
Asun®
• microsystems

Pixrect Reference Manual

Part Number: 800-1785-10
Revision A, of9 May 1988

Sun Microsystems® is a registered trademark of Sun Microsystems, Inc.

Sun™ is a trademark of Sun Microsystems, Inc.

Sun Workstation® is a registered trademark of Sun Microsystems, Inc.

SunOs™ is a trademark of Sun Microsystems, Inc.

UNIX is a registered trademark of AT&T.

Copyright © 1987, 1988 by Sun Microsystems, Inc.

This publication is protected by Federal Copyright Law, with all rights reserved.
No part of this publication may be reproduced, stored in a retrieval system,
translated, transcribed, or transmitted, in any form, or by any means manual,
electric, electronic, electro-magnetic, mechanical, chemical, optical, or other
wise, without prior explicit written permission from Sun Microsystems.

Contents

Chapter 1 Introduction .. 3

Limitations .. 3

1.1. OvelView .. 3

1.2. Important Concepts .. 4

1.3. Using Pixrects .. 5

Primary Pixrect ... 5

Secondary Pixrect ... 6

Basic Example .. 6

Compiling .. 6

Pixrect lint Library ... 7

1.4. Pixrect Data Structures ... 7

Chapter 2 Portability Considerations ... 11

2.1. Byte Ordering .. 11

Byte Swapping and Bit Flipping .. 11

2.2. Flipping Pixrects 13

The pr_flip () Routine " ... , :., " ... ,

Guidelines for Sun386i Systems .. , ... :'''.,,~ ... , , .. .

Chapter 3 Pixrect Operations .. :.:.:.: , ... :'.':,:, :.:.; ...• ''', '',.,.'" .. ,.;::>::::

3.1. The pixrectops Structure "i •••• :; •• ," ... " •• ..,~.· .. ~., ... ,

3.2. Callings Pixrect Procedures , , : ,., , " .. , ,', ::>:::>

Argument Conventions , ,;,:,: .. ;:,: ;,:;:;.: •... ;;,;.,': ... ,., .. , ...

Pixrect Errors , , , , , ,,;.:' : •... "."

- iii-

Contents - Continued

3.3. The Op Argument .. 19

Specifying a RasterOp Function .. 20

Specifying a Color .. 21

Controlling Clipping in a RasterOp ... 21

Examples of Complete Op Argument Specification 21

3.4. Creation and Destruction of Pixrects ... 22

Create a Primary Display Pixrect .. 22

Getting Screen Parameters ... 22

Create Secondary Pixrect ... 23

Release Pixrect Resources ... 24

3.5. Single-Pixel Operations ... 24

Get Pixel V alue .. 24

Set Pixel V alue ... 24

3.6. Multi-Pixel Operations ~.. 25

RasterOp Source to Destination ... 25

RasterOps tlIrough a Mask .. 25

Replicating the Source Pixrect .. 26

Multiple Source to the Same Destination ... 27

Draw Vector ... 28

Draw Textured Polygon .. 28

Draw Textured or Solid Lines with Width ... 31

Draw Textured or Solid Polylines with Width .. 33

Draw Multiple Points ... 34

3.7. Colormap Access ... 34

Get Colonnap Entries ... 34

Set Colonnap Entries .. 35

Inverted Video Pixrects ... 35

3.8. Attributes for Bitplane Control .. 36

Get Plane Mask Attributes ... 36

Put Plane Mask Attributes ... 36

3.9. Plane Groups .. 37

Detennine Supported Plane Groups ... 37

Get Current Plane Group .. 37

-iv-

Contents - Continued

Set Plane Group and Mask .. 38

3.10. Double Buffering .. 38

Get Double Buffering Attributes ... 38

Set Double Buffering Attributes .. 39

3.11. Efficiency Considerations .. 40

Chapter 4 Text Facilities for Pixrects .. 43

4.1. Pixfonts and Pixchars .. 43

4.2. Operations on Pixfonts ... 44

Load a Font ... 44

Load Private Copy of Font .. 45

Default Fonts ... 45

Close Font ... 45

4.3. Text Functions ... 45

Pixrect Text Display .. 45

Transparent Text ... 45

Auxiliary Pixfont Procedures ... 46

Text Bounding Box ... 46

Unstructured Text ... 46

4.4. Example .. 47

Chapter 5 Memory Pixrects .. 51

5.1. The rnpr_data Structure .. 51

Example .. 52

5.2. Creating Memory Pixrects ... 53

Create Memory Pixrect ... 53

Create Memory Pixrect from an Image .. 53

Example .. 54

5.3. Static Memory Pixrects .. 54

5.4. Pixel Layout in Memory Pixrects .. 55

5.5. Using Memory Pixrects ... 55

Chapter 6 File I/O Facilities for Pixrects .. 59

-v-

Contents - Continued

6.1. Writing and Reading Raster Files .. 59

Run LengtlI Encoding ... 59

Write Raster File ... 60

Read Raster File .. 62

6.2. Details of the Raster File Fonnat ... 63

6.3. Writing Parts of a Raster File ... 64

Write Header to Raster File .. 64

Initialize Raster File Header ... 65

Write Image Data to Raster File ... 65

6.4. Reading Parts of a Raster File .. 65

Read Header from Raster File ... 65

Read Colonnap from Raster File ... 66

Read Image from Raster File ... 66

Read Standard Raster File ... 66

Appendix A Writing a Pixrect Driver .. 69

A.l. What You'l1 Need .. 69

A.2. Implementation Strategy .. 70

A.3. Files Generated .. 70

Memory Mapped Devices .. 71

A.4. Pixrect Private Data .. 71

A.5. Creation and Destruction ... 72

Creating a Primary Pixrect .. 72

Creating a Secondary Pixrect ... 75

Destroying a Pixrect .. 76

The pr_makefun () Operations Vector .. 76

A.6. Pixrect Kernel Device Driver .. 77

Configurable Device Support ... 77

O:pen ... 83

Mmap ... 83

Ioctl ... 84

Close ... 85

Plugging Your Driver into UNIX .. 86

-vi-

Contents - Continued

A.7. Access Utilities .. 86

A.8. Rop.. 87

A.9. Batchrop ... 87

A.I0. Vector ... 87

Importance of Proper Dipping ... 87

A.ll. Colonnap .. 87

Monochrome .. 87

A.12. Attributes .. 87

Monochrome .. 88

A.13. Pixel... 88

A.14. Stencil... 88

A.15. Polygon .. 88

Appendix B Pixrect Functions and Macros ... 91

B .1. Making Pixrects ... 91

B.2. Text ... 92

B.3. Raster Files ... 94

B.4. Memory Pixrects ... 95

B.S. Colormaps and Bitplanes ... 96

B.6. Rasterops ... 98

B.7. Double Buffering .. 100

Appendix C Pixrect Data Structures ... 103

Appendix D Curved Shapes .. 109

Index ... 115

-vii-

Tables

Table 1-1 Pix.rect Header Files ... 7

Table 2-1 Routines that call pr _flip () ... 14

Table 3-1 Argument Name Conventions .. 19

Table 3-2 Useful Combinations of RasterOps ... 20

Table 3-3 pr _ db I_get () Attributes ... 39

Table 3-4 pr _ db 1_ set () Attributes ... 40

Table B-1 Pixrects .. 91

Table B-2 Text ... 92

Table B-3 Raster Files ... 94

Table B-4 Memory Pixrects ... 95

Table B-5 Colonnaps and Bitplanes .. 96

Table B-6 Rasterops .. 98

Table B-7 Double Buffering ... 100

Table C-1 Pixrect Data Structures > .. ,., , ;,,>:,',

-lX.-

Figures

Figure 1-1 RasterOp Function ... 5

Figure 1-2 Basic Example Program ... 6

Figure 2-1 Byte and Bit Ordering in the 80386, 680XO and SP ARC 11

Figure 3-1 Structure of an op Argument .. 19

Figure 3-2 Example Program using pr_polygon_2 () 30

Figure 3-3 Four Polygons Drawn with pr_polygon_2 () 31

Figure 4-1 Character and pc_pr Origins .. 44

Figure 4-2 Example Program using Text .. 47

Figure 5-1 Example Program using Memory Pixrects .. 53

Figure 5-2 Example Program using Memory Pixrects .. 54

Figure 6-1 Example Program using pr_dump ()

Figure 6-2 Example Program using pr_load ()

Figure D-1 Typical Trapezon , , .. , "~:,.;·";;"h,.'~+;"'~;.;;~+., ..

Figure D-2 Some Figures Drawn by pr traprop () .. ::'.,~,,' .. , .. ; •••. ;;;;;,.,.;·.:;.;:.: 'i: , ::·

Figure D-3 Trapezon with Clipped Falls _",' +; ... , •.• :;:;:;:;,;;~ ; ;;';;;;;.,._';,,>:

Figure D-4 Example Program using pr

-xi-

62

63

109

1
Introduction

Introduction ... 3

Limitations .. 3

1.1. Overview .. 3

1.2. Important Concepts .. 4

1.3. Using Pixrects .. 5

Primary Pixrect 5

Secondary Pixrect ... 6

Basic Example .. 6

Compiling .. 6

Pixrect lint Library ... 7

1.4. Pixrect Data Structures ... 7

Limitations

1.1. Overview

1
Introduction

This document describes the Pixrect graphics library, a set of routines that mani
pulate rectangular arrays of pixel values, on screen or in memory. These routines,
called RasterOps, are common to all Sun workstations. With these routines,
application programs can manipulate the bit-mapped display on any Sun Works
tation.

From a software perspective, the Pixrect graphics library is a low-level graphics
package, sitting on top of the display device drivers. For most applications, the
higher-level abstractions available in Sun View and the Sun graphic standards
libraries are more appropriate. For more infonnation on these other packages,
see the preface of this manual for references.

The Pixrect library is intended only for accessing and manipulating two
dimensional, rectangular regions of a display device in a device-independent
fashion.

Windows
The Pixrect library does not support overlapping windows. These can be
implemented with memory pixrects by the application, but the Sun View
package already offers a sophisticated, easy-to-use programming interface
for this purpose.

Input Devices
The Pixrect library does not have input functions. An application can use
the input functions available in Sun View , or make system calls directly to the
raw input devices (see mouse(4) and kbd(4».

This manual is divided into chapters that describe the major features of the Pix
rect library. This chapter provides an introduction to the Pixrect library, defining
important tenns and concepts, and describing the resources available to the pro
grammer. Chapter 2 explains how to write Pixrect programs that can run on all
Sun systems. Chapter 3 covers the operations for opening and manipulating pix
rects. Chapter 4 describes the text facilities in the Pixrect library. Chapter 5
discusses memory pixrects, rectangular regions of virtual memory that are mani
pulated as pixrects. Chapter 6 explains the file liD functions in the Pixrect
library. These functions can be used to store and. retrieve pixrects from disk files.
Appendix A is a implementation guide for writing pixrect device drivers.
Appendix B is a list of the June tions and macros in the Pixrect library. Appendix

+~t!! 3 Revision A of 9 May 1988

4 Pixrect Reference Manual

1.2. Important Concepts

o · x

I
: : :

==!::::!::::~=~::::!:::::===::::::::::::=:::::::::::::::::: :
: : : : : .. -1····:····1····1····1····· .. ·•············•· .. ·•·····• •...•......
: I : : I

Y --. ·t···· ... ··t······---···············----·······
: : : :

I I

C is a list of types and structures in the Pixrect library. Appendix D describes
the curve facilities in Pixrect .

This section describes some of the important concepts behind the Pixrect library.
It is not intended to be complete but rather to explain some features of the Pixrec1
library that make it unique among graphics packages.

Screen Coordinates
The screen coordinate system is two dimensional; the origin is in the upper
left corner, with x and y increasing to the right and down. The coordinates
describing pixel locations in a pixrect are integers ranging from 0 to the
pixrect's width (for x) or height (for y) minus 1. The maximum value for x
and y is 32767.

Pixels
A pixel is the smallest individual picture element that can be displayed on
the screen. A pixel has an address (corresponding to an x and y coordinate)
used to specify it, and a value, which controls the color displayed. The pixel
address can be absolute (its screen coordinate) or relative to some rectangu
lar sub-region of the screen. A pixel has a depth (the number of bits it con
tains) which detennines the range of colors it can display. A single bit pixel
can be only black or white, and are used in monochrome displays. Pixels
with more bits can display grayscale values or color. The most common
pixel depths are one, eight, sixteen, or twenty-four bits per pixel.

Bitmaps
A bitmap is a rectangular region of screen space. Each pixel on the screen
corresponds to some number of bits in the screen memory. The value of
these bits detennines the color of the corresponding pixel. These groups are
arranged in an array that can be accessed using the x and y coordinates of the
corresponding pixel. A pixrect bitmap can be up to 32767 pixels wide, and
up to 32767 pixels high.

The word "bitmap" can describe the the type of display, indicating it uses
raster (rather than vector) display technology, or more commonly, to the
images stored in bitmap fonnat. Examples of the second type of bitmap
include the screen image, window images, the cursor, or icons.

RasterOps
RasterOps are the legal operations available for modifying pixrects. A
rasterop is an operation which takes two bitmaps as arguments: a source bit
map, and the current state of the destination bitmap. The RasterOp then per
fonns a boolean operation using these arguments, pixel by pixel, writing the
final result to the destination bitmap. The source bitmap may be pattern, or
defined as a region of some constant value.

The pr _ stencil () function is the only RasterOp that breaks this rule.
Along with the source and destination bitmaps, this function takes an addi
tional argument, a texture bitmap, and combines the three in a boolean
operation. See Chapter 3 for a more detailed explanation of the RasterOp
functions available in the Pixrect graphics library .

• \sun
• microsystems

Revision A of 9 May 1988

Figure 1-1

1.3. Using Pixrects

Primary Pixrect

RasterOp Function

Pixrects

Source
Before

Destination
Before

Destination
After

Chapter 1 - Introduction 5

r---------,
I I

: Texture :
I I
L __ :;::-_----J

A pixreet is the graphics analogy to an instance of a class used in object
oriented programming languages. It consists of bitmap data and the opera
tions that can be performed on that data. The implementation of the opera
tions and the data itself is hidden from the programmer (the only exception
is memory pixrects, whose bitmap data can be directly manipulated. See
Chapter 5 for details.) The pixrect is manipulated by using one of the func
tions in the pixrect library valid for that pixrect (analogous to sending it a
message in object-oriented Programming.)

A pixrect object can reside on a variety of devices; including different types of
graphics displays, memory, and printers. Since the available operations are the
same regardless of the device the pixrect resides in, the programmer can ignore
device particularities while writing the application.

The general procedure for drawing pictures using pixrects takes three steps:

1. Open a pixrect object.

2. Draw a picture into the pixrect, using the set of valid operations:

pryut ()

pr_vector ()

pr_rop ()

etc.

3. Close the pixrect.

If the pixrect resides on a display device, the result of each drawing operation
becomes visible immediately. Opening a display pixrect will not erase the previ
ous contents of the display. Closing the pixrect also has no effect on the contents
of the display.

Revision A of 9 May 1988

6 Pixrect Reference Manual

Secondary Pixrect A secondary pixrect is a proper subset of its parent pixrect. The results of draw
ing operations to a secondary pixrect are displayed immediately, if the parent's
pixrect is visible. A secondary pixrect can simplify programming, by allowing
the programmer to isolate a section of a larger pixrect, sending drawing com
mands relative to that pixrect, rather than to its parent. Pixrects can be nested to
any depth.

Memory Pixrect A memory pixrect allocates a section of memory in the workstation. Unlike a
primary or secondary pixrect, a memory pixrect does clear its bitmap to zeros
when opened. Operations done on memory pixrects don't show on the screen.
An image in a memory pixrect can be copied to a display pixrect, allowing a sim
ple fOIm of double buffering. A memory pixrect can also be used a buffer or
scratch pad, storing bitmaps for later use, or to save the results of previous opera
tions.

Basic Example The following example draws a diagonal line near the upper comer of the
workstation's default display.

Compiling

Figure 1-2 Basic Example Program

#include <pixrect/pixrect_hs.h>

main ()
{

Pixrect *screen;

screen = pr_open(n/dev/fbn);
pr_vector(screen, 10, 20, 70, 80, PIX_SET, 1);
pr_close(screen);

The header file <pixrect/pixrect_hs. h> #=includes all of the header
files necessary for working with the functions, macros and data structures in the
Pixrect library.

The example program can be compiled as follows:

This command line compiles the program in line. c. The -lpixrect option
causes the C compiler to link the Pixrect library to the application program and
create an executable file named line.

The sample program can be executed by the SunOS C-shell:

A diagonal line will appear in the upper left hand comer of the screen.

Revision A of 9 May 1988

Pixrect lint Library

1.4. Pixrect Data
Structures

Table 1-1

Chapter 1 -Introduction 7

Pixrectprovides a lint(l) library, which allows lint to check your program
beyond the capabilities of the C compiler. Using the -lpixrect flag provides
lint with pixrect-specific infonnation that prevents bogus error messages. You
could use lint to check a program called box. c with command like this:

Note that most of the error messages generated by lint are warnings, and may
not necessarily have any effect on the operation of the program. For a detailed
explanation of lint, see the discussion on lint in the C Programmer's Guide
manual.

All of the important Pixrect data structures are stored in the header files shown in
the table below. They can be found in the /usr/ include/pixrect direc
tory. Use these files to look up the exact definition of a function or macro you're
not sure about.

Pixrect Header Files

pixrect_hs.h
pixrect.h
memvar.h
pixfont.h
traprop.h
pr_line.h
prylanegroups.h
pr util

#includes all pixrect files
most pixrect definitions
memory pixrects
text operations
traprop definitions
defines wide and textured vectors
frame buffers
internal definitions

Revision A of 9 May 1988

2
Portability Considerations

Portability Considerations ... 11

2.1. Byte Ordering .. 11

Byte Swapping and Bit Flipping .. 11

2.2. Flipping Pixrects .. 13

The pr_flip () Routine ... 13

Guidelines for Sun386i Systems .. 14

2
Portability Considerations

This chapter addresses Pixrect portability between different Sun architectures.
Since Pixrects is a low-level graphics library, it is not completely device
independent. Currently, the only Sun architecture that brings up porting issues is
Sun386i, the first Sun system to use the Intel 80386 processor. The pixrect
software has been designed to minimize porting difficulties; nevertheless, there
are some portability factors to take into consideration.

The sections below describe the portability problems caused by the Sun386i sys
tem, and their solutions.

2.1. Byte Ordering The 80386, 68020, and SPARC are 32-bit processors. This means that all data read
or written by these processors pass through 32-bit wide registers. The order in
which the data - the bytes and bits - are arranged in the 80386's registers
differs from the 680XO and SP ARC families. These differences are illustrated in
the figure below:

Figure 2-1 Byte and Bit Ordering in the 80386, 680XO and SPARe

Byte Swapping and Bit
Flipping

80386
3130292827262524 23 222120 19181716 1514131211100908 07060504030201 00

Byte n+3 I Byte n+2 Byte n+l I Byte n
Word n+l Word n

Doubleword n

680XO and SPARe
3130292827262524 23222120 19181716 1514131211100908 07060504030201 00

Byte n I Byte n+l Byte n+2 I Byte n+3

Word n Word n+l

Longword n

The Sun386i is based on the 80386 processor, which handles byte ordering dif
ferently than 680XO and SPARC processors. This affects the Sun386i's interpreta
tion of graphics files - font files, icon files, cursor files, and screen dumps -
generated by the other two architectures. Typically, frame buffers are accessed
as if they were word (i.e., 16-bit integer) devices, or as an array of words.
Because the byte ordering of words is different on the two architectures,

11 Revision A of 9 May 1988

12 Pixrect Reference Manual

transferring a graphics file from one to the other will usually result in a garbled
picture.

On 680XO monochrome frame buffer, the bits are shifted out of the word starting
at the most significant bit, bit 15. The upper left-most pixel on the screen is bit
15, word 0 of the frame buffer memory. The next pixel, scanning from left to
right as you view the screen, is bit 14. The pixel to the right of the first 16 pixels
displayed comes from word 1, bit 15. When interpreted as integers, the most
significant and least significant bytes are:

680XO
MSD

word 0 15 14 13 121110 9 8

word 1 15 14 13 12 11 10 9 8

word n 15 14 13 12 1110 9 8

LSD

76543210

76543 2 1 0

76543210

For example, the integer (word) value Ox370D in word 0 would show up on the
680XO and SP ARC monochrome frame buffer as the pixel sequence:
oo •• O ••• DDDO •• O •.

On the 80386 monochrome frame buffer, the bits are shifted out of the word from
the least significant bit, bit 0, to the most, bit 15:

word 0

word 1

wordn

80386
LSD MSD

01234567 8 9 10 11 12 13 14 15

o 123 4 5 6 7 8 9 10 11 12 13 14 15

o 123 4 5 6 7 8 9 10 11 12 13 14 15

For example, the integer (word) value Ox370D in word 0 would show up on the
screen with the 80386 frame buffer as the pixel sequence:
.0 •• 0000 ••• 0 •• 00.

The bytes are backward and the bits are in the opposite order. Because graphics
files are usually generated as an array of words, the bytes are backward for a typi
cal 80386 frame buffer when handling files generated by 680XO and SP ARC
machines. Eight-bit color frame buffers represent each pixel as a byte of data, so
the bit order is already correct; conversion only requires byte swapping.

For monochrome frame buffers, each pixel is represented by a single bit; scan
ning from right to left presents a bit flip and byte swap problem. The right-most
(low-order) bit of a bit field now represents the left-most pixel on the screen.

Because of the large number of existing files using it, the 680XO/SP ARC format is
the standard format for describing graphics images on all Sun systems. This
eliminates the need for two sets of files in a mixed-architecture network. Conse
quently, if you are porting programs to the Sun386i from other Sun systems -
programs that access the frame buffer through Sun View and Pixrect - byte and

~~sun ~ microsystems
Revision A of 9 May 1988

2.2. Flipping Pixrects

The pr _flip () Routine

Chapter 2 - Portability Considerations 13

bit ordering is handled automatically at run time. The 680XO/SP ARC fonnat
images are converted to 80386 fonnat.

Sun386i systems convert 680XO/SP ARC fonnat images into 80386 fonnat just
before they are used. The procedure that converts them is a new Pixreet routine,
pr _flip () , found only in the Sun386i version of Pixreet.

The internal data of a pixrect is referenced by its p r _ data field.

typedef struct pixrect {
struct pixrectops *pr_opsi
struct pr_size pr_sizei
int pr_depthi
caddr t pr_datai /*pointer to mpr*/

Pixrect;

If its a memory pixrect, the structure referenced by pr_data is:

struct mpr_data
int
short
struct
short
short

} i

md_linebytesi
*md_imagei
pr-pos md_offseti
md-primarYi
md_flagsi /*flag bits*/

There are two new flag bits in the md _flags word, to centrol the operation of
pr_flip (). The flags MP_REVERSEV1DEO, MP_D1SPLAY, and
MP_PLANEMASK are now followed by MP_1386 and MP_STAT1C. If true,
MP _ 1386 indicates that the pixrect in question is already in Sun386i (80386)
display fonnat, i.e., it has already been modified by pr_flip (). If
MP _ S TA TIC is true, the pixrect in question is a static pixrect. (In practice, this
flag is sometimes set for other purposes as well.)

The pr _flip () routine operates on individual pixrects. It takes one argument,
a pointer to a pixrect structure, and returns void. When called, it first checks to
see if the pixrect has already been flipped (MP _ 1386 == TRUE). Ifnot, it flips
the image area, 16 bits at a time. First the bit order is reversed, then the bytes are
swapped. It will not flip a display pixrect or a secondary pixrect unless it is static
(MP_STAT1C == TRUE).

When a pixrect is modified by a pr _ f 1 i P () call, the changes are limited to the
pixrect's image area and the state of the two new md _ flag s. The size of the
pixrect structures remains unaltered. The new md _flags are ignored by pro
grams running under 680XO or SP ARC.

Pixrects are flipped as they are manipulated by any of the Pixreet routines listed
below. As an application runs, the rate of pixrect flipping usually declines, since
most applications develop a "working set" of active pixrects. Pixrects that are

Revision A of 9 May 1988

14 Pixrect Reference Manual

not used are not flipped.

The routines listed contain checkpoints, where pixrects used in the routines'
arguments are examined and flipped (if necessary) by pr_flip () :

Table 2-1 Routines that call p r _ f 1 i p ()

Guidelines for Sun386i
Systems

mem_rop ()
mem_create ()
pr _region ()
pr _vector ()
pr_dump_init ()
pf_open ()
pf_open_private(}
pr_stencil ()
pr_batchrop ()
pr _ replrop ()
pr_get ()
pryut ()
pr_load(}
pr_dump ()

icon_display ()
DEFINE ICON FROM IMAGE

NOTE Icons are either static or created with icon_load (). Static icons can be
created with DEF INE _ ICON_FROM _IMAGE Both of these Sunview features are
described in the Sun View 1 Programmer's Guide.

Fonts are converted by thepf_open () orpf_open_private () routines.
No other conversions are allowed. The libraries work only with the existing
standard font files.

1. Check code that draws manually into a pixrect. It may not work properly on
a Sun386i without modification. The modification required depends on the
particulars of the drawing operation.

2. Manual operations (not involving libpixrect routines) should be per
fonned on a pixrect before converting it to 80386 format.

3. mem _create () creates an 80386-format pixrect on Sun386i machines.

4. memyoint does not set the MP _1386 flag. The pixrect is still marked
not flipped.

5. To create an icon, use mem _po in t () to make a pixrect connected to an
existing static image or an image that you have created dynamically.

6. Use DEFINE_ICON_FROM_lMAGE (SunView) to create static icons. All
static icons are initially created in 680XO/SP ARC format. They are converted
to 80386 format when they are involved in a raster operation.

Revision A of 9 May 1988

3
Pixrect Operations

Pixrect Operations ... 17

3.1. The pixrectops Structure ... 18

3.2. Callings Pixrect Procedures ... 19

Argument Conventions .. 19

Pixrect Errors .. 19

3.3. The Op Argument .. 19

Specifying a RasterOp Function .. 20

Specifying a Color .. 21

Controlling Clipping in a RasterOp ... 21

Examples of Complete Op Argument Specification 21

3.4. Creation and Destruction of Pixrects ... 22

Create a Primary Display Pixrect .. 22

Getting Screen Parameters ... 22

Create Secondary Pixrect ... 23

Release Pixrect Resources ... 24

3.5. Single-Pixel Operations ... 24

Get Pixel V alue .. 24

Set Pixel Value 24

3.6. Multi-Pixel Operations ... 25

RasterOp Source to Destination 25

RasterOps tl1rough a Mask .. 25

Replicating the Source Pixrect 26

Multiple Source to the Same Destination ... 27

Draw Vector ... 28

Draw Textured Polygon .. 28

Draw Textured or Solid Lines with Width ... 31

Draw Textured or Solid Polylines with Width .. 33

Draw Multiple Points ... 34

3.7. Colonnap Access ... 34

Get Colonnap Entries ... 34

Set Colonnap Entries .. 35

Inverted Video Pixrects ... 35

3.8. Attributes for Bitplane Control .. 36

Get Plane Mask Attributes ... 36

Put Plane Mask Attributes ... 36

3.9. Plane Groups .. 37

Detennine Supported Plane Groups ... 37

Get Current Plane Group .. 37

Set Plane Group and Mask .. 38

3.10. Double Buffering .. 38

Get Double Buffering Attributes ... 38

Set Double Buffering Attributes .. 39

3.11. Efficiency Considerations 40

3
Pixrect Operations

Pixrect objects contain procedures to perform the following operations:

o create or destroy a pixrect (pr _open () , pr_ region () and
pr_destroy (»).

o read and write the values of single pixels within a pixrect (pr _get and
pr_put ()).

o use RasterOp functions to simultaneously affect multiple pixels within a pix
rect:

pr _ rop write from a source pixrect to a destination pixrect,

pr_stencil write from a source pixrect to a destination pixrect through
a mask pixrect,

pr _ replrop replicate a constant source pixrect pattern throughout a des
tination pixrect,

pr_batchrop
write a batch of source pixrects to a sequence of locations
within a single destination pixrect,

pr_vector, pr_line
draw a straight line in a pixrect,

pryolygon_2
draw a polygon in a pixrect.

o draw text (described in chapter 4, Text Facilities for Pixrects).

o read write the display's colonnap (pr_getcolormap () ,
pr_putcolormap(»)

o select particular bit-planes in a color pixrect's bitmap for manipulation
(pr_getattributes (),pr_putattributes (»)

o control hardware double-buffering (pr _ dbl_get () and
pr_dbl_set (»).

From an object-oriented viewpoint, all pixrects contain both data and procedures
to manipulate its data. This allows pixrects to be device-independent; the pixrect
uses the function appropriate for its environment when asked to perform an
operation.

17 Revision A of 9 May 1988

18 Pixrect Reference Manual

3.1. The pixrectops
Structure

From the programmers point of view, pixrects are manipulated using procedure
calls embedded in application program. Internally, the pixrect procedures that
act the same for all pixrects are implemented by a single procedure for efficiency.
The device-dependent calls are macros that access the appropriate procedure
within the pixrect object. This is roughly equivalent to passing the pixrect object
a message, which causes the pixrect to invoke the appropriate method (pro
cedure).

Each pixrect object includes an internal pointer to a pixrectops structure, that
holds the addresses of the particular device-dependent procedures appropriate to
that pixrect. Clients may access these procedures in a device-independent
fashion, by calling the procedure through the pixrectops structure, rather
than executing the procedure directly. To simplify this indirection, the Pixreet
library provides a set of macros which look like simple procedure calls to generic
operations, which expand to invocations of the corresponding procedure in the
pixrectops structure.

In this manual, the description of each operation will specify whether it is a true
procedure or a macro, since some of the arguments to macros are expanded mul
tiple times, and could cause errors if the arguments contain expressions with side
effects. (In facL, there are two sets of parallel macros, which differ only in how
their arguments use the geometry data structures.)

struct pixrectops {
int (*pro_rop) ();

} ;

int (*pro_stencil) ();
int (*pro_batchrop) ();
int (*pro_nop) () ;
int (*pro_destroy) ();
int (*pro _get) () ;
int (*proyut) () ;
int (*pro_vector) ();
Pixrect * (*pro_region) ();
int (*proyutcolormap) ();
int (*pro_getcolormap) ();
int (*proyutattributes) ();
int (*pro_getattributes) ();

The pixrectops structure is a collection of pointers to the device-dependent
procedures for a particular device. All other operations are implemented by
device-independent procedures. From the object oriented view, this structure
provides the procedural interface to the pixrect object, translating messages to
methods. This structure is designed.to allow expansion; additional functions
may be added in future releases.

Revision A of 9 May 1988

3.2. Callings Pixrect
Procedures

Argument Conventions

Table 3-1

Pixrect Errors

3.3. The Op Argument

Figure 3-1

Chapter 3 - Pixrect Operations 19

A Pixrect procedure nonnally expects a number of arguments. These arguments
can include: a pointer to the pixrect being manipulated, the dimensions and offset
of a subregion within a pixrect, an ops argument describing the operation to be
perfonned, among others. This section describes these arguments in detail, and
the results returned by the pixrect procedure.

In this manual, the conventions listed in Table 3-1 are used in naming the argu
ments to pixrect operations.

Argument Name Conventions

Argument Meaning
dsuffix destination
ssuffix source
prefixx offset to left edge of pixrect
prefixy offset to top edge of pixrect
prefixw width of pixrect (0 to 32767)
prefixh height of pixrect (0 to 32767)

The x and y values given to functions that operate on a pixrect must be within
the boundaries of that pixrect, and be in the range 0 to 32767.

Pixrect operations indicate an error condition in one of two ways, depending on
the type of value the operation nonnally returns. Pixrect operations which return
a pointer to a structure return NULL when they fail. For pixrect that return an
integer status code, a return value of P I X_ERR (-1) indicates failure, while 0
indicates the procedure completed successfully. The section describing each pix
rect procedure makes note of any exceptions to this convention.

The multi-pixel operations described in the next section all use a unifonn
mechanism for specifying the operation which is to produce destination pixel
values. This operation is given in the op argument and includes several com
ponents:

o A single constant source value may be specified as a color in bits 5 - 31 of
the op argument.

o A RasterOp function is specified in bits 1 - 4 of the op argument.

o The clipping which is nonnally perfonned by every pixrect operation may
be turned off by setting the PIX_DONTCLIP flag (bit 0) in the op.

Structure of an op Argument

color
apr II

31 15 5 1

Revision A of 9 May 1988

20 PixTect Reference Manual

Specifying a RasterOp
Function

Table 3-2

Four bits of the opr are used to specify one of the 16 distinct logical functions
which combine monochrome source and destination pixels to give a mono
chrome result. This encoding is generalized to pixels of arbitrary depth by speci
fying that the function is applied to corresponding bits of the pixels in parallel.
Some functions are much more common than others; the most useful are
identified in Table 3-2.

A convenient and intelligible fonn of encoding the function into four bits is sup
ported by the following definitions:

*define PIX SRC Ox18
*define PIX DST Ox14
*define PIX_NOT(op) (OxlE & (-(op»)

PIX_SRC and PIX_DST are defined constants, and PIX_NOT is a macro.
Together, they allow the desired function to be specified by performing the
corresponding logical operations on the appropriate constants. Note that
PIX_NOT must be used in all RasterOp operations; the ones complement (-)
operator will not work.

A particular application of these logical operations allows definition of
PIX_SET and PIX_CLR operations. The definition of the PIX_SET operation
that follows is always true, and hence sets the result:

The definition of the PIX _ CLR operation is aiways false, and hence clears the
result:

Other common RasterOp functions are defined in the following table:

Useful Combinations of RasterOps

Op with Value Result
PIX SRC write same as source argument -
PIX DST no-op same as destination argument
PIX SRC I PIX DST paint OR of source and destination -
PIX SRC & PIX DST mask AND of source and destination
PIX_NOT (PIX_SRC) & PIX DST erase AND destination with source negation -
PIX_NOT (PIX_DST) invert area negate the existing values
PIX SRC '" PIX DST inverting paint XOR of source and destination

Revision A of 9 May 1988

Specifying a Color

Controlling Clipping in a
RasterOp

Examples of Complete Op
Argument Specification

Chapter 3 - Pixrect Operations 21

A single color value can be encoded in bits 5-31 of the op argument. The follow
ing macro supports this encoding:

#define PIX_COLOR (color) «color) « 5)

Another macro extracts the color field from an encoded op:

(~#_d_e_f_l_'n_e __ p_I_X_-_O_P_C_O_L_O_R __ (_OP __) ______ (_(_O_P_) __ >_> __ 5_) ____________________ J

Note that the color is not part of the function component of the op argument and
should never be part of an argument to PIX_NOT.

The specified color is used by pixrect functions in two situations:

1. If the source pixrect argument is NULL, the rasterop source operand is taken
to an infinite rectangle of pixels with the specified color.

2. If the source pixrect has a depth of 1 bit and the destination pixrect has a
greater depth, the rasterop source operand is the specified color for each" 1 "
source pixel and zero for each "0" source pixel. A color of zero is treated as
a special case; it is converted to the maximum pixel value for the destination
pixrect.

If the destination pixrect has a depth of 1 bit, any nonzero color value is treated
as 1; for other depths less significant bits of the color value are used. If the desti
nation pixrect is 32 bits deep the encoded color is sign extended.

Pixrect operations nonnally clip to the bounds of the operand pixrects. Some
times this can be done more efficiently by the client at a higher level. If the
client can guarantee that only pixels which ought to be visible will be written, it
may instruct the pixrect operation to bypass clipping checks, thus speeding its
operation. This is done by setting the following flag in the op argument:

(~*_d_e_f_l_.n_e __ p_I_X_-_D_O_N_T_C __ L_I_P __ O_X_l __________________________________ ~J
The result of a pixrect operation is undefined and may cause a memory fault if
PIX_DONTCLIP is set and the operation goes out of bounds.

Note that the PIX_DONTCLIP flag is not part of the function component of
an op argument; it should never be part of an argument to P I X_NOT.

A very simple op argument will specify that source pixels be written to a desti
nation, clipping to bOLh operands:

A more complicated example could be used to flip the color of destination pixels
between two values wherever pixels in a 1 bit source pixrect are set, with clip
ping disabled for maximum performance:

.\sun ~ microsystems
Revision A of9 May 1988

22 Pixrect Reference Manual

3.4. Creation and
Destruction of Pixrects

Create a Primary Display
Pixrect

Getting Screen Parameters

op = (PIX_DST A PIX_SRC)
I PIX_DONTCLIP;

PIX_COLOR(colorl A color2) \

Pixrects are created by the procedures pr _open () and mem _create () , by
the procedures accessed by the macro pr_ region () , and at compile-time by
the macro mpr _ st at i c (). Pixrects are destroyed by the procedures accessed
by the macros pr_destroy () and pr_close (). mem_create () and
mpr_static () are discussed in Chapter 5; the rest of these are described here.

Pixrect *pr_open(devicename)
char *devicename;

The properties of a non-memory pixrect depend on an underlying UNIX device.
Thus, when creating the first pixrect for a device you need to open it by a call to
pr _open (). The default device name for your display is / dev / fb (fb stands
forJrame buffer). Any other device name may be used provided that it is a
display device, the kernel is configured for it, it exists in the / dev directory, and
it has pixrect support. For example; / dev /bwoneO, / dev /bwtwoO,
/dev/cgoneO or /dev/cgtwoO all can exist on a Sun Workstation, and can
be opened with pixrects.

pr _open () does not work for creating a pixrect whose pixels are stored in
memory; that function is served by the procedure mem _ c rea t e () , discussed in
Chapter 5.

pr _open () returns a pointer to a primary P ixrect structure which covers the
entire surface of the named device. If it cannot, it returns NULL, and prints a
message on the standard error output.

In order to write portable programs, it is important to read the screen characteris
tics directly, rather than assuming them. The pixrect returned by pr _open ()
contains this information. The two most important values are the dimensions of
the screen, and the depth (number of bits) of each pixel. The code sample below
opens a screen pixrect, then extracts the width, height and depth (in bits) of the
screen.

~\sun ~ microsystems
Revision A of 9 May 1988

Chapter 3 - Pixrect Operations 23

#include <pixrect/pixrect_hs. h> include the proper definitions
#include <stdio.h>

main ()
{

P ixrect * screen, *pr _open () i screen points to screen pixrect
int height, width, depth; variables to make things clearer

screen

width
height
depth

p r _ open (n / dev / fb n) i open the pixrect

screen->pr_size.xi
screen->pr_size.y;
screen->pr_depthi

extract the data in pr _size;
width and height are in pixels
get depth in bits

(void)printf(nwidth = %d, height = %d, bits/pixel %dO,
width, height, depth) ; display result

(void)pr_close(screen); close the pixrect

Create Secondary Pixrect #define Pixrect *pr_region(pr, x, y, w, h)
Pixrect *pr;
int x, y, w, hi

#define Pixrect *prs_region(subreg)
struct pr_subregion subregi

Given an existing pixrect, it is possible to create another pixrect which refers to
some or all of the pixels in the parent pixrect. This secondary pixrect is created
by a call to the procedures invoked by the macros pr _region () and
prs_region ().

The existing pixrect is addressed by pr; it may be a pixrect created by
pr _open () ,mem _create () or mpr_ stat ic () (a primary pixrect); or it
may be another secondary pixrect created by a previous call to a region opera
tion. The rectangle to be included in the new pixrect is described by x, y, w and
h in the existing pixrect; (x, y) in the existing pixrect will map to (0,0) in the
new one. prs_region () does the same thing, but has all its argument values
collected into the single structure subreg. Each region procedure returns a
pointer to the new pixrect. If it fails, it returns NULL.

If an existing secondary pixrect is provided in the call to the region operation, the
result is another secondary pixrect referring to the underlying primary pixrect;
there is no further connection between the two secondary pixrects. Generally, the
distinction between primary and secondary pixrects is not important; however,
no secondary pixrect should ever be used after its primary pixrect is destroyed.

~~sun ~~ microsystems
Revision A of 9 May 1988

24 Pixrect Reference Manual

Release Pixrect Resources

3.5. Single-Pixel
Operations

Get Pixel Value

Set Pixel Value

#"define pr_close(pr)
Pixrect *pr;

#"define pr_destroy (pr)
Pixrect *pri

#"define prs_destroy (pr)
Pixrect *pri

The macros pr_close (), pr_destroy () and prs destroy () invoke
device-dependent procedures to destroy a pixrect, freeing resources that belong
to it. The procedure returns 0 if successful, P IX_ERR if it fails. It may be
applied to either primary or secondary pixrects. If a primary pixrect is destroyed
before secondary pixrects which refer to its pixels, those secondary pixrects are
invalidated; attempting any operation but pr _destroy () on them is an error.
The three macros are identical; they are all defined for reasons of history and
stylistic consistency.

The next two operations manipulate the value of a single pixel.

#"define pr_get(pr, x, y)
Pixrect *pri
int x, Yi

#"define prs_get(srcprpos)
struct pr-prpos srcprpOSi

The macros pr _get and prs _get invoke device-dependent procedures to
retrieve the value of a single pixel. pr indicates the pixrect in which the pixel is
to be found; x and y are the coordinates of the pixel. For prs_get, the same
arguments are provided in the single struct srcprpos. The value of the pixel is
returned as a 32-bit integer; if the procedure fails, it returns P IX_ERR.

#"define pr_put(pr, x, y, value)
Pixrect *pri
int x, y, value;

#"define prs-put(dstprpos, value)
struct pr-prpos dstprposi
int valuei

The macros pryut () and prs_put () invoke device-dependent procedures
to store a value in a single pixel. pr indicates the pixrect in which the pixel is to
be found; x and yare the coordinates of the pixel. For pr s yut () , the same
arguments are provided in the single struct dstprpos. value is truncated on
the left if necessary, and stored in the indicated pixel. If the procedure fails, it
returns PIX ERR.

~\sun ~~ microsystems
Revision A of 9 May 1988 .

Chapter 3 - Pixrect Operations 25

3.6. Multi-Pixel Operations The following operations all apply to multiple pixels at one time: pr _ rop () ,
pr_stencil(),pr_replrop(),pr_batchrop(),pr_polygon_2(),
and pr _vector (). With the exceptions of pr _ vector () and

RasterOp Source to
Destination

RasterOps through a Mask

pr yolygon _ 2 () , they refer to rectangular areas of pixels. They all use a
common mechanism, the op argument described in the previous section, to
specify how pixels are to be set in the destination. Appendix D. describes the
pr _ traprop () curve rendering function.

*define pr_rop(dpr, dx, dy, dw, dh, op, spr, sx, sy)
Pixrect *dpr, *spri
int dx, dy, dw, dh, op, sx, SYi

*define prs_rop(dstregion, op, srcprpos)
struct pr_subregion dstregioni
int 0Pi
struct pr-prpos srcprpOSi

The pr _ rop () and pr s _ rop () macros invoke device-dependent procedures
that perfonn the indicated raster operation from a source to a destination pixrect.
dpr addresses the destination pixrect, whose pixels will be affected; (dx, dy) is
the origin (the upper-left pixel) of the affected rectangle; dw and dh are the
width and height of that rectangle. spr specifies the source pixrect, and
(sx, sy) an origin within it. spr may be NULL, to indicate a constant source
specified in the op argument, as described previously; in this case sx and sy are
ignored. The op argument specifies the operation which is performed; its con
struction is described in preceding sections.

pr _ rop () is the only pixrect function that can have its source and destination
be overlapping areas of the same pixrect. Doing this with any other operation
generates an error.

For prs_rop (), the dpr, dx, dy, dw and dh arguments are all collected in a
pr_subregion structure.

Raster operations are clipped to the source dimensions, if those are smaller than
the destination size given. pr _ rop () procedures return P IX_ERR if they fail,
o if they succeed.

Source and destination pixrects generally must be the same depth. The only
exception allows monochrome pixrects to be sources to a destination of any
depth. In this case, source pixels = 0 are interpreted as 0 and source pixels = I
are written as the color value from the op argument. If the color value in the op
argument is 0, source pixels = 1 are written as the maximum value which can be
stored in a destination pixel.

See the example program in Figure 5-2 for an illustration of pr _ rop () .

.~sun ~ microsystems
Revision A of 9 May 1988

26 Pixrect Reference Manual

*define pr_stencil(dpr, dx, dy, dw, dh, op,
stpr, stx, sty, spr, sx, sy)
Pixrect *dpr, *stpr, *spr;
int dx, dy, dw, dh, op, stx, sty, sx, sy;

*define prs_stencil(dstregion, op, stenprpos, srcprpos)
struct pr_subregion dstregion;
int op;
struct pr-prpos stenprpos, srcprpos;

The pr_stencil and prs_stencil macros invoke device-dependent pro
cedures that perform the indicated raster operation from a source to a destination
pixrect only in areas specified by a third (stencil) pixrect. pr _stencil () is
identical to pr _ rop () except that the source pixrect is written through a stencil
pixrect which functions as a spatial write-enable mask. The stencil pixrect must
be a monochrome memory pixrect. The indicated raster operation is applied only
to destination pixels where the stencil pixrect is non-zero. Other destination pix
els remain unchanged. The rectangle from (s x, s y) in the source pixrect sp r is
aligned with the rectangle from (stx, sty) in the stencil pixrect stpr, and
written to the rectangle at (dx, dy) with width dw and height dh in the destina
tion pixrect dpr. The source pixrect spr may be NULL, in which case the color
specified in op is painted through the stencil. Clipping restricts painting to the
intersection of the destination, stencil and source rectangles. pr _stencil ()
procedures return P I X_ERR if they fail, 0 if they succeed.

Replicating the Source Pixrect pr_replrop(dpr, dx, dy, dw, db, op, spr, sx, sy)
Pixrect *dpr, *spr;
int dx, dy, dw, dh, op, SX, sy;

#define prs_replrop(dsubreg, op, sprpos)
struct pr_subregion dsubreg;
struct pr-prpos sprpos;

Often the source for a raster operation consists of a pattern that is used repeat
edly, or replicated to cover an area. If a single value is to be written to all pixels
in the destination, the best way is to specify that value in the color component
of a pr _ rop () operation. But when the pattern is larger than a single pixel, a
mechanism is needed for specifying the basic pattern, and how it is to be laid
down repeatedly on the destination.

The pr _ replrop () procedure replicates a source pattern repeatedly to cover a
destination area. dpr indicates the destination pixrect. The area affected is
described by the rectangle defined by dx, dy, dw, dh. spr indicates the source
pixrect, and the origin within it is given by (s x, s y). The corresponding
pr s _ replrop () macro generates a call to pr _ replrop () , expanding its
dsubreg into the five destination arguments, and sprpos into the three source
arguments. op specifies the operation to be performed, as described above in
Section 3.3, The Op Argument.

The effect of pr _ replrop () is the same as though an infinite pixrect were
constructed using copies of the source pixrect laid immediately adjacent to each
other in both dimensions, and then apr _ rop () was performed from that source

.\sun
• microsystems

Revision A of 9 May 1988

Multiple Source to the Same
Destination

Chapter 3 - Pixrect Operations 27

to the destination. For instance, a standard gray pattern may be painted across a
portion of the screen by constructing a pixrect that contains exactly one tile of the
pattern, and by using it as the source pixrect.

The alignment of the pattern on the destination is controlled by the source origin
given by (sx, sy). If these values are 0, then the pattern will have its origin
aligned with the position in the destination given by (dx, dy). Another common
method 'of alignment preserves a global alignment with the destination, for
instance, in order to repair a portion of a gray. In this case, the source pixel
which should be aligned with the destination position is the one which has the
same coordinates as that destination pixel, modulo the size of the source pixrect.
pr _ replrop () will perform this modulus operation for its clients, so it
suffices in this case to simply copy the destination position (dx, dy) into the
source position (sx, sy).

pr _ replrop () returns P IX_ERR if it fails, or 0 if it succeeds. Internally
pr _ replrop () may use pr _ rop () procedures. In this case, pr _ rop ()
errors are detected and returned by pr _ replrop () .

#define pr_batchrop(dpr, dx, dy, op, items, n)
Pixrect *dpr;
int dx, dy, op, n;
struct pr-prpos items[];

#define prs_batchrop(dstpos, op, items, n)
struct pr-prpos dstpos;
int op, n;
struct pr-prpos items[];

Applications such as displaying text perform the same operation from a number
of source pixrects to a single destination pixrect in a fashion that is amenable to
global optimization.

The pr_batchrop and prs_batchrop macros invoke device-dependent
procedures that perform raster operations on a sequence of sources to successive
locations in a common destination pixrect. i terns is an array of pr yrpos
structures used by a pr _bat chrop () procedure as a sequence of source pix
rects. Each item in the array specifies a source pixrect and an advance in x and
y. The whole of each source pixrect is used, unless it needs to be clipped to fit
the destination pixrect. The advance is used to update the destination position,
not as an origin in the source pixrect.

pr_batchrop () procedures take a destination, specified by dpr, dx and dy,
or by dstpos in the case ofprs_batchrop () ; an operation specified in op,
as described in Section 3.3. and an array ofpryrpos addressed by the argu
ment items, and whose length is given in the argument n.

The destination position is initialized to the position given by dx and dy. Then,
for each item, the offsets given in pos are added to the previous destination
position, and the operation specified by op is performed on the source pixrect
and the corresponding rectangle whose origin is at the current destination posi
tion. Note that the destination position is updated for each item in the batch, and
these adjustments are cumulative.

~~sun
" microsystems

Revision A of 9 May 1988

28 Pixrect Reference Manual

Draw Vector

Draw Textured Polygon

The most common application of pr _bat chrop () procedures is in painting
text; additional facilities to support this application are described in Chapter 4.
Note that the definition ofpr _ batchrop () procedures supports variable-pitch
and rotated fonts, and non-Roman writing systems, as well as simpler text.

pr _ bat chrop () procedures return P IX_ERR if they fail, 0 if they succeed.
Internally pr_batchrop () may use pr_rop () procedures. In this case,
pr_rop () errors are detected and returned by pr_batchrop ().

#define pr_vector(pr, xO, yO, xl, yl, op, value)
Pixrect *pr;
int xO, yO, xl, yl, op, value;

#define prs_vector(pr, posO, posl, op, value)
Pixrect *pr;
struct pr-pos posO, posl;
int op, value;

The pr_ vector and prs_ vector macros invoke device-dependent pro
cedures that draw a vector one unit wide between two points in the indicated pix
rect. p r _ ve ct 0 r () procedures draw a vector in the pixrect indicated by p r ,
with endpoints at (xO, yO) and (xl, yl), or at posO and pos 1 in the case of
pr s _ ve ct 0 r (). Portions of the vector lying outside the pixrect are clipped as
long as PIX_DONTCLIP is 0 in the op argument. The op argument is con
structed as described in Section 3.3. and value specifies the resulting value of
pixels in the vector. If the color in op is non-zero, it takes precedence over the
value argument.

Any vector that is not vertical, horizontal or 45 degree will contain jaggies. This
phenomenon, known as aliasing, is due to the digital nature of the bitmap screen.
It can be visualized by imagining a vertical vector. Displace one endpoint hor
izontally by a single pixel. The resulting line will have to jog over a pixel at
some point in the traversal to the other endpoint. Balancing the vector guaran
tees that the jog will occur in the middle of the vector. pr _vector () draws
balanced vectors. (The technique used is to balance the Bresenham error term).
The vectors are balanced according to their endpoints as given and not as
clipped, so that the same pixels will be drawn regardless of how the vector is
clipped.

See the example program in Figure 1-2 for an illustration ofpr_ vector ().

pr_polygon_2(dpr, dx, dy, nbnds, npts, vlist, op, spr, sx, s~

Pixrect *dpr, *spr;
int dx, dy
int nbnds, npts[];
struct pr-Fos *vlist;
int op, sx, sy;

The pr yolygon _2 () function perfonns a raster operation on a polygonal
area of the destination pixrect. The source can be a pattern or a constant color
value .

• \sun
• microsystems

Revision A of 9 May 1988

Chapter 3 - Pixrect Operations 29

The destination polygon is described by nbnds, npts and vlist. nbnds is
the number of individual closed boundaries (vertex lists) in the polygon. A com
plex polygon may have one boundary for its exterior shape and several boun
daries delimiting interior holes. The boundaries may intersect themselves or
each other. Only those destination pixels having an odd winding number are
painted. That is, if any line connecting a pixel to infinity crosses an odd number
of boundary edges, the pixel will be painted.

For each of the nbnds boundaries, npt s specifies the number of points in the
boundary. The vlist array contains the boundary points for all of the boun
daries, in order. The total number of points in vIi s t is equal to the sum of the
nbnds elements in the npts array. pr yolygon_ 2 () automatically joins the
last point and first point to close each boundary. If any boundary has fewer than
3 points, pryolygon_2 () returns PIX_ERR.

The destination coordinates dx, and d y are added to each point in vIi s t, so the
same vlist can be used to draw polygons in different destination locations.

If the source pixrect spr is non-null, it is replicated in the x and y directions to
cover the entire destination area. The point (sx, sy) in this extended source
pixrect is aligned with the point (dx, dy) in the destination pixrect.

Polygons drawn by pryolygon_2 () are semi-open in the sense that on some
of the edges, pixels are not drawn where a vector drawn with same coordinates
would go. The reason is to allow identical polygons (same size and orientation)
to exactly tile the destination pixrect with no gaps and no overlaps.

In Figure 3-3 the edges AB and DA are drawn, whereas edges BC and CD aren't.

Revision A of 9 May 1988

30 Pixrect Reference Manual

Figure 3-2 Example Program using pryolygon_2 ()

#include <pixrect/pixrect_hs.h>

#define CENTERX(pr) «pr)->pr_size.x / 2)
#define NULLPR «pixrect *) 0)

static struct pr-pos
/*. 45 degrees */
vlistO[4] = { to,
/* 30 degrees */
vlist1[4] = { to,
/* 0 degrees */
vlist2[4] = { {O,
/* -30 degrees */
vlist3[4]

main ()
{

=

Pixrect *pr;

{ to,

o } , 71,

o } , 87,

o } , {100,

O} , { 87,

static int npts[l] = { 4 };

-71} ,

-50},

o } ,

50} ,

if (! (pr = pr_open (" /dev/fb"»)
exit(l);

{141,

{137,

{100,

{ 37,

O} , 71,

37} , 50,

100}, 0,

137} , {-50,

pr-po1ygon_2(pr, CENTERX(pr), 100, 1, npts, vlistO,
PIX_SET, NULLPR, 0, 0);

pr-po1ygon_2(pr, CENTERX(pr), 300, 1, npts, vlist1,
PIX_SET, NULLPR, 0, 0);

pr-po1ygon_2(pr, CENTERX(pr), 500, 1, npts, vlist2,
PIX_SET, NULLPR, 0, 0);

pr_polygon_2(pr, CENTERX(pr), 700, 1, npts, vlist3,
PIX_SET, NULLPR, 0, 0);

pr_close(pr);
exit(O);

71}

87}

100}

87}

} ,

} ,

} ,

} ;

Revision A of 9 May 1988

Figure 3-3

Draw Textured or Solid Lines
with Width

If the brush pointer is NULL, or if
the width is 0 or 1, a single width
vector is drawn.

Chapter 3 - Pixrect Operations 31

Four Polygons Drawn with pr_polygon_2 ()

B

4~0 ___ f.~<: __

V
D

30
0 -A--- oV'------

0° o

o • -----0-----
•

0- edge drawn • - edge not drawn

fde£ine pr_line(pr, xO, yO, xl, yl, brush, tex, op)
Pixrect *pr;
int xO, yO, xl, yl;
struct pr_brush *brush;
struct pr_texture *tex;
int op;

The pr_line macro draws a textured line based on the Bresenham line drawing
algorithm, using a pen-up, pen-down approach. The programmer can define an
pattern (of arbitrary length), or use a predefined default pattern (dash-dot, dotted,
etc.). All pattern segments (and their corresponding offsets) can automatically
adjust, according to the angle at which the line is drawn.

The line is drawn in the pixrect indicated by pr, with endpoints at (xO, yO)
and (xl, yl). The brush field is a pointer to a structure of type pr_ brush
which holds the width of the line segments to be rendered. The pr _ bru sh
structure is defined in the header file <pixrect/pr_line. h> as follows:

.\sun ~~ microsystems
Revision A of 9 May 1988

32 Pixrect Reference Manual

typedef struct pr_brush
int width;

Pr_brush;

If the t~x pointer is NULL, a solid vector is drawn. The tex field is a pointer
to a structure of type pr _text ure. The pr _text ure structure is defined in
the header file <pixrect/pr _line. h> as follows (fields that begin with the
prefix re s _ are reserved for program internals, and are not user-definable):

typedef struct pr_texture
short *pattern;
short offset;
struct pr_texture_options

unsigned startpoint 1,
endpoint : 1,
balanced : 1,
givenpattern 1,
res_fat : 1,
resyoly: 1,
res mvlist : 1,
res_right 1,
res_close : 1;

options;
short resyolyoff;
short res_oldpatln;
short res_fatoff;

Pr_texture;

pattern is a pointer to an array of short integers which contain the length of
each segment in the pattern. The lengths are in units of pixels. If the line is
drawn at an angle, the lengths drawn are automatically adjusted (if the given
pattern field set to 0) to correspond to the length of the pattern if a horizontal
or vertical line was drawn. This array must be null-terminated. The first seg
ment of the pattern array is assumed to be pen-down, and following segments
alternate.

The addresses of the following predefined pattern arrays may be stored in the
pattern field of the texture structure as well:

extern short pr_tex_dotted[];
extern short pr_tex_dashed[];
extern short pr_tex_dashdot[];
extern short pr_tex_dashdotdotted[];
extern short pr_tex_longdashed[];

The programmer-defined elements of the pattern array are not altered within
the routine, allowing multiple calls using the same pattern. offset is an
integer offset into the pattern, specified in pixels. Since the first segment of the
pattern array is assumed to be pen-down, you must specify an offset to

.\sun ~ microsystems
Revision A of 9 May 1988

Draw Textured or Solid
Polylines with Width

Chapter 3 - Pixrect Operations 33

start on a pen-up segment. offset is adjusted according to the angle at which
the line is drawn if the original pattern was adjusted (dependent upon the
gi venpat tern bit, described later). Because of integer approximation, the
adjusted offset could vary plus or minus one pixel from the exact adjusted
offset.

In the options bit fields, if startpoint is set, the first point is always drawn,
and if endpoint is set, the last point is drawn; if these are not specified, the
line will be drawn with no extra pixels set. The balanced bit field effectively
centers the pattern within the line by computing an offset into the pattern. If the
gi venpat tern bit is set, the pattern is drawn without true length correction, at
any angle; this increases perfonnance. However, the pattern of radiating lines
from a common center will fonn concentric squares instead of circles. If the
gi venpat tern bit is not set, the segment length of each element of the pattern
is adjusted according to the angle at which the line is drawn. The true (angle
dependent) segment lengths are computed for one period of the pattern, using an
incremental algorithm which approximates the formula:

angleyattern_length = givenyattern_Iength * cos (angle)
where all units are in pixels, and angle is measured from the positive x-axis.
Since the algorithm angle-corrects for one period of the pattern, the longer its
period, the more exact the results are.

The opargument specifies the raster operations used to produce destination pixel
values and color.

pr-po1yline(dpr, dx, dy, npts, ptlist, mvlist, brush, tex, op)
Pixrect *dpr;
int dx, dy, npts;
struct pr-pos *ptlist;
u char *mvlist;
struct pr brush *brush;
struct pr_texture *tex;
int op;

pr yolyline draws a polyline, or a series of disjoint polylines, using the
features available in pr _line. The polyline is drawn in the destination pixrect
indicated by dpr, with dx and dy being the offset into the destination pixrect
for vertices to be translated in x and y, respectively. npt s is the number of ver
tices in the polyline (which is always the number of lines plus 1). The ptlist
field is an array of npts structures of type pr _pos (which hold vertices). The
mvlist field is a pointer to an array of npts elements in which if any element
after the first is non-zero, a segment is not drawn to that vertex. The first element
of the mvlist array controls whether the polyline(s) are automatically closed; if
set, each continuous polyline is closed. If disjoint polylines are not desired (no
mvlist is specified), the constants.POLY_CLOSE and POLY_DONTCLOSE
determine this behavior. POLY CLOSE and POLY DONTCLOSE are defined as
follows:

#define POLY_CLOSE «u_char *) 1)
#define POLY_DONTCLOSE «u_char *) 0)

.\sun ~~ microsystems
Revision A of 9 May 1988

34 Pixrect Reference Manual

Draw Multiple Points

3.7. Colormap Access

Get Colormap Entries

The brush field is a pointer to a structure of type pr_brush, and the tex field
is a pointer to a structure of type pr_texture. If the tex pointer is null, a
solid vector is drawn. If the brush structure is null, single-width vectors are
drawn. op specifies the raster operations used to produce.destination pixel
values and color. brush and tex are described in detail underpr_line.

pr-po1ypoint(dpr, dx, dy, npts, ptlist, op)
Pixrect *dpr;
int dx, dy, npts;
struct pr-pos *ptlist;
int op;

The pryolypoint routine draws an array of points on the screen under the
control of the op argument. The array of points is drawn in the destination pix
rect dpr, with an offset specified by the arguments dx and dy. Npt s is the
number of points to be rendered, and pt Ii st is a pointer to an array of struc
tures of type pr yos, which hold the vertices for each point. Color is encoded
in the op argument. Portions of the array outside the pixrect are clipped unless
the PIX_DONTCLIP flag is set in the op argument.

A colormap is a table which translates a pixel value into 8-bit intensities in red,
green, and blue. For a pixrect of depth n, the corresponding colonnap will have
2n entries. The two most common cases are monochrome (two entries) and color
(256 entries). Memory pixrects do not have colonnaps.

Sun grayscale workstations nonnally use the red video signal to drive the moni
tor. However, when writing an application to run on a grayscale workstation it is
a good idea to load the red, green, and blue components of each colonnap entry
with the same value. This will ensure that the application will also run properly
on a color workstation.

idefine pr_getcolorrnap(pr, index, count, red, green, blue)
Pixrect *pr;
int index, count;
unsigned char red[], green[], blue[];

idefine prs_getcolorrnap(pr, index, count, red, green, blue)
Pixrect *pr;
int index, count;
unsigned char red[], green[], blue[];

The macros pr_getcolormap and prs_getcolormap invoke device
dependent procedures to read all or part of a colonnap into arrays in memory.

These two macros have identical definitions; both are defined to allow consistent
use of one set of names for all operations.

pr identifies the pixrect whose colonnap is to be read; the count entries start
ing at index (zero origin) are read into the three arrays.

For monochrome pixrects the same value is read into corresponding elements of
the red, green and blue arrays. These array elements will have their bits
either all cleared, indicating black, or all set, indicating white. By default,

Revision A of 9 May 1988

Set Colormap Entries

Inverted Video Pixrects

Chapter 3 - Pixrect Operations 35

the Oth (background) element is white, and the 1st (foreground) element is black.
Colonnap procedures return (-1) if the index or count are out of bounds, and 0 if
they succeed.

#define pr-putcolormap(pr, index, count, red, green, blue)
Pixrect *pr;
int index, count;
unsigned char red[], green[], bluer];

#define prs-putcolormap(pr, index, count, red, green, blue)
Pixrect *pr;
int index, count;
unsigned char red[], green[], bluer];

The macros pryutcolormap and prsyutcolormap invoke device
dependent procedures to store from memory into all or part of a colonnap. These
two macros have identical definitions; both are defined to allow consistent use of
one set of names for all operations. The count elements starting at index
(zero origin) in the colonnap for the pixrect identified by pr are loaded from
corresponding elements of the three arrays. For monochrome pixrects, the only
value considered is red [0]. If this value is 0, then the pixrect will be set to a
dark background and light foreground. If the value is non-zero, the foreground
will be dark, e.g. black-on-white. Monochrome pixrects are dark-on-light by
default.

Note: Full functionality of the colormap is not supported for monochrome pix
rects. Colormap changes to monochrome pixrects apply only to subsequent
operations whereas a colonnap change to a color device instantly changes all
affected pixels on the display surface.

pr_blackonwhite(pr, min, max)
Pixrect *pr;
int min, max;

pr_whiteonblack(pr, min, max)
Pixrect *pr;
int min, max;

pr_reversevideo(pr, min, max)
Pixrect *pr;
int min, max;

Video inversion is accomplished by manipulation of the colormap of a pixrect.
The colonnap of a monochrome pixrect has two elements. The procedures
pr_blackonwhite, pr_whiteonblack and pr_reversevideo pro
vide video inversion control. These .procedures are ignored for memory pixrects.

In each procedure, pr identifies the pixrect to be affected; min is the lowest
index in the colormap, specifying the background color, and max is the highest
index, specifying the foreground color. These will most often be 0 and 1 for
monochrome pixrects; the more general definitions allow colormap-sharing
schemes.

Revision A of 9 ~Y 1988
/

36 Pixrect Reference Manual

3.8. Attributes for Bitplane
Control

Get Plane Mask Attributes

Put Plane Mask Attributes

"Black-on-white" means that zero (background) pixels will be painted at full
intensity, which is usually white. pr _ blackonwhi te () sets all bits in the
entry for colonnap location min and clears all bits in colonnap location max.

I I White-on-black" means that zero (background) pixels will be painted at
minimum intensity, which is usually black. pr _ whi teonblack () clears all
bits in colormap location min and sets all bits in the entry for colonnap location
max.

pr_ rever sevideo () exchanges the min and max color intensities.

Note: These procedures are intended for global foregroundlbackground control,
not for local highlighting. For monochrome frame buffers, subsequent opera
tions will have inverted intensities. For color frame buffers, the colormap is
modified immediately, which affects everything in the display.

In a color pixrect, it is often useful to define bitplanes which may be manipulated
independently; operations on one plane leave the other planes of an image unaf
fected. This is nonnaily done by assigning a plane to a constant bit position in
each pixel. Thus, the value of the i ill bit in all the pixels defines the i th bitplane
in the image. It is sometimes beneficial to restrict pixrect operations to affect a
subset of a pixrect's bitplanes. This is done with a bitplane mask. A bitplane
mask value is stored in the pixrect's private data and may be accessed by the
attribute operations.

fdefine pr_getattributes(pr, planes)
Pixrect *pr;
int *planes;

fdefine prs_getattributes(pr, planes)
Pixrect *pr;
int *planes;

The macros pr_getattributes () and prs_getattributes () invoke
device-dependent procedures that retrieve the mask which controls which planes
in a pixrect are affected by other pixrect operations. pr identifies the pixrect; its
current bitplanes mask is stored into the word addressed by planes. If
planes is NULL, no operation is perfonned.

The two macros are identically defined; both are provided to allow consistent use
of the same style of names.

fdefine pr-putattributes(pr, planes)
Pixrect *pr;
int *planes;

fdefine prs-putattributes(pr, planes)
Pixrect *pr;
int *planes;

The macros pryutattributes () andprs_putattributes () invoke
device-dependent procedures that manipulate a mask which controls which
planes in a pixrect are affected by other pixrect operations. The two macros are

~~sun ~~ microsystems
Revision A of 9 May 1988

3.9. Plane Groups

Determine Supported Plane
Groups

Get Current Plane Group

Chapter 3 - Pixrect Operations 37

identically defined; both are provided to allow consistent use of the same style of
names.

pr identifies the pixrect to be affected. The planes argument is a pointer to a
bitplane write-enable mask. Only those planes corresponding to mask bits hav
ing a value of 1 will be affected by subsequent pixrect operations. Ifplanes is
NULL, no operation is performed.

Note: If any planes are masked off by a call to pr_putattributes (), no
further write access to those planes is possible until a subsequent call to
pryutattributes () unmasks them. However, these planes can still be
read.

A plane group is a subset of a frame buffer pixrect. Each plane group is a collec
tion of one or more related bit planes with stored state (plane mask, color map,
etc.). Each pixrect has a current plane group which is the target of attribute,
color map, and rendering operations.

A plane group is described by a small constant in the header file
<pixrect/prylanegroups.h>:

#define PIXPG CURRENT 0
#define PIXPG MONO 1
#define PIXPG 8BIT COLOR 2 - -
#define PIXPG OVERLAY ENABLE 3 - -
#define PIXPG OVERLAY 4

Plane group 0 is the currently active plane group for the pixrect.

A plane group is encoded as a 7-bit field in the pixrect attribute word.

ngroups = pr_available-plane_groups(pr, maxgroups, groups);
Pixrect *pr;
int maxgroupsi
char groups[maxgroups]

pr_availableylane_groups provides a means by which you determine
which plane groups are supported by the machine you are working on.
pr _available_plane _groups fills the character array groups with true
(1) values for the plane groups implemented by the pixrect pro The entry for the
current plane group (groups [0]) array is always set to false (0). The size of
groups is passed to the function as maxgroups to avoid overwriting the end
of the array.

pr _available_plane _groups returns the index of the highest-numbered
implemented plane group plus one.

group = pr_get-plane_group(pr) ;
Pixrect *pr;

pr _get ylane _group returns the current plane group number for the pixrect
pr. If the current plane group is unknown, the function returns
PI XP G CURRENT.

Revision A of 9 May 1988

38 Pixrect Reference Manual

Set Plane Group and Mask

3.10. Double Buffering

Get Double Buffering
Attributes

void pr_set-plane_group(pr, group);
Pixrect *pr;
int group;

void pr_set-planes(pr, group, planes)
Pixrect *pr;
int group;
int planes;

pr _set ylane _group sets the current plane group for the pixrect pr to the
value given by group. If this plane group is PIXPG_CURRENT orunimple
mented, pr _set _plane _group does nothing.

The pr_setylanes function is equal to a pr_setylane_group (pr,
group) followed by pr_putattributes (pr, &planes). planes
contains a bitplane write-enable mask. Only those planes corresponding to mask
bits having a value of 1 will be affected by subsequent pixrect operations. How
ever, the other planes can still be read.

Some frame buffers have double buffering support implemented in hardware.
Two pixrectcommands, pr_dbl_get (), and pr_dbl_set () allow you to
inquire about and control a double-buffered display device. The pixrect interface
assigns two names to the buffers in the display; PR _DBL _A for one, and
PR DBL B for the other.

A buffer can be displayed, read, or written. When a buffer is displayed, its
stored image is shown on the screen. If the software requests that the other
buffer be displayed, the hardware doesn't switch to the new buffer until the next
vertical retrace of the screen. This prevents any flicker from showing on the
screen during the change between buffers. A buffer can be read or written, using
pixrect commands, at any time.

state = pr_dbl_get(pr, attribute)
Pixrect *pr;
int attribute;

This function shows the current attributes of the double buffer. You can inquire
about the state of the display device by executing pr_dbl_get with a particu
lar attribute value, then examining the function's return value. The legal attri
butes are listed below:

tdefine PR DBL AVAIL 1
tdefine PR DBL DISPLAY 2
tdefine PR DBL WRITE 3
tdefine PR DBL READ 4

The PR_DBL_AVAIL returns PR_DBL_EXISTS if display device has hardware
double buffering capacity; otherwise, it returns NULL. The other attributes indi
cate which buffer on the device is being displayed, which can be written to, etc.
The possible state values for these attributes is given below:

~~sun ~~ microsystems
Revision A of 9 May 1988

Set Double Buffering
Attributes

Table 3-3

Chapter 3 - Pixrect Operations 39

#define PR DBL A 2 - -
#define PR DBL B 3
#define PR DBL BOTH 4 - -
#define PR DBL NONE 5

Not all return values are possible with each attribute. The values that can be
returned for a given attribute a shown in the table below:

pr _ db1_get () Attributes

Attribute Possible Values Returned
PR DBL AVAIL PR DBL EXISTS
PR DBL DISPLAY PR_DBL_A, PR DBL B
PR DBL WRITE PR_DBL_A, PR_DBL_B, PR_DBL_BOTH,
PR DBL READ PR DBL A, PR DBL B

void pr_dbl_set(pr, attribute_list)
Pixrect *pr;
int *attribute_list;

PR DBL NONE

The pr_db1_set () function changes the state of the double buffering display.
It controls the buffer being displayed, and selects the buffer(s) affected by pixrect
reads and writes. The possible attributes for pr_ db 1_ set () are given below:

#define PR DBL DISPLAY 2
#define PR DBL WRITE 3
#define PR DBL READ 4
#define PR DBL DISPLAY DONTBLOCK 5

An attribute list is an integer array consisting of pairs of attributes and the value
the attribute should be set to. The last element of the array should be zero. If the
display is already in the state requested, the function simply returns.

If the P ~ DB L _ DIS P LA Y attribute is in the list, then the function may block for
up to a single video frame's time (15 ms), waiting for the next vertical retrace.
This insures that the next pixrect operation won't alter the buffer while it's still
being displayed. Applications that won't write to the buffer for at least 15 ms
after changing the displayed buffer, and who need maximum throughput can use
PR_DBL_DISPLAY_DONTBLOCK. This attribute changes the display without
blocking the process until the next vertical retrace.

NOTE Programmers should use PR_DBL_DISPLAY_DONTBLOCK with caution. If
the application starts writing too early, it will modify the buffer while it is still
being displayed.

The values that can be paired with the attributes are shown below:

Revision A of 9 May 1988

40 Pixrect Reference Manual

#define PR DBL A 2
#define PR DBL B 3
#define PR DBL BOTH 4

Not all of the values can be paired with all of the attributes; the allowed pairings
are shown in the table below:

Table 3-4

3.11. Efficiency
Considerations

Attribute Possible Values to Set
PR DBL WRITE PR_DBL_A, PR_DBL_B, PR DBL BOTH

PR DBL READ PR_DBL_A, PR DBL B

PR DBL DISPLAY DONTBLOCK PR_DBL_A, PR DBL B - - -
PR DBL DISPLAY PR DBL A, PR DBL B

For maximum execution speed, remember the following points when you write
pixrect programs:

o pr _get and pr _pu t () are relatively slow. For fast random access of pix
els it is usually faster to read an area into a memory pixrect and address the

< pixels directly.

o pr _ rop () is fast for large rectangles.

o pr_ vector () is fast.

o functions run faster when clipping is turned off. Do this only if you can
guarantee that all accesses are within the pixrect bounds.

o pr _ rop () is three to five times faster than pr _ stencil () .

o p r _ ba t chrop () cuts down the overhead of painting many small pixrects.

o For small standard shapes pr _ rop () should be used instead of
pryolygon_2 ().

o pr_polyline () is an efficient way to draw a series of vectors.

o pr _polypoint () is faster than a series of pr _put s () or single pixel
pr _ rops (). It is useful for implementing new primitives such as curves.

o The PR_DBL_DISPLAY_DONTBLOCK attribute ofpr_dbl_set (), if
used appropriately, can speed up animation sequences .

• \sun
• microsystems

Revision A of 9 May 1988

4
Text Facilities for Pixrects

Text Facilities for Pixrects .. 43

4.1. Pixfonts aIld Pixchars .. 43

4.2. Operations on Pixfonts ... 44

Load a Font ... 44

Load Private Copy of Font .. 45

Default Fonts ... 45

Close Font ... 45

4.3. Text Functions ... 45

Pixrect Text Display .. 45

Transparent Text ... 45

Auxiliary Pixfont Procedures ... 46

Text Bounding Box ... 46

Unstructured Text ... 46

4.4. Example .. 47

4.1. Pixfonts and Pixchars

4
Text Facilities for Pixrects

The Pixrect library contains higher-level facilities for displaying text. These
facilities fall into two main categories: a standard format for describing fonts and
character images, including routines for processing them; and a set of routines
that take a string of text and a font, and handle various parts of painting that
string in a pixrect.

struct pixchar

} ;

struct pixrect *pc-pr;
struct pr-pos pc_home;
struct pr-pos pc_adv;

The pixchar structure defines the format of a single character in a font. The
actual image of the character is a pixrect (a separate pixrect for each character)
addressed by pcyr. The entire pixrect gets painted. Characters that do not
have a displayable image will have NULL in their entry in pc yr . pc_home is
the origin of pixrect pc yr (its upper left comer) relative to the character origin.
A character's origin is the leftmost end of its baseline, that is the lowest point on
characters without descenders. Figure 4-1 illustrates the pc yr origin and the
character origin.

The leftmost point on a character is normally its origin, but kerning or mandatory
letter spacing may move the origin right or left of that point. pc_adv is the
amount the destination position is changed by this character; that is, the amounts
in pc _ adv added to the current character origin will give the origin for the next
character. While normal text only advances horizontally, rotated fonts may have
a vertical advance. Both are provided for in the font.

typedef struct pixfont {
struct pr size pf_defaultsize;
struct pixchar pf_char[256];

Pixfont;

The Pixfont structure contains an array of pix chars, indexed by the charac
ter code; it also contains the size (in pixels) of its characters when they are all the
same. If the size of a font's characters varies in one dimension, that value in
pf_defaultsize will not have anything useful in it; however, the other may

~\sun
• microsystems

43 Revision A of 9 May 1988

44 Pixrect Reference Manual

Figure 4-1

4.2. Operations on Pixfonts

Load a Font

still be useful. Thus, for non-rotated variable-pitch fonts,
pf_defaultsize. y will still indicate the unleaded interline spacing for that
font.

Character and pc yr Origins

cha ra ct er
origin

character
baseline

pix rect

The commands listed below allow you to load a font to display. A font must be
loaded before using a text operation.

Pixfont *pf_open(name)
char *name:

pf _open () returns a pointer to a shared copy of a font in virtual memory. A
NULL is returned if the font cannot be opened. The path name of the font file
should be specified, for example:

my font = pf_open(n/usr/lib/fonts/fixedwidthfonts/screen.r.7");

name should be in the format described in vjont(5): the file is converted to pix
font fonnat, allocating memory for its associated structures and reading in the
data for it from disk. The utility fontedi t(l) is a font editor for designing
pixel fonts in vfont(5) format.

The data from a small selection of commonly used fonts is compiled into the pix
rect library. The names of these built-in fonts are checked against the last com
ponent of the name. To guarantee that the font is loaded from the disk file

Revision A of 9 May 1988

Load Private Copy of Font

Default Fonts

Close Font

4.3. Text Functions

Pixrect Text Display

Transparent Text

Chapter 4 - Text Facilities for Pixrects 45

instead, use pf_openyrivate () instead ofpf_open ().

Pixfont *pf_open-private(name)
char *name;

pf _open () returns a pointer to a private copy of a font in virtual memory. A
NULL is returned if the font cannot be opened.

Pixfont *pf_default()

The procedure pf _ defaul t performs the same function for the system default
font, normally a fixed-pitch, 16-point sans serif font with upper-case letters 12
pixels high. If the environment parameter DEFAULT_FONT is set, its value will
be taken as the name of the font file to be opened by pf_default () .

pf_close(pf)
Pixfont *pf;

When a client is finished with a font, it should call pf _ c 10 se () to free the
memory associated with it. pf should be a font handle returned by a previous
call to pf_open () orpf_default ().

The following functions manage various tasks involved in displaying text.

pf_text(where, op, font, text)
struct pr-prpos where;
int op;
Pixfont *font;
char *text;

Characters are written into a pixrect with the pf_ text () procedure. where is
the destination for the start of the text (nominallefi edge, baseline; see Section
4.1) op is the raster operation to be used in writing the text, as described in Sec
tion 3.3, The Op Argument; font is a pointer to the font in which the text is to
be displayed; and text is the actual null-terminated string to be displayed. The
color specified in the op specifies the color of the ink. The background of the
text is painted 0 (background color).

pf_ttext(where, op, font, text)
struct pr-prpos where;
int op;
Pixfont *font;
char *text;

pf _ ttext paints "transparent" text: it doesn't disturb destination pixels in
blank areas of the character's image~ The arguments to this procedure are the
same as for pf _text (). The characters' bitmaps are used as a stencil, and the
color specified in op is painted through the stencil.

For monochrome pixrects, the same effect can be achieved by using PIX _ SRC

I PIX _ D S T as the function in the op; this procedure is for color pixrects.

Revision A of9 May 1988

46 Pixrect Reference Manual

Auxiliary Pixfont Procedures

Text Bounding Box

Unstructured Text

struct pr_size pf_textbatch(where, lengthp, font, text)
struct pr-prpos where[];
int *lengthp;
Pixfont *font;
char *text;

struct pr_size pf_textwidth(len, font, text)
int len;
Pixfont *font;
char *text;

pf_textbatch () is used internally by pf_text (); it constructs an array of
pryos structures and records its length, as required by batchrop (see Sec
tion 3.6). where should be the address of the array to be filled in, and
lengthp should point to a maximum length for that array. text addresses the
null-terminated string to be put in the batch, and font refers to the P ixfont to
be used to display it. When the function returns, lengthp will refer to a word
containing the number of pr _po s structures actually used for text. The
pr_size returned is the sum of the pc_adv fields in their pixchar struc
tures.

pf _ textwidth () returns apr_size that is computed by taking the product
of len, is the number of characters, and pc_adv, the width of each character.

pf_textbound(bound, len, font, text)
struct pr_subregion *bound;
int len;
Pixfont *font;
char *text;

pf_textbound may be used to find the bounding box for a string of characters
in a given font. bound - >po s is the top-left comer of the bounding box,
bound->size. x is the width, and bound->size. y is the height.
bound->pr is not modified. bound->pos is computed relative to the loca
tion of the character origin (base point) of the first character in the text.

pr_text(pr, x, y, op, font, text)
Pixrect *pr;
int x, y, op;
Pixfont *font;
char *text;

pr_ttext(pr, x, y, op, font, text)
Pixrect *pr;
int x, y, op;
Pixfont *font;
char *text;

These unstructured text functions correspond to the Pixwin functions
pw_text () and pw_ttext (). prs_text () and prs_ttext () macros
are also provided, although they are identical to·pf _text () and
pf_ttext () ,respectively.

Revision A of 9 May 1988

Chapter 4 - Text Facilities for Pixrects 47

4.4. Example Here is an example program that writes text on the display surface with pixel
fonts.

Figure 4-2 Example Program using Text

#include <pixrect/pixrect_hs.h>

main ()
{

Pixrect *pr;
Pixfont *pf;

if (! (pr = pr_open(n/dev/fbn » II
! (pf = pf_open(n/u s r /lib/fonts/fixedwidthfonts/screen.r.12"»)
exit(l) ;

pr_text(pr, 400, 400, PIX_SET, pf, "This is a string.");

pr_close(pr) ;
pf_close(pf) ;
exit(O) ;

~~sun ~~ microsystems
Revision A of 9 May 1988

5
~ennoryPixrects

Memory Pixrects ... 51

5.1. The mpr_data Structure .. 51

Example .. 52

5.2. Creating Memory Pixrects ... 53

Create Memory Pixrect ... 53

Create Memory Pixrect from an Image .. 53

Example .. 54

5.3. Static Memory Pixrects .. 54

5.4. Pixel Layout in Memory Pixrects .. 55

5.5. Using Memory Pixrects ... 55

5.1. The mpr data
Strocture-

5
Memory Pixrects

Memory pixrects store their pixels in memory, instead of displaying them on
some display, are similar to other pixrects but have several special properties.
Like all other pixrects, their dimensions are visible in the pr _ s i z e and
pr_depth elements of their Pixrect structure, and the device-dependent
operations appropriate to manipulating them are available through their
pr_ops. Beyond this, however, the format of the data which describes the par
ticular pixrect is also public: pr _ da t a will hold the address of an mpr _ da ta
struct described below. Thus, a client may construct and manipulate memory
pixrects using non-pixrect operations. There is also a public procedure,
mem_create () ,which dynamically allocates a new memory pixrect, and a
macro, mpr _ s tat i c () , which can be used to generate an initialized memory
pixrect in the code of a client program.

struct mpr_data {
int md_Iinebytes;
short *md_image;
struct pr-pos md_offset;
short md-primary;
short md_flags;

} ;

tdefine MP REVERSEVIDEO 1
tdefine MP DISPLAY 2
tdefine MP PLANEMASK 4
tdefine MP I386 8 -
tdefine MP STATIC 16

/* used only on Sun386i, */
/* ignored on all others. */

The pr_data element of a memory pixrect points to an mpr_data struct,
which contains the information needed to deal with a memory pixrect.

linebytes is the number of bytes stored in a row of the primary pixrect This
is the difference in the addresses between two pixels at the same x-coordinate,
one row apart. Because a secondary pixrect may not include the full width of its
primary pixrect, this quantity cannot be computed from the width of the pixrect
- see Section 3.4. The actual pixels of a memory pixrect are stored someplace
else in memory, usually an array, which md _ image points to; the format of that
area is described in the next section. The creator of the memory pixrect must
ensure that md _ image contains an even address. md _of f set is the x,y

51 Revision A of 9 May 1988

52 Pixrect Reference Manual

Example

position of the first pixel of this pixrect in the array of pixels addressed by
md_image. mdyrimary is 1 if the pixrect is primary and had its image allo
cateddynamically (e.g. bymem_create (». In this case,md_image will
point to an area not referenced by any other primary pixrect. This flag is interro
gated by the pr_destroy () routine: if it is 1 when that routine is called, the
pixrect's image memory will be freed.

The MP~DISPLAY bit will be set inmd_flags if the memory pixrect is actually
a memory mapped frame buffer. The MP _REVERSEVIDEO bit will be set if
reversevideo is currently in effect for the pixrect (this is only valid if the pixrect
depth is 1 bit). The MP _3861 bit is non-zero if the pixrect image data is in 80386
fonnat.

NOTE This flag is ignored on 680XO based machines.
The MP _STATIC is non-zero if the pixrect is static.

NOTE This flag is ignored on 680XO based machines.
md _flags is present to support memory-mapped display devices like the
Sun-2 monochrome video device, and the bit flipping necessary for Sun386i
machines. See Chapter 2 for details on 80386 fonnat, and the MP _3861 and
MP _STATIC flags.

Several useful macros are defined in <pixrect/memvar. h>. These macros
will greatly increase the productivity of the programmer using memory pixrects,
as well as the reliability of the code. Two commonly used macros are described
here; see the others in memvar . h.

To access a memory pixrect's bitmap and functions, use the mpr _ d () macro. It
generates a pointer to the private data of a memory pixrect:

fdefine mpr_d(pr) «struct mpr_data *) (pr)->pr_data)

The mpr_linebytes macro computes the bytes per line of a primary memory
pixrect given its width in pixels and the bits per pixel. This includes the padding
to word bounds. It is useful for incrementing pixel addresses in the y direction,
or calculating line padding in the bitmap.

fdefine mpr_linebytes(width, depth)
(«pr-product(width, depth) +15) »3) &-1)

Here is an example program that uses a memory pixrect to do bit manipulations
on the screen. It opens the frame buffer and copies the bitmap to a memory pix
rect of the same size. It then goes through each byte of the memory pixrect, left
shifting each byte. Finally, it copies the modified memory pixrect back into the
screen pixrect.

Note how the mpr_linebytes macro is used to find the number of bytes used
to hold a line of the memory pixrect. The mpr _ d () macro is also used to sim
plify access to the image area of the memory pixrect.

.~sun
• microsystems

Revision A of 9 May 1988

Chapter 5 - Memory Pixrects 53

Figure 5-1 Example Pro gram using Memory Pixrects

*include <pixrect/pixrect_hs.h>
*include <stdio.h>
main ()
{

Pixrect *scrn, *mem;
int ht,wid;
char *start, *ptr;
scrn = pr_open (" /dev/fb") ;
wid = scrn->pr_size.x;
ht = scrn->pr_size.y;
mem = mem_create(wid,ht,l);
pr_rop(mem,O,O,wid,ht,PIX_SRC,scrn,O,O);
start = (char *) mpr_d(mem)->md_image;
for(ptr = start;ptr < start + mpr_linebytes (wid, 1) * ht;ptr++) *ptr «= 2;
pr_rop(scrn,O,O,wid,ht,PIX_SRC,mem,O,O);
pr_close (mem) ;
pr_close(scrn) ;

5.2. Creating Memory
Pixrects

The mem _create () and memyoint () functions allow a client program to
create memory pixrects.

Create Memory Pixrect

Create Memory Pixrect from
an Image

Pixrect *mem_create(w, h, depth)
int w, h, depth;

A new primary pixrect is created by a call to the procedure me~ crea t e (). w,
h and dept h specify the width and height in pixels, and depth in bits per pixel
of the new pixrect. Sufficient memory to hold those pixels is allocated and
cleared to 0, new mpr _data and P ixrect structures are allocated and initial
ized, and a pointer to the pixrect is returned. If this can not be done, the return
value is NuLL. On Sun386i systems, the memory pixrects created by
mem_create () set the MP_I386 flag to 1 (true).

On 32 bit systems (such as the Sun-3 and Sun-4) the created pixrect will have
each scan line padded out to a 32 bit boundary, unless it is only 16 bits wide; that
is, the md _linebyte s structure member will contain either 2 or a multiple of
4. In older Sun releases pixrects created by mem_create () were always pad
ded to a 16 bit boundary.

Pixrect *mem-point(width, height, depth, data)
int width, height, depth;
short *data;

The mem _point () routine builds a pixrect structure that points to a dynami
cally created image in memory. Client programs may use this routine as an alter
native to mem_create () if the image data is cil.ready in memory. width and
height are the width and height of the new pixrect, in pixels. depth is the
depth of the new pixrect, in number of bits per pixel. data points to the image

Revision A of 9 May 1988

54 Pixrect Reference Manual

Example

Figure 5-2

to be associated with the pixrect. Unlike the mem_ create () routine, the
mem yo in t () routine does not set the MP _ 38 6 I flag; the pixrect remains in
680XO fonnat.

Note that memyoint () expects each line of the memory image to be padded
to a 16 bit boundary. Also, memyoint () does not set the mdyrimary flag
so the image will not be automatically freed when the pixrect is destroyed.

Here is an example program which uses a memory pixrect to invert the frame
buffer contents from top to bottom. It opens the default frame buffer and creates
a memory pixrect of the same size. It then copies rows of pixels from the frame
buffer to the memory pixrect in reverse order. Finally, it copies the memory pix
rect back to the frame buffer.

Example Program using Memory Pixrects

#include <pixrect/pixrect_hs.h>

main ()
{

Pixrect *pr, *tmp;
int yin, yout;

if (! (pr = pr_open (n /dev/fb n » I I
! (tmp =
mem_create(pr->pr_size.x, pr->pr_size.y, pr->pr_depth»)
exit(l);

for (yin = 0, yout = pr->pr_size.y - 1; yout >= 0; yin++, yout--)
pr_rop(tmp, 0, yout, pr->pr_size.x, 1, PIX_SRC, pr, 0, yin);

pr_rop(pr, 0, 0, pr->pr_size.x, pr->pr_size.y, PIX_SRC, tmp, 0, 0);

exit(O);

5.3. Static Memory
Pixrects

#define mpr_static(name, w, h, depth, image)
int w, h, depth;
short *image;

A memory pixrect may be created at compile time by using the
mpr_static () macro. name is a token to identify the generated data objects;
w, h, and depth are the width and height in pixels, and depth in bits of the pix
rect; and image is the address of an even-byte aligned data object that contains
the pixel values in the format described below, with each line padded to a 16 bit
boundary.

If static structures are desired, the macro mpr _static_static should be
used instead.

Revision A of 9 May 1988

5.4. Pixel Layout in
~ennoryPixrects

5.5. Using ~ennory
Pixrects

NOTE

The macro generates two structures:

struct mpr_data name data;
Pixrect name;

Chapter 5 - Memory Pixrects 55

The mpr _ da t a is initialized to point to all of the image data passed in; the
Pixrect then refers to mem_ops and to name_data. On a Sun386i
machine, the MP _STAT I C flag will be set in the md_flags byte of the pixrect
data structure; see Chapter 2 for details. Note: Contrary to its name, this macro
generates structures of storage class extern.

In memory, the upper-left comer pixel is stored at the lowest address. This
address must be even. That first pixel is followed by the remaining pixels in the
top row, left-to-right. Pixels are stored in successive bits without padding or
alignment.

Each row of pixels is rounded to at least a 16 bit boundary. For best performance
on 32 bit systems, pixel rows should be rounded to 32 bit boundaries
(mem_create does this automatically). However, 16 bit rounding is required for
static pixrects and mem_point.

Memory pixrects with depths of 1, 8, 16,24, and 32 bits are currently supported
by the pixrect library. If source and destination are both memory pixrects they
must have an equal number of bits per pixel.

If you are running a Sun386i machine. A pixrect's image data will be converted
to 80386 format before being displayed. See Chapter 2 for details.

Memory pixrects can be used to get data from and send data to the display dev
ice. Several routines exist for interfacing Pixwins with memory pixrects. These
include pw_read (), pw_rop () and pw_write (). Refer to the Sun View 1
Programmer's Guide for more details. For applications using the raw device
without SunView, pr_rop () can be used for operations on memory pixrects.

Another use of memory pixrects is for processing images that not intended for
display. User programs can write directly into a pixrect using parameters found
in the mpr _data structure, or they can use memyoint () for a previously
created image. Memory pixrects can also be written to raster files using the facil
ities described in Chapter 6.

Revision A of 9 May 1988

6
File I/O Facilities for Pixrects

File I/O Facilities for Pixrects ... 59

6.1. Writing and Reading Raster Files .. 59

Run Length Encoding ... 59

Write Raster File 60

Read Raster File 62

6.2. Details of the Raster File Fonnat ... 63

6.3. Writing Parts of a Raster File ... 64

Write Header to Raster File .. 64

Initialize Raster File Header ... 65

Write Image Data to Raster File ... 65

6.4. Reading Parts of a Raster File .. 65

Read Header from Raster File ... 65

Read Co1onnap from Raster File ... 66

Read Image from Raster File ... 66

Read Standard Raster File ... 66

6.1. Writing and Reading
Raster Files

Run Length Encoding

6
File I/O Facilities for Pixrects

Sun Microsystems, Inc. has specified a file format for files containing raster
images. The format is defined in the header file <rasterfile. h>. The pix
rect library contains routines to perfonn I/O operations between pixrects and files
in this raster file fonnat. This I/O is done using the routines of the C Library
Standard I/O package, requiring the caller to include the header file
<stdio .h>.

The raster file format allows multiple types of raster images. Unencoded, and
run-length encoded fonnats are supported directly by the pixrect library. Support
for customer defined formats is implemented by passing raster files with non
standard types through filter programs. Sun supplied filters are found in the
directory / u s r /1 ib / r as f i 1 t er s. This directory also includes sample
source code for a filter that corresponds to one of the standard raster file types to
facilitate writing new filters.

The sections that follow describe how to store and retrieve an image in a
rasterfile.

The run-length encoding used in raster files is of the fonn

<byte><byte> ... <ESC><O> ... <byte><ESC><count><byte> ...

where the counts are in the range O .. 255 and the actual number of instances of
<byte> is <count>+ 1 (Le. actual is 1..256). One- or two-character
sequences are left unencoded; three-or-more character sequences are encoded as
<ESC><count><byte>. <ESC> is the character code 128. Each single <ESC>
in the input data stream is encoded as <ESC><O>, because the <count> in this
scheme can never be 0 (the actual count can never be O. <ESC><ESC> is
encoded as <ESC><l><ESC>.

This algorithm will fail (make the compressed data bigger than the original data)
only if the input stream contains an excessive number of one- and two-character
sequences of the <ESC> character.

59 Revision A of 9 May 1988

60 Pixrect Reference Manual

Write Raster File int pr_dump(input-pr, output, colormap, type, copy_flag)
Pixrect *input-pri
FILE *outputi
colormap_t *colormapi
int type, copy_flagi

The pr _dump () procedure stores the image described by a pixrect onto a file.
It normally returns 0, but if any error occurs it returns PIX_ERR. The caller can
write a rectangular sub-region of a pixrect by first creating an appropriate
inputyr via a call to pr_region (). The output file is specified via out
pu t. The specified output type should either be one of the following standard
types or correspond to a customer provided filter.

#define RT OLD 0
#define RT STANDARD 1
#define RT BYTE ENCODED 2

The RT_STANDARD type is the common raster file format in the same sense that
memory pixrects are the common pixrect fonnat: every raster file filter is
required to read and write this fonnat. The RT_OLD type is very close to the
RT_ST ANDARD type; it was the former standard generated by old versions of
Sun software. The RT_BYTE_ENCODED type implements a run-length encoding
of bytes of the pixrect image. This usually results in shorter files, although
pathological images may expand by 50%.

Specifying any other output type causes p r dump () to pipe a raster file of
RT_STANDARD type to the filter named convert. type, looking first in direc
tories in the user's $PATH environment variable, and then in the directory
/ u s r /1 ib / r a s f il t er s. type is the ASCII corresponding to the specified
type in decimal. The output of the filter is then copied to output.

It is strongly recommended that customer-defined formats use a type value of 100
or more, to avoid conflicts with additions to the set of standard types. The
RT_EXPERIMENT AL type is reselVed for use in the development of experimental
filters, although it is no longer treated specially.

[fdefine RT_EXPERlMENTAL 65535

pr _dump () and other functions that start filters wait until the filter process
exits before returning, so caution is advisable when working with experimental
filters.

]

For pixrects displayed on devices with colonnaps, the values of the pixels are not
sufficient to recreate the displayed image. Thus, the image's colonnap can also
be specified in the call to pr_dump·(). If the colormap is specified as NULL
but input yr is a non-monochrome display pixrect, pr _dump () will attempt
to write the colonnap obtained from inputyr (via pr_getcolormap). The
following structure is used to specify the colonnap associated with inputyr:

Revision A of 9 May 1988

typedef struct {
int type;
int length;
unsigned char *map[3];

colormap_t;

Chapter 6 - File I/O Facilities for Pi:xrects 61

The colonnap type should be one of the Sun supported types:

fdefine RMT NONE 0
fdefine RMT_EQUAL_RGB 1
fdefine RMT RAW 2

If the colonnap type is RMT_NONE, then the colormap length must be O. This
case usually arises when dealing with monochrome displays and I-bit deep
memory pixrects. If the colonnap type is RMT_EQUAL_RGB, then the map array
should specify the red (map [0]), green (map [1]) and blue (map [2]) color
map values, with each vector in the map array being of the same specified color
map length. If the colonnap type is RMT_RAW, the first map array (map [0]),
should hold length bytes of colonnap data, which will not be intetpreted by
the pixrect library.

Finally, copy_flag specifies whether or not inputyr should be copied to a
temporary pixrect before the image is output. The copy _flag value should be
non-zero if input_pr is a pixrect in a frame buffer that is likely to be asyn
chronously modified. The copy flag is also automatically set non-zero for secon
dary pixrects, to simplify the code. Note that use of copy_flag still will not
guarantee that the correct image will be output unless the pr_rop () to copy
from the frame buffer is made uninterruptible.

Revision A of 9 May 1988

62 Pixrect Reference Manual

Figure 6-1 Example Program using pr _ dump ()

Read Raster File

*include <stdio.h>
Jinclude <sys/types.h>
*include <pixrect/pixrect.h>
tinclude <pixrect/pr_io.h>

main ()
{

Pixrect *screen, *icon;
FILE *output = stdout;
colormap_t *colormap = 0;
int type = RT_STANDARD;
int copy_flag = 1;

if (! (screen = pr_open(If/dev/fb n » II
! (icon = pr_region(screen, 1050, 10, 64, 64»)
exit(l);

pr_dump(icon, output, colormap, type, copy_flag);
pr_close(screen);

exit(O);

Pixrect *pr_load(input, colormap)
FILE *input;
colormap_t *colormap;

The pr _load () function can be used to retrieve the image stored in a raster file
into a pixrect. The raster file's header is read from input, a pixrect of the
appropriate size is dynamically allocated, the colonnap is read and placed in the
location addressed by colormap, and finally the image is read into the pixrect
and the pixrect returned. If any problems occurs, pr _load () returns NULL.

As with pr _dump () , if the specified raster file is not of standard type,
pr _load () first runs the file through the appropriate filter to convert it to
RT_STANDARD type and then loads the output of the filter.

Additionally, if colormap is NULL, pr _load () will simply discard any and
all colonnap infonnation contained in the specified input raster file. If color
map is non-null pr_load () will load the colormap data even if the type and
length specified do not match that of the file (see pr _load _ colormap ()
below).

~~sun ~ microsystems
Revision A of 9 May 1988

Chapter 6 - File I/O Facilities for Pixrects 63

Figure 6-2 Example Program using pr_load ()

6.2. Details of the Raster
File Format

#include <stdio.h>
#include <sys/types.h>
#include <pixrect/pixrect.h>
#include <pixrect/pr_io.h>

main ()
{

Pixrect *screen, *icon;
FILE *input = stdin;
colormap_t colormap;

colormap.type = RMT_NONE;

if (! (screen = pr_open (" /dev/fb"» I I
! (icon = pr_load(input, &colormap»)
exit(l);

if (colormap.type == RMT_EQUAL_RGB)
pr-putcolormap(screen, 0, colormap.length,

colormap.map[O], colormap.map[l] ,
colormap.map[2]) ;

pr_rop(screen, 1050, 110, 64, 64, PIX_SRC, icon, 0, 0);
pr_close(screen);

exit(O);

A handful of additional routines are available in the pixrect library for manipulat
ing pieces of raster files. In order to understand what they do, it is necessary to
understand the exact layout of the raster file fonnat.

The raster file is in three parts: first, a small header containing eight 32-bit
int's; second, a (possibly empty) set of colonnap values; third, the pixel image,
stored a line at a time, in increasing y order.

The image is essentially laid out in the file the exact way that it would appear in a
static memory pixrect. In particular, each line of the image is rounded out to a
multiple of 16 bits, corresponding to the rounding convention used by static pix
rects.

The header is defined by the following structure:

~\sun ~ microsystems
Revision A of 9 May 1988

64 Pixrect Reference Manual

6.3. Writing Parts of a
Raster File

Write Header to Raster File

struct rasterfile {
int ras_magic;

} ;

int ras_width;
int ras_height;
int ras_depth;
int ras_length;
int ras_type;
int ras_maptype;
int ras_maplength;

The ras_magic field always contains the following constant:

(*define RAS_MAGIC Ox59a66a95]
The ras_width, ras_height and ras_depth fields contain the image's
width and height in pixels, and its depth in bits per pixel, respectively. The depth
is usually either I or 8, corresponding to the standard frame buffer depths.

The ras_length field contains the length in bytes of the image data. For an
unencoded image, this number is computable from the ras_width,
ras_height, and ras_depth fields, but for an encoded image it must be
explicitly stored in order to be available without decoding the image itself. Note
that the length of the header and of the possibly empty colormap values are not
included in the value in the ras _length field; it is only the image data length.
For historical reasons, files of type RT_OLD will usually have a 0 in the
ras_length field, and software expecting to encounter such files should be
prepared to compute the actual image data length if it is needed. The
ras_maptype and ras_maplength fields contain the type and length in
bytes of the colormap values, respectively.

If the ras_maptype is not RMT_NONE and the ras_maplength is not 0,
then the colormap values are the ras _ map length bytes immediately after the
header. These values are either uninterpreted bytes (usually with the
r as _rna pt ype set to RMT _RAW) or the equal length red, green and blue vec
tors, in that order (when the ras_maptype is RMT_EQUAL_RGB). In the latter
case, the r as _map lengt h must be three times the size in bytes of anyone of
the vectors.

The following routines are available for writing the various parts of a raster file.
Many of these routines are used to implement pr _dump (). First, the raster file
header and the colormap can be written by calling pr _ dump_header () .

int pr_dump_header(output, rh, colormap)
FILE *output;
struct rasterfile *rh;
colormap_t *colormap;

pr_dump_header () returns PIX_ERR if there is a problem writing the header
or the colormap, otherwise it returns O. If the colOlmap is NULL, no colormap

Revision A of 9 May 1988

Initialize Raster File Header

Write Image Data to Raster
File

6.4. Reading Parts of a
Raster File

Chapter 6 - File I/O Facilities for Pixrects 65

values are written.

Pixrect *pr_dump_init(input-pr, rh, colormap,
type, copy_flag)

Pixrect *input-pr;
struct rasterfile *rh;
colormap_t *colormapi
int type, copy_flag;

For clients that do not want to explicitly initialize the rasterfile struct this routine
can be used to set up the arguments for pr _ dump_header (). The arguments
to pr _dump _ini t () correspond to the arguments to pr _dump (). However,
pr _dump _ ini t () returns the pixrect to write, rather than actually writing it,
and initializes the structure pointed to by r h rather than writing it. If colonnap is
NULL, the ras_maptype and ras_maplength fields of rh will be set to
RMT_NONE and 0, respectively.

If any error is detected by pr _dump _ ini t () , the returned pixrect is NULL. If
there is no error, the copy _flag is zero, and the input pixrect is suitable for
direct dumping (a primary memory pixrect), the returned pixrect is simply
input_pro However, if copy_flag is non-zero, or the input pixrect cannot
be dumped directly, the returned pixrect is dynamically allocated and the caller is
responsible for deallocating it with pr_destroy () when it is no longer
needed.

int pr_dump_image(pr, output, rh)
Pixrect *pr;
FILE *output;
struct rasterfile *rh;

The actual image data can be output via a call to pr _ dump_image (). This
routine returns 0 unless there is an error, in which case it is PIX_ERR. It cannot
write the image in a non-standard (filtered) format, since by the time it is called
the raster file header has already been written.

Since these routines sequentially advance the output file's write pointer,
pr _dump_image () must be called after pr _dump_header () .

The following routines are available for reading the various parts of a raster file.
Many of these routines are used to implement pr _load (). Since these rou
tines sequentially advance the input file's read pointer, rather than doing random
seeks in the input file, they should be called in the order presented below.

Read Header from Raster File int pr_load_header(input, rh)
FILE *input;
struct rasterfile *rh;

The raster file header can be read by calling pr _load_header (). This rou
tine reads the header from the specified input, checks it for validity and initializes
the specified rasterfile structure from the header. The return value is 0
unless there is an error, in which case it is PIX_ERR.

~\Slln ~ microsystems
Revision A of 9 May 1988

66 Pixrect Reference Manual

Read Colormap from Raster
File

Read Image from Raster File

Read Standard Raster File

int pr_load_colormap(input, rh, colormap)
FILE *input;
struct rasterfile *rh;
colormap_t *colormap;

If the header indicates that there is a non-empty set of colonnap values, they can
be read by calling pr_Ioad_eolormap (). If the specified colonnap is
NULL, this routine will skip over the colonnap values by reading and discarding
them. If the type and length values in eolormap do not match the input file,
pr _load _ eolormap () will allocate space for the colonnap with malloe,
read the colormap, and modify eolormap before returning. If this occurs, the
space allocated can be released with a free (eolormap->map [0]).

The return value is 0 unless there is an error, in which case it is PIX_ERR.

Pixrect *pr_load_image(input, rh, colormap)
FILE *input;
struct rasterfile *rh;
colormap_t *colormap;

An image can be read by calling pr _load_image (). If the input is a standard
raster file type, this routine reads in the image directly. Otherwise, it writes the
header, colonnap, and image into the appropriate filter and then reads t1)e output
of the filter. In this case, both the rasterfile and the colonnap structures will be
modified as a side-effect of calling this routine. In either case, a pixrect is
dynamically allocated to contain the image, the image is read into the pixrect,
and the pixrect is returned as the result of calling the routine. If there is an error,
the return value is NULL.

Pixrect *pr_load_std_image(input, rh, colormap)
FILE *input;
struct rasterfile *rh;
colormap_t colormap;

If it is known that the image is from a standard raster file type, then it can be read
in by calling pr _load _ std _image (). This routine is identical to
pr _load_image () , except that it will not invoke a filter on non-standard ras
ter file types.

Revision A of 9 May 1988

A
Writing a Pixrect Driver

Writing a Pixrect Driver .. 69

A.I. What You '11 Need .. 69

A.2. Implementation Strategy .. 70

A.3. Files Generated .. 70

Memory Mapped Devices .. 71

A.4. Pixrect Private Data .. 71

A.S. Creation and Destruction ... 72

Creating a Primary Pixrect .. 72

Creating a Secondary Pixrect ... 75

Destroying a Pixrect 76

The pr_make£un () Operations Vector .. 76

A.6. Pixrect Kernel Device Driver .. 77

Configurable Device Support ... 77

Open ... 83

Mmap ... 83

Ioctl ... 84

Close ... 85

Plugging Your Driver into UNIX .. 86

A.7. Access Utilities .. 86

A.8. Rop .. 87

A.9. Batchrop ... 87

A.IO. Vector ... 87

Importance of Proper Oipping ... 87

A.II. Colonn.ap .. 87

Monochrome .. 87

A.12. Attributes .. 87

Monochrome .. 88

A.13. Pixel... 88

A.14. Stencil... 88

A.IS. Polygon .. 88

A.I. What You'll Need

A
Writing a Pixrect Driver

Sun has defined a common programming interface to pixel addressable devices
that enables, in particular, device independent access to all Sun frame buffers.
This interface is called the pixrect interface. Existing Sun supported software
systems access a frame buffer through the pixrect interface. Sun encourages cus
tomers with other types of frame buffers (or other types of pixel addressable dev
ices) to provide a pixrect interface to these devices.

This chapter describes how to write a pixrect driver. It is assumed that you have
already read Chapter 3, Pixrect Operations; it describes the programming inter
face to the basic operations that must be provided in order to generate a complete
pixrect implementation. It is also assumed that you have a copy of Writing Dev
ice Drivers The section in that manual on writing the kernel device driver portion
of the pixrect implementation is important.

This chapter contains auxiliary material of interest only to pixrect driver imple
mentors, not programmers accessing the pixrect interface. This document
explains how to install a new pixrect driver into the software architecture so that
it may be used in a device independent manner. Also, utilities and conventions
that may be of use to the pixrect driver implementor are discussed.

This chapter walks through the source code for the CG-J pixrect driver. The
CG-l is the Sun-1 color frame buffer. Using this particular driver as an example
has no significance; another pixrect driver would have worked just as well.

The actual source code that is presented here is boiler-plate, i.e., almost every
pixrect driver implementation will be similar. You should be able to make your
own driver just from the documentation alone. However, a complete source
example for an existing pixrect driver would probably expedite the development
of your own driver. The complete device specific source files for the Sun-l color
frame buffer pixrect driver is available as a source code purchase option (avail
able without a UNIX source license).

These are the tools and pieces that you'll need before assembling your pixrect
driver:

o You need the correct documentation:

Sun View 1 Programmer's Guide

69 Revision A of 9 May 1988

70 Pixrect Reference Manual

A.2. Implementation
Strategy

A.3. Files Generated

SunView 1 System Programmer's Guide

Writing Device Drivers

o You need to know how to drive the hardware of your pixel addressable dev
ice. At a minimum, a pixel addressable device must have the ability to read
and write single pixel values. (One could imagine a device that doesn't even
meet the minimum requirements being used as a pixel addressable device.
We will not discuss any of the ways that such a device might fake the
minimum requirements).

o You must have a UNIX kernel building environment. No extra source is
required.

o You must have the current pixrect library file and its accompanying header
files. No extra source is required.

This is one possible step-by-step approach to implementing a pixrect driver:

o Write and debug pixrect creation and destruction. This involves the pixrect
kernel device driver that lets you open(2) and mmap(2) the physical device
from a user process. The private cgl yake routine must be written. The
cgl_region and cgl_destroy pixrect operation must be written.

o W rite and debug the basic pixel rectangular region function. The
cglyutattributes and cgl_putcolorrnap pixrect operations must
be written in addition to the cgl_ rop routine.

o Write and debug batchrop routines. The cgl_batchrop pixrect operation
must be written.

o Write and debug vector drawer. The cgl_ vector pixrect operation must
be written.

o Write and debug remaining pixrect operations: cgl_ stencil, cgl_get,
cglyut,cgl_getattributesandcgl_getcolormap.

o If the device is to run with SunView, build a kernel with minimal basic pixel
rectangle function for use by the cursor tracking mechanism in the Sun View
kernel device driver. Also include the colormap access routines for use by
the colormap segmentation mechanism in the SunView kernel device driver.

o Load and test Sun View programs with new pixrect driver. Experience has
shown that when you are able to run released SunView programs that your
pixrect driver is in pretty good shape.

Here is the list of source files generated that implement the example pixrect
driver:

o cglreg. h - A header file describing the structure of the raster device. It
contains macros used to address the raw device.

o cgl var. h - A header file describing the private data of the pixrect. It con
tains external references to pixrect operation of this driver.

~\sun
., microsystems

Revision A of 9 May 198~

Memory Mapped Devices

~.4. Pixrect Private Data

Appendix A - Writing a Pixrect Driver 71

D / sys/ sundev / cgone. c - The pixrect kernel device driver code.

D cg1 . c - The pixrect creation and destruction routines.

D cg1_region. c - The region creation routine.

D pr _ make fun . c - Replaces an existing module and contains the vector of
pixrect make operations.

D cg1_ batch. c - The batchrop routine.

D cg1_ colormap. c - The colonnap access and attribute setting routines.

D cg1_getput . c - The single pixel access routines.

D c g 1_ r op . c - The basic pixel rectangle manipulation routine.

o cg1_ stencil. c - The stencil routine.

o cg1_ vec . c - The vector drawer.

o cg1_curve. c The curved shape routine.

o cg1yolyline. c The polyline routine.

Some devices are memory mapped; a good example is the bw2, the Sun-2 mono
chrome video frame buffer. With such devices, their pixels are manipulated
directly as main memory; there are no device specific registers through which the
pixels are accessed. Memory mapped devices are able to rely on the memory
pixrect driver for many of its operations. The only files that the Sun 2 mono
chrome video frame buffer supplies are:

o bw2var. h - A header file describing the private data of the pixrect. It con-
tainS external references to pixrect operation of this driver.

o / sys/ sundev /bwtwo. c - The pixrect kernel device driver code.

o bw2 . c - The pixrect creation and destruction routines.

The operations vector for the Sun 2 monochrome pixrect driver is:

struct pixrectops bw2_ops = {

} ;

mem_rop, mem_stencil, mem_batchrop,
0, bw2_destroy, mem_get, mem-put, mem_vector,
mem_region, mem-putcolormap, mem_getcolor.map,
me~utattributes, mem_getattributes

Each pixrect device must have a private data object that contains instance
specific data about the state of the driver. It is not acceptable to have global data
shared among all the pixrects objects. The device specific portion of the pixrect
data must contain certain infonnation:

o An offset from the upper left-hand comer of the pixel device. This offset,
plus the width and height of the pixrect from the public portion, is used to
detennine the clipping rectangle used during pixrect operations.

Revision A of 9 May 1988

72 Pixrect Reference Manual

A.S. Creation and
Destruction

Creating a Primary Pixrect

o A flag for distinguishing between primary and secondary pixrects. Primary
pixrects are the owners of dynamically allocated resources shared between
primary and secondary pixrects.

o A file descriptor to the pixrect kernel device. Usually, the file descriptor is
used while mapping pages into the user process address space so that the
device may be addressed. One could imagine a pixrect driver that had some
of its pixrect operations implemented inside the kernel. The file descriptor
would then be the key to communicating with that portion of the package via
read(2), write(2) and ioctl(2) system calls.

Here is other possible data maintained in the pixrect's private data:

D For many devices, a virtual address pointer is part of the private data so that
the device can be accessed from user code.

D For color devices, there is a mask to enable access to specific bit planes.

D For monochrome devices, there is a video invert flag. This replaces the
colonnap of color devices.

This section covers the code for pixrect object creation and destruction. Code for
the Sun-l color frame buffer pixrect driver is presented as an example.

There are two public pathways to creating a pixrect:

D pr _ open () creates a primary pixrect.

D pr_region () creates a secondary pixrect which specifies a subregion in
an existing pixrect.

There are two public pathways to destroying a pixrect:

D pr _destroy () destroys a primary or secondary pixrect. Clients of the
pixrect interface are responsible for destroying all extant secondary pixrects
before destroying the primary pixrect from which they were derived.

D pr _ close () simply calls pr _destroy () .

In this section, the private cgl_ make pixrect operation is described. This is the
flow of control for pr _ open () :

o Higherlevels of software call pr _open () , which takes a device file name
(e.g., / dev / cgoneO).

o pr _ open () opens the device and finds out its type and size via an FBIOG
TYPE ioctl(2) call (see <sun/fbio. h».

o pr _open () uses the type of pixel addressable device to index into the
pr_makefun array of procedures (more on this later) and calls the refer
enced pixrect make function, cgl_ make.

o cgl_make returns the primary pixrect (it workings are discussed below).

o pr _open () closes its handle on the device and the pixrect is returned .

• \sun
• microsystems

Revision A of 9 May 198~

Appendix A - Writing a Pixrect Driver 73

Here is a partial listing of cgl. c that contains code that is important to the
cgl_ make procedure. As it is for other code presented in this document, it is
here so you can refer back to it as you read the subsequent explanation. Some
lines are numbered for reference and nonnal C comments have been removed in
favor of the accompanying text.

#include <sys/types.h>
#include <stdio.h>
#include <pixrect/pixrect.h>
#include <pixrect/pr_util.h>
#include <pixrect/cglreg.h>
#include <pixrect/cglvar.h>

static struct pr_devdata *cgldevdata; /* cgl.l*/

struct pixrectops cgl_ops = { /* cgl.2*/

} ;

cgl_rop, cgl_stencil, cgl_batchrop, 0, cgl_destroy, cgl_get,
cgl-put, cgl_vector, cgl_region, cgl-putcolormap, cgl_getcolormap,
cgl-putattributes, cgl_getattributes,

struct pixrect *
cgl_make(fd, size, depth) /* cgl.3*/

int fd; 1* cgl.4*/
struct pr size size;
int depth;

struct pixrect *pr;
register struct cglpr *cgpr; /* cgl.5*1
struct pr_devdata *dd; /* cgl.6*/

if (depth != CGl_DEPTH I I size.x != CGl WIDTH
I I size.y != CGl_HEIGHT) { /* cgl.7*1

fprintf(stderr, "cgl_make sizes wrong %D %D %D\n",
depth, size.x, size.y);

return (0);

if (! (pr = pr_makefromfd(fd, size, depth, &cgldevdata, &dd,/* cgl.8*/
sizeof(struct cglfb), sizeof(struct cglpr), 0»)
return (0);

pr->pr_ops = &cgl_ops; /* cgl.9*/
cgpr = (struct cglpr *)pr->pr_data; /* cgl.lO*/
cgpr->cgpr_fd = dd->fd; /* cgl.ll*/
cgpr->cgpr_va = (struct cglfb *)dd->va; /* cgl.12*/
cgpr->cgpr-planes = 255; /* cgl.13*/
cgpr->cgpr_offset.x = cgpr->cgpr_offset.y = 0; /* cgl.14*/
cgl_setreg(cgpr->cgpr_va, CG_STATUS, CG_VIDEOENABLE); /* cgl.15*/
return (pr); /* cgl.16*/

~~sun ~~ microsystems
Revision A of 9 May 1988

74 Pixrect Reference Manual

Line cgl.7 does some consistency checking to make sure that the dimensions of
the pixel addressable device and the client's idea about the dimensions of the
device match.

struct *pixrect pr_makefromfd(fd, size, depth, devdata,
curdd, mmapbytes, privdatabytes, mmapoffsetbytes)
struct pr_size size;
struct pr_devdata **devdata, **curddi
int fd, depth, mmapbytes, privdatabytes,

mmapoffsetbytes;

Line cgl.8 calls the pixrect library routine pr _ makefromfd to do most of the
work:

D Allocates a pixrect structure object using the calloc library call. The
pixrect is filled in with size and depth parameters.

D Allocates an object of the size privdatabytes using the calloc library call
and placing a pointer to it in the pr _data field of the allocated pixrect.

D dup(2)s the passed in file descriptor fd so that when the caller closes the file
descriptor the device wouldn't close.

D mmap(2) allocates and maps to the device mmapbytes of space.

D If an error is detected during any of the above calls, an error is written to the
standard error output. A NULL pixrect handle is returned in this case.

D Returns the allocated pixrect.

This brings us to the issue of minimizing resources used by the pixrect driver.
andpr _open, cgl_ make, can be (and are) called many times thus creating a
situation in which there are many primary pixrects open at a time. A pixrect
should maintain an open file descriptor and (usually) a non-trivial amount of vir
tual address space mapped into the user process's address space. Both the
number of open file descriptors and the virtual address space (maximum 16
megabytes) are finite resources. However, multiple open pixrects can share all
these resources.

The pixrect library supports a resource sharing mechanism, part of which is
implemented in pr _ makefromfd. The devdata parameter passed to
pr_makefromfd is the head of a linked list ofpr_devdata structures of
which there is one per pixrect driver. It is sufficient to say that through the data
maintained on this list, sharing of the scarce resources described above can be
accomplished.

The curdd parameter passed to pr_makefromfd is set to be the
pr_devdata structure that applies to the device identified by fd.

Lines cgl.9 through cgl.14 are concerned with initializing the pixrect's private
data with dynamic information described in dd (curdd in the previous para
graph) and static information about the pixel addressable device .

• \sun
• microsystems

Revision A of 9 May 1988

Creating a Secondary Pixrect

Appendix A - Writing a Pixrect Driver 75

Line cgl.15 is where the video signal for the device is enabled. By convention,
every raster device should make sure that it is enabled.

In this section, the cgl_region pixrect operation is described. Here is all of
cgl_ region. c.

struct pixrect *cgl_region(src)
struct pr_subregion src;

register struct pixrect *pr;
register struct cglpr *scgpr
int zero = 0;

cgl_d(src.pr), *cgpr;

pr_clip(&src, &zero); /* cgl_region.l*/
if «pr = (struct pixrect *)calloc(l, sizeof (struct pixrect») 0)

return (0); /* cgl_region.2*/

if «cgpr = (struct cglpr *)calloc(l, sizeof (struct cglpr») 0) {
free(pr); /* cgl_region.3*/
return (0);

pr->pr_ops = &cgl_opsi /* cgl_region.4*/
pr->pr_size = src.sizei /* cgl_region.5*/
pr->pr depth = CGl DEPTH; /* cgl_region.6*/
pr->pr data = (caddr_t)cgpri /* cgl_region.7*/
cgpr->cgpr_fd = -Ii /* cgl_region.8*/
cgpr->cgpr_va = scgpr->cgpr_vai /* cgl_region.9*/
cgpr->cgpr-planes = scgpr->cgpr-planes; /*cgl_region.lO*/
cgpr->cgpr_offset.x scgpr->cgpr_offset.x + src.pos.Xi /*cgl_region.ll*/
cgpr->cgpr_offset.y = scgpr->cgpr_offset.y + src.pos.Yi /*cgl_region.12*/
return (pr);

cgl_region is less complex then cgl_make. The first thing done is to clip
the requested subregion to fall within the source pixrect (line cgl_region.l).

pr_clip(dstp, srcp)
struct pr_subregion *dstPi
struct pr-prpos *srcpi

pr _clip adjusts the position and size of dstp, the destination pixrect subre
gion, to fall within dstp->pr. If * scrp, the source pixrect position, is not
zero then the position of the source is clipped to fall within dstp.

Next, objects are allocated for the pixrect and the pixel addressable device's
private data (line cg l_,egion.2 and cgl_,egion.3). Then, similarly to the later
part of cgl_ make, the two new data objects are initialized (lines cgl_regionA
through cgl_,egion.12). One thing to note is that the cgl driver uses a -1 in the
file descriptor field of the pixrect's private data to indicate that this pixrect is
secondary (line cgl_,egion.8) .

• \sun ~ microsystems
Revision A of 9 May 1988

76 Pixrect Reference Manual

Destroying a Pixrect

cg1_destroy (pr)
struct pixrect *pr;

In this section, the cgl_ destroy pixrect operation is described. It works on
secondary and primary pixrects. Here is more of cgl . c.

register struct cg1pr *cgpr;

if (pr == 0)
return (0);

if (cgpr = cg1_d(pr» { /*cg1.30*/
if (cgpr->cgpr_fd != -1) { /*cg1.31*/

pr_unmakefromfd(cgpr->cgpr_fd, &cg1devdata); /*cg1.32*/

free(cgpr); /*cgl.33*/

free (pr) ;
return (0);

The pr_makefun ()
Operations Vector

/*cg1.34*/

Note that dynamic memory is freed (lines cgJ.33 and cgJ.34). Also, note that
only a primary pixrect (as indicated by a file descriptor that is not -1) invokes a
call to pr_unmakefromfd (line cgJ.32).

pr_unmakefromfd(fd, devdata)
struct pr_devdata **devdata;
int fd;

This pixrect library routine is the counterpart of pr _ rnakefromfd (). If the
device identified by the file descriptor f d has no more pixrects associated with it
(as determined from devdata) then the resources associated with it are
released.

As mentioned above, pr _open () calls cgl_ make () through the
pr _ makefun () procedure vector. This is what pr _ makefun () looks like (it
is the sole contents ofpr_makefun. c):

#include <pixrect/pixrect_hs.h>
#include <sun/fbio.h>

Pixrect *(*pr_makefun[FBTYPE_LASTPLUSONE]) ()
bwl_make,

} ;

cgl_make,
bw2_make,
cg2_make,
gpl_make,
o /* bw3_make */ ,
o /* cg3_make */ ,
o /* bw4_make */ ,
cg4_make

Revision A of9 May 1988

A.6. Pixrect Kernel Device
Driver

ConfigurabJe Device Support

:fI:include "cgone.h"
:fI:include "win.hn
:fI:if NCGONE > 0
:fI:include n .. /h/param.h n

:fI:include n .. /h/systm.h"
:fI:include " .. /h/dir.hn

:fI:include " .. /h/user.h n

:fI:include " .. /h/proc .h"
:fI:include n •• /h/buf. h n

:fI:include n •• /h/conf.h"

Appendix A - Writing a Pixrect Driver 77

pr _ rnakefun () is the routine that pulls in all the code from the different frame
buffers. If a site is not going to use programs on more than one kind of display,
the unused slots can be commented out to prevent the code for the unused display
from being loaded. This has the advantage of reducing disk space usage. How
ever, working set size will presumably not be affected due to virtual memory not
touching unused code.

For both the case of adding and deleting drivers, loading a compiled version of
this edited file will have the effect of ignoring the commented out device drivers.

When adding some new pixrect driver, you need to assign it some unused con
stant from <sun/fbio. h>, e.g., FBTYPE_NOTSUNl. This then becomes the
device identifier for your new pixrect driver. You need to generate a new version
of the source file pr_rnakefun. c with the above data structure except that the
array entry pr _ rnakefun [FBTYPE_NOTSUNl] would contain the pixrect make
procedure for your FBTYPE_NOTSUNI pixrect driver (line pr _ rnakefun . 1).
The old pr _ rnakefun. 0 in the pixrect library could be replaced with your new
pr _ rnakefun .0 using ar(1).

A pixrect kernel device driver supports the pixel addressable device as a com
plete UNIX device. It also supports use of this device by the Sun View driver so
that the cursor can be tracked and the colormap loaded within the kernel. The
document Writing Device Drivers/or the Sun Workstation contains the details of
device driver construction. It also contains an overview.

The code in this section comes from cgone . c. In the kernel, suffixes that end
with a number (like cg1) confuse the conventions surrounding device driver
names. A number suffix refers to the minor device number of a device. There
fore, in our example, cg1 becomes cgone where the naming has something to
do with the pixrect kernel device driver.

Raster devices typically hang off a high speed bus (e.g., Multibus) or are plugged
into a high speed communications port. At kernel building time the UNIX auto
configuration mechanism is told what devices to expect and where they should be
found. At boot time the auto-configuration mechanism checks to see if each of
the devices it expects are present.

This section deals with the auto-configuration aspects of the driver. This driver
is written in the conventional style that supports multiple units of the same dev
ice type. It is recommended that you follow this style even if you aren't antici
pating multiple pixel addressable devices of your type on a single UNIX system.

Revision A of 9 May 1988

78 Pixrect Reference Manual

#include " .. /h/file.h"
#include n •• /h/uio.h n

#include " .. /h/ioctl.h"
#include n •• /machine/mmu.h"
#include " .. /machine/pte.h"
#include .. /sun/fbio.h"
#include .. /sundev/mbvar.h"
#include .. /pixrect/pixrect.h"
#include .. /pixrect/pr_util.h"
#include .. /pixrect/cglreg.h"
#include .. /pixrect/cglvar.h"

#if NWIN > 0
#define CGl OPS &cgl_ops
struct pixrectops cgl_ops

cgl_rop,
cglyutcolormap,
cglyutattributes,

} ;

#else
#define CGl OPS (struct pixrectops *)0
#endif

#define CGISIZE (sizeof (struct cglfb»
struct cglpr cgoneprdatadefault =

{ 0, 0, 255, 0, 0 };
struct pixrect cgonepixrectdefault

CG1_OPS, { CG1_WIDTH, CGl HEIGHT }, CG1_DEPTH, /* filled in later */ 0 };

/*
* Driver information for auto-configuration stuff.
*/

int cgoneprobe(), cgoneintr();
struct pixrect cgonepixrect[NCGONE];
struct cglpr cgoneprdata[NCGONE];
struct mb_device *cgoneinfo[NCGONE];
struct rob_driver cgonedriver = {

} ;

/*

cgoneprobe, 0, 0, 0, 0, cgoneintr,
CGISIZE, "cgone", cgoneinfo, 0, 0, 0,

* Only allow opens for writing or reading and writing
* because reading is nonsensical.
*/

cgoneopen(dev, flag)
dev_t dev;

return (fbopen (dev, flag, NCGONE, cgoneinfo»;

/*

sun
microsystems

Revision A of 9 May 1988

Appendix A - Writing a Pixrect Driver 79

* When close driver destroy pixrect.
*/

/*ARGSUSED*/
cgoneclose(dev, flag)

dev_t dev;

register int unit = minor(dev);

if «caddr_t)&cgoneprdata[unit] == cgonepixrect[unit] .pr_data)
bzero«caddr_t)&cgoneprdata[unit], sizeof (struct cg1pr»;
bzero«caddr_t)&cgonepixrect[unit], sizeof (struct pixrect»;

/*ARGSUSED*/
cgoneioctl(dev, cmd, data, flag)

dev_t dev;
caddr_t data;

register int unit minor (dev) ;

switch (cmd)

case FBIOGTYPE:
register struct fbtype *fb = (struct fbtype *)data;

fb->fb_type = FBTYPE_SUN1COLOR;
fb->fb_height = 480;
fb->fb_width = 640;
fb->fb_depth = 8;
fb->fb_cmsize = 256;
fb->fb_size = 512*640;
break;

case FBIOGPIXRECT:
register struct fbpixrect *fbpr = (struct fbpixrect *)data;
register struct cglfb *cglfb =

(struct cglfb *)cgoneinfo[(unit)]->md_addr;

/*
* "Allocate" and initialize pixrect data with default.
*/

fbpr->fbpr-pixrect = &cgonepixrect[unit];
cgonepixrect[unit] = cgonepixrectdefault;
fbpr->fbpr_pixrect->pr_data = (caddr_t) &cgoneprdata[unit];
cgoneprdata[unit] = cgoneprdatadefault;
/*

* Fixup pixrect data.
*/

cgoneprdata[unit] .cgpr_va
/*

* Enable video
*/

sun
microsystems

cg1fb;

Revision A of 9 May 1988

80 Pixrect Reference Manual

/*

cgl_setreg(cglfb, CG_FUNCREG, CG_VIDEOENABLE);
/*

* Clear interrupt
*/

cgl_intclear(cglfb) ;
break;

default:
return (ENOTTY);

return (0);

* We need to handle vertical retrace interrupts here.
* The color map(s) can only be loaded during vertical
* retrace; we should put in ioctls for this to synchronize
* with the interrupts.
* FOR NOW, see comments in the code.
*/

cgoneintclear(cglfb)
struct cglfb *cglfb;

/*
* The Sun-l color frame buffer doesn't indicate that an
* interrupt is pending on itself so we don't know if the interrupt
* is for our device. So, just turn off interrupts on the cgone board.
* This routine can be called from any level.
*/

cgl_intclear(cglfb);
/*

* We return 0 so that if the interrupt is for some other device
* then that device will have a chance at it.
*/

return(O);

int
cgoneintr ()
{

return (fbintr (NCGONE, cgoneinfo, cgoneintclear»;

/*ARGSUSED*/
cgonemmap(dev, off, prot)

dev_t dev;
off_t off;
int prot;

return (fbmmap (dev, off, prot, NCGONE, cgoneinfo, CG1SIZE»;

sun
microsystems

Revision A of 9 May 1988

Appendix A - Writing a Pixrect Driver 81

#include " .. /sundev/cgreg.h"
/*

/*

* Note: using old cgreg.h to peek and poke for now.
*/

* We determine that the thing we're addressing is a color
* board by setting it up to invert the bits we write and then writing
* and reading back DATAl, making sure to deal with FIFOs going and coming.
*/

#define DATAl Ox5C
#define DATA2 Ox33
/*ARGSUSED*/
cgoneprobe(reg, unit)

caddr_t reg;
int unit:

register caddr_t CGXBase:
register u char *xaddr, *yaddr;

CGXBase = reg:
if (pokec«caddr_t)GR_freg, GR_copy_invert»

return (0);
if (pokec«caddr_t)GR_mask, 0»

return (0);
xaddr = (u_char *) (CGXBase + GR_x_select + GR_update + GR_setO);
yaddr = (u_char *) (CGXBase + GR_y_select + GR_setO):
if (pokec«caddr_t)yaddr, 0»

return (0):
if (pokec«caddr_t)xaddr, DATAl»

return (0);
(void) peekc«caddr_t)xaddr):
(void) pokec«caddr_t)xaddr, DATA2):
if (peekc«caddr_t)xaddr) == (-DATAl & OxFF»

/*
* The Sun-l color frame buffer doesn't indicate that an
* interrupt is pending on itself.
* Also, the interrupt level is user program changable.
* Thus, the kernel never knows what level to expect an
* interrupt on this device and doesn't know is an interrupt
* is pending.
* So, we add the cgoneintr routine to a list of interrupt
* handlers that are called if no one handles an interrupt.
* Add_default_intr screens out mUltiple calls with the same
* interrupt procedure.
*/

add_default_intr(cgoneintr);
return (CGlSIZE);

return (0):

#endif

.\sun ~ microsystems
Revision A of 9 May 1988

82 Pixrect Reference Manual

This is how the driver is plugged into the auto-configuration mechanism.
/ etc/ config reads a line in the configuration file for a Sun-1 color frame
buffer:

device cgoneO at mbO csr OxecOOO priority 3

An external reference to cgonedr i ver (line cgone.4) is made in a table main
tained by the auto-configuration mechanism. At boot time, if the auto
configuration mechanism can resolve the reference to cgonedr i ver then the
contents of this structure are used to configure in the device:

o cgoneprobe - The name of the probe procedure (line cgone.5).

o cgoneintr - The name of the interrupt procedure (line cgone.6).

o CGISIZE - The size in bytes of the address space of the device.

o cgone - The prefix of the device. Used in status and error messages.

o cgoneinfo - The array of devices pointers of the driver's type (line
cgone.2).

o The other field's defaults suffice for most pixel addressable devices.

cgoneprobe is called to let the driver decide if the virtual address at reg is
indeed a device that this driver recognizes as one of its own. The uni t argu
ment is the minor device number of this device. Writing a good probe routine
can be difficult. The trick is to use some idiosyncrasy of the device that differen
tiates it from others. The real driver for the Sun-l color frame buffer determines
that it is addressing a Sun-1 color frame buffer by setting it up to invert the data
written to it and reading back the result. The details of this code are not impor
tant to this discussion and is not included. Zero is returned if the probe fails and
CGISIZE is returned if the probe succeeds.

cgoneintr is called when an interrupt is generated at the beginning of the
vertical retrace. There are a variety of things that one might want to synchronize
with such an interrupt, e.g., load the colormap or move the cursor. Currently, the
utility fbintr simply disables the interrupt from happening again (line
cgone.6>.

int fbintr(numdevs, rob_devs, intclear)
int
struct
int

numdevs;
rob_device **mb_devs;
(*intclear) () ;

numdevs is the maximum number of devices of these type configured.
mb_devs is the array of devices deSCriptions. intclear is called back to
actually turn off the interrupt for a particular device. intclear must have the
same calling sequence as cgoneintclear (line cgone.7), i.e., it take the vir
tual address of the device to disable interrupts. cgl_ int clear (line cgone.8)
is a macro that actually disables the interrupts of cglfb.

~\sun
• microsystems

Revision A of 9 May 1988

Open

Mmap

Appendix A - Writing a Pixrect Driver 83

When an open system call is made at the user level cgoneopen () is called.

cgoneopen(dev, flag)
dev_t dev;

return (fbopen(dev, flag, NCGONE, cgoneinfo»;

cgoneopen () uses the utility fbopen () .

int fbopen(dev, flag, numdevs, mb_devs)
dev t dev;
int flag, numdevs;
struct mb_device **mb_devs;

fbopen () checks to see if dev is available for opening. If not the error ENXIO
is returned. If flag doesn't ask for write position (FWRllE) then the error EIN
V AL is returned. Normally, zero is returned on a successful open.

The memory map routine in a device driver is responsible for returning a single
physical page number of a portion of a device.

/*ARGSUSED*/
cgonemmap(dev, off, prot)

dev_t dev;
off_t off;
int prot;

return (fbmmap(dev, off, prot, NCGONE, cgoneinfo, CGlSIZE»;

cgonemmap () used the utility fbmmap () .

int fbmmap(dev, off, prot, numdevs, mb_devs, size)
dev t dev;
off t off;
int prot, numdevs, size;
struct mb device **mb_devs;

The parameters to fbmmap () are similar to fbopen (). However, off is the
offset in bytes from the beginning of the device. prot is passed through but
currently not used.

Revision A of 9 May 1988

84 Pixrect Reference Manual

Ioctl A pixrect kernel device driver must respond to two input/output control requests:

o FBIOGTYPE - Describe the characteristics of the pixel addressable device.

o FBIOGPIXRECf - Hand out a pixrect that may be used in the kernel. This
ioctl call is made from within the kernel. This is only required of frame
buffers.

#if NWIN > 0 /* cgone.9*/
#define CGl OPS &cgl_ops
struct pixrectops cgl_ops = {

cgl_rop, /*cgone.10*/
cglyutcolormap,

} ;

#else
#define CGIOPS (struct pixrectops *)0
#endif
struct cglpr cgoneprdatadefault =

{ 0, 0, 255, 0, 0 };
struct pixrect cgonepixrectdefault

{ CG1_OPS, { CG1_WIDTH, CG1_HEIGHT }, CG1_DEPTH, /* filled in later */ 0 };

struct pixrect cgonepixrect[NCGONE];
struct cglpr cgoneprdata[NCGONE];

cgoneioctl(dev, cmd, data, flag)
dev_t dev;
caddr_t data;

register int unit

switch (cmd)
case FBIOGTYPE:

minor (dev) ;

/*cgone.ll*/

register struct fbtype *fb = (struct fbtype *)data;
fb->fb_type = FBTYPE_SUNICOLOR;
fb->fb_height = CG1_HEIGHT;
fb->fb_width = CG1_WIDTH;
fb->fb_depth = 8;
fb->fb_cmsize = 256;
fb->fb size CGl HEIGHT*CG1_WIDTH;
break;

case FBIOGPIXRECT:
register struct fbpixrect *fbpr = (struct fbpixrect *)data;
register struct cglfb *cglfb =

(struct cglfb *)cgoneinfo[(unit)]->md_addr;
fbpr->fbpr_pixrect = &cgonepixrect[unit]; /*cgone.12*/
cgonepixrect[unit] = cgonepixrectdefault; /*cgone.13*/
fbpr->fbpr_pixrect->pr_data = (caddr_t) &cgoneprdata[unit];/*cgone.14*/
cgoneprdata[unit] = cgoneprdatadefault; /*cgone.15*/
cgoneprdata[unit] .cgpr_va = cglfb; /*cgone.16*/

cgl_setreg(cglfb, CG_FUNCREG, CG_VIDEOENABLE); /*cgone.17*/

+ §,!!!! Revision A of 9 May 1988

Close

Appendix A - Writing a Pixrect Driver 85

cgl_intclear(cglfb);
break;

/*cgone.18*/

default:
return (ENOTTY);

return (0);

The SunView driver isn't configured into the system when NWIN = 0 (line
cgone.9). When there is no SunView driver, don't reference the pixrect opera
tions cgl_rop () and cglyutcolormap (). The kernel version of
cgl_ rop () (line cgone.l0) only needs to be able to read and write memory
pixrects for cursor management. Thus, you can

:ftifndef KERNEL
/* code not associated with reading and writing */
/* memory pixrects */
:ftendif KERNEL

to reduce the size of the code.

Memory for pixrect public (pixrect structure) and private (cglpr structure)
objects is provided by arrays of each (line cgone.ll) NCGONE long. A device n
in these correspond to device n in cgoneinfo.

Lines cgone.12 through cgone.16 initialize a pixrect for a particular device. This
ioctl call should enable video for a frame buffer (line cgone.l7) and disable
interrupts as well (line cgone.18).

When the device is no longer being referenced, cgoneclose () is called. All
that is done is that the pixrect data structures of the device are zeroed.

cgoneclose(dev, flag)
dev_t dev;

register int unit = minor(dev);

if «caddr_t)&cgoneprdata[unit] == cgonepixrect[unit] .pr data) {
bzero«caddr_t)&cgoneprdata[unit], sizeof (struct cglpr»;
bzero«caddr_t)&cgonepixrect[unit], sizeof (struct pixrect»;

:ftendif

Revision A of9 May 1988

86 Pixrect Reference Manual

Plugging Your Driver into
UNIX

A. 7. Access Utilities

You need to add the device driver procedures to cdevsw in
/ sys/ sun/ conf. c after assigning a new major device number to your driver:

=If:include "cgone.h"
=If:if NCGONE > 0
int cgoneopen(), cgonemmap(), cgoneioctl();
int cgoneclose();
=If:else
=If: de fine cgoneopen nodev
=If:define cgonemmap nodev
=If:define cgoneioctl nodev
#"define cgoneclose nodev
=If:endif

cgoneopen, cgoneclose, nodev, nodev, /*14*/
cgoneioctl, nodev, nodev, 0,
seltrue, cgonemmap,
} ,

Also, you need to add the new files associated with your driver to
/sys/conf/files.sun:

pixrect/ cg1_colormap. c optional cgone win device-driver
pixrect / cg1_ rop. c optional cgone win device-driver
sundev / cgone . c optional cgone device-driver

This section describes utilities used by pixrect drivers. The pixrect header files
rnernvar. h, pixrect. hand pr_util. h contain useful macros that you
should familiarize yourself with; they are not documented here.

pr_clip(dstp, srcp)
struct pr_subregion *dstp;
struct pr-prpos *srcp;

pr _clip adjusts the position and size of dstp, the destination pixrect subre
gion, to fall within dstp->pr. If * scrp, the source pixrect position, is not
zero then the position of the source is clipped to fall within dstp.

Two operations on operations, pr _ reversesrc () and pr _ reversedst () ,
are provided for adjusting the operation code to take into account video reversing
of monochrome pixrects of either the source or the destination.

char
char

pr reversedst[16];
pr reversesrc[16];

These are implemented by table lookup in which the index into the tables is
(0 p> > 1) & 0 xF where 0 p is the operation passed into pixrect public procedures.

This process can be iterated, e.g.,

.\sun
• microsystems

Revision A of9 May 1988

A.8. Rop

A.9. Batchrop

A.IO. Vector

Importance of Proper
Clipping

A.II. Colormap

Monochrome

A.12. Attributes

Appendix A - Writing a Pixrect Driver 87

pr_reversedst[pr_reversesrc[op]].

These are the major cases to be considered with the pwa _rap () operation:

o Case 1 -- we are the source for the pixel rectangle operation, but not the des
tination. This is a pixel rectangle operation from the frame buffer to another
kind of pixrect. If the destination is not memory, then we will go indirect by
allocating a memory temporary, and then asking the destination to operate
from there into itself.

o Case 2 -- writing to your frame buffer. This consists of 4 different cases
depending on where the data is coming from: from nothing, from memory,
from some other pixrect, and from the frame buffer itself. When the source
is some other pixrect, other than memory, ask the other pixrect to read itself
into temporary memory to make the problem easier.

A simple batchrop implementation could iterate on the batch items and call rop
for each. Even in a more sophisticated implementation, while iterating on the
batch items, you might also choose to bailout by calling rop when the source is
skewed, or if clipping causes you to chop off in left-x direction.

There are some notable special cases that you should consider when drawing vec
tors:

o Handle length 1 or 2 vectors by just drawing endpoints.

o If vector is horizontal, use fast algorithm.

o If vector is vertical, use fast algorithm.

The hard part in vector drawing is clipping, which is done against the rectangle
of the destination quickly and with proper intetpolation so that the jaggies in the
vectors are independent of clipping.

Each color raster device has its own way of setting and getting the colonnap.

For monochrome raster devices, when pr _putcolarmap () is called, the con
vention is that if red [0] is zero then the display is light on dark, otherwise dark
on light. For monochrome raster devices, when pr _getcolormap () is
called, the convention is that if the display is light on dark then zero is stored in
red [0] , green [0] and blue [0] and -1 is stored in other positions in the
color map. Otherwise, if the display is dark on light, then zero and -1 are
reversed.

pr_getattributes () and pr_putattributes () operations get or set a
bitplane mask in color pixrects, respectively.

Revision A of 9 May 1988

88 Pixrect Reference Manual

Monochrome

A.I3. Pixel

A.I4. Stencil

A.IS. Polygon

Monochrome devices ignore pr_putattribute () calls that are setting the
bitplane mask. Monochrome devices always return 1 when
pr _getattribute () asking for the bitplane mask.

pwo _get () and pwo _put () operations get or set a single pixel, respectively.

In its most efficient implementation, stencil code parallels rop code, all the while
considering the 2 dimensional stencil. One way to implement stencil is to use
rops. We pay a small efficiency penalty for this. You may not consider writing
the special purpose code worthwhile for the bitmap stencils since they probably
won't get used nearly as much as rop. Here's the basic idea (Temp is a tem
porary memory pixrect):

Temp Dest
Temp Dest op Source
Temp Temp & Stencil
Dest Dest & -Stencil
Dest Dest I Temp

i.e.,

Dest (Dest & -Stencil) I «Dest op Source) & Stencil)

pr yolyline () is a natural extension to pr _vector (). It is especially
useful for devices that can optimize this operation .

• \sun
• microsystems

Revision A of 9 May 1988

B
Pixrect Functions and Macros

Pixrect Functions and Macros .. 91

B .1. Making Pixrects 91

B.2. Text ... 92

B. 3. Raster Files 94

B.4. Memory Pixrects ... 95

B.5. Colormaps and Bitplanes ... 96

B.6. Rasterops ... 98

B.7. Double Buffering .. 100

B
Pixrect Functions and Macros

B.I. Making Pixrects

Table B-1 Pixrects

Name

Create Pixrect

Create Secondary
Pixrect

Release Pixrect
Resources

Release Pixrect
Resources

Subregion Create
Secondary Pixrect

Subregion Release
Pixrect Resources

Convert 680XO pixrect
to 386i pixrect

I Function
Pixrect *pr_open(devicename)
char *devicename;

#define Pixrect *pr_region(pr, x, y, w, h)
Pixrect *pr;
int x, y, w, h;

#define pr_close(pr)
Pixrect *pr;

#define pr_destroy(pr)
Pixrect *pr;

#define Pixrect *prs_region(subreg)
struct pr_subregion subreg;

#define prs_destroy(pr)
Pixrect *pr;

void pr_flip(pr)
Pixrect *pr;

91 Revision A of 9 May 1988

92 Pixrect Reference Manual

B.2. Text

Table B-2 Text

Name

Compute Bounding Box
of Text String

Compute Location of
Characters in Text
String

Compute Width and
Height of Text String

Load Font

Load Private Copy of
Font

Load System Default
Font

Release Pixfont
Resources

Unstructured Text

Write Text and
Background

T Function
pf_textbound(bound, len, font, text}
struct pr_subregion *bound;
int len;
Pixfont *font;
char *text;

struct pr_size pf_textbatch(where, lengthp, font, text)
struct pr~os where[];
int *lengthp;
Pixfont *font;
char *text;

struct pr_size pf_textwidth(len, font, text)
int len;
Pixfont *font;
char *text;

Pixfont *pf_open(name)
char *name;

Pixfont *pf_open_private(name}
char *name;

Pixfont *pf_default()

pf_close(pf)
Pixfont *pf;

pr_text(pr, x, y, op, font, text)
Pixrect *pr;
int x, y, op;
Pixfont *font;
char *text;

pr_ttext(pr, x, y, op, font, text)
Pixrect *pr;
int x, y, op;
Pixfont *font;
char *text;

pf_text(where, op, font, text)
struct pr~rpos where;
int op;
Pixfont *font;
char *text;

Revision A of 9 May 1988

Name
Write Text

Appendix B - Pixrect Functions and Macros 93

Table B-2 Text- Continued

J Function
pf_ttext(where, op, font, text)
struct pr-prpos where;
int op;
Pixfont *font;
char *text;

+~!U! Revision A of 9 May 1988

94 Pixrect Reference Manual

B.3. Raster Files

Table B-3 Raster Files

Name
Initialize Raster File
Header

Read Colormap from
Raster File

Read Header from
Raster File

Read Image from Raster
File

Read Raster File

Read Standard Raster
File

Write Header to Raster
File

Write Image Data to
Raster File

Write Raster File

I Function

Pixrect *pr_dump_init(input_pr, rh, colormap, type,
copy_f'lag)

Pixrect *input-pr;
struct rasterfile *rh;
colormap_t *colormap;
int type, copy_flag;

int pr_load_colormap(input, rh, colormap)
FILE *input;
struct rasterfile *rh;
colormap_t *colormap;

int pr_load_header(input, rh)
FILE *input;
struct rasterfile *rh;

Pixrect *pr_load_image(input, rh, colormap}
FILE *input;
struct raster file *rh;
colormap_t *colormap;

Pixrect *pr_load(input, colormap}
FILE *input;
colormap_t *colormap;

Pixrect *pr_load_std_image(input, rh, colormap}
FILE *input;
struct rasterfile *rh;
colormap_t colormap;

int pr_dump_header(output, rh, colormap)
FILE *output;
struct rasterfile *rh;
colormap_t *colormap;

int pr_dump_image(pr, output, rh)
Pixrect *pr;
FILE *output;
struct rasterfile *rh;

int pr_dump(input_pr, output, colormap, type, copy_flag)
Pixrect *input_pr;
FILE *output;
colormap_t *colormap;
int type, copy_flag;

Revision A of 9 May 1988

Appendix B - Pixrect Functions and Macros 95

B.4. Memory Pixrects

Table B-4 Memory Pixrects

Name
Create Memory Pixrect
from an Image

Create Memory Pixrect

Create Static Memory
Pixrect

Get Memory Pixrect
Data Bytes per Line

Get Pointer to Memory
Pixrect Data

Variations for the Sun386i:

I Function

Pixrect *mem_point(width, height, depth, data)
int width, height, depth;
short *data;

Pixrect *mem_create(w, h, depth)
int w, h, depth;

#define mpr_static(name, w, h, depth, image)
int w, h, depth;
short *image;

#define mpr_linebytes(width, depth)
(«pr_product(width, depth) +15) »3) &-1)

#define mpr_d(pr)
«struct mpr_data *) (pr)->pr_data)

o memyoint () on the Sun386i does not flip the bitmap pointed to by *data. The pixrect structure returned
does not have the MP _STATIC or the MP _I38 6 flag set.

o mem_ create () O!l the Sun386i creates an empty pixrect with the MP _ 1386 flag set.

o mpr_static () on the Sun386i creates apixrect with both the MP_I386 and MP_STATIC flags set.

Revision A of 9 May 1988

96 Pixrect Reference Manual

B.S. Colormaps and Bitplanes

Table B-5 Colormaps and Bitplanes

Name
Exchange Foreground
and Background Colors

Get Colormap Entries

Get Plane Mask

Set Background and
Foreground Colors

Set Colormap Entries

Set Foreground and
Background Colors

Set Plane Mask

Subregion Get
Colormap Entries

Subregion Get Plane
Mask

Subregion Set
Colormap Entries

I Function
pr_reversevideo(pr, min, max}
Pixrect *pr;
int min, max;

#define pr_getcolormap(pr, index, count, red, green,
blue}

Pixrect *pr;
int index, count;
unsigned char red[], green[], blue[];

#define pr_getattributes(pr, planes}
Pixrect *pr;
int *planes;

pr_blackonwhite(pr, min, max}
Pixrect *pr;
int min, max;

#define pr-putcolormap(pr, index, count, red, green,
blue)

Pixrect *pr;
int index, count;
unsigned char red[], green[], blue[];

pr_whiteonblack(pr, min, max}
Pixrect *pr;
int min, max;

#define pr-putattributes(pr, planes}
Pixrect *pr;
int *planes;

#define prs_getcolormap(pr, index, count, red, green,
blue}

Pixrect *pr;
int index, count;
unsigned char red[], green[], blue[];

#define prs_getattributes(pr, planes}
Pixrect *pr;
int *planes;

#define prs_putcolormap(pr, index, count, red, green,
blue}

Pixrect *pr;
int index, count;
unsigned char red[], green[], blue[];

Revision A of 9 May 1988

Name

Subregion Set Plane
Mask

Appendix B - Pixrect Functions and Macros 97

Table B-5 Colormaps and Bitplanes-- Continued

I Function
#define prs_putattributes(pr, planes)
Pixrect *pr;
int *planes;

+mt!! Revision A of 9 May 1988

98 Pixrect Reference Manual

B.6. Rasterops

Table B-6 Rasterops

Name
Draw Textured or Solid
Lines with Width

Draw Textured Polygon

Draw Vector

Get Pixel Value

Masked RasterOp

Multiple RasterOp

RasterOp

Replicated Source
RasterOp

Set Pixel Value

I Function
#define pr_line(pr, xO, yO, xl, yl, brush, texi op)
Pixrect *pr;
int xO, yO, xl, yl;
struct pr_brush *brush;
struct pr_texture *tex;
int op;

pr-polygon_2(dpr, dx, dy, nbnds, npts, vlist, op,
spr, sx, sy)

Pixrect *dpr, *spr;
int dx, dy
int nbnds, npts[];
struct pr-pos *vlist;
int op, sx, sy;

#define pr_vector(pr, xO, yO, xl, yl, op, value)
Pixrect *pr;
int xO, yO, xl, yl, op, value;

#define pr_get(pr, x, y)
Pixrect *pr;
int x, y;

fdefine pr_stencil(dpr, dx, dy, dw, dh, op,
stpr, stx, sty, spr, sx, sy)
Pixrect *dpr, *stpr, *spr;
int dx, dy, dw, dh, op, stx, sty, sx, sy;

fdefine pr_batchrop(dpr, dx, dy, op, items, n)
Pixrect *dpr;
int dx, dy, op, n;
struct pr-prpos items[];

fdefine pr_rop(dpr,
Pixrect *dpr, *spr;
int dx, dy, dw, dh,

pr_replrop(dpr, dx,
Pixrect *dpr, *spr;
int dx, dy, dw, dh,

fdefine pr_put(pr,
P ixrect *pr;
int x, y, value;

dx,

op,

dy,

op,

x, y,

dy, dw, dh, op, spr, sx,

sx, sy;

dw, dh, op, spr, sx, sy)

sx, sy;

value)

sy)

Revision A of 9 May 1988

Appendix B - Pixrect FlBlCtions and Macros 99

Table B-6 Rasterops- Continued

Name
Subregion Draw Vector

Subregion Get Pixel
Value

Subregion Masked
RasterOp

Subregion Multiple
RasterOp

Subregion RasterOp

Subregion Replicated
Source RasterOp

Subregion Set Pixel
Value

Trapezon RasterOp

I Function
#define prs_vector(pr, posO, posl, op, value)
Pixrect *pr;
struct pr-pos posO, posl;
int op, value;

#define prs_get(srcprpos)
struct pr-prpos srcprpos;

#define prs_stencil(dstregion, op, stenprpos, srcprpos)
struct pr_subregion dstregion;
int op;
struct pr-prpos stenprpos, srcprpos;

#define prs_batchrop(dstpos, op, items, n)
struct pr-prpos dstpos;
int op, n;
struct pr-prpos items[];

#define prs_rop(dstregion, op, srcprpos)
struct pr_subregion dstregion;
int op;
struct pr-prpos srcprpos;

#define prs_replrop(dsubreg, op, sprpos}
struct pr_subregion dsubreg;
struct pr-prpos sprpos;

#define prs_put(dstprpos, value}
struct pr-prpos dstprpos;
int value;

pr_traprop(dpr, dx, dy, t, op, spr, sx, sy}
Pixrect *dpr, *spr;
struct pr_trap t;
int dx, dy, sx, sy op;

Revision A of 9 May 1988

100 Pixrect Reference Manual

B.7. Double Buffering

Table B-7 Double Buffering

Name
Get Double Buffering
Attributes

Set Double Buffering
Attributes

I FunctiOn
pr_dbl_get(pr, attribute}
Pixrect *pr;
int attribute;

pr_dbl_set(pr, attribute_list}
Pixrect *pr;
int *attribute list;

Revision A of 9 May 1988

c
Pixrect Data Structures

Pixrect Data Structures ... 103

Table C-l

Name ,
Brush

Character Descriptor

Font Descriptor

Pixrect

c
Pixrect Data Structures

Purect Data Structures

Data Structure
typedef struct pr_brush {

int width;
} Pr_brush;

struct pixchar {

} ;

struct pixrect *pc-pr;
struct pr-pos pc_home;
struct pr-pos pc_adv;

typedef struct pixfont {
struct pr size pf_defaultsize;
struct pixchar pf_char[2S6];

} Pixfont;

typedef struct pixrect {
struct pixrectops *pr_ops;
struct pr_size pr_size;
int pr_depth;
caddr t pr_data;

} Pixrect;

103 Revision A of 9 May 1988

104 Pixrect Reference Manual

Table C-l

Name
Pixrect Operations

Position

Position Within a
Pixrect

Size

Subregion

I
Pixrect Data Structures- Continued

Data Structure
struct pixrectops {

int (*pro_rop) () ;

} ;

int (*pro_stencil) ();
int (*pro_batchrop) ();
int (*pro_nop) ();
int (*pro_destroy) ();
int (*pro_get) ();
int (*pro-put) ();
int (*pro_vector) ();
struct pixrect * (*pro_region) ();
int (*pro-putcolormap) ();
int (*pro_getcolormap) ();
int (*pro-putattributes) ();
int (*pro_getattributes) ();

struct pr_pos {
int x, y;

} ;

struct pr-prpos {
struct pixrect *pr;
struct pr-pos pes;

} ;

struct pr_size {
int x, y;

} ;

struct pr_subregion
struct pixrect *pr;
struct pr-pos pes;
struct pr_size size;

} ;

Revision A of 9 May 1988

Table C-l

Name I
Texture

Trapezon

Trapezon Chain

Trapezon Fall

Appendix C - Pixrect Data Structures 105

Pixrect Data Structures- Continued

Data Structure
typedef struct pr_texture {

short *pattern;
short offset;
struct pr_texture_options {

unsigned startpoint 1,
endpoint : 1,
balanced : 1,
givenpattern 1,
res_fat : 1,
resyoly: 1,
res mvlist : 1,
res_right 1,
res_close : 1;

options;
short res_polyoff;
short res_oldpatln;
short res_fatoff;

} Pr_texture;

struct pr_trap {

} ;

struct pr_fall *left, *right;
int yO, yl;

struct pr_chain {

} ;

struct pr_chain *next;
struct pr_size size;
int *bits;

struct pr_fall {

} ;

struct pryos pos;
struct pr_chain *chain;

Revision A of9 May 1988

D
Curved Shapes

Curved Shapes .. 109

Figure D-l

D
Curved Shapes

This appendix describes pr_traprop () ,a function for rendering curved
shapes with Pixrect. pr _ traprop () is an advanced pixrect operation analo
gous to pr_rop ().

The curve to be rendered must first be stored in a data structure called pr _trap
which is based on a region called a trapezon, rather than on a rectangle. A tra
pezon is a region with an irregular boundary. Like a rectangle, a trapezon has
four sides: top, bottom, left, and right. The top and bottom sides of a trapezon
are straight and horizontal. A trapezon differs from a rectangle in that its left and
right sides are irregular curves, calledfalls, rather than straight lines.

A fall is a line of irregular shape. Vertically, a fall may only move downward.
Horizontally, a fall may move to the left or to the right, and this horizontal
motion may reverse itself. A fall may also sustain pure horizontal motion, that
is, horizontal motion with no vertical motion.

The figures below show a typical trapezon with source and destination pixrects,
and some examples of filled regions that were drawn by pr _ traprop () .

Typical Trapezon

destination
pixrect

dx~

v
op

109

-- :--. SX, 9f

source
pixrect

Revision A of 9 May 1988

110 Pixrect Reference Manual

Figure D-2 Some Figures Drawn by pr_traprop ()

pr_traprop(dpr, dx, dy, t, op, spr, sx, sy)
struct pixrect *dpr, *spr;
struct pr_trap t;
int dx, dy, sx, sy op;

dpr and spr are pointers to the destination and source pixrects, respectively. t
is the trapezon to be used. dx and dy specify an offset into the destination pix
recto s x and s y specify an offset into the source pixrect. op is an op-code as
specified previously (see Section 3.3, The Op Argument).

struct pr_trap {

} ;

struct pr_fall *left, *right;
int yO, yl;

struct pr_fall {

} ;

struct pr-pos pos;
struct pr_chain *chain;

struct pr_chain {

} ;

struct pr_chain *next;
struct pr_size size;
int *bits;

pr _ traprop () performs a rasterop from the source to the destination, clipped
to the trapezon's boundaries. A program must call pr _ traprop () once per
trapezon; therefore this procedure must be called at least twice to draw the letter
A in Figure D-2.

The source pixrect is aligned with the destination pixrect; the pixel at (s x, s y) in
the source pixrect goes to the pixel at (dx, d y) in the destination pixrect (see
Figure D-2).

Positions within the trapezon are relative to position (dx, dy) in the destination
pixrect. Thus, a position defined as (0,0) in the trapezon would actually be at

Revision A of 9 May 1988

Appendix D - Curved Shapes 111

(dx, d y) in the destination pixrect.

The structure pr _ t rap defines the boundaries of a trapezon. A trapezon con
sists of pointers to two falls (left and right) and two y coordinates specify
ing the top and bottom of the trapezon (yO and yl). Note that the trapezon's top
and bottom may be of zero width; yO and yl may simply serve as points of
reference.

Each fall consists of a starting position (po s) and a pointer to the head of the list
of chains describing the path the fall is to take (chain). A fall may start any
where above the trapezon and end anywhere below it. pr _ traprop () ignores
the portions of a fall that lie above and below the trapezon. If a fall is shorter
than the trapezon, pr _ tr aprop () will clip the trapezon horizontally to the
endpoint of the fall in question. Figure D-3 illustrates the way this works.

A chain is a member of a linked list of structures that describes the movement
of the fall. Each chain describes a single segment of the fall. Each chain consists
of a pointer to the next member of the chain (next), the size of the bounding
box for the chain (size), and a pointer to a bit vector containing motion com
mands (bits).

Each chain may specify motion to the right and/or down, or motion to the left
and/or down; however, a single chain may not specify both rightward and left
ward motion. Remember that motion may not proceed upward, and that straight
horizontal motion is pennitted.

The x value of the chain's s i z e detennines the direction of the motion: a posi
tive x value indicates rightward motion, while a negative x value indicates left
ward motion. The y value of the chain's size must always be positive, since a
fall may not move upward (in the direction of negative y).

A chain's bit vector is a command string that tells pr _ traprop () how to draw
each segment of the fall. Each set (1) bit in the vector is a command to move ane
pixel horizontally and each clear (0) bit is a command to move one pixel verti
cally. The bits within the bit vector are stored in byte order, from most
significant bit to least significant bit. This ordering corresponds to the left-to
right ordering of pixels within a memory pixrect.

The fall begins at the starting position specified in pr _fall. The motion
proceeds downward as specified in the first bit vector in the chain, from the
high-order bit to the low-order bit. When the fall reaches the bottom of the
bounding box, it continues at the top of the next chain's bounding box. Note that
the fall will always begin and end at diagonally opposite corners of a given
bounding box.

If a bit vector specifies a segment of the fall that would run outside of the bound
ing box, pr_traprop () clips that segment of the fall to the bounding box.
This would occur when the sum of the l' s in a chain's bit vector exceeds the
chain's x size, or when the sum of the O's in the chain's bit vector exceeds the
chain's y size. When this happens, the segment in question runs along the edge
of the bounding box until it reaches the comer of the bounding box diagonally
opposite to the comer in which it started.

Revision A of 9 May 1988

Index

Special Characters
<rasterfile.h>,59
<stdio . h>, 59

8
80386, see Sun386i

B
bitmap, 4
bitmapped display, 4
boolean, 4

C
clip pixrect, 21
compiling pixrect programs, 6
compute bounding box of text string, 46, 92
compute location of characters in text string, 46, 92
compute width and height of text string, 46, 92
convert 680XO pixrect to Sun386i pixrect, 91
coordinate system, 4
create memory pixrect, 53, 95
create memory pixrect from an image, 53, 95
create pixrect, 22, 91
create secondary pixrect, 23, 91
create static memory pixrect, 54, 95
curved shapes, 109

D
determine supported plane groups, 37
draw multiple points, 34
draw textured or solid lines with width, 31, 98
draw textured or solid polylines with width, 33
draw textured polygon, 28, 98
draw vector, 28, 98

E
exchange foreground and background colors, 35, 96

F
fbintr () , 82
fbmmap () , 83
fbopen () , 83
font

pixrect, 28, 43,45,46
font edit, 44

-115-

G
get colormap entries, 34, 96
get current plane group, 37
get double buffering attributes, 38, 100
get memory pixrect data bytes per line, 52, 95
get pixel value, 24, 98
get plane mask, 36, 96
get pointer to memory pixrect data. 52, 95

H
header files

pixrect, 6, 7

I
include files

pixrect, 6, 7
initialize raster file header, 65,94

L
lint

pixrect, 7
load font, 44, 92
load private copy of font, 45, 92
load system default font, 45,92

M
masked RasterOp, 25, 98
mem_ create () , 53, 95
mem-point(),53,95
memory pixrects, 6, 13,51,53
mpr_d (), 52, 95
mpr_data, 51
mpr_linebytes(),52,95
mpr_static 0,54,95
multiple RasterOp, 27, 98

o
object-oriented programming, 5

P
pf_ close () ,45,92
pf_default 0,45,92
pf_open (), 44, 92
pf_open_private(),45,92
pf_text (), 45, 92

Index - Continued

pf_textbatch (), 46, 92
pf _ t extbound () , 46, 92
pf_textwidth () ,46, 92
pf_ttext (), 45,92
PIX_CLR, 20
PIX_DONTCLIP, 19,21
PIX_DST,20
PIX_ERR, 19
PIX_NOT,20
PIX_SET,20
PIX_SRC,20
pixchar, 43, 103
pixel, 51

address, 4, 51, 55
color, 4
depth. 4, 51, 55

Pixfont, 43, 103
P ixrect, 103
pixrect

available plane groups, 37
bit flipping, 13
bitmap, 4
bitplane, 36
clipping, 21, 86
close a font, 45
compiling, 6
coordinate system, 4
creation of, 22
data structures, 7, 13, 18,32,43,51,63,71, 73, 74, 75, 78,84,

103, 110
destruction of, 24
draw lines in, 31
draw textured polygon in, 28
draw vector in, 28
errors, 19
find character positions, 46
font, 28, 43, 45, 46
foreground and background, 35
get colonnap, 34
get current plane group, 37
get double buffering, 38
get pixel of, 24
get plane mask, 36
header files, 6, 7
internals, 18,43,51,63
lint library, 7
load a font, 44
load a private font, 45
load default font, 45
masked RasterOp, 25
memory pixrects, 6, 13,51, 53, 54
multiple RasterOp, 27
object, 5
pixel,4
polylines, 33
polypoints, 34
portability, 13
primary, 5
raster files, 60, 62, 64, 65, 66
RasterOp, 4, 25
replicating, 26
screen parameters, 22

-116-

pixrect, continued
secondary, 6,23
set colormap, 35
set double buffering, 39
set pixel, 24
set plane group, 38
set plane mask, 36
string width, 46
text bounding box, 46
trapezon, 109
write text, 45, 46
writing device drivers, 69, 74, 76, 83, 86

pixrect lint library, 7
pixrect header files

<pixrect/pixrect.h>,6
<pixrect/pr-planegroups.h>,37
<pixrect>,7
<stdio. h>, 59

pixrect macros
MP DISPLAY, 51
MP=I386,51
MP REVERSEVIDEO,51
MP-STATIC,51
mpr_d(),52
mpr linebytes(),52
PIX-DONTCLIP, 19,21
PIX=DST,20
PIX ERR, 19
PIX-NOT,20
PIX=SRC,20
PIXPG 8BIT COLOR, 37
PIXPG=CURRENT,37
P IXPG MONO, 37
PIXPG -OVERLAY, 37
PIXPG=OVERLAY_ENABLE,37

pixrectops, 18, 103
pr_available_plane_groups(},37
pr_batchrop (), 27, 98
pr_blackonwhite(},35,96
pr_brush,103
pr_ brush (), 31,33
pr_chain, 103, 110
pr_clip (), 86
pr_ close (), 24,91
pr_dbl_get 0, 38,100
pr_dbl_set 0, 39,100
pr_destroy 0,24,91
pr_dump (), 60, 94
pr _dump_header () , 64, 94
pr _dump_image (), 65,94
pr_dump_init 0,65,94
pr_fall, 103, 110
pr _flip () , 13,91
pr_get (), 24, 98
pr_get-plane_group(),37
pr_getattributes (), 36,96
pr _getcolormap () ,34, 96
pr_line (), 31,98
pr _load () , 62, 94
pr_load_colormap (), 66, 94
pr _load_header () , 65, 94

pr _load_image (), 66, 94
pr_load_std_image (), 66,94
pr_makefromfd(),74
pr_open (), 22, 91
pryolygon_2 (), 28,98
pr_polyline(),33
pryolypoint(),34
pr_pos, 103
pr yrpos, 103
pryut (), 24, 98
pryutattributes(),36,96
pryutcolormap (), 35,96
pr_region (), 23,91
pr_replrop(),26,98
pr_reversedst(),86
pr_reversesrc(),86
pr_reversevideo() ,35,96
pr_rop (), 25, 98
pr_set_plane_group(),38
pr_setylanes(),38
pr_size,103
pr_stencil(),25,98
pr _subregion, 103
pr_text (), 46,92
Pr_texture,103
pr_texture (), 31, 33
pr_trap, 103, 110
pr_traprop (), 98, 109
pr_ttext (), 46, 92
pr_unmakefromfd() ,76
pr_ vector (), 28,98
pr_whiteonblack(),35,96
primary pixrect, 5, 23
prs_batchrop (), see pr_batchrop
prs_destroy (), see pr_destroy
prs_get (), see pr_get
prs_getattributes(),see pr_getattributes
prs_getcolormap (), see pr_getcolormap
prs_put (), see pryut
prsyutattributes(),see pryutattributes
prsyutcolormap (), see pryutcolormap
prs_region(),see pr_region
pr s _ repl rop () ,see pr _ repl rop
prs_rop (), see pr_rop
prs_stencil (), see pr_stencil
prs_vector(),see pr_vector

R
raster file

data structure, 63
initialize header, 65, 94
read, 62, 66, 94
read colormap, 66, 94
read header, 65, 94
read image, 66, 94
write, 60, 94
write header, 64, 94
write image, 65, 94

rasterfile, 63

-117-

RasterOp, 4, 25, 98
read colormap from raster file, 66, 94
read header from raster file, 65, 94
read image from raster file, 66, 94
read raster file, 62, 94
read standard raster file, 66, 94
release pixfont resources, 45, 92
release pixrect resources, 24, 91
replicated source RasterOp, 26, 98
run-length encoding, 59

S
secondary pixrect, 6, 23
set background and foreground colors, 35, 96
set colormap entries, 35, 96
set double buffering, 39, 100
set foreground and background colors, 35, 96
set pixel value, 24, 98
set plane group and mask, 38
set plane mask, 36, 96
subregion

creation of secondary pixrect, 23, 91
destruction ofpixrect, 24, 91
draw vector in pixrect, 28, 98
get colormap, 34, 96
get pixel of pixrect, 24, 98
get plane mask, 36, 96
masked RasterOp, 25, 98
multiple RasterOp, 27, 98
RasterOp, 25, 98
replicating, 26, 98
set colormap, 35, 96
set pixel of pixrect, 24, 98
set plane mask, 36, 96

Sun386i
pixrect,91
pixrect portability, 13
pr_flip(),13

T
trapezon RasterOp, 98, 109

U
unstructured text, 46, 92

V
vector display, 4
vertical retrace, 38

W
write header to raster file, 64, 94
write image data to raster file, 65,94
write raster file, 60, 94
write text, 45, 92
write text and background, 45, 92

Index - Continued

Notes

Notes

Notes

Notes

Notes

Notes

Notes

