

FI Produces a help display.
F2 Produces a Sector Edit display for the currently highlighted cluster.
F3 Identifies the file to which the currently highlighted cluster belongs.
F4 Rewrites the modified FAT to a diskette. AnaDisk requests confirmation

before writing, however.
F5 Allows a new value for the currently highlighted cluster to be entered.
F6 Reads the FAT from a diskette. Any changes that were made to the displayed

FAT are lost.
F7 Toggles between a hexadecimal and decimal display.
ESC Returns to the main menu. Any changes made to the displayed FAT are·lost.

AnaDisk performs a few checks on the value entered when the F5 function is selected. The
value must lie within the range of allocatable clusters for the diskette and not be already al
located to some other file.

Custom Format Design

AnaDisk provides a custom format design facility which may be used to produce formatted
diskettes for non-DOS computers or to design a rudimentary "copy-protection" method.
AnaDisk's custom formatting function is not intended for use by beginners; a detailed
knowledge of diskette structure is necessary for effective use of this feature.

After the FORMAT function has been selected from the Main Menu, the diskette drive con
taining the diskette to be formatted is selected. A display similar to that shown in Figure 20
then appears. Because of checking that is performed by AnaDisk, the simplest operation
can be obtained if the following sequence of steps is observed:

To "layout" a format, first select the sector size using the F2 key; each depression of this key
cycles through the allowable sector sizes from 128 to 8,192 bytes. Next, set the recording
mode (FM or single-density, MFM or double-density) using the F5 key. Either a high- or
low-density data rate should be next selected using the F6 key.

The number of sectors per track are then set using the F3 key. If too many sectors are
specified for the given recording mode and density, the sector count will be adjusted to the
largest number of sectors that will fit on the track.

The actual starting cylinder is set with F4. Note that a high-density 1.2M 5.25" is considered
to possess 80 cylinders, regardless of density. The cylinder increment between formatted
cylinders is set with F8. The total number of cylinders formatted is set with F9. Note that
this is the total count of cylinders formatted, and not the highest cylinder number. The side
or sides to be formatted is set with F7 and may be side 0, side 1 or both sides. The FlO key is.
used to duplicate the previous editing display line into the currently highlighted line.

By default, sector ID address headers written are as follows:

Page 26

ID Cylinder: Actual cylinder
ID Head: Actual side
ID Sector: Starts with 1, increments by 1
ID Length: Actual sector length

These defaults should suffice for most "normal" applications. However, the values for each
ID address field may be altered considerably.

ESC to Exit AnaDisk 2.8 Fl for Help

tiD.
1.
2.
3.
4.
5.
&.
7.
8.
9.

18.

I Help
I nFn
I • 88 Cyls. I Size 512

I. low-density
o Duplica.te 118 Sectors I" Start Cyl. 8

I Both Sides I = Step 1
BEGIti FORnAT I Exit

EtiTER TERn
~ Cylinder ~ Cyl. Count ~ Side ~ Sector ~ Constant
;-- Add .-- Subtract _ nultiply .-- Diuide .-- End

iiDYLItiDER-, I SIDE---, .--SECTOR--, .-LEtiGTH--,
HD SCT-l 2

CYL*2 HD SCT-1 2
CYL*2 HD SCT-1 2
CYL*2 HD SCT-l 2
CYL*2 HD SCT-1 2
CYL*2 HD SCT-1 2
CYL*2 HD SCT-l 2
CYL*2 HD SCT-l 2
CYL*2 HD SCT-l 2
CYL*2 HD SCT-l 2

Figure 20: Custom Format Display

Each entry in the ID address table shown in the lower part of the display can take on the fol
lowing mathematical representation:

valuel op value2 op value3 op value4

Where each value is either a constant or one of the following special values:

. Shift-F2 is the number of the actual cylinder currently being formatted; shown as
CYL on the editing display.

Shift-F3 is the count of the cylinders that have been formatted up to this point;
shown as CNT on the editing display.

Page 27

Shift-F4 is the side (0 or 1) currently being formatted; shown as HD on the editing
display.

Shift-F5 is the number of the current sector on this track, starting with 1; shown as
SCT on the editing display.

Shift-F6 is used to specify a fixed numeric value between 0 and 255.

op can be one of the following:

+

/

for addition
for subtraction
for multiplication
for division

IT a period (.) is entered for op, the expression is terminated at that point. Expressions are
evaluated from left-to-right; results are limited to 8 bits (decimal 255). Division by zero
results'in zero with no diagnostic. Overflow is ignored.

For example, suppose it is desired to produce a single-sided format where the IO address
cylinder field begins with 39 and ends with 0 at the innermost track. The expression for the
CYLINDER field for every sector in the editing display would be:

39-CYL

It should be observed that the Custom Format function only writes the format pattern to a
diskette. Other data, such as system tables must be written using other means, such as the
Sector Edit function. It should be further observed that all sectors written by the Custom.
Format are of the same size, regardless of the length specifier in the ID Address header.

Dump Operation

The Dump operation writes a specified area of a diskette to a DOS file. After selecting the
Dump option from the Main Menu, the diskette drive containing the diskette to be read, the
range of cylinders and sides to be written to a specified DOS file are selected.

Each sector written to the file is optionally preceded by an 8-byte header record of the fol
lowing form:

Page 28

ACYL ASID LCYL LSID LSEC LLE" CDU"T

ACYL
ASID
LCYL
LSID
LSEC
LLEN
COUNT

Actual cylinder, 1 byte
Actual side, 1 byte
Logical cylinder; cylinder as read, 1 byte
Logical side; or side as read, 1 byte
Sector number as read, 1 byte
Length code as read, 1 byte
Byte count of data to follow, 2 bytes. If zero, no data is contained in
this sector.

All sectors occurring on a side will be grouped together; however, they will appear in the
same order as they occurred on the diskette. Therefore, if an 8 sector-per-track diskette
were, scanned which had a physical interleave of 2: 1, the sectors might appear in the order'~
1,5,2,6,3,7,4,8 in the DOS dump file.

After the last specified cylinder has been written to the DOS file, AnaDisk returns to the
Main Menu.

Looking Forward

We believe that AnaDisk Version 2.0 represents a major improvement over earlier verisons.
Our list of features yet to be added to AnaDisk includes an intelligent file unerase, save and
load data to a DOS file--and yes, a hard disk version!

All of which is made possible 'by your support of the Shareware concept. We hope we will
continue to be deserving of that support. If there is any way in which we can assist you with
this product, please call or drop us a line.

Page 29

Jacket ~

Density
Sensing

Hole

Write-Protect
----- Notch

Write=
Protect
Hole

A Short Course on Diskettes

A diskette is made of much the same stuff as audio cassette and ·VCR tapes, enclosed in a
black plastic envelope, or, in the case of 3.5" diskettes a blue or gray plastic container. If you
really want to see what the business end of a diskette really looks like, take a junked 5.25"
diskette and cut the black envelope open along one edge (or all edges, if you're really
inquisitive). You'll see that the black plastic envelope has a fabric-like liner which is in con
tact with a rather flimsy brown ring of plastic, somewhat smaller, but similar in shape to a 45
rpm phonograph record. If you take the brown disk out of the envelope, it will immediately
become apparent to you why these things are sometimes called 'floppy' disks.

We're talking about 5.25" diskettes here, by the way. The 3.511 has a hard plastic envelope
and a metal hub, but otherwise is similar in operation to its larger cousin.

Have you ever spilled coffee on one of these things? If you've been keeping your only copy.
of your Great American Novel on the resulting mess, you can salvage the information this
way-

1. Cut the black envelope open and carefully remove the brown disk.

2. Throwaway the black envelope - it's ruined anyway because the cloth "wiper"
inside is fouled with whatever was spilled on the diskette.

3. Carefully wash the brown disk under cold water, preferably with no soap.
Take care not to wrinkle or fold the disk. Dry it carefully with a soft lint-free
cloth.

3. Get a junked diskette or a new blank one and carefully cut the top edge (the
edge that faces you when the diskette is in a drive) of the black envelope off to
open it. Replace the disk inside with your just-washed disk.

4. , You can optionally tape the edge of the envelope back up with plastic
package-sealing tape (ordinary mending tape is too messy).

5. Copy your resurrected diskette to a new blank one.

If you've done in a 3.5" diskette, you're probably out of luck - most of the 3.511 jackets are
fused shut. You can probably get one open, but there's no easy way to get one neatly closed
again ...

As we mentioned, the ''business end" of a diskette is made up of much the same stuff that
comprises normal audio or video tape. There is one difference, however. Where tape is
coated only on one side with brown magnetic material, a diskette is coated on both sides.
The actual plastic part is clear - it's the magnetic material that gives it the color. What this
double-coating does is allow both sides of the diskette to be recorded, giving rise to the ter-

Page3J

minology "single-sided" or "double-sided". In actuality, all diskettes are coated on both sides,
whether or not they're labeled "double-sided"; it's just that only one surface on a "single
sided" diskette has been certified to be error-free. However, there are many people who
save money by recording both sides of a "single-sided" diskette ...

Do you need to tell a high-density 1.2M diskette from a ordinary 360K diskette? Almost all
360K diskettes have a reinforcing ring around the central large hub hole; none of the 1.2M
high-density diskettes do.

So much for physical appearances. How does information get recorded on the diskette?
Well, to begin with, data is recorded on a series of circular concentric tracks on each side.
On a phonograph record, recording is done as a very long spiral from the outer edge to the
inside. The circular tracks on a diskette are not connected however, so if you start "playing"
one back, you will eventually come back to where you started without moving to another
track -- sort of like a "stuck" record.

To get' from track to track, the record/playback head is attached to a positioning device,
powered by some sort of motor, which allows "stepping" from one track to another. If both
sides of the disk are to be used, a set of heads on the other side of the diskette is present, but
both sets of heads move together as they're connected mechanically to the same positioning
motor.

By convention, recording of data generally starts on the outer tracks of a diskette, just like a
phonograph record. However, since it is fastest not to move the heads when recording or
reading back data (head motion is sometimes called "seeking"), the track on one side is first
used, then the track on the other side, then the heads are moved one track, and so on - not
at all like playing a phonograph record!

If you take a look at a diskette (with or without its envelope), you'll see a much smaller hole,
called the index hole next to the large "hub" hole. This is used to indicate where the start of
each track is as an aid to organizing data. A small photo-transistor located in your diskette
drive detects the passage of the hole once each revolution - usually about 300 times per
minute. You may also notice a notch in the side of the diskette envelope. This notch is
present to indicate that the diskette may be written on - if covered up, the diskette is said to
be write-protected; that is, it may not be written on.

By the way, this 300 revolution-per-minute speed results in the media passing the read/write
head at about 4 miles per hour - the speed of a brisk walk. By contrast, a "hard" disk moves
past its heads at about 40 miles per hour.

3.5" diskettes don't have an index hole per se, but the metal hub ring does have a peculiar
hole pattern that will lock it to the motor spindle in only one' position; the net effect is the
same as that of the index hole on a 5.25". '

Next, let's define a few terms and look at how your computer manages data on a diskette.

Page 32

Getting Down to Bits ...

So far, we've talked about how a diskette is constructed and generally used, but to go much
further, we'll need to settle on a working vocabulary -

A disk is just what you'd expect - that thing that holds the data or information
you're interested in. We define it here for completeness' sake.

A side of a disk is either the top or bottom. A disk is said to be single-sided if
only one side is used for storing information, and double-sided if both sides are
used. Sometimes we refer to a side by the head used to read or write on it - the
distinction is the same.

A track is a circle of information read or written by a drive on a single side -
either top or bottom. There is much confusion over this term.. We will use

.. ·"track" as being synonymous with "side" or "head", though some erroneously use
it to mean both sides of a diskette (or cylinder). Normally, a disk contains 40
tracks per side (or 80 tracks in the case of the very dense 1.2 Mb or 1.44 Mb
PC-AT or PS/2 diskettes). The 40 track diskettes are recorded so that 48 tracks
would form a "doughnut" one inch thick; the 80 track diskettes are recorded so
that 96 tracks would be required to form a one inch doughnut. Sometimes we
refer to track packing density as 48 TPI (tracks per inch) or 96 TPI. This means
that a little less than a one inch "doughnut" is used from the two inches avail
able on a 5 1/4" diskette.

A cylinder refers to both the top and bottom tracks taken together, or, more
generally, all of the diskette than can be accessed without moving the
read/write heads.

The index hole is the small hole punched in the disk about 1/4 inch away from
the large center hole.

A sector is a block of information present on the diskette--it is the smallest
amount of information that can be read or written on the diskette. On the PC,
this is generally 512 characters. A track can hold about nine sectors - but more
about this later.

From time to time, we will refer to disk addresses. Diskette sectors need some
thing to tell them apart, like a name, but convention dictates that a number be
used for each, rather like a house address in your neighborhood.

A bit is the smallest unit of information that a computer can handle - and has
only one of two values--1 or O.

Page 33

A byte for our purposes is a grouping of 8 bits and can have 256 different
values. A byte also represents exactly one character of data or text.

The world of disks is a hard, practical one and we must live with the following realities -

Rule 1 : Your computer writes at most 1 bit at a time and this bit must be 1 or O.

Rule 2: Diskette drives are physical objects with smaUdifferences between them.
One of the more interesting is that diskettes are· generally read and written
with the disk spinning at approximately 300 revolutions per minute. That one
drive turns at exactly the same speed as another is only a possibility, not a cer
tainty.

Rule 3: Index holes are almost never exactly the same in size, and anyway, two drives
wouldn't see them as such.

··So what are some·ofthe problems that these rules cause? ·Consider that we want to record
nine sectors on a track (glossary above!). We record these sectors, starting at the index hole,
running one right after the other, thus:

Sector 1 Sector Z Sector 3 Sector 4 Sector 5

I I
The index hole is here. Watch this space!

Now, suppose we change sector 3, but we use another drive and it spins slightly faster. than
our original. ..

Sector 1 Sector 2 Sector 3 Sector 5

I I
Index hole is here It got clobbered!

You'll note that we've just clobbered the start of sector 4 because it took us the same
amount of time to write the sector, but what we did write took up more of the track than the
original. Think of two sprinters with spray paint cans painting lines on a track by holding
down the spray nozzle for exactly one second. The faster runner will paint a longer line, but
the same amount of paint (or data) will have been used by both.

What if we left a few extra bytes between sectors to take up any reasonable difference in
speed? Good idea--and we should also stick some filler bytes after the index hole because of
Rule 3. So far, so good. But how do we tell the filler bytes from real data? After all, we

Page 34

need to know where our data is. We could put a special data pattern at the start of each sec
tor that would be really different from the slack bytes. We then might get something that
looks like this--

I I
Index hole here This is a filler byte

[I - Filler Byte
i-Sector Hark Byte

I
This is a sector .arker

Then, if we over-write filler bytes, who cares? But now, the only way to find any sector is to
wait for the index hole to come around and then to look for our sector marks until we find
the sector that we are looking for. Why not put each sector's number or address with each
sector mark? Then all we would have to do is to find a sector mark with the correct address.
So, we get something that looks like this -

"i'i"liM' Sector 1 'iiiiilitm1 Sector Z 'iiiiilitm' Sector 3 mil···
I I I
Index hole here Filler byte Mark and sector address

Okay, we just about have it all now. The filler bytes we talked about are referred to collec
tively as gap bytes, the sector marks are divided into two kinds for electrical reasons - the
first is called an ID Address Mark and signals the start of a sector address .. The second is
called an Data Address Mark and signals the start of the actual data in a sector. The primary
reason that two marks are used is to avoid continually rewriting (and taking the chance of
clobbering) the sector address information.

One additional item is added to each sector data and address, called a Cyclical Redundancy
Check or CRC. This is a rather involved type of checksum of all of the information in the
data or address fields. When the disk controller reads a sector, it calculates its own eRe
from what it reads and compares it with the eRe that was written when the data was first
stored. If the two match, then we can be pretty sure that what we read was the same as what
was written; we have a problem otherwise.

A short digression is appropriate here. There is another method, not in common use today,
to demarcate sector boundaries, called hard sectoring. This is done by having not just a
single index hole, but many - one for each sector. The index hole itself is represented by
three closely-spaced holes. Before the advent of large-scale integrated circuits, this resulted
in a considerable hardware reduction. This is rare today, however. All diskette recording
methods use one or the other scheme.

Page 35

So why can't AnaDisk read Apple diskettes? Apple diskettes are indeed soft-sectored, but
hail from a time when LSI disk controllers chips where $50 each in quantity. Steve Wozniak,
the'designer of much of the Apple hardware, designed a diskette -controller where the 6502
microprocessor in the Apple would do most of the work in handling diskette read and write
data encoding. A 5- or 6-out of-8 bit scheme was used, which is peculiar to Apple com
puters. The rest of the world tends to use variations on the mM diskette convention. Ironi
cally, Wozniak's collection of inexpensive IC's on the original Apple disk controller has been
collected in a single LSI chip called the "IWM" or "Integrated WozMachine" in later Apple
and Macintosh computers. If you're interested, Jim Sather's Understanding the Apple II con
tains one of the best expositions on the mechanics of Apple disk handling to date.

Back to the world according to mM. Let's look at a real diskette. The following is a
description of what is normally present on a single track of a diskette -

Index Hole
80 Gap Bytes
12 More Gap Bytes
4 Byte ID Address Mark (Start of Track Mark)
50 Gap bytes
12 More Gap Bytes
4 Byte ID Address Mark (Start of Sector Mark)
1 Byte Cylinder Number
1 Byte Side Number
1 Byte Sector Number
1 Byte Length Code
2 Byte Address CRe
22 Gap Bytes
12 More Gap Bytes
4 Byte Data Address Mark
512 Bytes Data
2 Byte Data eRe
50 Gap Bytes

(0 or 1)
(This sector's address)
(Says how long the sector is)

(Finally!)

... Repeat from *** for as many sectors as will fit ...
Gap bytes to Index Hole, as many as will fit

It's obvious that there's a lot of overhead just to store 512 bytes of data -
about 112 bytes worth. But it's all done in the name of reliability - and it works.

A couple of comments before we move on. You'll notice that the disk layout talks about
"Gap Bytesll and "More Gap Bytes". The difference between them is -that the "Gap Bytes"
have one value and were made to be written over if necessary. The "More Gap Bytes" have
a different value and are not to be written over; their chief function is to allow the
electronics some time to prepare for the next ID Address Mark.

Page 36

Another item is that two different Data Address Marks are possible - one simply referred to
as a "normal" Data Address Mark; the other, a "Deleted" Data Address Mark. The Deleted
mark is not used by the PC in normal circumstances; but some copy protection schemes do
use it, just because most PC software is ignorant of its existence.

Which brings us to the next topic ...

Copy Protection, or,Ways to Skin A Cat ...

In the beginning, there was no copy protection. A user could copy whatever he wanted and
give it to whomever he wished, if he didn't get caught. But then there were few personal
computers and little incentive to copy, except for purposes of creating backup diskettes.

Then along came Apple and mM, and the personal computing world was never to be the
same. Because there also came copy protection ...

Okay, how do you "copy protect" something? Basically, there are two types of copy
protection schemes -

1. Make the diskette different enough in some aspect that the normal system
copying utilities can't handle the format. Copy errors result, and the copy is
worthless.

2. Hide some sort of difference that won't be detected by the system copy
utilities. You think you've made a good copy, but it won't run.

Here are just a few ways in which this can be accomplished:

1. Use a Deleted Data Address Mark somewhere on the disk. DOS COpy and
DISKCOPY won't see it, so it won't be transferred to the new copy. (Type 2).

2. A DOS diskette has 40 tracks - but most diskette drives can write at least 41 -
and DOS won't see this extra track. (Type 2).

3. Leave out a sector somewhere on the disk (Type 1).

4. Make one sector either longer or shorter than 512 bytes (Type 1).

5. Leave off an ID Address Mark somewhere. The Data Address mark will still
be present, but DOS won't find the sector (Type 1).

6. Hide something in the Gap Bytes; DOS won't' see it. (Type 2).

Page 37

7. "Jumble" the order of sectors on a track. Instead of numbering them 1, 2,
3, 9, number them 1, 9, 3, 2,... DOS won't know the difference and will still
write them as 1, 2, 3, ... (Type 2).

8. Stick in an extra sector somewhere. DOS doesn't look for it. (Type 2).

9. Goof up the address information somewhere on an unused portion of.the dis
kette. (Type 1).

10. Bum a tiny hole somewhere on the diskette with a laser. Try to write over the
hole - if no errors result, the diskette's a copy. (Type 1 or 2).

11. Record ID's and sector addresses on a track, but leave out the data. By doing
this, you can fit about 100 sectors on a track and thoroughly confuse anything
trying to copy it.

And on it goes... The 'publishers get clever and develop a new scheme; the hackers see a
challenge and break the scheme. With the advent of networks and the proliferation of fixed
disks, however, copy protection is slowly being abandoned by most publishers. On the other
hand, some copy-protection schemes are darned effective and require drastic measures to
defeat - Central Point's COPYIIPC program actually alters the copy protection programs
for some copies.

AnaDisk will produce true copies of some copy-protected diskettes - it is impossible to ac
commodate all copy-protection schemes without special hardware. The DIAGNOSTIC
READ function available under the Edit Sectors function of AnaDisk will allow you to ex
amine all the data recorded on a track, however - including address marks and gap bytes. '"',

High-Density Variations ...

What we've mostly talked about up to this point is the garden-variety, double-sided, double
density diskette holding about 360,000 bytes of information. But there exist diskettes which
hold much more than this, referred to variously as high-density or quad-density.

So what's the trick?

One way to get higher density is to pack more tracks on a diskette by making the tracks nar
rower. So, instead of 48 tracks per inch, you get, say, 96. This would give you 737,280 bytes
in the same space as before; the PC can support this format in DOS 3.2 and later, but in
general, 720K diskettes in a 5.25" form factor are not very comm0!l.

Another way is to squeeze bits closer together on a track nidially. The PC AT high density
drive gets 15 sectors on a track, rather than 9, and also uses the narrow track scheme to get
80 tracks. Multiply it out-

Page 38

15 sectors X 80 tracks X 2 sides X 512 bytes per sector

a.nd you get 1,228,800 bytes or 1.2 megabytes.

The mM Personal System/2 machines normally record 9 sectors per track on 80 tracks on a
3.5" micro-floppy diskette for 720,000 bytes. The higher-powered PS/2 models will also
"squeeze" 18 sectors per track on the same disk drive for 1,474,560 bytes. Quite a bit of
storage for such a small package!

You may have heard that the high-density drives on a PC AT are capable of writing a
"normal" 360K diskette, but that they don't do a good job of it. Quite true; consider that the
disk drive is writing a track only half as wide as a "normal" drive. This results in a lower
read-back signa1level and, therefore, is much less reliable than a "normal" drive. A 360K
diskette read back on a 1.2M byte high-density drive is perfectly all right, though. The trick
to producing readable 360K diskettes on a high-density drive is to first degauss or ''bulk
erase" the diskette using a video- or audio recording tape bulk eraser,.then format the dis-

- .' ketteon the high-density drive. It is recommended by some sources that you should first for
mat the 360K diskette on a 360K drive, but that's exactly what you don't want to do.

DOS Diskettes - FATS, Clusters and Directories

Up to this point, we've discussed how data'gets on and off a diskette from a very low-level
standpoint. On top of all of what we've discussed, there is DOS.

What DOS provides is a way of structuring the information on a diskette so it can be
managed in a very systematic way. As a sort of comparison, we can talk about the
mechanics of writing on paper (use a pen or pencil) and how to organize what we've written
(memos, novels, filing cabinets). DOS organizes logical groups of information into some- .
thing called a file, which is probably no news' to you. What may be news are the structures
that DOS uses to get from a sector to the logical concept of a file.

If DOS is to organize things on a diskette, it should have some means of determining
whether a sector contains data belonging to a file, or if a sector is "empty" or available to
receive data for a new file. DOS does this by means of a list of sectors called a FAT for File
Allocation Table.

To get an idea of how a FAT works, suppose that we have a diskette with a grand total of 10
sectors on it. We make a little table of 10 entries, one for each sector. If a sector is unused,
we write a 0 in the table entry for that sector. If a sector contains part of the data for a file,
we write the number of the next sector in the file in that sector's entry; we point to the next
sector in the file. If a sector is the last sector in a file, we write 99 in that entry. If a sector
cannot be used because of a defect in the diskette, we write 88 in that entry.

This business of using one table entry to point to another is called a linked list or a chain.
The general concept is used widely in computer systems programming.

Page 39

Let's take a file made up of 4 sectors, and let the order in which the sectors were written be
8., 3, 4, 2. Further, let's suppose that sector 6 is defective. Our little lO-entry FAT would
look like this -

Slot 1 2 3 4 5 6 7 8 9 19

4 2 9 88 91 3

Notice that if we know that the file starts with sector 8, we can thread our way through the
table to get all of the sectors for our file in the correct order. But how do we know that the
file starts at sector 8?

Enter the Directory. A directory is a just a special file which contains a list of file names and
. ,the .. starting sector of each .. Other information gets placed in the directory, 'such as the crea

tion date of a file, but the important items are the name and the starting sector. Since we
need to know where the FAT and (root) directories are, they occur in the same place for all
diskettes of a given format.

The notion of a cluster lets us keep the size of the FAT down on larger diskettes; essentially
what is done is to group adjacent sectors up in ''bunches'' and to assign a .number to the
whole bunch, instead of to individual sectors. A bookkeeping trick, mainly.

Some things should be obvious about this system that DOS implements.

The first is that if you inadvertently mess up a FAT, you're in big trouble because you don't
know how the sectors fit together on a diskette. Sure, the directory will tell you the first sec
tor of every file, but that's all. DOS maintains two copies of the FAT on a diskette to avoid
such a problem, but doesn't quite know how to make good use of the second FAT in case of
an error. a diskette that is a hopeless case for DOS.

The second obvious thing is that if you lose a directory, it still may be possible to resurrect
the files on a diskette from the FAT, but the names of the files will be unknown. The DOS
utility CHKDSK handles this job nicely, and "invents" new file names.

Something worth mentioning at this point is that Subdirectories are simply files of file names
- the sectors belonging to them are present as FAT entries, just as those for any other file
would be. In fact, under DOS 2.0, it was possible to treat a subdirectory in some cases
precisely the same as a file. This created a few operational problems and this "feature" has
been carefully disabled in DOS 3.

We mentioned that there are two copies of the FAT on every DOS diskette. The first of
these copies starts on the second sector of a diskette (Cylinder 0, Side 0, Sector 2). A FAT is
immediately recognizable because the first 3 bytes have the hexadecimal patter FxFFFF,

Page 40

where x depends on the diskette type. What makes a FAT hard to unravel is that each table
entry is 12 bits long and stored in Intel "flipped" format. Suppose we have two FAT entries, .
123 hex and 789 hex. They would be stored in three consecutive bytes thus:

239178

Appendix II shows the format of a directory entry. Note that exactly 16 of them will fit in a
512-byte sector.

If you're interested in further exploring the area of DOS disk organization, check out Peter
Norton's Programmer's Guide to the IBM PC. Here, we've covered just about everything you
need to find your way around on a diskette:

* Physical construction of a diskette.

* How data is recorded.

* How DOS organizes the data.

There are lots of little things left to discover; copy a DOS diskette and use AnaDis~ to ex
plore!

Page 41

Appendix 1 - Disk Track Formats

FM (SINGLE-DENSITY) TRACK FORMAT

40 Bytes hex FF
6 Bytes 00
1 Byte hex FC (Index Mark)
26 Bytes hex FF or 00

The following is repeated for each sector:

6 Bytes 00
1 Byte hex FE (ID Address Mark)
1 Byte cylinder number
1 Byte side number (00 or 01)
1 Byte sector number
1 Byte sector length code: 00 = 128, 01 = 256, 02 = 512 ...
2 Bytes ID eRe
11 Bytes hex FF or 00
6 Bytes 00
1 Byte hex FE (Data Address Mark)
Sector Data
2 Bytes Data eRe
27 Bytes hex FF or 00

After the last sector, the following is written to the index hole:

Repeated hex FF or 00

Some older formats leave off the initial 73 bytes for the Index Address mark.

Page 42

MFM (DOUBLE-DENSITY) TRACK FORMAT

80 Bytes hex 4E1
12 Bytes 00
3 Bytes hex F6
1 Byte hex Fe (Index Mark)
50 Bytes hex 4E

The following is repeated for each sector:

12 Bytes 00
3 Bytes hex F5
1 Byte hex FE (ID Address Mark)
1 Byte cylinder number
1 Byte side number (00 or 01)
1 Byte sector number
1 Byte sector length code: 01 = 256,02 = 512,03 = 1024 ...
2 Bytes ID eRe
22 Bytes hex 4E or 00
12 Bytes 00
3 Bytes hex F5
1 Byte hexFB (Data Address Mark)
Sector Data
2 Bytes Data eRe
54 Bytes hex 4E2

After the last sector, the following is written to the index hole:

Repeated hex 4E

1 On some older formats and on older Sony format 3.5" diskettes, this Index preamble is omitted.

2 The length of this gap is adjusted for the number and size of sectors written on the track.

Page 43

Appendix 2 - DOS Directory Entry Format

A DOS directory entry is 32 bytes in length; 16 of them fit exactly in one 512 byte sector.

A directory entry has the following format:

8 bytes, ASCII file namel

3 bytes, ASCII file name extension
1 byte, file attribute:2

1 Read-only
2 Hidden
4 System
8 Volume Label
16 Subdirectory
32 Archive

10 bytes, Unused, set to 0
2 bytes, time of creation3

2 bytes, date of creation
2 bytes, beginning cluster number
4 bytes, file size in bytes

1 When a file is deleted, the first byte of this field is set to hex E5. Newly formatted diskettes
have this byte set to 0; DOS will terminate a directory search when a leading 0 byte in the
filename field is found.

2 Attributes may be combined for a single file. The Archive bit is set when a file is created
and every time it is modified. Volume labels take a directory entry; they appear as zero"!
length files. The System attribute implies Hidden, Read-only and also signifies that the file
may not be moved or fragmented.

3 The time and dates of file creation are in a peculiar encoded format. The encoding for the
date is:

7 bits, year beyond 1980
4 bits, month of year
5 bits, day of month

The encoding for the time is:

5 bits, hours
6 bits, minutes
5 bits, seconds divided by 2

Page 44

Appendix 3 - Boot Sector for DOS Diskettes

The first sector of a DOS diskette contains a description of the diskette and a short program
to do either of the following:

*

*

Load DOS from the diskette (System Diskette)

Display a message-saying that this diskette isn't a system diskette (Non-system
Diskette.

The program on sector 0 is loaded at location O:7COO and executed when the system is
booted.

DOS BOOT SECTOR LAYOUT

Offset Length Contents

0 3 Either E9xx xx or EB xx 90
(A jump to the start of the boot)

3 8 ASCII System ill, e.g. "ffiM 3.3 "
11 2 Bytes per sector
13 1 Sectors per cluster
14 2 Reserved sectors at start of disk

(Almost always 1 - for sector 0)
16 1 Number of FAT copies - always 2.
17 2 Number of root directory entries.

(U sually 64, 112 or 224)
19 2 Total sectors on this disk.

(720 for 360K)
21 1 FAT ill byte (usually Fx)
22 2 FAT length in sectors
24 2 Sectors per track
26 2 Sides on this diskette
28 2 Number of "special" reserved sectors

(Usually 0)
30 492 The boot program

It can be seen that the total number of sectors can be 65,535 at most; this propagation of a
16-bit sector number throughout DOS is what leads to the 32 megabyte upper limit on hard
disk size. (65,535 x 512 bytes) = 32 Mb. Some vendors offer attempts to get around this
limitation by increasing the size of a sector, either logically (With software) or physically,.thus .".
increasing the total amount of storage that can be represented. This deficiency is carried
over to OS/2, but not to DOS 4.0, which uses 32-bit sector numbers.

Page 45

The Sydex Product Line

AnaDisk -- The compleat diskette utility. Nothing like it anywhere else; scan, edit,
repair and copy just about any kind of diskette. $25.00 ($150.00 site) registration
fee.

Con>Format -- Concurrent "background" diskette- formatter. Features "pop-up"
operation and "hot key" activation. You've got to see it to believe. Supports all cur
rent DOS formats. $15.00 ($50.00 site) registration fee.

22DISK -- Transfer files, format, examine and erase files on "foreign" CP/M diskettes
on your PC. Includes tips on supporting 8" and 5.25" single-density diskettes. Con
tains definitions for over 200 different formats. $25.00 ($100.00 site) registration fee.

22NICE -- A CP/M 2.2 emulation package. Supports the NEC V-series chips or per
forms· emulation by software for both the 8080 and Z80 processors. Includes ter
minal emulation and diskette handling for common CP/M systems. Includes
22DISK. $40.00 ($150.00 site) registration fee.

TeleDisk -- Tum any diskette into a compressed data file and vice-versa. Allows you
to send and receive entire diskettes via modem. Even works with some "copy
protected" diskettes. $20.00 ($65.00 site) registration fee.

COPYQM -- Mass diskette duplicator. Format, copy and verify multiple diskettes
from a single master. Implements "no keyboard" interaction mode and drive "round
robin" servicing. Supports all standard DOS formats. $15.00 ($50.00 site) registra
tion fee.

FORMATQM -- Mass diskette formatter - format a box of diskettes at a single sitting.
Implements "no keyboard" interaction mode and drive "round robin" servicing. Sup
ports all standard DOS formats. $10.00 ($40.00 site) registration fee .

.. .And, soon to be released:

InterDisk - The universal Diskette Interchange utility. Features user-programmable
media conversion for those formats not covered by 22DISK. Available 1Q90.

Information on any of these products can be obtained from Sydex by calling (408) 739-4866
(voice) or by leaving a request on our Bulletin Board System (408) 738-2860 (1200-9600 bps,
N81).

Page 46

