icrosystems

m

Writing Device Drivers

Part Number: 800-1780-10
Revision A, of 9 May 1988

Sun™, Sun-2™, Sun-3™, and Sun-4™ are trademarks of Sun Microsystems,
Incorporated. Sun Workstation® is a registered trademark of Sun Microsys-
tems, Inc.

Multibus is a trademark of Intel Corporation.

UNIX is a trademark of AT&T Bell Laboratories.
VMEDbus is a trademark of Motorola, Incorporated.
VAX is a trademark of Digital Equipment Corporation.

IBM-PC and IBM 370 are trademarks of International Business Machines Cor-
poration.

Cray is a trademark of Cray Research.

All other products or services mentioned in this document are identified by the
trademarks or service marks of their respective companies or organizations

Sun equipment generates, uses, and can radiate radio frequency energy and if not
installed and used in accordance with the instructions manual, may cause
interference to radio communications. It has been tested and found to comply
with the limits for a Class A computing device pursuant to Subpart J of Part 15 of
FCC Rules, which are designed to provide reasonable protection against such
interference when operated in a commercial environment. Operation of Sun
equipment in a residential area is likely to cause interference in which case the
user at his own expense will be required to take whatever measures may be
required to correct the interference.

Copyright © 1987, 1988 by Sun Microsystems, Inc.

This publication is protected by Federal Copyright Law, with all rights reserved.
No part of this publication may be reproduced, stored in a retrieval system,
translated, transcribed, or transmitted, in any form, or by any means manual,
electric, electronic, electro-magnetic, mechanical, chemical, optical, or other-
wise, without prior explicit written permission from Sun Microsystems.

Chapter 1 Introduction

1.1.
1.2.
1.3.
14.
1.5.
1.6.
1.7.

PART ONE: Regular Device Drivers

Chapter 2 Hardware Context

2.1.

2.2.

Contents

Device Independence

Types of Devices

System V Compatibility

Major Development Stages

Waming To Microcomputer Programmers

Address-Space Terminology

Manual Overview

Regular Drivers

STREAMS Drivers

Last Word ...

00 0 00 00 N O O O b W W

Multibus Machines

Multibus Memory Address Space and I/O Address Space

Allocation of Multibus Memory
Allocation of Multibus I/O Space

VMEbus Machines ...,

Sun-2 VMEDbus Address Spaces
Sun-3/Sun-4 Address Spaces
Allocation of VMEbus Mcmory

— i —

Contents — Continued

The Sun VMEDbus to Multibus Adapter ..

Interrupt Vector Assignments ...

2.3. ATbus Machinesoooeooeoeeeei,

Loadable Drivers

Multibus Device Peculiarities

Multibus Byte-Ordering Issues .

Other Multibus-related Peculiarities .

Sun-4/SPARC Peculiarities ...

Other Device Peculiarities

2.5. DMA Devices

Sun Main-Bus DVMA

DMA on ATbus Machines

Chapter 3 Overall Kernel Context

3.1. The System Kernel

3.2. Devices as ‘‘Special’’ Files ...
3.3. Run-Time Data Structures

The Bus-Resource Interface

Autoconfiguration-Related Declarations

Other Kernel/Driver Interfaces

Chapter 4 Kernel Topics and Device Drivers

4.1. Overall Layout of a Character Device Driver
4.2. User Space versus Kernel Space

4.3. User Context and Interrupt Context

4.4. Device Interrupts

4.5. Interrupt Levels

4.6. Vectored Interrupts and Polling Interrupts

4.7. Some Common Service Routines

Timeout Mechanisms

Sleep and Wakeup Mechanism

—iv—

24
24
25
27
27
28
28
28
30
31
32
33
33
36

41
41
42
47
49
55
56

61
61
63
63
64
65
66
69
69
69

Contents — Continued

Raising and Lowering Processor Prioriti€s ..., 70

Main Bus Resource Management Routines I |
Data-Transfer FUNCUONS ... sssssse s 71
Kemel printf () Function ... 72
Macros to Manipulate Device NUMDbETSccoovooeeeeeeeeeeerere e 72
Chapter 5 Driver Development TOPICS ..., 75
5.1. Installing and Checking the Device ..o 75
Setting the Memory Management Unit ... [£
Selecting @ Virtual AdAIESS ..o seeeeese s reseene 76

Finding a Physical Address 79
Selecting a Virtual to Physical Mapping 79

Sun-2 Address Mappingooeeeeeoseeeccceoeeeee e eesoees e 81

Sun-3 and Sun-4 Address Mapping ... 84

A Few Example PTE Calculations ... 87

Getting the Device Working and in a Known State ... 88

A Warning about Monitor USAZE ... 90

5.2. Installation Options for Memory-Mapped Devicesooo....... 90
Memory-Mapped Device Drivers ... 90
Mapping Devices Without Device DIIiVers ..., 92
Direct Opening of Memory Devices ... 95

5.3. Debugging Techniques 97
Debugging with printf () 98
Event-Triggered Printing e 100
ASynchronous TTACING ... soes s 101
kadb — A Kermel Debugger ..o, . 102

5.4. Device Driver Error Handling ... 103
Error RECOVErY ... 103

Error RETUIMIS ..o 103

EITOT SIZNALS ..o seeeees e seeeeree e s seeeseeess e 104

EITOr LOZZING .o eeeseeeee e senereeses s e 104

Kemel Panics 104

5.5. System Upgrades 105

Contents — Continued

5.6. Loadable Drivers

Chapter 6 The ‘‘Skeleton’’ Character Device Driver

6.1. General Declarations in Driver

6.2. Autoconfiguration Procedures

probe () Routine

attach () Routine

6.3. open() and close () Routines

6.4. read() and write () Routines

Some Notes About the UIO Structure

6.5. Skeleton strategy () Routine

6.6. Skeleton start () Routine

6.7. intr () and poll () Routines

6.8. ioctl () Routine

6.9. Skeleton Driver Variations

DMA Variations

Multibus or VMEbus DVMA

A DMA Skeleton Driver

Variation with ‘* Asynchronous I/O’’ Support
Select Routines

Adding Asynchronous Notification

Adding an ioctl () routine

Chapter 7 Configuring the Kernel

7.1. Background Information ...

7.2. An Example

7.3. Devices that use Two Address Spaces

7.4. Adding and Removing Loadable Drivers

Chapter 8 Pseudo-Device Drivers — A Ramdisk
8.1. A Ramdisk Driver ..

Ramdisk Source Code

Ramdisk Installation

—vie

105

111
114
115
115
117
117
119
120
121
122
124
126
126
126
126
127
130
131
134
134

139
139
141
145
146

151
152
152
153

Contents — Continued

Ramdisk Test Program

PART TWO: STREAMS Programming ...

Chapter 9 Introduction to STREAMS

9.1. A Basic View of a Stream

System Callsocooemrercsmanenneneeeseneene

9.2. Benefits of STREAMS

Creating Service Interfaces

Manipulating Modules

Protocol Portability

Protocol Substitution

Protocol Migration

Module Reusability

9.3. An Advanced View of a Stream

Stream Head

Modules

Stream End

9.4. Building a Stream

Expanded Streams

Pushable Modules

9.5. Basic User Level Functions .

STREAMS System Calls

An Asynchronous Protocol Stream Example

Initializing the Stream

Message Types

Sending and Receiving Messages

Using Messages in the Example .

Other User Functions

9.6. Kemel Level Functions

Messages

Message Allocation

— vii -

161
162
163
165
165
165
165
166
166
167
168
169
169
170
171
172
172
173
173
174
175
176
176
177
180
180
180
182

Contents — Continued

Put and Service Procedures ...

Put Procedures

Service Procedures

Kemel Processing

Read Side Processing

Driver Processing

CHARPROC

CANONPROC

Write Side Processing

Analysis
9.7. Other Facilities

Message Queue Priority

Flow Control

Multiplexing

Monitoring

Error and Trace Logging

9.8. Driver Design Comparisons

Environment

Drivers .

Modules

9.9. Glossary

Chapter 10 STREAMS Applications Programming
10.1. Introduction ...

Streams Overview

Development Facilities

10.2. Basic Operations

A Simple Stream

Inserting Modules
Module and Driver Control

10.3. Advanced Operations

Advanced Input/Output Facilities

Input/Output Polling

— viii —

183
183
183
184
185
185
185
186
186
187
187
187
188
190
192
193
195
195
195
196
196

201
201
201
203
204
204
206
207
210
210
210

Contents — Continued

Asynchronous INpUt/OULPULoouvrorinssssseissere s sssssns e ssssesee 213
CIONE OPCIN ... e ssss s s s sssss s e s 214

10.4. Multiplexed SIICAMSooooooooeoeeeeeeeeeeeeeeeeeeesreseemeeeesseessesonen 214
Multiplexor CONfiGUIALIONSccoocovvveeee e sseess oo ssess s 214
Building a Multiplexor 216
Dismantling @ MUltipleXOTcooieocoeeseeeee e ssmamssss s 221
Routing Data Through a MultipleXor ... 222

10.5. Message Handling ..o, 223
Service Interface Messages ..., 223
Service Interfacesco....... 223

The Message INETTACE ... 224
Datagram Service Interface EXample ... 226
Accessing the Datagram Provider ... 228

Closing the Service ... 231
Sending a Datagram ... 231
Receiving a Datagramoooooeeceooeosovce s ssssse s ssssssssssse 232
Chapter 11 STREAMS Module and Driver Programming ... 237
11.1. Introduction ... 237
Development Facilities 238

11.2. Streams Mechanism 238
Stream Construction 239
Opening a Stream 241
Adding and Removing Modules ... 242
CIOSING ... e 242

11.3. Modules ..., 243
Module Declarations ... 243
Module Procedures _............eeeeeroseoeeressssenen 245
Module and Driver Environment, 246

11.4. Messages ... 247
Message Format 247
Message Generation and Receptionocoooooeoeoe, 249

Filter Module Declarationsooooocceoeeoeosooo 249

—ix—

Contents — Continued

11.5.

11.6.

11.7.

11.8.

bappend () Subroutine

Message Allocation
Put Procedure

Message Queues and Service Procedures

The queue_t Structure

Service Procedures

Message Queues and Message Priority

Flow Control

Example
Procedures

Drivers

Overview of Drivers

Driver Flow Control

Driver Programming

Driver Declarations

Driver Open

Driver Processing Procedures
Driver Flush Handling

Driver Interrupt

Driver and Module Ioctls

Driver Close

Complete Driver

Cloning

Loop-Around Driver
Write Put Procedure

Stream Head Messages

Service Procedures

Close

Multiplexing ..

Mutltiplexing Configurations

Connecting Lower Streams

Disconnecting Lower Streams

Multiplexor Construction Example

250
251
251
253
253
254
254
255
256
257
259
259
261
262
262
264
265
266
266
267
269
269
269
270
273
276
276
271
278
278
279
281
281

Contents — Continued

Multiplexing Driver

Upper Write Put Procedure
Lower QUEUE Write Service Procedure ...

Lower Read Put Procedure

11.9. Service Interface .

Definition

Message Usage .

Example .

Declarations .

Service Interface Procedure

11.10. Advanced Topics

Recovering From No Buffers

Advanced Flow Control

Signals ...

Control of Stream Head Processing

Read Options

Write Offset

Chapter 12 SunOS STREAMS Topics

12.1. Configuring STREAMS Drivers
Module Configuration

Tunable Parameters

System Error Messages

12.2. STREAMS in SunOS

STREAM Modules

STREAMS Portability

User Line Disciplines

Appendix A Supplementary STREAMS Material

A.1. Kemel Structures

- Xi—

284
287
290
292
294
294
294
295
295
297
299
299
301
302
303
303
303

307
307
308
309
310
311
311
312
312
312

317
317
317

Contents — Continued

A.2. Message Structures ...,
iocblk ..
linkblk

A.3. Message Types

Ordinary Messages

Priority Messages
A 4. Utilities
Buffer Allocation Priority

adjmsg () — Trim Bytes in a Message
allocb () — Allocate a Message Block
backq () — Get Pointer to Queue Behind a Given Queue
bufcall () — Recover from Failure of allocb ()

canput () — Test for Room in a Queue

copyb () — Copy a Message Block

copymsg () — Copy a Message ...
datamsg () — Test Whether Message is a Data Message

dupb () — Duplicate a Message Block Descriptor
dupmsg () — Duplicate a Message
enableok () — Re-allow Queue to be Scheduled

flushqg () — Flush a Queue

freeb () — Free a Message Block

freemsg () — Free All Message Blocks in a Message

getq () — Get a Message from a Queue

insq () — Put a Message at a Specific Place in a Queue

linkb () — Concatenate Two Messages into One

msgdsize () — Get Number of Data Bytes in a Message ...
noenable () — Prevent a Queue from Being Scheduled
OTHERQ () — Get Pointer to the Mate Queue

pullupmsg () — Concatenate Bytes in a Message

putbq () — Retum a Message to the Beginning of a Queue
putctl () — Put a Control Message
putctll () — Put One-byte Parameter Control Message
putnext () — Put a Message to the Next Queue

— xii —

Contents — Continued

putqg() —PutaMessageona Queue ... 335
genable () — Enable a Queue .. 336
greply () — Send Reverse-Direction Message on Stream 336
gsize () — Find the Number of Messages on a Queue ... 336

RD () — Get Pointer to the Read QUEUEoooooooeoee 336

rmvb () — Remove a Message Block from a Message ... 336

rmvq () — Remove a Message from aQueue ..., 337
splstr () — Set Processor Level ..., 337
strlog () — Submit Messages for Logging ... 337
testb () — Check for an Available Buffer ... 337
unlinkb () — Remove Message Block from Message Head ... 338

WR () — Get Pointer to the Write QUeue ... 338

A.5. Design GUIACHINESoccoooooeooeeeeoe e eeeeeeeneseeees e eressen 338
General RUlES ... SESOURUOOOTIG 1o 1.
SYSEIMN CALLS ..o eeseee et 339

Data StrUCtUTES ..o 339
Header Files 340
Accessible Symbols and Functions 340
Rules for Put and Service Procedures ... 341

A.6. STREAMS Glossary ... et n e st rrea e s 343
PART THREE: Non-STREAMS Appendices ... 347
Appendix B Summary of Device Driver Routines ... 351
B.1. Standard Error NUMDETS ...t 351
B.2. Device Driver Routines 351
xxattach () — Attach a Slave Device ... 352
xxclose () — Close @ DEVICE ... 352
xxintr () — Handle Vectored Interrupts ... 352
xxioctl () — Miscellaneous I/O Control . . 353
xxmmap () — Mmap a Page of Memory ... 355
xxminphys () — Determine Maximum Block Size ... 355

- Xiii —

Contents — Continued

xxopen () — Open a Device for Data Transfers

xxpoll () — Handle Polling Interrupts

xxprobe () — Determine if Hardware is There

xxread () — Read Data from Device

xxselect () — Select Support

xxstrategy () — High-Level I/O

xxwrite () — Write Data to Device

Appendix C Kemel Support Routines
btodb () — Convert Bytes to Disk Sectors

copyin () — Move Data From User to Kernel Space

copyout () — Move Data From Kernel to User Space
CDELAY () — Conditional Busy Wait
DELAY () — Busy Wait for a Given Period
dma done () — Free the DMA Channel
dma_setup () — Set Up for a DMA Transfer
gsignal () — Send Signal to Process Group

hat_getkpfnum() — Address to Page Frame Number
inb () — Read a Byte from an I/O Port
jodone () — Indicate I/O Complete

iowait () — Wait for I/O to Complete ...
kmem alloc () — Allocate Space from Kemel Heap
kmem free () — Return Space to Kemnel Heap

log () — Log Kemel Errors
MBI ADDR () — Get Address in DVMA Space
mapin () — Map Physical to Virtual Addresses

mapout () — Remove Physical to Virtual Mappings

mbrelse () — Free Main Bus Resources

mbsetup () — Set Up to Use Main Bus Resources
outb () — Send a Byte to an I/O Port

panic () — Reboot at Fatal Error
peek (), peekc (), peekl () — Check and Read
physio () — Block I/O Service Routine

— Xiv—

357
357
358
358
359
359

363
363
363
363
364
364
364
364
368
368
368
369
369
369
369
370
370
370
372
372
372
373
373
373
373

Contents — Continued

poke (), pokec(), pokel () — Check and Write ... 375
printf () — Kemel Printf Function ..., 376
pritospl () — Convert Priority Level ... 376
psignal () — Send Signal t0 Processeccoonn, 377
rmalloc () — General-Purpose Resource Allocator 377

rmfree () — Recycle Map Resource ... 378
selwakeup () — Wakeup a Select-blocked Process 378
sleep() — SlecponanEvent 378

spln () — Set CPU Priority Level crernse et sesamn s aeme e sr s 379

splx () — Reset Priority Level 379

suser () — Reset Priority Level ... 380

swab () — Swap Bytes 380
timeout () — WaitforanInterval ... 380
uiomove () — Move Data To or From an uio Structure 380
untimeout () — Cancel timeout () Request ... 381
uprint £ () — Nonsleeping Kernel Printf Function ... 381
ureadc (), uwritec () — uio Structure Read/Write ... 381
wakeup () — Wake Up a Process Sleepingon an Event ... 382
Appendix D User Support Routines ... 385
free () — Free Allocated MemOTY ..o 385
getpagesize () — Return Pagesize .. 385

mmap () — Map Memory from One Space to Another ... 385
munmap () — Unmap Pages of MEMOTY ..o, 386
Appendix E Sample Driver Listings 389
E.1. Skeleton BOArd DIIVEToooereoecesesise e soeeeeee e seeen 390
E.2. Sun-2 Color Graphics Driver ... 398
E.3. Sky Floating-Point DIIVET ... 415
E.4. Versatec Interface DIiver ... 423
E.5. Sun386i Parallel POrt DIiver ... 435
TIMACX ..o s s s oo st sees st s ser e 445

— XV —

Tables

Table 1-1 VMEbus Address-space Names 7
Table 2-1 Sun-2 Multibus MemoOTY TYPES ... eeevenreseesseeeees 14
Table 2-2 Sun-2 Multibus Memory Map ... 17
Table 2-3 Sun-2 Multibus I/O MaP ... e sese s 17
Table 2-4 Sun-2 VMEbus Memory TYPES ... veeeeeesieesssssrinn 18
Table 2-5 Generic VMEbus (Full Set) 20
Table 2-6 Sun-3/Sun-4 VMEbus Address Types . 20
Table 2-7 16-bit VMEbus Address Space Allocation 23
Table 2-8 24-bit VMEbus Address Space Allocation . 23
Table 2-9 32-bit VMEbus Address Space Allocation (Sun-3s and

SUN-4S ONLY)ooooor et sssss s s ssessessnessssne 23
Table 2-10 VMEbus Address Assignments for Some Devices ... 24
Table 2-11 Vectored Interrupt Assignments 25
Table 2-12 Interrupt Channel ASSIZNMENLScoeeeemeeneenmereessssssns 26
Table 2-13 Sun386i DMA Channel AsSignments ..., 27

Table 3-1 A Sample Listing of the /dev Directory 43

Table 3-2 Current Major Device Number Assignments

Table 5-1 Sun-2 PTEMasks ...,
Table 5-2 Sun-3/Sun-4 PTE Masks
Table 5-3 Virtual Memory Devices

— Xvii —

Figure 2-1
Figure 2-2
Figure 2-3
Figure 2-4
Figure 2-5

Figure 3-1

Figure 5-1
Figure 5-2
Figure 5-3
Figure 5-4
Figure 5-5
Figure 5-6
Figure 5-7

Figure 9-1
Figure 9-2
Figure 9-3
Figure 9-4
Figure 9-5
Figure 9-6
Figure 9-7
Figure 9-8

Sun-2 Multibus Address Spaces
Sun-2 VMEbus Address Spaces
Sun-3 VMEbus Address Spaces
Sun-4 VMEbus Address Spaces
System DVMA

Figures

I/0 Paths in the UNIX system

Sun-2 Address Mapping
Sun-3 Address Mapping

Sun-4 Address Mapping

Sun386i Address Mapping

Sun-3 MMU

Sun-4 MMU

Basic Stream

STREAMS-Related Manual Pages

Protocol Module Portability

Protocol Migration

Module Reusability ...

Stream In More Detail
Setting Up a Stream

Idle Stream Configuration for Example

— Xix —

19
21
22
35

44

Figures — Continued

Figure 9-9 Asynchronous Terminal Streams

Figure 9-10 A Message

Figure 9-11 Messages on a Message Queue

Figure 9-12 Operational Stream for Example
Figure 9-13 Module Put and Service Procedures

Figure 9-14 Streams Message Priority

Figure 9-15 Flow Control

Figure 9-16 Internet Multiplexing Stream

Figure 9-17 X.25 Multiplexing Stream

Figure 9-18 Error and Trace Logging

Figure 10-1 Basic Stream .

Figure 10-2 Stream to Communications Driver

Figure 10-3 Case Converter Module

Figure 10-4 Many-to-one Multiplexor

Figure 10-5 One-to-many Multiplexor
Figure 10-6 Many-to-many Multiplexor

Figure 10-7 Protocol Multiplexor

Figure 10-8 Before Link ..o

Figure 10-9 IP Multiplexor After First Link

Figure 10-10 IP Multiplexor

Figure 10-11 TP Multiplexor

Figure 10-12 Protocol Substitution
Figure 10-13 Service Interface

Figure 11-1 Downstream Stream Construction

Figure 11-2 QUEUE data structures

Figure 11-3 Message Form and Linkage .

Figure 11-4 Message Queue Priority

Figure 11-5 Device Driver Streams

Figure 11-6 Loop Around Streams

Figure 11-7 Internet Multiplexor Before Connecting
Figure 11-8 Internet Multiplexor After Connecting

— XX —

179
181
182
184
185
188
189
190
191
194

203
205
207
215
215
215
216
217
218
219
220
223
224

240
240
248
255
261
271
282
283

Figures — Continued

Figure 11-9 Example Multiplexor Configuration 287

Figure A-1 M_PROTO and M_PCPROTO Message Structure 321

— XX1—

Introduction

Introduction

1.1.
1.2.
1.3.
14.
L.5.
1.6.
L.7.

Device Independence .

Types of Devices

System V Compatibility

Major Development Stages ..

Warning To Microcomputer Programmers
Address-Space Terminology ..

Manual Overview

Regular Drivers
STREAMS Drivers
Last Word

O 00 0 NN N N &N AW

e

a
e
o

e
o

e
o
o

1.1. Device Independence

Introduction

This manual is a guide to adding drivers for new devices to the SunOS kernel. It
comes is three parts.

o Part One, Regular Device Drivers, discusses a variety of issues relevant to
standard (non-STREAMS) device drivers. It is intended to be self-
contained, and to include all necessary discussion of hardware and kernel
topics.

o Part Two, STREAMS Programming, discusses topics relevant to the con-
struction and installation of STREAMS drivers and modules. It also
includes STREAMS-related reference material.

o Part Three, Non-STREAMS Appendices, includes reference material related
to regular (non-STREAMS) drivers.

Throughout the manual, statements that apply only to specific machines, e.g.
Sun-4s or Sun386i’s, will be clearly flagged to that effect.

One of SunOS’s major services to application programs is to provide a device-
independent view of the I/O hardware. In this view, user processes (application
programs), see devices as “special” types of files that can be opened, closed and
manipulated just like regular files. The user process manipulates devices as it
would files, by making system calls.

Once a system call carries process execution into the SunOS kernel, however, it
becomes clear just how “special” devices really are. The kernel distinguishes
between real files and device special files, and translates operations on the latter
into calls to their corresponding device drivers. These drivers control all device
operations; devices do nothing until their drivers tell them to.

Thus, system calls provide the interface between user processes and the SunOS
kernel, while device drivers provide an interface between the kernel itself and its
peripheral devices. Device drivers are thus crucial elements in SunOS’s overall
device-independent scheme of things. Device-drivers are the only parts of the
system that know, or care, if a device is DMA (Direct Memory Access), PIO
(Programmed I/0), or memory-mapped.

The kernel supplied with the Sun system is a configurable kernel, meaning that it
is possible to add new device driver modules to your system by rebuilding your
kernel, even if you don’t have access to the system source code. On Sun386i

sun 3 Revision A, of 9 May 1988

microsystems

4 Writing Device Drivers

1.2. Types of Devices

systems, the loadable driver capability makes it possible to attach a driver to a
system without rebuilding the kernel and rebooting the system. For more infor-
mation on how to reconfigure your kernel to include new device drivers, see the
Configuring the Kernel and SunOS STREAMS Topics chapters of this manual, the
Adding Hardware to Your System chapter of Network Programming and the
config (8) man page.

This document is aimed at Sun users who wish to connect new Multibus,
VMEDbus or ATbus devices to their system. It does not, however, explain how to
write drivers for all possible Sun devices.

We can classify devices into eight major categories:
Co-processors.

Disks and tapes.

Network interface drivers such as Ethemnet or X.25.
SCSI devices.

Serial communications multiplexors.

IS O o e

General DMA devices such as driver boards for raster-oriented printers or
plotters. DMA devices contain their own processors and, once dispatched,
perform I/O independently of the system CPU by stealing memory cycles.

7. Programmed I/O devices, that is, devices which send and receive data on the
main system bus under direct control of the system CPU.

8. Frame buffers and other memory-mapped devices. Such devices are typi-
cally mapped into user-process memory and then accessed directly.

9. So called pseudo devices, which are actually drivers without associated
hardware devices.

This manual does not cover driver development for devices in categories 1, 2, 3,
4 and 5. It does discuss — in Part one — drivers for the devices in categories 6,
7, 8 and 9 and — in Part Two — gives STREAMS-related information of interest
to programmers planning drivers for serial communications devices. The major-
ity of the devices which users will want to add to their systems are found in
categories 6 to 9. These include:

o input devices like mice, digital tablets and analog-to-digital converters,
o output and display devices like frame buffers, printers, and plotters,
o utility peripherals like array and graphics processors.

This manual doesn’t support the development of co-processor drivers for the sim-
ple reason that co-processors, while certainly devices, are so intimately linked to
the CPU that they are integrated below the driver level of the kernel.

It also excludes tape and disk drivers, or indeed drivers for any structured or
block 1/0 devices, for such drivers are quite difficult to write well. Besides, most
customers will find that the structured-device drivers provided with the standard

& S un Revision A, of 9 May 1988

microsystems

Chapter 1 — Introduction 5

system software fill their needs quite adequately. The extensive use of standards
within the Sun product line will allow them to use hardware interfaces already
provided by Sun to drive whatever tape and disk units they wish to use. If this
turns out not to be the case, an experienced driver developer will have to be con-
sulted. (You will also want to start with an existing driver, and will thus need a
source-code license).

Finally, this manual doesn’t really discuss the issues relevant to serial communi-
cations and local network interface driver development. Again, such drivers are
rather involved, and users will almost certainly find the Sun product line to con-
tain devices adequate to their task. (And again, you will need a source license to
go it alone).

This manual is primarily concerned with unstructured or character (as opposed
to structured or block) devices. This distinction is often made, but seldom
clearly, and it may be helpful then to consider structured devices as only those
upon which SunOS filesystems can be mounted. Such devices (almost always
disks, but tape drives are possible) support random-access I/O by way of the sys-
tem buffer-caching mechanism. They almost always support a second,
character-oriented style of I/O, often called raw I/0, but this doesn’t make them
character devices. Their drivers tend to implement raw I/O with the same
mechanisms constructed for the main task of supporting block I/O.

Character devices, on the other hand, do not support random-access I/O, and
filesystems cannot be mounted upon them. Their drivers typically support read
and/or write operations, but these operations are fundamentally different than in
block devices. Sometimes character drivers use mechanisms, routines and struc-
tures that are primarily intended for block drivers, but this shouldn’t be allowed
to confuse matters; they use them only because it’s convenient to do so.1

The techniques described in this manual can also be used to build pseudo-device
drivers. Such drivers can be useful in a variety of ways. They can be used to
implement virtual devices (for example, windows that behave as virtual termi-
nals) or for extending the capabilities of the kernel in highly localized and port-
able fashions (for example, by building a pseudo device to implement a specific
kind of semaphore facility). What they all have in common is the absence of
hardware; the driver actually implements and controls virtual software devices.

! To jump ahead for a moment, the kernel routines which, though written for block drivers are also used for
character drivers are physio (), mbsetup () and mbrelse (). The driver xxstrategy () routine is also
intended primarily for block devices, though it can be used in character drivers which buffer their /O (typically
those which don’t support a tty-style interface). In such cases it’s not, as it is in block drivers, an entry point,
and it doesn’t implement any strategy to speak of. But physio () requires its existence, as it does the use of
the bu f structure, and so they are used. The main point to keep in mind is that character drivers use block-
driver mechanisms because it’s convenient for themn to do so, but this doesn’t make them block drivers. In
particular, character drivers never have anything to do with the kernel buffer cache.

S
//%\@ sun Revision A, of 9 May 1988

icrosyst

6 Writing Device Drivers

1.3. System V
Compatibility

1.4. Major Development
Stages

1.5. Warning To
Microcomputer
Programmers

The SunOS applications interface is almost completely compatible with that of
AT&T’s System V UNIX system. The driver/kernel interface, however, is not.
In general, though, drivers that were written for System V (or V7 or 4.1BSD,
which have driver interfaces similar to System V) will be easily ported to SunOS,
because, with the exception of drivers for pseudo devices, drivers are far more
sensitive to the architectural details of the machines upon which they run than to
the details of the kernels to which they interface.

Sun device drivers differ from typical System V drivers because the Sun operat-
ing system has evolved from 4.2BSD and, in 4.2BSD, the kernel driver interface
was significantly restructured. This doesn’t mean that programmers with experi-
ence developing System V drivers will find Sun drivers to be altogether foreign.
In fact, the overall structure of Sun drivers is largely identical to the structure of
System V drivers. Nevertheless, there are differences, and from some perspec-
tives they are quite significant. See the Overall Kernel Context chapter of this
manual for the details of the Sun driver/kernel interface.

The greatest differences between Sun drivers and drivers for other systems are
due not to operating system differences but rather to differences between the Sun
Memory-Mangement Unit (MMU) and the MMUs of other systems. Conse-
quently, drivers which map addresses require a lot of Sun-specific code.

To add a new device and its driver to the system you must:

1. Get the device hardware into a state where you know it works as advertised.
It is extremely difficult to debug the driver software if the device hardware
isn’t first working properly.

2. Write the device driver itself.

3. Add the driver to a kernel’s configuration file to specify a system containing
the new driver, and compile this system. On the Sun386i, if you have writ-
ten the driver as a loadable driver, then compile the driver and use the
modload (1) command to load the driver into a running system.

4. Debug the driver.

5. Repeat steps 2 to 4 as necessary. Drivers are often written (and debugged)
by stages, with development proceeding long after early versions are
configured into the kernel.

Sun computers are virtual-address machines, and, as such, their addressing
schemes are far more complex than anything that microcomputer programmers
typically confront. In virtual-address machines, physical addresses have a com-
plex and rapidly changing relationship to the virtual addresses which user pro-
grams manipulate. The kernel continually maps, remaps and unmaps pages of
virtual memory to accommodate the limits of system physical memory. This
means that the kernel (including its device drivers) cannot assume that any physi-
cal address in user memory will not be snatched away by the paging daemon
unless it explicitly locks the physical page containing that address into memory.
The details of how this locking is done will be given later, in discussions of the

é{%@ §c un Revision A, of 9 May 1988

Chapter 1 — Introduction 7

1.6. Address-Space
Terminology

Table 1-1

4

kernel support routine physio () ; for the moment simply note that physical
addresses have a complex and transient relationship to virtual addresses.
Specifically:

o Each user process (and, on Sun-2 machines, the kernel as well) has its own
distinct virtual address space. A user process (or the kemel) can make
arrangements to share address space with another process — that is, to have
part of its address space mapped to the same physical memory as a part of
the address space of another process — but this must be done explicitly.

o Insimilar regard, a user process can elect to have a bus address mapped into
its address space, but this doesn’t happen automatically.

In this manual, we will adopt a VMEbus address-space naming convention that
makes both address size and data size explicit. The first number in the name
indicates the number of bits in the address and the second number indicates the
number of bits in the data length. For example, the space with a 24-bit address
and a 16-bit data length will be known as vme24d16. This naming convention
is used elsewhere, but others are as well, as indicated in the following table.

VMEbus Address-space Names

Address-Space Name Other Name(s)
vmel6dlé VME D16A16 and vmel6
vme24dl6 VME D16A24 and vime2 4
vme32d16 VME D16A32
vmel 6d32 VME D32A16
vme24d32 VME D32A24
vme32d32 VME D32A32 and vme32

The short names in the second column (vmel6, vme24 and vme32) are com-
monly used, but they can seem ambiguous to the novice, and will consequently
be avoided in this manual.

Note that there are two situations where the system expects the name of a
VMEDbus address space as input. In these situations, either the vme16d16 or the
vme16 forms are acceptable. These situations are:

o within the kernel config file, and

o when naming actual memory devices (“special” files in the /dev directory).
See the Mapping Devices Without Device Drivers section of the Driver

sun Revision A, of 9 May 1988

microsystems

8 Writing Device Drivers

1.7. Manual Overview

Regular Drivers

STREAMS Drivers

Last Word

Development Topics chapter for more information.

Chapter 2 is an overview of the hardware environment provided by Sun Worksta-
tions to their drivers. The emphasis is on bus and address-space related issues.

Chapter 3 is an overview of the kernel environment within which drivers operate.

Chapter 4 covers a number of topics relevant to drivers: address spaces, inter-
rupts and so on, in greater detail. It also surveys the most important classes of
services provided by the kemnel to its drivers.

Chapter S covers development topics, including the initial installation and
checkout of devices, driver debugging and error handling.

Chapter 6 provides a detailed discussion of a driver for a very simple hypotheti-
cal character device.

Chapter 7 explains how to add new drivers to the SunOS kernel.

Chapter 8 explains pseudo-drivers, and provides source and installation instruc-
tions for a real ramdisk pseudo-driver.

Chapter 9 is and introduction to the STREAMS mechanism.
Chapter 10 describes the development of user-level STREAMS applications.

Chapter 11 discusses, in detail, the development of STREAMS drivers and
modules.

Chapter 10 discusses those aspects of the STREAMS mechanism that are unique
to SunOS. It covers the few STREAMS—specific configuration topics.

Finally, there are appendices containing information useful to driver developers.
These include a set of STREAMS-specific appendices (included in Part II), a
summary of kernel support functions useful in developing device drivers,
descriptions of user-level routines useful in driver development, and a number of
annotated driver listings.

Remember, spend as much time as you need in the Sun PROM monitor poking,
prodding and cajoling your device until you’re thoroughly familiar with its
behavior. This will save you a lot of grief later. The details on how to proceed
with a monitor checkout of your device are found in the Installing and Checking
the Device section of the Driver Development Topics chapter.

And finally, note that if you have no previous experience writing UNIX device

drivers, you should expect to seek some help from the Sun technical support or
consulting organizations, or from an outside consultant experienced with driver
development.

sSun Revision A, of 9 May 1988

microsystemns

PART ONE: Regular Device Drivers

Hardware Context

Hardware Context

2.1. Multibus Machines ..o,

Multibus Memory Address Space and I/O Address Space
Allocation of Multibus Memory

Allocation of Multibus I/O Space
2.2, VMEDUS MACKINEScoocorerireeescce e sesrsss s ssssssses e
Sun-2 VMEbus Address Spaces
Sun-3/Sun-4 Address SPACES ...
Allocation of VMEDbUS MEmMOry ...,
The Sun VMEDbus to Multibus Adapter
Interrupt Vector Assignments
2.3. ATbus Machines
Loadable Drivers

DOS and SunOS Environments

2.4. Hardware Peculiarities to Watch Out For

Multibus Device Peculiarities

Multibus Byte-Ordering ISSUES ...
Other Multibus-related Peculiarities

Sun-4/SPARC Peculiarities

Other Device Peculiarities

2.5. DMA Devices

2.1. Multibus Machines

Multibus Memory Address
Space and I/O Address Space

@

Hardware Context

Computer /O architectures are far more dependent upon bus structure than they
are upon CPU type, and device drivers, oriented as they are towards I/0, must
have intimate knowledge of the bus characteristics of the machines on which
they are running. For example, many Multibus machines do not support vectored
interrupts 2 and thus drivers for interrupt driven devices which are intended to
run on Multibus machines must provide polling facilities. Fortunately, the Sun
kernel provides facilities (described in the Other Kernel/Driver Interfaces section
of the Overall Kernel Context chapter) by which a driver can determine the type
of the machine upon which it’s running.

The MC680XO0 family of processors does all its I/O via a process known as
“memory mapping.” What this means is that the processor sees no difference
between memory and peripheral devices — all input-output operations are per-
formed by storing data and fetching data from the same memory space. The
Multibus, on the other hand, was originally designed for processors, like those of
the Intel 8080 family, which have two separate address spaces. Such processors
have one kind of instruction for storing data in memory or fetching data from
memory (instructions such as MOV), and another, different kind of instruction
(such as IN and OUT) for transferring data to or from peripheral devices.
Reflecting the architecture of such processors, the Multibus has two address
spaces.

Multibus memory space
is used for memory or devices that look like memory. Many devices —
commonly known as “memory mapped” devices — are designed to be
accessed as memory, and drivers for such devices can “map” them into user
virtual memory space and then perform device I/O by simply reading and
writing the device’s memory as part of normal address space. Such
memory-mapped drivers tend to be quite simple, and so it’s notable that dev-
ices not explicitly designed to be memory mapped can, under a restricted set
of circumstances, be driven by memory mapping. The restrictions are,

2 The Multibus itself, as it turns out, actuvally does support vectored interrupts, but not in a way that can
reasonably be used with the MC680X0 family of processors.

sun 13 Revision A, of 9 May 1988

microsystems

14

Writing Device Drivers

Table 2-1

however, fairly severe. Such drivers cannot, for example, have xxioctl ()
routines. See the Mapping Devices Without Device Drivers section of the
Driver Development Topics manual for more details. The Sun-2 Color
Board is a good example of a device that is designed to be memory mapped,
and a listing of its driver can be found in the Sample Driver Listings appen-
dix.

Multibus 1/0 address space
is another “space” entirely separate from normal memory. Typically used as
an area to which device registers can be mapped, I/O space was originally
introduced to keep such registers out of limited primary address space by
providing a means of making peripherals, rather than system memory,
respond to the bus whenever given I/O control lines were asserted by the
CPU. (Such a setup also reduces hardware costs by keeping the number of
address lines small.) Devices which have their control and status registers
mapped to Multibus I/O address space are said to be “I/O mapped” devices.

The MC680X0 family, of course, no longer suffers the addressing limitations that
made the dual-space architecture of the Multibus so attractive. The VMEDbus, in
similar regard, is no longer structured around separate “memory” and “I/O”
spaces. (The term “I/O space” does continue to be used, from time to time, with
reference to VMEDbus-based systems and devices. Such use, however, is largely
by way of analogy with Multibus systems, and it shouldn’t be taken too literally).

Be aware that generic Multibus memory space can be either 20-bit or a 24-bit.
(Sun normally uses 20-bit Multibus memory addresses, though when a Multibus
card is installed in a VMEbus system with a VMEbus/Multibus adapter, 24-bit
addresses are used). In similar regard, a generic Multibus can provide either an
8-bit or 16-bit I/O space, and Sun uses only the 16-bit Multibus I/O space. Note,
however, that some older Multibus boards accept only 8-bit Multibus I/O
addresses.

Sun Multibus systems actually have four “address spaces,” corresponding to the
four types of memory (each type has an identifying number associated with it, a
number which is used by the MMU in computing PTE’s (Page Table Entries).
See the Sun-2 Address Mapping section of the Driver Development Topics
chapter for details. Though you will seldom deal with the on-board address
spaces, you're best off understanding what they are. The following table thus
contains not only the two Multibus spaces, but the “on board” memory and I/O
spaces as well. It’s within these spaces, resident on the CPU board itself, that
SunOS is run.

Sun-2 Multibus Memory Types
Type Description Address Size Address Range
0 On-Board Memory 23 bits 0x0 — OX7FFFFF
1 On-Board I/O Space 14 bits 0x0 — Ox3FFF
2 Multibus Memory 20 bits 0x0 — OXFFFFF
3 Multibus I/O Space 16 bits 0x0 — OxXFFFF
U Il Revision A, of 9 May 1988

Chapter 2 — Hardware Context 15

The following schematic view of the Sun-2 Multibus may help the driver
developer to visualize the larger hardware context within which drivers operate
(when running on a Sun-2 Multibus machine.)

Figure 2-1 Sun-2 Multibus Address Spaces
16 bits Multibus
j7{0)
| bpe 20 bi
2 bits 1S Multibus
. . Memory
CPU 24 bits MMU 23 bits
f A
Virgual Physical 14 bits OnBoard
Address Address o
(CPU or DVMA) :
23 bits OnBoard
Memory
Note some significant aspects of addressing layout as indicated in this table.
o The Memory Management Unit is at the center of the picture, a position that
reflects its importance in the addressing scheme of all Sun machines,
VMEDbus based as well as Multibus based. (The centrality of the MMU will
become quite clear when you later set out to allocate a physical address to
your device, and then examine/set it with the PROM monitor.)
é{?& sSun Revision A, of 9 May 1988

microsystems

16 Writing Device Drivers

Allocation of Multibus
Memory

o Secondly, the input address of the MMU is a 24-bit virtual address. It may
originate with the CPU, or come from a DMA bus master; it makes no
difference.

o The output is a 23-bit physical address and a 2-bit address type. The
address type specifies one of the four address spaces indicated at the right of
the diagram.

o The four address spaces are to the right. The space corresponding to the
incoming virtual address is a function of both the address and the memory
type. Note that only the top two memory spaces (Multibus I/O and Multibus
Memory) are accessible by way of the Multibus; the two On-Board memory
spaces are accessed directly and are seldom of concern to non-Sun driver
developers.

Programs can only reference driver address spaces in terms of virtual addresses
which are then translated by the MMU into physical addresses within the
appropriate physical address space.

Here are some notes about the allocation of Multibus Memory resources in the
Sun system.

No devices may be assigned addresses below 0x40000 in Multibus memory
space since the CPU uses these addresses for DVMA. (See the end of this
chapter for a discussion of DVMA).

The table on the next page shows a map of how Multibus Memory space is laid
out in the Sun system. Note that this memory map, as well as all of those that
follow, is only a general guide. To be sure that you are not installing a device at
a location that will put it in conflict with existing devices, it’s necessary to check
the configuration of the specific systems into which it will be installed. The best
way to do so is to check the local config file for the physical addresses of the dev-
ices installed within the bus of interest. This will probably give you enough
information, but if you still think that there may be a conflict, and if you have a
Sun source license, you can check the driver header files to determine the amount
of space consumed on the bus by existing devices. With the exception of the Sky
board, these devices can be rearranged. Also note the possibility that your
machine will have devices attached to it, and taking up bus space, even though
those devices do not appear in the config file. This possibility exists because the
xxmmap () system call can sometimes be used to drive a device without instal-
ling it in the formal sense — see the Mapping Devices Without Device Drivers
section of the Driver Development Topics chapter for more details.

sun Revision A, of 9 May 1988

microsystems

Chapter 2 — Hardware Context

17

Table 2-2

Allocation of Multibus /O

Space

Table 2-3

Sun-2 Multibus Memory Map

Address Device
0x00000 — Ox3FFFF DVMA Space (256 Kilobytes)
0x40000 — Ox7FFFF Sun Ethernet Memory (#1) (256 Kilobytes)
0x80000 — 0x83800 SCSI (#1) (16 Kilobytes)
0x84000 — 0x87800 SCSI (#2) (16 Kilobytes)
0x88000 — 0x8B800 Sun Ethernet Control Info (#1) (16 Kilobytes)
0x8C000 — Ox8F800 Sun Ethernet Control Info (#2) (16 Kilobytes)
0x90000 — 0x9F800 *¥xk FREE *** (64 Kilobytes)
0xA0000 — OxAF800 Sun Ethermet Memory (#2) (64 Kilobytes)
0xB0000 — O0xBF800 *** FREE *** (64 Kilobytes)
0xC0000 — OxDF800 Sun Model 100/150 Frame Buffer (128 Kilobytes)
0xE0000 — O0xE1800 3COM Ethernet (#1)
0xE2000 — 0xE3800 3COM Ethemnet (#2)
0xE4000 — 0xE7C00 *** FREE *** (16 Kilobytes)
0xE8000 — OxF7800 Reserved for Color Devices (64 Kilobytes)
0xF8000 — OxFF800 *** FREE *** (16 Kilobytes)

Multibus I/O address space is specified in the config file as mbio. From the
PROM monitor, Multibus I/O space begins at 0OxEB0000, and extends to

0xEC0000.

Prior to Sun Release 3.0, the system made the assumption that any address lower
than 0x10000 that it found in its config file was a Multibus /O address. With

current releases this is no longer true; now the bus type of every address must be
explicitly given.

The following table of generic Multibus I/O usage, like the table above, is
intended only as a guide.

Sun-2 Multibus 1/0 Map

Address Device Type
0x0040 — 0x0047 Interphase Disk Controllers
0x00AO0 — 0x00A3 CPC TapeMaster Controllers
0x0200 — 0x020F Archive Tape Drives
0x0400 — 0x047F Ikon 10071-5 Multibus/Versatec Interface
0x0480 — 0x057F Systech VPC-2200 Versatec/Centronics Interfaces
0x0620 — Ox069F Systech MTI-800/1600 terminal Interface
0x2000 — 0x200F SkyBoard
OxEE40 — OxEE4F Xylogics 450/451 Disk Controller
O0xEE60 — OxEE6F Xylogics 472 Multibus Tape Controller
sun Revision A, of 9 May 1988

18 Writing Device Drivers

2.2. VMEbus Machines

Sun-2 VMEDbus Address

Spaces

Table 2-4

VMEbus machine architecture is generally more complex than Multibus machine
architecture — it makes no distinction between I/O space and Memory space, but
on the other hand it supports multiple address spaces. It does so for reasons of
both cost and flexibility. The VMEbus was designed to be cost-effective for a
range of applications. It is expensive (in terms of money, power, and board
space) to provide the hardware for a full 32-bit address space. If installed dev-
ices only respond to 16-bit addresses, it makes sense to be able to put them all
into a 16-bit address space and save the cost of 16-bits’ worth of address
decoders and the like. The 24 and 32-bit address spaces are similar compromises
between cost and flexibility.

The driver writer has to understand which address space his board uses (gen-
erally, this is completely out of his’her control), and make an appropriate entry in
the config file. For DMA devices, the driver writer has to know the address space
that the board uses for its DMA transfers (this is usually a 32 or 24-bit space).

The Sun-2 VMEbus machines are based upon the 24-bit subset of the generic
VMEbus — they support only a 16-bit and a 24-bit address space. These address
spaces are known as vime16d16 (16 data bits and 16 address bits) and
vme24d16 (16 data bits and 24 address bits). Sun-2 VMEbus machines also
contain on-board memory and I/O space, of course, but these aren’t accessed by
way of the VMEDbus and are only barely relevant to the driver developer.

There are four types of memory on Sun-2 VMEbus machines:

Sun-2 VMEbus Memory Types

Description Address Size Address Range
On-Board Memory 23 bits 0x0 - Ox7FFFFF
On-Board I/0 Space 23 bits 0x0 - 0x7FFFFF
vme24d16 23+1 bits 0x0 - 0xFEFFFF
vmel 6d16 — Stolen from top 64K of vme24d1 6 (0x0 - OxFFFF)

The four address spaces are laid out as follows:

n Revision A, of 9 May 1988

Chapter 2 — Hardware Context 19

Figure 2-2 Sun-2 VMEbus Address Spaces

23 bits vme24d16
(High Bank)
bl 24416
2 bits vme
3o (Low Bank) vme16d16
CPU 24 bits MMU 23 bits
g 5
Viﬁ;ual Physzical 23 bits OnBoard
Address Address o
(CPU orDVMA) ;
23 bits OnBoard
Mem

Note a few details:

o In all Sun-2 machines (as in Sun-3s and Sun-4s), the address input into the
MMU is a virtual address, and may originate with either the CPU or a
DVMA (Direct Virtual Memory Access) bus master. (See the Sun Main-Bus
DVMA section, later in this chapter, for a discussion of DVMA),

o Unlike Sun-2 Multibus systems, in which each memory type maps cleanly to
one address space, vme24d1 6 maps to two different memory banks.
Addresses from 0x0 to Ox7FFFFF are “type 2” memory, while those from
0x800000 and up are “type 3”. This is because Sun-2 VMEbus machines
have only 23 output address bits, and this trick is necessary to generate the
full range of a 24-bit address space. (See Sun-2 Address Mapping in the

@ sun Revision A, of 9 May 1988

microsys!

20 Writing Device Drivers

Sun-3/Sun-4 Address Spaces

Table 2-5

Table 2-6

@

Driver Development Topics chapter for more details).

o Multibus boards, connected to VMEDbus to Multibus adapters, can be
plugged into physical memory anywhere within vme24d16 (which means
that they can also be in vme16d16).

o The 24 bits in the vme24d16 address space are referred to in the above
table as 23+1 bits. This is because, as should be clear in the diagram above,
the Sun-2 MMU outputs only the lower 23 bits of the address, and the 24th
bit is actually one of the MMU’s type bits.

o Note especially that vime16d16 is stolen from vme24d16. It’s selected by
addresses in the form 0xFFXXXX, that is, addresses which have the 8 high
bits set.

Sun-3 and Sun-4 machines are all based on the full 32-bit VMEDbus, so let’s begin
their discussion with a listing of the address types supported by the generic
VMEbus.

Generic VMEbus (Full Set)

VMEbus-Space Address Data Transfer Physical Address
Name Size Size Range

vme32d16 32 bits 16 bits 0x0 — OXFFFFFFFF
vme24d16 24 bits 16 bits 0x0 — OXFFFFFF
vmel6dl6 16 bits 16 bits 0x0 — OxFFFF
vme32d32 32 bits 32 bits 0x0 — OXFFFFFFFF
vme24d32 24 bits 32 bits 0x0 - OxXFFFFFF
vmel6d32 16 bits 32 bits 0x0 — OXFFFF

Not all of these spaces are commonly used, but they are all nevertheless sup-
ported by the Sun-3 and Sun-4 lines. The following table indicates their sizes
and physical address mappings.

Sun-3/Sun-4 VMEbus Address Types

Type Address-Space Name Address Size Address Range

0 On-board Memory 32 bits 0x0 — OxXFFFFFFFF

1 On-board /O 24 bits 0x0 — OxFFFFFF

2 vme32d16 32 bits 0x0 — OXFEFFFFFF

3 vme32d32 32 bits 0x0 — OXFEFFFFFF

2 vme24d16 — Stolen from top 16M of vime32d16 (0x0 - 0xFEFFFF)
2 vmel 6d16 — Stolen from top 64K of vime24d16 (0x0 - OxFFFF)

3 vme24d32 — Stolen from top 16M of vme32d32 (0x0 - OxFEFFFF)
3 vmel6d32 — Stolen from top 64K of vme24d32 (0x0 - 0xFFFF)

Sun-3/Sun-4 space overlays are much more complex than those of the Sun-2, as
is evident from both the table above and the diagram below. The principle, how-
ever, is the same — when a space overlays a larger space, its memory is stolen
from that larger space and is considered by the MMU to be in the the overlaid

sun Revision A, of 9 May 1988

microsystems

Chapter 2 — Hardware Context 21

space. One simply cannot address above OxFF000000 in 32-bit VMEDbus space
or above 0xFFQ000 in 24-bit VMEDbus space.

As the two following diagrams illustrate, Sun-3 and Sun-4 addressing schemes
are almost identical. They differ only in the size of the virtual address which —
output by the CPU or a DVMA Bus Master — is fed to the MMU.

Figure 2-3 Sun-3 VMEbus Address Spaces

32 bits T332 vme16d32
type vme24d32
2 bits
32 bits vme32d16
cru -2 mmu 32 bits
bits
A
A :
vmel6d16
Virtual Physfical 24 bits OnBoard
Address Addsess /o
(CPU or DVMA) :
vime24d16
32 bits OnBoard
Mem
@2?? S muyﬁg Revision A, of 9 May 1988

22 Writing Device Drivers

Figure 2-4 Sun-4 VMEbus Address Spaces
32 bits
vme32d32 vme16d32
type vme24d32
[2bits
32 bits vme32d16
cPU |32, mmy |32
bits
Ad(kess
Adqg'ess :
: vmel6d16
: o | 24 bits OnBoard
Virtual ysica VO
vme24d16
32 bits OnBoard
Mem
Allecation of VMEbus This section summarizes the typical use of the 16, 24 and 32-bit VMEDbus address
Memory spaces by Sun devices. Note well that the usages summarized here are only for

4rsun

the generic configuration, and there’s no guarantee that they match the exact
usage on your machine. They will, however, help you to decide where to attach
your device. The “Allocated From” field shows whether bus space is allocated
from the high end of the given range or from the low end. The idea is to keep the
maximum size “hole” in the middle in case the boundary needs to be shifted
later.

Revision A, of 9 May 1988

microsystems

Chapter 2 — Hardware Context 23

Table 2-7

Table 2-8

Table 2-9

2

16-bit VMEbus Address Space Allocation

Address Range Allocated Description of Use
From
0x0000-0x7FFF Low Reserved for OEM/user devices
0x8000-0xFFFF High Reserved for Sun devices

16-bit VMEDbus space is mapped into the topmost 64K of 24-bit VMEbus space
at 0x00FF0000 to OxO00FFFFFF (on Sun-2s) or OXFFFF0000 to
OXFFFFFFFF (on Sun-3s and Sun-4s). Note: The Multibus/VMEbus Adapter
will map the Multibus I/O addresses of Multibus cards that use Multibus I/O into
the same addresses in the 16-bit VMEbus space. This may place the standard
Multibus addresses for some cards into the OEM/user area in the above table,
These addresses can be changed, if necessary, by physically readdressing the
device and then changing its entry in the config file.

24-bit VMEbus Address Space Allocation

Address Range Allocated Description of Use
From

0x000000-0xQFFFFF CPU board DVMA space
0x100000~0x1FFFFF Reserved by Sun
0x200000-0x2FFFFF Low Reserved for small Sun devices
0x300000-0x3FFFFF High Reserved for large Sun devices
0x400000-0x7FFFFF (Taken) Reserved for huge Sun devices
0x800000-0xBFFFFF High Reserved for huge OEM/user devices
0xC00000~-0xCFFFFF Low Reserved for large OEM/user devices
0xD00000-0xDFFFFF High Reserved for small OEM/user devices
0xEQ0000-~0XEFFFFF Multibus-to-VMEbus memory space
0xFO0000-0xFEFFFF Reserved for the Future
OXFFO0000-0xFFFFFF Stolen by 16-bit VMEbus space

32-bit VMEbus Address Space Allocation (Sun-3s and Sun-4s Only)

Address Range Description of Use
0x00000000 - Ox000FFFFF DVMA Space
0x00100000 - Ox7FFFFFFF Reserved by Sun
0x80000000 - OXFEFFFFFF Reserved for OEM/user devices
OxFF000000 - OxXFFFFFFFF Stolen by vime24d16

These same assignments apply to both 16-bit-data and 32-bit-data VMEDbus
accesses. Note that, at least in the GENERIC kermel, there are some Sun devices

Sun Revision A, of 9 May 1988

microsystems

24 Writing Device Drivers

Table 2-10

The Sun VMEbus to Multibus
Adapter

Interrupt Vector Assignments

(tm0, tml, vpcO, vpcl and mtiQ-4) installed in the OEM/user area.
It’s always best to check, when choosing an installation address, that you aren’t
going to conflict with an already installed device.

VMEbus Address Assignments for Some Devices

Device Addressing Addresses Used

VMEbus SKY Board vmel6d16 0x8000 - Ox8FFF (Sun-2 only)
VMEbus SCSI Board vme24d16 0x200000 - 0x2007FF

VMEbus TOD Chip vme24d16 0x200800 - 0x2008FF (Sun-2 only)
Graphics Processor vme24d16 0x210000 - Ox210FFF

Sun-2 Color Board vme24dl6 0x400000 - Ox4FF7FF

The VMEbus Sky board occupies addresses 8000-8FFF in 16-bit address
space, and it requires that the high nibble of the address be ‘8’. Unlike other
pre-installed devices, it cannot be moved.

This table is, of course, not complete. There is always a variety of devices on the
bus, as can be easily determined by examining the config file. This table, how-
ever, does include the standard devices that use a significant amount of space on
the VMEDbus. Note that, in machines which came after the Sun-2 line, several of
these devices have been replaced by on-board devices and have thus disappeared
from the VMEbus address space.

Multibus devices that are to be attached to VMEbus machines must be attached
to a VMEbus to Multibus adapter. (The Adapter works for most, but not all, Mul-
tibus boards). An adapter can be used to take over one and only one chunk of
vme24d16. However, that chunk can overlap all or part of vme16d16
(because vime 16d16 is a proper subset of vme24d16). In any case, the adapter
must be told how much space the board attached to it actually expects, for by
default it will take over a full megabyte. Note that the Multibus Adapter sup-
ports fully vectored interrupts, and that drivers for Multibus devices attached by
way of adapters need not poll, since the adapters contain switches by which Mul-
tibus devices can be assigned vectors.

The table below shows the assignments of interrupt vectors for those devices that
can supply interrupts through the VMEbus vectored interrupt interface. To pick
one for your device, examine the kernel config file for an unused number in the
range reserved for customer use, 0xC8 to 0xFF.

& Sun Revision A, of 9 May 1988

Chapter 2 — Hardware Context 25

Table 2-11

2.3. ATbus Machines

Vectored Interrupt Assignments

Vector Numbers Description

0x40 thru 0x43 sc0, sc? si0, si? — SCSI Host Adapters

0x48 thru 0x4B xyc0, xycl, xyc? — Xylogics Disk Controllers
0x4C thru 0xSF future disk controllers

0x60 thru 0x63 tm0, tm1, tm? — TapeMaster Tape Controllers
0x64 thru 0x67 xtc0, xtcl, xtc? — Xylogics Tape Controllers
0x68 thru Oc6F future tape controllers

0x70 thru 0x73 ec? — 3COM Ethemet Controller

0x74 thru 0x77 ie0, iel, ie? — Sun Ethernet Controller

0x78 thru Ox7F future ethernet devices

0x80 thru 0x83 vpc? — Systech VPC-2200

0x84 thru 0x87 vp? — Ikon Versatec Parallel Interface

0x88 thru 0x8B mti0, mti? — Systech Serial Multiplexors
O0x8C thru 0x8F dcpl, dcp? — SunLink Comm. Processor
0x90 thru Ox9F 250, zs1 — Sun-3 Terminal/Modem Controller
OxAO thru 0xA3 future serial devices

0xA4 thru 0xA7 pc0, pcl, pc2, pc3 — SunIPC

OxA8 thru 0xAB future frame buffer devices

OxAC thru OxAF future graphics processors

0xBO thru 0xB3 sky0, ? — SKY Floating Point Board

0xB4 thru 0xB7 SunLink Channel Attach

0xB8 thru 0xC7 Reserved for Sun Use

0xC8 thru OxFF Reserved for Customer Use

The Intel 80386 processor handles I/O devices placed in either memory space or
inI/O space. On the 80386, memory-mapped 1/O provides additional program-
ming flexibility. Any memory instruction can access any I/O port located in the
memory space. For example, the MOV instruction transfers data between any
register and any port. The AND, OR, and TEST instructions manipulate bits in
the internal registers of a device.

On some devices, reading a register will not read back what was written. There-
fore, instructions such as AND, OR, and TEST can, in some cases, produce unex-
pected results because the instruction reads a good location, changes it, and
writes it back. See the Other Device Peculiarities section, ahead.

Memory-mapped I/O can use the full complement of instructions. The 16 MB
memory of AT memory exists in the 4 GB physical address space of the Sun386i
at 0xE000 0000. For example, a device that, on an AT, shows up in memory
at DO 0000 will show up in the Sun386i physical memory at 0xEODO 0000.
Virtual addresses are assigned during the autoconfiguration process.

If an I/O device is mapped into the I/O space then the IN, OUT, INS, and OUTS
instructions are used to communicate to and from the device. All I/O transfers

S ll n Revision A, of 9 May 1988

microsystems

26

Writing Device Drivers

Table 2-12

are performed via the AL (8-bit), AX (16-bit), or EAX (32-bit) registers. The
first 256 bytes of the I/O space are directly addressable. The entire 64 Kbyte I/O
space is indirectly addressable through the DX register.

The Sun386i has 21 interrupt channels, but only 11 are available to devices on
the AT bus. The following list of interrupt channel assignments shows all of the
interrupt channels.

Interrupt Channel Assignments

AT Channel* Assignee
3 AT Pin B25
4 AT Pin B24
5 AT Pin B23
6 Not available (system diskette)
7 Not available (parallel port)
8 SCSI
9 AT Pin B04
10 AT Pin D03
11 AT Pin D04
12 AT Pin D05
13 Not available (Ethernet)
14 AT Pin D07
15 AT Pin D06
* Available to AT Cards

When you add an AT card to the AT bus, you must select one of the values in the
Channel column for the AT card’s jumpers. For example, if you select channel
10 for a serial card, the “device” line in the config file might look as follows:

device ns0 at atio ? csr 0x3f8 irg 10 priority 6

The Sun386i does not permit two AT cards to use the same interrupt channel.

Some cards will also use DMA and will have jumpers to select a DMA channel
to use. The following list shows that DMA channels 0-3 and channel 5 are avail-
able for AT cards. Note that channel 0 and 5 can be used with 16-bit DMA dev-
ices; 1, 2, and 3 can be used only with 8-bit DMA devices. Note also that chan-
nels 4, 6, and 7 are pre-assigned.

S un Revision A, of 9 May 1988

Chapter 2 — Hardware Context 27

Loadable Drivers

DOS and SunOS
Environments

Table 2-13

NOTE

Sun386i DMA Channel Assignments

Channel Assignee Size (bits)

0 AT Bus 16

1 AT Bus 8

2 AT Bus 8

3 AT Bus 8

4 Software Not Available
5 AT Bus 16

6 Ethernet 16

7 SCSI 16

For example, you might set up a controller that uses DMA channel 3. For this,
the “controller” line in the config file might look like: this:

controller wds0 at atio ? csr 0x320 dmachan 3 irq 3 priority 3

The Sun386i does not permit two AT cards to use the same DMA channel.

In these examples, ‘‘priority’’ refers to the spl levels used in the driver. That is,
the phrase ‘‘priority 3’ implies that the driver uses sp13 () to protect its critical
regions.

On Sun386i machines, device drivers can be dynamically loadable. That is, they
can be attached to a system without rebuilding its kemel and without having to
bring the system down and restart it. See the Adding and Removing Loadable
Drivers section of the Configuring the Kernel chapter for details.

The Sun386i system supports both DOS drivers and SunQS drivers.

You can attach a DOS device driver in the standard DOS way, but it will be
usable only from within the DOS environment. Usually, all you need to do is to
first plug in an add-in board. Then you insert an installation diskette (which
comes with the board) into Drive A> and re-boot the system. The device driver
is already compiled and linked. Generally, the diskette contains programs called
“INSTALL” or something similar. You execute this program by typing its name.
It copies the driver file from the diskette to the hard disk. At the same time, this
procedure will modify the disk’s config. sys file.

The DOS system must be re-booted. The device driver will automatically be
loaded into memory, its options will be parsed, and the driver will be initialized.

The DOS driver on the Sun386i is running under SunOS and DOS, but the driver
is unaware of this. SunOS might switch control to another task during device
operation, so strict timing dependencies could fail. Real time devices, for exam-
ple, may not work properly. If aperipheral and controller have strict timing
requirements, their drivers should be written in the standard SunOS style. DOS
drivers do not run at the elevated priority of SunOS drivers.

02% sun Revision A, of 9 May 1988

microsystems

28 Writing Device Drivers

2.4. Hardware Peculiarities
to Watch Out For

Multibus Device Peculiarities

Multibus Byte-Ordering Issues

SunOS drivers, of course, are parts of the system kernel. Thus the timing
requirements of most devices can be met under SunOS. SunOS drivers are
accessible from the DOS environment.

There is a variety of device peculiarities that the driver developer must be aware
of. The most common of them are related to the Multibus and Multibus-based
devices, but there are others as well.

The IEEE Multibus is a source of problems for two separate reasons. The first of
these, discussed immediately below, is the fact that the Multibus has a different
notion of byte order than does the either Motorola MC680XO0 family or the Sun
SPARC processor (the reduced instruction set CPU upon which Sun-4 machines
are built). The second is simply that the Multibus has been around for a long
time, and thus brings with it a variety of older devices, many of which have
addressing limitations and other characteristics which make for a less than per-
fect fit with the Sun architecture.

Sun-2 and Sun-3 processors are members of the Motorola MC680X0 family,
while Sun-4 processors are based on the SPARC CPU. All of these processors
address bytes within words by what we shall call IBM conventions — the most
significant byte of a word is stored at the lowest addressed byte of the word. The
Multibus, on the other hand, uses DEC conventions — the least significant byte
of a word is stored at the lowest address, and significance increases with address.

This class of byte-addressing conventions leads to two separate problems,
with two separate solutions:

o The first problem occurs when you’re moving a single byze across the inter-
face between the MC680X0/SPARC and the IEEE Multibus. Because the
two devices don’t agree about the end of the word that the byte actually
appears in, you have to change the byte address before the move — what
you want to do, in effect, is move every byte to the other side of the word
which it occupies — the most CPU-efficient way of doing so is to toggle the
least significant bit of every byte address.

o The second problem, also related to the Multibus, is a higher level version of
the first. It occurs when machine words with significant internal structure
(or structures that contain words) are moved across the bus interface. (If you
write only words, and the device uses only words, there’s no problem). The
Multibus byte-ordering incompatibility will cause structures to be scrambled
when they’re moved across the bus interface, unless the bytes within them
are physically swapped first.

Here are a few pictures describing the problems in detail:

S ll n Revision A, of 9 May 1988
micH

Chapter 2 — Hardware Context 29

Motorola (IBM) Byte Ordering

bit 15 bit 0

Byte 0 Byte 1

Multibus (DEC) Byte Ordering

bit 15 bit 0

Byte 1 Byte 0

That is, the MC680X0 and SPARC CPUs place byte O in bits 8 through 15 of the
16-bit word, whereas the Multibus places byte 1 in those bits. If you did every-
thing with the CPU, or everything on the Multibus, there wouldn’t be any
conflict, since things would be consistent. However, as soon as you cross the
boundary between them, the byte order is reversed. Thus, you have to toggle the
least significant bit of the address of any byte destined for the Multibus — this
will have the effect of swapping adjacent addresses and thus reordering the bytes.

To clarify this, consider an interface for a hypothetical Multibus board containing
only two 8-bit I/O registers, namely a control and status register (csr) and a data
register (we actually use this design later on in our example of a simple device
driver). In this board, we place the command and status register at Multibus byte
location 600, and the data register at Multibus byte location 601. The Multibus
picture of that device looks like this:

Hypothetical Board Registers

bit 15 bit O
Location 601 Location 600
DATA CSR

But the MC680X0 and SPARC processors view that device as looking like this:

é»é\}? S un Revision A, of 9 May 1988

microsystems

30 Writing Device Drivers

Other Multibus-related
Peculiarities

Hypothetical Board Registers

bit 15 bit 0

Location 600 Location 601
CSR DATA

so that if you were to read location 600 from the point of view of the processor,
you’d really end up reading the DATA register off the Multibus instead. So,
when we define the skdevice data structure for that board, we define it by starting
with the register definition in the device manual, and then swapping bytes to take
account of the expected byte swapping:

struct skdevice {
char sk_data; /* 01:Data Register */
char sk_csr; /* 00: command(w) and status(r) */

}:

This rule (flipping the least significant bit of the address) holds good for all byte
transfers which cross the line between the MC680X0/SPARC CPU and the Mul-
tibus.

o Many Multibus device controllers are geared for the 8-bit 8080 and Z80
style chips and don’t understand 16-bit data transfers. Because of this, such
controllers are quite happy to place what’s really a word quantity (such as a
16-bit address which must be two-byte aligned in the MC680XO0) starting on
an odd byte boundary. Some devices use 16-bit or 20-bit addresses (many
don’t know about 24-bit addresses), and it often happens that you have to
chop an address into bytes by shifting and masking, and assign the halves or
thirds of the address one at a time, because the device controller wants to
place word-aligned quantities on odd-byte boundaries. Note also that many
Multibus boards are geared for the 8086 family with its segmented address
scheme. An 8086 (20-bit) address really consists of a 4-bit segment number
and a 16-bit address; you usually have to deal with the 4-bit part and the 16-
bit part separately. For a good example of what we’re talking about here,
see the code for vp. c in the Sample Driver Listings appendix to this
manual,

o Although there are a myriad of vendors offering Multibus products,
remember that the Multibus is a “standard” that evolved from a bus for 8-bit
systems to a bus for 16-bit systems. Read vendors’ product literature care-
fully (especially the fine print) when selecting a Multibus board. The
memory address space of the Multibus is supposed to be 20 or 24 bits wide
and the I/O address space of the Multibus is supposed to be 16 bits wide. In
practice, some older boards are limited to 16 bits of address space and 8 bits

sSun Revision A, of 9 May 1988

microsystems

Chapter 2 — Hardware Context 31

Sun-4/SPARC Peculiarities

of /O space. In particular, watch for the following addressing peculiarities:

o For a memory-mapped board, ensure that the board can actually handle
a full twenty bits of addressing. Older Multibus boards often can only
handle sixteen address lines. The Sun system assumes there is a 20-bit
Multibus memory space out there. If the Multibus board you’re talking
to can only handle 16-bit addresses, it will ignore the upper four address
lines, and this means that such a board “wraps around” every 64K,
which means that on a Sun the addresses that such a board responds to
would be replicated sixteen times through the one-megabyte address
space on the Multibus. This may conflict with some other device.

o Some Sun-2 Multibus systems, notably Sun-2/170s, have a backplane
structure that complicates the installation of 24-bit memory-mapped
devices. The internal “bus” on these systems (often called the P2 bus) is
divided into multiple segments, each mapped to a portion of the back-
plane slots. In such systems, 24-bit memory-mapped devices must be
installed in a different segment than that used by standard Sun-2 dev-
ices. See the Sun-2/170 Configuration Guide for more information.,

o For an I/O-mapped board (one that uses 1/O registers), make sure that
the board can handle 16-bit I/O addressing. Some older boards support
only 8-bit I/O addressing. In our system, the address spaces of such
boards would find themselves replicated every 256 bytes in the VO
address space. Trying to fit such a board into the Sun system would
severely curtail the number of I/O addresses available in the system.

o Finally, watch out for boards containing PROM code that expects to find a
CPU bus master with an Intel 8080, 8085, or 8086 on it. Such boards are of
course useless in the Sun system.

There are two peculiarities which are specific to machines built upon the Sun
SPARC CPU (currently, just Sun-4s) which can impact device drivers. For more
information about the Sun-4 machine architecture, see Porting C, Fortran and
Pascal Programs to the Sun-4.

o The first problem is structure alignment. In MC680X0 family processors,
structures are aligned on half-word boundaries, but on Sun-4s, the structure-
alignment requirements are imposed by the most strictly-aligned structure
components. For example, a structure containing only bytes and characters
has no alignment restrictions, while a structure containing a double word
must be constructed so as to guarantee that that this word falls on a 64-bit
boundary.

Programmers must be aware of these rules when writing drivers, for Sun-4
compilers will pad structures to enforce them, and such padding will not
always be correct for structures intended to map to device registers. Also,
structures must be carefully designed if drivers are to be portable across
machine architectures.

o The second problem is data alignment. In MC680X0 family processors,
characters are aligned on byte boundaries, while integers of all sizes are

é{?,) sun Revision A, of 9 May 1988

microsystems

32 Writing Device Drivers

Other Device Peculiarities

aligned on 16-bit boundaries. In Sun-4 machines, in contrast, all quantities
must be aligned on their “natural” boundaries: 16-bit half words on 16-bit
boundaries, 32-bit words on 32-bit boundaries and 64-bit double words on
64-bit boundaries.

In normal programs, details such as these are handled by the compiler. In
drivers, however, more care must be taken. SPARC (unlike the MC68010)
doesn’t break down 32-bit transactions into successive 16-bit transactions.
Thus, there are times when 32-bit entities have to be broken down by the
driver if they are to get across the bus correctly. More specifically, 32-bit or
64-bit alignment is not possible in the 16-bit VMEbus spaces, and thus 32-
bit and 64-bit data access does not exist. In the 32-bit VMEbus spaces, all
data paths exist.

There are other device peculiarities of interest to the driver developer. These
peculiarities are particularly unfortunate in that they tend to require special han-
dling of various kinds — byte swapping, bit shuffling, timing delays, etc. —
whenever the driver contacts the device. Such special handling precludes the
most obvious and desirable means of interfacing the driver to the device, by map-
ping the device registers into a C-structure declaration and then accessing them
by way of references to structure fields.

o One of the most infuriating of these peculiarities is internal sequencing
logic. Devices with this strange characteristic (a vestige of microcomputer
systems with extremely limited address space) map multiple internal regis-
ters to the same externally addressable address. There are various kinds of
internal sequencing logic:

o The Intel 8251A and the Signetics 2651 alternate the same external
register between mwo internal mode registers. Thus, if you want to put
something in the first mode register of an §251, you do so by writing to
the external register. This write will, however, have the invisible side
effect of setting up the sequencing logic in the chip so that the next
read/write operation refers to the alternate, or second, internal register.

o The NEC PD7201 PCC has multiple internal data registers. To write a
byte into one of them, it’s necessary to first load the first (register 0)
with the number of the register into which the following byte of data
will go — you then send that byte of data and it goes into the specified
data register. The sequencing logic then automatically sets up the chip
so that the next byte sent will go into data-register 0.

o Another chip of a similar ilk is the AMD 9513 timer. This chip has a
data pointer register for pointing at the data register into which a data
byte will go. When you send a byte to the data register, the pointer gets
incremented. The design of the chip is such that you can’t read the
pointer register to find out what's in it!

o Infact, it’s often true that device registers, when read, don’t contain the
same bits that were last written into them. This means that bitwise opera-
tions (like register &= ~XX ENABLE) that have the side effect of

@ S u n Revision A, of 9 May 1988

microsystems

Chapter 2 — Hardware Context 33

2.5. DMA Devices

Sun Main-Bus DVMA

NOTE

é%?@ sun Revision A, of 9 May 1988

generating register reads must be done in a software copy of the device
register, and then written to the real device register.

o Another problem is timing. Many chips specify that they can only be
accessed every so often. The Zilog Z8530 SCC, which has a “write recovery
time” of 1.6 microseconds, is an example. This means that a delay has to be
enforced (with DELAY) when writing out characters with an 8530. Things
can get worse, however, for there are instances when it’s unclear what delays
are needed, and in such cases it’s left to the driver developer to determine
them empirically.

o And peripheral devices can contain chips that use a byte-ordering convention
different from that used by the Sun system into which they’re installed. The
Intel 82586, for example, supports DEC byte-ordering conventions; this
makes it perfectly compatible with Multibus-based, but not VMEbus-based,
Sun machines. Drivers for such peripheral devices will have to swap bytes,
as indicated above, and to take care that, in doing so, they don’t inadver-
tently reorder the bits in any control fields greater than 16 bits in length.

o Finally, there are some common interrupt-related peculiarities worth noting:

o When a controller interrupts, it does not necessarily mean that both it
and one of its slave devices are ready. Some controllers are designed in
this way, but others interrupt to indicate that the controller or one of its
devices but not necessarily both is ready.

o Not all devices power up with interrupts disabled and then start inter-
rupting only when told to do so.

o While there should be a way to determine that a board has actually gen-
erated an interrupt — an attention bit or something equivalent — some
devices have no such thing.

o Finally, an interrupting board should shut off its interrupts when told to
do so (and also after a bus reset). Not all do.

Many device controller boards are capable of what is known as Direct Memory
Access or DMA. This means that the CPU can tell the device controller for such
devices the address in memory where a data transfer is to take place and the
length of the data transfer, and then instruct the device controller to start the
transfer. The data transfer then takes place without further intervention on the
part of the processor. When it’s complete, the device controller interrupts to say
that the transfer is done.

Sun-2, Sun-3, and Sun-4 machines use Direct Virtual Memory Access (DVMA) to
allow devices on the Main Bus (either a VMBbus or a Multibus) to perform DMA
transfers from and to system virtual address space. In the Sun386i system, how-
ever, the Memory Management Unit (MMU) is incorporated directly on the Intel
80386 chip itself; devices need to use physical addresses. Sun386i DMA is

microsystems

34

Writing Device Drivers

discussed in the next Section.

Direct Virtual Memory Access (DVMA) is a mechanism provided by the Sun
Memory Management Unit to allow devices on the Main Bus (either a VMEbus
or a Multibus) to perform DMA directly to Sun processor memory. It also allows
Main Bus master devices to do DMA directly to Main Bus slaves without the
extra step of going through processor memory. DVMA works by ensuring that
the addresses used by devices are processed by the MMU, just as if they were
virtual addresses generated by the CPU. This allows the system to provide the
same memory protection and mapping facilities to DMA devices as it does to the
system CPU (and thus to programs).

When setting up a driver to support DMA, it’s necessary to know the device’s
DMA address size. This address size is the primary factor used in determining
which of the system address spaces will host the device. Multibus devices gen-
erally have a DMA address size of 20 bits, while VMEbus devices generally have
a 24 or 32-bit DMA address size.

o Since, on Sun-2 Multibus machines, DMA addresses are generally 20-bits
long, the system DVMA hardware responds to the first 256K of Multibus
address space (0x0 to Ox3FFFF). When an address in this range appears
on the bus, the DVMA hardware adds 0xF00000 to it (the system places
the Multibus memory address space at 0xF00000 in the system’s virtual
address space) and then uses the MMU to map to the location in physical
memory that will be used for the data transfer.

o On Sun-2 VMEbus systems, the DVMA hardware responds to the entire
lower megabyte of VMEbus address space (0x0 to OXFFFFF). The system
maps addresses in this range into the most significant megabyte of system
virtual address space (0xF00000 to OXxFFFFFF).

o On both Sun-3 and Sun-4 systems, the DVMA hardware responds to the
lowest megabyte of VMEbus address space in both the 24-bit and 32-bit
VMEbus spaces. 1t maps addresses in this megabyte into the most
significant megabyte of system virtual address space (0xFF00000 to
0xFFFFFFF for the Sun-3 and 0XxFFF00000 to OXxFFFFFFFF for the
Sun-4). Both Sun-3 and Sun-4 DVMA hardware uses supervisor access for
checking protection.

The driver writer must account for these mappings, as should be evident from the
diagram below.

) u Revision A, of 9 May 1988

Chapter 2 — Hardware Context 35

Figure 2-5 System DVMA
DMA Device
VME BUS
]
4
Slave If Address in Low megabyte,
Decoder Map it to High megabyte
CPU MMU Buffer

OnBoard

Mem

On-Board Bus Masters
(like the Ethernet chip)

Devices can only make DVMA transfers in memory buffers which are from (or
redundantly mapped into — see below) the low-memory areas reserved as
DVMA space. The memory-management hardware will then recognize refer-
ciices to these arcas and map them into the high megabyte of system virtual
address space, an area known as DVMA space. Likewise, if a driver needs to
allocate space for a DMA transfer, it must do so by way of a mechanism that
guarantees its allocation from DVMA space. There are several ways of making

this guarantee:

o rmalloc () canbe used with the iopbmap argument. This will get a
small block of memory from the beginning of the DVMA space. Such small
blocks of memory are usually used for control information, and not for large

@:?& sun Revision A, of 9 May 1988

microsystems

36 Writing Device Drivers

NOTE

DMA on ATbus Machines

@

blocks of data.

o For a large buffer, the driver can statically declare a buf structure (which is
a buffer header that contains a pointer to the data) and then use mbsetup ()
to allocate a buffer for it from DVMA space. This mechanism is primarily
intended for block devices but is perfectly adaptable for use by character
devices that need large DMA buffers.

When dealing with addresses which are in DVMA space, the driver must strip off
the high bits by subtracting the external variable DVMA, which contains the
address of DVMA (declared as an array of churacters). DVMA is initialized by the
system to either 0xF00000 (for Sun-2s) or 0OxFF00000 (for Sun-3s and Sun-
4s). If the driver fails to make this adjustment, the device will attempt to use a
null address — in the high megabyte — and the CPU board will not respond to

1t.

Addresses received by way of mbsetup () (and MBI_ADDR()) do not have to be
adjusted in this fashion, as mbsetup () will have already adjusted them to be
relative to the start of DVMA space.

When the device, in turn, uses the address, the address reference comes down the
bus and through a slave decoder, which adds the machine-specific offset to it to
map it back into the high megabyte of system virtual memory.

Sun DMA is called DVMA because the addresses which the device uses to com-
municate with the kernel are virtual addresses like any others. The driver, as part
of the kernel, is privy to implementation dependent information, and knows that
it must chop off the high-bits of any address intended for the device. This allows
the MMU to recognize the addresses destined for the Main Bus and to act accord-
ingly. The device, however, knows nothing of this except that its buffers are
mapped to the high megabyte of system virtual memory.

User processes, it should be noted, cannot do DVMA directly into their own
address spaces. The kemel, however, provides a way of getting around this limi-
tation by supporting the redundant mapping of physical memory pages into mul-
tiple virtual addresses. In this way, a page of user memory (or, for that matter, a
page of kernel memory) can be mapped into DVMA space in such a way that
transferred data immediately appears in (or immediately comes from) the address
space of the process requesting the 1/0O operation. All that a driver need do to
support such direct user-space DVMA is to set up the kernel page maps with the
routine mbsetup () — the details of the mapping will then be automatically
handled by the kernel.

If you wish to do DMA over the Main Bus, you must make the appropriate
entries in the kernel memory map. There are two functions, mbsetup () and
mbrelse (), to help with this chore.

The Sun386i uses the Intel 80386 chip. This chip has an integrated MMU, so the
I/O devices cannot access the Sun MMU address-translation facility and there-
fore must use physical addresses to access memory directly.

To do DMA on the Sun386i, you must make certain changes in the kernel’s
memory map (its page tables). Use the mbsetup (), dma_setup(),

Ssun Revision A, of 9 May 1988

microsystems

Chapter 2 — Hardware Context 37

mbrelse (), and dma_done () routines to make these changes. The changes
you must make to the kernel memory map are described with these routines in
the Kernel Support Routines appendix.

S_ un Revision A, of 9 May 1988

Overall Kernel Context

Overall Kernel Context

3.1. The System Kemel

3.2. Devices as ‘“Special’’ Files

3.3. Run-Time Data Structures

The Bus-Resource Interface

Autoconfiguration-Related Declarations

Other Kemel/Driver Interfaces

41

41
42
47
49
55
56

3.1. The System Kernel

Overall Kernel Context

Device drivers are parts of the SunOS kernel, a fact that must be appreciated to
understand the ways in which drivers differ from user-level programs. The ker-
nel is the crucial system program responsible for the control and allocation of
system resources, including the processor, primary memory and the I/O devices.
In most ways it’s just like any user program, being a more or less cleverly con-
structed structure shaped to its particular goals. In other ways, however, it’s
significantly different from a user program:

[u]

For one thing, the kernel is thick with the details of hardware implementa-
tion and function. This tends not to be true of user programs, precisely
because the kernel shields them from the need to consider device-specific
details.

For another, the kernel (and thus its drivers) runs in supervisor mode. This
means that drivers can often perform privileged device operations that can’t
be performed by user processes, even if those processes have access to the
necessary device registers.

The kernel memory context is not entirely paged. Certain parts of the kernel
are paged, but drivers can safely assume that their text and data are resident
and stationary within physical memory.

Programmers of ordinary user processes rarely need to concern themselves
with physical addresses and virtual-to-physical address mappings. Device-
driver developers, however, deal simultaneously with user virtual addresses,
kernel virtual addresses and physical bus addresses. Special functions (see
the Kernel Support Routines appendix) are provided to help drivers with the
various address mappings they’re called upon to perform.

Finally, the kernel provides a far different external interface than do user
processes. It’s possible for user processes to communicate with and dispatch
tasks to other user processes by way of system inter-process communications
mechanisms (like signals and pipes) but to do so they must first make special
arrangements with those other processes. The kernel, on the other hand,
exists to provide services to user processes and it provides a special mechan-
ism — the system call — by which user processes can call upon it to do so.
This is not to say that user processes and the kernel (that is, the drivers) can’t
also use system inter-process communications mechanisms like signals. It’s
certainly possible, for example, to write a driver so that it will send a signal
to a user process as part of its handling of a specified event. However, in the

% S u n 41 Revision A, of 9 May 1988

microsystems

42 Writing Device Drivers

NOTE

3.2. Devices as ‘‘Special”’
Files

@

norm, user processes and the kernel communicate by way of system calls.

On all Sun systems, system calls are defined in
/usr/sys/os/init_sysent.c, which users may edit to add system calls.
This file is provided with all Sun-2, Sun-3, Sun-4, and Sun386i systems.

System calls can, for all intents and purposes, be understood as calls by user
processes to kernel subroutines; they involve, however, far more profound sys-
tem state changes that do regular subroutine calls. When system calls are pro-
cessed, the processor is placed in supervisor state (and, in Sun-2 systems, the ker-
nel virtual address space becomes current in place of the the user virtual address
space). The user process is suspended and the kernel begins to run, but since it
runs on behalf of that user process which issued the system call, it can be viewed
as that user process continuing execution in kernel mode. Such “kernel-mode”
processes continue to run (with pauses whenever they sleep or yield to a higher-
priority process) until the system call processing is completed. At this time the
scheduler is called to choose the next user process to be dispatched.

Some system calls can be completely processed without calling any device driver
routines. The system call 1seek () is in this class, it requires only that a
software file position indicator be reset. Like many system calls — those related
to process control, inter-process communication, timing services, and status
information — it can be handled entirely in software. Requests for /O, however,
usually involve some action on the part of a peripheral device. In this case the
kernel calls (through a branch table mechanism described below) a routine within
the I/O device’s driver. The driver will then initiate the I/O operation and, if
necessary, sleep () until the data is available; in the meantime the kernel will
dispatch another user process.

When a user process issues a system call, execution shifts to the kernel. Then,
for I/O-related system calls, the kernel distinguishes requests related to regular
named files (that is, files on a block device like a disk) from requests related to
other kinds of I/O devices (like terminals or printers). In the interests of unifor-
mity, these devices are viewed as “special” files which (by convention) are col-
lected in the /dev directory. These special files are not created in the usual way.
The information in their i-nodes (the system structures that define the state of
files) is quite different from the information maintained for regular files, and, as a
consequence, special files can only be created with the mknod (make a node)
administration command. Instead of the addresses that will locate the contents of
a regular file on a disk, the i-nodes of special files (devices) contain the informa-
tion necessary to determine the corresponding device driver (the major device
number), the device class (block or character), and the minor device number.

When a file of any type is accessed, the kernel needs to determine which device
driver is responsible for it. To make this determination, it must get the name of
the device associated with the file. From that name it can derive (using a
device-independent kernel subsystem) an i-node and thus a major device number
(as well as a minor device number and a device class).

The connection between the device name and its major number is made by way
of the device entry in the /dev directory (more specifically, by way of the i-node

S u n Revision A, of 9 May 1988

microsystems

Chapter 3 — Overall Kemnel Context

Table 3-1

information associated with the device entry). The i-node for a device special

file contains a major device number, which is used to index one of the two device

switches. These switches, bdevsw (the block device switch) and cdevsw (the
character device switch) are actually arrays of structures, and the major device
number selects a driver by indexing one of these structures. (The minor device
number is then passed to the driver for local interpretation).

Using the 1s —1 command on the /dev directory shows you the i-node infor-

mation associated with special files:

A Sample Listing of the /dev Directory

T per- s own- maj- min- date name
y mis- i er or or

p sions z # #

e e

¢ rw—-w—--w— 1 henry 0, 0 Feb 21 09:45 console
c rw-r--r-- 1 root 3, 1 Dec 28 16:18 kmem
C Iw—=—————- 1 root 3, 4 Jan 13 23:07 mbio
C rw—=—————=— 1 root 3, 3 Jan 13 23:07 mbmem
¢ rw-r--r—-- 1 root 3, 0 Dec 28 16:18 mem

¢ rw-rw-rw- 1 root 13, 0 Dec 28 16:18 mouse
¢ rw-rw-rw- 1 root 3, 2 Feb 22 16:40 null
C rw——————m— 1 root g, O Dec 28 16:19 rxy0Qa
C rw———mm——= 1 root 9, 1 Dec 28 16:19 rxy0b
C IW=—=————— 1 root 9, 6 Feb 25 1984 rxyOg
C rW———=———= 1 root 9, 17 Dec 28 16:19 rxyOh
b rw—-—-———-- 1 root 3, 0 Feb 25 1984 xyOa
b rw—-==-—- 1 root 3, 1 Jan 17 20:12 xy0b
b rw-—=-————- 1 root 3, 6 Dec 28 16:19 xy0Og
b rw———==—- 1 root 3, 17 Dec 28 16:19 xyOh

When a user process wishes access to a system service, it makes a system call.

The subsequent flow of control looks somewhat like this:

Revision A, of 9 May 1988

44 Writing Device Drivers

Figure 3-1 I/O Paths in the UNIX system

User Process
y ‘ User Space
Kemel Space

I/O-Related Other
System Calls System Calls

\ Block(FlleSystem)I/O

Discriminate File-System I/O B _ File-System
from Raw Device I/0 : Code
........................... U :
Raw /O

Device Type -> Switch

A

Resolution to Physical

Major # -> Driver Device Operations

1

Minor # -> Device Tiereccistsiesacrsesacststnaronvisasnoscasasnranass

...

Hardware

When you add a new device driver you must add entries to one or both of the
device switches. Since we are discussing only character-oriented devices in this
manual, we will ignore the bdevsw structure and concentrate on the cdevsw
structure. But note that it’s common for drivers to appear in both tables; this
happens because block-devices almost always support raw character I/O.

Application programs make calls upon the operating system to perform services
such as opening a file, closing a file, reading data from a file, writing data to a
file, and other operations that are done in terms of the file interface. The operat-
ing system code turns these requests into specific requests to the device driver
involved with that particular file. The glue between the specific file operation
involved and the device driver entry-point is through the bdevsw and cdevsw

@ sun Revision A, of 9 May 1988

microsystems

Chapter 3 — Overall Kernel Context 45

tables.

Each entry in bdevsw or cdevsw contains pointers to a driver’s entry-point
functions. The position of an entry in the structure corresponds to the major dev-
ice number assigned to the device. The minor device number is passed to the
device driver as an argument. Usually, the driver uses it to access one of several
identical physical devices, but it is also possible for it to be encoded so that mul-
tiple minor numbers indicate the same device, but different operating modes. For
example, one minor number might indicate a specific tape device, as well as the
fact that the device is to be rewound when being closed, while another indicates
the same device without the rewind. A minor number may also indicate a
controller/device pair. Such breadth of interpretation is possible because the
minor number has no significance other than that attributed to it by the driver
itself.

The cdevsw table specifies the interface routines present for character devices.
Each character device may provide seven functions: xxopen (), xxclose (),
xxread (), xxwrite (), xxioctl (), xxselect (), and xxmmap (). (While
character drivers sometimes have “strategy” routines, this name is simply a car-
ryover from the world of block drivers, and cdevsw thus has no xxstra-
tegy () entry point). If you wish calls on a routine to be ignored — for exam-
ple xxopen () calls on non-exclusive devices that require no setup — the
cdevsw entry for that driver can be given as nulldev; if a call should be con-
sidered an error — for example xxwrite () on read-only devices — nodev,
which returns immediately with an error code, can be used. For terminals, the
cdevsw structure also contains a pointer to an array of t ty structures associ-
ated with the driver.

Note: the device switch tables do not include pointers to the driver initialization
and interrupt handler functions. Pointers to these functions appear in separate
mbvar structures (discussed below).

Here’s what the declaration of an entry in the character device switch looks like.
Each entry (row) is the only link between the main SunOS code and the driver.
The declaration and initialization of the device switches is in
/usr/sys/sun/conf.c:

e)

struct cdevsw {
int (*d_open) () ; /* routine to call to open the device */
int (*d_close) (); /* routine to call to close the device */
int (*d_read) (); /* routine to call to read from the device */
int (*d_write) (); /* routine to call to write to the device */
int (*d_ioctl) () /* special interface routine */
int (*d_stop) () /* flowcontrolintty’s */
int (*d_reset) (); /* reset device and recycle its bus resources */
struct tty *d ttys; /* aystructure */
int (*d_select) (); /* routine to call to select the device */
int (*d_mmap) () ; /* routine to call to mmap the device */
struct streamtab *d_str; /* supportfor STREAMS */

bi

S r!;l n Revision A, of 9 May 1988
%3

46

Writing Device Drivers

Table 3-2

Only teletype-like devices (such as the the console driver, the mt i driver, and
the z s driver) use the tty structure. All other devices set it to zero.

Routines in the kernel call specific driver routines indirectly by way of the table
with the major device number. A typical kernel call to a driver routine will look
something like:

(*cdevswmajor(dev)].d _open) (params. . .):

And here is a typical line from /usr/sys/sun/conf . c, which initializes the
requisite pointers in the cdevsw structure:

r N

All the other cdevsw entries between 0 and 13 appear first
{
cgoneopen, cgoneclose, nodev, nodev, /*14*/
cgoneioctl, nodev, nodev, O,
seltrue, cgonemmap,
},

Then all the other cdevsw entries from 15 up

In the Sun system, a number of devices in cdevsw are preassigned. The table
below shows some of these assignments at the time of this writing. It is not com-
plete, and besides, new devices are always being added. In allocating a major
number to the new device which you’re installing, make sure that you don’t
choose one that’s already been allocated. /usr/sys/sun/conf.c will give
the major device numbers as currently allocated on your system. Choose yours so
it will go at the end.

Current Major Device Number Assignments

Major Device Device Device
Number Abbreviation Description

0 cn Sun Console
1 Not Available No Device
2 sy Indirect TTY
3 Memory special files
4 Not Available No Device
5 tm Raw Tapemaster Tape Device
6 vp Ikon Versatec Parallel Controller
7 Not Available No Device
8 ar Archive Tape Controller
9 3% Raw Xylogics Disk Device

S un Revision A, of 9 May 1988

Chapter 3 — Overall Kemnel Context 47

Structures

Table 3-2

3.3. Run-Time Data

Current Major Device Number Assignments— Continued

Major Device Device Device
Number Abbreviation Description

10 mti Systech MTI
11 des DES Chip
12 zs UARTS
13 ms Mouse
14 cgone Sun-1 Color Graphics Board
15 win Window Pseudo Device
16 Not Available Log Device
17 sd Raw SCSI disk
18 st Raw SCSI tape
19 Not Available No Device
20 pts Pseudo TTY
21 ptc Pseudo TTY
22 fb Sun Console Frame Buffer
23 ropc RasterOp Chip
24 sky SKY Floating Point Board
25 pi Parallel input device
26 bwone Sun1 Monochrome frame buffer
27 bwtwo Sun-2 Monochrome frame buffer
28 vpc Parallel Driver for Versatec printer
29 kbd Sun Console Keyboard Driver
30 xt Raw Xylogics 472 Tape Controller
31 cgtwo Sun-2 Color Frame Buffer
32 gpone Graphics Processor
33 sf Raw SCSI Floppy
34 fpa Floating-Point Accelerator
35 Not Available STREAMS Support
36 Not Available No Device
37 Not Available STREAMS Clone
38 pc Sun PC Driver
39 cgfour Sun-3/110 Color Frame Buffer
40 Not Available STREAMS NIT
41 Not Available Dump Device
42 xd Xylogics 7053 SMD Disk Driver

If you skip ahead and read the chapter on Configuring the Kernel you will see a
discussion of the procedures by which Sun systems are reconfigured to include
new devices and drivers. There are two major programs involved in this process.
The first is conf ig, which reads the kernel config file and generates the data-
structure tables which specify the configuration of the new kernel. You will also
note, in that chapter, references to the kernel’s autoconfiguration process (some-
times called autoconfig). The autoconfiguration process verifies that the

4rsun

microsystems

Revision A, of 9 May 1988

48

‘Writing Device Drivers

devices specified in the config file are actually installed and working, and adjusts
the kemnel data structures accordingly.

The autoconfiguration approach was first introduced in 4.1BSD as part of a larger
kernel rationalization, and it significantly increases the flexibility of the kernel
configuration process, for example, by allowing multiple device controllers to be
driven by the same instance of a driver.

The autoconfiguration process is called by the kernel during its boot-time initiali-
zation. It does several things:

o It verifies that the information in the kernel config file is correct; that is to
say, it verifies that the devices which the kernel thinks are installed are actu-
ally installed. It does this by calling device-specific xxprobe ()} routines
that are supplied by the driver.

o It completes the initialization of the kernel data structures that were declared
by config and linked into the kernel by way of iocon£. c (a file which
config creates but cannot fully initialize). These structures, which are
defined in <sundev/mbvar .h> and shall hereafter be known as the
mbvar structures, form a good part of the run-time environment of the driver
routines.

o It maps the device registers (or memory) into kernel virtual space.
o It sets up polling interrupts on Multibus systems.

The autoconfiguration code does its work, as its name indicates, without worry-
ing the driver developer too much. It’s only necessary for the developer to know
what conventions to follow and what options exist. The rest will take care of
itself.

Note: readers who have written only System V drivers will perhaps find this all a
bit mysterious. In System V, as in BSD UNIX systems, the driver interface to the
kernel is defined primarily by the function switch (either cdevsw or bdevsw)
by which driver routines are called, by the parameters these routines are passed
and by the values they return. So far so good, but then there are the differences.
In System V drivers, nothing like the mbvar structures exists, and generic kernel
structures (like the user structure) are used far more heavily than in 4.2BSD,
where mbvar-like structures are consulted by preference. Sun’s operating system
is, of course, derived from 4.2BSD, and its driver interface is quite similar.

The “mb” in the name of the mbvar structures clearly recalls the primary motiva-
tion of the kernel rewrite in which they were introduced — to improve the
management of bus resources. The “mb” is derived from the initials of the Mul-
tibus, around which older generation Sun machines were built. Newer machines,
while built around the VMEbus, nevertheless continue to bear the traces of the
past in these mbvar structure names, names which are now taken to stand for
“Main Bus” rather than for “Multibus.”

During the configuration of the kernel, an edifice is built of the mbvar structures
and its initialization is begun. The edifice consists of a structure which
represents the bus itself, two arrays of structures (one representing system con-
trollers; the other, devices) and a number of inter-structure field-to-field links of

S ll n Revision A, of 9 May 1988

microsystems

Chapter 3 — Overall Kernel Context 49

The Bus-Resource Interface

various kinds.3 The details of the edifice depend upon the information in the ker-
nel config file, and upon the compile-time declarations made by the individual
drivers. During boot time, the initialization that conf ig began is completed by
the autoconfiguration process.

Then, at run time, the mbvar structures are used by both the drivers and the ker-
nel to manage the bus and its interaction with the devices. The mbvar structures
are linked to each other in quite a complex fashion, for device characteristics and
thus device driver structures vary greatly, and these structures are intended to
support a great variety of access paths: device to controller, device to driver, con-
troller to driver, and so on. Driver developers do not, however, need to concern
themselves with the details of the inter-structure links and access paths. Driver
routines will be called by the kernel with pointers to the mbvar structures of
interest to them. They are then free to build that information into whatever local
structures they find most convenient for the representation of whatever access
paths are of interest to them.

So, to sum up, the Sun kernel/driver runtime interface can be seen as being built
in two different sections. One of these sections is composed of the mbvar struc-
tures, constructed into interlinked arrays to represent specific kernel
configurations on specific machines. The other is similar to the generic SunOS
kernel/driver interface, consisting as it does of the two device switches, the user
and proc structures, parameter conventions and a few miscellaneous variables.
We will now discuss the details to these two interfaces.

All controllers are installed on the main system bus, and all slave devices (like
disks and tape drivers) are attached to their controllers.? Additionally, each con-
troller is associated with a device driver, which is really a controller driver. The
mbvar data structures reflect these relationships, not only in terms of the fields
that they contain but in terms of the ways these fields are linked together.

The following mbvar structure fields are the ones most relevant to driver
developers.

mb_hd The first data structure, mb_hd, is the Main Bus header data struc-
ture. There is only one such structure, for Sun systems have only
one Main Bus. It contains a queue of mb_ct1r structures, each
one representing a controller waiting for DVMA space. The
queue only contains entries when DVMA space is full. It also
contains other bus-status information. For example, if a driver has

3 It’s not always clear just when a device is a “controller’, and when it’s a “device”. The extreme cases are
clear: if a device attaches to the bus, fields interrupts and has other, so-called “slave” devices, then it’s a
controller. Likewise, if a device attaches to a controller rather than to the bus, it’s a slave device. The confusion
surrounds devices which attach to the device and field interrupts, but which do not have slave devices. Such
“devices” would, in many ways, be beiter thought of as “controllers” which control only themselves.

4 Sometimes, in this manual, the word “device” will be used in a generic sense to denote either a “free”
device that attaches directly to the system bus rather than to a separate controller, or a regular slave device. This
generic usage occurs, for example, whenever the term “device driver” is used — such programs would more
accurately be described as “controller drivers”. In this section, however, we’re being extremely precise — free
devices attach to the system bus, and so they’re called “controllers”, not “devices”.

S Utg Revision A, of 9 May 1988

microsys

50

Writing Device Drivers

mb_ctlr

exclusive access to the bus, this is noted inmb_hd. Device
drivers never directly access the fields inmb_hd.

Each slave-device controller on the Main Bus has anmb_ctl1r
structure associated with it. (This structure contains all of the
configuration-dependent information which the kernel needs in
interactions with the controller’s driver, as well as some status
information. Itis mb_ct1lr that is queued onto mb_hd during a
wait for DVMA space. The following fields withinmb_ctlr are
of interest even for character devices (there are others that are
used only by block devices):

mc_ctlr
The controller index for the corresponding controller, for
example, the ‘0’ in sc0. Used to index into arrays of driver-
specific controller status and control structures.

mc_addr
The address of the controller (control and status registers and
RAM) in bus space.

mc_dmachan
On the Sun386i only, a field containing the DMA channel.

mc_space
A bit pattern which identifies the address space within which
the controller is installed.

mc_intpri
The interrupt priority level of the controller. This is to be
given in the config file and should be used, in the driver
source, only as an argument to spln () —e.g.
splx(pritospl(mc_intpri)).

mc_intr
On Sun-2, Sun-3, and Sun-4 systems, pointer to the vec
structure that specifies vectored interrupt behavior (or NULL
if vectored interrupts are not used). If mc_intr is set, then
the fields within the vec structure become significant:

v_func
Pointer to the vector-interrupt function.

v_vec
Vector number associated with the function in v_func.

v_vptr
A pointer to the 32-bit argument to be passed to the
driver vector-interrupt routine. Defaults to the controller
number of the interrupting device, though it can be reset
within the driver. It’s often set by the driver xxat -
tach () routine to contain a local structure pointer. On
the Sun386i system, this field contains the irq (interrupt

Revision A, of 9 May 1988

Chapter 3 — Overall Kemel Context 51

@

mb_device

sSun

microsystems

request channel). The Sun386i system does not support
vectored interrupts, so the v_* fields are not present.

mc_alive
Set to one by the autoconfiguration process if the controller is
determined to be present. Otherwise left at 0.

mc_mbinfo
Main Bus resource allocation information (Used by
MBI_ADDR(),mbsetup () and mbrelse()).

“Free” devices (devices with no separate controllers) as well as
“slave” devices, are represented to the kernel bus-management
routines by an instance of the mb_device structure. (This is as
it has been since 4.1BSD, but it’s not ideal — if free devices were
taken as controllers and represented by anmb_ct 1r structure,
then mb_device would only be for slave devices and would
contain fewer fields). mb_ct1r contains all of the
configuration-related data for the free or slave device. If a con-
troller has multiple slave devices attached to it, there will be as
many mb_device structures associated with its mb_ct 1r struc-
ture. The following fields withinmb_device (which are set by
the configuration system and are not normally reset by the driver)
are of interest:

md_driver
A pointer to the mb_driver structure associated with this
device.

md unit
The device index for the corresponding device, for example,
the ‘0’ in xy0. Used to index into arrays of driver-specific
device status and control structures.

md_slave
The slave number of the device on its controller.

md_addr
The base address of the device (its control/status registers and
perhaps some RAM). For most Multibus devices, this will be
an address in I/O space, though for memory-mapped devices
this will be an address in Memory space. For VMEbus
machines, it’s the particular address space within which the
device is attached. Unused for devices on controllers.

md _dmachan
On the Sun386i only, a field containing the DMA channel.

md intpri
The Main Bus priority level of the device (the priority that is
passed to pritospl()). Used to parameterize the setting of
hardware priorities. Unused for devices on controllers.

Revision A, of 9 May 1988 .

52

Writing Device Drivers

mb_driver

xxdriver ()

md_intr
On Sun-2, Sun-3, and Sun-4 systems, pointer to the vec
structure that specifies vectored interrupt behavior (or NULL
if vectored interrupts are not used). Unused for devices on
controllers. On the Sun386i system, this field contains the
interrupt channel.

md flags
The optional £1ags parameter from the system config file is
copied to this field, to be interpreted by the driver. Oanly the
driver uses the information in this field. If f£lags was not
specified in the config file, then this field will contain a 0.

md alive
Set by the autoconfiguration process to 1 if xxprobe () finds
the device, otherwise it’s left at 0. Incidently, if xxprobe ()
fails to find the device, the autoconfiguration process will also
leave the device position in the xxdinfo () array (if the
driver has one) at 0. The driver is free to test either variable
(in its xxopen () routine) to determine xxprobe () s ver-
dict.

The system assumes that the source code of your driver declares a
mb_driver structure named xxdriver (). This structure con-
tains information relevant to the device driver as a whole, as
opposed to information about individual devices or controllers. It
differs in several important manners from the device and con-
troller structures. For one thing, it contains a number of pointers
to driver functions. These pointers, like those in cdevsw and
bdevsw, are used by the kernel as entry points into the driver.
For another, it’s initialized not by the configuration system, but
within the driver source code itself — if fact, several of the rou-
tines in xxdriver () are actually called by the kernel
autoconfiguration process to complete the driver-related kernel
initialization. (Note: while the driver has responsibility for ini-
tializing the fields in xxdriver, it is still limited, at run time, to
reading these fields — it cannot ever change them).

must be known more intimately by the driver developer than

either the driver md_ct1r structure or the drivermd_device structure. We
will therefore give its complete definition:

sSun

microsystems

Revision A, of 9 May 1988

Chapter 3 — Overall Kernel Context 53

struct mb_driver ({

int
int
int
int
int
int
int
char
struct
char
struct
short
struct

(*mdr_probe) () ; /* check devicelcontroller installation */
(*mdr_slave) () ; /* check slave device installation */
(*mdr_attach) () ; /* boot-time device initialization */
(*mdr go) () ; /* routine to start transfer */
(*mdr_done) () ; /* routine to finish transfer */
(*mdr_intr) (); /* polling interrupt routine */
mdr_size; /* amount of memory space needed * /
mdr_dname; / name of a device */
mb_device **mdr dinfo; /* backpointers to mbdinit structs */
mdr_cname; / name of a controller */
mb_ctlr **mdr_cinfo; /* backpointers to mbcinit structs */
mdr_flags; /* want exclusive use of Main Bus */
mb_driver *mdr_ link; /* interrupt routine linked list */

Here is a brief discussion of the fields in the mb_driver structure that you will
need to initialize when declaring xxdriver (). Note that many of the fields in
mb_driver are for the use of block drivers only — they’re presented here as
useful background information.

mdr probe
is a pointer to the driver xxprobe () routine. xxprobe () is called for
every controller and every independent device (with no separate controller)
given in the kernel config file. xxprobe () determines if the
device/controller is actually installed. If it is, it returns the amount of bus
space consumed by the device/controller to the autoconfiguration process,
where this space is then mapped into system address space. When
xxprobe () fails, it returns 0.

mdr_slave
is a pointer to an xxslave () function within your driver. xxslave() is
analogous to xxprobe (), and serves the same function for devices which
are driven by separate controllers. Unlike xxprobe (), however,
xxslave () exists only for controllers that may have multiple devices —
it’s therefore quite rare in character device drivers.

mdr attach
is a pointer to an xxattach () function within your driver. xxattach ()
is called during the autoconfiguration process, where it does preliminary
setup and initialization for a device or controller. It’s commonly used within
disk and tape drivers to perform setup tasks like the reading of labels, and in
character drivers for tasks like initializing interrupt vectors and reserving
blocks of memory. Initialize this field only if there’s an xxattach () rou-
tine in your driver.

mdr_go

mdr_done
are pointers to xxgo () and xxdone () functions within the driver. These
functions usually don’t exist for character drivers, and these fields are conse-

quently 0.
N
%22 SU Il Revision A, of 9 May 1988
\ microsystems

54

Writing Device Drivers

mdr_ intr

is a pointer to a polling interrupt routine within your driver. Such a polling
routine is used for the “auto-vectoring” of interrupts in systems where the
interrupt “vector” can only be based on the interrupt priority. This is the
case on all Multibus machines, and if there’s any chance that your driver
will someday be run on a Multibus machine you should include a polling
interrupt routine and plug it in here.

If you have a Sun source license, and take the opportunity it affords to exam-
ine a number of drivers, you may note an inconsistency in the naming of
interrupt routines:

o Some drivers have two interrupt routines: a polling interrupt routine
named xxpoll () and a vector interrupt routine, named xxintr (). In
such cases xxpol1l () determines the unit number of the interrupting
device and then calls xxintx () to actually handle the interrupt.

o Other drivers have only one interrupt routine. The routine is named
xxintr () and called from mdr_intr, but it nevertheless contains
polling code. This, like the naming of the field mdr_intx (which
really should be mdr_po11) is an artifact of early Sun systems, in
which drivers were written for the Multibus only — in these systems
xxintr () was the interrupt routine, and it always contained polling
code.

In any case, remember that any routine called from mdr_intr must check
the polling chain, regardless of its name. If you will not support Multibus
machines, and thus need no polling interrupt routine, put a zero in this field.

mdr_size

is the size — in bytes — of the memory required for the device. This field is
initialized with a value identical to that which xxprobe () returns upon
success, and specifies the amount of space that needs to be mapped into sys-
tem memory by the autoconfiguration code. The value returned by
xxprobe (), while identical, is used only to indicate if the device was
found.

mdr dname

is the name of the device for which this driver is written.

mdr dinfo

is a pointer to a pointer to the mb_device structure in xxdinfo (). This
pointer is filled in during autoconfiguration (see section below on
Autoconfiguration-Related Declarations) and is necessary to work back from
the device unit number to the correct mb__device structure by way of an
index operation.

mdr cname

is the name of the controller supported by this driver (for example, sc sup-
ports the controllers sc0, sc1, etc). This field takes the form of a regular
null-terminated C string. Fill it in if you actually have a controller.

sun Revision A, of 9 May 1988
microsystems

Chapter 3 — Overall Kemel Context 55

Autoconfiguration-Related
Declarations

mdr_cinfo
is a pointer to a pointer to an mb_ ct 1r structure declared in the driver.
This pointer is filled in during autoconfiguration (see the section below on
Autoconfiguration-Related Declarations) and is necessary to work back from
the device unit number to the correct mb__ct 1x structure by way of an index
operation.

mdr flags

consists of some flags, as follows:

MDR_XCLU
The device needs exclusive use of Main Bus while running. This flag is
used only by mbgo () and mbdone () routines (which are not docu-
mented in this manual), and it guarantees exclusive use only among
drivers which use it to enforce an exclusive-use protocol. Not all
drivers do so.

MDR BIODMA
For devices that do DMA on the Main Bus (such drivers call mbgo ()
and mbdone()). This flag tells the kernel that it must lock other DMA
devices off the bus.

MDR DMA
For devices which use DMA, either to transfer large blocks of data or
simply to transfer small blocks of control information. The drivers for
such devices call mbsetup (). This flag tells the kernel that it must
lock other DMA devices off the bus, and all DMA drivers should set it.

MDR_SWAB
I/O buffers are to be swab () ed — that is, pairs of data bytes are to be
exchanged. This flag is used to push the swab () out of mbgo () and
mbdone () and down into the Main Bus driver.

MDR_OBIO
The device is installed in on-board I/O space.

Of these, MDR_XCLU, MDR_SWAB and MDR_OBIO are potentially to be
used for user character devices. These flags must be OR’ed together if you
wish to place any of that information there. Place a zero (0) in this field if
none of the flags apply to your driver.

mdr_ link

This field is used by the autoconfiguration routines and is not for the driver’s
use.

At the top of each driver, after the include statements, is a group of declarations
that are used by the autoconfiguration process to finish the initialization of the
mbvar structures. Here, as an example, are the relevant declarations from the
Sky Floating-Point Driver:

sun Revision A, of 9 May 1988

microsystems

56 Writing Device Drivers

/* Driver Declarations for Autoconfiguration */
int skyprobe (), skyattach(), skyintr();
struct mb_device *skyinfo([ll; /* Only Supports One Board */
struct mb driver skydriver = {
skyprobe, 0, skyattach, 0, 0, skyintr,
2 * SKYPGSIZE, "sky", skyinfo, 0, 0, O,
}i

L)

The first line declares the names of the autoconfiguration-related entry point rou-
tines for the driver. In this case there are only three — skyprobe (), skyat -
tach () and skyintr (). These declarations are necessary because, in a few
lines, we will use the names to initialize the driver’s mb_driver structure.

The second line declares an array (in this case of dimension one) of pointers to
mb_device structures. By the time the driver is linked into the kernel, con-
fig will have already declared an array of mb__device structures that contains
an entry for each of the devices named in the kernel config file. When the kernel
is booted, the autoconfiguration process initializes each driver’s xxinfo () array
to indicate the mb_device structures corresponding to its devices, with each
device’s unit number being used as its subscript into the xxinfo () array. The
Sky driver is slightly atypical in that it only supports one device; normally the
device count provided by config in a macro “NXX” (which is set to the
number of devices noted in the config file) would be the subscript in this declara-
tion.

If this was a driver for a controller with slave devices, the second line would be
followed by an analogous one that declared an array of pointers tomb_ctlr
structures.

The third line both declares and initializes the mb_driver structure that
represents this driver. The fields within the structure are described in detail in
the previous section.

Other Kernel/Driver The kernel/driver interface is almost entirely contained within the mbvar struc-
Interfaces tures and the parameter conventions of the driver routines. There are, however, a
few other common kernel/driver interface points, which are given in this section.

WARNING The user structure is valid for the current process only while execution is in
the top half of the driver. It must never be accessed from the bottom half.

The kernel user structure contains a few fields of interest to drivers. This struc-
ture, which maintains status information for the current user process (and which
is swapped in and out with the process it describes), is used far less by Sun
drivers than it is by System V drivers. This is because, in SunOS, the user
structure does not define the address of the characters to be written (or the place
for characters to be read to). The Sun kernel uses uio structures for this pur-
pose, and passes them as parameters to the driver xxread () and xxwrite ()
routines. (See Some Notes About the UIQ Structure in the The ‘‘Skeleton’’ Char-
acter Device Driver chapter of this manual).

@ sSun Revision A, of 9 May 1988

microsystems

Chapter 3 — Overall Kemel Context 57

Still, three fields within the user structure remain of interest to device drivers.
They are:

u.u_gsave
is a set jmp () environment buffer that can be used to save the current
stack in preparation for a possible Longjmp () return. setjmp () and
longjmp () are useful in drivers that need to intercept signals, and then to
wake sleeping processes. They can also be used for error handling. For
more information, see the set jmp (3) man page.

u.u_error
If an I/O operation is not successful, the driver must return an error code
(defined in <errno.h>), which is plugged into u.u_error. From here
it’s normally stored in the per-process global variable errno in the user
context. (Note that in most cases the kernel plugs the value into
u.u_error, and it is not necessary for the driver to do so. In fact, a driver
cannot access u.u_error in its interrupt routine, where transfer errors are
normally detected, since the current user structure is unlikely to belong to
the process for which the failed I/O was being performed).

u.u_procp
The u.u_procp field in the user structure is a pointer to the processs
(proc) structure for the current process. The proc structure contains the
information that the system needs about a process even when it is swapped
out. u.u_procp is used by drivers which contain select () routines.
See the Variation with *‘Asynchronous I/O’’ Support section of the The
“‘Skeleton’’ Character Device Driver chapter of this manual for details.

Drivers may occasionally need to know what kind of machine they’re running
on. They can find out by querying a variable, cpu, which, while not in the user
structure, is available to them by including . . /machine/cpu.h. This vari-
able is initialized by the kernel on the basis of information in the ID PROM, and
is set to one of the following values:

CPU_SUN2_50
CPU_SUN2_120
CPU_SUN3_50
CPU_SUN3_110
CPU_SUN3_160
CPU_SUN3_260
CPU_SUN4_260
CPU_I386 AT386

Note that when compiling for a Sun-2 system, only the Sun-2 names are avail-
able; likewise for Sun-3s, Sun-4s and Sun386i’s.

Related to the CPU_SUNX XX names are the SUNX XX ifdefs. These are set at
compile time on the basis of information in the config file, and can be used to
eliminate code or data that is unnecessary for machines of any particular type. In
general, it’s possible (and advised) to write drivers that can compile and run on a
variety of Sun machines with no changes.

DVMA drivers will often need to know the address of kernel DVMA space on
the host machine (See the Sun Main-Bus DVMA section in the Hardware Context

é{% sun Revision A, of 9 May 1988

microsystems

58 Writing Device Drivers

chapter) so that they can subtract it from system virtual addresses to get
addresses relative to the start of DVMA space. The external variable DVMA,
declared as an array of characters, is available for this purpose.

The external variable hz gives the number of clock ticks per second on the host
system.

The external variable KERNELBASE gives the start of kernel address spece in the
current memory context.

DY
é%\@ un Revision A, of 9 May 1988

microsystems

Kernel Topics and Device Drivers

Kernel Topics and Device DIIVETS ..o

4.1,
4.2.
4.3.
4.4.
4.5.
4.6.
4.7.

Overall Layout of a Character Device Driver

User Space versus Kernel Space

User Context and Interrupt Context

Device Interrupts

JEa1vc) o ¢ o188 B0 Y LSOO

Vectored Interrupts and Polling Interrupts

Some Common Service ROULNGS .,
Timeout MEChanISIS ses e

Sleep and Wakeup Mechanism

Raising and Lowering Processor Priorities

Main Bus Resource Management Routines

Data-Transfer Functions

Kemel printf () Function

Macros to Manipulate Device Numbers

4.1. Overall Layout of a
Character Device
Driver

Kernel Topics and Device Drivers

A first step in writing a device driver is deciding what sort of interface the device
should provide to the system. The way in which read () and write () opera-
tions should occur, the kinds of control operations provided via ioct1 (), and
whether the device can be mapped into the user’s address space using the

mmap () system call, should be decided early in the process of designing the
driver. (For simple memory devices that require neither DMA nor an ioct1 ()
routine, and that don’t interrupt, it’s possible to use the mmap () system call to
avoid writing a driver altogether. See the Mapping Devices Without Device
Drivers section of this manual for more details).

Device drivers have access to the memory management and interrupt handling
facilities of SunOS. The device driver is called each time the user program
issues an open (), read (), write (), mmap (), select () orioctl ()
system call, but only the last time the file is closed. The device driver can
arrange for I/O to happen synchronously, or it can set things up so that /O
proceeds while the user process continues to run.

Here’s a brief summary of the parts that comprise a typical device driver. In any
given driver, some routines may be missing. In a complex driver, all of these
routines may well be present. A typical device driver consists of a number of
major sections, containing the routines introduced below.

Initial Declarations
Device drivers, like all C programs, begin with global declarations of vari-
ous sorts. These declarations include the structures that the driver will over-
lay on the device registers. (These structures are often conveniently declared
to contain unsigned integers and bit fields chosen to access various parts of
the device registers). They also must include the declarations discussed in
the Autoconfiguration-Related Declarations section of the Overall Kernel
Context chapter of this manual.

Autoconfiguration Support
Then come the xxprobe (), xxattach () and, perhaps, xxslave () rou-
tines. These are called at kernel boot time to determine if devices noted as
being present in the config file are actually installed, and to initialize them if
they are. This initialization may include the resetting of the interrupt vector.

Q\}? S un 61 Revision A, of 9 May 1988

microsystems

62 = Writing Device Drivers

Opening and Closing the Device
xxopen () is called each time the device is opened at the user level; if mul-
tiple user processes open the device, xxopen () is called multiple times.
xxclose (), in contrast, is called only when the /ast user process which is
using the device closes it.

Reading to and Writing from the Device
xxread () and xxwrite () are called to get data from the device, or to
send data to the device. Drivers for tty-like devices will probably structure
xxread () and xxwrite () in the terminal-driver style (not described in
this manual), while devices that deal simultaneously with groups of charac-
ters will probably have their xxread () and xxwrite () routines imple-
mented in terms of axxstrategy () routine. Suchxxstrategy () rou-
tines are in every way subsets of block-driver xxstrategy () routines —
they are integrated with physio () and they use buf structures but they
don’t have anything to do with the kemel buffer cache. Character drivers for
DMA device are likely to have strategy () routines, but they can be use-
ful for non-DMA devices as well — as long as the devices do I/O in chunks.

Select Routine
xxselect supports the select () system call, by which user processes
can examine various devices (by way of I/O descriptors which specify them)
to see if they are ready for reading, writing, or have an exceptional condition
pending on them.

Start Routine
xxstart () is needed in drivers that queue requests; it’s called from
xxread (), xxwrite () orxxstrategy () to start the queue and is also
called from xxintr () to send off the next request in the queue.

Mmap Routine
The mmap () routine is present in drivers for devices which are operated by
being mapped into user memory — for example, frame buffers.

Interrupt Routines
There are two kinds of interrupt routines: polling (or auto-vectored) routines
and vectored routines. Polling routines are necessary when the host system
doesn’t allow unambiguous means of mapping hardware interrupts to dev-
ices, as is the case with Multibus-based machines. Vectored-interrupt rou-
tines are used on VMEbus-based systems, which can map hardware inter-
rupts immediately to devices. Drivers for VMEbus devices that are never
run on Multibus-based systems need only vector interrupt routines, while
drivers for devices which will be run on both Multibus and VMEbus
machines need both types of interrupt routines. In this case the polling rou-
tine can determine the interrupting device and then call the vectored routine
to do the rest.

loctl Routine
The xxioctl () routine is called when the user process does an ioctl
system call. These calls are the great escape hatches in the otherwise gen-
erally uniform I/O architecture. They are not, however, panaceas, and you
should not overuse them to solve problems in driver design. Terminals have

f%}? sun Revision A, of 9 May 1988

microsystems

Chapter 4 — Kernel Topics and Device Drivers 63

4.2. User Space versus
Kernel Space

4.3. User Context and
Interrupt Context

many ioctl calls, but they’re a special case. They have many ioctl
calls because they’re inherently quite complex and yet SunOS still insists
that they look like files.

SunOS, being a multi-tasking operating system, provides for multiple threads of
control at the user level. (These multiple threads are the various user processes).
At the kernel level, however, things are different. The SunOS kernel is monol-
ithic monitor type of operating system, and, as such, it cannot be interrupted by
user processes. Instead, it contains code which allocates its time (and other
resources) among the various user processes, as well as to itself. The kernel can
be interrupted by hardware, but when handling interrupts it doesn’t run on
behalf of any individual user process.

Device driver functions are invoked by kernel routines after user processes make
system calls. These functions must be able to move data to or from user virtual
space quickly and easily. Kernel functions are provided to help it do so, and to
redundantly map memory so that it can be shared by user programs and the ker-
nel.

Device drivers are parts of the kemel, and they inhabit kemel space:

o Inthe Sun-2 the kernel virtual address space is 16 megabytes, and is com-
pletely separate from the individual user virtual address spaces.

o Inthe Sun-3 and Sun-4, the kernel virtual address space is at the top of the
current context, starting at KERNELBASE.

o Inthe Sun-4, the kernel uses the top 16 megabytes of the current Gigabyte
context, starting at 0OxFF000000.

o Inthe Sun386i, the kernel uses the top 64 Megabytes. Of these, the kernel
has 32 Mbytes reserved for its use; kadb has 16 Mbytes reserved, and the
EPROM uses 16 Mbytes.

In general, drivers don’t need to consider the details of kernel address-space
implementation. Routines (like copyin () and copyout()) which deal in
multiple address spaces will manage the details internally, as will programs like
kadb.

A device driver can usefully be thought of as having a top half and a bottom half.
The top half, consisting of the read (), write (), and ioctl () routines, and
of any other routines which run on behalf of the user process making requests on
the driver, is run at I/O request time. The routines in the top half make device
requests that can cause long delays during which the system will schedule a new
user process so that it can continue doing useful work. The bottom half, consist-
ing of xxintxr () and any routines that it may call, is run at hardware interrupt
time.

Memory-mapped devices are usually not interrupt driven. Their drivers, thus, do
not typically need to include interrupt routines. Memory-mapped devices
operate by being written and read as system memory, and make no split-second
demands (interrupt-time demands) upon their users.

Sun Revision A, of 9 May 1988

microsystems

64 Writing Device Drivers

4.4. Device Interrupts

After starting an I/O request, the top half calls sleep () to wait for the bottom
half to indicate (by way of a call to wakeup()) that the request has been ser-
viced. Thus, when a user program issues a read on (say) an A/D converter, it is
normally suspended when the top half of the corresponding driver calls

sleep () to wait until some input arrives. Alternatively, the top half of the
driver can call iowait () and be put to sleep awaiting the completion of a
buffer-oriented I/O transfer.

The top half contains not only all the non-interrupt time driver routines, but (for
all practical purposes) the kernel routines above the driver as well. In particular,
it contains the kernel physio () routine, which manages the decomposition of
large I/O requests into a series of smaller ones that can be handled by the device.

The bottom half may include an xxstart () routine, which can be called inter-
nally to start I/O. This allows the device-specific code to be isolated in one rou-
tine. xxstart () is not a driver entry point. It’s called from either xxstra-
tegy () orxxintr (), depending upon whether the device is busy or not.

Consider an A/D converter driver that expected the converter to interrupt when a
sample was available. The kernel interrupt handler would detect the device inter-
rupt and dispatch xxintr (), which would then store the sample data in a buffer
and wakeup () the user process sleeping in the top half so it process could
retrieve the data. If there was no user process sleeping in the top half, the
wakeup () would have no effect, but the next process to read the A/D driver
would find the data already there and wouldn’t have to sleep ().

It must be stressed that, in general, xxintr () doesn’t run on behalf of the
current user process — this is, in fact, why it’s distinguished so clearly from the
top half. This means is that no information about the current user process is
available, in any way, to xxintr (). It shouldn’t examine, let alone change, any
of the variables in the kernel user structure.

In general, the driver developer has limited control over the interrupt characteris-
tics of the device. However, it should be said that some device-interrupt charac-
teristics are better than others. In particular, interrupt-processing takes lots of
time, and it’s important that devices interrupt as seldom as possible. If, for
example, a device can be made to handle multiple characters for each interrupt it
processes, it should be. It’s also preferable that a device not interrupt until its
driver has enabled its interrupts, that it hold its interrupt line high until the driver
asks that it be cleared, and that it remain quiescent after a bus reset (system
boot).

Most hardware devices interrupt, and all interrupts occur at some given priority
level. When an interrupt occurs, the system traps it, suspends the in-process
operation (which may be a process entirely unrelated to the interrupting device or
even the kernel) and resumes execution in the bottom half of the driver associ-
ated with the interrupting device. This means that the top half of a device driver
can be interrupted at any time by its bottom half. If they wish to share data, they
must do so in shared data structures, and they must take special provision to see
that those structures remain consistent. An example of such a data structure is a
pointer to a current buffer and a character counter. The top half of the driver

sun Revision A, of 9 May 1988

microsystems

Chapter 4 — Kernel Topics and Device Drivers 65

4.5. Interrupt Levels

must protect itself so that data structures can be updated as atomic actions, that
is, the bottom half must not be allowed to interrupt during the time that the top
half is updating some shared data structure. This protection is achieved by
bracketing critical sections of code (sections that update or examine shared data
structures) with subroutine calls that raise the processor priority to levels which
can’t be interrupted by the bottom half. Such a section of code looks like:

s = spln();
critical section of code that can’t be interrupted

(void) splx(s) ;

Here we’ ve first raised the hardware priority level and then restored it after the
protected section of code. (Determining the correct hardware priority will be dis-
cussed later). One section of code that almost always needs to be protected is the
section where the top half checks to see if there is any data ready for it to read, or
whether it can write data or start the device. Since the device can interrupt at any
time, the section of code that checks for input in this fashion is wrong:

if (no input ready)
sleep (awaiting input, software priority)

because the device might well interrupt after the i £ condition is tested, but
before the process switch. (The consequences, if this happens, are grave — the
call to wakeup () will occur before the process has actually gone to sleep, and
thus it will never wake up).

The above section of code must thus be rewritten to look like this:

s = spln();
while (no input ready)

sleep (awaiting input, software priority)
(void) splx(s);

If the top half executes the sleep () system call, the bottom half will be
allowed to interrupt, because the hardware priority level is reset to 0 as soon as
the sleep () context switches away from this process.

In many cases it is possible to set the device interrupt level by setting switches on
its board. If so, you must decide what processor-interrupt level the device is
going to interrupt at. At first it may seem that your device is very high priority,
but you must consider the consequences of locking out other devices:

o If you lock out the on-board UARTS (level 6) characters may be lost.

o If you lock out the clock (level 5) time will not be accurate, and the SunOS
scheduler will be suspended.

sun Revision A, of 9 May 1988

microsystems

66 Writing Device Drivers

4.6. Vectored Interrupts
and Polling Interrupts

S
L4

o Ifyou lock out the Ethernet (level 3), packets may be lost and retransmis-
sions needed.

o If you lock out the disks (level 2), disk rotations may be missed.
o Level 1is used for software interrupts and cannot be used for real devices.

In general, it’s best to use the lowest level that will provide you with the response
that you need.

In Multibus-based Sun-2 machines, the kernel uses only auto-vectored (polling)
interrupts. With auto-vectoring, the interrupt vector associated with a given dev-
ice is based solely on the device interrupt priority level. Since many system
configurations will contain more devices than there are interrupt levels, multiple
devices may share the same interrupt level. Still, when processing an interrupt,
the kernel must have a way of determining which device interrupted, and which
driver should process the interrupt. In such configurations, the kernel proceeds
by polling all the drivers at the given interrupt level (in the order that they are
given in the config file), calling each of their polling interrupt routines in turn.
These routines then proceed to interrogate their corresponding devices looking
for the device that has an “attention bit” set, thus indicating that it issued the
interrupt. Devices that don’t indicate that they’ve interrupted can still be
installed — one per system — by putting them at the end of the config file and
thus at the end of the polling chain. Unclaimed interrupts can then be assumed to
be from the last device.

After determining that one of its devices issued an interrupt, the polling routine
services it and returns a non-zero to indicate that it did so (or a O to indicate that
no device was found to originate the interrupt).

Polling only works if devices which share interrupt levels continue to interrupt
until the driver tells them to stop. This is because the driver polling-interrupt
routine returns to the kernel with an indication of which of the devices it has ser-
viced. If two devices (A & B) are polling at the same interrupt level and both
issue an interrupt, device A will always get serviced first. The kernel will then
go on its merry way unless device B continues to interrupt. If it does, then when
device A has been serviced, device B will be serviced. Fortunately, most Mul-
tibus boards continue to interrupt until told to stop. VMEbus boards typically do
not, so it’s important that they use vectored interrupts.

Sun VMEbus machines, (even those with Multibus devices installed by way of
adapters) can take advantage of vectored interrupts. When handling a vectored
interrupt, the kernel calls the appropriate driver’s vector interrupt routine
directly, passing it an argument to identify which of its devices (or controllers)
interrupted.

It’s important to realize that a driver can support both vectored interrupts and
polling interrupts. Such a driver can be run on either type of machine, its polling
interrupt routine will determine which device, if any, originated the interrupt, and
then call the vectored interrupt routine to actually service it.

sun Revision A, of 9 May 1988

microsystems

Chapter 4 — Kernel Topics and Device Drivers 67

VMEDbus devices — if they interrupt — are assigned unique identifying numbers
in the range 0x40 to OXFF when they are described in the config file. Itis
these vector numbers that are used by the kernel to directly identify the interrupt-
ing device.

There are cases where no separate polling routine is needed. The first is where a
driver knows that it supports only one device, and that no other device will share
its device’s interrupt level. In this case only an xxintr () routine need exist. It
can then be specified inmb_driver—>mdr_ intr for use in the auto-vectored
case and in the configq file for the vectored interrupt case. Thus, all
configurations will use the same interrupt routine. Remember, this will only work
if there are no other devices of any sort installed at the same interrupt level.

The other case where xxpol1 () is not needed is when a driver will never sup-
port polling — presumably because it will never be run on a Multibus machine.
In this case xxintx () should be specified in the config file for use as the vec-
tored interrupt routine, and the auto-vectored (polling) interrupt routine specified
inmb_driver—>mdr_intr should be 0.

Note that in the first case above, where the device will have an interrupt level to
itself, little need be done to make the driver work with vectored interrupts. One
may simply take a polling interrupt routine, (perhaps renaming it xxintr () to
avoid confusion) and install it as the vector interrupt routine by giving its name
in the appropriate place in the config file. This isn’t the most efficient thing to
do, for when the routine is called through the kernel’s vectoring mechanism, it
will waste the information in its argument (which identifies the device originat-
ing the interrupt) and go on to poll its devices. Nevertheless it will work. It’s
better, however, if drivers contain both xxintr () and xxpol1l () routines, so
that they may be easily transported to a variety of systems.

Another issue of concern only to drivers running on VMEbus machines is related
to setting up the interrupt-vector number. When using the VMEbus-Multibus
adapter or certain VMEbus devices, the vector number is set by switches on the
circuit board. But some devices require that software initialize the device by tel-
ling it which vector number to use on interrupts. Presently, the only place where
this can be done is inxxattach (). The vector number that xxattach ()
communicates to the device is in the md_intr—>v_vec field of the
mb_device structure — a NULL value in this field indicates that the host
machine is Multibus based and does not support vectored interrupts.

A skeleton for a “typical” driver, one supporting both vectored and polling inter-
rupts and using software to set interrupt vectors might look like:

'd i
1*

* NXX is computed by config for each device type.
* It can then be used within the driver source code to
* declare arrays of device specific data structures.

*/

/*
\ /
@ sun Revision A, of 9 May 1988
microsystoems

68

Writing Device Drivers

@

(' * Attach routine for a device xx that must be notified of its
* interrupt vector.
*/

xxattach (md)
struct mb_device *md;
{

register struct xx_device *xx = &xxdevice[md->md unit];

#ifndef sun386
/*
* Vector number given in kernel config file and passed by the autoconfiguration
* process during boot. This code does not apply to the Sun386i, which does not
* support vectored interrupts.
*/
if (md->md_intr) {

/ * so we will be using vectored interrupts */

/* WRITE interrupt number TO THE DEVICE */
xx->c_addr->intvec = md->md_intr->v_vec;

/* Setup argument to be passed to xxattach */
* (md->md_intr->v_vptr) = (int)=xx;

} else { /* WRITE auto-vector code TO THE DEVICE */
xx->c_addr->intvec = AUTOBASE + md->md_intpri;
}
/* any other attach code */
#endif
}

/¥
* Handle interrupt - called from xxpo 11 and for vectored interrupts.
*/

xxintr (xx)

struct xx_device *xx;
{

/* handle the interrupt here */
}

/%
* Polling (auto-vectored) interrupt routine
*/
xxpoll ()
{
register struct xx_device *xx;
int serviced = 0;
/* loop through the device descriptor array */
for (xx = xxdevice; xx < &xxdevice [NXX]; =xx++) {
if (!xx->c_present ||
\ J
Sun Revision A, of 9 May 1988

microsystems

Chapter 4 — Kernel Topics and Device Drivers 69

4.7. Some Common Service
Routines

Timeout Mechanisms

Sleep and Wakeup
Mechanism

((xx->c_iobp->status & XX_INTR) == 0))
continue;
serviced = 1;
xxintr (xx) ;
}
return (serviced);
}
.)

The kernel provides numerous service routines that device drivers can take
advantage of. The most important of these routines can be clustered into the
functional groups given here. These routines, as well as many others, are
described more completely in the Kernel Support Routines appendix to this
manual;

If a device needs to know about real-time intervals,

timeout (func, arg, interval)
int (*func) ()
caddr_t arg;
int interval;

is useful. timeout () arranges that after interval clock-ticks, the func is called
with arg as argument, in the style (*func)(arg). interval is often expressed as a
multiple of the external variable hz, since hz gives the number of ticks per
second on the host machine. (10*hz, then, specifies a timeout of ten seconds).
Timeouts are used, for example, to provide real-time delays after function char-
acters like new-line and tab in typewriter output, and to terminate an attempt to
read a device if there is no response within a specified number of seconds. Also,
the specified func is called at “software” interrupt priority from the lower half of
the clock routine, so it should conform to the requirements of interrupt routines
in general — you can’t, for example, call sleep () from within func, although
you can call wakeup (). (See also untimeout()).

Another key set of kernel routines is sleep () and wakeup (). The call

sleep(event, software_priority)
caddr t address;
int priority; J

makes the process wait (allowing other processes to run) until the event occurs; at
that time, the process is marked ready-to-run. When the process resumes execu-
tion, it has the priority specified by software_priority.

The call

Sun Revision A, of 9 May 1988

70 Writing Device Drivers

Raising and Lowering
Processor Priorities

wakeup (event)
caddr_t address;

indicates that the event has happened, that is, causes processes sleeping on the
event to be awakened. The event is an arbitrary quantity agreed upon by the
sleeper and the waker — it must uniquely identify the device. By convention,
event is the address of some data area used by the driver (or by a specific minor
device if there’s more than one).

Processes sleeping on an event should not assume that the event has really hap-
pened when they are awakened, for wakeup () wakes all processes which are
asleep waiting for the event to happen. Processes which are awakened should
check that the conditions that caused them to go to sleep are no longer true.

Software priorities can range from 0 to 127; a higher numerical value indicates a
less-favored scheduling condition. A distinction is made between processes
sleeping at priority less than or equal to PZERO and those sleeping at numeri-
cally greater priorities.

| _If a process is blocked in s1eep () at a priority less than or equal to PZERO,it
will not be awakened upon receipt of a signal; the signal will not be processed

until the process is awakened elsewhere and returns to user mode. (This means
that a user cannot interrupt such a process by typing their interrupt character).
Thus, it is a bad idea to sleep with priority less than or equal to PZERO on an

. event that may not occur.

On the other hand, if a process is blocked in sleep () at a priority greater than
PZERO, and if a signal is sent to the process, it will be awakened. However, the
call to sleep () will not return. This means that the routine that called

sleep () cannot clean up after receiving the signal. If the routine needs to do
such clean up, it can arrange for this by ORing the PCATCH flag into the priority
it passes to sleep (). If this is done, and sleep () isinterrupted by a signal, it
will return 1; if the process is woken up normally, sleep () will return 0.

In general, sleeping at priorities less than or equal to PZERO should only be used
to wait for events that occur quickly, such as disk and tape I/O completion.
Waiting for events that may not occur quickly—for example, the typing of a par-
ticular key by a human at a keyboard—should be done at priorities greater than
PZERO.

Incidentally, it is a gross error to call sleep () in a routine called at interrupt
time, since the process that is running is almost certainly not the process that
should go to sleep.

At certain places in a device driver it is necessary to raise the processor priority
so that a section of critical code cannot be interrupted, for example, while adding
or removing entries from a queue, or modifying a data structure common to both
halves of a driver.

The splx () function changes the interrupt priority to a specified level, and then
returns the old value.

sSsun Revision A, of 9 May 1988

microsystems

Chapter 4 — Kernel Topics and Device Drivers 71

Main Bus Resource
Management Routines

Data-Transfer Functions

For configuration reasons, the pritospl () macro is necessary to convert a
Main Bus priority level to a processor priority level. The Main Bus priority level
can be found in either md—>md_intpri ormc—->mc_intpri, where it is put
by the autoconfiguration process. (These structures are defined in
/usr/include/sundev/mbvar.h).

Here’s how you normally use the pritospl () and splx () functions in a
hypothetical strategy () routine:
4 N
hypo strategy (bp)

register struct buf *bp;

{
register struct mb_ctlr *mc =
hypoinfo [minor (bp->b dev)];
int s;

s = splx(pritospl(mc->mc_intpri));

while (bp->b_flags & B_BUSY)
sleep((caddr_t)bp, PRIBIO);
here is some critical code section

(void) splx(s); /* Set priority to what it was previously */

}
_ J

Alternatively, spln can be used to set the processor to a certain fixed priority
level.

On the Sun-2, Sun-3 and Sun-4, the routine mbsetup () is called when the dev-
ice driver wants to start up a DMA transfer to the device, for DMA transfers
require Main Bus resources. The MBI_ADDR () macro can then be used to
transform the abstract integer returned by mbsetup () into a DVMA transfer
address. At some later time, when the transfer is complete, the device driver
calls the mbrelse () routine to inform the Main Bus resource manager that the
transfer is complete and the resources are no longer required.

On the Sun386i, the mbsetup () and dma_setup () routines are called when
the device driver wants to start up a DMA transfer. After the transfer is com-
plete, the driver calls mbrelse () and dma_done ().

The kernel provides a number of routines designed to transfer data between the
user and kernel address spaces. These include copyin () and copyout (),
general routines designed to move blocks of bytes back and forth. They also
include uiomove (), ureadc () and uwritec (), routines which are
designed to transfer data to or from a uio structure (see Some Notes About the
UIO Structure in the The ‘‘Skeleton’’ Character Device Driver chapter for more
details about this structure).

sun Revision A, of 9 May 1988

72 Writing Device Drivers

Kernel printf£ () Function

Macros to Manipulate Device

Numbers

. 4

The kernel provides a printf () function analogous to the printf () func-
tion supplied by the C library for user programs. The kernel printf (), how-
ever, is more limited. It writes directly to the console, and it doesn’t support
printf () ’s full set of formatting conversions. See the Debugging with
print£ () section of this manual for more details on the use of the kernel
printf ().

A device number (in this system) is a 16-bit number (typedef short
dev_t) divided into two parts called the major device number and the minor
device number. There are macros provided for the purpose of isolating the major
and minor numbers from the whole device number. The macro

major (dev)
returns the major portion of the device number dev, and the macro
minor (dev)

returns the minor portion of the device number. Finally, given a major and a
minor number x and y, the macro

dev_t makedev(x,y) -

returns a device number constructed from its two arguments,

sun Revision A, of 9 May 1988

microsystems

Driver Development Topics

Driver Development Topics

5.1. Installing and Checking the Device

Setting the Memory Management Unit .
Selecting a Virtual Address ...

Finding a Physical Address ...

Selecting a Virtual to Physical Mapping .
Sun-2 Address Mapping

Sun-3 and Sun-4 Address Mapping ..

A Few Example PTE Calculations

Getting the Device Working and in a Known State
A Warning about Monitor Usage

5.2. Installation Options for Memory-Mapped Devices .
Memory-Mapped Device Drivers ...
Mapping Devices Without Device Drivers ..

Direct Opening of Memory Devices

5.3. Debugging Techniques

Debugging with print£ ()
Event-Triggered Printing
Asynchronous Tracing .
kadb — A Kernel Debugger .

5.4. Device Driver Error Handling

Error Recovery

Error Returns

75

75
75
76
79
79
81
84
87
88
90
90
90
92
95
97
98
100
101
102
103
103
103

Error SignalS ..o, 104

| 25 0(0) o 00T 4041 o Vo 104
Kemel Panics e ere sttt ra AR R AR RS R bRt st n s 104
5.5. SYSIEM UDPETAACS ... s s s 105

5.6. L0adable DIIVETS ... oo 105

5.1. Installing and
Checking the Device

Setting the Memory
Management Unit

Driver Development Topics

The central processor board (CPU) of the Sun Workstation has a set of PROMs
containing a program generally known as the “Monitor”. (See the appropriate
PROM Commands chapter of the PROM User’s Manual for detailed descriptions
of the monitor commands and their syntax). The monitor has three basic pur-

poses:

1) To bring the machine up from power on, or from a hard reset (monitor k2
command).

2) To provide an interactive tool for examining and setting memory, device
registers, page tables and segment tables.

3) To boot SunOS, stand-alone programs, or the kernel debugger kadb.

If you simply power up your computer and attempt to use its monitor to examine
your device’s registers, you will likely fail. This is because, while you may have
correctly installed your device (a process that includes specifying its virtual
memory mapping in the config file) those mappings are SunOS specific, and
don’t become active until SunOS is booted. The PROM will, upon power up,
map in a set of essential system devices — like the keyboard — but your device
is almost certainly not among them.

When installing a new device, you will use the monitor primarily as a means of
examining and setting device registers. But before even beginning the develop-
ment of your driver, it’s a good idea to attach your device to the system bus and
use the monitor to manually probe and test it. This will give you a chance to
become familiar with the details of its operation, and to ensure that it works as
you expect it to.

Upon power-up, the PROM monitor:

o Maps the beginning of on-board memory, up to 6 megabytes, to low virtual
addresses starting at virtual 0xO0.

o Sun-2 machines only. Maps the bus spaces into virtual address space, for the
purpose of supporting Multibus devices. Multibus IO space is mapped from
0xEB0O0O0O to 0XEBFFFF on Sun-2 Multibus machines. On Sun-2
VMEbus machines, vme16d16 is mapped from 0XxEB00O0O to OXEBFFFF
so that Multibus cards attached by way of VMEbus adapter cards can be
accessed. These two address spaces, Multibus I/0 and vme1 6d16, are not

0%/0 sun 75 Revision A, of 9 May 1988

microsystems

76 Writing Device Drivers

Selecting a Virtual Address

remapped by the SunOS kernel. This means that, for example, that kernel
virtual address 0OxEBEE40 can be used to talk to a device at 0xEE40 in
Multibus IO space without setting up a mapping. (This shortcut is only pos-
sible for the two 16-bit Sun-2 spaces).

Later, using the autoconfiguration process, SunOS makes a pass through the
config file (actually, through the ioconf file that was produced as output by
config when it processed the config file). For each device, SunOS selects an
unused virtual address (using an algorithm that doesn’t presently concern us) and
maps it into the device’s physical address as specified in the config file.

SunOS then calls the xxprobe () routine for each device, passing it the chosen
virtual address. In this way, xxprobe () is kept from having any knowledge of
the physical address to which the device is mapped. xxprobe () then deter-
mines whether or not the device is present. Ifit isn’t, the virtual address can be
reused.

To test a device, ignore the SunOS mappings and use the monitor to manually set
the MMU to map your device registers to a known address in physical memory.
Then you can use the monitor to verify its proper operation. This verification
process will consist primarily of using the monitor’s O (open a byte), E (open a
word) and L (open a long word) commands to examine and modify the device’s
registers. Note that, in Sun-4 machines, words and long words are both 32 bits in
length.

The process of setting up the device for initial testing consists of three discrete
steps.

o The selection of an appropriate virtual address for the testing of the device.

o The determination of the physical address of the device, as well as the
address space that it occupies.

o The use of the monitor to map the system’s virtual address to the device’s
physical address. Detailed discussion of these three steps follow.

Since SunOS initializes the MMU in the course of its autoconfiguration process,
it' s possible to test a device by actually installing it, and then booting and halt-
ing SunOS. (You can halt SunOS by pressing the ‘L1’ and ‘A’ keys simultane-
ously, or, on a terminal console, by hitting the <BREAK> key). Having gotten to
the monitor by this route, the MMU will be initialized to its SunOS run-time
state. You can then use the monitor to test the device, or, if you wish, boot
kadb. (A hard reset—- the monitor’'s k2 command—will set the to MMU to its
pre-SunOS power-up state). But while using the SunOS memory maps may occa-
sionally be useful, it’ s not what you want to do during the first stages of device
integration.

First, understand that the MMU, when mapping a virtual address to a physical
address, is actually mapping to a page of physical memory and an offset within
that page. The low-order bits of a virtual address, those that specify the offset,
do not get mapped — an address that is X bytes from the beginning of its virtual
page will be X bytes from the beginning of whatever physical page it gets

sSun Revision A, of 9 May 1988

Chapter 5 — Driver Development Topics 77

mapped into.

The mapping mechanism is the essentially the same for all Sun systems, although
the details of address size and page mapping differ. This can be seen in the fol-

lowing diagrams:

Figure 5-1 Sun-2 Address Mapping

24 bits _ high high 23 bits
Input 13 MMU 12 Output
U A
Virtual Physical
Address Address
: low :
11
Figure 5-2 Sun-3 Address Mapping
28 bits high high 32 bits
Input 15 MMU 19 Output
/g A
Virtual Physical
Address Address
: low :
13
Q?’? sun Revision A, of 9 May 1988
microsystems

78 Writing Device Drivers

Figure 5-3 Sun-4 Address Mapping
32 bits _ high high 32 bits
Input N\ 19 MMU 19 Output
A Addgess
Virtual
Address Physslcal
: low
13
Figure 5-4 Sun386i Address Mapping
32 bits high high 32 bits
Toput 20 MMU 30 Output
A Addgess
Virtual
Address Physglcal
: low
12

The easiest way to select a virtual address for PROM-monitor testing is to use
one between 0x4000 and 0x100000 on Sun-2, Sun-3, and Sun-4 systems, or
0x20000 and 0x100000 on Sun386i systems. Addresses in these ranges are
unused by the monitor in the respective Sun models, and are thus available.

4rsun

microsystems

Revision A, of 9 May 1988

Chapter 5 — Driver Development Topics 79

Finding a Physical Address

Selecting a Virtual to Physical
Mapping

(Note that these addresses, while convenient for testing, are not those that the
kernel will choose when your device is finally installed).

It’s most convenient to select a virtual address which has only zero’s in its low-
order bits. This way you select the first address in a virtual page. The low-order
bits in the address you choose will remain unchanged. With 7 X’ representing
the unmapped low-order bits (11 for a Sun-2, 13 for a Sun-3 or Sun-4, 12 for a
Sun386i the test address 0x4000 is, in binary:

Sun-2: 0000 0000 0010 OXXX XXXX XXXX (24 bits)
Sun-3: 0000 0000 0000 100X XXXX XXXX XXXX (28 bits)
Sun-4: 0000 0000 0000 0000 100X XXXX XXXX XXXX (32 bits)
Sun386i: 0000 0000 0000 0000 0100 XXXX XXXX XXXX (32 bits)

Your board may be preconfigured to some address. If it is, then use that address
unless it conflicts with the address of an already installed device. If it does, you
will have to find an unused physical address at which you can install your device.
To do so, examine the kernel config file for the system upon which you are work-
ing. Tables in the Hardware Context chapter show memory layouts correspond-
ing to typical configurations, but if your system has departed at all from the
norm, you will have to consult your kernel’s config file (to determine where dev-
ices have been installed) and the header files for the corresponding device drivers
(to determine how much space they consume on the bus).

When selecting a virtual to physical mapping, it’s best if you understand a bit
about the internals of the Memory Management Unit. To this point we’ve only
stressed that the MMU maps the top bits of the virtual address, leaving the offset
bits unchanged. Now it will be necessary to explain the mapping process in more
detail.

Some new concepts are necessary to discuss the details of virtual to physical
memory mapping.

o The context register (of real concern only on the Sun-2) is a register specify-
ing which of memory contexts should be used when mapping virtual
addresses to physical addresses. Sun-2 and Sun-3 Context Registers contain
3 bits, and specify one of eight memory contexts; Sun-4/260 Context Regis-
ters contain four bits, and specify one of 16 memory contexts. Each SunOS
process segment (containing either code, data or stack) is kept within a sin-
gle memory context.

o Sun-3s have user and kernel address spaces in the same hardware con-
text. That is to say, there is only one virtual address space, a portion of
which is used by the kernel and the rest by user processes. Sun-4 virtual
address spaces are divided into two chunks. One of them is at the top of
the addressable virtual memory space and the other is at the bottom.
The size of the unused space between these two spaces varies with the
model — in the Sun-4/260 each of the two virtual address spaces is 512
megabytes in size, and the space between them consumes 15 Gigabytes.

@ sSun Revision A, of 9 May 1988

80

Writing Device Drivers

o Sun-2s, on the other hand, segregate kernel and user processes into
separate hardware contexts with separate address maps. Kemel
processes are run in the supervisor context (context 0) and only
processes in context O have access to the I/O devices.

o The segment map is used in conjunction with the context register to select
the page map entry group (PMEG) corresponding to the virtual address
being mapped. The eight bits in the segment register specify one of a group
of 256 PMEGs.

o Within each page map entry group there are 16 page table entries.

o The page map maps the PMEG returned from the segment mapping with a
second subfield of the incoming virtual address to exactly specify a single
page table entry describing the physical page within which the virtual
address is mapped.

o The page table entry (PTE) is the final output of the MMU. A PTE specifies
the physical address of a page, as well as its type (e.g., on-board memory
space), protection, and the state of its access and modified flags.

Note (for Sun-2 machines only): when testing your device, it’s necessary to
ensure both that you are in supervisor state and that you are in context zero (the
kernel context). The monitor normally initializes to supervisor state, but if you
enter it by way of an abort from SunOS, you will remain in whatever context you
were in at the time of the abort. To be on the safe side, begin all of your monitor
sessions with the command S5. This will put you into supervisor data state,
where you want to be. Note one important exception to this rule: if you've
mmap () ’ed the device into your (user) program’s address space and want to
check that this worked, you must use the S1 command instead of the S5 com-
mand. This will cause user function codes to be used when accessing page maps
and data.

) u ll Revision A, of 9 May 1988

Chapter 5 — Driver Development Topics 81

Sun-2 Address Mapping

Note the following diagram of the Sun-2 MMU:

11

Figure 5-5 Sun-2 MMU
supervisor Context
user Register
3
type
protection
accessed
Segment| 8 modified
Map
24 bits 9 ; 12 23 bits
Input \ Page f Output
: : Map
Vidual : Phyéical
Address : Address
4 /l it

J

Note that:

o The lower 11 bits of the incoming virtual address are passed through the
MMU without being mapped — these are the bits that specify the position
within the page, regardless of whether that page is physical or virtual.

o Multiple segment maps can specify the same PMEG, and often do.

o The PTE, on the output side of the MMU, specifies a variety of kinds of
status information for the specified page, as well as the top bits of its physi-

cal address.

The process of mapping a virtual to a physical address consists, in practice, of
plugging the right number into the right PTE. The monitor provides a simple
means of addressing the right PTE, but you will have to calculate the right value

to plug into it.

Revision A, of 9 May 1988

82

Writing Device Drivers

Table 5-1

@

On Sun-2 systems, hardware PTEs are 32-bit numbers with the following struc-
ture.

Vir wx r wx| Type [a m Unused (8)

Physical Page # (12)
|1 l 11

Most of the PTEs that we will deal with will have similar structures, and so we
can begin by making a “template” bit mask that we can use to construct our stan-
dard PTEs. One acceptable mask will assume values as follows:

V (valid) =1

rwxrwx = 111111

(a/m) accessed/modified = 00
unused = 00000000

Thus, we can see that our template will be:

-

111111 Type {1 1/0 0 0 0 0 0 0 O

Physical Page # (12)
{1 l | 1 I O |

This gives us a mask of 0xFE000000 (if we assume that the type field is
0000). Now, as already mentioned, there are four types of memory, represented
in the PTE by values of 0, 1, 2 and 3 in the type field indicated above. (Types 0
and 1 have the same meaning in both Multibus and VMEbus machines, but types
2 and 3 do not. Type 2 is used, on Sun-2 VMEbus machines, to designate the
first 8 megabytes of the 24-bit VMEbus space — 0x0 to O0x7FFFFF — and type
3 is used to designate the second 8 megabytes — 0x800000 to OXxFFFFFF,
(But remember that the top 64K of the 24-bit space is stolen for the 16-bit space).
This use of two memory types to designate physical memory is necessary
because the Sun-2 physical address size, 23 bits, is not sufficient to address all 16
megabytes of vime24d16.

Sun-2 PTE Masks

Type Description Mask

On Board Memory 0xFE000000
On Board I/O Space 0xFE400000
(Multibus) Memory Space ~ OxFE800000
(Multibus) I/O Space 0xFEC00000
(VMEbus) VMEbus Low 0xFE800000
(VMEbus) VMEbus High OxFEC00000

WNWN=O

To determine the value which we need to plug into the PTE, we must add the
appropriate mask to the appropriate physical page number, thus giving us the full
32-bit number that we need. Here, we will cease to explain details and simply
give a series of rules for calculating physical page numbers.

Sun Revision A, of 9 May 1988

microsystems

Chapter 5 — Driver Development Topics 83

%

If Sun-2 Multibus:

If Multibus I/0 Space, use Type-3 Template
If Multibus Memory Space, use Type-2 Template

Physical Page Number = Physical Address >> 11
_ J

' 1
If Sun-2 vme24dlé6:

If Physical Address >= 0x800000
Use Type-3 Template
Physical Page Number =
(Physical Address - 0x800000) >> 11

If Physical Address < 0x800000
Use Type-2 Template
Physical Page Number = Physical Address >> 11

If Sun-2 vmelo6dlé6

Use Type-3 Template
Physical Page Number =
(Physical Address + 0x7F0000) >> 11

sun Revision A, of 9 May 1988

microsystems

84 Writing Device Drivers

Sun-3 and Sun-4 Address

Consider the following dizgram of address mapping on the Sun-3.

Mapping
Figure 5-6 Sun-3 MMU
supervisor Context
user Register
3
type
protection
g g accessed/modified
egment
I%Iap don’t cache
28 bits 11 111219 24J25[32
Input \ : : Page bits f bits
: Map
Virkual Phyfical
Addyess : : Address
4 'j :

r

13 J

As you can see, the general scheme is the same as it was in the Sun-2, but the
details have changed:

o The MMU is getting a 28-bit virtual address as its input, as opposed to a 24-
bit address in the Sun-2.

o The number of mode and permission bits in the PTE has been reduced.

o The number of high-order bits reported out of the MMU, and thus the size of
the physical address, is variable. The address size is fixed for any given
Sun-3 machine, and varies only with the model —- there are different kinds
of Sun-3 machines and they have different physical address sizes.

The Sun-4 MMU is almost the same:

Ssun Revision A, of 9 May 1988

microsystems

Chapter 5 — Driver Development Topics 85

Figure 5-7 Sun-4 MMU

supervisor Context
user Register
43 type
protection
Top 2 Bi S " E accessed/modified
0 its egment 3
P lélap \3 PMEG : don’t cache o
32 bits /30 bits 12 19 32
Input Passed \ Page bits f bits
: : Map
Virfkual Phyé.ical
Addyess Addess
5 .. yl. ceeenn

N 13 /

As you can see, the Sun-4 MMU is largely identical to the Sun-3 MMU. The
differences are that:

o The Sun-4 MMU gets a 32-bit virtual address as its input, as opposed to a
28-bit address in the Sun-3. The top two bits are immediately shunted off.
They must be either 00 or 11, and are used to specify one of the two
“chunks” in the virtual address space. (See Selecting a Virtual to Physical
Mapping above).

o The number of bits coming off the Context Register is 4 (to specify one of
16 contexts) on Sun-4/260s and 3 (to specify one of 8 contexts) on Sun-
4/110s.

o The number of bits coming off the Segment map is 9 for Sun-4/260s and 8
for Sun-4/110s.

On both Sun-3 and Sun-4 systems, PTEs are 32-bit numbers with the following
structure.

@ sun Revision A, of 9 May 1988

microsystems

86

Writing Device Drivers

Table 5-2

Viw s c|Type|a m| Unused(5) Physical Page Number (19)
l 1]

As we did with Sun-2 PTEs, we will make a “template” bit mask that we can use
to construct our standard PTEs. One acceptable mask assumes values as follows:

V (valid) =1

w/s (write ok/supervisor only) = 11
c (don't cache) =1

unused = 00000

(A one (1) in the don’t cache position only disables caching if the type is zero
(0), since other types of pages are never cached). With the above values, our
template will be:

111 1 1|TypefO 0[O0 0 0 0 O Physical Page Number (19)
[1] |

This gives us a mask of 0xF0000000 (if we assume that the type field is 00).
Thus, the four masks for the four types of memory are:

Sun-3/Sun-4 PTE Masks

Type Description Mask
0 On Board Memory 0xF0000000
1 On Board I/O Space 0xF4000000
2 vrel6dl6 0xF8000000
2 vme24d16 0xF8000000
2 vme32d16 0xF8000000
3 vmel6d32 0xFC000000
3 vme?24d32 0xFC000000
3 vme32d32 0xFC000000

To determine the value to be plugged into the PTE, we must add the appropriate
mask to the appropriate physical page number, thus giving us the full 32-bit
number that we need. Here, again, we will give rules instead of details.

\
(If vmeloedle

or vme24dleé
or vme32dl6

Use Type-2 Template

@ n Revision A, of 9 May 1988
microsyst

poen o =P R R T IRC e OtEC = DL v
’ Chapter 5 — Driver Development Topics 87
e N
If vmel6d32
or vme24d32
or vme32d32
o > , Use Type-3 Template -,
o ,\v { [
1 h \ J
f p
o If vme32d16
i or vme32d32
Physical Page Number = Physical Address >> 13 v/ ¢
\ J
e A
If vme24dl6
or vme24d32
Physical Page Number =
(Physical Address +0xFF000000) >> 13
L J
. 3
If vmel6dlé
or vmel6d32
Physical Page Number =
(Physical Address +0xFFFF0000) >> 13
_ J
A Few Example PTE Example One: You wish to map a device which you have attached at physical
Calculations 0x280008 onto bus type vme24d16 on a Sun-3. You will map it at virtual

4

O0xXE000000. What is the corresponding PTE?

Well, since we are mapping the device into vme24d16, we will use

0xF8000000 as the template. Then, following the Sun-3 rules, as given

above, we add the physical address to 0OxFF000000. This yields
0xFF280008. Inbinary, this is:

1111 1111 0010 1000 0000 0000 0000 1000

Shifting this right by 13 yields:

Adding the template, 0xF8000000, we get values for the 13 bits that are

XXXX XXXX XXXX X111 1111 1001 0100 0000

undefined from the shift. Thus the PTE is:

1111 1000 0000 0111 1111 1001 0100 0000

Which is 0xF807F 940.

A final note: we’ve now calculated the PTE that maps the virtual page beginning

at 0OxE000000 to the physical page containing 0x280008. To get the virtual

sun

microsystems

Revision A, of 9 May 1988

88 Writing Device Drivers

Getting the Device Working
and in a Known State

L

address by which to access the device it’s necessary to take the lower 13 bits of
the physical installation address — the bits that are just passed through the MMU
— and add them to virtual 0OXE000000. The lower 13 bits of physical
0x280008 are 0008, and adding them to OXEQ00000 yields 0xE000008,
the virtual address by which the device can be accessed.

Example Two: You wish to map physical 0XEE4 8 on bus type vme16d32 on a
Sun-3. Using virtual address 0OXE000000, what is the PTE?

Since we are mapping the device into vime16d32, we will use
0xFC000000 as the template. Then, following the Sun-3 rules, as given
above, we add the physical address to OxFFFF0000. This yields
OxFFFFEE48. Inbinary, this is:

1111 1111 1111 1111 1110 1110 0100 1000

Shifting this right by 13 yields:
XXXX XXXX XXXX X111 1111 1111 1111 1111

Adding the template, 0xFC000000, we get values for the 13 bits that are
undefined from the shift. Thus the PTE is:

1111 1100 0000 0111 1111 1111 1111 1111

Whichis OxFCO7FFFF.

To get the virtual address by which to access the device at physical 0xEE48, add
its lower 13 bits, 0xE48, to 0OXxE000000 — this yields 0OxEO00E48.

Before you even think about writing any code you should check out your device.
You must get to know it, finding out early if it has any peculiarities that will
affect its driver. It may, for example, have addressing and data-bandwidth limi-
tations. Or, if it’s a bus master, it may not implement the release on request
bus-arbitration scheme the Sun supports. Know the peculiarities of your device
early, and then test it to verify that it s working before proceeding further with
driver development.

Make sure that the board is set up as specified in the vendor’s manual. Device
characteristics which, in general, have to be set properly before the device can
successfully be used include:

o 1/O register addresses for /O mapped Multibus boards,

o Memory base addresses for Multibus boards that use Multibus memory
space,

o Address and data widths,
o Interrupt levels,
o Interrupt vector numbers for VMEDbus device,

o VMEDbus address modifiers,

sSsun Revision A, of 9 May 1988

microsystems

Chapter 5 — Driver Development Topics 89

o The bus grant level for VMEbus devices should be set at 3.

Then, take down your system and power it off. Plug the device into the card
cage and attempt to bring the system back up. If you can’t boot the system, then
there’s a problem. Perhaps the board isn’t really working, or perhaps it’s
responding to addresses used by other system devices. You must resolve this
problem before proceeding further.

Take SunOS down again and attempt to contact the device using the PROM
monitor. To do so, you will need to set up a PTE on the Sun-2, Sun-3, or Sun-4
which maps to the device’s physical installation address. Use the procedures
given above to calculate a PTE, then:

o Issue the monitor command that puts you into supervisor data state. This
will be s B for Sun-4 machines and s5 for all others. So, if you have a
Sun-3, give the

>s85
command.

o Calculate, using the procedures given above, the PTE appropriate to the phy-
sical address you’ve chosen.

o Set the position in the kernel page map that corresponds to your physical
address to contain the calculated PTE. This will map your chosen physical
address, thus putting you in contact with your device. You may use the
monitor’s P command to perform this mapping. The P command takes a
virtual address as its argument, displays the PTE that corresponds to that vir-
tual address, and gives you the option of modifying the PTE. For example:

>pF32000

selects the page map entry that corresponds to the virtual address of
0xF32000 and displays it. It also displays a ‘?’, which indicates that you
may type in a new value to replace the one displayed. (See the appropriate
PROM Commands chapter of the PROM User’ s Manual for more details).
Note that all virtual addresses within a page select the same PTE.

Having contacted the device from the monitor, try some of the following:
o Try reading from the device status register(s), if there are any.

o Try writing to the device control and data registers(s), if there are any. Then
try reading the data back to see if it got written properly (this assumes, of
course, that the device allows the reading of these register(s).

o Try actually getting the device to do something by sending it data.

o If the device is a controller with separate slave devices, then switch a slave
on and off and watch for changes in the controller status bits.

Your goal is to try to actually operate the device, for a moment, from the moni-
tor. For example, if you have a line printer, try to print a line with a few charac-
ters. Be aware that bit and byte ordering issues are critical in this process. The
reason you’re doing this is to ensure that the device works and that you

%:?a' Ssun Revision A, of 9 May 1988

microsystems

90 Writing Device Drivers

A Warning about Monitor
Usage

5.2. Installation Options
for Memory-Mapped
Devices

Memory-Mapped Device
Drivers

@

understand the way it works. When you understand the device’s peculiarities,
you can proceed to write a driver for it.

‘When you use the monitor’s O, E or L, commands to open a location, the monitor
reads the present contents of that location and displays them before giving you
the option to rewrite them. In the best of all possible worlds, this would present
no problems, but many devices don’t respond to reads and writes in as straight-
forward a fashion as does normal memory.

For example, the Intel 8251A and the Signetics 2651 use the same externally
addressable register to access two separate internal mode registers, and they have
internal state logic that alternates accesses to the external register between the
two internal registers. So suppose that you want to put something in mode regis-
ter 1 of the 8251. You open the external register, the monitor displays its con-
tents, and you then do your write. If, being cautious, you then read the external
register to check that the data you wrote is there, you will find that it’s not —
because the read will sequence you on to the second register.

To deal correctly with such devices, it’s necessary to use the monitor’s “write
without looking” facility and then read the locations back later to check them.
You can write without looking with any of the monitor commands that “open” an
area of memory; all that’s necessary is that you enter a value after the
address argument. For example:

>1 [address] [value]

This will cause value to be written into address without first reading its
current contents. For more information on hardware peculiarities and the prob-
lems that they can cause for the monitor, the Hardware Peculiarities to Watch
Qut For section of the Hardware Context chapter.

Memory-mapped devices are the simplest types of devices to write drivers for.
Frequently, however, their essential simplicity isn’t obvious from a quick glance
at their source code. This is because many memory-mapped devices are frame
buffers, and frame-buffer drivers must set up and manage the low-level interface
for the Sun window system as well as the standard device interface. Conse-
quently, they tend to be littered with declarations and manipulations related to
the “pixrect” (pixel rectangle) system. See the Pixrect Reference Manual for
more details.

Memory-mapped devices are most frequently installed into Sun systems with
simple drivers that map them into user address space (there are sometimes alter-
natives to such drivers, as you will see below). Such memory-mapped drivers
don’t really do much. Obviously, xxprobe () and xxmmap () must exist, for
the kernel must be able to check the device installation and perform the actual
device mapping. And, in addition, xxintr () must be real if the device is

sun Revision A, of 9 May 1988

microsystems

Chapter 5 — Driver Development Topics 91

interrupt driven. But xxopen () and xxclose () are usually stubs, and
xxread () and xxwrite () canbecalls to nulldev.

Keep in mind that the major purpose of a memory-mapped driver is to support
the mmap () system call. This is very important because user processes which
call window code must first map the frame buffer into their address space. They
do so with the mmap () system call, which is translated by the kemel into a
series of calls to the driver’s mmap routine. Each of these calls returns page
table entry information which the kernel needs to map a single page (the next
page) of frame-buffer memory into a virtual address space. Here’s some very
simple driver xxmmap () code.

r/*ARGSUSED*/
cgonemmap (dev, off,prot)
dev_t dev;
off t off;
int prot;
{
return (fbmmap (dev,off,prot,NCGONE, cgoneinfo,CGlSIZE));
}

/*ARGSUSED* /
int fbmmap(dev, off, prot, numdevs, mb_devs, size)
dev_t dev;
off t off;
int prot, numdevs;
struct mb_device **mb_devs;
int size;

int kpfnum;

if ((u_int) off >= size)
return -1;

kpfnum =
hat_getkpfnum (mb_devs [minor (dev)]->md_addr + off);
return kpfnum;

¥)

dev is, of course, the device major and minor number, and off is the offset into
the frame buffer (passed down from the user’s mmap () system call). prot is also
passed down from the user’s call, but it is not currently used. As you can see,
there’s a bit of shuffling around and then a call to hat _get kp£fnum, which
returns a Page Frame Number which xxmmap () is expected to return.

Note that mb_dev->md_addr is the address of the frame buffer from the Main
Bus device structure. This is the device installation address as given in the ker-

nel config file. The offset is checked to be sure the user isn’t mapping beyond
the end of the frame buffer.

Sun Revision A, of 9 May 1988

92 Writing Device Drivers

Mapping Devices Without

Device Drivers

NOTE

Under a restricted set of circumstances, it’s possible to avoid writing a device
driver altogether by using the mmap () system call to overlay the device’s regis-
ters and memory onto user memory. Having done this, you can read and write
the registers — as if they were normal user memory — from a user program.

What this really amounts to is piggybacking the new device onto an another, sys-
tem standard, virtual memory device (and its driver). The mmap () routine of a
system virtual memory device is then used to do the user-device mapping, and
the “installation” is accomplished without the development of a driver specific to
the user device. Instead, a user level program is written, one that calls the

mmap () system call.

The restrictions on this shortcut are, however, fairly severe.

o The device must not require any special handling of the type that would go
into xxioctl1 ().

o The device (including all its control registers) must work with user function
codes, since that’s what it will get when mapped into and then accessed from
user space.

MC680X0 processors, SPARC processors and the Intel 80386 all run in either
‘user’ or ‘supervisor’ state. Many devices, in turn, restrict certain of their
operations, and will only perform them when the processor is in supervisor state.
The Sun CPU is in supervisor state only when executing kernel code. This means
that device drivers, which are part of the kernel, can issue device commands
which are not available from user processes. Also note that, when the CPU is in
supervisor state, as it is when driver code is executing, the device will receive
different VMEbus address modifier codes than when the CPU is in user state.
For details about these codes see the VMEbus specification).

o The device must not require any other sort of special handling — it cannot,
for example, be multiplexed, interrupt driven, or do DMA.

o Finally, there are security problems associated with this sort of installation.
Since the system virtual-memory devices are normally owned by and res-
tricted to the superuser, your programs will either have to change their per-
missions to allow normal users to access them, or will have to run with
superuser privileges. The former strategy is usually not acceptable in the
long run, because it creates a gaping hole in the security of the system. And
it’s far from clear that the second alternative is desirable either.

The virtual-memory devices of interest here are those that support mapping over
the entire range of a virtual address space. They are:

S Revision A, of 9 May 1988
m

Chapter 5 — Driver Development Topics 93

Table 5-3 Virtual Memory Devices

Machine Type Memory Device Name
Multibus (Sun-2 only) mbmem

Multibus (Sun-2 only) mbio

VMEDbus vmel6dle

VMEDbus vme24dl6

VMEDbus (Sun-3 and Sun-4) vme32d16
VMEDbus (Sun-3 and Sun-4) vmel6d32
VMEDbus (Sun-3 and Sun-4) vme24d32
VMEDbus (Sun-3 and Sun-4) vme32d32
ATbus (Sun386i only) atmem

In addition, there are memory pseudo-devices that support access to the on-board
devices that users are allowed to access. These are /dev/fb, /dev/mem and
/dev/kmem (See the mem (4) manual page for details).

/dev/£b is a memory device which, on any given system, is set up to address
the local frame-buffer device. It can be used as if it were a system memory dev-
ice — on any given system, /dev/ £b can be mmap () ’ed into user memory and
then written to, with the effect of writing the local frame buffer memory.

To use mmap () with one of the system memory devices, you must do three
things:

o Open the device.

o Calculate the offset which you will need to call mmap (). This offset is
merely the device address on the appropriate system memory device rounded
to a page boundary. That is to say that you get the offset from the device
manual and/or the switches on the device itself.

o Call mmap () to allocate virtual space and map in the physical bus address
of your device, which you must know. (See the Hardware Context chapter
for a discussion on how to pick a good physical address from the informa-
tion in the system config file).

The following example program uses /dev/ £b rather than one of the virtual
memory devices. It makes a good example because it maps the system frame
buffer into user memory so that it can then be written from a user program. It
uses mmap () to set things up, but doesn’t bother with calling munmap (),
because unmapping occurs automatically when the memory device is closed.
This close occurs implicitly when the program ceases execution. (The machine
segment size is 128K for the Sun-2 and Sun-3; 256K for the Sun-4; and 4Mbytes
for the Sun386i. Areas greater than the machine segment size should be mapped
only with special care. For details, see the discussion of mmap () in the User
Support Routines appendix).

Once the device has been mapped into user space it can be treated as a piece of
local user memory. (Remember that memory accesses performed by way of this

?%?g sun Revision A, of 9 May 1988

microsystems

94

‘Writing Device Drivers

@

mechanism will be reflected — at the device level — as non-privileged (user)
accesses. This is because mmap () accesses inherit the privilege of the process
that calls mmap (). Thus, if memory is mapped by a driver, subsequent accesses
to it will have the standard supervisor data access privilege, but if it’s called from
a user process, as described here, subsequent accesses will be non-privileged.
Attempts to access supervisor-only device registers without supervisor privilege
might produce a bus error, i.e., they’re inaccessible from a user program, and
thus a kernel level driver must be written to manipulate them. The device will
also receive different address modifier codes when accessed from a user process
than when accessed via a device driver).

, ~
#include <stdio.h>

#include <sys/file.h>
#include <sys/mman.h>
#include <sys/types.h>

/* Width and Height of Frame Buffer in Bits */
#define WIDTH 1152
#define HEIGHT 900

main ()

{
int £d;
unsigned len;
char *addr;

/* Open the frame-buffer device */
if ((fd = open("/dev/fb",0_RDWR)) < 0)
syserr ("open");

/* Compute total number of bytes */
len = ((WIDTH * HEIGHT)/S8);

/*
* offset mustbe page aligned. /dev/fb
* is already aligned with frame-buffer memory
*/

offset = 0;

/* Map device memory to user space */

addr = mmap((caddr_t)0, len, PROT_READ|PROT_ WRITE,
MAP_SHARED, fd, 0);

if (addr == (caddr_t)-1)
syserr ("mmap failed");

writeFB (addr) ;
exit (0) ;
}

writeFB (addr) /* Write to frame buffer */
char *addr;

{

J

\
sun Revision A, of 9 May 1988

microsystems

Chapter 5 — Driver Development Topics 95

NOTE

Direct Opening of Memory
Devices

char color;
int i, 3;

coloxr = OxFF;
for (i = 0; i < HEIGHT; i++) {
color = ~color;
for (j = 0; j < WIDTH/8; j++)
*addr++ = color;

}

syserr (msg) /* print system call error message and terminate */
char *msg;

{
extern int errno, sys_nerr;
extern char *sys _errlist[];

fprintf (stderr, "ERROR: %s (%d", msg, errno);
if (errno > 0 && errno < sys nerr)
fprintf (stderr, "; %s)\n", sys_errlist[errno]);
else
fprintf (stderr,")\n");
exit (1) ;

This example uses the special memory device /dev/ £b, since this device is
always set up to address the frame buffer memory.

So, despite the plethora of limitations on the sorts of devices that can be installed
by way of mapping them into user space, it’s quite an easy thing to do. If your
device characteristics are such that this is an option, you may well wish to take it.
And even if such an installation isn’t an attractive long-term option (for example,
because of unacceptable security problems) it may still be attractive as a short-
term alternative to driver development. Even in environments where security
considerations make it unacceptable in the long term, it can allow you to get your
device up and running very quickly. Sometimes this counts for a lot.

It should be noted, for the purpose of completeness, that there’s another approach
to avoiding driver development, one that’s even easier than the use of mmap ()
described here, and even more limited. That is, it’s possible to simply open the
virtual memory device that contains your board, to seek to the location of its
registers, and then to read and write those registers as if they were regular
memory.

This approach has most of the same problems as does the use of mmap (), and is
notable mainly because, with it, the device receives supervisor function codes. It
does, however, introduce new problems. It doesn’t give you the same degree of
control as does mmap(), and you often need that control when dealing with dev-
ices. When you use mmap(), the device actually becomes part of your user
memory space, and it’s left to the compiler to generate exactly the I/O accesses

sSsun Revision A, of 9 May 1988

microsystems

96

Writing Device Drivers

NOTE

which you implicitly specify in your structure and variable declarations. You
can always access exactly what you want, and the accesses occur directly as
move byte and move word operations. Thus they are very fast.

When, however, you simply open a system memory device as a file and then read
and write to it, your communication with your board is mediated by the I/O sys-
tem. The I/O systems will always try to do the “right thing” (if you request I/O
at an odd address or for an odd number of bytes it will perform byte access as
appropriate; otherwise it will use short integers), but it still doesn’t give you the
kind of control that can be had using mmap(). Furthermore, I/O operations
involve lots of code, and take hundreds of times as long as direct references to
mmap () ’ed references, which proceed by way of the MMU and use low-level
store and move instructions to directly access device registers and memory as
physical memory.

So the bottom line is that, unless you need to access a device only a few times, or
if you need to receive supervisor function codes (and the corresponding VMEbus
address-modifier codes) and performance isn’t critical, you can do your installa-
tion by opening a system memory device and then seeking to your device regis-
ters and memory space. Otherwise, use mmap () or write a driver. If you do
decide to use the open () /1seek () method, do so with low-level I/O rather
than with the standard I/O library. The standard I/O library implements a buf-
fered I/O scheme which will add considerably to your problems.

The following user program is similar to the example above, in that it writes the
same pattern to the memory of a frame buffer. This time, though, the write is
done by way of the I/O system rather than by using mmap(), and the frame buffer
is taken to be installed at OFFSET (whatever the device physical installation
address is) in the vme24d16 memory space.

Since all Sun VMEbus machines have a built-in, on-board frame buffer, this
example is only meaningful for color frame buffers. On Sun-2 Multibus
machines, however, this code would work with / dev/obmemn and an offset of
BW2MB_FB.

' ™
#include <stdio.h>
#include <sys/types.h>
#include <sys/param.h>
#include <sys/buf.h>
#include <sys/file.h>

void syserr():;
long lseek();

/* Width and Height of Frame Buffer in Bits */
#define WIDTH 1152
#define HEIGHT 900

main ()
{
int £d;
_ _
Sun Revision A, of 9 May 1988

Chapter 5 — Driver Development Topics 97

5.3. Debugging Techniques

/* Open the system memory device containing the frame buffer */
if ((fd = open("/dev/vme24",0 RDWR)) < 0)
syserr ("open") ;

/* Seek to the frame buffer memory */
if (lseek(fd, (long)OFFSET, L SET) == -1L)
syserr ("lseek") ;

writeFB(addr);
exit (0);
}

writeFB(fd) /* Write to frame buffer */
int fd:

{
char color;
int i, 3;

color = OxFF;
for (i = 0; i < HEIGHT; i++) {
color = ~“color;
for (j = 0; j < WIDTH/8; j++) {
if (write(fd, &color, 1) ==
syserr ("write") ;

-1)

As described above, it’s a good idea to begin debugging by using the monitor to
check that the device has been installed at the intended address, and that it works,
before proceeding to debug your device driver. This allows you to avoid debug-
ging the device simultaneously with the driver, and experience that you’d like to
avoid for as long as possible. Alternatively, if you’re confident in both your dev-
ice and the correctness of your installation, you can simply make a new kernel,
boot it and proceed with debugging. In this case you should put some

printf () messages — see below — into the xxprobe () routine. Then you
can at least see the device get contacted and initialized.

Debugging drivers is significantly more difficult than debugging regular user pro-
grams, for a number of reasons:

o Inthe first place, device drivers are part of the system kernel. This means
that the system is not protected from their errors. Addressing errors, for
example, will frequently trip hardware traps and crash the system.

o As mentioned above, there’s the possibility that the device hardware will be
buggy. For this reason, you can’t really trust your environment in the same
way as you can when writing a user program on a mature computer system.

o Some device behave in rather peculiar ways. (See A Warning about Monitor
Usage, above).

S ll n Revision A, of 9 May 1988

98 Writing Device Drivers

NOTE

Debugging with printf ()

The window systems should not be
up when you use printf () to
debug a driver because its output
will go to the console window. On
the Sun386i system, it is best to set
the global variable newlog to 0.

2

¥

o Finally, the debugging environment in the kernel is thinner than it is in user
space. There is a kernel debugger, kadb, and this a a big step towards mak-
ing life easier for driver developers. Still, life remains more difficult when
debugging in kernel space.

It s possible to prototype drivers in user address space by using techniques
similar to those described in the Mapping Devices Without Device Drivers
section of this chapter. The same constraints given there apply to prototyp-
ing. In particular, it's not possible to run an interrupt routine, or to probe
for non-existent devices without generating bus errors from prototype
drivers in user space. If the device generates no interrupts, and if it doesn’t
do DMA, the entire driver might be able to run in user space.

For all these reasons, you should give extra care to desk-checking your code, and
check a reference manual when not absolutely sure of the meaning of a given
construction. Don’t take chances.

Also, make changes incrementally. Don’t try to save time by making many
changes at once. You will save time in the long run if you take the time to add
and test a few parts at a time. Keep your feet on solid ground.

Use trace output from print £(), as described below. Drivers can act in surpris-
ing ways, and the best way to proceed is by making the flow of operations highly
visible.

On the Sun386i system, the loadable drivers feature makes driver development
much easier because the code-compile-reboot-test cycle is reduced to code-
compile-load-test.

With the availability of kadb, the kernel debugger, the importance of

printf () in the debugging of device drivers has been significantly reduced.
Still, even with kadb available, printf () statements remain useful as means
of providing synchronous tracing of overall driver flow and structure. kadb can
be made to provide a similar sort of tracing (by tying print commands to strategi-
cally chosen breakpoints) but this won’t altogether eliminate the print £ ()
statement. The print£ () has long found application in driver debugging, and,
as a matter of taste and experience, some programmers will continue to use it.
For this reason, we will discuss its use in some detail.

The kemel printf () sends its message directly to the systems console,
without going through the tty driver. As a consequence, the printing is
uninterruptible—the characters aren’t buffered. Furthermore, printf () runs at
high priority, and no other kernel or user process activity takes place while its
output is being produced. print £ () thus radically limits overall system perfor-
mance (though this is usually ok while device drivers are being debugged).

There is a second kernel print statement, uprint £(). uprint£(), however, is
of little use to driver developers. It attempts to print to the current user tty as
identified in the user structure, and prints to the console only if there’s no
current user tty (at which it becomes identical to print £()). uprintf () can-
not be called from lower-half routines, which run in interrupt context and cannot
make any assumptions about the user structure (where uprintf () looks to

sSsun Revision A, of 9 May 1988

microsystemns

Chapter 5 — Driver Development Topics 99

@

determine the current user tty). uprint £ () is most useful for production
drivers, like tape drivers that encounter media errors, which want to report errors
not to a programmer but to the user.

There are occasions in which the use of print £ () (or uprint £()) statements
will change the behavior of your driver. printf () statements, for example,
can affect the timing of operations in the driver being tested as well as in other
drivers. The output may be so slow relative to other device operations that inter-
rupts are lost and system failures are introduced; thus, it is frequently impossible
to synchronously trace a device interrupt routine. Driver code may begin to fail
only when print£ () s are introduced, or, even worse, only when printf ()s
are disabled. If you're debugging a tty driver, you may even face a situation
where print £ () -based tracing generates new calls to the driver being
debugged. Thus, there are situations in which it cannot be used. In such situa-
tions, you should use kadb or the techniques suggested below in the section on
Asynchronous Tracing.

The best way to use printf () statements for tracing driver execution is by set-
ting things up so that you can toggle printing by using the kernel debugger,
kadb (see below) to set and reset print-control variables. Doing so is very sim-
ple. Atthe top of the driver source file, include statements like:

#ifdef XXDEBUG

int xxdebug = 0;

#define XXDPRINT if (xxdebug > 0) printf
#endif

(It’s important that the variables like xxdebug be global, so that you can later
access them freely from the debugger — remember that all drivers are part of one
program, the kerel, and name your print-control variables so as to avoid naming
conflicts).

Then, instead of calling print £ () inside the driver routines, call XXDPRINT.
Each call should be in the form:

#ifdef XXDEBUG
XXDPRINT ("driver name...",...);
#endif

which will only call printf () if XXDEBUG is defined and xxdebug is set to a
value greater than 0.

Make sure that each call to XXDPRINT identifies the driver, for it’s possible that
you, or some other programmer, will want to see debugging output from several
drivers at once. And leave the debugging code in for a while after you’re
finished — bugs may surface later.

Having set things up like this, you can turn the print £ () ’s on or off at any
time by using kadb to set unset or change the print-control variable xxdebug.
Or you can use adb if you wish, running it at user level in a separate window:

sun Revision A, of 9 May 1988

microsystems

100 Writing Device Drivers

Event-Triggered Printing

example adb -w /vmunix /dev/kmem

(adb won’t allow you to set breakpoints in the kernel, but it will allow you to set
and unset variables — you can change the value of xxdebug, or even reset a
variable which has caused your driver to hang). Remember that you’re in the
kernel and BE CAREFUL.

Incidentally, /dev/kmem represents the kernel virtual address space, which is
why it’s used here. adb -k /vmunix /dev/mem, in contrast, generates a
view of the physical address space, because / dev/mem represents the physical
memory. This latter command is useful for examining core files.

