

TMF Description

Dumping involves copying some of the files in the audit trail sequence to tape -which will result in
the space they occupy being freed-and saving the tapes for possible use in Rollforward recovery.
If a file in the sequence contains before and after images for an active transaction (one that has not
committed or aborted), it cannot be copied to tape. A TMF process called Auditdump is involved in
dumping the audit trails. Auditdump can be configured to function automatically as audit files are
filled or it can be run manually, by the operator, using the TMFCOM DUMP AUDITTRAIL com­
mand. Duplicate copies of the audit trail dump tapes can be made simultaneously.

TRANSACTION BACKOUT

Transaction Backout uses the before images in the audit trails to undo the effects of an aborted
transaction. TMF's ability to back out transactions, without affecting database consistency,
depends on three factors: (1) the concurrency control mechanism that prevents transaction interac­
tion, (2) the two-phase commit mechanism, and (3) audit trails. These mechanisms were discussed, in
detail, in previous parts of this publication. This section describes how backout is initiated and the
TMF system processes involved in transaction backout.

Initiating Transaction Backout

A transaction is backed out when it aborts. Specifically, this means that before the transaction com­
mit record was written to the Monitor Audit trail, something happened-either because of a deci­
sion by the application program, a component failure, or operator intervention-that stopped the
transaction from committing. Since the effect of backout is the same as if the transaction had never
started, an application program can recover by restarting the transaction from the beginning: a con­
trast to the normal NonStop technique of having the backup process take over from the point of
failure and complete processing of the transaction.

A transaction is backed out for the following reasons:

• A PATHWAY Screen Cobol program issues the RESTART-TRANSACTION or ABORT­
TRANSACTION verbs. RESTART-TRANSACTION starts the transaction from the BEGIN­
TRANSACTION verb and ABORT-TRANSACTION terminates the transaction without re­
starting it. This is a voluntary decision on the part of the application and TMF provides
equivalent mechanisms for non-PATHWAY users.

• The PATHWAY Screen Cobol program is suspended or aborted due to errors or specific
PA TH COM commands.

• The cpu of a PATHWAY server that is doing work for a transaction fails. The transaction will be
aborted and the TCP will restart the transaction automatically.

• The TCP primary process that started the transaction is deleted. The transaction's change will
be aborted and the backup TCP process will restart the transaction. If there is no backup pro­
cess, the transaction will be aborted but not restarted.

• The user enters a TMFCOM command to abort the transaction.

• Network communication is lost between participating nodes of a network distributed transac­
tion before the transaction is committed. This situation is described in more detail in the follow­
ing subsection.

What Happens During Transaction Backout

During transaction backout, a TMF process called the Backout Process writes the before images,
saved on the Auditprocess audit trails, back to the files that were affected by the failed transaction.
After the files are restored, the locks for the TRANSID will be released.

4-4

TMF Description

Backout For Network Distributed Transactions

For a network distributed transaction, loss of communication between participating nodes can
result in transaction backout. The situations where this can occur are:

1. A loss of communication between destination and source nodes occurs before the transaction
has committed. The nodes affected by the communications loss will each abort and back out the
transaction (releasing its locks) and it will eventually be aborted and backed out on all other
nodes involved in the transaction (Figure 4-2).

Transaction
Aborts

\Path
Down!

Transaction
Aborts

Figure 4-2. Network Backout Before Changes are Committed

2. END-TRANSACTION has been issued on the home node and phase 1 of the Two-Phase Commit
fails either because of a path down to a participating node or a participating node replying that
it cannot commit the transaction. The transaction will be aborted and backed out on all nodes
participating in the transaction (Figure 4-3).

Aborts Because
of Failure of

Phase 1

Down!

Because of
Path Down

Figure 4-3. Network Backout During Phase 1 of Two Phase Commit

4-5

TMF Description

ONLINE DUMP

The Online Dump feature allows users to copy audited database files to tape. Information about
each copied file is maintained in the TMF catalog. The function of Online Dump is to preserve copies
of audited database files as protection against total system failure; each online dump of a file pro­
vides an image of the file that can be used by TMF's Rollforward feature to reconstruct the file.

Online Dump can be used to copy files that are open and changing; it is not necesssary to.stop trans­
action processing against a file while copying it.

Online Dump is an operation that involves several components:

• The TMF catalog contains the control information related to
various dumps to tape.

• The TMF Catalog Process a TMF process that provides access to the
catalog.

• The TMFCOM DUMP FILES command user command that starts Online Dump.

TMF Catalog

The TMF Catalog is a set of disc files. The files are on the same mirrored disc volume as the TMP
control files and they contain two types of control information related to Online Dump:

1. A dump directory containing a history of the files that were dumped to tape and when they
were copied. This includes:

4-6

• The names of the tape drives used to dump the files.

• A timestamp and unique serial number for the dump.

• The generation number of the dump. Since there can be different dumps of the same file, the
generation number identifies each distinct version.

• The copy number of the dump. Multiple copies can be made for each generation and the copy
number identifies each distinct copy of a particular version.

• The generic name and sequence number of the Auditprocess audit trails in use at the time of
the Online Dump.

• The sequence number of the Monitor audit trail in use.

• Serial numbers that associate a tape reel with a particular dump.

• Additional information related to dumping audit trails and the TMF Catalog itself onto tape.

TMF Description

2. A tape directory that contains all known tape reel identifiers and their current status: scratch,
known bad, or assigned to a particular dump serial number.

TMF's Rollforward recovery uses information in the catalog to determine the tapes needed for its
operations.

TM F Catalog Process

The TMF Catalog process is a NonStop server process, executed during backup, that writes the in­
formation, related to Online Dump, to the TMF Catalog in a failsafe manner. One TMF Catalog pro­
cess must be configured, during system generation, for each system that uses TMF.

TMFCOM DUMP FILES Command

You start Online Dump by issuing the DUMP FILES command and indicating which audited files
are to be dumped. After the command is issued, the following steps take place:

1. The generic name and sequence number of the Auditprocess audit trail associated with the
specified audited files are entered into the TMF catalog.

2. The sequence number of the current Monitor audit trail file is entered into the TMF catalog.

3. An online dump mark is written to the Auditprocess audit trail for each audited file opened by
online dump. Because Online Dump writes to the Auditprocess audit trails, they must be con­
figured (as discussed previously in this section) before the audited files can be backed up.

4. A serial number in the catalog, for the dump, is associated with a specific tape label.

5. The operator is prompted to mount a specific tape reel on a specific tape drive.

6. The operator either mounts the specified reel or replies that he is mounting another reel and
specifies its identifier.

7. The label information for the reel is written to the TMF catalog.

8. The audited files are copied to the tape with labels describing the file.

9. A marker is written to the TMF catalog indicating that the dump was successful. Without this
indication, the assumption is that the information on the tape is bad and will not be used during
Rollforward.

4-7

TMF Description

Tape Labelling for TMF

Because Rollforward recovery of the database depends on the data contained on the Online Dump
and Auditdump tapes, TMF has extended GUARDIAN tape handling by supporting labelled tapes
and allowing you to specify an operator interaction unit.

The labelled tapes are defined according to the ANSI X3.27-1978 "American National Standards
Magnetic Tape Labels and File Structure for Information Interchange". Using the labelled tapes
protects the data on the tape from overwriting, thus ensuring the availability of their contents for
Rollforward recovery. Only audited files can be copied to labelled tapes.

The operator interaction unit enables you specify a central location for tape control, consolidating
the function by making it the responsibility of the operator. All requests for tape mounting will be
sent to this unit.

ROLLFORWARD

Rollforward is used after:

• A total system failure ... to recover a database to its most recent consistent state prior to the
failure.

• An audited file or volume is affected by a disc media failure ... to recover the data on the affected
files.

Rollforward involves the following steps:

1. There has been a total system failure and the operator issues the TMFCOM command START
TMF.

2. The TMFCOM utility replies to the TMFCOM command by informing the operator that there
has been a failure; no audited files affected by the failure can be opened until they have been
recovered.

3. The user issues the TMFCOM command RECOVER FILES (optionally specifying a subset of
the files to be recovered).

4. TMF prompts the operator to mount the tape reels required for recovery of the files. Once the
tape reels are mounted, Rollforward uses the Online Dump tapes and the audit trails to recover
the files to a consistent state. The database files are first restored from the Online Dump tapes.
After the files are restored, transactions that committed before the failure will be included in
the recovery by having their after images written to the restored files.

5. As each file is recovered, a message indicating its status is displayed and that file can then be
opened. The results of all transactions that changed the file and committed prior to the failure
will be in the recovered file. This includes transactions that completed and sent a positive
response to the user and transactions that committed but the response was not received before
the failure.

4-8

SECTION 5

USING TMF - CONSIDERATIONS

Detailed information for the topics in this section can be found in the TMF Reference Manual that
will be available with the release of TMF. The information in this section is intended for planning
purposes only and covers:

• System management responsibilities and guidelines related to configuring and operating TMF
in a system.

• Application programming rules and guidelines for systems with TMF.

SYSTEM MANAGEMENT RESPONSIBILITIES

System management involves:

• Using SYSGEN to configure TMF for your installation.

• Using the TMFCOM utility to configure TMF.

• Using the TMFCOM utility to operate TMF.

• Using FUP to designate audited database files.

5-1

Introduction to TMF - Using TMF

Using SYSGEN To Configure TMF

The steps involved in using SYSGEN for TMF are illustrated in Figure 5-1.

5-2

Step 1 ~--------~CONFIGURE AUDITED VOLUMES

Step 2 ..,_ _______,..CONFIGURE AUDIT PROCESSES

Step 3 ~--------~CONFIGURE TRANSACTION MONITOR
PROCESSES FOR EACH SYSTEM USING
TMF

Step 4 ~--------~CONFIGURE THE TMFMONITOR FOR
EACH PROCESSOR

Step 5 ..,_-------~CONFIGURE THE TMF CATALOG PROCESS
FOR EACH SYSTEM USING TMF

Figure 5-1. TM F Sys'tem Generation

Introduction to TMF - Using TMF

STEP 1. Decide which disc volumes will contain audited database files. Once you've made this
decision, specify the number of pages of physical memory to be allocated for the audit buffer pools
in the I/0 configuration entry for each disc. Before and after images of all changes to the database
files are written, by the Discprocesses for the audited volumes, to the audit buffers (Figure 5-2).
Phase 1 of the Two Phase Commit forces the records in the audit buffers to be written to the audit
trail. The size of the buffer pools is specified using the parameter audit buffer pool size: a new
parameter in the disc configuration entry. The disc can contain audited database files only if this
parameter is nonzero.

I
I
I
I
I
I
I
I

I I
l__)
Database

Files
L_ __

LJ
Database

Files

Controller Group

---1
I
I
I
I
I
I
I

_____ _J

Figure 5-2. Audit Buffers

Audit Trail

5-3

Introduction to TMF-Using TMF

STEP 2. Configure Auditprocesses as logical devices. This involves:

• Using the standard SYSGEN I/O device format to specify one Auditprocess for each disc con­
troller group that contains audited volumes. The Auditprocess will write the Audit trails for the
files on the volumes belonging to that controller group. The Using TMFCOM to Configure TMF
part of this section describes how to specify audit trails and relate them to the Auditprocesses
configured during system generation.

• Declaring the Auditprocess in the system process entries in the processor section of the
primary and backup cpus.

• Declaring a controller group that contains the Auditprocess controller and the primary con­
troller of the audited disc volumes. The Auditprocess controller is a dummy controller; its only
purpose is to associate the Auditprocess with the Discprocess of the audit volumes.

Each Auditprocess that you configure removes one word-addressable page from system data space.
Additionally, a number of pages equivalent to the audit buffer pool size per audited disc are re­
moved from physical memory.

The TMFCOM command ADD AUDITTRAIL is used to relate an Auditprocess to a specific Audit
trail. This command is discussed in the next part of this publication.

STEP 3. Use the standard SYSGEN I/O device format to configure one Transaction Monitor Pro­
cess (TMP) for each system that uses TMF and add its process number to the processor information
section of the primary and backup cpus.

The configuration parameter, specified in the device entry, will be the logical device number of the
disc volume where the TMP keeps its control information.

STEP 4. Declare the TMFMONITOR in the system processor entries for each processor in your
system.

STEP 5. Use the standard SYSGEN I/O device format to configure one TMF Catalog Process for
each system that uses TMF and add its process number to the processor section of the primary and
backup cpus.

5-4

Introduction to TMF-Using TMF

Using the TMFCOM Utility to Configure TMF

You use configuration commands to create, alter, and determine the status of objects such as Audit
trails or Auditdump processes that TMF requires or uses in its operations. Table 5-1 summarizes
the functions of the TMFCOM configuration commands.

Command

ADD AUDITTRAIL

INFO AUDITTRAIL
ADD AUDITDUMP

DELETE AUDITDUMP
INFO AUDITDUMP
ALTER AUDITDUMP

ALTER BACKOUT
INFO BACKOUT

I ALTER TMF

I
I INITIALIZE TMF

INFO TMF

INITIALIZE CATALOG
ALTER CATALOG
INFO CATALOG

Table 5-1. TMFCOM Configuration Commands

Function

Create Audit trails and relate them to SYSGEN-configured
Auditprocesses.
Display configuration and status information for Audittrails.
Specify Auditdump process(es) that will be created when TMF
is started. Auditdump processes will automatically dump Audit
trails to tape as they fill. If Auditdump is not configured with
this command, it must be run manually.
Delete Auditdump process(es).
Display status information for Auditdump process(es).
Allows operator to specify tape drives and reels to be used for
Auditdump.
Modify the cpu location and priority of the Backout process.
Display the current cpu location and priority of the Backout pro­
cess.
Specify the terminal or process to use as operator interaction
unit. Al! TMF requests for tape mounting assistance will be I
sent to this unit. I
Purge the TMF configuration files prior to reinitializing TMF.
Provides a complete listing of the current audit subsystem con­
figuration.
Configure attributes of TMF catalog.
Modify attributes of TMF catalog.
Display current configuration of TMF catalog.

5-5

Introduction to TMF - Using TMF

CONFIGURATION CONSIDERATIONS. The following are some preliminary guidelines related
to configuring TMF.

• ADD A UDITTRAIL allows you to define the set of files that form an audit trail and specify the
Auditprocess(es) that write to the audit trail. The files are identified by their generic
filename-volume.subvolume.xx. The volume specified in the generic filename must be a mir­
rored volume. It is recommended that this volume: (1) should not belong to the same controller
group as the Auditprocess(es) that write to it and (2) should not contain any audited database
files. That is, audited database files should be on a different disc from their audit trails.

• ADD AUDITTRAIL allows you to define the the number of extents occupied by each file in the
sequence. The total amount of space you require on the audit trail disc is dependent on the trans­
action update rate which determines: how quickly the audit disc will fill and how often Audit­
dump needs to be run (either automatically or manually). As a rough approximation, you can use
the following formula to determine how the transaction update rate affects the amount of audit
trail disc space.

(

1.3 x number of bytes inserted/hour) number of bytes
+ 1.3 x number of bytes deleted/hour = written to audit
+ 2.3 x number of bytes modified/hour files per hour

inserted/hour number of records inserted per hour x size of records

where deleted/hour number of records deleted per hour x size of records

modified/hour number of records modified per hour x size of records

For example, 60 transactions do a total of 1000 inserts,1000 deletes, and 1000 modifications per hour
to a file containing 50 byte records. The number of bytes written to the audit trail in one hour will
be approximately (1.3 x (2 x 50000)) + (2.3 x 50000) = 245,0000 bytes.

If you plan to dump the audit trail disc every four hours, a total of 980,000 bytes or 478 pages would
be required on the disc. Assuming that the audit trail sequence is spread over 6 files, each file can be
configured to occupy 79 (478/6) pages or extent sizes of 5 primary (79/16) and 5 secondary.

Using the TMFCOM Utility to Operate TMF

You use TMFCOM operational commands to control and run TMF after it has been configured.
There are four types of operational commands:

1. Controlling TMF.
2. Controlling the TMF catalog.
3. Manually Controlling Transactions.
4. Dumping and recovering the database.

5-6

Introduction to TMF-Using TMF

Table 5-2 summarizes the TMFCOM operational commands.

Table 5-2. TMFCOM Operational Commands (Part 1 of 2)

Command

START TMF

STOP TMF
STATUS TMF
STOP CATALOG
START CATALOG

Function

Controlling TMF-Commands

Start TMF before transactions can write or lock audited database
files.
Stop TMF on a system without active transactions (see note).
Indicates the current state of the TMF Audit subsystem.
Prevent access to TM F catalog (see note).
Used only after STOP catalog to start automatic operation of
Online dumps and AUDITDUMPS.

Note: The database can be recovered (by Rollforward) to a point in time immediately after
a STOP TMF command if there are archived copies of the Auditdumps and Online Dumps,
available. This may be necessary if the online database and the online audit media have
been destroyed and are unavailable for normal Rollforward recovery. To recover to a STOP
TMF point, first issue STOP CATALOG and then copy the following to tape:

• The Monitor Audit trail.

• The Auditprocess Audit trails.

After stopping TMF, dump a copy of the TMF Catalog using the DUMP CATALOG com­
mand. If the preceding tapes and the on!ine dump tapes have been stored in a safe place
and are availabie, Rollforward can use them to iecovei the database.

Controlling TMF-Commands

Display the status of the TMF catalog.
Display the current status of the Audit trail.

STATUS CATALOG
STATUS AUDITTRAIL
NEXT AUDITTRAIL Close the current Audit trail file and open the next one in the

sequence.
STATUS AUDITDUM P
CONTROL AUDITDUMP

ADD DUMPS I INFO DUMPS

Display the status of an Auditdump process.
Modify the status of an Auditdump process.

Controlling the TMF Catalog-Commands

Add a dump(s) to the dump directory of the TMF catalog.
Displays dumps recorded in the TMF Catalog.

!__~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~---

5-7

Introduction to TMF-Using TMF

Table 5-2. TMFCOM Operational Commands (Part 2 of 2)

DELETE DUMPS

ALTER DUMPS
ADD TAPES
INFO TAPES

DELETE TAPES

ALTER TAPES

RECOVER CATALOG

DUMP CATALOG

Purges tape files or file sets from the dump directory of the
TMF Catalog.
Modify the TMF catalog entry for a dump.
Add tape reel(s) to tape directory of TMF catalog.
Displays reels of tape recorded in the tape directory of the
TMF Catalog.
Deletes tape reel(s) from the tape directory of the TMF
catalog.
Change current status of a tape record in tape directory of
TM F catalog.
Restore TMF catalog from a tape dump produced by using
DUMP CATALOG.
Dump the TMF catalog to a tape volume and record the dump
in the catalog.

Dumping and Recovering the Database-Commands

DUMP FILES
DUMP AUDITTRAIL
RECOVER Fl LES

END TRANSACTION
ABORT TRANSACTION

STATUS TRANSACTION

5-8

Starts Online Dump.
Dumps specified audit trails from disc totape.
Starts Rollforward.

Manual Transaction Control Commands

Forces a committed transaction's records to be unlocked.
Backs out an uncommitted transaction andunlocks its
records.
Display the TRANSID and status oftransactions.

Introduction to TMF - Using TMF

Using FUP to Designate Audited Database Files

Your SYSGEN configuration specified the disc volumes that could contain audited database files.
Specific files on the volumes can be designated as audited when they are first created using FUP
CREATE or by using FUP ALTER for existing files. A [NO]AUDIT parameter has been added to
CREATE and ALTER to support TMF. FUP ALTER can also be used to change the status of a file
from audited to non-audited.

APPLICATION PROGRAMMING

This section:

• Summarizes the functions of the procedures and verbs provided to allow Screen Cobol, T AL,
COBOL, and FORTRAN programmers to use TMF.

• Describes the record locking rules that programmers follow to write server processes.

• Discusses how to a void deadlock.

• Presents some preliminary guidelines for designing transactions in a PATHWAY environment.

Screen Cobol

The Screen Cobol verbs that enable PATHWAY applications to use TMF are:

• BEGIN-TRANSACTION

• END-TRANSACTION

~ ABORT-TRANSACTION

• RESTART-TRANSACTION

BEGIN-TRANSACTION ... identifies the beginning of a sequence of operations that will be treated
as a single transaction. When this verb is executed: the terminal enters transaction mode, TMF
starts a new transaction, and the new TRANSID is assigned to the terminal. If the transaction is
aborted for any reason -with the exception of the Screen Cobol program issuing ABORT­
TRANSACTION - its changes will be backed out by TMF and restarted at the BEGIN­
TRANSACTION point with a new TRANSID.

ABORT-TRANSACTION ... is used to abort the transaction. TMF will back out all database
modifications made by the transaction and the transaction will not be restarted.

END-TRANSACTION ... identifies the end of the transaction and indicates that the transaction's
database changes should be committed. After END-TRANSACTION is executed, the transaction
cannot undo any of its changes and the terminal is switched out of transaction mode.

RESTART-TRANSACTION ... is used to indicate the transaction has failed and that it should be
backed out and restarted at the BEGIN-TRANSACTION point with the same TRANSID.

5-9

Introduction to TMF-Using TMF

TAL Procedures

T AL programmers use TMF by calling the following procedures:

• BEGINTRANSACTION

• ENDTRANSACTION

• ABORTTRANSACTION

• RESUMETRANSACTION

• ACTIV ATERECEIVETRANSID

• GETTRANSID

BEGINTRANSACTION ... causes a new TRANSID to be created by TMF. The new TRANSID
becomes the current process TRANS ID for the process that called BEGINTRANSACTION. An op­
tional reference parameter tag can be specified with this call. TMF will return the tag of the new
TRANS ID to this parameter.

ENDTRANSACTION ... causes the changes associated with the current process TRANSID to be
committed.

ABORTTRANSACTION ... causes the changes associated with the current process TRANSID to be
aborted and backed out. The programmer can restart the transaction at the BEGINTRANSAC­
TION call under a new TRANSID.

RESUMETRANSACTION ... is used by programmers coding multi-threaded requester processes
Oike the TCP). This procedure is called with the transaction tag returned from the BEGINTRANS­
ACTION call. The TRANSID identified by the tag becomes the current process TRANSID for the
process calling RESUMETRANSACTION.

5-10

Introduction to TMF-Using TMF

ACTIV ATERECEIVETRANSID ... is used by programmers coding $RECEIVE queuing servers:
that is, servers that queue messages from several requesters concurrently before replying (Figure
5-3).

CALL WRITEREAD;

request

request

request

reply

reply

reply

D ,_______,,.
queued by (B)

D
the requests are processed

replies by (B) (not necessarily
in the order received)

CALL READUPDATE;
CALL LASTRECEIVE (,n);

CALL ACTIVATERECEIVETRANSID(,n)
fill the request

CALL REPLY(,,, n);

Figure 5-3. $RECEIVE Queuing Servers

The server identifies the requester associated with the message by obtaining its message tag
through a call to the GUARDIAN LASTRECEIVE procedure and indicates which message it is
responding to by including the message tag when it replies to the message. Since $RECEIVE
queuing servers could be doing database operations for several requesters concurrently, they need
to acquire the current process TRANSID dynamically. That is, whenever they do some operations
for a request message, they need to assume its TRANSID for the duration of the operations and
then acquire the TRANSID of the next message. A call to ACTIV ATERECEIVETRANSID after a
call to LASTRECEIVE allows the server to specify that the TRANSID of the message identified by
message tag should be current for the process.

GETTRANSID ... is used to obtain the current process TRANSID of the calling process.

5-11

Introduction to TMF-Using TMF

COBOL and FORTRAN

COBOL and FORTRAN programmers can use the ENTER T AL verb and CALL statement to use
the TAL TMF procedures. However, because of the single-threaded nature of most COBOL and
FORTRAN I/O, it is not recommended that you write modules that have more than one transaction
outstanding at any given time. That is, avoid writing multi-threaded requesters and servers.

Record Locking

The TMF Operations section described the record locking rules that TMF enforces to prevent
transaction interaction. The following is a summary of the rules you follow to write a transaction.

1. Lock all records that are updated or deleted by the transaction. Locks can be acquired for an en­
tire file (LOCKFILE) or on a record-by-record basis.

For example, in COBOL:

READ EMP-MASTER WITH LOCK KEY IS EMP-NO-KEY OF EMP-REC.
IF EMP-FIELDS OF EMP-REC = SA VED-EMP-FIELDS OF EUPDATE-MSG PERFORM
970-REWRITE-EMP

970-REWRITE-EMP.
REWRITE EMP-REC WITH UNLOCK.

TMF will verify that the record is locked and reject the REWRITE if the record has not been
locked. The locks will be held until the transaction either aborts and is backed out, or commits. If
a transaction issues LOCKFILE, modifies records while it holds the lock granted by
LOCKFILE, and then issues UNLOCKFILE prior to issuing END-TRANSACTION, the file lock
will be held until the transaction commits. Alternatively, a transaction could issue
UNLOCKFILE when it does not own the file lock but does own record locks that were acquired
individually. In this case, only the locks for records not updated by the transaction will be re­
leased prior to transaction commit.

2. Lock records that are read and used by the transaction in producing its output, but not
changed. Following this rule guarantees that the transaction's reads are repeatable.

For example:

READ EMP-MASTER WITH LOCK KEY IS EMP-NO-KEY OF EMP-REC.
IF EMP-FIELDS OF EMP-REC = SAVED-EMP-FIELDS OF EUPDATE-MSG

ELSE
UNLOCKRECORD EMP-MASTER

In this example, the lock will be released if the record is not modified.

5-12

Introduction to TMF-Using TMF

When Locks are Released-TMF and ENSCRIBE

Table 5-3 shows the difference between transaction mode record locking (locks identified by
TRANSID) and record locking for ENSCRIBE (locks identified by processid and openid).

Table 5-3. Lock Release TMF and ENSCRIBE

ENSCRIBE

TMF

record

at unlock
or close

at unlock
or endtrans

Notes:

unlock

close
endtrans

Avoiding Dead:ock

unmodified

file

at unlock
or close

at unlock
or endtrans

record

at unlock
or close

at
endtrans

modified

file

at unlock
or close

at
endtrans

- When UNLOCKRECORD or UNLOCKFILE, as ap­
propriate, is called.

- When closing the file in which the objects are locked.
- When ENDTRANSACTON completes or an aborted

transaction is backed out.

The following is an example of a sequence of record locking operations that results in a deadlock
situation:

• Transaction 1 locks record A.

• Transaction 2 locks record B.

• Transaction 1 attempts to lock record Band has to wait.

• Transaction 2 attempts to lock record A and has to wait.

Neither transaction can proceed and the situation is a deadlock.

There is no way of detecting if a transaction becomes involved in a deadlock. However, the follow­
ing situations can be detected:

• A +,.!:lnc:!u•tinn ic: i:attPmnt.inO' tn T'Pi:an nT' ln"k ~ T'Pl'nT'n t.h~t. i~ ~ lT'P~nv lnl'kPn_
~~ V.._'°".&.&V&.4''-"V.A.'-'.&.a. .&.- _,.,,..,.._..,..,..,.t'"'..,...,..,o .,_ ..,..,.. __,.., """""'....,...,..,, - ..,_.....,.....,....,._ ..,.,... _.,._. _ ___ .)__,._._._,.

• A transaction's read or lock request is waiting too long before completion.

5-13

Introduction to TMF - Using TMF

Each of these situations is explained below and illustrated in Figure 5-4. If either of these situations
occurs, you can assume (although it may not be true) that the transaction is in a deadlock and code it
to abort. The locks held for the transaction will be released, avoiding the possibility of it par­
ticipating in or prolonging a deadlock.

I/0 REQUEST WAITING TOO LONG. In default locking mode, TAL programmers can determine if
a request has waited too long before completion. In this mode, a process will be suspended when it
attempts to access a locked record. To avoid deadlock, open the file using no-wait I/0 and specify a
time limit < > 0 in the call to AWAITIO. If AWAITIO returns GUARDIAN error 40 (in­
dicating timeout), the transaction may be in a deadlock situation.

COBOL programmers can open files using the new WITH TIME LIMITS parameter. WITH TIME
LIMITS indicates that further I/0 requests will be timed by specifying a value in the TIME LIMITS
parameter of the request. If the I/O request times out, GUARDIAN error 40 will be returned to the
request.

FORTRAN programmers can open files with the TIMED specifier and use the TIMEOUT specifier
in their I/O requests to specify a timeout value. If the I/O request times out, GUARDIAN error 40
will be returned to the request.

1/0
Request

5-14

COBOL

WITH
TIME LIMITS

FORTRAN

TIMEOUT

GUARDIAN
SETMODE

Default
Locking Mode

GUARDIAN
SETMODE

Alternate

Locking Mode

Figure 5-4. Avoiding Deadlock

Request

Timed
Out

! Abort!

Record

Already
Locked

Introduction to TMF- Using TMF

RECORD ALREADY LOCKED. T AL programmers can determine if a record is already locked by
using the GUARDIAN SETMODE procedure to select alternate locking mode. In this mode, file er­
ror 73 will be returned to the request when it attempts to access a locked record.

Transaction Design Guidelines For PATHWAY

This section presents some preliminary guidelines for designing PATHWAY applications that use
TMF. Basically transaction design involves the following primary questions. What is the logical unit
of work that you want to accomplish within an application (e.g. order entry or account balancing)
and how can it be divided into a number of transactions that can be recovered by TMF? Factors that
influence the answers to these questions are:

• Concurrency how long will record locks be held for a transaction?

• Performance how much extra disk I/0, server activity, and TCP paging is involved in the
choice of one design over another?

• Consistency how large is the unit of recovery for each transaction and is it adequate for the
a pplica ti on?

Transactions can be divided into two categories.

1. Simple Single Screen Transactions ... all the data required by the transaction can be entered
by the operator into one screen. This type of transaction is straightforward and the preceding
questions do not apply.

2. Multi-Screen Transactions ... several screens are required to accumulate the data for the
transaction. There are three possible types of multi-screen transactions: (1) long transactions,
(2) context-saving transactions, and (3) multiple short transactions. Each of these types is des­
cribed in the following pages along with some of their possible advantages and disadvantages.

5-15

Introduction to TMF - Using TMF

LONG TRANSACTIONS. A typical sequence of Screen Cobol actions for a long transaction is il­
lustrated below.

TRANSACTION

STATE

SCREEN
1

Operator
action

I SCR;EEN I

Operator
action

SCOBOL Program Actions

ACCEPT screen

BEGIN-TRANSACTION

SEND

ACCEPT screen

SEND

END-TRANSACTION

Advantages: Failure at any point in transaction state will cause all updates to audited files to be
backed out.

Disadvantages: Resources may be locked for an indeterminate amount of time.

5-16

Introduction to TMF-Using TMF

CONTEXT-SAVING TRANSACTIONS. A typical sequence of Screen Cobol actions for context-
saving transactions is illustrated below.

l
I SCTNI

Operator
action

t
i SCrN1

Operator
action

i

SCOBOL Program Actions

ACCEPT screen

(Save screen information
in context)

ACCEPT screen

(Save screen information
in context)

ACCEPT screen

TRANSACTION
STATE

I SCR3EEN I
BEGIN-TRANSACTION
SEND

Advantages:

SEND
END-TRANSACTION

• Failure at any point in transaction state will cause all updates to audited files to
be backed out.

• No operator action is required while resources are locked.

Disadvantages: Overuse of context could be a performance consideration.

• Increased TCP paging.

• Possibility of additional database access.

• Context stored in temporary disc files - implies more disc I/0, and more server
activity.

Note: The new SCOBOL CHECKPOINT verb can be used to establish a restart point during the
context gathering portion of the transaction.

5-17

Introduction to TMF-Using TMF

MULTIPLE SHORT TRANSACTIONS. A typical sequence of Screen Cobol actions for multiple
short transactions is illustrated below.

! SCOBOL Program Actions

ACCEPT screen
TRANSACTION

'SCrN i BEGIN-TRANSACTION

STATE
SEND
END-TRANSACTION

Operator
action

t ACCEPT screen
TRANSACTION I SCTN I BEGIN-TRANSACTION

STATE SEND

Operator END-TRANSACTION

action
t ACCEPT screen

TRANSACTION I SCR3EEN I BEGIN-TRANSACTION

STATE SEND
END-TRANSACTION

Advantages: • Context use kept to a minimum.

• No operator action is required while resources are locked

Disadvantages: • A logical transaction is possibly separated into several physical transactions.

• Backout of an entire logical transaction must be handled programmatically.

• Other transactions might view the database as inconsistent. This, also, must be
handled programmatically.

Nonstop Design Considerations for PATHWAY

In PATHWAY, properly written servers can be divided into three categories. These categories
determine whether or not the server should be be NonStop.

1. Servers that access the database in read-only mode. Since all requests to servers of this type
are retryable, they should not be NonStop.

2. Servers that update audited files. Because the transaction is a unit of recovery, this type of
server should not be NonStop.

3. Servers that update unaudited files. There is no unit of recovery for servers of this type and
they should be NonStop.

5-18

Introduction to TMF- Using TMF

Summary of Design Considerations for PATHWAY

The following is a brief summary of the considerations that you follow to design PATHWAY ap­
plications that use TMF.

• Determine which database files are to be audited files.

• Determine the appropriate transaction design strategy for the application using the guidelines
presented in the preceding part of this section. Decide where to put the BEGIN­
TRANSACTION and END-TRANSACTION statements.

• Modularize the servers so that any server that updates audited files does not update unaudited
files.

• Code the server to follow the TMF record locking rules.

5-19

ABORT-TRANSACTION 5-9
ABORTTRANSACTION 5-10
ACTIV ATERECEIVETRANSID 5-11
Allocating Audit Disc Space 5-6
Application Programming 5-9/19
Assertions

for consistency 2-2
Audit Trails

auditprocess audit trail creation 4-3
description 4-1/4
monitor audit trail contents 4-2

Auditdump Process 4-4
Audited Files

definition 4-2
identifying through use of FUP 5-9

Auditprocess Audit Trails
contents 4-3
copying to tape 4-3
relationship to Auditprocesses 4-3
specifying file sequence 4-3

Auditprocesses 4-3
Automatically Dumping Audit Trails 4-3
A voiding Deadlock 5-13/14

BEGIN-TRANSACTION 5-9
Beginning a transaction on a remote node 3-4
BEGINTRANSACTION 5-10

COBOL Programming 5-12

INDEX

Committing a Transaction by issuing END-TRANSACTION 3-36
Comm uni ca ti on

between TCP and servers 3-3/4
Communications Loss

during transaction backout effects 4-6
Concepts

data sharing and transaction concurrency
effect on database consistency 2-5

Index-1

Index

lost update problem 2-6
TMF concurrency control 2-5

database consistency
definition 2-2

databases 2-1
distributed database systems 2-4
transaction commit 2-7
transactions

as a unit of recovery 2-3
as a unit of work 2-3
definition 2-3

Concurrency
see transaction concurrency

Configuration Considerations 5-6
Configuring TMF

during system generation 5-2/4
using the TMFCOM utility 5-4/8

Consistency
general definition 2-2

Copying Audit Trails To Tape 4-3
Current Process TRANSID 3-4

Database integrity
relationship to consistency 1-1

Databases
general definition 2-1

Deadlock
description 5-13/14
how to a void 5-13/14

Description of TMF 4-1/8
Designating Audited Files 5-9
Designing Transactions

see transaction design
Destination Node

definition 3-4
Distributed Databases

consistency 2-4
DUMP FILES Command 4-7
Dumping Audit Trails 4-3

ENCOMPASS
concepts 1-2
relationship to GUARDIAN 1-1/2

END-TRANSACTION 5-9
ENDTRANSACTION 5-10

FORTRAN Programming 5-12
FUP

use in designating audited files 5-9

Home node
definition 2-4

1/0 Request
timeout 5-14

Identifying a Transaction 3-2

Index-2

Labelled Tapes 4-9
Locally distributed database 2-4
Lost Update Problem 2-6

Monitor Audit Trails
contents 4-2
copying to tape 4-3
creation 4-2
maintained by TMP 4-2
specifying the file sequence 4-2

Network Backout 4-5
Network Distributed Database 2-4
Network transmittal

of a TRANSID 3-4
No-wait I/O 5-14
N onStop Considerations

for PATHWAY servers 5-18

Online Dump description 4-7/8
DUMP FILES command 4-8
overview 1-6
relationship to TMF catalog 4-6/7
relationship to TMF catalog process 4-6/7

Operator Interaction Unit
specification 5-5
use 4-8

Overview of TMF 1-1/8

Preventing Transaction Interaction
record locking rules 3-5

Processes
transmitting a current process TRANS!D

between processes 3-3
Protocol

for record locking 3-5

Record Locking
protocol for TMF 3-5
rules for TMF 5-12

RECOVER FILES Command
use 4-8

Releasing Locks
during two-phase commit 3-6
TMF vs. ENSCRIBE Lock Release 5-13

Requirements for TMF
disc space 1-8
ENSCRIBE 1-8
tapes and tape drives 1-8

RESTART-TRANSACTION 5-9
RESUMETRANS.A.CTION 5,10
Rollforward

overview 1-6

Index

Index-3

Index

RECOVER FILES command 4-8
sequence of events 4-8
use 4-8

Screen Cobol Verbs
ABORT-TRANSACTION 5-9
BEGIN-TRANSACTION 5-9
END-TRANSACTION 5-9
RESTART-TRANSACTION 5-9

Source Node
definition 3-4

System Generation
of audited volumes 5-3
of the A uditprocesses 5-4
of the TMF catalog process 5-4
of the TMFMONITOR monitor process 5-4
of the transaction monitor process 5-4
steps 5-2

System Management Responsibilities 5-1/9

T AL Procedures
ABORTTRANSACTION 5-10
ACTIVATERECEIVETRANSID 5-11
BEGINTRANSACTION 5-10
ENDTRANSACTION 5-10
RESUMETRANSACTION 5-10

Tape Labelling 4-8
TCP 3-3/4
TCP/Server Interaction 3-3/4
Terminal Monitor Process

in network transmittal 3-4
Timeout 5-14
TIMEOUT

parameter for COBOL 5-14/
TMF Catalog

contents 4-6
use 4-6

TMF Catalog Process
use 4-7

TMF Feature Summary
Audit trails 1-4
Online Dump 1-6
Rollforward 1-6
Transaction Backout 1-5
Transaction Concurrency Control 1-5

TMF Operations 3-1/7
TMF System Requirements 1-7
TMFCOM Utility

use in
configuring TMF 5-5
operating TMF 5-6/8

Transaction
concepts 2-3
definition 1-2
design guidelines

Index-4

for PATHWAY 5-15/19
effect on database consistency 1-2
example 1-2

Transaction Backout
overview 1-5

Transaction Backout Description
for network distributed transactions 4-5
Initiating Transaction Backout

causes for 4-4
what happens during' transaction backout 4-4, 4-5

Transaction Commit
by issuing END-TRANSACTION 3-6
definition 2-7

Transaction Concurrency 2-5
Transaction Concurrency Control

overview 1-5
Transaction Design

factors 5-15
N onStop Considerations

for PATHWAY 5-19
summary of considerations 5-19
types of transactions

context-saving transactions 5-17
long transactions 5-16
multiple short transactions 5-18

Transaction Design Guidelines
for PATHWAY 5-15/19

Transaction Identification
BEGIN-TRANSACTION verb

for PATHWAY 3-2
TRANS ID

identification 3-2
initiation by Screen Cobol Program 3-2

transmittal
between processes 3-3
over a network 3-3

Transmitting a TRANSID
between TCP and servers 3-4
over a network 3-4

Two-Phase Commit
description 3-6
failure 3-6 /7
for locally distributed transactions 3-6
for network distributed transactions 3-6
phase 1 3-6

User Responsibilities - Summary
application programmers 1-8
operators 1-8
system managers 1-8

Using TMF-Considerations 5-1/19

WITH TIME LIMITS
verb for COBOL 5-14/

$RECEIVE Queuing 5-11

Index-5

FOLD ,.....

FOLD~

READER'S COMMENTS

Tandem welcomes your feedback on the quality and usefulness of its publications. Please indicate
a specific section and page number when commenting on any manual. Does this manual have the
desired completeness and flow of organization? Are the examples clear and useful? Is it easily
understood? Does it have obvious errors? Are helpful additions needed?

Title of manual(s): _____________________________ _

FROM:

Name

Company

Address ---------------------------------

City/State ------------------- Zip --------

A written response is iequested yes no

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 482 CUPERTINO. CA. U.S.A.

POSTAGE WILL BE PAID BY ADDRESSEE

¥~~@)§~
COMPUTERS

19333 Vallco Parkway
Cupertino, CA U.S.A. 95014
Attn: Technical Communications-Software

STAPLE HERE

NO POSTAGE
NECESSARY

IF MAILED
INTHE

UNITED STATES

-C FOLD

--C FOLD

8063 AOO
82063

TANDEM COMPUTERS INCORPORATED
1 9333 Vallco Parkway
Cupertino, CA 950 1 4

	000
	001
	002
	003
	004
	005
	006
	007
	008
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	I-01
	I-02
	I-03
	I-04
	I-05
	replyA
	replyB
	xBack

