H 

r---1 LOGICAL DESTINATION 

DEVICE CONTROL 

I 
TABLE TABLE 
(NonStop (Nonstop 11 I SYSTEM) SYSTEM) 

I 

I 

I 

~ 

APPLICATION PROCESS __J___ I r--- r--, 

LDEV 3 

LDEV 4 

I LDEV 6 

DIRECTORY 

I '"u''"t""m• <• ,,, ~'vo" MY"''.. I I 

I \ '"Trm i I 1 
1
1 \ " \ L 

-

- -..._ ---......_ CHECKPOINT ~ 
""- OFFCB ~ 

\ 
\ 

I \ \ ---7 ------m I 
I ) I ...... __ 
. I EOF PTA ) I L DATA ADDRESS 

/ / E • 

L L _/ / 
ACCESS I, 0/// ""~'"//T7 

§ 
CONTROL 

- --- --- --- BLOCK 

I l T~·;;E I 

V4 
llAME 

ECP'fR 
EC PTA 

I 
~ ACB ADDRESS 

3 ] I 4 ] 

I : 3 
MAIN MEMORY RESIDENT OPERATING SYSTEM IN APPLICATION 

~OCESS'S PROCESSOR MOOU~ __ --- __ _ __J 

D 
A 

A 

... 

FILE 
CONTROL 

BLOCK 

EOF PTA 
DATA ADDRESS 

LOCK QUEUE 

MAIN-MEMORY 
RESIDENT IN 
i'O PROCESS'S 
PROCESSOR MODULE 

c: 
Q) 

°' 0 

Q) 
r-f 
·r-4 
~ 

M 
r-f 
I 

r-f 

Q) 

~ 

:::s 
O'I 

•r-4 
~ 

N 
M 
I 

r-f 



INTRODUCTION TO ENSCRIBE 

File Transfers 

As previously mentioned, the file number returned from open is used by 
file management procedures to access an open file. The file number 
can be thought of as a pointer to an access control block. When 
performing an i/o operation, the file number is used to locate an 
access control block, which in turn provides a logical device number 
which is then used as an index into the logical device table. The 
corresponding entry in the logical device table provides the process 
id associated with the primary path to the physical i/o device. In 
the case of disc files, other information maintained in the access 
and file control blocks eliminates the need for a disc access when 
addressing a file. 

In the following illustration, Figure 1-14, the access control 
block indicates that the device is logical device four. 

In the case of disc files, the information in the access control block 
(such as the current-record and next-record pointers) and the 
information in the file control block (such as the end-of-file pointer 
and addresses of allocated extents) is updated with the execution of 
each i/o operation. 

As accesses which necessitate changes to the FCB are made to the file, 
the system process which is currently responsible for controlling the 
disc ensures that the copy of the FCB in the other processor which can 
access the disc is updated. Thus, if the primary processor- fails, the 
backup has all the information necessary for a smooth transition 
(which is invisible to the user). In addition, when a new extent is 
allocated or the file is renamed, the file label on the disc is 
updated to reflect this change. This ensures that no disc space is 
lost, even in the event of a total system failure. However, when the 
end-of-file is changed or the file is written into, which requires 
updating the last modification timestamp, only the main-memory copies 
are updated. (Updating the file label each time the file is written 
into would be an unnecessary amount of additional overhead, because 
the current eof and last modification timestamp would be lost only in 
the event of a total system failure. The user who is concerned about 
the eof being updated on disc can force this to happen with the 
CONTROL request to set the end-of-file.) 

1-33 



~ 
i:Q 
H 
p:: 
{) 
Ul z 
~ 

0 
E-t 

z 
0 
H 
E-t 
{) 
::::> 
Cl 

~ 
E-t 
z 
H 

APPLICATION PROCESS c=27_) __ _ 
I 

+ 
~ ------, 

INT f1lenum I 

+ I 

I 
'---\ I 

CALL READ (f1l~num, buffer, 256, .); 
.l ... 

I 
L 

I 

I 
, FILE f 

TABLE 

LL D~~~~~ 
1 A B ADDRESS:--.:: 

I 

,--
I 

I 

ii 
I I 
I I 

LOGICAL 

DEVICE 

TABLE 

(Nonstop 

SYSTEM) 

--1 

I 

I 

I 

I 

I 

1 
I 

L 
I 

"'-----t-
L:Al~Y ~T ~NG SYSTEM __ _J 

-0 
J 

1.-4 
Q) 

li-1 
r.n 
s:: 
res 
µ 
8 

Q) 
r-1 
•..-f 

li.t 

<e:;f4 

r-1 
I 

r-1 

Q) 
µ 
::s 
O'I 

·r-1 
li.t 

---

<e:;f4 

M 
I 

r-1 



INTRODUCTION TO ENSCRIBE 

Buffering 

Two operating system buffers and an application buffer are involved 
in an i/o transfer. The operating system buffers, designated 
File System Buffer and I/O Buffer, are shown in Figure 1-15 below. 

BUFFER IN DATA 
APPLICATION •~---~ 

PROGRAM 

IN GUARDIAN'S DATA AREA 

FILE 
SYSTEM 
BUFFER 

DATA 1/0 
BUFFER 

DATA 
41 • 

IN SAME PROCESSOR MODULE IN SAME PROCESSOR MODULE 

SAME OR DIFFERENT PROCESSOR MODULE 

Figure 1-15. Buffering 

When an i/o transfer is initiated, in this example a call to READ from 
a disc file, the file system first secures resident File System Buffer 
space in the processor module where the application process is 
executing. The amount of File System Buffer space secured is 
dependent on the transfer count specified in the file management 
procedure call. Next, the i/o process in the primary processor module 
controlling the disc is instructed (in this example) to read a block 
of data from the disc. 

1-35 



INTRODUCTION TO ENSCRIBE 

The i/o process first secures resident I/O Buffer space in its 
processor module (the amount of I/O Buffer space secured is dependent 
on the transfer count specified in the file management procedure call) 
then initiates the i/o transfer. When the i/o transfer with the 
device is completed, the data is moved from the I/O Buffer in the 
device~s processor module to the File System Buffer in the 
application~s processor module. If these are different processor 
modules, then this is accomplished by an interprocessor bus transfer. 
At this point, the file system (executing on behalf of the 
application process) moves the data from the resident File System 
buffer to an array in the application process~s (virtual) data area. 

For the Tandem Nonstop II system, File System buffers are obtained 
from the process~s Process File Segment (PFS). I/O buffers are 
obtained from the i/o segments as needed by the i/o process. 
Processes that require dedicated buffers obtain buffer space during 
initialization. Once a process has obtained dedicated buffer space, 
it keeps that space until it terminates execution. 

For the Tandem Nonstop System, File System Buffers are obtained from a 
memory space pool, called SHORTPOOL, in the operating system~s data 
area. Processes requiring File System Buffers compete for this space 
on a first-come, first-served basis. If space is not available when 
needed, the application process is suspended until either the needed 
space becomes available or a configured timeout period expires (in the 
latter case an error indication is returned to the application 
process). When an i/o transfer is completed, the space in use by the 
File System Buffer is returned to SHORTPOOL for use in subsequent data 
transfers. 

For the Tandem Nonstop System, there are three types of IiO Buffers 
(the type of buffer that a device uses is specifed at system 
generation time) : 

• Pooled buffers - buffer space is secured from an i/o buffer pool, 
called IOPOOL, in the operating system~s data area. I/O 
processes controlling devices using pooled buffers compete for 
space on a first-come, first-served basis. If space is not 
available when needed, the i/o process is suspended until either 
the needed space becomes available or a configured timeout 
expires (if a timeout occurs, an error indication is returned to 
the application process). When an i/o transfer is completed, the 
I/O Buffer space is returned to IOPOOL for use in subsequent data 
transfers. 

• Shared buffers - buffer space in the operating system data area is 
shared among two or more i/o devices on the same controller. 

• Dedicated buffers - buffers space in the operating system data 
area is dedicated to a device~ 

1-36 



INTRODUCTION TO ENSCRIBE 

File Close 

When a file is closed, the communication path to the file is broken. 
The access control block is deleted and the space that it used is 
returned for use as another access control block. In the case of disc 
files, if no other opens are outstanding for the file, then the file 
control block is also released and information such as the end-of-file 
pointer and addresses of allocated extents is updated on the physical 
disc from the information that was maintained in the file control 
block. 

Automatic Path Error Recovery for Disc Files 

The system accomplishes automatic path error recovery with disc files 
in the following manner. 

First, two definitions: operations with disc files are classified as 
either "retryable" and "nonretryable". Retryable operations are those 
that can be retried indefinitely, without the possibility of loss or 
duplication of data. The retryable operations are: reading and 
full-sector writes. Nonretryable operations are those that if retried, 
could cause a loss or duplication of data. The nonretryable 
operations are: partial-sector writes and appending to the 
end-of-file. 

Associated with each distinct file operation is a "sync id" and a 
"requester id"; these are kept in the file~s Access Control Block. 
The sync id identifies a single operation in a series of operations; 
the "requester id" identifies the process requesting an i/o operation; 
together they identify a particular operation requested by a 
particular process. Additionally, each disc i/o process maintains a 
list of completed operations, each operation being identified by a 
sync id and a requester id; these are kept in the File Control Block. 

When an application program calls a file management procedure to write 
to disc, the file system initiates an i/o operation by sending an "i/o 
request" message to the primary i/o process for that file. The i/o 
request message contains the data be written, along with a sync id, 
the requester id, and the address where the data is to be written. 

The primary i/o process, upon receipt of the request, stores the 
information contained in the message and begins processing the 
request. 

1-37 



INTRODUCTION TO ENSCRIBE 

If the request involves a non-retryable operation (i.e., a 
partial-sector write and/or append to the end-of-file), special action 
is taken. The primary i/o process first reads the sector to be 
changed and updates the sector image in memory (if a partial-sector 
write). The primary i/o process then sends the new or updated sector 
image in a checkpoint message to its backup i/o process along with the 
disc address of where it is to be written, the sync id, and requestor 
id. Next, the primary i/o process performs the physical i/o operation 
to the disc. Upon completion of the i/o operation, the primary i/o 
process informs the file system (which, in turn, notifies the 
application process) of the completion. 

If the request involves a retryable operation (i.e., a full-sector 
write and not to append to the end-of-file), the information kept by 
the file system (i.e, that contained in an i/o request message) is 
enough the reinitiate the operation. Therefore, in the case of 
full-sector writes, no checkpointing occurs between the primary and 
backup i/o processes. 

If a failure of the primary i/o process~s processor module occurs, the 
file system and the backup i/o process are notified. 

The backup i/o process, when notified of the primary~s failure, takes 
over the primary~s duties. The first action that the backup performs 
is to execute the i/o operation indicated by the latest checkpoint 
message received from primary i/o process (this occurs regardless of 
whether or not the operation had been completed by the primary). 

When the file system receives notification of the primary~s processor 
module failure, after an operation has been requested but before it 
has been notified by the i/o process of a successful completion, it 
reinitiates the operation, this time sending the "i/o request" message 
(containing the data, sync id, requestor id, and disc address) to the 
backup i/o process. 

Following a takeover from its primary, the backup i/o process checks 
the sync id and requestor id in the i/o request message for a match in 
the list of completed operations. If there is a match, the requested 
operation has already completed and the backup i/o process returns the 
associated completion status to the file system (and no other action 
is taken). If there is no match, the backup i/o process has not 
performed the operation. The operation is performed in its entirety 
and the operation~s completion status is returned to the file system. 

1-38 



INTRODUCTION TO ENSCRIBE 

PROCESSOR MODULE FAILURE RECOVERY FOR DISC FILES 

The first operation is performed without incident: 

CALL WRITE(fnum, •.• ); 

1. The file system sends an "i/o request" message to the primary 
disc i/o process. 

(a) = application process 

- [TI sync id in ACB 

i/o request message (data, sync id, requestor id) 

I 
(i/o) = primary backup = (i/o~) 

1- [TI sync id in FCB 

2. In the primary i/o process 

* the sector to be updated is read from disc 
the sector image in memory is updated 
the next sync id (1) is saved. 

(i/o) 
I 

(i/o~) 

I 
[I] sync id in FCB sync id in FCB ~ 

* performed only if partial-sector write 

1-39 



INTRODUCTION TO ENSCRIBE 

•j. The state of the operation about to be performed is 
checkpointed to backup i/o process. The checkpoint message 
contains: 

the requester id 
the updated sector image 
the next sync id 

(i/o) 
I 

--~~~~~- checkpoint message 

[I] sync id in FCB 

( i/o ... ) 
I 

sync id in FCB CIJ. 
The backup i/o process 

- saves the updated sector image 
- saves the next sync id = 1 

4. The primary i/o process then writes updated sector image to 
disc. 

(i/o) 
i \ 

DISC 

ITJ sync id in FCB 

{ i/o"') 
I 
I 

sync id in FCB [IJ 

* performed only if partial-sector write 

1-40 



INTRODUCTION TO ENSCRIBE 

5. The primary i/o process indicates to the application process 
(i.e., via the file system) that the operation is completed. 

(a) 

- IT] sync id in ACB 

i/o request message (completion part) 

I 
(i/o) 

I 
( i/o"") 

I . 
ITJ sync id in FCB sync id in FCB IT] 

6. The file system increments the "sync id" in the ACB. 

(a) 

1- ITJ sync id in ACB incremented. 

The next operation encounters a failure: 

CALL WRITE (fnum, ••. ); 

1. The file system sends an "i/o request" message to the primary 
disc i/o process. 

(a) 

-[TI sync id in ACB 

i/o request message (data, sync id, requestor id) 

I 
(i/o) ( i/o"") 

* performed only if partial-sector write 

1-41 



INTRODUCTION TO ENSCRIBE 

2. In the primary i/o process 

* the sector to be updated is read from disc 
the sector image in memory is updated 
the next sync id (0) is saved. 

(i/o) ( i/o ... ) 

~ sync id in FCB sync id in FCB 

I 
[TI 

*3. The state of the operation about to be performed is check
pointed to the backup i/o process. The checkpoint contains: 

the requestor id 
the updated sector image 
the next sync id 

(i/o) 
I 
~ sync id in FCB 

checkpoint message ~~~~~~-> (i/o ... ) 
I 

sync id in FCB ~ 

The backup i/o process 

- saves the updated sector image 
- saves the next sync id = 0 

The primary ... s processor module fails 

4. The backup i/o process is notified of the failure. (*)It 
uses the latest checkpoint from the primary to perform the 
i/o operation to the disc. 

(xxx) 

sync id in FCB m 
( i/o ... ) 

I 

DISC 

* performed only if partial-sector write 

1-42 



INTRODUCTION TO ENSCRIBE 

5. The file system, on behalf of the application process, 
reinitiates the ~equest; this time to the backup process. 

(a) 

- IT] sync id in ACB 

I 
i/o request message (data, sync id, requestor id) 
I 

I 
( i/o"") 

I 
sync id in FCB IT] 

6. The backup i/o process compares the requestor id and sync id 
in the i/o request message with that of operations is has 
already performed. (*) The backup recognizes that this is a 
request to perform an operation is has already completed. 
Therefore, the operation is not performed. Rather, the 
completion status from the completed operation is returned to 
the file system. 

(a) 

- [TI sync id in ACB 

i/o request message (completion part) 
I 

I 
( i/o"") 

I 
sync id in FCB [TI 

7. The file system increments the "sync id" in the ACB. 

(a) 

1-ITJ sync id in ACB ! incremented. 

* performed only if partial-sector write 

1-43 



INTRODUCTION TO ENSCRIBE 

Mirror Volumes 

A "mirror" disc volume consists of a pair of physically independent 
disc devices that are accessed as a single volume; each device is 
usually controlled through two independent disc controllers. With 
this configuration, both devices of a mirror volume are controlled by 
the same i/o process-pair. Each mirror volume is controlled by a 
separate i/o process-pair. The mirror designation for a volume is 
indicated to the system at system generation time. The hardware 
congiguration of a mirror volume is shown in Figure 1-16. 

0 

1-44 

I 

p p 

0 0 
R DUAL-PORT R 
T CONTROLLER T 

A B 

p 

R 
I l 
~I I I 

R ~ J MIRROR VOLlME y 

p 

A 
T 
H 

p p 

0 0 
R DUAL-PORT R 
T CONTROLLER T 

A B 

® PRIMARY 10 PROCESS FOR MIRROR VOLUME 

® BACKUP 1'0 PROCESS FOR MIRROR VOLUME 

Figure 1-16. Mirror Volume 



INTRODUCTION TO ENSCRIBE 

When a write is performed to a mirror volume, the {primary) i/o 
process automatically writes the data on the two disc devices 
comprising the volume. Both devices, when both are operable, are used 
by the i/o process for reading. If one of the devices becomes 
inoperable, the i/o process performs all subsequent reading from the 
operable device. 

When an inoperable device is repaired, the information on the 
previously inoperable pack is brought up-to-date by means of the PUP 
{Peripheral Utility Program) "REVIVE" command. The REVIVE command 
copies the information from the operable pack onto the previously 
inoperable pack in groups of one or more tracks. This copying 
operation is carried out concurrent with requests to read or update 
data in files on this volume. (An optional parameter to the REVIVE 
command specifies a time interval between copying groups of tracks. 
This permits the revive operation to take place without a significant 
degradation of system performance.) 

Four options are provided to optimize mirror volume performance when 
~oth devices comprising a mirror volume are operable. These options, 
which are specified at system generation time, are: 

e for reading, SLAVESEEKS or SPLITSEEKS 

SLAVESEEKS specifies that both devices of a mirror volume are to 
seek (i.e., perform head positioning) together. The device that is 
to be used for reading data is selected at random. 

SPLITSEEKS specifies that the device with its head positioned 
closest to the desired cylinder is the device to be used for 
reading. The alternate device's head is not repositioned. 

e for writing, SERIALWRITES or PARALLELWRITES 

SERIALWRITES specifies that both devices are to seek together when 
preparing to write. The actual data transfer completes on one 
device before beginning for the other. 

PARALLELWRITES specifies that both devices are to seek together 
when preparing to write. Data transfers to both devices occur 
concurrently. This option is allowed only if each device is 
controlled by a separate hardware controller. 

1-45 





SECTION 2 

ENSCRIBE FILE STRUCTURES 

The ENSCRIBE Data Base Record Manager provides these disc file 
structures: 

• Key-Sequenced 

• Relative 

• Entry-Sequenced 

• Unstructured 

These four file types fall into two major groups, structured files and 
unstructured files. Key-sequenced, relative, and entry-sequenced 
files are structured files, and unstructured files are, of course, 
unstructured files. 

STRUCTURED FILES 

This section begins with descriptions of the three stuctured file 
types. Following the descriptions of key-sequenced, relative, and 
entry-sequenced files, the section describes basic access concepts for 
structured files. The section closes with a description of alternate 
keys, which apply to all three structured file types. 

2-1 



ENSCRIBE DISC FILES 

Key-Sequenced Files 

A key-sequenced file consists of a set of variable length records. 
Each record is uniquely identified among other records in a 
key-sequenced file by the value of its primary key field. Records in 
a key-sequenced file are logically stored in order of ascending 
primary key values. The primary key value must be unique and it 
cannot be changed when updating a record. 

A record may vary in length from one byte (1) to the maximum specified 
for record size when the file was created. The number of bytes 
allocated for a record is the same as that written when the record was 
inserted into the file. Each record has a length attribute that is 
optionally returned when a record is read. A record~s length can be 
changed after the record has been entered (with the restriction that 
the length cannot exceed the specified record size) • Records in a 
key-sequenced file can be deleted. 

A key-sequenced file is physically organized as a tree structure of 
index blocks and data blocks. Each data block contains one or more 
data records, depending on the record size and data block size. For 
each data block there is an entry in an index block which contains the 
value of the key field for the first record in the data block and the 
address of that data block. 

The position of a new record inserted into a key-sequenced file is 
determined by the value of its primary key field. If the block where 
a new record is to be inserted into a file is full, a new data block 
is allocated and part of the data from the old block is moved into the 
new block. In addition, an entry is inserted in the index block to 
point to the new data block. 

When an index block fills up (i.e. there is not enough space in the 
index block to point to all the data blocks), the block is split into 
two parts. A new index block is allocated and some of the pointers 
are moved from the old index block to the new one. The first time 
that this occurs in a file, it is necessary to generate a new level of 
indices. This is accomplished by allocating a higher level index 
block which has the low key and pointer to the two lower level index 
blocks (which in turn point to many data blocks) . 

Note that data records are never chained together in ENSCRIBE 
key-sequenced files. Instead, the tree structure is dynamically 
rebalanced to ensure that any record in the file can be accessed with 
the same number of reads, that number being the number of levels of 
indices plus one for the data block. 

2-2 



ENSCRIBE DISC FILES 

The user may optionally specify when the file is created that data 
and/or index records are to be compressed. Compression results in 
only the significant bytes of the record being stored on the disc. 
When the record is accessed, it is reconstructed from the significant 
data and additional information which relates the insignificant data 
to significant data in another record in the block. Data compression 
thus reduces storage requirements on the disc at the cost of slightly 
higher processing time. For sequential processing it can also reduce 
disc accesses since more records will fit in a block. Data 
compression can have the additional affect of reducing index levels. 
When compression is applied to index blocks, it may have the added 
advantage of reducing the number of index levels so that less reads 
are necessary to access any data record. This happens because an 
index block may now point to more data blocks, so there is a 
proportionate reduction in the number of index blocks. 

An example of an application for a key-sequenced file is an inventory 
file where each record describes a part. The key field for that file 
would be the part number, and thus the file would be ordered by part 
number. Other fields in the record could contain the vendor name, 
quantity on hand, etc. Note that ENSCRIBE is concerned only with key 
fields. The content of all fields and the location within the record 
of fields other than key fields is determined solely by the 
application. 

Key sequenced files may be accessed sequentially or randomly. An 
example of sequential access is the generation of a report of the 
quantity on hand of all parts. Random access would be used to 
determine the vendor of a particular part. 

The structure of a key-sequenced file is shown in Figure 2-1, on the 
following page. 

2-3 



r r---K-~~--~SEQUENCEO 
1 

FILE STRUCTURE 
FINO "PAWf' 

Cf= I MO~LY I I : <+ l } FIRST IHIGHESTIUVFL INDEX BLOCK 

L.--L-. ··---I ~' · l CAROL l' DANA'+ JANEL{ V''Yi:l' LOU<SE. 
I I I µ SECOND LEVEL INDEX BLOCK 

t-:rj ..... 
lO 
c: 
H 
<D 

N 
I 

I-' 

~ 
<D 
~ 

I 
(/) 

<D 
~o 
c: 
<D 
::l 
0 
<D 
0.. 

t-:rj ..... 
f--1 
<D 

(/) 

rt 
H 
c: 
0 
rt 
c: 
H 
<D 

A DATA flECORD 
I 

/ "' 
-------+----+-·------·-- -- [~vT!2\. > >I: ~ETTY{:: :]£~ep:' \:: iMPlc:J 

~ 
KEY 

---+----------1 ...... E§oL};Jcfiloe:F l~Ci.Eo>T:IJ~?.~) ---EMPTY - l 

.. [ o.ANA?1?:< ::.r·~~LE·~.::17 .[FLOSSY-TI)\ EMPTY I 
• 
• 
• 

-------•[lo.ulsE]I.?~TMJ\el.eTTMJ\;yT :: :: : :\<\ r-EP.1PTv--] 

-------.::MOLLY::1 OLGA RUTH>(: TAMMY+<) PJJTWiuY ::) SECOND LEVEL INDEX BLOCK 

' I -+---- FNi()Liv-p?:~T~'.ANCYl:~'..~7\YJTNATJ\l.!J] r- EMPTY---] 

DATA 

/ - -"' 
·--+--------r OLGA J?: >?::] PAM -ir~rm \ EMPTY -=i 

'--,---" 
KEY • 

• 
-------Fw1.Li:v-l?]/ znDA + ::::::::::::::::::::::1 \ \--EMPT'Y-J 

,._ +· ~1 
VARIABLE LENGTH 

PHYSICAL RECORDS 

' __J I 
SAVED FOR 

FUTURE INSERTIONS 

1 

DATA 
BLOCKS 

nrn10 

tij 
z 
(/) 
0 
~ 
H 
tP 
tij 

0 
H 
(/) 
() 

t-:rj 
H 
t'1 
tij 
(/) 



ENSCRIBE DISC FILES 

Relative Files 

A relative file consists of a set of records. Each record is uniquely 
identified among other records in a relative file by a record number; 
a record number denotes an ordinal position in a file. The first 
record in a relative file is designated by record number zero; 
succeeding records are designated by ascending record numbers in 
increments of one. A record occupies a position in a file whether or 
not the position has been written in. 

Each record position is always allocated a fixed amount of storage. 
However, a record may logically vary in size from byte zero to the 
maximum specified for record size when the file was created. Each 
record has a length attribute that is optionally returned when a 
record is read. A record~s length can be changed after the record has 
been entered (with the restriction that the length cannot exceed the 
specified record size). Records in a relative file can be deleted. 

The position where a new record is inserted into a relative file is 
specified by supplying a record number to the POSITION or KEYPOSITION 
procedure. Alternatively, the programmer can specify that records be 
inserted into any available position in a relative file by supplying a 
record number of -20 to POSITION or KEYPOSITION before inserting 
records into the file. Likewise, the programmer can specify that 
subsequent records be appended to the end-of-file by supplying a 
record number of -lD to the POSITION or KEYPOSITION procedure. 

When -2D or -lo is specified for inserting records into a relative 
file, the actual record number associated with _the new record can be 
obtained through the FILEINFO procedure. 

The structure of a relative file is shown in Figure 2-2 on the 
following page. 

2-5 



ENSCRIBE DISC FILES 

FIRST RECORD 

RECORDO 
I 

/ v 
RECORD 1 

I 
v 

RECORD 2 
I 

RECORD 3 • • e e 
vr----'--v- ~ 

_l_D_AT_A __ :::_.:<_d~_DA_T_A~_l/_(/_Y~_:·µ._~~_::P.~.:<_:J ___ D_A_TA~--....... )~ 

/ v v v v-- ~ 

IDATAk/\)j DATA DATA :ttlt~~~.~~.P..td \0 
/ v v 

DATA 

EACH RECORD HAS A 
LENGTH ATTRIBUTE. • 
THEREFORE RECORDS • 
MAY "LOGICALLY" VARY IN LENGTH • 

, .. 
I 
, .. 

• 
·I • 

I 
/ v 

DATA v:n DATA DATA . , .. ., .. 
FIXED LENGTH PHYSICAL RECORDS. 
EACH RECORD POSITION OCCUPIES 
A FIXED AMOUNT OF SPACE, WHETHER 
OR NOT THE RECORD HAS BEEN 
WRITTEN IN. 

v 

DATA 

v v- ~ 

DATA )):::] 

.., 

0078 

Figure 2-2. Relative File Structure 

DATA 
BLOCKS 

Relative files are best suited for applications where random access to 
fixed length records is desired and the record number may function as 
the key to the file. In the earlier inventory example, it would be 
possible to make the inventory file a Relative file where the relative 
record number was equal to the part number. However, this would 
probably be wasteful of space since part numbering schemes typically 
leave large gaps in the numbers and this would result in many records 
allocated but not used. However, an employee file where the relative 
record number was equal to the employee number would be a good 
application for a Relative file, since there are typically no large 
gaps in this kind of file. Data fields in the record could consist 
of such things as name, address, department, salary, etc. 

2-6 



ENSCRIBE DISC FILES 

Entry-Sequenced Files 

An entry-sequenced file consists of a set of variable length records. 
Each record is uniquely identified among other records in an entry-
sequenced file by a record address. Records inserted in an entry
sequenced file are always appended to the end-of-file and, therefore, 
are physically ordered by the sequence presented to the system. So 
that records may be accessed randomly, the record address of where a 
record is appended can be obtained through the FILEINFO procedure. 

A record may vary in length from zero byte (empty) to the maximum 
specified for the record size when the file was created. The number 
of bytes allocated for a record is the same as that written when the 
record was inserted into the file. Each record has a length attribute 
that is optionally returned when a record is read. A record~s length 
cannot be changed after the record is written into the file. Records 
in an entry-sequenced file cannot be deleted. 

The structure of an entry-sequenced file is shown in Figure 2-3. 

1ST 2ND 
RECORD RECORD 

DATA I DATA 

3RD 
RECORD 

DATA 

4TH 5TH 
RECORD RECORD 

DATA 

6TH 7TH STH 9TH 1 OTH 11TH 
RECORD RECORD RECORD RECORD RECORD RECORD 

DATA I DATA 

12TH 
RECORD 

DATA 

DATA 

13TH 14TH 15TH 16TH 
RECORD RECORD RECORD RECORD 

DATA [}:)j/jJ 

17TH 18TH 20TH 21ST 22ND 

RECORD RECORD 19TH RECORD RECORD RECORD 

I DATA I DATA 

VARIABLE LENGTH 
PHYSICAL RECORDS 

DATA 

RECORDS ARE PERMITTED 

0076 

DATA 
BLOCKS 

Figure 2-3. Entry-Sequenced File Structure 

2-7 



ENSCRIBE DISC FILES 

Entry-Sequenced files are best suited to sequential processing of 
variable length data. An example of this type of application is a 
transaction logging file. Each transaction becomes a record in the 
file; the records are stored in the file in the order that 
the transactions are made. 

ACCESSING STRUCTURED FILES -- CONCEPTS 

This section describes how structured files are accessed. It begins 
by defining some basic concepts, and then describes how a process can 
select a subset of a structured file for subsequent access. 

Some definitions: 

• File A file is a collection of related records. 

• Record A record is a collection of one or more data items. 

• Key A key is a value that is associated with a record {such 
as a record number) or contained in a record (such as a 
byte field) that can be used to locate one record or a 
subset of records in a file. 

• Primary Key Each record in an ENSCRIBE file is uniquely identified 
by the value of its "primary" key. 

• Alternate 
Key 

2-8 

for key-sequenced files, this is a byte field within 
the record and determines where a record is added to 
a file. The primary key field for a key-sequenced 
file is defined when the file is created. 

for relative files, this is a record number. 

for entry-sequenced files, this is a record address. 

An alternate key is a byte field within a record that 
can be used to provide a logically independent access 
path through a file. The values of an alternate key 
can be used to identify a subset of records in an 
access path. A file's alternate key fields are defined 
when the file is created. Any ENSCRIBE file type can 
have up to 255 alternate key fields. Alternate key 
values may or may not be unique. 



ENSCRIBE DISC FILES 

Current Key Specifier and Current Access Path 

To identify a particular key field as an access path when positioning, 
each key field is uniquely identified among other key fields in a 
record by a two-byte "key specifier". The key specifier for primary 
keys is pre-defined as ASCII "<null><null>" (binary zero). Key 
specifiers for alternate key fields are application-defined and are 
assigned when the file is created. 

The current key specifier defines the current access path. The 
current access path determines the order that records are returned 
when the file is read sequentially. 

The current key specifier, and therefore the current access path, is 
implicitly set to the file~s primary key when a file is opened or a 
call is made to the POSITION procedure (for relative and entry
sequenced files only). The access path is set explicitly by calling 
the KEYPOSITION procedure. Figure 2-4 shows a typical record 
structure with a primary key and three alternate keys. 

AN INVENTORY RECORD 

PRIMARY KEY ALTERNATE KEY FIELDS 

/ / / 

PART NO. DESCRIPTION ON-HAND PRICE LOCATION VENDOR 

'\ / "' / ' / '----..---

SYSTEM-DEFINED APPLICATION-DEFINED 

KEY SPECIFIER = 0 KEY SPECIFIERS ="OH" 

EXAMPLES: 
1. TO POSITION VIA PRIMARY KEY 

KS:= 0; ! KEY SPECIFIER. PRIMARY 
CALL KEYPOSITION (FNUM, KEY, KS); 

2. TO POSITION VIA AN ALTERNATE KEY 
KS:= "OH";! ON-HAND KEY FIELD 
CALL KEYPOSITION (FNUM, KEY, KS); 

"LO" 

Figure 2-4. Key Fields and Key Specifiers 

"VN" 

2-9 



ENSCRIBE DISC FILES 

Current Key Value and Current Position 

The current key value defines a subset of records in a file's current 
access path (see "Positioning Mode and Compare Length") and sets a 
file's current position. 

The current key value can be set explicitly by calling the POSITION or 
KEYPOSITION procedures. KEYPOSITION is used to position by primary 
key for key-sequenced files and by alternate key for key-sequenced, 
relative, and entry-sequenced files. POSITION is used to position by 
primary key for relative and entry sequenced files. The current key 
value is implicitly set following a call to READ to the key value of 
the current access path in the record just read. 

The current position determines the record to be locked (by a call to 
LOCKREC) or accessed (by a call to READ[LOCK], READUPDATE[LOCK], or 
WRITEUPDATE[UNLOCK]). A record need not exist at the current 
position. Following a file open, the current position is that of 
first record in the file as defined by the file's primary key. An 
example of using KEYPOSITION to position within a key-sequenced file 
is shown in Figure 2-5 below. 

2-10 

KEY':=' "FISH"; 

u - CALL Kt. YPOSITION (FNUM, KEY) 
I.E. APPROXIMATE VIA PRIMARY KEY. 

1 - CALL READ (FNUM, .. ); 
2 - CALL READ (FNUM, ... ); 
3 - CALL READ (FNUM, ... ); 

PRIMARY 
KEY 

ADAMS 

BROWN 

COLLINS 

FISH 

JACKSON 

KING 

MASTERS 

OBRIEN 

RYAN 

RECORD 

._CURRENT POSITION AFTER 
KEYPOSITION AND READ 1. 

.-cuRRENT POSITION AFTER READ 2. 

~CURRENT POSITION AFTER READ 3. 

Figure 2-5. Current Position 



ENSCRIBE DISC FILES 

Positioning Mode and Compare Length 

The positioning mode, compare length, and current key value determine 
the first record accessed and the records comprising a subset of 
records. Positioning mode and compare length (as well as current key 
specifier and current key value) are set explicitly by the KEYPOSITION 
procedure and implicitly by the OPEN and POSITION procedures. There 
are three positioning modes: approximate, generic, and exact. 

APPROXIMATE. Approximate positioning means that the first record 
accessed is the one whose key field, as indicated by the current key 
specifier, contains a value equal to or greater than, or only greater 
than the current key value. Following approximate positioning, 
sequential reads to the file return ascending records until the last 
record in the file is read (an end-of-file indication is then 
returned). Subsequent to a file open, the positioning mode is set to 
approximate, the compare length is set to 0. 

Sequential reads to a relative file following approximate positioning 
will skip non-existent records. 

GENERIC. Generic positioning means that the first record accessed is 
the one whose key field, as designated by the current key specifier, 
contains a value equal the current key value for compare length bytes. 
Following generic positioning, sequential reads to the file return 
ascending records whose key matches the current key value (for compare 
length bytes). When the current key no longer matches, an end-of-file 
indication is returned. 

For relative and entry-sequenced files, generic positioning by the 
primary key is equivalent to exact positioning. 

EXACT. Exact positioning means that the only records accessed are 
those whose key field, as designated by the current key specifier, 
contains a value of exactly compare length bytes and is equal to the 
current key value. When the current key no longer matches, an 
end-of-file indication is returned. Exact positioning on a key field 
having a unique value accesses at most one record. 

2-11 



ENSCRIBE DISC FILES 

Subset 

A subset is a related set of records in the current access path. The 
records comprising a subset are determined by the current key value 
and positioning mode. A subset may consist of all, part of, or none 
of the records in a file. 

ALTERNATE KEYS 

Alternate keys are implemented as follows. For each file having one 
or more alternate keys, at least one alternate key file exists. Each 
record in an alternate key file consists of: 

• Two bytes for the <key specifier> 

• The alternate key value 

• The primary key value of the associated record in the primary file. 

The length of an alternate key record is at least 

2 + alternate key field length + primary key length 

Figure 2-6 on the following page shows how alternate keys are 
implemented. 

2-12 



ENSCRIBE DISC FILES 

RECORD IN PRIMARY FILE 

PRIMARY KEY 
I 

/ / 

················ 
PART NO. <<.:9.~~~-~:i~t:(q~}} ON-HAND 

'------.---J/ 

KEY SPECIFIERS 0 

'--~1--/ 

"OH" 

RECORD IN ALTERNATE Fl LE FOR KEY FIELD "OH" 

'"OH" I ON-HAND 

KEY FIELD 

SPECIFIER VALUE 

EXAMPLE 

PRIMARY FILE DATA 

PART NO. 

PRIMARY 

VALUE 

ALTERNATE KEYS 
I 

/ "-/ 

:/P·R_i.ci/: LOCATION 
·:·.·.·.·.- .. ·: 

VENDOR 

"LO" "VN" 

PART NO. DESCRIPTION ON-HAND PRICE LOCATION VENDOR 

/ 'v "-/ "-./ 

0115 TOASTER 20 12.50 c TWR 

0201 T.V. SET 5 200.00 A ACME 

0205 PHONOGRAPH 52 55.00 B ACR 

0206 RADIO l 210 5.50 A BROWN 

0310 FRY PAN l 19 37.50 D SMITH 

0322 MIXER 12 32.95 I D ACME 

ALTERNATE FILE DATA (ALTERNATE FILE IS KEY-SEQUENCED) 

A 

A 

~ ,,.... ~ ~ 

"LO" D 0322 

"OH" 5 0201 

"OH" 12 0322 
~ ~ ~ ~ 

"OH" 

"VN" ACME 0201 

"VN" ACME 0322 

l"VN"l TWR l 0115 J 
~' A / 

I 
KEY ALTERNATE PRIMARY 

SPECIFIER KEY VALUE KEY VALUE 

Figure 2-6. Alternate Key Implementation 

2-13 



ENSCRIBE DISC FILES 

Alternate Key Attributes 

When an alternate key is defined, the following attributes can be 
assigned. 

• Null Value 

An alternate key field can be designated to have a "null value". A 
"null value" is a byte value that when encountered in all positions 
of the indicated key field during a record insertion causes the 
alternate key file entry for the field to be omitted. This has the 
effect, when reading the file sequentially via an alternate key 
field having a null value defined, of skipping records containing 
only the null value in the alternate key field. 

• Unique Alternate Key 

An alternate key field can be defined as requ1r1ng a unique value. 
An attempt to insert a record having a duplicate key value in a 
unique alternate key field is rejected with a file management 
<error> 10, "record already exists". 

• No Automatic Update 

The data base designer can specify that an alternate key field not 
be updated by the system when a change to that field occurs. 

Alternate Keys in a Key-Sequenced File 

An example of alternate key usage in a key-sequenced file would be a 
file whose records consisted of the vendor name and the part number. 
The primary key to this file would be the part number (it could not 
be the vendor name since this is not unique) • In order to produce 
the report consisting of all parts supplied by a given vendor, a 
"generic position" would be done via the desired vendor. The file is 
then read sequentially until the vendor name field is not equal to 
the desired vendor (at which time the system will return an 
end-of-file indication). The records associated with a given vendor 
are returned in ascending order of the part number. 

Alternate Keys in a Relative File 

An example of alternate key usage in a relative file would be a file 
whose records consisted of employee data. The primary key (i.e., a 
record number) would be an employee number. An alternate key field 
would be an employee name. 

2-14 



ENSCRIBE DISC FILES 

Alternate Keys in an Entry-Sequenced File 

An example of alternate key usage in an entry-sequenced file would be 
in a transaction logging file. The primary key (i.e., a record 
address) would indicate the order that transactions occurred. An 
alternate key field might indicate the terminal in the system that 
initiated a transaction. To list all transactions for given terminal 
in the order in which they occurred, a "generic position" would be 
done using the field value of the desired terminal, then the file 
would be read sequentially. 

Comparison of Structured File Characteristics 

COMPARISON OF KEY-SEQUENCED, RELATIVE, AND ENTRY-SEQUENCED FILES 

Key-Sequenced 

Records are ordered 
by value in primary 
key field 

Access is by 
primary or 
alternate key 

Space occupied by a 
record depends on 
length specified 
when written 

Free space in block 
or at end of file 
is used for adding 
records 

Records can be del
eted, shortened, or 
lengthened 

Space freed by 
deleting or 
shortening a record 
is reused within 
its block 

Relative 

Records are ordered 
by relative record 
number 

Access is by record 
number or alternate 
key 

Space occupied by a 
record is specified 
when the file is 
created 

Empty positions in 
file are used for 
adding records 

Records can be del
eted, shortened, or 
lengthened 

Space freed by 
deleting a record 
can be reused 

Entry-Sequenced 

Records are in the 
order in which they 
entered 

Access is by record 
address or alternate 
key 

Space occupied by a 
record depends on 
length specified 
when written 

Space at end of file 
is used for adding 
records 

Records cannot be 
deleted, shortened, 
or lengthened 

A record cannot be 
deleted, but its 
space can be used 
for another record 
of the same size 

2-15 



ENSCRIBE DISC FILES 

UNSTRUCTURED FILES 

This section begins with a list of unstructured disc file 
characteristics and then briefly describes how an application process 
can position within an unstructured file. 

Unstructured File Characteristics 

Unstructured files have the following characteristics: 

• It is the application~s responsibility to determine optimum record 
sizes and to block records in an efficient manner. 

• Files must be created first, then opened for access. 

• Disc space is allocated by the file system in file extents as 
required. A file may have as many as 16 extents. The first extent 
is designated the "primary" extent and may differ in size from the 
remaining "secondary" extents. 

• An application process can initially allocate one or more extents 
in an open file via a call to CONTROL, <operation> = 21. This 
CONTROL <operation> can also be used to deallocate unused extents. 

• File names for permanent files are of the form 

<file name[0:3]> 
<file name[4:7]> 

is $<volume name><blank fill> 
is <subvol name><blank fill> 

<file .,.,, ::nno r Q • 1 1 , ..... .. .... 
..,,.""""".,"''- L""" • .-_.J, .L~ 

____ ..... ,,\-,, --1~ 

UC:ULIC-' "LJ.LQU~ 

• File names for temporary files are of the form 

<file name[0:3]> is $<volume name><blank fill> 
<file name[4:11]> is the <temporary file name> returned by 

CREATE (which is blank filled) 

• For network file names, <file name[4:11]> is the same as for 
local file names but 

<file name[0:3]> is \<sys num><volume name><blank fill> 

• Data in an unstructured disc file is referenced by a relative byte 
address. Three file pointers indicate the current address just 
accessed, the next address to be accessed, and the end-of-file 
address 

• Data is physically located on disc in 512-byte sectors. 

2-16 



ENSCRIBE DISC FILES 

• If a data transfer is between 3585 and 4095 bytes inclusive, 
the transfer may fail if the current record pointer is 
positioned such that the transfer spans more than eight sectors. 
The condition which must be met for the transfer to be possible 
is: 

mod (current record pointer,512) ~ 4096 - (transfer-length) 

• An application process can purge all of the data from a file, 
without deleting the file, by use of the CONTROL procedure, "purge 
data" operation. 

• File locking procedures are provided to coordinate access to a 
shareable file 

• Error Recovery 

Parity and overrun errors are retried automatically by the file 
system. Therefore, if one of these errors is reported back to the 
application process, the file is no longer accessible. 

Path errors are retried automatically by the file system if the 
file is open with a "synchronization depth" greater than zero. An 
error return of a path error in this case then indicates that the 
file is no longer accessible. 

• Maximum number of files on a <volume> is a function of system 
configuration 

• <device type> is 3 

2-17 



ENSCRIBE DISC FILES 

Relative Byte Addressing and File Pointers 

Data in an unstructured disc file is addressed in terms of a "relative 
byte address" (rba). A relative byte address is an offset, in bytes, 
from the first byte in a file; the first byte in a file is at rba 
zero. 

Three file pointers are associated with each open disc file: 

1. A next-record pointer containing the relative byte address of the 
location where the next disc transfer, due to a READ or WRITE, 
begins. 

2. A current-record pointer containing the relative byte address of 
the location just read or written and is the address where a disc 
transfer due to a READUPDATE or WRITEUPDATE begins. 

3. An end-of-file pointer containing the relative byte address of the 
next even numbered byte after the last significant data byte in a 
file. The end-of-file pointer is incremented automatically when 
data is appended to the end-of-file (WRITE). It can be set 
explicitly by calls to the POSITION and CONTROL procedures. 

Separate next-record and current-record pointers are associated with 
each open of a disc file so that if the same file is open several 
times simultaneously, each open provides a logically separate access. 
The next-record and current-record pointers reside in the file's 
Access Control Block in the application process environment. 

A single end-of-file pointer, however, is associated with all opens of 
;::i fliUQn ni<:I"" .f=i1o l"f'lh;C! 'Y"\O,..,.,..;.j.-C! rl::>.j.-::> .j.-'"' ho ~.,.....,....,...,..,.:i,..,.:i '°'"' '9\...,..,. 
- J- .- --- ---- ... ~_..._. .... .............. I:"'-._,,,.,._,..., '""""""''-"""' '-"'-' ...,,,'- """'J:""l::''-'"'-'~'-A '-'-' \..L.I.\,;; 

end-of-file by several different accessors. The end-of-file pointer 
resides in the file's File Control Block in the disc i/o process 
environment. A file's end-of-file pointer value is copied from the 
file label on disc when the file is opened and is not already open; 
the end-of-file pointer value in the file label is updated when any 
CONTROL operation to the file is performed, when a file extent is 
allocated for the file, and when the file is closed and there are no 
other opens of the file. 

A summary of file pointer action is given in Table 2-1 on the 
following page. 

2-18 



ENSCRIBE DISC FILES 

Table 2-1. File Pointer Action 

CREATE 

file label end-of-file pointer := OD; 

OPEN (first) 

end-of-file pointer := file label end-of-file pointer; 

OPEN (any) 

current-record pointer := next-record pointer := OD; 

READ 

current-record pointer := next-record pointer; 
next-record pointer := next-record pointer + 

$min (<count>, eof pointer - next-record pointer); 

WRITE 

if next-record pointer = -lD then 
begin 

current-record pointer := end-of-file pointer; 
end-of-file pointer := end-of-file pointer + <count>; 

end 
else 

begin 
current-record pointer := next-record pointer; 
next-record pointer := next-record pointer + <count>; 
end-of-file pointer := $max( end-of-file pointer, 

next-record pointer ) ; 
end; 

READUPDATE 

file pointers are unchanged 

WRITEUPDATE 

file pointers are unchanged 

CONTROL (write end-of-file) 

end-of-file pointer := next-record pointer; 
file label end-of-file pointer := end-of-file pointer; 

2-19 



ENSCRIBE DISC FILES 

Table 2-1. File Pointer Action (cont'd) 

CONTROL (purge data) 

current-record pointer := next-record pointer := 
end-of-file pointer := OD; 

file label end-of-file pointer := end-of-file pointer; 

CONTROL (allocate/deallocate extents) 

file pointers are unchanged 
file label end-of-file pointer := end-of-file pointer; 

POSITION 

current-record pointer := next-record pointer := <rba>; 

CLOSE (last) 

2-20 

file label end-of-file pointer := end-of-file pointer; 

where 

<count> is the specified transfer count rounded-up to an 
even number 



SECTION 3 

ENSCRIBE FILE MANAGEMENT PROCEDURES 

An application process accesses ENSCRIBE disc files through calls to 
ENSCRIBE file management procedures. This section contains detailed 
syntax descriptions of all the ENSCRIBE file management procedures. 

The section begins with a brief summary of all of the ENSCRIBE calls. 
Then characteristics common to all of the calls are described. The 
section continues with a full syntax description of disc file names, 
both for single system and network applications. Following the file 
name description, syntax descriptions of all the ENSCRIBE file 
management calls are listed in alphabetical order. 

FILE MANAGEMENT CALL SUMMARY 

A functional summary of all the ENSCRIBE file management calls is 
given in Table 3-1 below. 

AWAI TIO 

CANCELREQ 

CLOSE 

CONTROL 

CREATE 

Table 3-1 •. File Management Call Summary 

waits for completion of an outstanding i/o operation 
pending on an open file 

cancels the oldest outstanding operation, optionally 
identified by a <tag>, on an open file. 

stops access to an open file and purges a temporary 
disc file 

executes device dependent operations to an open file 

creates a new disc file (permanent or temporary) 

3-1 



ENSCRIBE: FILE MANAGEMENT PROCEDURES 

3-2 

Table 3-1. File Management Call Summary (cont.) 

DEVICE INFO provides the device type and physical record size 
for a file (open or closed) 

EDITREADINIT prepares a control block for subsequent calls to 
EDITREAD 

EDITREAD reads a line of text (logical record) from an EDIT 
file 

FILEERROR is used to determine whether or not a failed call 
should be retried 

FILEINFO provides error information and characteristics about 
an open file 

FILERECINFO provides characteristic information about an open 
Enscribe disc file 

FNAMECOLLAPSE collapses an internal file name to external form 

FNAMECOMPARE compares two internal file names to determine 
whether the two names refer to the same file 
or device 

FNAMEEXPAND expands an external file name to internal form 

GETDEVNAME returns the $<device name> or $<volume name> 
associated with a logical device number if such a 
device exists; otherwise the name of the next higher 
logical device number is returned 

KEYPOSITION sets the current key value and current key specifier 
for an open Enscribe disc file 
provides the <system number> corresponding to a 
<system name> 

LOCKFILE locks an open disc file, making the file 
inaccessible to other accessors 

LOCKREC locks a record in an open disc file so that other 
processes cannot access the record 

NEXTFILENAME returns the next disc file name in alphabetical 
sequence following the designated file name 



ENSCRIBE: FILE MANAGEMENT PROCEDURES 

Table 3-1. File Management Call Summary (cont.) 

OPEN 

POSITION 

PURGE 

READ 

READ LOCK 

READ UPDATE 

establishes communication with a file 

set the current (primary) key for an open relative 
or entry-sequenced file 

purges a closed disc file from the system 

is used when sequentially reading an open file. It 
returns the record indicated by the value of current 
key 

is the same as READ but first locks the record 
before reading it 

is used to randomly read an open file. It returns 
the record indicated by the current key value 

READUPDATELOCK 

REFRESH 

RENAME 

REPOSITION 

is the same as READUPDATE except that it first locks 
the record before reading it 

is used to write the information contained in File 
Control Blocks (FCBs) in main-memory, such as the 
end-of-file pointer, to the associated physical disc 
volume 

renames an open disc file and makes a temporary 
disc file permanent 
which message is being replied to 

restores the disc file positioning information saved 
with previous SAVEPOSITION 

SAVEPOSITION saves the current disc file position information; a 
later call to REPOSITION restores the saved position 

SETMODE 

SETMODENOWAIT 

sets device-dependent functions in an open file 

sets device-dependent functions in a no-wait manner 
for an open file. 

3-3 



ENSCRIBE: FILE MANAGEMENT PROCEDURES 

Table 3-1. File Management Call Summary (cont.) 

UNLOCKFILE unlocks an open disc file currently locked by the 
caller 

Additionally, a call to UNLOCKFILE unlocks any 
records in the designated file that are currently 
locked by the caller 

UNLOCKREC unlocks a record currently locked by the caller so 
that other processes can access the record 

WRITE inserts (adds) a new record into an open disc file 
location read by the last call to READ or READUPDATE 

WRITEUPDATE replaces {updates) or deletes data in the existing 
record indicated by an open file's current key value 

WRITEUPDATEUNLOCK 

is the same as WRITEUPDATE except that the record is 
unlocked after it is updated or deleted 

CHARACTERISTICS OF ENSCRIBE CALLS 

This section describes features common to all ENSCRIBE file management 
calls. 

Completion 

If a file is open with no-wait i/o specified, the following calls must 
be completed by a corresponding call to AWAITIO: 

CONTROL, LOCKFILE, LOCKREC, READ, READLOCK, READUPDATE, 
READUPDATELOCK, UNLOCKFILE, UNLOCKREC, WRITE, 
WRITEUPDATEUNLOCK, and SETMODENOWAIT. 

If a file is open with no-wait i/o specified, the following calls are 
rejected with a file management error 27 if there are any outstanding 
{i.e., uncompleted) operations pending: 

3-4 

KEYPOSITION, POSITION, RENAME, REPOSITION, SETMODE, and 
SETMODENOWAIT. 



ENSCRIBE: FILE MANAGEMENT PROCEDURES 

Regardless of whether the file was opened with wait or no-wait i/o 
specified, a return from the following calls indicates a completion: 

CANCELREQ, CLOSE, CREATE, DEVICEINFO, FILEINFO, FILERECINFO 
KEYPOSITION, NEXTFILENAME, OPEN (unless flag <8> is set to 1), 
POSITION, PURGE, RENAME, and SETMODE. 

<file number> Parameters 

All file management procedures except 

DEVICEINFO, CREATE, OPEN, NEXTFILENAME, REFRESH, and PURGE 

use the <file number> returned from the OPEN procedure to identify 
which file the call references. The DEVICEINFO, CREATE, OPEN, and 
PURGE procedures reference the file by its <file name>; the 
LASTRECEIVE and REPLY procedures always reference the $RECEIVE file 
(i.e., interprocess communication). For every procedure that has a 
<file number> parameter, except OPEN and AWAITIO, the file number is 
an INT:value parameter. 

<tag> Parameters 

An application-specified double integer - INT(32) - tag can be passed 
as a calling parameter when initiating an i/o operation (e.g., read or 
write) with a no-wait file. The tag is passed back to the application 
process, through the AWAITIO procedure, when the i/o operation 
completes. The tag is useful for identifying individual file 
operations and can be used in application-dependent error recovery 
routines. 

<buffer> Parameter 

The data buffers in an application program used to transfer data 
between the application process and the file system must be integer 
(INT) or double integer (INT(32)) and must reside in the program's 
data area ('P' relative read-only arrays are not permitted). 

3-5 



ENSCRIBE: FILE MANAGEMENT PROCEDURES 

<transfer count> Parameter 

The transfer count parameter of file management procedures always 
refers to the number of BYTES to be transferred. The number of bytes 
that can be transferred in a single operation with an Enscribe disc 
file is in the range of {0:4096}. This figure is the file 
system/hardware maximum. The actual maximum transfer count may be 
less than 4096 due to the amount of buffer space assigned to the disc 
at system generation time (SYSGEN). (The amount buffer space 
configured for a disc volume can be obtained via the DEVICEINFO 
procedure.) 

Condition Codes 

All file management procedures return a condition code indicating the 
outcome of the operation. THE CONDITION CODE SHOULD ALWAYS BE 
CHECKED FOLLOWING A CALL TO A FILE SYSTEM PROCEDURE and should be 
checked before an arithmetic operation or a store into a variable is 
performed. Generally, the condition codes have the following 
meanings: 

3-6 

< (CCL) an error occurred (call the file management FILEINFO 
procedure to determine the error) 

= (CCE) operation was successful 

> (CCG) a warning message (typically end-of-file, but see the 
individual procedures for the meaning of CCG or call 
FILEINFO to obtain an error number) 



ENSCRIBE: FILE MANAGEMENT PROCEDURES 

Errors 

Associated with each call completion is an error number. The error 
numbers into fall into three major categories. As shown below, the 
setting of the condition code indicates the category of the error 
associated with a completed call. 

Error cc Category 

0 CCE No error. Operation executed successfully. 

1-9 CCG 

10-255 CCL 

300-511 CCL 

Warning. Operation executed with exception 
of indicated condition. For <error> 6, 
data is returned in application process's 
buffer. 

Error. Operation encountered an error. 
For data transfer operations, either none 
or part of specified data was transferred 
(with exception of data communication 
<error> 165, which indicates normal 
completion - data is returned in 
application process's buffer). 

Error. These errors are reserved for 
process application-dependent use. 

The error number associated with an operation on an open file can be 
obtained by calling the FILEINFO procedure and passing the <file 
number> of the file in error: 

CALL FILEINFO(inAfile, errAnum) i 

The error number associated with an unopen file or a file open failure 
can be obtained by passing the <file number> as -1 to the FILEINFO 
procedure: 

CALL FILEINF0(-1, errAnum) i 

Note: the OPEN procedure returns -1 to <file number> if the open 
fails. 

Error recovery is described in Section 4, Enscribe File Access. 

A complete list of the error numbers and their meanings is 
given in Appendix D, File Error Summary. 

3-7 



ENSCRIBE: FILE MANAGEMENT PROCEDURES 

Access Mode and Security Checking 

READ ACCESS. The disc file must be open with read or read/write 
access for the following calls to be successful (otherwise the call 
will be rejected with a file management <error> 49, "access 
violation") : 

READ, READLOCK, READUPDATE, and READUPDATELOCK. 

WRITE ACCESS. The disc file must be open with write or read/write 
access for the following calls to be successful (otherwise the call 
will be rejected with a file management <error> 49, "access 
violation"): 

CONTROL, WRITE, WRITEUPDATE, and WRITEUPDATEUNLOCK. 

PURGE ACCESS. The caller must have purge access to a disc file for 
the following calls to be successful (otherwise the call will be 
rejected with a file management <error> 48, "security violation"): 

PURGE and RENAME. 

Current State Indicators 

For each file management procedure, changes to the current state 
indicators are listed. The current state indicators are: 

• current position. 
• positioning mode. 
• compare length. 
• current primary key value. 

3-8 



ENSCRIBE: FILE MANAGEMENT PROCEDURES 

EXTERNAL DECLARATIONS 

Like all other procedures in an application program, the File 
Management Procedures must be declared before being called. These 
procedures are declared as having "externaln bodies. The external 
declarations for these procedures are provided in a system file 
designated "$SYSTEM.SYSTEM.EXTDECS". A SOURCE compiler command 
specifying this file should be included in the source program 
following the global declarations but preceding the first call to one 
of these procedures: 

<global declarations> 

?SOURCE $SYSTEM.SYSTEM.EXTDECS ( <ext proc name> , ••• ) 

<procedure declarations> 

Each external procedure that is referenced in the program should be 
specified in the SOURCE command. 

For example: 

?SOURCE $SYSTEM.SYSTEM.EXTDECS ( OPEN, READ, WRITE, POSITION, 
? KEYPOSITION, WRITEUPDATE, CLOSE 

compiles only the external declarations for the OPEN, READ, 
WRITE, POSITION, KEYPOSITION, WRITEUPDATE, and CLOSE procedures. 

3-9 



File Names 

FILE NAMES 

File names are used when creating new disc files, purging old disc 
files, and renaming disc files. 

There are two forms of file name - "external" and "internal". The 
external form is used when entering file names into the system from 
the outside world (e.g., by a user to specify a file name to the 
Command Interpreter). The external form is described in the GUARDIAN 
Programming Manual. The internal form is used within the 
system when passing file names between application processes and the 
operating system. This section describes the internal form. 

The conversion from external to internal form is performed 
automatically by the Command Interpreter for the IN and OUT file 
parameters of the RUN command. (See the COMINT section of the 
GUARDIAN Command Language and Utilities Manual for details of the RUN 
command.) For general conversion of file names from the external to 
the internal form, the FNAMEEXPAND procedure is provided. For 
conversion from internal to external form, the FNAMECOLLAPSE procedure 
is provided. 

The internal form of disc file names is: 

<file name> 12 words, blank filled. 

where 

3-10 

to access permanent disc files, use 

<file name[0:3]> = 
<file name[4:7]> = 
<file name[8:11]> = 

$<volume name><blank fill> 
<subvol name><blank fill> 
<disc file name><blank fill> 

to access temporary disc files, use 

<file name[0:3]> = 
<file name[4:11]> = 

$<volume name><blank fill> 
the <temporary file name> returned by 
CREATE (which is blank filled) 



File Names 

Permanent Disc File Names 

Permanent disc file names are of the form: 

word: [0:3] [4:7] [8:11] 
$<volume name> <subvol name> <disc file name> 

Each of these three components of a disc file name is described below. 

o <volume name> 

<volume names> identify disc packs (each pack in the system has a 
<volume name>). They are assigned at system generation time and when 
new disc packs are introduced into the system. A <volume name> must 
be preceded by a dollar sign "$" and consists of a maximum of seven 
alphanumeric characters; the first character must be alphabetical. 

o <subvol name> 

This name identifies a subset of disc files. <subvol names> are 
assigned programmatically when disc files are created. A <subvol 
name> consists of a maximum of eight alphanumeric characters; the 
first character must be alphabetical. 

o <disc file name> 

This name identifies a particular disc file. <disc file names> are 
assigned programmatically when disc files are created. A <disc file 
name> consists of a maximum of eight alphanumeric characters; the 
first character must be alphabetical. 

Temporary File Names 

Temporary file names identify temporary disc files. <temporary file 
names> are assigned by the file management CREATE procedure when 
temporary files are created. A <temporary file name> consists of a 
number sign "#" followed by four numerical characters. 

3-11 



File Names 

File Name Examples 

Permanent disc file: 

INT .fname[O:ll] := "$STORE1 ACCTl MYFILE " . I 

temporary disc file: 

INT .fname[O:ll] :=["$STORE!", 8 * [" "]]; 

only the <volume name> is supplied. The <temporary file name> 
is returned from CREATE. 

CALL CREATE(fname); 

Network File Na~es 

File names can optionally include a <system number> that identifies a 
file as belonging to a particular system on a network. (See the 
EXPAND User~s Manual for information regarding networks of Tandem 
systems.) 

In this context, a file name beginning with a dollar sign, "$", is 
said to be in "local" form, to distinguish it from a file name 
beginning with a backslash, "\", which characterizes the "network" 
form. Specifically, the network form of a file name is 

<network file name> 12 words, blank filled 

word[0].<0:7> = 
word[0].<8:15> = 
word[l:3] = 

WO rd [ 4 : 11] = 

\ (ASCII back slant) 
<system number>, in octal 
<volume name>, <device name>, or 
<process id> 
same as local file name 

where 

3-12 

<system number> 

is an integer between 0 and 254 that designates a 
particular system. The assignment of system numbers is 
made at system generation (SYSGEN) time 

<volume name> 

consists of at most six alphanumeric charactersr the first 
of which must be alphabetic 



File Names 

Note that names of disc volumes and other devices, when embedded 
within a network file name, are limited to having six characters, and 
do NOT begin with a dollar sign. Similar restrictions apply to the 
network form of <process id>, as follows. 

Note that <process name> in words 1 and 2 can contain at most four 
alphanumeric characters (the first one must be alphabetic, as 
usual) and does NOT include the initial dollar sign "$". 

The application program rarely, if ever, concerns itself with octal 
<system numbers> in network file names. Usually, the application 
passes the external form of the file name (which contains a system 
name, rather than a number) to the procedure FNAMEEXPAND, which 
converts the system name into the corresponding number. 

Conversion between internal and external forms of network file names 
is accomplished by the procedures FNAMEEXPAND and FNAMECOLLAPSE. 

3-13 



AWAITIO Procedure 

AWAIT IO 

The AWAITIO procedure is used to complete a previously initiated 
"no-wait" i/o operation. AWAITIO can be used to -

• Wait for a completion with a particular file. Application process 
execution is suspended until the completion occurs. A timeout is 
considered to be a completion in this case. 

• Wait for a completion with any file or a timeout to occur. A 
timeout is not considered to be completion in this case. 

• Check for a completion with a particular file. The call to AWAITIO 
immediately returns to the application process regardless of 
whether there is a completion or not. (If there is no completion, 
an error indication is returned.) 

• Check for a completion with any file. 

If AWAITIO is used to wait for a completion, a time limit can be 
specified as to maximum time allotted to completing the waited-for 
operation. 

3-14 



AWAITIO Procedure 

The call to the AWAITIO procedure is: 

CALL AWAITIO ( <file number> 

where 

, [ <buffer address> ] 
, [ <count transferred> ] 
, [ <tag> ] 
, [ <time limit> ] 

<file number>, INT:ref:l, passed, returned 

if a particular <file number> is passed, AWAITIO applies to 
that file. The specific action depends on the value of the 
<time limit> parameter. If <time limit> is a non-zero 
value, the application process is suspended until a comple
tion occurs or the <time limit> expires. If passed as OD, a 
completion check is made. 

If <file number> is passed as -1, the call to AWAITIO 
applies to the oldest outstanding operation pending on any 
file. The specific action depends on the value of the 
<time limit> parameter. If <time limit> is a non-zero 
value, the application process is suspended until a 
completion occurs or the <time limit> expires. If 
<time limit> is passed as OD, a completion check is made. 
In either case, if an operation completed, AWAITIO returns 
to <file number> the file number associated with the 
completion. 

<buffer address>, INT:ref:l, passed 

if present, returns the address of the <buffer> specified 
when the operation was initiated. Note that if the actual 
parameter is to be used as an address pointer to the 
returned data and has been declared in the form "INT 
.<buffer address>", it should be passed to AWAITIO in the 
form "@<buffer address>". 

<count transferred>, INT:ref:l, returned 

if present, returns the count of the number of bytes 
transferred because of the associated operation. 

3-15 



AWAITIO Procedure 

<tag>, INT{32) :ref:l, returned 

if present, returns the application-defined tag that was 
stored by the system when the i/o operation associated with 
this completion was initiated. 

<time limit>, INT{32) :value, passed 

if present, indicates whether the process wants to wait for 
completion or check for completion: 

If <time limit> <> OD then a wait-for-completion is 
specified. <time limit> then specifies the maximum time 
{in .01 second units) that the application process is 
willing to wait {i.e., be suspended) for completion of a 
waited-for operation. Specifying a <time limit> value of 
-lD implies a willingness to wait forever. 

If <time limit> = OD then a check-for-completion is 
specified. AWAITIO immediately returns to the caller 
regardless of whether or not an i/o completion occurred. 

If <time limit> is omitted, then a willingness to wait 
forever is specified. 

condition code settings: 

< (CCL) indicates that an error occurred (call FILEINFO) 
= (CCE) indicates that an i/o completed 
> (CCG) indicates that a warning occurred (call FILEINFO) 

example 

3-16 

CALL AWAITIO ( f ileAnum ) ; 
IF< THEN .•• error occurred. 



AWAITIO Procedure 

Considerations 

• Completing No-wait I/O Calls 

Each "no-wait" operation initiated must be completed with a 
corresponding call to AWAITIO. 

If AWAITIO is used to wait for completion (i.e., <time limit><> 
OD) and a particular file is specified (i.e., <file number><> 
-1) , then completing AWAITIO for any reason is considered a 
completion. 

- If AWAITIO is used to check for completion (<time limit> = OD) 
or used to wait on any file (<file number> = - 1), completing 
AWAITIO does not necessarily indicate a completion. If an error 
indication is returned and a subsequent call to FILEINFO returns 
<error>= 40 (i.e., a timeout), then the operation is considered 
incomplete (AWAITIO must be called again) • Any indication other 
than <error>= 40 (i.e., CCE, CCG, CCL and <error><> 40) 
indicates a completion. 

• Order of I/O Completion With SETMODE 30 Set 

Specifying SETMODE 30 allows no-wait i/o operations to complete in 
any order. When initiating an i/o operation, an application 
process employing this option can use the <tag> parameter to keep 
track of multiple operations associated with an open of a file. 

e Order of I/O Completion Without SETMODE 30 Set 

If SETMODE 30 has not been set, the oldest outstanding i/o 
operation is always completed first. Therefore, AWAITIO always 
completes i/o operations associated with the particular open of a 
file in the same order as initiated. 

• Error Handling 

If an error indication is returned (i.e., condition code is CCL or 
CCG), the <file number> that is returned by AWAITIO can be passed 
to the FILEINFO procedure to determine the cause of the error. If 
<file number>= -1 (i.e., any file) is passed to AWAITIO and an 
error occurs on a particular file, AWAITIO returns, in <file 
number>, the actual file number associated with the error. 

3-17 



AWAITIO Procedure 

• Error 26: No Outstanding No-wait I/O Calls 

If AWAITIO is called and a corresponding nno-waitn operation has 
not been initiated, an error indication is returned (CCL) and a 
subsequent call to FILEINFO returns <error> = 26 (no outstanding 
operation) • 

e WRITE Buffers 

The contents of a buffer being written should not be altered 
between a no-wait i/o initiation (e.g., call to WRITE) and the 
corresponding no-wait i/o completion (i.e., call to AWAITIO). If 
the buffer is altered, application error recovery can become 
difficult, if not impossible. 

e AWAITIO Completion 

The way in which AWAITIO completes depends on whether the 
<file number> parameter specifies a particular file or any file, 
and on the value of <time limit> passed with the call. The action 
taken by AWAITIO for each combination of <file number> and <time 
limit> is summarized in Table 3-1, on the following page. (Note: 
Table 3-1 assumes SETMODE 30 has been set.) 

• AWAITIO Operation 

Figure 3-1 illustrates the operation of the AWAITION procedure. 

3-18 



AWAITIO Procedure 

Table 3-1. AWAITIO Action 
I 
I 

(time limit) = O I (time limit) =f: O 
I 

----------------------~----------------

CHECK for any (file num) 
1/0 completion 

Particular COMPLETION 
File file number returned in < fn) ; 

Tag of completed cal I returned 
<tn) = (file num) in (tag) 

NO COMPLETION 
CCL (error 40) returned; 
file number returned in < fn) ; 
No 1/0 operation is canceled. 

WAIT for any (file num) 
1/0 completion 

COMPLETION 
file number returned in (fn) ; 
Tag of completed call returned in (tag) . 

NO COMPLETION 
CCL (error 40) returned; 
file number returned in (fn) ; 
Oidest (file num) 1/0 operation canceled; 
Tag of canceled call returned in (tag) . 

- - - - - -11------------------+-----------------

Any File 

(tn) = -1 

CHECK for any 1/0 completion on any 
open file 

COMPLETION 
File number of completed call returned 
in (fn) ; 
Tag of completed call returned in 
(tag) . 

NO COMPLETION 
CCL (error 40) returned; 
- 1 returned in (fn) ; 
No 1/0 operation is canceled. 

WAIT for any 1/0 completion on any 
open file 

COMPLETION 
File number of completed call returned 
in (fn) ; 
Tag of completed call returned in 
(tag) . 

NO COMPLETION 
CCL (error 40) returned; 
- 1 returned in ( fn) ; 
No 1/0 operation is canceled. 

r 
Notes: ( fn) = (file number} 

SETMODE 30 Set 

3-19 



AWAITIO Procedure 

3-20 

COMPLETION 

TIMEOUT ...--------
CCL 
<error '= 40 

>-1 
PARTICULAR Fl LE 

Figure 3-1. 

CALL AWAITIO 

-1 
ANY FILE 

AWAITIO OPERATION 

TIMEOUT 

CCL 
<error>= 40 



CANCEL Procedure 

CANCEL 

The CANCEL procedure is used to cancel the oldest outstanding 
operation on a no-wait file. (Note: A specific call, identified with 
a <tag> parameter, can be canceled with a call to CANCELREQ.) 

The call to the CANCEL procedure is: 

CALL CANCEL ( <file number> ) 

where 

<file number>, INT:value, passed 

identifies the file whose oldest outstanding operation is to 
be canceled. 

condition code settings: 

< (CCL) indicates that an error occurred (call FILEINFO) 
= (CCE) indicates that the operation was cancelled 
> (CCG) is not returned by CANCEL 

example 

CALL CANCEL ( someAf ile ) ; 
IF< THEN ••••. ! no operation outstanding. 

3-21 



CANCELREQ Procedure 

CANCELREQ 

The CANCELREQ procedure is used to cancel an outstanding operation 
identified by <file number> and <tag> on a no-wait file. 

The call to the CANCELREQ procedure is: 

CALL CANCELREQ 

where 

<file number> 
, [ <tag> 

<file number>, INT:value, 

] ) 

identifies the file whose outstanding operation 
is to be canceled. 

<tag>, INT(32) :value, 

passed 

passed 

if present, identifies the operation to be canceled. 
<tag> is the application-defined tag that is stored by 
the system when the i/o operation is initiated. 

condition code settings: 

< (CCL) indicates that an error occurred (call FILEINFO) 
= (CCE) indicates that the operation was canceled 
> (CCG) is not returned by CANCELREQ 

example 

CALL CANCELREQ ( someAfile,140); 
IF= THEN •..•. ! operation 14 of someAfile canceled. 

Considerations 

o Using the <tag> Parameter 

If the <tag> parameter is provided, the oldest outstanding 
operation with that tag value is canceled. If <tag> is not 
provided, the oldest outstanding operation for <file number> 
is canceled. 

3-22 



CLOSE Procedure 

CLOSE 

The CLOSE procedure is used to terminate access to an open file. 

When a permanent disc file is closed, if it is not open concurrently, 
the file label on disc is updated with pertinent information from the 
main-memory resident File Control Block and the space in use by the 
FCB is returned to a system main-memory space pool. When a temporary 
disc file is closed, if it is not open concurrently, its name is 
deleted from the volume's directory and any space that had been 
allocated to the file is made available for other files. 

For any file close, the space allocated to the Access Control Block 
is returned to the system. 

The call to the CLOSE procedure is: 

CALL CLOSE ( <file number> ) 

where 

<file number>, INT:value, 

identifies the file to be closed. 

condition code settings: 

< (CCL) indicates that the file was not open 
= (CCE) indicates that the CLOSE was successful 
> (CCG) is not returned by CLOSE 

example 

CALL CLOSE ( fnum ) ; 

Considerations 

• Closing a No-wait File 

passed 

If a CLOSE is executed to a no-wait file with outstanding 
operations pending, any uncompleted operations are canceled. There 
is no indication as to whether the operation completed or not. 

3-23 



CONTROL Procedure 

CONTROL 

The CONTROL procedure is used to perform device-dependent i/o 
operations. 

If the CONTROL procedure is used to initiate an operation with the 
file opened with "no-wait i/o" specified, the operation must be 
completed with a corresponding call to the AWAITIO procedure. 

The call to the CONTROL procedure is: 

CALL CONTROL <file number> 
, <operation> 
, <parameter> 
, [ <tag> ] ) 

where 

<file number>, INT:value, 

identifies· the file that is to execute the control 
operation. 

passed 

<operation>, INT:value, passed 

is defined by device in the table that follows. 

<parameter>, INT:value, passed 

is also defined in the table that follows. 

<tag>, INT(32) :value, passed 

for no-wait i/o only, if present, is stored by the system, 
then passed back to the application process by the AWAITIO 
procedure when the control operation completes. 

condition code settings: 

3-24 

< (CCL) indicates that an error occurred (call FILEINFO) 
= (CCE) indicates that the CONTROL was successful 
> (CCG) is not returned by CONTROL 



CONTROL Procedure 

example 

CALL CONTROL ( printer, formAcontrol, vfuAchannel ) ; 
IF< THEN.... ! error occurred. 

The control operations that apply to disc files are listed in Table 
3-3 below. 

Table 3-3. CONTROL OPERATIONS 

<operation> 

2 = write end-of-file (unstructured files only. Write access is 
required) 

<parameter> = number of records {0:255} 

20 = disc, purge data (write access is required) 

<parameter> = none 

21 = disc, allocate/deallocate extents (write access is required) 

<parameter> = 0 = deallocate all extents past the end-of
f ile extent 

1:16 = number of extents to allocate for a 
key-sequenced file 

l:<total extents> 
= total number of extents to allocate 

for entry-sequenced, relative and 
unstructured files 

where 

<total extents> = 16 * <number of partitions> 

3-25 



CONTROL Procedure 

Considerations 

• Writing EOF to an Unstructured File 

A write end-of-file to an unstructured disc file sets the 
end-of-file pointer to the relative byte address indicated by 
the setting of the next-record pointer and writes the new 
end-of-file setting in the file label on disc. Specifically: 

end-of-file pointer := next-record pointer; 

• Error 73: File is Locked 

If a control operation is attempted for a file that is locked 
through a <file number> other than the <file number> specified 
with the call to CONTROL, the call to CONTROL is rejected with 
an error 73: file is locked. 

• Allocating Extents for Partitioned Key-Sequenced Files 

To allocate extents for partitioned key-sequenced files, each 
partition must be opened separately and a CONTROL 21 issued 
for the individual partition. 

3-26 



CREATE Procedure 

CREATE 

The CREATE procedure is used to a define new structured or 
unstructured disc file. The file can be either temporary (and deleted 
when closed) or permanent. If a temporary file is created, CREATE 
returns a file name suitable for passing to the OPEN procedure. 

The call to the CREATE procedure is: 

CALL CREATE <file name> 

where 

, [ <primary extent size> ] 
, [ <file code> ] 
, [ <secondary extent size> ] 
, [ <file type> ] 
, [ <record length> ] 
, [ <data block length> ] 
, [ <key-sequenced params> ] 
, [ <alternate key params> ] 
, [ <partition params> ] 

<file name>, INT:ref, passed, [returned] 

is an array providing the name of the disc file to be 
created in either of the following forms: 

permanent disc files are created by specifying 

<file name[0:3]> is $<volume name><blank fill> 
or \<system number><volume name><blank fill> 

<file name[4:7]> is <subvol name><blank fill> 
<file name[8:11]> is <disc file name><blank fill> 

temporary disc files are created by specifying 

<file name[O:ll]> is $<volume name><blank fill> 
or \<system number><volume name><blank fill> 

when CREATE completes, a <temporary file name> is returned 
in <file name[4:7]>. The temporary file can then be opened 
by passing <file name> to OPEN. 

3-27 



CREATE Procedure 

3-28 

<primary extent size>, INT:value, passed 

if present, is the size of the primary extent in 2048-byte 
units. The maximum <primary extent size> is 65535 
(134,215,680 bytes). If omitted, a primary extent size of 
one (2048 bytes) is assigned. 

<file code>, INT:value, passed 

if present, is an application-defined file identification 
code (file codes 100 - 999 are reserved for use by Tandem 
Computers, Inc.). If omitted, a file code of zero is 
assigned. 

<secondar~ extent size>, INT:value, passed 

if present, is the size of the secondary extents in 
2048-byte units (a file may have up to 15 secondary extents 
allocated). The maximum <secondary extent size> is 65535 
(134,215,680 bytes). If omitted, the size of the primary 
extent is used for the secondary extent size. 

<file type>, INT:value, passed 

if present, specifies the type of the file to be created. 

<file type>.<13:15> specifies the file structure: 

0 = unstructured (default) 
1 = relative 
2 = entry-sequenced 
3 = key-sequenced 

<file type>.<12> 1 = specifies ~ODDUNSTR~ for 
unstructured files. See Section 5, File Creation, for 
details. 

<file type>.<12> 1 = specifies data compression for 
key-sequenced files. See Section 5, File Creation, for 
details. 

<file type>.<ll> 1 = specifies index compression for 
key-sequenced files. See Section 5, File Creation, for 
details. 



CREATE Procedure 

<file type>.<10> 1 = File Label is written to disc 
each time the end-of-file is advanced. The effect of 
setting this parameter is the same as calling REFRESH 
after every operation that advances the end-of-file. 

<file type>.<3:9> must be zero. 

<file type>.<2> 1 = for systems with the Transaction 
Monitoring Facility (TMF}, specifies this file is an 
audited file; for systems without TMF, must be zero. 

<file type>.<0:1> must be zero 

If <file type> is omitted, an unstructured file is 
created. 

<record length>, INT:value, passed 

if present, is the maximum length of the logical record in 
bytes. For structured files, the maximum record length is 
determined by the data block size. With a data block size 
of 4096, the maximum record length for entry-sequenced and 
relative files is 4072 bytes. With the same maximum data 
block size of 4096, the maximum record length for a 
key-sequenced file is 2035. For unstructured files, the 
maximum record length is 4096. If omitted, 80 is used for 
the <record length>. 

<data block length>, INT:value, passed 

for structured files, if present, is the length in bytes of 
each block of records in the file. <data block length> 
must be a multiple of 512 and can not be greater than 4096. 
<data block length> must be at least <record length> + 24. 
For a key-sequenced file <data block length> must be at 
least 2 * <record length> + 26. If omitted, 1024 is used 
for the <data block length>. Regardless of the specified 
record length and data block size, the maxixum number of 
records that can be stored in a data block is 511. 

3-29 



CREATE Procedure 

<key-sequenced params>, INT:ref, passed 

is a three-word array containing parameters that describe 
this file. This parameter is required for key-sequenced 
files and may be omitted for other file types. The format 
for this array is shown in the "<key sequenced params> 
ARRAY" table which follows 

<alternate key params>, INT:ref, passed 

is an array containing parameters describing any alternate 
keys for this file. This parameter is required if the file 
has alternate keys, otherwise it may be omitted or its first 
word must be zero. The format for this array is shown in 
the "<aiternate key params> ARRAY" table which follows. 

<partition params>, INT:ref, passed 

is an array containing parameters that describe this file if 
the file is a multi-volume file. If the file is to span 
multiple volumes, then this parameter is required, otherwise 
this parameter may be omitted or its first word must be 
zero. The format for this array is shown in the 
"<partition params> ARRAY" table which follows. 

condition code settings: 

< (CCL) indicates that the CREATE failed (call FILEINFO) 
= (CCE) indicates that the file was created successfully 
> (CCG) the device is not a disc 

example 

CALL CREATE(filename,5,0); 
IF< THEN ••• 

Considerations 

• Disc Allocation at CREATE Time 

CREATE failed. 

Execution of the CREATE procedure does not allocate any disc area; 
it only provides an entry in the volume~s directory indicating that 
the file exists. 

3-30 



CREATE Procedure 

• Error Handling 

If the CREATE fails (i.e., condition code other than CCE returned}, 
the reason for the failure can be determined by calling the 
FILEINFO procedure and passing -1 as the <file number> parameter. 

• File Security 

The file is created with the default security associated with 
the process creator's access id. Security can be changed by 
opening the file and calling SETMODE or SETMODENOWAIT. 

• Odd Unstructured Files 

When creating unstructured files, the value passed for 
<file type>.<12> determines how all subsequent read, write, and 
position operations to the file will work. 

If <file type>.<12> is passed as a 1, the values of 
<record specifier>, <read count>, and <write count> are all 
interpreted exactly. That is, a <write count> or <read count> of 
seven transfers exactly seven bytes. 

If <file type>.<12> is passed as a 0, the values of 
<record specifier>, <read count>, and <write count> are all rounded 
up to an even number before the operation is performed. That is, a 
<write count> or <read count> of seven is rounded up to eight, and 
eight bytes are transferred. 

3-31 



CREATE Procedure 

• Key-Sequenced Parameter Array Format 

The key-sequenced parameter array format is shown in Table 3-4. 

Table 3-4. <key-sequenced params> ARRAY FORMAT 

word: 

[O] 

[l] 

[2] 

<key length> 

<key off set> 

<index block length> 

where 

3-32 

<key length>, INT, 

is the length, in bytes, of the record's primary key field 

<key offset>, INT, 

is the number of bytes from the beginning of the record where 
the primary key field starts. 

<innPx hln~k lPnarh>_ TN~-- - - - ------- ----..1--- , ----, 

is the length in bytes of each index block in the file. 
<index block length> must be a multiple of 512 and may not be 
greater than 4096. If zero is specified, then the value of 
<data block length> is used as the <index block length> 



CREATE Procedure 

• Alternate Key Parameter Array Format 

The alternate key parameter array format is shown in Table 3-5. 

Table 3-5. <alternate key params> ARRAY FORMAT 

0 

word: [ 0] 

[l] 

[nk * 4 + l] 

8 

<nf alt files> <nk alt keys> 

KEY DESCRIPTION 
FOR 

ALTERNATE KEY 0 

KEY DESCRIPTION 
FOR 

ALTERNATE KEY nk - 1 

FILE NAME 
OF 

KEY FILE 0 

FILE NAME 
OF 

KEY FILE nf - 1 

Key Description for key "k" consists of four words of the form: 

[k * 4 + l] 

[k * 4 + 2] 

[k * 4 + 3] 

[k * 4 + 4] 

0 

<null 

8 

<key specifier> 

<key attributes> 

value> <key length> 

<key file number> 

3-33 



CREATE Procedure 

Table 3-5. <alternate key params> ARRAY FORMAT (cont'd) 

where 

3-34 

<nf alt files>, one-byte value, 

specifies the number of alternate key files for this primary 
file. 

<nk alt keys>, one-byte value, 

specifies the number of alternate key fields in this primary 
file. 

<key specifier>, INT, 

is a two-byte value that uniquely identifies this alternate 
key field. This value is passed to the KEYPOSITION 
procedure when referencing this key field. 

<key attributes>, INT, 

describes the key. 

where 

<key attributes>.<0>: 1 = null value is specified. See 
"<null value>" below. 

<key attributes>.<!>: 1 = key is unique. If an attempt is 
made to insert a record that duplicates an existing value 
in this field, the insert is rejected with a "duplicate 
record" error. 

<key attributes>.<2>: 1 = no automatic updating of this 
key is to be performed by ENSCRIBE. 

<key attributes>.<3> must be zero. 

<key attributes>.<4:15> = <key offset>. This specifies 
the the number of bytes from the beginning of the record 
where this key field starts. 



CREATE Procedure 

Table 3-5. <alternate key params> ARRAY FORMAT (cont'd) 

<null value>, one-byte value, 

is used to specify a "null value" if <key attributes>.<O> = 
1. 

During an insertion (i.e., WRITE), if a null value is 
specified for an alternate key field and the null value is 
encountered in all bytes of this key field, ENSCRIBE does 
not enter the reference to the record into the alternate key 
file. (If the file is read via this alternate key field, 
records containing a null value in this field will not be 
found.) 

During a deletion (i.e., WRITEUPDATE, <write count>= 0), if 
a null value is specified and the null value is encountered 
in all bytes of this key field within <buffer>, ENSCRIBE 
deletes the record from the primary file but does not 
delete the reference to the record in the alternate file. 

<key length>, one-byte value, 

that specifies the length, in bytes, of this key field. 

<key file number>, INT, 

is the relative number in the <alternate key params> array of 
this key's alternate key file. The first alternate key file's 
<key file number> = 0. 

The File Name for file "f" consists of 12 words and begins at 

[nk * 4 + 1 + f * 12] 

and is of the form 

<file name[0:3]> is $<volume name><blank fill> 
or \<system number><volume name><blank fill> 

<file name[4:7]> is <subvol name><blank fill> 
<file name[8:11]> is <disc file name><blank fill> 

3-35 



CREATE Procedure 

• Partition Parameter Array Format 

The partition parameter array format is shown in Table 3-6. 

3-36 

Table 3-6. <partition params> ARRAY FORMAT 

<num extra partitions> 

$<volume name> or 
\<sys num><volume name> 

for partition 1 

$<volume name> or 
\<sys num><volume name> 

for partition 2 

$<volume name> or 
\<sys num><volume name> 

for partition n 

<primary extent size> part 

. . 
<primary extent size> part 

<secondary extent size> part 

. 

. 
<secondary extent size> part 

1 

I 

n 

1 

n 

num words 

[l] 

[4] 

[l] 

[l] 



CREATE Procedure 

Table 3-6. <partition params> ARRAY FORMAT (cont~d) 

The following must be included in the <partition params> array 
for key-sequenced files and may be omitted for other file types: 

where 

<partial key length> 

<partial key value> 
for partition 1 

<partial key value> 
for partition n 

<num extra partitions>, INT, 

[l] 

is the number of extra volumes (other than the one specified 
in the <file name> parameter) on which the file is to reside. 
The maximum value permitted is 15. Note that every other 
parameter in the partition array (except <partial key 
length>) must be specified <num extra partitions> times. 

$<volume name> or 
\<sys num><volume name>, eight bytes blank filled, 

is the name of the disc volume (including "$" or "\") where 
the particular partition is to reside. 

<primary extent size>, INT, 

is the size of the primary extent for the particular 
partition. 

<secondary extent size>, INT, 

is the size of the secondary extents for the particular 
partition. Specifying zero results in the <primary extent 
size> value being used. 

3-37 



CREATE Procedure 

Table 3-6. <partition params> ARRAY FORMAT (cont~d) 

The remaining parameters are required for key-sequenced files and 
may be omitted for all other file types. 

3-38 

<partial key length>, INT, 

is the number of bytes of the primary key of a key-sequenced 
file that will be used to determine which partition of the 
file will contain a particular record. The minimum value for 
<partial key length> is one. 

<partial key value>, INT, 

for <partial key length> bytes, specifies the lowest key 
value that will be allowed for a particular partition. 

Each <partial key value> in <partition params> must begin on 
a word boundary. 



DEVICEINFO Procedure 

DEVICE INFO 

The DEVICEINFO Procedure is used to obtain the device type and the 
physical record length for a file. The file may be open or closed. 

The call to the DEVICEINFO Procedure is: 

CALL DEVICEINFO <file name> 
, <device type> 
, <physical record length> ) 

where 

<file name>, INT:ref, passed 

is an array containing the name of the device whose 
characteristics are to be returned. Any form of <file name> 
is permitted. For disc files, only the first eight 
characters (i.e, the <volume name>) are significant, but 
the remaining eight characters must be blank. 

<device type>, INT:ref:l, returned 

is returned the device type of the associated file. See the 
"Device Type" table which follows. 

<physical record length>, INT:ref:l, returned 

is returned the physical record length associated with the 
file: 

For non-disc devices, <physical record length> is the 
configured record length 

For disc files, <physical record length> is the maximum 
possible transfer length. This is equal to the configured 
buffer size for the device; either 2,048 or 4,096 bytes 

Note: The <logical record length> for an ENSCRIBE disc 
file is obtained via the FILERECINFO Procedure 

For processes and the $RECEIVE file, 132 is returned in 
<physical record length> (this is the system convention 
for interprocess files) 

3-39 



DEVICEINFO Procedure 

condition code settings: 

The condition code has no meaning following a call to 
DEVICEINFO. 

example 

CALL DEVICEINFO ( infile, devtype, reclength ) ; 

Device Types and Subtypes 

The values returned for <device type> are listed in Table 3-7. 

Table 3-7. DEVICE TYPES AND SUBTYPES 

<device type>.<O>, 1 = removable disc volume 

device type, device subtype, 
<device type>.<4:9>, <device type>.<10:15>, 

0 = process none 

1 = operator console none 

2 = $RECEIVE none 

3 = Disc 0 = 10 MB capacity 
1 = 50 MB capacity 
2 = 160 MB capacity 
3 = 240 MB capacity 
4 = 64 MB capacity (SMD) 
5 = 64 MB capacity (MMD) 
6 = 1 MB capacity 
7 = 2 MB capacity 

4 = Magnetic Tape 1 = Nine track 
2 = Seven track 

3-40 

-1 



DEVICEINFO Procedure 

Table 3-5. DEVICE TYPES AND SUBTYPES (cont.) 

5 = Line Printer 0 = Belt Printer 
= Drum 1 

2 
3 
4 

= Current-Loop Belt 
= Current-Loop Matrix 
= Matrix Serial 

6 = Terminal 0 = Character Mode 
= 6510 (conversational or 1 

page mode) 2 = 6520 
32 = Hard Copy Console 

7 = Data Communication Line 0 = BISYNC, point-to-point, 
non-switched 

8 = Punched Card Reader 

9 = X.25 access method 
PTP protocol 

11 = Bit synchronous 
ENVOY 

12 = Tandem to IBM Link 
(TIL) 

26 = Tandem Hyper Link 

1 

2 

3 

= BISYNC, point-to-point, 
switched 

= BISYNC, multipoint, 
tributary 

= BISYNC, multipoint, 
supervisor 

8 = ADM-2, multipoint, 
supervisor 

9 = TINET, multipoint, 
supervisor 

10 = Burroughs, multipoint, 
supervisor 

30 = Full-duplex, out line 
31 = Full-duplex, in line 
40 = Asynchronous line 

supervisor 
56 = Autocall unit 

none 

none 

40 = Synchronous Data Link 
Control (SDLC) 

none 

none 

3-41 



EDITREAD Procedure 

EDI TREAD 

The EDITREAD procedure reads text lines from an edit file 
(filetype = 101). Before EDITREAD can be called, a call to 
EDITREADINIT must be completed successfully. 

Text lines are transferred, in ascending 
to a buffer in the application program~s 
transferred with each call to EDITREAD. 
sequence number associated with the text 
to ensure that the text file is valid. 

order, from the text file 
data area. One line is 
EDITREAD also returns the 
line and performs checks 

The edit file can be opened with nowait i/o specified. However, a 
call to EDITREAD completes before returning to the application 
program; it is not completed with a call to AWAITIO. 

The call to the EDITREAD procedure is: 

<status> := EDITREAD <edit control block> 
, <buffer> 
, <buffer length> 
, <sequence number> 

where 

<status>, INT, passed 

3-42 

is a value indicating the outcome of EDITREAD: Values for 
<status> are: 

>= 0 indicates that the read was successful. This is the 
actual number of characters in the text line. 
However, only <buffer length> bytes are transferred 
into <buffer>. 

< 0 indicates an unrecoverable error. Where: 

-1 = end-of-file encountered 
-2 = read error 
-3 = text file format error 
-4 = sequence error. The sequence number of the line 

just read is less than its predecessor 



EDITREAD Procedure 

<edit control block>, INT:ref, 

is the same array as specified in the parameter to 
EDITREADINIT. 

<buffer>, STRING:ref, 

passed 

returned 

is an array where the text line is to be transferred. 

<buffer length>, INT:value, passed 

is the length, in bytes, of the <buffer> array. This 
specifies the maximum number of characters in the text line 
that will be transferred into buffer. 

<sequence number>, INT(32) :ref, returned 

is the sequence number multiplied by 1000, in doubleword 
integer form, of the text line just read. 

example 

count := EDITREAD(controlAblock, line, length, seqAnum): 

Extended EDITREADINIT and EDITREAD Example 

The data declarations: 

LITERAL bufAsize = 512, 
= 80: length 

EDITREAD's internal buffer size in bytes 
length of the application's buffer (byte) 

INT fnum, 
fcode, 
error, 
count, 

.controlAblock[0:39+bufAsize/2]: 

STRING .lineIO:length/2-1]: 

INT{32) seqAnum: 

global data declaration. 

application's buffer. 

3-43 



EDITREAD Procedure 

First the text file is opened and verified that it is an edit format 
file: 

CALL OPEN(fname,fnum,.): 
IF< THEN·~·: 
CALL FILEINFO(fnum,,,,,,,,,fcode): 
IF fcode <> 101 THEN •• ! not edit format file. 

Then EDITREADINIT is called to initialize the <edit control block> and 
specify EDITREAD~s internal buffer size: 

IF (error :=.EDITREADINIT(controlAblock,fnum,bufAsize)) THEN 
BEGIN unsuccessful 

END: 

To read a text line, EDITREAD is called: 

loop: 

3-44 

IF (count := EDITREAD(controlAblock,line,length,seqAnum)) < 0 
THEN 

BEGIN 

END 
ELSE 

unsuccessful 

IF count> length THEN ••• 

GOTO loop 

line truncated. 

If the read is successful, a count of the number of bytes in 
the text line is returned in "count", the text line is 
returned in the array "line", and the sequence number is 
returned in "seqAnum". 



EDITREAD Procedure 

Saving and Restoring a Location in an EDIT File 

A specific location in an EDIT file can be saved during sequential 
reading and later be restored to reposition a process at the saved 
location. To save a location within an EDIT file, the second through 
fourth words of the edit control block are stored in a temporary 
buffer. 

Later, repositioning to the saved location is done in two steps: 

1) the current second through fourth words of the edit control 
block are replaced with the three words saved in the temporary 
buffer. 

2) the first bit of the first word in the edit control block is 
set to a zero. 

Calling EDITREAD after repositioning returns the next record after the 
saved position. 

An example: 

INT editAcb[0:79], 
position[0:2]; 

EDITREADINIT and one or more EDITREADs are called 

position ':=' editAcb[l] for 3; 

more EDITREADs 

. 
editAcb[l] ':=' position for 3; 
editAcb.<O> := O; 

save current position 

restore saved position 

next EDITREAD returns same record returned after position was 
! saved 

3-45 



EDITREADINIT Procedure 

EDITREADINIT 

The EDITREAD procedure is called to prepare a buffer in the 
application program~s data area for subsequent calls to EDITREAD. 

The application program designates an array to be used as an 
<edit control block>. The <edit control block> is used by the 
EDITREAD procedure for storing control information and for an 
internal buffer area. 

The edit file can be opened with NOWAIT I/O. However, a subsequent 
call to EDITREADINIT completes before returning to the application; 
it is not completed with a call to AWAITIO. 

The call to the EDITREADINIT procedure is: 

<status> := EDITREADINIT <edit control block> 
, <file number> 
, <buffer length> 

where 

3-46 

<status>, INT, returned 

is a value indicating the outcome of EDITREADINIT. Values 
for <status> are: 

0 = successful (ok to read) 
-1 = end-of-file detected (empty file) 
-2 = input/output error 
-3 = format error (not EDIT file) 

<edit control block>, INT:ref, passed 

is an uninitialized array declared globally. Forty words of 
the <edit control block> are used for control information. 
The remainder is used as an internal buffer by EDITREAD. 
The length, in words, of the <edit control block> must be at 
least 40 + <buffer length> divided by 2. 

<file number>, INT:value, passed 

identifies the edit file to be read. 



EDITREADINIT Procedure 

<buffer length>, INT:value, passed 

is the size, in bytes, of the internal buffer area used by 
EDITREAD. This parameter determines the amount of data that 
EDITREAD reads from the text file on disc (not the amount of 
data transferred into the <buffer> specified as a parameter 
to EDITREAD). The size of the internal buffer area must be 
a power of two, from 64 to 2,048 bytes (i.e., 64, 128, 256, 
••• , 2,048). 

example 

INT .contro1Ablock[0:167]; 
n := EDITREADINIT(controlAblock, fnum, 256); 

An extended example using both EDITREADINIT and EDITREAD is shown 
under the syntax description of EDITREAD. 

3-47 



FILEERROR Procedure 

FILEERROR 

The FILEERROR procedure is used to determine if an i/o operation, that 
completed with an error, should be retried. 

The call to the FILEERROR procedure is: 

<status> := FILEERROR ( <file number> ) 

where 

<status>, INT, returned 

has two possible values: 

0 =operation shouldn~t be retried (i.e., error is fatal) 
1 = operation should be retried 

<file number>, INT:value, passed 

identifies the file having the error. 

example 

IF FILEERROR(fnum) THEN •• retry 

The FILEERROR procedure is called after a CCL return from a file 
management procedure. The FILEERROR procedure determines if an 
operation should be retried as follows: 

• FILEERROR.obtains the file management error number and file name 
through a call to the FILEINFO procedure, or 

• If the error is caused by a disc pack not up to speed 

FILEERROR delays the calling process for one second then returns a 
one indicating a retry should be performed. 

3-48 



FILEERROR Procedure 

• If the error is caused by a device not ready, an appropriate 
message is printed on the home terminal. This is followed by a 
read from the terminal. If, at this time, "STOP" is entered 
(signalling that the condition cannot be corrected) , FILEERROR 
returns a zero indicating that the operation should not be retried. 
If any other data is entered (typically, carriage return), it 
signals that the condition has been corrected, and FILEERROR 
returns a one indicating that the operation should be retried. 

• If the error is caused by an ownership error (<error> = 200) or 
path down error (<error> = 201) and the alternate path is operable, 
FILEERROR returns a one indicating the the operation should be 
retried. If the alternate path is inoperable, a zero is returned. 

• Any other error results in the file name being printed on the home 
terminal followed by the file management error number. A zero is 
returned indicating that the operation should not be retried. 

Two examples follow. First example: 

error := l; 
WHILE error DO 

BEGIN 
CALL WRITE(fnum,buffer,count); 
IF < THEN 

BEGIN 
IF NOT FILEERROR(fnum) THEN CALL ABEND; 

END 
ELSE error := O; 

END; 

3-49 



FILEERROR Procedure 

It may be desirable to check for certain errors before calling 
FILEERROR. Therefore, the program itself should first call FILEINFO: 

LITERAL nofile = 11; ! data declaration. 

notAopen := notAcreated := l; 
WHILE notAopen DO ! open the file. 

3-50 

BEGIN 
CALL OPEN(fname, fnum, 0); 
IF < THEN 

BEGIN 
CALL FILEINFO(fnum,error); 
IF error = nofile THEN ! file does not exist. create it 

WHILE notAcreated DO 
BEGIN 

CALL CREATE(fname, •• ) ; 
IF < THEN ! creation failure 

BEGIN 
IF NOT FILEERROR(-1) THEN CALL ABEND; 

END 
ELSE notAcreated := O; 

END 
ELSE 

BEGIN 
IF NOT FILEERROR (fnum) THEN CALL ABEND; 

END; 
END 

ELSE notAopen := O; 
END; ! open the file. 



FILEINFO Procedure 

FILEINFO 

The FILEINFO procedure is used to obtain error and characteristic 
information about an open file. 

The call to the FILEINFO procedure is: 

CALL FILEINFO ( <file number> 

where 

, [ <error> ] 
, [ <file name> ] 
, [ <logical device number> ] 
, [ <device type> ] 
, [ <extent size> ] 
, [ <end-of-file location> ] 
, [ <next-record pointer> ] 
, [ <last mod time> ] 
, [ <file code> ] 
, [ <secondary extent size> ] 
, [ <current-record pointer> ] 
, [ <open flags> ] 

<file number>, INT:value, 

identifies the file whose characteristics are to be 
returned. 

passed 

<error>, INT:ref:l, returned 

if present, is returned the error number associated with the 
last operation on the file (see "Errors and Error 
Recovery"). 

<file name>, INT:ref:l2, returned 

if present, is returned the file name of this file. See 
"File Names" for the file name format. 

3-51 



FILEINFO Procedure 

3-52 

<logical device number>, INT:ref:l6, returned 

if present, is returned the logical device number of the 
device where this file resides (in binary). 

For partitioned files, an array of <logical device numbers> 
is returned; one entry for each of 16 possible partitions: 

[0] = <logical device number> of partition 0 
[l] = <logical device number> of parititon 1 

[15] = <logical device number> of partition 15 

If -1 is returned for a partition, then the partition is 
not open. 

<device type>, INT:ref:l, returned 

if present, is returned the device type of the device 
associated with this file. See "DEVICEINFO Procedure", 
table of "Device Types and Subtypes" 

<extent size>, INT:ref:l, returned 

if present, is returned the primary extent size in 2048 
byte units. 

<end-of-file pointer>, INT(32) :ref:l, returned 

if present, is returned the relative byte address of the 
end-of-file location. 



FILEINFO Procedure 

<next-record pointer>, INT(32) :ref:!, returned 

if present, is returned the next-record pointer setting. 

For relative files, this is a <record number>; for entry
sequenced files, this is a <record address>; for 
unstructured files, this is an <rba>; for key-sequenced 
files, this parameter is ignored (i.e., whatever is passed 
is returned unchanged) • 

<last mod time>, INT:ref:3, returned 

if present, is returned a three-word timestamp indicating 
the last time that the file was modified. <last mod time> is 
of the same form as the <interval clock> returned by 
TIMESTAMP and can be converted into a date by CONTIME. 

<file code>, INT:ref:l, returned 

if present, is returned the application defined file code 
that was assigned when the file was created. File codes 
100-999 are reserved for use by Tandem Computers, Inc. 

<secondary extent size>, INT:ref:l, returned 

if present, is returned the size of the secondary file 
extents (extents 1-15) in 2048 byte units 

<current-record pointer>, INT(32) :ref:l, returned 

if present, is returned the setting of the current-record 
pointer. This may be an even or odd value. 

For relative files, this is a <record number>; for entry
sequenced files, this is a <record address>; for 
unstructured files, this is an <rba>; for key-sequenced 
files, this parameter is ignored (i.e., whatever is passed 
is returned unchanged) • 

3-53 



FILEINFO Procedure 

<open flags>, INT:ref:l, returned 

if present, is returned the access granted when the file was 
opened. Where: 

<open flags>.<12:15> is the maximum number of concurrent 
no-wait i/o operations that can be in progress on this 
file at any given time. <open flags>.<12:15> = 0 implies 
"wait i/o". 

<open flags>.<9:11> is the exclusion mode: 

0 = shared access 
1 = exclusive access 
3 = protected access 

<open flags>.<8> 1 = for process files, the OPEN message 
is sent no-wait and must be completed by a call to 
AWAIT IO. 

<open flags>.<6> 1 = resident buffers have been provided 
by the application process for calls to file system i/o 
routines. Resident buffering only applies to the Tandem 
Nonstop System; a zero is always returned in this bit for 
the Nonstop II System (see "OPEN Procedure"). 

<open flags>.<3:5> is the access mode: 

0 = read/write access 
1 = read-only access 
2 = write-only access 

<open flags>.<2> 1 = unstructured access regardless 
of the actual file structure (see "OPEN Procedure") . 

condition code settings: 

< (CCL) indicates that an error occurred, the error number is 
returned in <error> 

= (CCE) indicates that FILEINFO executed successfully 
> (CCG) is not returned by FILEINFO 

example 

CALL FILEINFO infile, errAnum ) ; 

3-54 



FILEINFO Procedure 

Considerations 

• Error Handling 

The error number of a preceding AWAITIO on any file or waited OPEN 
that failed can be obtained by passing a -1 in the <file number> 
parameter. The error number is returned in <error>. 

• Calling FILEINFO Before Opening any Files 

<error> = 32 is returned in <error> (if <error> is a parameter 
present in the call) if a process has never opened any files and -1 
is specified in the <file number> parameter. 

• Commas {A word of Caution) 

All parameters to FILEINFO, except <file number>, are optional. 
Placeholder commas must be included to indicate missing parameters; 
commas can be omitted for rightmost missing parameters. 

CALL FILEINFO ( devicenum, error,,, devicetype,, eof); 

• Error 16: File Not Open 

Calling FILEINFO subsequent to a close, returns <error> = 16, file 
not open. 

• Error Recovery for a Failed CREATE or PURGE 

The error number of a preceding CREATE or PURGE that failed can be 
obtained by passing a -1 in the <file number> parameter. The error 
number is returned in <error>. 

3-55 



FILERECINFO Procedure 

FILERECINFO 

The FILERECINFO procedure is used to obtain the characteristics of an 
open Enscribe disc file. 

The call to the FILERECINFO procedure is: 

CALL FILERECINFO <file number> 

' [ <current key specifier> ] 

' 
[ <current key value> ] 

' [ <current key length> ] 

' 
[ <current primary key value> ] 

' 
[ <current primary key length> ] 

' 
[ <partition in error> ] 

' 
[ <specifier of key in error> ] 

' 
[ <file type> ] 

' 
[ <logical record length> ] 

' 
[ <block length> ] 

' [ <key-sequenced params> ] 

' 
[ <alternate key params> ] 

' [ <partition params> ] 

where 

3-56 

<file number>, INT:value, passed 

identifies the file whose characteristics are to be 
returned. 

<current key specifier>, INT:ref:l, returned 

if present, is returned the key specifier of the current key 
field. 

<current key value>, STRING:ref:*, returned 

if present, is returned the value of the current key for 
<current key length> bytes. 

<current key length>, INT:ref:l, returned 

if present, is returned the is length, in bytes, of the 
current key. 



FILERECINFO Procedure 

<current primary key value>, STRING:ref:*, returned 

if present, is returned the value of the current primary 
key for <current primary key length> bytes. 

<current primary key length>, INT:ref:l, returned 

if present, is returned the is length, in bytes, of the 
current primary key 

<partition in error>, INT:ref:l, returned 

if present, is returned a number from 0 through 15 
indicating the partition associated with the latest error 
occuring with this file. 

<specifier of key in error>, INT:ref:l, returned 

if present, is returned the key tag associated with the 
latest error occurring with this file. 

<file type>, INT:ref:l, returned 

if present, is returned indicating the type of file being 
accessed: 

where 

<file type>.<13:15> specifies the file structure: 

0 = unstructured 
1 = relative 
2 = entry-sequenced 
3 = key-sequenced 

<file type>.<12> 1 = 'ODDUNSTR' is specified for 
unstructured files. 

<file type>.<12> 1 = data compression is specified 
for key-sequenced files. 

<file type>.<ll> 1 = index compression is specified 
for key-sequenced files. 

3-57 



FILERECINFO Procedure 

<file type>.<2> 1 = for systems with the Transaction 
Monitoring Facility (TMF), indicates file is audited. 

<logical record length>, INT:ref:l, returned 

if present, the maximum size of the logical record in bytes 
is returned. 

<block length>, INT:ref:l, returned 

if present, is returned the length, in bytes, of a block of 
records for the file 

<key-sequenced params>, INT:ref:*, returned 

if present, is an array where the parameters unique to an 
key-sequenced file are returned. See the description under 
"CREATE Procedure" in this section. 

<alternate key params>, INT:ref:*, returned 

if present, is an array where the parameters describing the 
file's alternate keys are returned. See the description 
under "CREATE Procedure" in this section. 

<partition params>, INT:ref:*, returned 

if present, is an array where the parameters describing a 
multi-volume file are returned. See the description under 
"CREATE Procedure" in this section. 

condition code settings: 

< (CCL) indicates that an error occurred 
= (CCE) indicates that FILERECINFO executed successfully 
> (CCG) indicates that the file is not an Enscribe disc file 

example 

CALL FILERECINFO ( infile,,,,,,,, ftype); 

3-58 



FNAMECOLLAPSE Procedure 

FNAMECOLLAPSE 

The FNAMECOLLAPSE procedure converts a file name from its internal 
form to its external form. The system number of a network file 
name is converted to the corresponding system name. 

The call to the FNAMECOLLAPSE procedure is: 

{ length := } FNAMECOLLAPSE <internal name> 
, <external name> 

where 

<length>, INT, returned 

is returned the number of bytes in <external name>. 

<internal name>, INT:ref·:l2, passed 

is the name to be converted. If this is in local form, it 
is converted to external local form; if it is in network 
form, it is converted to external network form. Network 
file names are discussed in the "File Names" section of 
this manual. 

<external name>, STRING:ref:26 or 34 returned 

contains, on return, the external form of <internal name>. 
If <internal name> is a local file name, <external name> 
contains 26 bytes; if a network name is converted, 
<external name> contains 34 bytes. 

example 

length := FNAMECOLLAPSE( internal, external ) ; 

Examplee of File Name Conversion 

local: $SYSTEM SUBVOL MYFILE 
is converted to 11 $SYSTEM.SUBVOL.MYFILE" 

network: \<sysnum>SYSTEMSUBVOL MYFILE 
is converted to 11 \<system name>.$SYSTEM.SUBVOL.MYFILE 

3-59 



FNAMECOLLAPSE Procedure 

Considerations 

• Passing Invalid File Names 

It is the responsibility of the program calling FNAMECOLLAPSE to 
pass a valid file name in <internal name>. Invalid file names 
cause unpredictable results. 

• Passing a Bad <sysnum> Value 

If <internal name> is in network form and the system number in the 
second byte does not correspond to any system in the network, 
FNAMECOLLAPSE supplies "???????" as the system name. 

3-60 



FNAMECOMPARE Procedure (all files) 

FNAMECOMPARE 

The FNAMECOMPARE procedure compares two file names within a local or 
network environment to determine whether these file names refer to the 
same file or device. For example, one name may be a logical system 
name or a device number while the other reference is a symbolic name. 
The file names compared must be in the standard twelve-word internal 
format that is returned by FNAMEEXPAND. 

The call to the FNAMECOMPARE procedure is: 

{ status := } FNAMECOMPARE 
{ CALL } 

<file name l> 
, <file name 2> 

where 

<status>, INT, returned 

is a value indicating the outcome of the comparison. 
Values for <status> are: 

-1 = (CCL) the file names do not refer to the same file 
0 = (CCE) the file names refer to the same file 

+l = (CCG) the file names refer to the same <volume 
name>, <device name>, or <process name> on the same 
system, however, words [4:11] are not the same: 
<file name l> [4] <> <file name 2> [4] FOR 8. 

A value less than negative one is the negative of a file 
management error code. This indicates that the comparison 
is not attempted due to this error condition. 

That value returned from the program function determines 
the condition code setting. 

<file name l>, INT:ref :12, passed 

the first comparable file name. Each <file name> array 
may contain either a local file name or a network file 
name. Definitions of file names are found in the GUARDIAN 
OPERATING SYSTEM PROGRAMMING MANUAL, File Names section. 

<file name 2>, INT:ref:l2 passed 

the second comparable file name. 

3-61 



FNAMECOMPARE Procedure (all files) 

Considerations 

• File Name Arrays 

The arrays containing the file names for comparison are not 
modified. 

• Alphabetic Character Handling 

Alphabetic characters within qualified process names are not 
upshifted before comparison. 

• Passing Logical Device Numbers for File Names 

If a logical.device number format such as $0076, is used for 
one file name, but not for the second file name, then the 
device table of the referenced system is consulted to determine 
whether the names are equivalent. This is the only case where 
the device table is used. All other comparisons involve only 
the examination of the two file names supplied. 

• Common Errors Returned From FNAMECOMPARE 

Some of the most common negative file management error codes 
returned are: 

3-62 

-13 = an illegal file name specification for either file name 
is made. 

-14 = the device does not exist. (See note.) 

-18 =no such system is defined in this network. (See note.) 

-22 = a parameter or buffer is out of bounds. 

-250 =all paths to the system are down. (See note.) 

Note: These negative file management error codes indicate that 
one file name is passed in logical device number format while the 
second is not and the device is connected to a remote network 
node. 



FNAMECOMPARE Procedure (all files) 

Extended Example of Using FNAMECOMPARE 

In the following example, the notation <x> refers to a number, not 
to an ASCII character; <%52> :==: "*"· 

Assume the following declarations: 

INT .fnamel[ 0:11 ] , 
.fname2[ 0:11 ], 
status; 

Then in a network node with a system number of <6>, execution of 

f name 1 .... : =.... [ 11 $term 1 11 
, 9 * [ 11 11 

] ] ; 

fname2 .... := .... [ %56006, 11 TERMl ", 8 * [" 11
] ]; ! 11

\", <6>, 11 TERMl 11 

status := FNAMECOMPARE ( fnamel, fname2 ) ; 

returns a status of 0, and the condition code (CCE). 

In a non-network system, execution of the above example returns a 
status of negative one, and the condition code (CCL). 

Whether a system is a network node or not, execution of 

fnamel .... : =.... [ "$SERVR #START UPDATING" ] ; 
fname2 .... : =.... [ 11 $SERVR #FINISH UPDATING 11 

] ; 

status := FNAMECOMPARE ( fnamel, fname2 ) ; 

returns a status of plus one, and the condition code (CCG). 

In any system, execution of 

fnamel .... := .... [ 11 $0013 11
, 9 * [ 11 11

] ] ; 

fname2 .... := .... [ "$DATAX 11
, 9 * [ " "] ] ; 

status := FNAMECOMPARE ( fnamel, fname2 ) ; 

returns a status of zero and condition code (CCE), if the device 
name $DATAX is defined as logical device number 13 at SYSGEN 
time, otherwise a status of negative one and the condition code 
(CCL) is returned. 

3-63 



FNAMECOMPARE Procedure (all files) 

FNAMECOMPARE can also verify the specified file names, as shown in the 
following example: 

assume all variables and procedures have been 
properly defined and initialized elsewhere 

also assume LITERAL legal = O; 

IF FNAMEEXPAND ( externalAname, internalAname, defaultAnames ) THEN 
BEGIN 

3-64 

! something reasonable was entered. 
IF FNAMECOMPARE ( internalAname, internalAname 

! it may not exist, but looks okay. 
BEGIN 

END 
ELSE 

normal processing. 

! the format is not legal. 
BEGIN 

! error processing. 

END; 
END; 

= legal THEN 



FNAMEEXPAND Procedure (all files) 

FNAMEEXPAND 

The FNAMEEXPAND procedure is used to expand a partial file name from 
the compacted external form to the standard twelve-word internal form 
usable by file management procedures. 

The call to the FNAMEEXPAND procedure is: 

{ <length> := } FNAMEEXPAND ( <external file name> 
, <internal file name> 
, <default names> 

where 

<length>, INT, returned 

is the length in bytes of the file name in <external file 
name>. If an invalid file name is specified, zero is 
returned. 

<external file name>, STRING:ref, passed 

is the file name to be expanded. The file name must be in 
the form 

[\<system name>]<file name> 

where <file name> is in one of these forms: 

[$<volume name>.] [<subvol name>.]<disc file name><delim> 
$<device name><delim> 
$<logical device number><delim> 

<delim> 

is a delimiter character. <delim> can be any character 
that is not valid as part of an <external file name> 
such as <blank> or <null>. 

<internal file name>, INT:ref, returned 

is an array of twelve words where FNAMEEXPAND returns the 
expanded file name. This cannot be the same array as 
<external file name>. 

3-65 



FNAMEEXPAND Procedure (all files) 

<default names>, INT:ref, passed 

is an array of eight words containing the default volume and 
subvol names to be used in file name expansion. <default 
names> is of the form: 

<default names[0:3]> =default <volume name> (blank 
filled on right) 

<default names[4:7]> =default <subvol name> (blank 
filled on right) 

<default names[0:7]> corresponds directly to <word[l:8]> of 
the Command Interpreter parameter message. See the Guardian 
Programming Manual for the parameter message format. 

example 

length := FNAMEEXPAND(inname,outname,pmsg[l]); 

Examples of File Name Expansion by FNAMEEXPAND 

<disc file name> is returned as 

<file name[0:3]> 
<file name[4:7]> 
<file name[8:11]> 

= $<default volume name><blank fill> 
= <default subvol name><blank fill> 
= <disc file name><blank fill> 

<subvol name>.<disc file name> is returned as 

<file name[0:3]> 
<file name[4:7]> 
<file name[8:11]> 

= $<default volume name><blank fill> 
= <subvol name><blank fill> 
= <disc file name><blank fill> 

$<volume name>.<disc file name> is returned as 

3-66 

<file name[0:3]> 
<file name[4:7]> 
<file name[8:11]> 

= $<volume name><blank fill> 
= <default subvol name><blank fill> 
= <disc file name><blank fill> 



FNAMEEXPAND Procedure (all files) 

$<volume name>.<subvol name>.<disc file name> is returned as 

<file name[0:3]> 
<file name[4:7]> 
<file name[8:11]> 

= $<volume name><blank fill> 
= <subvol name><blank fill> 
= <disc file name><blank fill> 

$<device name> is returned as 

<file name[O:ll]> =$<device name><blank fill> 

$<logical device number> is returned as 

<file name[O:ll]> =$<logical device number><blank fill> 

any other file name is invalid 

3-67 



FNAMEEXPAND Procedure (all files) 

Extended Example Using FNAMEEXPAND 

Assuming the following declarations: 

STRING .ext"'names[0:24] := " 
.p; ! string pointer. 

INT .infile[O:ll], 
.outfile[O:ll], 
• def au 1 ts [ o : 7] : = "$ vo 11 

"svoll 

f ilea 

II , 
II • , 

$system.fileb " , 

FNAMEEXPAND is used to expand the external file names into a usable 
internal form: 

SCAN ext"'name WHII,E " " -> @p; ! skip leading blanks. 
@p := FNAMEEXPAND(p, infile, defaults) + @p; 

on the completion of FNAMEEXPAND, <inf ile> contains 

11 $voll svoll f ilea " 

which is suitable for passing to the file management CREATE, 
OPEN, RENAME, and PURGE procedures as well as the process 
control NEWPROCESS procedure. 

"p" is incremented by the number of characters in the external 
file name. 

SCAN p WHILE " " -> @p; ! skip intermediate blanks. 
CALL FNAMEEXPAND(p, outfile, defaults); 

on the completion, "outfile" contains 

"$system svoll f ileb " 

3-68 



FNAMEEXPAND Procedure (all files) 

Expanding Network File Names 

FNAMEEXPAND converts local file names to local names, and network file 
names to network names. Network file names are described under 
"File Names". 

When network file names are involved, in addition to expanding the 
local part of the name using the defaults, FNAMEEXPAND converts the 
system name to the appropriate system number. 

Example: 

Suppose that system \NEWYORK is assigned system number 4. Then 
the external file name "\NEWYORK.$DATA.SUB.MYFILE" is converted 
by FNAMEEXPAND to 

.\<%4>DATA SUB MYFILE 

where "<%4>" denotes octal 4 in the second byte. 

The use of FNAMEEXPAND in programming network applications is 
discussed fully in the EXPAND User~s Manual. 

3-69 



GETDEVNAME Procedure 

GETDEVNAME 

The GETDEVNAME procedure is used to obtain the name associated with a 
logical device number. GETDEVNAME returns, from the Logical Device 
Table (LDT) , the name of a designated logical device if such a device 
exists or the name of the next higher (numerically) logical device if 
the designated logical device does not exist. A status word is 
returned from GETDEVNAME that indicates whether or not the designated 
device exists or if higher entry exists in the LDT. By repeatedly 
calling GETDEVNAME and supplying successively higher logical device 
numbers, the names of all system device can be obtained. 

The call to the GETDEVNAME procedure is: 

<status> := GETDEVNAME <logical device no> 
<device name> 

, [ <system number> ] ) 

where 

3-70 

<status>, INT returned 

indicates the outcome of the call. Where 

0 = successful, the name of the designated logical 
device is returned in <device name> 

1 = the designated logical device does not exist. The 
logical device number of the next higher device is 
returned in <logical device no>; the name of that 
device is returned in <device name> 

2 = 

3 = 
4 = 

99 ~ 

"end-of-LDT", there is no logical device equal-to or 
or greater than <logical device no> 
unable to get name for demaountable disc 
the system specified could not be accessed 
parameter error 

<logical device no>, INT:ref:l, passed, returned 

on the call, is passed the logical device number, in 
binary, of the designated logical device whose name is to 
be returned. 

On the return, <logical device no> is is returned the 
logical device number, in binary, of the device whose name 
is actually returned. If "end-of-LDT" is encountered, 
<logical device no> is unchanged. 



GETDEVNAME Procedure 

<device name>, INT:ref:4, returned 

is returned the <device name> or <volume name> of the 
designated device if it exists or the next higher logical 
device if the designated device does not exist. If 
"end-of-LDT" is encountered, <device name> is unchanged. 

<system number>, INT, passed 

if present, specifies the system (in a network) whose 
Logical Device Table is to be searched for <logical device 
no>. 

If absent, the local system is assumed. 

condition code settings: 

The condition code setting has no meaning following a call to 
GETDEVNAME. 

example 

! get the names of all logical devices. 
ldev := O; 
WHILE NOT GETDEVNAME ( ldev , devname DO 

BEGIN 
CALL print ( ldev , devname ) ; 
ldev :~ ldev + l; 

END; 

Considerations 

• Specifying Remote Logical Devices 

If the device specified by <logical device no.> is remote, its 
<device name> is returned in network form; otherwise, the <device 
name is returned in local form. 

• Limitations When <system number> is Passed 

If the <system number> parameter is supplied, devices whose names 
contain seven characters are not accessible using this procedure. 

3-71 



KEYPOSITION Procedure 

KEYPOSITION 

The KEYPOSITION procedure is used to position by primary key within 
key-sequenced files, and by alternate key within key-sequenced, 
relative and entry-sequenced files. 

KEYPOSITION sets the current position, access path, and positioning 
mode for the specified file. The current position, access path, 
and positioning mode define a subset of the file for subsequent 
access. 

The calling application process is not suspended because of a call to 
KEYPOSITION. 

A call to the KEYPOSITION procedure will be rejected with an error 
indication if there are any outstanding "no-wait" operations pending 
on the specified file. 

The call to the KEYPOSITION procedure is: 

CALL KEYPOSITION <file number> 
, 
, [ 
, [ 
, [ 

<key value> 
<key specifier> 
<length word> 
<positioning mode> 

where 

3-72 

<file number>, INT:value, passed 

identifies the file to be positioned. 

<key value>, STRING:ref, passed 

is the value which defines the current position in the file. 
The current position is found by a search of the access path 
specified by <key specifier>. The first record having an 
access path key field value that matches <key value>, as 
defined by <positioning mode> and <compare length>, becomes 
the current position. 



KEYPOSITION Procedure 

<key specifier>, INT:value, passed 

designates the key field to be used as the access path for 
the file: 

<key specifier> = 0 or omitted, means use the file's 
primary key as the access path. 

<key specifier> = predefined key specifier for an 
alternate key field, means use that field as the access 
path. 

<length word>, INT:value, passed 

contains two values, the <compare length> in the left byte 
<length word>.<0:7>, and the <key length> in the right 
byte <length word>.<8:15>. 

<0:7>, the <compare length>, is the number of bytes of <key 
value> compared with the specified key field in the file. 
If omitted or zero, <compare length> is assumed to equal 
the minimum of the <key length> value and the key length 
defined for the file when it was created. If a shorter key 
length than that defined for the file is specified, the 
results are determined by the <positioning mode>. 

<8:15>, the <key length>, is the number of bytes of <key 
value> searched for in the file to find the initial 
position. If omitted, the <key length> is assumed to equal 
the key length defined at file creation. 

3-73 



KEYPOSITION Procedure 

<positioning mode>, INT:value, passed 

<positioning mode>.<O> if 1 and a record with exactly the 
key specified is found, it is skipped. 

<positioning mode>.<14:15> indicate the type of key search 
(and, therefore, a subset of records), 

where 

0 = approximate - positioning occurs to the first record 
whose key field, as designated by the <key specifier>, 
contains a value equal to or greater than <key value> 
for <compare length> bytes 

1 = generic - positioning occurs to the first record whose 
key field, as designated by the <key specifier>, 
contains a value equal to <key value> for <compare 
length> bytes 

2 = exact - positioning occurs to the first record whose 
key field, as designated by the <key specifier>, 
contains a value of exactly <compare length> bytes and 
is equal to <key value> 

If <positioning mode> is omitted, approximate is used. 

condition code settings: 

< (CCL) indicates that an error occurred (call FILEINFO) 
= (CCE) indicates that the KEYPOSITION was successful 
> (CCG) no operation, not an Enscribe disc file 

example 

key ~:=~ "DOE,JOHN"; 
CALL KEYPOSITION ( infile, key,, 8 ) ; 
IF< THEN.... error occurred 

3-74 



KEYPOSITION Procedure 

Considerations 

• Positioning on Duplicate or Nonexistent Records 

No searching of indices is done by KEYPOSITION. Therefore a 
nonexistent or duplicate record is not reported until a subsequent 
READ, READUPDATE, WRITEUPDATE, LOCKREC, READLOCK, READUPDATELOCK, 
or WRITEUPDATEUNLOCK is performed. 

e KEYPOSITION and Disc Seeks 

KEYPOSITION does not cause the disc heads to be repositioned; the 
heads are repositioned when a subsequent i/o call (READ, 
READUPDATE, WRITE, etc.) transfers data. 

• Positioning Exact 

If an exact KEYPOSITION is performed and a <compare length> is 
specified that is less than that specified when the file was 
created, <compare length> must match the variable key length 
specified when the record was entered into the file. Otherwise a 
subsequent call to READ, READUPDATE, WRITEUPDATE, etc., is 
rejected. 

3-75 



KEYPOSITION Procedure 

• Current State Indicators After a KEYPOSITION 

Current state indicators following a successful KEYPOSITION: 

current position 

positioning mode 

compare length 

is that of the record indicated by the 
<key value>, <key specifier>, 
<positioning mode>, and <compare length>; 
or the subsequent record if <positioning 
mode>.<0> is set to 1. 

is <positioning mode> if the parameter is 
supplied, otherwise approximate. 

is <compare length> if the <length word> 
parameter is supplied, otherwise the 
defined length of the specified key 
field. 

The compare length for generic searches is determined as follows: 

3-76 

IF <length word>.<0:7> <> 0 
THEN <length word>.<0!7> 
ELSE 

IF <length word>.<8:15> > length of <key specifier> 
THEN length of <key specifier> 

ELSE <length word>.<8:15> 

current primary key 
value 

is <key value> if <key specifier> is 
primary, otherwise unchanged. 



KEYPOSITION Procedure 

• Saving Current Position for Later Access 

To return to a position in a key-sequenced file, when processing 
by alternate key, save the concatenated alternate key and primary 
key values in a temporary buffer. For example: 

<temporary buffer> ':=' record.altkey field for $len 
(record.altkey field) and 
record.primary key for $len 
(record.primary key) 

Repositioning to the same record is done with: 

KEYPOSTION ( <filenum>, 
<temporary buffer>, 
<key specifier>, 
<compare length for generic searches '<<' 8 + 
length of alternate key + length of primary key>, 
<positioning mode> ) • 

Repositioning to the next record is done with: 

KEYPOSTION ( <filenum>, 
<temporary buffer>, 
<key specifier>, 
<compare length for generic searches '<<' 8 + 
length of alternate key + length of primary key>, 
<%100000 + positioning mode> ) • 

The <key specifier> specifies the alternate key. 

3-77 



LOCKFILE Procedure (file locking) 

LOCKFILE 

The LOCKFILE procedure is used to temporarily exclude other accesses 
to a file. 

If the file is currently unlocked or is locked by the caller when 
LOCKFILE is called, the file becomes locked and the caller continues 
executing. 

Two "locking" modes are available: 

• With the default mode, if the file is already locked when the call 
to LOCKFILE is made, the process requesting the lock is suspended 
and queued in a "locking" queue behind any other processes also 
requesting to lock or read the file. When the file becomes 
unlocked, the process at the head of the locking queue is granted 
access to the file. If the process at the head of the locking 
queue is req~esting a lock, it is granted the lock and _resumes 
execution. If the process at the head of the locking queue is 
requesting a read, the read operation continues to completion. 

• With the alternate mode, if the file is already locked when the 
call to LOCKFILE is made, the lock request is rejected and the call 
to LOCKFILE completes immediately with a "file is locked" error 
indication (<error> = 73). The alternate locking mode is 
established by calling SETMODE and specifying function 4, set lock 
mode. 

If the LOCKFILE procedure is being used to initiate an operation on a 
file opened with "no-wait i/o" specified, the operation must be 
completed with a corresponding call to the AWAITIO procedure. Note 
that process suspension due to a queued lock occurs when AWAITIO is 
called and the alternate locking mode error "file is locked" is 
returned by AWAITIO (if the file was already locked). 

The call to the LOCKFILE procedure is: 

CALL LOCKFILE 

where 

<file number> 
, [ <tag> 

<file number>, INT:value, 

] ) 

identifies the file to be locked. 

3-78 

passed 



LOCKFILE Procedure (file locking) 

<tag>, INT(32) :value, passed 

for no-wait i/o only, if present, is stored by the system, 
then passed back to the application process by the AWAITIO 
procedure when the lock operation completes. 

condition code settings: 

< (CCL) indicates that an error occurred (call FILEINFO) 
= (CCE) indicates that the LOCKFILE was successful 
> {CCG) file is not a disc file 

example 

CALL LOCKFILE { f ile~num ) ; 
IF< THEN ••••• ; 

Considerations 

error 

• Locks and Multiple Opens by the Same Process 

Locks are granted on an open file (i.e., <file number>) basis. 
Therefore, if a process has multiple opens of the same file, a lock 
of one <file number> excludes accesses to the file through other 
<file numbers>. 

• Attempting to Write to A Locked File 

If a call to WRITE, or WRITEUPDATE is made and the file is locked 
but not through the <file number> supplied in the call, the call is 
rejected with a "file is locked" error indication (<error> = 73). 

3-79 



LOCKFILE Procedure (file locking) 

• Attemting to Read a Locked File -- Default Locking Mode 

If the default locking mode is in effect when a call to READ or 
READUPDATE is made and the file is locked but not locked through 
the <file number> supplied in the call, the caller of READ or 
READUPDATE is suspended and queued in the "locking" queue behind 
other processes attempting to lock or read the file. 

Note that a deadlock condition occurs if a call to READ or 
READUPDATE is made by the process having a file locked but the file 
is not locked via the <file number> supplied to READ or READUPDATE. 

• Attempting to Read a Locked File -- Alternate Locking Mode 

If the alternate locking mode is in effect when READ or READUPDATE 
is called and the file is locked but not through the <file number> 
supplied in the call, the call is rejected with a "file is locked" 
error indication (<error>= 73). 

• Attempting to Control a Locked File 

If a call to CONTROL is made and the file is locked but not through 
the <file number> supplied in the call, the call is rejected with a 
"file is locked" error indication (<error>= 73). 

• Specif iying the Locking Mode 

The locking mode is specified via the SETMODE procedure, <function> 
= 4. 

3-80 



LOCKFILE Procedure (file locking) 

• Locks Are Not Nested 

Locks are not nested. For example: 

CALL LOCKFILE ( f ileAa ) i 

"fileAa" becomes locked. 

CALL LOCKFILE ( f ileAa ) i 

is a "null" operation because the file is already locked. A 
condition code of CCE is returned. 

CALL UNLOCKFILE ( f ileAa ) i 

"fileAa" becomes unlocked. 

CALL UNLOCKFILE ( f ileAa ) i 

is a "null" operation because file is already unlocked. A 
condition code of CCE is returned. 

3-81 



LOCKREC Procedure (record locking) 

LOCK REC 

The LOCKREC procedure is used to temporarily exclude other accesses to 
the record at the current position. For key-sequenced, relative, and 
entry-sequenced files, the current position is the record with a key 
value that matches the current key value exactly. For unstructured 
files, the current position is the record identified by the 
current-record pointer. 

If the record is either unlocked or is currently locked by the caller 
when LOCKREC is called, the record becomes locked and the caller 
continues executing. 

Two "locking" modes are available: 

• With the default mode, if the record is already locked when the 
call to LOCKREC is made, the process requesting the lock is 
suspended and queued in a "locking" queue behind any other 
processes also requesting to lock or read the record. When the 
record becomes unlocked, the process at the head of the locking 
queue is granted access to the record. If the process at the head 
of the locking queue is requesting a lock, it is granted the lock 
and resumes execution. If the process at the head of the locking 
queue is requesting a read, the read operation continues to 
completion. 

• With the alternate mode, if the record is already locked when the 
call to LOCKREC is made, the lock request is rejected and the call 
to LOCKREC completes immediately with a "record is locked" error 
indication (<error>= 73). The alternate locking mode is specified 
via an option to the SETMODE procedure. 

Note: A call to LOCKFILE is equivalent to locking all records in a 
file. Therefore, a file lock is queued behind any pending 
record locks. Conversely, a record lock is queued behind any 
pending file locks. 

If the LOCKREC procedure is being used to initiate an operation with 
a file opened with "no-wait i/o" specified, the operation must be 
completed with a corresponding call to the AWAITIO procedure. 
Additionally, the process suspension due to a queued lock occurs when 
AWAITIO is called. 

The syntax for the LOCKREC procedure is shown on the following page. 

3-82 



LOCKREC Procedure (record locking) 

The call to the LOCKREC procedure is: 

CALL LOCKREC <file number> 
, [ <tag> ] ) 

where 

<file number>, INT:value, passed 

identifies the file containing the record to be locked. 

<tag>, INT(32) :value, passed 

for no-wait i/o only, if present, is stored by the system, 
then passed back to the application process by the AWAITIO 
procedure when the operation completes. 

condition code settings: 

< (CCL) indicates that an error occurred (call FILEINFO) 
= (CCE) indicates that the LOCKREC was successful 
> (CCG) file is not a disc file 

example 

CALL LOCKREC ( f ileAnum, lockAtag ) i 

IF< THEN ••••• ; ! error 

General Considerations 

• Attempting to Write a Locked Record 

If a call to WRITE or WRITEUPDATE is made for a record and that 
record is locked but not through the <file number> supplied in the 
call, the call is rejected with a "record is locked" error 
indication (<error>= 73). 

3-83 



LOCKREC Procedure (record locking) 

• Attempting to Read a Locked Record -- Default Locking Mode 

If the default locking mode is in effect when a call to READ or 
READUPDATE is made for a record and that record is locked but not 
locked through the <file number> supplied in the call, the caller 
to READ or READUPDATE is suspended and queued in the "locking" 
queue behind other processes attempting to lock or read the record. 

Note that a deadlock condition occurs if a call to READ or 
READUPDATE is made by the process having a record locked but the 
record is not locked via the <file number> supplied to READ or 
READUPDATE. 

• Attempting to Read a Locked Record -- Alternate Locking Mode 

If the alternate locking mode is in effect when READ or READUPDATE 
is called for a record and that record is locked but not through 
the <file number> supplied in the call, the call is rejected with a 
"record is locked" error indication (<error> = 73). 

• Attempting to Control a File Containing a Locked Record 

If a call to CONTROL is made for a file containing a record that 
is not locked through the <file number> supplied in the call, the 
call is rejected with a "record is locked" error indication 
(<error>= 73). 

• Selecting the Locking Mode with SETMODE 

The locking mode is specified via the SETMODE procedure, <function> 
= 4. 

• Locks Can Not Be Nested 

Locks are not nested. As an example: 

CALL LOCKREC ( fileAa, .. ) ; 
(locks the current-record in "fileAa") 

CALL LOCKREC ( fileAa, .. ) ; 
(has no effect since current record already locked) 

CALL UNLOCKREC ( fileAa, .. ) ; 
(unlocks the current-record in "fileAa") 

CALL UNLOCKREC ( fileAa, .. ) ; 
(has no effect since current record is not locked) 

3-84 



LOCKREC Procedure (record locking) 

Considerations for Structured Files 

• Calling LOCKREC after Positioning on a Nonunique Key 

If the call to LOCKREC immediately follows a call to KEYPOSITION 
where a non-unique alternate key is specified, the LOCKREC fails. A 
subsequent call to FILEINFO returns error 46 (invalid key). 
However, if an intermediate call to READ is performed, the call to 
LOCKREC is permitted because a unique record is identified. 

• Current State Indicators After LOCKREC 

Current state indicators following a successful LOCKREC: 

unchanged. 

Considerations for Unstructured Files 

• Locking Records in an Unstructured File 

Record positions in an unstructured file, represented by a 
relative byte address (rba), can be locked with LOCKREC. To 
lock a record position in an unstructured file, first position 
to the record by calling POSITION with the desired rba, and then 
call LOCKREC. This locks the rba; any other process attempting 
to access the file with exactly the same rba will encounter a 
"record is locked condition". Depending on the process's 
locking mode, the process's call will either fail with error 73, 
record is locked, or be placed on the locking queue. 

• Record Pointers After LOCKREC 

Following a successful call to LOCKREC, the current-record, 
next-record, and end-of-file pointers are: 

unchanged. 

3-85 



NEXTFILENAME Procedure 

NEXTFILENAME 

The NEXTFILENAME procedure is used to obtain the names of disc files 
on a designated volume. NEXTFILENAME returns the next file name in 
alphabetical sequence after the file name supplied as a parameter. 
The intended use of NEXTFILENAME is in an iterative loop where the 
file name returned in one call to NEXTFILENAME is used to specify the 
starting point for the alphabetical search in the subsequent call to 
NEXTFILENAME. In this manner, a volume~s file names are returned to 
the application process in alphabetical order through succeeding calls 
to NEXTFILENAME. 

The call to the NEXTFILENAME procedure is 

<error> := NEXTFILENAME ( <file name> ) 

where 

<error>, INT returned 

3-86 

is a file management error number indicating the outcome of 
the call. Common error number returns are: 

0 = no error, next file name in alphabetical sequence is 
returned in <file name> 

l = end-of-file: there is no file in alphabetical 
sequence following the file name supplied in <file 
name> 

13 = illegal filename specification 



NEXTFILENAME Procedure 

<file name>, INT:ref:l2, passed, returned 

on the call, is passed the file name from which search for 
the next file name begins. <file name> on the initial call 
can be one of the following forms: 

<file name[O:ll]> = $<volume name><blank fill> 
or \<system number><volume name><blank fill> 

The form shown above is used to obtain the name of the 
first file on $<volume name>. 

<file name[0:3]> =$<volume name><blank fill> 
or \<system number><volume name><blank fill> 

<file name[4:11]> = <subvol name><blank fill> 

The form shown above is used to obtain the name of the 
first file in <subvol name> on $<volume name>. 

<file name[0:3]> =$<volume name><blank fill> 
or \<system number><volume name><blank fill> 

<file name[4:7]> = <subvol name><blank fill> 
<file name[8:11]> =<disc file name><blank fill> 

The form is used to return the name of the next file in 
alphabetic sequence. 

On the return, <file name> is returned the next file name in 
alphabetical sequence, if any. 

condition code settings: 

The condition code setting has no meaning following a call to 
NEXTFILENAME 

example 

fname ' : =' [ "$SYSTEM ", 8 * (" "] ] ; 
WHILE NOT (error := NEXTFILENAME ( fname ) ) DO 

BEGIN 

END; 

3-87 



OPEN Procedure 

OPEN 

The OPEN procedure establishes a communication path between an 
application process and a file. When OPEN completes, a "file number" 
is returned to the application process. The file number identifies 
this access to the file in subsequent file management calls. 

The call to the OPEN procedure is: 

CALL OPEN 

where 

' ' [ 
' [ 
' [ 
' [ 
' [ 
' [ 

<file name> 
<file number> 
<flags> ] 
<sync depth> ] 
<primary file number> ] 
<primary process id> ] 
<sequential block buffer> ] 
<buffer length> ] 

<file name>,. INT:ref, passed 

is an array containing the name of the file to be opened. 

3-88 

<file number>, INT:ref:l, returned 

is returned from OPEN and is used to identify the file in 
subsequent file management calls. 



OPEN Procedure 

<flags>, INT:value, passed 

if present, specifies certain attributes of the file. If 
omitted, all fields are set to zero. The bit fields in the 
<flags> parameter are defined as follows: 

<flags>.<l> = is unused; must be zero 

<flags>.<2> = unstructured access 
0 = no 1 = yes 

<flags>.<3> 

} 
= access mode 

<flags>.<4> 0 = read/write 1 = read-only 
<flags>.<5> 2 = write-only 

<flags>.<6> = resident buffering 
0 = no 1 = yes 

<flags>.<7> = res·erved fo,r Link Control Blocks (LCBs) 

<flags>.<8> = open process file no-wait 
0 = no 1 = yes 

<flags>.<9> 

} 
= exclusion mode 

<flags>.<10> 0 = shared 1 = exclusive 
<flags>.<11> 3 = protected 

<flags>.<12> 

I 

= wait or no-wait i/o 
<flags>.<13> 0 = wait i/o 
<flags>.<14> 1 = no-wait i/o 
<flags>.<15> 

where 

<flags>.<12:15> specifies the maximum number of concurrent 
no-wait i/o operations that can be in progress on this 
file at any given time. <flags>.<12:15> = 0 implies "wait 
i/o". For disc files, only one no-wait operation can be 
outstanding at one time (i.e., maximum value for 
<flags>.<12:15> is 1). 

<flags>.<9:11> specifies exclusion mode: 

0 = shared access 
1 = exclusive access 
3 = protected access 

3-89 



OPEN Procedure 

3-90 

<flags>.<8> = 1 indicates that for process files, the 
OPEN message is sent no-wait and must be completed by 
a call to AWAITIO. 

<flags>.<6> = 1 specifies resident buffering for 
unstructured files on Tandem Nonstop System only. For 
Tandem Nonstop II System, this bit must be O. (See 
Section 4, File Access, for details.) Resident buffering 
is not permitted with ENSCRIBE file structures. 

<flags>.<3:5> specifies access mode: 

0 = read/write access 
1 = read-only access 
2 = write-only access 

<flags>.<2> specifies unstructured access regardless of 
the actual file structure. This field should be s~t to O 
to provide normal access to the file. (See 
considerations for details.) 

<sync depth>, INT:value, passed 

if present, specifies the number of nonretryable (i.e. 
write) requests whose completion status is to be 
'P"O'ITIO'l"l'\horoA h~,. ~h ..... .j:'.;1" .... T ...... ~"- 1\ .... _,, ..... ..... s:: -.-- -- ----L---........................................... ...- ..... .I ........ ,.;;;; .L .... ..1.. 'I;; .-. :t .-. \.. c na • n v a .Luc v J.. v 11 c v .L '::I .L ca l.. c l. 

must be specified to recover from a path failure 
occurring during a write operation. 

<sync depth> also implies the number of write operations 
the primary process in a primary/backup process pair may 
perform to this file without intervening checkpoints to 
its backup process. 

If omitted, or zero is specified, internal checkpointing 
does not occur and disc path failures are not automati
cally retried by the file system. 

I 

I 
I 

~1 



OPEN Procedure 

The next two parameters are supplied only if the open is by the 
backup process of a process-pair, the file is currently open by 
the primary process, and the Checkpointing Facility (described in 
the GUARDIAN Operating System Programming Manual) is not used. 

<primary file number>, INT:value, passed 

is the file number returned to the primary process when it 
opened this file. 

<primary process id>, INT:ref, passed 

is an array which contains the <process id> of the 
corresponding primary process. The primary process must 
already have the file open. 

The next two parameters are included if the block buffer for the 
file is to reside in the application process's data area. 
Otherwise, the next two parameters are omitted. See section 4 
for an explanation of the "Sequential Buffer Option". 

Note: The file must be opened with protected or exclusive access 
if sequential buffering is to be used. 

<sequential block buffer>, INT:ref, passed 

is an array which the caller is providing for unblocking 
records to speed sequential processing. 

<buffer length>, INT:value, passed 

is the length (in bytes) of the <sequential block buffer>. 
<buffer length> must be greater than or equal to the <data 
block length> specified at creation for this file and any 
associated alternate key file(s). If not, or if the file is 
opened with shared access, the open succeeds but returns a 
CCG indication (a subsequent call to FILEINFO returns 
<error> = 5) ; the application process's sequential buffer is 
not used; instead, normal system buffering is used. If this 
parameter is omitted or specified as zero, sequential 
buffering will not be attempted. 

3-91 



OPEN Procedure 

Condition code settings: 

< (CCL) indicates that the OPEN failed (call FILEINFO) 
= (CCE) indicates that the file opened successfully 
> (CCG) indicates that the file opened successfully but an 

exceptional condition was detected (call FILEINFO) 

example 

CALL OPEN ( filename, filenum ); 

IF< THEN •••• 

General Considerations 

• How File Numbers are Assigned 

"wait i/o", exclusion mode 
= shared, access mode = 
read/write, sync depth = 0. 
OPEN failed. 

Within a process, the file numbers are unique. The lowest 
numerical file number is zero (0) and is reserved for $RECEIVE. 
Remaining file numbers start at one (1). The lowest available file 
number is always assigned. Once a file is closed, its file number 
becomes available and a subsequent file open may reuse that file 
number. 

• Maximum Number of Open Files 

The maximum number of files in the system that can .be open at any 
given time depends on the space available for control blocks 
(ACB~s and FCB~s). The amount of space available for control 
blocks is limited only by the physical memory size of the system. 

• Multiple Opens by Same Process 

If a given file is opened more than once by the same process, a 
new ACB is created for each OPEN. This provides logically 
separate accesses to the same file (a unique <file number> is 
provided for each OPEN). 

• Maximum Opens on Same File 

For disc files, there is no limit on concurrent opens for the same 
file. 

3-92 



OPEN Procedure 

• Maximum Number of Nowait Opens for Same File 

The maximum number of concurrent no-wait operations permitted for 
an open of a disc file is one (1) • Attempting to open a disc file 
and specifying a value greater than one returns an error 
indication. A subsequent call to FILEINFO returns <error> 28. 

• Errors Returned for No-Wait Files 

See Error Recovery Considerations in Section 4, File Access, 
for considerations when using "no-wait" i/o. 

• File Security Checking on File Open 

When a disc file open is attempted, a file security check takes 
place. The accessor's (i.e., caller's) security level is checked 
against the file's security level for the requested access mode. 
(File security is set via the SETMODE Procedure or the File Utility 
Program, FUP, SECURE Command.) If the caller's security level is 
equal-to or higher-than the file's security level for the requested 
access mode, then the caller passes the security check. If the 
caller fails the security check, the open fails and a subsequent 
call to FILEINFO returns <error> 48: security violation. 

The file security checking performed by the file system at open 
time is illustrated in Figure 3-2, on the following page. 

3-93 



OPEN Procedure 

super 
owner 
group 

other 

accessor,s security 
level 

id = 7, 
~ 

= 2, 
mem = 1, 

~ 

or 
= 0 

requested 
<access mode> 

read/write 

read-only 

write-only 

* execute 

* purge 

~ 

...... ,. 

~ 

file security 
level 

7, 7, 7, 
2, 2, 2, 
1, 1, 1, 
or or or 
0 0 0 

read write exc 

I I 
.. 

*-* 
I 

I 

7, 
2, 
1, 
or 
0 

purge 
Ji" 

* cannot be specified via OPEN 

= super id 
= owner 
= g:coup 

member 
= any 

If the accessor,s security level is equal-to or higher-than the 
file,s security level for the requested access mode, then the 
accessor passes the security check 

Figure 3-2. File Security Checking 

• Exclusion/Access Mode Checking on File Open 

When a file open is attempted, the requested access and exclusion 
modes are compared to those of any opens already granted for the 
file. If the attempted open is in conflict with other opens, then 
the open fails. A subsequent call to FILEINFO returns <error> 12. 
Table 3-8, on the following page, lists all possible current modes 
and requested modes; the table indicates whether an open succeeds 
or fails. 

Note: "Protected" exclusion mode has meaning only for disc files. 

3-94 

For other files, specifying "protected" exclusion mode is 
equivalent to specifying "shared" exclusion mode. 



OPEN Procedure 

Table 3-8. Exclusion/Access Mode Checking 

OPEN 
ATTEMPTED FILE CURRENTLY OPEN WITH 
WITH 

Exclusion s s s 
Mode c 

L 
0 R R w 

Access s I 
Mode E w 

D 

s R/W y y y y 

s R y y y y 

s w y y y y 

E R/W y 

E R y 

E w y 

p R/W y y 

p R y y 

p w y y 

Exclusion Mode: 
s = Shareable 
E = Exclusive 
p = Protected 

Y = Yes, OPEN successful 
Blank = No, OPEN fails. 

Notes: 

E E E p p 

R R w R R 
I I 
w w 

y y 

ALWAYS FAILS 

y 

Access Mode: 
R/W = Read/Write 
R = Read only 
W = Write only 

• BACKUP opens the file currently being backed-up 
with R, P. 

p 

w 

y 

• BACKUP with "OPEN" option specified opens the file 
with R, S. 

• RESTORE opens the file currently being restored 
with R/W, E. 

• When a program file is running it is opened with 
the equivalent to R, P. 

~ 

~ 

3-95 



OPEN Procedure 

• REFRESH (CREATE Option) Action 

When a disc file that has the REFRESH option set is opened, file 
labels are refreshed automatically when the end-of-file pointer is 
advanced. Depending on the particular application, there may be a 
significant decrease in processing throughput due to the increased 
number of disc accesses. 

• Partitioned Files 

For partitioned files, there is a separate pair of FCB~s for each 
partition of the file. There is one ACB per accessor (as for 
single volume files) , but this ACB requires more main memory since 
it contains the information necessary to access all of the 
partitions, including the location and partial key value for each 
partition. 

Considerations for Structured Files 

• Accessing Structured Files as Unstructured Files 

The "unstructured access" option (<flags>.<2>) permits a file to be 
accessed as an unstructured file. For a file open with this option 
specified, a data transfer occurs to the position in the file 
specified by a relative byte address (instead of to the position 
indicated by a key-field or record number): the number of bytes 
transferred is that spccif ied in the file management procedure call 
(instead of the number of bytes indicated by the record format). 
If a partitioned structured file is opened as an unstructured file, 
only the first partition is opened. The remaining partitions must 
be opened individually with separate calls to OPEN (each OPEN 
specifying unstructured access). 

CAUTION 

Programmers using this option are cautioned that the block format 
used by ENSCRIBE must be maintained if the file is to ever be 
accessed again in its structured form. 

The ENSCRIBE block format is described in Appendix c. 

3-96 



OPEN Procedure 

• Current State Indicators After OPEN 

Current state indicators following completion of a successful OPEN: 

current position is that of the first record in the file 
by primary key. 

positioning mode 
compare length 

is set to approximate. 
is O. 

For key-sequenced files, KEYPOSITION must be called after OPEN to 
establish a position in the file before a subsequent i/o call 
(READ, READUPDATE, WRITE, etc.) can be made. 

For relative and entry-sequenced files, a READ following an OPEN 
reads the first record in the file. Subsequent reads without 
intervening positioning reads the file sequentially through the 
last record in the file. 

Considerations for Unstructured Files 

• Multiple OPENs for Single Unstructured File 

If an unstructured disc file is opened by more than one process, 
separate current-record and next-record pointers are maintained for 
each opener, but all of the processes share the same end-of-file 
pointer. 

• File Pointers After OPEN 

Following an open to a disc file, the current-record and 
next-record pointers start out pointing to relative byte address 
zero and the first data transfer (unless an intervening POSITION is 
performed) is from that location. The pointers following a 
successful OPEN are: 

current-record pointer := OD; 
next-record pointer := OD; 

3-97 



POSITION Procedure (relative, entry-sequenced, and unstructured files) 

POSITION 

The POSITION procedure is used to position by primary key within 
relative and entry-sequenced files. For unstructured files, the 
POSITION procedure specifies a new current position. 

For relative and unstructured files, POSITION sets the current 
position, access path, and positioning mode for the specified file. 
The current position, access path, and positioning mode define a 
subset of the file for subsequent access. 

The POSITION procedure is not used with key-sequenced files. 

The caller is not suspended because of a call to POSITION. 

A call to the POSITION procedure will be rejected with an error 
indication if there are any outstanding "no-wait" operations pending 
on the specified file. 

The call to the POSITION procedure is: 

CALL POSITION <file number> 
, <record specifier> 

where 

3-98 

<file number>, INT:value, 

identifies the file to be positioned. 

<record specifier>, INT(32) :value, 

specifies the new setting for the current-record and 
next-record pointers: 

Relative files: <record specifier> is a four-byte 

passed 

passed 

<record number>. -20 specifies that the the next write 
should occur at an unused record position. -lo specifies 
that subsequent writes should be appended to the 
end-of-file location. (-20 and -lo remain in effect until 
a new <record specifier> is supplied.) 

Entry-Sequenced files: <record specifier> is a four-byte 
<record address>. 



POSITION Procedure (relative, entry-sequenced, and unstructured filei) 

Unstructured files: <record specifier> is a four-byte 
<relative byte address>. -lo specifies that subsequent 
writes should be appended to the end-of-file location. 
(-lo remains in effect until a new <record specifier> is 
supplied.) 

condition code settings: 

< (CCL) indicates that an error occurred (call FILEINFO) 
= (CCE) indicates that the POSITION was successful 
> (CCG) no operation, not an unstuctured, relative, or 

entry-sequenced file 

example 

CALL POSITION ( infile, 10000 ) ; 
IF< THEN •.•. error occurred 

Considerations for Relative and Entry-Sequenced Files 

• Writing to Entry-Sequenced Files 

Inserts to entry-sequenced files always occur at the end of file. 

• Current State Indicators for Structured Files 

Following a successful POSITION to a relative or entry-sequenced 
file, the current state indicators are: 

current position 

positioning mode 
compare length 
current primary key 

value 

is that of the record indicated by the 
<record specifier>. 
is approximate. 
is 4. 
is set to the value of the <record 
specifier>. 

3-99 



POSITION Procedure (relative, entry-sequenced, and unstructured files) 

Considerations for Unstructured Files 

• Value of <record specifier> for Unstructured Files 

Unless the unstructured file was created with the ODDUNSTR 
parameter set, the rba passed in <record specifier> must be an even 
number. If the ODDUNSTR parameter was set when the file was 
created, the rba passed in <record specifier> can be either an odd 
or even value. (The ODDUNSTR parameter is set with 
<file type>.<12> of the CREATE procedure.) 

• Meaning of -20 for Unstructured Files 

Specifying -2D for <record s~ecif ier> is equivalent to -lD for 
unstructured files. 

e File Pointers After POSITION 

Following a successful call to POSITION for an unstructured file, 
the file pointers are: 

current-record pointer := next-record pointer := 
if <rba> = -lD then end-of-file pointer else <rba> 

3-100 



PURGE Procedure 

PURGE 

The PURGE procedure is used to delete a closed disc file. When PURGE 
is executed the disc file name is deleted from the volume~s directory 
and any space previously allocated to that file is made available to 
other files. 

The call to PURGE is: 

CALL PURGE ( <file name> ) 

where 

<file name>, INT:ref, passed 

is an array containing the name of the disc file to be 
purged. 

To purge a permanent disc file, <file name> must be of 
the form: 

<file name[0:3]> is $<volume name><blank fill> 
or \<system number><volume name><blank fill> 

<file name[4:7]> is <subvol name><blank fill> 
<file name[8:11]> is <disc file name><blank fill> 

To purge a temporary disc file, <file name> must be of the 
form: 

<file name[0;3]> is $<volume name><blank fill> 
or \<system number><volume name><blank fill> 

<file name[4:11]> is <temporary file name> 

condition code settings: 

< (CCL) indicates that the PURGE failed (call FILEINFO) 
= (CCE) indicates that the file was purged successfully 
> (CCG) indicates that the device is not a disc or that not 

all partitions of a partitioned file were purged 

3-101 



PURGE Procedure 

example 

CALL PURGE ( oldf ilename ) ; 
IF< THEN .•• 

Considerations 

• Error Recovery 

PURGE failed. 

If PURGE fails, the reason for the failure can be determined by 
calling FILEINFO, passing -1 as the <file number> parameter. 

3-102 



READ Procedure (sequential processing) 

READ 

The READ procedure is used to perform sequential reading of a disc 
file. For key-sequenced, relative, and entry-sequenced files, the 
READ procedure reads a subset of records in the file. (A subset of 
records is defined by an access path, positioning mode, and compare 
length.) For unstructured files, the READ procedure reads records 
sequentially on the basis of a beginning relative byte address and the 
lengths of the records read. (After each READ, the current-record 
pointer is set to the previous next-record pointer and the next-record 
pointer is set to the previous next-record pointer plus the number of 
bytes read.) 

For key-sequenced, relative, and entry-sequenced files, the first call 
to READ following a position returns the first record of the subset 
(i.e., the record at the current position). Subsequent calls to READ 
without intermediate positioning return successive records in the 
subset. Following each READ of the subset's records, the position of 
the record just read becomes the file's current position. An attempt 
to read a record following the last record in a subset returns an 
end-of-file indication. 

If the READ procedure is being used to initiate an operation with a 
file opened with "no-wait i/o" specified, the operation must be 
completed with a corresponding call to the AWAITIO procedure. 

The call to the READ procedure is: 

CALL READ <file number> 

where 

<buffer> 
<read count> 

, [ <count read> 
, [ <tag> 

<file number>, INT:value, 

identifies the file to be read. 

<buffer>, INT:ref:*, 

passed 

returned 

is an array in the application process where the information 
read from the file is returned. 

3-103 



READ Procedure (sequential processing) 

<read count>, INT:value, passed 

is the number of bytes to be read: {0:4096}. 

<count read>, INT:ref:l, returned 

for wait i/o only, if present, is returned a count of the 
number of bytes returned from the file into <buffer>. 

<tag>, INT ( 32) :value, passed 

for no-wait i/o only, if present, is stored by the system, 
then passed back to the application process by the AWAITIO 
procedure when the operation completes. 

condition code settings: 

< (CCL) indicates that an error occurred (call FILEINFO) 
= (CCE) indicates that the READ was successful 
> (CCG) end-of-file. No more records in this subset 

example 

CALL REJl .. D 
IF < THEN 

General Considerations 

inbuffer, 72 j; 
READ failed. 

• Meaning of <count read> for Wait and Nowait I/O Reads 

If a "wait" read is executed, the <count read> parameter indicates 
the number of bytes actually read. 

If a "no-wait" read is executed, <count read> has no meaning and 
can be omitted. The count of the number of bytes read is obtained 
when the i/o operation completes via the <count transferred> 
parameter of the AWAITIO procedure. 

3-104 



READ Procedure (sequential processing) 

• Reading a Locked File with the Default Locking Mode 

If the default locking mode is in effect when a call to READ is 
made and the current record or the file is locked but not locked 
through the <file number> supplied in the call, the caller of READ 
is suspended and queued in the "locking" queue behind other 
processes attempting to lock or read the file/record. 

Note that a deadlock condition occurs if a call to READ is made by 
the process having a file/record locked but not locked via the 
<file number> supplied to READ. 

• Reading a Lo~ked File with the Alternate Locking Mode 

If the alternate locking mode is in effect when a call to READ is 
made and the current record or the file is locked but not through 
the <file number> supplied in the call, the call is rejected with a 
"file/record is locked" error indication (<error>= 73). 

• Selecting the Locking Mode 

The locking mode is specified via the SETMODE procedure, <function> 
= 4. 

Considerations for Structured Files 

• Selecting a Subset of Records for Sequential Reads 

The subset of records read by a series of calls to READ is 
specified through the POSITION or KEYPOSITION procedures. 

• Sequential Reads of an Approximate Subset of Records 

If an approximate subset is being read, the first record returned 
is the one whose key field, as indicated by the current key 
specifier, contains a value equal to or greater than the current 
key. Subsequent reading of the subset returns successive records 
until the last record in the file is read (an end-of-file 
indication is then returned) • 

Sequential reading of an approximate subset in a relative file will 
skip deleted records. 

3-105 



READ Procedure (sequential processing) 

• Sequential Reads of a Generic Subset of Records 

If generic subset is being read, the first record returned is the 
one whose key field, as designated by the current key specifier, 
contains a value equal to the current key for compare length bytes. 
Subsequent reading of the file returns successive records whose key 
matches the current key (for compare length bytes). When the 
current key no longer matches, an end-of-file indication is 
returned. 

For relative and entry-sequenced files, a generic subset of the 
primary key is equivalent to an exact subset. 

• Sequential Reads of an Exact Subset of Records 

If an exact subset is being read, the only records returned are 
those whose key field, as designated by the current key specifier, 
contains a value of exactly compare length bytes and is equal to 
key. When the current key no longer matches, an end-of-file 
indication is returned. The exact subset for a key field having a 
unique value is at most one record. 

• Current State Indicators After a Read 

Current state indicators following a successful READ: 

current position 
positioning mode 
compare length 
current primary key 

value 

is that of the record just read. 
is unchanged. 
is unchanged. 
is set to the value of the primary 
key field in the record. 

Considerations for Unstructured Files 

• Unstructured READS 

For a read from an unstructured disc file, data transfer begins 
at the position indicated by the next-record pointer. 

3-106 



READ Procedure (sequential processing) 

• How Many Bytes are READ 

If the unstructured file was created with the ODDUNSTR (odd 
unstructured file) parameter set, the number of bytes read is 
exactly the number of bytes specified with <read count>. If the 
ODDUNSTR parameter was not set when the file was created, the value 
of <read count> is rounded up to an even number before the READ is 
executed. 

The ODDUNSTR parameter is set with <file type>.<12> of the CREATE 
procedure. 

• Determination of <count read> .for Unstructured READs 

Following a successful call to READ to an unstructured file, 
the value returned in <count read> is determined by: 

<count read> := $MIN ( <read count> , end-of-file pointer 
- next-record pointer 

• File Pointers After a READ 

Following a successful READ to an unstructured file, the file 
pointers are: 

CCG := if next-record pointer = end-of-file pointer then 1 
else O; 

current-record pointer := next-record pointer; 

next-record pointer := next-record pointer + <count read>; 

3-107 



READLOCK Procedure (sequential processing, record locking) 

READ LOCK 

The READLOCK procedure is used to perform sequential locking and 
reading of records in a disc file. For key-sequenced, relative, and 
entry-sequenced files, a subset of the file (defined by the current 
access path, positioning mode, and compare length) is locked and read 
with successive calls to READLOCK. For unstructured files, the 
relative byte address (rba) of the record returned by the READLOCK 
procedure is locked before the record data is transferred. 

For key-sequenced, relative, and entry-sequenced files, the first call 
to READLOCK following a position (or OPEN} first locks and then 
returns the first record of the subset. Subsequent calls to READLOCK 
without intermediate positioning, lock, then return successive records 
in the subset. Following each read of the subset~s records, the 
position of the record just read becomes the file~s current position. 
An attempt to read a record following the last record in a subset 
returns an end-of-file indication. 

If the READLOCK procedure is being used to initiate an operation with 
a file opened with "no-wait i/o" specified, the operation must be 
completed with a corresponding call to the AWAITIO procedure. 

The call to the READLOCK procedure is: 

CALL READLOCK 

where 

' 
<file number> 
<buffer> 

, [ <count read> 
, [ <tag> 

<file number>, INT:value, 

identifies the file to be read. 

<buffer>, INT:ref:*, 

passed 

returned 

is an array in the application process where the information 
read from the file is returned. 

<read count>, INT:value, passed 

is the number of bytes to be read: {0:4096}. 

-I 
3-108 



READLOCK Procedure (sequential processing, record locking) 

<count read>, INT:ref:l, returned 

for wait i/o only, if present, is returned a count of the 
number of bytes returned from the file into <buffer>. 

<tag>, INT(32) :value, passed 

for no-wait i/o only, if present, is stored by the system, 
then passed back to the application process by the AWAITIO 
procedure when the operation completes. 

condition code settings: 

< (CCL) indicates that an error occurred (call FILEINFO) 
= (CCE) indicates that the READLOCK was successful 
> (CCG) end-of-file. No more records in this subset 

example 

CALL READLOCK ( filenum, inbuffer, 72, numAread ) ; 
IF< THEN •••• READLOCK failed. 

Considerations 

• See the considerations for READ. 

e How READLOCK Works 

The record locking performed by READLOCK functions identically 
with that of LOCKREC. 

3-109 



READLOCK Procedure (sequential processing, record locking) 

• Locking Records in an Unstructured File 

READLOCK can be used to lock record positions, represented by a 
relative byte address (rba), in an unstructured file. When 
sequentially reading an unstructured file with READLOCK, each call 
to READLOCK first locks the rba stored in the current next-record 
pointer and then returns record data beginning at the current 
next-record pointer for <read count> bytes. Following a successful 
READLOCK, the current-record pointer is set to the previous 
next-record pointer, and the next-record pointer is set to the 
previous next-record pointer plus <read count>. This process is 
repeated for each subsequent call to READLOCK. 

3-110 



READUPDATE Procedure (random processing) 

READUPDATE 

The READUPDATE procedure is used for random processing of records in 
a disc file. A call to READUPDATE returns the record from the 
current position in the file. Because READUPDATE is designed for 
random processing, it cannot be used for successive positioning 
through a subset of records like the READ procedure. Rather, 
READUPDATE is intended to be used to read a record after a call to 
POSITION or KEYPOSITION, possibly in anticipation of a subsequent 
update through a call to the WRITEUPDATE procedure. 

For key-sequenced, relative, and entry-sequenced files, random 
processing implies that a designated record must exist. Therefore, 
positioning for READUPDATE is always to the record described by the 
exact value of the current key and current key specifier. If such a 
record does not exist, the call to READUPDATE is rejected with a 
"record does not exist" error (<error> = 11). (This is unlike 
sequential processing via the READ procedure, where positioning may be 
by approximate, generic, or exact key value.) 

For unstructured files, data is read from the file beginning at the 
position of the current-record pointer. A call to READUPDATE 
typically follows a call to POSITION that sets the current-record 
pointer to the desired relative-byte-address (rba) • The values of the 
current-record and next-record pointers are not changed by a call to 
READUPDATE. 

If the READUPDATE procedure is being used to initiate an operation 
with a file opened with "no-wait i/o" specified, the operation must 
be completed with a corresponding call to the AWAITIO procedure. 

The call to the READUPDATE procedure is: 

CALL READUPDATE 

where 

<file number> 
<buffer> 
<read count> 

, [ <count read> 
, [ <tag> 

<file number>, INT:value, 

identifies the file to be read. 

passed 

3-111 



READUPDATE Procedure (random processing) 

<buffer>, INT:ref:*, returned 

is an array where the information read from the file is 
returned. 

<read count>, INT:value, passed 

is the number of bytes to be read {0:4096}. 

<count read>, INT:ref :l, returned 

for wait i/o only, if present, is returned a count of the 
number of bytes returned from the file into <buffer>. 

<tag>, INT(32) :value, passed 

for no-wait i/o only, if present, is stored by the system, 
then passed back to the application process by the AWAITIO 
procedure when the operation completes. 

condition code settings: 

< (CCL) indicates that an error occurred (call FILEINFO) 
= (CCE) indicates that the READUPDATE was successful 
> (CCG) is not returned by READUPDATE 

example 

CALL READUPDATE ( infile, inbuffer, 72 ) ; 
IF< THEN .•.. 

General Considerations 

e Calling READUPDATE After READ 

READUPDATE failed 

A call to READUPDATE following a call to READ, without intermediate 
positioning, returns the same record as the READ. 

3-112 



READUPDATE Procedure (random processing) 

• Meaning of <count read> for Wait and Nowait I/O 

If a "wait" read is executed, the <count read> parameter indicates 
the number of bytes actually read. 

If a "no-wait" read is executed, <count read> has no meaning and 
ca~ be omitted. The count of the number of bytes read is obtained 
when the i/o operation completes via the <count transferred> 
parameter of the AWAITIO procedure. 

• READUPDATE to Locked File with Default Locking Mode 

If the default locking mode is in effect when a call to READUPDATE 
is made and the current record or the file is locked but not locked 
through the <file number> supplied in the call, the caller of 
READUPDATE is suspended and queued in the "locking" queue behind 
other processes attempting to lock or read the file/record. 

Note that a deadlock condition occurs if a call to READUPDATE is 
made by the process having a file/record locked but not locked via 
the <file number> supplied to READUPDATE. 

• READUPDATE to Locked File with Alternate Locking Mode 

If the alternate locking mode is in effect when a call to 
READUPDATE is made and the current record or the file is locked but 
not through the <file number> supplied in the call, the call is 
rejected with a "file/record is locked" error indication (<error> = 
7 3) • 

• Selecting Locking Mode 

The locking mode is specified via the SETMODE procedure, <function> 
= 4. 

Considerations for Structured Files 

• Calling READUPDATE Without Selecting a Specific Record 

If the call to READUPDATE immediately follows a call to KEYPOSITION 
where a non-unique alternate key is specified, the READUPDATE 
fails. A subsequent call to FILEINFO returns error 46 {invalid 
key). However, if an intermediate call to READ[LOCK] is performed, 
the call to READUPDATE is permitted because a unique record is 
identified. 

3-113 



READUPDATE Procedure (random processing) 

• Current State Indicators After READUPDATE 

Current state indicators following a successful READUPDATE: 

unchanged. 

Considerations for Unstructured Files 

• Unstructured Reads with READUPDATE 

For a read from an unstructured disc file, data transfer begins 
at the position indicated by the current-record pointer. 

• How Many Bytes are Read 

If the unstructured file was created with the ODDUNSTR (odd 
unstructured file) parameter set, the number of bytes read is 
exactly the number of bytes read specified with <read count>. If 
the ODDUNSTR parameter was not set when the file was created, the 
value of <read count> is rounded up to an even value before the 
READUPDATE is executed. 

The ODDUNSTR parameter is set with <file type>.<12> of the CREATE 
procedure. 

~ Determination of <count 

Following a successful call to READUPDATE to an unstructured file, 
the value returned in <count read> is determined by: 

<count read> := $MIN { <read count> , end-of-file pointer 
- next-record pointer 

e File Pointers After READUPDATE 

Following a successful call to READUPDATE, the current-record 
pointer and next-record pointer are: 

unchanged. 

3-114 



READUPDATELOCK Procedure (random processing, record locking) 

READUPDATELOCK 

The READUPDATELOCK procedure is used for random processing of records 
in a disc file. A call to READUPDATELOCK locks, then returns the 
record from the current position in the file. READUPDATELOCK is is 
intended to be used to read a record after a call to POSITION or 
KEYPOSITION, possibly in anticipation of a subsequent call to the 
WRITEUPDATE[UNLOCK] procedure. 

For key-sequenced, relative, and entry-sequenced files, random 
processing implies that a designated record must exist. Therefore, 
positioning for READUPDATELOCK is always to the record descibed by the 
exact value of the current key and current key specifier. If such a 
record does not exist, the call to READUPDATELOCK is rejected with a 
"record does not exist" error (<error> = 11) • 

A call to READUPDATELOCK is functionally equivalent to a call to 
LOCKREC followed by a call to READUPDATE. However, less system 
processing is incurred when the READUPDATELOCK Procedure is called 
rather than when two separate calls are made to LOCKREC and 
READUPDATE. 

If the READUPDATELOCK procedure is being used to initiate an operation 
with a file opened with "no-wait i/o" specified, the operation must be 
completed with a corresponding call to the AWAITIO procedure. 

The call to the READUPDATELOCK procedure is: 

CALL READUPDATELOCK 

where 

' 
' [ 
' [ 

<file number> 
<buffer> 
<read count> 
<count read> 
<tag> 

<file number>, INT:value, 

identifies the file to be read. 

<buffer>, INT:ref:*, 

passed 

returned 

is an array where the information read from the file is 
returned. 

3-115 



READUPDATELOCK Procedure (random processing, record locking) 

<read count>, INT:value, passed 

is the number of bytes to be read {0:4096}. 

<count read>, INT:ref:l, returned 

for wait i/o only, if present, is returned a count of the 
number of bytes returned from the file into <buffer> 

<tag>, INT(32) :value, passed 

for no-wait i/o only, if present, is stored by the system, 
then passed back to the application process by the AWAITIO 
procedure when the operation completes 

condition code settings: 

< (CCL) indicates that an error occurred (call FILEINFO) 
= (CCE) indicates that the READUPDATELOCK was successful 
> (CCG) is not returned from READUPDATELOCK 

example 

CALL READUPDATELOCK ( infile, inbuffer, 72, numAread ) ; 
IF< THEN.... ! READUPDATELOCK failed. 

Considerations 

• See the considerations for READUPDATE 

e How READUPDATELOCK Works 

The record locking performed by READUPDATELOCK functions 
identically with that of LOCKREC. 

3-116 



REFRESH Procedure 

REFRESH 

The REFRESH procedure is used to write control information contained 
in File Control Blocks (FCBs), such as the end-of-file pointer, to the 
associated physical disc volume. (While a file is open, its control 
information is kept in its main-memory resident FCB; this control 
information is normally written to the physical volume only when the 
last process having the file open closes the file.) This procedure or 
the equivalent Peripheral Utility Program (PUP) REFRESH command should 
be performed for all volumes prior to a total system shutdown. 

The call to the REFRESH procedure is: 

CALL REFRESH [ ( $<volume name> ) ] 

where 

$<volume name>, INT:ref, passed 

specifies a volume whose associated FCB~s should be written 
to disc. $<volume name> can be specified as a full 
twelve-word <file name>; <file name[4:11]> is ignored. 

If omitted, all FCB~s for all volumes are written to their 
respective discs. 

example 

CALL REFRESH; 

Consideration 

• Calling REFRESH without Specifying <volume name> 

When REFRESH is called without a <volume name>, the error returned 
is always zero (CCE). 

3-117 



RENAME Procedure 

RENAME 

The RENAME procedure is used to change the name of an open disc file. 
If the file is temporary, assigning a new name causes the file to be 
made permanent. 

A call to the RENAME procedure will be rejected with an error 
indication if there are any outstanding "no-wait" operations pending 
on the specified file. 

The call to the RENAME procedure is: 

CALL RENAME <file number> 
, <new name> ) 

where 

<file number>, INT:value, passed 

identifies the file to be renamed. 

<new name>, INT:ref, passed 

is an array containing the <file name> to be assigned to the 
disc file, in the following form: 

<file nameLU:~J> is $<volume name><blanK fill> 
or \<system number><volume name><blank fill> 

<file name[4:7]> is <subvol name><blank fill> 
<file name[8:11]> is <disc file name><blank fill> 

condition code settings: 

< (CCL) indicates that an error occurred (call FILEINFO) 
= (CCE) indicates that the RENAME was successful 
> {CCG) the device is not a disc 

example 

CALL RENAME { tempAfile, nameAarray ) ; 
IF< THEN... ! error occurred. 

3-118 



RENAME Procedure 

Considerations 

• Access Security Required for RENAME 

The caller must have purge access to the file for the RENAME to be 
successful. Otherwise, the RENAME will be rejected with a file 
management <error> 48, "security violation". 

• Volume Name Requirement 

The <volume> specified in <new name> must be the same as the 
<volume> specified when opening the file. 

3-119 



REPOSITION Procedure 

REPOSITION 

The REPOSITION procedure is used to position a disc file to a "saved" 
position (the positioning information having been saved by a calling 
the SAVEPOSITION procedure) • The REPOSITION procedure passes the 
positioning block obtained via SAVEPOSITION back to the file system. 
Following a call to the REPOSITION, the disc file is positioned to the 
point where it was when SAVEPOSITION was called. 

A call to the REPOSITION procedure will be rejected with an error 
indication if there are any outstanding "no-wait" operations pending 
on the specified file. 

The call to the REPOSITION procedure is: 

CALL REPOSITION <file number> 
, <positioning block> 

where 

<file number·>, INT: value, passed 

identifies the file to be positioned to a "saved" position. 

<positioning block>, INT:ref, passed 

indicates a "saved" position to be repositioned to. 

condition code settings 

< (CCL) indicates that an error occurred (call FILEINFO) 
= (CCE) indicates that REPOSITION was successful 
> (CCG) file is not a disc file 

example 

CALL REPOSITION ( f ileAnum, positionAblock ) ; 
IF< THEN ••••• ; error 

I 

I 

~I 

3-120 



SAVEPOSITION Procedure 

SAVEPOSITION 

The SAVEPOSITION procedure is used to save a disc f ile~s current file 
positioning information in anticipation of a need to return to that 
position. SAVEPOSITION returns a block of positioning information. 
This block of information is passed back to the file system in a call 
to the REPOSITION procedure when it is desired to return to the 
"saved" position. 

A call to the SAVEPOSITION procedure will be rejected with an error 
indication if there are any outstanding "no-wait" operations pending 
on the specified file. 

The call to the SAVEPOSITION procedure is: 

CALL SAVEPOSITION <file number> 
<positioning block> 

, [ <positioning block size> ] ) 

where 

<file number>, INT:value, passed 

identifies the file whose positioning block is to be 
obtained. 

<positioning block>, INT:ref:*, returned 

is returned the positioning block for this file. 

<positioning block size>, INT:ref:l, returned 

is returned a count of the the number of words in the 
positioning block. 

For unstructured files, the count is 4. 

For structured files, the count is calculated by 
7 + (<max alt key len> + <pri key len> + 1) / 2 

3-121 



SAVEPOSITION Procedure 

condition code settings 

< {CCL) indicates that an error occurred (call FILEINFO) 
= (CCE) indicates that SAVEPOSITION was successful 
> {CCG) file is not a disc file 

example 

3-122 

CALL SAVEPOSITION ( f ileAnurn, positionAblock ) ; 
IF< THEN ••••• ; error 



SETMODE Procedure 

SETMODE 

The SETMODE procedure is used to set device-dependent functions. 

A call to the SETMODE procedure will be rejected with an error 
indication if there are any outstanding "no-wait" operations pending 
on the specified file. 

The call to the SETMODE procedure is: 

CALL SETMODE <file number> 

where 

<function> 
, [ <parameter l> 
, [ <parameter 2> 
, [ <last params> 

<file number>, INT:value, passed 

identifies the file to receive the SETMODE <function>. 

<function>, INT:value, passed 

is one of the device dependent functions listed in the 
"SETMODE Functions" table. 

<parameter l>, INT:v-alue, passed 

is one of the parameters listed in the "SETMODE Functions" 
table. If omitted, the present value is retained. 

<parameter 2>, INT:value, passed 

is one of the parameters listed in the "SETMODE Functions" 
table. If omitted, the present value is retained. 

NOTE 

SETMODE Function Table follows SETMODENOWAIT description. 

3-123 



SETMODE Procedure 

<last params>, INT:ref:2, returned 

if present, is returned the previous settings of <parameter 
l> and <parameter 2> associated with the current <function>. 
The format is: 

<last params[O]> =old <parameter l> 
<last params[l]> =old <parameter 2> (if applicable) 

condition code settings: 

< (CCL) indicates that an error occurred (call FILEINFO) 
= (CCE) indicates that the SETMODE was successful 
> (CCG) indicates that the SETMODE function is not allowed 

for this device type 

examples 

CALL SETMODE ( filenum, 3, 1 ) ; 
IF> THEN ••• 

CALL SETMODE ( termfnum, 1,,, sec); 
IF< THEN •.• 

Considerations 

• SETMODE Defaults 

disc verify write, on. 
not a disc. 

return transfer mode. 

The SETMODE settings designated as being "default" are the values 
that apply when a file is opened (not if a particular <function> is 
omitted when SETMODE is called). 

• Obtaining Current SETMODE Settings Without Changing Their Values 

The value of the current setting associated with a <function> is 
returned to <last values> without changing the current setting if 
SETMODE is called and both <parameters> are omitted. 

• Requirements for Changing File Security and Ownership 

Set disc file security and set disc file owner will be rejected 
unless the requestor is the owner of the file or the superid. 

3-124 



SETMODENOWAIT Procedure 

SETMODENOWAIT 

The SETMODENOWAIT procedure is used to set device-dependent functions 
in a no-wait manner, on no-wait files. 

When the SETMODENOWAIT procedure is used to initiate an operation 
with a file open with "no-wait" specified, the operation must be 
completed with a corresponding call to the AWAITIO procedure. The 
<count transferred> parameter to AWAITIO has no meaning for 
SETMODENOWAIT completions. The <buffer address> parameter is set to 
the address of <last params> parameter of SETMODENOWAIT. 

The call to the SETMODENOWAIT procedure is: 

CALL SETMODENOWA-

where 

<file number> 
, <function> 
, [ <parameter l> ] 
, [ <parameter 2> ] 
, [ <last params> ] 
, [ <tag> ] 

<file number>, INT:value, passed 

identifies the file to receive the SETMODENOWAIT 
<function>. 

<function>, INT:value, passed 

is one of the device-dependent functions listed in the 
"SETMODE Functions" table. 

<parameter l>, INT:value, passed 

is one of the <parameter l> values listed in the "SETMODE 
Functions" table. If omitted, the present value is 
retained. 

<parameter 2>, INT:value, passed 

is one of the <parameter 2> values listed in the "SETMODE 
Functions" table. If omitted, the present value is 
retained. 

3-125 



SETMODENOWAIT Procedure 

<last params>, INT:ref:2, returned 

if present, is returned the previous settings of 
<parameter l> and <parameter 2> associated with the 
current <function>. 

The format is: 

<last params(O]> =old <parameter l> 
<last params[l]> =old <parameter 2> (if applicable) 

<tag>, INT(32) :value, passed 

for no-wait i/o only, if present, is stored by the system, 
then passed back to the application process by the AWAITIO 
procedure when the operation completes. 

condition code settings: 

< (CCL) indicates that an error occurred (call FILEINFO) 
= (CCE) indicates that the SETMODENOWAIT was successful 
> (CCG) indicates that the SETMODENOWAIT function is 

not allowed for this device type 

Considerations 

e SETMODENOWAIT Completion 

AWAITIO must be used to complete the call when <file number> is 
opened with a wait-depth greater than 0. For files with a 
wait-depth equal to zero, a call to SETMODENOWAIT is a waited 
operation and performs just as a call to SETMODE. 

• <last params> Returned From AWAITIO 

The <buffer> parameter of AWAITIO is set to @<last params>, and the 
count is undefined. 

• SETMODE and SETMODENOWAIT Functions 

A list of SETMODE functions, <parameter l>, and <parameter 2> 
settings is shown in Table 3-9, on the following page. 

3-126 



SETMODE AND SETMODENOWAIT Functions 

Table 3-9. SETMODE and SETMODENOWAIT Functions 

<function> 

1 = disc, set file security 

<parameter l> 

.<O> = 1, for program files only. Set accessor's id to 
program file's id when program file is run 

.<4:6>, id allowed for read, 

.<7:9>, id allowed for write, 

~ 
.<10:12>, id allowed for execute, 

.<13:15>, id allowed for purge, 

<parameter 2> is not used 

2 = disc, set file owner id 

<parameter l>.<0:7> 
.<8:15> 

= group id 
= user id 

<parameter 2> is not used 

3 = disc, set verify write 

0 = any local id 
1 = member of owner's 

group 
2 = owner 
4 = any network user 

(local or remote) 
5 = member of owner's 

community 
6 = local or remote 

user having same id 
as owner 

7 = local super id only 

(see GUARDIAN Programming 
Manual, Section 8, 
"Security", for an 
explanation of local 
and remote users, 
communities, etc.) 

<parameter l> = 0, means off (default setting) 
= 1, means on 

<parameter 2> is not used 

3-127 



SETMODE AND SETMODENOWAIT Functions 

Table 3-9. SETMODE and SETMODENOWAIT Functions (cont.) 

4 = disc, set lock mode 

<parameter l> = 0, default mode, process will be suspended 
when lock or read is attempted 

= 1, alternate mode, lock or read attempt will 
be rejected with "file is locked" error 
(<error> = 73) 

<parameter 2> is not used 

57 = disc, set serial or parallel writes (overrides SYSGEN setting 
for this file) 

3-128 

<parameter l> = 1, serial writes 
= 2, parallel writes 

<parameter 2> is not used 



UNLOCKFILE Procedure (file locking) 

UNLOCKFILE 

The UNLOCKFILE procedure is used to unlock a disc file and any records 
in that file that are currently locked by the caller. Unlocking a 
file allows other processes to access the file. If any processes are 
queued in the locking queue for the file, the process at the head of 
the locking queue is granted access and is removed from the queue (the 
next read or lock request moves to the head of the queue) . If the 
process granted access is waiting to lock the file, it is granted the 
lock (which excludes other process from accessing the file) and 
resumes processing. If the process granted access is waiting to read 
the file, its read is processed by the file system. 

If the UNLOCKFILE procedure is being used to initiate an operation 
with a file opened with "no-wait i/o specified, the operation must be 
completed with a corresponding call to the AWAITIO procedure. 

The call to the UNLOCKFILE procedure is: 

CALL UNLOCKFILE 

where 

<file number> 
, [ <tag> 

<file number>, INT:value, 

] ) 

identifies the file to be unlocked. 

<tag>, INT(32) :value, 

passed 

passed 

for no-wait i/o only, if present, is stored by the system, 
then passed back to the application process by the AWAITIO 
procedure when the unlock operation completes. 

condition code settings: 

< (CCL) indicates that an error occurred (call FILEINFO) 
= (CCE) indicates that the UNLOCKFILE was successful 
> (CCG) file is not a disc file 

example 

CALL UNLOCKFILE ( f ilenum ) ; 
IF< THEN ..... error occurred. 

3-129 



UNLOCKREC Procedure (record locking) 

UNLOCK REC 

The UNLOCKREC procedure is used to unlock a record currently locked by 
the caller. UNLOCK unlocks the record at the current position, 
allowing other processes to access that record. If any processes are 
queued in the locking queue for the record, the process at the head of 
the locking queue is granted access and is removed from the queue (the 
next read or lock request moves to the head of the queue) . If the 
process granted access is waiting to lock the record, it is granted 
the lock (which excludes other process from accessing the record) and 
resumes processing. If the process granted access is waiting to read 
the record, its read is processed by the file system. 

If the UNLOCKREC procedure is being used to initiate an operation with 
a file opened with "no-wait i/o" specified, the operation must be 
completed with a corresponding call to the AWAITIO procedure. 

CALL UNLOCKREC <file number> 
, [ <tag> ] ) 

where 

<file number>, INT:value, passed 

identifies the file containing the record to be unlocked. 

<tag>, INT(32) :value, passed 

for no-wait i/o only, if present, is stored by the system, 
then passed back to the application process by the AWAITIO 
procedure when the unlock operation completes. 

condition code settings: 

< (CCL) indicates that an error occurred (call FILEINFO) 
= (CCE) indicates that the UNLOCKREC was successful 
> (CCG) file is not a disc file 

example 

3-130 

CALL UNLOCKREC ( f ilenum ) ; 
IF< THEN ..... error occurred. 



UNLOCKREC Procedure (record locking) 

Considerations 

• Calling UNLOCKREC After KEYPOSITION 

If the call to UNLOCKREC immediately follows a call to KEYPOSITION 
where a non-unique alternate key is specified, the UNLOCKREC fails. 
A subsequent call To FILEINFO returns error 46 (invalid key). 
However, if an intermediate call to READ[LOCK] is performed, the 
call to UNLOCKREC is permitted. 

• Unlocking Several Records 

If several records need to be unlocked, the UNLOCKFILE Procedure 
can be called to unlock all records currently locked by the caller 
(rather than unlocking the records through individual calls to 
UNLOCKREC). 

• Current State Indicators After UNLOCKREC 

For key-sequenced, relative, and entry-sequenced files, the current 
state indicators following a successful UNLOCKREC are: 

unchanged. 

e File Pointers After UNLOCKREC 

For unstructured files, the current-record pointer and the 
next-record pointer are: 

unchanged. 

3-131 



WRITE Procedure (insert) 

WRITE 

The WRITE operation is used to insert a new record into a file in the 
position designated by the file~s primary key: 

• For key-sequenced files, the record is inserted in the position 
indicated by the value in its primary key field. 

• For relative files, following an OPEN or an explicit positioning 
by its primary key, the record is inserted in the designated 
position. Subsequent writes without intermediate positioning 
insert records in successive record positions. 

If -2D is specified in a preceding positioning, the record is 
inserted in an available record position in the file. 

If -lD is specified in a preceding positioning, the record is 
inserted following the last record currently existing in the file. 

• For entry-sequenced files, the record is inserted following the 
last record currently existing in the file. 

• For unstructured files, the record is inserted at the position 
indicated by the current value of the next-record pointer. 

If the WRITE procedure is being used to initiate an operation with a 
file opened with "no-wait i/o" specified, the operation must be 
completed with a corresponding call to the AWAITIO procedure. 

The call to the WRITE procedure is: 

CALL WRITE <file number> 
<buffer> 
<write count> 

where 

, [ <count written> 
, [ <tag> 

<file number>, INT:value, 

identifies the file to be written. 

<buffer>, INT:ref, 

passed 

passed 

is an array containing the information to be written to the 
file. 

3-132 



WRITE Procedure (insert) 

<write count>, INT:value, passed 

is the number of bytes to be written: {0:4096}. 

For key-sequenced and relative files, 0 is illegal; 
for entry-sequenced files, 0 denotes an empty record. 

<count written>, INT:ref:l, returned 

for wait i/o only, if present, is returned a count of the 
number of bytes written to the file. 

<tag>, INT(32) :value, passed 

for no-wait i/o only, if present, is stored by the system, 
then passed back to the application process by the AWAITIO 
procedure when the write operation completes. 

condition code settings: 

< (CCL) indicates that an error occurred (call FILEINFO) 
= (CCE) indicates the the WRITE was successful 
> (CCG) is not returned by WRITE 

example 

CALL WRITE ( outfile, outbuffer, 72 ) ; 
IF< THEN .... ! error occurred. 

General Considerations 

• Meaning of <count written> for Wait and Nowait I/O 

If a "wait" write is executed, the <count written> parameter 
indicates the number of bytes actually written. 

If a "no-wait" write is executed, <count written> has no meaning 
and can be omitted. The count of the number of bytes written is 
obtained when the i/o completes via the <count transferred> 
parameter of the AWAITIO procedure. 

3-133 



WRITE Procedure (insert) 

• Error 73: File is Locked 

If a call to WRITE is made and the file is locked but not locked 
through the <file number> supplied in the call, the call is 
rejected with a "file is locked" error indication (<error> = 73). 

Considerations for Structured Files 

• Inserting Records into Relative and Entry-sequenced Files 

If the insert is to a relative or entry-sequenced file, the file 
must be positioned currently via its primary key. Otherwise, the 
WRITE fails and a subsequent call to FILEINFO returns error 46 
(invalid key specified). 

• Error 10: Record Already Exists 

If the insert is to a key-sequenced or relative file and the record 
already exists, WRITE fails and a subsequent call to FILEINFO 
returns error 10 (duplicate record). 

• Current State Indicators After WRITE 

Current state indicators following a successful WRITE: 

3-134 

positioning mode 
compare length 

is unchanged. 
is unchanged. 

For key-sequenced files 

current position 
current primary key 

value 

is unchanged 
is unchanged. 

For relative and entry-sequenced files 

current position 
current primary key 

value 

is that of the record just inserted 
is set to the value of the record~s 
primary key. 



WRITE Procedure (insert) 

Considerations for unstructured Files 

• Unstructured WRITES 

If the write is to an unstructured disc file, data is transferred 
to the record location specified by the next-record pointer. The 
next-record pointer is updated to point at the record following 
the record written. 

• How Many Bytes are Written 

If an unstructured file was created with the ODDUNSTR (odd 
unstructured file) parameter set, the number of bytes written is 
exactly the number of bytes specified with <write count>. If the 
ODDUNSTR parameter was not set when the file was created, the value 
of <write count> is rounded up to an even number before the WRITE 
is executed. 

The ODDUNSTR parameter is set with <file type>.<12> of the CREATE 
procedure. 

• File Pointers After WRITE 

Following a successful WRITE to an unstructured file, the file 
pointers are: 

current-record pointer := next-record pointer; 
next-record pointer := next-record pointer + <count written>; 
end-of-file pointer := max ( end-of-file pointer, 

next-record pointer) ; 

3-135 



WRITEUPDATE Procedure (random replace and delete) 

WRITEUPDATE 

The WRITEUPDATE procedure is used for random and sequential processing 
•f records in a disc file. WRITEUPDATE has two functions: 

• Alter the contents of the record at the current position. 

• Delete the record at the current position in a key-sequenced or 
relative file. 

For key-sequenced, relative, and entry-sequenced files, random 
processing implies that a designated record must exist. This means 
that positioning for WRITEUPDDATE is always to the record described by 
the exact value of the current key and current key specifier. If such 
a record does not exist, the call to WRITEUPDATE is rejected with a 
"record does not exist" error (<error> = 11). 

For unstructured files, data is written in the position indicated by 
the current-record pointer. A call to WRITEUPDATE for an unstructured 
file typically follows a call to POSITION, READ, or READUPDATE 
procedures. The current-record and next-record pointers are not 
changed by a call to WRITEUPDATE. 

If the WRITEUPDATE. procedure is being used to initiate an operation 
with a file opened with "no-wait i/o" specified, the operation must 
be completed with a corresponding call to the AWAITIO procedure. 

The call to the WRITEUPDATE procedure is: 

CALL WRITEUPDATE <file number> 
<buffer> 
<write count> 

where 

, [ <count written> 
, [ <tag> 

<file number>, INT:value, 

identifies the file to be written. 

<buffer>, INT:ref, 

passed 

passed 

is an array containing the information to be written to the 
file. 

3-136 



WRITEUPDATE Procedure (random replace and delete) 

<write count>, INT:value, passed 

is the number of bytes to be written to the file: {0:4096}. 

For key-sequenced and relative files, 0 means delete the 
record. 

For entry-sequenced files, 0 is illegal. 

<count written>, INT:ref:l, returned 

for wait i/o only, if present, is returned a count of the 
number of bytes written to the file. 

<tag>, INT(32) :value, passed 

for no-wait i/o only, if present, is stored by the system, 
then passed back to the application process by the AWAITIO 
procedure when the write operation completes 

condition code settings: 

< (CCL) indicates that an error occurred (call FILEINFO) 
= (CCE) indicates the the WRITEUPDATE was successful 
> (CCG) is not returned by WRITEUPDATE 

example 

CALL WRITEUPDATE ( outfile, outbuffer, 512 ) : 
IF= THEN •..• successful. 

General Considerations 

• Meaning of <count written> for Wait and Nowait I/O 

If a "wait" write is executed, the <count written> parameter 
indicates the number of bytes actually written. 

If a "no-wait" write is executed, <count written> has no meaning 
and can be omitted. The count of the number of bytes written is 
obtained when the i/o completes via the <count transferred> 
parameter of the AWAITIO procedure. 

3-137 



WRITEUPDATE Procedure (random replace and delete} 

e Calling WRITEUPDATE after Calling READ 

A call to WRITEUPDATE following a call to READ, without 
intermediate positioning, updates the record just read. 

• Deleting Locked Records 

Deletion of a locked record implicitly unlocks that record. 

Considerations for Structured Files 

• Error 73: File/Record is Locked 

If a call to WRITEUPDATE is made and the current record or the file 
is locked but not through the <file number> supplied in the call, 
the call is rejected with a "file/record is locked" error 
indication (<error>= 73). 

e Calling WRITEUPDATE After KEYPOSITION 

If the call to WRITEUPDATE immediately follows a call to 
KEYPOSITION where a non-unique alternate key is specified as the 
access path, the WRITEUPDATE fails. A subsequent call to FILEINFO 
returns error 46 (invalid key). However. if an intermediate call 
to READ[LOCK] is performed, the call to WRITEUPDATE is permitted 
because a unique record is identified. 

• Specifying <write count> for Entry-sequenced Files 

For entry-sequenced files, the value of <write count> must match 
exactly the <write count> value specified when the record was 
originally inserted into the file. 

• Changing Primary Key of Key-sequenced Record 

An update to a record in a key-sequenced file may not alter the 
value of the primary key field. Changing the primary key field 
must be done by deleting the old record (WRITEUPDATE with <write 
count> = 0) and inserting a new record with the key field changed 
(WRITE) . 

3-138 



WRITEUPDATE Procedure (random replace and delete) 

• Current State Indicators After WRITEUPDATE 

Current state indicators following a successful WRITEUPDATE: 

unchanged. 

Considerations for Unstructured Files 

e WRITEUPDATE to an Unstructured File 

If the write is to an unstructured disc file, data is transferred 
to the record location specified by the current-record pointer. 

• How Many Bytes are Written 

If the unstructured file was created with the ODDUNSTR (odd 
unstructured file) parameter set, the number of bytes written is 
exactly the number of bytes specified with <write count>. If the 
ODDUNSTR parameter was not set when the file was created, the value 
of <write count> is rounded up to an even number before the 
WRITEUPDATE is executed. 

The ODDUNSTR parameter is set with <file type>.<12> of the CREATE 
procedure. 

• File Pointers Following a Successful WRITEUPDATE 

Following a successful WRITEUPDATE to an unstructured file, the 
current-record and next-record pointers are: 

unchanged. 

3-139 



WRITEUPDATEUNLOCK Procedure (random processing, record locking) 

WRITEUPDATEUNLOCK 

The WRITEUPDATEUNLOCK procedure is used for random processing of 
records in a disc file. WRITEUPDATEUNLOCK has two functions: 

• Alter, then unlock the contents of the record at the current 
position. 

• Delete, the record at the current position in a key-sequenced or 
relative file. 

For key-sequenced, relative, and entry-sequenced files, 
random processing implies that a designated record must exist. This 
means that positioning for WRITEUPDATEUNLOCK is always to the record 
descibed by the exact value of the current key and current key 
specifier. If such a record does not exist, the call to 
WRITEUPDATEUNLOCK is rejected with a "record does not exist" error 
(<error> = 11). 

For unstructured files, data is written in the position indicated by 
the current-record pointer. A call to WRITEUPDATEUNLOCK for an 
unstructured file typically follows a call to POSITION or READUPDATE. 
The current-record and next-record pointers are not changed by a 
call to WRITEUPDATEUNLOCK. 

A call to WRITEUPDATEUNLOCK is equivalent to a call to WRITEUPDATE 
followed by a call to UNLOCKREC. However, less system processing is 
incurred if the WRITEUPDATEUNLOCK Procedure is called instead of the 
separate calls to WRITEUPDATE and UNLOCKREC. 

If the WRITEUPDATEUNLOCK procedure is being used to injtiate an 
operation with a file opened with "no-wait i/o" specified, the 
operation must be completed with a corresponding call to the AWAITIO 
procedure. 

The call to the WRITEUPDATEUNLOCK procedure is: 

CALL WRITEUPDATEUNLOCK <file number> 
<buffer> 
<write count> 

where 

, [ <count writ ten> 
, [ <tag> 

<file number>, INT:value, 

identifies the file to be written. 

3-140 

passed 

-1 



WRITEUPDATEUNLOCK Procedure (random processing, record locking) 

<buffer>, INT:ref, passed 

is an array containing the information to be written to the 
file. 

<write count>, INT:value, passed 

is the number of bytes to be written to the file: {0:4096}. 

For key-sequenced and relative files, 0 means delete the 
record. 

For entry-sequenced files, 0 is illegal. 

<count written>, INT:ref:l, returned 

for wait i/o only, if present, is returned a count of the 
number of bytes written to the file. 

<tag>, INT(32) :value, passed 

for no-wait i/o only, if present, is stored by the system, 
then passed back to the application process by the AWAITIO 
procedure when the write operation completes. 

condition code settings: 

< (CCL) indicates that an error occurred (call FILEINFO) 
= (CCE) indicates the the WRITEUPDATEUNLOCK was successful 
> (CCG) is not returned by WRITEUPDATEUNLOCK 

example 

CALL WRITEUPDATEUNLOCK 
IF= THEN ...• 

outfile, outbuffer, 72, numAwritten ) ; 
! successful. 

3-141 



WRITEUPDATEUNLOCK Procedure (random processing, record locking} 

Considerations 

• See the considerations for WRITEUPDATE 

e How WRITEUPDATEUNLOCK Works 

The record unlocking performed by WRITEUPDATEUNLOCK functions 
identically to that of UNLOCKREC. 

3-142 



SECTION 4 

ENSCRIBE FILE ACCESS 

Topics discussed in this section are: 

• File Open 

• Access Rules for Structured Files 

• Access Rules for Unstructured Files 

• Considerations for both Structured and Unstructured Files 

- File and Record Locking 
- Verify Write 
- Refresh 
- Programmatic Extent Allocation and Deallocation 

• Error Recovery Considerations 

For key-sequenced files 

For files having alternate keys 

For partitioned files 

• Access Examples 

File Creation is discussed in section five, "ENSCRIBE File Creation", 
and in the GUARDIAN Language and Utilities Manual, "FUP Program". 

4-1 



ENSCRIBE FILE ACCESS 

FILE OPEN 

The following should be taken into consideration when opening an 
ENSCRIBE file. 

• If the file is not partitioned and does not have alternate keys, 
there are no special considerations. 

• If the file is partitioned, all partitions are automatically opened 
when the first partition is opened. If one of the partitions 
cannot be opened, access to the file is still granted. However, a 
CCG {warning indication) is returned from OPEN. The FILEINFO 
procedure can then be called to obtain the file management error 
number, and the FILERECINFO procedure can be called to obtain the 
number of the partition which did not open. 

• Individual partitions cannot be opened separately unless 
"unstructured access", OPEN <flags>.<2> = 1, is specified. 
See OPEN Considerations for details on unstructured access. 

• If the file has one or more alternate keys, all alternate key files 
are automatically opened when the primary file is opened. If an 
alternate key file cannot be opened, a CCG (warning indication) is 
returned from OPEN. The FILEINFO Procedure can then be called to 
obtain the file management error number and the FILERECINFO 
Procedure can be called to determine which key. The file is still 
accessible. However, an attempt to use an access path associated 
with an alternate key file that did not open results in an error 
46, invalid key specified. 

• Alternate key files can be openPd ~nd accessed separately from 
their primary files. 

ACCESS RULES FOR STRUCTURED FILES 

• Sequential Processing 

4-2 

Sequential processing is accomplished by the READ and READLOCK 
procedures. Sequential processing implies that a related group of 
records (i.e., a subset) is to be read in ascending order using the 
current access path. 

The records comprising a subset are indicated by the file~s current 
positioning mode: approximate, generic, or exact. A subset may be 
all or part of a file or may be empty. An attempt to read beyond 
the last record in a subset or to read an empty subset returns an 
end-of-file indication. 



ENSCRIBE FILE ACCESS 

The first call to READ[LOCK] following file open or a positioning 
operation, reads the record, if any, at the current position. 
Subsequent calls to READ[LOCK], without intermediate positioning, 
return successive records, if any, in the designated subset. 

Sequential reading of a relative file following a call to OPEN, 
POSITION, or approximate KEYPOSITION by primary key, reads the file 
sequentially and skips omit~ed or deleted records. 

Following each call to READ[LOCK], the position of the record 
returned becomes the current position. 

• Random Processing 

The update procedures, READUPDATE[LOCK] and WRITEUPDATE[UNLOCK], 
are used for random processing. The update operation occurs at the 
record indicated by the current position. Random processing 
implies that a record to be updated must exist. Therefore, if no 
record exists at the current position (as indicated by an exact 
match of the current key value with a value in the key field 
designated by the current key specifier), a "record not found" 
error (<error> = 11) is returned. 

WRITEUPDATE[UNLOCK] cannot be used to alter a record's primary key. 
If this is to be done, the record must first be deleted, then 
inserted (i.e., WRITE) using the new value of the primary key. 

If update or lock is attempted immediately following a call to 
KEYPOSITION where a non-unique alternate key is specified, the 
update or lock fails with an "invalid key" error (<error> = 46). 
However, if an intermediate call to READ[LOCK] is performed, the 
update or lock is permitted. 

• Insert 

An insert operation is accomplished via the WRITE procedure. Insert 
implies that no other record exists that has the same primary key 
value as the record being inserted. Therefore, if such a record 
already exists, the operation is not performed and a "duplicate 
record error" (<error> = 10} is returned. 

If an alternate key has been declared to be unique and an attempt 
is made to insert a record having a duplicate value in such an 
alternate key field, the operation is not performed and a 
"duplicate record error" (<error> = 10) is returned. 

An insert of an empty record (i.e., <write count>= 0) is not valid 
for key-sequenced and relative files, but is valid for entry
sequenced files. 

4-3 



ENSCRIBE FILE ACCESS 

The length of a record to be inserted must be less than or equal to 
the the record length defined for the file. If not, the insertion 
is not performed and an "invalid count" error {<error> = 21) is 
returned. 

• Delete 

A delete operation {i.e., WRITEUPDATE[UNLOCK], <count>= 0) always 
applies to the current position in a file. 

• Alternate Keys 

Alternate key fields are fixed length but need not be written when 
inserting or updating a record. If any part of a given alternate 
key field is present when inserting or updating a record, the 
entire field must be present. 

• Current Position 

Current position is subject to change only following a call to 

READ[LOCK] from any structured file 
WRITE to a relative or entry-sequenced file 
KEYPOSITION for key-sequenced, relative, and entry-sequenced 

POSITION 
files 
for relative, entry-sequenced, and unstructured 
files 

Following a call to READ[LOCK], the current position becomes that 
of the record just read. Following a call to WRITE for a relative 
or entry-sequenced file, the current position becomes that of the 
record just written. 

• Current Key Value 

4-4 

Except for inserts to key-sequenced files, the the current key 
value will be set to that of the record transferred. 



ENSCRIBE FILE ACCESS 

• Current Primary Key Value 

A f ile,s current primary key value is taken from the primary key 
associated with the last 

READ[LOCK] from any structured file 
WRITE to a relative or entry-sequenced file, 
KEYPOSITION by primary key for key-sequenced files 
POSITION by primary key for relative and entry-sequenced files 

operation. 

• End-Of-File Pointer 

Associated with each disc file is an end-of-file pointer. The 
end-of-file pointer contains the relative byte address of the first 
byte of the next available block. The end-of-file pointer is 
advanced automatically when appending to a file each time a new 
block is allocated at the end-of-file. 

The system maintains the working copy of a f ile,s end-of-file 
pointer in the File Control Blocks (FCB) that are in both of the two 
system processes that control the associated disc volume. A file,s 
end-of-file address is physically written on disc every time 
one of the following events occur: 

- the file is created 
- an extent is allocated for the file 
- a CONTROL operation is performed for the file 
- the last accessor closes the file 
- the REFRESH procedure is called for the file 
- the PUP REFRESH command is executed for the f ile,s volume 

every time the eof is changed (if the auto-refresh option is in 
effect) 

The auto-refresh option can be specified when the file is first 
created. And even if a file is created without the auto-refresh 
option specified, it can be modified at some later date to include 
the auto-refresh option. 

When creating a file with the CREATE procedure, the auto-refresh 
option is specified by setting <file type>.<12> to a one. When 
creating a file with FUP, the auto-refresh option is specified with 
the SET REFRESH command. For files created without the auto-refresh 
option, the option can specified at any time with the FUP ALTER 
REFRESH command. 

Considerations regarding when and how frequently files should be 
refreshed are given under Refresh, later in this section. 

4-5 



ENSCRIBE FILE ACCESS 

Sequential Buffer Option 

A process can optionally specify (at file open time) that an array in 
the process~s data area be used by the file system for record 
deblocking. The advantage to using this option is that instead of 
requesting each record from an i/o process (which results in an 
interprocess message being sent, an environment switch, and, possibly 
waiting to obtain space from system data space), an entire block is 
returned from the i/o process and stored in the process~s data area. 
Once a block is in the application process~s data area, subsequent 
accesses to records within that block require no disc accesses and no 
environment changes. 

Note, however, that this option is meaningful only for sequential 
reading of a file. Random reading and any writing will not make use 
of the sequential buffer. 

If sequential block buffering is to be used, the file must be opened 
with exclusion mode = "protected" or "exclusive". The length 
specified to OPEN for the sequential block buffer must be greater than 
or equal to the <data block length> specified for the file and any 
associated alternate key files at creation. If these criteria are not 
met, the open succeeds but returns a CCG indication (a subsequent call 
to FILEINFO will return <error> = 5) ; the application process~s 
sequential buffer is not used; instead, normal system buffering is 
used. 

Example: 

4-6 

INT .seqAbuffer [ 0:2047 ] ; sequential block buffer. 

flags := %2060; ! read-only, protected, wait i/o. 
CALL OPEN ( filename , fnum , flags ,,,, seqAbuffer , 4096 ) ; 
IF < THEN ! open failed. 

ELSE 
IF > THEN 

BEGIN ! open successful. 
CALL FILEINFO ( fnum , error ) ; 
IF error = 5 THEN ! sequential buffer request rejected. 

END 
open successful. 



ENSCRIBE FILE ACCESS 

The file is then read sequentially in the normal manner. 

eof : = 0; 
WHILE NOT eof DO 

BEGIN 
CALL READ ( fnum , buffer , reclen , countread ) ; 
IF > THEN eof := 1 
ELSE 

END; 

When READ is called and the sequential block buffer is empty 
(i.e., the first read of the file or all records in the block 
have been read), the file system transfers a data block from the 
disc i/o process to the sequential block buffer, "seqAbuffer", 
in the application process~s data area. For each call to READ, 
a record is deblocked from the sequential block buffer and 
transferred into the array "buffer". 

ACCESS RULES FOR UNSTRUCTURED FILES 

Communication is established with an unstructured disc file through 
the ENSCRIBE OPEN procedure. 

For example, to establish communication with a permanent unstructured 
disc file, the following could be written in a source program: 

INT .fileAname[O:ll] := "$VOL2 STOREl TRANFILE"; 

CALL OPEN ( fileAname, fileAnum,, 1); ! wait i/o, 
share access, 
read/write access, 
sync depth = 1. 

IF<> THEN ... 

The file is identified to other ENSCRIBE procedures by 
"fileAnum". 

Access to an unstructured disc file is terminated using the ENSCRIBE 
CLOSE procedure: 

CALL CLOSE ( f ileAnum ) ; 

4-7 



ENSCRIBE FILE ACCESS 

Communication is established with a temporary unstructured disc file 
by passing the array, containing the <temporary file name>, returned 
from CREATE, to the OPEN procedure: 

CALL OPEN ( tempAfile, tempAfnum,, 1 } ; ! wait i/o, 
share access, 
read/write access, 
sync depth = 1. 

IF<> THEN .•• 

Other ENSCRIBE procedures access the temporary file by 
using "tempAfnum". 

Access to a temporary unstructured disc file is terminated and the 
file is purged using the CLOSE procedure: 

CALL CLOSE ( tempAfnum ) i 

deletes the temporary file from the volume "$VOL2". 

If the application program does not want the temporary file purged at 
close time, the temporary file can be made permanent by use of the 
file management RENAME procedure: 

4-8 

newAname -":=-" "$VOL2 STOREl NEWFILE "; 
CALL RENAME ( tempAfnum, newAname } ; 
IF< THEN ..•. 

CALL CLOSE ( tempAfnum ) i 

renames the temporary file, making it permanent. Note that the 
volume name supplied to RENAME must be the same as that used 
when the temporary file was created. 



ENSCRIBE FILE ACCESS 

Relative Byte Addressing and File Pointers 

Data in an unstructured disc file is addressed in terms of a "relative 
byte address" {rba). A relative byte address is an offset, in bytes, 
from the first byte in a file; the first byte in a file is at rba 
zero. 

Three file pointers are associated with each open unstructured disc 
file: 

1. A next-record pointer containing the relative byte address of the 
location where the next disc transfer, due to a READ or WRITE, 
begins. 

2. A current-record pointer containing the relative byte address of 
the location just read or written and is the address where a disc 
transfer due to a READUPDATE or WRITEUPDATE begins. 

3. An end-of-file pointer containing the relative byte address of the 
next byte after the last significant data byte in a file. {If the 
file was created without the ODDUNST parameter set, the 
end-of-file pointer is always rounded up to an even number.) The 
end-of-file pointer is incremented automatically when data is 
appended to the end-of-file {WRITE). It can be set explicitly by 
calls to the POSITION and CONTROL procedures. 

Separate next-record and current-record pointers are associated with 
each open of an unstructured disc file so that if the same file is 
open several times simultaneously, each open provides a logically 
separate access. The next-record and current-record pointers reside 
in the file's Access Control Block in the application process 
environment. 

A single end-of-file pointer, however, is associated with all opens of 
a given unstructured disc file. This permits data to be appended to 
the end-of-file by several different accessors. The end-of-file 
pointer resides in the unstructured disc file's File Control Block in 
the disc i/o process environment. A file's end-of-file pointer value 
is copied from the file label on disc when the file is opened and is 
not already open. 

An unstructured file's end-of-file address is physically written on 
disc every time one of the following events occur: 

- the file is created 
- an extent is allocated for the file 
- a CONTROL operation is performed for the file 
- the last accessor closes the file 
- the REFRESH procedure is called for the file 
- the PUP REFRESH command is executed for the file's volume 

every time the eof is changed (if the auto-refresh option is in 
effect) 

4-9 



ENSCRIBE FILE ACCESS 

The auto-refresh option can be specified when the file is first 
created. And even if a file is created without the auto-refresh 
option specified, it can be modified at some later date to include the 
auto-refresh option. 

When creating a file with the CREATE procedure, the auto-refresh 
option is specified by setting <file type>.<12> to a one. When 
creating a file with FUP, the auto-refresh option is specified with 
the SET REFRESH command. For files created without the auto-refresh 
option, the option can specified at any time with the FUP ALTER 
REFRESH command. 

A summary of unstructured disc file pointer action is given in Table 
4-1, on the following page. 

4-10 



ENSCRIBE FILE ACCESS 

Table 4-1. File Pointer Action 

CREATE 

file label end-of-file pointer := OD; 

OPEN (first) 

end-of-file pointer := file label end-of-file pointer; 

OPEN (any) 

current-record pointer := next-record pointer := OD; 

READ 

current-record pointer := next-record pointer; 
next-record pointer := next-record pointer + 

$min (<count>, eof pointer - next-record pointer); 

WRITE 

if next-record pointer = -lD then 
begin 

current-record pointer := end-of-file pointer; 
end-of-file pointer := end-of-file pointer + <count>; 

end 
else 

begin 
current-record pointer := next-record pointer; 
next-record pointer := next-record pointer + <count>; 
end-of-file pointer := $max( end-of-file pointer, 

next-record pointer ) ; 
end; 

READUPDATE 

file pointers are unchanged 

WRITEUPDATE 

file pointers are unchanged 

CONTROL (write end-of-file) 

end-of-file pointer := next-record pointer; 
file label end-of-file pointer := end-of-file pointer; 

4-11 



ENSCRIBE FILE ACCESS 

Table 4-1. File Pointer Action {cont~d) 

CONTROL {purge data) 

current-record pointer := next-record pointer := 
end-of-file pointer := OD; 

file label end-of-file pointer := end-of-file pointer; 

CONTROL {allocate/deallocate extents) 

file pointers are unchanged 
file label end-of-file pointer := end-of-file pointer; 

POSITION 

current-record pointer := next-record pointer := <rba>; 

CLOSE {last) 

file label end-of-file pointer := end-of-file pointer; 

where 

<count> is the specified transfer count. If the file was 
created with the ODDUNST parameter set, the value 
specified for <count> is the number of bytes transferred. 
If the file was created but the ODDUNST parameter wa~ not 
set, <count> is rounded-up to an even number before the 
data transfer takes place. 

Sequential Access 

READS and WRITES increment the next-record pointer by the number of 
bytes transferred, therefore automatic sequential access to the file 
is provided. (If the file was created with the ODDUNST parameter set, 
the number of bytes transferred and the amount the pointers are 
incremented is exactly the number of bytes specified with 
<write count> or <read count>. If the ODDUNST parameter was not set 
when the file was created, the values of <write count> and 
<read count> are rounded up to an even number before the transfer 
takes place and the file pointers are incremented by the rounded up 
value.) 

4-12 



ENSCRIBE FILE ACCESS 

The following sequence of ENSCRIBE calls shows how the file pointers 
are used when sequentially accessing an unstructured disc file. 
Assume that these are the first operations to the file after OPEN: 

CALL READ ( fileAa, buffer, 512 ) ; 

CALL READ ( fileAa, buffer, 512 ) ; 

CALL WRITEUPDATE ( fileAa, buffer, 512 ) ; 

CALL READ ( fileAa, buffer, 512 ) ; 

The first READ transfers 512 bytes into "buffer" starting at 
relative byte O. The next-record pointer now points at relative 
byte 512, the current-record pointer points at relative byte 0. 

The second READ transfers 512 bytes into "buffer" starting at 
relative byte 512. The next-record pointer now points at 
relative byte 1024, the current-record pointer at relative byte 
512. 

The WRITEUPDATE procedure is then used to replace the just-read 
data with new data in the same location on disc. The file 
system transfers 512 bytes from "buffer" to the file at the 
position indicated by the current-record pointer (relative byte 
512) • The next-record and current-record pointers are not 
affected by the WRITEUPDATE procedure. 

The third READ transfers 512 bytes into "buffer" starting at 
relative byte 1024 (i.e., address in the next-record pointer). 
The next-record pointers then points to relative byte 1536, the 
current-record pointer at relative byte 1024. 

ENCOUNTERING END-OF-FILE DURING SEQUENTIAL READING. When reading from 
an unstructured disc file and the end-of-file boundary is encountered, 
data up to the EOF location is transferred. A subsequent read will 
return an end-of-file indication (i.e., condition code of CCG) because 
it is not permissible to read data past the end-of-file location. If 
the file is not repositioned, the end-of-file indication will be 
returned with every subsequent read. 

4-13 



ENSCRIBE FILE ACCESS 

For example, an unstructured file is written on disc, the end-of-file 
location is at relative byte 4,096. Sequential reads of 512 bytes are 
executed, starting at relative location O. 

file"eof := O; 
WHILE NOT f ile"eof DO 

BEGIN 
CALL READ ( file"a, buffer, 512, num"read, •• ) ; 
IF > THEN file"eof := 1 
ELSE 
IF = THEN 

BEGIN 

the data is processed. 

END 
ELSE 

END; 
error. 

Reads one through eight each transfer 512 bytes into "buffer", 
return "num"read" = 512, and the condition code indicator set to 
CCE (operation successful) • 

Read nine fails, no data is transferred into "buffer", 
"num"read" is returned as zero (0), and the condition code 
indicator set to CCG (end-of-file indication). 

An example of encountering eof is shown in Figure 4-1 below. 

4-14 

READ 1 READ 2 
(512 BYTES) (512 BYTES) 

~-~-

I i 
t t t 
0 512 1024 
RELATIVE BYTE ADDRESS 

READ 3 
(512 BYTES) 

t 
1536 

READ 8 READ 9 
(512 BYTES) (EOF) 

~ 

! I 
t 

3584 
t 

4096 
(EOF) 

Figure 4-1. Example of Encountering EOF 



ENSCRIBE FILE ACCESS 

If sequential reads of 400 bytes are executed from the same file, the 
results are slightly different: 

file"'eof := O; 
WHILE NOT f ile"'eof DO 

BEGIN 
CALL READ ( file"'a, buffer, 400, num"'read, •• ) ; 
IF > THEN file"'eof := 1 
ELSE 
IF = THEN 

BEGIN 

the data is processed. 

END 
ELSE •.. 

END; 
error. 

In this case, reads one through ten each transfer 400 bytes into 
"buffer", return "num"'read" = 400, and set the condition code 
indicator to CCE (operation successful) • 

Read eleven transfers 96 bytes into "buffer", returns "num"'read" 
= 96, and sets the condition code indicator to CCE. 

The next read fails and sets the condition code indicator to 
CCG. This situation is illustrated in Figure 4-2 below. 

READ 1 READ 2 READ 3 
( 400 BYTES) ( 400 BYTES) ( 400 BYTES) 

READ 10 READ 11 READ 12 
(400 BYTES) (96 BYTES) (EOF) 

I I I /,._ _ ___.__ __ v v v -~ 

t t t 
0 400 800 
RELATIVE BYTE ADDRESS 

t t 
1200 3600 

t t 
4000 4096 

(EOF) 

Figure 4-2. Example of Encountering EOF {Short Read) 

4-15 



ENSCRIBE FILE ACCESS 

Random Access 

Random access to an unstructured disc file is accomplished by setting 
the file pointers explicitly. This is done by calling the POSITION 
procedure and specif ing the starting location to be accessed in the 
<relative byte address> parameter. 

For example, to update data in an unstructured disc file at relative 
byte address 81,920, the following sequence of calls could be made: 

CALL POSITION ( f ileAa, 819200 ) i 

CALL READUPDATE ( fileAa, buffer, 512 ) i 

CALL WRITEUPDATE ( fileAa, buffer, 512 ) i 

The call to POSITION sets the next-record and current-record 
pointers to relative byte 81,920. 

The call to READUPDATE transfers 512 bytes from the file to 
"buffer" starting at relative byte 81,920. Following the read, 
the next-record and current-record pointers are unchanged. 

The WRITEUPDATE procedure replaces the just-read data with new 
data in the same location on disc. The the file system 
transfers 512 bytes from "buffer" to the file at relative byte 
81,920. 

Appending to End-of-File 

The POSITION procedure can be used to specify that data be appended to 
the end of an unstructured disc file. To set the pointer to the 
current end-of-file, -lD is passed as the <relative byte address> 
parameter: 

CALL POSITION ( f ileAa, -lD ) ; 

4-16 

The next-record pointer now contains -lo. This indicates to the 
file system that subsequent writes append to the end-of-file. 



ENSCRIBE FILE ACCESS 

Then a subsequent WRITE appends 512 bytes to the end of the file: 

CALL WRITE ( fileAa, buffer, 512, numAwritten ) ; 

The file system transfers 512 bytes from "buffer" to the current 
end of file location (131,072). The next-record and end-of-file 
pointers now point to'relative byte 131,584; the current-record 
pointer points to relative byte 131,072; the next-record pointer 
still contains -lD so that a subsequent write also appends to 
end-of-file. 

An example of using POSITION for both random access and appending to 
the end of an unstructured disc file is shown in Figure 4-3 below. 

r OPEN 
POSITION (819200) 

~POSITION (-ID) 
READ 2, l RbADUPDATE, 

READ 1 WRITEUPDATE READ 3 WR ITEUPDATE WRITE 
/~ ~ 

I 
512 

I 
512 

I 

512 

I J 
512 512 

t t t t t I I i 
CUR-REC PTR 0,0 512 1024 81920 131,072 
NEXT-REC PTR 0 512 1024 1536 81920 131,072 131,584 
EOF PTR 131,072 131,584 

Figure 4-3. Example of File Pointer Action 

4-17 



ENSCRIBE FILE ACCESS 

Disc Sectors 

Data is stored on disc in physical locations called sectors. Each 
sector contains 512 bytes. Any disc read or write operation, 
regardless of number of bytes transferred, involves at least one 
sector and can involve as many as eight sectors. 

It is most efficient for the file system to transfer whole sectors of 
information. This means that the most efficient transfers are 
multiples of 512 bytes on 512 byte boundaries (a file always starts 
on a sector boundary) • 

For example, a disc operation transfers 512 bytes of information to an 
unstructured disc file starting at relative address 512. 

CALL WRITE ( fileAa, array, 512, ... ) : 

This call involves only one disc operation: the 512 bytes of 
"array" are transferred to the disc sector 

The following example illustrates file system action for a write that 
crosses sector boundaries. A WRITE of 200 bytes is performed starting 
at relative location 400: 

CALL WRITE ( fileAa, array, 200 } : 

4-18 

This single call to the file system actually involves two 
separate disc operations to two disc sectors. 

1. The two sectors, containing relative addresses [0:1023], 
are read from the disc into the disc's buffer ureu in main 
memory. The first 200 bytes of "array" are moved into the 
appropriate location in the disc's buffer (i.e., [400]). 

2. The updated sectors are written back to the disc. 

Figure 4-4 on the following page shows a single WRITE that 
crosses sector boundries. 



ENSCRIBE FILE ACCESS 

SECTOR BOUNDARY 

SECTOR 0 (512 BYTES) + SECTOR 1 (512 BYTES) 

t t t t t 
0 400 512 600 1024 
RELATIVE BYTE ADDRESS 

Figure 4-4. Example of Crossing Sector Boundries 

Note that although full sector transfers are most efficient for the 
file system to perform, they are not necessarily the most efficient 
for a particular application. The application program can block data 
in its own memory area to accumulate a record of 512 bytes. 

4-19 



ENSCRIBE FILE ACCESS 

Resident Buffering (Nonstop system only} 

For unstructured files on a Tandem Nonstop System, resident buffering 
is available. By using resident buffering, the data transferred 
because of an i/o request is transferred directly between the 
application process~s data area and an i/o buffer in the processor 
module where the primary i/o process controlling a device is located. 
This bypasses the normal intermediate transfer to a file system buffer 
in the processor module where the application process is running. In 
addition to saving a move operation, using resident buffering also 
means that an application process will not be suspended, waiting for 
file system buffer space to become available when performing an i/o 
operation. The affect of using resident buffering is shown in Figure 
4-5 below. 

4-20 

RESIDENT 
BUFFER IN 

APPLICATION 
PROGRAM 

IN GUARDIAN'S DATA AREA 

DATA 

110 
~ BUFFER 

I I 

LJ 
IN SAME PROCESSOR MODULE IN SAME PROCESSOR MODULE 

SAME OR DIFFERENT PROCESSOR MODULE 

Figure 4-5. Resident Buffering 

0908 



ENSCRIBE FILE ACCESS 

Resident buffers are specified on a file-by-file basis through 
<flags>.<6> of the OPEN procedure. If resident buffers are 
specified, the application process must make any buffers (i.e., 
arrays) used with the file main-memory resident. Additionally, the 
resident buffer in the application's data area must be addressable 
through the system data map. Both are done through a call to the 
process control LOCKDATA procedure. LOCKDATA can be called only if 
the application process is executing in privileged mode (otherwise an 
"instruction failure" trap will occur). 

For example: 

INT .buffer[0:255]; ! application buffer to be locked into memory. 

INT PROC privAlockdata ( address , count , sysmap ) CALLABLE; 
INT address, count, sysmap; 

BEGIN 
RETURN LOCKDATA ( address , count , sysmap ) ; 

END; ! privAlockdata. 

is a application procedure that executes in privileged mode. 
This is used instead of a direct call to LOCKDATA so that the 
process does not execute in privileged mode when not necessary. 

LOCKDATA is invoked as follows: 

n := privAlockdata ( @buffer, 256, 1 ) ; 

specifies that the physical page(s) where "buffer" is located 
are to be made main-memory resident and are to be assigned to 
entries in the system data map. A "l" is returned in "n" if the 
page(s) are successfully locked. 

Then OPEN is called, specifying resident buffers: 

LITERAL resAbuf := %1000; 

CALL OPEN ( fname, fnum, flag LOR resAbuf ) ; 
IF < THEN ! open failed. 

A subsequent call to a file system read or write procedure would then 
specify "buffer" in the procedure's <buffer> parameter. For example: 

buffer ':=' data FOR writeAcount; ! move data into resident buffer. 
CALL WRITE ( fnum, buffer, writeAcount ) ; ! write it. 
IF< THEN ... ; ! error. 

Note: For TMF, the buffer must be declared as .buffer [-12,<size>], 
and the LOCKDATA parameters changed accordingly. 

4-21 



ENSCRIBE FILE ACCESS 

When using resident buffering, the following considerations apply: 

• Although resident buffering is specified on a file-by-file basis, 
the same resident buffer may be used for several different files 
(if, of course, the structure of the program permits). 

• It is not necessary to call LOCKDATA before OPEN is called. 
However, LOCKDATA must be called before the first i/o transfer 
(i.e., READ, WRITE, CONTROL, etc.) with a file is performed. 

• The resident buffer is not used for accesses to structured ENSCRIBE 
files; it is only used for unstructured files. 

4-22 



ENSCRIBE FILE ACCESS 

CONSIDERATIONS FOR BOTH STRUCTURED AND UNSTRUCTURED FILES 

This section describes ENSCRIBE features that apply to both structured 
and unstructured files. 

Locking -- General Concept 

Access to a shareable file among two or more processes is coordinated 
through the use of file and record locking. A process requests a lock 
before performing a critical operation so that other accesses are 
temporarily excluded. A process performs an unlock when a critical 
operation is completed to allow other access by other processes. 

File Locking 

File locking is performed by calling the LOCKFILE and UNLOCKFILE 
procedures. If the file is unlocked when LOCKFILE is called for it, 
the file becomes locked and the caller to LOCKFILE continues 
executing. If the file is locked, then the action taken depends on 
the locking mode in effect at the time of the call (as described under 
File/Record Locking Interaction below) • File unlocking is 
accomplished by calling the UNLOCKFILE procedure. 

Record Locking 

Individual records of a file are locked either by calling the LOCKREC 
procedure, which locks the record at the current position, or by 
calling the READLOCK or READUPDATELOCK procedures, which locks the 
record to be read before reading it. When a lock is requested for a 
record, if no other process has it locked, the lock is immediately 
granted. If the record or the file is locked, then the action taken 
depends on the locking mode in effect at the time of the call (as 
described under File/Record Locking Interaction below.) Record 
unlocking is accomplished by calling the UNLOCKREC procedure to unlock 
the current record, by calling the WRITEUPDATEUNLOCK procedure to 
unlock the record after it has been updated, or by calling UNLOCKFILE 
to unlock all records in the file locked by the caller. If a record 
is deleted, it is automatically unlocked. (If a record in a file 
audited by the Transaction Monitoring Facility, TMF, is deleted, 
the lock is not automatically relinquished. See the TMF Users Guide 
for details.) 

Record locking has the advantage of allowing the maximum concurrency 
of access to a file while still guaranteeing the integrity of the 
file~s contents when it is to be simultaneously updated by more than 
one process. However, for complex updates to a file which involve 
many records, record locking may not be desirable because of- the 
amount of system processing required or because it increases the 

4-23 



ENSCRIBE FILE ACCESS 

possibility of "deadlock" (see "Deadlock", below). In this case, file 
locking can be used. 

Locking Modes 

Locks are granted on an open file (i.e., <file number>) basis. 
Therefore, if a process has multiple opens of the same file, a lock 
through one <file number> excludes accesses to the file through other 
<file numbers>. 

There are two "locking" modes available. The locking mode determines 
the action taken if the file/record is already locked when a request 
is made to lock it. 

• Default Mode 

With this mode, the requester of a lock or read of a locked record 
(that is not locked by the <file number> supplied in the call), is 
suspended until the file/record becomes unlocked. 

• Alternate Mode 

With this mode, a lock or read request of a locked record (that is 
not locked by the <file number> supplied in the call), is 
immediately rejected with a "file/record is locked" error 
indication {<error> = 73) This allows the requesting process to 
take alternative action. 

specified via < [Uf1Ct .ion> 
procedure. 

In either mode, if a control or write request is made and the 
requested record is locked but not through the <file number> supplied 
in the call, the call is rejected with a "file/record is locked" error 
indication (<error> = 73). 

File/Record Locking Interaction 

The following description applies only if the default locking mode is 
in effect. 

For a file having one or more pending lock requests, there is a queue 
of file lock requests. When a request is made to read from a locked 
file, but the file is not locked through the <file number> supplied in 
the call, the read request is queued with the file lock requests. 
When the current lock is cleared (by means of a call to the UNLOCKFILE 
procedure) , the request at the head of the file locking queue is 
granted. If the request is a lock request, the lock is granted and 
the request continues processing; if the request is a read request, 
the request is completed. 

4-24 



ENSCRIBE FILE ACCESS 

Similarly, for a record having more one or more pending lock requests, 
there is a queue of record lock requests. When a request is made to 
read from a locked record, but the record is not locked through the 
<file number> supplied in the call, the read request is queued with 
the record lock requests. When the current lock is cleared, the 
request at the head of the locking queue for the record is granted. 
If the request is a lock request, the lock is granted and the request 
continues processing; if the request is a read request, the request is 
completed. 

A file lock is equivalent to locking all records in a file. If any 
records in a file are locked when a request is made for a file lock, 
the file lock is queued behind any record locks for the file. 
Conversely, if the file is locked when a request is made to lock a 
record, the record lock request is queued behind any file locks for 
the file. 

There is an exception to the preceding statement; if a process has one 
or more records locked, then requests another record lock for that 
file, the record lock will preempt any pending file locks for that 
file (the request will not preempt other record locks for the same 
record) • This exception minimizes the possibility of a "deadlock" 
condition occurring. This is illustrated as follows: 

Process A 

LOCKREC: $A.B.C,rec 1 
(lock granted) 

LOCKREC: $A.B.C,rec 12 
(lock granted) 

Process B 

LOCKFILE: $A.B.C 
(lock queued) 

Process C 

LOCKREC: $A.B.C,rec 12 
(lock queued) 

Note that a deadlock condition occurs if a process has a given file 
open more than once and a call to READ or READUPDATE is made by the 
process having the file locked but not locked via the <file number> 
supplied to READ or READUPDATE. 

4-25 



ENSCRIBE FILE ACCESS 

Deadlock 

One problem that may occur when multiple processes require multiple 
record or file locks is a "deadlock" condition. An example of 
deadlock is 

Process A Process B 

LOCKREC: record 1 LOCKREC: record 2 

LOCKREC: record 2 LOCKREC: record 1 

Here, process A has record 1 locked and is requesting a lock for 
record 2, while process B has record 2 locked and is requesting a lock 
for record 1. 

One possible way to avoid deadlock is to always lock the records in 
the same order. Thus, the situation described above would never 
happen if both processes requested the lock to record 1 before they 
requested the lock to record 2. 

Since it is sometimes impossible for an application program to know in 
which order the records it must lock are going to be encountered, 
another solution is offerred. For updates to single records of the 
file, no special processing need be done. For an update involving two 
or more records, however, the solution is to first lock some 
designated common record, and then lock the necessary data records. 
This prevents deadlock among those processes requiring multiple 
records, since they must first gain access to the common record, but 
still allows maximum concurrency and minimum overhead for accessors of 
single records. 

Record Locking with Unstructured Files 

So that applications can define their own file structures and still 
use the capabilities of record locking, record locking of unstructured 
files is permitted. 

Record locking with unstructured files is accomplished by positioning 
the file to the <relative byte address> of the "record" to be locked, 
then locking the address through the LOCKREC, READLOCK, or 
READUPDATELOCK procedures. Any other process attempting to access the 
file at a point beginning at exactly that address will see the address 
as being locked (the action will then be appropriate for the current 
locking mode) . 

Unlocking is performed in the same manner as unlocking with structured 
files. 

4-26 



ENSCRIBE FILE ACCESS 

Record Locking Limitation 

The maximum number of concurrent record locks that can be pending on a 
given file is 189. If this maximum is reached and an additional lock 
request is made, the lock request will be rejected with a "unable to 
obtain main memory space for a control block" error, <error> = 32. 

Purge Data 

An application process can programmatically purge all data from a file 
by means of the CONTROL procedure, "purge data" operation. This 
CONTROL operation does not physically purge data from a file. Rather 
data is "logically" purged by setting the file's current-record, 
next-record, and end-of-file pointers to relative byte 0. The 
end-of-file pointer in the file label on disc is also updated due to 
this operation. 

For example, to purge all data from a file, the following call to 
CONTROL could be made: 

LITERAL purgedata = 20; 

CALL CONTROL ( f ileAa, purgedata ) ; 
IF< THEN ... 

sets the current-record, next-record, and end-of-file pointers 
to relative byte 0 and updates the end-of-file pointer copy in 
the file's file label on disc. 

This CONTROL operation can be used in conjunction with the CONTROL, 
"allocate/deallocate" operation to deallocate all of a file's extents: 

LITERAL allocAop 
dealloc 

= 21, 
= O; 

CALL CONTROL ( f ileAa, purgedata ) ; 
IF< THEN •.. 
CALL CONTROL ( fileAa, allocAop, dealloc ) ; 
IF< THEN •.• 

sets the end-of-file pointer to relative byte 0 then deallocates 
all extents. 

4-27 



ENSCRIBE FILE ACCESS 

Verify Write 

Using verify write ensures the integrity of each write operation to a 
disc file. A byte-by-byte comparison of the just-written data on disc 
is made by the disc controller hardware with the corresponding data in 
memory. Note, however, that this requires an additional disc 
revolution. 

Verify write is enabled by the SETMODE procedure {<function> = 3). The 
default setting disables verify write. 

Ref re sh 

While a file is open, the information in its FCB, such as the 
end-of-file pointer, is kept in main memory. To maximize performance, 
the end-of-file pointer is normally only written to the file's disc 
label when: a REFRESH procedure is executed for the file; a PUP 
REFRESH command is executed for the file; a CONTROL operation is 
executed for the file; an extent is allocated for the file; and, the 
last accessor closes the file. While refreshing the file's disc label 
only when these conditions occur maximizes system performance, the 
following considerations should be taken into account: 

• If an open file is backed up, the file label copy on tape does not 
reflect the actual state of the file. An attempt to restore such a 
file will result in an error. 

• If the system is shutdown {i.e., RESET of each processor module) 
while a file is open, the file label copy on disc will not reflect 
the actual state of the file. 

• If a total system failure occurs (such as that caused by a power 
failure which exceeds the limit of memory battery backup) while a 
file is open, the file label on disc will not reflect the actual 
state of the file. 

A CREATE auto-refresh option is available, indicated by setting 
<file type>.<10> of the CREATE procedure, that causes the File Label 
to be written to disc each time the end-of-file is advanced. The FUP 
ALTER {REFRESH) Command can also be used to specify the auto-refresh 
option {see the GUARDIAN Command Language and Utilities Manual, FUP). 
However, keeping this information in main-memory results in a 
significant increase in processing throughput. 

For applications that cannot afford the overhead resulting from 
the auto-refresh create option, the File Label on disc can be forced 
to represent the actual state of a file through the use of the REFRESH 
procedure, or the equivalent Peripheral Utility Program (PUP) REFRESH 
command. The execution of the REFRESH procedure (or command) writes 
the information contained in any File Control Blocks (FCBs) to the 
File Labels on the associated disc volume. 

4-28 



ENSCRIBE FILE ACCESS 

REFRESH should be used in the following instances: 

• Prior to a file backup in cases where the application is always 
running (i.e., files are open). At some point during the day when 
the system is quiescent (i.e. no transactions are taking place), a 
REFRESH command is issued for all volumes in the system. Then, 
when the files are backed up, the file labels on backup tape 
will represent the actual states of the files backed up. 

• Prior to a total system shutdown. This will ensure that the file 
labels on disc will represent the states of files on disc. 

• If it is deemed desirable to minimize the effect of a total system 
failure. Periodically (say, every ten minutes) an application 
process executes that calls the REFRESH procedure. Note that this 
is not necessary except in the instance when a power failure occurs 
that exceeds the limit of memory battery backup. Therefore, this 
action is unnecessary unless the computer site is susceptible to 
frequent and severe power outages. 

Programmatic Extent Allocation 

An application process can cause the file system to allocate one or 
more file extents in an open file by means of the CONTROL procedure, 
"allocate/deallocate" operation. 

For example, to allocate all 16 extents in a newly created file, the 
file is opened then the following call to CONTROL is made: 

LITERAL allocAop = 21, 
maxAext = 16; 

CALL CONTROL ( f ileAa, allocAop, maxAext ) ; 
IF< THEN •.. ! extent allocate error. 

allocates all 16 extents of "fileAa". 

Extent Allocation Errors 

There are two errors associated with allocating disc extents: unable 
to obtain disc space for file extent (FILEINFO <error> = 43) and disc 
file full (FILEINFO <error> = 45) • 

4-29 



ENSCRIBE FILE ACCESS 

An example showing both kinds of error -- a file is created with an 
extent size of 2,048 bytes, then repetitive writes of 400 bytes are 
executed to the file: 

loop: CALL WRITE fileAa, buffer, 400, numAwritten ) ; 
IF < THEN 

BEGIN 
CALL FILEINFO ( fileAa, error ) ;. 

END 
ELSE GOTO loop; 

Writes one through five are successful ("numAwritten" = 400}, 
write six fails after transferring 48 bytes of "buffer" to the 
disc ("numAwritten" = 48). If all disc space has been 
allocated to other files, the <error> returned by FILEINFO is 
43 (out of disc space). If the current extent is the last one 
permitted in the file (i.e., extent number 15) then the <error> 
returned by FILEINFO is 45 (disc file full}. This situation 
is illustrated in Figure 4-6 below. 

WRITE 1 WRITE 2 WRITE 3 WRITE 4 WRITE 5 WRITE 6 

(400) (400) (400) (400) (400) (48) 

~ 

I 
r 

I ? 
t 
t DATA 

{ 

{ i 
t t ti L 1 

1 I I I t ,l I 0 400 800 1200 1600 
2048 

FILE EXTENT ZERO 

Figure 4-6. Example Showing Extent Allocation Error 

Note that <error> = 43 can also occur when allocating extents via the 
CONTROL procedure, allocate/deallocate operation (<operation> = 21). 

4-30 



ENSCRIBE FILE ACCESS 

Programmatic Extent Deallocation 

An application process can cause the file system to deallocate any 
file extents past the extent where the end-of-file pointer is pointing 
by means of the CONTROL procedure, "allocate/deallocate" operation. 

For example, to deallocate any unused extents in a file, the file is 
opened then the following call to CONTROL is made: 

LITERAL allocAop = 
dealloc = 

21, 
0. 

I 

CALL CONTROL ( f ileAa, allocAop, dealloc ) ; 

deallocates any extents past the end-of-file extent. 

4-31 



ENSCRIBE FILE ACCESS 

SUMMARY OF DISC CONTROL AND SETMODE OPERATIONS 

The following table gives a summary of the CONTROL and SETMODE 
operations that apply to disc files. 

Table 4-2. Disc CONTROL and SETMODE Operations 

Disc CONTROL Operations 

<operation> 

2 = write end-of-file (write access is required) 

<parameter> = none 

20 = disc, purge data (write access is required) 

<parameter> = none 

21 = disc, allocate/deallocate extents (write access is required) 

<parameter> = 0 = deallocate all extents past the end-of
f ile extent 

1:16 = number of extents to allocate for a 
key-sequenced file 

l:<total extents> 
= total number of extents to allocate 

for entry-sequenced, relative and 
unstructured files 

where 

<total extents> = 16 * <number of partitions> 

Disc SETMODE Functions 

<function> 

1 = set disc file security 

2 = set disc file owner id 

4-32 



ENSCRIBE FILE ACCESS 

Table 4-2. Disc CONTROL and SETMODE Operations (cont.) 

Disc SETMODE Functions (cont.) 

<function> 

3 = set disc verify write 

<parameter l> = 0, means off (default setting) 
= 1, means on 

<parameter 2> is not used 

4 = set disc lock mode 

<parameter l> = 0, default mode, process will be suspended 
when lock or read is attempted 

= 1, alternate mode, lock or read attempt will 
be rejected with "file is locked" error 
(<error> = 73) 

<parameter 2> is not used 

57 = set disc serial or parallel writes (overrides SYSGEN setting 
for this file) 

<parameter l> = 1, serial writes 
2, parallel writes 

<parameter 2> is not used 

4-33 



ENSCRIBE FILE ACCESS 

ERRORS AND ERROR RECOVERY 

The File Management System produces a number of messages indicating 
errors or other special conditions. These messages may occur during 
execution of almost any user application or Tandem-supplied program, 
since most programs use the File Management System. 

The error number associated with an operation on an open file can be 
obtained by calling the FILEINFO procedure and passing the <file 
number> of the file in error: 

CALL FILEINFO(inAfile, errAnum) i 

The error number associated with an unopen file or a file open failure 
can be obtained by passing the <file number> as -1 to the FILEINFO 
procedure: 

CALL FILEINF0(-1, errAnum); 

Note: the OPEN procedure returns -1 to <file number> if the open 
fails. 

File Management Errors 

File management errors are grouped into three major categories: 

error 

0 

1-9 

10-255 

300-511 

4-34 

ca~egory 

No error. Operation executed successfully. 

Warning. Operation executed with exception 
of indicated condition. For <error> 6, data is 
returned in application process~s buffer. 

Error. Operation encountered an error. For 
data transfer operations, either none or part of 
specified data was transferred (with exception 
of data communication <error> 165, which 
indicates normal completion - data is returned 
in application process~s buffer). 

Error. These errors are reserved for process 
application-dependent use. 



ENSCRIBE FILE ACCESS 

Many of the file management errors imply that invalid parameters were 
supplied to the file management procedures or that illegal operations 
were attempted. These could be considered programming errors. Other 
types of errors imply that the system is not being operated properly. 
And other types are simply informational messages informing the 
application about a particular device oriented problem. 

Errors occuring during disc file access can be separated into the 
following categories: 

• Path Errors 
• Data Errors 
• Device Operation Error 
• Failure of Primary Application Process 

Path Errors 

This is a failure of a processor module, i/o channel, or disc 
controller port that is part of the primary path to disc device. For 
errors of this type, the file system automatically switches to the 
alternate path and completes the i/o operation if a "synchronization 
depth" greater than zero was specified when the file was opened. 
Therefore, if an error >= 200 is returned to the application program, 
the disc device is no longer accessible. 

Data Errors 

These are error numbers 50 through 59, 120 through 139, and 190 
through 199. The file system automatically retries operations 
associated with this type of error. Therefore, if one of these errors 
is returned, all or part of the file can be considered invalid. For 
errors 50 through 59, the file may be recoverable through use of the 
COPY command with the RECOVER option of the Peripheral Utility Program 
(PUP). Error 120 (data parity error) causes the associated track to 
be flagged by the file system as bad. A bad track can be assigned to 
a spare track through use of the SPARE command of PUP. 

4-35 



ENSCRIBE FILE ACCESS 

Device Operation Error 

These are error numbers 60 through 69 and 103. None of these errors 
are retried by the file system. Errors 60 through 69 indicate that 
the device has been deliberately been made inaccessible and, 
therefore, the associated operation probably should not be retried. 
Error 103 indicates that the entire system has experienced a power 
failure and that the disc is in the process of becoming ready. 
Therefore, an operation associated with an error 103 should be retried 
periodically. 

Failure of Primary Application Process 

This is not an disc error in the strictest sense. Rather, this is a 
failure of the processor module where the primary process of a 
primary/backup process pair is executing. Operations associated with 
this type of failure must be retried by the backup application process 
when it takes over the applications work. A discussion for recovering 
from this type of error is provided in section 5 "Checkpointing 
(Processor Module Failure Recovery) " of the GUARDIAN Programming 
Manual. 

Errors Grouped by Error Number 

This section groups of the file system errors by functional class and 
provides a description of each error class. 

20-29 CODING ERROR 
An invalid or out-of-bounds parameter was supplied to a file system 
call (errors 21, 22, 23, 29), or a call was made at an improper time 
(errors 25-28). 

30-33 SYSTEM CONFIGURATION PROBLEM 
A system configuration problem occurred in obtaining the desired 
space from a configurable memory space pool. 

4-36 



ENSCRIBE FILE ACCESS 

40 OPERATION TIMED OUT 
This error can occur only with the AWAITIO procedure: 

• If <file number> = -1 was specified (indicating "any file") 
and/or <awaitio timeout> = OD (indicating a completion check) was 
specified, then the operation is considered incomplete (call 
AWAITIO again). Any indication other than <error>= 40 (i.e., 
CCE, CCG, or both CCL and <error> <> 40) indicates a completion. 

• If a particular file was specified, operation did not complete 
within the specified <time limit>. In this case, <error> = 40 is 
considered a completion (i.e., the operation failed). 

43 OUT OF DISC SPACE 
Particular volume used is at its limit of available disc space (this 
may be due to fragmentation) . Amount of available space and number 
and size of fragments on volume can be determined by using LISTFREE 
command of PUP (Peripheral Utility Program). Disc space can be 
recovered by (a) purging files, (b) closing temporary files, or 
(c) backing up all files on volume using BACKUP, then restoring the 
files to the volume using RESTORE. 

50-58 DISC FILE INACCESSIBLE 
Severe problem exists on disc volume. File associated with error is 
no longer accessible, although other files on same volume may be. 
It may be possible to recover files on volume by using COPY command 
of PUP with RECOVER option specified. 

Errors 54-57 also imply that a disc hardware problem exists (file 
system retried the associated operation a number of times before 
reporting the error) • 

100-109 DEVICE REQUIRES ATTENTION 
Human intervention may be necessary to return device to operable 
state. 

110-112 TERMINAL ACCESS FAILURE 
Error occurred with an application process using same terminal as 
another process or using operator console. 

120-199 DEVICE HARDWARE PROBLEM 
A device hardware problem exists. (Associated operation is retried 
several times before error is reported to application process) . 

Error 120, data parity error, occurring on a disc or tape READ or 
READUPDATE returns as much (invalid) data as possible. Number of 
characters returned can be determined by checking the procedure~s 
<count read> parameter if a "wait" read or the <count transferred> 
parameter of AWAITIO if a "no-wait" read. 

4-37 



ENSCRIBE FILE ACCESS 

Error 121, overrun, if it occurs intermittently, also indicates 
that a physical configuration problem may exist. 

Errors 160-178 occur only when using the ENVOY Data Communications 
Manager software. The errors are described in detail in the 
~NVOY Byte-Control Protocols Manual, P/N 82018. 

Error 190, invalid status, indicates that a hardware problem exists 
with either the device or its controller. 

200-255 PATH ERROR 
Error occurred while attempting to use primary path to I/O device. 

200-201: Operation never got started; medium movement did not take 
place. 

210-231: Operation failed at some indeterminate point. If one of 
these errors has occurred, associated medium might have 
moved (it should be assumed so). Recovery procedure 
depends on device involved (see descriptions of individual 
device characteristics). 

200,230, At least one path, and possibly 231: both paths, are 
operable. 

201-229: At least one path is inoperable {i.e., automatic switch 
from primary path was made). 

Special Considerations for Errors 200, 210, and 211 

Error 200 indicates that a path switch occurred because of some 
other file access. This is a typical error when more than one 
process is accessing the same device or a process has more than one 
i/o operation outstanding to the same file at one time. 

Error 210 indicates that a path switch to a hardware device 
controller occurred while this operation was in progress. This 
error is associated with concurrent operations involving more than 
one unit connected to a multi-unit controller. It occurs when an 
operation is in progress with one unit on a multi-unit controller 
and an error is detected during an operation with another unit on 
the same controller. (The other operation could have been on behalf 
of this or another application process.) 

Error 211 indicates that the processor module controlling the 
device associated with this file operation has failed. The file 
operation itself has stopped at some indeterminate point. 

The table in Appendix D lists all of the file management errors and 
gives a brief explanation of each error. 

4-38 



ENSCRIBE FILE ACCESS 

Error Recovery 

The programmer must consider a number of items when writing error 
recovery routines: 

• The type of device (e.g., disc, magnetic tape, line printer, etc.) 

• The type of error (i.e., whether it is recoverable 
programmatically) 

• The number of "no-wait" operations outstanding when the error was 
detected 

For disc files, if a file is opened with a <sync depth> greater than 
er equal to 1, all recoverable errors, including path errors, are 
automatically retried by the file system. 

When using "no-wait" i/o and executing more than one concurrent 
operation to the same file, it is quite possible for one operation to 
fail, but subsequent operations to succeed. This is illustrated as 
follows: 

Three "no-wait" writes are initiated to a line printer: 

• WRITE "no-wait" 1 initiated to printer print: "line one" 

• WRITE "no-wait" 2 initiated to printer print: "line two" 

• WRITE "no-wait" 3 initiated to printer print: "line three" 

Then the three writes are completed with calls to AWAITIO: 

• AWAITIO 1 indicates "no-wait" 1 succeeded (line printed) 

• AWAITIO 2 indicates "no-wait" 2 failed (line not printed) 

• AWAITIO 3 indicates "no-wait" 3 succeeded (line printed} 

The following was printed as a result of the three "no-wait" writes: 

"line one" 
"line three" 

("line two" is missing) 

The rule of thumb is: when order is important, don't permit concurrent 
operations on the same file. 

4-39 



ENSCRIBE FILE ACCESS 

Error Handling For Structured Files 

The following file management errors are peculiar to ENSCRIBE 
structured files: 

warning/error description 

3 failure to open or purge a partition. This warning occurs 
when opening a partitioned file, if a partition defined for 
the file cannot be opened. The open succeeds but an attempt 
to access the non-existent partition will return an error 72, 
"attempt to access unmounted partition". This warning also 
occurs when a partitioned file is purged if a defined 
partition does not exist. 

4 failure to open an alternate key file. This warning occurs 
when opening a file having alternate keys, if an alternate key 
file defined for the file cannot be opened or if the alternate 
key file was created with a record length that is not 
consistent with the alternate key definition in the primary 
file. The open succeeds but an attempt to access the file via 
an alternate key referenced in the unopened file will result 
in an error 46, "invalid key specified". 

CAUTION 

When an insertion or update is made to a file having an 
unopened alternate key file, the insertion (i.e., call to 
WRITE) will complete successfully (i.e., <error>= 0) -
However, no insertion or update can be made to the unopened 
alternate key file. 

5 failure to provide sequential buffering. This warning occurs 
when sequential buffering is requested but exclusion mode = 
"share" is specified or the length of the sequential buffer is 
not sufficient to contain a data block from the file. The open 
succeeds, but normal system buffering is used. 

10 record already exists (file is open). For relative files, 
this error indicates that an attempt has been made to insert a 
record into an occupied position; for key-sequenced files, an 
attempt has been made to insert a record having a primary key 
field value duplicating that of an existing record in the 
file; for a file having alternate keys, an attempt has been 
made to insert a record having a key field duplicating that of 
an existing record and "key is unique" has been defined for 
the field. 

4-40 



ENSCRIBE FILE ACCESS 

11 record not in file (file is open}. This error can occur only 
when the READUPDATE or WRITEUPDATE procedures are called. For 
relative files, this error indicates that no record exists at 
the designated record number; for key-sequenced files, no 
record exists having the designated primary key field value; 
for files having alternate keys, no record exists having the 
designated key field value. 

21 invalid count specified. This error is returned for several 
reasons. At file creation, in particular, this error is 
returned for a key-sequenced file if the record length is 
greater then one-half the block length - 24, for other 
structured files if the record length is greater than block 
length - 24, and for files having alternate keys if an invalid 
alternate key length is specified. During file access, this 
error is returned if a key length value is specified that is 
not consistent with the definition of the key. In particular, 
an insertion of a zero length primary key or a partial 
alternate key was attempted or the length supplied to 
KEYPOSITION for the <compare length> value exceeds the length 
defined for the key field. 

46 invalid key specified. This error is returned for several 
reasons, some of which are: At file creation, a key field 
extends past the record length; for partitioned files, the 
partitions are not defined in ascending order of partial key 
field values; for alternate key files, either unique keys of 
differing lengths or unique and non-unique keys are defined 
for the same file. During file access, a <key specifier> was 
specified to KEYPOSITION that is not defined for the file; an 
attempt was made to position via an alternate key field for 
which the open previously failed; an attempt was made to 
update a non-existent record. 

47 key not consistent with file data. This error is returned if, 
for some reason (such as no disc space available), the 
alternate key file cannot be updated on an insert, update, or 
delete operation to the primary file 

72 attempt to access unmounted partition. This error is return 
if the volume on which the partition resides is not mounted or 
the partition does not exist (see warning 3). 

4-41 



ENSCRIBE FILE ACCESS 

Error Considerations for Key-Sequenced Files 

Users are cautioned that if a key-sequenced file is opened with a 
<sync depth> of zero, a failure occuring while a record is being 
inserted or updated may leave the structure of the file in an 
indeterminate state (and therefore inaccessible) • 

Error Considerations for Files having Alternate Keys 

Users are cautioned that if an application process opens a file having 
alternate keys with a <sync depth> of zero or opens with a non-zero 
<sync depth> but does not have a backup to complete an operation in 
case of a failure, a failure occuring while a record is being inserted 
or updated will have indeterminate results. It is possible in such 
cases for the insertion (or update) of the primary record to be 
successful but the insertion (or update) to the alternate key file to 
have not been made. In this instance both files will appear valid 
(i.e., their structures are intact); however, there will be no 
alternate key reference to the primary record. 

Error Considerations For Partitioned Files 

Each partition of a partitioned file is liable to get errors apart 
from other partitions of the file. This is especially significant for 
errors in the range of error numbers 42-45 as these are errors 
regarding disc space allocation. 

In any case, following a CCL (and possibly a CCG) return from a file 
management procedure call, the file management error number is 
obtained by calling the FILEINFO procedure and the partition number of 
the partition in error is obtained by calling the FILERECINFO 
procedure. The volume name of the partition in error can be obtained 
by examining the file's creation partition parameter array (either 
programmatically or via the FUP program) . 

For errors in the range of 42-45, it may be possible to alter the size 
characteristics of the partition where the error occurred by using the 
FUP program. 

4-42 



ENSCRIBE FILE ACCESS 

ACTION OF CURRENT KEY, KEY SPECIFIER, AND KEY LENGTH 

The following table is intended as a concise definition of file 
management operations and their relationships to file currency 
information. 

Table 4-3. Action of Current Key, Key Specifier, and Key Length 

Definitions: 
CKV = <current key value> 
CKS = <current key specifier> 
CKL = <current key length> 
CMPL = <compare length> 
MODE = <pos}tioning mode>: approx = 0 

primary 
next 

rip 
present 
keyseq 
entryseq 
relative 

keyf ield 

generic = 1 
exact = 2 

= 0 
= flag, if true, means that the next record in 

sequence is to be referenced 
= relative file insertion pointer 
= true if parameter is supplied 
= f iletype = 3 
= f iletype = 2 
= f iletype = 1 

record, specifier ) ; 

returns the value of the "specified" key field in the record. 
If not a key-sequenced file and specifier = 0, then a <record 
specifier> is returned. 

keylength ( record, specifier ) ; 

returns the length of the "specified" key field in the record. 
if record = 0 then returns the defined key field length. 

find (mode, specifier, key value, compare length) 

returns the position of the first record in the file according 
to mode, specifier, key value, and compare length. 

if mode = approx, positioning occurs to the first record whose 
key field, as designated by the <key specifier>, contains a 
value equal to or greater than <key>. If no such record 
exists, an end-of-file indication is returned {<error> = 1) 

if mode = generic, positioning occurs to the first record 
whose key field, as designated by the <key specifier>, 
contains a value equal to <key> for <compare length> bytes. 
If no such record exists, an end-of-file indication is 
returned (<error> = 1) 

4-43 



ENSCRIBE FILE ACCESS 

if mode = exact, positioning occurs to the first record whose 
key field, as designated by the <key specifier>, contains a 
value of exactly <compare length> bytes and is equal to <key>. 
If no such record exists, an end-of-file indication is 
returned (<error> = 1) 

findAnext (mode, specifier, key value, compare length) 

returns the position of the next record in the file according 
to mode, specifier, key value, and compare length. 

if mode is approximate, positioning occurs to the next record 
in the file 

if mode is generic, positioning occurs to the next record. If 
the key field, as designated by the <key specifier>, is not 
equal to <k~y> for <compare length> bytes, an end-of-file 
indication is returned 

if mode is exact, an end-of-file indication is returned. 

insert(key value, key length); 

returns the position where a record is to be added according 
the specified key value and key length. If a record already 
exists at the indicated position, a duplicate record indiction 
is returned~ For relative and entry-sequenced files, 
specifying a key value of -lD returns the position of the 
end-of-file and specifying a key value of -2D returns the 
position of the first available record. 

OPEN: 
CKS := primary; 
if keyseq then CKL := CMPL := 0 
else 

begin 
CKL := 4; 
CKV := rip := OD; 

end; 
MODE := approx; 
next := false; 

I 

I 
I 

~1 

4-44 



ENSCRIBE FILE ACCESS 

KEYPOSITION: 
CKV := rip := <key>; 
CKS := if present then <key specifier> else primary; 
CKL := CMPL := if present then <compare length> 

else keylength(O, CKS); 
MODE := if present then <positioning mode> else approx; 
next := false; 

POSITION: 
CKV := rip := <record specifier>; 
CKS := primary; 
CMPL := CKL := 4; 
MODE := approx; 
next := false; 

READ: 
position := if next then findAnext(MODE,CKS,CKV,CMPL) 

else find (MODE,CKS,CKV,CMPL); 
if <error> then return; 
record:= file[position]; 
CKV := keyfield (record,CKS); 
CKL := keylength(record,CKS); 
next := true; 

READUPDATE: 
position := find(exact,CKS,CKV,CKL); 
if <error> = 1 then <error> := 11; if <error> then return; 
record := file[position]; 

WRITEUPDATE: 
position := find(exact, CKS, CKV, CKL); 
if <error> = 1 then <error> := 11; if <error> then return; 
if <write count> = 0 then 

if entryseq then begin <error> := ##; return; end; 
else delete the record 

else file[position] := record; 

4-45 



ENSCRIBE FILE ACCESS 

WRITE: 

4-46 

if keyseq then 
begin 

position := insert(keyfield(record,prirnary), 
keylength(record,prirnary)); 

if <error> then return; 
file[positionl := record; 

end; 
if relative then 

begin 
if CKS then begin <error> := ##; return; end; 
if rip <> -20 and rip <> -10 and next then rip := rip + l; 
position := insert(rip,4); 
if <error> then return; 
file[position] := record; 
CKV := keyfield(record,prirnary); 
next := true; 

end; 
if entryseq then 

begin 
if CKS then begin <error> := ##; return; end; 
position := insert(-10,4); ! end-of-file 
file[position] := record; 
CKV := keyfield(record,prirnary); 
next := true; 

end; 



ACCESS EXAMPLES 

Using the following "CUSTOMER" Record: 

byte: 
[0] [34] [134] [136] 

ENSCRIBE FILE ACCESS 

[ 144] [ 152] 

"name" "address" "region" "curbal" "limit" 

i 
Primary 

Key 

INT .cust[0:75]; 

STRING 

I 
Alternate 

Key "RG" 

.scust := @cust '<<' l; 

FIXED(2) 
• fcust := @cust; 

DEFINE 
cust"len = 
cust"name = 
cust"name"len = 
cust"address = 
cust"address"len = 
cust"region = 

cust"region"len = 
cust"curbal = 
cust"limit = 

152#, 
scust#, 
34#, 
scust[34]#, 
100#, 
scust[l36]#, 

2#, 
fcust[l7]#, 
fcust[l8]#; 

Contents of the "CUSTOMER" File: 

customer record. 

byte addressable. 

fixed addressable • 

customer record length. 
name field. 
name field length. 
address field. 
address field length. 
region field: 

NO = northern, 
SO = southern, 
EA = eastern, 
WE = western. 

region field length. 
current balance field. 
credit limit field. 

"name" "address" "region" "curbal" "limit" 

ADAMS MIA..l'v1I, FL. so 0000.00 0500.00 
BROWN,A REEDLEY, CA. WE 0256.95 0300.0Q 
BROWN,B BOSTON, MA. EA 0301. 00 1000.00 
EVANS BUTTE, MT. WE 0010.00 OlQ0.00 
HARTLEY CHICAGO, IL. NO 0433.29 0500.00 
JONES DALLAS, TX. so 1234.56 2000.00 
KOTTER NEW YORK, NY. EA 0089.00 0500.00 
RICHARDS MINNI, MN. NO 0000.lJO 1J501L 00 
ROGERS BOISE, ID. WE 1024.00 lSITO. 00 
SANFORD L.A., CA. WE 0301. 00 1000.00 
SMITH DAYTON, OH. NO 0010.00 0500.00 

4-47 



ENSCRIBE FILE ACCESS 

Example 1. Action of Current Position 

• Position via primary key "ROGERS" 

key : = " "; 
key[l] ':=' key FOR custAnameAlen - l; 

blank the 
key. 

key ':=' "ROGERS"; 
CALL KEYPOSITION ( custAfnum, key); 

ADAMS MIAMI, FL. so 0000.00 0500.00 
BROWN,A REEDLEY, CA. WE 0256.95 0300.00 
BROWN,B BOSTON, MA. EA lfJOl .1JO 1000.00 
EVANS BUTTE, MT. WE 0010.00 0100.00 
HARTLEY CHICAGO, IL. NO 0433.29 0500.00 
JONES DALLAS, TX. so 1"2"3"4.56 -2iro-o • · o -er 
KOTTER NEW YORK, NY. EA 0089.00 0500.00 
RICHARDS MINNI, MN. NO 0000.00 0500.00 
ROGERS BOISE, ID. WE 1024.00 T500.U\J 
SANFORD L.A., CA. WE 0301. 00 1000.00 
SMITH DAYTON, OH. NO 0010.00 0500.00 

• Position via alternate key "RG" - "NO": 

key ':=' "NO"; 
CALL KEYPOSITION ( custAfnum, key, "RG"); 

BROWN,B BOSTON, MA. EA 0301.00 1000.00 
KOTTER NEW YORK, NY. EA 0089.00 0500.00 
HARTLEY CHICAGO, IL. NO 0433.29 0500.00 
RICHARDS MINNI, MN. NO 0000.00 0500.00 
SMITH DAYTON, OH. NO 0010.00 0500.00 
ADAMS MIAMI, FL. so 0000.00 0500.00 
JONES DALLAS, TX. so 1234.56 2000.00 
BROWN REEDLEY, CA. WE 0256.95 0300.00 
EVANS BUTTE, MT. WE 0010.00 0100.00 
ROGERS BOISE, ID. WE 1024.00 1500.00 
SANFORD L.A., CA. WE 1J301. 00 1000.00 

4-48 

<- current 
<- next of 

subset 

<- current 
<- next of 

subset 



ENSCRIBE FILE ACCESS 

Example 2. Approximate Subset by Primary Key Following Open 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

cust"'eof := O; 
WHILE NOT cust"'eof DO 

BEGIN ! read loop. 
CALL READ (cust"'fnum, cust, cust"'len); 
IF > THEN cust"'eof := 1 
ELSE 

IF< THEN ••• ! error. 
ELSE 

BEGIN ! process the record. 

END; 
END; ! read loop. 

Primary 
I 

Key 

v 

ADAMS MIAMI, FL. 

BROWN,A REEDLEY, CA. 

I BROWN,B BOSTON, MA. 

EVANS BUTTE, MT. 

HARTLEY CHICAGO, IL. 

JONES DALLAS, TX. 

KOTTER NEW YORK, NY. 

SMITH DAYTON, OH. 

ROGERS BOISE, ID. 

SANFORD L.A., CA. 

SMITH DAYTON, OH. 

EOF 

so 0000.00 

WE 0256.95 

EA 0301. 00 

WE 0010.00 

NO 0433.29 

so 1234.56 

EA 0089.00 

NO 0010.00 

WE 1024.00 

WE 0301. 00 

NO 0010.00 

0500.00 

0300.00 

1000.00 

0100.00 

0500.00 

2000.00 

0500.00 

0500.00 

1500.00 

1000.00 

0500.00 

4-49 



ENSCRIBE FILE ACCESS 

Example 3. Approximate Subset by Alternate Key 

Key specifier = "RG". 

CALL KEYPOSITION ( cust"'fnum, key, "RG" ) ; 
! position to first record. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

cust"'eof := O; 
WHILE NOT cust"'eof DO 

BEGIN ! read loop. 
CALL READ (cust"'fnum, cust, cust"'len); 
IF > THEN cust"'eof := 1 
ELSE 

IF < THEN ••• ! error. 
ELSE 

BEGIN process the record. 

END; 
END; ! read loop. 

Alternate 
"RG" 
I 
v 

BROWN,B BOSTON, MA. EA 

KOTTER NEW YORK, NY. EA 

HARTLEY CHICAGO, IL. NO 

RICHARDS MINNI, MN. NO 

SMITH DAYTON, OH. NO 

ADAMS MIAMI, FL. so 

JONES DALLAS, TX. so 

BROWN REEDLEY, CA. WE 

EVANS BUTTE, MT. WE 

ROGERS BOISE, ID. WE 

SANFORD L.A., CA. WE 

EOF 

Key 

0301.00 

0089.00 

0433.29 

0000.00 

0010.00 

0000.00 

1234.56 

0256.95 

0010.00 

1024.00 

0301. 00 

4-50 

1000.00 

0500.00 

0500.00 

0500.00 

0500.00 

0500.00 

2000.00 

0300.00 

0100.00 

1500.00 

1000.00 



Example 4. Generic Subset by Primary Key 

Primary key value = "BROWN". 

key ~:=~ "BROWN"; 
compareAlen := 5; 

ENSCRIBE FILE ACCESS 

CALL KEYPOSITION ( custAfnum, key, ,compareAlen ,generic ) ; 

1 

2 

custAeof := O; 
WHILE NOT custAeof DO 

BEGIN ! read loop. 
CALL READ (custAfnum, cust, custAlen) ; 
IF > THEN custAeof := 1 ! end-of-file. 
ELSE 

IF < THEN . • • ! error. 
ELSE 

BEGIN process the record. 

END; 
END; ! read loop. 

BROWN,A REEDLEY, CA. 

BROWN,B BOSTON, MA. 

WE 0256.95 

EA 0301. 00 

3 EOF 

0300.00 

1000.00 

4-51 



ENSCRIBE FILE ACCESS 

Example 5. Exact Subset By Primary Key 

key := " "; 
key[l] ~:=~ key FOR custAnameAlen - l; 

key ~:=~ "SMITH"; 

blank the 
key. 

CALL KEYPOSITION ( custAfnum, key,,, exact) i 

1 

custAeof := 0; 
WHILE NOT custAeof DO 

BEGIN ! read loop. 
CALL READ (custAfnum, cust, custAlen) ; 
IF > THEN custAeof := 1 ! end-of-file. 
ELSE 

IF< THEN .•. ! error. 
ELSE 

BEGIN process the record. 

END; 
END; ! read loop. 

SMITH DAYTON, OH. NO 0010.00 

2 EOF 

4-52 

0500.00 



ENSCRIBE FILE ACCESS 

Example 6. Exact Subset by Non-Unique Alternate Key 

1 

2 

3 

key ~:=~ "NO"; 
CALL KEYPOSITION cust"'fnum, key, "RG",, exact ) ; 

cust"'eof := O; 
WHILE NOT cust"'eof DO 

BEGIN ! read loop. 
CALL READ (cust"'fnum, cust, cust"'len) ; 
IF > THEN cust"'eof := 1 ! end-of-file. 
ELSE 

IF < THEN • • • ! error. 
ELSE 

BEGIN process the record. 

END; 
END; ! read loop. 

HARTLEY CHICAGO, IL. 

RICHARDS MINNI, MN. 

SMITH DAYTON, OH. 

NO 0433.29 

NO 0000.00 

NO 0010.00 

4 EOF 

0500.00 

0500.00 

0500.00 

4-53 



ENSCRIBE FILE ACCESS 

Example 7. Insert of a Record to a Key-Sequenced File 

Record to be inserted = 

HEATHCLIFF PORTLAND, OR. I WE I 0000. 00 I 0500. 00 I 

cust := " "; 
cu st [ 1] , : =, cu st FOR (cu st"" 1 en + 1 ) / 2 ; 

cust""name 
, , 

"HEATHCLIFF"; := 
cust""address 

, , 
"PORTLAND, OR. II • := I 

cust""region 
, , 

"WE"; := 
cust""curbal := O.OOF; 
cust""limit := 500.00F; 

CALL WRITE (cust""fnum, cust, cust""len) ; 
IF <> THEN • • • ! error. 

"CUSTOMER" File After Insert 

Blank the customer 
record. 

insert the new record. 

"name" "address" "region" "curbal" "limit" 

ADAMS MIAMI, FL. so 0000.00 0500.00 
BROWN,A REEDLEY, CA. WE 0256.95 0300.00 
BROWN,B BOSTON, MA. EA 0301. 00 1000.00 
EVANS BUTTE, MT. WE 0010.00 I 0100.00 I 

I HARTLr.;Y CHICAGO, IL. NO --04·:-n. 29 0500.00 
L 

HEATHCLIFF PORTLAND, OR. WE 0000.00 0500.00 <-inserted 
JONES DALLAS, TX. so 1234.56 2000.00 
KOTTER NEW YORK, NY. EA 0089.00 0500.00 
RICHARDS ·-1----

t-· 0000. 00 0500.00 MINNI, MN. NO 
ROGERS BOISE, ID. WE 1024.00 1500.00 
SANFORD L_. A., CA. WE 0301. 00 1000.00 
SMITH DAYTON, OH. NO 0010.00 0500.00 

4-54 



ENSCRIBE FILE ACCESS 

Example 8. Random Update 

EVANS BUTTE, MT. WE 0010.00 0100.00 
HARTLEY CHICAGO, IL. NO 0433.29 0500.00 
JONES DALLAS, TX. so 1234.56 2000.00 

key : = II II i 
key[l] ':=' key FOR custAnameAlen - l; 

blank the 
key. 

key':=' "HARTLEY"; 
CALL KEYPOSITION (custAfnum, key) i 
IF<> THEN ..• 
CALL READUPDATE (custAfnum, cust, custAlen) i 
IF<> THEN ••• 

HARTLEY CHICAGO, IL. NO 0433.29 
. 

custAcurbal := custAcurbal + 30.00F 

CALL WRITEUPDATE (custAfnum, cust, custAlen) i 
IF<> THEN ••. 

HARTLEY CHICAGO, IL. NO 0463.29 

0500.00 

0500.00 

4-55 



ENSCRIBE FILE ACCESS 

Example 9. Random Update to Non-Existent Record 

Record to be updated = "BROWN, C" 

ADAMS MIAMI, FL. so 0000.00 051HY. 00 
BROWN,A REEDLEY, CA. WE 0256.95 0300.00 
BROWN,B BOSTON, MA. EA 0301.00 1000.00 
EVANS BUTTE, MT. WE 0010.00 1noo. oo 

key : = II II i 
key[l] ~:=~ key FOR custAnameAlen - l; 

blank the 
key. 

key~:=~ "BROWN,C"; 
CALL KEYPOSITION (custAfnum, key) ; 
IF<> THEN •.. 
CALL READUPDATE (custAfnum, cust, custAlen) ; 
IF < THEN 

BEGIN 
CALL FILEINFO (custAfum, error) ; 
IF error= 11 THEN .• ! record not found. 

4-56 



ENSCRIBE FILE ACCESS 

Example 10. Sequential Reading via Primary Key with Updating 

The "limit" for each record having a "limit" >= 1000.00 and <= 2000.00 
is raised to 2000.00. 

compareAlen := O; 
CALL KEYPOSITION ( custAfnum, key, , compareAlen); 

! position to first record via primary key. 
custAeof := O; 
WHILE NOT custAeof DO 

BEGIN ! read loop. 
CALL READ ( custAfnum, cust, custAlen); 
IF > THEN custAeof := 1 
ELSE 

IF< THEN ••. ! erroro 
ELSE 

BEGIN ! process the record. 
IF custAlimit >= 1000.00F AND custAlimit <= 2000.00F THEN 

BEGIN 
custAlimit := 2000.00F; 
CALL WRITEUPDATE ( custAfnum, cust, custAlen ) ; 
IF< THEN ••. ! error. 

END; 
END; 

END; ! read loop. 

ADAMS MIAMI, FL. 
BROWN,A REEDLEY, CA. 
BROWN,B BOSTON, MA. 
EVANS BUTTE, MT. 
HARTLEY CHICAGO, IL. 
JONES DALLAS, TX. 
KOTTER NEW YORK, NY. 
RICHARDS MINNI, MN. 
ROGERS BOISE, ID. 
SANFORD L.A., CA. 
SMITH DAYTON, OH. 

so 0000.00 
WE 0256.95 
EA 0301. 00 
WE 0010.00 
NO 0463.29 
so 1234.56 
EA 0089.00 
NO 0000.00 
WE 1024.00 
WE 0301. 00 
NO 0010.00 

"limit" 

0500.00 
0300.00 
2000.00 
0100.00 
0500.00 
2000.00 
0500.00 
0500.00 
2000.00 
2000.00 
0500.00 

<- updated 

<-updated 
<-updated 

4-57 



ENSCRIBE FILE ACCESS 

Example 11. Random Deletion via Primary Key 

Primary key = "EVANS" 

BROWN,B BOSTON, MA. EA 0301. 00 200-0.0TI 
EVANS BUTTE, MT. WE 0010.00 0100.00 
HARTLEY CHICAGO, IL. NO 0463.29 osrro.-oo 

key :.= " " ; 
key[l] .. := .. key FOR custAnameAlen - l; 

blank the 
key. 

key .. := .. "EVANS" 
CALL KEYPOSITION {custAfnum, key) ; 
IF<> THEN ••• 
CALL WRITEUPDATE (custAfnum, cust, 0); 
IF<> THEN ••• 

BROWN,B BOSTON, MA. EA 
HARTLEY CHICAGO, IL. NO 

4-58 



ENSCRIBE FILE ACCESS 

Example 12. Sequential Reading via Primary Key with Deletions 

Each record having a "curbal" value of 0.00 is deleted. 

CALL KEYPOSITION custAfnum, key, , 0) ; position to first 
record via primary 
key. 

custAeof := O; 
WHILE NOT custAeof DO 

BEGIN ! read loop. 
CALL READ ( custAfnum, cust, custAlen); 
IF > THEN custAeof := 1 
ELSE 

IF < THEN • • . ! er r or • 
ELSE 

BEGIN ! process the record. 
IF custAcurbal = O.OOF THEN 

BEGIN 
CALL WRITEUPDATE ( custAfnum, cust, 0 ) ; 
IF < THEN . . • ! error. 

END; 
END; 

END; ! read loop. 

BROWN,A REEDLEY, CA. 
BROWN,B BOSTON, MA. 
HARTLEY CHICAGO, IL. 
JONES DALLAS, TX. 
KOTTER NEW YORK, NY. 
ROGERS BOISE, ID. 
SANFORD L.A., CA. 
SMITH DAYTON, OH. 

"curbal" 

WE 0256.95 0300.00 
EA 0301. 00 2000.00 
NO 0463.29 0500.00 
so 1234.56 2000.00 
EA 0089.00 0500.00 
WE 1024.00 2000.00 
WE 0301. 00 2000.00 
NO 0010.00 0500.00 

4-59 



ENSCRIBE FILE ACCESS 

Example 13. Positioning with a Relative or Entry-Sequenced File 

For the following declarations 

INT(32) 
recAaddr; 

STRING 
primaryAkey = recAaddr; 

positioning by primary key is done with: 

CALL POSITION (fnum, recAaddr); 

positioning to end-of-file is done with: 

recAaddr := -10; 

CALL POSITION (fnum, -10); 

and the current primary key value (current position) can be obtained 
with either: 

or 

CALL FILERECINFO (fnum,,,,primaryAkey); 

4-60 



ENSCRIBE FILE ACCESS 

Example 14. Sequential Read of a Relative or Entry-Sequenced File 

The read begins at the beginning of the file. 

CALL OPEN (fileAname, fnum, •• ); 

eof := O; 
WHILE NOT eof DO 

BEGIN ! read loop. 
CALL READ (fnum, buffer, len, numread); 
IF > THEN eof := 1 
ELSE 

IF< THEN ••• ! error. 
ELSE 

BEGIN process the record. 

END; 
END; ! read loop. 

Note that the preceding statements are functionally identical to 
the example for sequential access of a key-sequenced file via its 
primary key. 

Example 15. Insert to a Specific Position in a Relative File 

CALL POSITION (fnum, 12345D); 
CALL WRITE (fnum, buffer, count); 
IF < THEN 

BEGIN 
CALL FILEINFO (fnum, error) ; 
IF error= 10 THEN •.• ! record already exists at 12345D. 

END; 

4-61 



ENSCRIBE FILE ACCESS 

Example 16. Append to the end of a Relative File 

CALL POSITION (fnum, -lD); 
WHILE 1 DO 

BEGIN 

buffer ':=' data FOR (count + 1)/2; 

prepare a record to be written. 

CALL WRITE (fnum, buffer, count); 
IF <> THEN ! error. 

CALL FILERECINFO (fnum,,,,primaryAkey); 

END; 

returns the <record number> of where the new record is 
appended. 

Example 17. Insert to Empty Positions in a Relative File 

CALL POSITION (fnum, -2D); 
WHILE l DO 

4-62 

BEGIN 

buffer ':=' data FOR (count+ 1)/2; 

CALL WRITE (fnum, buffer, count); 
IF <> THEN ! error. 

CALL FILERECINFO (fnum,,,,primaryAkey); 

END; 

returns the <record number> of where the new record is 
appended. 



ENSCRIBE FILE ACCESS 

Example 18. Append Records to an Entry-Sequenced File 

WHILE 1 DO 
BEGIN 

buffer ~:=~ data FOR (count + 1)/2; 

CALL WRITE (fnum, buffer, count); 
IF <> THEN • • . ! error. 

END; 

4-63 



ENSCRIBE FILE ACCESS 

RELATIONAL PROCESSING EXAMPLE 

An "ORDER" Record: 

byte: 
[0] 

"orderno" 

I 

[2] 

"name" 

I 

[38] 

"date" 

T 

[ 46] 

"total" 

Primary 
Key 

Alternate Alternate 
Key "NA" Key "DT" 

INT .order[0:26]; 

STRING 
.sorder := @order ~<<~ l; 

INT .orderAorderno = order; 

DEFINE 
order Alen = 54#, 
order A name = sorder[2]#, 
orderAnameAlen = 36#, 
orderAdate = sorderhrd[38]#, 
orderAdateAlen = 8#; 

FIXED(2) 
.order A total := @order [23]; 

Contents of the "ORDER" File: 

"orderno" "name" "date" "total" 

SMITH 76/09/30 0000.00 
JONES 76/10/01 0000.00 
BROWN,B 76 10/17 0000.00 
ADAMS 76/10/17 0000.00 
SANFORD 0000.00 
ROGERS 0000.00 
EVANS 76/11/05 0000.00 
SMITH 76/11/08 0000.00 

..L RICHARD 
0622 HARTLEY 
0623 KOTTER 

4-64 

[ 54] 

order record. 

byte addressable. 

order number field. 

order record length. 
name field. 
name field length. 
date field. 
date field length. 

total field. 
"total" = 0 means 
order not filled. 
"total" <> 0 means 
order filled but not 
shipped. 



An "ORDER DETAIL" Record: 

byte: 
[0] [2] 

. . 
"orderno" : "itemno" . . 

i 
Primary 

Key 

INT .orderdet[0:7]; 

INT(32) 
.orderdetAorditem 

DEFINE 
orderdetAlen 
orderdetAorderno 
orderdetAitemno 
orderdetApartno 
orderdetAqty 

FIXED(2) 
.orderdetAitemtot 

[4] [6] 

:= 

= 
= 
= 
= 
= 

:= 

"partno" 

i 
Alternate 

Key "PN" 

@orderdet; 

16#, 
orderdet#, 

"qty" 

orderdet[l]#, 
orderdet[2]#, 
orderdet[3]#; 

@orderdet[4]; 

Contents of the "ORDER DETAIL" File: 

"orderno":"itemno" "partno" "qty" "itemtot" 

0020 0001 23167 00002 0000.00 
0020 0002 02010 00001 0000.00 
0020 0003 12950 00005 0000.00 
0021 0001 00512 00022 0000.00 

23167 00001 0000.00 
0176 0001 32767 00001 0000.00 
0180 0001 12950 00005 0000.00 
0180 . 002 32767 00022 0000.00 . . 
0180 0003 23167 00002 0000.00 
0410 0001 01234 00010 0000.00 

0 0000.00 

0623 0012 01234 00010 0000.00 

ENSCRIBE FILE ACCESS 

[ 8] [16] 

"itemtot" 

order detail record. 

order-item field. 

order record length. 
order number subfield. 
item number subfield. 
part number field. 
quantity field. 

item total field. 
total = 0 means item 
not available. 

4-65 



ENSCRIBE FILE ACCESS 

An "INVENTORY" Record: 

byte: 
[O] [2] [ 32] [40] [42] [ 46] [ 54] 

, "partno" "descr" I "price" "availqty" "loc" 1 "vendor" 

Primary 
Key 

I NT . in v [ 0 : 2 7 ] ; 

STRING 
.sinv := @inv '<<' l; 

DEFINE 
inv"len 
inv"partno 
inv"descr 
inv"descr"len 
inv"availqty 
inv"location 
inv"location"len 
inv"vendor 
inv"vendor"len 

FIXED ( 2) 

= 
= 
= 
= 
= 
= 
= 
= 
= 

.inv"price := @inv[l6]; 

54#, 
inv#, 

Alternate 
Key "AQ" 

sinv[2]#, 
30#, 
inv[20]#, 
sinv[42]#, 
4#, 
sinv[46]#, 
8#; 

Contents of "INVENTORY" file: 

Alternate 
Key "LO" 

Alternate 
Key "VN" 

inventory record. 

byte addressable. 

inventory record length. 
part number field. 
part description field. 
description field length. 
avail. quantity field. 
location field. 
location field length. 
vendor field. 
vendor field length. 

price field. 

"partno" "descr" "price" "availqty" "loc" "vendor" 

00002 HI-FI 0129.95 00050 AOlTIAYLOR 
00512 RADIO 0010.98 00022 GlO GRAND 
009--s/ TV SET -a-iao. ou -uorzz A76 TAYLOR 
02010 TOASTER 0022.50 00000 F22 ACME 
03379 CLOCK 0011. 75 00512 A32 ZARF 
T2950 TOASTER 0020.45 00·010 C98 SMYTHE 
20211 WASHER 0314.29 00005 B44 SOAPY 

4-66 



ENSCRIBE FILE ACCESS 

The following example finds orders greater then one month old and 
fills them: 

This involves the following steps 

1. Reading the "order" file sequentially via the date field. 

2. When an order is found that must be filled, the corresponding 
"customer" record is read (random processing) and an order header 
consisting of customer name and address is printed. 

3 Next, the generic subset in the "order detail" file corresponding 
to the current "orderno" is read sequentially. 

4. For each line item (i.e., record in the generic subset), the 
"inventory" file is read and updated (random processing), the line 
item record is updated, and the line item is printed. 

5. When all line items for the current order have been processed, the 
order record is updated with the total price of the order. Then 
the customer current balance is updated and the total are printed. 

4-67 



ENSCRIBE FILE ACCESS 

The example code is 

compareAlen := 0; 
! position to beginning of file via date field. 
CALL KEYPOSITION (orderAfnum,key,"DT",compareAlen) i 
orderAeof := O; 
WHILE NOT orderAeof DO 

4-68 

BEGIN ! reading order file via date field. 
CALL READ (orderAfum, order, orderAlen); 
IF > OR orderAdate >= limitAdate THEN orderAeof := 1 
ELSE 

BEGIN ! fill order. 
! read customer file. 
CALL KEYPOSITION {custAfnurn, orderAname) i 
CALL READUPDATE {custAfnum, cust, custAlen) ; 
PRINT (order header) ; 
! read order detail file for current order. 
compareAlen := 2; 
CALL KEYPOSITION (orderdetAfnum,orderAorderno,, 

compareAlen, generic); 
orderdetAeof := O; 
WHILE NOT orderdetAeof DO 

BEGIN 
! read line item. 
CALL READ (orderdetAfnum, orderdet, orderdetAlen); 
IF > THEN orderdetAeof := 1 
ELSE 

END; 

BEGIN 
CALL KEYPOSITION {invAfnum, orderdetApartno); 
CALL READUPDATE {invAfnum, inv, invAlen); 
! update inventory record 
CALL WRITEUPDATE (invAfnum, inv, invAlen); 
! update order detail record 
CALL WRITEUPDATE (orderdetAfnum, orderdet, 

ordetlen) ; 
! print the line item 
PRINT {line item) 

END; 

! update the order file 
CALL WRITEUPDATE (orderAfnum, order, orderAlen); 
! update the customer file. 
CALL WRITEUPDATE (custAfnum, cust, custAlen) i 

PRINT {total); 
END; ! of fill order. 

END; ! of read order file via date field. 



ENSCRIBE FILE ACCESS 

Records and files used to fill the first order: 

From the "ORDER" file -

0020 SMITH I 76/09/30 I 0000.00 

From the "CUSTOMER" file -

SMITH DAYTON, OH. I NO I 0010.00 0500.00 

From the "ORDER DETAIL" file -

0020 . 0001 23167 00002 0000.00 . 
0020 . 0002 02010 00001 0000.00 . 
0020 . 0003 12950 00005 0000.00 . 

From the "INVENTORY" file -

23167 ANTENNA 0022.50 00008 AOl TAYLOR 

02010 TOASTER 0022.50 00000 F22 ACME 

12950 TOASTER 0020.45 00010 C98 SMYTHE 

Records and files after filling the first order: 

From the "ORDER" file -

uu~u 
I ... ,,. ,,,...._,... ,.,,..,.," I ", ~.., "tr:: 
I 10/U~/JV I v~~,.~J 

From the "CUSTOMER" file -

SMITH DAYTON, OH. I NO I 0157.25 I 0500.00 

From the "ORDER DETAIL" file -

0020 . 0001 23167 00000 0045.00 . 
0020 : 0002 02010 00001 0000.00 <- not filled 
0020 : 0003 12950 00000 0102.25 

From the "INVENTORY" file -

23167 ANTENNA 0022.50 00006 AOl TAYLOR 

02010 TOASTER 0022.50 00000 F22 ACME <- none 

12950 TOASTER 0020.45 00005 C98 SMYTHE 

4-69 





SECTION 5 

ENSCRIBE FILE CREATION 

Files on a disc must be created before being opened for access. This 
section discusses the concepts necessary for choosing appropriate 
parameters when creating a disc file. 

Characteristics of ENSCRIBE file creation: 

• An ENSCRIBE file is created through use of the Tandem-supplied FUP 
program or through a programmatic call to the CREATE procedure. 
The DDL compiler will optionally generate a FUP command file that 
can be used to create files described by the DDL data base source 
schema. 

• All partitions of a multi-volume file are automatically created 
when the first partition is created. 

• For each structured file having one or more alternate key fields, 
the user must create the associated alternate key file(s). An 
alternate key file is created as a key-sequenced file. 

The following topics must be considered when creating an ENSCRIBE 
disc file: 

• File Type 

• File Code 

• Extents 

• Logical Records 

• Blocks 

• Characteristics of Key-Sequenced Files 

• Characteristics of Structured Files having Alternate Keys 

• Characteristics of Partitioned (Multi-Volume) Files 

5-1 



ENSCRIBE FILE CREATION 

CONSIDERATIONS FOR BOTH STRUCTURED AND UNSTRUCTURED FILES 

This qection describes file creation parameters common to all file 
types. 

File Type 

There are four file types: 

• Key-Sequenced 

• Relative 

• Entry-Sequenced 

• Unstructured 

Key-Sequenced Files 

A key-sequenced file consists of a set of variable length records. 
Each record is uniquely identified among other records in a 
key-sequenced file by the value of its primary key field. Records in 
a key-sequenced file are logically stored in order of ascending 
primary key values. 

Relative Files 

A relative file consists of a set of fixed length records. Each 
record is uniquely identified among other records in a relative file 
by a record number; a record number denotes an ordinal position in a 
file. The first record in a relative file is designated by record 
number zero; succeeding records are designated by ascending record 
numbers in increments of one. A record occupies a position in a file 
whether or not the position has been written in. 

Entry-Sequenced Files 

An entry-sequenced file consists of a set of variable lenqth records. 
Records inserted in an entry-sequenced file are always appended to 
the end-of-file and, therefore, are physically ordered by the 
seqµence presented to the system. 

5-2 



ENSCRIBE FILE CREATION 

Unstructured Files 

An unstructured disc file is essentially a byte array, starting at 
byte zero and continuing to the last byte of the file, marked by the 
end-of-file pointer. The file system imposes no stucture on an 
unstructured disc file. How data is grouped into records and where 
records are located within the file is the responsibility of the 
application process. Unstructured files are accessed on the basis of 
a relative byte address. The current location in a file, the current 
rba, is automatically incremented by the file system following a READ 
or a WRITE. The application process can position to a specific 
location within the file by supplying the file system an rba with the 
POSITION procedure. Following a call to POSITION, the application 
process can issue any other file management call (READ, WRITE, 
READUPDATE, etc.). 

Extents 

Physical storage for a disc file is allocated by the file system in 
the form of discontiguous file extents. A file extent itself is a 
contiguous block of storage, starting on a sector boundary, containing 
a multiple of 2,048 bytes. The file system permits a maximum of 16 
file extents to be allocated to a file. 

The first extent of the file is called the "primary extent." Its size 
may be different from the size of extents 1-15, which are called 
"secondary extents." This allows a file to be created having a large 
primary extent to contain all the data to be initially placed in the 
file, and smaller secondary extents so that as the file grows, a 
minimum amount of disc space is allocated. 

File Code 

An application-defined file code can be assigned to a disc file at 
creation time. The file code is typically used to categorize files by 
the information they contain. File codes 100 through 999 are reserved 
for use by Tandem Computers, Inc. 

5-3 



ENSCRIBE FILE CREATION 

Partitioned (Multi-Volume) Files 

A file may be partitioned into up to 16 disjoint sub-files each of 
which resides on a different volume. Moreover, each volume can 
be on a different node in a network. 

After a partitioned file is created, the fact that it resides on more 
than one volume (and perhaps on more than one node) is transparent to 
the application program. The entire file is opened for access by 
supplying the name of the primary partition to OPEN. Attempts to 
separately open secondary partitions of the file are rejected, except 
when using unstructured access, which deals with only one partition 
(see Unstructured Access under OPEN considerations for details). 

Partitioned files can be of value for a number of reasons. The most 
obvious one is that a file may be created whose size is not limited by 
the size of a physical disc pack. In addition, by spreading a file 
across more that one volume, the concurrency of access to records in 
the file can be increased. If the file is located on multiple volumes 
on the same controller, the operating system will take advantage of 
the controller's overlapped seek capability (i.e. many drives may be 
seeking while one is transferring). If the file spans volumes 
connected to different controllers on the same processor, overlapping 
transfers will occur (up to the limit of the i/o channel bandwidth). 
And if the file resides on volumes connected to controllers on 
different processors, the system will perform overlapped processing of 
requests and overlapped transfers not limited by the bandwidth of a 
single i/o channel. 

VOLUME NAME. Each partition has a directory entry on the volume on 
which it resides. The file names for all partitions are identical 
except for the difference of the volume name. 

EXTENTS FOR PARTITIONED FILES. Each partition may have a different 
primary and secondary extent size. 

PARTIAL KEY VALUE. For key-sequenced files, a "partial key value" of 
from one to <partial key length> bytes is supplied for each partition. 
All records with keys greater or equal to the partition's key but less 
than the next partition's key are assigned to the partition. The 
partial key for the primary partition is a string of all nulls. 

For file types other than key-sequenced, the extent sizes of a 
partition and its order in the partition parameter list determines 
which records are located in that partition. 

5-4 



ENSCRIBE FILE CREATION 

CONSIDERATIONS FOR STRUCTURED FILES 

This section describe ENSCRIBE facilities that only apply to 
structured files (key-sequenced, relative, and entry-sequenced files) • 

Logical Records 

A logical record is the unit of information which is transferred 
between an application program and the file system. For each file, a 
maximum logical record length must be specified. If an application 
program attempts to insert a record longer than the specified record 
length, the insert operation is rejected with an "illegal count" 
error. 

Record length is determined by the needs of the application within 
the following guidelines: 

• Records in a file can be of varying lengths but cannot be larger 
than the <record length> defined at file creation. 

• The maximum possible record size is determined by the specified 
data block size. For relative and entry-sequenced files, the 
maximum record length cannot exceed <data block size> - 24. This 
means that for relative and entry-sequenced files with a data block 
size of 4096 (the maximum), the maximum record length is 4072. For 
key-sequenced files, the maximum record length cannot exceed 
1/2 * {<data block size> - 26). This means that for key-sequenced 
files with a data block size of 4096, the maximum record length is 
2035. 

Blocks 

The block is the unit of information which is transferred between the 
file system and a disc volume. A block consists of one or more 
logical records and associated control information {the control 
information is used only by the system) . 

The following points should be considered when choosing a structured 
file's block length: 

• Block length must be a multiple of sector size {512 bytes) and can 
not be greater than 4096 bytes. 

• Regardless of the record length, the maximum number of records that 
can be stored in a single block is 511. 

5-5 



ENSCRIBE FILE CREATION 

• Block length must include 22 bytes for block control and 2 bytes 
per record for record control. Therefore the number of records per 
block is 

N = (B - 22) I (R + 2) 

where B is <block length> and R is <record length>. If records are 
of varying lengths, then N is the average number of records per 
block and R is given as the average record length. 

Records may not span blocks. Therefore the block length must be at 
least <record length> + 2 + 22. 

For key-sequenced files, the data block size determines the maximum 
record length that can be defined for the file; the record length 
cannot exceed 1/2 * (<data block size> - 26). 

Considerations for Key-Sequenced Files 

Considerations for key-sequenced files include: 

• Compression 

• Primary Key 

• Index Blocks 

COMPRESSION. An optional "front compression" technique is provided so 
that more data can be stored in a given disc area, thereby reducing 
the number of head repositionings. 

ENSCRIBE accomplishes front compression by eliminating leading 
characters that are duplicated from one record to the next. Instead, 
a count of duplicate characters is written in the first byte of the 
record, 

For example, if following three records are inserted in a file 

JONES, JANE 
JONES, JOHN 
JONES, SAM 

the following is actually written on the disc 

5-6 

OJONES, JANE 
BOHN 
?SAM 
A 

I 
count of duplicate characters. 



ENSCRIBE FILE CREATION 

The following should be considered when deciding if compression should 
be used: 

• If compression is used, one additional byte per record may be 
required in each block. Moreover, there is additional system 
processing required to expand the compressed records. 

• If data compression is used, the record~s primary key field must 
begin at offset [O] of the record. Therefore, variable length 
primary keys cannot be used unless the entire record is the primary 
key field. 

• If there is considerable similarity among the record~s primary key 
values then data compression is desireable. If not, then 
compression just adds unnecessary system overhead. 

• If there is enough similarity among records that the first records 
of successive blocks have similar primary key values, then index 
compression is desireable. 

• Data compression is useful for alternate key files where several 
alternate keys tend to have the same value. 

PRIMARY KEY. For a key-sequenced file, the offset in the record where 
the primary key field begins and the length of key field must be 
specified. 

Some considerations when choosing the offset of the primary key field: 

• The primary key field can begin at any offset within a record and 
can be of any length up to 

$min(<record length> minus <offset>, 255) 

• If data compression is to be used, then the primary key field must 
be at the beginning of the record. 

• If the primary key field is the trailing field in the record, the 
the primary key values can be of variable lengths. 

5-7 



ENSCRIBE FILE CREATION 

• If the key field is to be treated as a data type other than 
STRING, the <offset> should be chosen so that the field begins on 
on a word boundry. 

INDEX BLOCKS. The length, in bytes, of a file's index blocks must be 
specified. The length must be a multiple of 512 and may not be 
greater than 4096. 

Some considerations when choosing the index block length are 

• If not specified, the index block length defaults to the data block 
length. 

• Longer index blocks require more space in the Cache buffer. 
However, a longer index block may reduce the number of indexing 
levels and, therefore, accesses to the disc. 

Considerations for Files Having Alternate Keys 

Considerations for files having alternate keys include: 

• Key Specifier 

• Key Off set and Length 

• Null Value 

• No Automatic Update 

• Alternate Key File(s) 

• Unique Alternate Keys 

KEY SPECIFIER. To identify a particular key field as an access path 
when positioning, each key field must be uniquely identified among 
other key fields in a record by a two-byte "key specifier". The key 
specifier for primary keys is pre-defined as ASCII "<null><null>" 
(binary zero). Key specifiers for alternate key fields are 
application-defined and must be supplied when the primary file is 
created. 

5-8 



ENSCRIBE FILE CREATION 

KEY OFFSET AND LENGTH. The offset in the record where the alternate 
key field begins and the length of key field must be specified for 
each alternate key. 

Some considerations when choosing the offset of an alternate key 
field: 

• An alternate key field can begin at any offset in the record and 
can be any length up to <record length> minus <offset>. 

• Alternate key fields can overlap each other and the primary key 
field of a key-sequenced file. 

• Alternate key fields are fixed length but need not be written when 
inserting or updating a record. 

• If any part of a given alternate key field is present when 
inserting or updating a record, the entire field must be present. 

• If the key field is to be treated as a data type other than 
STRING, the <offset> should be chosen so that the field begins on 
a word boundry. 

NULL VALUE. Any alternate key can be assigned a "null" value. When a 
record is inserted, if each byte in such an alternate key field 
contains the "null" value, the alternate key reference is not added to 
the alternate key file. In the case of an update, if such an 
alternate key field is changed so that it contains only bytes of the 
"null" value, the alternate key reference is deleted from the 
alternate key file. 

If the file is read sequentially via such an alternate key, records 
containing the null value will not be found. Instead, the record 
returned (if any) is the next record in the access path not having the 
null value in the alternate key field. 

The most common "null" values are ASCII blank (%40) and binary 0. 

5-9 



ENSCRIBE FILE CREATION 

NO AUTOMATIC UPDATE. The data base designer can designate that the 
alternate key file contents for an alternate key not be automatically 
updated by the system when the value of an alternate key field 
changes. 

Some reasons for not having automatic updating by the system are: 

• Certain fields may not be referenced until a later date. Therefore, 
they can be updated in a "batch" {one pass) mode more efficiently. 

• A field may have multiple "null" values. In this case, the 
application program must have the alternate key file open 
separately. The program must determine whether or not the field 
contains a "null" value. If it does not, the application program 
then inserts the alternate key reference into the alternate key 
file. 

UNIQUE ALTERNATE KEYS. An alternate key field can be designated to 
contain a unique value. If an attempt is made to insert a record that 
duplicates an existing record~s value in a unique key field, the 
insert operation is rejected. A "duplicate record" error indication 
will be returned to the application program in a subsequent call to 
FILEINFO. This is unlike non-unique alternate keys where the above 
operation would be permitted. 

If a file has one or more unique alternate keys, the following must be 
considered: 

• For each unique alternate key having a different <key length>, the 
user must create a separate alternate key file. 

• More than one unique alternate key of the same <key length> can be 
referenced by the same alternate key file. 

5-10 



ENSCRIBE FILE CREATION 

ALTERNATE KEY FILE(S). For each primary structured file having one or 
more alternate keys, at least one corresponding alternate key file 
must be created by the user. Characteristics of alternate key files 
are: 

• A single alternate key file can contain references to one or more 
alternate keys. 

• A primary file can have a separate alternate key file for each 
group of one or more alternate keys. Some reasons to have separate 
alternate key files are: 

The alternate key file can be smaller than if many alternate key 
references are in the same file. This results in less indices 
being referenced to locate a given alternate key. 

An alternate key could be updated frequently, causing 
fragmentation of the file. The file could be "rebuilt" later. 

The alternate key is unique. 

Some reasons not to have separate alternate key files are: 

System control block space is allocated for each open of an 
alternate key file (i.e., open of the primary file). 

A File Control Block is allocated for the first open of an 
alternate key file. 

• The file type for an alternate key file is key-sequenced. 

• The record length for an alternate key file is 

2 for the <key specifier> 
+ the maximum <key length> of all alternate keys referenced 
+ the <key length> of the associated primary key 

As alternate key files are key-sequenced files, the maximum record 
length is limited to 1/2 * (<data block size> - 26). 

• The primary key length for an alternate key file containing 
non-unique key references is the same as its record length. 

• The primary key length for an alternate key file containing unique 
key references is 

2 for the <key specifier> 
+ <key length> of the unique alternate key field. 

• The <key offset> in all cases is zero. 

• Alternate key files can be partitioned to span multiple volumes. 

5-11 



ENSCRIBE FILE CREATION: FUP PROGRAM 

THE FILE UTILITY PROGRAM (FUP) 

Typically, ENSCRIBE files are created through use of the File Utility 
Program (FUP). 

The FUP commands related to file creation are: 

SET 

SHOW 

CREATE 

RESET 

INFO 

one or more creation parameter values for a subsequent 
creation. Parameter values can be specified explicitly 
and can be set to match those of an existing file. 

current settings of the creation parameter values. 

a file using the current creation parameter values. The 
current parameter values can be overridden in the 
CREATE Command (without affecting the current settings) 
by specifying alternate values for designated 
parameters. 

one or more creation parameter values to the default 
settings. 

display file characteristics of one or more files. 

For creating disc files, the FUP Program is intended to be used in the 
following manner: 

• The user sets the creation parameters describing the file to be 
created by executing one or more SET commands. 

The SET command has a feature that allows the creation parameters 
to be set to match those of an existing file. This is useful for 
duplicating file structures. 

• The user verifies the settings of the creation parameters by 
executing a SHOW command. Necessary changes can be made to 
parameter values by using the SET command 

• Once the creation parameters have the desired settings, the file is 
created by executing a CREATE command. An option to the CREATE 
command permits the user to override current creation parameter 
setting{s). 

• Following file creation, the current settings are still in force. 
Other files can be created using these settings~ 

5-12 



ENSCRIBE FILE CREATION: FUP PROGRAM 

Running FUP 

The File Utility Program resides in a file designated 

$SYSTEM.SYSTEM.FUP 

Normally, it is run through use of the Command Interpreter program. 
The command to run FUP is: 

FUP [ I [ IN <command file> ] [, OUT <list file> ] / ] 

[ <command> ] 

where 

IN <command file> 

specifies disc file, non-disc device, or process where FUP 
reads commands. FUP reads 132-byte records from <command 
file> until the end-of-file is encountered. Only one 
command is permitted per record. If <command file> is 
omitted, the home terminal is used. 

OUT <list file> 

specifies a non-disc device, process, or exlsting disc file 
where FUP directs its listing output (unless directed 
elsewhere by a command parameter) • If the <list file> is an 
unstructured disc file, each <list file> record is 132 
characters (partial lines are blank filled through column 
132) . If omitted, the home terminal is used. 

<command> 

is a FUP command, limited to 132 characters. If <command> 
is included, it is executed, then FUP terminates. For a 
complete description of all the FUP commands, see the 
GUARDIAN Command Language and Utilities Manual. 

example 

FUP INFO * 

5-13 



ENSCRIBE FILE CREATION: FUP PROGRAM: SET Command 

The FUP SET Command 

The SET Command is used to set one or more creation parameter values 
for a subsequent creation. Parameter values can be specified 
explicitly or can be set to match those of an existing file. 

The form of the SET Command is: 

SET <create param> , ••• 

where 

<create param> is one of 

5-14 

LIKE <file name> 

TYPE <file type> ! l U I R J E I K I 0 I 1 I 2 I 3 } 
CODE <file code> ! 0:65535} 
EXT { <extent size> } 

{ ( <pri extent size> , <sec extent size> ) } 

REC <record length> 
BLOCK <data block length> 

!BLOCK <index block length> 
[ NO ] COMPRESS 
[ NO ] DCOMPRESS 
[ NO ] !COMPRESS 
KEYLEN <key length> 
KEYOFF <key offset> 

1
1:40721 
1:4096 

{1:4096} 

! !1:2551 
! 0:2034} 

ALTKEY ( <key specifier> { , <altkey param> } ••• ) 

<altkey param> is one of 

FILE <key file number> 
KEYOFF <key offset> 
KEYLEN <key length> 
NULL <null value> 
UNIQUE 
NO UPDATE 

f 0:255} 
!0:4011} 

1
1:255} 

"<c>" I {0:2s5} } 

ALTFILE ( <key file number> , <file name> ) 
[ NO ] ALTCREATE 



ENSCRIBE FILE GREATION: FUP PROGRAM: SET Command 

example 

PART ( <secondary partition num> , <volume name> 
[ , <pr i extent size> [ , [<sec extent size>] 
[ , <partial key value> ] ] ] ) 

[ NO ] PARTONLY 
ODDUNSTR 
[ NO ] REFRESH 
[ NO ] AUDIT 

SET TYPE K, KEYLEN 36 

Notes: 

1. The current settings for <create params> can be displayed by 
means of the SHOW command. 

2. The <create params> can be reset to their default settings by 
means of the RESET command. 

Parameters for all File Types 

The following five parameters apply to all file types: 

e LIKE 

is used to set <create params> to the values of those of an existing 
file. A partial <file name> is expanded 

If <file name> specifies a secondary partition of a partitioned 
file, the PARTONLY <create param> will be set (see "PARTONLY", 
below) • 

e TYPE 

is used to set the file type. Legitimate values for <file type> and 
their meanings are: 

u or 0 = unstructured 
R or 1 = relative 
E or 2 = entry-sequenced 
K or 3 = key-sequenced 

The default setting for <file type> is "U". 

5-15 



ENSCRIBE FILE CREATION: FUP PROGRAM: SET Command 

• CODE 

is used to set the file code. <file code> is an integer in the 
range of {0:65535}. <file code> values 100-999 are reserved for use 
by Tandem Computers Inc. The default setting for <file code> is 0. 

e EXT 

is used to set the extent size. Legitimate values for extent sizes 
and their meanings are: 

{0:65535! = number of pages (2048-byte units) 
10:65535 PAGES = number of pages 
0:2099999999l BYTES = number of bytes 
0:2099999999 RECS = number of <record length> records 
0:65535} MEGABYTES = number of million-byte units 

If the "RECS" form is used, the calculation will be based on the 
latest settings for <record length> (REC), <data block length> 
(BLOCK), <index block length> {!BLOCK), key field length and 
compression settings. 

The default setting for extent sizes is 1 page. 

e [ NO ] REFRESH 

5-16 

specifies that the file label is written to disc each time the 
end-of-file is modified. Either FUP or the file system CREATE 
call can set the REFRESH option. The setting defaults to no 
refreshing. 

Example for a new file creation: 

FUP 
SET LIKE <old-filename> 
SET REFRESH 
CREATE <new-filename> 
EXIT 



ENSCRIBE FILE CREATION: FUP PROGRAM: SET Command 

Parameters for Structured Files 

The following two parameters apply to key-sequenced, relative, and 
entry-sequenced files: 

• REC 

is used to set the record length. <record length> is an integer in 
the ran9e of {0:4072} for relative and entry-sequence files, 
{0:20351 for key-sequence files, and {0:4096} for unstructured 
files. The default setting for <record length> is 80 bytes. 

• BLOCK 

is used to set the data block length. <data block length> is an 
integer in the range of {0:4096}. The default setting for <data 
block length> is 1024 bytes. 

Parameters for Key-Sequenced File Structures 

The following six parameters only apply to key-sequenced files: 

e !BLOCK 

is used to set the index block length. <index block length> is an 
integer in the range of {0:4096}. The default setting for <index 
block length> is 1024 bytes. 

e [ NO ] COMPRESS 

is used to set/clear the states of both index and data compression. 
The default setting for this specification is NO COMPRESS. 

e [ NO ] DCOMPRESS 

is used to set/clear the state of data compression. The default 
setting for this specification is NO DCOMPRESS. 

• [ NO ] !COMPRESS 

is used to set/clear the state of index compression. The default 
setting for this specification is NO !COMPRESS. 

e KEYLEN 

is used to set the primary key length. <key length> is an integer 
in the range of {1:255}. This specification must be made for key 
sequenced file structures, otherwise a creation attempt will fail. 

5-17 



ENSCRIBE FILE CREATION: FUP PROGRAM: SET Command 

e KEYOFF 

is used to set the primary key offset. <key offset> is an integer 
in the range of {0:4071}. The default setting for <key offset> is 
o. 

Parameters for Structured Files having Alternate Key Fields 

The next three parameters only apply to key-sequenced, relative, and 
entry-sequenced files having alternate key fields: 

• ALTKEY 

is used to set an alternate key specification. Each alternate key 
must be specified separately. The form of the ALTKEY specification 
is 

ALTKEY ( <key specifier> { , <altkey param> } ••• ) 

5-18 

<key specifier> 

is a two-byte value that uniquely identifies this alternate key 
field. This value is passed to the KEYPOSITION procedure when 
referencing this key field. <key specifier> is specified as 
either 

"[<cl>]<c2>" 

a one- or two-character string within quotation marks (if 
<cl> is omitted, then <cl> is treated as a zero (0)); or 

{-32768:65535} 

an integer that can be represented within 16 bits. A value 
of zero is not allowed. 



ENSCRIBE FILE CREATION: FUP PROGRAM: SET Command 

<altkey param> is one of 

FILE <key file number> 
KEYOFF <key off set> 
KEYLEN <key length> 
NULL <null value> 
UNIQUE 
NO UPDATE 

where 

FILE 

! 10:255} 
0:4071} 
1:255} 

"<c>" I {0:255} } 

is used to set the key file number for <key specifier>. <key 
file number> is an integer in the range of {0:255}. <key file 
number> is related to an actual file by means of the ALTFILE 
<create param>. The default setting for <key file number> is 
o. 

KEYOFF 

is used to set the key offset for <key specifier>. The 
default setting for <key offset> is 0. 

KEYL EN 

is used to set the key length for <key specifier>. This must 
be specified. Otherwise a subsequent creation attempt will 
fail. 

NULL 

is used to set a null value for <key specifier>. <null value> 
is an ascii character within quotation marks or an integer in 
the range of {0:255}. The default setting for this 
specification is "key does not have null value" 

UNIQUE 

is used to set "key is unique" for <key specifier>. The 
default setting if this is omitted is "key is not unique". 

NO UPDATE 

is used to set "no automatic updating" for <key specifier>. 
The default setting for this specification is "key is 
automatically updated". 

5-19 



ENSCRIBE FILE CREATION: FUP PROGRAM: SET Command 

e ALTFILE 

is used to set the file name of an alternate key file. This must be 
specified for each different <key file number> specified in an 
ALTKEY specification. The form of ALTFILE specification is 

ALTFILE ( <key file number> , <file name> ) 

<key file number> 

is an integer in the range of {0:255} specifying the alternate 
key file being named 

A partial <file name> is expanded using the default system, volume 
and subvolume names. 

e [ NO ] ALTCREATE 

is used to set/clear automatic alternate key file creation. If 
ALTCREATE is specified, the alternate key file(s) will be created 
when the primary file is created. The default setting for this 
specification is ALTCREATE. 

5-20 



ENSCRIBE FILE CREATION: FUP PROGRAM: SET Command 

Parameters for Partitioned Files 

The following two parameters apply to partitioned files only: 

• PART 

is used to set secondary partition specifications for partitioned 
files. Each secondary partition must be specified separately. The 
form of the PART specification is 

PART <secondary partition num> , <volume name> 

[ , <pri extent size> [ , <sec extent size> 

, <partial key value> ] ) 

<secondary partition num> , <volume name> 

specifies the volume where this secondary partition is to 
reside. <secondary partition num> designates the secondary 
partition; it is specified as an integer in the range of {1:15}; 
<volume name> specifies the volume (and possibly the network 
node). Note that the file name of file and the volume of the 
primary partition is specified when the file is created. 

<volume name> can be specified with either of the following 
two forms: 

$<volume name> 
\<sys num><volume name> 

<partial key value> 

(local form) 
(network form) 

for key-sequenced files only, specifies the lowest key value 
that will reside in this partition. <partial key value> is 
specified as 

"<cl><c2> ••• <cn>" 

a string of characters within quotation marks, or 

"[" { "<c>" I {0:255} } , ••• "J" 

a list of single characters, each within quotation marks, 
and/or integers in the range of {0:255} separated by commas 

<partial key value> must be ~ncluded for each partition of a 
key-sequenced file. (Note, for the primary partition the 
partial key value is zero (0) .) 

5-21 



ENSCRIBE FILE CREATION: FUP PROGRAM: SET Command 

e [ NO ] PARTONLY 

specifies whether a subsequent creation is to create all partitions 
of a partitioned file ("NO PARTONLY") or a subsequent creation is to 
create a single partition ("PARTONLY"). The default setting, "NO 
PARTONLY", causes all partitions to be created. 

If PARTONLY is specified and a PART specification is in effect, the 
subsequently created file will be designated a primary partition. 
Conversely, if no PART specification is in effect, the subsequently 
created file will be designated a secondary partition. In either 
case, the <file name> of the (primary or secondary) partition is 
specified when the file is created. 

Parameter for Files Audited by TMF 

The following parameter applies to files within a system that has 
the Transaction Monitoring Facility (TMF). 

e [ NO ] AUDIT 

is used to describe a file as either audited or not audited. 
See the Transaction Monitoring Facility (TMF) users Guide for 
details. 

Parameter for Unstructured Files 

The following parameter applies to unstructured files: 

e ODDUNSTR 

ENSCRIBE unstructured files exist in two ways. The even 
unstructured file rounds up any odd byte counts to the next even 
number, 3 goes to 4, or 5 to 6, .•• when reading, writing or 
positioning in the file. Unstructured files default to this 
setting. The odd unstructured file prevents rounding up, therefore 
reading, writing or positioning occurs at the byte count given. 
When odd unstructured is desired to prevent rounding up, the 
ODDUNSTR parameter must be specified. 

Example: 

SET CODE 200, EXT 2048, ODDUNSTR 

5-22 



ENSCRIBE FILE CREATION: FUP PROGRAM: SHOW Command 

The FUP SHOW Command 

The SHOW Command is used to display the current settings of the 
creation parameter values. 

The form of the SHOW Command is: 

SHOW [ I OUT <list file> / ] [ <create spec> , ••• ] 

where 

<create spec> is one of 

{ TYPE 
CODE 
EXT 

REC 
BLOCK 

!BLOCK 
COMPRESS 
DCOMPRESS 
I COMPRESS 
KEY LEN 
KEYOFF 

REFRESH 
AUDIT 

ALTKEY [ <key specifier> ] 
ALTKEYS 
ALTFILE [ <key file number> 
ALTFILES 
ALTCREATE 

ODDUNSTR 

PART [ <partition num> ] 
PARTS 
PARTONLY 

} 

Each <create spec> keyword returns the current setting of the 
corresponding <create param>. Omitting <create spec> returns 
all current settings applicable to the current file type 

5-23 



ENSCRIBE FILE CREATION: FUP PROGRAM: CREATE Command 

The FUP CREATE Command 

The CREATE Command is used to create a file using the current creation 
parameter values (i.e., the default settings or those set via the SET 
command). The current parameter values can be overridden in the 
CREATE command by specifying alternate values for designated 
parameters. 

The form of the CREATE Command is: 

CREATE <file name> [ , <create param> ] •.• 

where 

<file name> 

is the name of the file to be created. A partial file name 
is expanded 

<create param>, 

if included, overrides the corresponding current creation 
parameter setting for this creation. See "SET Command" for 
<create param> format 

example 

CREATE myf ile 

5-24 



ENSCRIBE FILE CREATION: FUP PROGRAM: RESET Command 

THE FUP RESET COMMAND 

The RESET Command is used to reset one or more creation parameter 
values to their default settings. 

The form of the RESET Command is: 

RESET [ <create spec> , ••• ] 

where 

<create spec> is one of 

{ TYPE 
CODE 
EXT 

REC 
BLOCK 

I BLOCK 
COMPRESS 
DCOMPRESS 
I COMPRESS 
KEY LEN 
KEYOFF 

ALTKEY [ <key specifier> ] 
ALTKEYS 
ALTFILE [ <key file number> ] 
ALTFILES 
ALTCREATE 

ODDUNSTR <unstructured files> 
[ NO ] REFRESH 
[ NO ] AUDIT 

PART [ <partition num> ] 
PARTS 
PARTONLY 

} 

Each <create spec> keyword resets the corresponding creation 
parameter to its default setting. Omitting <create spec> 
resets all creation parameters to their default settings. 

5-25 



ENSCRIBE FILE CREATION: FUP PROGRAM: INFO Command 

The FUP INFO Command 

The INFO Command is used to display disc file characteristics. 

The form of INFO Command is: 

I 

{ 

DETAIL 
STAT [ ISTICS] 

INFO [ /OUT <list file> / ] <fileset list> [, EXTENTS LI 
where 

<f ileset list> 

is a list of files whose characteristics are to be listed. 
<f ilese~ list> is of the form 

{ <f ileset> j 
{ { <f ileset> , ) 

<f ileset> is of the form 

[\<system name>.] [$<volume name>.] [<subvol spec>.]<disc file spec> 

5-26 

\<system name>, 

omitting \<system name> designates the home node 

$<volume name>, 

omitting $<volume name> designates the default volume 

<subvol spec> is either 

<subvol name> or "*" 

"*" designates all subvols on the designated volume. 
If "*" is given, then <disc file spec> must also be 
given as "*". Omitting <subvol spec> designates the 
default subvolume 

<disc file spec> is either 

<disc file name> or "*" 

"*" designates all files in the designated subvolume. 

I 

I 



ENSCRIBE FILE CREATION: FUP PROGRAM: INFO Command 

DETAIL 

provides detailed information regarding file 
characteristics (see "DETAIL Option Listing Format" 
in the FUP section of the GUARDIAN Command Language 
and Utilities Manual for details.) 

STAT[ISTICS] 

provides information given by the DETAIL option plus 
summarized data concerning the usage of records and blocks 
in ENSCRIBE file structures (see "STATISTICS Option Listing 
Format" in the FUP section of the GUARDIAN Command Language 
and Utilities Manual for details.) 

EXTENTS 

provides a listing of extent allocation by file (see 
"EXTENTS" Option Listing Format in the FUP section of the 
GUARDIAN Command Language and Utilities Manual for 
details.) 

example 

INFO myfile,DETAIL 

5-27 



ENSCRIBE FILE CREATION: CREATE Procedure 

CREATE 

The CREATE procedure is used to a define new structured or 
unstructured disc file. The file can be either temporary (and deleted 
when closed) or permanent. If a temporary file is created, CREATE 
returns a file name suitable for passing to the OPEN procedure. 

The call to the CREATE procedure is: 

CALL CREATE <file name> 

where 

[ <primary extent size> ] 
, [ <file code> ] 
, [ <secondary extent size> ] 
, [ <file type> ] 

[ <record length> ] 
, [ <data block length> ] 
, [ <key-sequenced params> ] 
, [ <alternate key params> ] 
, [ <partition params> ] 

<file name>, INT:ref, passed, [returned] 

5-28 

is an array providing the name of the disc file to be 
created in either of the following forms: 

permanent disc files are created by specifying 

<file name[0:3]> is $<volume name><blank fill> 
or \<system number><volume name><blank 

<file name[4:7]> is <subvol name><blank fill> 
<file name[8:11]> is <disc file name><blank fill> 

temporary disc files are created by specifying 

<file name[O:ll]> is $<volume name><blank fill> 
or \<system number><volume name><blank fill> 

when CREATE completes, a <temporary file name> is returned 
in <file name[4:7]>. The temporary file can then be opened 
by passing <file name> to OPEN. 



ENSCRIBE FILE CREATION: CREATE Procedure 

<primary extent size>, INT:value, passed 

if present, is the size of the primary extent in 2048-byte 
units. The maximum <primary extent size> is 65535 
(134,215,680 bytes). If omitted, a primary extent size of 
one (2048 bytes) is assigned. 

<file code>, INT:value, passed 

if present, is an application-defined file identification 
code (file codes 100 - 999 are reserved for use by Tandem 
Computers, Inc.). If omitted, a file code of zero is 
assigned. 

<secondary extent size>, INT:value, passed 

if present, is the size of the secondary extents in 
2048-byte units (a file may have up to 15 secondary extents 
allocated). The maximum <secondary extent size> is 65535 
(134,215,680 bytes). If omitted, the size of the primary 
extent is used for the secondary extent size. 

<file type>, INT:value, passed 

if present, specifies the type of the file to be created. 

<file type>.<13:15> specifies the file structure: 

0 = unstructured (default) 
1 = relative 
2 = entry-sequenced 
3 = key-sequenced 

<file type>.<12> 1 = specifies ~ODDUNSTR~ for 
unstructured files. See Section 5, File Creation, for 
details. 

<file type>.<12> 1 = specifies data compression for 
key-sequenced files. See Section 5, File Creation, for 
details. 

<file type>.<11> 1 = specifies index compression for 
key-sequenced files. See Section 5, File Creation, for 
details. 

5-29 



ENSCRIBE FILE CREATION: CREATE Procedure 

5-30 

<file type>.<10> 1 = File Label is written to disc 
each time the end-of-file is advanced. The effect of 
setting this parameter is the same as calling REFRESH 
after every operation that advances the end-of-file. 

<file type>.<3:9> must be zero. 

<file type>.<2> 1 = for systems with the Transaction 
Monitoring Facility (TMF), specifies this file is an 
audited file; for systems without TMF, must be zero. 

<file type>.<0:1> must be zero 

If <file type> is omitted, an unstructured file is created. 

<record length>, INT:value, passed 

if present, is the maximum length of the logical record in 
bytes. For structured files, the maximum record lenQth is 
determined by the data block size. With a data block size 
of 4096, the maximum record length for entry-sequenced and 
relative files is 4072 bytes. With the same maximum data 
block size of 4096, the maximum record length for a 
key-sequenced file is 2035. For unstructured files, the 
maximum record length is 4096. If omitted, 80 is used for 
the <record length>. 

<data block length>, INT:value, passed 

for structured files, if present, is the length in bytes of 
each block of records in the file. <data block length> 
must be a multiple of 512 and can not be greater than 4096. 
<data block length> must be at least <record length> + 24. 
For a key-sequenced file <data block length> must be at 
least 2 * <record length> + 26. If omitted, 1024 is used 
for the <data block length>. Regardless of the specified 
record length and data block size, the maxixum number of 
records that can be stored in a data block is 511. 



ENSCRIBE FILE CREATION: CREATE Procedure 

<key-sequenced params>, INT:ref, passed 

is a three-word array containing parameters that describe 
this file. This parameter is required for key-sequenced 
files and may be omitted for other file types. The format 
for this array is shown in the "<key sequenced params> 
ARRAY" table which follows 

<alternate key params>, INT:ref, passed 

is an array containing parameters describing any alternate 
keys for this file. This parameter is required if the file 
has alternate keys, otherwise it may be omitted or its first 
word must be zero. The format for this array is shown in 
the "<alternate key params> ARRAY" table which follows. 

<partition params>, INT:ref, passed 

is an array containing parameters that describe this file if 
the file is a multi-volume file. If the file is to span 
multiple volumes, then this parameter is required, otherwise 
this parameter may be omitted or its first word must be 
zero. The format for this array is shown in the 
"<partition params> ARRAY" table which follows. 

condition code settings: 

< (CCL) indicates that the CREATE failed (call FILEINFO) 
= (CCE) indicates that the file was created successfully 
> (CCG) the device is not a disc 

example 

CALL CREATE(filename,5,0); 
IF< THEN ••. 

Considerations 

• Disc Allocation at CREATE Time 

CREATE failed. 

Execution of the CREATE procedure does not allocate any disc area; 
it only provides an entry in the volume~s directory indicating that 
the file exists. 

5-31 



ENSCRIBE FILE CREATION: CREATE Procedure 

• Error Handling 

If the CREATE fails (i.e., condition code other than CCE returned), 
the reason for the failure can be determined by calling the 
FILEINFO procedure and passing -1 as the <file number> parameter. 

• File Security 

The file is created with the default security associated with 
the process creator's access id. Security can be changed by 
opening the file and calling SETMODE or SETMODENOWAIT. 

• Odd Unstructured Files 

When creating unstructured files, the value passed for 
<file type>.<12> determines how all subsequent read, write, and 
position operations to the file will work. 

If <file type>.<12> is passed as a 1, the values of 
<record specifier>, <read count>, and <write count> are all 
interpreted exactly. That is, a <write count> or <read count> of 
seven transfers exactly seven bytes. 

If <file type>.<12> is passed as a 0, the values of 
<record specifier>, <read count>, and <write count> are all rounded 
up to an even number before the operation is performed. That is, a 
<write count> or <read count> of seven is rounded up to eight and 
eight bytes are transferred. 

5-32 



ENSCRIBE FILE CREATION: CREATE Procedure 

• Key-Sequenced Parameter Array Format 

The key-sequenced parameter array format is shown in Table 5-1. 

Table 5-1. <key-sequenced params> ARRAY FORMAT 

where 

word: 

[0] 

[l] 

[2] 

<key length>, INT, 

<key length> 

<key offset> 

<index block length> 

is the length, in bytes, of the record~s primary key field 

<key offset>, INT, 

is the number of bytes from the beginning of the record where 
the primary key field starts. 

<index block length>, INT, 

is the length in bytes of each index block in the file. 
<index block length> must be a multiple of 512 and may not be 
greater than 4096. If zero is specified, then the value of 
<data block length> is used as the <index block length> 

5-33 



ENSCRIBE FILE CREATION: CREATE Procedure 

• Alternate Key Parameter Array Format 

The alternate key parameter array format is shown in Table 5-2. 

Table 5-2. <alternate key params> ARRAY FORMAT 

0 

word: [ 0] 

[l] 

[nk * 4 + l] 

8 

<nf alt files> <nk alt keys> 

KEY DESCRIPTION 
FOR 

ALTERNATE KEY 0 

KEY DESCRIPTION 
FOR 

ALTERNATE KEY nk - 1 

FILE NAME 
OF 

KEY FILE 0 

FILE NAME 
OF 

KEY FILE nf - 1 

Key Description for key "k" consists of four words of the form: 

5-34 

[ k * 4 + l] 

[k * 4 + 2] 

[k * 4 + 3] 

[k * 4 + 4] 

0 

<null 

8 

<key specifier> 

<key attributes> 

value> <key length> 

<key file number> 



ENSCRIBE FILE CREATION: CREATE Procedure 

Table 5-2. <alternate key params> ARRAY FORMAT (cont~d) 

where 

<nf alt files>, one-byte value, 

specifies the number of alternate key files for this primary 
file. 

<nk alt keys>, one-byte value, 

specifies the number of alternate key fields in this primary 
file. 

<key specifier>, INT, 

is a two-byte value that uniquely identifies this alternate 
key field. This value is passed to the KEYPOSITION 
procedure when referencing this key field. 

<key attributes>, INT, 

describes the key. 

where 

<key attributes>.<O>: 1 = null value is specified. See 
"<null value>" below. 

<key attributes>.<!>: 1 = key is unique. If an attempt is 
made to insert a record that duplicates an existing value 
in this field, the insert is rejected with a "duplicate 
record" error. 

<key attributes>.<2>: 1 = no automatic updating of this 
key is to be performed by ENSCRIBE. 

<key attributes>.<3> must be zero. 

<key attributes>.<4:15> = <key offset>. This specifies 
the the number of bytes from the beginning of the record 
where this key field starts. 

5-35 



ENSCRIBE FILE CREATION: CREATE Procedure 

Table 5-2. <alternate key params> ARRAY FORMAT (cont~d) 

<null value>, one-byte value, 

is used to specify a "null value" if <key attributes>.<0> = 
1. 

During an insertion (i.e., WRITE), if a null value is 
specified for an alternate key field and the null value is 
encountered in all bytes of this key field, ENSCRIBE does 
not enter the reference to the record into the alternate key 
file. (If the file is read via this alternate key field, 
records containing a null value in this field will not be 
found.) 

During a deletion (i.e., WRITEUPDATE, <write count>= 0), if 
a null value is specified and the null value is encountered 
in all bytes of this key field within <buffer>, ENSCRIBE 
deletes the record from the primary file but does not 
delete the reference to the record in the alternate file. 

<key length>, one-byte value, 

that specifies the length, in bytes, of this key field. 

<key file number>, INT, 

is the relative number in the <alternate key params> array of 
this key~s alternate key file. The first alternate key f ile~s 
<key file number> = O. 

The File Name for file "f" consists of 12 words and begins at 

[nk * 4 + 1 + f * 12] 

and is of the form 

5-36 

<file name[0:3]> is $<volume name><blank fill> 
or \<system number><volume name><blank fill> 

<file name[4:7]> is <subvol name><blank fill> 
<file name[8:11]> is <disc file name><blank fill> 



ENSCRIBE FILE CREATION: CREATE Procedure 

• Partition Parameter Array Format 

The partition parameter array format is shown in Table 5-3. 

Table 5-3. <partition params> ARRAY FORMAT 

<num extra partitions> 

$<volume name> or 
\<sys num><volume name> 

for partition 1 

$<volume name> or 
\<sys num><volume name> 

for partition 2 

$<volume name> or 
\<sys num><volume name> 

for partition n 

<primary extent size> part 1 

. . 
<primary extent size> part n 

<secondary extent size> part 1 

. . 
<secondary extent size> part n 

num words 

[l] 

[4] 

[l] 

[l] 

5-37 



ENSCRIBE FILE CREATION: CREATE Procedure 

Table 5-3. <partition params> ARRAY FORMAT (cont'd) 

The following must be included in the <partition params> array 
for key-sequenced files and may be omitted for other file types: 

<partial key length> 

<partial key value> 
for partition 1 

<partial key value> 
for partition n 

[l] 

where 

5-38 

<num extra partitions>, INT, 

is the number of extra volumes (other than the one specified 
in the <file name> parameter) on which the file is to reside. 
The maximum value permitted is 15. Note that every other 
parameter in the partition array (except <partial key 
length>) must be specified <num extra partitions> times. 

$<volume name> or 
\<sys num><volume name>, eight bytes blank filled, 

is the name of the disc volume (including "$" or "\") where 
the particular partition is to reside. 

<primary extent size>, INT, 

is the size of the primary extent for the particular 
partition. 

<secondary extent size>, INT, 

is the size of the secondary extents for the particular 
partition. Specifying zero results in the <primary extent 
size> value being used. 



ENSCRIBE FILE CREATION: CREATE Procedure 

Table 5-3. <partition params> ARRAY FORMAT (cont~d) 

The remaining parameters are required for key-sequenced files and 
may be omitted for all other file types. 

<partial key length>, INT, 

is the number of bytes of the primary key of a key-sequenced 
file that will be used to determine which partition of the 
file will contain a particular record. The minimum value for 
<partial key length> is one. 

<partial key value>, INT, 

for <partial key length> bytes, specifies the lowest key 
value that will be allowed for a particular partition. 

Each <partial key value> in <partition params> must begin on 
a word boundary. 

5-39 



ENSCRIBE FILE CREATION: CREATION EXAMPLES 

CREATION EXAMPLES 

This section contains the following file creation examples. 

1) Key-Sequenced file 
2) Key-Sequenced file with alternate keys 
3) Alternate Key file for programmatically created primary 
4) Partitioned Relative file 
5) Partitioned Key-Sequenced file 

Example 1. Key-Sequenced File 

To create a key-sequenced file for the following record, 

byte: 
[0] 

<name> 

l 
Primary 

key 

[34] 

<address> 

[134] [142] [ 150] 

<curbal> <limit> 

using FUP, the following commands could be entered: 

:FUP 
GUARDIAN FILE UTILITY PROGRAM B06 
-SET TYPE K 
-SET CODE 1000 
-SET EXT (16,1) 
-SET REC 150 
-SET BLOCK 2048 
-SET COMPRESS 
-SET !BLOCK 2048 
-SET KEYLEN 34 
-SHOW 

TYPE K 
CODE 1000 
EXT ( 16 PAGES, 1 PAGES ) 
REC 150 
BLOCK 2048 
!BLOCK 2048 
KEYLEN 34 
KEYOFF 0 
DCOMPRESS, !COMPRESS 

-CREATE myf ile 
CREATED - $STORE1.SVOL1.MYFILE 

5-40 



ENSCRIBE FILE CREATION: CREATION EXAMPLES 

Using the CREATE procedure, the following could be written in an 
application program: 

INT .cust"'filename [O :11] := "$STORE1 SVOLl 

• key"' par ams [ 0 : 2 ] : = [ 3 4 , ! key 1 en gt h • 
o, ! key offset. 

MYFILE " . I 

O, ];! index block length, uses the 
data block length. 

LITERAL 
pri"'extent = 16, 
file"'code = 1000, 
sec"'extent = 1, 
file"'type = %33, 

primary extent size = 16 * 2048. 

secondary extent size = 1 * 2048. 
! file type = key-sequenced, 

rec"'len = 150, 
data"'block"'len = 2048; 

data and index 
compression. 

record length. 

CALL CREATE (cust"'filename, pri"'extent, file"'code, sec"'extent, 
file"'type, rec"'len, data"'block"'len, key"'params); 

IF< THEN ••• ! error. 

5-41 



ENSCRIBE FILE CREATION: CREATION EXAMPLES 

Example 2. Key-Sequenced File having Alternate Keys 

To create a key-sequenced file for the following "INVENTORY" record, 

byte: 
[0] [2] [ 32] [ 40] [ 42] 

<partno> <descr> <price> <avail"'qty> <loc> 

T r T 
Primary 

Key 
Alternate 
Key "AQ" 

Alternate 
Key "LO" 

Using FUP, the following commands could be entered: 

-SET TYPE K 
-SET CODE 1001 
-SET EXT (32,8) 
-SET REC 54 
-SET BLOCK 4096 
-SET !BLOCK 1024 
-SET KEYLEN 2 
-SET ALTKEY ("AQ",KEYOFF 40,KEYLEN 2) 
-SET ALTKEY ("LO", KEYOFF 42, KEYLEN 4) 
-SET ALTKEY ("VN",KEYOFF 46,KEYLEN 8) 
-SET ALTFILE (0,INVALT) 
-SHOW 

TYPE K 
CODE 1001 
EXT ( 32 PAGES, 8 PAGES ) 
REC 54 
BLOCK 4096 
!BLOCK 1024 
KEYLEN 2 
KEYOFF 0 
ALTKEY ( "AQ", FILE 0, KEYOFF 40, KEYLEN 2 
ALTKEY ( "LO", FILE 0, KEYOFF 42, KEYLEN 4 
ALTKEY ( "VN", FILE O, KEYOFF 46, KEYLEN 8 
ALTFILE ( 0, $STORE1.SVOL1.INVALT ) 
ALTCREATE 

-CREATE inv 
CREATED - $STORE1.SVOL1.INV 
CREATED - $STORE1.SVOL1.INVALT 

5-42 

[ 46] [ 54] 

<vendor> 

T 
Alternate 

Key "VN" 



ENSCRIBE FILE CREATION: CREATION EXAMPLES 

Using the ~REATE procedure, the following could be written in an 
application program: 

INT • inv"filename [O :11] := "$STORE1 SVOLl INV 11
; 

.pri"key [0:2] := 2, key length = 2. 
0, key offset = O. 
1024 ]; index block length= 1024 • 

• alt"keys [0:24] := 

LITERAL 

%000403, 1 alternate key file, 
3 alternate keys. 

! key description for key 1. 

"AQ"' 
40, 
2, 
O, 

key specifier = "AQ". 
key offset = 40. 
key length = 2. 
key file number. 

! key description for key 2. 

"LO" 
42, 
4, 
0, 

key specifier = "LO". 
key offset = 42. 
key length = 4. 
key file number. 

! key description for key 3. 

"VN" 
46, 
8, 
0, 

! key file name 

"$STORE! " 
"SVOLl ", 
II INVALT II] ; 

key specifier = "VN". 
key offset = 46. 
key length = 8. 
key file number. 

volume, 
subvol, 
disc file name. 

pri"extent = 32, 
file"code ~ 1001, 
sec"extent = 8, 
file"type = %03, 
rec"len = 54, 
data"block"len = 4096; 

primary extent size = 32 * 2048. 

secondary extent size = 8 * 2048. 
file type = key-sequenced. 
record length = 54. 
data block length = 4096. 

CALL CREATE (inv"filename, pri"extent, file"code, 
sec"extent, file"type, rec"len, 
data"block"len, pri"key, alt"keys); 

IF < THEN ! error. 

Note that the alternate key file must be created separately. 

5-43 



ENSCRIBE FILE CREATION: CREATION EXAMPLES 

Example 3. Alternate Key File 

The alternate key file for the preceding key-sequenced file is created 
automatically when FUP is used for file creation. 

If the primary file is created programatically, the alternate file 
must be created in a separate operation. To create the alternate key 
file for the preceding key-sequenced file, the following is written in 
an application program: 

INT .altAfilename (0:11] := "$STORE1 SVOLl INVALT " ' 
• pr i A key [ 0: 2] : = 

LITERAL 
priAextent = 32, 
fileAcode = 1002, 
secAextent = 8, 
fileAtype = %13, 

12, 

0, 
1024 ]; 

recAlen = 12, 
dataAblockAlen = 4096; 

maximum alternate key length 
+ primary key length 
+ 2. 
key offset = o. 
index block length = 1024. 

primary extent size = 32 * 2048. 

secondary extent size = 8 * 2048. 
file type = key-sequenced, 
data compression. 
record length = 12. 
data block length = 4096. 

CALL CREATE (altAfilename, priAextent, fileAcode, 
secAextent, fileAtype, recAlen, 
dataAblockAlen, priAkey); 

IF < THEN . • • ! error. 

5-44 



ENSCRIBE FILE CREATION: CREATION EXAMPLES 

Example 4. Relative, Partitioned File 

To create a relative file with a record length of 128 bytes that spans 
four partitions, 

Using FUP, the following commands could be entered: 

-SET TYPE R 
-SET EXT (64,8) 
-SET REC 128 
-SET BLOCK 4096 
-SET PART (l,$PART1,64,8) 
-SET PART (2,$PART2,64,8) 
-SET PART (3,$PART3,64,8) 
-SHOW 

TYPE R 
EXT ( 64 PAGES, 8 PAGES 
REC 128 
BLOCK 4096 
PART ( 1, $PART1, 64, 8 
PART ( 2, $PART2, 64, 8 
PART { 3, $PART3, 64, 8 

-CREATE f ilea 
CREATED - $PART0.USERA.FILEA 

Using the CREATE procedure, the following could be written in an 
application program: 

INT .rel"'filename[O:ll] := "$PARTO 

• partarray [0:17] := [ 3, 
"$PART1 
"$PART2 
"$PART3 
64, 

LITERAL 
pri"'extent = 64, 
sec"'extent = 8, 
f ile"'type = %01, 
rec"'len = 128, 
data"'block"'len = 4096; 

64, 
64, 
8, 
8, 
8 ] ; 

US ERA FILEA " ' partition par ams array. 
num extra partitions • 

" vol name of first extra. ' " vol name of second extra. ' " vol name of third extra. ' pri ext for first extra. 
pri ext for second extra. 
pri ext for third extra. 
sec ext for first extra. 
sec ext for second extra. 
sec ext for third extra. 

primary extent size = 64 * 2048. 
secondary extent size = 8 * 2048. 
file type = relative. 
record length = 128. 
data block length = 4096. 

CALL CREATE (rel"'filename, pri"'extent,, 
sec"'extent, file"'type, rec"'len, 
data"'block"'len,,,partarray); 

IF < THEN . • • ! error. 
\,_ 

5-45 



ENSCRIBE FILE CREATION: CREATION EXAMPLES 

Example 5. Key-Sequenced, Partitioned File 

The following is an example of partitioning for a key-sequenced file 
having the following record format: 

byte: 
[0] 

<name> 
I 

Primary Key 

[36] [136] 

<address> 

The file resides on six volumes and is partitioned as follows: 

<names> whose first two reside on 
letters are in the range 
of 

00 l $PARTO 

DA ] $PART1 
] 

HA I $PART2 

LA ] $PART3 
] 

PA l $PART4 

f 
~ 

J 

TA ] $PARTS 
] 
] 
] 

Using FUP to create this file, the following commands would be entered 
to describe the partitioning: 

-SET PART (l,$PART1,64,8,"DA") 
-SET PART (2,$PART2,64,8,"HA") 
-SET PART (3,$PART3,64,8,"LA") 
-SET PART (4,$PART4,64,8,"PA") 
-SET PART (5,$PART5,64,8,"TA") 

5-46 



ENSCRIBE FILE CREATION: CREATION EXAMPLES 

Using the CREATE procedure to create this file, source program, the 
partitioning would be described in the following partition array: 

partition params array. 
.partarray [0:36] := S, num extra partitions. 

"$PART1 " vol name of first extra. . , 
"$PART2 " vol name of second extra. 
"$PART3 " vol name of third extra. 
"$PART4 " vol name of fourth extra. I 

"$PARTS " vol name of fifth extra. 
64, pri ext for first extra. 
64, pri ext for second extra. 
64, pri ext for third extra. 
64, pri ext for fourth extra. 
64, pri ext for fifth extra. 
8, sec ext for first extra. 
8, sec ext for second extra. 
8, sec ext for third extra. 
8, sec ext for fourth extra. 
8, sec ext for fifth extra. 
2, partial key length = 2. 
"DA II, key value for $PART1. 
"HA" I key value for $PART2. 
II LA" , key value for $PART3. 
"PA", key value for $PART4. 
"TA" ] ; key value for $PARTS. 

5-47 





SECTION 6 

ENSCRIBE FILE LOADING 

The File Utility Program (FUP) can be used to load data into an 
existing file. 

The FUP commands related to file loading are: 

e LOAD 

Data is loaded into an existing structured disc file by means of 
the LOAD command. (The LOAD command does not load any related 
alternate key files.) For key-sequenced files, the percentage of 
data block and index block space to be left for future insertions 
(i.e., slack space) can be specified. 

• LOADALTFILE 

Alternate key files are loaded with the alternate key records of a 
specified file by means of the LOADALTFILE command. A slack 
percentage can be specified. This command always performs a sort 
of the alternate key records before the actual load is performed. 

e BUILDKEYRECORDS 

Because some systems may have insufficient disc space for the sort 
operation, the alternate file load operation can be separated into 
two steps by first performing a BUILDKEYRECORDS operations; the 
input to BUILDKEYRECORDS is the "primary" file for which the 
alternate key records are to be built; this output (which can be to 
a magnetic tape file) are the file's alternate key records. The 
key records on tape can then be loaded into the alternate key file 
by means of a COPY or LOAD command. 

For an explanation of how to run the FUP program, refer to "Running 
FUP" in Section 5. 

6-1 



ENSCRIBE FILE LOADING: FUP PROGRAM: LOAD Command 

THE FUP LOAD COMMAND 

The LOAD command is used to load data into a structured disc file 
without affecting any associated alternate key files. Existing data 
in the file being loaded is lost. 

For key-sequenced files, the input records can be in sorted or 
unsorted order (unsorted is assumed unless the "SORTED" option is 
specified). Also for key-sequenced files, the percentage of slack 
space to be left for future insertions to the file can be specified. 

The form of the LOAD command is: 

6-2 

LOAD <in file name> , <destination file name> 

[ , <load option> 

where 

<in file name> 

specifies the file containing the records to be loaded. 

<destination file name> 

specifies an existing disc file to be loaded. 

<load option> 

for destination key-sequenced files, specifies whether or 
not the <in file> records are in sorted order (and, 
therefore, if a sort should be performed) and specifies load 
options; for any type destination file, specifies the <in 
file> format. <load option> is one of 

{ SORTED I 
<in option> 
<key-seq option> 

{ PARTOF $<volume name> 

SORTED 

for a key-sequenced destination file only, specifies that 
the records in the <in file> are in the destination file's 
key field order and therefore that a sort of the <in file> 
records should not be performed. If omitted, a sort of the 
<in file> records is performed before the loading of the 
<destination file> takes place. 



ENSCRIBE FILE LOADING: FUP PROGRAM: LOAD Command 

<in option> 

specifies the format and control of the in file. 
<in option> is one of 

{ RECIN <in record length> 
BLOCKIN <in block length> 
TRIM "<trim character>" 
EBCDIC IN 
SHARE 
[ NO ] UNLOADIN 
[ NO ] REWINDIN 
SKIPIN <num eofs> 
REELS <num reels> 

mag tape 
mag tape 
mag tape 
mag tape 

See "FUP" in the "GUARDIAN Command Language and Utilities 
Manual" for an explanation of the above options. 

<key-seq option> 

specifies options pertaining to loading key-sequenced files. 
<key-seq option> is one of 

MAX <num records> 
SCRATCH <scratch file name> 
SLACK <percentage> 
DSLACK <percentage> 
!SLACK <percentage> 

PARTOF $<volume name> 

for key-sequenced, partitioned files only, specifies that 
only the partition designated by <destination file name> is 
to be loaded; $<volume name> is the volume where the 
primary partition of the <destination file> resides. (To 
load only the primary partition, the name of the primary 
partition is specified as the <destination file name>.) 

example 

LOAD $TAPE, ksfile, SORTED, DSLACK 10 

6-3 



ENSCRIBE FILE LOADING: FUP PROGRAM: LOAD Command 

Considerations 

• Disc Space Requirement for the SORT Option 

If the <in file> records must be sorted, then during the sorting 
phase, disc space for both the sort scratch file and for the 
<destination file> must exist concurrently. 

• Key-Sequenced File LOAD Options Explained 

The syntax for the <key-seq option> is: 

6-4 

{ MAX <num records> 

I 

SCRATCH <scratch file 
SLACK <percentage> 
DSLACK <percentage> 
!SLACK <percentage> 

name> 

The following two options pertain to sorting the <in file> records. 
Therefore, if "SORTED" has been specified, these options can be 
ignored. 

- MAX <num records> 

specifies the number of records in the <in file>. <num records> 
is given as a value in the range of {0:2099999999}. The <num 
records> value is used to determine the size of the scratch file 
used by the SORT process. If omitted, 10,000 is used. This 
value need not be exact, but if given, should equal-to or 
greater-than then actual number of records in the <in file>. 

- SCRATCH <scratch file name> 

specifies a <file name> or $<volume name> to be used for 
temporary storage during the sorting phase. If omitted, a 
scratch file on the default volume is used. 

The following options specify the minimum percentage of space to be 
left in index and/or data blocks for future insertions. Note that 
if space is not available when an insertion is made, a "block 
split" will occur. 

- SLACK <percentage> 

specifies the minimum percentage of slack space in both index and 
data blocks. <percentage> is specified as a value in the range 
of {0:99}. If this option is omitted, 0 percentage will be left 
for slack space. 



ENSCRIBE FILE LOADING: FUP PROGRAM: LOAD Command 

- DSLACK <percentage> 

specifies the minimum percentage of slack space in data blocks. 
If omitted, the "SLACK <percentage>" value is used. 

- !SLACK <percentage> 

specifies the minimum percentage of slack space in index blocks. 
If omitted, the "SLACK <percentage>" value is used. 

6-5 



ENSCRIBE FILE LOADING: FUP PROGRAM: LOADALTFILE Command 

THE FUP LOADALTFILE COMMAND 

The LOADALTFILE command is used to generate from a specified primary 
file the alternate key records associated with a designated alternate 
key file and load those records into that file. Slack space for 
future insertions can be specified. 

The form of the LOADALTFILE command is: 

LOADALTFILE <key file number> , <primary file name> 

[ , <key-seq option> ] ••• 

where 

6-6 

<key file number> 

specifies the alternate key file to be loaded. <key file 
number> is an integer in the range of {0:255} indicating an 
alternate key file of the <primary file>. The alternate key 

Jfile must already exist. 

<primary file name> 

specifies an existing primary file whose alternate key 
records are to generated and loaded into the file indicated 
by <key file number>. 

<key-seq option> 

specifies options pertaining to loading the alternate key 
file. <key-seq option> is one of 

example 

MAX <num records> 
SCRATCH <scratch file name> 
SLACK <percentage> 
DSLACK <percentage> 
!SLACK <percentage> 

LOADALTFILE 0, ksfile, DSLACK 10 



ENSCRIBE FILE LOADING: FUP PROGRAM: LOADALTFILE Command 

Considerations 

• How LOADALTFILE Works 

Execution of this command causes a sort to be performed. The 
primary file is read sequentially via its primary key field. For 
each record read from the primary file, one or more alternate key 
records are generated and written to the SORT process. When the 
sort completes, the sorted records are read from the SORT process 
then loaded into the indicated alternate key file. 

Note that during the sorting phase, disc space for the sort scratch 
file and for the alternate key file must exist concurrently • 

• LOADALTFILE and Null Alternate Key Fields 

Any "NULL" specification defined for a key field will be honored 
(i.e., an alternate key record will not be generated for a field 
having a null character defined if the field consists solely of the 
null character) • 

• LOADALTFILE and NO UPDATE Alternate Key Fields 

Any "NO UPDATE" specifications will be ignored. 

• Key-Sequenced Options 

The syntax for the LOADALTFILE key-sequenced options is 

MAX <num records> 
SCRATCH <scratch file name> 
SLACK <percentage> 
DSLACK <percentage> 
!SLACK <percentage> 

The following two options pertain to sorting the alternate key 
records generated from the <primary file>. 

- MAX <num records> 

specifies the number of records in the <source file>. <num 
records> is given as a value in the range of {0:2099999999}. The 
<num records> value is used to determine the size of the scratch 
file used by the SORT process. If omitted, 10,000 is used. This 
value need not be exact, but if given, should equal-to or 
greater-than then actual number of records in the <source file>. 

6-7 



ENSCRIBE FILE LOADING: FUP PROGRAM: LOADALTFILE Command 

6-8 

- SCRATCH <scratch file name> 

specifies a <file name> or $<volume name> to be used for 
temporary storage during the sorting phase. If omitted, a 
scratch file on the default volume is used. 

The following options specify the minimum percentage of space to be 
left in index and/or data blocks for future insertions. Note that 
if space is not available when an insertion is made, a "block 
split" will occur. 

- SLACK <percentage> 

specifies the minimum percentage of slack space in both index and 
data blocks. <percentage> is specified as a value in the range 
of {0:99}. If this option is omitted, 0 percentage will be left 
for slack space. 

- DSLACK <percentage> 

specifies the minimum percentage of slack space in data blocks. 
If omitted, the "SLACK <percentage>" value is used. 

- !SLACK <percentage> 

specifies the minimum percentage of slack space in index blocks. 
If omitted, the "SLACK <percentage>" value is used. 



ENSCRIBE FILE LOADING: FUP PROGRAM: BUILDKEYRECORDS Command 

THE FUP BUILDKEYRECORDS COMMAND 

The BUILDKEYRECORDS command is used to generate the alternate key 
records for specified key fields of a specified structured disc file 
and write those records to a designated file (not necessarily the 
destination alternate key file) • If the output file is not the 
destination file, the alternate key records generated by BUILDKEY
RECORDS are then loaded (possibly after being sorted) into the 
destination alternate key file by means of a LOAD command. (This is 
done in lieu of a direct load of the alternate file via a LOADALTFILE 
command when limited system resources do not permit such an 
operation.) Note that the output of BUILDKEYRECORDS can be the actual 
destination alternate key file; however, the alternate key loading 
will not be as efficient as using a LOAD command. 

The form of the BUILDKEYRECORDS Command is: 

BUILDKEYRECORDS <primary file name> , <out file name> , 

<key specifier list> [ , <out option> ] ••• 

where 

<primary file name> 

specifies an existing primary file whose alternate key 
records are to be generated. The primary file must have one 
or more alternate key fields defined. 

<out file name> 

specifies an existing file where the alternate key records 
generated by this command are to be written. 

6-9 



ENSCRIBE FILE LOADING: FUP PROGRAM: BUILDKEYRECORDS Command 

<key specifier list> 

specifies one or more alternate key fields of <primary file 
name> whose corresponding alternate key records are to be 
generated. <key specifier list> is of the form 

{ <key specifier> } 
{ ( <key specifier> , ••• ) } 

<key specifier> 

is a two-byte value that uniquely identifies the 
alternate key field. It is specified as either 

" [<cl>] <c2>" 

a one- or two-character string within quotation 
marks (if <cl> is omitted, then <cl> is treated as a 
zero ( 0) ) : or 

{-32768:65535} 

<out option> 

specifies the format and control of the out file. <out 
option> is one of 

{ RECOUT <out record length> 
~ BLOCKOUT <out block length> 

PAD "<pad character>" 
EBCDICOUT 
FOLD 
[ NO ] UNLOADOUT 
[ NO ] REWINDOUT 
SKIPOUT <num eof s> 

, 
j 
~ 

mag tape 
mag tape 
mag tape 

See "FUP" in the "GUARDIAN Command Language and Utilities 
Manual" explanation of the above options. 

example 

BUILDKEYRECORDS myfile,$TAPE, ("ab","cd") 

6-10 



ENSCRIBE FILE LOADING: FUP PROGRAM: BUILDKEYRECORDS Command 

Considerations 

• How BUILDKEYRECORDS Works 

The execution of this command causes the primary file to be read 
sequentially via its primary key field. For each record read from 
the primary file, one or more alternate key records are generated 
and written to the <out file> (corresponding to the number of <key 
specifiers> specified). If more than one <key specifier> is 
specified, the corresponding alternate key file records are 
generated in order of the ASCII collating sequence of <key 
specifiers>. 

e BUILDKEYRECORDS and NULL Alternate Key Fields 

Any "NULL" specification defined for a key field will be honored 
(i.e., an alternate key record will not be generated for a field 
having a null character defined if the field consists solely of the 
null character) • 

e BUILDKEYRECORDS and NO UPDATE Alternate Key Fields 

Any "NO UPDATE" specifications will be ignored. 

• BUILDKEYRECORDS and UNIQUE Alternate Key Fields 

Any "UNIQUE" specifications are ignored: however, duplicate unique 
key values will be detected when the alternate key file is loaded. 

6-11 



ENSCRIBE FILE LOADING: FUP PROGRAM: EXAMPLES 

FILE LOADING EXAMPLES 

These examples illustrate file loading operations that require a 
sequence of FUP commands to perform. The examples in this section 
are: 

1) Loading a Key-Sequenced file 

2) Adding an Alternate Key to a file having Alternate Keys 

3) Adding an Alternate Key to a file not having Alternate Keys 

4) Reloading a single Partition of a Partitioned Key-Sequenced 
file 

5) Loading a single Partition of a Partitioned Alternate Key file 

Example 1. Load a Key-Sequenced File 

The file is designated 

$voll.svol.partfile. 

It is a key-sequenced file having three partitions. The secondary 
partitions are 

$vol2, the first secondary partition, and 

$vol3, the second secondary partition. 

Records having a primary key value in the range of zero up to, but not 
including "HA" are to be exist in the primary partition: records 
having a primary key value in the range of "HA" up to, but not 
including "RA" are to exist in the partition on the volume "$vol2"; 
records having a primary key value of "RA" or greater are to exist in 
the partition on the volume "$vol3". 

The records to be loaded into this file are 128-bytes in length and 
are on tape in unsorted order (the tape is written with one record per 
block). 

The FUP commands to perform this operation are 

-VOLUME $voll.svol 
-LOAD $TAPE, partf ile 

6-12 

This reads the records from tape and sends them to the SORT 
process. When all records have been input, sorting begins. 
When the sort is finished, the records are read from the SORT 
process and loaded into the file according to the f ile~s 
<partial key value> specifications. The data and index block 
slack percentage is zero (0). 



ENSCRIBE FILE LOADING: FUP PROGRAM: EXAMPLES 

Example 2. Add an Alternate Key to a File Having an Alternate Key 

The file to which the key is to be added, the primary file, is 
designated 

$voll.svol.prifile. 

The primary file has one alternate key file designated 

$voll.svol.altfile. 

The alternate key records for the new key field will be added to this 
file. 

The <key specifier> for the new key is "NM", the <key offset> in the 
record is four (4) , the <key length> is twenty (20) , a "null value" of 
" " (blank) is specified for the new key field. 

The FUP commands to perform this operation are 

-VOLUME $voll.svol 
-ALTER prifile, ALTKEY ( "NM", KEYOFF 4, KEYLEN 20, NULL " " 
-LOADALTFILE 0, prifile, !SLACK 10 

The LOADALTFILE command loads <key file number> zero (0) of 
"prifile", "$voll.svol.altfile" with the alternate key records 
for <key specifier> "NM" and for any other alternate keys 
defined for key file zero (0) • An index block slack percentage 
of ten (10) is specified. 

6-13 



ENSCRIBE FILE LOADING: FUP PROGRAM: EXAMPLES 

Example 3. Add an Alternate Key to a File Not Having Alternate Keys 

The file to which the key is to be added, the primary file, is 
designated 

$voll.svol.filea. 

It is an entry-sequenced file. 

The new alternate key file will be designated 

$voll.svol.fileb. 

The alternate key records for the new key field will be added to this 
file. 

The <key specifier> for the new key is "XY", the <key offset> in the 
record is (0) , the <key length> is ten (10) . 

The FUP commands to perform this operation are 

-VOLUME $voll.svol 
-CREATE fileb, type K, rec 16, keylen 16 
-ALTER filea, ALTFILE ( 0, fileb ) , ALTKEY "XY", KEYLEN 10 ) 
-LOADALTFILE o, filea 

6-14 

The CREATE command creates the alternate key file 
"$voll.svol.fileb". The record length and key length are 
specifies as 16 bytes (2 for key specifier + 10 for the 
alternate key field lengths + 4 for the primary key length). 

The ALTER command changes the file label for ~filea~ so that it 
references "fileb" as <alternate key file> 0, and contains the 
definition for the key field specified by <key specifier> "XY". 

The LOADALTFILE command loads <key file number> zero (0) of 
"filea", "$voll.svol.fileb" with the alternate key records for 
<key specifier> "XY". An index block slack percentage of zero 
(0) is implied. 



ENSCRIBE FILE LOADING: FUP PROGRAM: EXAMPLES 

Example 4. Reload a Single Partition of Key-Sequenced, Partitioned 
File 

The primary partition of the partitioned file is 

$voll.svol.partfile 

Partitions of "partfile" exist on 

$vol2, the first secondary partition, and 

$vol3, the second secondary partition. 

The secondary partition (on "$vol2") is to be loaded. 

The FUP commands to perform this operation are 

-VOLUME $voll.svol 
-SET LIKE $vol2.partfile 
-SET NO PARTONLY 
-CREATE temp 
-DUP $vol2.partfile, temp, OLD, PARTONLY 
-LOAD temp, $vol2.partfile, SORTED, PARTOF $voll 
-PURGE temp 

The SET and CREATE command create a file identical to 
"$vol2.svol.partfile" except that the file is designated a 
non-partitioned file by means of "NO PARTONLY". 

The DUP command duplicates the data in the secondary partition 
"$vol2.svol.partfile" into "$voll.svol.temp". 

The LOAD command reloads the secondary partition 
"$vol2.svol.partfile". Note that the "SORTED" option is 
specified because the records in the "temp" file are already in 
sorted order. 

6-15 



ENSCRIBE FILE LOADING: FUP PROGRAM: EXAMPLES 

Example 5. Load a Single Partition of Partitioned, Alternate Key File 

The primary file is designated 

$voll.svol.prifile. 

It is a key-sequenced file having a primary key field length of ten 
(10). It has three alternate key fields defined by the <key 
specifiers> 

"Fl", "F2", .and "F3" 

Each of these alternate key fields are ten (10) bytes in length. 

All alternate key records are contained in one alternate key file that 
is partitioned over three volumes; each volume contains the alternate 
key records for one alternate key field (the <key specifier> for the 
alternate key field is also the <partial key value> for the secondary 
partitions). 

The primary partition of the partitioned, alternate key file is 

$voll.svol.altfile. 

It contains the alternate key records for the <key specifier> "Fl". 

Partitions of the alternate key file "altf ile" exist on 

$vol2, the first secondary partition, and 

$vol3, the second secondary partition. 

"$vol2.svol.altfile~ contains the alternate key records for the <key 
specifier> "F2". "$vol3.svol.altfile" contains the alternate key 
records for the <key specifier> "F3". 

The alternate key records for the <key specifier> "F2" are to be 
loaded into "vol2.svol.altfile". 

6-16 



ENSCRIBE FILE LOADING: FUP PROGRAM: EXAMPLES 

The FUP commands to perform this operation are 

-VOLUME $voll.svol 
-CREATE sortin, ext 30 
-CREATE sortout, ext 30 
-BUILDKEYRECORDS prifile, sortin, "F2", RECOUT 22, BLOCKOUT 2200 
-EXIT 
:SORT 
<FROM sortin, RECORD 22 
<TO sortout 
<ASC 1:22 
<RUN 
<EXIT 
:FUP 
-VOLUME $voll.svol 
-LOAD sortout, $vol2.altfile, SORTED, PARTOF $voll, RECIN 22, 

BLOCKIN 2200 
-PURGE ! sortin, sortout 

The CREATE commands create the disc file used as the output of 
BUILDKEYRECORDS (which is also the input to SORT) and the disc 
file to be used as the output of SORT. 

The BUILDKEYRECORDS command generates the alternate key records 
for the <key specifier> "F2" of "prifile" and writes the records 
to "sortin". Record blocking is used to improve the efficiency 
of disc writes. 

The Tandem-supplied SORT program is used to sort the alternate 
key records. The key field length for the sort is the same as 
the alternate key record length (22, 2 for the <key specifier> + 
10 for alternate key field length + 10 for the primary key field 
length). The output file of the sort is "sortout". 

The LOAD command loads the secondary partition 
"$vol2.svol.altfile" with the alternate key records for the <key 
specifier> "F2". Note that the record blocking here is 
complementary to that used with BUILDKEYRECORDS. 

6-17 





APPENDIX A 

SEQUENTIAL I/O PROCEDURES 

The Sequential I/O procedures provide TAL programmers with a 
standardized set of procedures for performing common input and 
output operations. These operations include reading and writing IN 
and OUT files, and handling BREAK from a terminal. The primary use 
of these procedures is intended for TANDEM subsystem and user utility 
programs. The primary benefit is that programs using these procedures 
can treat different file types in a consistent and predictable manner. 

Some characteristics of the Sequential I/O procedures are: 

• All file types are accessed in a uniform manner. 

File access characteristics, such as access mode, exclusion 
modes, and record size, are selected according to device type 
and the intended access. 

The Sequential I/O procedures default characteristics are 
set to facilitate their most general use. 

• Error recovery is automatic. All fatal errors cause the display 
of a comprehensive error message, all files to close and the 
process to abort. The automatic error handling and/or the display 
of error messages may be turned.off. This allows the program to do 
the error handling. 

• The characteristics of Sequential I/O operations can be altered at 
open time with the OPENAFILE procedure. This is also possible 
before or after the open time with the SETAFILE procedure. Some 
optional characteristics are: 

Record blocking/deblocking 

Duplicative file capability where data read from one file is 
automatically echoed to another file. 

An error reporting file where all error messages are directed. 
When a particular file is not specified the error reporting 
file is the home terminal. 

• The Sequential I/O procedures can be used with the INITIALIZER 
procedure to make run-time changes. File transfer characteristics, 
such as record length, can be changed using the Command Interpreter 
ASSIGN command. (See "Interface with INITIALIZER and ASSIGN 
Messages".) 

• The Sequential I/O procedures retain information about the files 
in file control blocks. There is one file control block (FCB) 
for each open file plus one common file control block which is 
linked to the other FCBs. (See FCB Structure.) 

A-1 



SEQUENTIAL I/O PROCEDURES 

The Sequential I/O procedures and their functions are: 

CHECK"BREAK 

CHECK"FILE 

CLOSE"FILE 

GIVE"BREAK 

OPEN"FILE 

READ"FILE 

SET" FILE 

TAKE" BREAK 

WAIT"FILE 

WRITE"FILE 

checks whether the break key was typed 

retrieves file characteristics 

closes a file 

disables the break key 

opens a file for access by the Sequential I/O 
procedures 

reads from a file 

sets or alters file characteristics 

enables the break key 

waits for the completion of an outstanding I/O 
operation 

writes to a file 

The Sequential I/O procedures also contain a set of Defines and 
Literals that: 

Allocate control block space (see "OPEN"FILE"). 

Specify open characteristics (see "OPEN"FILE") • 

Set file transfer characteristics (see "SET"FILE"). 

Check file transfer characteristics (see "CHECK"FILE"). 

Note that in the description of the procedure parameters, the 
commercial at symbol "@" is used to indicate the address of an 
object, not the object itself. For example, when specifying a 
file name to the SET"FILE procedure, the file name parameter 
should be passed as follows: 

A-2 

CALL SET"FILE ( in"f ile , ASSIGN"FILENAME , @buf ) ; 

where 

@buf is the address of the array containing the 
name of the file to be opened. 



SEQUENTIAL I/O PROCEDURES 

SEQUENTIAL I/O PROCEDURES SOURCE FILES 

The source file named $SYSTEM.SYSTEM.GPLDEFS is used with the 
Sequential I/O procedures. It provides the TAL Defines for allocating 
control block space, for assigning open characteristics to the file, 
and for altering and checking the file transfer characteristics. The 
TAL Literals for the Sequential I/O procedures error numbers are also 
included. This file must be referenced in the program~s global area 
before any internal or external procedure declarations or within a 
procedure before any subprocedure declarations. 

Like all other procedures in a TAL program, the Sequential I/O 
procedures must be declared before being called. These procedures 
are declared as external. The external declarations for these 
procedures are provided in a system file named 
$SYSTEM.SYSTEM.EXTDECS. A SOURCE compiler command specifying this 
file should be included in the source program following the global 
declarations but preceding the first call to one of these procedures: 

<global declarations> 

?SOURCE $SYSTEM.SYSTEM.GPLDEFS 

?SOURCE $SYSTEM.SYSTEM.EXTDECS ( <names of procedures desired> } 

<procedure declarations> 

A-3 



SIO: CHECKABREAK Procedure 

The CHECKABREAK procedure tests whether the break key has been typeo 
since the last CHECKABREAK. 

The call to CHECKABREAK is 

<state> := CHECKABREAK ( { <common FCB> } ) 
{ <file FCB> } 

where 

<state>, INT, 

indicates whether or not the break key has been typed. 
Values returned in <state> are: 

1 = break key typed and break is enabled 
0 = break key not typed or break is disabled 

<common FCB>, INT:ref, 

<file FCB>, INT:ref, 

identifies the file to be checked for break. <common FCB> 
is allowed for convenience. 

Example: 

CALL TAKEABREAK ( outAf ile ) ; 
WHILE NOT ( break := CHECKABREAK ( outAfile ) ) DO 

BEGIN 

CALL WRITEAFILE ( outAf ile , buffer , count ) ; 
END; 

CONSIDERATIONS 

• If CR/LF on break is enabled, the default case, a carriage 
return/line feed sequence is executed on the terminal where break 
is typed. 

A-4 



SIO: CHECKAFILE Procedure 

The CHECKAFILE procedure checks the file characteristics. 

The call to CHECKAFILE is 

<retval> := CHECKAFILE ( { <common FCB> } , <operation> ) 
{ <file FCB> } 

where 

<retval>, INT, 

is the value returned for the requested operation. 

<common FCB or file FCB>, INT:ref, 

identifies which file is checked. 
used for certain types of checks; 

used for the checks FILEABREAKHIT, 
and FILEATRACEBACK. Specifying an 
an error indication. 

<operation>, INT:value, 

A <common FCB> can be 
a <common FCB> must be 

must 
FILEAERRORFILE, 
improper FCB causes 

specifies which file characteristic is checked. The 
<operation>s and their associated <retval>s are: 

<operation> = FILEAABORTAXFERERR, 
<retval> := <bit value> 

(file must be open) 

returns: 0 if the process is not to abort upon 
detection of a fatal error in the file or 

1 if the process is to abort. 

<operation> = FILEAASSIGNMASKl, 
<retval> := <high-order word of ASSIGN fieldmask> 

returns the high-order word of the ASSIGN message 
"f ieldmask" in the FCB. This value generally has 
meaning only after being set by the INITIALIZER 
procedure. 

A-5 



SIO: CHECKAFILE Procedure 

A-6 

<operation> = FILEAASSIGNMASK2, 
<retval> := <low-order word of ASSIGN fieldmask> 

returns the low-order word of the ASSIGN message 
"f ieldmask" in the FCB. This value generally has 
meaning only after being set by the INITIALIZER 
procedure. 

<operation> = FILEABLOCKBUFLEN, 
<retval> := <block buffer length> 

returns a count of the number of bytes used for blocking. 

<operation> = FILEABREAKHIT, 
<retval> := <state of the break hit bit> 

returns: 0 if the break hit bit is equal to zero in 
the FCB or 

1 if the break hit bit is equal to one in the 
FCB. 

The break hit bit is an internal indicator normally 
used only by the Sequential I/O procedures. 

When using the break handling procedures, do not use 
FILEABREAKHIT to determine if the break key has been 
typed. Instead, the CHECKABREAK procedure must be 
called. 

<operation> = FILEABWDLINKFCB, 
<retval> := <backward-link-pointer> 

returns the address of the FCB pointed to by the backward 
link pointer within the FCB. This indicates the 
linked-to FCB~s that need to be checkpointed after an 
OPENAFILE or CLOSEAFILE. 

<operation> = FILEACHECKSUM, 
<retval> := <checksum word> 

(file must be open) 

returns the value of the checksum word in the FCB. 

<operation> = FILEACREATED, (file must be open) 
<retval> := <state of the created bit> 

returns: 0 if a file was not created by OPENAFILE or 
1 if a file was created by OPENAFILE. 



SIO: CHECKAFILE Procedure 

<operation> = FILEACOUNTXFERRED, 
<retval> := <count transferred> 

(file must be open) 

returns a count of the number of bytes transferred in the 
latest physical I/O operation. 

<operation> = FILEACRLFABREAK, (file must be open) 
<retval> := <state of cr/lf break bit> 

returns: 0 if no carriage return and line feed sequence 
is to be issued to the terminal upon break 
detection or 

1 if this sequence is to be issued. 

<operation> = FILEADUPFILE, 
<retval> := @<dupfile FCB> 

(file must be open) 

returns the word address of the duplicate file FCB. A 
zero is returned if there is no duplicate file. 

<operation> = FILEAERROR, 
<retval> := <error> 

(file must be open) 

returns the error number of the latest error that 
occurred within the file. 

<operation> = FILEAERRORFILE, 
<retval> := @<error file FCB> 

returns the word address within the FCB of the reporting 
error file. A zero is returned if there is none. 

<operation> = FILEAERRORAADDR, 
<retval> := @<error> 

returns the word address within the FCB of where the error 
code is stored. 

A-7 



SIO: CHECKAFILE Procedure 

A-8 

<operation> = FILEAFILEINFO (file must be open) 
<retval> := <file info> 

<file info>.<0:3> = file type, 0 = unstructured, 
1 = relative, 

• <4:9> = dev type • 

2 = entry-sequenced, 
3 = key-sequenced, 
4 = edit, 
8 = odd-unstructured. 

• <10:15> = dev subtype • 

File types 1-3 are described in Enscribe Disc Files, 
ENSCRIBE Data Base Record Manager Programming Manual, 
in the File Management section. 

The device type and device subtype are described in the 
GUARDIAN Programming Manual, DEVICEINFO Procedure. 

<operation> = FILEAFILENAMEAADDR, 
<retval> := @<filename> 

returns the word address within the FCB of the physical 
filename. 

<operation> = FILEAFNUM, 
<retval> := <file number> 

returns the file numbere 

<operation> = FILEAFNUMAADDR, 
<retval> := @<file number> 

(file must be open) 

returns the word address within the FCB of the file 
number. If the file is not open, the file number is -1. 

<operation> = FILEAFWDLINKFCB, 
<retval> := <forward-link-pointer> 

returns the address of the FCB pointed to by the forward 
link pointer within the FCB. This value indicates the 
linked-to FCB~s that need to be checkpointed after an 
OPENAFILE or CLOSEAFILE. 



SIO: CHECKAFILE Procedure 

<operation> = FILEALOGICALFILENAMEAADDR 
<retval> := @<logical filename> 

returns the word address within the FCB of the logical 
filename. The logical filename is encoded as follows: 

byte numbers 

[O] [l] [8] 
<len><logical file name> 

<len> is the length of the logical file name in bytes 
{0:7}. 

<operation> = FILEALOGIOOUT, (file must be open) 
<retval> := <state of the logioout bit> 

returns: 0 to indicate there is no logical I/O 
outstanding. 

1 if a logical read is outstanding. 
2 if a logical write is outstanding. 

<operation> = FILEAPHYSIOOUT, 
<retval> := <state of the physioout 

returns: 0 to indicate there is 
I/O operation. 

1 if a physical I/O is 

<operation> = FILEAPRIEXT, 
<retval> := <primary extent size> 

(file must be 
bit> 

no outstanding 

outstanding. 

returns the file's primary extent size in pages. 

open) 

physical 

<operation> = FILEAPRINTAERRAMSG, (file must be open) 
<retval> := <state of print errmsg bit> 

returns: 0 if no error message is to be printed upon 
detection of a fatal error in the file. 

1 if an error message is to be printed. 

<operation> = FILEAPROMPT, (file must be open) 
<retval> := <interactive prompt character> 

returns the interactive prompt character for the file 
in <9.: 15>. 

A-9 



SIO: CHECKAFILE Procedure 

A-10 

<operation> = FILEARCVEOF, 
<retval> := <state of rcveof bit> 

(file must be open) 

returns: 0 if the user does not get an end-of-file 
(EOF) indication, when the last process[-pair] 
having this process open, closes it. 

1 if the user does get an EOF indication, when 
this process closes. 

<operation> = FILEARCVOPENCNT, (file must be open) 
<retval> := <$RECEIVE opener count> 

returns a count of current openers of this process {0:2}. 
At any given moment openers are limited to a single 
process[-pair]. 

<operation> = FILEARCVUSEROPENREPLY, (file must be open) 
<retval> := <state of the rev-user-open-reply bit> 

returns: 0 if the Sequential I/O procedures are to 
reply to the open messages ($RECEIVE file). 

1 if the user is to reply to the open messages. 

<operation> = FILEAREADATRIM, (file must be open) 
<retval> := <state of the read trim bit> 

returns: 0 to indicate the trailing blanks are not 
trimmed off the data read from this file. 

1 if the trailing blanks are trimmed. 

<operation> = F!LEARECORDLEN, 
<retval> := <record length> 

returns the logical record length. 

<operation> = FILEASECEXT, 
<retval> := <secondary extent size> 

returns the file's secondary extent size in pages. 



SIO: CHECKAFILE Procedure 

<operation> = FILEALOGICALFILENAMEAADDR 
<retval> := @<logical filename> 

returns the word address within the FCB of the logical 
filename. The logical filename is encoded as follows: 

byte numbers 

[O] [l] [8] 
<len><logical file name> 

<len> is the length of the logical file name in bytes 
{0:7}. 

<operation> = FILEALOGIOOUT, (file must be open) 
<retval> := <state of the logioout bit> 

returns: 0 to indicate there is no logical I/O 
outstanding. 

1 if a logical read is outstanding. 
2 if a logical write is outstanding. 

<operation> = FILEAPHYSIOOUT, 
<retval> := <state of the physioout 

returns: 0 to indicate there is 
I/O operation. 

1 if a physical I/O is 

<operation> = FILEAPRIEXT, 
<retval> := <primary extent size> 

(file must be 
bit> 

no outstanding 

outstanding. 

returns the file's primary extent size in pages. 

open) 

physical 

<operation> = FILEAPRINTAERRAMSG, (file must be open) 
<retval> := <state of print errmsg bit> 

returns: 0 if no error message is to be printed upon 
detection of a fatal error in the file. 

1 if an error message is to be printed. 

<operation> = FILEAPROMPT, {file must be open) 
<retval> := <interactive prompt character> 

returns the interactive prompt character for the file 
in <9_: 15>. 

A-9 



SIO: CHECKAFILE Procedure 

A-10 

<operation> = FILEARCVEOF, 
<retval> := <state of rcveof bit> 

(file must be open) 

returns: 0 if the user does not get an end-of-file 
(EOF) indication, when the last process[-pair] 
having this process open, closes it. 

1 if the user does get an EOF indication, when 
this process closes. 

<operation> = FILEARCVOPENCNT, (file must be open) 
<retval> := <$RECEIVE opener count> 

returns a count of current openers of this process {0:2}. 
At any given moment openers are limited to a single 
process[-pair]. 

<operation> = FILEARCVUSEROPENREPLY, (file must be open) 
<retval> := <state of the rev-user-open-reply bit> 

returns: 0 if the Sequential I/O procedures are to 
reply to the open messages ($RECEIVE file). 

1 if the user is to reply to the open messages. 

<operation> = FILEAREADATRIM, (file must be open) 
<retval> := <state of the read trim bit> 

returns: 0 to indicate the trailing blanks are not 
trimmed off the data read from this file. 

1 if the trailing blanks are trimmed. 

<operation> = FILEARECORDLEN, 
<retval> := <record length> 

returns the logical record length. 

<operation> = FILEASECEXT, 
<retval> := <secondary extent size> 

returns the file's secondary extent size in pages. 



SIO: CHECKAFILE Procedure 

<operation> = FILEASEQNUMAADDR 
<retval> := @<sequence number> 

returns the word address within the FCB of an INT (32) 
sequence number. This is the line number of the last 
record of an edit file. For a non-edit file this is the 
sequence number of the last record multiplied by 1000. 

<operation> = FILEASYSTEMMESSAGES, 
<retval> := <system message mask> 

(file must be open) 

returns a mask word indicating which system messages the 
user handles directly. See SETAFILE for the format. 
A zero indicates that the Sequential I/O procedures 
handle all system messages. 

<operation> = FILEATRACEBACK, 
<retval> := <state of traceback bit> 

returns: 0 if the P-relative address should not be 
appended to all SIO error messages 

1 if the P-relative address should be 
appended to all SIO error messages 

<operation> = FILEAUSERFLAG, 
<retval> := <user flag> 

returns the user flag word. (See SETAFILE procedure, 
SETAUSERFLAG operation.) 

<operation> = FILEAUSERFLAGAADDR 
<retval> := @<user flag> 

returns the word address within the FCB of the user 
flag word. 

<operation> = FILEAWRITEAFOLD, (file must be open) 
<retval> := <state of the write-fold bit> 

returns: 0 if records longer than the logical record 
length are truncated. 

1 if long records are folded. 

A-11 



SIO: CHECKAFILE Procedure 

<operation> = FILEAWRITEAPAD, (file must be open) 
<retval> := <state of write-pad bit> 

returns: 0 if a record shorter than the logical record 
length is not padded with trailing blanks 
before it is written to the file. 

1 if a short record is padded with trailing 
blanks. 

<operation> = FILEAWRITEATRIM, (file must be open) 
<retval> := <state of the write=trim bit> 

returns: 0 if trailing blanks are not trimmed from 
data written to the file. 

1 if trailing blanks are trimmed. 

examples: 

INT .infileAname; 

INT .infnum; 

@infnum := CHECKAFILE ( infile , FILEAFNUMAADDR); 

IF error := CHECK~FILE ( infile, FILEAERROR) ) THEN .. 

CONSIDERATIONS 

• During the execution of this procedure the detection of any 
error causes the display of an error message and the process 
is aborted. 

A-12 



SIO: CLOSEAFILE Procedure 

The CLOSEAFILE procedure is used to close a file. 

The call to CLOSEAFILE is 

{ CALL } CLOSEAFILE ( { <common FCB> } 
} { <file FCB> } { <error> := 

, <tape disposition> 
where 

<error>, INT, 

is either a file management or Sequential I/O procedure 
error number indicating the outcome of the close. In any 
case, the file is closed. 

If the abort-on-error mode, the default, is in effect, 
the only possible value for <error> is zero. 

<common FCB>, INT:ref, 

identifies all files to be closed. If the break 
for any file is currently enabled, it is disabled. 

<file FCB>, INT:ref, 

identifies the file to be closed. If the break for 
the file is currently enabled, it is disabled. 

<tape disposition>, INT:value 

specifies mag tape disposition 

where 

<tape disposition>.<13:15> 

0 
1 
2 
3 
4 

example 

= 
= 
= 
= 
= 

rewind, unload, do not wait for completion 
rewind, take offline, do not wait for completion 
rewind, leave online, do not wait for completion 
rewind, leave online, wait for completion 
do not rewind, leave online 

CALL CLOSEAFILE 
CALL CLOSEAFILE 

commonAfcb ) ; 
rcvAf ile ) ; 

A-13 



SIO: CLOSEAFILE Procedure 

CONSIDERATIONS 

• Edit files or files that are open with write access and 
blocking capability must be closed with the CLOSEAFILE 
procedure or the data is lost. 

A-14 



SIO: GIVEABREAK Procedure 

The GIVEABREAK procedure returns break to the previous owner, the 
process that had the break enabled before the last call to 
TAKEABREAK. 

The call to GIVEABREAK is 

CALL GIVEABREAK ! <common FCB } 
<file FCB> } 

where 

<common FCB>, INT:ref, 

<file FCB>, INT:ref, 

identifies the file receiving break. <common FCB> is 
allowed for convenience. If break is not enabled, this 
call is ignored. 

example: 

CALL TAKEABREAK ( outAf ile ) ; 
WHILE NOT ( break := CHECKABREAK ( outAfile ) ) DO 

BEGIN 

CALL WRITEAFILE ( outAf ile , buffer , count ) ; 
END; 

A-15 



SIO: OPENAFILE Procedure 

The OPENAFILE procedure permits access to a file with the other 
Sequential I/O procedures. 

The call to OPENAFILE is 

{ CALL := I OPENAFILE ( <common FCB> 
{ <error> 

, 
, [ 
, [ 
, [ 
, [ 
, [ 
, [ 
, [ 

<file FCB> 
<block buffer> ] 
<block buffer length> ] 
<flags> ] 
<flags mask> ] 
<max record length> ] 
<prompt char> ] 
<error file FCB> ] 

where 

A-16 

<error>, INT, 

is a file management or Sequential I/O procedure error 
indicating the outcome of the operation. 

If the abort-on-open-error mode is in effect, the only 
possible value of <error> is zero. 

<common FCB>, INT:ref, 

is an array of FCBSIZE words for use by the Sequential I/O 
procedures. Only one <common FCB> is used per process. 
This means the same data block is passed to all OPENAFILE 
calls. The first word of <common FCB> must be initialized 
to zero before the first OPENAFILE call following a process 
startup. 

<file FCB>, INT:ref, 

is an array of FCBSIZE words for use by the Sequential I/O 
procedures. The <file FCB> uniquely identifies this file 
to the other Sequential I/O procedures. The <file FCB> 
must be initialized with the name of the file to be opened 
before the OPENAFILE call is made. 

See "Initializing the File FCB" following the description 
of the FCB Structure. 



SIO: OPENAFILE Procedure 

<block buffer>, INT:ref, 

(optional) is an array used for record blocking and 
deblocking. No bl_ocking is performed if <block buffer> or 
<block buffer length> is omitted, or if the <block buffer 
length> is insufficient according to the record length for 
the file, or if readwrite access is indicated. 

Blocking is performed when this parameter is supplied, 
the <block buffer> is of sufficient length, as indicated 
by the <block buffer length> parameter, and blocking is 
appropriate for the device. 

The block buffer must be located within ~G~ [ 0:32767 ] of 
the data area. 

<block buffer length>, INT:value, 

(optional) indicates the length, in bytes, of the <block 
buffer>. This length must be able to contain at least one 
logical record. For an edit file, the minimum length on 
read is 144 bytes; on write, the minimum length is 1024 
bytes. 

<flags>, INT(32) :value, 

(optional) is used in conjunction with the <flags mask> 
parameter to set file transfer characteristics. If omitted, 
all positions are treated as zero. The bit fields in 
<flags> are defined in Appendix A. These literals may be 
combined using signed addition, since bit 0 is not used. 

ABORTAOPENERR, 

abort-on-open error, defaults to on. If on, and a 
fatal error occurs during the OPENAFILE, all files 
are closed and the process abends. If off, the 
file system or Sequential I/O procedure error number 
is returned to the caller. 

abort-on-data-transfer error, defaults to on. If on, 
and a fatal error occurs during a data transfer 
operation, like a call to any Sequential I/O procedure 
except OPENAFILE, all files are closed and the process 
abends. If off, the file system or the Sequential I/O 
procedure error number is returned to the caller. 

A-17 



SIO: OPENAFILE Procedure 

A-18 

print-error-message, defaults to on. If on, and a 
fatal error occurs, an error message will be displayed 
on the error file. This is the home terminal unless 
otherwise specified. 

auto create, defaults to on. If on, and open access 
is write, a file will be created provided one is not 
already there. If no file code has been assigned, or 
if the file code is 101, and a block buffer of 
sufficient size is provided, an edit file is created. 
The default extent sizes are 4 pages for the primary 
extent and 16 pages for the secondary extent. 

MUSTBENEW, 

file must-be-new, defaults to off. This applies only 
if AUTOACREATE is specified. 

PURGEADATA, 

purgedata, defaults to off. If on, and open access is 
write, the data will be purged from the file after the 
open. If off, the data is appended to the existing 
data. 

auto top-of-form, defaults to on. If on, the file is 
open with write access and is a line printer or 
process, a page eject is issued to the file within the 
OPENAFILE procedure. 

NOWAIT, 

nowait I/O, defaults to off or wait I/O. If on, 
nowait I/O is in effect. 

BLOCKED, 

non-disc blocking, defaults to off. A block buffer of 
sufficient length must also be specified. 



SIO: OPENAFILE Procedure 

variable length records, defaults to off, or fixed 
length records. If on, the maximum record length for 
variable length records is 254 bytes. 

READATRIM, 

read trailing blank trim, defaults to on. If on, 
the <count read> parameter does not account for 
trailing blanks. 

WRITEATRIM, 

write trailing blank trim, defaults to on. If on, 
trailing blanks are trimmed from the output record 
before being written to the file. 

write fold, defaults to on. If on, writes that 
exceed the record length cause multiple logical 
records to be written. If off, writes that exceed 
the record length are truncated to record length 
bytes; no error message or warning is given. 

write blank pad, defaults to on for disc fixed 
length records and off for all other files. If on, 
writes of less than record length bytes, including 
the last record if WRITEAFOLD is in effect, are 
padded with trailing blanks to fill out the logical 
record. 

carriage return-line feed (CR/LF) on break, defaults 
to on. If on and break is enabled, a CR/LF feed 
will be written to the terminal when break is typed. 

<flags mask>, INT(32) :value, 

(optional) specifies which bits of the flag field are 
used to alter the file transfer characteristics. The 
characteristic to be altered is indicated by entering a 
one in the bit position corresponding to the <flags> 
parameter. A zero indicates the default setting is used. 
When omitted, all positions are treated as zeros. 

A-19 



SIO: OPENAFILE Procedure 

<max record length>, INT:value, 

(optional) specifies the maximum record length for records 
within this file. If omitted, the <max record length> is 
132. The open is aborted with an SIOERRAINVALIDRECLENGTH, 
error 520, if the file's record length exceeds the <max 
record length> and <max record length> is not zero. If the 
<max record length> is zero, then any record length is 
permitted. 

<prompt char>, INT:value, 

(optional) is used to set the interactive prompt character 
for reading from terminals or processes. When not supplied, 
the prompt defaults to "?". The prompt character is limited 
to seven bits, <9:15>. 

<error file FCB>, INT:ref, 

(optional) specifies a file where error messages are 
displayed for all files. Only one error reporting file is 
allowed per process. The file specified in the latest open 
is the one used. Omitting this parameter does not alter the 
current error reporting file setting. 

The error reporting file is used for reporting errors when 
possible. If this file cannot be used or the error is with 
th€ error reporting file, the default error reporting file 
will be used. This is the home terminal. 

If the error reporting file is not open when needed, it is 
opened only for the duration of the message printing then 
closed. Note that the <error file FCB> must be initialized. 
See "Initializing the File FCB". 

Considerations 

• If AUTOATOF is on, a top-of-form control operation is performed 
to the file when the file being opened is a process or a line 
printer and write or readwrite access is specified. 

• If the file is an edit file or when blocking is specified, either 
read or write access must be specified for the open to succeed. 
Readwrite access is not permitted. 

A-20 



SIO: OPENAFILE Procedure 

• When using OPENAFILE to access a temporary disc file, AUTOACREATE 
must be disabled; otherwise the OPENAFILE call results in a file 
management error 13. 

• All files opened with the OPENAFILE procedure are opened with a 
sync depth of one. One is the only possible sync depth; no other 
can be set. 

Example: 

LITERAL prompt= ">", 
bufferAsize = 144; 

!prompt character 
!minimum edit file buffer size 

INT error, 
.commonAfcb [ O:FCBSIZE-1 ] := 0, 
.inAfile [ O:FCBSIZE-1 ] := 0, 
.inAfilename [0:11] := [ "$VOLUME SUBVOL FILENAME" ], 
.buffer [ O:bufferAsize >> 1 ]; 

INT(32) flags := OD, 
flagsAmask := ABORTAOPENERR; !return control on error 

CALL SETAFILE ( inAf ile 
CALL SETAFILE ( inAfile 
IF ( error := OPENAFILE 

BEGIN 

' INITAFILEFCB ) i 
, ASSIGNAFILENAME, @inAfilename ) ; 

( commonAfcb , 
inAf ile , 
buffer , 
bufferAsize , 
flags , 
f lagsAmask , 
prompt ) ) THEN 

! handle open error here 

END; 

A-21 



SIO: READAFILE Procedure 

The READAFILE procedure is used to read a file sequentially. The file 
must be open with read or readwrite access. 

The call to READAFILE is 

{ CALL <file FCB> 
{ <error> 

<buffer> 
<count read> 

, [ <prompt count> 
, [ <max read count> 

[ <no wait> 

where 

A-22 

<error>, INT, 

is a file system or Sequential I/O procedure error 
indicating the outcome of the read. 

If abort-on-error mode is in effect, the only possible 
values for <error> are: 

0 = no error 

1 = end-of-file 

6 = system message (only if user requested system 
messages, by SETASYSTEMMESSAGES) 

111 = operation aborted because of break (if break is 
enabled) 

If <no wait> is not zero, and if abort-on-error is in 
effect, the only possible value for <error> is zero. 

<file FCB>, INT:ref, 

identifies the file to be read. 

<buffer>, INT:ref, 

is where the data is returned. The <buffer> must be 
located within ~G~ [ 0:32767 ] process data area. 



SIO: READAFILE Procedure 

<count read>, INT:ref, 

(optional if <no wait> is not zero) is the count of 
the number of bytes returned to <buffer>. If <no wait> 
is not zero, then this parameter has no meaning and can 
be omitted. The count is then obtained in the call to 
WAITAFILE. 

<prompt count>, INT:value, 

(optional) is a count of the number of bytes in <buffer>, 
starting with element zero, to be used as an interactive 
prompt for terminals or interprocess files. If omitted, 
the interactive prompt character defined in OPENAFILE is 
used. 

<max read count>, INT:value, 

(optional) specifies the maximum number of bytes to be 
returned to <buffer>. If omitted or if <max read count> 
exceeds the file~s logical record length, the logical 
record length is used for this value. 

<no wait>, INT:value, 

(optional) indicates whether or not to wait for the I/O 
to complete in this call. If omitted or <no wait> is 
zero, then wait is indicated. If <no wait> is not zero, 
the I/O must be completed in a call to WAITAFILE. 

example 

WHILE NOT ( error := READAFILE ( inAfile , buffer , 
count ) ) DO 

BEGIN 

END; 

CONSIDERATIONS 

• If the file is a terminal or process a WRITEREAD operation will 
be performed using the interactive prompt character or <prompt 
count> character from <buffer>. 

A-23 



SIO: SETAFILE Procedure 

The SETAFILE procedure alters file characteristics and checks the 
old value of those characteristics being altered. 

The call to SETAFILE is 

{ CALL } SETAFILE ( { <common FCB> } , <operation> 
:= } { <file FCB> } { <error> 

, [ <new value> 1 
, [ <old value> ] 

where 

A-24 

<error>, INT, 

is a file system or Sequential I/O procedure error 
indicating the outcome of the SETAFILE. 

If abort-on-error mode is in effect, the only possible 
value for <error> is zero. 

<common FCB>, INT:ref, 

identifies those files whose characteristics are to be 
altered. The <common FCB> can be used for certain 
operations; it must be used for the operations 
SETABREAKHIT, SETAERRORFILE, and SETATRACEBACK. If an 
improper FCB is specified, an error is indicated. 

<file FCB>, INT:ref, 

identifies the file whose characteristics are to be altered. 
If an improper FCB is specified, an error is indicated. 

<operation>, INT:value, 

specifies the file characteristic to be altered. See "List 
of SETAFILE Operations". 

<new value>, INT:value, 

specifies a new value for the specified <operation>. This 
may be optional depending on the <operation> desired. 



SIO: SETAFILE Procedure 

<old value>, INT:ref, 

is a variable in which the current value for the specified 
<operation> is returned. This can vary from 1 word to 12 
words and is useful in saving this value for reset later. 
If <old value> is omitted, the current value is not 
returned. 

LIST OF SETAFILE OPERATIONS 

This is a list of the file characteristics which can be altered 
by the SETAFILE procedure. 

<operation> = ASSIGNABLOCKBUFLEN (or, ASSIGNABLOCKLENGTH) 
<new value> = <new block length> (optional, file must be closed) 
<old value> := <block length> (optional) 

specifies the block length (in bytes) for the file. 

<operation> = ASSIGNAFILECODE 
<new value> = <new file code> 
<old value> := <file code> 

(optional, file must be closed) 
(optional) 

specifies the file code for the file. 

<operation> = ASSIGNAFILENAME 
<new value> = @<file name> (optional, file must be closed) 
<old value> := <file name> FOR 12 words (optional) 

specifies the physical name of the file to be opened. This 
operation is not used when the INITIALIZER procedure is called 
to initialize the file control blocks. 

example 

A-25 



SIO: SETAFILE Procedure 

<operation> = ASSIGNALOGICALFILENAME 
<new value> = @<logical file name> (optional, file must be closed) 
<old value> := <logical file name> FOR 4 words (optional) 

specifies the logical name of the file to be opened. The 
<logical file name> must be encoded as follows: 

byte numbers 

[0] [l] [8] 
<len><logical filename> 

<len> is the length of logical file name {0:7}. 

<operation> = ASSIGNAOPENACCESS 
<new value> = <new open access> 
<old value> := <open access> 

(optional, file must be closed) 
(optional) 

specifies the open access for the file. The following literals 
are provided for <open access>. 

READWRITEAACCESS (0) 
READAACCESS (1) 
WRITEAACCESS (2) 

Even if READAACCESS is specified, SIO actually opens the file 
with READWRITEAACCESS to facilitate interactive I/O. 

<operation> = ASSIGNAOPENEXCLUSION 
<new value> = <new open exclusion> (optional; file must be closed) 
<old value> := <open exclusion> (optional) 

specifies the open exclusion for the file. The following 
literals are provided for <open exclusion>: 

SHARE (0) 
EXCLUSIVE (1) 
PROTECTED (3) 

<operation> = ASSIGNAPRIEXT (or, ASSIGNAPRIMARYEXTENTSIZE) 
<new value> = <new pri ext size> (optional, file must be closed) 
<old value> := <pri ext size> (optional) 

A-26 

specifies the primary extent size (in units of 2048-byte blocks) 
for the file. 



SIO: SETAFILE Procedure 

<operation> = ASSIGNARECORDLEN (or, ASSIGNARECORDLENGTH) 
<new value> = <new record length> (optional, file must be closed) 
<old value> := <record length> (optional) 

specifies the logical record length (in bytes) for the file. 
For defaults, see step 6 under "Initializing the File FCB." 

<operation> = ASSIGNASECEXT (or, ASSIGNASECONDARYEXTENTSIZE) 
<new value> = <new sec ext size> (optional, file must be closed) 
<old value> := <sec ext size> (optional) 

specifies the secondary extent size (in units of 2048-byte 
blocks) for the file. 

<operation> = INITAFILEFCB 
<new value> = must be omitted 
<old value> = must be omitted 

(file must be closed) 

specifies that the <file FCB> be initialized. This operation 
is not used when the INITIALIZER procedure is called to 
initialize the file control blocks. 

example 

CALL SETAFILE 
CALL SETAFILE 

commonAfcb , INITAFILEFCB ) ; 
inAf ile , INITAFILEFCB ) ; 

<operation> = SETAABORTAXFERERR 
<new value> = <new state> 
<old value> := <state> 

(file must be open) 
(optional) 
(optional) 

Sets/clears abort on transfer error for the file. If on, and a 
fatal error occurs during a data transfer operation, such as a 
call to any Sequential I/O procedure except OPENAFILE, all files 
are closed and the process abends. If off, the file management 
or Sequential I/O procedure error number is returned to the 
caller. 

A-27 



SIO: SETAFILE Procedure 

<operation> = SETACHECKSUM 
<new value> = <new checksum word> 
<old value> := <checksum word in FCB> 

Sets/clears checksum word in the FCB. This is useful after 
modifying an FCB directly (i.e., without using the SIO 
procedures). 

<operation> = SETACRLFABREAK 
<new value> = <new state> 
<old value> := <state> 

(file must be open) 
(optional) 
(optional) 

Sets/clears carriage return/line feed on break for the file. 
If on, a CR/LF is executed on the terminal when the break 
key is typed. 

<operation> = SETADUPFILE 
<new value> = @<new dup file FCB> 
<old value> := @<dup file FCB> 

specifies a duplicative file for the file. 
where data read from <file FCB> is printed. 
duplicative file. 

example 

(file must be open) 
{optional) 
{optional) 

This is a file 
Defaults to no 

CALL SETAFILE {inAfile, SETADUPFILE, @outAfile); 

<operation> = SETAERRORFILE 
<new value> = @<new error file FCB> 
<old value> := @<error file FCB> 

{optional) 
(optional) 

Sets error reporting file for all files. Defaults to home 
terminal. If the error reporting file is not open when needed 
by the Sequential I/O procedures, it is opened for the 
duration of the message printing then closed. 

I 
I 

~1 

A-28 



<operation> = SETAOPENERSPID 
<new value> = @<openers pid> 
<old value> := <openers pid> FOR 4 words 

SIO: SETAFILE Procedure 

{file must be open) 
{optional) 
{optional) 

Sets allowable openers <process id> for $RECEIVE file. This is 
used to restrict the openers of this process to a specified 
process. A typical example is using the Sequential I/O 
procedures to read the startup message. 

Note: 
If "open message" = 1 is specified to SETASYSTEMMESSAGES, 
the setting of SETAOPENERSPID has no meaning. 

<operation> = SETAPRINTAERRAMSG 
<new value> = <new state> 
<old value> := <state> 

{file must be open) 
{optional) 
{optional) 

Sets/clears print error message for the file. If on and a fatal 
error occurs, an error message will be displayed on the error 
file. This is the home terminal unless otherwise specified. 

<operation> = SETAPROMPT 
<new value> = <new prompt char> 
<old value> := <prompt char> 

Sets interactive prompt for the file. 
procedure. 

<operation> = SETAREADATRIM 
<new value> = <new state> 
<old value> := <state> 

(file must be open) 
{optional) 
{optional) 

See the OPENAFILE 

(file must be open) 
{optional) 
{optional) 

Sets/clears read trailing blank trim for the file. If on, the 
<count read> parameter does not account for trailing blanks. 

<operation> = SETARCVEOF 
<new value> = <new state> 
<old value> := <state> 

(file must be open) 
(optional) 
(optional) 

Sets return EOF on process close for $RECEIVE file. This causes 
an end-of-file indication to be returned from READAFILE when the 
receive open count goes from one to zero; the last close message 
is received. 

The setting for return EOF has no meaning if the user 
is monitoring open and close messages. 

If the file is opened with read-only access, the setting 
defaults to on for return EOF. 

A-29 



SIO: SETAFILE Procedure 

<operation> = SETARCVOPENCNT (file must be open) 
(optional) 
(optional) 

<new value> = <new receive open count> 
<old.value> :=<receive open count> 

Sets receive-open-count for the $RECEIVE file. This operation 
is intended to clear the count of openers when an open already 
accepted by the Sequential I/O procedures is ~ubsequently 
rejected by the user. See "SETARCVUSEROPENREPLY". 

<operation> = SETARCVUSEROPENREPLY 
<new value> = <new state> 

{file must be open) 
(optional) 
{optional) <old value> := <state> 

A-30 

Sets user-will-reply for the $RECEIVE file. This is 
used if the Sequential I/O procedures are to maintain the 
opener~s directory and, therefore, limit opens to a single 
process[-pair] while keeping the option of rejecting opens. 

If <state> is one, <error> of six will be returned from a call 
to READAFILE when an open message is received and is the only 
current open by a process[-pair]. If an open is attempted 
by a process and an open is currently in effect, the open 
attempt will be rejected by the Sequential I/O procedures; no 
return will be made from READAFILE due to the rejected open 
attempt. 

If <state> is zero, a return from READAFILE is made only when 
data is received. 

If "open message" = 1 is specified to SETASYSTEMMESSAGES, 
the setting of SETARCVUSEROPENREPLY has no meaning. 

<error> of six will be returned from READAFILE if an open 
message is accepted by the Sequential I/O procedures. 



SIO: SETAFILE Procedure 

<operation> = SETASYSTEMMESSAGES 
<new value> = <new sys-msg mask> 
<old val~e> := <sys-msg mask> 

(file must be open) 
(optional) 
(optional) 

Sets system message reception for the $RECEIVE file. Setting 
a bit in the <sys-msg mask> indicates that the corresponding 
message is to be passed back to the user. It defaults to the 
Sequential I/O procedures handling all system messages. 

where 

<sys-msg-mask>.<0> = break message 

.<l> = unused 

.<2> = cpu down 

.<3> = cpu up 

.<4> = unused 

.<5> = stop message 

.<6> = abend message 

.<7> = unused 

.<8> = monitornet 

.<9> = unused 

.<10> = open message 

.<11> = close message 

.<12> = control message 

.<13> = setmode message 

.<14> = resetsync message 

.<15> = unused 

The user may reply to the system messages designated by this 
operation with WRITEAFILE. Note that a reply of <reply error 
code> of zero is made automatically, if necessary, when a call 
is made to READAFILE for the $RECEIVE file. 

<operation> = SETATRACEBACK 
<new value> = <new state> 
<old value> := <old state> 

Sets/clears the traceback feature. When traceback is active, 
SIO appends the caller~s P-relative address to all error 
messages. 

A-31 



SIO: SETAFILE Procedure 

<operation> = SETAUSERFLAG 
<new value> = <new user flag> 
<old value> := <user flag in FCB> 

(optional) 
(optional) 

Sets user flag for the file. The user flag is a one-word 
value in the FCB which can be manipulated by the user to 
maintain information about calls to that file. 

<operation> = SETAWRITEAFOLD 
<new value> = <new state> 
<old value> := <state> 

(file must be open) 
(optional) 
(optional) 

Sets/clears write-fold for the file. If on, writes exceeding 
the record length cause multiple logical records to be 
written. If off, writes exceeding the record length are 
truncated to record length bytes; no error message or warning 
is given. 

<operation> = SETAWRITEAPAD 
<new value> = <new state> 
<old value> := <state> 

(file must be open) 
(optional) 
(optional) 

Sets/clears write-blank pad for the file. If on, writes of 
less than record length bytes, including the last record if 
WRITEAFOLD is in effect, are padded with trailing blanks to 
fill out the logical record. 

<operation> = SETAWRITEATRIM 
<new value> = <new state> 
<old value> := <state> 

(file must be open) 
(optional) 
(optional) 

A-32 

Sets/clears write-trailing-blank trim for the file. If on, 
trailing blanks are trimmed from the output record before 
being written to the file. 

Note: 
The following operations are used only if the user is 
performing NOWAIT I/O and calls the AWAITIO procedure 
directly. See GUARDIAN Programming Manual, File Management 
section. 



<operation> = SETACOUNTXFERRED 
<operation> = <new count> 
<operation> := <count> 

SIO: SETAFILE Procedure 

(file must be open) 
(optional) 
(optional) 

Sets the physical I/O count (in bytes) transferred for the file. 
This is used only if NOWAIT I/O is in effect and the user is 
making the call to AWAITIO for the file. This is the <count 
transferred> parameter value returned from AWAITIO. 

<operation> = SETAERROR 
<new value> = <new error> 
<old value> := <error> 

(file must be open) 
(optional) 
(optional) 

Sets file system error code value for the file. This is used 
only if NOWAIT I/O is in effect and the user makes the call to 
AWAITIO for the file. This is the <error> parameter value 
returned from FILEINFO. 

<operation> = SETAPHYSIOOUT 
<new value> = <new state> 
<old value> := <state> 

(file must be open) 
(optional) 
(optional) 

Set/clear physical I/O outstanding for file is <file FCB>. This 
is used only if NOWAIT I/O is in effect and the user is making 
the call to AWAITIO for the file. 

Note: 
The following is used only if the user is handling BREAK 
independently of the Sequential I/O Procedures or if the 
user has requested break system messages via 
SETASYSTEMMESSAGES. 

<operation> = SETABREAKHIT 
<new value> = <new state> 
<old value> := <state> 

(optional) 
(optional) 

Sets/clears break-hit for the file. 

A-33 



SIO: TAKEABREAK Procedure 

The TAKEABREAK procedure enables break monitoring by a file. 

The call to TAKEABREAK is 

CALL TAKEABREAK ( <file FCB> ) 

where 

<file FCB>, INT:ref, 

identifies the file for which break is to be enabled. 
If the file is not a terminal or if break is already 
enabled for this file, the call will be ignored. 

example 

A-34 

CALL TAKEABREAK ( outAfile ) ; 
WHILE NOT ( break := CHECKABREAK ( outAfile ) ) DO 

BEGIN 

. 
CALL WRITEAFILE ( outAf ile , buffer , count ) ; 

END; 



SIO: WAITAFILE Procedure 

The WAITAFILE procedure is used to wait or check for the completion 
of an outstanding I/O operation. 

The call to WAITAFILE is 

<error> := WAITAFILE ( <file FCB> 

where 

, [ <count read> ] 
, [ <time limit> ] 

<error>, INT, 

If abort-on-error mode is in effect, the only possible 
values for <error> are 

0 = no error 

1 = end-of-file 

6 = system message, only if user has asked for system 
messages, by SETASYSTEMMESSAGES 

40 = operation timed out, only if <time limit> value 
is supplied and not -lD 

111 = operation aborted because of break, if break 
is enabled 

532 = operation restarted due to retry 

<file FCB>, INT:ref, 

identifies the file for which there is an outstanding 
I/O operation. 

<count read>, INT:ref, 

(optional) is the count of the number of bytes returned due 
to the requested read operation. The value returned to the 
parameter has no meaning when waiting for a write operation 
to complete. 

<time limit>, INT(32) :value, 

(optional) if present indicates whether the caller waits 
for completion or checks for completion. If omitted, 
<time limit> is set to -lD. 

A-35 



SIO: WAITAFILE Procedure 

If <time limit> is not OD then a wait for completion is 
indicated. The <time limit> then specifies the maximum time, 
in .01 second units, that the caller waits for a completion. 
A <time limit> value of -lD indicates a willingness to wait 
forever. 

If <time limit> is OD then a check for completion is 
indicated. WAITAFILE immediately returns to the caller 
regardless of whether there is a completion. If no 
completion occurs, the I/O operation is still outstanding; 
an <error> 40 and an "operation timed out" message is 
returned. 

If <time limit> is OD and an <error> 40, there is no 
completion. Therefore, READAFILE or WRITEAFILE cannot be 
called for the file until the operation completes by 
WAITAFILE. One method of determining if the operation 
completes is by the CHECKAFILE operation "FILE LOGIOOUT". 
See "Checking File Transfer Characteristics". 

example 1 - wait for completion. 

CALL READAFILE ( inAfile , buffer ,,,, 1 ) ; 

DO error := WAITAFILE ( inAfile , count 
UNTIL error <> SIOERRAIORESTARTED; 

example 2 - check for completion~ 

A-36 

IF NOT CHECKAFILE ( recvAf ile , FILEALOGIOOUT ) THEN 
CALL READAFILE ( recvAfile , recvAbuf ,,,, 1 ) ; 

DO error := WAITAFILE ( recvAfile , recvAcount , OD ) 
UNTIL error <> SIOERRAIORESTARTED; 



SIO: WRITEAFILE Procedure 

The WRITEAFILE procedure writes a file sequentially. The file must 
be open with write or readwrite access. 

The call to WRITEAFILE is 

{ CALL <file FCB> 
{ <error> 

where 

, 
' [ 
' [ 
' [ 

<buffer> 
<write count> 
<reply error code> ] 
<forms control code> ] 
< no wait> ] 

<error>, INT, 

is a file system or Sequential I/O error indicating the 
outcome of the write. 

If abort-on-error mode, the default case, is in 
effect, the only possible values for <error> are: 

0 = no error 

111 = operation aborted because of break, if break 
is enabled. 

If <no wait> is not zero, the only possible value for 
<error> is zero, when abort-on-error is in effect. 

<file FCB>, INT:ref, 

identifies the file to which data is to be written. 

<buffer>, INT:ref, 

is the data to be written. <buffer> must be located 
within ~G~[ 0:32767 ] the process data area. 

<write count>, INT:value, 

is the count of the number of bytes of <buffer> to be 
written. A <write count> value of -1 causes SIO to flush 
the block buffer associated with the file FCB passed. For 
edit files, flushing the buffer also updates the edit 
directory on disk. 

A-37 



SIO: WRITEAFILE Procedure 

<reply error code>, INT:value, 

(optional, for $RECEIVE file only) is a file management 
error to be returned to the requesting process by REPLY. 
If omitted, zero is replied. 

<forms control code>, INT:value, 

(optional) indicates a forms control operation to be 
performed prior to executing the actual write when the file 
is a process or a line printer. <forms control> corresponds 
to <parameter> of the file management CONTROL procedure for 
<operation> equal to one. No forms control will be performed 
if <forms control> is omitted, is negative one, or if the 
file is not a process or a line printer. 

<no wait>, INT:value, 

(optional) indicates whether to wait in this call for the 
I/O to complete. If omitted or zero, then wait is indicated. 
If <no wait> is not zero, the I/O must be completed in a call 
to WAITAFILE. 

example 

CALL WRITEAFILE ( outAf ile , buffer , count ) : 

A-38 



SIO: PROCEDURE ERRORS 

A literal is associated with each of the Sequential I/O procedures 
errors. These messages apply to coding errors and are considered 
fatal. The one exception is NOWAIT I/O restarted, error 
SIOERRAIORESTARTED. 

The sequential I/O procedure message numbers, messages, and their 
associated meanings are: 

512 SIOERRAINVALIDPARAM 
The SIO procedure contains an invalid parameter. This error applies 
to all procedures. Correct the parameter in error. 

513 SIOERRAMISSINGFILENAME 
The SIO procedure is missing a file name. This error is an open 
error. Specify a file name in the procedure call. 

514 SIOERRADEVNOTSUPPORTED 
The SIO procedures do not support the specified device type. This 
error is an open error. Change the device type. 

515 SIOERRAINVALIDACCESS 
The access mode is not compatible with the device type. This error 
occurs if the program opens the edit file with read or write access 
or with blocking specified. This error is an open error. Change 
either the device type or the access mode. 

516 SIOAINVALIDBUFADDR 
The buffer address is not within 'G'[0:32767] of the data area. 
This error is an open error. Move the buffer into lower memory. 

517 SIOERRAINVALIDFILECODE 
The file code specified in an ASSIGN command does not match the file 
code of the file. Change either the file name or the file code in 
the ASSIGN command. 

518 SIOERRABUFTOOSMALL 
The buffer specified is too small. For reading an edit file, 
allocate at least 144 bytes of buffer space. For writing an edit 
file, allocate at least 1024 bytes of buffer space. For blocking, 
allocate at least the same number of bytes for buffer space as for 
the logical record length. If this error persists after increasing 
the buffer space, the directory of the edit file is in error. Edit 
the file; the editor usually can correct the directory error. This 
error is an open error. 

519 SIOERRAINVALIDBLKLENGTH 
The ASSIGN block length is greater than the block buffer length. 
Either correct the ASSIGN command or use a larger buffer. 

A-39 



SIO: PROCEDURE ERRORS 

520 SIOERRAINVALIDRECLENGTH 
This error occurs when the specified record length is either zero or 
greater than <max record length> specified in the OPENAFILE 
procedure, when the record length for the $RECEIVE file is less than 
14, or when the record length is greater than 254 and the procedure 
specifies variable length records. This error is an open error. 
Correct the specified record length. 

521 SIOERRAINVALIDEDITFILE 
An edit file is invalid. This error is an open error. 

522 SIOERRAFILEALREADYOPEN 
The program used the SETAFILE procedure for a file that should be 
closed or used the OPENAFILE procedure for a file that is 
already open. 

523 SIOERRAEDITREADERR 
Indicates an edit read error. 
error. 

524 SIOERRAFILENOTOPEN 

This error is an open or read 

The specified file is not open. This error is a check, read, set, 
write, or wait error. Either open the file or correct the procedure 
call (for example, change the parameters to permit the operation 
when the file is closed). 

525 SIOERRAACCESSVIOLATION 
The access mode is not compatible with the requested operation. 
This error is a read or write error. Change either the operation or 
the access mode. 

526 SIOERRANOSTACKSPACE 
The program requires a temporary buffer, but the stack has 
insufficient space. Increase the run-time memory size if it is 
less than 32K; otherwise, move one or more non-string arrays to 
upper memory. 

527 SIOERRABLOCKINGREQD 
The program is attempting a write fold or write pad without a block 
buffer. This error is a write error. Supply a block buffer. 

528 SIOERRAEDITDIROVERFLOW 
An overflow occurred in the internal directory of an edit file. 
This error is a write error. 

529 SIOERRAINVALIDEDITWRITE 
The program attempted to write to an edit file after writing the 
internal directory. This error is a write error. 

530 SIOERRAINVALIDRECVWRITE 
The program read the $RECEIVE file, but did not follow the read with 
a write to the $RECEIVE file. This error is a write error. Either 
add the missing write or delete the extra read. 

A-40 



SIO: PROCEDURE ERRORS 

531 SIOERRACANTOPENRECV 
The SIO procedure cannot open $RECEIVE for break monitoring. The 
user did not open the $RECEIVE file with the SIO procedure 
OPENAFILE. This error is a CHECKABREAK error. Open the $RECEIVE 
file with the OPENAFILE procedure to do break monitoring while using 
$RECEIVE. 

532 SIOERRAIORESTARTED 
The NOWAIT I/O restarted. This message is a warning, not an error. 
Call WAITAFILE again to continue waiting. 

533 SIOERRAINTERNAL 
Indicates there is an internal error. 
wait error. 

534 SIOERRACHECKSUMCOM 

This error is a 

While performing a checksum on the common FCB, the SIO procedure 
encountered an error. This error applies to all procedures. Check 
the program for pointer errors. 

535 SIOERRACHECKSUM 
While performing a checksum on the file FCB, the SIO procedure 
encountered an error. This error applies to all procedures. Check 
the program for pointer errors. 

A-41 



SIO: FCB STRUCTURE 

File characteristics and procedure call information is kept in a File 
Control Block (FCB) within the user~s data space. An FCB is 
associated with the opening of a file and is passed to each Sequential 
I/O procedure to identify that file. Additionally, there is one 
common FCB for each process located within the user~s data space. The 
common FBC contains information common to all files, such as a pointer 
to the error reporting file. 

The common FCB is initialized during the first call to OPENAFILE 
following process creation. This is indicated to OPENAFILE when 
the first word of the common FCB is set to zero prior to calling 
OPENAFILE for the first time. 

An FCB is initialized prior to calling OPENAFILE by invoking the 
define INITAFILEFCB or by declaring the FCB using the define 
ALLOCATEAFCB. The name of the file to be opened must also be put 
into the FCB by the define ASSIGNAFILENAME. 

The FCBs can be located anywhere within the user~s data space. The 
common and file FCBs are linked together forwards and backwards as 
shown in Figure A-1. 

COMMON FCB 

I 
LINK I~ 

I FILE FCB 

FILE FCB 

FILE FCB 

Figure A-1. FCB Linking 

A-42 



SIO: INITIALIZING THE FILE FCB 

The <file FCB> must be allocated and initialized before the 
OPENAFILE procedure is called to open a file. The SETAFILE 
procedure provides these facilities as explained in the 
following items. 

The first three items listed; FCBSIZE, INITAFILEFCB, and 
ASSIGNAFILENAME are not used when the INITIALIZER procedure is 
called to initialize the file control blocks. See the 
INITIALIZER procedure. 

1. The size in words of an FCB is provided as a literal. 

FCBSIZE currently {60) 

example 

INT .infile [ O:FCBSIZE-1 ] ; 

2. Initialize the FCB using the SETAFILE procedure. This step is 
required. 

CALL SETAFILE ( <file FCB> , INITAFILEFCB ) 

example 

CALL SETAFILE ( inf ile , INITAFILEFCB ) 

3. Specify the name of the file to open. This step is required. 

CALL SETAFILE ( <file FCB> , ASSIGNAFILENAME , <file name addr> 

example 

4. Specify the access mode for this open. This step is optional. 

CALL SETAFILE ( <file FCB> , ASSIGNAOPENACCESS , <open access> 

The following LITERALS are provided for <open access> : 

READWRITEAACCESS (0) 
READAACCESS (1) 
WRITEAACCESS (2) 

A-43 



SIO: INITIALIZING THE FILE FCB 

If omitted, the access mode defaults for the device being 
opened to the following: 

Device 

Process 
Operator 
$RECEIVE 
Disc 
Mag Tape 
Printer 
Terminal 
Card Reader 

example 

Access 

Read/Write 
Write 
Read/Write 
Read/Write 
Read/Write 
Write 
Read/Write 
Read 

5. Specify exclusion for this open. This step is optional. 

CALL SETAFILE ( <file FCB> , ASSIGNAOPENEXCLUSION , 
<open exclusion> ) 

The following LITERALS are provided for <open exclusion> 

SHARE (0) 
EXCLUSIVE (1) 
PROTECTED ( 3) 

If omitted, the exclusion mode applied to the open, 
defaults to the following: 

Access 

Read 
Write 
Read/Write 

example 

Exclusion Mode 

if terminal then share else protected 
if terminal then share else exclusive 
if terminal then share else exclusive 

CALL SETAFILE ( inAf ile , ASSIGNAOPENEXCLUSION , EXCLUSIVE ) ; 

6. Specify the logical record length. This step is optional. 

A-44 

CALL SETAFILE ( <file FCB> , ASSIGNARECORDLENGTH , 
<record length> ) 

The <record length> is given in bytes. 



SIO: INITIALIZING THE FILE FCB 

If omitted, <record length> defaults according to the device as 
follows: 

Device 

Operator 
Process 
$RECEIVE 
unstructured disc 
structured disc 
mag tape 
terminal 
printer 
card reader 

Logical Record Length 

132 bytes 
132 bytes 
132 bytes 
132 bytes 
record length defined at creation 
132 bytes 
132 bytes 
132 bytes 
132 bytes 

7. Set the file code. This step is optional and has two meanings: 
1) if AUTOACREATE is on, the file code specifies the type of file 
to be created. 2) implies the file code must match the file code 
specified for the open to succeed. 

CALL SETAFILE ( <file FCB> , ASSIGNAFILECODE , <file code> 

8. Set the primary extent size. This step is optional and has 
meaning only if AUTOACREATE is on. 

CALL SETAFILE ( <file FCB> , ASSIGNAPRIMARYEXTENTSIZE , 
<primary extent size> ) 

<primary extent size> is given in pages (2048-byte units). 

9. Set the secondary extent size. This step is optional and 
has meaning only if AUTOACREATE is on. 

CALL SETAFILE ( <file FCB> , ASSIGNASECONDARYEXTENTSIZE , 
<secondary extent size> ) 

<secondary extent size> is given in pages, 2048-byte units. 

10. Set the file's physical block length. This step is optional. 
It is the number of bytes transferred between the file and the 
process in a single I/O operation. If the <block length> is 
specified, blocking is also specified. A physical block is 
composed of <block length> divided by <record length> logical 
records. When <block length> is not exactly divisible by <record 
length>, the portion of that block following the last logical 
record is filled with blanks. 

A-45 



SIO: INITIALIZING THE FILE FCB 

Note that the specified form of blocking differs from the type 
of blocking performed when no <block length> is specified. In the 
unspecified form, there is no indication of a physical block size, 
the records are contiguous on the media. 

CALL SET~FILE ( <file FCB> , ASSIGN~BLOCKLENGTH , <block length> ) 

<block length> is given in bytes. 

A-46 



SIO: INTERFACE WITH INITIALIZER AND ASSIGN MESSAGES 

The Sequential I/O procedures and the INITIALIZER procedure can 
be used in conjunction with or separately from each other. File 
transfer characteristics, such as record length, can be altered at 
run time using the Command Interpreter ASSIGN commands. See the 
INITIALIZER procedure, in the GUARDIAN Programming Manual. 

The INITIALIZER is a GPLIB procedure that reads the startup and, 
optionally, the ASSIGN and PARAM messages. The INITIALIZER procedure 
can prepare global tables of a predefined structure and properly 
initialize FCBs with the information read from the startup and ASSIGN 
messages. 

To use the INITIALIZER, an array called a Run-Unit Control Block 
must be declared. Each file to be prepared by the INITIALIZER must be 
initialized with a default physical file name and, optionally, with a 
logical file name before invoking the INITIALIZER. 

The INITIALIZER reads the startup message then requests the ASSIGN 
messages. For each ASSIGN message, the FCBs are searched for 
a logical file name which matches the logical file name contained in 
the ASSIGN message. If a match is found, the information from the 
ASSIGN message is put into the FCB. See the GUARDIAN Programming 
Manual, Application Interface section, or the GUARDIAN Command 
Language and Utilities Manual, Comint section, for a description of 
the ASSIGN Command. 

The INITIALIZER also substitutes the real file names for default 
physical file names into the FCBs. This function provides the 
capability to define the IN and OUT files of the startup message as 
physical files and to define the home terminal as a physical file. 

After invoking the INITIALIZER, the Sequential I/O OPENAFILE procedure 
is called once for each file to be opened. 

INITIALIZER-RELATED DEFINES 

Two Defines are provided for allocating Run-Unit Control Block 
Space {CBS) and for allocating FCB space. These defines are: 

1. ~llocate Run-Unit Control Block and Common FCB {data declaration). 

ALLOCATEACBS { <run-unit control block> , <common FCB> , 
<numf iles> ) ; 

where 

<run-unit control block> 

is the name to be given to the run-unit control block, this 
name is passed to the INITIALIZER procedure. 

A-47 



SIO: INTERFACE WITH INITIALIZER AND ASSIGN MESSAGES 

<common FCB> 

is the name to be given to the common FCB, this name is 
passed to the OPENAFILE procedure. 

<nurnf iles> 

is the number of FCBs to be prepared by the INITIALIZER 
procedure. The INITIALIZER begins with the first FCB 
following ALLOCATEACBS. 

example 

ALLOCATEACBS ( rucb , commfcb , 2 ) ; 

2. Allocate FCB (data declaration). 

A-48 

Note: The FCB allocation Defines must immediately follow the 
ALLOCATEACBS Define. No intervening variables are allowed. 

ALLOCATEAFCB ( <file FCB> , <default physical file name> ) 

where 

<file FCB> 

is the name to be given the FCB. The name references the 
file in other Sequential I/O procedure calls. 

<default physical file name>, literal STRING, 

is the name of the file to be opened. Tn1s can be an 
internal form of a file name or one of the following 
and must be in upper case as shown. 

byte numbers 

II 

II 

II 

[ 0] [8] [ 16] [24] 

#IN II 

This means substitute the INFILE name of the startup 
message for this name. 

#OUT II 

This means substitute the OUTFILE name of the startup 
message for this name. 

#TERM II 

This means substitute the home terminal name for this 
name. 



II 

" 

SIO: INTERFACE WITH INITIALIZER AND ASSIGN MESSAGES 

#TEMP II 

This means substitute a name appropriate for creating 
a temporary file for this name. 

II 

This means substitute a name appropriate for creating 
a temporary file for this name. 

If the $<volume name> or <subvol name> is omitted, the 
corresponding default name from the startup message is 
substituted for the disc file names. 

example 

ALLOCATEAFCB ( inAf ile 
ALLOCATEAFCB ( outAf ile 

II 

II 

#IN 
#OUT 

II ) i 
II ) i 

The following SETAFILE operation, ASSIGNALOGICALFILENAME, is used 
with the INITIALIZER. The logical file name is the means by which 
the INITIALIZER matches an ASSIGN message to a physical file. 

CALL SETAFILE ( <file FCB> , ASSIGNALOGICALFILENAME , 
@<logical file name> ) 

where 

<file FCB>, INT:ref, 

references the file to be assigned a logical file name. 

@<logical file name>, INT:value, 

is the word address of an array containing the logical file 
name. A logical file name consists of a maximum of seven 
alphanumeric characters the first of which must be an 
alpha character. 

<logical file name> must be encoded as follows 

byte numbers 

[O] [l] [8] 
<len><logical file name> 

<len> is the length of the logical file name. 

By convention, the logical file name of the input file of 
the startup message should be named "INPUT"; the logical 
file name of the output file of the startup message should 
be named "OUTPUT". 

A-49 



SIO: INTERFACE WITH INITIALIZER AND ASSIGN MESSAGES 

example 

INT .buf [ 0:11 ]; 
STRING .sbuf := @buf '<<' l; 

sbu f , : =' [ 5' Ii INPUT" ] ; 
CALL SETAFILE ( inAf ile , ASSIGNALOGICALFILENAME , @buf ) ; 
sbuf ':=' [ 6, "OUTPUT"]; 
CALL SETAFILE ( outAf ile ' ASSIGNALOGICALFILENAME ' @buf ) ; 

The following shows the file assignment in relation to when the 
INITIALIZER is invoked. File characteristics can be set by the 
INITIALIZER with the ASSIGN command or with programmatic calls 
to the SETAFILE procedure. 

Precedence of Setting File Characteristics 

CALL(s) to SETAFILE 
before calling 
INITIALIZER 

OPEN AF ILE 

highest -> [ ASSIGN Command ] 

SETAFILE 

lowest -> default setting 

CONSIDERATIONS 

CALL(s) to SETAFILE 
after calling 
INITIALIZER 

OPEN"'FILE 

SETAFILE 

ASSIGN Command ] 

default setting 

• If run-time changes to file transfer characteristics are not 
allowed then do not assign a logical file name to the file. 

A-50 



SIO: INTERFACE WITH INITIALIZER AND ASSIGN MESSAGES 

• In some cases it is undesirable to have the INITIALIZER assign 
a physical file name for the <default physical file name>. For 
example, when it is not desirable to default the file name, but 
instead to force the use of an ASSIGN command to specify a 
physical file for the logical file, then declare the FCB as 
follows (the FCB must be adjacent to other FCBs searched by the 
INITIALIZER) : 

INT .<file FCB> [ O:FCBSIZE - 1 ]; 

In the executable part of the program, before calling the 
INITIALIZER, initialize the FCB: 

CALL SETAFILE ( <file FCB> , INITAFILEFCB ) ; 

Assign a logical file name, and any other open attributes desired, 
before calling the INITIALIZER: 

CALL SETAFILE ( <file FCB> , ASSIGNALOGICALFILENAME , @name ) ; 

CALL INITIALIZER ( •• ) ; 

CALL OPENAFILE (<common FCB> , <file FCB>, ••• ) ; 

If the user neglects to ASSIGN a physical file to the logical 
file, the open will fail with an error number 513, 
SIOERRAMISSINGFILENAME, file name is not supplied. 

USAGE EXAMPLE 

The following shows the use of the INITIALIZER and Sequential I/O 
procedures for opening the IN and OUT files of a typical TANDEM 
subsystem program. 

If the IN and OUT files are the same file and either is a terminal 
or a process, only the IN file is opened. The address of the inAfile 
FCB is put into the pointer to the outAf ile FCB. 

The open access is assigned after the INITIALIZER is called. This 
overrides the open access specified in an ASSIGN command. 

?NOLIST, SOURCE $SYSTEM.SYSTEM.GPLDEFS 
?LIST 
! Set up the control blocks for the initializer with supplied 
!DEFINES. 

Initialize 
rucb 
commf cb 

Run Unit Control Block and common FCB. 
- Array holding Run Unit Control Block. 
- Array for the common File Control Block. 

ALLOCATEACBS ( rucb, commfcb, 2 ) ; 

A-51 



SIO: USAGE EXAMPLE WITH THE INITIALIZER 

Initialize in file FCB. 
in""f ile - Array for FCB of the 

ALLOCATE""FCB ( in""file, II 

Initialize out file FCB. 
out""file - Array for FCB of the 

ALLOCATE""FCB out""file, II 

LITERAL 
process = 0, 
terminal = 6, 
inblklen = 4096, 

outblklen = 4096, 

rec""len = 255; 

INT .inblkbuf [ O:inblklen/2 - 1 ], 
• outblkbuf [ O:outblklen/2 - 1 ], 
• infname, 
• outfname, 
device"type, 

phys""rec""len, 

interactive; 

INT .buf [ 0:11 ]; 
STRING 

.sbuf := @buf '<<' 1; 

?NOLIST, SOURCE $SYSTEM.SYSTEM.EXTDECS 
?LIST 

PROC main""proc MAIN; 
BEGIN 

int .buffer [ O:rec""len/2 - 1 ], 

count := rec""len; 

A-52 

in file. 

#IN " ) ; 

out file. 

#OUT II ) j 

Process device type. 
Terminal device type. 
Length of block buffer for in 
file. 
Length of block buffer for out 
file. 
Maximum record length to read 
or write. 

In file's buffer for blocking. 
Out file's buffer for blocking • 
In file's file name • 
Out file's file name • 
Device type, GUARDIAN manual, 
p2. 3-21. 
Physical record length of 
device. 
Indicates if in and out file 
are interactive implying use 
READWRITE access. 

Holds logical file names. 

String corresponding to buf. 

Buffer for i/o with a single 
record. 
Number of bytes read in or 
written out. 



SIO: USAGE EXAMPLE WITH THE INITIALIZER 

Beginning of program execution. 

Set up in and out files using startup message from RUN command. 
sbuf ~:=~ [ 5, "INPUT"]; 
CALL SETAFILE{ inAfile, ASSIGNALOGICALFILENAME, @buf ) ; 
sbuf ~:=~ [ 6, "OUTPUT"]; 
CALL SETAFILE{ outAfile, ASSIGNALOGICALFILENAME, @buf ) ; 
CALL INITIALIZER{ rucb ); 

get physical file names for in and out files. 

@infname 
@outfname 

:= CHECKAFILE{ inAfile, FILEAFILENAMEAADDR ) ; 
:= CHECKAFILE( outAfile, FILEAFILENAMEAADDR ) ; 

Determine type of access for in file. 

CALL DEVICEINFO ( infname, deviceAtype, physArecAlen ) ; 
interactive := 

IF ( deviceAtype.<4:9> = terminal OR 
deviceAtype.<4:9> = process ) 

AND infname = outfname FOR 12 
THEN 1 ELSE O; 

CALL SETAFILE( inAfile, ASSIGNAOPENACCESS, 

Open in file. 

IF interactive THEN READWRITEAACCESS 
ELSE READAACCESS ) ; 

CALL OPENAFILE( commfcb, inAfile, inblkbuf 
,inblklen,,,,, outAfile ) ; 

IF interactive THEN 

@outAfile := @inAfile 
ELSE 

BEGIN 

Make in and out files the same, 
no need to 
open out file. 
Open out file. 

CALL SETAFILE( outAfile, ASSIGNAOPENACCESS, WRITEAACCESS ) ; 
CALL OPENAFILE( commfcb, outAfile, outblkbuf, outblklen ) ; 

non-interactive use so echo reads to out file. 

CALL SETAFILE( inAfile, SETADUPFILE, @outAfile ) ; 
END; 

A-53 



SIO: USAGE EXAMPLE WITH THE INITIALIZER 

Main processing loop. 

WHILE not EOF process the record. 

WHILE ( READAFILE( inAfile, buffer, count} } <> 1 DO 
BEGIN 

Process record read in and format a record for output. 

CALL WRITEAFILE( outAfile, buffer, count } ; 
END; 

CALL CLOSEAFILE( commfcb } ; close all files 

END; 

To change the record length of the input file, the following ASSIGN 
command can be entered before the program is run. 

ASSIGN INPUT,,REC 80 

To change the file code of the output file, the following ASSIGN 
command can be entered before the program is run. 

ASSIGN OUTPUT,,CODE 9876 

SUMMARY 

The following are the steps involved to use the INITIALIZER with the 
Sequential I/O procedures~ 

A-54 

Allocate the CBS and FCB and assign the default physical file 
names using ALLOCATEACBS and ALLOCATEAFCBs. 

Assign a logical file name using the SETAFILE operation, 
ASSIGNALOGICALFILENAME. 

If ASSIGN command characteristics are to override program 
calls to SETAFILE, invoke assignment defines. 

Invoke the INITIALIZER to read the startup, ASSIGN, and PARAM 
messages and prepare the file FCBs. 

If programmatic calls to SETAFILE are to oveiride ASSIGN command 
characteristics, invoke assignment defines. 

Open the files with calls to OPENAFILE. 



SIO: USAGE EXAMPLE WITHOUT INITIALIZER PROCEDURE 

The following example shows the use of the Sequential I/O procedures 
for the IN and OUT files of a typical TANDEM subsystem program when 
the INITIALIZER procedure is not used. 

?SOURCE $SYSTEM.SYSTEM.GPLDEFS 
INT interactive, 

error, 
.commonAfcb 
.rcvAfile 
.inAfile 
.. outAf ile 
.buffer 
mompid 
devtype, 
junk; 

[O:FCBSIZE-1] := 0, 
[O:FCBSIZE-1], 
[O:FCBSIZE-1], 
[O:FCBSIZE-1], 
[0:99], 
[0:3], 

LITERAL 
process 
terminal 
inAblkbuf len 
outAblkbuf len = 

= 
= 
= 

0, 
6, 

1024, 
1024; 

INT .inAblkbuf [O:inAblkbuflen/2 - l], 
.outAblkbuf [O:outAblkbuflen/2 - l]; 

?SOURCE $SYSTEM.SYSTEM.EXTDECS { ••• 

read the startup message. 

- open $receive. 
! 
CALL SETAFILE { rcvAf ile , INITAFILEFCB ) ; 
buffer ':=' "$RECEIVE " & buffer [ 4 ] FOR 7; 
! file name. 
CALL SETAFILE { rcvAf ile , ASSIGNAFILENAME , @buffer ) ; 
! number of bytes to read. 
CALL SETAFILE { rcvAf ile , ASSIGNARECORDLENGTH , 200 ) ; 
CALL OPENAFILE { commonAfcb , rcvAfile ,,, nowait , nowait); 

- get moms process id. 

- first, see if i'm named. 

CALL GETCRTPID { MYPID I buffer ) ; 
IF buffer.<0:1> = 2 THEN 

! not named. 
CALL MOM { mompid ) ; 

ELSE 
BEGIN 

! named. 
CALL LOOKUPPROCESSNAME { buffer ) ; 
mompid ':=' buffer [ 5 ] FOR 4; 

END; 
- allow startup message from mom only. 

A-55 



SIO: USAGE EXAMPLE WITHOUT INITIALIZER PROCEDURE 

CALL SETAFILE ( rcvAf ile , SETAOPENERSPID , @mompid ) ; 

DO 
BEGIN 

CALL READAFILE ( rcvAfile , buffer ,,,, 1); 
DO error := WAITAFILE ( rcvAfile , length , 3000D 
UNTIL error <> SIOERRAIORESTARTED; 

END 
UNTIL buffer = -1; ! startup message read. 

! - close $receive. 
CALL CLOSEAFILE ( rcvAf ile ) ; 
! 
! see if program is being run interactivelye 
! 
CALL DEVICEINFO ( buffer [ 9 ] , devtype , junk ) ; 
interactive := 

IF ( devtype.<4:9> = terminal OR 
devtype.<4:9> = process ) AND 
buffer [ 9 ] = buffer [ 21 ] for 12 THEN 1 

ELSE O; 

CALL SETAFILE ( inAf ile , INITAFILEFCB ) ; 
CALL SETAFILE ( inAf ile , ASSIGNAFILENAME , @buffer 9 ] ) ; 
CALL SETAFILE ( inAf ile , ASSIGNAOPENACCESS , 

IF interactive THEN READWRITEAACCESS 
ELSE READAACCESS ); 

CALL OPENAFILE ( commonAfcb , inAf ile , inAblkbuf , inAblkbuflen 
,,,,, outAfile); 

IF interactive THEN 
! use in file as out file. 
@outAfile := @inAfile 

ELSE 

A-56 

BEGIN 
CALL SETAFILE ( outAf ile , INITAFILEFCB ) ; 
CALL SETAFILE ( outAf ile , ASSIGNAFILENAME , @buffer [ 21 ] ) ; 
CALL SETAFILE ( outAf ile , ASSIGNAOPENACCESS , WRITEAACCESS ) ; 
CALL OPENAFILE ( commonAfcb , outAf ile , outAblkbuf , 

outAblkbuflen ) ; 
! set duplicative file. 
CALL SETAFILE ( inAf ile , SETADUPFILE , @outAf ile ) ; 

END; 



SIO: NOAERROR Procedure 

Error handling and retries are implemented within the Sequential 
I/O procedure environment by the NOAERROR procedure. NOAERROR is 
called internally by the Sequential I/O procedures. If the file 
is opened by OPENAFILE then the NOAERROR procedure can be called 
directly for the file system procedures. 

The call to NOAERROR is 

{ <no retry> 
{ CALL 

:= l 
<state> 

where 

, <file FCB> 
, <good error list> 
, <retryable> ) 

<no retry>, INT, 

indicates whether or not the I/O operation should be 
retried. Values of <no retry> are: 

0 = operation should be retried. 
<>0 = operation should not be retried. 

If <no retry> is not zero, one of the following 
is indicated: 

- <state> is not zero. 
- no error occurred, error is zero. 
- error is a good error number on the list. 
- fatal error occurred and abort-on-error mode is off. 
- error is a break error and break is enabled for 

<file FCB>. 

<state>, INT:value, 

if non-zero, indicates the operation is to be considered 
successful. The file error and retry count variables are 
set to zero with <no retry> returned as non-zero. 
Typically, either of two values is passed in this position: 

= CCE for example, immediately following a file system 
call. If equal is true, the operation is successful. 
This eliminates a call to FILEINFO by NOAERROR. 

0 forces NOAERROR to first check the error value in the 
FCB. If the FCB error is zero, NOAERROR calls FILEINFO 
for the file. 

A-57 



SIO: NOAERROR Procedure 

<file FCB>, INT:ref, 

identifies the file to be checked. 

<good error list>, INT:ref, 

is a list of error numbers; if one of the numbers matches 
the current error, <no retry> is returned as non-zero 
(no retry). The format of <good error list>, in words, is 

word [ 0 
word [ 1 

= number of error numbers in list {O:n} 
= good error number 

word n ] = good error number. 

<retryable>, INT:value, 

is used to determine whether certain path errors should be 
retried. If <retryable> is not zero, errors in the 
range of {120, 190, 202:231} will be retried according 
to the device type as follows: 

Device 

Process 
Operator 
$RECEIVE 
Disc 
Mag Tape 
Printer 
Terminal 
Card Reader 

Retry Indication 

n.a. 
yes 
n.a. 
(opened with sync depth of 1 so n.a.) 
no 
yes 
yes 
no 

If the path error is either of {200:201} a retry indication 
will be given in all cases following the first attempt. 

example 

A-58 

INT goodAerror [ 0:1 ] := [ 1, 11 ] ; ! nonexistent record. 

CALL SETAFILE ( outAfile, SETAERROR, 0) 
DO CALL READUPDATE ( outAfnum, buffer , count ) 
UNTIL NOAERROR ( = , outAf ile , goodAerror , 0 ) ; 



SIO: NOAERROR Procedure 

ERROR HANDLING BY NOAERROR 

Errors are handled as follows: 

if <state> then 
begin 

fcbAerror := O; 
retrycount := O; 
return no-retry indication 

end; 

if not fcbAerror then 
CALL FILEINFO ( fcbAfnum , fcbAerror ) ; 

fcb"error 

0 
1,6 
7 
<good"error> 

100:102 

110:111 

Disposition 

return no-retry indication 
READAFILE: return no-retry indication 
WRITEAFILE: return no-retry indication 
return no-retry indication 

prompt then 
if "S[TOP]" then fatal 
else return retry indication 

if device = breakdevice then 
begin 

breakflush := l; 
if ( breakhit := 

check break 
begin 

check $receive for break message. 
if break message then 

breaktyped := 1 
else 
if breakflush then 
begin 

take break 
delay 2 sec 

end 
return breaktyped. 

end ) then return no-retry indication. 

112 

end 
delay 2 sec 
return retry indication 

end 

begin 
delay 2 sec 
return retry indication 

end 

A-59 



SIO: NOAERROR Procedure 

200:201 

120, 190 
202:231 

other 

if ( retrycount := retrycount + 1 ) > 1 then 
goto fatal 

else return retry indication. 

if not retryable or 
(retrycount := retrycount + 1) > 1 then 
goto fatal 

else 
if device <> mag tape and 

device <> card reader then 
return retry indication 

else 
goto fatal 

fatal: 
if print error then 

print an error message; 
if abort then 

begin 
call closeAf ile ( commonAfcb ) ; 
call abend; 

end; 
return no-retry indication; 

The retry count is used to determine the number of times an operation 
is consecutively retried for a maximum of two retries. The count 
is cleared when a no-retry is indicated. 

A-60 



SIO: $RECEIVE HANDLING 

Within the environment of the Sequential I/O procedures, the $RECEIVE 
file has two functions. 

To check for break messages. 

To transfer data between processes. 

Within the Sequential I/O procedures, these functions can be performed 
concurrently. It may be desirable to manage the $RECEIVE file 
independently of the Sequential I/O procedures, and to monitor break 
using the Sequential I/O procedures. Therefore, the SETAFILE 
operation SETABREAKHIT enables the user's $RECEIVE handler to pass 
the break information into the Sequential I/O procedure environment. 

$RECEIVE DATA TRANSFER PROTOCOL 

RS = RECEIVEASTATE: 0 = NEED READUPDATE, 1 = NEED REPLY. 
ROC = RECEIVEAOPENERACOUNT. 

OPENAFILE 
RS := ROC := O; 

READAFILE (file must be open with read or readwrite access} 

if system message then 
begin 

RS := 1 
if user wants to process this message then 

return l; 
replycode := 0 
if cpu down message then 

begin 
if cpu = opener's cpu then 

{ delete process from opener's directory } 
end 

else 
if breakAmessage then 

begin 
breakhit := 1 

end 
else 
if openAmessage then 

begin 
if nowait depth > 1 then replycode := 2 
else 
if ROC = 2 then 

replycode := 12 
else 

A-61 



SIO: $RECEIVE HANDLING 

A-62 

if primary open then 
begin 

if not primary pid or 
opener = primary pid then 

begin 
add primary pid to opener directory 
ROC := ROC + 1 

end 
else replycode := 12 

end 
else 
if backup open and 

( pid in message = primary openers pid or 
not primary pid ) then 

begin 
if primary pid then 

add backup pid to opener directory 
else 

! treat as primary open. 
add primary pid to opener directory 

ROC := ROC + 1 
end 

else replycode := 12 
end 

else 
if close message then 

begin 
if pid = primary pid then 

begin 
primary pid := backup pid 
delete backup pid from opener directory 

end 
else 
if pid = backup pid then 

delete backup pid from opener directory 
if not ( ROC := ROC - 1 ) and 

rcveof then 
error := 1 

end. 

if open message and 
user wants to reply 
and not replycode then return 1 

else 
begin 

REPLY ( replycode ) 
RS := 0 

end 

return if error = 1 then 0 else 1 
end ) then return. 



SIO: $RECEIVE HANDLING 

if RS then REPLY ( no text, REPLYERROR = 0 ) ; RS := 0; 
Note: REPLY is skipped if READAFILE immediately follows 

open. 
READUPDATE ( text ) ; RS := l; 
error := O; 

WRITEAFILE (file must be open with write or writeread access) 

if not RS then ! invalid operation 
error := SIOERRAINVALIDRCVWRITE 
RETURN; 

REPLY ( text, reply code } ; RS := O; 
error := O; 

replycode := IF access = write THEN 1 ELSE 45; 
if not RS then READUPDATE (no text); RS:= l; 
REPLY ( no text, replycode ) ; RS := O; 

READUPDATE/REPLY until close message; RS := 0; 

Note: To determine whether the data returned from READAFILE 
is listing text or command prompt text call the file system 
RECEIVEINFO procedure. 

A-63 



SIO: NOWAIT I/O 

If NOWAIT is specified at open time, the file is opened with a NOWAIT 
I/O depth of one. Whether an individual operation is to be waited for 
is determined on a call by call basis. NOWAIT operations are 
completed by a call to WAITAFILE. 

If it is desirable to wait for any file, the user can call AWAITIO 
before calling WAITAFILE. Dependent on whether blocking is 
performed, a physical I/0 may not always take place with a logical 
I/O. Therefore, the CHECKAFILE operation FILEAPHYSIOOUT is used to 
determine if an I/O is outstanding. The SETAFILE operations 
SETAPHYSIOOUT, SETAERROR, and SETACOUNTXFERRED are provided to 
condition the FCB, if the I/O is completed. The user must call 
WAITAFILE following the call to AWAITIO for the file state 
information to be updated. 

example 

@inAfnum := CHECKAFILE ( inAfile , FILEAFNUM ) ; 
error := O; 
WHILE 1 DO 

A-64 

BEGIN 
IF error <> SIOERRAIORESTARTED THEN 

CALL READAFILE ( inAfile, buffer, , , 1 ); 

fnum := -1; 
CALL AWAITIO ( fnum ,, countread ,, 3000D); 
IF fnum = inAfnum THEN 

BEGIN 
CALL FILEINFO ( inAfnum inAfile ) , error ) ; 
! set I/O done. 
CALL SETAFILE ( inAf ile , SETAPHYSIOOUT , 0 ) ; 
! set count read. 

no wait. 

CALL SETAFILE ( inAf ile , SETACOUNTXFERRED , countread ) ; 
! set error code. 
CALL SETAFILE ( inAf ile , SETAERROR , error ) ; 
IF ( error := 

END 
ELSE 

WAITAFILE ( inAf ile , inAf ileAcountread ) ) <> 
SIOERRAIORESTARTED THEN 

BEGIN ! completed. 
! 
! process read. 
! 

END; 

END; ! WHILE l LOOP. 



SIO: $SYSTEM.SYSTEM.GPLDEFS 

The following is the $SYSTEM.SYSTEM.GPLDEFS source file for the 
Sequential I/O procedures. 

?PAGE "T9600D00 - SIO PROCEDURES - DEFINITIONS" 

! FCB SIZE IN WORDS. 

LITERAL 
FCBSIZE = 60; 

! DECLARE RUCB , PUCB, AND COMMON FCB. 

DEFINE 
ALLOCATEACBS ( RUCBANAME ' COMMONAFCBANAME ' NUMAFILES = 

INT .RUCBANAME [ 0:65 ] := 
RUCB PART. 

[ 62 ' 1 ' 27 * [ 0 ] ' 62 ' 32 * [ 0 ] ' 
! PUCB PART. 

4 'NUMAFILES' 4 + FCBSIZE ]; 
INT .COMMONAFCBANAME [ O:FCBSIZE - 1 ] := 

[ FCBS I ZE * [ 0 ] ] # ; 

DECLARE FCB. 

DEFINE 
ALLOCATEAFCB ( FCBANAME ' PHYSAFILENAME } = 

INT .FCBANAME [ O:FCBSIZE ~ 1 ] := 
[ FCBSIZE ' %000061 ' -1 ' %100000 ' 0 ' PHYSAFILENAME , 

( FCB SI Z E - 1 7 } * [ 0 ] ] # ; 

SETAFILE OPERATIONS. 

LITERAL 
INITAFILEFCB = 0, 

ASSIGNAFILENAME = 1, 
ASSIGNALOGICALFILENAME = 2, 
ASSIGNAOPENACCESS = 3, 
ASSIGNAOPENEXCLUSION = 4, 
ASSIGNARECORDLENGTH = 5, 
ASSIGNAFILECODE = 6, 
ASSIGNAPRIMARYEXTENTSIZE = 7, 
ASSIGNASECONDARYEXTENTSIZE = 8, 
ASSIGNABLOCKLENGTH = 9, 
! 
SETADUPFILE = 10, 
SETASYSTEMMESSAGES = 11, 
SETAOPENERSPID = 12, 
SETARCVUSEROPENREPLY = 13, 
SETARCVOPENCNT = 14, 
SETARCVEOF = 15, 
SETAUSERFLAG = 16, 
SETAABORTAXFERERR = 17, 
SETAPRINTAERRAMSG = 18, 

A-65 



SIO: $SYSTEM.SYSTEM.GPLDEFS 

SET""READ"'TRIM = 19, 
SET""WRITE""TRIM = 20, 
SET"'WRITE"'FOLD = 21, 
SET""WRITE""PAD = 22, 
SET""CRLF""BREAK = 23, 
SET"' PROMPT = 24, 
SET""ERRORFILE = 25, 
SET""PHYSIOOUT = 26, 
SET""LOGIOOUT = 27, 
SET""COUNTXFERRED = 28, 
SET"'ERROR = 29, 
SET""BREAKHIT = 30, 
SET"' TRACEBACK = 31, 

SET"'EDITREAD"'REPOSITION = 32, 
! 
FILE"'FILENAME"'ADDR = 33, 
FILE"'LOGICALFILENAME"'ADDR = 34, 
FILE"'FNUM"'ADDR = 35, 
FILE""ERROR"'ADDR = 36, 
FILE"'USERFLAG"'ADDR = 37, 
FILE"'SEQNUM"'ADDR = 38, 
FILE"'FILEINFO = 39, 
FILE""CREATED = 40, 
FILE"'FNUM = 41, 
FILE"'SEQNUM = 42, 
! 
MAX"'OPERATION = 42, 

FILE"" FILENAME = ASSIGN""FILENAME + 256, 
FILE"'LOGICALFILENAME = ASSIGN"'LOGICALFILENAME + 256, 
FILE .... OPENACCESS = ASSIGN"'OPENACCESS + 256, 
FILE"'OPENEXCLUSION = ASSIGN""OPENEXCLUSION + 256, 
FILE"'RECORDLEN = ASSIGN"'RECORDLENGTH + 256, 
FILE"'FILECODE = ASSIGN"'FILECODE + 256, 
FILE"'PRIEXT = ASSIGN"'PRIMARYEXTENTSIZE + 256, 
FILE"'SECEXT = ASSIGN"'SECONDARYEXTENTSIZE + 256, 
FILE"'BLOCKBUFLEN = ASSIGN"'BLOCKLENGTH + 256, 
FILE"'DUPFILE = SET"'DUPFILE + 256, 
FILE"'SYSTEMMESSAGES = SET"'SYSTEMMESSAGES + 256, 
FILE""OPENERSPID = SET"'OPENERSPID + 256, 
FILE"'RCVUSEROPENREPLY = SET"'RCVUSEROPENREPLY + 256, 
FILE""RCVOPENCNT = SET"'RCVOPENCNT + 256, 
FILE"'RCVEOF = SET"'RCVEOF + 256, 
FILE"'USERF.LAG = SET"'USERFLAG + 256, 
FILE"'ABORT"'XFERERR = SET"'ABORT""XFERERR + 256, 
FILE""PRINT"'ERR"'MSG = SET"'PRINT"'ERR"'MSG + 256, 
FILE"'READ"'TRIM = SET"'READ"'TRIM + 256, 
FILE""WRITE""TRIM = SET"'WRITE"'TRIM + 256, 
FILE""WRITE"'FOLD = SET"'WRITE"'FOLD + 256, 
FILE""WRITE""PAD = SET"'WRITE"'PAD + 256, 
F!LE"'CRLF"'BREAK = SET""CRLF""BREAK + 256, 
FILE"" PROMPT = SET"" PROMPT + 256, 
FILE"'ERRORFILE = SET"'ERRORFILE + 256, 

A-66 



SIO: $SYSTEM.SYSTEM.GPLDEFS 

FILE"'PHYSIOOUT 
FILE"'LOGIOOUT 
FILE"'COUNTXFERRED 
FILE"' ERROR 
FILE"'BREAKHIT 
FILE"'TRACEBACK 

= SET"'PHYSIOOUT 
= SET"'LOGIOOUT 
= SET"'COUNTXFERRED 
= SET"'ERROR 
= SET"'BREAKHIT 
= SET"'TRACEBACK 

OPEN ACCESS. 

LITERAL 
READWRITE"'ACCESS = 0, 
READ"'ACCESS = 1, 
WRITE"'ACCESS = 2; 

OPEN EXCLUSION. 

LITERAL 
SHARE = O, 
EXCLUSIVE = 1, 
PROTECTED = 3; 

OPEN"'FILE FLAGS 

DEFINE 
ABORT"'OPENERR 
ABORT"'XFERERR 
PRINT"'ERR"'MSG 
AUTO"'CREATE 
MUSTBENEW 
PURGE"'DATA 
AUTO"'TOF 
NOWAIT 
BLOCKED 
VAR"'FORMAT 
READ"'TRIM 
WRITE"'TRIM 
WRITE"' FOLD 
WRITE"' PAD 
CRLF"'BREAK 

= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 

v 111111 
0123456789012345 

1111111111222222222233 
!4567890123456789012345678901 

%B0000000000000000000000000001D#, 
%B0000000000000000000000000010D#, 
%B0000000000000000000000000100D#, 
%B0000000000000000000000001000D#, 
%B0000000000000000000000010000D#, 
%B0000000000000000000000100000D#, 
%B0000000000000000000001000000D#, 
%B0000000000000000000010000000D#, 
%B0000000000000000000100000000D#, 
%B0000000000000000001000000000D#, 
%B0000000000000000010000000000D#, 
%B0000000000000000100000000000D#, 
%B0000000000000001000000000000D#, 
%B0000000000000010000000000000D#, 
%B0000000000000100000000000000D#; 

sio procedure errors. 

LITERAL 
SIOERR"'INVALIDPARAM = 
SIOERR"'MISSINGFILENAME = 
SIOERR"'DEVNOTSUPPORTED = 

512, 
513, 
514, 

parameter is invalid. 
filename not supplied. 
device not supported. 

+ 256, 
+ 256, 
+ 256, 
+ 256, 
+ 256, 
+ 256; 

SIOERR"'INVALIDACCESS = 515, access mode incompatible with 
device. 

SIOERR"'INVALIDBUFADDR = 
SIOERR"'INVALIDFILECODE = 

SIOERR"'BUFTOOSMALL = 

516, 
517, 

518, 

buffer address not in lower 32k. 
file code of file does not match 
assigned file code. 
buffer to small for edit write 
(ie., less than 1024 bytes) or 

A-67 



SIO: $SYSTEM.SYSTEM.GPLDEFS 

A-68 

SIOERRAINVALIDBLKLENGTH = 519, 

SIOERRAINVALIDRECLENGTH = 520, 

SIOERRAINVALIDEDITFILE 
SIOERRAFILEALREADYOPEN 

SIOERRAEDITREADERR 
SIOERRAFILENOTOPEN 
SIOERRAACCESSVIOLATION 

SIOERRANOSTACKSPACE 

SIOERRABLOCKINGREQD 

= 521, 
= 522, 

= 523, 
= 524, 
= 525, 

= 526, 

= 527, 

SIOERRAEDITDIROVERFLOW = 528, 
SIOERRAINVALIDEDITWRITE = 529, 

SIOERRAINVALIDRECVWRITE = 530, 

SIOERRACANTOPENRECV 

SIOERRAIORESTARTED 
SIOERRAINTERNAL 

= 531, 

= 532, 
= 533; 

buffer not sufficient for record 
length. 
assign block length > block 
buffer length. 
record length = 0 or record 
length > maxrecordlength of 
OPENAFILE or record length for 
$RECEIVE file < 14 ! or record 

' length > 254 and variable 
records specified. 
edit file is invalid. 
OPENAFILE called for file 
already open. 
edit read error. 
file not open. 
access not in effect for 
requested operation. 
insufficient stack space for 
temporary buffer allocation. 
block buffer required for nowait 
fold or pad. 
edit write directory overflow. 
write attempted after directory 
has been written. 
write to $RECEIVE does not 
follow read. 
can~t open $RECEIVE for break 
monitoring. 
nowait io restarted. 
internal error. 



SIO: FILE CONTROL BLOCK (FCB) FORMAT 

The following is the internal structure of the File Control Block 
(FCB) • 

Note: 

! 

The FCB is included as a debugging aid only. TANDEM Computers, 
Incorporated, reserves the right to make changes to the FCB 
structure. Therefore, this information must not be used to make 
program references to elements within the File Control Block. 

File Control Block (FCB) Structure Template. 

STRUCT FCBATMPL ( * ) ; 
BEGIN 

INT SIZE, 
NAMEOFFSET, 
FNUM; 

create/open options group. 

INT OPTIONSl, 
OPTIONS2, 

! 

FILENAME [ 0:11 ], 
! 
! create options. 

FCODE, 
PRIEXT, 
SECEXT, 

RECLEN, 
BLKBUFLEN, 

open options. 

OPENEXCLUSION, 
OPENACCESS; 

initializer group. 

INT PUCBAPOINTER, 
SAMEFILELINK; 

beginning of sio groups. 

0) size of FCB in words. 
1) word offset to name. 
2} guardian file number, -1 = 

closed. 

3) assign options. 
4) assign options. 
5) Tandem file name. 

( 1 7) file code. 
(18) primary extent size in pages. 
(19) secondary extent size in 

pages. 
(20) logical record length. 
(21) block length from ASSIGN, 

block buffer 
length following OPENAFILE. 

(22) exclusion bits to OPEN. 
(23) access bits to OPEN. 

(24) not used by sio procedures. 
(25) not used by sio procedures. 

A-69 



SIO: FILE CONTROL BLOCK (FCB) FORMAT 

A-70 

INT FWDLINK, 
BWDLINK, 
ADDR, 
COMMONFCBADDR, 
ERROR; 

file FCB section. 

INT DEVINFO, 

OPENFLAGSl, 

OPENFLAGS2, 
XFERCNTLl, 

XFERCNTL2, 

DUPFCBADDR; 

INT(32) 
LINENO; 

INT 

Data Transfer/Blocking 

BLKBUFADDR, 
BLKXFERCNT, 

BLKREADCNT = 
BLKXFERCNT, 

BLKWRITECNT = 
BLKXFERCNT, 

BLKCNTXFERRED, 

BLKCNTREAD = 

BLKCNTXFERRED, 
BLKCNTWRITTEN = 

BLKCNTXFERRED, 
BLKNEXTREC, 

USRBUFADDR, 
USRWRCNT, 

(26) forward link. 
(27) backward link. 
(28) address of this fcb. 
(29) address of common FCB. 
(30) last error. 

(31) file type, dev type, dev 
subtype. 

(32) access mode, flags parameters 
to OPENAF&ILE. 

(33) flags parameters to OPENAFILE. 
{34) iotype, sysbuflen, interactive 

prompt. 
(35) physioout, logioout, write 

flush, retry count, edit write 
control. 

(36) FCB address of file where data 
read from this file is to be 
written. 

(37) line number from edit read or 
ordinal record count scaled by 
1000. 

Group. 

(39) 
( 40) 

( 40) 

(40) 

( 41) 

( 41) 

( 41) 

( 4 2) 

word address of block buffer. 
number of bytes to be 
transferred between device and 
target buffer. 
number of bytes to be read 
from device to target buffer. 
number of bytes to be written 
from target buffer to device. 
number of bytes transferred 
between device and target 
buffer. 
number of bytes read into 
target buffer. 

number of bytes written from 
target buffer. 
(byte address) While blocking/ 
deblocking this is the address 
of the next record pointer in 
the block buffer. 

(43) byte address of user buffer. 
(44) <write count> parameter of 

WRITEAFILE; <prompt count> 
parameter of READAFILE. 



USRRDCNT, 

TFOLDLEN, 

USRCNTRD = 

TFOLDLEN, 
PHYSXFERCNT, 

PHYSIOCNTXFERRED, 

PHYSIOCNTRD = 
PHYSIOCNTXFERRED, 

PHYSIOCNTWR = 
PHYSIOCNTXFERRED: 

INT USERFLAG = 
PUCB"POINTER: 

! 
! initializer group. 
! 
INT LOGICALFILENAME [ 0:3 ]: 

common FCB section. 

Break Group. 

INT BRKFCBADDR = 
DEVINFO, 

BRKMSG = 
OPENFLAGS2, 

BRKCNTL = 
XFERCNTLl, 

BRKLASTOWNER = 
XFERCNTL2: 

$RECEIVE Group. 

INT SYSMSGS = 
DUPFCBADDR, 

RCVCNTL = 
LINENO, 

PRIMARYPID [-1:-1] = 

LINENO, 
BACKUPPID = 

BLKNEXTREC, 
REPLYCODE = 

TFOLDLEN: 

SIO: FILE CONTROL BLOCK (FCB} FORMAT 

{45) <max read count> parameter of 
READ"FILE. 

(46) terminal write fold length 
(= physical record length) • 

(46) number of bytes read into user 
buffer. 

(47) transfer count value passed to 
file system in SIO"PIO. 

( 48) count transferred value 
returned from file system 
procedure. 

( 48) count read value returned from, 
file system. 

( 48) count written value returned 
from file system. 

( 24) flag word to be set by user. 

(49) logical file name of this file 
to initializer. 

(31) FCB of file owning break. 

(32:33) break message buffer. 

{34) break control. 

(35} break last owner. 

(36} System messages to be 
passed back to caller. 

(37) $RECEIVE control. 

(38:41) Primary opener's <process 
id>. 

(42:45) Backup opener's <process 
id>. 

(46) $RECEIVE reply error code. 

A-71 



SIO: FILE CONTROL BLOCK (FCB) FORMAT 

Misc Group. 

INT COMMCNTL = 
PHYSXFERCNT, 

OPRQSTFCBADDR = 
PHYSIOCNTXFERRED, 

OPRQSTCOUNT = 
LOGICALFILENAME, 

ERRFCBADDR [-1:-1) = 
LOGICALFILENAME; 

INT SPARE!, 
SPARE2, 
SPARE3, 
SPARE4, 
SPARES, 
SPARE6, 
SPARE7; 

END; FCB""TMPL. 

-- BIT FIELDS. 

- ASSIGN BITS. 

DEFINE 

A-72 

FILENAMESUPPLD = <0>#, 
FCB""FILENAMESUPPLD 

PRIEXTSUPPLD = <l>#, 
FCB""PRIEXTSUPPLD 

SECEXTSUPPLD = <2>#, 
FCB""SECEXTSUPPLD 

FCODESUPPLD = <3>#, 
FCB""FCODESUPPLD 

EXCLUSIONSUPPLD = <4>#, 
FCB""EXCLUSIONSUPPLD 

ACCESSSUPPLD = <5>#, 
FCB""ACCESSSUPPLD 

RRECLENSUPPLD = <6>#, 
FCB""RRECLENSUPPLD 

BLOCKLENSUPPLD = <7>#, 
FCB""BLOCKLENSUPPLD 

= 

= 

= 

= 

= 

= 

= 

= 

( 4 7) 

(48) FCB of file for which operator 
console messages are being 
displayed. (see NO""ERROR, 
prompt). 

(49) count of number of operator 
messages displayed. (see 
NO""ERROR, prompt). 

(50) FCB address of file where 
errors are to be reported. 

(53) unused fcb word. 
(54) unused fcb word. 
(55) unused fcb word. 
(56) unused fcb word. 
(57) unused fcb word. 
(58) unused fcb word. 
(59) unused fcb word. 

FCB.OPTIONSl.FLLENAMESUPPLD#, 

FCB.OPTIONSl.PRIEXTSUPPLD#, 

FCB.OPTIONSl.SECEXTSUPPLD#, 

FCB.OPTIONSl.FCODESUPPLD#, 

FCB.OPTIONSl.EXCLUSIONSUPPLD#, 

FCB.OPTIONSl.ACCESSSUPPLD#, 

FCB.OPTIONSl.RRECLENSUPPLD#, 

FCB.OPTIONSl.BLOCKLENSUPPLD#; 



SIO: FILE CONTROL BLOCK (FCB) FORMAT 

- OPEN EXCLUSION (FCBAOPENEXCLUSION) 

DEFINE 
EXCLUSIONFIELD = <9:11>#, 

FCBAEXCLUSIONFIELD = FCB.OPENEXCLUSION.EXCLUSIONFIELD#; 

- OPEN ACCESS (FCBAOPENACCESS) 

DEFINE 
ACCESSFIELD = <3:5>#, 

FCBAACCESSFIELD = FCB.OPENACCESS.ACCESSFIELD#; 

- DEVINFO. 

DEFINE 
FILETYPE = 

FCB.--.FILETYPE 
LITERAL 

UNSTR 
ESEQ 
REL 
KSEQ 
EDIT 
OD DUNS TR 

DEFINE 

= O, 
= 1, 
= 2, 
= 3, 
= 4, 
= 8; 

<0:3>#, 

STRUCTFILE = <2:3>#, 
FCB"STRUCTFILE 

DEFINE! 
DEVTYPE = 

FCBADEVTYPE 
LITERAL 

PROCESS 
OPERATOR 
RECEIVE 
DISC 
MAGTAPE 
PRINTER 
TERMINAL 
DATACOMM 
CARDRDR 

DEFINE 

= O, 
= 1, 
= 2, 
= 3, 
= 4, 
= 5, 
= 6, 
= 7, 
= 8; 

<4:9>#, 

DEVSUBTYPE = <10:15>#, 
FCBADEVSUBTYPE 

OPEN FLAGS. ( FCB.OPENFLAGSl 

DEFINE 

= FCB.DEVINFO.FILETYPE#; 

! <>O means structured file~ 
= FCBADEVINFO.STRUCTFILE#; 

= FCB.DEVINFO.DEVTYPE#; 

= FCB.DEVINFO.DEVSUBTYPE#; 

FILECREATED = <0>#, new file created. 
FCBAFILECREATED = FCB.OPENFLAGSl.FILECREATED#; 

DEFINE 
ACCESS = <l: 3>#, ! access mode. 

FCB"ACCESS = FCB.OPENFLAGSl.ACCESS#; 

A-73 



SIO: FILE CONTROL BLOCK (FCB) FORMAT 

LITERAL 
READACCESS = 1, 
WRITEACCESS = 2, 
READWRITEACCESS = 3; 

OPEN FLAGS. ( FCB.OPENFLAGS2 

DEFINE 
ABORTONOPENERROR = <15>#, ! abend on fatal error during open. 

FCBAABORTONOPENERROR = FCB.OPENFLAGS2.ABORTONOPENERROR#; 
DEFINE 

ABORTONXFERERROR = <14>#, ! abend on fatal error during data 
! transfer. 

FCBAABORTONXFERERROR = FCB.OPENFLAGS2.ABORTONXFERERROR#; 
DEFINE 

PRINTERRMSG = <13>#, ! print error message on fatal error. 
FCBAPRINTERRMSG = FCB.OPENFLAGS2.PRINTERRMSG#; 

DEFINE 
AUTOCREATE = <12>#, 

! 0 = don ... t. 
! 1 = do. 
FCBAAUTOCREATE 

! ~reate a file if write access. 

= FCB.OPENFLAGS2.AUTOCREATEi; 
DEFINE 

FILEMUSTBENEW = <ll>#, 

! 0 = old file is allowed. 
! 1 = file must be new. 

if autocreate = 1, no such file may 
currently exist. 

FCBAFILEMUSTBENEW = FCB.OPENFLAGS2.FILEMUSTBENEW#; 
DEFINE 

WRITEPURGEDATA = <.10>#, ! purge existing data. 
! 0 = APPEND. 
! l = PURGEDATA. 
FCBAWRITEPURGEDATA = FCB.OPENFLAGS2.WRITEPURGEDATA#; 

DEFINE 
AUTOTOF 

! 0 = NO 
! 1 = YES 
FCBAAUTOTOF 

= <9>#, auto page eject on open for 
printer/process. 

= FCB.OPENFLAGS2.AUTOTOF#; 
DEFINE 

NOWAITIO = <8>#, ! open with nowait depth of 1. 
! 0 = WAIT. 
! 1 = NOWAIT. 
FCBANOWAITIO = FCB.OPENFLAGS2.NOWAITIO#; 

DEFINE 
BLOCKEDIO = <7>#, ! blocked io. 

! 0 = NOT BLOCKED 
! 1 = BLOCKED 
FCBABLOCKEDIO = FCB.OPENFLAGS2.BLOCKEDIO#; 

DEFINE 
VARFORMAT = <6>#, ! variable length records. 

! 0 = FIXED LENGTH 
! 1 = VARIABLE LENGTH 
FCBAVARFORMAT = FCB.OPENFLAGS2.VARFORMAT#; 

A-74 



SIO: FILE CONTROL BLOCK (FCB) FORMAT 

DEFINE 
READTRIM = <5>#, ! trim trailing blanks. 

! 0 = NOTRIM 
! 1 = TRIM 
FCB"'READTRIM = FCB.OPENFLAGS2.READTRIM#; 

DEFINE 
WRITETRIM = <4>#, ! trim trailing blanks. 

! 0 = NOTRIM 
! 1 = TRIM 
FCB"'WRITETRIM = FCB.OPENFLAGS2.WRITETRIM#; 

DEFINE 
WRITEFOLD = <3>#, ! fold write transfers greater than 

! 0 = TRUNCATE write record length bytes into 
! 1 = FOLD multiple records. 
FCB"'WRITEFOLD = FCB.OPENFLAGS2.WRITEFOLD#; 

DEFINE 
WR I TEP AD = <2>#, ! pad record with trailing blanks. 

FCB"'WRITEPAD = FCB.OPENFLAGS2.WRITEPAD#; 
DEFINE 

CRLFBREAK = <l>#, ! carriage return/line feed on break. 
! 0 = NO CRLF ON BREAK. 
! 1 = CRLF ON BREAK. 
FCB"'CRLFBREAK = FCB.OPENFLAGS2.CRLFBREAK#; 

TRANSFER CONTROL ( FCB.XFERCNTLl 

DEFINE 
READIOTYPE = <1:3>#, 

LITERAL 

DEFINE 

0 = READ 
l = HEADUPOATE/REPLY 
2 = EDITREAD 
3 = WRITEREAD 

! 7 = INVALID 
FCB"'READIOTYPE = FCB.XFERCNTLl.READIOTYPE#; 

STANDARDTYPE = 0, 
RECEIVETYPE = 1, 
EDITTYPE = 2, 
INTERACTIVETYPE = 3, 
INVALIDTYPE = 7; 

WRITEIOTYPE = <4:6>#, 

DEFINE 

0 = WRITE 
! 1 = READUPDATE/REPLY 
! 2 = EDITWRITE 
! 7 = INVALID 
FCB"'WRITEIOTYPE = FCB.XFERCNTLl.WRITEIOTYPE#; 

SYSBUFLEN = <7:8>#, ! system buffer length / 1024. 
FCB"'SYSBUFLEN = FCB.XFERCNTLl.SYSBUFLEN#; 

DEFINE 
PROMPT = <9:15>#, ! interactive prompt character. 

FCB"'PROMPT = FCB.XFERCNTLl.PROMPT#; 

A-75 



SIO: FILE CONTROL BLOCK (FCB) FORMAT 

TRANSFER CONTROL FCB. XFERCNTL2 ) 

DEFINE 
PHYSIOOUT 

FCB"PHYSIOOUT 
READIOOUT 

FCB"READIOOUT 
WRITEIOOUT 

FCB"WRITEIOOUT 
LOGIOOUT = 

FCB"LOGIOOUT 
WRITEFLUSH = 

FCB"WRITEFLUSH 
RETRY COUNT = 

FCB"RETRYCOUNT 
NOPARTIALREC 

FCB"NOPARTIALREC 

= <0>#, 

= <l>#, 

= <2>#, 

<1:2>#, 

<3>#, 

<4:5>#, 

= <6>#, 

= 

= 

= 

= 

= 

= 

= 

! physical [read/write] io 
! outstanding. 
FCB.XFERCNTL2.PHYSIOOUT#, 
! logical read io outstanding. 
FCB.XFERCNTL2.READIOOUT#, 
! logical write io outstanding. 
FCB.XFERCNTL2.WRITEIOOUT#, 
! logical io outstanding. 
FCB.XFERCNTL2.LOGIOOUT#, 
! block buffer flush operation in 
! progress. 
FCB.XFERCNTL2.WRITEFLUSH#, 
! i/o retry counter. 
FCB.XFERCNTL2.RETRYCOUNT#, 
! blocks contain only full records. 
FCB.XFERCNTL2.NOPARTIALREC#; 

TRANSFER CONTROL ( FCB.XFERCNTL2 

-- EDIT READ/WRITE CONTROL 

DEFINE 
~DDIRWIP 

FCB"EDDIRWIP 
EDHALFSECTCNT 

= 

= 

<7>#, ! directory write in progress. 
= FCB.XFERCNTL2.EDDIRWIP#, 

<8:11>#, ! number of half sectors written in 
! current data page after next 

FCB"EDHALFSECTCNT = 
! physical write. 
FCB.XFERCNTL2.EDHALFSECTCNT#, 

EDDATABUFLEN = <12:15>#, ! edit data buf size ~>>~ 

FCB"EDDATABUFLEN 
EDREPOSITION = 

FCB"EDREPOSITION 

! EDDBUFSHIFT (8). 
= FCB.XFERCNTL2.EDDATABUFLEN#, 

<7>#, ! user is repositioning edit file 
! (read op). 

= FCB.XFERCNTL2.EDREPOSITION#; 

WRITE"FILE CONTROL OPERATION IN PROGRESS ( FCB.PHYSXFERCNT 

DEFINE 
CNTLINPROGRESS = <0>#, 

FCB"CNTLINPROGRESS = FCB.PHYSXFERCNT.CNTLINPROGRESS#, 
FORMSCNTLOP = <1:15>#, 

FCB"FORMSCNTLOP = FCB.PHYSXFERCNT.FORMSCNTLOP#; 

BREAK CONTROL ( COMMFCB.BRKCNTL ) 

A-76 



SIO: FILE CONTROL BLOCK (FCB) FORMAT 

DEFINE 
BRKLASTMODE = <O>#, 

COMMFCBABRKLASTMODE 
BRKHIT = <l>#, 

COMMFCBABRKHIT 
BRKFLUSH = <2>#, 

COMMFCBABRKFLUSH 
BRKSTOLEN = <3>#, 

! last break mode from SETMODE. 
= COMMFCB.BRKCNTL.BRKLASTMODE#, 

! break key has been typed but not 
! tested. 

= COMMFCB.BRKCNTL.BRKHIT#, 
! flush $RECEIVE break message. 

= COMMFCB.BRKCNTL.BRKFLUSH#, 
! break stolen away by another 
! process. 

COMMFCBABRKSTOLEN = COMMFCB.BRKCNTL.BRKSTOLEN#, 
BRKLDN = <8:15>#, ! logical device number of terminal. 

COMMFCBABRKLDN = 
COMMFCBABRKARMED = 

COMMFCBABRKFCBADDR#; 

COMMFCB.BRKCNTL.BRKLDN#, 
! break is armed. 

$RECEIVE CONTROL COMMFCB.RCVCNTL 

DEFINE 
RCVDATAOPEN = 

COMMFCBARCVDATAOPEN 

<0>#, receive has been opened for data 
transfer. 

= COMMFCB.RCVCNTL.RCVDATAOPEN#, 
RCVBRKOPEN = <l>#, ! receive has been opened for break 

COMMFCBARCVBRKOPEN = 
RCVOPENCNT = <2:3>#, 

COMMFCBARCVOPENCNT = 
RCVSTATE = <4>#, 

! 0 = NEED READUPOATE. 
! 1 = NEED REPLY. 

! message reception. 
COMMFCB.RCVCNTL.RCVBRKOPEN#, 
! count of open messages received. 
COMMFCB.RCVCNTL.RCVOPENCNT#, 

COMMFCBARCVSTATE = COMMFCB.RCVCNTL.RCVSTATE#, 
RCVUSEROPENREPLY = 

! 0 = SIO REPLYS. 
<5>#, user will reply to open messages. 

! 1 = USER REPLYS. 
COMMFCBARCVUSEROPENREPLY = 

RCVPSUEDOEOF = <6>#, 
COMMFCB.RCVCNTL.RCVUSEROPENREPLY#, 
pseudo-eof. (n.a. if user wants 
close messages) 

! 0 = EAT CLOSE MESSAGE. 
! 1 = TURN LAST CLOSE MESSAGE INTO EOF. 
COMMFCBARCVPSUEDOEOF = COMMFCB.RCVCNTL.RCVPSUEDOEOF#, 

MONCPUMSG = <2:3>#, ! user cpu up/down messages. 
COMMFCBAMONCPUMSG = COMMFCB.SYSMSGS.MONCPUMSG#, 

OPENMSG = <10>#, ! user wants open messages. 
COMMFCBAOPENMSG = COMMFCB.SYSMSGS.OPENMSG#, 

CLOSEMSG = <11>#, ! user wants close messages. 
COMMFCBACLOSEMSG = COMMFCB.SYSMSGS.CLOSEMSG#; 

A-77 



SIO: FILE CONTROL BLOCK (FCB) FORMAT 

COMMON CONTROL ( COMMFCB.COMMCNTL 

DEFINE 
CREATEINPROGRESS = <0>#, ! 1 during call to OPENAFILE while 

! creating. 

A-78 

COMMFCBACREATEINPROGRESS = COMMFCB.COMMCNTL.CREATEINPROGRESS#, 
OPENINPROGRESS = <l>#, 1 during call to OPENAFILE. 

COMMFCBAOPENINPROGRESS = COMMFCB.COMMCNTL.OPENINPROGRESS#, 
OPTYPE = <0:1>#, ! operation type. 

COMMFCBAOPTYPE = COMMFCB.COMMCNTL.OPTYPE#, 
DEFAULTERRFILE = <2>#, 

! 0 = home terinal. 
! 1 =operator ($0). 

defines default error reporting 
! file. 

COMMFCBADEFAULTERRFILE = COMMFCB.COMMCNTL.DEFAULTERRFILE#, 
TRACEBACK = <3>#, 

COMMFCBATRACEBACK 

! 1 = trace back to callers p when 
! printing an error message. 

= COMMFCB.COMMCNTL.TRACEBACK#; 



Character 

NUL 
SOH 
STX 
ETX 
EOT 
ENQ 
ACK 
BEL 

BS 
HT 
LF 
VT 
FF 
CR 
so 
SI 

DLE 
DCl 
DC2 
DC3 
DC4 
NAK 
SYN 
ETB 

CAN 
EM 
SUB 
ESC 
FS 
GS 
RS 
us 

SP 

" 
# 
$ 
% 
& 
~ 

Octal Value 
(left byte} 

000000 
000400 
001000 
001400 
002000 
002400 
003000 
003400 

004000 
004400 
005000 
005400 
006000 
006400 
007000 
007400 

010000 
010400 
011000 
011400 
012000 
012400 
013000 
013400 

014000 
014400 
015000 
015400 
016000 
016400 
017000 
017400 

020000 
020400 
021000 
021400 
022000 
022400 
023000 
023400 

Octal Value 
(right byte} 

000000 
000001 
000002 
000003 
000004 
000005 
000006 
000007 

000010 
000011 
000012 
000013 
000014 
000015 
000016 
000017 

000020 
000021 
000022 
000023 
000024 
000025 
000026 
000027 

000030 
000031 
000032 
000033 
000034 
000035 
000036 
000037 

000040 
000041 
000042 
000043 
000044 
000045 
000046 
000047 

Appendix B - ASCII CHARACTER SET 

Meaning 

Null 
Start of heading 
Start of text 
End of text 
End of transmission 
Enquiry 
Acknowledge 
Bell 

Backspace 
Horizontal tabulation 
Line feed 
Vertical tabulation 
Form feed 
Carriage return 
Shift out 
Shift in 

Data iinK escape 
Device control 1 
Device control 2 
Device control 3 
Device control 4 
Negative acknowledge 
Synchronous idle 
End of transmission block 

Cancel 
End of medium 
Substitute 
Escape 
File separator 
Group separator 
Record separator 
Unit separator 

Space 
Exclamation point 
Quotation mark 
Number sign 
Dollar sign 
Percent sign 
Ampersand 
Apostrophe 

B-1 



Appendix B - ASCII CHARACTER SET 

Character Octal Value Octal Value Meaning 
(left byte) (right byte) 

( 024000 000050 Opening parenthesis 
) 024400 000051 Closing parenthesis 
* 025000 000052 Asterisk 
+ 025400 000053 Plus 

026000 000054 Comma 
026400 000055 Hyphen {minus) 
027000 000056 Period (decimal point) 

I 027400 000057 Right slant 

0 030000 000060 Zero 
1 030400 000061 One 
2 031000 000062 Two 
3 031400 000063 Three 
4 032000 000064 Four 
5 032400 000065 Five 
6 033000 000066 Six 
7 033400 000067 Seven 

8 034000 000070 Eight 
9 034400 000071 Nine 

035000 000072 Colon 
035400 000073 Semi-colon 

< 036000 000074 Less than 
= 036400 000075 Equals 
> 037000 000076 Greater than 
? 037400 000077 Question mark 

@ 040000 000100 Commercial at 
A 040400 000101 Uppercase A 
B 041000 000102 Uppercase B 
c 041400 000103 Uppercase C 
D 042000 000104 Uppercase D 
E 042400 000105 Uppercase E 
F 043000 000106 Uppercase F 
G 043400 000107 Uppercase G 

H 044000 000110 Uppercase H 
I 044400 000111 Uppercase I 
J 045000 000112 Uppercase J 
K 045400 000113 Uppercase K 
L 046000 000114 Uppercase L 
M 046400 000115 Uppercase M 
N 047000 000116 Uppercase N 
0 047400 000117 Uppercase 0 

B-2 



Appendix B - ASCII CHARACTER SET 

Character Octal Value Octal Value Meaning 
(left byte) (right byte) 

p 050000 000120 Uppercase p 

Q 050400 000121 Uppercase Q 

R 051000 000122 Uppercase R 
s 051400 000123 Uppercase s 
T 052000 000124 Uppercase T 
u 052400 000125 Uppercase u 
v 053000 000126 Uppercase v 
w 053400 000127 Uppercase w 

x 054000 000130 Uppercase x 
y 054400 000131 Uppercase y 

z 055000 000132 Uppercase z 
[ 055400 000133 Opening bracket 
\ 056000 000134 Left slant 
] 056400 000135 Closing bracket 
A 057000 000136 Circumflex 

057400 000137 Underscore 

' 060000 000140 Grave accent 
a 060400 000141 Lowercase a 
b 061000 r. ;'";. .-. -: :: -: 7" ...-.... 'E".vr·• ...-=-.,.~k,. -:r.-V .:::a b VVV..L"24'. .LIVYY'I;;; .I..~~.;;>""' 

c 061400 000143 Lowercase c 
d 062000 000144 Lowercase d 
e 062400 000145 Lowercase e 
f 063000 000146 Lowercase f 
g 063400 000147 Lowercase g 

h 064000 000150 Lowercase h 
i 064400 000151 Lowercase i 
j 065000 000152 Lowercase j 
k 065400 000153 Lowercase k 
1 066000 000154 Lowercase 1 
m 066400 000155 Lowercase m 
n 067000 000156 Lowercase n 
0 067400 000157 Lowercase 0 

p 070000 000160 Lowercase p 
q 070400 000161 Lowercase q 
r 071000 000162 Lowercase r 
s 071400 000163 Lowercase s 
t 072000 000164 Lowercase t 
u 072400 000165 Lowercase u 
v 073000 000166 Lowercase v 
w 073400 000167 Lowercase w 

B-3 



Appendix B - ASCII CHARACTER SET 

Character Octal Value Octal Value Meaning 
(left byte) (right byte} 

x 074000 000170 Lowercase x 
y 074400 000171 Lowercase y 
z 075000 000172 Lowercase z 

1 
075400 000173 Opening brace 
076000 000174 Vertical line 
076400 000175 Closing brace 
077000 000176 Tilde 

DEL 077400 000177 Delete 

B-4 



ENSCRIBE STRUCTURED FILE BLOCK FORMAT 

ENSCRIBE STRUCTURED FILE BLOCK FORMAT 

<rba> --> 
word [0] 

[2] 

[4] 

[5] 

[10] 

[ <block size> - 1 ] 

<next block at same level> 

<next block on free list> 

<num recs> 

<level> 

unused (zeros) 

<record O> 

re,, 

I <record l> 

I 
T 

<record <num recs> - l> l 
I free space ,,... 

byte <offset> from [0] to 
free space 

byte <offset> from [0] to 
records <numrecs> - 1 

byte <offset> from [0] to 
record 1 

byte <offset> from [0] to 
record 0 

,....., 

I 
I 
T 

1 
I 

doubleword 

doubleword 

one word 

one word 

four words 

one word 

one word 

one word 

one word 

C-1 



ENSCRIBE STRUCTURED FILE BLOCK FORMAT 

<rba> 

A block is addressed by a doubleword relative byte addres9. In a 
key-sequenced file, <rba> = OD points to the root (highest level) 
index block; in a relative or entry-sequenced file, <rba> = OD 
points to the first data block 

To locate a given record in a key-sequenced file, the key value 
supplied to KEYPOSITION is used to search to the block for a record 
having a key field that matches 

To locate a given record in a relative file, the <record number> 
supplied to [KEY]POSITION is converted to a block address and record 
number in the block as follows 

<blocking factor> = 
( <block length> - 22 ) / ( <create record length> + 2 ) 

<rba of block> = 
<record number> / <blocking factor> * <block length> 

<record in block> = <record number> ~,~ <blocking factor> 

The format of a <record address> used to position to a record in an 
entry-sequenced file is 

I byte O byte 1 byte 2 I byte 3 I 
\ I \ I 

<rba of block> I 512 I 
I I 

I 
<record in block> 

<next block at same level>, 

for key-sequenced files, this is the block number of the next block 
at the same level; for relative and entry-sequenced files this field 
is not used and is set to zero 

<next block on free list>, 

for key-sequenced and relative files, this is the block number of 
the next block on the file~s free list(s) (for a key-sequenced file, 
if the index and data block lengths differ, the file has two free 
lists; one for index blocks, one for data blocks) and the number of 
free blocks on the list. The doubleword is formatted as follows 

C-2 



ENSCRIBE STRUCTURED FILE BLOCK FORMAT 

byte 0 bxte 1 byte 2 I byte 3 

<next block num> I 512 I 
$MIN ( 255 , <num blocks in free list> } 

For key-sequenced and relative files, if the entry = -10 then the 
block is the last block in the free list 

For key-sequenced files, if the entry = -20 then the block is in use 

For relative files, if the entry = -20 then there are no free 
records in the block 

For entry-sequenced files, this entry is not used and is set to zero 

<num recs> 

is the number of records written in the block 

<level> 

is the tree level of the block. <level> = 0 means that the block is 
a data block; <level> > 0 means that the block is an index block 

<record> 

is a data (if <level> 
record "n", 

0) or index (if <level> > 0 record. For a 

<length n> = <offset to record n + l> - <offset to record n> 

The format of an index record is 

[O] 
I 

[<length n - 4>] [<length n>] 
I I 

key value { byte 0 I byte 1 : byte 2 I byte 3/I 

<rba> of block at next level 

C-3 



ENSCRIBE STRUCTURED FILE BLOCK FORMAT 

<off set> 

is the offest, in bytes, to the beginning of "free space" or a 
record. For relative files, the number of <offsets> is always the 
same as the <blocking factor> 

<block size> 

is the block size in words. This is calculated as follows 

<block size> = ( <create block length> + 1 ) I 2 

C-4 



APPENDIX D: FILE MANAGEMENT ERROR LIST 

The table on the following pages lists the File Management System 
errors individually by error number, giving a brief explanation of the 
meaning of each. 

The <device type> that is associated with an error, as returned by 
the DEVICEINFO procedure is also given. The number corresponds to 
devices as follows: 

<device type> 

0 
1 
2 
3 

4 
5 
6 
7 

8 
9 

10 
11 
12 
20-23 
26 

= write to another process <process id> 
= operator console ($0) 
= $RECEIVE 
= Disc 

(3E = ENSCRIBE Structured File) 
= Magnetic Tape 
= Line Printer 
= Terminal: Conversational or Page Mode 
= Data Communications Line (ENVOY) 

7.56 = Auto-Call Unit 
= Punched Card Reader 
= X.25 Access Method PTP Protocol 
= Data Communications Line (AXCESS) 
= Data Communications Line (ENVOY ACP) 
= Tandem to IBM Link (TIL) 
= Transaction Monitoring Facility (TMF) 
= Tandem Hyper Link 

0-1 



APPENDIX D: FILE MANAGEMENT ERROR LIST 

FILE MANAGEMENT ERROR LIST 

<error> 

CCE 

0 

CCG 

1 

2 

3 

4 

5 

6 

7 

8 

CCL 

10 (%12) 

11 ( %13) 

12 (%14) 

13 ( %15) 

14 ( %16) 

15 ( %17) 

16 (%20) 

D-2 

description 

operation successful 

end-of-file 

operation not allowed on this type file 

failure to open or purge a partition 

failure to open an alternate key file 

failure to provide sequential buffering 

system message received 

process not accepting OPEN, CLOSE, 
CONTROL, or SETMODE messages 

operation successful (examine MCW for 
additional status information) 

file/record already exists 

file not in directory or record not in 
file 

file in use 

illegal filename specification 

device does not exist 

volume specification supplied does not 
match name of volume on which the file 
actually resides 

file number has not been opened 

1 <device 
type> 

any 

3,4,6,8 

any 

3E 

3E 

3E 

2 

0 

7 •*I 11. * 

3 

3 

3 - 8 

any 

3 - 8 

3 

any 



APPENDIX D: FILE MANAGEMENT ERROR LIST 

FILE MANAGEMENT ERROR LIST (cont~d) 

<error> description 

17 (%21) paired-open was specified and the file 
is not open by the primary process, the 
parameters supplied do not match the 
parameters supplied when the file was 
opened by the primary, or the primary 
process is not alive 

18 (%22) the referenced system does not exist 

19 (%23) no more devices in logical device table 

20 (%24) attempted network access by a process 
with a five-character name or a seven
character home terminal name 

21 (%25) illegal <count> specified 

22 (%26) application parameter or buffer address 
out of bounds 

23 (%27) illegal disc address 

24 (%30) ·1 privileged mode required for this 
operation 

25 (%31) AWAITIO or CANCEL attempted on "wait" 
file 

26 (%32) AWAITIO or CANCEL attempted on a file 
with no outstanding operations 

27 (%33) wait operation attempted when 
outstanding requests pending 

28 (%34) number of outstanding no-wait operations 
would exceed that specified at OPEN, or 
attempt to open a disc file or $RECEIVE 
with maximum number of concurrent 
operations greater than 1 

29 (%35) missing parameter 

30 (%36) unable to obtain main memory space for a 
link control block 

<device 
type> 

any 

any 

3 - 8 

any 

any 

any 

3 

any 

any 

any 

any 

any 

any 

0,1,3 - 8 

D-3 



APPENDIX D: FILE MANAGEMENT ERROR LIST 

FILE MANAGEMENT ERROR LIST (cont~d) 

<error> 

31 (%37) 

32 (%40) 

33 (%41) 

34 (%42) 

35 {%43} 

36 (%44) 

37 (%45) 

38 (%46) 

D-4 

description 

for Tandem Nonstop System, unable to 
obtain SHORTPOOL space for a file 
system buffer area. 
For Tandem Nonstop II System, unable to 
obtain file system buffer space. 

for Tandem Nonstop System, unable to 
obtain main memory space for a control 
block; for Tandem Nonstop II system, 
unable to obtain storage pool space 
(SYSPOOL); or, for either system, INFO 
proc. called with <file number> = -1 but 
no file was open. 

for Tandem Nonstop System, i/o process 
is unable to obtain IOPOOL space for an 
i/o buffer, or, <count> too large for 
dedicated i/o buffer. 
For Tandem Nonstop II System, i/o 
process is unable to obtain i/o segment 
space. 

for Tandem Nonstop II System only, 
unable to obtain file system control 
block 

for Tandem Nonstop II System only, 
unable to obtain i/o process control 
block 

for Tandem Nonstop II System only, 
unable to lock physical memory 

for Tandem Nonstop II System only, i/o 
process is unable to lock physical 
memory 

for either Tandem Nonstop System or 
Tandem Nonstop II System, operation 
attempted on wrong type of system 

<device 
type> 

any 

any 

1, 3-12 

any 

1, 3-12 

any 

1, 3-12 

any 



APPENDIX D: FILE MANAGEMENT ERROR LIST 

FILE MANAGEMENT ERROR LIST (cont~d) 

<error> 

40 (%50) 

41 (%51) 

42 (%52) 

43 (%53) 

44 (%54) 

45 (%55) 

46 (%56) 

47 (%57) 

48 (%60) 

49 (%61) 

50 (%62} 

51 (%63) 

52 (%64) 

53 (%65) 

54 (%66) 

55 {%67) 

56 (%70) 

57 (%71) 

58 (%72) 

description 

operation timed out. AWAITIO did not 
complete within the time specified by 
its <time limit> parameter. If a OD 
<time limit> {completion check) or -1 
<file number> (any file) was specified, 
then the operation is considered 
incomplete. Otherwise, the operation 
is considered completed 

checksum error on file synchronization 
block 

attempt to read from unallocated extent 

unable to obtain disc space for extent 

directory is full 

file is full 

invalid key specified 

key not consistent with file data 

security violation 

access violation 

directory error 

directory is bad 

error in disc free space table 

file system internal error 

i/o error in disc free space table 

i/o error in directory 

i/o error on volume label 

i/o error in file label 

disc free space table is bad 

<device 
type> 

any 

3 

3 

3 

3 

3 

3E 

3E 

3 

any 

3 

3 

3 

3 

3 

3 

3 

3 

3 

D-5 



APPENDIX D: FILE MANAGEMENT ERROR LIST 

FILE MANAGEMENT ERROR LIST (cont~d) 

<error> 

59 (%73) 

60 (%74) 

61 (%75) 

62 (%76) 

63 ( %77) 
64 (%100) 

65 (%101) 

66 (%102) 

70 (%106) 

71 (%107) 

72 ( %110) 

73 (%111) 

74 ( %112) 

75 (%113) 

76 (%114) 

77 (%115) 

description 

file is bad 

volume on which this file resides has 
been removed, or device has been downed 
since the file was opened 

no file opens are permitted 

volume has been mounted, but mount order 
has not been given; file open not 
permitted 

volume has been mounted and mount is in 
progress; file open not permitted 

only special requests permitted 

device has been downed by operator 

continue file operation 

duplicate record 

attempt to access unmounted partition 

file/record locked 

READUPDATE called for $RECEIVE and 
number of messages queued exceeds 
<receive depth>, or REPLY called with 
invalid <message tag>, or REPLY called 
and no message is outstanding 

for Tandem Nonstop Systems with TMF, 
requesting process has no current 
process TRANSID 

for Tandem Nonstop Systems with TMF, 
TRANSID is in the process of ending 

for Tandem Nonstop Systems with TMF, 

l 

I 

a TMF system file has the wrong file I 

code 
I I 

L S --(%11_6_)__.__f_o_r_T_a_ndem Nonstop Systems with TMF, J 
TRANSID is invalid or obsolete 

------ -------·---------·----------

D-6 

<device 
type> 

3 

3 - 8 

3 

3 

3 

3 

1,3 - 8 

0,3 

3E 

"'\ 
.;) 

3 

2 

20-23 

20-23 

20-23 

20-23 



APPENDIX D: FILE MANAGEMENT ERROR LIST 

FILE MANAGEMENT ERROR LIST (cont~d) 

<error> 

79 (%117) 

80 (%120) 

81 (%121) 

82 (%122) 

83 (%123) 

84 (%124) 

87 (%127) 

88 (%130) 

89 (%131) 

90 (%132) 

92 (%134) 

description 

for Tandem Nonstop Systems with TMF, 
attempt made by TRANSID to update or 
delete a record that it has not 
previously locked 

for Tandem Nonstop Systems with TMF, 
invalid operation attempted on audited 
file or non-audited disc volume 

for Tandem Nonstop Systems with TMF, 
attempted operation invalid for TRANSID 
that has outstanding no-wait i/o on a 
disc or process file 

for Tandem Nonstop System with TMF, 
TMF is not running 

for Tandem Nonstop System with TMF, 
process has initiated more concurrent 
transactions than can be handled 

for Tandem Nonstop System with TMF, 
TMF is not configured 

waiting on a READ request and did not 
get it 

a CONTROL READ is pending; new READ 
invalid 

for Tandem Nonstop System, READ after 
CONTROL complete came in too late. 
For Tandem Nonstop II System, remote 
device has no buffer available. 

for Tandem Nonstop System with TMF, 
TRANSID aborted because its parent 
process died 

for Tandem Nonstop System with TMF, 
TRANSID aborted because path to remote 
node is down 

<device 
type> 

20-23 

20-23 

20-23 

20-23 

20-23 

20-23 

sub-device 
10 

sub-device 
10 

sub-device 
10 

20-23 

20-23 

D-7 



APPENDIX D: FILE MANAGEMENT ERROR LIST 

FILE MANAGEMENT ERROR LIST (cont~d) 

<error> 

93 (%135) 

94 (%136) 

97 ( %141) 

98 (%142) 

99 (%143) 

100 (%144) 

101 (%145) 

102 (%146) 

103 (%147) 

110 (%156) 

111 (%157) 

112 (%160) 

120 (%170) 

121 (%171) 

122 (%172) 

123 (%173) 

124 {%174) 

D-8 

description 

for Tandem Nonstop System with TMF, 
TRANSID aborted because it spanned too 
many audit files 

for Tandem Nonstop System with TMF, 
TRANSID aborted by operator command 

for Tandem Nonstop System with TMF, 
TRANSID was aborted 

for Tandem Nonstop System with TMF, 
the Transaction Monitor Process~s 
Network Active Transactions table is 
full 

attempt to use microcode option that is 
not installed 

device not ready 

no write ring 

paper out 

disc not ready due to power fail 

only break access permitted 

operation aborted because of break 

READ or WRITEREAD preempted by operator 
message 

data parity error 

data overrun error 

request aborted due to possible data 
loss caused by a reset of the circuit 

sub-device busy 

a line reset is in progress 

<device 
type> 

20-23 

20-23 

20--23 

20-23 

3 

3,4,5,6,8 

4 

5 

3 

6 

6 

6 

1,3 - 7 

1,3 - 8 

6' 9 

sub-device 
10 

sub-device 
10 



APPENDIX D: FILE MANAGEMENT ERROR LIST 

FILE MANAGEMENT ERROR LIST (cont~d) 

<error> 

130 (%202) 

131 (%203) 

132 (%204) 

133 (%205) 

134 (%206) 

135 (%207) 

136 (%210) 

137 (%211) 

140 8%214) 

145 (%221) 

146 (%222) 

147 (%223) 

150 (%226) 

151 (%227) 

152 (%230) 

153 (%231) 

154 (%232) 

155 (%233) 

156 (%234) 

157 (%235) 

description 

illegal address to disc 

write check error from disc 

seek incomplete from disc 

access not ready on disc 

address compare error on disc 

write protect violation with disc 

unit ownership error (dual-port disc) 

controller buffer parity error 

modem error (communication link not yet 
established, modem failure, momentary 
loss of carrier, or disconnect); for 
TIL, link disconnected 

card reader motion check error 

card reader read check error 

card reader invalid Hollerith code read 

end-of-tape marker detected 

runaway tape detected 

unusual end - tape unit went off line 

tape drive power on 

BOT detected during backspace files or 
backspace records 

only nine track tape permitted 

TIL protocol violation detected 

i/o process internal error 

3 

3 

3 

3 

3 

3 

3 

<device 
type> 

6.*, 7.*, 
10.*, 11.* 

6,7 

8 

8 

8 

4 

4 

4 

4 

4 

4 

12 

3 - 8 

D-9 



APPENDIX D: FILE MANAGEMENT ERROR LIST 

FILE MANAGEMENT ERROR LIST (cont'd) 

<error> 

158 (%236) 

160 (%240) 

161 (%241) 

162 (%242) 

163 (%243) 

164 (%244) 

165 (%245) 

166 (%246) 

167 (%247) 

168 (%250) 

D-10 

description 

invalid function requested for HyperLink 

request is invalid for line state 

<device 
type> 

26 

7. *, 11. * 

more than 7 reads or 7 writes issued 11.* 

impossible event occurred for line state 

operation timed out 

EOT received 

power at auto-call unit is off 

disconnect received 

data line is occupied (busy) 

RVI received 

7.*, 11.* 

7. *, 11. * 

7.0-7.3,7.8 

7.56 

7.0-7.1, 
11. * 
7.56 

7.0-7.3 

data line is not occupied after setting 7.56 
call request 

ENQ received 7.0-7.1, 
7 .. 3, 7 .. 9 

auto-call unit failed to set "present 7.56 
next digit" 

EQT received on line bid/select 7.0-7.1, 
7.3, 7.8 

"data set status" is not set after dial- 7.56 
ing all digits 

NAK received on line bid/select 7.0-7.1, 
7.3, 7.8 

auto-call unit failed to clear "present 7.56 
next digit" after "digit present" was 
set 



APPENDIX D: FILE MANAGEMENT ERROR LIST 

FILE MANAGEMENT ERROR LIST (cont~d} 

<error> 

169 (%251} 

170 (%252} 

171 (%253} 

172 (%254} 

173 (%255} 

174 (%256} 

175 (%257) 

176 (%260} 

177 (%261} 

178 (%262} 

179 (%263) 

180 (%264) 

description 

WACK received on line bid/select 

<device 
type> 

7.0-7.1,7.3 

auto-call unit set "abandon call and 7.56 
retry" 

station disabled or station not defined 11.* 

no ID sequence received during circuit 
assurance mode 

invalid MCW entry number on WRITE 

no response received or bid/poll/select 

reply not proper for protocol 

maximum allowable NAKs received 

invalid MCW on WRITE 

WACK received after select 

aborted transmitted frame 

incorrect alternating ACK received 

command reject 

poll sequence ended with no responder 

text overrun 

no address list specified 

application buffer is incorrect 

control request pending or autopoll 
active 

unknown device status received 

7.0-7.1 

11. 40 

7.*, 10.*, 
11.* 

7.*, 10.*, 
11. * 

7.*, 10.* 

11.* 

7.2-7.3 

11.* 

7.0-7.3 

11. * 

7.3,7.8-7.9 

7.*, 10.*, 
11.* 

7.2-7.3, 
7.8-7.9, 
11. 40 

10.* 

11. 40 

6.6-6.10, 
10.* 

D-11 



APPENDIX D: FILE MANAGEMENT ERROR LIST 

FILE MANAGEMENT ERROR LIST (cont'd) 

<error> 

190 (%276) 

191 (%277) 

192 (%300) 

200 (%310) 

201 (%311) 

210 (%322) 

211 (%323) 

212 (%324) 

213 (%325) 

214 (%326) 

215 (%327) 

216 (%330) 

216 (%330) 

217 (%331) 

1'-12 

description 

invalid status received from device 

device power on 

device is being exercised 

device is owned by alternate port 

the current path to the device is down 

<device 
type> 

1, 3-9' 
10.*, 11.* 

5 

3-6 

1, 3-9' 
10.*, 11.* 

1, 3-9' 
10.*, 11.* 

an attempt was made to write to a non- 0 
existent process 

device ownership changed during operation 1, 3-9, 
10.*, 11.* 

failure of cpu performing this operation 

For Tandem Nonstop System only 1 EIO 
instruction failure 

channel data parity error 

channel timeout 

i/o attempted to absent memory page 

for Tandem Nonstop System, map parity 
error during this i/o. 
For Tandem Nonstop System, memory access 
breakpoint occurred during this i/o 

map parity error during this i/o 

memory parity error during this i/o 

any 

1, 3-9, 
10.*, 11.* 

1, 3-9, 
10.*, 11.* 

1, 3-9, 
10.*, 11.* 

1, 3-9, 
10.*, 11.* 

1, 3-9, 
10.*, 11.* 

1, 3-9' 
10.*, 11.* 

1, 3-9' 
10.*, 11.* 



APPENDIX D: FILE MANAGEMENT ERROR LIST 

FILE MANAGEMENT ERROR LIST (cont~d) 

<error> 

218 (%332) 

219 (%333) 

220 (%334) 

221 (%335) 

222 (%336) 

223 (%337) 

224 (%340) 

225 (%3A 1 ) 

230 (%346) 

231 (%347) 

240 (%350) 

241 (%351) 

248 (%370) 

249 (%371) 

description 

interrupt timeout 

illegal device reconnect 

protect violation 

for Tandem Nonstop System, pad-in 
violation. 
For Tandem Nonstop II System, controller 
handshake violation. 

bad channel status from EIO instruction 

bad channel status from IIO instruction 

controller error 

no unit or multiple units assigned to 
same unit number 

cpu power failed, then restored 

controller power failed, then restored 

network line handler error; operation 
not started 

network error; operation not started 

a line handler process failed while this 
request was outstanding. The file 
system recovers from this error for 
files opened with non-zero sync depth 

a network failure occurred while this 
request was outstanding. The file 
system recovers from this error for 
files opened with non-zero sync depth 

<device 
type> 

1, 3-9, 
10. *, 11. * 

1, 3-9, 
10.*, 11.* 

1, 3-9, 
10.*, 11.* 

1, 3-9, 
10.*, 11.* 

1, 3-9, 
10.*, 11.* 

1, 3-9, 
10.*, 11.* 

1, 3-9, 
10.*, 11.* 

1, 3-9, 
10.*, 11.* 

1, 3-9, 
10.*, 11.* 

1, 3-9, 
10.*, 11.* 
any 

any 

any 

any 

D-13 



APPENDIX D: FILE MANAGEMENT ERROR LIST 

FILE MANAGEMENT ERROR LIST (cont ... d) 

I <error> description ! <device I 

type> 

250 (%372) all paths to the system are down any 

251 (%373) a network protocol error occurred any 

300-511 errors are reserved for process 
application-dependent usage 

D-14 



APPENDIX E 

ENSCRIBE CALL SYNTAX SUMMARY 

CALL AWAITIO ( <file number> 
, [ <buffer address> 
, [ <count transferred> 
, [ <tag> 
, [ <time limit> 

CALL CANCEL ( <file number> ) 

CALL CANCELREQ <file number> 
, [ <tag> ] ) 

CALL CLOSE ( <file number> ) 

CALL CONTROL <file number> 
<operation> 
<parameter> 

, [ <tag> ] ) 

CALL CREATE <file name> 
[ <primary extent size> ] 

, [ <file code> ] 
, [ <secondary extent size> ] 
, [ <file type> ] 
, [ <record length> ] 
' r <data block length> ] 
, [ <key-sequenced params> ] 
, [ <alternate key params> ] 
, [ <partition params> ] 

CALL DEVICEINFO <file name> 
, <device type> 
, <physical record length> ) 

<status> := EDITREAD <edit control block> 
, <buffer> 
, <buffer length> 
, <sequence number> 

E-1 



APPENDIX E: ENSCRIBE CALL SYNTAX SUMMARY 

E-2 

<status> := EDITREADINIT <edit control block> 
, <file number> 
, <buffer length> 

<status> := FILEERROR ( <file number> ) 

CALL FILEINFO ( <file number> 
, [ <error> ] 
, [ <file name> ] 
, [ <logical device number> ] 
, [ <device type> ] 
, [ <extent size> ] 
, [ <end-of-file location> ] 
, [ <next-record pointer> ] 
, [ <last mod time> ] 
, [ <file code> ] 

[ <secondary extent size> ] 
, [ <current-record pointer> ] 
, [ <open flags> ] 

CALL FILERECINFO <file number> 
, [ <current key specifier> ] 
, [ <current key value> 1 
, [ <current key length> 1 
, [ <current primary key value> ] 
, [ <current primary key length> ] 
, [ <partition in error> 
, [ <specifier of key in error> 
, [ <file type> 

[ <logical record length> ] 
, [ <block length> 1 
, [ <key-sequenced params> ] 
, [ <alternate key params> ] 
, [ <partition params> 1 

{ length := } FNAMECOLLAPSE <internal name> 

{ status 
{ CALL 

, <external name> 

:= } FNAMECOMPARE (, <file name l> 
} <file name 2> 

{ <length> := } FNAMEEXPAND ( <external file name> 
, <internal file name> 

<default names> 



APPENDIX E: ENSCRIBE CALL SYNTAX SUMMARY 

<status> := GETDEVNAME <logical device no> 
, <device name> 
, [ <system number> ] ) 

CALL KEYPOSITION <file number> 
<key value> 

, [ <key specifier> ] 
, [ <length word> ] 
, [ <positioning mode> ] 

CALL LOCKFILE <file number> 
I [ <tag> ] ) 

CALL LOCKREC <file number> 
I [ <tag> ] ) 

<error> := NEXTFILENAME ( <file name> 

CALL OPEN <file name> 
<file number> 

, [ <flags> ] 
, [ <sync depth> ] 
, [ <primary file number> ] 
, [ <primary process id> ] 
, [ <sequential block buffer> ] 
, [ <buffer length> ] 

CALL POSITION <file number> 
, <record specifier> 

CALL PURGE ( <file name> ) 

CALL READ <file number> 
<buffer> 
<read count> 

, [ <count read> 
, [ <tag> 

E-3 



APPENDIX E: ENSCRIBE CALL SYNTAX SUMMARY 

E-4 

CALL READLOCK 
, 

, [ 
, [ 

<file number> 
<buffer> 
<read count> 
<count read> 
<tag> 

CALL READUPDATE <file number> 
<buffer> 
<read count> 

, [ <count read> 
[ <tag> 

CALL READUPDATELOCK <file number> 

CALL REFRESH [ 

<buffer> 
<read count> 

, [ <count read> 
, [ <tag> 

$<volume name> ) ] 

CALL RENAME <file number> 
, <new name> ) 

CALL REPOSITION <file number> 
<positioning block> 

CALL SAVEPOSITION <file number> 
<positioning block> 

, [ <positioning block size> ] ) 

CALL SETMODE <file number> 
<function> 

, r <parameter l> 
, [ <parameter 2> 
, [ <last params> 

CALL SETMODENOWAIT <file number> 
<function> 

, [ <parameter l> 
, [ <parameter 2> 
, [ <last params> 

<tag> 



APPENDIX E: ENSCRIBE CALL SYNTAX SUMMARY 

CALL UNLOCKFILE <file number> 
, [ <tag> 

CALL UNLOCKREC <file number> 
, [ <tag> ] 

CALL WRITE <file number> 
<buffer> 
<write count> 

, [ <count written> 
, [ <tag> 

CALL WRITEUPDATE <file number> 
<buffer> 
<write count> 

] 

) 

, [ <count written> 
, [ <tag> 

) 

CALL WRITEUPDATEUNLOCK <file number> 
<buffer> 
<write count> 

, [ <count writ ten> ] 
, [ <tag> ] 

E-5 





INDEX 

Access 
completion order, with AWAITIO 3-17 
description 

structured files 2-8 
unstructured files 2-18 

mode 
checking with OPEN 3-95 
description 1-14, 3-8 
setting with OPEN 3-89 

path 
description 
setting with 
setting with 
setting with 

positioning 

2-9 
KEYPOSITION 3-76 
OPEN 3-97 
POSITION 3-100 

by alternate key for structured files 3-72 
by primary key for entry-sequenced 3-98 
by primary key for key-sequenced 3-72 
by primary key for relative 3-98 
by rba for unstructured files 3-98 
detailed description 4-43 

random 
for structured files 4-3 
for unstructured files 4-16 

relational, among structured files 1-11 
rules 

for structured files 4-2 
for unstructured files 4-7 

security 
checking with OPEN 3-94 
description 3-8 

sequential 
for structured files 4-2 
for unstructured files 4-12 

subsets, description 2-11 

index-1 



INDEX 

Alternate key 
attributes 2-14 
CREATE parameter array 5-34 
creation considerations 

automatic update suppression 5-10 
key length 5-9 
key off set 5-9 
key specifier 5-8 
null value 5-9 
uniqueness 5-10 

description 2-8, 2-12, 5-11 
file 2-13, 5-11 

creation with CREATE 5-28 
creation with FUP SET 5-14 
loading 6-6 
opening considerations 4-2 
record description 5-11 

for entry-sequenced files, description 2-15 
for key-sequenced files, description 2-14 
for relative files, description 2-14 
illustration of 2-13 
off set overlapping 5-9 
update, automatic 1-12 

suppression with CREATE 5-34 
supression with FUP SET 5-14 

Approximate, access subset 2-11 
action during sequential reads 3-105 
positioning mode, overview 1-10 

ASCII character set B-1 
Automatic 

alternate key maintenance 1-12 
supression 5-10 

refresh, specification with CREATE 3-29 
refresh, specification with FUP SET 5-14 

AWAITIO procedure 
completion chart 3-19 
error recovery 3-17 
FILEINFO response 3-18 
flowchart 3-20 
syntax description 3-14 

Backup process, opening a file 3-91 
Block, data see data block 
Block, index: see index block 
Buffer parameter 3-5 
Buffer, cache: see cache buffer 
Buffer, sequential block 

specifying with OPEN 3-91 
BUILDKEYRECORDS, FUP command 

description 6-1 
example 6-10 
syntax description 6-9 

index-2 



Cache buffer 1-20 
usage tradeoff with index block length 5-8 

CANCEL procedure 
completion 3-4 
syntax description 3-21 

CANCELREQ procedure 
syntax description 3-22 

CCE, condition code 3-6 
CCG, condition code 3-6 
CCL, condition code 3-6 
Character set, ASCII B-1 
CHECKABREAK Procedure, SIO A-5 
CHECKAFILE procedure, SIO A-6 
CHECKAFILE Procedure, SIO 

example A-13 
file types A-9 

CHECKAFILE procedure, SIO 
operations A-6 

CLOSE procedure 
completion 3-4 
syntax description 3-23 

CLOSEAFILE Procedure, SIO A-14 
Code, file 

description 5-3 
specifying at creation 

with CREATE 5-28 
with FUP SET 5-14 

Commands, FUP 
BUILDKEYRECORDS 6-9 
CREATE 5-24 
INFO 5-26 
LOAD 6-2 
LOADALTFILE 6-6 
RESET 5-25 
SET 5-14 
SHOW 5-23 

Compare length 
setting prior to access with KEYPOSITION 3-73 

Compare length for access subset 2-11 
Compression, data and index 

description 5-6 
specification with CREATE 5-28 
specification with FUP SET 5-14 

Condition codes 
returned from procedure call 3-6 

Control block 
access (ACB), for partitioned files 3-96 
file (FCB) 

for partitioned files 3-96 
maintenance 3-24, 3-117 

INDEX 

index-3 



INDEX 

CONTROL procedure 
completion 3-4 
operations 3-25 
syntax description 3-24 

CREATE procedure 
completion 3-4 
syntax description 5-28 

Creating disc files 5-1 
Current access path 2-9 

after successful OPEN 3-97 
Current key specifier 2-9 

returned by FILERECINFO 3-56 
Current key value 

positioning action 2-10 
returned by FILERECINFO 3-56 
setting, description 4-4 
specification with KEYPOSITION 2-10, 3-72 
specification with POSITION 2-10, 3-98 

Current position 2-10 
after successful OPEN 3-97 
change after READ, example 2-10 
ENSCRIBE procedures that modify 4-4 
update by KEYPOSITION 3-76 

Current state indicators 3-8 
status 

after KEYPOSITION 3-76 
after POSITION 3-100 
after READ 3-106 
after READUPDATE 3-114 
after WRITE 3-134 
after WRITEUPDATE 3-139 

Data and index compression 
see: compression, data and index 

Data block 2-2 
compression 2-3 

considerations 5-6 
specification with CREATE 5-28 
specification with FUP SET 5-14 

illustration 
for entry-sequenced file 2-7 
for key-sequenced file 2-4 
for relative file 2-6 

length, considerations 5-5 
size, specification 

with CREATE 5-28 
with FUP SET 5-14 

structured disc file format C-1 
Data Definition Language (DDL) 1-22 
Data, loading 6-1 

alternate key file 6-6 
primary file 

index-4 



DDL 1-22 
Deadlock 4-26 
Declarations, external 

ENSCRIBE procedures 3-9 
Deletion 

file 3-101 
DEVICEINFO procedure 

completion 3-4 
device types and subtypes 3-40 
syntax description 3-39 

Disc 
device type 3-40 
files: see File, disc 
sectors 4-18 
volume, finding filenames on 3-86 .. 

EDITREAD procedure 
syntax description 3-42 

EDITREADINIT procedure 
syntax description 3-46 

End-of-file pointer 
for structured files 4-5 
for unstructured files 4-9 

ENSCRIBE 
disc files: see File, disc 
file structures 

structured files 1-3 
unstructured files 1-13 

list of features 1-1 
procedure syntax summary E-1 
relationship to GUARDIAN 1-1 
structured file type comparison chart 2-15 
syntactic conventions i-9 

ENSCRIBE procedures 
AWAITIO 3-14 
CANCEL 3-21 
CANCELREQ 3-22 
CLOSE 3-23 
CONTROL 3-24 
CREATE 3-27 
DEVICEINFO 3-39 
EDITREAD 3-42 
EDITREADINIT 3-46 
FILEERROR 3-48 
FILEINFO 3-51 
FILERECINFO 3-56 
FNAMECOLLAPSE 3-59 
FNAMECOMPARE 3-61 
FNAMEEXPAND 3-65 
GETDEVNAME 3-70 

INDEX 

index-5 



INDEX 

ENSCRIBE procedures (cont) 
KEYPOSITION 3-72 
LOCKFILE 3-78 
LOCKREC 3-82 
NEXTFILENAME 3-86 
OPEN 3-88 
POSITION 3-98 
PURGE 3-101 
READ 3-103 
READLOCK 3-108 
READUPDATE 3-111 
READUPDATELOCK 3-115 
REFRESH 3-117 
RENAME 3-118 
REPOSITION 3-120 
SAVEPOSITION 3-121 
SETMODE 3-123 
SETMODENOWAIT 3-125 
syntactic conventions i-9 
syntax summary E-1 
UNLOCKFILE 3-129 
UNLOCKREC 3-130 
WRITE 3-132 
WRITEUPDATE 3-136 
WRITEUPDATEUNLOCK 3-140 

Entry-sequenced file 1-6, 2-7 
alternate key, description 2-15 
data block, illustration 2-7 
positioning 

by alternate key 3-72 
by primary key 3-98 
description 2-7 
of record written to file 3-132 

primary key assignment, description 2-7 
record length, description 2-7 
record length, maximum 5-5 
specifying at creation 

with CREATE 5-28 
with FUP SET 5-14 

structure, illustration 1-6 
suggestions for use 2-7 

Errors 
file management 

complete list D-1 
general information 3-7 

listed by number w/description 4-36 
recovery considerations 4-39 
Sequential I/O procedures A-40 

index-6 



Exact, access subset 
action during sequential reads 3-106 
positioning mode, overview 1-10 
subset of a file, description 2-11 

Examples 
action of current position 4-48 
add new altkey to file w/out altkey file 6-14 
add new altkey to file with altkey file 6-13 
adding record to end of entry-sequenced 4-63 
adding record to end of relative file 4-62 
adding record within a relative file 4-62 
approx subset by alternate key 4-50 
approx subset by primary key 4-49 
creation of alternate key file 5-44 
creation of key-sequenced file 5-40 
creation of key-sequenced w/altkey 5-42 
creation of key-sequenced, partitioned 5-46 
creation of relative, partitioned 5-45 
exact subset by non-unique altkey 4-53 
exact subset by primary key 4-52 
generic subset by primary key 4-51 
load a key-sequenced file 6-12 
positioning of entry-sequenced file 4-60 
positioning of relative file 4-60 
random deletion with primary key 4-58 
random insertion for relative file 4-61 
random update to non-existent record 4-56 
random update, key-sequenced file 4-55 
record insertion, key-sequenced file 4-54 
relational processing 4-64 
reload partition of altkey file 6-16 
reload partition of key-seq file 6-15 
sequential read by pri-key w/delete 4-59 
sequential read by pri-key w/update 4-57 
sequential read of entry-sequenced file 4-61 
sequential read of relative file 4-61 

Exclusion mode 
description 3-94 
setting with OPEN 3-89 

Exclusion/Access Mode Checking 3-95 
Extent 

allocation/deallocation 3-25 
considerations for partitioned files 5-4 
description 5-3 
size, primary, specifying at creation 

with CREATE 5-28 
with FUP SET 5-14 

size, secondary, specifying at creation 
with CREATE 5-28 
with FUP SET 5-14 

INDEX 

index-7 



INDEX 

External declarations 
ENSCRIBE procedures 3-9 
Sequential I/O A-4 

Features of ENSCRIBE 1-1 
File 

management errors 3-7 
complete list D-1 

File Control Block Structure, SIO 
description A-43 
format A-70 
initializing the file FCB A-44 

File management procedures 
see ENSCRIBE procedures 0 

File System, theory of operation 1-24 
File, disc 2-8 

access 
by alternate key for structured files 3-72 
by primary key for entry-sequenced 3-98 
by primary key for key-sequenced 3-72 
by primary key for relative 3-98 
by rba for unstructured files 3-98 
completion order for no-wait i/o 3-17 
mode and security checking 3-8 
mode: security checking 3-93 
mode: see Access mode 
path: see Access path 
relational, among structured files 1-11 
rules for structured files 4-2 
rules for unstructured files 4-7 
sharing 3-89 
subsets, description 1-10, 2-11 

alternate key: see alternate key 
code 

description 5-3 
specifying with CREATE 5-28 
specifying with FUP SET 5-14 

compression 2-3 
considerations 5-6 
with CREATE 5-28 
with FUP SET 5-14 

control block (FCB), maintenance 3-24, 3-117 
creation 5-1 
creation parameters 

returned by FILERECINFO 3-56 
setting with CREATE 5-28 
setting with FUP SET 5-14 

deletion 3-101 
determining status of 3-39 
entry-sequenced 1-6, 2-7 

see also entry sequenced file 

index-8 



File, disc (cont) 
exclusion/access mode table 3-95 
extent allocation/deallocation 3-25 
key-sequenced 1-4, 2-2 

see also key-sequenced file 
loading data 

alternate key file 6-6 
general info 6-1 
primary file 6-2 

locking 
detailed description 4-23 
unlocking with UNLOCKFILE 3-129 
with LOCKFILE 3-78 

management procedures 
see ENSCRIBE procedures 

name: see Filename 
number 

assignment by operating system 3-92 
parameter 3-5 
returned from OPEN 3-92 

opening, considerations 4-2 
ownership 

changing for an existing file 3-127 
current status returned by SETMODE 3-124 

partitioning across volumes/network node 1-21 
array format 5-37 
open considerations 4-2 
specification with CREATE 5-28 
specification with FUP SET 5-14 
thorough description 5-4 

purge security check 3-8 
purging data 3-25 
read security check 3-8 
relative 1-5, 2-5 

see also relative file 
structure, illustration 1-5 

renaming 3-118 
security 

changing security of existing file 3-127 
checking, access table 3-94 
current status returned by SETMODE 3-124 
description 3-93 

shared access 3-89 
structured: block format C-1 

INDEX 

index-9 



INDEX 

File, disc (cont) 
subset 1-10, 2-11 

sequential reading of 3-103 
temporary 

name format 3-10 
type, specifying at creation 

with CREATE 5-28 
with FUP SET 5-14 

unlocking 3-129 
write security check 3-8 
writing a record 3-132 

File/record locking interaction 4-24 
FILEERROR procedure 

syntax description 3-48 
FILEINFO procedure 

completion 3-4 
example 

random update to non-existent record 4-56 
syntax description 3-51 

Filename 
comparing two for equivalence 3-61 
converting from external to internal 3-65 
converting from internal to external 3-59 
finding device type & physical rec len 3-39 
finding next in subvolume 3-86 
network form 3-12 
permanent form 3-10 
specifying with CREATE 5-28 
specifying with FUP SET 5-14 
temporary form 3-10 

FILERECINFO procedure 
completion 3-4 
syntax description 3-56 

Finding records 1-23 
Flags, OPEN 

returned by FILEINFO 3-54 
setting with OPEN 3-89 

FNAMECOLLAPSE procedure 
syntax description 3-59 

FNAMECOMPARE procedure 
syntax description 3-61 

FNAMEEXPAND procedure 
syntax description 3-65 

index-10 



FUP commands 
BUILDKEYRECORDS 6-9 
CREATE 5-24 
functions described 5-12 
INFO 5-26 
LOAD 6-2 
LOADALTFILE 6-6 
RESET 5-25 
SET 5-14 
SHOW 5-23 

FUP, running 5-13 

Generic, access subset 
action during sequential reads 3-106 
positioning mode, overview 1-10 
subset of a file, description 2-11 

GETDEVNAME procedure 
syntax description 3-70 

GIVEABREAK Procedure, SIO A-16 
Global declarations 

ENSCRIBE procedures 3-9 
GUARDIAN 

file management error list D-1 
relationship to ENSCRIBE 1-1 

I/O device control operations 3-25 
Index block 2-2 

compression 2-3 
description 5-6 
specification with CREATE 5-28 
specification with FUP SET 5-14 

creation considerations 5-8 
diagram 2-4 
length, considerations 5-8 
size, specification at creation 

with CREATE 5-28 
with FUP SET 5-14 

Inserting records 1-23 
considerations for structured files 4-3 
with WRITE 3-132 

Interface with INITIALIZER and 
ASSIGN message, SIO A-48 

considerations A-51 
INITIALIZER-related defines A-48 
setting file characteristics A-51 
usage example A-52 

INDEX 

index-11 



INDEX 

Key field 
description 2-8 
illustration 2-9 

Key length 
current, returned by FILERECINFO 3-56 
description 5-9 
specification at creation 

with CREATE 5-28 
with FUP SET 5-14 

Key off set 5-9 
specification at creation 

with CREATE 5-28 
with FUP SET 5-14 

Key specifier 2-9 
description 5-8 
example 2-9 

Key value, current 2-10 
Key, alternate: see alternate key 
Key, term defined 2-8 
Key-sequenced file 1-4, 2-2 

alternate key, description 2-14 
creation 

parameter array 5-33 
with CREATE 5-28 
with FUP 5-14 

data block, illustration 2-4 
data block: see data block 
index block: see index block 
number of reads per access 2-2 
positioning 3-72 
primary key, description 2-2 
record 

length, description 2-2 
length, maximum 5-5 

storage organization 
data block 2-2 
index block 2-2 

KEYPOSITION procedure 
completion 3-4 
example 

action of current postition 4-48 
approx subset by alternate key 4-50 
exact subset by non-unique altkey 4-53 
exact subset by primary key 4-52 
generic subset by primary key 4-51 
random deletion with primary key 4-58 
random update to non-existent record 4-56 
random update, key-sequenced file 4-55 
sequential read by pri-key w/delete 4-59 
sequential read by pri-key w/update 4-57 

index-12 



KEYPOSITION procedure (cont) 
Repositioning to next record 3-77 
Repositioning to same record 3-77 
syntax description 3-72 

Length, key: see key length 
Length, record: see record length 
LOAD, FUP command 

description 6-1 
example 6-3 
syntax description 6-2 

LOADALTFILE, FUP command 
description 6-1 
example 6-6 
syntax description 6-6 

Loading files 
alternate key files 6-6 
overview 1-22 
primary files 6-2 

LOCKFILE procedure 
completion 3-4 
example 3-81 
setting lockmode 3-128 
syntax description 3-78 

Locking 
deadlock situation 4-26 
detailed description 4-23 
file 3-78 
file/record locking interaction 4-24 
modes, alternate and default 4-24 
record 3-82 

LOCKREC procedure 
completion 3-4 
dependency on current position 2-10 
setting lockmode 3-128 
syntax description 3-82 

Logical records 5-5 
LRU for cache buffer 1-20 

Mirror volumes 1-44 
Multi-key access to records 1-7 
Multiple volume files 1-21 

open considerations 4-2 
specification at creation 

with CREATE 5-28 
with FUP SET 5-14 

thorough description 5-4 

INDEX 

index-13 



INDEX 

Network file names 3-12 
NEXTFILENAME procedure 

completion 3-4 
example 3-87 
syntax description 3-86 

No-wait i/o 
access completion 3-14 
description 1-16 

Notational conventions i-9 
NOWAIT I/O with SIO A-65 
NOAERROR Procedure, SIO A-58 

error handling A-60 
Null value 2-14 

considerations with BUILDKEYRECORDS 6-11 
description 5-9 

ODDUNSTR 
specifying with CREATE 5-28 
specifying with FUP SET 5-14 

Offset, key: see key offset 
Open flags 

returned from FILEINFO 3-54 
setting with OPEN 3-88 

OPEN procedure 
by backup process 3-91 
completion 3-4 
condition code setting 3-92 
example 

approx subset by primary key 4-49 
flags 

returned by FILEINFO 3-54 
setting 3-89 

syntax description 3-88 
OPENAFILE Procedure, SIO A-17 

example A-22 
flags A-20 

Ownership, file 
changing an existing file 3-127 
current status returned by SETMODE 3-124 

Parameters, ENSCRIBE procedure 
buffer 3-5 
file number 3-5 
tag 3-5 
transfer count 3-6 

Partitioned files 1-21 
open considerations 4-2 
opening of 3-96 
specification at creation 

with CREATE 5-28 
with FUP SET 5-14 

thorough description 5-4 

index-14 



Permanent file names 3-11 
Physical record, description 1-3 
POSITION procedure 

completion 3-4 
example 

for relative and entry-sequenced file 4-60 
syntax description 3-98 

Positioning 2-11 
by alternate key for structured files 3-72 
by primary key for entry-sequenced files 3-98 
by primary key for key-sequenced files 3-72 
by primary key for relative files 3-98 
by rba key for unstructured files 3-98 
implementation details 4-43 
status 

after KEYPOSITION 3-76 
after POSITION 3-100 
after READ 3-106 
after READUPDATE 3-114 
after WRITE 3-134 

Positioning mode 1-10 
approximate 2-11 

action during read 3-105 
exact 2-11 

action during read 3-106 
generic 2-11 

action during read 3-106 
setting prior to access with KEYPOSITION 3-74 
setting prior to access with POSITION 3-100 

Primary extent size 
specifying with CREATE 5-28 
specifying with FUP SET 5-14 

Primary file number, specifying w/ OPEN 3-88 
Primary key 1-7, 1-9, 2-8 

creation considerations 5-7 
current value update 

for relative file 3-98 
specification at creation 

with CREATE 5-28 
with FUP SET 5-14 

Primary process id, specifying w/ OPEN 3-91 
Procedure call errors: see errors 
Procedure parameters 

buffer 3-5 
file number 3-5 
tag 3-5 
transfer count 3-6 

INDEX 

index-15 



INDEX 

Procedures, ENSCRIBE 
see ENSCRIBE procedures 

Process 
device type 3-40 
suspension for file access 3-14 

Purge 
data within a file 3-25 
file from system 3-101 

PURGE procedure 
completion 3-4 
syntax description 3-101 

Purge, security check 3-8 

Random access 
for structured files 4-3 
for unstructured files 4-16 

READ procedure 
action following successful OPEN 3-97 
completion 3-4 
dependency on current position 2-10 
example 

approx subset by primary key 4-49 
approximate subset by alternate key 4-50 
exact subset by non-unique altkey 4-53 
exact subset by primary key 4-52 
generic subset by primary key 4-51 
sequential read by pri-key w/delete 4-59 
sequential read by pri-key w/update 4-57 

syntax descriptiori 3-103 
Read, security check 3-8 
Reading records, general info 1-23 
READLOCK procedure 

completion 3-4 
dependency on current position 2-10 
example 3-109 
setting lockmode 3-128 
syntax description 3-108 

READUPDATE procedure 
completion 3-4 
dependency on current position 2-10 
example 

random update to non-existent record 4-56 
random update, key-sequenced file 4-55 

syntax description 3-111 
READUPDATELOCK procedure 

completion 3-4 
dependency on current position 2-10 
setting lock mode 3-128 
syntax description 3-115 

index-16 



READAFILE Procedure, SIO A-23 
Record 2-8 

deblocking 1-20 
deletion 1-23 
identification within a file 1-7 
insertion 1-23 

considerations 4-3 
with WRITE 3-132 

length 
specification with CREATE 5-28 
specification with FUP SET 5-14 

length, maximum 
for entry-sequenced files 5-5 
for key-sequenced files 5-5 
for relative files 5-5 
for unstructured files 3-29 

locking 1-23 
detailed description 4-23 
during sequential reads (READLOCK) 3-108 
for unstructured files 4-26 
limitations 4-27 
with LOCKREC 3-82 
with READLOCK 3-108 
with READUPDATELOCK 3-115 

logical, description 5-5 
management functions, overview 1-23 
multi-key access to 1-7 
physical length determination 3-39 
physical, description 1-3 
reading, general info 1-23 
specifier 3-98 
unlocking 3-130 

general info 1-23 
with UNLOCKFILE 3-129 
with UNLOCKREC 3-130 
with WRITEUPDATEUNLOCK 3-140 

updating, general info 1-23 
Recovery from errors 4-39 
REFRESH procedure 

syntax description 3-117 
refresh, automatic 

specification with CREATE 3-29 
specification with FUP SET 5-14 

Relational access among stuctured files 1-11 
Relative byte addresses (rba) 

description 2-18, 4-9 
setting with POSITION 3-98 

INDEX 

index-17 



INDEX 

Relative file 1-5, 2-5 
data block diagram 2-6 
data block, illustration 2-6 
positioning 

by alternate key 3-72 
by primary key 3-98 
of record written to file 3-132 

primary key assignment, description 2-5 
record length, maximum 5-5 
specifying at creation 

with CREATE 5-28 
with FUP SET 5-14 

suggestions for use 2-6 
RENAME procedure 

completion 3-4 
syntax description 3-118 

Renaming files: see RENAME 
REPOSITION procedure 

syntax description 3-120 
Resident buffering (TNS only) 4-20 

SAVEPOSITION procedure 
syntax description 3-121 

Secondary extent size, specifying 
with CREATE 5-28 
with FUP SET 5-14 

Secucity, file 
changing of an existing file 3-127 
checking 3-8 
checking, access table 3-94 
current status returned by SETMODE 3-124 

Sequential access 
for structured files 4-2 
for unstructured files 4-12 

Sequential access buffering option 1-20 
example 4-6 
specifying with OPEN 3-91 
thorough description 4-6 

Sequential I/O Procedures 
call summary A-3 
errors A-40 
FCB Structure 

description A-43 
format A-70 
Initializing the File FCB A-44 

Interface with INITIALIZER and 
ASSIGN messages A-48 

index-18 



Sequential I/O Procedures (cont} 
Interface with INITIALIZER and ASSIGN 

considerations A-51 
INITIALIZER-related defines A-48 
summary A-55 
usage example A-48 

introduction A-1 
SETMODE procedure 

completion 3-4 
syntax description 3-123 

SETMODE/SETMODENOWAIT 
functions 3-127 

SETMODENOWAIT procedure 
completion 3-4 
syntax description 3-125 

SETAFILE Procedure, SIO A-25 
BREAK operation A-34 
NOWAIT I/O operations A-33 
operations A-26 

Shared access, for a file 1-14, 3-89 
Specifier, record 3-98 
State indicators: see Current state ind. 
Structured files 1-3 

comparison chart for 2-15 
see also Entry-sequenced file 0 
see also Key-sequenced file 0 
see also relative file 0 

Subset, file 1-10 
description 2-12 
sequential reading of 3-103 

Sync depth 
considerations for files w/alternate key 4-42 
specifying with OPEN 3-90 

Syntactic conventions i-9 

Tag parameter, general info 3-5 
TAKEABREAK Procedure, SIO A-35 
Temporary file 

name format 3-10 
results of close 3-23 

Temporary file names 3-11 
Theory of operation, file system 1-24 
Transfer count parameter 3-6 

INDEX 

index-19 



INDEX 

UNLOCKFILE procedure 
completion 3-4 
syntax description 3-129 

Unlocking 
file 3-129 
record 

with UNLOCKREC 3-130 
with WRITEUPDATEUNLOCK 3-140 

UNLOCKREC procedure 
completion 3-4 
syntax description 3-130 

Unstructured files 
appending to end-of-file 4-16 
characteristics 2-16 
locking 

with LOCKFILE 3-78 
locking records 

description 3-85 
with LOCKREC 3-130 
with READLOCK 3-108 
with READUPDATELOCK 3-115 

overview 1-13 
positioning 

description 2-18 
with POSITION 3-98 

random access to 4-16 
relative byte addresses 2-18, 4-9 
resident buffering 4-20 
sequential access to 4-12 

Updating records 1-23 
procedure to accomplish 3-132 

Usage Example, SIO 
with INITIALIZER and ASSIGN message A-52 
without INITIALIZER procedure A-56 

Volume, disc file: finding filenames 3-86 

WAITAFILE Procedure, SIO A-36 
WRITE procedure 

completion 3-4 
example 

adding record to end of entry-sequenced 4-63 
adding record to end of relative 4-62 
record insertion, key-sequenced file 4-54 

syntax description 3-132 
Write, security check 3-8 

index-20 



WRITEUPDATE procedure 
dependency on current position 2-10 
example 

random deletion with primary key 4-58 
random update, key-sequenced file 4-55 
sequential read by pri-key w/delete 4-59 
sequential read by pri-key w/update 4-57 

syntax description 3-136 
WRITEUPDATEUNLOCK procedure 

completion 3-4 
dependency on current position 2-10 
syntax description 3-140 

WRITEAFILE Procedure, SIO A-38 
Writing records 1-23 

considerations for structured files 4-3 
with WRITE 3-132 

$RECEIVE Handling with SIO A-62 
data transfer protocol A-62 

INDEX 

index-21 





FOLD~ 

READER'S COMMENTS 

Tandem welcomes your feedback on the quality and usefulness of its publications. Please indicate 
a specific section and page number when commenting on any manual. Does this manual have the 
desired completeness and flow of organization? Are the examples clear and useful? Is it easily 
understood? Does it have obvious errors? Are helpful additions needed? 

Title of manual(s): ____________________________ _ 

FROM: 

Name 

Company 

Address ~--------------------------------

City/State ------------------- Zip 

A written response is requested, yes no ? 



111111 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 482 CUPERTINO. CA. U S A 

POSTAGE WILL BE PAID BY ADDRESSEE 

COMPUTERS, INC. 

Attn: Technical Publications 
19333 Vallco Parkway 
Cupertino. CA, U.S.A. 95014 

STAPLE HERE 

NO POSTAGE 
NECESSARY 

IF MAILED 
INTHE 

UNITED STATES 

-...i( FOLD 

I 

:.....c FOLD 



)Q TANDEM COMPUTERS INCORPORATED 
1 9333 Vallco Parkway 
Cupertino. CA 95014 


