
Asun®
• microsystems

Programllling Utilities & Libraries

-----,-----, --,----

--,--_.----,_ .. ---,

--, -----,,---, , -- --,

Part Number: 800-1774-15
Revision A, of 9 May 1988

Credits and Acknowledgements

UNIX Programming
by Brian W. Kernighan and Dennis M. Ritchie, Bell Laboratories, Murray Hill, New Jersey.

Lint, a C Program Checker
by S. C. Johnson, Bell Laboratories, Murray Hill, New Jersey.

Make-A Program/or Maintaining Computer Programs
by S. I. Feldman, Bell Laboratories, Murray Hill, New Jersey.

The M4 Macro Processor
by Brian W. Kernighan and Dennis M. Ritchie, Bell Laboratories, Murray Hill, New Jersey.

Lex-A Lexical Analyzer Generator
by M. E. Lesk and E. Schmidt, Bell Laboratories, Murray Hill, New Jersey.

Yacc - Yet Another Compiler-Compiler
by Stephen C. Johnson, Bell Laboratories, Murray Hill, New Jersey.

Source Code Control System User's Guide
by L. E. Bonanni and C. A. Salemi, Bell Laboratories, Piscataway, New Jersey.

Source Code Control System
by Eric Allman, Formerly of Project Ingres, University of California at Berkeley.

Curses - A Screen Updating and Cursor Movement Optimization Library Package
by Kenneth C. R. C. Arnold, of the University of California at Berkeley.

Trademarks

Multibus® is a trademark of Intel Corporation.

SunOS™, Sun Workstation®, as well as the word "Sun" followed by a numerical suffix, are trademarks
of Sun Microsystems, Incorporated.

UNIX® and UNIX System V® are trademarks of Bell Laboratories.

OS/360® is a trademark of International Business Machines, Incorporated.

VAX®, VMS®, andPDP-11® are trademarks of Digital Equipment Corporation.

Multics TM is a trademark of Honewell International.

All other products or services mentioned in this document are identified by the trademarks or service
marks of their respective companies or organizations.

Copyright © 1987, 1988 by Sun Microsystems, Inc.

This publication is protected by Federal Copyright Law, with all rights reserved. No part of this publication may be
reproduced, stored in a retrieval system, translated, transcribed, or transmitted, in any form, or by any means manual,
electric, electronic, electro-magnetic, mechanical, chemical, optical, or otherwise, without prior explicit written per
mission from Sun Microsystems.

Contents

Chapter 1 Introduction .. 3

1.1. Bibliography and Acknowledgements .. 4

Chapter 2 SunOS Programming .. 9

2.1. Basics .. 9

Program Arguments .. 9

2.2. Standard Input and Standard Output .. 10

2.3. The Standard I/O Library .. 12

Accessing Files .. 12

Error Handling - Stderr and Exit .. 15

Miscellaneous I/O Functions .. 15

2.4. Low-Level I/O Functions .. 16

File Descriptors .. 16

rea d () and wr i t e () ... 16

open () , creat () , close () , and unlink () 18

Random Access - seek () and 1 seek .. 20

Error Processing ... T~H""~F........... 20

2.5. Processes .. ·~~~~~,}]~~~.3g~<,..... 21

The s y stem () Function .. ,';@ •... U]: .. :.;.:, ~ ... :.>(::> 21

Low-Level Process Creation - execl () ~!\iJ~~~§;I}i;;: .. i;;;li;:::i$}.
Control of Processes - fork () and wait:.::l()m~! .. :~ ... ~ ... ~ .. , & :;::)22 ..

Pi pes .. @ ..•.... ~ .. : .•• : ... ~ ~~: .. :.~ ... :r.:·:23

2.6. Signals - Interrupts and All That :.:.:.:&1.: b : .. k. 26

2.7. The Standard I/O Library ... 3@;;.; .. L........... 30

-iii-

Contents - Continued

General Usage ... 31

Standard I/O Library Calls .. 31

Character Type Checking ... 37

Character Type Conversion .. 38

Chapter 3 System V Compatibility Features ... 41

3.1. Introduction ... 41

System V Enhancements in SunOS 4.0 ... 41

A Brief History ... 42

How the Compatibility Tools Work .. 42

The Group Mechanism .. 43

Compatibility of System Calls .. 43

3.2. SVID Compliance in SunOS 4.0 ... 44

Chapter 4 Shared Libraries .. 51

4.1. Definitions ... 52

Shared Object .. 52

Shared Library .. 52

Static vs. Dynamic Link Editing .. 52

Position Independent Code (PIC) ... 52

Static and Dynamic Link Editors ... 52

4.2. U sing Shared Libraries ... 52

Building a Program to Use Shared Libraries .. 52

Binding Mode Options .. 54

-Bstatic and -Bdynamie ... 54

-N and -n Options for Id ... 54

Binding of PIC witll Non-PIC ... 55

-de and -dp Options .. 55

Use of Assertions .. 55

The -assert Option .. 55

Run-Time Use of Shared Libraries ... 55

SunOS Shared Libraries .. 56

Dynamic vs. Static Binding Semantics .. 56

-iv-

Contents - Continued

Debuggers ... 56

Perfonn.ance Issues .. 57

Dependencies on Other Files ... 57

Setuid Programs ... 58

4.3. Version Control .. 58

Version Numbers of . so's ... 58

Version Management Issues ... 58

4.4. Shared Library Mechanisms .. 59

Memory Sharing .. 59

The C Compiler ... 59

The Assembler .. 59

crtO () ... 60

Link Editors: ld and ld. so ... 60

ld.so ... 61

4.5. Building a Shared Library .. 61

PIC Components .. 61

Building the . so File .. 62

The . sa File ... 62

Building the . sa File .. 62

4.6. Building a Better Library .. 63

Sizing Down the Data Segment .. 63

U sing x s t r to Extract String Definitions .. 64

Better Ordering of Objects .. 64

crtO.o Dependency .. 64

The Idconfig Command .. 64

4.7. Shared Library Problems ... 65

ld. so Is Deleted ... 65

Wrong Library Is Used .. 65

Error Messages ... 65

Chapter 5 lint - a Program Verifier for C ... 69

5.1. Using lint .. 69

5.2. A Word About Philosophy ... 70

-v-

Contents - Continued

5.3. Unused Variables and Functions .. 70

5.4. Set/Used InfonIlation .. 71

5.5. Flow of Control .. 71

5.6. Function Values .. 72

5.7. Type Checking .. 72

5.8. Type Casts ... 73

5.9. Nonportable Character Use .. 73

5.10. Assignments of Longs to Ints .. 74

5.11. Strange Constructions .. 74

5.12. Pointer Alignment .. 75

5.13. Multiple Uses and Side Effects ... 75

5.14. Implementation .. 75

5.15. Portability .. 76

5.16. Shutting lint Up .. 77

5.17. Library Declaration Files ... 78

5.18. Considerations When Using lint .. 79

5.19. lint Options ... 79

Chapter 6 Performance Analysis .. 83

6.1. time - Display Time Used by a Program ... 83

6.2. prof - Generate Profile of a Program .. 86

6.3. gprof - Generate a Call Graph Profile .. 88

6.4. teov - Statement-Level Analysis ... 90

Chapter 7 sees - Source Code Control System ... 97

Backing Out Pending Changes .. 99

7.1. Terminology ... 99

S.File, or History File ... 99

sees-File ... 99

Deltas ... 99

SIDs, or Version Numbers ... 100

ID keywords ... 100

7.2. Creating sees History Files with sees create 101

-vi-

Contents - Continued

7.3. Extracting Current Versions with sees get ... 102

7.4. Changing Files (Creating Deltas) ... 102

Retrieving a File for Editing with sees edit.. 102

Merging Changes Back Into the S.File with sees delta 102

Version Control for Binary Files ... 103

When Making Deltas .. 104

Finding Out What's Going On with sees info 105

Finding Out What Versions Are Being Used with sees
what .. 105

Keeping SIDs Consistent Across Files ... 106

Creating New Releases .. 106

7.5. Restoring Old Versions .. 106

Reverting to Old Versions ... 106

Getting a Delta by Date ... 106

Selectively Deleting Old Deltas ... 107

7.6. Auditing Changes .. 107

Displaying Delta Comments with sees prt ... 107

Finding Why Lines Were Inserted .. 107

Discovering What Changes You Have Made with sees

diffs ... 108

7.7. Shorthand Notations .. 108

Making a Delta and Getting a File with sees delget 108

Replacing a Delta with the see s fix .. 108

Backing Out of an Edit with sees unedi t ... 109

Working From Other Directories ... 109

7.8. Using sees on a Project .. 109

7.9. Saving Yourself .. 110

Recovering a Corrupted Edit File .. 110

Restoring the History File .. 110

7.10. Managing SCCS-Files with sees ad.min .. 110

7.11. Maintaining Different Versions (Branches) .. 111

Creating a Branch ... 111

Getting From a Branch .. 111

-vii-

Contents - Continued

Merging a Branch Back into the Main Trunk ... 112

A More Detailed Example ... 112

A Warning ... 112

7.12. SCCS Quick Reference ... 113

Commands .. 113

ID Keywords .. 115

Chapter 8 make User's Guide .. 119

8.1. Overview .. 119

Consistency Control .. 119

Dependency Checking: make vs. Shell Scripts .. 119

make Basics .. 120

Basic Use of Implicit Rules .. 120

Writing a Simple Makefile .. 121

Processing Dependencies ... 123

Missing Targets and Dependencies .. 126

Running Commands Silently ... 127

Ignoring a Command's Exit Status ... 127

Automatic Extraction of sees Files .. 128

Suppressing sees Extraction ... 129

Passing Parameters: Simple make Macros ... 129

Command Dependency Checking and . KEEP _STATE 131

Suppressing or Forcing Command Dependency Checking
for Selected Lines .. 131

The State File ... 132

Hidden Dependencies and . KEEP_STATE .. 132

Displaying Information About a make Run ... 134

8.2. Compiling Programs with make .. 135

Compilation Strategies .. 135

A Simple Makefile ... 136

Using make's Predefined Macros ... 137

Using Implicit Rules to Simplify a Makefile: Suffix Rules 138

When to Use Explicit Target Entries vs. Implicit Rules 140

- viii-

Contents - Continued

Implicit Rules and Dynamic Macros ... 141

Dynamic Macro Modifiers ... 141

Dynamic Macros and the Dependency List: Delayed Macro

References ... 142

How make Evaluates Dependencies ... 142

Adding Suffix Rules .. 143

Pattern Matching Rules: an Alternative to Suffix Rules 144

make's Default Suffix Rules and Predefined Macros 144

8.3. Building Object Libraries ... 147

Libraries, Members and Symbols .. 147

Library Members and Dependency Checking .. 147

Library Member Name-Length Limit ... 148

. PREe rous: PreseIVing Libraries Against Removal Due

to Il)terrupts ... 148

8.4. Maintaining Programs and Libraries With make ... 149

Using Macros for Added Flexibility .. 149

Embedded Macro References ... 150

A More Flexible Makefile .. 150

Makefiles as Specifications ... 151

Suffix Replacement in Macro References ... 151

Using lint with make .. 151

Linking With System-Supplied Libraries ... 153

Compiling Programs for Debugging and Profiling 154

Conditional Macro Definitions .. 155

Compiling Debugging and Profiling Variants .. 156

Maintaining Separate Program and Library Variants 158

Pattern Replacement Macro References .. 159

Makefile for a Program with Separate Variants 160

Makefile for a Library with Separate Variants 163

Maintaining a Directory of Header Files ... 164

Compiling and Linking With Your Own Libraries 165

Nested make Commands ... 165

Forcing A Nested make Command to Run ... 166

-ix-

Contents - Continued

The MAKEFLAGS Macro .. 168

Macro Definitions and Environment Variables: Passing
Parameters to Nested make Commands ... 168

Compiling Other Source Files ... 171

Compiling and Linking a C Program with Assembly
Language Routines ... 171

Compiling lex and yacc Sources .. 173

Specifying Target Groups With the + Sign .. 174

Maintaining Shell Scripts with make and SCCS .. 176

Running Tests with make ... 176

Delayed References to a Shell V ariable ... 177

8.5. Maintaining Software Projects ... 178

Organizing A Project for Ease of Maintenance ... 178

Using inc 1 ude Makefiles ... 179

Installing Finished Programs and Libraries ... 180

Building the Entire Project .. 181

Maintaining Directory Hierarchies With Recursive Makefiles 182

Recursive install Targets ... 183

Maintaining A Large Library as a Hierarchy of Subsidiaries 185

Closing Remarks about make ... 189

Chapter 9 m4 - a Macro Processor ... 193

9.1. Using the m4 Command .. 194

9.2. Defining Macros ... 194

9.3. Quoting and Comments ... 195

9.4. Macros with Arguments .. 197

9.5. Aritllmetic Built-ins ... 197

9.6. File Manipulation .. 198

9.7. Running SunOS Commands ... 199

9.8. Conditionals .. 199

9.9. String Manipulation ... 200

9.10. Printing ... 201

9.11. Summary of Built-in m4 Macros ... 201

-x-

Contents - Continued

Chapter 10 lex - a Lexical Analyzer Generator ... 205

10.1. lex Source ... 208

10.2. lex Regular Expressions .. 209

10.3. lex Actions ... 212

10.4. Ambiguous Source Rules ,... 216

10.5. lex Source Definitions ... 218

10.6. Using lex ... 219

10.7. lex and yacc ... 220

10.8. Examples ... 220

10.9. Left Context-Sensitivity .. 223

10.10. Character Set ... 225

10.11. Summary of Source Fonnat ... 226

10.12. Caveats and Bugs ... 228

Chapter 11 yacc - Yet Another Compiler-Compiler 231

11.1. Basic Specifications ... 234

11.2. Actions .. 236

11.3. Lexical Analysis .. 238

11.4. How the Parser Works ... 240

11.5. Ambiguity and Conflicts ... 244

11.6. Precedence .. 248

11.7. Error Handling .. 251

11.8. The yacc Environment .. 253

11.9. Hints for Preparing Specifications .. 253

Input Style ... 254

Left Recursion .. 254

Lexical Tie-ins .. 255

Reserved Words ... 256

11.10. Advanced Topics .. 256

Simulating Error and Accept in Actions ... 256

Accessing Values in Enclosing Rules. .. 256

Support for Arbitrary Value Types ... 257

11.11. A Simple Example .. 258

-xi-

Contents - Continued

11.12. yacc Input Syntax ... 260

11.13. An Advanced Example ... 261

11.14. Old Features Supported but not Encouraged .. 266

Chapter 12 The curses Library: Screen-Oriented Cursor
Motions ... 271

Overview .. 271

Tenninology .. 271

Cursor Addressing Conventions ... 272

Compiling Things ... 272

Screen Updating .. 273

Naming Conventions .. 273

12.1. Variables .. 274

12.2. Programming Curses ... 275

Starting Up .. 275

The Nitty-Gritty ... 275

Output .. 275

Input .. 276

Miscellaneous .. 276

Finishing Up .. 276

12.3. Cursor Motion Optimization: Standing Alone ... 276

Tenninal Infonnation ... 277

Movement Optimizations, or, Getting Over Yonder 277

12.4. Curses Functions ... 278

Output Functions ... 278

addch () and waddch () - Add Character to Window............. 278

addstr () and waddstr () - Add String to Window.............. 278

box () - Draw Box Around Window .. 279

clear () and wclear () -Reset Window 279

clearok () - Set Clear Flag .. 279

clrtobot () and wclrtobot () - Clear to Bottom 279

clrtoeol () and wclrtoeol () - Clear to End of
Line .. 279

-xii-

Contents - Continued

delch () and wdelch () - Delete Character 279

deleteln () and wdeleteln () - Delete Current Line 280

erase and werase () - Erase Window ... 280

flushok - Control Flushing of stdout ... 280

idlok - Control Use of InsertlDelete Line ... 280

insch () and winsch () - Insert Character 280

insertln () and winsertln () - Insert Line 281

move and wmove () - Move ... 281

overlay () -Overlay Windows ... 281

overwrite () - Overwrite Windows .. 281

printw () and wprintw () - Print to Window............................ 281

refresh () and wrefresh () - Synchronize 282

standout () and wstandout () - Put Characters in
Standout Mode .. 282

Input Functions .. 282

crbreak and nocrbreak - Set or Unset from Cbreak
mode ... 282

echo () and noecho () - Tum Echo On or Off 282

get ch () and wget ch () - Get Character from Terminal....... 282

getstr () and wgetstr () - Get String from Tenninal 283

raw () and noraw () -Turn Raw Mode On or Off 283

scanw () and wscanw () - Read String from Terminal........... 283

Miscellaneous Functions .. 283

baudrate - Get the Baudrate .. 283

delwin () - Delete a Window .. 284

endwin () - Finish up Window Routines ... 284

erasechar - Get Erase Character ... 284

get cap () - Get Termcap Capability .. 284

get yx () - Get Current Coordinates .. 284

.i n c h () and win c h () - Get Character at Current
Coordinates ... 284

initscr () - Initialize Screen Routines ... 285

killchar - Get Kill Character .. 285

- xiii-

Contents - Continued

leaveok () -Set Leave Cursor Flag .. 285

longname() - Get Full Name of Terminal 285

mvwin - Move Home Position of Window ... 286

newwin () - Create a New Window ... 286

nl () and nonl () -Tum Newline Mode On or Off 286

scrollok -Set Scroll Flag for Window .. 286

subwin () - Create a Subwindow ... 286

touchline - Indicate Line Has Been Changed 287

touchover lap - Indicate Overlapping Regions Have
Been Changed ... 287

touchwin () - Indicate Window Has Been Changed 287

unctr 1 () - Return Representation of Character 287

Details .. 287

get tmode () - Get tty Statistics .. 287

mvcur () - Move Cursor ... 287

scroll () - Scroll Window ... 288

savetty () and resetty () - Save and Reset tty Flags 288

set term () - Set Terminal Characteristics 288

tstp .. 288

_putchar () ... 288

12.5. Capabilities from termcap .. 288

Overview .. 288

Variables Set By setterm () ... 290

Variables Set By gettmode () ... 291

12.6. The WINDOW structure ... 291

12.7. Example .. 293

Chapter 13 System V curses and terminfo ... 299

13.1. Overview .. 300

What is curses? .. 300

What is terminfo? .. 301

How curses and termir.fo Work Together ... 302

Other Components of the Tenninal Information Utilities
Package ... 302

-xiv-

Contents - Continued

13.2. Working with curses Routines .. 303

What Every curses Program Needs .. 303

The Header File <curses. h> ... 303

The Routines ini tscr () , refresh () , and endwin () 304

Compiling a curses Program .. 305

More about ini t s cr () and Lines and Columns 305

More about refresh () and Windows ... 305

Simple Output and Input .. 307

Output .. 307

addch () - Write a single character to stdscr 307

addstr () - write a string of characters to stdscr 308

pr int w () - fonnatted printing on st ds cr 308

move () - position the cursor for stdscr .. 309

mvaddch - move and print a character .. 310

mvaddstr - move and print a string .. 310

mvpr i n t w - move and print a formatted string 311

clear () and erase () - clear the screen .. 311

clrtoeol () and clrtobot () - partial screen clears 311

Input .. 312

get ch () - read a single character from the current
terminal ... 312

getstr () - read character string into a buffer 313

scanw () - formatted input conversion ... 314

Controlling Output and Input ... 315

Output Attributes .. 315

Bit Masks ... 316

attron (), attrset (), and attroff () - set or

modify attributes .. 317

standout () and standend () - highlight with
preferred attribute .. 317

Bells, Whistles, and Flashing Lights ... 317

beep () and flash () - ring bell or flash screen 318

Input Options ... 318

-xv-

Contents - Continued

echo () and noecho () - tum echoing on and off 320

cbreak () and nocbreak () - tum "break for each
character" on or off ,... 320

Building Windows and Pads .. 320

Window Output and Input .. 320

The Routines wnoutrefresh () and doupdate () 321

New Windows ... 322

newwin () - open and return a pointer to new window.............. 322

subwin () ... 323

Using Advanced curses Features ... 323

Routines for Drawing Lines and Other Graphics 324

Routines for Using Soft Labels ... 325

Working with More than One Terminal ... 326

13.3. Working with terminfo Routines .. '327

What Every terminfo Program Needs ... 327

Compiling and Running a terminfo Program .. 328

An Example terminfo Program ... 328

13.4. Working with the terminfo Database ... 331

Writing Terminal Descriptions ... 331

Naming the Terminal .. 331

Learning About the Capabilities ... 332

Specifying Capabilities .. 332

Basic Capabilities .. 334

Screen-Oriented Capabilities .. 334

Keyboard-Entered Capabilities ... 335

Parameter String Capabilities ... 335

Compiling the Description ... 336

Testing the Description .. 337

Comparing or Printing terminfo Descriptions 337

Converting a termcap Description to a terminfo

Description ... 338

13.5. curses Program Examples .. 338

The edi tor Program ... 338

-xvi-

Contents - Continued

edi tor - a Sample Program Listing .. 340

The highlight Program ... 343

The scatter Program .. 345

The show Program .. 346

The two Program ... 347

The window Program ... 349

Appendix A SCCS Low-Level Commands ... 353

A.I. Low Level SCCS For Beginners ... 353

Terminology .. 353

A.2. secs File Numbering Conventions .. 354

A.3. Summary of SCCS Commands .. 356

AA. secs Command Conventions .. 357

Flags ... 357

Real/Effective User .. 358

Back-up Files Created During Processing .. 358

Diagnostics ... 358

A.5. admin - Create and Administer SCCS Files ... 358

admin Options .. 359

Flags In SCCS Files .. 361

Examples of Using admin ... 363

A.6. cdc - Change Delta Commentary .. 365

cdc Options .. 365

A.7. comb - Combine SCCS Deltas ... 366

comb Options ... 367

A.8. delta-Make a Delta .. 367

delta Options .. 368

Examples of Using delta ... 369

More Notes on de 1 t a.. 370

A.9. get - Get Version of sees File ... 372

get Options .. 372

Identification Keywords .. 376

A.IO. help - Ask forSCCS Help ... 384

- xvii-

Contents - Continued

A.II. prs -Print SCCS File .. 385

prs Options .. 385

Data Keywords ... 386

A.I2. rmdel - Remove Delta from SCCS File ... 388

A.I3. saet - Display SCCS Editing Activity ... 389

A.14. seesdiff - Display Differences in SCCS Versions 390

seesdiff Options .. 390

A.I5. unget - Undo a Previous SCCS get .. 390

unget Options .. 390

A.I6. val - Validate SCCS File .. 391

val Options .. 391

what - Identify SCCS Files ... 392

A.I7. SCCS Files .. 393

Protection .. 393

Layout of an SCCS File .. 394

Auditing .. 394

Appendix B make Enhancements Summary ... 399

B.I. New Features ... 399

Default Makefile .. 399

The State File. make. state .. 399

Hidden Dependency Checking .. 399

Command Dependency Checking ... 399

Automatic sec s Extraction ... 400

Tilde Rules Superceded ... 400

sees History Files .. 400

Pattern Matching Rules: More Convenient than Suffix Rules 400

Pattern Replacement Macro References .. 40 I

New Options .. 402

Support for Modula-2 ... 402

Naming Scheme for Predefined Macros .. 402

New Special-Purpose Targets .. 403

New Implicit Rule for lint .. 403

- xviii-

Contents - Continued

Macro Processing Changes ... 403

Macros: Definition, Substitution, and Suffix Replacement 403

Improved ar Library Support ... 404

Lists of Members ... 404

Handling of ar's Name Length Limitation ... 404

Target Groups ... 404

Clearing Definitions of Special Targets and Implicit Rules 404

B.2. Incompatibilities with Previous Versions of make 404

New Meaning for -d Option ... 404

Dynamic Macros ... 404

Index ... 407

- xix-

Tables

Table 6-1 Control Key Letters for the time Command ... 85

Table 6-2 Default Timing Summary Chart .. 85

Table 8-1 make's Standard Suffix Rules .. 145

Table 8-2 make's Predefined and Dynamic Macros .. 146

Table 8-3 Summary of Macro Assignment Order .. 171

Table 9-1 Operators to the eval built in in m4 ... 198

Table 9-2 Summary of Built-in m4 Macros .. 201

Table 10-1 Changing Internal Array Sizes in lex ... 227

Table 10-2 Regular Expression Operators in lex .. 227

Table 12-1 Description of Terms ... 272

Table 12-2 Variables to Describe the Terminal Environment 274

Table 12-3 Variables Set by setterm () .. 290

Table 12-4 Variables Set By get tmode () .. 291

Table A-I Determination of sces Identification String ".:;~.,.;;".H" ... ;+.;..+,.;;"+;;.~.

Table A-2 Identification Keywords , ".;+,,~., .• +:,;""+;:.~.;·;;H' H;

Table A-3 sces Files Data Keywords : .• + ; .. ;:;; .•.. :;:;,;'''' .. ' , +;,;.;'; .. ,,+ ••. '

Table A-4 Codes Returned from val Command :.:., ... " ... :,:.:,:,:,: ... ".: .. :.:.:.:.: •.. " ot,: .. ;::,·

-xxi-

Figures

Figure 3-1 SVID Base System OS Service Routines .. . 44

Figure 3-2 SVID Base System General Library Routines 44

Figure 3-3 SVID Kernel Extension OS Service Routines 45

Figure 3-4 SVID Basic Utilities Extension 45

Figure 3-5 SVID Advanced Utilities Extension 45

Figure 3-6 SVID Administered Systems Extension Utilities 46

Figure 3-7 SVID Software Development Extension Utilities 46

Figure 3-8 SVID Software Development Extension Additional
Routines .. . 46

Figure 3-9 SVID Terminal Interface Extension Utilities .. . 47

Figure 3-10 SVID Terminal Interface Extension Library Routines 47

Figure 3-11 SVID Open Systems Networking Interfaces Library

Routines 48

Figure 3-12 SVID STREAMS I/O Interface Operating System Service
Routines 48

Figure 3-13 SVID Shared Resource Environment Utilities 48

Figure 7-1 Basic sees Subcommands ... jIt3~b
"::;=>:" <:}}:::" ":<:}:::::"

98

Figure 8-1 Makefile Target Entry FOImat 4;;;;~.;.;~;~.~~;!;!~.~.i=!~.: J21

Figure 8-2 A Trivial Makefile .. ,d,~ .. :S ..• ~ .. :.: @ .•••. :.: dj::: .. :.~.~i:
..

. ·:=l22:

:::::~ :::::: :::~:n: ~::;~:~I~gs::~t~~lfl;~:;~:,t!~.itl~,.J23
Explicit .. I0~~ Imt~ ~~~4; . .r. 136

...................... -.....

Figure 8-5 Makefile for Compiling C Sources Using Predefined::}:::::::

Macros .. 138

- xxiii-

Figures - Continued

Figure 8-6 Makefile for Compiling C Sources Using Suffix Rules 139

Figure 8-7 The Standard Suffixes List .. 139

Figure 8-8 Makefile with "Suffix-Replacement" Macro References 153

Figure 8-9 Makefile for a C Program With System-Supplied Libraries 154

Figure 8.-10 Makefile for a C Program with Alternate Debugging and
Profiling V ariants ... 156

Figure 8-11 Makefile for a C Library with Alternate Variants 158

Figure 8-12 Makefile for Separate Debugging and Profiling Program
Variants ... 161

Figure 8-13 Makefile .. 163

Figure 8-14 Makefile for C Program With User-Supplied Libraries 167

Figure 8-15 Makefile for a C Program with Assembly Routines 172

Figure 8-16 Makefile for Compiling C Programs With lex and yacc
Sources .. 175

Figure 8-17 Recursive Makefile for Building a C Program and
Subdirectories .. 183

Figure 8-18 Makefile for a Hierarchy of Subsidiary Libraries with
Variants ... 188

Figure 10-1 An overview of lex .. 206

Figure 10-2 lex with yacc .. 207

Figure 10-3 Sample character table. .. 225

Figure 13-1 A Simple curses Program ... 301

Figure 13-2 A Shell Script Using terminfo Routines ... 302

Figure 13-3 initscr (), refresh (), and endwin () in a
Program ... 304

Figure 13-4 Multiple Windows and Pads Mapped to a Terminal Screen 306

Figure 13-5 Input Option Settings for curses Programs 319

Figure 13-6 Sending a Message to Several Terminals .. 327

Figure 13-7 Typical Framework of a terminfo Program 327

Figure A-I Evolution of an SCCS File .. 354

Figure A-2 Tree Structure with Branch Deltas .. 355

-xxiv-

Figures - Continued

Figure A-3 Extending the Branching Concept ... 356

-xxv-

1
Introduction

Introduction ... 3

1.1. Bibliography and Acknowledgements .. 4

1
Introduction

This manual provides an overview of the SunOS programming environment, and
describes a variety of system facilities, utility commands, and libraries, that are
of interest primarily to applications developers.

The first portion of the manual describes system interface and support facilities
for use with the C programming language:

o Chapter 2: SunOS Programming

System interface and standard library support facilities

o Chapter 3: System V Compatibility Package

Comparison of BSD 4.x and System V, and SunOS conformance with the
System V Interface Definition (SVID)

o Chapter 4: Shared Libraries

Overview, system support and development techniques

The next two chapters describe C programming aids to check for correctness and
monitor performance:

o Chapter 5: lint - a Program Verifier for C

Checking programs for internal consistency and portability

o Chapter 6: Performance Analysis

Timing, Profiling and Coverage Analysis tools

The next two chapters describe system utilities for version control and consistent
compilation:

o Chapter 7: sees - Source Code Control System

Version control for source files

o Chapter 8: make User's Guide

Consistent compilation for programs and software projects

The next three chapters describe program-generation tools:

o Chapter 9: m4 - a Macro Processor

+~t!! 3 Revision A of9 May 1988

4 Programming Utilities and Libraries

1.1. Bibliography and
Acknowledgements

Parametric macro-language (pre) processor

o Chapter 10: lex - a Lexical Analyzer Generator

Preprocessor for scanning routines

o Chapter 11: yacc - Yet another Compiler Compiler

Preprocessor for parsing routines

The last two chapters describe the BSD and System V cur se s terminal-display
library routines.

o Chapter 12: cur se s Library: Screen-Oriented Cursor Motions BSD
curses library routines

o Chapter 13: System V curses and terminfo

System V display library and terminal-capabilities database.

Appendix A describes low-level commands for sees.
Appendix B summarizes the enhancements made to the SunOS version of the
make utility.

For detailed information about SunOS utilities, library functions, file- and
device-level facilities, and other information about the operating system, refer to
the SunOS Reference Manual.

This manual has been derived in large part from sources that include technical
papers distributed with D.C. Berkeley's BSD release, System V Release 3 docu
mentation, and others. In particular, Sun Microsystems wishes to acknowledge
the following sources:

1. L. E. Bonanni and C. A. Salemi, Source Code Control System User's Guide,
Bell Laboratories, Piscataway, New Jersey.

2. Eric Allman, Source Code Control System Formerly of Project Ingres,
University of California at Berkeley.

3. B. W. Kernighan and D. M. Ritchie, The C Programming Language,
Prentice-Hall, Inc., 1978.

4. B. W. Kernighan, UNIX for Beginners - Second Edition, Bell Laboratories,
1978.

5. S. C. Johnson, Yacc-YetAnother Compiler-Compiler, Bell Laboratories
Computing Science Technical Report #32, July 1978.

6. B. W. Kernighan and D. M. Ritchie, The C Programming Language,
Prentice-Hall, N. J. (1978).

7. S. C. Johnson and D. M. Ritchie, 'UNIX Time-Sharing System: Portability of
C Programs and the UNIX System', Bell Sys. Tech. 1. 57(6) pp. 2021-2048
(1978).

8. S. C. Johnson, 'A Portable Compiler: Theory and Practice', Proc. 5th
ACM Symp. on Principles of Programming Languages, (January 1978).

Revision A of 9 May 1988

Chapter 1 - Introduction 5

9. Susan L. Graham, Peter B. Kessler, and Marshall Kirk McKusick, Gprof
A Call Graph Execution Profiler, Computer Science Division, Electrical
Engineering and Computer Science Department, University of California,
Berkeley, California 94720.

Editor's note:
This paper is for the scholar inertested in the theory behind call-graph
profiling.

10. Brian W. Kernighan and Dennis M. Ritchie, The M4 Macro Processor, Bell
Laboratories, Murray Hill, New Jersey.

Author's note:
We are indebted to Rick Becker, John Chambers, Doug McIlroy, and
especially Jim Weythman, whose pioneering use ofm4 has led to
several valuable improvements. We are also deeply grateful to Weyth
man for several substantial contributions to the code. The m4 macro
processor is an extension of a macro processor called M3 which was
written by D. M. Ritchie for the AP-3 minicomputer.

11. B. W. Kernighan and P. J. PI auger, ,SoftwareTools Addison-Wesley, Inc.,
1976.

12. M. E. Lesk, Lex - A Lexical Analyzer Generator, Computing Science
Technical Report #39, October 1975.

Author's note:
[The] outside of lex is patterned onyacc and the inside on Aho's string
matching routines. Therefore, both S. C. Johnson and A. V. Aho are
really originators of much of lex, as well as debuggers of it. Many
thanks are due to both. The current version of lex was designed, writ
ten, and debugged by Eric Schmidt.

13. A. V. Aho and M. J. Corasick, Efficient String Matching: An Aid to Biblio
graphic Search, Comm. ACM 18,333-340 (1975).

14. S. C. Johnson, Yacc: Yet Another Compiler-Compiler, Compo Sci. Tech.
Rep. No. 32, Bell Laboratories, Murray Hill, New Jersey (July 1975).

15. Kenneth C.R.C. Arnold, Screen Updating and Cursor Movement Optimiza
tion: A Library Package, Bell Laboratories, Murray Hill, New Jersey.

Editor's note:
The curses library was implemented by Ken Arnold, based on the
screen-updating and optimizing routines originally written by Bill Joy
for the vi editor.

Author's note:
This package would not exist without the work of Bill Joy, who, in writ
ing his editor, created the capability to generally describe terminals,
wrote the routines which read this database [and] implement optimal
cursor movement [...] Doug Merritt and Kurt Shoens also were
extremely important, as were [...] Ken Abrams, Alan Char, Mark Hor
ton and and Joe Kalash.

Revision A of9 May 1988

SunOS Programming

SunOS Programming

2.1. Basics

Program Arguments

2.2. Standard Input and Standard Output

2.3. The Standard I/O Library

Accessing Files

Error Handling - Stderr and Exit

Miscellaneous I/O Functions

2.4. Low-Level I/O Functions

File Descriptors

rea d () and w r i t e ()

open () , creat () , close () , and unlink ()

Random Access - seek () and 1 seek

Error Processing

2.5. Processes

The system () Function

Low-Level Process Creation - execl () and execv ()

Control of Processes - fork () and wait ()

Pipes

2.6. Signals - Interrupts and All That .. .

2.7. The Standard I/O Library

General Usage .. .

Standard I/O Library Calls

2

9

9

9

10

12

12

15

15

16

16

16

18

20

20

21

21

21

22

23

26

30

31

31

Character TYJ>e Checking ... 37

Character TYJ>e Conversion .. 38

2.1. Basics
Program Arguments

2
SunOS Programming

This chapter is an introduction to programming on the SunGS system. The
emphasis is on how to write programs that make use of system calls and library
functions. The topics discussed include

o handling command-line arguments

o rudimentary 1/0; the standard input and output

o the standard I/O library; file system access

o low-level I/O: open, read, write, close, seek

o processes: exec, fork, pipes

o signals - interrupts, etc.

Section 2.7 - The Standard I/O Library - describes the standard I/O library in
detail.

This chapter describes how to write programs that interface with the SunOS
operating system in a nontrivial way. This includes programs that use files by
name, that use pi pes, that invoke other commands as they run, or that attempt to
catch interrupts and other signals during execution. It summarizes material that
is described in detail in the SunOS Reference Manual.

There is no attempt to be complete; only generally useful material is dealt with.
It is assumed that you will be programming in C, so you must be able to read the
language roughly up to the level of The C Programming Language. You should
also be familiar with SunOS itself.

When a C program is run as a command, the arguments on the command line are
made available to the function main () as an argument count argc and an array
argv of pointers to character strings that contain the arguments. By convention,
argv [0] is the command name itself, so argc is always greater than O .

• \sun ~ microsystems
9 Revision A of 9 May 1988

10 Programming Utilities and Libraries

2.2. Standard Input and
Standard Output

The following program illustrates the mechanism: it simply echoes its arguments
back to the terminal- this is essentially the echo () command.

main (argc, argv)
int argc;
char *argv[];
{

int i;

/* echo arguments */

for (i = 1; i < argc; i++)
printf ("%s%c", argv [iJ, (i<argc-1) ?

, , , \n');

argv is a pointer to an array whose elements are pointers to arrays of characters;
each is terminated by \ 0, so they can be treated as strings. The program starts by
printing argv [1] and loops until it has printed argv [argc-1] .

The argument count and the arguments are parameters to main (). If you want
to keep them around so other routines can get at them, you must copy them to
external variables.

The simplest input mechanism is to read from the standard input, which is gen
erally the user's terminal. The function getchar () returns the next input char
acter each time it is called. A file may be substituted for the terminal by using
the < convention (input redirection): if prog uses get char () , the command
line

makes prog read from the file specified by filename instead of the terminal.
prog itself need know nothing about where its input is coming from. This is
also true if the input comes from another program via the pipe mechanism:

provides the standard input for prog from the standard output (see below) of
otherprog.

get char () returns the value EOF when it encounters the end of file (or an
error) on whatever you are reading. The value of EOF is normally defined to be
-1, but it is unwise to take any advantage of that knowledge. As will become
clear shortly, this value is automatically defined for you when you compile a pro
gram, and need not be of any concern.

Similarly, putchar (c) puts the character c on the 'standard output', which is
also by default the terminal. The output can be captured on a file by using >: if
prog uses putchar (),

4}\sun
~ microsystems

Revision A of 9 May 1988

Chapter 2 - SunOS Programming 11

writes the standard output on outputflie instead of the terminal. outputflie is
created if it doesn't exist; if it already exists, its previous contents are overwrit
ten. A pipe can be used:

puts the standard output of prog into the standard input of otherprog.

The function printf () , which formats output in various ways, uses the same
mechanism as putchar () does, so calls to printf () and putchar () may
be intermixed in any order; the output will appear in the order of the calls.

Similarly, the function s canf () provides for formatted input conversion; it will
read the standard input and break it up into strings, numbers, etc., as desired.
scanf () uses the same mechanism as get char () , so calls to them may also
be intermixed.

Many programs read only one input and write one output; for such programs I/O
with getchar (), putchar (), scanf (), and printf () may be entirely
adequate, and it is almost always enough to get started. This is particularly true
if the SunOS pipe facility is used to connect the output of one program to the
input of the next. For example, the following program strips out all ASCII con
trol characters from its input (except for newline and tab).

iinclude <stdio.h>

main ()
{

/* ccstrip: strip non-graphic characters */

int c;
while «c = getchar(» != EOF)

if « c >= ' , & & c < 017 7) I I c
putchar(c);

exit(O);

The line

iinclude <stdio.h>

'\t' II c '\n')

should appear at the beginning of each source file which does 110 using the stan
dard I/O functions described in section 3(S) of the SunOS Reference Manual
the C compiler reads a file (lusrlincludelstdio.h) of standard rputines and sym
bols that includes the definition of EOF.

If it is necessary to treat multiple files, you can use cat to collect the files for you:

and thus avoid learning how to access files from a program. By the way, the call
to exi t () at the end is not necessary to make the program work properly, but it
assures that any caller of the program will see a normal termination status (con
ventionally 0) from the program when it completes. Section 2.5.3 discusses
returning status in more detail.

.\sun ~~ microsystems
Revision A of9 May 1988

12 Programming Utilities and Libraries

2.3. The Standard 110
Library

Accessing Files

The 'Standard I/O Library' is a collection of routines intended to provide
efficient and portable I/O services for most C programs. The standard I/O library
is available on each system that supports C, so programs that confine their system
interactions to its facilities can be transported from one system to another essen
tially without change.

This section discusses the basics of the ~tandard 110 library. Section 2.7 - The
Standard lID Library - contains a more complete description of its capabilities
and calling conventions.

The above programs have all read the standard input and written the standard
output, which we have assumed are magically predefined. The next step is to
write a program that accesses a file that is not already connected to the program.
One simple example is we, which counts the lines, words and characters in a set
of files. For instance, the command

displays the number of lines, words and characters in x . e and y . c and the
totals.

The question is how to arrange for the named files to be read - that is, how to
connect the filenames to the 110 statements which actually read the data.

The rules are simple - you have to open a file by the standard library function
fopen () before it can be read from or written to. fopen () takes an external
name (like x. e or y. e), does some housekeeping and negotiation with the
operating system, and returns an internal name which must be used in subsequent
reads or writes of the file.

This internal name is actually a pointer, called a file pointer, to a structure which
contains information about the file, such as the location of a buffer, the current
character position in the buffer, whether the file is being read or written, and the
like. Users don't need to know the details, because part of the standard liD
definitions obtained by including stdio.h is a structure definition called FILE.
The only declaration needed for a file pointer is exemplified by

FILE *fp, *fopen();

This says that fp is a pointer to a FILE, and fopen () returns a pointer to a
FILE. FILE is a type name, like int, not a structure tag.

The actual call to fopen () in a program has the form:

fp = fopen(name, mode);

The first argument of f open () is the name of the file, as a character string. The
second argument is the mode, also as a character string, which indicates how you
intend to use the file. The allowable modes are read (nrn), write ("w"), or
append (a).

In addition, each mode may be followed by a + sign to open the file for reading
and writing. r+ positions the stream at the beginning of the file, w+ creates or
truncates the file, and a + positions the stream to the end of the file. Both

.sun
~ microsystems

Revision A of9 May 1988

Chapter 2 - SunOS Programming 13

reads and writes may be used on read/write streams, with the limitation that an
fseek () , rewind () ,or reading end-of-file must be used between a read and a
write or vice versa.

If a file that you open for writing or appending does not exist, it is created (if pos
sible). Opening an existing file for writing discards the old contents. Trying to
read a file that does not exist is an error, and there may be other causes of error as
well (like trying to read a file when you don't have permission). If there is any
error, fopen () returns the null pointer value NULL - defined as zero in
stdio.h.

The next thing needed is a way to read or write the file once it is open. There are
several possibilities, of which gete () and pute () are the simplest. gete ()
returns the next character from a file; it needs the file pointer to tell it what file.
Thus

c = getc(fp)

places in e the next character from the file referred to by fp; it returns EOF when
it reaches end of file. put e () is the inverse of get e () :

putc(c, fp)

puts the character e on the file fp and returns e as its value. gete () and
pu t e () return EO F on error.

When a program is started, three streams are opened automatically, and file
pointers are provided for them. These streams are the standard input, the stan
dard output, and the standard error output; the corresponding file pointers are
called stdin, stdout, and stderr. Normally these are all connected to the
terminal, but may be redirected to files or pipes as described in Section 2.2.
stdin, stdout and stderr are predefined in the 110 library as the standard
input, output and error files; they may be used anywhere an object of type
FILE * can be. They are constants, however, not variables, so don't try to
assign to them.

With some of the preliminaries out of the way, we can now write we.
The basic design is one that has been found convenient for many programs: if
there are command-line arguments, they are processed in order. If there are no
arguments, the standard input is processed. This way the program can be used
standalone or as part of a larger process.

Revision A of 9 May 1988

14 Programming Utilities and Libraries

*inelude <stdio.h>

main (arge, argv)
int argc;
char *argv[];
{

/* we: count lines, words, chars */

int c, i, inword;
FILE *fp, *fopen();
long lineet, wordet, charct;
long tlinect = 0, twordct = 0, tcharct 0;

i = 1;
fp = stdin;
do

if (argc > 1 && (fp=fopen(argv[i], "r"» == NULL) {
fprintf(stderr, "wc: can't open %s\n", argv[i]);
continue;

linect = wordct = charct = inword 0;
while ((c = getc(fp» != EOF) {

charct++;
if (c == '\n')

linect++;
if (e == , , I I e == '\ t' I Ie' \n')

inword = 0;
else if (inword == 0) {

inword = 1;
wordet++;

printf("%7ld %7ld %7ld", linect, wordct, charct);
printf(arge> 1 ? " %s\n" : "\n", argv[i]);
fclose(fp);
tlineet += linect;
twordct += wordet;
tcharct += charet;

while (++i < argc);
if (argc > 2)

printf("%7ld %7ld %7ld total\n", tlinect, twordct, teharct);
exit(O);

~~sun
• microsystems

Revision A of 9 May 1988

Error Handling - Stderr and
Exit

Miscellaneous I/O Functions

Chapter 2 - SunOS Programming 15

The function fprintf () is identical to printf (), save that the first argu
ment is a file pointer that specifies the file to be written.

The function fclose () is the inverse of fopen () ; it breaks the connection
between the file pointer and the external name that was established by fopen () ,
freeing the file pointer for another file. Since there is a limit on the number of
files that a program may have open simultaneously, it's a good idea to free things
when they are no longer needed. There is another reason to call fclose () on
an output file - it flushes the buffer in which putc () is collecting output.
fclose () is called automatically for each open file when a program terminates
normally.

stderr is assigned to a program in the same way that stdin and stdout are.
Output written on stderr appears on the user's terminal even if the standard
output is redirected, unless the standard error is also redirected. we writes its
diagnostics on stderr instead of stdout so that if one of the files can't be
accessed for some reason, the message finds its way to the user's terminal instead
of disappearing down a pipeline or into an output file.

The argument of exi t () is made available to whatever process called the pro
cess that is exiting (see Section 2.5.3, so the success or failure of the program can
be tested by another program that uses this one as a subprocess. By convention,
a return value of 0 signals that all is well; nonzero values signal abnormal situa
tions.

exit () itself calls fclose () for each open output file, to flush out any buf
fered output, then calls a routine named _ exi t (). The function _ exi t () ter
minates the program immediately without any buffer flushing; it may be called
directly if desired.

The standard I/O library provides several other I/O functions besides those illus
trated above.

Normally output with putc () ,and such is buffered - use fflush (fp) to
force it out immediately.

f s canf () is identical to s canf () , except that its first argument is a file
pointer (as with fprintf ()) that specifies the file from which the input comes;
it returns EOF at end of file.

The functions s s canf () and spr in t f () are identical to f s canf () and
fpr int f () , except that the first argument names a character string instead of a
file pointer. The conversion is done from the string for s s canf () and into it
for spr int f () , and no input or output is done.

fgets (buf, size, fp) copies the next line from fp, up to and including a
newline, into buf; at most size-l characters are copied; it returns NULL at
end of file. fput s (buf, fp) writes the string in buf onto file fp.

The function unget c (c, fp) 'pushes back' the character c onto the input
stream fp; a subsequent call to getc () , fscanf (), etc., will encounter c.
Only one character of pushback per file is permitted .

• ~sun ~ microsystems
Revision A of9 May 1988

16 Programming Utilities and Libraries

2.4. Low-Level I/O
Functions

File Descriptors

read () and write ()

This section describes the bottom level of 110 on the SunOS system. The lowest
level of 110 in SunOS provides no buffering or any other services; it is in fact a
direct entry into the operating system. You are entirely on your own, but on the
other hand, you have the most control over what happens. And since the calls
and usage are quite simple, this isn't as bad as it sounds.

In the SunOS operating system, all input and output is done by reading or writing
files, because all peripheral devices, even the user's terminal, are files in the file
system. This means that a single, homogeneous interface handles all communi
cation between a program and peripheral devices.

In the most general case, before reading or writing a file, it is necessary to inform
the system of your intent to do so, a process called 'opening' the file. If you are
going to write on a file, it may also be necessary to create it. The system checks
your right to do so - does the file exist? Do you have permission to access it?
- if all is well, returns a small positive integer called afile descriptor. When
ever 110 is to be done on the file, the file descriptor is used instead of the name to
identify the file. This is roughly analogous to the use of READ (5, • • .) and
WRITE (6, .•.) in FORTRAN. All information about an open file is main
tained by the system; the user program refers to the file only by the file descrip
tor.

The file pointers discussed in Section 2.3 are similar in spirit to file descriptors,
but file descriptors are more fundamental. A file pointer is a pointer to a struc
ture that contains, among other things, the file descriptor for the file in question.

Since input and output involving the user's terminal are so common, special
arrangements exist to make this convenient. When the command interpreter (the
'shell') runs a program, it opens three files, with file descriptors 0, 1, and 2,
called standard input, standard output, and standard error output. All of these are
normally connected to the terminal, so if a program reads file descriptor 0 and
writes file descriptors 1 and 2, it can do terminal 110 without opening the files.

If 110 is redirected to and from files with < and >, as in

the shell changes the default assignments for file descriptors 0 and 1 from the ter
minal to the named files. Similar observations hold if the input or output is asso
ciated with a pipe. Normally file descriptor 2 remains attached to the terminal,
so error messages can go there. In all cases, the file assignments are changed by
the shell, not by the program. The program does not need to know where its
input comes from nor where its output goes, so long as it uses file 0 for input and
1 and 2 for output.

All input and output is done by two functions called read () and write ().
For both, the first argument is a file descriptor. The second argument is a buffer
in your program where the data is to come from or go to. The third argument is
the number of bytes to be transferred. The calls are below:

Revision A of9 May 1988

Chapter 2 - SunOS Programming 17

n_read = read(fd, buf, n);

n_written = write (fd, buf, n);

Each call returns a byte count which is the number of bytes actually transferred.
On reading, the number of bytes returned may be less than the number asked for,
because fewer than n bytes remained to be read. When the file is a terminal,
read () normally reads only up to the next newline, which is generally less than
what was requested. A return value of zero bytes implies end of file, and -1
indicates an error of some sort. For writing, the returned value is the number of
bytes actually written; it is generally an error if this isn't equal to the number
supposed to be written.

The number of bytes to be read or written is quite arbitrary. The two most com
mon values are 1, which means one character at a time ('unbuffered'), and 1024,
corresponding to a physical blocksize on many peripheral devices. This latter
size will be most efficient, but even character-at-a-time IJD is not inordinately
expensive.

Putting these facts together, we can write a simple program to copy its input to
its output. This program will copy anything to anything, since the input and out
put can be redirected to any file or device.

#define BUFSIZE 1024

maine) /* copy input to output */
{

char buf[BUFSIZE]i
int n;

while «n = read(O, buf, BUFSIZE» > 0)
write(l, buf, n)i

exiteD);

If the file size is not a multiple of BUFSIZE, some read () will return a smaller
number of bytes, and the next call to read () after that will return zero.

It is instructive to see how read () and wri te () can be used to construct
higher-level routines like getchar () , putchar () ,etc. For example, here is
a version of getchar () which does unbuffered input.

#define CMASK 0377 /* for making char's> ° */

getchar ()
{

/* unbuffered single character input */

char Ci

return«read(O, &c, 1) > 0) ? c & CMASK EOF) i

Revision A of 9 May 1988

18 Programming Utilities and Libraries

open (), creat () ,
close (), and unlink ()

c must be declared char, because read () accepts a character pointer. The
character being returned must be masked with 0377 to ensure that it is positive;
otherwise sign extension may make it negative. The constant 0377 is appropri
ate for the Sun but not necessarily for other machines.

The second version of get char () does input in big chunks, and hands out the
characters one at a time:

=If:define CMASK 0377 /* for making char's> 0 */
=If:define BUFSIZE 1024

getchar () /* buffered version */
{

static char buf[BUFSIZE];
static char *bufp = buf;
static int n = 0;

if (n == 0) /* buffer is empty */
n = read(O, buf, BUFSIZE);
bufp = buf;

return«--n >= 0) ? *bufp++ & CMASK EOF);

Other than the default standard input, output and error files, you must explicitly
open files in order to read or write them. There are two system entry points for
this, open () and creat () .

open () is rather like the fopen' () discussed in the previous section, except
that instead of returning a file pointer, it returns a file descriptor, which is just an
into

[

int fd; 1
~_f_d __ = __ o_p_e_n __ ~n_a_m_e __ ,_r_wm __ o_d __ e_)_; ________________________________ __

As with fopen (), the name argument is a character string corresponding to the
external file name. The access mode argument is different, however: rwrno de is
o for read, 1 for write, and 2 for read and write access. open () returns -1 if
any error occurs; otherwise it returns a valid file descriptor.

It is an error to try to open () a file that does not exist. The entry point
creat () is provided to create new files, or to rewrite old ones.

fd = creat(name, pmode);

returns a file descriptor if it could create the file called name, and -1 if not. If
the file already exists, creat () will truncate it to zero length; it is not an error
to creat () a file that already exists.

Revision A of9 May 1988

Chapter 2 - SunOS Programming 19

If the file is brand new, creat () creates it with the protection mode specified
by the pmode argument. In the SunOS file system, there are nine bits of protec
tion information associated with a file, controlling read, write and execute per
mission for the owner of the file, for the owner's group, and for all others. Thus
a three-digit octal number is most convenient for specifying the permissions. For
example, 0755 specifies read, write and execute permission for the owner, and
read and execute permission for the group and everyone else.

To illustrate, here is a simplified version of the SunOS utility cp, a program
which copies one file to another. The main simplification is that our version
copies only one file, and does not permit the second argument to be a directory:

idefine NULL 0
idefine BUFSIZE 1024
#define PMODE 0644 1* RW for owner, R for group, others */

main (argc, argv) /* cp: copy f1 to f2 */
int argc;
char *argv [];
{

int f1, f2, n;
char buf [BUFSIZE] ;

if (argc != 3)
error ("Usage: cp from to", NULL);

if «f1 = open (argv[l] , 0)) == -1)
error("cp: can't open %5", argv[l]);

if «f2 = creat(argv[2], PMODE)) == -1)
error("cp: can't create %5", argv[2]);

while «n = read(f1, buf, BUFSIZE) > 0)
if (write (f2, buf, n) ! = n)

error ("cp: write error", NULL);
exit (0);

error(sl, 52) /* print error message and die */
char *51, *52;

printf(sl, 52);
printf("\n");
exit (1) ;

As we said earlier, there is a limit (typically 20-32) on the number of files which
a program may have open simultaneously. Accordingly, any program which
intends to process many files must be prepared to reuse file descriptors. The rou
tine close () breaks the connection between a file descriptor and an open file,
and frees the file descriptor for use with some other file. Termination of a pro
gram via exi t () or return from the main program closes all open files.

The function unlink (filename) removes the file filename from the file
system .

• \sun
• microsystems

Revision A of9 May 1988

20 Programming Utilities and Libraries

Random Access - seek ()
and lseek

Error Processin g

File 110 is normally sequential: each read () or write () takes place at a
position in the file right after the previous one. When necessary, however, a file
can be read or written in any arbitrary order. The system call1seek () provides
a way to move around in a file without actually reading or writing:

lseek(fd, offset, origin);

forces the current position in the file whose descriptor is f d to move to position
offset, which is taken relative to the location specified by origin. Subse
quent reading or writing will begin at that position. offset is a long; fd and
origin are int's. origin can be 0,1, or2 to specify that offset is to be
measured from the beginning, from the current position, or from the end of the
file, respectively. For example, to append to a file, seek to the end before writ
ing:

lseek(fd, OL, 2);

To get back to the beginning ('rewind'),

lseek(fd, OL, 0);

Notice the OL argument; it could also be written as (long) O.

With lseek () , it is possible to treat files more or less like large arrays, at the
price of slower access. For example, the following simple function reads any
number of bytes from any arbitrary place in a file.

get (fd, pos, buf, n) /* read n bytes from position pos */
int fd, n;
long pos;
char *buf;

lseek(fd, pos, 0); /* get to pos */
return(read(fd, buf, n»;

The routines discussed in this section, and in fact all the routines which are direct
entries into the system can incur errors. Usually they indicate an error by return
ing a value of -1. Sometimes it is nice to know what sort of error occurred; for
this purpose all these routines, when appropriate, leave an error number in the
external variable errno. The meanings of the various error numbers are listed
in intro(2) in the SunOS Reference Manual so your program can, for example,
determine if an attempt to open a file failed because it did not exist or because
the user lacked permission to read it. Perhaps more commonly, you may want to
display the reason for failure. The routine perror () displays a message asso
ciated with the value of errno; more generally, sys_errno is an array of
character strings which can be indexed by errno and displayed by your pro
gram.

Revision A of 9 May 1988

2.5. Processes

The s y stem () Function

Low-Level Process Creation
- execl () and execv ()

Chapter 2 - SunOS Programming 21

It is often easier to use a program written by someone else than to invent one's
own. This section describes how to execute a program from within another.

The easiest way to execute a program from another is to use the standard library
routine system (). system () takes one argument, a command string exactly
as typed at the tenninal (except for the newline at the end) and executes it. For
instance, to timestamp the output of a program,

main () {
system("date"); /* rest of processing */

If the command string has to be built from pieces, the in-memory fonnatting
capabilities of sprintf () may be useful.

Remember that getc () and putc () nonnally buffer their input; tenninal 110
will not be properly synchronized unless this buffering is defeated. For output,
use ffl ush () ; for input, see setbuf () in section 2.7.

If you're not using the standard library, or if you need finer control over what
happens, you will have to construct calls to other programs using the moreprimi
tive routines that the standard library's system () routine is based onl .

The most basic operation is to execute another program without returning, by
using the routine execl (). To display the date as the last action of a running
program, use

execl("/bin/date", "date", NULL);

The first argument to execl () is thefilename of the command; you have to
know where it is found in the file system. The second argument is convention
ally the program name (that is, the last component of the file name), but this is
seldom used except as a placeholder. If the command takes arguments, they are
strung out after this; the end of the list is marked by a NULL argument.

The execl () call overlays the existing program with the new one, runs that,
then exits. There is no return to the original program.

More realistically, a program might fall into two or more phases that communi
cate only through temporary files. Here it is natural to start the second pass sim
ply by an execl () call from the first.

The one exception to the rule that the original program never gets control back
occurs when there is an error, for example if the file can't be found or is not exe
cutable. If you don't know where date is located, you might try the following
calls.

1 system () uses /bin/ sh (the Bourne shell) to execute the command string, so syntax specific to the C
shell will not work.

Revision A of 9 May 1988

22 Programming Utilities and Libraries

Control of Processes -
fork () and wait ()

execl(lI/bin/date", "date", NULL);
execl("/usr/bin/date", "date", NULL);
fprintf(stderr, "Someone stole 'date'\n");

A variant of execl () called execv () is useful when you don't know in
advance how many arguments there are going to be. The call is

execv(filename, argp);

where argp is an array of pointers to the arguments; the last pointer in the array
must be NULL so execv () can tell where the list ends. As with execl () ,
filename is the file in which the program is found, and argp [0] is the name
of the program. (This arrangement is identical to the argv array for program
arguments.)

Neither of these routines provides the niceties of normal command execution.
There is no automatic search of multiple directories - you have to know pre
cisely where the command is located. Nor do you get the expansion of meta char
acters like <, >, *, ?, and [] in the argument list. If you want these, use
execl () to invoke the shell sh, which then does all the work. Construct a
string commandline that contains the complete command as it would have
been typed at the terminal, then say

execl("/bin/sh", "sh", "-c", commandline, NULL);

The shell is assumed to be at a fixed place, Ibin/sh. Its argument -c says to treat
the next argument as a whole command line, so it does just what you want. The
only problem is in constructing the right information in commandline.

So far what we've talked about isn't really all that useful by itself. Now we will
show how to regain control after running a program with execl () or
execv (). Since these routines simply overlay the new program on the old one,
to save the old one requires that it first be split into two copies; one of these can
be overlaid, while the other waits for the new, overlaying program to finish. The
splitting is done by a routine called fork () :

proc_id = fork();

splits the program into two copies, both of which continue to run. The only
difference between the two is the value ofproc_id, the 'process id.' In one of
these processes (the 'child'), proc _ id is zero. In the other (the 'parent'),
proc _ id is nonzero; it is the process number of the child. Thus the basic way
to call, and return from, another program is

if (fork() == 0)
execl("/bin/sh", "sh", "-e", cmd, NULL); /* in child */

And in fact, except for handling errors, this is sufficient. The for k () makes
two copies of the program. In the child, the value returned by fork () is zero,
so it calls execl () which does the command and then dies. In the parent,
fork () returns nonzero so it skips the exec 1 (). If there is any error,
fork () returns-1.

Revision A of 9 May 1988

Pipes

Chapter 2 - SunOS Programming 23

More often, the parent wants to wait for the child to terminate before continuing
itself. This can be done with the function wait () :

int status;

if (fork() == 0)
execl (...) ;

wait (&status) ;

This still doesn't handle any abnormal conditions, such as a failure of the
execl () or fork () ,or the possibility that there might be more than one child
running simultaneously. The wai t () returns the process id of the terminated
child, if you want to check it against the value returned by fork (). Finally,
this fragment doesn't deal with any funny behavior on the part of the child
(which is reported in status). Still, these three lines are the heart of the stan
dard library's system () routine, which we'll show in a moment.

The stat us returned by wai t () encodes in its low-order eight bits the
system's idea of the child's termination status; it is 0 for normal termination and
nonzero to indicate various kinds of problems. The next higher eight bits are
taken from the argument of the call to ex it () which caused a normal termina
tion of the child process. It is good coding practice for all programs to return
meaningful status.

When a program is called by the shell, the three file descriptors 0, 1, and 2 are set
up to point at the right files (see Section 2.4.1), and all other possible file descrip
tors are available for use. When this program calls another one, correct etiquette
suggests making sure the same conditions hold. Neither fork () nor the
exec () calls affects open files in any way. If the parent is buffering output that
must come out before output from the child, the parent must flush its buffers
before the execl (). Conversely, if a caller buffers an input stream, the called
program will lose any information that has been read by the caller.

A pipe is an I/O channel intended for use between two cooperating processes:
one process writes into the pipe, while the other process reads from the pipe. The
system looks after buffering the data and synchronizing the two processes. Most
pipes are created by the shell, as in

which connects the standard output of 1 s to the standard input of pr. Some
times, however, it is most convenient for a process to set up its own plumbing; in
this section, we illustrate how the pipe connection is established and used.

Revision A of 9 May 1988

24 Programming Utilities and Libraries

The system call pipe () creates a pipe. Since a pipe is used for both reading
and writing, two file descriptors are returned; the actual usage is like this:

int fd[2];

stat pipe(fd);
if (stat == -1)

/* there was an error ... */

f d is an array of two file descriptors, where f d [0] is the read side of the pipe
and fd [1] is for writing. These may be used in read () , wri te () and
close () calls just like any other file descriptors.

If a process reads a pipe which is empty, it waits until data arrives; if a process
writes into a pipe which is too full, it waits until the pipe empties somewhat. If
the write side of the pipe is closed, a subsequent read () will encounter end of
file.

To illustrate the use of pipes in a realistic setting, let us write a function called
popen (cmd, mode), which creates a process cmd (just as sy stem () does),
and returns a file descriptor that will either read or write that process, according
to mode. That is, the call

fout = popen("pr", WRITE);

creates a process that executes the p r command; subsequent wr it e () calls
using the file descriptor fout will send their data to that process through the
pipe.

popen () first creates the pipe with a pipe () system call; it then fork () 's to
create two copies of itself. The child decides whether it is supposed to read or
write, closes the other side of the pipe, then calls the shell (via execl ()) to run
the desired process. The parent likewise closes the end of the pipe it does not
use. These closes are necessary to make end-of-file tests work properly. For
example, if a child that intends to read fails to close the write end of the pipe, it
will never see the end of the pipe file, just because there is one writer potentially
active .

• \sun ~ microsystems
Revision A of9 May 1988

Chapter 2 - SunOS Programming 25

tinclude <stdio.h>

tdef ine READ 0
tdefine WRITE 1
tdefine tst(a, b) (mode == READ ? (b) (a»
static int popen_pid;

popen(cmd, mode)
char *cmd;
int mode;

int p[2);

if (pipe(p) < 0)
return (NULL) ;

if «popen-pid = fork (» == 0) {
close (tst(p[WRITE) , p[READ));
close(tst(O, 1»;
dup(tst(p[READ), p[WRITE]»;
close (tst(p[READ] , p[WRITE]»;
execl("/bin/sh", "sh" , "-c", cmd, 0);
_exit(l); /* disaster has occurred if we get here */

if (popen_pid == -1)
return (NULL) ;

close (tst (p[READ] , p[WRITE]»;
return(tst(p[WRITE), p[READ]»;

The sequence of close () 's in the child is a bit tricky. Suppose that the task is
to create a child process that will read data from the parent. Then the first
close () closes the write side of the pipe, leaving the read side open. The lines

close(tst(O, 1»;
dup(tst(p[READ], p[WRITE]»;

are the conventional way to associate the pipe descriptor with the standard input
of the child. The close () closes file descriptor 0, that is, the standard input.
dup () is a system call that returns a duplicate of an already open file descriptor.
File descriptors are assigned in increasing order and the first available one is
returned, so the effect of the dup () is to copy the file descriptor for the pipe
(read side) to file descriptor 0; thus the read side of the pipe becomes the standard
input2. Finally, the old read side of the pipe is closed.

A similar sequence of operations takes place when the child process is supposed
to write to the parent instead of reading. You may find it a useful exercise to step
through that case.

2 Yes, this is a bit tricky, but it's a standard idiom.

Revision A of 9 May 1988

26 Programming Utilities and Libraries

2.6. Signals - Interrupts
and All That

The job is not quite done, for we still need a function pclose () to close the
pipe created by popen (). The main reason for using a separate function rather
than close () is that it is desirable to wait for the termination of the child pro
cess. First, the return value from pclose () indicates whether the process suc
ceeded. Equally important when a process creates several children is that only a
bounded number of unwaited-for children can exist, even if some of them have
terminated; performing the wait () lays the child to rest. Thus:

#include <signal.h>

pclose (fd)
int fd;

/* close pipe fd */

register r, (*hstat) (), (*istat) (), (*qstat) ();
int status;
extern int popen-pid;

close(fd);
istat signal (SIGINT, SIG_IGN);
qstat = signal(SIGQUIT, SIG_IGN);
hstat = signal(SIGHUP, SIG_IGN);
while «r = wait (&status» != popen-pid && r != -1);
if (r == -1)

status = -1;
signal (SIGINT, istat);
signal(SIGQUIT, qstat);
signal (SIGHUP, hstat);
return (status) ;

The calls to signal () make sure that no interrupts, etc. interfere with the wait
ing process; this is the topic of the next section.

The routine as written has the limitation that only one pipe may be open at once,
because of the single shared variable popen _pid; it really should be an array
indexed by file descriptor. A popen () function, with slightly different argu
ments and return value is available as part of the standard I/O library discussed
below. As currently written, it shares the same limitation.

This section is concerned with how to deal gracefully with signals from the out
side world (like interrupts), and with program faults. Since there's nothing very
useful that can be done from within C about program faults, which arise mainly
from illegal memory references or from execution of peculiar instructions, we'll
discuss only the outside world signals: interrupt and quit, which are generated
from the keyboard3, hangup, caused by hanging up the phone on dialup lines,
and terminate, generated by the kill command. When one of these events occurs,
the signal is sent to all processes which were started from the corresponding ter
minal - the signal terminates the process unless other arrangements have been
made. In the q·uit case, a core image file is written for debugging purposes.

3 The current binding of characters and signals can be discovered by the 5 tty a 11 command On Sun
systems, typing control-C usually generates the k iII signal and control-\ generates the qu it signal.

.sun
~ microsystems

Revision A of9 May 1988

Chapter 2 - SunOS Programming 27

signal () is the routine which alters the default action. signal () has two
arguments: the first specifies the signal to be processed, and the second argument
specifies what to do with that signal. The first argument is just a numeric code,
but the second is either a function, or a somewhat strange code that requests that
the signal either be ignored or'that it be given the default action. The include file
signal.h gives names for the various arguments, and should always be included
when signals are used. Thus

#include <signal.h>

signal (SIGINT, SIG_IGN);

means that interrupts are ignored, while

signal (SIGINT, SIG_DFL);

restores the default action of process termination. In all cases, signal ()
returns the previous value of the signal. The second argument to signal ()
may instead be the name of a function (which has to be declared explicitly if the
compiler hasn't seen it already). In this case, the named routine will be called
when the signal occurs. Most commonly this facility is used so that the program
can clean up unfinished business before terminating, for example to delete a tem
porary file:

#include <signal.h>

main ()
{

int onintr ();

if (signal (SIGINT, SIG_IGN) != SIG_IGN)
signal (SIGINT, onintr);

/* Process 000 */

exit(O);

onintr ()
{

unlink(tempfile);
exit(l);

Why the test and the double call to signal ()? Recall that signals like inter
rupt are sent to all processes started from a particular terminal. Accordingly,
when a program is to be run non-interactively (started by &), the shell turns off
interrupts for it so it won't be stopped by interrupts intended for foreground
processes. If this program began by announcing that all interrupts were to be
sent to the onintr () routine regardless, that would undo the shell's effort to
protect it when run in the background.

4}\sun
~ microsystems

Revision A of 9 May 1988

28 Programming Utilities and Libraries

The solution, shown above, is to test the state of interrupt handling, and to con
tinue to ignore interrupts if they are already being ignored. The code as written
depends on the fact that signal () returns the previous state of a particular sig
nal. If signals were already being ignored, the process should continue to ignore
them; otherwise, they should be caught.

A more sophisticated program may wish to intercept an interrupt and interpret it
as a request to stop what it is doing and return to its own command processing
loop. Think of a text editor: interrupting a long display should not terminate the
edit session and lose the work already done. The outline of the code for this case
is probably best written like this:

iinclude <signal.h>
iinclude <setjmp.h>
jmp_buf sjbuf;

main ()
{

int (*istat) (), onintr ();

istat = signal(SIGINT, SIG_IGN); /* original status */
setjmp(sjbuf); /* save current stack position */
if (istat != SIG_IGN)

signal(SIGINT, onintr);

/* main processing loop */

onintr ()
{

printf("\nlnterrupt\n");
longjmp(sjbuf); /* return to saved state */

The include file setjmp.h declares the type jrnp _ buf - an object in which the
state can be saved. S jbuf is such an object. The set jmp () routine then saves
the state of things. When an interrupt occurs the onintr () routine is called,
which can display a message, set flags, or whatever. longjmp () takes as argu
ment an object set by set jrnp () , and restores control to the location following
the call to set jrnp () , so control (and the stack level) will pop back to the place
in the main routine where the signal is set up and the main loop entered. Notice,
by the way, that the signal gets set again after an interrupt occurs. This is neces
sary; most signals are automatically reset to their default action when they occur.

Some programs that want to detect signals simply can't be stopped at an arbitrary
point, for example in the middle of updating a linked list If the routine called
when a signal occurs sets a flag and then returns instead of calling exi t () or
longjrnp (), execution continues at the exact point it was interrupted. The
interrupt flag can then be tested later.

There is one difficulty associated with this approach. Suppose the program is
reading the terminal when the interrupt is sent. The specified routine is duly
called; it sets its flag and returns. If it were really true, as we said above, that
'execution resumes at the exact point it was interrupted,' the program would

Revision A of 9 May 1988

Chapter 2 - SunOS Programming 29

continue reading the tenninal until the user typed another line. This behavior
might well be confusing, since the user might not know that the program is read
ing; he presumably would prefer to have the signal take effect instantly. The
method chosen to resolve this difficulty is to terminate the terminal read when
execution resumes after the signal, returning an error code which indicates what
happened.

Thus programs which catch and resume execution after signals should be
prepared for 'errors' which are caused by interrupted system calls. The ones to
watch out for are reads from a terminal, wait (), and pause (). A program
whose onintr () routine just sets intflag, resets the interrupt signal, and
returns, should usually include code like the following when it reads the standard
input:

if (getchar() == EOF)
if (intflag)

/* EOF caused by interrupt */
else

/* true end-of-file */

A final subtlety to keep in mind becomes important when catching signals is
combined with executing other programs. Suppose a program catches interrupts,
and also includes a method (like'!' in the editor) whereby other programs can be
executed. Then the code should look something like this:

if (fork() == O}
execl(... };

signal (SIGINT, SIG_IGN); /* ignore interrupts */
wait(&status); /* until the child is done */
signal (SIGINT, onintr}i /* restore interrupts */

Why is this? Again, it's not obvious, but not really difficult. Suppose the pro
gram you call catches its own interrupts. If you interrupt the subprogram, it will
get the signal and return to its main loop, and probably read your terminal. But
the calling program will also pop out of its wait for the subprogram and read your
terminal. Having two processes reading your terminal is very unfortunate, since
the system figuratively flips a coin to decide who should get each line of input.
A simple way out is to have the parent program ignore interrupts until the child is
done. This reasoning is reflected in the standard 110 library function
shownsystem () as

.\sun ~ microsystems
Revision A of9 May 1988

30 Programming Utilities and Libraries

2.7. The Standard liD
Library

finclude <signal.h>

system(s)
char *s;

/* run command string 5 */

int status, pid, W;
register int (* istat) (), (*qstat) ();

if «pid = fork(» == 0)
execl("/bin/sh", "sh", "-c", s, 0);
_exit(127);

istat = signal(SIGINT, SIG_IGN);
qstat = signal(SIGQUIT, SIG_IGN);
while «w = wait(&status» != pid && w != -1)

;

if (w == -1)
status = -1;

signal (SIGINT, istat);
signal (SIGQUIT, qstat);
return(status);

As an aside on declarations, the function signal () obviously has a rather
strange second argument. It is in fact a pointer to a function delivering an in
teger, and this is also the type of the signal routine itself. The two values
SIG_IGN and SIG_DFL have the right type, but are chosen so they coincide
with no possible actual functions. For the enthusiast, here is how they are
defined for the Sun system - the definitions should be sufficiently ugly and non
portable to encourage use of the include file.

fdefine SIG DFL
fdefine SIG IGN

(int (*) 0)0
(int (*) (» 1

The standard lID library was designed with the following goals in mind:

1. It must be as efficient as possible, both in time and in space, so that there
will be no hesitation in using it, no matter how critical the application.

2. It must be simple to use, and also free of the magic numbers and mysterious
calls whose use mars the understandability and portability of many programs
using older packages.

3. The interface provided should be applicable on all machines, whether or not
the programs which implement it are directly portable to other systems, or to
machines non-Sun running a version of SunOS.

Revision A of9 May 1988

General Usage

Standard I/O Library Calls

Chapter 2 - SunOS Programming 31

Each program using the library must have the line

#include <stdio.h>

which defines certain macros and variables. The routines are in the normal C
library, so no special library argument is needed for loading. All names in the
include file intended only for internal use begin with an underscore _ to reduce
the possibility of collision with a user name. The names intended to be visible
outside the package are

stdin the name of the standard input stream

stdout the name of the standard output stream

stderr the name of the standard error stream

EOF is actually -1, and is the value returned by the read routines on end
of-file or error

NULL is a notation for the null pointer, returned by pointer-valued func
tions to indicate an error

FILE expands to struct _ iob and is a useful shorthand when declar
ing pointers to streams

BUFS IZ is a number (viz. 1024) of the size suitable for an I/O buffer supplied
by the user. See setbuf () , below

getc(), getchar, putc(), putchar, feof, ferror, fileno
are defined as macros. Their actions are described below; they are
mentioned here to point out that it is not possible to redeclare them
and that they are not actually functions; thus, for example, they may
not have breakpoints set on them.

The routines in this package offer the convenience of automatic buffer allocation
and output flushing where appropriate. The names stdin (), stdout () ,and
s t de r r () are constants and may not be assigned to.

FILE *fopen(filename, type)
char *filename;
char *typei

opens the file and, if needed, allocates a buffer for it. f i 1 e name is a character
string specifying the name. type is a character string (not a single character). It
may be "r", "w", or "a" to indicate intent to read, write, or append. In addi
tion, each mode may be followed by a + sign to open the file for reading and
writing. r+ positions the stream at the beginning of the file, w+ creates or trun
cates the file, and a + positions the stream to the end of the file. Both reads and
writes may be used on read/write streams, with the limitation that an fseek () ,
rewind () , or reading end-of-file must be used between a read and a write or
vice versa. The value returned is a file pointer. If it is NULL the attempt to open
failed.

Revision A of9 May 1988

32 Programming Utilities and Libraries

freopen ()

getc ()

fgetc ()

putc ()

fputc ()

fclose ()

fflush ()

FILE *freopen(filename, type, ioptr)
char *filename;
char *type;
FILE *ioptr;

The stream named by ioptr is closed, if necessary, and then reopened as if by
fopen (). If the attempt to open fails, NULL is returned, otherwise ioptr is
returned, which now refers to the new file. Often the reopened stream is stdin
or stdout. The filename and type parameters are as for fopen ().

int getc(ioptr)
FILE *ioptr;

returns the next character from the stream named by ioptr, which is a pointer
to a file such as returned by fopen (), or the name stdin. The integer EOF is
returned on end-of-file or when an error occurs. The null character \ 0 is a legal
character.

int fgetc(ioptr)
FILE *ioptr;

acts like getc () but is a genuine function, not a macro, so it can be pointed to,
passed as an argument, etc.

int putc(c, ioptr)
int c;
FILE *ioptr;

putc () writes the charac~er c on the output stream named by ioptr, which is
a value returned from fopen () or perhaps stdout or stderr. The character
is returned as value, and EOF is returned on error.

int fputc(c, ioptr)
int c;
FILE *ioptr;

acts like putc () but is a genuine function, not a macro.

int fclose(ioptr)
FILE *ioptr;

The file corresponding to ioptr is closed after any buffers are emptied. A
buffer allocated by the I/O system is freed. f close () is automatic on nonnal
termination of the program.

int fflush(ioptr)
FILE *ioptr;

Any buffered information on the (output) stream named by ioptr is written out.
Output files are normally buffered if they are not directed to the terminal.

Revision A of 9 May 1988

exit ()

feof ()

ferror ()

getchar ()

putchar ()

fgets ()

puts ()

fputs ()

(void) exit(errcode)i
int errcodei

Chapter 2 - SunOS Programming 33

tenninates the process and returns its argument as status to the parent. This is a
special version of the routine which calls f flu s h () for each output file. To
tenninate without flushing, use _ exi t () .

int feof(ioptr)
FILE *ioptr;

returns nonzero when end-of-file has occurred on the specified input stream.

int ferror(ioptr)
FILE *ioptri

returns nonzero when an error has occurred while reading or writing the named
stream. The error indication lasts until the file has been closed.

int getchar();

is identical to getc (stdin) .

int putchar(c)i

is identical to putc (c, stdout).

char *fgets(s, n, ioptr)
char *Si

int ni

FILE *ioptri

reads to n-l characters, or up to a newline character, whichever comes first,
from the stream ioptr into the string pointed to by the character pointer s. A
null character is placed after the last character read in the strings s. fgets
returns the first argument, or NULL if error or end-of-file occurred.

int puts(s)
char *Si

puts () copies the null-tenninated strings specified by s onto the standard out
put stream and appends a newline character.

int fputs(s, ioptr)
char *Si

FILE *ioptri

writes the null-tenninated string (character array) s on the stream ioptr. No
newline is appended. The last character transmitted is returned as value, or EOF
is returned on error.

Revision A of9 May 1988

34 Programming Utilities and Libraries

ungetc ()

printf ()

scanf ()

int ungetc(c, ioptr)
int c:
FILE *ioptr:

The argument character c is pushed back on the 'input stream named by ioptr.
Only one character may be pushed back.

int printf(format, aI, ...)
char *format:

int fprintf(ioptr, format, aI, ...)
FILE *ioptr:
char *format;

int sprintf (s, format, aI, ...)
char *s:
char *format;

printf () writes on the standard output. fpr intf () writes on the output
stream named by ioptr. sprintf () puts characters in the character array
(string) named by s. The specifications are as described in printf(3S).

printf () and fprintf () return the number of characters actually transmit
ted, or return EOF if any error condition exists on the output file. sprintf ()
returns a pointer to the buffer where the formatted string is placed.

int scanf(format, aI, ...)
char *format:

int fscanf(ioptr, format, aI, ...)
FILE *ioptr:
char *format:

int sscanf (s, format, aI, ...)
char *s:
char *format:

scanf () reads from the standard input. fscanf () reads from the named
input stream. sscanf () reads from the character string supplied as s.
scanf () reads characters, interprets them according to the format, and stores
the results in its arguments. Each routine expects as arguments a control string
format, and a set of arguments, each of which must be a pointer, indicating
where the converted input should be stored.

scanf () returns as its value the number of successfully matched and assigned
input items. This can be used to decide how many input items were found. On
end of file, EOF is returned; note that this is different from 0, which means that
the next input character does not match what was called for in the control string.

Revision A of 9 May 1988

fread ()

fwrite ()

rewind ()

system()

getw ()

putw ()

setbuf ()

Chapter 2 - SunOS Programming 35

int fread(ptr, sizeof(*ptr), nitems, ioptr)
unsigned nitems;
FILE *ioptr;

reads ni terns of data of the type of *ptr from file ioptr into the memory
area starting at pt r. No advance notification that binary I/O is being done is
required. fread () returns the number of items actually read from the specified
stream.

int fwrite(ptr, sizeof(*ptr), nitems, ioptr)
unsigned nitems;
FILE *ioptr;

Like fread (), but in the other direction. fwrite returns the number of items
actually transmitted to the specified stream. This may possibly be less than the
number of items requested if an error occurs while the transfer is in process.

(void) rewind(ioptr)
FILE *ioptr;

rewinds the stream named by ioptr. It is not very useful except on input, since
a rewound output file is still open only for output.

int system (string)
char *string;

The string is executed by the shell as if typed at the terminal. The return
value is the exit code 'of the invoked shell, which is usually the exit code of the
last command executed by it.

int getw (ioptr)
FILE *ioptr;

returns the next word from the input stream named by ioptr. EOF is returned
on end-of-file or error, but since this a perfectly good integer, feof () and
ferror () should be used. A 'word' is 32 bits on the Sun Workstation.

int putw(w, ioptr)
FILE *ioptr;

writes the integer w on the named output stream. put w () returns the current
error status of the specified stream, as if an ferror () call had been made.

(void) setbuf(ioptr, buf)
FILE *ioptr; char *buf;

setbuf () may be used after a stream has been opened but before I/O has
started. If buf is NULL, the stream is unbuffered. Otherwise the buffer supplied
is used. It must be a character array of sufficient size:

char buf[BUFSIZ];

Revision A of9 May 1988

36 Programming Utilities and Libraries

setbuffer ()

fileno ()

fseek ()

ftell ()

getpw ()

malloe ()

free ()

(void) setbuffer(ioptr, buf, size)
FILE *ioptr;
char *buf;
int size;

setbuffer () is like setbuf () (described above), but can be used when a
specified, nonstandard buffer size should be used.

int fileno(ioptr)
FILE *ioptr;

returns the integer file descriptor associated with the file.

int fseek(ioptr, offset, ptrname)
FILE *ioptr;
long offset;
int ptrname;

The location of the next byte in the stream named by ioptr is adjusted.
offset is a long integer. Ifptrname is 0, the offset is measured from the
beginning of the file; if ptrname is 1, the offset is measured from the current
read or write pointer; if ptrname is 2, the offset is measured from the end of the
file. The routine accounts properly for any buffering. When this routine is used
on non SunOS systems, the offset must be a value returned from fte 11 () and
the pt rname must be o.

long ftell(ioptr)
FILE *ioptr;

The byte offset, measured from the beginning of the file, associated with the
named stream is returned. Any buffering is properly accounted for. On non
SunOS systems the value of this call is useful only for handing to f seek () , so
as to position the file to the same place it was when ftell () was called.

int getpw(uid, buf)
int uidi
char *bufi

The password file is searched for the given integer user ID. If an appropriate line
is found, it is copied into the character array buf, and 0 is returned. If no line is
found corresponding to the user ID then 1 is returned.

char *malloc(num)
int numi

allocates n urn bytes. The pointer returned is aligned so as to be usable for any
purpose. NULL is returned if no space is available.

int free (ptr)
char *ptri

free () frees up memory previously allocated by malloe (). free () returns
a 0 if any errors were detected (such as pt r being misaligned), and returns 1

Revision A of 9 May 1988

calloc()

cfree ()

Character Type Checking

Chapter 2 - SunOS Programming 37

othetwise. Disorder can be expected if the pointer was not obtained from rna 1-
loc ().

char *calloc(num, size);
unsigned num;
unsigned size;

allocates space for num items, each of size size. The space is guaranteed to be
set to 0 and the pointer is aligned so as to be usable for any purpose. NULL is
returned if no space is available.

(void) cfree(ptr, num, size)
char *ptr;
unsigned num;
unsigned size;

Space is returned to the pool used by calloc (). Disorder can be expected if
the pointer was not obtained from calloc ().

The following are macros whose definitions may be obtained by including
<ctype.h>.

isalpha (c) returns nonzero if e is alphabetic.

isupper (c) returns nonzero if e is upper-case alphabetic.

islower (c) returns nonzero if e is lower-case alphabetic.

isdigit (c) returns nonzero if e is a digit

is xdi g i t (c) returns nonzero if e is a hexadecimal digit - that is, one of '0'
through '9', 'a' through 'f', or 'A' through 'F'.

isspace (c) returns nonzero if e is a spacing character: tab, newline, carriage
return, vertical tab, form feed, space.

ispunct (c) returns nonzero if e is any punctuation character, that is, not a
space, letter, digit or control character.

isalnum (c) returns nonzero if e is a letter or a digit.

isprint (c) returns nonzero if e is printable - a letter, digit, space, or punc
tuation character.

iscntrl (c) returns nonzero ife is a control character.

isascii (c) returns nonzero if e is an ASCII character, that is, less than octal
0200.

isgraph (c) returns nonzero if e is a printing character -like isprint (c)
but doesn't include the space character.

Revision A of9 May 1988

38 Programming Utilities and Libraries

Character Type Conversion toupper (c) returns the upper-case character corresponding to the lower-case
letter c.

to lower (c) returns the lower-case character ~orresponding to the upper-case
letter c.

Revision A of9 May 1988

3
System V Compatibility Features

System V Compatibility Features .. 41

3.1. Introduction ... 41

System V Enhancements in SunGS 4.0 ... 41

A Brief History ... 42

How the Compatibility Tools Work .. 42

The Group Mechanism .. 43

Compatibility of System Calls .. 43

3.2. SVID Compliance in SunGS 4.0 ... 44

3.1. Introduction

System V Enhancements in
SunOS 4.0

3
System V Compatibility Features

This overview is intended for both users and programmers who want to learn
about System V compatibility features in SunOS 4.0.

SunGS 4.0 offers Sun users nearly complete System V compatibility. Sun's
compatibility package allows programmers to write software that meets the Base
Level of the System V Interface Definition (SVID). SunGS 4.0 represents yet
another phase of joint efforts by AT&T and Sun to unify the different versions of
the UNIX system. The two principal versions have been 4.2 BSD (now 4.3
BSD),t and System V in its various releases.

System V and 4.3 BSD are not radically different, either in the interface they
present to the user, or the routines they provide for the programmer. They are
derived from UNIX systems written by Ken Thompson and Dennis Ritchie in the
mid-seventies, and many features are essentially unchanged since then.

The System V compatibility package permits programmers to write and test
software targeted for either System V or 4.x BSD. Users who acquire software
that runs only on System V can run it by means of the compatibility library.
Commands, system calls, and library routines can be drawn concurrently from
either the Berkeley or System V set It is even possible to have one window that
uses BSD by preference, and another window that uses System V by preference.

SunGS 4.0 incorporates the full SVID Release 3 Base Level system, which
reflects further progress on System V and BSD convergence. However, SunOS
4.0 does not support mandatory record and file locking. New features include:

o System calls compatible with SVID Base Level system calls, including:
chown () , creat () , fcntl () , kill (), mknod () , open () , and
utime ().

o Complete System V STREAMS interface, to support portable communication
protocol modules, and to simplify the writing of device drivers.

o Fully System V and BSD compatible t t y(4) interface using STREAMS, and
supporting all character sizes and parity settings.

t An outgrowth of research at U.c. Berkeley, BSD stands for Berkeley Software Distribution .

• ~sun ~ microsystems
41 Revision A of 9 May 1988

42 Programming Utilities and Libraries

A Brief History

How the Compatibility Tools
Work

o System V compatible archive utility are 1 V).

o System V batch utilities and job scheduling facilities: at(1), batch(l),
cron(I), and crontab{I).

o Access to Sun's value-added libraries (SunView for example) from inside
System V programs.

In early 1985, AT&T released the System V Interface Definition (SVID). This was
a major step because it made explicit exactly what was standard about System V,
and by omission, what was not. In late 1985, Sun and AT&T agreed to work
together to converge the two major strands of UNIX into a single system. In late
1986, Sun's Release 3.2 combined System V with 4.2 BSD, including almost full
Base Level compatibility. Now in early 1988, SunOS 4.0 offers full Base Level
compatibility, plus compatibility with additional SVID features.

System V programs that are upwards compatible with those in 4.x BSD have
already been added to the regular system directories. For example,
/usr/bin/sh is the new Bourne shell, and /usr/bin/make is backward
compatible System V enhancements.

Programs that existed only on System V have been added to a regular system
directories as well. For example, the text manipulation programs cut{ 1) and
paste(l) both reside in /usr /bin.

System V programs that are incompatible with those in 4.x BSD reside in the
directory /usr / Sbin. For example, /usr / Sbin/ stty has an entirely dif
ferent set of options from /usr /bin/ stty. If you want to use System V pro
grams by preference, simply include /usr / Sbin early in your path, as in these
lines from the .login or . prof ile files:

(csh) set path = (fusr/Sbin /usr/bin /usr/ucb .)

(sh) PATH=/usr/Sbin: /usr/bin: /usr/ucb: :
export PATH

The directories /usr/ Sbin, /usr/ Slib, and /usr/ Sinclude contain
material that has not yet been converged. Libraries and include files for compil
ing System V software reside in /usr / Slib and /usr / Sinclude respec
tively. If you want to compile a program written for System V, don't use
/usr /bin/ cc but rather /usr / Sbin/ cc, which will read all the correct
include files and load the correct libraries. You may want to make an alias or
shell function that invokes the System V compiler, to obviate the need for chang
ing your PATH:

(csh) alias ccS /usr/Sbin/cc

(sh) ccS () .!
/usr/Sbin/cc $*

.\sun
• microsystems

Revision A of 9 May 1988

The Group Mechanism

Compatibility of System Calls

Chapter 3 - System V Compatibility Features 43

The directories that constitute the System V compatibility package are optional,
requiring several megabytes of disk space. The suninsta11(8) program lets
you decide whether or not to load these directories.

Sun's Release 3.2 used the group mechanism from BSD rather than from System
V. SunOS 4.0, by contrast, allows both group mechanisms to work together.
When the GIDset- bit is set on a directory, a file created in that directory will be
assigned the directory's GID (BSD semantics). OthelWise, it will be assigned the
effective GID of the creating process (System V semantics).

In either case, the GIDset- bit will be set when mkdir(2) creates new directories.
Users will be able to set up their login directories to follow the semantics they
prefer. SunOS 4.0 distribution tapes are shipped with the GIDset- bit set on all
directories, thereby giving BSD semantics as the default. When you install
SunGS 4.0, if you want to mount old filesystems and have them act as they did in
the past, type the following command line for each mounted file system:

To set System V semantics on some portion of the installed system, use g-s
instead of g+ s in the above command line. There is a mount option called
grpid that always provides BSD semantics. This option may be needed when a
SunGS 4.0 client mounts a file system from a server that has not yet been
upgraded to SunOS 4.0.

For security reasons, the system call chown () requires root privilege. On Sys
tem V, by contrast, the owner of a file may change its ownership. This would
make the quota mechanism completely unenforceable.

The system call u time () now allows file time stamps to be set by any process
with write permission on the file.

The system call kill () may now send signals to any process with an effective
or real UID that matches the effective or real UID of the sender. As before, root
processes may send signals to any process.

The system call mknod () may now be used to create directories, although the
system call mkdir () is preferred.

With the system call fcntl (), the flags F_SETFL and O_NDELAY differ
between the include files in / usr / incl ude and / usr / Sinc1 ude. In either
case they should do the right thing. For BSD, they affect all references to the
underlying file. For System V, they affect only file descriptors associated with
the same file table entry.

The terminal driver now supports 5-bit and 6-bit characters, and arbitrary settings
of VMIN and VT IME. However, the default erase and kill characters are not -#=

and @ but rather (Delete) and (Control-U l.

Revision A of 9 May 1988

44 Programming Utilities and Libraries

3.2. SVID Compliance in
SunOS 4.0

Figure 3-1

Figure 3-2

The Venn diagrams in this section demonstrate how SunOS 4.0 complies with
release 3 of the System V Interface Definition SVID).(

SVID Base System OS Service Routines

SVID-compliant in SunOS 4.0

execl () fork () getuid () pclose ()
abort () execle () fread () ioctl () pipe ()
access () execlp () free () kill() popen () system()
alarm() execv() freopen () link () read() time ()
calloc () execve () fseek () lockf () readdir() times ()
chdir () execvp () fstat () lseek () realloc () ulimit ()
chmod() exit () ftell () mallinfo () rewind () umask ()
chown () fclose () fwrite () malloc () rewinddir () umount ()
clearerr () fcntl () getcwd() mallopt () rmdir () uname ()
close () fdopen () getegid() mkdir () setgid () unlink ()
closedir () feof () geteuid() mknod() setpgrp () ustat ()

ferror () getgid() mount () setuid() utime ()
fflush () getpgrp() open() signal () wait ()
fileno () getpid () opendir () sleep ()
fopen () getppid () pause () stat ()

SVID Base System General Library Routines

SVID-compliant in SunOS 4.0

exp() isalpha () matherr () setvbuf()
toupper () fabs () isascii () memccpy() sin () -

abs () fgetc () isatty() memchr() sinh () swab()
acos () fgets () iscntrl () memcmp() sprintf () tan ()
advance () floor () isdigit () memcpy() sqrt () tanh ()
asctime () fmod () isgraph () memset () srand () tdelete ()
asin () fprintf () islower () mktemp () srand48 () tempnam()
atan2 () fputc () isprint () modf() sscanf () tfind ()
atof () fputs () ispunct () mrand48 () ssignal () tmpfile ()
atoi () frexp () isspace () nrand48 () step() tmpnam()
atol () fscanf () isupper() perror () strcat () toascii ()
bsearch () ftw () isxdigit () pow() strchr () tolower ()
clock () gamma () jO () printf () strcmp() toupper ()
compile () getc () jl () putc() strcpy () tsearch ()
cos () getchar () jn () putchar () strcspn () ttyname ()
cosh() getenv () jrand48 () putenv() strdup() twalk ()
crypt () getopt () lcong48 () puts () strlen () tzset ()
ctermid() gets () ldexp () putw () strncat () ungetc ()
ctime () getw () lfind() qsort () strncmp () vfprintf ()
drand48 () gmtime () localtim () rand() strncpy() vprintf ()
encrypt () gsignal () log() scanf () strpbrk () vsprintf ()
erand48 () hqestroy () loglO () seed48 () strrchr() yO ()

hsearch () longjmp() setbuf () strspn () yl ()
hypot () lrand48 () setjmp () strtod() yn ()
isalnum() lsearch() setkey() strtok ()

Revision A of 9 May 1988

Figure 3-3

Figure 3-4

Figure 3-5

Chapter 3 - System V Compatibility Features 45

SVID Kernel Extension OS Service Routines

acct ()
plock ()

msgrcv ()
msgsnd()
nice ()
profil ()

SVID Basic Utilities Extension

cut
awk date
banner diff

df basename dirname
In cal du
mail calendar echo
mv cat ed
ps cd expr
red chmod false
rmail cmp file
rsh col find

corom grep
cp kill

line
Is

SVID Advanced Utilities Extension

shl
su

ptrace ()
semctl ()
semget()
semop()

mkdir
nl
nohup
pack
paste
pc at
pg
pr
pwd
rm
rmdir
sed
sh
sleep
sort

spell
split
sum
tail
tee
test
touch
tr
true
umask
uname
uniq
unpack
wait
wc

cancel tar SVID-compliant in SunOS 4.0
cu uucp
ex uulog at dd mesg
Ip uuname batch dircmp od
Ipstat uupick chgrp egrep stty
mailx uustat chown fgrep tabs
newgrp uuto cron id tty
news uux crontab join wall
passwd vi csplit logname write

who

Revision A of 9 May 1988

46 Programming Utilities and Libraries

Figure 3-6 SVID Administered Systems Extension Utilities

fsck runacct
acctcms fsdb sal
acctcom fuser sa2
acctconJ, fwtmp sadc
acctcon2 init sadp SVID-compliant
acctdisk killall sar in SunOS 4.0
acctmerg labelit setmnt
accton last login shutacct clri ncheck
acctprcl link startup devnm nice
acctprc2 mdfs sysdef grpck pwck
acctwtmp monacct timex mknod sync
charge fee mount turnacct ipcrm umount
ckpacct mvdir unlink ipcs
diskusg prctmp volcopy
dodisk prdaily whodo

prtacct wtmpfix

Figure 3-7 SVID Software Development Extension Utilities

SVID-compliant in SunOS 4.0
as
dis admin env sact
Id cc get time
nm chroot lex tsort
prof cflow lint unget
sdb cpp lorder val
size cxref m4 what
strip delta make xargs

prs
rmdel

Figure 3-8 SVID Software Development Extension Additional Routines

SVID-compliant in SunOS 4.0
endutent ()
getutent () a64l () getgrgid() mark ()
getutid() assert () getgrnam() monitor()
getut line () endgrent () getlogin () nlist ()
putut line () endpwent () getpass () putpwent ()
setutent () fgetgrent() getpwent () setgrent()
sgetl () fgetpwent() getpwnam() setpwent ()
sputl () getgrent () getpwuid ()
utmpname () l64a ()

Revision A of9 May 1988

Chapter 3 - System V Compatibility Features 47

Figure 3-9 SVID Terminal Interface Extension Utilities

~
----------------~~~~~=========~~~------

c tic put

Figure 3-10 SVID Terminal Interface Extension Library Routines

SVID-compliant in SunGS 4.0

erase () newpad() scr_restore ()
erasechar () newtermO scroll ()

addstr () fixterm() newwin () scrollok () wattroff ()
attroff () flash () nl () set_term() wattron ()
attron () flushinp () nocbreak () setscrreg () wattrset ()
attrset () getbegyx () nodelay () setterm () wclear ()
baudrate () getch () noecho() set upterm () wclrtobot ()
beep() getmaxyx() nonl () slk_**() wclrtoeol ()
box 0 getstr 0 noraw() standend() wdelch ()
cbreak () gettmode () overlay () standout () wdeleteln ()
clear () getyx() overwrite () subpad() wechochar ()
clearok () halfdelay () pechochar () subwin () werase ()
clrtobot () has_ic () pnoutrefresh () tgetent () wgetch ()
clrtoeol () has_il () prefresh () tgetflag() wgetstr ()
copywin () idlok () printw () tgetnum() winch ()
de f _prog_m* () inch() putp() tgetstr () winsch ()
def_shell_m* () initscr () raw() tgoto () winsertln ()
delay_output () insch () refresh () touchline () wmove ()
delch () insertln () reset _prog_m* () touchwinO wnoutrefresh ()
deleteln () intrflush () reset_shell_m* () tparm() wprintw ()
delwin () keyname () resetterm () tputs () wrefresh ()
doupdate () keypad() resetty () typeahead () wscanw ()
echo() killchar () saveterm() unctrl () wsetscrreg ()
echochar) leaveok () savetty () vidattr () wstandend ()
endwin () longname () scanw() vidputs () wstandout ()

move() scr_dump () waddch()
mv** () scr_init () waddstr ()

Revision A of9 May 1988

48 Programming Utilities and Libraries

Figure 3-11

Figure 3-12

Figure 3-13

SVID Open Systems Networking Interfaces Library Routines

t_accept ()
t_alloc 0
t_hindO
t_close 0
t _connect ()
t_error 0
t_free 0
t_getinfo 0
t _getstate ()
t_listen 0
t_look 0

t_open ()
t _ optmgmt ()
t_rcvO
t_rcvdis ()
t_rcvrel ()
t_rcvudata 0
t _ rcvuderr ()
t_revconnect ()
t_snd 0
t_snddis ()
t_sndrel ()
t _ sndudata 0
t_sync 0
t_unhindO <tiuser.h>

SVID-compliant
in SunOS 4.0

SVID STREAMS 110 Interface Operating System Service Routines

SVID Shared Resource Environment Utilities

adv
dname
fumount
fusage
idload

nsquery
rfadmin
rfpasswd
rfstart
rfstop
rmnstat
unadv

Revision A of9 May 1988

4
Shared Libraries

Shared Libraries .. 51

4.1. Definitions ... 52

Shared Object .. 52

Shared Library .. 52

Static vs. Dynamic Link Editing .. 52

Position Independent Code (PIC) ... 52

Static and Dynamic Link Editors ... 52

4.2. Using Shared Libraries ... 52

Building a Program to Use Shared Libraries .. 52

Binding Mode Options .. 54

-Bstatie and -Bdynamie ... 54

-N and -n Options for Id ... 54

Binding of PIC with Non-PIC ... 55

-de and -dp Options .. 55

Use of Assertions .. 55

The -assert Option .. 55

Run-Time Use of Shared Libraries ... 55

SunOS Shared Libraries .. 56

Dynamic vs. Static Binding Semantics .. 56

Debuggers ... 56

Perfonnance Issues .. 57

Dependencies on Other Files ... 57

Setuid Programs ... 58

4.3. Version Control .. 58

Version Numbers of . so's ... 58

Version Management Issues ... 58

4.4. Shared Library Mechanisms .. 59

Memory Sharing .. 59

The C Compiler .:... 59

The Assembler .. 59

crtO () ... 60

Link Editors: Id and Id. so ... 60

Id.so ... 61

4.5. Building a Shared Library .. 61

PIC ComIJOnents .. 61

Building the . so File .. 62

The. sa File ... 62

Building the . sa File .. 62

4.6. Building a Better Library .. 63

Sizing Down the Data Segment .. 63

U sing x s t r to Extract String Definitions .. 64

Better Ordering of Objects .. 64

crtO.o Dependency .. 64

The Idconfig Command .. 64

4.7. Shared Library Problems ... 65

Id. so Is Deleted ... 65

Wrong Library Is Used .. 65

Error Messages ... 65

4
Shared Libraries

Operating systems like SunOS have long achieved more efficient use of memory
by sharing a single physical copy of a program's text (code) among the processes
executing it. But while the text of a program may be shared among its con
current invocations, a significant portion of that text, consisting of library rou
tines, may be duplicated as part of other running programs. For example,
widely-used library functions such as printf () may be replicated any number
times throughout memory, and again in various executables throughout the file
system. This suggests that still-greater efficiencies can be had by sharing text at
the library level whenever possible.

The SunOS shared library mechanism improves resource utilization in a way that
is both straightforward and flexible:

o No specialized kernel support is required; it uses the standard memory
mapping and copy-on-write features provided by the mroap(2) system call
and the kernel memory management facilities.

o It is designed to minimize the burdens placed on users of existing code. In
particular:

• Shared libraries are transparent to the programs that use them, as well as
the build procedures for those programs.

• They are largely transparent to standard system utilities, including
debuggers.

• Shared libraries are transparent to library source code written in C.
However, some special procedures are necessary when building the
shared libraries themselves.

• The allocation of address space for shared library routines is handled
auto mati call y.

• Unlike statically-linked executables, programs that rely on shared
libraries need not be rebuilt if an underlying library changes (so long as
that library's calling interface remains compatible).

• The use of shared libraries is not required. You can specify the static
version of a SunOS shared library as desired.

In addition, shared libraries enhance the development environment by making it
easier to modify and test compatible updates to library functions.

51 Revision A of 9 May 1988

52 Programming Utilities and Libraries

4.1. Definitions

Shared Object

Shared Library

Static vs. Dynamic Link
Editing

Position Independent Code
(PIC)

Static and Dynamic Link
Editors

4.2. Using Shared Libraries

Building a Program to Use
Shared Libraries

A shared object, or . so file, is an a . out(5) fonnat file produced by ld(l). A
shared object differs from a runnable program iri that it lacks an initial entry
point.

A "shared library" is a shared object file that is used as a library. In cases where
the shared library exports initialized data, the shared object (. so) may be paired
with an optional "data interface description" (. sa) file. (See Building a Shared
Library, below, for details.)

Link editing is the set of operations necessary to build an executable program
from one or more object files. Static linking indicates that the results of these
operations are saved to a file. Dynamic linking refers to these same link-edit
operations when performed at run-time; the executable that results from dynamic
linking appears in the running process, but is not saved to a file.

Position-Independent code (PIC) requires link editing only to relocate references
to objects that are external to the current object module. Position-independent
code is readily shared.

The link-editing facilities of ld have been made available for use at run-time as
well as at compile-time. At compile time, the static link editor, ld, can build an
executable file in which some symbols remain unresolved. An executable
(a. out) file that contains unresolved symbols is said to be incomplete. Incom
plete executables require dynamic link editing at run-time.

The dynamic link editor, /usr/ lib/ ld. so, uses the system's memory
management facilities to map in and bind the shared object files that are required
at run-time, and performs the link editing operations that were deferred by ld.
As long as the text bound-in at run-time is not subsequently modified (say, by a
link-edit operation or an update to initialized external data), it remains shared
among the various (disparate) programs that use it. However, if the text of a
shared routine should need to be modified by a process during the course of exe
cution, local (exclusive) copies of the affected pages are created and maintained.

For the application developer, the decision to use shared libraries is made at the
static linking phase, when running ld. By default, if a shared version of a library
is available, I d constructs an executable that uses the shared version.

ld combines a variety of object files to produce an executable (a. out) file.
Exactly what code gets produced, and how complete the a. out is, depends on
the command-line options and input files supplied as arguments on the command
line. Id simply defers the resolution of any symbols that remain after it has run
out of definitions, and assumes that the program will be fully linked by ld. so at
run-time. ld accepts as input:

o Simple object files. ld simply concatenates (and links) .0 files in the order
that they are encountered.

Revision A of 9 May 1988

Chapter 4 - Shared Libraries 53

o ar(l) libraries. Each. a file is searched exactly once as it is encountered,
and only those definitions that match an unresolved external symbol are
extracted, concatenated to the text (or data), and linked.

o Shared objects. Any . so encountered is searched for symbol definitions
and references, but does not nonnally contribute to the concatenated text
(see Binding of PIC with non-PIC, for exceptions having to do with 1d's -
de option). However, the occurrence of each shared object is noted in the
resulting a. out file; this infonnation is used by 1d. so to perfonn
dynamic link editing at run-time.

Id's output can be one of two basic types:

o An' 'executable" (a . out) file. This file is either a program, if it has an
entry point, or a shared object (. so), if it does not.

o Another' 'simple object" (. 0) file. When given the -r flag, 1d combines
the input object files to fonn a single, larger one. (This is a special use for
1d which is of little relevance to shared libraries.)

You can indicate which libraries are to be used by supplying a -lname option on
the Id command line for each. Id searches each library in the order specified.
The name string is an abbreviated version of the library's filename; the full name
is of the fonn 'libname. a' if in archive fonnat, or 'libname. so. version' if
it is in shared object form. (see Version Control below, for a detailed discussion
of the version suffix). At 1d-time, this version information is noted; it must be
matched properly for successful binding at run-time by 1d. so.

The location of the library specified by a -1 option is determined by an ordered
list of directories in which to search called the library search path. This search
path is specified as follows. First, the value of the LD_LIBRARY_PATH
environment variable (a colon-separated list ofpatbnames). Then, any and all
directories specified with - Ldirectory options. And finally, the (default) direc
tories /usr/1ib and /usr/loeal/lib.

Each directory supplied with -Lis recorded for use when the program is exe
cuted, as are the default directories. Directory search information obtained from
LD _LIBRARY _PATH is not recorded in this manner. However, the search path
that LD _ LIBRARY _PAT H contains at run-time is searched at that time; this
allows an alternate set of libraries to be used.

At Id-time, the library search is satisfied by the first occurrence of either form of
the library (. soar . a if no . so is found), but if both versions are found in the
same directory, the . so fOIm is used by default. However, the choice of whether
a . so or . a version is used by 1d can be controlled by the binding mode
options described in the next section.

.\sun ~ microsystems
Revision A of 9 May 1988

54 Programming Utilities and Libraries

Binding Mode Options

-Bstatic and -Bdynamic You can specify the binding mode by supplying one of the - Bkeyword options
on the command line:

-Bdynamic

-Bstatic

Allow dynamic binding, do not resolve symbolic references,
and allow creation of execution-time symbol and relocation
infonnation. This is the default setting. Note that 1d records
the name of the . so file with the highest version number in
the executable.

Force static binding, this mode is also implied by options that
generate non-sharable executable formats.

-Bdynamic and -Bstatic may both be specified a number of times to toggle
the binding mode for specific libraries. Like -1, their influence is dependent
upon their location in the command line. Libraries that appear after a -
Bstatic are linked statically. Libraries that appear after a -Bdynamic are
treated as shared (when a shared version is available).

NOTE Since -Bdynamic is the default setting, the use of shared libraries in the con
struction of a program thus I JaIls out" from installing the . so in 1 d' s library
search path.

If -Bstatic is in effect, 1d refuses to use the . so form of a library; it contin
ues searching for an equivalent library with the . a suffix, and an explicit request
to load a . so file is treated as an error.

The following example shows how -Bstatic and -Bdynamic can be used to
use selected shared and static libraries. This cc command:

ec -0 test test.e -lsuntool -Bstatic -lsunwindow -Bdynamic -lsunwindow -lpixreet

generates the 1 d command:

/bin/ld -de -dp -e start -x -0 test /usr/lib/crtO.o test.o -Bstatic -lsuntool \
-Bdynamie -lsunwindow -lpixrect -lc

- Nand - n Options for 1 d

Since -Bstatic turns off the use of shared libraries, 1d finds the static (. a)
suntoo1library and uses it for link editing immediately. The subsequent
Bdynamic option tells 1d to use shared versions of the sunwindow, pix
rect and C libraries, if available.

The 1d options -N and -n instruct Id to build a non-pageable executable. Their
use implies a -Bstatic option .

• ~sun ~ microsystems
Revision A of9 May 1988

Chapter 4 - Shared Libraries 55

Binding of PIC with Non-PIC

-de and -dp Options

Use of Assertions

The -assert Option

As noted in the above example, the ee command generates an Id command with
the -dp and -de options. These options are included to facilitate binding of
non-PIC code (generated by default) with the PIC shared libraries that a program
might use. The bindings of interest are to:

o commons, (externs): allocated after the program is completely assembled
(-de);

o initialized data: imported from the shared libraries (-de); and

o entry points: supplied by the shared libraries (-dp).

Without special handling, references to these objects would require execution
time link editing, resulting in unsharable code. To improve the degree of sharing
for such programs, -de and -dp force the allocation of commons and the crea
tion of aliases for library entry points, respectively. These allocations and aliases
are created as part of the non-PIC executable, and result in programs that are con
sidered to be "pure-text" non-PIC programs, even though they may require
dynamic link editing.

NOTE While it is possible to invoke the Id command directly, it is generally better
practice to rely on the compiler-driver (such as cc) to generate the appropriate
Id command, so as to remain insulated from any future changes in the compila
tion environment. Compiler commands such as cc accept and pass on options to
Id.

To help detect any potential sharability or correctness problems, Id can validate
certain assertions about an executable that it builds. This assertion checking is
invoked by the "-assert keyword" option, where keyword is one of:

definitions if the resulting program were run now, there would be no run-

pure-text

time undefined symbol diagnostics. This assertion is set by
default, and is sufficient for validating applications that make
use of shared libraries.

the resulting executable requires no further relocations to its
text. The code of a shared library should be validated using
this assertion.

Run-Time Use of Shared
Libraries

At run-time, Id. so finishes the job started by Id. That is, it performs the link
editing operations needed to resolve a program's remaining references using
shared-library code and data. Id. so's first task is to find and map in the
required libraries. It applies the same library search rules as Id, looking first in
the directories specified by the current value ofLD_LIBRARY_PATH, and then
in the directories in the search path recorded by Id (the default directories and
those specified by - L). In addition, Id. so attempts to find the "best" version
of a shared library, that is, the version with the highest minor number (as
described under Version Control below).

Revision A of9 May 1988

56 Programming Utilities and Libraries

SunOS Shared Libraries

Dynamic vs. Static Binding
Semantics

Debuggers

The shared libraries provided in SunOS are:

o The C library (both BSD and System V variants)

o Window libraries (suntool and sunwindow)

o pixrect

o kernel virtual memory access (kvm)

Static (. a) versions of these libraries are also provided.

There are some semantic differences between dynamic and static binding. These
are not expected to cause a problem with programs that avoid questionable prac
tices with regard to library search order. However, there is a potential for prob
lems when programs are built from some components that have become dynami
cally loadable, while others remain static. Given the case where:

hermes% Id -0 x ... de se

The executable x is composed of several objects, including a dynamic com
ponent, dc, and a static component, s c. dc was, prior to the introduction of
shared libraries, an unordered archive file, and both de and s c contain
definitions for the symbol getsym. Suppose that de contains a reference to
getsym. If, in de's archive version, the definition for getsym preceded its
reference, Id might have resolved that reference using the definition from sc.
But in de's current (dynamic) form, its own definition is used instead. This is a
result of the fact that at run-time, Id. so searches for a symbol definition start
ing with the main program, and then all . so' s in load order. Even though it
allows for an inconsistency of this sort, this behavior preserves the ability to
interpose definitions on library entry points.

The SunOS debuggers have been modified to deal with the dynamic linking
environment provided by the new Id. In particular, they understand that symbol
definitions may appear after a program starts executing. However debugger users
must be aware that library symbols will not be resolved until main () has been
called, as the next example shows.

Revision A of 9 May 1988

Performance Issues

Dependencies on Other Files

Chapter 4 - Shared Libraries 57

::::::::::

Users of debugging tools also need to be aware that core files have incomplete
information on the state of shared code. Core files contain only the stack and
data regions of a process image. The text, and more importantly, the static data
regions of dynamically loaded objects do not appear. Thus, modifications made
to initialized data are not reflected in the core file.

Shared libraries represent a classic space vs. time trade-off. The work of incor
porating the library code into an address space is deferred in order to save both
primary and secondary storage. Therefore, one can expect to pay a slight CPU
time penalty with programs that use shared libraries. This penalty can be attri
buted to added cost of:

o dynamically loading the libraries,

o petfonning the iink ediiing operaiions, and

o the execution of the library PIC code.

However, these costs can be offset by the savings in I/O access time when library
code is already mapped in by another program, since the (real) I/O time required
to bring in a program and begin execution will be greatly reduced. As long as the
CPU time required to merge the program and its libraries does not exceed the I/O
time saved, the apparent performance of the program will be the same or better.
However, if sharing does not occur, or if the system's CPU is already saturated,
such savings may not be achieved.

A dynamically bound program consists not only of the executable file that is the
output of Id, but also of the files referred to during execution. Moving a dynam
ically bound program may also involve moving a number of other files as well.
Moving (or deleting) a file on which a dynamically bound program depends may
prevent that program from functioning.

~~sun ~ microsystems
Revision A of 9 May 1988

58 Programming Utilities and Libraries

Setuid Programs

4.3. Version Control

For those programs that execute with an effective UID (user ID) or GID (group
ID) different than the real UID or GID, Id. so ignores libraries in directories
other than /usr/lib and /usr/51ib in the search path.

A version numbering mechanism has been provided for shared libraries. This
allows newer compatible versions of a library to be bound at run-time. It also
allows the link editors to distinguish between compatible and incompatible ver
sions of a library.

Version Numbers of . so's The version number is composed of two parts, a major version, and a minor ver
sion number. This version-control suffix can be extended to an arbitrary string of
numbers in Dewey-decimal format, although only the first two components are
significant to the link editors at this time.

As noted earlier, Id records the version number of the shared library in the exe
cutable it builds. When Id. so searches for the library at run-time, it uses this
number to decide which of the (possibly multiple) versions of a given library is
"best," or whether any of the available versions are acceptable. The rules it fol
lows are:

o Major Versions Identical: the major version used at execution time must
exactly match the version found at Id-time. Failure to find an instance of
the library with a matching major version will cause a diagnostic to be
issued and the program's execution terminated.

o Highest Minor Version: in the presence of multiple instances of libraries
that match the desired major version, Id. so will use the highest minor ver
sion it finds. However, if the highest minor version found at execution time
is lower than the version noted at Id-time, a warning diagnostic is issued.

Major version numbers should be changed whenever there is an incompatible
change to the library's interface.

NOTE As always, the detection o/incompatibilities between library versions remains
the responsibility of the library's developer.

Version Management Issues Whenever there is an incompatible change to the library'S calling interface, the
major number of that library should be changed. A library's interface is defined
by:

o the names and types of exported functions and their parameters; and

o the names and types of exported data (initialized or not)

Incompatible changes would include the deletion of a exported procedure, dele
tion of exported data, changes to an procedure's parameter list, and changes to
data structures declared in °a . h file normally included by both the library and the
applications that use it.

Changes to int~rnallibrary procedures and data do not constitute an interface
change.

Minor versions should be changed to reflect compatible updates to libraries. An
example of a compatible update would be changing a procedure's algorithm

+~t!! Revision A of 9 May 1988

4.4. Shared Library
Mechanisms

Memory Sharing

The C Compiler

The Assembler

Chapter 4 - Shared Libraries 59

without changing its parameter list. Although adding a new library routine con
stitutes an interface change, it can be considered a compatible change.

Note that link-editors silently select the highest ~ompatible version they can
obtain. If the minor version used at Id-time is higher than the highest one found
at run-time, then although the interfaces should remain compatible, it is possible
that certain bug fixes or compatible enhancements on which the application
depends might be missing: hence the warning message mentioned above.

There is no single mechanism in SunOS that implements shared libraries.
Instead, the ability to construct a shared library comes as a consequence of
enhancements to various existing facilities. The system components and their
features that are instrumental in supporting shared libraries are:

o Virtual memory supports file mapping and "copy-on-write" sharing

o PIC generation by the compiler and assembler

o Link editor support for dynamic linking and loading

Memory sharing is provided by the kernel's virtual memory (VM) system. The
mechanisms of interest for shared libraries are:

o File mapping by way ofmmap () .

o Sharing at the granularity of a file page

o A per-page copy-on-write facility that allows run-time modification of a
shared file, without affecting other users of that same file.

The VM system uses these features internally, so that an exec () of a program
is reduced to establishing a copy-on-write mapping of the file containing the pro
gram. A shared library is added to the address space in exactly the same way,
using this general file-mapping mechanism.

The C compiler's -pic option generates position-independent code. When
pic is specified, references to objects that are external to the body of the code
are made by way of linkage tables. These indirect references can degrade execu
tion performance slightly, depending on of the number of dynamic references to
global objects. The code sequences generated often assume that the linkage
tables are no larger than a limit that is convenient for the specific machine (64K
bytes for an MC68000, or 8K for a SP ARC, for instance). In the (presumably
rare) event the tables require a larger size, the compiler can be coerced into gen
erating code sequences that permit larger linkage-table entries with the -PI C
option.

Code generated by the -pic option requires support from the assembler. This
support is enabled by the - k assembler flag, and is generated automatically by
cc when invoking the assembler for a compilation perfonned with the -pic or
the -PI C option.

User-written assembly code for use in a shared object must also be PIC. Refer to
the appropriate Assembly Language Reference for your Sun system for details .

• \sun ~'f/I mlcrosystems
Revision A of 9 May 1988

60 Programming Utilities and Libraries

crtO ()

Link Editors: ld and ld. so

Every main program produced by the standard languages is linked with a pro
gram prologue module, crtO (). This module contains the program's entry
point, and performs various initializations of the environment prior to calling the
program's main () function. crtO () refers to the symbol __ DYNAMIC. As
described above, when ld builds an executable requiring execution-time link
editing, it defines this symbol as the address of a data structure containing infor
mation needed for execution-time link editing operations. If the structure is not
needed, any reference to the symbol __ D YNAMI C is relocated to zero.

At program start-up, crtO () tests to see whether or not the program being exe
cuted requires further link editing. If not, crt 0 () simply proceeds with the
execution of the program as it always has - no further processing is involved.
However, if __ DYNAMIC is defined, crtO () opens the file
/usr / lib/ ld. so and requests the system to map it into the program's
address space via the mmap () system call. It then calls ld. so, passing as an
argument the address of its program's __ DYNAMIC structure. crtO () assumes
that ld. so's entry point is the first location in its text. When the call to ld. so
returns, the link editing operations required to begin the program's execution
have been completed.

After Id has processed all of its input files, it attempts to resolve each symbolic
reference to a relative offset within the executable being built. Id is able to
complete this symbolic reduction at Id-time only if:

o all information relating to the program has been given and no . so will be
added at execution time or

o the program has an entry point and symbolic reduction can be made for
those symbols defined in the program

After performing all the reductions it can, if there are no further symbols to
resolve, the output is a fully linked (static) executable. However, if any
unresolved symbols remain, then the executable will require further link editing
at run-time. In this case, Id deposits the information (including version number)
needed to obtain any needed . s a files, in the data space of the incomplete exe
cutable.

It should be noted that uninitialized "common" areas (essentially all uninitial
ized C globals) are allocated by the link editor after it has collected all refer
ences. In particular, this allocation can not occur in a program that still requires
the addition of information contained in a . so file, as the missing information
may affect the allocation process. Initialized "commons," however, are allo
cated in the executable in which their definition appears.

After Id has performed all the symbolic reductions it can, it attempts to
transform all relative references to absolute addresses. ld is able to do this "rela
tive reduction" only if it has been provided some absolute address.

Revision A of 9 May 1988

Idoso

4.5. Building a Shared
Library

PIC Components

Chapter 4 - Shared Libraries 61

At run-time, after receiving control from crtO () , Id 0 so, executes a short
bootstrap routine that performs any relocations Id 0 so itself requires. It then
processes the infonnation contained in the __ DYNAMIC structure of the program
that called it. Id. so examines the list of required dynamic objects Each ele-
ment of the list contains an offset relative to the DYNAMIC structure of an
array of link _ ob j ect structures and has infonnation to identify a 0 so that
must be incorporated. The identification is the name specified on the Id com
mand line used to build the program, and includes a bit indicating whether the
object was named explicitly or via a -1 option. Some version control infonna
tion is also recorded for each entry in the Id _need array. Id. so looks up the
indicated file, and maps it into the process's address space.

After all modules comprising the program have been placed in the address space,
1 d 0 so attempts to resolve the remaining symbols. After perfonning allocations
for all uninitialized commons Id 0 so attempts to resolve all unbound references
that occur outside ofprocedure linkage tables.

Unresolved procedural references in the linkage tables are not processed during
program startup. Instead, such references are initialized such that the initial call
results in a transfer of control to Id. so. When called in this way, Id 0 so first
resol ves the reference to an absolute address, and then modifies the linkage table
entry to use that address. Deferring the binding of procedural entry-points until
the first call eliminates unnecessary bindings to entry points that the program
may never require.

In the simplest of cases, the commands needed to build a shared library might be:

But note that this assumes that the library exports no initialized data. And it
makes no guarantee that the library text makes the most efficient possible use of
space, or allows for a minimal amount of paging.

As noted earlier, a shared library should be structured to avoid undue
modification in the course of dynamic linking and execution. Otherwise, it is
possible that some or all of the shared text may be rendered unsharable when run.
Although this lack of sharing would not effect the correct execution of library
routines, it will impact system perfonnance. If only a few programs use the
library, this impact is small. But for a widely-used library, the impact on system
perfonnance could be significant. Thus, shared library objects should be PIC,
they should be validated using the pure-text assertion, and those libraries
that export initialized data should be accompanied by a data interface description
(0 sa) file.

Components of shared library code should be PIC. For C source code, the objects
must be built with the -pic or -PIC options. User-written assembly code
requires that the programmer to follow the same rules that cc followed; details
of specific coding sequences can be found in the appropriate Assembly Language
Reference for a particular Sun system assembler .

• \sun ,~ microsystems
Revision A of 9 May 1988

62 Programming Utilities and Libraries

Building the . so File To build the . so portion of a shared library, simply invoke Id with the list of
object files that will comprise it. The version number is not automatically gen
erated by Id (which creates a file named a. out by default), but you can specify
the full name of the library, including the version number, with Id's -0 option.
It is strongly suggested that you use the -assert pure-text assertion to
uncover any instances of non-PIC code.

The. sa File The . sa file is used to support Id's -de option, which provides a space/time
efficient implementation of the interface between non-position-independent code
and dynamically linked objects. The . so is an archive library that contains only
the exported initialized data used by the shared library. When present, it is stati
cally linked at Id-time to insure correct allocation.

A data item is exported from a library if a program that uses the library refers to
the data item by name. The contents of the data item are included if they are
specified by value in the declaration. For instance, with a definition of the form:

char *strlist[] = { "string 1", "string 2" };

the data itself must be included in the . sa file, whereas with:

struct *strlist[] = { ptrl, ptr2 };

definitions for the objects named pt r 1 and ptr 2 would not necessarily have to
be included. Note that if pt r 1 were itself defined as an initialized global in the
library source, say:

extern char *ptrl = NULL

then this definition would also have to go into the . sa file.

Uninitialized data (exported or not) is handled automatically, and need not be
included in the . sa file. If the library does not export any data, then a . sa
would be unnecessary. The full name of a . s a also includes a version number
that must match the version string of the . so it accompanies.

CAUTION Failure to create a . sa file where it is required risks feeding Id erroneous
information about the nature of the interfaces to a library. Furthermore,
failure to use a . sa can result in the application's text segment becoming
unsharable when run.

For example, suppose a library's source module contains global initialized data
and is compiled with the -R option (merge initialized data with the text seg
ment). Furthermore, this data is not included in the . sa file. When a program
references this data, Id. so assumes this a procedure and consequently, it will
use this data item improperly.

Building the . sa File To build a . sa file:

1. Segregate the declarations of exported initialized data from the sources for
each object, and place them in a separate source file. Make sure that an up
to-date object is compiled from each of those data-description sources, and
include each of those data-description objects in both the static and shared
versions of the library.

Revision A of9 May 1988

4.6. Building a Better
Library

Sizing Down the Data
Segment

Chapter 4 - Shared Libraries 63

2. Create a separate (static) archive library composed of only the data
description objects, and give it a name of the fonn '1 ibname . sa . version' .
This archive constitutes the . sa file. Be sure that the . sa has the same ver
sion number as the . so it is to accompany.

3. Use ranlib(l) to incorporate a symbol table within the . sa archive.

Library code that maximizes sharing is considered "better" because it makes
more efficient use of the system's memory resources. Building the library com
ponents PIC is an important and easy first step, but there are other tuning stra
tegies to consider as well.

One way to maximize sharing is to minimize a . so's data segment (containing
initialized data), and its bss segment (containing uninitialized data). Often a
. so' s data requirements are large because a significant portion of that data that
is functionally read-only. There are several problems with this mix of read-only
and modifiable data:

o data that could be shared is not,

o an unnecessary amount of swap space is reserved, and

o read-only data fragments the read-write storage, spreading it over more
pages.

One approach is to move initialized read-only data into the text segment. This is
done by compiling with the - R option. However caution needs to be exercised,
since initialized data structures that contain pointers require relocation at run
time.

For instance, given the declarations:

void test();
int x;
struct fxy{

void (*pO) () ;
int *pl;
} ;

struct fxy example = {test, &x};

The references to &x and test are instances of pointers embedded in an initial
ized structure, and should be avoided in shared code. You can avoid problems of
this sort by using an uninitialized pointer:

struct fxy example;

and an adding an initialization routine to set the value(s).

Revision A of 9 May 1988

64 Programming Utilities and Libraries

Using xstr to Extract String
Definitions

Better Ordering of Objects

crt 0 . a Dependency

The ldconfig Command

Another cornmon example of initialized data containing pointers is an array of
strings:

char *errlist[] = {"errl", "err2"};

The x s t r (1) utility can be used to make code containing initialized strings
more sharable. It segregates the literal string data from its relocatable references,
which allows the literal data to be merged safely into the text segment. However,
files containing references to the string data should not be compiled with the - R
option.

If there are several related pieces of data, another strategy is to coalesce the
smaller items into a larger structure and allocate the space from the heap.

The order of the objects in the executable can be important to minimizing the
memory requirements. Since objects are concatenated together, linking in the
wrong order may result in a unnecessarily large memory requirement Two
approaches that encourage better utilization of memory resources are:

D Routines that are frequently called should be packaged together, and isolated
from startup or rarely-called code.

D A set of routines that represent a common sequence should also be packaged
together. For example, given modules A, B, C, D, and E, where A and B fit
on one VM page, C and D fit on another, and E fits on a partial page, if A
always calls into E and never calls into B, the memory requirements may be
reduced by a page if E follows A.

Sometimes a program will define its own crt 0 () initial routine. If it is
intended that the program use shared libraries, then the programmer needs to pro
vide a hook for the run-time linker. Further discussion of this can be found under
link(5) in the SunOS Reference Manual.

Idconf ig(8) is a program used to construct a run-time linking cache for use by
Id. so. The cache has a default list of directories /usr /lib, /usr / Slib,
/usr/lib/fsoft,/usr/lib/f68881,/usr/lib/ffpa,and
/usr / lib/ f swi tch and will accept as input a list of additional directories to
augment this list. ldconfig records the pathname of the highest compatible
version of each shared library in the specified search path.

At runtime, ld. so first queries the cache to determine which is the best version
of a library in a particular directory. If the cache is unable to satisfy the request,
Id. so enumerates the directory entries for the best version.

Revision A of 9 May 1988

4.7. Shared Library
Problems

ld. so Is Deleted

Wrong Library Is Used

Error Messages

Chapter 4 - Shared Libraries 65

Since many system utilities are built to use shared libraries, and thus rely on
dynamic link-editing, the potential exists for chaos if an important shared library
(such as the C library) or /usr/ lib/ ld. so should be deleted.

If the latter has been deleted, you will see the following message:

(~ ___ c_r_t_o_: __ n_o __ /_u_s_r_/_I_l_·b_/_I_d __ .S_O ________________________________ ~]
To deal with the chaos resulting from either the shared C library or ld. so being
deleted, a number of commands and utilities have been statically linked. These
include: rcp(1) init(8), getty(8), sh(l), csh(l), mv(l), In(l), tar(1) and
restore(8). Since most system utilities may be rendered unusable by this con
dition, it may be necessary to boot the system single-user in order to restore
either /usr/lib/ld. so or the C library. Refer to System and Network
Administration for procedures to restore these files.

ld. so will not detect a library that is newly installed in the cache unless the
cache is rebuilt using ldconf ig. Thus, a program that depends on the newly
installed library may not be able to find it. You can use the Idd(1) command to
identify the libraries on which a program depends.

[ld.so: libname.so.major not found

Id. so failed to find a library with the appropriate major version number.

ld. so: open error for library
ld.so: can't read struct exec for library
ld. so: library is not for this machine type

Either the shared object has been corrupted, has incorrect access permissions, or
was built to execute on another processor architecture.

ld. so: call to undefined procedure symbol from address
ld. so: Undefined symbol symbol

These messages generally indicate that the execution path attempts to refer to an
undefined sympol. This is usually the result of a programming error.

ld. so: warning library has older version than expected

]

Revision A of 9 May 1988

66 Programming Utilities and Libraries

The version of the shared library that is currently being used has a minor version
number that is lower than the version that was present at the time the application
was compiled.

~\sun ~ microsystems
Revision A of 9 May 1988

5
lint - a Program Verifier for C

lint - a Program Verifier for C .. 69

5.1. Using lint .. 69

5.2. A Word About Philosophy ... 70

5.3. Unused Variables and Functions .. 70

5.4. Set/Used Information .. 71

5.5. Flow of Control .. 71

5.6. Function Values .. 72

5.7. Type Checking .. 72

5.8. Type Casts ... 73

5.9. Nonportable Character Use .. 73

5.10. Assignments of Longs to Ints .. 74

5.11. Strange Constructions .. 74

5.12. Pointer Alignment .. 75

5.13. Multiple Uses and Side Effects ... 75

5.14. Implementation .. 75

5.15. Portability .. 76

5.16. Shutting lint Up .. 77

5.17. LibraI)' Declaration Files ... 78

5.18. Considerations When Using lint .. 79

5.19. lint Options ... 79

5.1. Using lint

5
lint - a Program Verifier for C

lint examines C source programs, detecting a number of bugs and obscurities.
lint enforces the type rules ofC more strictly than the C compiler. lint may
also be used to enforce a number of portability restrictions involved in moving
programs between different machines and/or operating systems. Another option
detects a number of wasteful, or error-prone, constructions which nevertheless
are, strictly speaking, legal.

lint accepts multiple input files and library specifications, and checks them for
consistency.

The separation of function between lint and the C compilers has both historical
and practical rationale. The compilers tum C programs into executable files
rapidly and efficiently. This is possible in part because the compilers do not do
sophisticated type checking, especially between separately compiled programs.
lint takes a more global, leisurely view of the program, looking much more
carefully at the compatibilities.

This document discusses the use of lint, gives an overview of its implementa
tion, and gives some hints on writing machine-independent C code.

Suppose there are two C source files, filel.c and file2.c, which are ordinarily
compiled and loaded together. The command:

produces messages describing inconsistencies and inefficiencies in the programs.
lint enforces the typing rules of C more strictly than the C compiler (for both
historical and practical reasons) enforces them. The command:

produces, in addition to the types of messages described above, additional mes
sages relating to portability of the programs to other operating systems and
machines. Replacing the -p by -h produces messages about various error-prone
or wasteful constructions which, strictly speaking, are not bugs. Saying -hp gets
the whole works.

69 Revision A of9 May 1988

70 Programming Utilities and Libraries

5.2. A Word About
Philosophy

5.3. Unused Variables and
Functions

The next several sections describe the major messages; the document closes with
sections discussing the implementation and giving suggestions for writing port
able C. There is a summary of lint options in section lint Options.

Many of the facts which lint needs may be impossible to discover. For exam
ple, whether a given function in a program ever gets called may depend on the
input data. Deciding whether exit is ever called is equivalent to solving the
famous 'halting problem,' which is known to be recursively undecidable.

Thus, most of the lint algorithms are a compromise. If a function is never
mentioned, it can never be called. If a function is mentioned, 1 in t assumes it
can be called; this is not necessarily so, but in practice is quite reasonable.

lint tries to give information with a high degree of relevance. Messages of the
form 'xo: might be a bug' are easy to generate, but are acceptable only in propor
tion to the fraction of real bugs they uncover. If this fraction of real bugs is too
small, the messages lose their credibility and serve merely to clutter up the out
put, obscuring the more important messages.

Keeping these issues in mind, we now consider in more detail the classes of mes
sages which lint produces.

As programs evolve and develop, previously used variables and arguments to
functions may become unused; it is not uncommon for external variables, or even
entire functions, to become unnecessary, and yet not be removed from the source.
These 'errors of commission' rarely make working programs fail, but they are a
source of inefficiency, and make programs harder to understand and change.
Moreover, information about such unused variables and functions can occasion
ally serve to discover bugs; if a function does a necessary job, and is never
called, something is wrong!

lint complains about variables and functions which are defined but not other
wise mentioned. An exception is variables which are declared through explicit
extern statements but are never referenced; thus the statement:

extern float sin();

will evoke no comment if sin is never used. Note that this agrees with the
semantics of the C compiler. In some cases, these unused external declarations
might be of some interest; they can be discovered by adding the -x option to the
1 i n t invocation.

Certain styles of programming require many functions to be written with similar
interfaces; frequently, some of the arguments may be unused in many of the
calls. The -v option is available to suppress the printing of complaints about
unused arguments. When -v is in effect, no messages are produced about unused
arguments except for those arguments which are unused and also declared as
register arguments; this can be considered an active (and preventable) waste of
the register resources of the machine.

Revision A of 9 May 1988

5.4. Set/Used Information

5.5. Flow of Control

Chapter 5 -lint - a Program Verifier for C 71

There is one case where infonnation about unused, or undefined, variables is
more distracting than helpful. This is when 1 in t is applied to some, but not all,
files out of a collection which are to be loaded together. In this case, many of the
functions and variables defined may not be used·, and, conversely, many func
tions and variables defined elsewhere may be used. The -u option may be used
to suppress the spurious messages which might otherwise appear.

lint attempts to detect cases where a variable is used before it is set This is
very difficult to do well; many algorithms take a good deal of time and space,
and still produce messages about perfectly valid programs. lint detects local
variables (automatic and register storage classes) whose first use appears physi
cally earlier in the input file than the first assignment to the variable. It assumes
that taking the address of a variable constitutes a 'use,' since the actual use may
occur at any later time, in a data-dependent fashion.

The restriction to the physical appearance of variables in the file makes the algo
rithm very simple and quick to implement, since the true flow of control need not
be discovered. It does mean that lint can complain about some programs
which are legal, but these programs would probably be considered bad on stylis
tic grounds (for example, might contain at least two goto's). Because static and
external variables are initialized to 0, no meaningful infonnation can be
discovered about their uses. The algorithm deals correctly, however, with initial
ized automatic variables, and variables which are used in the expression which
first sets them.

The set/used infonnation also permits recognition of those local variables which
are set and never used; these form a frequent source of inefficiencies, and may
also be symptomatic of bugs.

lint attempts to detect unreachable portions of the programs which it
processes. It complains about unlabeled statements immediately following
goto, break, continue, or return statements. An attempt is made to
detect loops which can never be left at the bottom, detecting the special cases
while (1) and for (; ;) as infinite loops. lint also complains about
loops which cannot be entered at the top; some valid programs may have such
loops, but at best they are bad style, at worst bugs.

lint has an important area of blindness in the flow of control algorithm: it has
no way of detecting functions which are called and never return. Thus, a call to
ex it may cause unreachable code which 1 i n t does not detect; the most serious
effects of this are in the detennination of returned function values (see the next
section).

One fonn of unreachable statement that 1 in t does not complain about is a
break statement that cannot be reached - programs generated by yacc, and
especially lex, may have literally hundreds of unreachable break statements.
The -0 option in the C compiler often eliminates the resulting object code
inefficiency. Thus, these unreached statements are of little importance - there is
typically nothing the user can do about them, and the resulting messages would
clutter up the lint output. If these messages are desired, lint can be invoked
with the -b option.

Revision A of 9 May 1988

72 Programming Utilities and Libraries

5.6. Function Values

5.7. Type Checking

Sometimes functions return values which are never used; sometimes programs
incorrectly use function 'values' which are never returned. lint addresses this
problem in a number of ways.

Locally, within a function definition, the appearance of both:

ret urn (expr);

and:

return;

statements results in the message

function na~ contains return (expr) and return

The most serious difficulty with this is detecting when a function return is
implied by flow of control reaching the end of the function. This can be seen
with a simple example:

f (a)
if (a

return (3);
g ();

Notice that, if a tests false,/will call g and then return with no defined return
value; this will trigger a complaint from lint. If g, like exit, never returns,
the message will still be produced when in fact nothing is wrong.

In practice, some potentially serious bugs have been discovered by this feature; it
also accounts for a substantial fraction of the 'noise' messages produced by
lint.

On a global scale, lint detects cases where a function returns a value, but this
value is sometimes, or always, unused. When the value is always unused, it may
constitute an inefficiency in the function definition. When the value is some
times unused, it may represent bad style (for example, not testing for error condi
tions).

The dual problem, using a function value when the function does not return one,
is also detected. This is a serious problem. Amazingly, this bug has been
observed on a couple of occasions in 'working' programs; the desired function
value just happened to have been computed in the function return register!

lint enforces the type checking rules ofC more strictly than the compiler does.
The additional checking is in four major areas: across certain binary operators
and implied assignments, at the structure selection operators, between the
definition and uses of functions, and in the use of enumerations.

There are a number of operators which have an implied balancing between types
of the operands. The· assignment, conditional (? :), and relational operators have
this property; the argument of a return statement, and expressions used in ini
tialization also suffer similar conversions. In these operations, char, short,

Revision A of9 May 1988

5.8. Type Casts

5.9. Nonportable
Character Use

Chapter 5 - lint - a Program Verifier for C 73

int, long, unsigned, float, and double types may be freely intennixed.
The types of pointers must agree exactly, except that arrays of x's can, of course,
be intennixed with pointers to x's.

The type checking rules also require that, in structure references, the left operand
of the -> be a pointer to structure, the left operand of the • be a structure, and
the right operand of these operators be a member of the structure implied by the
left operand. Similar checking is done for references to unions.

Strict rules apply to function argument and return value matching. The types
float and double may be freely matched, as may the types char, short,
int, and unsigned. Also, pointers can be matched with the associated arrays.
Aside from this, all actual arguments must agree in type with their declared coun
terparts.

With enumerations, checks are made that enumeration variables or members are
not mixed with other types, or other enumerations, and that the only operations
applied are =, initialization, ==, !=, and function arguments and return values.

The type casting feature in C was introduced largely as an aid to producing more
portable programs. Consider the assignment:

p = 1 i

where p is a character pointer. lint will quite rightly complain. Now, consider
the assignment

p = (char *)1 i

in which a cast has been used to convert the integer to a character pointer. The
programmer obviously had a strong motivation for doing this, and has clearly
signaled his intentions. It seems harsh for 1 i n t to continue to complain about
this. On the other hand, if this code is moved to another machine, such code
should be looked at carefully. The -i! option controls the printing of comments
about casts. When -i! is in effect, casts are treated as though they were assign
ments subject to complaint; otherwise, all legal casts are passed without com
ment, no matter how strange the type mixing seems to be.

In some implementations, characters are signed quantities, with a range from
-128 to 127. In other C implementations, characters take on only positive
values. Thus, lint will mark certain comparisons and assignments as being
illegal or nonportable. For example, the fragment:

[
char Ci

if ((c = getchar ()) < 0) . . . 1
works on the PDP-II, but will fail on machines where characters always take on
positive values. The real solution is to declare c an integer, since getchar is actu
ally returning integer values. In any case, lint will say 'nonportable character
comparison'.

+~t!! Revision A of 9 May 1988

74 Programming Utilities and Libraries

5.10. Assignments of Longs
to Ints

5.11. Strange
Constructions

A similar issue arises with bitfields; when assignments of constant values are
made to bitfields, the field may be too small to hold the value. This is especially
true because on some machines bitfields are considered as signed quantities.
While it may seem unintuitive to consider that a two-bit field declared of type
int cannot hold the value 3, the problem disappears if the bitfield is declared to
have type unsigned.

Bugs may arise from the assignment of a long to an int, which may lose accu
racy. This may happen in programs which have been incompletely converted to
use typedefs. When a typedef variable is changed from int to long, the
program can stop working because some intermediate results may be assigned to
int's, losing accuracy. Since there are a number of legitimate reasons for
assigning longs to ints, the detection of these assignments is enabled by the
-a option.

lint flags several perfectly legal, but somewhat strange, constructions - it is
hoped that the messages encourage better code quality, clearer style, and may
even point out bugs. The -b option is used to enable these checks. For example,
in the statement:

*p++ ;

the * does nothing; this provokes the message 'null effect' from lint. The pro
gram fragment:

unsigned x ; if(x < 0) ...

is clearly somewhat strange; the test will never succeed. Similarly, the test:

if(x > 0) ••.

is equivalent to:

if(x != 0)

which may not be the intended action. lint will say 'degenerate unsigned com
parison' in these cases. If one says:

if(1 != 0) ...

lint reports 'constant in conditional context', since the comparison of 1 with 0
gives a constant result.

Another construction detected by lint involves operator precedence. Bugs
which arise from misunderstandings about the precedence of operators can be
accentuated by spacing and fonnatting, making such bugs extremely hard to find.
For example, the statements:

if (x& 077 == 0) • • •

or

x«2 + 40

probably do not do what was intended. The best solution is to parenthesize such
expressions, and lint encourages this by an appropriate message.

Revision A of 9 May 1988

5.12. Pointer Alignment

5.13. Multiple Uses and
Side Effects

5.14. Implementation

Chapter 5 -lint - a Program Verifier for C 75

Finally, when the -b option is in force lint complains about variables which
are redeclared in inner blocks in a way that conflicts with their use in outer
blocks. This is legal, but is considered by many (including the author) to be bad
style, usually unnecessary, and frequently a bug:

Certain pointer assignments may be reasonable on some machines, and illegal. on
others, due entirely to alignment restrictions. For example, on the PDP-II, it is
reasonable to assign integer pointers to double pointers, since double-precision
values may begin on any integer boundary. On the Honeywell 6000, double
precision values must begin on even word boundaries; thus, not all such assign
ments make sense. lint tries to detect cases where pointers are assigned to
other pointers, and such alignment problems might arise. The message 'possible
pointer alignment problem' results from this situation whenever either the -p or
-b options are in effect.

In complicated expressions, the best order in which to evaluate subexpressions
may be highly machine-dependent. For example, on machines (like the PDP-II)
in which the stack runs backwards, function arguments will probably be best
evaluated from right-to-Ieft; on machines with a stack running forward, left-to
right seems most attractive. Function calls embedded as arguments of other
functions mayor may not be treated similarly to ordinary arguments. Similar
issues arise with other operators which have side effects, such as the assignment
operators and the increment and decrement operators.

In order that the efficiency of C on a particular machine not be unduly comprom
ised, the C language leaves the order of evaluation of complicated expressions up
to the local compiler, and, in fact, the various C compilers have considerable
differences in the order in which they will evaluate complicated expressions. In
particular, if any variable is changed by a side effect, and also used elsewhere in
the same expression, the result is explicitly undefined.

lint checks for the important special case where a simple scalar variable is
affected. For example, the statement:

a [i] = b [i ++] ;

will draw the complaint:

warning: i evaluation order undefined

lint consists of two programs and a driver. The first program is a version of
the Portable C Compiler, which is the basis of many C compilers, including
Sun's. This compiler does lexical and syntax analysis on the input text, con
structs and maintains symbol tables, and builds trees for expressions. Instead of
writing an intermediate file which is passed to a code generator, as the compilers
do, lint produces an intermediate file which consists of lines of ASCII text.
Each line contains an external variable name, an encoding of the context in
which it was seen (use, definition, declaration, etc.), a type specifier, and a source
file name and line number. The information about variables local to a function or
file is collected by accessing the symbol table, and examining the expression
trees.

Revision A of 9 May 1988

76 Programming Utilities and Libraries

5.15. Portability

Comments about local problems are produced as detected. The information
about external names is collected onto an intermediate file. After all the source
files and library descriptions have been collected, the intermediate file is sorted to
bring all information collected about a given external name together. The
second, rather small, program then reads the lines from the intermediate file and
compares all of the definitions, declarations, and uses for consistency.

The driver controls this process, and is also responsible for making the options
available to both passes of 1 i n t.

Many C programs have been successfully ported to a wide variety of operating
systems, partly as a result of the lint features that increase portability. While
there is no guarantee that a given C program will run unmodified within a dif
ferent system environment, passing it through lint identifies and eliminates
many potential portability problems.

For instance, uninitialized external variables are treated differently in different
implementations of C. Suppose two files both contain a declaration without ini
tialization, such as:

int a ;

outside of any function. The loader resolves these declarations, and sets aside
only a single word of storage for a. Under the GCOS and IBM implementations,
this is not feasible (for various stupid reasons!) so each such declaration sets
aside a word of storage called a. When loading or library editing takes place, this
creates fatal conflicts which prevent the proper operation of the program. 1 in t
detects such multiple definitions if it is invoked with the -p option.

A related difficulty comes from the amount of information retained about exter
nal names during the loading process. On the SunOS system, externally known
names have seven significant characters, with the upper/lower case distinction
kept. On the IBM systems, there are eight significant characters, but the case dis
tinction is lost. On GCOS, there are only six characters, of a single case. This
leads to situations where programs run on one system, but encounter loader prob
lems on others. lint -p maps all external symbols to one case and truncates
them to six characters, providing a worst-case analysis.

A number of differences arise in the area of character handling: characters in
SunOS are eight bit ASCII, while they are eight bit EBCDIC on the IBM, and nine
bit ASCII on GCOS. Moreover, character strings go from high to low bit positions
('left to right') on GCOS and IBM, and low to high ('right to left') on the PDP-II.
This means that code attempting to construct strings out of character constants,
or attempting to use characters as indices into arrays, must be looked at with
great suspicion. lint is of little help here, except to option multi-character
character constants.

Of course, the word sizes are different! This is less troublesome than might be
expected, however. The main problems are likely to arise in shifting or masking.
C now supports a bit-field facility, which can be used to write much of this code

~~sun ~ microsystems
Revision A of 9 May 1988

5.16. Shutting 1 int Up

Chapter 5 -lint - a Program Verifier for C 77

in a reasonably portable way. Frequently, portability of such code can be
enhanced by slight rearrangements in coding style. Many of the incompatibili
ties seem to have the flavor of writing:

x &= 0177700 ;

to clear the low order six bits of x. This suffices on the PDP-II, but fails badly
on GCOS and IBM. If the bit field feature cannot be used, the same effect can be
obtained by writing:

x &= - 077 ;

which will work on all these machines.

The right shift operator is arithmetic shift on the PDP-II, and logical shift on
most other machines. To obtain a logical shift on all machines, the left operand
can be typed unsigned. Characters are considered signed integers on the
PDP-II, and unsigned on the other machines. This persistence of the sign bit
may be reasonably considered a bug in the PDP-II hardware which has infiltrated
itself into the C language. If there were a good way to discover the programs
which would be affected, C could be changed; in any case, lint is no help here.

The above discussion may have made the problem of portability seem bigger
than it in fact is. The issues involved here are rarely subtle or mysterious, at least
to the implementor of the program, although they can involve some work to
straighten out. The most serious bar to the portability of system utilities has been
the inability to mimic essential system functions on the other systems. The ina
bility to seek to a random character position in a text file, or to establish a pipe
between processes, has involved far more rewriting and debugging than any of
the differences in C compilers. On the other hand, lint has been very helpful
in moving the operating system and associated utility programs to other
machines.

There are occasions when the programmer is smarter than lint. There may be
valid reasons for 'illegal' type casts, functions with a variable number of argu
ments, etc. Moreover, as specified above, the flow of control information pro
duced by lint often has blind spots, causing occasional spurious messages
about perfectly reasonable programs. Thus, some way of communicating with
lint, typically to shut it up, is desirable.

The form which this mechanism should take is not at all clear. New keywords
would require current and old compilers to recognize these keywords, if only to
ignore them. This has both philosophical and practical problems. New prepro
cessor syntax suffers from similar problems.

What was finally done was to make lint recognize a number of words when
they were embedded in comments. This required minimal preprocessor changes;
the preprocessor just had to agree to pass comments through to its output, instead
of deleting them as had been previously done. Thus, lint directives are invisi
ble to the compilers, and the effect on systems with the older preprocessors is
merely that the lint directives don't work .

• ~sun ~ microsystems
Revision A of 9 May 1988

78 Programming Utilities and Libraries

5.17. Library Declaration
Files

The first directive is concerned with flow of control infonnation; if a particular
place in the program cannot be reached, but this is not apparent to lint, this can
be asserted by placing the directive

/*NOTREACHED*/

just before that spot in the program. The -v option can be turned on for one
function by the directive:

/*ARGSUSED*/

Complaints about variable numbers of arguments in calls to a function can be
turned off by the directive:

/*VARARGS*/

preceding the function definition. In some cases, it is desirable to check the first
several arguments, and leave the later arguments unchecked. This can be done
by following the VARARGS keyword immediately with a digit giving the number
of arguments which should be checked; thus,

/*VARARGS2*/

checks the first two arguments and leaves the others unchecked. Finally, the
directive:

/*LINTLIBRARY*/

at the head of a file identifies this file as a library declaration file; this topic is
worth a section by itself.

lint accepts certain library directives, such as:

-ly

and tests the source files for compatibility with these libraries. This is done by
accessing library description files whose names are constructed from the library
directives. These files all begin with the directive:

/*LINTLIBRARY*/

which is followed by a series of dummy function definitions. The critical parts
of these definitions are the declaration of the function return type, whether the
dummy function returns a value, and the number and types of arguments to the
function. The VARARGS and ARGSUSED directives can be used to specify
features of the library functions.

lint library files are processed almost exactly like ordinary source files. The
only difference is that functions which are defined in a library file, but not used in
a source file, draw no complaints. lint does not simulate a fulllibrary search
algorithm, and complains if the source files contain a redefinition of a library rou
tine (this is a feature!).

Revision A of 9 May 1988

5.18. Considerations When
Using lint

5.19. lint Options

Chapter 5 -lint - a Program Verifier for C 79

By default, lint checks the routines it is given against a standard library file,
which contains descriptions of the programs which are normally loaded when a C
program is run. When the -p option is in effect, another file is checked contain
ing descriptions of the standard I/O library routines which are expected to be
portable across various machines. The -n option can be used to suppress all
library checking.

lint was a difficult program to write, partially because it is closely connected
with matters of programming style, and partially because users usually don't
notice bugs which cause 1 in t to miss errors which it should have caught. By
contrast, if lint incorrectly complains about something that is correct, the pro
grammer reports that immediately!

A number of areas remain to be further developed. The checking of structures
and arrays is rather inadequate; size incompatibilities go unchecked, and no
attempt is made to match up structure and union declarations across files. Some
stricter checking of the use of t ypedef is clearly desirable, but what checking
is appropriate, and how to carry it out, is still to be determined.

lint shares the preprocessor with the C compiler. At some point it may be
appropriate for a special version of the preprocessor to be constructed which
checks for things such as unused macro definitions, macro arguments which have
side effects which are not expanded at all, or are expanded more than once, etc.

The central problem with lint is the packaging of the information which it col
lects. There are many options which serve only to tum off, or slightly modify,
certain features. There are pressures to add even more of these options.

In conclusion, it appears that the general notion of having two programs is a good
one. The compiler concentrates on quickly and accurately turning the program
text into bits which can be run; lint concentrates on issues of portability, style,
and efficiency. lint can afford to be wrong, since incorrectness and over
conservatism are merely annoying, not fatal. The compiler can be fast since it
knows that lint will cover its flanks. Finally, the programmer can concentrate
at one stage of the programming process solely on the algorithms, data structures,
and correctness of the program, and then later retrofit, with the aid of lint, the
desirable properties of universality and portability.

The lint command currently has the form

The options are

a Report assignments of long to lint or shorter

b Report unreachable break statements

c Complain -about questionable casts

h Perform heuristic checks

Revision A of 9 May 1988

80 Programming Utilities and Libraries

I

n Do not do library checking

p Perfonn portability checks

s Same as h (for historical reasons)

u Don't report unused or undefined externals

v Don't report unused arguments

x Report unused external declarations

Revision A of 9 May 1988

6
Performance Analysis

Performance Analysis ... 83

6.1. time - Display Time Used by a Program ... 83

6.2. prof - Generate Profile of a Program .. 86

6.3. gpro f - Generate a Call Graph Profile .. 88

6.4. tcov - Statement-Level Analysis ... 90

6.1. time - Display Time
Used by a Program

6
Performance Analysis

Tools discussed in this chapter cover facilities for timing programs and getting
performance analysis data. Some tools work only with the C programming
language, while others will work on modules written in any language. Perfor
mance analysis tools provide a variety of levels of analysis from very simple tim
ing of a command down to a statement-by-statement analysis of a program. You
can select which level of granularity you like depending on the amount of detail
and optimization you wish to perform. Here are the performance analysis tools
available from the simplest to the most detailed:

time

prof

gprof

tcov

A simple command (built in to the C shell) to display the time that a
program takes. The C shell's built in time command display statis
tics about how a command uses the system resources as well as just
the raw time consumed.

Generates a profile for the modules in a program, showing which
modules are using the time.

Generates not only a profile as for prof, but also generates a call
graph showing what modules call which, and which modules are
called by other modules. The call graph can sometimes point out
areas where removing calls can speed up a program.

Generates a detailed statement-by-statement analysis of a C pro
gram.

Two distinct versions of the time command exist in the Sun system. Here we
discuss the time command that is built in to the C shell. The other time com
mand is a program (in /bin/time) that you get when you use the Bourne shell.

As a first example, we show the time command being used to display statistics
on the run-time of the index. assist program we've used in other examples
in this manual. In all the examples shown here we direct the output from
index. assist into / dev/null. Here is the simplest example of using
time:

83 Revision A of 9 May 1988

84 Programming Utilities and Libraries

Effects of Optimizer on
Timing

Controlling the display from
the time Command

Now to explain the items in the display from the time command above.

The 13.5u means that this program used 13.5 seconds of user time - time spent
in the application program itself. The 0.8s mea~s that the program spent 0.8
seconds in the system - this is time spent in the operating system kernel on
behalf of the program. The third field is the elapsed or wallclock time for the
application. The percentage figure is the percent of the user and system time as a
fraction of the elapsed time. The rest of the display is of lesser interest just now
and is explained in more detail below.

Just for the sake of interest, let's see what effect the C optimizer has on the run
time of this program - we make the program with the -0 option and see what
happens:

What has happened here? The optimized version takes longer to run! This
demonstration tells us that simple timing is not so simple after all- in a multi
tasking system there are many other factors that can effect the simple timing.
Note that the user time for the program is actually slightly less - 0.4 seconds
less. But, the system time and the elapsed time are very different. These timings
are affected by the load on the system. If we look at the last field in the time
display, note that in the unoptimized version there were zero page faults, while in
the optimized version there was one page fault. This is an indication that there
was other activity in the system at the time the program was run and this other
activity will adversely affect the elapsed time. There are two rules you can apply
to this situation:

o Run such timing tests on a quiet system late at night. Make sure that 'late at
night' is not midnight when a whole bunch of cron daemons start up.

o Run timing tests several times and take averages.

The time command built into the C shell has the capability of altering the infor
mation displayed under control of an environment variable. This is not true of
/bin/time - the command you'd have to use if you were using the Bourne
shell. Here is how to set up the time variable to control the time display.

You can control how the C shell times programs by setting the time variable in
your .login or . cshrc file.

The time variable can be supplied with one or two values, such as
set time=30r set time= (3 n%E %P%n).

Setting the time variable via a set.command of the form:

set t ime=nnn

means that the shell displays a resource-usage summary for any command run
ning for more than nnn CPU seconds.

Revision A of 9 May 1988

Control Key Letters for the
time Command

Chapter 6 - Performance Analysis 85

The second fonn controls exactly what resources are displayed. The character
string can be any string of text with embedded control key-letters in it. A control
key-letter is a percent sign (%) followed by a single upper-case letter. To print a
percent sign, use two percent signs in a row. Unrecognized key-letters are sim
ply printed. The control key-letters are:

Table 6-1 Control Key Letters/or the time Command

Default Timing Summary

Letter Description

D Average amount of unshared data space used in Kilobytes.
E Elapsed (wallclock) time for the command.
F Page faults.
I Number of block input operations.
K A verage amount of unshared stack space used in Kilobytes.
M Maximum real memory used during execution of the process.
o Number of block output operations.
P Total CPU time - U (user) plus S (system) - as a percentage

of E (elapsed) time.
S Number of seconds of CPU time consumed by the kernel on

behalf of the user's process.
U Number of seconds of CPU time devoted to the user's process.
W Number of swaps.
X Average amount of shared memory used in Kilobytes.

The default resource-usage summary is a line of the form:

uuu.u u sss.s s ee:ee pp % xxx +dddk iii +000 io mmm pf+ww w

Table 6-2 Default Timing Summary Chart

C shell time Command
versus /bin/time

Field Description

uuu.u user time (U),
sSS.s system time (S),
ee:ee elapsed time (E),
pp percentage of CPU time versus elapsed time (P),
xxx average shared memory in Kilobytes (X),
ddd average unshared data space in Kilobytes (D),
iii and 000 the number of block input and output operations respec

tively (I and 0),
mmm number of page faults (F)
ww number of swaps (W).

One final note on the time commands. As mentioned previously, there are two
versions of time: the one built in to the C shell as described above, and the ori
ginal Bourne shell time command which can be found in /bin/time .

• \sun ,~ microsystems
Revision A of 9 May 1988

86 Programming Utilities and Libraries

6.2. pro f - Generate
Profile of a Program

The C shell time command does not time a command which is a component of
a pipeline. This is what happens:

whereas the Bourne shell time command gives completely different results:

After simple timing, a profile of a program displays a finer level of analysis to
assist in optimizing performance. Getting a profile is the next step after simple
timing - more detailed analysis is provided by the call-graph profile and the
code coverage tools described later in this chapter.

Taking the index. assist program from before as an example, let's make the
program compiled for profiling. To compile a program for profiling, you use the
-p option to the C compiler:

Now we can run the index.assist program as before. When a program is profiled,
the results appear in a file called mon. out at the end of the run. Every time you
run the program a new mon. out file is created, overwriting the old version.
You then use the prof command to interpret the results of the profile, as shown
by the example below.

Revision A of 9 May 1988

Interpreting Profile Display

Chapter 6 - Performance Analysis 87

This display points out that most of the program's running time is spent in the
routine that compares character strings to establish the correct place for the index
entries, and that after that, the majority of the time is spent in the _ strlen
library routine - to find the length of a character string. If we wish to make any
appreciable improvements to the program we must concentrate our efforts on the
compare_strings function.

Let's interpet the results of the profiling run though. The results appear under
these column headings:

%tirne cumsecs tcall rns/call name

Here's what the columns mean:

%t ime Percentage of the total run time of the program, that was consumed
by this routine.

cumsecs A running sum of the number of seconds accounted for by this func
tion and those listed above it. This infonnation isn't really worth
much - the important data comes from the percentage of total time
and from the time consumed per call.

#call The number of times this routine was called.

~~ sun Revision A of 9 May 1988
~ microsystems

88 Programming Utilities and Libraries

6.3. gprof - Generate a
Call Graph Profile

Compiling with the -pg
Option

Output from gprof

ms / call How many milliseconds this routine consumed each time it was
called.

name The name of the routine.

Now what advice can we derive from the profile data? Notice that the
compare_strings function consumes nearly 20% of the total time. To
improve the run time of index. assist we must either improve the algorithm
that compare_strings uses, or we must cut down the number of calls. Not
obvious from the flat profile is the information that compare_strings is
heavily recursive - we get that fact from using the call graph profile described
below. In this particular case, improving the algorithm also implies reducing the
number of calls.

While the flat profile described in the last section can provide valuable data for
performance improvements, sometimes the data obtained is not sufficient to point
out exactly where the improvements can be made. A more detailed analysis can
be obtained by using the call graph profile that displays a list of which modules
are are called by other modules, and which modules call other modules. Some
times, removing calls altogether can result in performance improvements.

Using the same index. assist program an example, let's make the program
compiled for call-graph profiling. To compile a program for call-graph profiling,
you use the -pg option to the C compiler:

Now we can run the index.assist program as before. When a program is call
graph profiled, the results appear in a file called groon. out at the end of the run.
You then use the gprof command to interpret the results of the profile:

The output from gprof is really voluminous - it's usually intended that you
take the summaries away and read them later. The output from gpro f consists
of the two major items listed below .

• \sun ~ microsystems
Revision A of 9 May 1988

Interpreting Call Graph

Chapter 6 - Performance Analysis 89

o The 'flat' profile. This is similar to the summary that the prof command
supplies. gprof gives you slightly more information. The output from
gprof contains an explanation of what the various parts of the summary
mean, so you don't need to go look the things up in a manual.

o The full call-graph profile. There are some fragments of the output from the
profiling run just below with some examples of how to interpret them.

The output from gprof contains an explanation of what the various parts of the
summary mean, so you don't need to go look the things up in a manual.

Here is a fragment of the output from the gprof summary. Most of the output
has been deleted from before and after the fragment One thing that gprof does
tell you is the granularity of the sampling:

granularity: each sample hit covers 4 byte(s) for 0.14% of 14.74 seconds

index %time

[2] 98.2

[3] 42.6

Then comes part of the call-graph profile itself:

called/total
self descendents called+self

called/total

0.00 14.47 1/1
0.00 14.47 1
0.59 5.70 760/760
0.02 3.16 1/1
0.20 1.91 761/761
0.94 0.06 762/762
0.06 0.62 761/761
0.10 0.46 761/761
0.09 0.23 761/761
0.04 0.23 761/761
0.07 0.00 761/820

10392
0.59 5.70 760/760
0.59 5.70 760+10392
0.53 5.13 11152/11152
0.02 0.01 59/112
0.00 0.00 59/820

10392

.\sun ,~ microsystems

parents
name

children

start [1]
main [2]

index

_insert_index_entry
yrint_index [6]

[3]

_get_index_terms [11]
_fgets [13]
_getyage_number [18]
_getyage_type [22]
_skip_start [24]
_get_index_type [26]
_insertyage_entry [34]

_insert_index_entry [3]
main [2]

_insert_index_entry [3]
_compare_entry [4]

free [38] -
_insertyage_entry [34]
_insert_index_entry [3]

Revision A of 9 May 1988

90 Programming Utilities and Libraries

6.4. t cov - Statement
Level Analysis

Compiling with the -a Option

Noting that there are 761 lines of data in the input file to the index. assist
program, here are some of the things we can determine from the call graph:

D fgets is called 762 times - one more than the number of lines in the input
file. The last call to fgets returns an end-of-file.

D The insert_index _entry function is called 760 times from main -
one less times than the number of lines. Why is this? The first index entry
is inserted 'manually' in the main function when there are no previous
index entries to insert.

D Note that in addition to the 760 times that insert_index_entry is
called from main, insert_index _entry also calls itself the grand total
of 10392 times - insert_index_entry is heavily recursive. Index
entries appear in the input file in unsorted order and are sorted on the fly by
inserting them into a binary tree.

D Note also that compare_entry (which is called from
insert_index_entry) is called 11152 times, which is equal to
760+10392 times, so there is one call of compare_entry for every time
that insert _index_entry is called. This is as it should be. If there
was a discrepancy in the number of calls, we might suspect some problem in
the program's logic.

D Notice the number of calls to the insert_page _entry and free ()
functions - insertyage_entry is called 820 times in total: 761 times
from main while the program is building index nodes, and then
insert _page_entry is called 59 times from
insert_index_entry. This indicates that there are 59 index entries
that are duplicated, so their page number entries are linked into a chain with
the index nodes. The duplicate index entries are then freed, hence the 59
calls to free () .

After a certain level of performance enhancements have been made, the profile
data obtained from a program starts to look 'flat' and the granularity of the data
collection makes further improvements difficult. At this point, you can use a tool
that performs statement-by-statement analysis on a program, showing which
statements are executed and how many times. This facility is called code cover
age.

Code coverage can also be valuable in identifying areas of 'dead' code - areas
of code that never get executed. Code coverage can also point out areas of code
that are not being tested.

Using the same index. assist program an example, let's make the program
compiled for code coverage. To compile a program for code coverage, you use
the -a option to the C compiler, as shown by the example below.

Revision A of 9 May 1988

Using tcov

Chapter 6 - Performance Analysis 91

For every thing. c file you compile with the -a option, the C compiler generates
a thing. d file - these are used by the code coverage program later in the
analysis.

Now we can run the index.assist program as before. After a program has been
run, you can then run tcov to get the summaries of execution counts for each
statement in the program:

Now, for every thing. c file you specify, tcov uses the thing. d file and gen
erates a thing. t cov file containing and annotated listing of your code. The list
ing shows the number of times each source statement was executed. At the end
of each thing. t cov file there is a short summary.

Below is a small fragment of the C code from one of the modules of
index. assist - the module in question is the insert_index_entry
function that's called so recursively .

• \sun ~ microsystems
Revision A of 9 May 1988

92 Programming Utilities and Libraries

11152 ->

59 ->

11093 ->

3956 ->
3626 ->

330 ->

7137 ->
6766 ->

371 ->

tcov Summary

struct index_entry *
insert_index_entry(node, entry)

struct index_entry *node;
*entry; struct

int
int

result

result;
level;

compare_entry (node, entry);

if (result == 0) { /* exact match */
/* Place the page entry for the duplicate */
/* into the list of pages for this node */

insert-page_entry(node, entry->page_entry);
free (entry) ;
return (node) ;

if (result > 0) /* node greater than new entry -- */
/* move to lesser nodes */

else

if (node->lesser != NULL)

else {
insert_index_entry(node->lesser, entry);

node->lesser = entry;
return (node->lesser);

/* node less than new entry -- */
/* move to greater nodes */

if (node->greater != NULL)

else {
in sert_index_ent ry (node->greater, entry);

node->greater = entry;
return (node->greater);

Notice that the insert_index_entry function is indeed called 11152 times
as we determined in the output from gprof. The numbers to the side of the C
code show how many times each statement was executed.

Below is the summary that tcov placed at the end of build . index. tcov.

Revision A of 9 May 1988

77
55

71.43

Chapter 6 - Performance Analysis 93

Top 10 Blocks

Line Count

240 21563
241 21563
245 21563
251 21563
250 21400
244 21299
255 20612
257 16805
123 12021
124 11962

Basic blocks in this file
Basic blocks executed
Percent of the file executed

439144
5703.17

Total basic block executions
Average executions per basic block

Revision A of 9 May 1988

7
sees - Source Code Control System

sees - Source Code Control System ... 97

Backing Out Pending Changes .. 99

7.1. Tenninology ... 99

S.File, or History File ... 99

secs-File 99

Deltas ... 99

SIDs, or Version Numbers ... 100

ID keywords ... 100

7.2. Creating sees History Files with sees create 101

7.3. Extracting Current Versions with sees get ... 102

7.4. Changing Files (Creating Deltas) ... 102

Retrieving a File for Editing with sec s e di t .. 102

Merging Changes Back Into the S.File with sees delta 102

Version Control for Binary Files ... 103

When Making Deltas .. 104

Finding Out What's Going On with sees info 105

Finding Out What Versions Are Being Used with sees
what .. 105

Keeping SIDs Consistent Across Files ... 106

Creating New Releases .. 106

7.5. Restoring Old Versions 106

Reverting to Old Versions ... 106

Getting a Delta by Date ... 106

Selectively Deleting Old Deltas ... 107

7.6. Auditing Changes .. 107

Displaying Delta Comments with sees prt ... 107

Finding Why Lines Were Inserted .. 107

Discovering What Changes You Have Made with see s
diffs ... 108

7.7. Shorthand N otations .. 108

Making a Delta and Getting a File with sees delget 108

Replacing a Delta with the sees fix .. 108

BackingOutofanEditwithsees unedit ... 109

Working From Other Directories ... 109

7.8. Using sees on a Project .. 109

7.9. Saving Yourself .. 110

Recovering a Corrupted Edit File .. 110

Restoring tile History File .. 110

7.10. Managing SCCS-Files with sees adrnin .. 110

7.11. Maintaining Different Versions (Branches) .. 111

Creating a Branch ... 111

Getting From a Branch .. 111.

Merging a Branch Back into the Main Trunk ... 112

A More Detailed Example ... 112

A Warning ... 112

7.12. secs Quick Reference ... 113

Commands .. 113

ID Keywords .. 115

Low-Level sees Commands
vs. the sees Command

7
sees - Source Code Control System

The Source Code Control System (SeeS) is a collection of commands that con
trol changes to selected files, such as the source files for programs and software
projects. sees allows you to:

1. Place a file under the control of sees. Once a file is under sees control,
copies of any subsequent version can be extracted from a history file.

2. Check a file out for editing and lock it, so that only you can make changes.

3. Check in a new version of the file that incorporates your changes. When you
check a file in, you can also supply comments that summarize the changes
you've made.

4. Back out your changes if necessary.

5. Inquire about the status or current version of a file.

6. Inquire about the line-by-line differences between versions.

7. Inquire about the version history, inel uding a record who checked in which
changes, and when they did so.

Collectively, functions such as these are referred to as version control. They are
important in situations where source files are updated frequently, perhaps by
more than one person, or where files need to be audited. sees allows you to
recover the current, or any previous version of a file, as needed. It reduces the
amount of data that must be kept on disk by recording only the differences
between successive versions. With this information, sees can reconstruct the
initial version, the current version, or any version in between.

The Source Code Control System, or sees, consists of a set of low-level com
mands to perform individual functions, and a high-level front-end-command
called sees.

The see s command provides a reasonable and consistent user interface to the
various and sundry low-level commands. Although they can be used directly,
the low-level commands are more difficult to work with. The remainder of this
chapter describes the high-level sees command. Refer to Appendix A, sees
Low-Level Commands, for information about the sees low-level commands.

97 Revision A of 9 May 1988

98 Programming Utilities and Libraries

Conventions

Figure 7-1

Throughout this chapter, we assume that you are using the C shell on a system
called 'tutorial', and so the hostname is shown followed by the % prompt in the
examples. What you type is shown in bold typewriter text like
this, and the system's responses are shown in typewriter font like
this.

A record of each version of your source file, along with the version log and other
information, is kept in a history file. This history file is also called an s.file ("s
dot-file"). The illustration below shows the four basic version-control opera
tions provided by sec s, and how they effect the history file.

Basic sec s Subcommands

sees ...
SCCS/s.file file r------,
t--he_a_d_e_r_-t --- create -----: 1.1 i
1.1 ~r--

1.1 :
__ edit ___ r------,

A ~ '1 1 I
I· I

--J\r- I I

1.2 v ~delta----, I
I I

--qet ~ 1.2 ~
I
I

__ J

I
I
I ___ J

As the picture illustrates, there are four basic sec s subcommands that operate
on the s.file:

D create the history file.

Dedi t, or check out a file for editing. This operation extracts a version of the
file that is writable only by you, and locks the history file so that no one else
can get an editable copy.

D del ta (merge) changes that you've made back into the s.file. This is the
complement to the sees edit operation. Line-by-line differences (see
diff(1» are recorded in the history file; the set of differences associated

Revision A of 9 May 1988

Backing Out Pending Changes

7.1. Terminology

S.File, or History File

seeS-File

Deltas

Chapter 7 - sees - Source Code Control System 99

with a given version of the file is called a delta. A new version number is
assigned, and you are prompted for your comments, which are added to the
header along with other information about the new version.

o get a read-only copy of the file. This operation extracts, or gets a version
of the file from the s.file. By default, a read-only copy of the latest version is
retrieved. The read-only copy is intended to be static, can be used as a
source file for compilation, printing, or whatever-it is specifically not
intended to be edited or changed in any way. (Attempting to bend the rules
by changing permissions of an extracted version, and then editing it, can
result in your changes being lost. If you want to edit a file under sees con
trol, check it out using sees edit.)

The s.file is the final authority and archive for whatever SeeS-file you are work
ing with. The version you get using either sees get or sees edit is
merely a copy derived from data in that file; if deleted, the current version can be
gotten once again from the history file. Of course, if you have a file checked out
for editing, you must take care to check in any changes you wish to incorporate.

Changes that have been made to a checked-out version, but are not yet checked
in, are said to be pending. You can use the sees unedit command to back
out changes that are still pending. This comes in handy if a version of the file
should become damaged during editing. The unedi t subcommand removes the
checked-out version, unlocks the history file, and gets a read-only copy of the
most recent version checked in. In other words, after using unedi t, it is as if
you hadn't checked the file out in the first place.

There are a number of terms worth learning before going any farther.

The s .file is the history file or archive containing the information needed to get
any desired version of a file; it contains only the original version, and a record of
the differences between versions, rather than the entire text of each version. This
saves disk space, since there is no need to duplicate the lines that haven't
changed between versions, and it allows selective changes to be removed later.
The s.file also includes some header information for each version, including com
ments that a user provides when checking in each version.

A file under sees control is sometimes referred to as an SeeS-file. In some
cases, the history file is also referred to in this way. The context in which the
term is used usually makes clear which is meant.

A delta is a set of line-by-line differences associated with a given version of the
file. A delta only includes the specific changes made between two successive
versions. Normally, extracted versions reflect all deltas made earlier. However,
it is possible to get a version that omits selected deltas associated with specific
(earlier) versions.

Revision A of9 May 1988

100 Programming Utilities and Libraries

SIDs, or Version Numbers

ID keywords

An SID, or SeeS-ID, is a number that represents a delta. This is normally a two
part number, starting with 1 . 1 composed of of a release number, and a level
number. The level number is incremented with each new version. Note that the
version number is only associated with the particular set of differences between
two successive versions of a fiie. It does not represent the cumulative set of
changes from the original. However, since versions are normally extracted so as
to reflect the accumulated changes, the SID of the most recent delta is often used
to represent the version of the file that it corresponds to.

The release number is normally carried forward between versions; it is possible
to alter the release number using low-level commands.

sees recognizes and expands certain keywords of the form:

%X%

where X is an upper case letter. These ID Keywords can be used to introduce the
current version number, as well as other information, into the read-only
(extracted, but not checked out for editing) versions of the file. For instance,
%I% expands to the SID of the most recent delta checked in. %W% includes the
filename, the SID, and the (rather unique) string @ (41=) , which is recognized by
certain sees commands, and makes the expanded SID easy to search for. The
%G% keyword expands to the date of the latest delta. Other ID keywords are
listed in Appendix A, under Identification Keywords.

For example, a line such as:

static char Sccsld[] = "%W%\t%G%";

will be replaced with something like:

static char Sccsld[] = "@(f)prog.c 1.2 08/29/80";

This tells you the name and version of the source file and the time the delta was
created. The string @ (41=) is a special string that signals the beginning of an
expanded seeS-ID keyword.

When you check out a file for editing, the ID keywords are not expanded; they
are only expanded when you get a read-only version. If a version of a file with
the keywords already expanded should happen to be checked in, version
dependent information is no longer updated automatically because the unex
panded keywords are replaced with text. To alert you to this situation, if an
sees command finds no ID keywords in a version being checked in, it give you
the warning:

No Id Keywords (em?)

Note that this does not prevent the file from being checked in or out.

ID keywords can be inserted anywhere in a file, and are typically inserted in
comments. They can also be compiled into an object file, as shown in the exam
ple below.

Revision A of9 May 1988

7 .2. Creating sees History
Files with secs
create

Chapter 7 - sees - Source Code Control System 101

static char Sccsld[] "%W% %G%";

While this allows the version infonnation to be compiled into the object file, it
also takes up data space when the program is run. If you use this technique to
put ID keywords into header files, it is important to use a different variable for
each header. Otherwise, you will get an error when the compiler attempts to
redefine the variable. However, if a header file is included by many files that are
subsequently loaded together, the version infonnation for that file may be
included in the object file several times; you may find it more to your taste to
place the ID keywords for header files within comments:

(
/* %W% %G% */)

'-------------"

To put a set of source files under sees control, you must:

o Make a subdirectory called sees, if it isn't there already (note that sees is
in upper-case, so that will appear near the top of an 1 s directory listing):

o Use the sees create command to create the history files for each source
file. Suppose that you want to have all your.c and.h files under sees con
trol:

For each filename argument you supply, the sees create command:

creates a file called s.filename in the sees subdirectory,

renames each filename by placing a comma in front of the name, so that you
end up with files of the fonn ,filename.

gets (extracts) a read-only copy of each filename by using the sees
get command.

After verifying that sees has correctly created the s.files, you can remove the
filenames starting with a comma.

If you want to embed ID keywords in the files, it is best to put them in before you
create the s.files. If you do not, create will print the warning message:

No Id Keywords (em?)

You can add the keywords in the same way that you would make any other
change to the file. Check it out for editing using sees edit, add the key
words, and check it back in using sees delta.

Revision A of9 May 1988

102 Programming Utilities and Libraries

7.3. Extracting Current
Versions with sees
get

7.4. Changing Files
(Creating Deltas)

Retrieving a File for Editing
with sees edit

Merging Changes Back Into
the S.File with sees delta

To get a copy of the most recent version of a file, use the command:

sees get filename ...

For example, the command:

sees responds with the version number, and the number of lines extracted:

1.1
87 lines

meaning that a version containing cumulative deltas through 1.1 has been
retrieved, and that it contains 87 lines. The file prog. e is created in the current
directory. It's pennissions are set to read-only, which indicates that no one has it
checked out for editing.

This copy of the file should not be changed, since sec s cannot merge the
changes back into the s.file unless the file has been checked out. If you do
manage to force in some changes, those changes may well be lost the next time
someone does an sees get, or sees edit.

To change a version of a file, you must obtain a copy of the file that can be
edited. You obtain such a copy using sees edit as shown below. Having
made the changes and satisfied yourself that the changes are correct, you can then
merge the changes back into the see s history file using see s de 1 t a also
shown below.

To edit a source file, you must first get it, requesting pennission to edit it4. The
response will be the same as with sees get except that it also says that a new
delta is being created:

You can then edit it, using a text editor:

When the desired changes have been made, you can put your changes into the
seeS-file using the delta command:

4 The sees edit command is equivalent to using the -e option to sees get.

Revision A of 9 May 1988

Version Control for Binary
Files

Chapter 7 - sees - Source Code Control System 103

Delta prompts you for 'comments?' before merging the changes in. At this
prompt you should type a one-line description of what the changes mean (more
lines can be entered by ending each line except the last with a backslash). Delta
then types:

:::,:::: <:,:,:,:::::::,::::

saying that delta 1.2 was created, and it inserted five lines, removed three lines,
and left 84 lines unchanged5. The prog. e file is then removed; it can be
retrieved using sees get.

If you give several filename arguments to delta, they will all be checked in
with the same comment.

Although s c c s is typically used for source files that contain ASCII text, this ver
sion of SCCS allows you to apply version control to binary files (files that contain
NULL or control characters, or do not end with a (NEWLINE I). The binary files
are encoded6 into an ASCII representation as they are checked in, and versions
are decoded as they are extracted.

Version control functions can be useful for data files, such as icons, raster
images, or screen font tables, that you may wish to edit and track. For instance,
you might want to track changes to a screen font, which can be created and main
tained using fontedit(1). When you create or delta a binary file such as
this, you get the warning message:

Not a text file (ad31)

You may also get the:

No id keywords (em7)

message. Otherwise, everything proceeds normally, as shown by the example
below.

5 Changes to a line are counted as a line deleted and a new line inserted

6 See uuencode(1Q for details.

~~sun ~~ microsystems
Revision A of9 May 1988

104 Programming Utilities and Libraries

When Making Deltas

You can use sees create -b to force sees to treat a file as a binary file as
opposed to a text file.

Since binary files (and their encoded representation) can vary significantly
between versioflS t their history files tend to grow at a much faster rate than text
file histories. In fact t when it comes to archiving object files and executables, it
can take less disk space simply to store each version of the file as is. Fortunately,
those files are not normally edited, so they don't really require version control.
Using sees to control the source files from which an object file is built, and
using make to build it in a consistent manner, is a more practical method for
maintaining object files and executable programs.

A little forethought helps when deciding whether to check in a file. Making a
new delta after every single edit during the debugging phase, for instance, can get
to be excessive. On the other hand, leaving a file checked out for so long that
you forget about it can be very inconvenient for someone else who may need to
edit it later.

So long as you are certain that you are the only one who requires access to the
file, it makes sense to complete a set of related changes before checking the file
back in.

When you provide comments for a delta, it is important to make them meaning
ful. You may have to return to the file several months later, at which time a use
ful summary of what you've done in each delta will be a big help. Numerous
marginal deltas with meaningless comments such as:
"fixed compilation problem in previous delta," or, "fixed botch in 1.3.", are sel
dom helpful or welcome.

It is very important to check in all changes before compiling or installing a
module for general use. A good technique is to edit the files you need, make
all necessary changes and tests, compile and debug the files repeatedly until you
are satisfied, and make a delta. After making the delta, it is a good idea to get
the files, and then recompile and/or install the finished versions .

• SUD
~ microsystems

Revision A of9 May 1988

Finding Out What's Going On
with sees info

Finding Out What Versions
Are Being Used with sees
what

Chapter 7 - sees - Source Code Control System 105

To find out what files are being edited, type:

to display a list of all the files being edited and other infonnation - such as the
name of the user-who did the edit Also, the command:

is nearly equivalent to the info command, except that it is silent if nothing is
being edited, and returns a non-zero exit status if anything is being edited. It can
thus be used in an 'install' entry in a makefile to abort the installation if anything
has not been properly delta'ed.

If you know that everything being edited should be del ta' ed, you can use:

The tell command is similar to info except that only the names of files being
edited are output, one per line.

All of these commands take a -b option to ignore 'branches' (alternate versions,
described later) and the -u option to give only files being edited by you. The-u
option take~ an optional user argument, giving only files being edited by that
user. For example:

gives a listing of files being edited by user john.

To find out what version of a program is being run, use:

sees what prog.c /usr/bin/prog

which will print all strings it finds that begin with '@ (#) '. This works on all
types of files, including binaries and libraries, provided that the ID keywords
have been compiled in. For example, the above command will output something
like:

From this one can see that the source in prog. c will not compile into the same
version as the binary in /usr /bin/prog.

Revision A of9 May 1988

106 Programming Utilities and Libraries

Keeping SIDs Consistent
Across Files

Creating New Releases

7.5. Restoring Old Versions
Reverting to Old Versions

Getting a Delta by Date

With some care, it is possible to keep the SID's consistent in multi-file systems.
The trick here is to always sees edit all files at once. The changes can then
be made to whatever files are necessary and then all files (even those not
changed) are del ta'ed. This can be done fairly easily by just specifying the
sees subdirectory as the filename argument to both edit and delta:

With the delta subcommand, are prompted for comments only once; the com
ment is applied to all files being checked in.

To create a new release of a program, specify the release number you want to
create when you check the file out for editing, using the - r n option to e di t; n is
the new release number:

In this case, when the new version is de 1 t a 'ed, it will be the first level delta in
release 2, with SID 2.1. To change the release number for all SeeS-files in the
directory, use:

sees allows you to extract any previously checked-in version of a file. This can
come in handy if you need to backtrack to an earlier version. In this case, you
can check out the current version, extract a writable copy of an earlier "good"
version (under a different name) using a command of the fonn:

sees get -k -rSID -Gnewname filename

and then move the old version to the given filename, and check the file back in.

In some cases you don't know what the SID of the delta you want is, but you do
know the date on (or before) which it was checked in. You can extract the ver
sion of the file that was the last one checked in before the given date using the -e
(cutoff) option. For example,

retrieves whatever version was current as of July 22, 1980 at 12:00 noon. Trail
ing components can be stripped off (defaulting to their highest legal value), and
punctuation can be inserted in the obvious places; for example, the above line
could be equivalently stated as:

~~sun ~~ microsystems
Revision A of 9 May 1988

Selectively Deleting Old
Deltas

7.6. Auditing Changes
Displaying Delta Comments
with sees prt

Finding Why Lines Were
Inserted

Chapter 7 - sees - Source Code Control System 107

Suppose that you later decided that you liked the changes in delta 1.4, but that
delta 1.3 should be removed. You could do this by excluding delta 1.3:

When delta 1.5 is made, it will include the changes made in delta 1.4, but will
exclude the changes made in delta 1.3. You can exclude a range of deltas using a
dash. For example, if you want to get rid of 1.3 and 1.4 you can use:

which will exclude all deltas from 1.3 through 1.4. Alternatively,

will exclude a range of deltas from 1.3 to the current highest delta in release 1.

In certain cases when using -x (or -i - see below) there will be conflicts
between versions; for example, it may be necessary to both include and delete a
particular line. If this happens, sees always displays a message telling the
range of lines affected; these lines should then be examined very carefully to see
if the version see s got is ok.

Since each delta (in the sense of 'a set of changes') can be excluded at will, it is
most useful to put each semantically distinct change into its own delta.

When you created a delta, you presumably gave a reason for the delta to the
'comments?' prompt To display these comments later, use:

which produces a report for each delta of the SID, time and date of creation, user
who created the delta, number of lines inserted, deleted, and unchanged, and the
comments associated with the delta. For example, the output of the above com
mand might be:

To find out why you inserted lines, you can get a copy of the file with each line
preceded by the SID that created it:

Revision A of 9 May 1988

108 Programming Utilities and Libraries

Discovering What Changes
You Have Made with sees
diffs

7.7. Shorthand Notations

Making a Delta and Getting a
File with sees delget

Replacing a Delta with the
sees fix

You can then find out what changes were made by this delta by printing the com
ments using prt.

To find out what lines are associated with a particular delta, 1.3 for instance, use:

The -p option makes sees output the generated source to the standard output
rather than to a file.

When you are editing a file, you can find out what changes you have made using:

Most of the options to diff can be used. To pass the -e option to diff, how
ever, use -c. You can also use the -r and -e options to compare the version
being edited with an earlier checked-in version.

To compare two checked-in versions, use:

to see the differences between delta 1.3 and delta 1.6. Again, most options to
di f f can be used, as can the - e option of see s; for the - e di f f option, use
-c.

There are several sequences of commands that are used frequently. sees tries to
make it easy to do these.

A frequent requirement is to make a delta of some file and then get that file. This
is done by using

which is entirely equivalent to:

except that if an error occurs while making a delta of any of the files, none of
them will be gotten. The sees deledi t command is equivalent to
sees delget except that the sees edit command is used instead of the
sees get command; this is useful for checking in a set of changes while you
continue editing.

Frequently, there are small bugs in deltas, for instance, compilation errors, for
which there is no reason to maintain an audit trail. To replace a delta, use:
r"'".:."""':"""""""' . . .,.,., . .,.,.,....,..,..,.,.,.
1:::::: :' ,':
I:,:, .: " '.~i::Q:

Revision A of 9 May 1988

Backing Out of an Edit with
sees unedit

Working From Other
Directories

7.8. Using sees on a
Project

Chapter 7 - sees - Source Code Control System 109

This gets a copy of delta 1.4 of prog.c for you to edit and then deletes delta 1.4
from the SeeS-file. When you do a delta of prog.c, it will be delta 1.4 again.
The -r option must be specified, and the delta that is specified must be a leaf
delta, that is, no other deltas may have been made subsequent to the creation of
that delta.

If you found you edited a file that you did not want to edit, you can back out by
using:

If you are working on a project where the history files are in another directory,
you may be able to simplify things by making a symbolic link to the true sees
subdirectory :

With this method, you can get a separate set of source files in a location that is
more convenient. While in the working directory, you can also check files in and
out-just as you could if you were in the original directory from which the his
tory files were created.

To extract a complete set of duplicate sources, use the command sees get
sees.

Working on a project with several people has its own set of special problems.
The main problem occurs when two people attempt to modify a file at the same
time. sees prevents this by locking an s.file while it is being edited.

As a result, you should not check files out unless you are actually making
changes to them, since this prevents other people making needed changes. For
example, a good scenario for working might be:

As a general rule, all source files should be checked in before installing the pro
gram for general use. This will ensure that it is possible to restore any version in
use at any time.

' .
• ~sun ~~ microsystems

Revision A of 9 May 1988

110 Programming Utilities and Libraries

7.9. Saving Yourself

Recovering a Corrupted Edit
File

Restoring the History File

CAUTION

7.10. Managing SeeS-Files
with sees admin

Sometimes you may find that you have destroyed or trashed a file that you were
trying to edit7. Unfortunately, you can't just remove it and re-sees edit it;
sees keeps track of the fact that someone is trying to edit it, so it won't let you
do it again. Simply using sees get, would expand the ID keywords, and
besides, if there are edited portions edited file that you want to preserve, you
don't want to overwrite it. Instead, you can get a writable copy of the file (with
unexpanded keywords) using the - k and -Gfilename options in combination.
The -k option tells sees to get a writable version. The -Gfilename tells it to
place the copy in the named file:

From here, you can use diff and your favorite editor to selectively restore the
changes you wish to keep. Of course, if you just want to start over, you can sim
ply sees unedit, and then sees edit the file once again.

In particularly bad circumstances, the history file itself may get corrupted. The
most common way this happens is for someone to edit it. Since the file contains
a checksum, you will get errors every time you read a corrupted file. To correct
the checksum, use:

When sees says that the history file is corrupted, it may indicate serious
damage beyond an incorrect checksum. Be careful to safeguard your
current changes before attempting to correct a history file.

There are a number of parameters that can be set using the admin command. The
most interesting of these are flags. Flags can be added by using the -f option.
For example:

sets the 'd' flag to the value' 1'. This flag can be deleted by using:

The most useful flags are:

b Allow branches to be made using the -b option to sees edit.

7 Or given up and decided to start over.

Revision A of 9 May 1988

7.11. Maintaining Different
Versions (Branches)

Creating a Branch

Getting From a Branch

Chapter 7 - sees - Source Code Control System 111

dSlD
Default SID to be used on a sees get or sees edit. If this is just a
release number it constrains the version to a particular release only.

i Give a fatal error if there are no ID keywords in a file. This is useful to
guarantee that a version of the file does not get merged into the s.file that has
the ID keywords inserted as constants instead of internal forms.

y The 'type' of the module. Actually, the value of this flag is unused by
see s, except that it replaces the % Y % keyword.

-tfile
store descriptive text fromfile in the SeeS-file. This descriptive text might
be the documentation or a design and implementation document. Using the
-t option ensures that if the SeeS-file is passed on to someone else, the
documentation will go along with it. If file is omitted, the descriptive text is
deleted. To see the descriptive text, use prt -to

The admin command can be used safely any number of times on files. A file
need not be gotten for admin to work.

Sometimes it is convenient to maintain an experimental version of a program for
an extended period while normal maintenance continues on the version in pro
duction. This can be done using a 'branch'. Normally deltas continue in a
straight line, each depending on the delta before. Creating a branch 'forks off a
version of the program.

The ability to create branches must be enabled in advance using:
c·· ·1
~.i ~~~§t~~~~~§§~~~*5~~##~;~ ~~!!.~
The -fb option can be specified when the SeeS-file is first created.

To create a branch, use:

This will create a branch with (for example) SID 1.5.1.1. The deltas for this ver
sion will be numbered 1.5.l.n.

Deltas in a branch are normally not included when you do a get. To get these
versions, you will have to say:

Revision A of9 May 1988

112 Programming Utilities and Libraries

Merging a Branch Back into
the Main Trunk

A More Detailed Example

A Warning

At some point you will have finished the experiment, and if it was successful you
will want to incorporate it into the released version. But in the meantime some
one may have created a delta 1.6 that you don't want to lose. The commands:

will merge all of your changes into the release system. If some of the changes
conflict, de 1 t a will print an error. The generated result should be carefully
examined before the delta is made.

The following technique might be used to maintain a different version of a pro
gram. First, create a directory to contain the new version:

Edit a copy of the program on a branch:

When using the old version, be sure to use the -b option to info, check, tell, and
clean to avoid confusion. For example, use:

when in the 'xyz' directory.

If you want to save a copy of the program (still on the branch) back in the s.file,
you can use:

which will do a delta on the branch and reedit it for you.

When the experiment is complete, merge it back into the s.file using delta:

At this point you must decide whether this version should be merged back into
the trunk, that is, the default version, which may have undergone changes. If so,
it can be merged using the -i option to sees edit as described above.

Branches should be kept to a minimum. After the first branch from the trunk,
SID's are assigned rather haphazardly, and the structure gets complex fast .

• sun
• microsystems

Revision A of 9 May 1988

7.12. sees Quick
Reference

Commands

sees get

sees edit

sees delta

sees unedit

sees prt

sees info

Chapter 7 - sees - Source Code Control System 113

This list is not exhaustive; for more options see Appendix A of this manual.

Gets files for compilation (not for editing). ID keywords are expanded.

-rSID

-p

-k

-Gfilename

-ilist

-x list

-m

-edate

Version to get.

Send to standard output rather than to the actual file.

Don't expand ID keywords.

Get to a named file.

List of deltas to include.

List of deltas to exclude.

Precede each line with SID of creating delta.

Don't apply any deltas created after date.

Gets files for editing. ID keywords are not expanded. Should be matched with a
delta command.

-rSID

-b

-ilist

-x list

Same as for sees get. If SID specifies a release that does not yet
exist, the highest numbered delta is retrieved and the new delta is
numbered with SID.

Create a branch.

Same as for sees get.

Same as for sees get.

Merge a file gotten using edi t back into the s.file. Collect comments about
why this delta was made.

Remove a file that has been edited previously without merging the changes into
the s.file.

Produce a report of changes.

-t Print the descriptive text.

-e Print (nearly) everything.

Give a list of all files being edited.

-b Ignore branches.

-u[user] Ignore files not being edited by user .

• sun Revision A of 9 May 1988
~ microsystems

114 Programming Utilities and Libraries

sees eheek

sees tell

sees clean

sees what

sees admin

sees fix

sees delget

sees deledit

sees create

sees diffs

sees seesdiff

Same as inf 0, except that nothing is printed if nothing is being edited and exit
status is returned.

Same as info, except that one line is produced per file being edited containing
only the file name.

Remove all files that can be regenerated from the s.file.

Find and print ID keywords.

Create or set parameters on s.files.

-ifile

-z

-fflag

-dflag

-tfile

Create, using file as the initial contents.

Rebuild the checksum in case the file has been trashed.

Tum onflag.

Tum off (delete) flag.

Replace the descriptive text in the s.file with the contents offile. If
file is omitted, the text is deleted. Useful for storing documentation
or design and implementation documents to ensure they get distri
buted with the s.file .

Useful flags that can be introduced via the -F and -d options are:

b Allow branches to be made using the -b option to e di t.

dSID Default SID to be used on a get or edit.

i Make the 'No Id Keywords' error message a fatal error rather than a
warning.

t The module 'type'; the value of this flag replaces the %Y% keyword.

Remove a delta and reedit it.

Do a delta followed by a get.

Do a delta followed by an edit.

Create a history file. Move the original file to a backup file with a comma prefix.

- b Force the file to be treated as a binary file.

Show line-by-line differences between the edited version and a checked-in ver
sion (the most recent by default).

-rSID Specify a version to compare against.

Show line-by-line differences between two checked-in versions.

-rSID Specify a version to compare against. (You must specify two ver
sions to compare.)

Revision A of 9 May 1988

ID Keywords %Z%

%M%

%I%

%W%

%G%

%R%

%Y%

~\sun ~ microsystems

Chapter 7 - sees - Source Code Control System 115

Expands to '@(#), for the what command to find.

The current module name, for example, prog . c.

The highest SID applied.

A shorthand for %Z%%M% < tab> %I%.

The date of the delta corresponding to the % I % keyword.

The current release number, that is, the first component of the % 1%

keyword.

Replaced by the value of the t flag (set by admin).

Revision A of 9 May 1988

8
make User's Guide

make User's Guide ... 119

8.1. Overview .. 119

Consistency Control .. 119

Dependency Checking: make vs. Shell Scripts .. 119

make Basics .. 120

Basic Use of Implicit Rules .. 120

Writing a Simple Makefile .. 121

Processing Dependencies ... 123

Missing Targets and Dependencies .. 126

Running Commands Silently ... 127

Ignoring a Command's Exit Status ... 127

Automatic Extraction of sees Files .. 128

Suppressing sees Extraction ... 129

Passing Parameters: Simple make Macros ... 129

Command Dependency Checking and . KEEP_STATE 131

Suppressing or Forcing Command Dependency Checking
for Selected Lines .. 131

The State File ... 132

Hidden Dependencies and. KEEP_STATE .. 132

Displaying Information About a make Run ... 134

8.2. Compiling Programs with make .. 135

Compilation Strategies .. 135

A Simple Makefile ... 136

Using make's Predefined Macros ... 137

Using Implicit Rules to Simplify a Makefile: Suffix Rules 138

When to Use Explicit Target Entries vs. Implicit Rules 140

Implicit Rules and Dynamic Macros ... 141

Dynamic Macro Modifiers ... 141

Dynamic Macros and the Dependency List: Delayed Macro
References ... 142

How make Evaluates Dependencies ... 142

Adding Suffix Rules .. 143

Pattern Matching Rules: an Alternative to Suffix Rules 144

make's Default Suffix Rules and Predefined Macros 144

8.3. Building Object Libraries ... 147

Libraries, Members and Symbols .. 147

Library Members and Dependency Checking .. 147

Library Member Name-Length Limit ... 148

. PRECIOUS: Preserving Libraries Against Removal Due
to Interrupts ... 148

8.4. Maintaining Programs and Libraries With make ... 149

Using Macros for Added Flexibility .. 149

Embedded Macro References ... 150

A More Flexible Makefile .. 150

Makefiles as Specifications ... 151

Suffix Replacement in Macro References ... 151

Using lint with make .. 151

Linking With System-Supplied Libraries ... 153

Compiling Programs for Debugging and Profiling 154

Conditional Macro Definitions .. 155

Compiling Debugging and Profiling Variants .. 156

Maintaining Separate Program and Library Variants 158

Pattern Replacement Macro References .. 159

Makefile for a Program with Separate Variants 160

Makefile for a Library with Separate Variants 163

Maintaining a Directory of Header Files ... 164

Compiling and Linking With Your Own Libraries 165

Nested make Commands ... 165

Forcing A Nested make Command to Run ... 166

The MAKEFLAGS Macro .. 168

Macro Definitions and Environment Variables: Passing
Parameters to Nested make Commands ... 168

Compiling Other Source Files ... 171

Compiling and Linking a C Program with Assembly
Language Routines .. _. 171

Compiling lex and yacc Sources .. 173

Specifying Target Groups With the + Sign .. 174

Maintaining Shell Scripts with make and sees .. 176

Running Tests with make ... 176

Delayed References to a Shell Variable ... 177

8.5. Maintaining Software Projects ... 178

Organizing A Project for Ease of Maintenance ... 178

Using include Makefiles ... 179

Installing Finished Programs and Libraries ... 180

Building the Entire Project .. 181

Maintaining Directory Hierarchies With Recursive Makefiles 182

Recursive install Targets ... 183

Maintaining A Large Library as a Hierarchy of Subsidiaries 185

Closing Remarks about make ... 189

8.1. Overview

This chapter describes Sun's
enhanced version of make, which
includes new features such as hid
den dependency checking, com
mand dependency checking,
pattern-matching implicit rules, and
automatic extraction of sees files.
It is highly compatible with
makefiles written for previous ver
sions. Makefiles that rely on Sun's
enhancements may not be compati
ble with other versions of make.
Refer to Appendix A for a complete
summary of enhancements.

Consistency Control

Dependency Checking: make
vs. Shell Scripts

8
make User's Guide

make streamlines the process of generating and maintaining object files and exe
cutable programs. It helps you to compile programs consistently, and eliminates
unnecessary compilation of modules that are unaffected by source code changes.

make provides a number of features that simplify compilations, but you can also
use it to automate any complicated or repetitive task that isn't interactive. For
instance, you can use make to update and maintain object libraries, run test
suites, and install validated files onto a filesystem or tape. In conjunction with
sees, you can use make to insure that all programs are built from the most
recent source versions. You can also use make and sees to build an entire
software project, and to maintain the source files and directories from which that
project is built

The Source Code Control System, or sees, provides facilities for version control
over source files. These include file locking, audit trails, commentary, and other
useful features. Refer to Chapter 7 of this manual for an introduction to sees.

make provides facilities for consistency control over the object files or other files
derived from those sources. It rebuilds the files, in a modular and consistent
fashion, when the source files they derive from have changed.

make reads a file that you create, called a makefile, which contains information
about what files to build and how to build them. Once you write and test the
makefile, you can forget about the processing details; make takes care of them.
This gives you more time to concentrate on debugging and correcting your code;
the repetitive portion of the maintenance cycle is reduced to:

think - edit - make - test ...

While it is possible to use a shell script to assure consistency in trivial cases,
scripts are often inadequate in actual practice. On the one hand, you don't want
to wait for a simple-minded script to compile every single program or object
module when only one of them has changed. On the other hand, having to edit
the script for each iteration can defeat the objective of consistent compilation.

~\sun ~ microsystems
119 Revision A of 9 May 1988

120 Programming Utilities and Libraries

make assumes that only it will make
changes to files being processed
during the current make run. If a
source file changes in the middle of
the run, the files make produces
may be in an inconsistent state.

make Basics

Basic Use of Implicit Rules

Although it is possible to write a script of sufficient complexity to process only
those modules that require it, such scripts can often develop maintenance prob
lems of their own. In any case, make eliminates the need for you to do so.

make allows you to write a simple, structured listing of what to build and how to
build it. It uses the mechanism of dependency checking to compare each module
with the source files or intermediate files it derives from. make only rebuilds a
module if one or more of these prerequisite files, called dependency files, has
changed since the module was last built. To determine whether a derived file is
out of date with respect to its sources, make compares the modification time of
the module with that of the source file. If the module is missing, or if it is older
than the source file, it is considered to be out of date; make issues the commands
necessary to rebuild it. Optionally, a target can be treated as out of date if the
commands used to build it have changed.

Because make does a complete dependency scan, changes to a source file are
consistently propagated through any number of intermediate files or processing
steps. This lets you specify a hierarchy of processing steps in a top-down
fashion.

You can think of a makefile as a type of recipe. make reads the recipe, decides
which steps need to be performed, and executes only those steps that are required
to produce the finished product. Each file to build, or step to perform, is called a
target. The makefile entry for a target contains its name, and a list of commands
for building it called a rule, along with a list of dependencies. make treats
dependencies as prerequisite targets, and updates them if necessary, before pro
cessing the target that depends on them.

The file for which the target is named is also referred to as a target file. Each file
from which a target is derived (or that the target depends on) is called a depen
dency file with respect to that target.

In addition to any makefile(s) that you supply, make reads in the default
makefile, /usr / include/make/ default .mk, which contains target
entries for implicit rules, as well as other information.8 When there is no target
entry in the makefile for a specified target, make attempts to select an implicit
rule for building it. When it finds a rule for the target's class, it applies the com
mands listed in the implicit rule's target entry to build the specific target.

There are two types of implicit rules. "Suffix" rules specify a set of command
for building a file with one suffix from another file with the same basename but a
different suffix. "Pattern-matching" rules select a rule based on a target and
dependency pair matching a certain wild-card pattern. The default set of implicit
rules provided by make are of the former type, namely, suffix rules.

8 Implicit rules were hard-coded in earlier versions of make.

~~sun ~~ microsystems
Revision A of9 May 1988

Writing a Simple Makefile

Figure 8-1
If there is no rule for a target entry,
make looks for an implicit rule to
use.

If the dependency list is terminated
w~h a semicolon and followed by a
command, that command is
included in the rule. However,
makefiles tend to read better if you
avoid this.

Command lines in a rule start with a
mID; leading spaces are no sub
stitute as far as make is concerned.

Chapter 8 - make User's Guide 121

In some cases, the use of suffix rules can eliminate the need for writing a
makefile entirely. For instance, to build an object file named go . 0 from a single
C source file named go. c, you could use the command:

make go.o

as shown:

This would work equally well for building the object file none such. 0 from the
source file nonesuch. c.

To build an executable file named go (with a null suffix) from go. c, you need
only type the command:

make go

as shown:

The rule for building a . 0 file from a . c file is called the . c . 0 (pronounced
"dot-c-dot-o") suffix rule. The rule for building an executable program from a
. c file is called the . c (dot-c) rule. The complete set of default suffix rules is
listed in Table 3-1.

The basic format for a makefile target entry is:

M akeflle Target Entry Format

[

target . .. : [dependency ...] 1
"-----_[COmmand] _________

In the first line, the target name (or list) is followed by a colon, which is required.
This, in tum, is followed by the dependency list if there is one. Several target
names separated by white space can precede the colon; this indicates a list of
independent targets that are built using the same dependency list and rule.

Subsequent lines that start with a (TAB I are taken as the commands lines that
comprise the target's rule. make is awfully fussy about those leading (TAB I's,
(SPACE J characters simply won't do.

Lines that start with a # are treated as comments up until the next (unescaped)
(NEWLINE J, and do not terminate the target entry. The target entry is tenninated
by the next nonempty line that begins with a character other than ~ or #, or
by the end of the file.

+m,!! Revision A of 9 May 1988

122 Programming Utilities and Libraries

Figure 8-2

The convention is to use the name
Makefile, since filenames starting
with a capital are listed first by Is;
this highlights the fact that a
makefile is present.

make invokes a Bourne shell to pro
cess a command line if that line
contains any shell metacharacters,
such as a semicolon (;), redirection
symbol «, >, », ...) or pipe sym
bol (I), etc. If a shell isn't required
to parse the command line, etc.
make invokes the command directly
for better performance.

A trivial makefile might consist of just one target:

A Trivial Make/de

test:
Is test
touch test
'test' is now present
Is test

When you run make with no arguments, it searches first for a file named
makefile, or if there is no file by that name, Makefile. If either of these
files is under sees control, make extracts the current version and uses it.

If make finds a makefile, it begins the dependency check with the first target
entry in that file. Otherwise you must list the targets to build as arguments on the
command line. make displays each command it runs while building its targets.

Because the file test was not present (and therefore out of date), make per
formed the rule in its target entry. If you run make a second time, it issues a
message indicating that the target is now up to date:

and doesn't perform the rule.

Line breaks within a rule are significant in that each command line is performed
by a separate process or shell.

This means that a rule such as:

[
test:

cd /tmp
pwd

behaves differently than you might expect, as shown below.

1

Revision A of 9 May 1988

The backslash must be the last
character on the line.

Figure 8-3

This entry performs the same func
tion with respect to go as in the
second example of implicit rules
shown above; it compiles an exe
cutable program from a C source
file.

Processing Dependencies

Chapter 8 -make User's Guide 123

You can use semicolons to specify a sequence of commands to perfonn in a sin
gle shell invocation:

[~ __ t_e_s_t_: ___ C_d __ /_tm_p ___ p_W_d ____________________________ ~J
Or, you can continue the input line onto the next line in the makefile by escaping
the I NEWLINE I with a backslash (\):

[

~est: cd /tmp \ 1
pwd

'-------

Here is an example of a simple target entry to compile a C program from a single
source file:

Simple Target Entry for Compiling a C Program

(go: go.c
cc -sun4 -0 go go.c

Once make begins, it processes targets as it encounters them in its depth-first
dependency scan. For example, with the following makefile:

batch: a b
touch batch

b:
touch b

a:
touch a

c:
echo "you won't see me"

make starts with the target ba t ch. Since batch has some dependencies that
haven't been checked yet, namely a and b, make defers checking batch until
after it has checked each of them against any dependencies they might have.

]

4}\sun
• microsystems

Revision A of 9 May 1988

124 Programming Utilities and Libraries

Since a has no dependencies, make processes it; if the file is not present make
performs its rule.

Next, make works its way back up to the parent target batch. Since there is
still an unchecked dependency b, make descends to b and checks it.

b also has no dependencies, so make processes it:

Finally, now that all of the dependencies for batch have been checked and built
if needed, make checks it against those dependency files:

Since both a and b were built just now, and are therefore newer than batch,
make builds it:

Revision A of9 May 1988

Chapter 8 - make User's Guide 125

Although there is a target entry for c in the makefile, make does not encounter it
while performing its dependency scan. Target entries that aren't encountered in
the dependency scan are omitted from processing. You can select a starting tar
get like c by entering it as an argument to the make command:

In the next example, batch is used to group a set of targets.

batch: a b c

a: al a2
touch a

b:
touch b

c:
touch c

al:
touch al

a2:
touch a2

In this case, the targets are checked and processed as shown in the following
diagram:

1. make checks batch, for dependencies and notes that there are three, so it
defers processing it.

2. make checks a, the first dependency, and notes that it has two dependencies
of its own. So, continuing in the same fashion, make:

o Checks aI, and if necessary, rebuilds it.

o Checks a2, and rebuilds it if necessary.

o Determines whether to build a.

3. make checks b and rebuilds it if need be.

Revision A of9 May 1988

126 Programming Utilities and Libraries

Missing Targets and
Dependencies

You can use a dependency with a
null rule to force the target's rule to
be executed. The conventional
name for such a dependency is
FORCE.

4. Checks and rebuilds c if needed.

5. After processing all of these nested dependencies, make checks and
processes the topmost target, batch.

If a target entry contains no rule, make attempts to select an implicit rule to build
it. If make cannot find an appropriate rule to apply and there is no sees file to
extract it from, make presumes that the target has an empty rule, and continues
processing subsequent targets. With this makefile:

(void:]
make produces:

make stops processing and issues an error message if the target was named either
on the command line or in a dependency list but it:

o is missing,
o has no target entry,
o no implicit rule can be used to build it, and
o there is no sees file to extract it from.

The following command produces:

On the other hand, if the target entry has no rule, and make encounters the target
in a dependency list, it does not produce an error~ either when processing the
dependency ~ or when processing the target for which it is a dependency. This
holds true, even if the dependency file is absent.

make finds a target entry for the dependency. It executes the (null) rule for that
dependency without encountering errors. So, make concludes that the depen
dency has been updated successfully, at the time that the (null) rule is performed.
The dependency is therefore considered newer than the target~ even though no
dependency file exists. In a case such as this~ make simply goes on to rebuild the
parent target (after processing any remaining dependencies). With this makefile:

haste: FORCE
echo "haste makes waste"

FORCE:

~~sun
• microsystems

Revision A of9 May 1988

Running Commands Silently

Special-function targets begin with
a dot (.). Target names that begin
with a dot are never used as the
starting target, unless specifically
requested as an argument on the
command line.

Ignoring a Command's Exit
Status

Chapter 8 - make User's Guide 127

make performs the rule for making haste, even if a file by that name is up to
date:

You can inhibit the display of a given command line by inserting an @ as the first
non- [TAB I character on that line. For example, the following target:

(quiet:
@ echo you only see me once

produces:

If you want to inhibit the display during a particular make run, you can use the
-s option. If you want to inhibit the display of all command lines in every run,
add the special target. SILENT to your makefile:

.SILENT:
quiet:

echo you only see me once

make normally issues an error message and stops when a command returns a
nonzero exit code. For example, if you have the target:

]

[
rmxyz:]

rm xyz

'--------------"

and there is no file named xyz, make halts after rm returns its exit status .

• \sun
• microsystems

Revision A of 9 May 1988

128 Programming Utilities and Libraries

If - and @ are the first two such
characters, both take effect.

Unless you are testing a makefile, it
is usually a bad idea to ignore non
zero error codes on a global basis.
Specific commands that return
non-zero status can be ignored in
certain circumstances. But, in gen
eral, a non-zero exit code indicates
trouble. It is best for make to stop
so that you can diagnose the prob
lem right away.

Automatic Extraction of sees
Files

To continue processing regardless of the command's exit code, use a dash char
acter (-) as the first non- (TAB] character:

[
rmxyz:]

-rm xyz

"'-----------

In this case you get a warning message indicating the exit code make received:

Although it is generally ill-advised to do so, you can have make ignore error
codes entirely within a run with the -i option. You can also have make ignore
exit codes when processing a given make file, by adding the special target
. I GNORE to your makefile, although this too should normally be avoided.

[
. IGNORE:
rrnxyz:

rm xyz

If you are processing a list of targets, and you want make to continue with the
next target on the list, rather than stopping entirely after encountering an non
zero return code, use the -k option.

1

When source files are named in the dependency list, make treats them just like
any other target file. Because the source file is presumed to be present in the
directory, there is no need to add an entry for it to the makefile. When a target
has no dependencies, but is present in the directory, make assumes that that file
is up to date. If, however, a source file is under sees control, make does some
additional checking to assure that the source file is the version most recently
checked in. If the file is missing, or if there is a new version has been checked in,
make automatically issues an

.. sees get -s -Gfilename filename"

command to extract the most recent version:9 If, however, the source file is writ
able by anyone, make does not extract it.

9 With other versions. of make automatic sees extraction was a feature only of certain implicit rules. Also,
unlike eariierversions, make only looks for history (5.) files in the sees subdirectory; 5. files in the current
directory are ignored.

~~sun ~ microsystems
Revision A of9 May 1988

Suppressing sees Extraction

Passing Parameters: Simple
make Macros

There is a reference to the CFLAGS
macro in both the . c and the • c .0

implicit rules.

Chapter 8 - make User's Guide 129

:::,::
. .,. ::::::::::

::::: ::::::::::::::::

>? ::::::::>: ::::::

This makes it unnecessary to add sees commands for extracting current versions
of source files; make handles this for you automatically.

The command for extracting sees files is specified in the rule for the
• SCCS _GET special target in the default makefile. To suppress automatic
extraction, simply add an entry for this target, without any rule, to your makefile:

Suppress sccs extraction .

. sees GET:

make's macro substitution comes in handy when you want to pass parameters to
commands lines within a makefile. Suppose that you sometimes wish to compile
an optimized version of the program go using c c 's -0 option. You can lend this
sort of flexibility to your make file by adding a macro reference, such as the one
below, to the target for go:

(go: go.c
cc -sun4 $(CFLAGS) -0 go go.c

The macro reference acts as a placeholder for a value that you define, either in
the makefile itself, or as an argument to the make command. If you then supply
make with a definition for the CFLAGS macro, make replaces the macro refer
ence with the value you have defined.

If a macro is undefined, make replaces references to it with an empty string:

You can also include macro definitions in the make file itself. A typical use is to
set CFLAGS to -0 so that make produces optimized object code by default, as
shown below.

]

Revision A of9 May 1988

130 Programming Utilities and Libraries

CFLAGS= -0
go: go.c

cc -sun4 $(CFLAGS) -0 go go.c

With no arguments, the make command produces:

A macro definition supplied as an argument to make overrides all other
definitions for that macro found in that make run. For instance, to compile go
for debugging with dbx or dbxtool, you can define the value of CFLAGS to be
-g in the make command:

To compile a profiling version for use with gprof, supply both -0 and -pg in
the value for CFLAGS:

A macro reference must include parentheses when the name of the macro is
longer than one character. If the macro name is only one character, the
parentheses can be omitted. Also, you can use curly braces, { and }, instead of
parentheses. For example:

S= echo now and forever
.SILENT:
when:

$S
$(S)
${S}

are all three equivalent:

Revision A of 9 May 1988

Command Dependency
Checkingand .KEEP_STATE

Suppressing or Forcing
Command Dependency
Checking for Selected Lines

Chapter 8 - make User's Guide 131

In addition to the normal dependency checking, you can use the special target
• KEEP_STATE to activate command dependency checking. 10 When activated,
make not only checks each target file against its dependency files, it compares
each command line in the rule with the corresponding command line it ran the
last time it built the target. (This information is stored in a state file in the
current directory.) If the command line has changed, make rebuilds the target.
So, if . KEEP _ STATE were in effect for the previous few examples, you
wouldn't have had to type in all those rm go commands.

With the makefile:

CFLAGS= -0
.KEEP STATE:
go: go.c

cc -sun4 -0 go go.c

the following commands work as shown:

This assures you that make compiles a program with the options you want, even
if a different variant of the file is present and newer than its dependencies.

The first make run with. KEEP _STATE in effect recompiles all targets. This
insures that they have, in fact, been built by the command line reported in the
state file.

To inhibit command dependency checking for a given command line, insert a
question mark as the first character after the TAB. For instance, without the ques
tion mark, this makefile:

ARG= redone or not
.KEEP STATE:
x:

echo $(ARG) I tee x

reprocesses x when you define ARG on the command line, as shown below.

10 This feature is not available in earlier versions of make .

• \sun ~ microsystems
Revision A of 9 May 1988

132 Programming Utilities and Libraries

The State File

Hidden Dependencies and
.KEEP STATE

Adding a? as the first character after the crAID suppresses command depen
dency checking.

ARG= is it redone
.KEEP STATE:
x:

? echo $(ARG) I tee x

With it, x is not reprocessed as a result of changing ARG, as shown:

Command dependency checking is automatically suppressed for lines containing
the dynamic macro $?, This macro stands for the list of dependencies that are
newer than the current target, and can be expected to differ between any two
make runs. (See Implicit Rules and Dynamic Macros for more information.) To
force make to perform command dependency checking on a line containing this
macro, prefix the command line with a ! character (following the I TAB I).

When the . KEEP_STATE special target is in effect, make writes out a state file
named .make. state, in the current directory. This file lists all targets that
have ever been processed while . KEEP_STATE has been in effect, in a format
similar to a makefile. In order to assure that this state file is maintained con
sistently, once you have added the . KEEP STATE special target to a makefile,
we recommend that you leave it in effect. IT

When a source file contains =H= incl ude directives for interpolating header files,
the target depends just as much on those header files as it does on the sources that
include them. Because such header files may not be listed explicitly as sources
in the compilation command line, they are called hidden dependencies. When
• KEEP_STATE is in effect, make receives a report from the various compilers
and compilation preprocessors indicating which hidden dependency files were

11 Since this target is ignored in earlier versions of make, it does not introduce any compatibility problems.
Other versions simply treat it as a superfluous target that no targets depend on, with an empty rule and no
dependencies of its own. Since it starts with a dot, it is not used as the starting target.

~\sun
.. microsystems

Revision A of 9 May 1988

Chapter 8 - make User's Guide 133

interpolated for each target. 12 It adds this infonnation to the dependency list in
the state file. In subsequent runs, these additional dependencies are processed
just like regular dependencies. This feature maintains the hidden dependency list
for each target automatically; this insures that the dependency list for each target
is always accurate and up to date. It also eliminates the need for the complicated
schemes found in some earlier make files to generate complete dependency lists.

A slight inconvenience can arise the first time make processes a target with hid
den dependencies, because there is as yet no record of them in the state file. If a
header file is missing, and make has no record of it, make won't know that it
needs to extract it from sees, before compiling the target. So, even though there
is an sees history file, the current version won't be extracted because it doesn't
yet appear in a dependency list or the state file. So, when the C preprocessor
attemptS to interpolate the header, it won't find it; the compilation fails.

Supposing that an :#: inc 1 u de directive for interpolating the header file
hidden. h is added to go. c, and that the file hidden. h is somehow removed
before the subsequent make run. The results would be:

The workaround is simple. Just make sure that the new header file is present in
the directory before you run make. Or, if the compilation should fail (and
assuming the header file is under SeeS), extract it from sees manually:

In future cases, should the header file tum up missing, make will know to build
or extract it for you, because it will be listed in the state file as a hidden depen
dency:

Note that with hidden dependency checking, the $? macro includes the names
of hidden dependency files. This may cause unexpected behavior in existing
makefiles that rely on $? .

12 Also unavailable with earlier versions of make.

Revision A of9 May 1988

134 Programming Utilities and Libraries

Displaying Information About
a make Run
There is an exception to this how
ever. make executes any command
line containing a reference to the
MAKE macro (Le., $ (MAKE) or
$ {MAKE n, regardless of -no So, it
would be a very bad idea to include
a line like: U$ (MAKE) ; rm -f *"
in your makefile.

Setting an environment variable
named MAKEFLAGS can lead to
complications, since make adds its
value to the list of options. To
prevent puzzling surprises, avoid
setting this variable.

Running make with the -n option displays the commands make is to perform,
without executing them. This comes in handy when verifying that the macros in
a makefile are expanded as expected. With the following makefile:

CFLAGS= -0
CPPFLAGS=
LDFLAGS=

.KEEP STATE:

program: main.o data.o
$(LINK.c) -0 program main.o data.o

make -n displays:

make has some other options that you can use to keep abreast of what it's doing
and why:

-d Displays the criteria by which make determines that a target is be out
of-date. Unlike -n, it does process targets, as shown below. This
options also displays the value imported from the environment (null by
default) for the MAKEFLAGS macro, which is described in detail in a
later section.

This option displays all dependencies make checks in vast detail.

-D Displays the text of the make file as it is read.

-DD Displays the makefile and the default makefile, the state file, and hidden
dependency reports for the current make run.

+~t!! Revision A of9 May 1988

Several -f options indicate the con
catenation of the named makefiles.

Due to its potentially troublesome
side effects, we recommend against
using the -t (touch) option for
make.

8.2. Compiling Programs
with make

Compilation Strategies

Chapter 8 - make User's Guide 135

-f make/tie
make uses the named make/tie (instead of make file or Makefile).

-p Displays the complete set of macro definitions and target entries.

-p Displays the complete de~ndency tree for each target encountered.

There is an option that can be used to shortcut make processing, the -t option.
When run with -t, make does not perfonn the rule for building a target. Instead
it uses touch to alter the modification time for each target that it encounters in
the dependency scan. It also updates the state file to show reflect what it built.
This often creates more problems than it supposedly solves, and so we recom
mend that you exercise extreme caution if you do use it. Note that if there is no
file corresponding to a target entry touch creates it.

The following is one example of how not to use make -t. Suppose you have a
target named clean that performed housekeeping in the directory by removing
target files produced by mak e:

[clean:
rrn program main.o data.o

If you give the erroneous command:

you then have to remove the file clean before your housekeeping target can
work once again.

For a complete listing of all make options, refer to make(l) in the SunOS Refer
ence Manual.

]

In previous examples you have seen how to compile a simple C program from a
single source file, using both explicit target entries and implicit rules. Most C
programs, however, are compiled from several source files. Many include library
routines, either from one of the standard system libraries or from a local library .
Although it may be easier to recompile and link a single-source program using a
single c c command, it is usually more convenient to compile programs with
multiple sources in stages-first, by compiling each source file into a separate
object (. 0) file, and then by linking the object files to form an executable pro
gram (an a. out format file). This method requires more disk space, but subse
quent (repetitive) recompilations need be performed only on those object files for

Revision A of9 May 1988

136 Programming Utilities and Libraries

A Simple Makefiie

Figure 8-4

which the sources have changed. The time saved is usually worth the extra space
required, since the remaining, up-to-date, object files are simply relinked as is
into a newly produced executable program.

The makefile that follows compiles an executable program from two C source
files. In subsequent examples, this makefile will be refined and enhanced to take
advantage of make's predefined macros and implicit rules. Subsequent sections
describe the mechanics of implicit rules, including how to add new ones of your
own.

Then, additional features are introduced that are useful in makefiles for maintain
ing C object libraries. Later sections expand upon these examples to create
sophisticated templates that are easily modified to handle a variety of programs
or libraries. 13

Further examples illustrate template makefiles for more complex operations, such
as linking programs with with user-supplied object libraries (from other direc
tories), linking C programs with assembly language routines, and compiling pro
grams from lex and yacc sources.

The makefile below is not very flexible or elegant, but it does the job.

Simple M akeftle for Compiling C Sources: Everything Explicit

* Simple makefile for compiling a program from
two C source files .

. KEEP STATE:

program: main.o data.o
cc -sun4 -0 program main.o data.o

main.o: main.c
cc -sun4 -0 -c main.c

data.o: data.c
cc -sun4 -0 -c data.c

clean:
rm program main.o data.o

In this example, the command:

make

produces the object files main. 0 and data. 0, and the executable file
program.

13 Makefiles for programs and libraries written in other compiled languages, such as FORTRAN 77, Pascal,
and Modula-2, are analogous.

Revision A of9 May 1988

Conventions have evolved for the
use of certain target names, such
as all, clean and install,
among others. There may be other
conventions in your organization. In
general, it is a good idea to avoid
creating files by any such name in
your source directories.

Using make's Predefined
Macros

Macro names that end in the string
FLAGS are used to pass options to
a related compiler-command macro.
It is good practice to use these
macros for consistency and porta
bility. It is also good practice to
note the desired default values for
them in the makefile.

The complete list of all predefined
macros is shown in Table 1.2,
below.

Chapter 8 - make User's Guide 137

The last target, clean, removes these files. This is a common addition to sim
plify housekeeping chores. The name clean is a convention for targets that
removes derived files.

The next example performs exactly the same function, but demonstrates the use
ofmake's predefined macros for the indicated compilation commands. Using
predefined macros eliminates the need to edit makefiles when the underlying
compilation environment changes. They also provide access to the CFLAGS
macro (and other FLAGS macros) for supplying compiler options from the com
mand line. Predefined macros are also used extensively within make's implicit
rules. The predefined macros in the following makefile are listed below. 14 They
are generally useful for compiling C programs.

COMPILE.c The complete cc command line; composed of the values of
CC, CFLAGS, CPPFLAGS, and TARGET_ARCH, as follows,
along with the -c option.

COMPILE.c=$(CC) $ (CFLAGS) $ (CPPFLAGS) $ (TARGET_ARCH) -c

LINK.c

The root of the macro name, COMPILE, is a convention used
to indicate that the macro stands for an entire compilation
command line. The. c suffix is a mnemonic device to indi
cate that the command line applies to . c (C source) files.

The complete cc command line to link object files, like
COMPILE. c, but without the -c option and with a reference
to the LDFLAGS macro:

LINK.c=$(CC) $ (CFLAGS) $ (CPPFLAGS) $ (LDFLAGS) $ (TARGET_ARCH)

CC

CFLAGS

CPPFLAGS

LDFLAGS

The value cc. (You can redefine the value to be the pathname
of an alternate C compiler.)

Options for the cc command; none by default.

Options for cpp; none by default.

Options for the link editor, ld; none by default.

14 Predefined macros are used more extensively than in earlier versions of make. Not all of the predefined
macros shown here are available with earlier versions.

Revision A of 9 May 1988

138 Programming Utilities and Libraries

AR

ARFLAGS

The ar command, which is used for maintaining library
archives.

Flags for ar. The default value is

rv

TARGET ARCH The target-architecture argument to cc used for cross
compiling. The default is set by make to the value returned
by the arch command.

TARGET MACH The target machine-type argument to cc that is used for
cross-compiling. The default is set by make to the value
returned by the mach command. Refer to Cross-Compilation
on the Sun Workstation for details.

Figure 8-5 Make/tiefor Compiling C Sources Using Predefined Macros

Using Implicit Rules to
Simplify a Makefile: Suffix
Rules

* Makefile for compiling two C sources * using predefined macros.

CFLAGS= -0
CPPFLAGS=
LDFLAGS=

.KEEP STATE:

program: main.o data.o
$ (LINK. c) -0 program main.o data.o

main.o: main.c
$ (COMPILE.c) main.c

data.o: data.c
$ (COMPILE.c) data.c

clean:
rm program main.o data.o

Since the command lines for compiling main. 0 and data. 0 from their respec
tive . c files are now functionally equivalent to the . c . 0 suffix rule, their target
entries are, in a sense, redundant; make performs the same compilation whether
they appear in the makefile or not. This next version of the makefile eliminates
them, relying on the . c. 0 rule to compile the individual object files .

• \sun
• microsystems

Revision A of9 May 1988

Figure 8-6

A complete list of suffix rules
appears in Table 3-1.

make uses the order of appearance
in the suffixes list to determine
which dependency file and suffix
rule to use. For instance, if there
were both main. c and main. 5

files in the directory, make would
use the • c . 0 rule, since . c is
ahead of . 5 in the list.

Figure 8-7

Chapter 8 - make User's Guide 139

Make/tie for Compiling C Sources Using Suffix Rules

* Makefile for a program from·two C sources * using suffix rules.

CFLAGS= -0
CPPFLAGS=
LDFLAGS=

.KEEP STATE:

program: main.o data.o
$(LINK.c) -0 program main.o data.o

clean:
rm program main.o data.o

As make processes the dependencies main. ° and data. 0, it finds no target
entries for them. So, it checks for an appropriate implicit rule to apply. In this
case, make selects the . c . ° rule for building a . ° file from a dependency file
that has the same basename and a . c suffix.

First, mak e scans its suffixes list to see if the suffix for the target file appears. In
the case of main . 0, the string. ° appears in the list. Next, make checks for an
suffix rule to build it with, and a dependency file to build it from. The depen
dency file has the same basename as the target, but a different suffix. In this
case, while checking the . c . ° rule, make finds a dependency file named
rna in. c, so it selects that rule. The target entry for the suffix rule is named for
the dependency suffix and the target suffix; the name is composed of the two
suffixes, in this case the target name becomes. c. 0, make applies the rule given
in the target entry by that name (in the default makefile).

The suffixes list is a special-function target named . SUFFIXES. The various
suffixes are included in the definition for the SUFFIXES macro; the dependency
list for. SUFFIXES is given as a reference to this macro:

The Standard Suffixes List

SUFFIXES= .0 .c.c .s .s- .S .s- .In .f .f- .F .F- .1 .1- \
.mod .mod- .sym .def .def- .p.p .r.r .y .y- .h .h- .sh .sh-

.SUFFIXES: $ (SUFFIXES)

Revision A of9 May 1988

140 Programming Utilities and Libraries

Like clean, all is a target name
used by convention. It builds "all"
the targets in its dependency list.
Normally, all is the first target;
make and make all are usually
equivalent.

When to Use Explicit Target
Entries vs. Implicit Rules

The following example shows a makefile for compiling a whole set of executable
programs, each having just one source file. Each executable is to be built from a
source file that has the same basename, and the . c suffix appended. For instance
demo 1 is built from demo 1. c.

* Makefile for a set of C programs, one source * per program. The source file names have ".c" * appended.

CFLAGS= -0
CPPFLAGS=
LDFLAGS=

.KEEP STATE:

all: demo 1 demo 2 demo 3 demo 4 demo 5

In this case, make does not find a suffix match for any of the targets (demo_1
through demo 5). So, it treats each as if it had a null suffix. It then searches for
an suffix rule and dependency file with a valid suffix. In the case of demo _2, it
would find a file named demo _ 2 . c. Since there is a target entry for a . c(null)
rule, namely the . c rule, along with a corresponding . c file make uses the rule
in the . c target entry to build demo _ 2 from demo _ 2 . c.

There is no transitive closure for suffix rules. If you had a suffix rule for build
ing, say, a . y file from a . x file, and another for building a . z file from a . y
file, make would not combine their rules to build a . z file from a . x file. You
must specify the intermediate steps as targets, as in the next example.

Whenever you build a target from multiple dependency files, you must provide
make with an explicit target entry that contains a rule for doing so. When build
ing a target from a single dependency file, it is often convenient to use an impli
cit rule.

As the previous examples show, make is happy to compile a single source file
into a corresponding object file or executable. However, it has no built-in
knowledge whatsoever about how to collate several files into one. For instance,
it has no idea of the order in which to link a list of object files into an executable
program. Also, make only compiles those object files that it encounters in its
dependency scan. It needs a starting point-a target for which each object file in
the list (and ultimately, each source file) is a dependency.

~~sun ~ microsystems
Revision A of 9 May 1988

Implicit Rules and Dynamic
Macros

Because they aren't explicitly
defined in a makefile, the conven
tion is to document dynamic macros
with the $-sign prefix attached (in
other words, by showing the macro
reference).

The macro OUTPUT OPTION has
an empty value by default. While
similar to CFLAGS in function, it is
provided as a separate macro,
intended for passing in the -0

filename compiler option, as needed,
to force compiler output to a given
filename.

Dynamic Macro Modifiers

Chapter 8 - make User's Guide 141

So, for a target built from multiple dependency files, make needs an explicit rule
that provides a collating order, and a dependency list that accounts for all of its
dependency files. On the other hand, if each of those dependency files is built
from just one source, you could use an implicit rule to build them.

make maintains a set of macros dynamically, on a target-by-target basis. These
macros are used quite extensively, especially in the definitions of implicit rules.
So, it is important to understand what they mean.

They are:

$ @ The name of the current target.

$? The list of dependencies newer than the target.

$< The name of the dependency file, as if selected by make for use with an
implicit rule.

$ * The basename of the current target (the target name stripped of its suffix).

$ % For libraries, the name of the member being processed. See Building Object
Libraries, below, for more information.

Implicit rules make use of these dynamic macros in order to supply the name of a
target or dependency file to a command line within the rule itself. For instance,
in the . c . 0 rule, shown in the next example.

(.c.o :
$ (COMPILE.c) $< $ (OUTPUT_OPTION)

$< is replaced by the name of the dependency file (in this case the . c file) for
the current target.

In the . c rule:

]

[____ .C __ : _____ $_(L_I_N_K_._C_) __ $< __ -_O __ $_@ ________________________ ~]
$ @ is replaced with the name of the current target.

Because values for the $ < and $ * macros depend upon both the order of suffixes
in the suffixes list, you may get surprising results when you use them in an expli
cit target entry. See Suffix Replacement in Macro References for a strictly deter
ministic method for deriving a filename from a related filename.

Dynamic macros can be modified by including F and D in the reference. If the
target being processed is in the form of a pathname, $ (@F) indicates the
filename part, while $ (@D) indicates the directory part. If there are no / charac
ters in the target name, then $ (@D) is assigned the dot character (.) as its value.
For example, with the target named / tmp / t est, $ (@D) has the value / tmp;
$ (@F) has the value test.

Revision A of 9 May 1988

142 Programming Utilities and Libraries

Dynamic Macros and the
Dependency List: Delayed
Macro References

How make Evaluates
Dependencies

However, the $$ notation can be
used, as described under Delayed
References to a Shell Variahle below,
to pass a shell variable reference to
the shell interpreting the command
line.

Dynamic macros are assigned while processing any and all targets. They c"an be
used within the target's rule as is, or in the dependency list by prepending an
additional $ character to the reference. A reference beginning with $ $ is called a
delayed reference to a macro. For instance, the entry:

[
x.o y.o z.o: $$@.BAK J

__________ CP __ $_@_.B_AK ___ $@ ____________________________ ~

could be used to copy x . 0 from a backup copy named x . 0 • BAK, and so forth
for y . 0 and z . o.

This technique works because make reads the dependency list twice, once as it
starts up, and again as it encounters each target while following the dependency
scan. Each time it does so, it resolves any macro references contained in the
dependency list Before processing any dependencies, the dynamic macros aren't
defined. Unless the references are delayed until the second pass, make would
resolve them to an empty value. The string $ $ is a reference to the predefined
macro' $'. This macro, conveniently enough, has the value' $'; when make
resolves it in the first (parsing) pass, the string $ $ * is resolved to $ *. Then, in
the second pass, the $ * macro reference has a value dynamically assigned to it,
so make resolves the reference to that value.

Note that make only evaluate the target-name portion of a target entry in the first
pass. A delayed macro reference as a target name will produce incorrect results.
The makefile:

NONE= none
all: $ (NONE)

$$(NONE) :
@: this target's name isn't 'none'

produces:
:::::: .::::

I:: >::< g:]~W!]::;: ~::J li < ::::: ;:::::::::::::::::::: ::::::: :::::::

) >: 7?:: ::::::::

::l:::!·::~ :m::m~m::::::

Also note that make evaluates the rule portion of a target entry only once, at the
time that the rule is executed. Here again, a delayed reference to a mak e macro
will produce incorrect results.

.~sun ~ microsystems
Revision A of 9 May 1988

Adding Suffix Rules

Pattern matching rules, which are
described in the previous section,
are often easier to use than. The
procedure for adding implicit rules is
given here for compatibility with pre
vious versions of make.

Chapter 8 - make User's Guide 143

Although make supplies you with a number of useful suffix rules, you can also
add new ones of your own design. However, pattern matching rules,15 which are
described in the next section, are to be preferred when adding new implicit rules.
Unless you need to write implicit rules that are compatible with earlier versions
of make, you may safely skip the remainder of this section, which describes the
traditional method of adding implicit rules to makefiles.

Adding a suffix rule is a two-step process. First, you must add the suffixes of
both target and dependency file to the suffixes list by providing them as depen
dencies to the . SUFF IXES special target Because dependency lists accumu
late, you can add suffixes to the list simply by adding another entry for this tar
get, for example:

(.SUFFIXES: .ms .tr

Second, you must add a target entry for the suffix rule:

[.ms.tr:
troff -t -ms $< > $@

A make file with these entries can be used to format document source files con
taining ms macros (. ms files) into t r 0 f f output files (. t r files):

Entries in the suffixes list are contained in the SUFFIXES 16 macro. To insert
suffixes at the head of the list, first clear its value by supplying an entry for the
. SUFFIXES target that has no dependencies. This is an exception to the rule
that dependency lists accumulate. You can clear a previous definition for any
target with a name starting with the character' .' by supplying a target entry for
that target with no dependencies and no rule,17 like this:

J

]

(~ ____ ._S_U_F_F_I_X_E_S_: __ ~J
When you do, both the previous rule, and the previous dependency list are
erased. You can then add another entry containing the new suffixes, followed by
a reference to the SUFFIXES macro, as shown below.

IS Not available with earlier versions of make.

16 Note that there is no leading dot

17 You can only clear the dependency list for the . SUFFIXES target in previous versions of make.

Revision A of 9 May 1988

144 Programming Utilities and Libraries

Pattern Matching Rules: an
Alternative to Suffix Rules

make checks for pattern matching
rules ahead of suffix rules. While
this allows you to override the stan
dard implicit rules, doing so is not
recommended.

make's Default Suffix Rules
and Predefined Macros

[
~SUFFIXES:]

~ ___ ._S_U_F_F_I_X_E_s_: __ ._rn_s __ ._t_r __ $_(_S_U_F_F_I_X_E_S_) ________________________ ~

A pattern matching rule is similar to an implicit rule in function. Pattern match
ing rules are easier to write, and more powerful, because you can specify a rela
tionship between a target and a dependency based on prefixes and suffixes both.
A pattern matching rule is a target entry of the form:

tp%ts: dp%ds
rule

where tp and ts are the optional prefix and suffix in the target name, respectively,
dp and ds are the (optional) prefix and suffix in the dependency name, and % is a
wild card that stands for a basename common to both.

If there is no rule for building a target, make searches for a pattern matching
rule, before checking for a suffix rule. Ifmake can use a pattern matching rule,
it does so.

If the target pattern matches the target name, there is a dependency file matching
the dependency pattern, and the target is out of date with respect to that depen
dency file, make rebuilds the target. If the target is up to date with respect to the
dependency, make does not rebuild it, and continues processing with the next tar
get in the dependency hierarchy.

If the target entry for a pattern matching rule contains no rule, make processes
the target file as if it had an explicit target entry with no rule; it therefore searches
for a suffix rule, attempts to extract a version of the target file from sees, and
finally, treats the target as having a null rule (flagging the target as updated,
which forces any parent target to be rebuilt).

A pattern matching rule for formatting a troff source file into a troff output
file looks like:

[%.tr: %.rns
traff -t -rns $< > $@

This is much easier to write, and much simpler to follow than the equivalent
suffix rule would be.

The following tables list the standard set of suffix rules and predefined macros
supplied with mak e.

]

~\sun ~ microsystems
Revision A of 9 May 1988

Chapter 8 -make User's Guide 145

Table 8-1 make's Standard Suffix Rules

Use Suffix Rule Name Command Line(s)

Assembly .s.o $ (COMPILE.s) -0 $@ $<

Files .s.a $ (COMPILE.s) -0 $% $<
$(AR) $ (ARFLAGS) $@ $%
$ (RM) $%

.S.o $ (COMPILE.S) -0 $@ $<

.S.a $(COMPILE.S) -0 $% $<
$ (AR) $ (ARFLAGS) $@ $%
$ (RM) $%

C .c $(LINK.c) -0 $@ $< $(LDLIBS)

Files .c.ln $(LINT.c) $ (OUTPUT OPTION) -i $<

.c.o $ (COMPILE. c) $(OUTPUT OPTION) $<

.c.a $(COMPILE.c) -0 $% $<
$ (AR) $ (ARFLAGS) $@ $%
$(RM) $%

FORTRAN 77 .f $(LINK.f) -0 $@ $< $(LDLIBS)

Files .f.o $ (COMPILE. f) $(OUTPUT OPTION) $<

.f.a $(COMPILE.f) -0 $% $<
$ (AR) $ (ARFLAGS) $@ $%
$(RM) $%

.F $(LINK.F) -0 $@ $< $(LDLIBS)

.F.o $ (COMPILE. F) $(OUTPUT OPTION) $<

.F.a $(COMPILE.F) -0 $% $<
$ (AR) $ (ARFLAGS) $@ $%
$ (RM) $%

lex .1 $ (RM) $*.c
Files $ (LEX.l) $< > $*.c

$(LINK.c) -0 $@ $*.c $ (LDLIBS)
$ (RM) $*.c

.l.c $ (RM) $@
$ (LEX.1) $< > $@

.l.ln $(RM) $*.c
$ (LEX. 1) $< > $*.c
$(LINT.c) -0 $@ -i $*.c
$(RM) $*.c

.1.0 $ (RM) $*.c
$ (LEX.l) $< > $*.c
$(COMPILE.c) -0 $@ $*.c
$(RM) $*.c

Modula2 • mod $ (COMPILE. mod) -0 $@ -e $@ $<
Files .mod.o $ (COMPILE.mod) -0 $@ $<

.def.sym $ (COMPILE.def) -0 $@ $<
NeWS .cps.h cps $*.cps
Pascal .p $(LINK.p) -0 $@ $< $(LDLIBS)
Files .p.o $ (COMPILE.p) $(OUTPUT OPTION) $<

Rat/or .r $(LINK.r) -0 $@ $< $(LDLIBS)
Files .r.o $ (COMPILE. r) $(OUTPUT OPTION) $<

.r.a $ (COMPILE.r) -0 $% $<
$ (AR) $ (ARFLAGS) $@ $%
$ (RM) $%

Revision A of 9 May 1988

146 Programming Utilities and Libraries

Table 8-1 make's Standard Suffix Rules- Continued

Use Suffix Rule Name Command Line(s)

Shell .sh cat $< >$@
Scripts chmod +x $@

yacc .y $ (YACC.y) $<
Files $ (LINK.c) -0 $@ y.tab.c $(LDLIBS)

$(RM) y.tab.c

.y.c $ (YACC.y) $<
mv y.tab.c $@

.y.ln $ (YACC.y) $<
$ (LINT.c) -0 $@ -i y.tab.c
$ (RM) y.tab.c

.y.o $ (YACC.y) $<
$(COMPILE.c) -0 $@ y.tab.c
$ (RM) y.tab.c

Table 8-2 make's Predefined and Dynamic Macros

Use Macro Default Value

Library AR ar
Archives ARFLAGS rv

Assembler AS as
Commands ASFLAGS

COMPILE.s $(AS) $ (ASFLAGS) $ (TARGET_ARCH)
COMPILE.S $(CC) $ (ASFLAGS) $ (CPPFLAGS) $ (TARGET ARCH) -c

CCompiler CC cc
Commands CFLAGS

CPPFLAGS
COMPILE.c $(CC) $ (CFLAGS) $ (CPPFLAGS) $ (TARGET_ARCH) -c
LINK.c $(CC) $ (CFLAGS) $ (CPPFLAGS) $ (LDFLAGS) $ (TARGET ARCH)

FORTRAN 77 FC £77
Compiler FFLAGS
Commands COMPILE. f $(FC) $ (FFLAGS) $(TARGET_ARCH) -c

LINK.f $(FC) $ (FFLAGS) $ (TARGET_ARCH) $ (LDFLAGS)
COMPILE.F $(FC) $ (FFLAGS) $ (CPPFLAGS) $ (TARGET_ARCH) -c
LINK.F $(FC) $ (FFLAGS) $ (CPPFLAGS) $ (LDFLAGS) $ (TARGET ARCH)

Link Editor LD ld
Command LDFLAGS

lex LEX lex
Command LFLAGS

LEX.l $ (LEX) $ (LFLAGS) -t

lint LINT lint
Command LINTFLAGS

LINT.c $ (LINT) $ (LINTFLAGS) $ (CPPFLAGS) $(TARGET ARCH)

Modula2 M2C m2c
Commands M2FLAGS

MODFLAGS
DEFFLAGS
COMPILE.def $ (M2C) $ (M2FLAGS) $ (DEFFLAGS) $ (TARGET_ARCH)
COMPILE.mod $ (M2C) $ (M2FLAGS) $ (MODFLAGS) $ (TARGET ARCH)

Pascal PC pc
Compiler PFLAGS
Commands COMPILE.p $ (PC) $ (PFLAGS) $ (CPPFLAGS) $ (TARGET_ARCH) -c

LINK.p $ (PC) $ (PFLAGS) $ (CPPFLAGS) $ (LDFLAGS) $ (TARGET ARCH)

Rat/or RFLAGS
Compilation COMPILE.r $(FC) $ (FFLAGS) $ (RFLAGS) $ (TARGET_ARCH) -c
Commands LINK.r $(FC) $ (FFLAGS) $ (RFLAGS) $ (TARGET ARCH) $ (LDFLAGS)

Revision A of 9 May 1988

Chapter 8 -make User's Guide 147

Table 8-2 make's Predefined and Dynamic Macros-- Continued

Use

rm
Command

yacc
Command

Suffixes
List

8.3. Building Object
Libraries

Libraries, Members and
Symbols

Library Members and
Dependency Checking

Macro Default Value

RM rm -f

YACC yacc
YFLAGS
YACC.y $ (YACC) $ (YFLAGS)

.0 .c .c- .s .s - .S .S- .1n .f .f- .F .F- .1
SUFFIXES .1- .mod .mod- .sym .def .def- .p .p - .r .r -

.y .y - .h .h- .sh .sh- .cps .cps -

An object library is a set of object files contained in an ar library archive. I8

Various languages make use of object libraries to store compiled functions of
general utility, such as those in the C library.

ar reads in a set of one or more files to create a library. Each member contains
the text of one file, preceded by a header. This header contains infonnation taken
from the file's directory entry when the text is read in, including the modification
time. make can treat the library member as a separate entity for dependency
checking using this header.

When you compile a program that uses functions from an object library (specify
ing the proper library either by filename, or with the -1 option to cc), the link
editor selects and links with the library member that contains a needed function
or symbol.

You can use ran1ib to generate a symbol table for a library of object files. 1d
uses this table for random access to symbols within the library-to locate and
link object files in which functions are defined. You can also use lorder and
tsort ahead of time to put members in calling order within the library. (See
lorder(l) for details.) For very large libraries, it is a good idea to do both.

make recognizes a target or dependency of the form

lib.a (member . ..)

as a reference to a library member, or a space-separated list of members. I9 For
example, the following target entry indicates that the library named librpn. a
is built from members named stacks. 0 and fifos. o. The pattern matching
rule indicates that each member depends on a corresponding object file, and that
object file is built from its corresponding source file using an implicit rule.

18 See ar(1), ar"(5), 10rder(1), and ran 1 ib(l) in the Commands Reference Manual for details about
library archive files.

19 Earlier versions make recognize this notation. However, only the first item in a parenthesized list of
members was processed. In this version of make, all members in a parenthesized list are processed.

Revision A of9 May 1988

148 Programming Utilities and Libraries

Library Member Name-Length
Limit

. PRECIOUS: Preserving
Libraries Against Removal Due
to Interrupts

librpn.a: librpn.a(stacks.o fifos.o)
ar rv $@ $?
ranlib $@

lib.a(%.o): %.0

When used with library-member notation, the dynamic macro $? contains the
list of files that are newer than their corresponding members:

The name of an ar library member cannot exceed 15 characters. If a filename is
longer than that, ar truncates the name of its corresp:>nding member to the first
15 characters. If a library depends upon a member whose corresponding
filename is too long, make attempts to match the name of the member to the first
15 characters of a file in the directory. make uses the first filename that matches
as the file from which to build the member.

Nonnally, if you interrupt make in the middle of a target, the target file is
removed. For individual files this is a good thing, otherwise incomplete files
with brand new modification times might be left in the directory. For libraries,
which consist of several members, the story is different. It is often better to leave
the library intact, even if one of the members is still out of date. This is espe
cially true for large libraries, especially since a subsequent make run will pick up
where the previous one left off-by processing the object file or member whose
processing was interrupted .

. PRECIOUS is a special target that is used to indicate which files should be
preserved against removal on interrupts; make does not remove targets that are
listed as its dependencies. If you add the line:

(.PRECIOUS: librpn.a

to the makefile shown above, run make, and interrupt the processing of
librpn. a, the library is preserved.

The $ % dynamic macro is provided specifically for use with libraries. When a
library member is the target, the member name is assigned to the $ % macro. For
instance, this makefile below produces the results that follow.

]

Revision A of 9 May 1988

8.4. Maintaining Programs
and Libraries With
make

Using Macros for Added
Flexibility

Chapter 8 -make User's Guide 149

[libx.a(demo.o) :
@echo $%

In previous sections you have learned how make can help compile simple pro
grams and build simple libraries. The focus of this section is on developing
makefiles for more complex compilations. To eliminate possible sources of con
fusion, it is often a good idea to put each module into a separate directory of its
own. This makes clear which source files pertain to which programs or libraries,
and allows you to create make files that operate consistently between various
parts of a software project. Subsequent sections describe how to maintain, as a
single entity, a project that spans several directories.

]

You have seen how to use predefined and dynamic macros within rules, and for
passing parameters from the command line. make also allows you to define your
own macros within a makefile. Macros allow you to simplify makefiles while
making them more flexible (for use with other modules, or other projects;
makefiles for this version of make are not necessarily portable to other versions
ofWithmake). use of macros, you can develop template makefiles that can be
re-used, with only minor edits, for any number of similar compilation pro
cedures. The examples to follow illustrate how to use macros to develop tem
plate makefiles for C programs and libraries.

Macro definitions can appear on any line in a makefile; macros can be used to
abbreviate long target lists or expressions, or as shorthand to replace long strings
that would otherwise have to be repeated. Macro names are allocated as the
makefile is read in; the value a particular macro reference takes depends upon the
most recent value assigned.20 For instance, in the following makefile, the macro
TEST evaluates to false.

TEST= true
TEST= false

all:
#echo $ (TEST)

20 Actually, macro evaluation is a bit more complicated than this. Refer to Passing Parameters to Nested
make Commands for more infonnation.

+§J!,!! Revision A of9 May 1988

150 Programming Utilities and Libraries

Embedded Macro References

A More Flexible Makefile

Macro references can embedded within other references, like this:21

$ (OUTER$ (INNER))

In which case they are expanded from innermost to outermost:

OUTER= out
INNNER= in
outin= something completely different

all:
@echo $(OUTER$(INNER»

produces:

The makefile for compiling a C program that used implicit rules can be general
ized to accommodate other programs using macros. By replacing key words with
macros, and by editing the definitions of those macros, altering the makefile for
use with yet another program becomes a simple matter.

i Flexible makefile for a C program.

SOURCES= main.c data.c
OBJECTS= main.o data.o
PROGRAM= program

CFLAGS= -0 CPPFLAGS= LDFLAGS=

.KEEP STATE:

$ (PROGRAM) : $ (OBJECTS) $(LINK.c) -0 $@ $ (OBJECTS)

clean: rm $ (PROGRAM) $ (OBJECTS)

In this case, you need only edit the SOURCES, OBJECTS and PROGRAM macros
and you can compile a different program entirely, albeit in the same way.

Although in a simple case like this the changes to the makefile might not seem
worth the extra trouble, the added flexibility becomes increasingly important as
you apply more powerful techniques. With judicious use of macros you can
avoid having to puzzle over which specific changes you can, or should (or even
dare), add to a make file.

21 Not supported in previous versions of make.

~\sun
• microsystems

Revision A of 9 May 1988

Makefiles as Specifications

No one should have to scan an
entire makefile just to puzzle out
what it builds.

Suffix Replacement in Macro
References

Using lint with make

We encourage you to lint your C
programs for easier debugging and
maintenance. lint also checks for
C constructs that are not con
sidered portable across machine
architectures. It can be a real help
in writing portable C programs.

Chapter 8 - make User's Guide 151

A make file performs an important function by documenting what files get built
from which sources, and what compilation options are used, by default, to build
them. Specifying this information with a set of macro definitions at the top of
the makefile is a great aid the reader, especially when makefiles are similar in
format, or at all complicated.

In the flexible makefile shown above, the value of OBJECT S is a bit redundant.
It would be better to derive the names of the object files from the names of the
source files. In fact, there are any number of filenames that can be derived from
the names of source files, simply by altering their suffix. For this reason, make
provides a mechanism for temporarily replacing suffixes of words in a macro's
value, when the reference to that macro is of the form:22

$ (macro: old-suffix=new-suffix)

This suffix replacement macro reference allows you to express the list of object
files in terms of the list of sources:

OBJECTS= $(SQURCES:.c=.o)

It replaces all occurrences of the . c suffix in words within the value with the . 0

suffix. The substitution is not applied to words for that do not end in the suffix
given. The following makefile:

OLD= main.c data.c moon
NEW= $(OLD:.c=.o)

all:
@echo $(NEW)

illustrates this very simply:

lint, the C program verifier,23 is an important tool for forestalling the kinds of
bugs that are most difficult and tedious to track down. These include uninitial
ized pointers, parameter-count mismatches in function calls, and nonportable
uses of C constructs. As with the clean target, lint is a target name used by
convention; it is usually a good practice to include it in makefiles that build C

22 Although conventional suffixes start with dots, a suffix may consist of any string of characters.

23 See Using lint in 1 int - a Program Verifier for C for more infonnation.

Revision A of 9 May 1988

152 Programming Utilities and Libraries

programs. lint produces output files that have been preprocessed through cpp
and its own first (parsing) pass. These files characteristically end in the . In
suffix,24 and can also be derived from the list of sources through suffix replace
ment:

(~ _____ L_I_N~T_F_I_L_E_S_= ____ $_(_S_O_U_R_C_E_S_:_._C_=_._l_n_) __ ~)

The lint target entry appears as follows:

lint: $ (LINTFILES)

$ (LINTFILES) :
$(LINT.c) $ (LINTFILES)

There is an implicit rule for building each . I n file from its corresponding . c
file, so there is no need for target entries for the . In files. As sources change,
the . I n files are updated whenever you run

make J.int

Since the LINT. c predefined macro includes a reference to the L1NTFLAGS
macro, it is a good idea to specify the lint options to use by default (none in
this case). Since lint entails the use of cpp, it is a good idea to use
CPPFLAGS, rather than CFLAGS for compilation preprocessing options (such as
-I). The LINT. c macro does not include a reference to CFLAGS.

Also, when you run make clean you will want to get rid of any .In files pro
duced by this target. It is a simple enough matter to add another such macro
reference to the clean target:

clean:
rm -f $(PROGRAM) $ (OBJECTS) $ (LINTFILES)

With these changes, the new version of the makefile appears as follows.

24 This is true for the Sun implementation, it may not be true for other versions of 1 in t.

Revision A of9 May 1988

Figure 8-8

Linking With System
Supplied Libraries

You can also link with a library by
specifying its pathname name as an
argument to ee.

Chapter 8 - make User's Guide 153

Make/de with "Suffix-Replacement" Macro References

i Makefile for a C program with an entry for lint.

SQURCES= main.c data.c
PROGRAM= program

CFLAGS= -0
CPPFLAGS=
LDFLAGS=
LINTFLAGS=

OBJECTS= $(SOURCES:.c=.o)
LINTFILES= $(SOURCES:.c=.ln)

.KEEP STATE:

$ (PROGRAM) : $ (OBJECTS)
$(LINK.c) -0 $@ $ (OBJECTS)

lint: $ (LINTFILES)

$ (LINTFILES) :
$(LINT.c) $ (LINTFILES)

clean:
rm -f $ (PROGRAM) $ (OBJECTS) $ (LINTFILES)

This makefile is easily altered to compile a program that uses system-supplied
library packages. The next example shows a makefile that compiles a program
that uses the curses and termlib library packages for screen-oriented cursor
motion.

A makefile link with user-supplied libraries appears later on.

Revision A of 9 May 1988

154 Programming Utilities and Ubraries

Figure 8-9 Makeftle for a C Program With System-Supplied Libraries

... //

Compiling Programs for
Debugging and Profiling

t @(t) sample.l.mk
t
t Makefile for a C program with curses and termlib.

SOURCES= main.c data.c
LIBS= -1curses -1ter.m1ib
PROGRAM= program

CFLAGS= -0
CPPFLAGS=
LDFLAGS=
LINTFLAGS=

OBJECTS= $ (SOURCES: .c=.o)
LINTFILES= $(SOURCES:.c=.ln)

.KEEP STATE:

$ (PROGRAM) : $ (OBJECTS)
$(LINK.c) -0 $@ $ (OBJECTS) $ (LIBS)

lint: $ (LINTFILES)

$ (LINTFILES) :
$(LINT.c) $ (LINTFILES)

clean:
rm -f $(PROGRAM) $ (OBJECTS) $ (LINTFILES)

Since the link editor resolves undefined symbols as they are encountered, it is
normally a good idea to place library references at the end of the list of files to
link.

This make file produces:

··············II
······:1:.::·1·11:: ::..::r?

Compiling programs for debugging or profiling introduces a new twist to the pro
cedure, and to the make file. These variants are produced from the same source
code, but are built with different options to the C compiler. The cc option to
produce object code that is suitable for debugging is -g, and it is important to
omit the -0 option in this case. The cc options that produce code for profiling
are -0 an<;i -pg.

Revision A of 9 May 1988

Conditional Macro Definitions

make must know which targets the
definition applies to, so you can't
use a conditional macro definition to
alter a target name.

Chapter 8 - make User's Guide 155

Since the compilation procedure is the same otherwise, you could give make a
definition for CFLAGS on the command line. Since this definition overrides the
definition in the makefile, and. KEEP_STATE assures any command lines
affected by the change are perfonned, the command:

make "CFLAGS= -0 -pq"

produces the following results.

Of course, you may not want to memorize these options or type a complicated
command like this, especially when you can put this infonnation in the makefile.
What is needed is a way to tell make how to produce a debugging or profiling
variant, and some instructions in the makefile that tell it how. One way to do this
might be to add two new target entries, one named debug, and the other named
prof ile, with the proper compiler options hard-coded into the command line.

A better way would be to add these targets, but rather than hard-coding their
rules, include instructions to alter the definition of CFLAGS depending upon
which target it starts with. Then, by making each one depend on the existing tar
get for program make could simply make use of its rule, along with the
specified options.

Instead of saying "make "CFLAGS= -g", you could say "make debug" to
compile a variant for debugging. The question is, how do you tell make that you
want a macro defined one way for one target (and its dependencies), and another
way for a different target?

A conditional macro definition25

is a line of the form:

target-list : = macro = value

which assigns the given value to the indicated macro while make is processing
the target named target-name and its dependencies. The following lines give
CFLAGS an appropriate value for processing each program variant.

[debug := CFLAGS= -g
profile := CFLAGS= -pg -0

25 Not available with previous versions of make .

]

• ~sun ~ microsystems
Revision A of 9 May 1988

156 Programming Utilities and Libraries

Compiling Debugging and
Profiling Variants

Figure 8-10

all is a conventional target for
building "all" final, or "finished" tar
gets. Debugging and profiling vari
ants aren't normally considered part
of a finished program.

Note that when you use a reference to a condition macro in the dependency list
that reference must be delayed (by pre pending a second $). Otherwise, make
may expand the reference before the correct value has been assigned. When it
encounters a (possibly) incorrect reference of this sort, make issues a warning.

The following makefile produces optimized, debugging, or profiling variants of a
C program, depending on which target you specify (the default is the optimized
variant). Command dependency checking guarantees that the program and its
object files will be recompiled whenever you switch between variants.

Makeflie for a C Program with Alternate Debugging and Profiling Variants

f @(f) sample.2.mk
f
f Makefile for a C program with alternate
f debugging and profiling variants.

SOURCES= main.c data.c
LlBS= -lcurses -ltermlib
PROGRAM= program

CFLAGS= -0
CPPFLAGS=
LDFLAGS=
LlNTFLAGS=

OBJECTS= $(SOURCES:.c=.o)
LlNTFlLES= $(SOURCES:.c=.ln)

.KEEP STATE:

a11 debug profi1e: $ (PROGRAM)

debug := CFLAGS= -g
profi1e := CFLAGS= -pg -0

$ (PROGRAM) : $ (OBJECTS)
$(LlNK.c) -0 $@ $ (OBJECTS) $(LlBS)

lint: $ (LlNTFlLES)

$ (LlNTFlLES) :
$(LlNT.c) $ (LlNTFlLES)

clean:
rrn -f $(PROGRAM) $ (OBJECTS) $ (LlNTFlLES)

Going through the makefile, all of the lines above. KEEP_STATE seem fami
liar. The subsequent target entry specifies three targets, with all appearing first.

all traditionally appears as the first target in makefiles with alternate starting
targets (or those that process a list of targets). It's dependencies are "all" targets
that go into the final build, whatever that may be. In this case, the final target is
the optimized program variant. This entry also indicates that debug and pro

file depend on program (the value of $ (PROGRAM)) .

• sun
~ microsystems

Revision A of9 May 1988

. ••. •.. >:.. .. •

:i'i!~;, ·#;,.·.·.7 t .••• ·•· •.• • •• · .••
. ~.

Chapter 8 - make User's Guide 157

The next two lines contain conditional macro definitions for CFLAGS, when it
appears in profile or debug, or their dependencies:

(debug := CFLAGS= -g
profile := CFLAGS= -pg -0

Next comes the familiar target entry that starts with $ (PROGRAM). Finally, the
remainder of the make file looks familiar.

With this makefile,

make

or

make all

produces:

make debug

produces:

and

make profi1e

produces:

...... { II
.: ... :

]

.......... \) ..

.•.•.•• ::<::::j}.!:::! .

The next example applies similar techniques to maintaining a C object library.

Revision A of9 May 1988

158 Programming Utilities and Libraries

Figure 8-11

Maintaining Separate
Program and Library
Variants

Makefile for a C Library with Alternate Variants

f @(f) sample.3.mk
f
f Makefile for a C library with alternate
f variants.

SOURCES= calc.c map.c draw.c
LIBRARY= libpkg.a

CFLAGS= -0
CPPFLAGS=
LINTFLAGS=

MEMBERS= $(SOURCES:.c=.o)
LINTFILES= $(SOURCES:.c=.ln)

all debug profile: $ (LIBRARY)

debug := CFLAGS= -g
profile := CFLAGS= -pg -0

.KEEP STATE:

.PRECIOUS: $ (LIBRARY)

$ (LIBRARY) : $ (LIBRARY) ($(MEMBERS»
ar rv $@ $?
ranlib $@

$ (LIBRARY) (%.0): %.0

lint: $ (LINTFILES)

$ (LINTFILES) :
$(LINT.c) $ (LINTFILES)

clean:
rm -f $(LIBRARY) $ (MEMBERS) $ (LINTFILES)

The previous two examples are adequate when development, debugging and
profiling are done in distinct phases. However they suffer from the drawback
that all object files are recompiled whenever you switch between variants, which
can result in unnecessary delays. The next two examples illustrate how all three
variants can be maintained as separate entities.

To avoid the confusion that might result from having three variants of each
object file in the same directory as the program sources, it makes sense to place
the debugging and profiling objects and executables in their own subdirectories.
However, in order to do this we need a technique for adding a the name of the
subdirectory as a prefix to each entry in the list of object files.

Revision A of 9 May 1988

Pattern Replacement Macro
References

Chapter 8 - make User's Guide 159

A pattern replacement macro reference is similar in form an function to a suffix
replacement reference.26 You can use a pattern replacement reference to add or
alter a prefix, suffix, or both, to matching words in the value of a macro. A pat
tern replacement reference takes the form:

$ (macro:p %s=np %ns)

where p is the existing prefix to replace (if any), s is the existing suffix to replace
(if any), np and ns are the new prefix and suffix, respectively, and % is a wild card
character that matches zero or more characters in each word. The pattern
replacement is applied to all words in the value that match. For instance, this
makefile:

OLD= old.main.c old.data.c moon
NEW= $(OLD:old.%.c=new.%.o)

all:
@echo $ (NEW)

produces:

Please note, however, that pattern replacement macro references should not
appear on the dependency line of a pattern matching rule's target entry. This
produces unexpected results. With the make file:

OBJECT= .0

x:
x.Z:

@echo correct

%: %.$(OBJECT:%o=%Z)

it looks as ifmake should attempt to build x from x. Z. However, the pattern
matching rule is not recognized; make cannot determine which of the % charac
ters in the dependency line to use in the pattern matching rule; consequently, the
target entry for x . Z is never reached.

26 As with pattern matching rules, pattern matching macro references aren't available in earlier versions of
make.

~\sun ~ microsystems
Revision A of 9 May 1988

160 Programming Utilities and Libraries

Makefile for a Program with
Separate Variants
make performs the rule in the
• INIT target just after the makefile
is read.

Here is an exception to the advice
that a makefile should only maintain
files in the current working directory.
Still, target files should only be built
in a subdirectory if they depend on
source files in the working directory.

The following example shows a makefile for a C program with separately
maintained variants. First, the . INIT special target, creates the debug and
prof ile subdirectories (if they don't already exist), which will contain the
debugging and profiling object files and executables.

Next, the macros DEBUG and PROFILE are assigned the program name, prefixed
with either debug / or prof ile/, as appropriate. Pattern replacement macro
references to the PROGRAM macro are used to accomplish this. Next, the debug
and profile targets are set to depend on them so that when you type make
debug, instead of recompiling program, with different compiler options,
make builds the file debug /program.

These variant executables are made to depend on the object files listed in the
VARIANTS.o macro. This macro is given the value of OBJECTS by default;
later on it may be reassigned using a conditional macro definition, at which time
either the debug/ or profile/ prefix is added, as appropriate, to each entry
in the list of object files; executables in the subdirectories depend on the object
files that are built in those same directories.

Next, pattern matching rules are added to indicate that the object files in both
subdirectories depend upon source (. c) files in the working directory. This is
the key step needed to allow all three variants to be built and maintained from a
single set of source files.

Finally, the clean target has been updated to recursively remove the debug
and prof ile subdirectories and their contents, which should be regarded as
temporary. This helps to impose the practice of keeping all files that are critical
to the program in the same directory as its source files, and not in the subdirec
tories for the variants.

~~sun ~ microsystems
Revision A of9 May 1988

Chapter 8 - make User's Guide 161

Figure 8-12 Makefilefor Separate Debugging and Profiling Program Variants

@(#) sample.4.mk

Makefile for maintaining separate debugging and
profiling program variants.

SOURCES= main.c data.c
LIBS= -lcurses -ltermlib
PROGRAM= program

CFLAGS= -0
CPPFLAGS=
LDFLAGS=
LINTFLAGS=

OBJECTS= $(SOURCES:.c=.o)
LINTFILES= $ (SOURCES: .c=.ln)
DEBUG= $(PROGRAM:%=debug/%)
PROFILE= $(PROGRAM:%=pro£ile/%)
VARIANTS.o= $(OBJECTS)

.KEEP STATE:

.INIT:
-mkdir profile debug

all: $ (PROGRAM)
debug: $ (DEBUG)
profile: $ (PROFILE)
variants: debug profile

$ (DEBUG) := CFLAGS= -g
$ (PROFILE) := CFLAGS= -pg -0
$ (DEBUG) := VARIANTS.o= $(OBJECTS:%=debug/%)
$ (PROFILE) := VARIANTS.o= $(OBJECTS:%=profile/%)

$ (PROGRAM) $ (DEBUG) $ (PROFILE) : $$(VARIANTS.o)
$ (LINK.c) -0 $@ $ (VARIANTS.o) $ (LIBS)

profile/%.o debug/%.o: %.c
$ (COMPILE.c) -0 $@ $<

lint: $ (LINTFILES)

$ (LINTFILES) :
$(LINT.c) $ (LINTFILES)

clean:
r.m -r£ $(PROGRAM) $ (OBJECTS) $ (LINTFILES) debug profile

Notice that the all target has not been made to depend on the debugging and
profiling variants. This is because they are not normally part of final production
build, so they aren't included in the conventional meaning for all. However, if
you want to build all three variants it is a simple matter to give the command:

Revision A of 9 May 1988

162 Programming Utilities and Libraries

make all variants

The modifications for separate library variants are quite similar. First, the new
macros DEBUG and PROFILE are assigned the library name with the proper sub
directory prefix . .vARIANTS. 0 is "assigned the value of MEMBERS by default,
and conditionally defined for the debugging and profiling targets. Then, the
• INIT target is given so that the subdirectories are created (if not already
present). Then, the target entry for the library is altered to include all three vari
ants. Next, pattern matching rules are added to specify the dependence of the
variant libraries in the respective subdirectories, the variant object files in those
same directories. Other pattern matching rules specify the dependence of those
object files on source files in the current working directory.

Finally, the clean target is modified to recursively remove the variant subdirec
tories .

• \sun ~ microsystems
Revision A of9 May 1988

Makefile for a Library with
Separate Variants

Chapter 8 - make User's Guide 163

Figure 8-13 Makeflie for Separate Debugging and Profiling Library Variants

f @(f) sample.5.mk
f
f Makefile for maintaining separate library
f variants.

SOURCES= calc.c map.c draw.c
LIBRARY= libpkg.a

CFLAGS= -0
CPPFLAGS=
LINTFLAGS=

MEMBERS= $(SOURCES:.c=.o)
LINTFILES= $(SOURCES:.c=.ln)
DEBUG= $(LIBRARY:%=debug/%)
PROFILE= $(LIBRARY:%=profile/%)
VARIANTS.o= $ (MEMBERS)

.KEEP STATE:

.PRECIOUS: $ (LIBRARY)

.INIT:
-mkdir profile debug

all: $ (LIBRARY)
debug: $ (DEBUG)
profile: $ (PROFILE)
variants: debug profile

debug := CFLAGS= -g
profile := CFLAGS= -pg -0
$ (DEBUG) := VARIANTS.o = $(MEMBERS:%=debug/%)
$ (PROFILE) := VARIANTS.o = $(MEMBERS:%=profile/%)

$ (LIBRARY) $ (DEBUG) $ (PROFILE) : $$(VARIANTS.o)
ar rv $@ $?
ranlib $@
rm -f $?

$ (LIBRARY) (%.0): %.0

$ (PROFILE) (profile/%.o): profile/%.o
profile/%.o debug/%.o: %.0

$ (COMPILE. c) -0 $@ $<

lint: $ (LINTFILES)

$ (LINTFILES) :
$(LINT.c) $ (LINTFILES)

clean:
r.m -rf $(LIBRARY) $ (MEMBERS) $ (LINTFILES) debug profile

Revision A of 9 May 1988

164 Programming Utilities and Libraries

Maintaining a Directory of
Header Files

Here the command:

make a11 variants

produces:

While an interesting and useful compilation technique, this method for maintain
ing separate variants is a bit complicated. For clarity's sake it is omitted from
subsequent examples.

The makefile for maintaining an include directory of header files is really
quite simple. Since header files consist of plain text, all that is needed is a target,
all, that lists them all as dependencies. Automatic sees extraction takes care
of the rest. If you use a macro for the list of header files, this same list can be
used in other target entries, which may be added later for project management
purposes.

Revision A of9 May 1988

Compiling and Linking With
Your Own Libraries

It is not a good idea to have things
pop up all over the file system as a
result of running make.

Nested make Commands

Chapter 8 - make User's Guide 165

* Makefile for maintaining an include directory.

FILES.h= calc.h map.h draw.h

all: $(FILES.h)

clean:
rm -f $(FILES.h)

This same technique can be applied to other files that do not require compilation
or other such processing (such as man command document source files).

When preparing your own library packages, it often makes sense to treat each
library as a separate entity from programs that use it, as well as the header files
used by both. Separating programs, libraries and header files into distinct direc
tories often makes it easier to prepare makefiles for each type of module. And, it
clarifies the structure of a software project.

A courteous and necessary convention of makefiles is that they only build files in
the working directory, or in temporary subdirectories. Unless you are using
make specifically to install files into a specific directory on an agreed-upon file
system, it is regarded as very poor form for a makefile to produce output in
another directory.

Building programs that rely on user-supplied libraries in other directories adds
several new wrinkles to the makefile. Up until now, everything needed has been
in the directory, or else in one of the standard directories that are presumed to be
stable. This is not true for user-supplied libraries that are part of a project under
development, especially when their contents are subject to change.

More importantly, since these libraries aren't built automatically (there is no
equivalent to automatic sees extraction for them), there must be an explicit tar
get entry to build them. So, a problem arises until such time as the library has
been completed tested and can be presumed to be stable.

On the one hand, you need to assure the libraries you link with are up to date.
On the other hand, you need to observe the convention that a makefile should
only maintain files in the local directory. In addition, the makefile should not
contain duplicate information that could get out of sync with a makefile in
another directory. The whole purpose of make, after all, is to provide consistent,
modular processing.

The solution is to use a nested make command, running in the directory the
library resides in, to rebuild it (according to the target entry in the makefile
there).

Revision A of 9 May 1988

166 Programming Utilities and Libraries

The MAKE macro, which is set to the
value "make" in the default file,
overrides the -n option. Any com
mand line in which it is referred to is
executed, even though -n may be
in effect. Since this macro is used
to invoke make, and since the make
it invokes inherits -n from the spe
cial MAKEFLAGS macro, make can
trace a hierarchy of nested make
commands with the -n option.

Forcing A Nested make
Command to Run

* First cut entry for target in another * directory.

.. /lib/libpkg.a:
cd .. /lib $ (MAKE) libpkg.a

The library is specified with a pathname relative to the current directory. In gen
eral, it is better to use relative pathnames. If the project is moved to a new root
directory or machine, so long as its structure remains the same relative to that
new root directory, all the target entries will still point to the proper files.

Within the nested make command line, the dynamic macro modifiers F and D
come in handy, as does the MAKE predefined macro. If the target being pro
cessed is in the fonn of a pathname, $ (@ F) indicates the filename part, while
$ (@D) indicates the directory part. If there are no / characters in the target
name, then $ (@ D) is assigned the dot character (.) as its value.

The target entry can be rewritten as:

* Second cut •

.. /lib/libpkg.a:
cd $(@D); $ (MAKE) $(@F)

Because it has no dependencies, this target will only run when the file named
.. /lib/libpkg. a is missing. If the file is a library archive protected by
. PRECIOUS, this could be a rare occurrence. The current make invocation nei
ther knows nor cares about what that file depends on, nor should it. It is the
nested invocation that decides whether and how to rebuild that file. After all, just
because a file is present in the file system doesn't mean that it is up to date. This
means that you have to force the nested make to run, regardless of the file's pres
ence, by making it depend on a target with a null rule:

* Reliable target entry for a nested make
:#" command .

.. /lib/libpkg.a: FORCE
cd $(@D); $ (MAKE) $(@F)

FORCE:

In this way, make reliably cd's to the directory .. / lib and builds libpkg. a
if necessary, using instructions from the make file found in that directory
as .. /lib),

Revision A of 9 May 1988

These lines are produced by the
nested make run.

Figure 8-14

tutorial% make .. /lib/libpkg.a
cd .. /lib; make libpkg.a
make libpkg.a
'libpkg.a' is up to date.

Chapter 8 - make User's Guide 167

The following makefile uses a nested make command to process local libraries
that a program depends on.

MakeJzle Jor C Program With User-Supplied Libraries

t @(t) sample.6.mk
t
t Makefile for a C program with user-supplied
t libraries and nested make commands.

SOURCES= main.c data.c
ULIBS= .. /lib/libpkg.a
SLIBS= -lcurses -ltermlib
PROGRAM= program

CFLAGS= -0
CPPFLAGS=
LDFLAGS=
LINTFLAGS=

OBJECTS= $ (SOURCES: .c=.o)
LINTFILES= $ (SOURCES: .c=.ln)

.KEEP STATE:

all debug profile: $ (PROGRAM)

debug := CFLAGS= -g
profile := CFLAGS= -pg -0

$ (PROGRAM) : $ (OBJECTS) $ (ULIBS)
$(LINK.c) -0 $@ $ (OBJECTS) $ (ULIBS) $ (SLIBS)

$ (ULIBS) : FORCE
cd $(@D); $ (MAKE) $(@F)

FORCE:

lint: $ (LINTFILES)

$ (LINTFILES) :
$(LINT.c) $ (LINTFILES)

clean:
rm -f $ (PROGRAM) $ (OBJECTS) $ (LINTFILES)

+~I!! Revision A of9 May 1988

168 Programming Utilities and Libraries

The MAKEFLAGS Macro
Do not define MAKEFLAGS in your
makefiles.

Macro Definitions and
Environment Variables:
Passing Parameters to Nested
make Commands

When .. / lib/ libpkg. a is up to date, this makefile produces:

Like the MAKE macro, MAKEFLAGS is also a special case. As its name suggests,
it contains flags (that is, single-character options) for the make command.
Unlike other FLAGS macros, the MAKEFLAGS value is a concatenation of flags,
without a leading '-'. For instance the string, eiknp would be a recognized
value for MAKEFLAGS, while, '-f x .mk' or 'macro=value' would not.

If the MAKEFLAGS environment variable is set, make runs with the combination
of flags given on the command line and contained in that variable.

The value of MAKE FLAGS is always exported, whether set in the environment or
not, and the options it contains are passed to any nested make commands
(whether invoked by $ (MAKE), make or /usr/bin/make). This insures you
that nested make commands are always passed the options that the parent make
was invoked with. Because MAKEFLAGS is maintained automatically, defining
it in the makefile would only be misleading.

With the exception of MAKEFLAGS,27 make imports variables from the environ
ment and treats them as if they were defined macros. In tum, make propagates
those environment variables and their values to commands it invokes, including
nested make commands. Macros can also be defined as command line argu
ments, as well as the makefile. This can lead to name-value conflicts when a
macro is defined in more than one place, and so, make has a fairly complicated
precedence rule for resolving them.

First of all, conditional macro definitions always take effect within the targets
(and their dependencies) for which they are defined.

If make is invoked with a macro-definition argument, that definition takes pre
cedence over definitions given either within the makefile, or imported from the
environment. (This does not necessarily hold true for nested make commands,
however.) Otherwise, if you define (or redefine) a macro within the makefile, the
most recent definition applies. The latest definition normally overrides the
environment. Lastly, if the macro is defined in the default file and nowhere else,
that value is used.

The -e option alters this scheme. With -e, macros defined in the environment
override any and all makefile definitions (but not the command line).

r7 and SHELL. The SHELL environment variable is neither imported nor exported in this version of make.

See make(1) in the Sun OS Reference Manual, for more information about the SHELL macro.

Revision A of 9 May 1988

Chapter 8 -make User's Guide 169

With nested make commands, definitions made in the makefile normally over
ride the environment, but only for the makefile in which each definition occurs;
the value of the corresponding environment variable is propagated regardless.
Command-line definitions override both environment and makefile definitions,
but only for the topmost make run. Although values from the command line are
propagated to nested make commands, they are overridden both by definitions in
the nested makefiles, and by environment variables imported by the nested make
commands.

The -e option behaves more consistently. The environment overrides macro
definitions made in any makefile, and command-line definitions are always used
ahead of definitions in the make file and the environment. One drawback to -e is
that it introduces a situation in which information that is not contained in the
makefile can be critical to the success or failure of a build.

This is an awful lot to remember, so a good rule of thumb when passing parame
ters to nested make commands is: supply them as command-line definitions, and
use -e. However, before you run make with the -e option, it is important to
eliminate all extraneous or improperly defined environment variables, since
make -e will propagate whatever is in the environment to the entire hierarchy
of nested make commands:

make -e CFLAGS=-E

Environment variables don't go away when you're done with them (i.e, they stay
around to haunt you, especially when you attempt to build something else with
make later on). One way to avoid lingering environment variables is to invoke
make within a subshell. When you set environment variables and run make in
the subshell, their values are isolated within that subshell and any processes it
spawns (like the one for make):

(setenv CFLAGS -E ; make -e)

This next example illustrates the difference in parameters between the top make
run and the nested make runs, using the two makefiles shown below.

:jf: top.mk

MACRO= "Correct if unexpected."

top:

@echo ,,------------------------------ top"
echo $(MACRO)

@echo ,,------------------------------"
$ (MAKE) -f nested.mk

@echo ,,------------------------------ clean"
clean:

rm nested

Revision A of 9 May 1988

170 Programming Utilities and Libraries

and:

41= nested.mk

MACRO=nested

nested:
@echo "------------------------------ nested"
touch nested
echo $ (MACRO)
$ (MAKE) -f top.mk
$ (MAKE) -f top.mk clean

With these make files , the command:

make -f top.mk MACR~top

produces the results that follow.

This pair of make files can be helpful if you decide to review the various cases
yourself.

Revision A of 9 May 1988

Table 8-3

Compiling Other Source Files

Compiling and Linking a C
Program with Assembly
Language Routines

ASFLAGS passes options for as to
the • s .0 and • S. 0 implicit rules.

Chapter 8 - make User's Guide 171

Summary of Macro Assignment Order

Without -e With -e in effect

top-level make command:

conditional definitions conditional definitions
make command line make command line
latest makefile definition environment value
environment value latest makefile definition
predefined value, if any predefined value, if any

nested make commands:

conditional definitions conditional definitions
make command line make command line
latest makefile definition parent make cmd. line
environment variable environment value
predefined value, if any latest makefile definition
parent make cmd. line predefined value, if any

The following examples illustrate the use of make to maintain C programs that
contain assembly routines, and programs produced with lex and yacc.

The makefile in the next example maintains a program with C source files linked
with assembly language routines.28 There are two varieties of assembly source
files, those that contain cpp preprocessor directives, and those that don't. By
convention, assembly source files without preprocessor directives have the . s
suffix. Assembly sources that require preprocessing have the . S suffix.

Assembly sources are assembled to form object files in a fashion similar to that
used to compile C sources. The object files can then be linked into a C program.
make has implicit rules for transforming . sand . S files into object files, so at a
minimum, a target entry for a C program with assembly routine,s need only
specify how to link the object files. You can use the familiar cc command to
link object files produced by the assembler:

CFLAGS= -0
ASFLAGS= -0

.KEEP STATE:

driver: c driver.o s routines.o S routines.o
cc -0 driver c driver.o s routines.o S routines.o

The next example shows a more flexible makefile for this sort of compilation.

28 Refer to the Assembly Reference Manual for more information about assembly language source files.

Revision A of9 May 1988

172 Programming Utilities and Libraries

Figure 8-15 Make/tie for a C Program with Assembly Routines

t @(t) sample.7.mk
t
t Makefile for a C program linked with assembly routines.

SOURCES.c= c driver.c
SOURCES.s= s routines.s
SOURCES.S= S routines.S
ULIBS=
SLIBS=
PROGRAM= driver

ASFLAGS=
CFLAGS= -0
CPPFLAGS=
LDFLAGS=
LINTFLAGS=
OBJECTS= $(SOURCES.c:.c=.o) $(SOURCES.s:.s=.o) $(SOURCES.S:.S=.o)
LINTFILES= $(SOURCES.c:.c=.ln) # not for assembly sources

.KEEP STATE:

all debug profile: $ (PROGRAM)

debug := CFLAGS= -g
profile := CFLAGS= -pg -0

$ (PROGRAM) : $ (OBJECTS) $ (ULIBS)
$(LINK.c) -0 $@ $ (OBJECTS) $ (ULIBS) $(SLIBS)

$ (ULIBS) : FORCE
cd $(@D); $ (MAKE) $(@F)

FORCE:

lint: $ (LINTFILES)

$ (LINTFILES) :
$ (LINT.c) $ (LINTFILES)

clean:
rm -f $ (PROGRAM) $ (OBJECTS) $ (LINTFILES)

This make file compiles the executable program dr i ver as shown:

:,:

Note that the . S files are processed using the cc command, which invokes the C
preprocessor cpp, and invokes the assembler implicitly.

Revision A of 9 May 1988

Compiling lex and yacc
Sources

Chapter 8 - make User's Guide 173

lex and yacc produce C source files as output. Source files for lex end in the
suffix .1, while those for yacc end in . y. When used separately, the compila
tion process for each is similar to that used to produce programs from C sources
alone. There are implicit rules for compiling the lex or yacc sources into. c
files; from there the files are further processed with the implicit rules for compil
ing object files from C sources. When these source files contain no :fI:include
statements, there is no need to keep the c file, which in this simple case serves as
an intermediate file. In this case one could use . 1 . 0 rule, or the . y . 0 rule,
respectively, to produce the object files, and remove the (derived) . c files. For
example, the make file:

CFLAGS= -0
.KEEP STATE:

all: scanner parser

scanner: scanner.o

parser: parser.o

produces:

Things get to be a bit more complicated when you use lex and yacc in combi
nation. In order for the object files to work together properly, the C code from
lex must include a header file produced by yacc. So, it may be necessary to
recompile the C source file produced by lex when the yacc source file
changes. In this case, it is better to retain the . c (intermediate) files produces by
lex, as well as the additional. h file that yacc provides, so as to avoid running
lex whenever the yacc source changes.

Revision A of9 May 1988

174 Programming Utilities and Libraries

yacc produces output files named
y • tab. c and y • tab. h. If you
want the output files to have the
same basename as the source file,
you must rename them.

Specifying Target Groups With
the + Sign

29 Not available with earlier versions of make.

The following makefile maintains a program built from a lex source, a yacc
source, and a C source file.

CFLAGS= -0
.KEEP STATE:

a2z: c functions.o scanner.o parser.o
cc -0 $@ c functions.o scanner.o parser.o

scanner.c:

parser.c + parser.h: parser.y
yacc -d parser.y
mv y.tab.c parser.c
mv y.tab.h parser.h

Since there is no trausitive closure for implicit rules, you must supply a target
entry for scanner. c. This entry bridges the gap between the .1. c implicit
rule and the . c . 0 implicit rule, so that the dependency list for scanner. 0

extends to scanner .1. Since there is no rule in the target entry, scanner. c
is built using the . 1 . c implicit rule.

The next target entry describes how to produce the yacc intermediate files.
Because there is no implicit rule for producing both the header file and the C
source file using yacc -d, a target entry must be supplied that includes a rule
for doing so.

In the target entry for parser. c and parser. h, the + sign separating the tar
get names indicates that the entry is for a target group.29 A target group is a set
of files, all of which are produced when the rule is performed. Taken as a group,
the set of files is what comprises the target. Without the + sign, each item listed
would comprise a separate target With a target group, make checks the
modification dates separately against each target file, but performs the target's
rule only once, if necessary, per make run.

The next example shows a makefile for the more general case of a lex source, a
yacc source, and any number ofC source files.

~~sun
• microsystems

Revision A of9 May 1988

Chapter 8 - make User's Guide 175

Figure 8-16 Makefilefor Compiling C Programs With lex and yacc Sources

t @(t) sample.8.mk
t
t Makefile to compile a C program with lex and yacc sources.

SOURCES.c= c functions.c
LEXFILE.l= scanner.l
YACCFILE.y= parser.y
UL1BS=
SL1BS=
PROGRAM= a2z

LFLAGS=
YF LAGS =
CFLAGS= -0
CPPFLAGS=
LDFLAGS=
L1NTFLAGS=

LEXFILE.c= $(LEXFILE.l:.l=.c)
YACCFILE.c= $(YACCFILE.y:.y=.c)
YACCFILE.h= $(YACCFILE.y:.y=.h)
SOURCES= $(SOURCES.c) $ (LEXFILE.c) $ (YACCFILE.c)
OBJECTS= $(SOURCES:.c=.o)
L1NTFILES= $(SOURCES:.c=.ln)

.KEEP STATE:

all debug profile: $ (PROGRAM)

debug := CFLAGS= -g
profile := CFLAGS= -pg -0

$ (PROGRAM) : $ (OBJECTS) $ (UL1BS)
$(L1NK.c) -0 $@ $ (OBJECTS) $ (UL1BS) $(SL1BS)

$ (LEXFlLE.c) : $ (YACCFlLE.h)

$ (YACCFILE.c) + $ (YACCFlLE.h) : $ (YACCFlLE.y)
$ (YACC.y) -d $ (YACCFlLE.y)
mv y.tab.c $(YACCFlLE.c)
mv y.tab.h $(YACCFlLE.h)

$ (UL1BS) : FORCE
cd $ (@D); $ (MAKE) $ (@F)

FORCE:

lint: $ (L1NTF1LES)

$ (L1NTF1LES) :
$(L1NT.c) $ (L1NTF1LES)

clean:
rm -f $(PROGRAM) $ (OBJECTS) $ (L1NTF1LES)

Revision A of 9 May 1988

176 Programming Utilities and Libraries

, ,

: ':':::::::;:<::::: :::i:<'

:::,
'/

,,::::,,> " ::::: ,:

Maintaining Shell Scripts with
make and sees

Running Tests with make

'J"08

::::> , }::

·.I ..
,«

::tt!?

.} .. ··llw.

Although a shell script is a plain text file, it must be executable in order to run.
Since sees removes execute pennission for files under its control and a shell
script must have execute permission in order to run, a distinction must be drawn
between a shell script and it's "source" file under sees control. make has an
implicit rule for deriving a script from its "source" file under sees. The suffix
for a shell script source file is . she Even though the contents of the script and
the . sh file are the same, the script has execute permissions, while the . sh file
does not. make's implicit rule for scripts "derives" the script from its source
file, making a copy of the . s h file (extracting it first, if necessary) and changing
the mode of the resulting script file to allow execution. For example:

, ,/~NW,'

" ,:~@fJ

v ,:!!': [:';:8:;'

Shell scripts often come in handy for running tests, and performing other routine
tasks that are either interactive, or don't require make's dependency checking.
Test suites, in particular, often entail providing a program with specific, repeat
able input that a program might expect to receive from a terminal.

In the case of a library, a set of programs that exercise its various functions may
be written in C, and then executed in a specific order, with specific inputs from a
script. In the case of a utility program, there may be a set of benchmark pro
grams that exercise and time its functions. In each of these cases, the commands
to run each test can be incorporated into a shell script for repeatability and easy
maintenance.

Once you have developed a test script that suits your needs, including a target to
run it is easy. Although make's dependency checking may not be needed within
the seri pt itself, you can use it to make sure that the program or library is updated
before running those tests.

Revision A of9 May 1988

Delayed References to a Shell
Variable

Chapter 8 - make User's Guide 177

In the following target entry for running tests, t est depends on the library
named as a dependency to all. If the library is out of date, make rebuilds it and
proceeds with the test. This insures that you always test with an up to date ver
sion:

test: all testscript
set -x ; testscript > /tmp/test.$$$$

testscript: testscript.sh test_l test_2 test_3

test 1 test_2 test_3: $$@.c $(LIBRARY)
$(LINK.c) -0 $@ $< $(LIBRARY) $(SLIBS)

t est also depends on t est s cr i pt, which in tum depends on the three test
programs. This assures that they too are up to date before make initiates the test
procedure. all is built according to its target entry in the makefile;
testscript is built using the . sh implicit rule; and the test programs are
built using the rule in the last target entry, assuming that there is just one source
file for each test program. (The. c implicit rule doesn't apply to these programs,
because they must link with the proper libraries in addition to their respective. c
files).

The string $ $ $ $, in the rule for te st is, in fact, a pair of references to make's
$ macro (each written as $$). make resolves each such reference into a single
$, and the command line is passed to the shell as:

set -x ; testscript > /usr/tmp/test.$$

In this way, the variable reference is delayed from final expansion until it reaches
the shell, which interprets it as a reference to $ $, the value of which is the pro
cess number of the shell. This number is appended to the output filename so that
the results of each successive test is written to a unique filename with a standard
format. The set -x c~mmand forces the shell to display the command on the
terminal. This allows you to see the actual filename containing the test results.

This make file produces:

Revision A of 9 May 1988

178 Programming Utilities and Libraries

8.5. Maintaining Software
Projects

Organizing A Proj ect for Ease
of Maintenance

A more flexible set of entries for testing a library looks like:

TESTSCRIPT= testscript
TESTPROGS= test 1 test 2 test 3 - -
test: all $(TESTSCRIPT)

set -x ; $ (TESTSCRIPT) > /tmp/test.$$$$

$ (TESTSCRIPT) : $$@.sh $(TESTPROGS)

$ (TESTPROGS) : $$@.c $(LIBRARY)
$(LINK.c) -0 $@ $< $ (LIBRARY) $(SLIBS)

In the case of a program, testing routines written in C may not be necessary;
leaving TESTPROGS undefined will mean the target entry for test programs is
omitted from the dependency scan. TEST SCRIPT depends only upon its
corresponding . s h file. If there are test programs that don't depend on a library
(the LIBRARY macro is.undefined) this method is still applicable; it is the
equivalent of the . c implicit rule. If, there is a test program that depends on the
same libraries as the program does, you can either replace references to the
LIBRARY macro with references to ULIBS:

$ (TESTPROGS) : $$@.c $(ULIBS)
$(LINK.c) -0 $@ $< $(ULIBS) $ (SLIBS)

make is especially useful when a software project consists of a system of pro
grams and libraries. By taking advantage of nested make commands, you can
use it to maintain object files, executables, and libraries in a whole hierarchy of
directories. You can use make in conjunction with sees, to assure that sources
are maintained in a controlled manner, and that programs built from them are
consistent. This means that you can provide other programmers with duplicates
of the directory hierarchy for simultaneous development and testing if you wish
(although there are tradeoffs to consider).

You can use make to build the entire project and install final copies of various
modules onto another filesystem for integration and distribution.

As mentioned earlier, one good way to organize a project is to segregate each
major piece into its own directory. A project broken out this way usually resides
within a single file-system or directory hierarchy. Header files could reside in
one subdirectory, libraries in another, and programs in still another. Documenta
tion, such as Reference Pages, may also be kept on hand in another subdirectory.
Suppose that a project is composed of one executable program, one library that
you supply, a set of header files for the library routines, and some documentation,
structured as shown.

Revision A of 9 May 1988

sees

Chapter 8 - make User's Guide 179

project

1ib inc1ude doc

Makefile Makefile Makefile Makefile
data.c

main.c

calc.c pkgdefs.h project.ros

draw.c pkg.3x

map.c program. 1

sees sees sees

The makefiles in each subdirectory can be borrowed from examples in earlier
sections, but something more is needed to manage the project as a whole. A
carefully structured makefile in the root directory, the root make file for the pro
ject, provides target entries for managing the project as a single entity.

As a project grows, the need for consistent, easy-to-use makefiles also grows.
Macros and target names should have the same meanings no matter which
makefile you are reading. Conditional macro definitions and compilation options
for output variants should be consistent across the entire project.

Where feasible, a template approach to writing make files makes sense. This
makes it easy for you keep track of how the project gets built. All you have to do
to add a new type of module is to make a new directory for it, copy an appropri
ate make file into that directory, and make a few minor edits to change macro
values. (Of course, you also need to add the new module to the list of things to
build in the root makefile, but that comes later.)

Although a makefile should document exactly what it builds, it does not neces
sarily have to contain an explanation of every step. After all, the idea is to spend
time working on the code, not the makefiles.

Conventions for macro names, such as those for the various source files in the
above examples, should be instituted and observed throughout the project.
Mnemonic macro names mean that although you may not remember the exact
value of the macro, you'll know the type of value it represents (and that's usually
more valuable when deciphering a make file anyway).

Using incl ude Makefiles One method of simplifying makefiles, while providing a consistent compilation
environment, is to use make's

include filename

directive to read in the contents of a named makefile; if the named file is not
present, make .checks for a file by that name in /usr / include/make.

For instance, there is no need to duplicate the pattern-matching rule for process
ing troff sources in each makefile, when you can include it's target entry,
as shown below .

• ~sun
• microsystems

Revision A of 9 May 1988

180 Programming Utilities and Libraries

Installing Finished Programs
and Libraries

SOURCES= main.c data.c

clean: $ (PROGRAM) $ (OBJECTS) $ (LINTFILES)
include .. /pm.rules.mk

Here, make reads in the contents of the .. /pm. rules .mk file, shown here:

t pm.rules.mk
t
t Simple "include" makefile for pattern matching
t rules.

%. tr: % .ms
troff -t -ms $< > $@

%.nr: %.ms
nroff -ms $< > $@

While it may seem silly to propagate simple rules like these, but the include
facility does allow you to define rules of any degree of complexity just once, and
maintain them in just one location.

When a program is ready to be released for outside testing or general use, you
can use make to install it. Adding a new target and new macro definition to do
so is easy:

DESTDIR= /proto/project/bin

install: $ (PROGRAM)
-mkdir $(DESTDIR)
cp $ (PROGRAM) $ (DESTDIR)

A similar target entry can be used for installing a library under the macro naming
scheme used in this manual:

DESTDIR= /proto/project/lib

install: $ (LIBRARY)
-mkdir $(DESTDIR)
cp $(LIBRARY) $ (DESTDIR)

Revision A of9 May 1988

Building the Entire Project

Chapter 8 - make User's Guide 181

A list of header files might appear as:

DESTDIR= /proto/project/include

install: $(LIST)
~mkdir $(DESTDIR)
cp $(LIST) $ (DESTDIR)

Finally, a list of Reference Manual Pages, which are typically distributed in
source form, are installed just like header files (these may comprise a subset of
the items in the doc subdirectory).

From time to time it is necessary to take a snapshot of the sources, and the object
files that they produce. This can either be done as a checkpoint in the develop
ment process, or as an intermediate or final build for release to users. Building
an entire project is simply a matter of invoking make successively in each sub
directory to build and install each module.

Subsequent examples show how to incorporate these make commands in the
root makefile, which should also allow you to build debugging and profiling vari
ants of the project, clean the directories, and install completed modules. The fol
lowing example show how to use nested make commands to build a simple pro
ject.

* Simple root makefile for a project.

TARGETS= all debug profile lint clean test install
SUBDIRS= bin include lib doc

$ (TARGETS) :
$ (MAKE) $ (SUBDIRS) TARGET=$@

$ (SUBDIRS) : FORCE
cd $@: $ (MAKE) $ (TARGET)

FORCE:

Revision A of 9 May 1988

182 Programming Utilities and Libraries

Maintaining Directory
Hierarchies With Recursive
Makefiles

If you extend your project hierarchy to include more layers:

II

, , \ I

~ ~

, ,
~

chances are that not only will the makefile in each intermediate directory have to
produce target files, but it will also have to invoke nested make commands for
subdirectories of its own. Files in the current directory can sometimes depend on
files in subdirectories, and their target entries need to depend on their counter
parts in the subdirectories.

This means that the nested make command for each subdirectory should run
before the command in the local directory does. One way to assure that the com
mands run in the proper order is,to make a separate entry for the nested part, and
another for the local part. If you add these new targets to the dependency list for
the original target, its acti.on will encompass them both.

Targets that encompass equivalent actions in both the local directory and in sub
directories are referred to as recursive targets.30 A makefile with recursive targets
is referred to as a recursive makefile.

In the case of all, the the nested dependency can be named all. nested; the
local dependency, all. local. Note that this example conditionally defines
the TARGET macro, rather than using $@, to pass the proper argument to the
make command in what is now the all. nested dependency.

all := TARGET all

all: all.nested all.local

all.nested:
$ (MAKE) $ (SUBDIRS) TARGET=$(TARGET)

$ (SUBDIRS) : FORCE
cd $@; $ (MAKE) $ (TARGET)

all.local: $ (PROGRAM)

30 Strictly speaking, any target that calls make, with its name as an argument, is recursive. However, here
the tenn is reserved for the narrower case of targets that have both nested and local actions. Targets that only
have nested actions are referred to as "nested" targets.

Revision A of 9 May 1988

Recursive install Targets

Figure 8-17

@(#) sample.9.mk

Chapter 8 - make User's Guide 183

Note that the "nested" target invokes make with the all target as an argument,
not all. nested. The nested make must also be recursive, unless it is at the
bottom of the hierarchy. Either way, it should be invoked with the same name as
that used in the parent directory. In the make file for a leaf directory (one with no
subdirectories to descend into), you can simply comment out the rule for the
nested target, which will halt any further descent.

This same principle can be extended to all of the generic targets. The install
target, however, is something of a special case. If the destination is a parallel
directory hierarchy (such as when you are installing completed source code), the
parent directories must be created before the destination subdirectories can be.
This often means that the make install target in the current directory (which
creates the destination directory if needed) must be performed before that in any
subdirectory can succeed. So, install .local must appear ahead of
install. nested in the dependency list for instal1.31

This next example shows a recursive makefile in a directory with a C program
and subdirectories.

Recursive Makefile for Building a C Program and Subdirectories

Recursive makefile for a C program and subdirectories.
Also includes test and install targets.

SOURCES= main.c data.c
ULIBS= .. /lib/libpkg.a
SLIBS= -lcurses -ltermlib
PROGRAM= program

SUBDIRS= sun2 sun3 sun4
TESTSCRIPT= testscript
TESTPROGS= test 1 test 2 test 3 - -
DESTDIR= /proto/project/bin

CFLAGS= -0
CPPFLAGS=
LDFLAGS=
LINTFLAGS=

TARGETS= all deBug profile lint clean test
TARGETS.nested= $(TARGETS:%=%.nested)
TARGETS.local= $(TARGETS:%=%.local)

OBJECTS= $(SOURCES:.c=.o)
LINTFILES= $(SOURCES:.c=.ln)

.KEEP STATE:

31 If the local target depends on files within a subdirectory, this may
force make to descend into that subdirectory twice during a make install run.

+ §!!,!! Revision A of 9 May 1988

184 Programming Utilities and Libraries

debug := CFLAGS= -g
profile := CFLAGS= -pg -0
debug. local := CFLAGS= -g
profile. local := CFLAGS= -pg -0

* Recursive targets:

all := TARGET = all
debug := TARGET = debug
profile := TARGET = profile
lint := TARGET = lint
clean := TARGET = clean
test := TARGET = test
install := TARGET = install

$ (TARGETS) : $$@.nested $$@.local
install: $$@.local $$@.nested

* Nested targets:

$ (TARGETS.nested) install.nested:
$ (MAKE) $ (SUBDIRS) TARGET=$ (TARGET)

$ (SUBDIRS) : FORCE
cd $@ ; $ (MAKE) $ (TARGET)

* Local target entries:

all. local debug.local profile. local: $ (PROGRAM)

$ (PROGRAM) : $ (OBJECTS) $ (ULIBS)
$(LINK.c) -0 $@ $ (OBJECTS) $ (ULIBS) $(SLIBS)

$ (ULIBS) : FORCE
cd $(@D)i $ (MAKE) $(@F)

FORCE:

lint.local: $ (LINTFILES)
$(LINT.c) $ (LINTFILES)

clean. local:
rm -f $(PROGRAM) $ (OBJECTS) $ (LINTFILES) $ (TESTSCRIPT) $ (TESTPROGS)

test.local: all $ (TESTSCRIPT)
set -x i $ (TESTSCRIPT) > /tmp/test.$$$$

$ (TESTSCRIPT) : $ (TESTSCRIPT) .sh $(TESTPROGS)
$ (TESTPROGS) : $$@.c $(ULIBS)

$ (LINK.c) -0 $@ $< $(ULIBS) $ (SLIBS)

install. local: $ (PROGRAM)
-mkdir $(DESTDIR)
-cp $ (PROGRAM) $ (DESTDIR)

Notice that you can still use make to build a local target, simply by appending
the .local suffix to the target name that you're used to. The command

make all.local

does exactly what you'd expect. However, we recommend against making a
habit of this practice, especially where local targets rely on modules in nested

Revision A of9 May 1988

Maintaining A Large Library as
a Hierarchy of Subsidiaries

In general, use of shell filename
wildcards is considered to be bad
form in a makefile. If you do use it,
you need to take steps to insure
that it excludes spurious files,
perhaps by isolating affected files in
a temporary subdirectory.

Chapter 8 - make User's Guide 185

targets. If the files in the subdirectories are up to date, it doesn't take very long
for make to check them. If they aren't up to date, and you build the local target
without a full dependency check, there is a strong possibility that the target file
you produce will be inconsistent with those lower-level files, at least until it is
clean'ed and remade.

When maintaining a very large library, it is sometimes easier to break it up into
smaller, subsidiary libraries, and use make to combine them into a complete
package. Although you cannot combine libraries directly with ar, you can
extract the member files from each subsidiary library, and then archi ve those files
in another step:

A subsidiary library is maintained using a makefile in its own directory, along
with the (object) files it is built from. The makefile for the complete library typi
cally makes a symbolic link to each subsidiary archive, extracts their contents
into a temporary subdirectory, and archives the resulting files to form the com
plete package.

The next example updates the subsidiary libraries, creates a temporary directory
in which to extracted the files, and extracts them. It uses the * (shell) wild card
within that temporary directory to generate the collated list of files. While
filename substitutions are generally frowned upon, this use of the wild card is
acceptable because the directory is created afresh whenever the target is built.
This guarantees that it will contain only files extracted during the current make
run.

The example relies on a naming convention for directories. The name of the
directory is taken from the basename of the library it contains. For instance, if
libx. a is a subsidiary library, the directory that contains it is named libx. It
makes use of suffix replacements in dynamic-macro references to derive the
directory name for each specific subdirectory. (You can verify yourself that this
is necessary.)

It uses a shell for loop to successively extract each library, and a shell com
mand substitution to collate the object files into proper sequence for linking
(using larder and tsort) as it archives them into the package. Finally, it

Revision A of 9 May 1988

186 Programming Utilities and Libraries

removes the temporary directory and its contents.

* Simple makefile for collating a library from
* subsidiaries.

LIBRARY= libz.a
LIBS= libx.a liby.a

ARFLAGS=
CFLAGS= -0
CPPFLAGS=

.KEEP STATE:

.PRECIOUS: libz.a

all: $ (LIBRARY)

$ (LIBRARY) : $(LIBS)
-rm -rf tmp
-mkdir tmp
set -x ; for i in $(LIBS) ; \

do (cd tmp ; ar x .. /$$i ; done
(cd tmp ; rm -f __ .SYMDEF ; ar
-ranlib $@

cr .. /$@ 'larder * I tsort')

-rm -rf tmp $(LIBS)

$(LIBS): FORCE
-cd $(@:.a=) ; $ (MAKE) $@
-In -s $(@:.a=)/$@ $@

FORCE:

For the sake of clarity, this example omits support for alternate variants, as well
as the targets for clean, install, and test (lint does not apply since the
source files are in the subdirectories). This material is added in later examples.

The rm -f .:.._. SYMDEF command embedded in the collating line prevents a
symbol table in a subsidiary (produced by running ranlib on that library) from
being archived in this library.

Since the nested make commands build the subsidiary libraries before the
currently library is processed, it is a simple matter to extend this makefile to
account for libraries built from both subsidiaries and object files in the current
directory. You need only add the list of object files to the dependency list for the
library, and a command to copy them into the temporary subdirectory for colla
tion with object files extracted from subsidiary libraries.

Revision A of 9 May 1988

* Simple makefile for collating a library from * subsidiaries and local object files.

L1BRARY= libz.a
L1BS= libx.a liby.a
SOURCES= map.o calc.o draw.o
ULIBS= $(LIBRARY)

ARFLAGS=
CFLAGS= -0
CPPFLAGS=

OBJECTS= $(SOURCES.c=.o)

.KEEP STATE:

.PRECIOUS: libz.a

all: $ (LIBRARY)

$ (LIBRARY) : $(L1BS) $ (OBJECTS)
-rm -rf tmp
-mkdir tmp
-cp $(OBJECTS) tmp
set -x ; for i in $(LIBS) ; \
do (cd tmp ; ar x .. /$$i) ; done

Chapter 8 ..:-make User's Guide 187

(cd tmp ; rm -f __ .SYMDEF ; ar cr .. /$@ 'lorder * I tsort')
-ranlib $@
-rm -rf tmp $(LIBS)

$(LIBS): FORCE

FORCE:

-cd $(@:.a=) ; $ (MAKE) $@
-In -s $(@:.a=)/$@ $@

The next example includes support for debugging and profiling ,variants, along
with recursive targets for clean, lint, test, and install.

Revision A of 9 May 1988

188 Programming Utilities and Libraries

Figure 8-18 Makefde for a Hierarchy of Subsidiary Libraries with Variants

* @(#) sample.l0.mk

* * Makefile for collating a library from local object files and
subsidiary libraries. Supports alternate variants, and maintains
subdirectories recursively.

LIBRARY= libz.a
LIBS= libx.a liby.a
SOURCES= map.c calc.c draw.c
ULIBS= $(LIBRARY)
SLIBS= -lcurses -ltermlib

SUBDIRS= $(LIBS:.a=)
TESTSCRIPT= testscript
TESTPROGS= test 1 test 2 test 3 - -
DESTDIR= /proto/project/lib

ARFLAGS=
CFLAGS= -0
CPPFLAGS=
LDFLAGS=
LINTFLAGS=

TARGETS= lint clean test
TARGETS.nested=$(TARGETS:%=%.nested)
TARGETS.local=$(TARGETS:%=%.local)

OBJECTS= $ (SOURCES.c: .c=.o)
LINTFILES= $(SOURCES.c:.c=.ln)

.KEEP STATE:

.PRECIOUS: libz.a

all profile debug: $ (LIBRARY)

debug := CFLAGS= -g
profile := CFLAGS= -0 -pg
debug := TARGET= debug
profile := TARGET= profile

$ (LIBRARY) : $(LIBS) $ (OBJECTS)
-rm -rf tmp
-mkdir tmp

-cp $(OBJECTS) tmp
-set -x ; for i in $(LIBS) ; \

do (cd tmp ; ar x .. /$$i) ; done
(cd tmp ; rm -f __ .SYMDEF ; ar cr .. /$@ 'lorder * I tsort')
-ranlib $@
-rm -rf tmp $(LIBS)

$(LIBS): FORCE
-cd $(@: .a=) ; $ (MAKE) $ (TARGET)
-In -s $(@:.a=)/$@ $@

FORCE:

Revision A of9 May 1988

* Recursive targets:

lint := TARGET = lint
clean := TARGET = clean
test := TARGET = test
install := TARGET = install

lint clean test: $$@.nested $$@.local
install: $$@.local $$@.nested

* Nested targets:

$ (TARGETS.nested) install.nested:
$ (MAKE) $ (SUBDIRS) TARGET=$(TARGET)

$ (SUBDIRS) : FORCE
cd $@ ; $ (MAKE) $ (TARGET)

* Local target entries:

lint.local: $ (LINTFILES)
$(LINT.c) $ (LINTFILES)

clean. local:

Chapter 8 - make User's Guide 189

rm -f $ (LIBRARY) $ (OBJECTS) $ (LINTFILES) $ (TESTSCRIPT) $ (TESTPROGS)

test.local: all $ (TESTSCRIPT)
set -x ; $ (TESTSCRIPT) > /tmp/test.$$$$

$ (TESTSCRIPT) : $ (TESTSCRIPT) .sh $ (TESTPROGS)
$ (TESTPROGS) : $$@.c $ (ULIBS)

$(LINK.c) -0 $@ $< $ (ULIBS) $(SLIBS)

install.local: $ (LIBRARY)
-mkdir $ (DESTDIR)
-cp $ (PROGRAM) $ (DESTDIR)

Closing Remarks about make make has evolved into a powerful and flexible tool for consistently processing
files that stand in a hierarchical relationship to one another. The methods and
examples shown in this manual are intended to provide you with an exposure to
the kinds of problems that lend themselves to solution with make. There is a
large body of folklore about make; strong and varied opinions about its "best"
use abound. This manual does not make the claim that anyone approach or
example is necessarily the best available. Compromises between clarity and
functionality were made in many of the examples.

Also, there is considerable opinion both pro and against makefiles that use mac
ros extensively. Some experts prefer to tailor makefiles for specific situations.
Others prefer that all makefiles look the same and work the same way.

This manual takes the latter approach. The examples are intended to be useful,
just as they are, in a wide variety of not-too-complicated settings. As procedures
become more complicated, so do the makefiles that implement them. The trick is
to know which approach will yield a reasonable makefile that works in a given
situation. The examples are intended to give you a flavor for common situations,
and some fairly straightforward methods to simplify them using make .

• \sun ~ microsystems
Revision A of 9 May 1988

190 Programming Utilities and Libraries

If a template approach is used in a project from the outset, chances are that cus
tom makefiles that evolve from the templates will be more familiar, and therefore
easier to understand, to integrate, to maintain, and more importantly, to re-use.
After all, the less time you spend tinkering with the makefiles, the more time you
have to develop your program' or project.

.~sun ~ microsystems
Revision A of 9 May 1988

9

m4 - a Macro Processor

m4 - a Macro Processor ... 193

9.1. Using the m4 Command .. 194

9.2. Defining Macros ... 194

9.3. Quoting and Comments ... 195

9.4. Macros with Arguments .. 197

9.5. Arifumetic Built-ins ... 197

9.6. File Manipulation .. 198

9.7. Running SunOS Commands ... 199

9.8. Conditionals .. 199

9.9. String Manipulation ... 200

9.10. Printing ... 201

9.11. Summary of Built-in m4 Macros ... 201

9

m4 - a Macro Processor

m4 is a macro processor whose primary use has been as a front end for Ratfor in
those cases where parameterless macros are not powerful enough. It has also
been used for languages as disparate as C and COBOL. m4 is particularly suited
for higher-level languages like FORTRAN, PL/I and C since macros are specified
in a functional notation.

m4 provides features seldom found even in much larger macro processors,
including

o arguments

o condition testing

o arithmetic capabilities

o string and substring functions

o file manipulation

A macro processor is a useful way to enhance a programming language, to make
it more palatable or more readable, or to tailor it to a particular application. The
4I=define statement in C and the analogous define in Ratfor are examples of
the basic facility provided by any macro processor, that is, replacement of text by
other text.

The basic operation of m4 is to act as a filter between its input and its output. As
the input is read, each alphanumeric' 'token" (that is, string of letters and digits)
is checked. If it is the name of a macro, then it macro is replaced by the text that
has been assigned to it (defining text), and the resulting string is pushed back
onto the input to be rescanned. Macros may be called with arguments, in which
case the arguments are collected and substituted into the right places in the text
before it is rescanned.

m4 provides a collection of about twenty built-in macros which perfonn various
useful operations; in addition, the user can define new macros. Built-in macros
and user-defined macros work exactly the same way, except that some of the
built-in macros have side effects on the state of the process.

~~sun ~ microsystems
193 Revision A of 9 May 1988

194 Programming Utilities and Libraries

9.1. Using the m4
Command

9.2. Defining Macros

The basic m4 command line looks like this:

(m4 [filename. ooJ

Each argument fi~e is processed in order; if there are no arguments, or if an argu
ment is '-', the standard input is read at that point. The processed text is written
to the standard output, which may be captured for subsequent processing using
redirection:

(m4 [filename ... J > outputfile

The primary built-in function ofm4 is define, which is used to define new
macros. The input

de fine (name , value)

defines the string name as value. All subsequent occurrences of name will be
replaced by value, unless name is redefined, or its definition is removed. Note
that name must be alphanumeric, and must begin with a letter; the underscore
character, _ is taken as a letter. The value argument is any text that contains bal
anced parentheses; it may stretch over multiple lines.

Thus, as a typical example might be:

J

J

[if (i > N) 1
define(N, 100)

defines N to be 100, and uses this "symbolic constant" in a later if statement.

The left parenthesis must immediately follow the word define, to signal that
define has arguments. If a macro or built-in name is not followed immediately
by '(', it is assumed to have no arguments. This is the situation for N above; it is
actually a macro with no arguments, and thus when it is used there need be no
parenthesis following it.

m4 divides its input into tokens, so a macro name is only recognized as such if it
appears surrounded by non-alphanumerics. For example, in

[~ ___ :_:_f_::_:_N_(N_: __ :_:_:_: ______________________________________ ~l
the variable NNN is absolutely unrelated to the defined macro N, even though it
contains several N's.

Revision A of 9 May 1988

9.3. Quoting and
Comments

Chapter 9 - m4 - a Macro Processor 195

Macros can be defined in tenns of other macros. For example:

[
define(N, 100) J

___ d_e_f_in_e_(_M_,_N_) __________________________________ __

defines both M and N to be 1 00.

What happens if N is redefined? Or, to say it another way, is M defined as N or as
100? In m4, the latter is true. M is translated to 100 as is is scanned, so chang
ing N does not change M.

This behavior arises because m4 expands macro names into their defining text
immediately. Here, that means that when the string N is seen while the argu
ments of de fine are being collected, it is immediately replaced by 100; it's
just as if you had said

define(M, 100)

in the first place.

If this isn't what you really want, there are two alternatives. The first, which is
specific to this situation, is to interchange the order of the definitions:

[
define(M, N)]

____ d_e_fl_·n_e_(_N_, __ 1_0_0_) ____________________________________ ~

Now M is defined to be the string N, so when you ask for M later, you'll always
get the value of N at that time (because the M will be replaced by N which will be
replaced in tum by its value).

The more general solution is to delay the expansion of the arguments of def ine
by quoting them. Any text enclosed within the single-quote marks .. and ' is
not expanded immediately, but merely has the quotes stripped off. If you say

[define(N, 100)
define (M, 'N')

the quotes around the N are stripped off as the argument is being collected, but
they have served their purpose, and M is defined as the string N, rather than the
value of the N macro.

The general rule is that m4 always strips off one level of single quotes whenever
it evaluates something. This is true even outside of macros. If you want the
word def ine to appear in the output, you have to quote it in the input, as in

'define' = 1;

]

Revision A of 9 May 1988

196 Programming Utilities and Libraries

As another instance of the same thing, which is a bit more surprising, consider
redefining N:

[____ ::_:_:_::_:_:_:_:._2_1:_:_: ____________________________________ ~l
Perhaps regrettably, the N in the second definition is evaluated as soon as it's
seen; that is, it is replaced by 100, so it's as if you had written

define (100, 200)

While this statement is ignored by m4, since you can only define macros with
names that start with an alphabetical character or underscore, it obviously doesn't
have the effect you wanted. To redefine N, you must delay the evaluation by
quoting it:

define(N, 100)

define ('N', 200)

If the ... and ' characters are not convenient for some reason, the quote and end
quote characters can be changed with the built-in changequote function. For
instance:

changequote([,])

the left and right brackets the new quote and end-quote characters. You can
restore the original characters with just chanqequote. There are two addi
tional built-ins related to define. undefine removes the definition of some
macro or built-in:

undefine ('N')

removes the definition of N. (Why are the quotes absolutely necessary?) Built
ins can be removed with undefine, as in

undefine('define')

but once you remove one, you can never get it back.

The built-in ifdef provides a way to determine if a macro is currently defined.
In particular, m4 pre-defines the name unix.

ifdef actually permits three arguments; if the name is undefined, the value of
ifdef is then the third argument, as in

ifdef('unix', on SunOS, not on SunOS)

Don't forget the quotes .around the argument.

Comments in m4 are introduced by the i (sharp) character. All text from the :#:
to the end of the line is taken as a comment and otherwise ignored.

Revision A of 9 May 1988

9.4. Macros with
Arguments

9.5. Arithmetic Built-ins

Chapter 9 - m4 - a Macro Processor 197

So far we have discussed the simplest form of macro processing - replacing one
string by another (fixed) string. User-defined macros may also have arguments,
so different invocations can have different results. Within the replacement text
for a macro (the second argument of its define) any occurrence of $n is
replaced by the nth argument when the macro is actually used. Thus, the macro
bump, defined as'

define (bump, $1 = $1 + 1)

generates code to increment its argument by 1:

bump (x)

evaluates to

x == x + 1

A macro can have as many arguments as you want, but only the first nine are
accessible, through $1 to $9. The macro name itself is $0, although that is less
commonly used. Arguments that are not supplied are replaced by null strings, so
we can define a macro cat which simply concatenates its arguments, like this:

define (cat, $1$2$3$4$5$6$7$8$9)

Thus

cat(x, y, z)

is equivalent to

xyz

$4 through $9 are null, since no corresponding arguments were provided.

Leading unquoted (SPACE)'s, I TAB)'s, or (NEWLINE)'s that occur during argu
ment collection are discarded. All other white space is retained. Thus

define (a, b c)

defines a to be 'b e' .

Arguments are separated by commas, but commas can be nested inside
parentheses. That is, in

define (a, (b, c))

there are only two arguments; the second is literally (b,e). And of course a bare
comma or parenthesis can be inserted by quoting it.

m4 provides two built-in functions for doing arithmetic on integers (only). The
simplest is iner, which increments its numeric argument by 1. Thus to handle
the common programming situation where you want a variable to be defined as
"one more than N", write

define(N, 100)
define (N1, 'incr (N) ,)

which defines Nl as one more than the current value of N.

~~sun
• microsystems

Revision A of 9 May 1988

198 Programming Utilities and Libraries

The more general mechanism for arithmetic is a built-in called eval, which is
capable of arbitrary arithmetic on integers. eval provides the operators (in
decreasing order of precedence), as shown in the table below.

Table 9-1 Operators to the eval built in in m4

9.6. File Manipulation

Operator

unary + and -

** or
* / %
+

add and subtract

exponentiation

Meaning

multiply, divide, and modulus

binary add and subtract

! = < <= > >= equal, not equal, less than, less than or equal,
greater than, greater than or equal

logical not

& or & & logical and)

or II (logical or)

Parentheses may be used to group operations where needed. All the operands of
an expression given to eva 1 must ultimately be numeric. The numeric value of
a true relation (like 1>0) is 1, and false is O. The precision in eval is 32 bits.

As a simple example, suppose we want M to be 2 * *N + 1. Then

define (N, 3)
define (M, 'eval (2**N+l) ,)

As a matter of principle, it is advisable to quote the defining text for a macro
unless it is very simple indeed (say, just a number); it usually gives the result you
want, and is a good habit to get into.

You can include a new file in the input at any time by the built-in function
include:

include (filename)

inserts the contents offilename in place of the include command. The con
tents of the file is often a set of definitions. The value of include (that is, its
replacement text) is the contents of the file; this can be captured in definitions,
etc.

It is a fatal error if the file named in incl ude cannot be accessed. To get some
control over this, the alternate form sinclude can be used; sinclude
("silent include") says nothing and continues ifit can't access the file.

~\sun ~ microsystems
Revision A of9 May 1988

9.7. Running SunOS
Commands

9.8. Conditionals

Chapter 9 - m4 - a Macro Processor 199

It is also possible to divert the output of m4 to temporary files during processing,
and output the collected material upon command. m 4 maintains nine of these
diversions, numbered 1 through 9. Jfyou say

divert(n)

all subsequent output is put onto the end of a temporary file referred to as n.
Diverting to this file is stopped by another di vert command; in particular,
di vert or di vert (0) resumes the normal output process.

Diverted text is normally output all at once at the end of processing, with the
diversions output in numeric order. It is possible, however, to bring back diver
sions at any time, that is, to append them to the current diversion.

undivert

brings back all diversions in numeric order, and undi vert with arguments
brings back the selected diversions in the order given. The act of undiverting dis
cards the diverted stuff, as does diverting into a diversion whose number is not
between 0 and 9 inclusive.

The value of undi vert is not the diverted text. Furthermore, the diverted
material is not rescanned for macros.

The built-in di vnum returns the number of the currently active diversion. This
is zero during normal processing.

You can run any SunOS command using the syscmd built-in. For example,

syscmd(date)

runs the date command. Normally syscmd would be used to create a file for a
subsequent include.

To facilitate making unique file names, the built-in maketemp is provided, with
specifications identical to the system function mktemp: a string of XXXXX in the
argument is replaced by the process ID (Pid) of the current process.

There is a built-in called ifelse which enables you to perform arbitrary condi
tional testing. In its simplest fonn,

ifelse(a, b, c, d)

compares the two strings a and h. If these are identical, if e 1 s e returns the
string c; otherwise it returns d. Thus we might define a macro called compare
which compares two strings and returns "yes" or "no" according to whether
they are the same or different.

define (compare, 'ifelse($l, $2, yes, no)')

Note the quotes, which prevent too-early evaluation of ifelse.

If the fourth argument is missing, it is treated as empty .

• \sun
• microsystems

Revision A of 9 May 1988

200 Programming Utilities and Libraries

9.9. String Manipulation

ifel8e can actually have any number of arguments, and thus provides a limited
form of multi -way decision capability. In the input

ifelse(a, b, c, d, e, f, g)

if the string a matches the string b, the result is c. Otherwise, if d is the same as
e, the result is f. Otherwise the result is g. If the final argument is omitted, the
result is null, so

ifelse(a, b, c)

is c if a matches b, and null otherwise.

The built-in len returns the length of the string that makes up its argument.
Thus

len (abcdef)

is 6, and len «a,b» is 5.

The built-in 8ub8tr can be used to produce substrings of strings.
8 ub 8 t r (8, i , n) returns the substring of 8 that starts at the i th position
(origin zero), and is n characters long. If n is omitted, the rest of the string is
returned, so

substr('now is the time', 1)

evaluates to

ow is the time

If either i or n is out of range, various sensible things happen.

index (81, 82) returns the index (position) in 81 where the string 82 occurs,
or-l if it doesn't occur. As with 8ubstr, the origin for strings is O.

The built-in tran81i t performs character transliteration.

translit(s, f, t)

modifies 8 by replacing any character found in f by the corresponding character
in t. That is,

translit(s, aeiou, 12345)

replaces the vowels by the corresponding digits. If t is shorter than f, characters
which don't have an entry in t are deleted; as a limiting case, if t is not present
at all, characters in f are deleted from s. So

translit(s, aeiou)

deletes vowels from 8.

Revision A of9 May 1988

9.10. Printing

9.11. Summary of Built-in
m4 Macros

Table 9-2

Chapter 9 - m4 - a Macro Processor 201

There is also a built-in called dnl which deletes all characters that follow it up
to and including the next newline; it is useful mainly for throwing away empty
lines that otherwise tend to clutter up m4 output. For example, if you say

define (N, 100)
define (M, 200)
define (L, 300)

the newline at the end of each line is not part of the definition, so it is copied into
the output, where it may not be wanted. If you add dnl to each of these lines,
the newlines will disappear.

Another way to achieve this32 is:

divert (-1)

define (. . .)

divert

The built-in errpr int writes its arguments to the standard error file. Thus you
can say

errprint('fatal error')

dump de f is a debugging aid which dumps the current definitions of defined
tenns. If there are no arguments, you get everything; otherwise you get the ones
you name as arguments. Don't forget to quote the names!

Summary of Built-in m4 Macros

Built In

changequote(L, R)

define (name, replacement)

di vert (number)

divnum

dnl

32 Thanks to 1. E. Weythman.

Description

Change left quote to L, right
quote to R

define name as replacement

Di vert output to stream number

Return number of currently
active diversions

Delete up to and including new
line

Revision A of 9 May 1988

202 Programming Utilities and Libraries

Table 9-2 Summary of Built-in m4 Macros- Continued

Built In

dumpdef (. name', • name', . . .)

errprint (s, s, . . .)

Description

Dump s~cified definitions

Write arguments s to standard
error

eval (numeric expression) Evaluate numeric expression

ifdef (. name', true string, false string) Return true string if name is
defined, false string if name is
not defined

ifelse (a, b, c, d) If a and b are equal, return c,
else return d

include <file) Include contents offile

incr (nwnber) Increment number by 1

index (s1, s2) Return position in sl where s2
occurs, or -1 if no occurrence

len (string) Return length of string

maketemp (. . . xxxxx. . .) Make a temporary file

sinclude (file) Include contents offile
ignored and continue if file not
found.

substr (string, position, number) Return substring of string start
ing at position and number char
acters long

syscmd (command) Run command in the system

translit (string, /rom, to) Transliterate characters in string
from the set specified by from to
the set specified by to

undefine (. name') Remove name from the list of
definitions

undi vert (number, number,. • .) Append diversion number to the
current diversion

~) sun Revision A of 9 May 1988
~ microsystems

10
1 ex - a Lexical Analyzer Generator

lex - a Lexical Analyzer Generator ... 205

10.1. lex Source ... 208

10.2. lex Regular Expressions .. 209

10.3. lex Actions ... 212

10.4. Ambiguous Source Rules ... 216

10.5. lex Source Definitions ... 218

10.6. Using lex ... 219

10.7. lex and yacc ... 220

10.8. Examples ... 220

10.9. Left Context-Sensitivity .. 223

10.10. Character Set ... 225

10.11. Summary of Source Format ... 226

10.12. Caveats and Bugs "'''''' ,,,.,,,,,.,,,,,,.,,, .. ,,,,.,,,.,, " .. " "................. 228

10
1 ex - a Lexical Analyzer Generator

lex is a program generator designed for lexical processing of character input
streams. lex accepts a high-level, problem-oriented specification for character
string matching, and produces a program in a general-purpose language which
recognizes regular expressions. The regular expressions are specified by the pro
grammer in the source specifications given to lex. The lex written code recog
nizes these expressions in an input stream and partitions the input stream into
strings matching the expressions. At the boundaries between strings, program
sections provided by the programmer are executed. The lex source file associ
ates the regular expressions and the program fragments. As each expression
appears in the input to the program written by lex, the corresponding fragment
is executed.

The programmer supplies the additional code beyond expression matching
needed to complete his tasks, possibly including code written by other genera
tors. The program that recognizes the expressions is generated in the general
purpose programming language employed for the programmer's program frag
ments. Thus, a high-level expression language is provided to write the string
expressions to be matched while the programmer's freedom to write actions is
unimpaired. This avoids forcing the programmer who wishes to use a string
manipulation language for input analysis to write processing programs in the
same and often inappropriate string handling language.

lex source is a table of regular expressions and corresponding program frag
ments. The table is translated to a program which reads an input stream, copying
it to an output stream and partitioning the input into strings which match the
given expressions. As each such string is recognized the corresponding program
fragment is executed. The recognition of the expressions is performed by a
deterministic finite automaton generated by lex. The program fragments writ
ten by the programmer are executed in the order in which the corresponding reg
ular expressions occur in the input stream.

The lexical analysis programs written with lex accept ambiguous specifications
and choose the longest match possible at each input point. If necessary, substan
tiallooka~ead is performed 'on the input, but the input stream is then backed up
to the end of the current partition, so that the programmer has general freedom to
manipulate it.

lex is designed to simplify interfacing with yacc, which is described in the
next chapter.

205 Revision A of9 May 1988

206 Programming Utilities and Libraries

Figure 10-1

lex is not a complete language, but rather a generator representing a new
language feature which can be added to different programming languages, called
'host languages.' Just as general-purpose languages can produce code to run on
different computer hardware, lex can write code in different host languages.
The host language is used for the output code generated by lex and also for the
program fragments added by the programmer. Compatible run-time libraries for
the different host languages are also provided. This makes lex adaptable to dif
ferent environments and different programmer. Each application may be directed
to the combination of hardware and host language appropriate to the task, the
programmer's background, and the properties of local implementations.

lex turns the programmer's expressions and actions (called source in this
document) into the host general-purpose language; the generated program is
named yylex. The yylex program recognizes expressions in a stream (called
input in this document) and performs the specified actions for each expression
as it is detected -- see Figure 10-1 below.

An overview of lex

lex
Source

Input
Source

------------------~~~~~----------------~~~ yylex

------------------~~~~~----------------~~~ Ou~ut

For a trivial example, consider a program to delete from the input all blanks or
tabs at the ends of lines.

[%%
[\t]+$

is all that is required. The program contains a %% delimiter to mark the begin
ning of the rules, and one rule. This rule contains a regular expression which
matches one or more instances of the characters blank or tab (written \t for visi
bility, in accordance with the C convention) just prior to the end of a line. The
brackets indicate the character class made of blank and tab; the + indicates 'one
or more ... '; and the $ indicates 'end-of-line'. No action is specified, so the pro
gram generated by lex (yylex) ignores these characters. Everything else is

]

.\sun
• microsystems

Revision A of 9 May 1988

lex can also be used with a parser
generator to perform the lexical
analysis phase.

Figure 10-2

Chapter 10 - lex - a Lexical Analyzer Generator 207

copied to the output stream. To change any remaining string of blanks or tabs to
a single blank, add another rule:

%%
[\t]+$
[\t]+ printf(" H);

The finite automaton generated for this source scans for both rules at once,
observing at the termination of the string of blanks or tabs whether or not there is
a newline character, and executing the desired rule action. The first rule matches
all strings of blanks or tabs at the ends of lines, and the second rule all remaining
strings of blanks or tabs.

lex can be used alone for simple transformations, or for analysis and statistics
gathering on a lexical level. lex can also be used with a parser generator to per
form the lexical analysis phase; it is particularly easy to interface lex and yacc
lex programs recognize only regular expressions; yacc writes parsers that
accept a large class of context-free grammars, but require a lower-level analyzer
to recognize input tokens. Thus, a combination of lex and yacc is often
appropriate. When used as a preprocessor for a later parser generator, lex is
used to partition the input stream, and the parser generator assigns structure to
the resulting pieces. The flow of control in such a case (which might be the first
half of a compiler, for example) is shown in Figure 10-2. Additional programs,
written by other generators or by hand, can be added easily to programs written
by lex.

lex with yacc

Input

lexical
rules

grammar
rules

parsed
input

yacc programmers will realize that the name yylex is what yacc expects its
lexical analyzer to be named, so that the use of this name by lex simplifies
interfacing.

~~sun ~ microsystems
Revision A of 9 May 1988

208 Programming Utilities and Libraries

10.1. lex Source

lex generates a detenninistic finite automaton from the regular expressions in
the source. The automaton is interpreted, rather than compiled, in order to save
space. The result is still a fast analyzer. In particular, the time taken by a lex
program to recognize and partition an input stream is proportional to the length
of the input. The number of lex rules or the complexity of the rules is not
important in determining speed, unless rules which include fOlWard context
require a significant amount of rescanning. What does increase with the number
and complexity of rules is the size of the finite automaton, and therefore the size
of the program generated by lex.

In the program written by lex, the programmer's fragments (representing the
actions to be perfonned as each regular expression is found) are gathered as cases
of a switch. The automaton interpreter directs the control flow. Opportunity is
provided for the programmer to insert either declarations or additional statements
in the routine containing the actions, or to add subroutines outside this action
routine.

lex is not limited to source which can be interpreted on the basis of one charac
ter lookahead. For example, if there are two rules, one looking for ab and
another for abedefg, and the input stream is abedefh, lex recognizes ab
and leave the input pointer just before tred ... tr Such backup is more costly than
processing simpler languages.

The general format of lex source is:

{definitions }
%%
{rules}
%%
{programmer subroutines}

where the definitions and the programmer subroutines are often 'omitted. The
second % % is optional, but the first is required to mark the beginning of the rules.
The absolute minimum lex program is thus

(%%

(no definitions, no rules) which translates into a program which copies the input
to the output unchanged.

In the outline of lex programs shown above, the rules represent the
programmer's control decisions; they are a table, in which the left column con
tains regular expressions (see section 10.2) and the right column contains
actions, program fragments to be executed when the expressions

integer printf("found keyword INT");

]

to look for the string integer in the input stream and print the message 'found
keyword INT' whenever it appears. In this example the host procedural language
is C and the C library function pr int f () is used to print the string. The end of
the expression is indicated by the first blank or tab character. If the action is

Revision A of9 May 1988

10.2. lex Regular
Expressions

Operators

Chapter 10 - 1 ex - a Lexical Analyzer Generator 209

merely a single C expression, it can just be given on the right side of the line; if it
is compound, or takes more than a line, it should be enclosed in braces. As a
slightly more useful example, suppose it is desired to change a number of words
from British to American spelling. lex rules such as

colour printf("color");
mechanise printf("mechanize");
petrol printf("gas");

would be a start. These rules are not quite enough, since the word petroleum
would become gaseum; a way of dealing with this is described later.

The definitions of regular expressions are very similar to those in the editors
ex(l) and vi(l). A regular expression specifies a set of strings to be matched. It
contains text characters (which match the corresponding characters in the strings
being compared) and operator characters (which specify repetitions, choices, and
other features). The letters of the alphabet and the digits are always text charac
ters; thus the regular expression

integer

matches the string integer wherever it appears and the expression

a57D

looks for the string as 7D.

The operator characters are

"\[]"-?*+I ()$/{}%<>

and if they are to be used as text characters, an escape must be used. The quota
tion mark operator (") indicates that whatever is contained between a pair of
quotes is to be taken as text characters. Thus

xyz"++"

matches the string xyz++ when it appears. Note that a part of a string may be
quoted. It is harmless but unnecessary to quote an ordinary text character; the
expression

"xyz++"

is the same as the one above. Thus by quoting every non-alphanumeric character
being used as a text character, the programmer can avoid remembering the list
above of current operator characters, and is safe should further extensions to lex
lengthen the list.

An operator character may also be turned into a text character by preceding it
with \ as in

xyz\+\+

which is another, less readable, equivalent of the above expressions. Another use
of the quoting mechanism is to get a blank into an expression; normally, as

6sun ~ microsystems
Revision A of9 May 1988

210 Programming Utilities and Libraries

Character Classes

Arbitrary Character

explained above, blanks or tabs end a rule. Any blank character not contained
within [] (see below) must be quoted. Several nonnal C escapes with \ are
recognized: \n is newline, \t is tab, and \b is backspace. To enter \ itself, use \ \.
Since newline is illegal in an expression, \n must be used; it is not required to
escape tab and backspace. Every character but blank, tab, newline and the list
above is always a text character.

Classes of characters can be specified using the operator pair []. The construc
tion [abc] matches a single character, which may be a, b, or c. Within square
brackets, most operator meanings are ignored. Only three characters are special:
\, -, and"'. The - character indicates ranges. For example,

[a-:-zO-9<>_J

indicates the character class containing all the lower case letters, the digits, the
angle brackets, and underline. Ranges may be given in either order. Using
between any pair of characters which are not both upper case letters, both lower
case letters, or both digits is implementation-dependent and generates a warning
message. For example, [O-z] in ASCII is many more characters than it is in
EBCDIC. If it is desired to include the character - in a character class, it should
be first or last, thus:

[-+0-9]

matches all the digits and the two signs.

In character classes, the ,., operator must appear as the first character after the left
bracket; it indicates that the resulting string is to be complemented with respect
to the system's character set. Thus

[A abc]

matches all characters except a, b, or c, including all special or control charac
ters; and

[Aa-zA-Z]

is any character which is not a letter. The \ character provides the usual escapes
within character class brackets.

To match almost any character, the operator character

(period) is the class of all characters except newline. Escaping into octal is possi
ble although non-portable:

[\ 40-\17 6]

matches all printable characters in the ASCII character set, from octal 40 (blank)
to octal 176 (tilde).

Revision A of 9 May 1988

Optional Expressions

Repeated Expressions

Alternation and Grouping

Context Sensitivity

Chapter 10 -lex - a Lexical Analyzer Generator 211

The operator? indicates an optional element of an expression. Thus

ab?c

matches either ac or abc.

Repetitions of classes are indicated by the operators * and +.

is any number of consecutive a characters, including zero; while

a+

is one or more instances of a. For example,

[a-z] +

is all strings of lower case letters. And

[A-Za-z] [A-Za-zO-9]*

indicates all alphanumeric strings with a leading alphabetic character. This is a
typical expression for recognizing identifiers in computer languages.

The operator I indicates alternation:

(ab I cd)

matches either ab or cd. Note that parentheses are used for grouping, although
they are not necessary on the outside level;

ab I cd

would have sufficed. Parentheses can be used for more complex expressions:

(ab I cd+)?(ef)*

matches such strings as abefef, efefef, cdef, or cddd ; but not abc,
abcd, or abcdef.

lex recognizes a small amount of surrounding context. The two simplest opera
tors for this are and $. If the first character of an expression is , the expres
sion is only be matched at the beginning of a line This can never conflict with the
other meaning of , complementation of character classes, since that only
applies within the [] operators. If the very last character is $, the expression is
only be matched at the end of a line (when immediately followed by newline).

~\sun ~'f/I microsystems
Revision A of 9 May 1988

212 Programming Utilities and Libraries

Repetitions and Definitions

10.3. lex Actions

The latter operator is a special case of the / operator character, which indicates
trailing context. The expression

ab/ed

matches the string ab, but only if it is followed by cd. Thus

ab$

is the same as

ab/\n.

Left context is handled in lex by start conditions as explained in section 10.9-
Left Context-Sensitivity. If a rule is only to be executed when the lex automa
ton interpreter is in start condition x, the rule should be prefixed by

<x>

using the angle bracket operator characters. If we considered 'being at the begin
ning of a line' to be start condition ONE, then the ... operator would be equivalent
to

<ONE>.

Start conditions are explained more fully below.

The operators { } specify either repetitions (if they enclose numbers) or
definition expansion (if they enclose a name). For example

{digit}

looks for a predefined string named digi t and inserts it at that point in the
expression. The definitions are given in the first part of the lex input, before the
rules. In contrast,

a{1,5}

looks for 1 to 5 occurrences of a.

Finally, initial % is special, being the separator for lex source segments.

When an expression written as above is matched, lex executes the correspond
ing action. This section describes some features of lex which aid in writing
actions. Note that there is a default action, which consists of copying the input to
the output. This is performed on all strings not otherwise matched. Thus the
lex programmer who wishes to absorb the entire input, without producing any
output, must provide rules to match everything. When lex is being used with
yacc, this is the normal situation. One may consider that actions are what is
done instead of copying the input to the output; thus, in general, a rule which
merely copies can be otp.itted. Also, a character combination which is omitted
from the rules and which appears as input is likely to be printed on the output,
thus calling attention to the gap in the rules.

Revision A of 9 May 1988

Actual Text that Matched

Length of Matched Text

Chapter 10 - 1 ex - a Lexical Analyzer Generator 213

One of the simplest things that can be done is to ignore the input. Specifying a
C null statement, ; as an action does this. A frequent rule is

[\t\n] ;

which ignores the three spacing characters (blank, tab, and newline).

Another easy way to avoid writing actions is the action character I, which indi
cates that the action to be used for this rule is the action given for the next rule.
The previous example could also have been written

[~_::~~: ____________ ~l
with the same result. The quotes around \n and \t are not required.

In more complex actions, the programmer often wants to know the actual text
that matched some expression like [a-z] +. lex leaves this text in an external
character array named yytext.
Thus, to print the name found, a rule like

[a-z]+ printf("%s", yytext);

prints the string in yytext. The C function pr intf accepts a format argument
and data to be printed; in this case, the format is 'print string' (% indicating data
conversion, and s indicating string type), and the data are the characters in
yytext. So this just places the matched string on the output. This action is so
common that it may be written as ECHO:

[a-z]+ ECHO;

is the same as the above. Since the default action is just to print the characters
found, one might ask why give a rule, like this one, which merely specifies the
default action? Such rules are often required to avoid matching some other rule
which is not desired. For example, if there is a rule which matches read () it
nonnally matches the instances of read contained in bread or readjust; to
avoid this, a rule of the fonn [a-z] + is needed. This is explained further
below.

Sometimes it is more convenient to know the end of what has been found; hence
lex also provides a count yyleng of the number of characters matched. To
count both the number of words and the number of characters in words in the
input, the programmer might write

[a-zA-Z]+ {words++; chars += yyleng;}

which accumulates in char s the number of characters in the words recognized.
The last character in the string matched can be accessed by

yytext[yyleng-l] .

+~t!! Revision A of 9 May 1988

214 Programming Utilities and Libraries

yymore and yyless Occasionally, a lex action may decide that a rule has not recognized the correct
span of characters. Two routines are provided to aid with this situation. First,
yymore () can be called to indicate that the next input expression recognized is
to be tacked on to the end of this input. Nonnally, the next input string would
overwrite the current entry in yytext. Second, yyless (n) may be called to
indicate that not all the characters matched by the currently successful expression
are wanted right now. The argument nindicates the number of characters to be
retained in yytext. Further characters previously matched are returned to the
input. This provides the same sort of lookahead offered by the / operator, but in
a different fonn.

Example: Consider a language which defines a string as a set of characters
between quotation (It) marks, and provides that to include a It in a string it must
be preceded by a \. The regular expression which matches that is somewhat
confusing, so that it might be preferable to write:

\If[AIf]*

if (yytext [yyleng-l] '\ \')
yymore () ;

else
... normal programmer processing

which, when faced with a string such as abc \deflt first matches the five charac
ters "abc \ ; then the call to yymore () tacks the next part of the string,
"def ,onto the end. Note that the final quote tenninating the string should be
picked up in the code labeled 'nonnal processing'.

The function yyles s () might be used to reprocess text in various cir
cumstances. Consider the problem of resolving (in old-style C) the ambiguity of
'=-a'. Suppose it is desired to treat this as '=- a' but print a message. A rule
might be

=- [a-zA-Z]
printf("Operator (=-) ambiguous\nlf);
yyless(yyleng-l);
... action for =- ...

}

which prints a message, returns the letter after the operator to the input stream,
and treats the operator as '=-'. Alternatively it might be desired to treat this as
'= -a'. To do this, just return the minus sign as well as the letter to the input:

=-[a-zA-Z]
printf("Operator (=-) ambiguous\nlf);
yyless(yyleng-2);
... action for = ...
}

Revision A of 9 May 1988

Chapter 10 - 1 ex - a Lexical Analyzer Generator 215

perfOlms the other interpretation. Note that the expressions for the two cases
might more easily be written:

=-/ [A-Za-z]

in the first case and

=/-[A-Za-z]

in the second; no backup would be required in the rule action. It is not necessary
to recognize the whole identifier to observe the ambiguity. The possibility of
'=-3', however, makes

=_/[A \t\n]

a still better rule.

In addition to these routines, lex also permits access to the liD routines it uses.
They are:

1. input () which returns the next input character;

2. output (c) which writes the character c on the output; and

3. unput (c) pushes the character c back onto the input stream to be read
later by input () .

By default these routines are provided as macro definitions, but the programmer
can override them and supply private versions. These routines define the rela
tionship between external files and internal characters, and must all be retained or
modified consistently. They may be redefined, to transmit input or output to or
from strange places, including other programs or internal memory; but the char
acter set used must be consistent in all routines; a value of zero returned by
input must mean end of file; and the relationship between unput and input
must be retained or the lex lookahead will not work. lex does not look ahead
at all if it does not have to, but every rule ending in + * ? or $ or containing /
implies lookahead. Lookahead is also necessary to match an expression that is a
prefix of another expression. See section 10.10 for a discussion of the character
set used by lex. The standard lex library imposes a lOO-character limit on
backup.

Another lex library routine that the programmer will sometimes want to
redefine is yywrap () which is called whenever lex reaches an end-of-file. If
yywrap returns a 1, lex continues with the normal wrapup on end of input.
Sometimes, however, it is convenient to arrange for more input to arrive from a
new source. In this case, the programmer should provide a yywrap which
arranges for new input and returns O. This instructs lex to continue processing.
The default yywrap always returns 1.

This routine is also a convenient place to print tables, summaries, etc. at the end
of a program. Note that it is not possible to write a normal rule which recognizes
end-of-file; the only access to this condition is through yywrap.
In fact, unless a private version of input () is supplied a file containing nulls

cannot be handled, since a value of 0 returned by input is taken to be end-of
file.

Revision A of 9 May 1988

216 Programming Utilities and Libraries

10.4. Ambiguous Source
Rules

lex can handle ambiguous specifications. When more than one expression can
match the current input, lex chooses as follows:

1. The longest match is preferred.

2. Among rules which matched the same number of characters, the rule given
first is preferred.

Thus, suppose the rules

integer keyword action ...
[a-z]+ identifier action

to be given in that order. If the input is integers, it is taken as an identifier,
because [a-z] + matches 8 characters, while integer matches only 7~ If the
input is integer, both rules match 7 characters, and the keyword rule is
selected because it was given first. Anything shorter (for example, int) will not
match the expression integer, and so the identifier interpretation is used.

The principle of preferring the longest match makes rules containing expressions
like . * dangerous. For example,

, . *'

might seem a good way of recognizing a string in single quotes. But it is an invi
tation for the program to read far ahead, looking for a distant single quote.
Presented with the input

'first' quoted string here, 'second' here

the above expression matches

'first' quoted string here, 'second'

which is probably not what was wanted. A better rule is of the fonn

, ["'\n] *'

which, on the above input, stops after' fir s t'. The consequences of errors like
this are mitigated by the fact that the . operator does not match newline. Thus
expressions like. * stop on the current line. Don't try to defeat this with expres
sions like [. \n] + or equivalents; the lex generated program will try to read
the entire input file, causing internal buffer overflows.

Note that lex is normally partitioning the input stream, not searching for all pos
sible matches of each expression. This means that each character is accounted
for once and only once. For example, suppose it is desired to count occurrences
of both she and he in an input text. Some lex rules to do this might be

she
he
\n

s++;
h++;
I

Revision A of 9 May 1988

Chapter 10 - lex - a Lexical Analyzer Generator 217

where the last two rules ignore everything besides he and she. Remember that
'.' does not include newline. Since she includes he, lex will normally not
recognize the instances of he included in she, since once it has passed a she
those characters are gone.

Sometimes the programmer would like to override this choice. The action
REJECT means 'go do the next alternative.' It executes whatever rule was
second choice after the current rule. The position of the input pointer is adjusted
accordingly. Suppose the programmer really wants to count the included
instances of he:

she {s++; REJECT;}
he {h++; REJECT;}
\n I

these rules are one way of changing the previous example to do just that. After
counting each expression, it is rejected; whenever appropriate, the other expres
sion is then counted. In this example, of course, the programmer could note that
she includes he but not vice versa, and omit the REJECT action on he; in other
cases, however, it would not be possible a priori to tell which input characters
were in both classes.

Consider the two rules

[a[bc]+
a[cd]+

REJECT; }
REJECT;}]

If the input is ab, only the first rule matches, and on ad only the second matches.
The input string accb matches the first rule for four characters and then the
second rule for three characters. In contrast, the input aced agrees with the
second rule for four characters and the first rule for three.

In general, REJECT is useful whenever the purpose of lex is not to partition the
input stream but to detect all examples of some items in the input, and the
instances of these items may overlap or include each other. Suppose a digram
table of the input is desired; normally the digrams overlap, that is the word the
is considered to contain both th and he. Assuming a two-dimensional array
named digram to be incremented, the appropriate source is shown below .

• \sun ~ microsystems
Revision A of 9 May 1988

218 Programming Utilities and Libraries

10.5. lex Source
Definitions

%%
[a-z] [a-z] {digram [yytext [0]] [yytext [1]]++; REJECT;}

\n

where the REJECT is necessary to pick up a letter pair beginning at every char
acter, rather than at every other character.

Remember the fonnat of the lex source:

{ definitions}
%%
{rules}
%%
{programmer routines}

So far only the rules have been described. The programmer needs additional
options, though, to define variables for use in his program and for use by lex.
These can go either in the definitions section or in the rules section.

Remember that lex is turning the rules into a program. Any source not inter
cepted by lex is copied into the generated program. There are three classes of
such things.

1. Any line which is not part of a lex rule or action which begins with a blank
or tab is copied into the lex-generated program. Such source input prior to
the first %% delimiter is external to any function in the code; if it appears
immediately after the first %%, it appears in an appropriate place for
declarations in the function written by lex which contains the actions. This
material must look like program fragments, and should precede the first lex
rule.

As a side effect of the above, lines which begin with a blank or tab, and
which contain a comment, are passed through to the generated program.
This can be used to include comments in either the lex source or the gen
erated code. The comments should follow the host language convention.

2. Anything included between lines containing only the delimiters % { and % }
is copied out as above. The delimiters are discarded. This format permits
entering text like preprocessor statements that must begin in column 1, or
copying lines that do not look like programs.

3. Anything after the third %% delimiter, regardless of formats, etc., is copied
out after the lex output.

Definitions intended for le~ are given before the first %% delimiter. Any line in
this section not contained between %{ and %}, and beginning in column 1, is
assumed to define lex substitution strings. The format of such lines is

name translation

and it associates the string given as a translation with the name. The name and

.sun
~ microsystems

Revision A of9 May 1988

10.6. Using lex

Chapter 10- 1 ex - a Lexical Analyzer Generator 219

translation must be separated by at least one blank or tab, and the name must
begin with a letter. The translation can then be invoked by the {name} syntax in
a rule. Using {D} for the digits and {E} for an exponent field, for example,
might abbreviate rules to recognize numbers:

D [0-9]
E [DEde] [-+]?{D}+
%%
{D}+ printf("integer");
{D}+"."{D}*({E})? I
{D}*"."{D}+({E})? I
{D}+{E} printf("real");

Note the first two rules for real numbers; both require a decimal point and con
tain an optional exponent field, but the first requires at least one digit before the
decimal point and the second requires at least one digit after the decimal point.
To correctly handle the problem posed by a FORTRAN expression such as
35. EQ. I, which does not contain a real number, a context-sensitive rule such as

[O-9]+/".nEQ printf(nintegern);

could be used in addition to the normal rule for integers.

The definitions section may also contain other commands, including the selection
of a host language, a character set table, a list of start conditions, or adjustments
to the default size of arrays within lex itself for larger source programs. These
possibilities are discussed below under section 10.11 - Summary of Source F or
mat.

There are two steps in compiling a lex source program. First, the lex source
must be turned into a generated program in the host general-purpose language.
Then this program must be compiled and loaded, usually with a library of lex
subroutines. The generated program is on a file named lex. yy. c. The I/O
library is defined in terms of the C standard library in section 3 of the SunOS
Reference Manual.

The lex library is accessed by the loader flag -II.
So an appropriate set of commands is:

The resulting program is placed on the usual file a . au t for later execution. To
use lex with yacc see below. Although the default lex I/O routines use the C
standard library, the lex automata themselves do not do so; if private versions
of input, output, and unput are given, the library can be avoided. lex has
several options which are described in the lex(l) manual page .

• ~sun ~ microsystems
Revision A of 9 May 1988

220 Programming Utilities and Libraries

10.7. lex and yacc

10.8. Examples

If you want to use lex with yacc, note that what lex writes is a program
named yylex (), the name required by yacc for its analyzer. Normally, the
default main program in the lex library calls this routine, but if yacc is loaded,
and its main program is used, yacc calls yylex () .

In this case each leK rule should end with

return(token);

to return the appropriate token value.

An easy way to get access to yacc's names for tokens is to compile the lex
output file as part of the yacc output file by placing the line

41: include "lex.yy.c"

in the last section of yacc input. Supposing the grammar to be named 'good'
and the lexical rules to be named 'better' the command sequence can just be:

The lex and yacc programs can be generated in either order.

As a trivial problem, consider copying an input file while adding 3 to every non
negative number divisible by 7. Here is a suitable lex source program

%%
int k;

[0-9]+ {
k = atoi(yytext);
if (k%7 == 0)

printf("%d", k+3);
else

printf("%d",k);

to do just that. The rule [0-9] + recognizes strings of digits; atoi () converts
the digits to binary and stores the result in k.
The operator % (remainder) is used to check whether k is divisible by 7; if it is, it
is incremented by 3 as it is written out. It may be objected that this program will
alter such input items as 49 . 63 or X7. Furthermore, it increments the absolute
value of all negative numbers divisible by 7. To avoid this, just add a few more
rules after the active one, as shown below .

• sun
• microsystems

Revision A of 9 May 1988

Chapter 10 - 1 ex - a Lexical Analyzer Generator 221

%%
int k;

-? [0-9] + {
k = atoi(yytext);
printf("%d", k%7
}

-?[O-9.]+ ECHO;

o ? k+3

[A-Za-z] [A-Za-zO-9]+ ECHO;

k) ;

Numerical strings containing a '.' or preceded by a letter are picked up by one of
the last two rules, and not changed. The if-else has been replaced by a C
conditional expression to save space; the fonn a ?b : c means 'if a then b else
c' .

For an example of statistics gathering, here is a program which constructs a his
togram of the lengths of words, where a word is defined as a string of letters.

int lengs[lOO];
%%
[a-z]+ lengs[yyleng]++;

I
\n
%%
1 s.
yywrap ()
{

int i;
printf("Length No. words\n");
for(i=O; i<lOO; i++)

if (lengs[i] > 0)
printf("%5d%lOd\n",i,lengs[i]) ;

return(l);
}

This program accumulates the histogram, while producing no output At the end
of the input it prints the table. The final statement ret urn (1) ; indicates that
lex is to perfonn wrapup. If yywrap returns zero (false) it implies that further
input is available and the program is to continue reading and processing. To pro
vide a yywrap that never returns true causes an infinite loop.

As a iarger exampie, here are some parts of a program written by N. L. Schryer
to convert double-precision FORTRAN to single-precision FORTRAN. Because
FORTRAN does not distinguish upper and lower case letters, this routine begins
by defining a set of classes including both cases of each letter:

a [aA]
b [bB]
c [cC]

z [zZ]

+~ll!! Revision A of9 May 1988

222 Programming Utilities and Libraries

An additional class recognizes white space:

W [\t] *
The first rule changes double precision to real, or DOUBLE PRECI
SION to REAL.

{d} to} {u} {b} {I} {e} {W} {p} {r} {e} {c} {i} {s} Ii} to} In}

printf (yytext [O]=='d'? "real" : "REAL") i

}

Care is taken throughout this program to preserve the case (upper or lower) of the
original program. The conditional operator is used to select the proper fonn of
the keyword. The next rule copies continuation card indications to avoid confus
ing them with constants:

All "[A 0] ECHO;

In the regular expression, the quotes surround the blanks. It is interpreted as
'beginning of line, then five blanks, then anything but blank or zero.' Note the
two different meanings of There follow some rules to change double
precision constants to ordinary floating constants.

[O-9]+{W}{d}{W} [+-]?{W} [0-9]+ I
[O-9]+{W} {W}{d}{W}[+-]?{W}[0-9]+
... "{W} [0-9]+{W} {d} {W} [+-] ?{W} [0-9]+

/* convert constants */
for (p=yytext; *p != 0; p++)

{

if (*p == 'd' I I *p == 'D')
*p=+ 'e'- 'd';

ECHO;
}

After the floating point constant is recognized, it is scanned by the for loop to
find the letter d or D. The program then adds' e' -' d', which converts it to the
next letter of the alphabet. The modified constant, now single-precision, is writ
ten out again. There follow a series of names which must be respelled to remove
their initial d. By using the array yyt e xt the same action suffices for all the
names (only a sample of a rather long list is given here).

{d}{s}{i}{n}
{d} {c} to} {s}

{d} {s} {q} {r} {t}

{d} {a} {t} {a} {n}

{d} If} {I} to} {a} {t} printf ("%s" ,yytext+l);

Revision A of 9 May 1988

10.9. Left Context
Sensitivity

Chapter 10 -lex - a Lexical Analyzer Generator 223

Another list of names must have initial d changed to initial a:

{d} {I} to} {g}

{d} {I} to} {g}10
{d} {ro} {i} {n}l

{d} {ro} {a} {x}1

yytext [0] =+ 'a' - 'd';
ECHO;
}

And one routine must have initial d changed to initial r:

{d}l{ro} {a} {e} {h} {yytext [0] =+ 'r' - 'd';

ECHO;
}

To avoid such names as dsinx being detected as instances of dsin, some final
rules pick up longer words as identifiers and copy some surviving characters:

[A-Za-z] [A-Za-zO-9]*
[0-9]+ I
\n I

ECHO;

Note that this program is not complete; it does not deal with the spacing prob
lems in FORTRAN or with the use of keywords as identifiers.

Sometimes it is desirable to have several sets of lexical rules to be applied at dif
ferent times in the input. For example, a compiler preprocessor might distin
guish preprocessor statements and analyze them differently from ordinary state
ments. This requires sensitivity to prior context, and there are several ways of
handling such problems. The operator, for example, is a prior context opera
tor, recognizing immediately preceding left context just as $ recognizes immedi
ately following right context. Adjacent left context could be extended, to pro
duce a facility similar to that for adjacent right context, but it is unlikely to be as
useful, since often the relevant left context appeared some time earlier, such as at
the beginning of a line.

This section describes three means of dealing with different environments: a sim
ple use of flags, when only a few rules change from one environment to another,
the use of start conditions on rules, and the possibility of making multiple lexical
analyzers all run together. In each case, there are rules which recognize the need
to change the environment in which the following input text is analyzed, and set
some parameter to reflect the change. This may be a flag explicitly tested by the
programmer's action code; such a flag is the simplest way of dealing with the
problem, since lex is not involved at all. It may be more convenient, however,
to have lex remember the flags as initial conditions on the rules. Any rule may
be associated with a start condition. It is only be recognized when lex is in that
start condition. The current start condition may be changed at any time. Finally,

Revision A of9 May 1988

224 Programming Utilities and Libraries

if the sets of rules for the different environments are very dissimilar, clarity may
be best achieved by writing several distinct lexical analyzers, and switching from
one to another as desired.

Consider the following problem: copy the input to the output, changing the word
magic to first on every line which begins with the letter a, changing magic
to second on every line which begins with the letter b, and changing magic to
third on every line which begins with the letter c. All other words and all
other lines are left unchanged.

These rules are so simple that the easiest way to do this job is with a flag:

%%
a

"'b
"'c
\n
magic

int flag;

{flag
, ,

ECHO;} a ;
{flag 'b' ; ECHO; }
{flag

, ,
C ; ECHO; }

{flag 0 ; ECHO; }
{

switch (flag)
{

case ~': printf("first"); break;
case 'b': printf("secondrt); break;
case ~': printf(rtthird"); break;
default: ECHO; break;
}

}

should be adequate.

To handle the same problem with start conditions, each start condition must be
introduced to lex in the definitions section with a line reading

%Start namel name2 ...

where the conditions may be named in any order. The word Start may be
abbreviated to s or S. The conditions may be referenced at the head of a rule
with the <> brackets:

<namel>expression

is a rule which is only recognized when lex is in the start condition namel. To
enter a start condition, execute the action statement

BEGIN namel;

which changes the start condition to namel. To resume the nonnal state,

BEGIN 0;

which resets to the initial condition of the lex automaton interpreter. A rule
may be active in several start conditions:

<namel,name2,name3>

is a legal prefix. Any rule not beginning with the <> prefix operator is always
active.

~\sun
• microsystems

Revision A of 9 May 1988

10.10. Character Set

Figure 10-3

Chapter 10 - 1 ex - a Lexical Analyzer Generator 225

The same example as before can be written:

%START AA BB CC
%%
"a {ECHO;
"b {ECHO;

c {ECHO;
\n {ECHO;
<AA~magic

<BB>magic
<CC>magic

BEGIN AA;}
BEGIN BB;}
BEGIN CC; }
BEGIN a;}
printf("first");
printf("second");
printf("third");

where the logic is exactly the same as in the previous method of handling the
problem, but lex does the work rather than the programmer's code.

The programs generated by lex handle character I/O only through the routines
input, output, and unput. Thus the character representation provided in
these routines is accepted by lex and employed to return values in yytext.
For internal use a character is represented as a small integer which, if the stan

dard library is used, has a value equal to the integer value of the bit pattern
representing the character on the host computer. Normally, the letter a is
represented in the same form as the character constant' a'.
If this interpretation is changed, by providing I/O routines which translate the
characters, lex must be told about it, by giving a translation table. This table
must be in the definitions section, and must be bracketed by two lines containing
only '%T'. The table contains lines of the form

{integer} {character string}

which indicate the value associated with each character. Thus the next example

Sample character table.

%T
1 Aa
2 Bb

26 Zz
27 \n
28 +
29
30 0
31 1

39 9
%T

maps the lower and upper case letters together into the integers 1 through 26,
newline into 27, + and - into 28 and 29, and the digits into 30 through 39. Note
the escape for newline. If a table is supplied, every character that is to appear

Revision A of 9 May 1988

226 Programming Utilities and Libraries

10.11. Summary of Source
Format

either in the rules or in any valid input must be included in the table. No charac
ter may be assigned the number 0, and no character may be assigned a bigger
number than the size of the hardware character set.

The general form of a lex source file is:

{definitions}
%%
{rules}
%%
{programmer subroutines}

The definitions section contains a combination of

1. Definitions, in the form 'name space translation'.

2. Included code, in the form 'space code'.

3. Included code, in the form

[

% { 1 code

------%}------

4. Start condition declarations, given in the form

%S namel name2 ...

5. Character set tables, in the form

%T
number space character-string

%T

Revision A of 9 May 1988

Table 10-1

Table 10-2

Chapter 10 -lex - a Lexical Analyzer Generator 227

6. Changes to internal array sizes, in the form

%x nnn

where nnn is a decimal integer representing an array size and x selects the
parameter as follows:

Changing Internal Array Sizes in lex

Letter Parameter

p positions
n states
e tree nodes
a transitions
k packed character classes
0 output array size

Lines in the rules section have the form 'expression action' where the action
may be continued on succeeding lines by using braces to delimit it.

Regular expressions in lex use the following operators:

Regular Expression Operators in lex

I Operator

x
"x"
\x
[xy]
[x-z]
[-x]

x
<y>x
x$
x?
x*
x+
xly
(x)

x/y
{xx}
x{m,n}

Meaning

the character" x"
an "x", even if x is an operator
an "x", even if x is an operator
the character x or y
the characters x, y or z
any character but x
any character but newline
an x at the beginning of a line
an x when lex is in start condition y
an x at the end of a line
an optional x
0,1,2, ... instances of x
1,2,3, ... instances of x
an x or a y
anx
an x but only if followed by y
the translation of xx from the definitions section
m through n occurrences of x

Revision A of 9 May 1988

I

228 Programming Utilities and Libraries

10.12. Caveats and Bugs There are pathological expressions which produce exponential growth of the
tables when converted to detenninistic automata; fortunately, they are rare.

REJECT does not rescan the input; instead it remembers the results of the previ
ous scan. This means that if a rule with trailing context is found, and REJECT is
executed, the programmer must not have used unput to change the characters
forthcoming from the input stream. This is the only restriction on the
programmer's ability to manipulate the not-yet-processed input.

Revision A of9 May 1988

yacc - Yet Another Compiler
Compiler

11

yacc - Yet Another Compiler-Compiler .. 231

11.1. Basic Specifications ... 234

11.2. Actions .. 236

11.3. Lexical Analysis .. 238

11.4. How the Parser Works ... 240

11.5. Ambiguity and Conflicts ... 244

11.6. Precedence .. 248

11.7. Error Handling .. 251

11.8. The yacc Environment .. 253

11.9. Hints for Preparing Specifications .. 253

Input Style ... 254

Left Recursion .. 254

Lexical Tie-ins .. 255

Reserved Words ... 256

11.10. Advanced Topics .. 256

Simulating Error and Accept in Actions ... 256

Accessing Values in Enclosing Rules. .. 256

Support for Arbitrary Value Types ... 257

11.11. A Simple Example .. 258

11.12. yacc Input Syntax ... 260

11.13. An Advanced Example ... 261

11.14. Old Features Supported but not Encouraged .. 266

11
yacc - Yet Another Compiler

Compiler

Computer program input generally has some structure; in fact, every computer
program that does input can be thought of as defining an 'input language' which
it accepts. An input language may be as complex as a programming language, or
as simple as a sequence of numbers. Unfortunately, usual input facilities are lim
ited, difficult to use, and often are lax about checking their inputs for validity.

yacc provides a general tool for describing the input to a computer program.
The yacc programmer specifies the structure of the input, together with code to
be invoked as each item is recognized. yacc turns such a specification into a
subroutine that handles the input process; frequently, it is convenient and
appropriate to have most of the flow of control in the programmer's application
handled by this subroutine.

The input subroutine produced by yacc calls a programmer-supplied routine to
return the next basic input item. Thus, the programmer can specify his input in
terms of individual input characters, or in terms of higher-level constructs such as
names and numbers. The programmer-supplied routine may also handle
idiomatic features such as comment and continuation conventions, which typi
cally defY easy grammatical specification.

The class of specifications that yacc accepts is a very general one: LALR(l)
grammars with disambiguating rules.

In addition to compilers for C, FORTRAN, APL, Pascal, Ratfor, etc., yacc has
also been used for less conventional languages, including a phototypesetter
language, several desk calculator languages, a document retrieval system, and a
FORTRAN debugging system.

yacc provides a general tool for imposing structure on the input to a computer
program. The yacc programmer prepares a specification of the input process;
this includes rules describing the input structure, code to be invoked when these
rules are recognized, and a low-level routine to do the basic input. yacc then
generates a function to control the input process. This function, called a parser,
calls the programmer-supplied low-level input routine (the lexical analyzer) to
pick up the basic items {called tokens) from the input stream. These tokens are
organized according to the input structure rules, called grammar rules; when one
of these rules has been recognized, then programmer code supplied for this rule,
an action, is invoked; actions have the ability to return values and make use of
the values of other actions .

• \sun ~ microsystems
231 Revision A of 9 May 1988

232 Programming Utilities and Libraries

yacc generates its actions and output subroutines in C. Moreover, many of the
syntactic conventions of yacc follow C.

The heart of the yacc input specification is a collection of grammar rules. Each
rule describes an allowable structure and gives it a name. For example, one
grammar rule might be

date month_name day
, ,
, year ;

Here, date, month_name, day, and year represent structures of interest in the
input process; presumably, month_name, day, and year are defined elsewhere.
The comma ',' is enclosed in single quotes - implying that the comma is to
appear literally in the input. The colon and semicolon merely serve as punctua
tion in the rule, and have no significance in controlling the input. Thus, with
proper definitions, the input

July 4, 1776

might be matched by the above rule.

An important part of the input process is carried out by the lexical analyzer. This
routine reads the input stream, recognizing the lower-level structures, and com
municates these tokens to the parser. For historical reasons, a structure recog
nized by the lexical analyzer is called a terminal symbol, while the structure
recognized by the parser is called a nonterminal symbol. To avoid confusion, ter
minal symbols are referred to as tokens.

There is considerable leeway in deciding whether to recognize structures using
the lexical analyzer or grammar rules. For example, the rules

month_name
month_name

month_name

'J' 'a' 'n'
'F' 'e' 'b'

'D' , e' , c '

might be used in the above example. The lexical analyzer would only need to
recognize individual letters, and month_name would be a nonterminal symbol.
Such low-level rules tend to waste time and space, and may complicate the
specification beyond yacc's ability to deal with it. Usually, the lexical analyzer
would recognize the month names, and return an indication that a month_name
was seen; in this case, month_name would be a token.

Literal characters such as ',' must also be passed through the lexical analyzer,
and are also considered tokens.

Revision A of 9 May 1988

Chapter 11- yacc - Yet Another Compiler-Compiler 233

Specification files are very flexible. It is realively easy to add to the above exam
ple the rule

date month '/' day '/' year

allowing

7 / 4 / 1776

as a synonym for

July 4, 1776

In most cases, this new rule could be 'slipped in' to a working system with
minimal effort and little danger of disrupting existing input.

The input being read may not conform to the specifications. These input errors
are detected as early as is theoretically possible with a left-to-right scan; thus, not
only is the chance of reading and computing with bad input data substantially
reduced, but the bad data can usually be quickly found. Error handling, provided
as part of the input specifications, permits the reentry of bad data, or the con
tinuation of the input process after skipping over the bad data.

In some cases, yacc fails to produce a parser when given a set of specifications.
For example, the specifications may be self-contradictory, or they may require a
more powerful recognition mechanism than that available to yacc. The former
cases represent design errors; the latter cases can often be corrected by making
the lexical analyzer more powerful, or by rewriting some of the grammar rules.
While yacc cannot handle all possible specifications, its power compares favor
ably with similar systems; moreover, the constructions which are difficult for
yacc to handle are also frequently difficult for human beings to handle. Some
users have reported that the discipline of formulating valid yacc specifications
for their input revealed errors of conception or design early in the program
development.

The next several sections describe the basic process of preparing a yacc
specification; Section 11.1 describes the preparation of grammar rules, Section
11.2 the preparation of the programmer-supplied actions associated with these
rules, and Section 11.3 the preparation of lexical analyzers. Section 11.4
describes the operation of the parser. Section 11.5 discusses various reasons why
yacc may be unable to produce a parser from a specification, and what to do
about it. Section 11.6 describes a simple mechanism for handling operator pre
cedences in arithmetic expressions. Section 11.7 discusses error detection and
recovery. Section 11.8 discusses the operating environment and special features
of the parsers yacc produces. Section 11.9 gives some suggestions which
should improve the style and efficiency of the specifications. Section 11.10
discusses some advanced topics. Section 11.11 has a brief example, and section
11.12 gi ves a summary of the y a c c input syntax. Section 11.13 gives an exam
pIe using some of the more advanced features ofyacc, and, finally, section
11.14 describes mechanisms and syntax no longer actively supported, but pro
vided for historical continuity with older versions of yacc .

• \sun ~ microsystems
Revision A of 9 May 1988

234 Programming Utilities and Libraries

11.1. Basic Specifications Names refer to either tokens or nonterminal symbols. yacc requires token
names to be declared as such. In addition, for reasons discussed in Section 11.3,
it is often desirable to include the lexical analyzer as part of the specification file;
it may be useful to include other programs as well. Thus, every specification file
consists of three sections: the declarations, (grammar) rules, andprograms. The
sections are separated by double percent % % marks. The percent % is generally
used in yacc specifications as an escape character.

In other words, a full specification file looks like

declarations
%%
rules
%%
programs

The declaration section may be empty. Moreover, if the programs section is
omitted, the second % % mark may be omitted also; thus, the smallest legal yacc
specification is

(
%%
rules]

Spaces (also called blanks), tabs, and newlines are ignored except that they may
not appear in names or multi-character reserved symbols. Comments may appear
wherever a name is legal - they are enclosed in / * . . . * / , as in C and
PL/I.

The rules section is made up of one or more grammar rules. A grammar rule has
the form:

(A BODY

A represents a nonterminal name, and BODY represents a sequence of zero or
more names and literals. The colon and the semicolon are yacc punctuation.

N ames may be of arbitrary length, and may be made up of letters, dot '.', under
score '_', and non-initial digits. Upper and lower case letters are distinct. The
names used in the body of a grammar rule may represent tokens or nonterminal
symbols.

]

Revision A of9 May 1988

Chapter 11 - yacc - Yet Another Compiler-Compiler 235

A literal consists of a character enclosed in single quotes "'. As in C, the
backslash '\' is an escape character within literals, and all the C escapes are
recognized:

, \n '
, \r'
, \ ' ,

, \ \ '

, \t '
, \b'
, \f'
, \xxx'

newline
return
single quote '
backs lash '\'
tab
backspace
form feed
'xxx' in octal

For a number of technical reasons, the (NUL I character ('\0'" or 0) should never
be used in grammar rules.

If there are several grammar rules with the same left hand side, the vertical bar 'I'
can be used to avoid rewriting the left hand side. In addition, the semicolon at
the end of a rule can be dropped before a vertical bar. Thus the grammar rules

[
A B C D

A E F

A G

can be given to yacc as

A B C D

E F

G

It is not necessary that all grammar rules with the same left side appear together
in the grammar rules section, although it makes the input much more readable,
and easier to change.

If a nonterminal symbol matches the empty string, this can be indicated in the
obvious way:

empty :

1

Names representing tokens must be declared; this is most simply done by writing

%token namel name2 . . .

in the declarations section. See Sections 3 , 5, and 6 for much more discussion.
Every name not defined in the declarations section is assumed to represent a non
terminal symbol. Every nonterminal symbol must appear on the left side of at
least one rule.

Of all the nonterminal symbols, one, called the start symbol, has particular
importance. The parser is designed to recognize the start symbol; thus, this

Revision A of 9 May 1988

236 Programming Utilities and Libraries

11.2. Actions

symbol represents the largest, most general structure described by the grammar
rules. By default, the start symbol is taken to be the left hand side of the first
grammar rule in the rules section. It is possible, and in fact desirable, to declare
the start symbol explicitly in the declarations section using the %start keyword:

%start symbol

The end of the input to the parser is signaled by a special token, called the end
marker. If the tokens up to, but not including, the endmarker form a structure
which matches the start symbol, the parser function returns to its caller after the
endmarker is seen; it accepts the input. If the endmarker is seen in any other
context, it is an error.

It is the job of the programmer-supplied lexical analyzer to return the endmarker
when appropriate - see Section 11.3, below. Usually the endmarker represents
some reasonably obvious I/O status, such as 'end-of-file' or 'end-of-record'.

With each grammar rule, the programmer may associate actions to be perfonned
each time the rule is recognized in the input process. These actions may return
values, and may obtain the values returned by previous actions. Moreover, the
lexical analyzer can return values for tokens, if desired.

An action is an arbitrary C statement, and as such can do input and output, call
subprograms, and alter external vectors and variables. An action is specified by
one or more statements, enclosed in curly braces '{' and '}'. For example,

[
A' (, B ')' hello (1, "abc"); J

"""'-----{ ----""

and

xxx yyy zzz
{ printf("a message\n");

flag = 25; }

are grammar rules with actions.

To facilitate easy communication between the actions and the parser, the action
statements are altered slightly. The dollar sign symbol '$' is used as a signal to
yacc in this context

To return a value, the action normally sets the pseudo-variable '$$' to some .
value. For example, an action that does nothing but return the value 1 is

$$ = 1;

To obtain the values returned by previous actions and the lexical analyzer, the
action may use the pseudo-variables $1, $2, ... , which refer to the values
returned by the components of the right side of a rule, reading from left to right
Thus, if the rule is

[~_A _______ B_C __ D ____________ ~J
Revision A of 9 May 1988

Chapter 11- yacc - Yet Another Compiler-Compiler 237

for example, then $ 2 has the value returned by C, and $ 3 the value returned by
D.

As a more concrete example, consider the rule

(expr '(' expr ')'

The value returned by this rule is usually the value of the expr in parentheses.
This can be indicated by

J

(~ ___ e_x_p_r ______________ '_(_' ___ e_x_p_r ___ '_)_' _____________ $_$ __ = __ $_2 __ ; __ ~J
By default, the value of a rule is the value of $1 (the first element in it). Thus,
grammar rules of the form

B

frequently need not have an explicit action.

J

In the examples above, all the actions came at the end of their rules. Sometimes,
it is desirable to get control before a rule is fully parsed. yacc permits an action
to be written in the middle of a rule as well as at the end. This rule is assumed to
return a value, accessible through the usual $ mechanism by the actions to the
right of it. In tum, it may access the values returned by the symbols to its left.
Thus, in the rule

A B

$$ 1;
C

x = $2; y $3;

the effect is to set x to 1, and y to the value returned by C.

Actions that do not terminate a rule are actually handled by yacc by manufac
turing a new nonterminal symbol name, and a new rule matching this name to the
empty string. The interior action is the action triggered off by recognizing this
added rule. yacc actually treats the above example as if it had been written:

$ACT /* empty */
{ $$ 1;

A B $ACT C
{ x = $2; y $3;

In many applications, output is not done directly by the actions; rather, a data
structure, such as a parse tree, is constructed in memory, and transformations are
applied to it before output is generated. Parse trees are particularly easy to

Revision A of9 May 1988

238 Programming Utilities and Libraries

11.3. Lexical Analysis

construct, given routines to build and maintain the tree structure desired. For
example, suppose there is a C function node, written so that the call

(node (L, nl, n2))
creates a node with label L, and descendants n1 and n2, and returns the index of
the newly created node. The parse tree can be built by supplying actions such as:

[

~xpr expr '+' expr]

______________________________ $_$ __ =_n_o_d_e __ (__ '+_'_, __ $_I_, __ $_3 __)~;--~

in the specification.

The programmer may define other variables to be used by the actions. Declara
tions and definitions can appear in the declarations section, enclosed in the marks
'%{' and '%}'. These declarations and definitions have global scope, so they are
known to the action statements and the lexical analyzer. For example,

(%{ int variable = 0; %}

could be placed in the declarations section, making variable accessible to all
of the actions. The yacc parser uses only names beginning in 'yy'; the pro
grammer should avoid such names.

In these examples, all the values are integers: a discussion of values of other
types will be found in Section 11.10.

The programmer must supply a lexical analyzer to read the input stream and
communicate tokens (with values, if desired) to the parser. The lexical analyzer
is an integer-valued function called yylex (). The function returns an integer,
the token number, representing the kind of token read. If there is a value associ
ated with that token, it should be assigned to the external variable yyl val () .

J

The parser and the lexical analyzer must agree on these token numbers in order
for communication between them to take place. The numbers may be chosen by
yacc, or chosen by the programmer. In either case, the '# define' mechanism of
C is used to allow the lexical analyzer to return these numbers symbolically. For
example, suppose that the token name DIGIT has been defined in the declara
tions section of the yacc specification file. The relevant portion of the lexical
analyzer might look like:

Revision A of 9 May 1988

yylex() {

Chapter 11 - yacc - Yet Another Compiler-Compiler 239

extern int yylval;
int c;

c = ~etchar();

switch (c) {

case '0':
case ' 1 ' :

case ' 9' :
yylval = c-'O';
return (DIGIT);

The intent is to return the token number of DIG IT, and a value equal to the
numerical value of the digit. Provided that the lexical analyzer code is placed in
the programs section of the specification file, the identifier DIG I T will be
defined as the token number associated with the token DIGIT.

This mechanism leads to clear, easily modified lexical analyzers; the only pitfall
is the need to avoid using any token names in the grammar that are reserved or
significant in C or the parser; for example, the use of if or while as token
names will almost certainly cause severe difficulties when the lexical analyzer is
compiled. The token name error is reserved for error handling, and should not
be used naively (see Section 11.7.

As mentioned above, the token numbers may be chosen by yacc or by the pro
grammer. In the default situation, the numbers are chosen by yacc. The default
token number for a literal character is the numerical value of the character in the
local character set. Other names are assigned token numbers starting at 257.

To assign a token number to a token (including literals), the first appearance of
the token name or literal in the declarations section can be immediately followed
by a nonnegative integer. This integer is taken to be the token number of the
name or literal. Names and literals not defined by this mechanism retain their
default definition. It is important that all token numbers be distinct.

For historical reasons, the endmarker must have token number a or negative.
This token number cannot be redefined by the programmer; thus, all lexical
analyzers should be prepared to return a or negative as a token number upon
reaching the end of their input.

A very useful tool for constructing lexical analyzers is the lex program developed
by Mike Lesk8 and described in chapter NumbetOf(Lex_Lexical_Analyzer),
TitleOf(Lex_Lexical_Analyzer) . These lexical analyzers are designed to work
in close harmony with yacc parsers. The specifications use regular expressions
instead of grammar rules. lex can be easily used to produce quite complicated
lexical analyzers, but there remain some languages (such as FORTRAN) which do

.~sun ~ microsystems
Revision A of9 May 1988

240 Programming Utilities and Libraries

11.4. How the Parser
Works

shift Action

reduce Action

not fit any theoretical framework, and whose lexical analyzers must be crafted by
hand.

yacc turns the specification file into a C program, which parses the input
according to the specification given. The algorithm used to go from the
specification to the parser is complex, and will not be discussed here (see the
references for more information). The parser itself, however, is relatively simple,
and understanding how it works, while not strictly necessary, will nevertheless
make treatment of error recovery and ambiguities much more comprehensible.

The parser produced by yacc consists of a finite-state machine with a stack.
The parser can read and remember the next input token (called the lookahead
token). The current state is always the one on the top of the stack. The states of
the finite-state machine are given small integer labels; initially, the machine is in
state 0, the stack contains only state 0, and no lookahead token has been read.

The machine has only four actions available to it, called shift, reduce, accept,
and error. A move of the parser is done as follows:

1. Based on its current state, the parser decides whether it needs a lookahead
token to decide what action should be done; if it needs one, and does not
have one, it calls yylex () to obtain the next token

2. Using the current state, and the lookahead token if needed, the parser decides
on its next action, and carries it out. This may result in states being pushed
onto the stack, or popped off the stack, and in the lookahead token being
processed or left alone.

The shift action is the most common action the parser takes. Whenever a shift
action is taken, there is always a lookahead token. For example, in state 56 there
may be an action:

(IF shift 34

which says, in state 56, if the lookahead token is IF, the current state (56) is
pushed down on the stack, and state 34 becomes the current state (on the top of
the stack). The lookahead token is cleared.

The reduce action keeps the stack from growing without bound. Reduce actions
are appropriate when the parser has seen the right hand side of a grammar rule,
and is prepared to announce that it has seen an instance of the rule, replacing the
right hand side by the left hand side. It may be necessary to consult the looka
head token to decide whether to reduce, but usually it is not; in fact, the default
action (represented by a '.') is often a reduce action.

]

Reduce actions are associated with individual grammar rules. Grammar rules are
also given small integer numbers, leading to some confusion. The action

[___________ . __ r_e_du_c_e __ l_8 ________________________________ ~)

~~sun ~~ microsystems
Revision A of 9 May 1988

accept and error Actions

Chapter 11-yacc - Yet Another Compiler-Compiler 241

refers to grammar rule 18, while the action

(~ ___________ I_F _______ S_h_i_f_t __ 3_4 ______________________________ -J]
refers to state 34.

Suppose the rule being reduced is

(___ A_: X_y Z ____ J
The reduce action depends on the left hand symbol (A in this case), and the
number of symbols on the right hand side (three in this case). To reduce, first
pop off the top three states from the stack (In general, the number of states
popped equals the number of symbols on the right side of the rule). In effect,
these states were the ones put on the stack while recognizing x, y, and z, and no
longer serve any useful purpose. After popping these states, a state is uncovered
which was the state the parser was in before beginning to process the rule. Using
this uncovered state, and the symbol on the left side of the rule, perform what is
in effect a shift of A. A new state is obtained, pushed onto the stack, and parsing
continues. There are significant differences between the processing of the left
hand symbol and an ordinary shift of a token, however, so this action is called a
goto action. In particular, the lookahead token is cleared by a shift, and is not
affected by a goto. In any case, the uncovered state contains an entry such as:

(A goto 20

which pushes state 20 onto the stack, and becomes the current state.

In effect, the reduce action 'turns back the clock' in the parse, popping the states
off the stack to go back to the state where the right hand side of the rule was first
seen. The parser then behaves as if it had seen the left side at that time. If the
right hand side of the rule is empty, no states are popped off the stack: the
uncovered state is in fact the current state.

The reduce action is also important in the treatment of programmer-supplied
actions and values. When a rule is reduced, the code supplied with the rule is
executed before the stack is adjusted. In addition to the stack holding the states,
another stack, running in parallel with it, holds the values returned from the lexi
cal analyzer and the actions. When a shift takes place, the external variable
yy 1 v al () is copied onto the value stack. After the return from the
programmer's code, the reduction is carried out. When the goto action is done,
the external variable yyval () is copied onto the value stack. The pseudo
variables $1, $2, etc., refer to the value stack.

The other two parser actions are conceptually much simpler. The accept action
indicates that the entire input has been seen and that it matches the specification.
This action appears only when the lookahead token is the endmarker, and indi
cates that the parser has successfully done its job. The error action, on the other
hand, represents a place where the parser can no longer continue parsing

J

.\sun ,~ microsystems
Revision A of 9 May 1988

242 Programming Utilities and Libraries

according to the specification. The input tokens it has seen, together with the
lookahead token, cannot be followed by anything that would result in a legal
input. The parser reports an error, and attempts to recover the situation and
resume parsing: the error recovery (as opposed to the detection of error) will be
covered in Section 11.7.

It is time for an example! Consider the specification

%token DING DONG DELL
%%
rhyme sound place

sound DING DONG

place DELL

When yacc is invoked with the -v option, a file calledy.output is produced,
with a human-readable description of the parser. The y.output file correspond
ing to the above grammar (with some statistics stripped off the end) is:

Revision A of 9 May 1988

state 0

state 1

state 2

state 3

state 4

state 5

state 6

Chapter 11 - yacc - Yet Another Compiler-Compiler 243

Saccept _rhyme Send

DING shift 3
error

rhyme goto 1
sound goto 2

Saccept rhyme_Send

Send accept
error

rhyme soundylace

DELL shift 5
error

place goto 4

sound

DONG shift
error

rhyme

reduce

place

reduce

sound

reduce

DING_DONG

6

sound place (1)

1

DELL (3) -
3

DING DONG (2)

2
-

Notice that, in addition to the actions for each state, there is a description of the
parsing rules being processed in each state. The _ character is used to indicate
what has been seen, and what is yet to come, in each rule. Suppose the input is

DING DONG DELL

It is instructive to follow the steps of the parser while processing this input.

Initially, the current state is state O. The parser needs to refer to the input in
order to decide between the actions available in state 0, so the first token, DING,

is read, becoming the lookahead token. The action in state 0 on DING is 'shift
3' , so state 3 is pushed onto the stack, and the lookahead token is cleared. State 3
becomes the current state. The next token, DONG, is read, becoming the looka
head token. The action in state 3 on the token DONG is 'shift 6', so state 6 is
pushed onto the stack, and the lookahead is cleared. The stack now contains 0, 3,

Revision A of 9 May 1988

244 Programming Utilities and Libraries

11.5. Ambiguity and
Conflicts

and 6. In state 6, without even consulting the lookahead, the parser reduces by
rule 2.

[~ ___________ s_o_u_n_d _______ D __ IN __ G ___ D_O_N_G __________________________ ~]
This rule has two symbols on the right hand side, so two states, 6 and 3, are
popped off the stack, uncovering state O. Consulting the description of state 0,
looking for a goto on sound,

(~ ___________ s_o_u_n_d ____ g_o_t __ O __ 2 ________________________________ ~]
is obtained; thus state 2 is pushed onto the stack, becoming the current state.

In state 2, the next token, DELL, must be read. The action is 'shift 5', so state 5
is pushed onto the stack, which now has 0,2, and 5 on it, and the lookahead
token is cleared. In state 5, the only action is to reduce by rule 3. This has one
symbol on the right hand side, so one state, 5, is popped off, and state 2 is
uncovered. The goto in state 2 on place, the left side of rule 3, is state 4. Now,
the stack contains 0, 2, and 4. In state 4, the only action is to reduce by rule 1.
There are two symbols on the right, so the top two states are popped off, uncov
ering state ° again. In state 0, there is a goto on rhyme causing the parser to enter
state 1. In state 1, the input is read; the endmarker is obtained, indicated by
'$end' in the y.output file. The action in state 1 when the endmarker is seen is
to accept, successfully ending the parse.

The reader is urged to consider how the parser works when confronted with such
incorrect strings as DING DONG DONG, DING DONG, DING DONG DELL

DELL, and so on. A few minutes spend with this and other simple examples will
probably be repaid when problems arise in more complicated contexts.

A set of grammar rules is ambiguous if there is some input string that can be
structured in two or more different ways. For example, the grammar rule

expr expr expr

is a natural way of expressing the fact that one way of forming an arithmetic
expression is to put two other expressions together with a minus sign between
them. Unfortunately, this grammar rule does not unambiguously specify the way
that all complex inputs should be structured. For example, if the input is

expr expr expr

the rule allows this input to be structured as either

expr expr expr

oras

expr expr expr

The first is called left association, the second right association.

yacc detects such ambiguities when it is attempting to build the parser. It is
instructive to consider the problem that confronts the parser when it is given an

.~sun
• microsystems

Revision A of9 May 1988

Chapter 11- yacc - Yet Another Compiler-Compiler 245

input such as

expr expr expr

When the parser has read the second expr, the input that it has seen:

expr expr

matches the right side of the grammar rule above. The parser could reduce the
input by applying this rule; after applying the rule; the input is reduced to expr
(the left side of the rule). The parser would then read the final part of the input:

expr

and again reduce. The effect of this is to take the left-associative interpretation.

Al temati vely, when the parser has seen

expr expr

it could defer the immediate application of the rule, and continue reading the
input until it had seen

expr expr expr

It could then apply the rule to the rightmost three symbols, reducing them to expr
and leaving

expr expr

Now the rule can be reduced once more; the effect is to take the right associative
interpretation. Thus, having read

expr expr

the parser can do two legal things, a shift or a reduction, and has no way of
deciding between them. This is called a shift / reduce conflict. It may also hap
pen that the parser has a choice of two legal reductions; this is called a reduce /
reduce conflict. Note that there are never any 'shift/shift' conflicts.

When there are shift/reduce or reduce/reduce conflicts, yacc still produces a
parser. It does this by selecting one of the valid steps wherever it has a choice.
A rule describing which choice to make in a given situation is called a disambi
guating rule.

ya c c invokes two disambiguating rules by default:

1. In a shift/reduce conflict, the default is to do the shift

2. In a reduce/reduce conflict, the default is to reduce by the earlier grammar
rule (in the input sequence).

Rule 1 implies that reductions are deferred whenever there is a choice, in favor of
shifts. Rule 2 gives the programmer rather crude control over the behavior of the
parser in this situation, but reduce/reduce conflicts should be avoided whenever
possible.

Conflicts may arise because of mistakes in input or logic, or because the gram
mar rules, while consistent, require a more complex parser than yacc can con
struct. The use of actions within rules can also cause conflicts, if the action must

.~sun ~ microsystems
Revision A of 9 May 1988

246 Programming Utilities and Libraries

be done before the parser can be sure which rule is being recognized. In these
cases, the application of disambiguating rules is inappropriate, and leads to an
incorrect parser. For this reason, yacc always reports the number of shift/reduce
and reduce/reduce conflicts resolved by Rule 1 and Rule 2.

In general, whenever it is possible to apply disambiguating rules to produce a
correct parser, it is also possible to rewrite the grammar rules so that the same
inputs are read but there are no conflicts. For this reason, most previous parser
generators have considered conflicts to be fatal errors. Our experience has sug
gested that this rewriting is somewhat unnatural, and produces slower parsers;
thus, y ac c will produce parsers even in the presence of conflicts.

As an example of the power of disambiguating rules, consider a fragment from a
programming language involving an 'if-then-else' construction:

stat ')' stat IF
IF

'(' cond
'(' cond ')' stat ELSE stat

In these rules, IF and ELSE are tokens, cond is a nonterminal symbol describing
conditional (logical) expressions, and stat is a nontenninal symbol describing
statements. The first rule will be called the simple-if rule, and the second the if
else rule.

These two rules form an ambiguous construction, since input of the fonn:

IF (condition -1) IF (condition -2) statement -1 ELSE statement -2

can be structured according to these rules in two ways:

IF condition -1 {
I F condition - 2 statement -1

ELSE statement-2

or

IF condition -1
I F condition - 2 statement -1
ELSE statement-2

The second interpretation is the one given in most programming languages hav
ing this construct. Each ELSE is associated with the last preceding 'un-ELSE'd'
IF. In this example, consider the situation where the parser has seen

IF condition -1 IF condition - 2 statement -1

and is looking at the ELSE. It can immediately reduce by the simple-if rule to
get

~~sun
• microsyslems

Revision A of 9 May 1988

IF condition -1 IF

Chapter 11 - yacc - Yet Another Compiler-Compiler 247

IF condition -1 stat

and then read the remaining input,

ELSE statement-2

and reduce

IF condition -1 stat ELSE statement-2

by the if-else rule. This leads to the first of the above groupings of the input.

On the other hand, the ELSE may be shifted, statement-2 read, and then the right
hand portion of

condition - 2 statement -1 ELSE statement-"2

can be reduced by the if-else rule to get

IF condition -1 stat

which can be reduced by the simple-if rule. This leads to the second of the above
groupings of the input, which is usually desired.

Once again the parser can do two valid things - there is a shift/reduce conflict.
The application of disambiguating rule 1 tells the parser to shift in this case,
which leads to the desired grouping.

This shift/reduce conflict arises only when there is a particular current input sym
bol, ELSE, and particular inputs already seen, such as

IF condition -1 IF condition - 2 statement -1

In general, there may be many conflicts, and each one will be associated with an
input symbol and a set of previously read inputs. The previously read inputs are
characterized by the state of the parser.

The conflict messages of yacc are best understood by examining the verbose
(-v) option output file. For example, the output corresponding to the above
conflict state might be:

23: shift/reduce conflict (shift 45, reduce 18) on ELSE

state 23

stat
stat

IF
IF

cond
cond

ELSE shift 45
reduce 18

stat_ (18)
stat_ELSE stat

The first line describes the conflict, giving the state and the input symbol. The
ordinary state description follows, giving the grammar rules active in the state,
and the parser actions. Recall that the underline marks the portion of the gram
mar rules which has been seen. Thus in the example, in state 23 the parser has
seen input corresponding to

.~sun
• microsystems

Revision A of 9 May 1988

248 Programming Utilities and Libraries

11.6. Precedence

IF cond stat

and the two grammar rules shown are active at this time. The parser can do two
possible things. If the input symbol is ELSE, it is possible to shift into state 45.
State 45 will have, as part of its description, the line

stat IF cond stat ELSE_stat

since the ELSE will have been shifted in this state. Back in state 23, the alterna
tive action, described by '.', is to be done if the input symbol is not mentioned
explicitly in the above actions; thus, in this case, if the input symbol is not ELSE,
the parser reduces by grammar rule 18:

stat IF' (' cond ')' stat

Once again, notice that the numbers following 'shift' commands refer to other
states, while the numbers following 'reduce' commands refer to grammar rule
numbers. In the y.output file, the rule numbers are printed after those rules
which can be reduced. In most states, there will be at most one reduce action
possible in the state, and this will be the default command. Programmers who
encounter unexpected shift/reduce conflicts will probably want to look at the ver
bose output to decide whether the default actions are appropriate. In really tough
cases, the programmer might need to know more about the behavior and con
struction of the parser than can be covered here. In this case, one of the theoreti
cal references cited in Chapter 1 might be consulted.

There is one common situation where the rules given above for resolving
conflicts are not sufficient; this is in the parsing of arithmetic expressions. Most
of the commonly used constructions for arithmetic expressions can be naturally
described by the notion of precedence levels for operators, together with infor
mation about left or right associativity. It turns out that ambiguous grammars
with appropriate disambiguating rules can be used to create parsers that are faster
and easier to write than parsers constructed from unambiguous grammars. The
basic notion is to write grammar rules of the form

expr expr OP expr

and

expr UNARY expr

for all binary and unary operators desired. This creates a very ambiguous gram
mar, with many parsing conflicts. As disambiguating rules, the programmer
specifies the precedence, or binding strength, of all the operators, and the associa
tivity of the binary operators. This information is suffiGient to allow yacc to
resolve the parsing conflicts in accordance with these rules, and construct a
parser that realizes the desired precedences and associativities.

The precedences and associativities are attached to tokens in the declarations sec
tion. This is done by a series of lines beginning with a yacc keyword: %left,
%right, or %nonassoc, followed by a list of tokens. All of the tokens on the
same line are assumed to have the same precedence level and associativity; the
lines are listed in order of increasing precedence or binding strength. Thus,

Revision A of9 May 1988

Chapter 11 - yacc - Yet Another Compiler-Compiler 249

(
%left '+' - J

~ ___ %_l_e_f_t ____ '*_' ___ '_/ __ ' __ -J

describes the precedence and associativity of the four arithmetic operators. Plus
and minus are left-associative, and have lower precedence than star and slash,
which are also left-associative. The keyword %r ight is used to describe right
associative operators, and the keyword %nonassoc is used to describe opera
tors, like the . LT. operator in FORTRAN, that may not associate with them
selves; thus,

(A .LT. B .LT. C

is illegal in FORTRAN, and such an operator would be described with the key
word %nonassoc in yacc. As an example of the behavior of these declara
tions, the description

%right
%left
%left

%%

expr

, +'
, * ' , / '

expr
expr
expr
expr
expr
NAME

might be used to structure the input

a b c*d e

as follows:

,
= expr

, +' expr
, - ,

expr
, * ' expr
, / ' expr

a = (b = («c*d)-e) - (f*g)))

When this mechanism is used, unary operators must, in general, be given a pre
cedence. Sometimes a unary operator and a binary operator have the same sym
bolic representation, but different precedences. An example is unary and binary
, -'; unary minus may be given the same strength as multiplication, or even
higher, while binary minus has a lower strength than multi plication. The key
word %prec changes the precedence level associated with a particular grammar
rule. %prec appears immediately after the body of the grammar rule, before the
action or closing semicolon, and is followed by a token name or literal. It
changes the precedence of the grammar rule to become that of the following
token name or literal. For example, to make unary minus have the same pre
cedence as multiplication the rules might resemble:

J

+~t!! Revision A of 9 May 1988

250 Programming Utilities and Libraries

%left
%left

%%

expr

, +'
'* ' , / '

expr
expr
expr
expr
, , -

NAME

' +' expr
, - ,

expr
' * ' expr
' / ' expr

expr %prec ' * '

A token declared by %left, %right, and %nonassoc need not be, but may
be, declared by %token as well.

The precedences and associativities are used by yacc to resolve parsing
conflicts; they give rise to disambiguating rules. Formally, the rules work as fol
lows:

1. The precedences and associativities are recorded for those tokens and literals
that have them.

2. A precedence and associativity is associated with each grammar rule; it is
the precedence and associativity of the last token or literal in the body of the
rule. If the %prec construction is used, it overrides this default. Some
grammar rules may have no precedence and associativity associated with
them.

3. When there is a reduce/reduce conflict, or there is a shift/reduce conflict and
either the input symbol or the grammar rule has no precedence and associa
tivity, then the two disambiguating rules given at the beginning of the sec
tion are used, and the conflicts are reported.

4. If there is a shift/reduce conflict, and both the grammar rule and the input
character have precedence and associativity associated with them, then the
conflict is resolved in favor of the action (shift or reduce) associated with the
higher precedence. If the precedences are the same, then the associativity is
used; left-associative implies reduce, right-associative implies shift, and
nonassociating implies error.

Conflicts resolved by precedence are not counted in the number of shift/reduce
and reduce/reduce conflicts reported by yacc. This means that mistakes in the
specification of precedences may disguise errors in the input grammar; it is a
good idea to be sparing with precedences, and use them in an essentially 'cook
book' fashion, until some experience has been gained. The y.output file is very
useful in deciding whether the parser is actually doing what was intended.

Revision A of 9 May 1988

11.7. Error Handling

Chapter 11-yacc - Yet Another Compiler-Compiler 251

Error handling is an extremely difficult area, and many of the problems are
semantic ones. When an error is found, for example, it may be necessary to
reclaim parse tree storage, delete or alter symbol table entries, and, typically, set
switches to avoid generating any further output.·

It is seldom acceptable to stop all processing when an error is found; it is more
useful to continue scanning the input to find further syntax errors. This leads to
the problem of getting the parser 'restarted' after an error. A general class of
algorithms to do this involves discarding a number of tokens from the input
string, and attempting to adjust the parser so that input can continue.

To allow the programmer some control over this process, yacc provides a sim
ple, but reasonably general, feature. The token name 'error' is reserved for error
handling. This name can be used in grammar rules; in effect, it suggests places
where errors are expected, and recovery might take place. The parser pops its
stack until it enters a state where the token 'error' is legal. It then behaves as if
the token 'error' were the current lookahead token, and performs the action
encountered. The lookahead token is then reset to the token that caused the error.
If no special error rules have been specified, the processing halts when an error is
detected.

In order to prevent a cascade of error messages, the parser, after detecting an
error, remains in error state until three tokens have been successfully read and
shifted. If an error is detected when the parser is already in error state, no mes
sage is given, and the input token is quietly deleted.

As an example, a rule of the form

stat error

would, in effect, mean that on a syntax error the parser would attempt to skip
over the statement in which the error was seen. More precisely, the parser will
scan ahead, looking for three tokens that might legally follow a statement, and
start processing at the first of these; if the beginnings of statements are not
sufficiently distinctive, it may make a false start in the middle of a statement, and
end up reporting a second error where there is in fact no error.

Actions may be used with these special error rules. These actions might attempt
to reinitialize tables, reclaim symbol table space, etc.

Error rules such as the above are very general, but difficult to control. Somewhat
easier are rules such as

stat error

Here, when there is an error, the parser attempts to skip over the statement, but
will do so by skipping to the next ';'. All tokens after the error and before the
next ';' cannot be shifted, and are discarded. When the ';' is seen, this rule will
be reduced, and any 'cleanup' action associated with it perfonned.

Another form of error rule arises in interactive applications, where it may be
desirable to permit a line to be reentered after an error. A possible error rule
might be

.\sun
., microsystems

Revision A of 9 May 1988

252 Programming Utilities and Libraries

input

input

error '\n' printf("Reenter last line: "); input
{ $$ $4;}

There is one potential difficulty with this approach; the parser must correctly pro
cess three input tokens before it admits that it has correctly resynchronized after
the error. If the reentered line contains an error in the first two tokens, the parser
deletes the offending tokens, and gives no message; this is clearly unacceptable.
For this reason, there is a mechanism that can be used to force the parser to
believe that an error has been fully recovered from. The statement

yyerrok ;

in an action resets the parser to its normal mode. The last example is better writ
ten

error '\n'
{ yyerrok;

input
printf("Reenter last line: II);

$$ $4;

As mentioned above, the token seen immediately after the 'error' symbol is the
input token at which the error was discovered. Sometimes, this is inappropriate;
for example, an error recovery action might take upon itself the job of finding the
correct place to resume input. In this case, the previous lookahead token must be
cleared. The statement

yyclearin ;

in an action will have this effect. For example, suppose the action after error
were to call some sophisticated resynchronization routine, supplied by the pro
grammer, that attempted to advance the input to the beginning of the next valid
statement. After this routine was called, the next token returned by yylex ()
would presumably be the first token in a legal statement; the old, illegal token
must be discarded, and the error state reset. This could be done by a rule like

stat error
resynch () ;
yyerrok ;
yyclearin ;

These mechanisms are admittedly crude, but do allow for a simple, fairly effec
tive recovery of the parser f.fom many errors; moreover, the programmer can get
control to ·deal with the error actions required by other portions of the program .

• \sun ~ microsystems
Revision A of 9 May 1988

11.8. The yacc
Environment

11.9. Hints for Preparing
Specifications

Chapter ll-yacc - Yet Another Compiler-Compiler 253

When the programmer inputs a specification to yacc, the output is a file ofC
programs, called y . tab .c on most systems (due to local file system conventions,
the name may differ from installation to installation). yacc produces an
integer-valued function called yyparse (). When yyparse () is called, it in
tum repeatedly calls yylex () - the lexical analyzer supplied by the program
mer (see Section 11.3) to obtain input tokens. Eventually, either an error is
detected, in which case (if no error recovery is possible) yyparse () returns the
value 1, or the lexical analyzer returns the endmarker token and the parser
accepts. In this case, yyparse () returns the value O.

The programmer must provide a certain amount of environment for this parser in
order to obtain a working program. For example, as with every C program, a
program called main must be defined, that eventually calls yypar se (). In
addition, a routine called yyerror () prints a message when a syntax error is
detected.

The programmer must supply these two routines in one form or another. They
can be as simple as the following example, or they can be as complex as needed.

[

main() (return(yyparse()); 1
~--}----------~
and

* include <stdio.h>

yyerror(s) char *Si

fprintf(stderr, "%s\n", s)i
}

The argument to yyerror () is a string containing an error message, usually
the string 'syntax error'. The average application will want to do better than this.
Ordinarily, the program should keep track of the input line number, and print it
along with the message when a syntax error is detected. The external integer
variable yychar contains the lookahead token number at the time the error was
detected; this may be of some interest in giving better diagnostics.

The external integer variable yydebug is normally set to O. If it is set to a
nonzero value, the parser generates a verbose description of its actions, including
a discussion of which input symbols have been read, and what the parser actions
are. Depending on the operating environment, it may be possible to set this vari
able by using a debugging system.

This section contains miscellaneous hints on preparing efficient, easy to change,
and clear ~pecifications. The individual subsections are more or less indepen
dent.

.~sun
• microsystems

Revision A of 9 May 1988

254 Programming Utilities and Libraries

Input Style

Left Recursion

It is difficult to provide rules with substantial actions and still have a readable
specification file. The following style hints owe much to Brian Kernighan.

1. Use all capital letters for token names, all lower case letters for nontenninal
names. This rule comes under the heading of 'knowing who to blame when
things go wrong.'

2. Put grammar rules and actions on separate lines. This allows either to be
changed without an automatic need to change the other.

3. Put all rules with the same left hand side together. Put the left hand side in
only once, and let all following rules begin with a vertical bar.

4. Put a semicolon only after the last rule with a given left hand side, and put
the semicolon on a separate line. This allows new rules to be added easily.

5. Indent rule bodies by two tab stops, and action bodies by three tab stops.

The example in section 11.11 is written following this style, as are the examples
in the text of this paper (where space permits). The programmer must make up
his own mind about these stylistic questions; the central problem, however, is to
make the rules visible through the morass of action code.

The algorithm used by the yacc parser encourages so called 'left-recursive'
grammar rules: rules of the fonn

name name rest of rule ;

These rules frequently arise when writing specifications of sequences and lists:

[
and

list item
list

, , , item

1

[
seq

item 1 seq item

In each of these cases, the first rule will be reduced for the first item only, and the
second rule will be reduced for the second and all succeeding items.

With right-recursive rules, such as

seq item
item seq

1 [
the parser would be a bit bigger, and the items would be seen, and reduced, from
right to left. More seriously, an internal stack in the parser would be in danger of
overflowing if a very long sequence were read. Thus, the programmer should use
left recursion wherever reasonable .

• sun
~ microsystems

Revision A of9 May 1988

Lexical Tie-ins

Chapter 11 - yacc - Yet Another Compiler-Compiler 255

It is worth considering whether a sequence with zero elements has any meaning,
and if so, consider writing the sequence specification with an empty rule:

[
seq /* empty */

seq item

1
Once again, the first rule would always be reduced exactly once, before the first
item was read, and then the second rule would be reduced once for each item
read. Permitting empty sequences often leads to increased generality. However,
conflicts might arise if yacc is asked to decide which empty sequence it has
seen, when it hasn't seen enough to know!

Some lexical decisions depend on context. For example, the lexical analyzer
might want to delete blanks normally, but not within quoted strings. Or names
might be entered into a symbol table in declarations, but not in expressions.

One way of handling this situation is to create a global flag that is examined by
the lexical analyzer, and set by actions. For example, suppose a program consists
of 0 or more declarations, followed by 0 or more statements. Consider:

% {

% }

%%

prog

decls

stats

int dflag;

other declarations

decls stats

/* empty */
{ dflag

decls declaration

other rules

/* empty */
{

stats statement
dflag

1;

0;

The flag dflag is now 0 when reading statements, and 1 when reading declara
tions, except for the first token in the first statement. This token must be seen by
the parser before it can tell that the declaration section has ended and the state
ments have begun. In many cases, this single-token exception does not affect the
lexical scan.

This kind of 'backdoor' approach can be elaborated to a noxious degree.
Nevertheless, it represents a way of doing some things that are difficult, if not
impossible, to do otherwise.

~~sun ,~ microsystems
Revision A of 9 May 1988

256 Programming Utilities and Libraries

Reserved Words

11.10. Advanced Topics

Simulating Error and Accept
in Actions

Accessing Values in Enclosing
Rules.

Some programming languages permit the programmer to use words like 'if',
which are normally reserved, as label or variable names, provided that such use
does not conflict with the legal use of these names in the programming language.
This is extremely hard to do in the framework of yacc; it is difficult to pass
information to the lexical analyzer telling it 'this instance of if is a keyword,
and that instance is a variable'. The programmer can make a stab at it, using the
mechanism described in the last subsection, but it is difficult.

A number of ways of making this easier are under advisement. Until then, it is
better that the keywords be reserved; that is, be forbidden for use as variable
names. There are powerful stylistic reasons for preferring this, anyway.

This section discusses a number of advanced features of ya c c.

The parsing actions of error and accept can be simulated in an action by use of
macros YY ACCEPT and YYERROR. YYACCEPT makes yypar se return the
value 0; YYERROR makes the parser behave as if the current input symbol results
in a syntax error; yyerror () is called, and error recovery takes place. These
mechanisms can be used to simulate parsers with multiple endmarkers or
context-sensitive syntax checking.

An action may refer to values returned by actions to the left of the current rule.
The mechanism is simply the same as with ordinary actions, a dollar sign fol
lowed by a digit, but in this case the digit may be 0 or negative. Consider

sent

adj

;

noun

adj noun verb adj noun
{ look at the sentence •

THE $$ THE;
YOUNG $$ YOUNG;

DOG
{ $$ = DOG;

CRONE
{ if($0 == YOUNG) {

printf ("what?\n"
}

$$ = CRONE;
}

) ;

In the action following the word CRONE, a check is made that the preceding
token shifted was not YOUNG. Obviously, this is only possible when a great deal
is known about what might precede the symbol noun in the input. There is also a
distinctly unstructured flavor about this. Nevertheless, at times this mechanism
will save a great deal of trouble, especially when a few combinations are to be
excluded from an otherwise regular structure.

Revision A of 9 May 1988

Support for Arbitrary Value
Types

Chapter 11 - yacc - Yet Another Compiler-Compiler 257

By default, the values returned by actions and the lexical analyzer are integers.
yacc can also support values of other types, including structures. In addition,
yacc keeps track of the types, and inserts appropriate union member names so
that the resulting parser will be strictly type checked. The yacc value stack (see
Section 11.4) is declared to be a union of the various types of values desired.
The programmer declares the union, and associates a union member name to
each token and nonterminal symbol having a value. When the value is refer
enced through a $ $ or $n construction, yacc automatically inserts the appropri
ate union name, so that no unwanted conversions will take place. In addition,
type-checking commands such as 1 i n t (1) will be far more silent.

There are three mechanisms used to provide for this typing. First, there is a way
of defining the union; this must be done by the programmer since other pro
grams, notably the lexical analyzer, must know about the union member names.
Second, there is a way of associating a union member name with tokens and non
terminals. Finally, there is a mechanism for describing the type of those few
values where yacc cannot easily determine the type.

To declare the union, the programmer includes in the declaration section:

[

~union 1
body of union
}

----------"
This declares the yacc value stack, and the external variables yyl val and
yyval, to have type equal to this union. If yacc was invoked with the-d
option, the union declaration is copied onto the y.tab.h file. Alternatively, the
union may be declared in a header file, and a typedef used to define the variable
YYSTYPE to represent this union. Thus, the header file might also have said:

typedef union {
body of union
} YYSTYPE;

The header file must be included in the declarations section, by use of %{ and
%}.

Once YYSTYPE is defined, the union member names must be associated with the
various terminal and nonterminal names. The construction

< name >

is used to indicate a union member name. If this follows one of the keywords
%token, %left, %right, and %nonassoc, the union member name is asso
ciated with the tokens listed. Thus, saying

(%left <optype> '+'

will tag any reference to values returned by these two tokens with the union
member name optype. Another keyword, %t ype, is used similarly to associate
union member names with nontenninals. Thus, one might say

J

Revision A of 9 May 1988

258 Programming Utilities and Libraries

11.11. A Simple Example

%{
=It include
=It include

<stdio.h>
<ctype.h>

int regs[26];
int base;

%}

%start list

%token DIGIT

%left ' I '
%left ' & '

LETTER

[~ __ %_t_y_p_e ___ <_n_O_d_e_t_y_p_e_> ___ e_x_p_r ____ st __ a_t __________________________ ~]
There remain a couple of cases where these mechanisms are insufficient. If there
is an action within a rule, the value. returned by this action has no a priori type.
Similarly, reference to left-context values (such as $0 - see the previous subsec
tion) leaves yacc with no easy way of knowing the type. In this case, a type can
be imposed on the reference by inserting a union member name, between < and
>, immediately after the first $. An example of this usage is

rule aaa $<intval>$ 3;} bbb
fun($<intval>2, $<other>O);

This syntax has little to recommend it, but the situation arises rarely.

A sample specification is given in 11.13. The facilities in this subsection are not
triggered until they are used: in particular, the use of %t ype will turn on these
mechanisms. When they are used, there is a fairly strict level of checking. For
example, use of $n or $$ to refer to something with no defined type is diagnosed.
If these facilities are not triggered, the yacc value stack is used to hold int's,
as was true historically. This paper is reprinted in this manual.

This example gives the complete yacc specification for a small desk calculator;
the desk calculator has 26 registers, labeled 'a' through 'z', and accepts arith
metic expressions made up of the operators +, -, *, /, % (mod operator), & (bit
wise and), I (bitwise or), and assignment. If an expression at the top level is an
assignment, the value is not printed; otherwise it is. As in C, an integer that
begins with 0 (zero) is assumed to be octal; otherwise, it is assumed to be
decimal.

As an example of a yacc specification, the desk calculator does a reasonable job
of showing how precedences and ambiguities are used, and demonstrating simple
error recovery. The major oversimplifications are that the lexical analysis phase
is much simpler than for most applications, and the output is produced immedi
ately, line-by-line. Note the way that decimal and octal integers are read in by
the grammar rules; This job is probably better done by the lexical analyzer.

+ ~,!! Revision A of 9 May 1988

Chapter 11 - yacc - Yet Another Compiler-Compiler 259

%left
%left

, +'
, * ' , / ' , 0 ,

1)

%left UMINUS /* supplies precedence for unary minus */

%% /* beginning of rules section */

list

stat

expr

number

/* empty */
list stat
list error

expr

LETTER

' (, expr
{

expr ' +'

expr
, -

, \n '
'\n'

yyerrok;

printf("%d\n", $1
expr

regs[$l] $3;

') ,

$$ $2;
expr

$$ $1 + $3;
expr

$$ $1 $3;
expr ' * ' expr

{ $$ $1 * $3;
expr ' / ' expr

{ $$ $1 / $3;
expr ' % ' expr

$$ $1 % $3;
expr ' & ' expr

{ $$ $1 & $3;
expr ' I ' expr

{ $$ $1 $3;
, - ,

expr %prec UMINUS
{ $$ $2;

LETTER
$$ regs[$1];

number

DIGIT
$$ = $1; base

) ;

($1==0) ? 8
number DIGIT

{ $$ base * $1 + $2;

%% /* start of programs */

yylex () /* lexical analysis routine */

/* returns LETTER for lower case letter, yylval=O thru 25 */
/* return DIGIT for d~git, yylval=O thru 9 */
/* all other characters are returned immediately */

int c;

while«c getchar()) == ' ') { /* skip blanks */ }

.~ sun ~ microsystems

10;

Revision A of 9 May 1988

260 Programming Utilities and Libraries

if(islower(c))
yylval = c - a
return(LETTER);

if(isdigit(c))
yylval = c - '0';
return (DIGIT) ;

return(c);

/* c is now nonblank */

11.12. yace Input Syntax This section describes the yacc input syntax, as a yacc specification. Context
dependencies, etc., are not considered. Ironically, the yacc input specification
language is most naturally specified as an LR(2) grammar; the sticky part comes
when an identifier is seen in a rule, immediately following an action. If this
identifier is followed by a colon, it is the start of the next rule; otherwise it is a
continuation of the current rule, which just happens to have an action embedded
in it. As implemented, the lexical analyzer looks ahead after seeing an identifier,
and decide whether the next token (skipping blanks, newlines, comments, etc.) is
a colon. If so, it returns the token C _ IDENTIFIER. Otherwise, it returns
IDENTIFIER. Literals (quoted strings) are also returned as IDENTIFIERs,
but never as part of C_IDENTIFIERs.

/* grammar for the input to yacc */

/* basic entities */
%token IDENTIFIER /* includes identifiers and literals */
%token C IDENTIFIER /* identifier (not literal) followed by */
%token NUMBER /* [0-9]+ */

/* reserved words: %type => TYPE, %left => LEFT, etc. */

%token LEFT RIGHT NONASSOC TOKEN PREC TYPE START UNION

%token
%token
%token

MARK
LCURL
RCURL

/* the %% mark */
/* the %{ mark */
/* the %} mark */

/* ascii character literals stand for themselves */

%start spec

%%

spec

tail

defs

defs MARK rules tail

MARK In this action, eat up the rest of the file
/*. empty: the second MARK is optional */

/* empty */
defs def

Revision A of 9 May 1988

def

rword

tag

nlist

nmno

Chapter 11 - yacc - Yet Another Compiler-Compiler 261

START
UNION
LCURL
ndefs

IDENTIFIER
{ Copy union definition to output
{ Copy C code to output file }
rword tag nlist

TOKEN
LEFT
RIGHT
NONASSOC
TYPE

/* empty: union tag is optional */
'<' IDENTIFIER '>'

nmno
nlist nmno
nlist

, , , nmno

RCURL

IDENTIFIER /* NOTE: literal illegal with %type */
IDENTIFIER NUMBER /* NOTE: illegal with %type */

/* rules section */

rules

rule

rbody

act

prec

11.13. An Advanced
Example

C IDENTIFIER rbody prec
rules rule

C IDENTIFIER rbody prec
, I' rbody prec

/* empty */
rbody IDENTIFIER
rbody act

, { , Copy action, translate $$, etc.

/* empty */
PREC IDENTIFIER
PREC IDENTIFIER act
prec , . ' ,

, } ,

This section gives an example of a grammar using some of the advanced features
discussed in Section 11.10. The desk calculator example in section 11.11 is
modified to provide a desk calculator that does floating point interval arithmetic.
The calculator understands floating point constants, the arithmetic operations +,
-, *, I, unary -, and = (assignment), and has 26 floating point variables, 'a'
through 'z'. Moreover, it also understands intervals, written

.\sun ~ microsystems
Revision A of 9 May 1988

262 Programming Utilities and Libraries

(x , y)

where x is less than or equal to y. There are 26 interval-valued variables 'A'
through 'z' that may also be used. The usage is similar to that in section 11.11
- assignments return no value, and print nothing, while expressions print the
(floating or interval) value.

This example explores a number of interesting features of ya c c and C. Intervals
are represented by a structure, consisting of the left and right endpoint values,
stored as double's. This structure is given a type name, INTERVAL, by using
typedef.
The yacc value stack can also contain floating point scalars, and integers (used
to index into the arrays holding the variable values). Notice that this entire stra
tegy depends strongly on being able to assign structures and unions in C. In fact,
many of the actions call functions that return structures as well.

It is also worth noting the use of YYERROR to handle error conditions: division
by an interval containing 0, and an interval presented in the wrong order. In
effect, the error recovery mechanism of yacc is used to throwaway the rest of
the offending line.

In addition to the mixing of types on the value stack, this grammar also demon
strates an interesting use of syntax to keep track of the type (for example, scalar
or interval) of intermediate expressions. Note that a scalar can be automatically
promoted to an interval if the context demands an interval-value. This causes a
large number of conflicts when the grammar is run through yacc: 18
ShiftJReduce and 26 Reduce/Reduce. The problem can be seen by looking at the
two input lines:

2.5 + (3.5 - 4.)

and

2.5 + (3.5 , 4.)

Notice that the 2.5 is to be used in an interval-valued expression in the second
example, but this fact is not known until the ',' is read; by this time, 2.5 is
finished, and the parser cannot go back and change its mind. More generally, it
might be necessary to look ahead an arbitrary number of tokens to decide
whether to convert a scalar to an interval. This problem is evaded by having two
rules for each binary interval-valued operator: one when the left operand is a
scalar, and one when the left operand is an interval. In the second case, the right
operand must be an interval, so the conversion will be applied automatically.
Despite this evasion, there are still many cases where the conversion may be
applied or not, leading to the above conflicts. They are resolved by listing the
rules that yield scalars first in the specification file; in this way, the conflicts will
be resolved in the direction of keeping scalar-valued expressions scalar-valued
until they are forced to become intervals.

This way ofhahdling multiple types is very instructive, but not very general. If
there were many kinds of expression types, instead of just two, the number of
rules needed would increase dramatically, and the conflicts even more dramati
cally. Thus, while this example is instructive, it is better practice in a more

+~t!! Revision A of 9 May 1988

%{

include <stdio.h>
include <ctype.h>

typedef struct interval
double 10, hi;
} INTERVAL;

INTERVAL vmul(), vdiv();

double atof();

double dreg [26];
INTERVAL vreg[26];

%}

%start lines

%union
int ivaI;
double dval;
INTERVAL vval;
}

%token <ivaI> DREGVREG

%token <dval> CONST

%type <dval> dexp

%type <vval> vexp

Chapter 11 - yacc - Yet Another Compiler-Compiler 263

nonnal programming language environment to keep the type infonnation as part
of the value, and not as part of the grammar.

Finally, a word about the lexical analysis. The only unusual feature is the treat
ment of floating point constants. The C library routine ato! is used to do the
actual conversion from a character·string to a double-precision value. If the lexi
cal analyzer detects an error, it responds by returning a token that is illegal in the
grammar, provoking a syntax error in the parser, and thence error recovery.

/* indices into dreg, vreg arrays */

/* floating point constant */

/* expression */

/* interval expression */

/* precedence information about the operators */

%left '+'
%left
%left

%%

lines

line

'* ' , / '
UMINUS /* precedence for unary minus */

/* empty */
lines line

dexp '\n'
{

vexp '\n'
{

DREG =
,

dexp

VREG
,

=
,

vexp

error '\n'
{

+ sun
microsystems

printf("%15.8f\n", $1);

printf("(%15.8f
'\n'
dreg [$1] $3;
'\n'

vreg [$1] $3;

yyerrok;

%15.8f)\n", $1.10, $1.hi);

Revision A of 9 May 1988

264 Programming Utilities and Libraries

dexp CONST
DREG

$$ dreg [$1] ;
dexp , +' dexp

{ $$ $1 + $3;
dexp , -

, dexp
$$ $1 $3;

dexp '* ' dexp
{ $$ $1 * $3;

dexp '/' dexp
{ $$ $1 / $3;

, - , dexp %prec UMINUS
{ $$ - $2;

, (, dexp ') ,

{ $$ $2;

vexp dexp
$$.hi $$.10 $1;

, (, dexp , , dexp ') , ,
{

$$.10 $2;
$$.hi $4;
if ($$.10 > $$.hi) {

printf ("interval out of order\n") ;

YYERROR;
}

VREG
$$ vreg [$11;

vexp '+ ' vexp
$$.hi $1.hi + $3.hi;
$$.10 $1.10 + $3.10;

dexp , +' vexp
$$.hi $1 + $3.hi;
$$.10 $1 + $3.10;

vexp vexp
$$.hi $1.hi $3.10;
$$.10 $1.10 - $3.hi;

dexp vexp
$$.hi $1 $3.10;
$$.10 $1 $3.hi;

vexp '* ' vexp
$$ vrnu1 ($1.10, $1.hi, $3) ;

dexp '* ' vexp
{ $$ vrnu1 ($1, $1, $3) ;

vexp , /' vexp
{ if (dcheck ($3 YYERROR;

$$ = vdiv($1.10, $1.hi, $3) ;

dexp , /' vexp
{ if (dcheck ($3 YYERROR;

$$ vdiv($1, $1, $3) ; }
, - ,

~exp %prec UMINUS
{ $$.hi = -$2.10; $$.10 -$2.hi;

, (, vexp ') ,

{ $$ $2;

+ sun
microsystems

Revision A of9 May 1988

Chapter 11-yacc - Yet Another Compiler-Compiler 265

%%

* define BSZ 50 /* buffer size for floating point numbers */

/* lexical analysis */

yylex () {

INTERVAL

register c;

while ((c=getchar ()) , ,){ /* skip over blanks */ }

if (isupper(c)(

yylval.ival c 'A' ;
return (VREG) ;

}

if(islower(c)(

yylval.ival c 'a" ;
return (DREG) ;

}

if (isdigit (c I I c==.) {

return (
}

hilo (

/* gobble up digits, points, exponents */

char
int

fore

buf[BSZ+l],
dot 0,

*cp
exp

buf;
0;

(cp-buf) <BSZ ++cp,c=getchar()) {

*cp c;

if (isdigi t (
if (c

c)
) {

continue;

if(dot++ I I exp) return ('.' };
/* will cause syntax error */

continue;

if(c , e') {

if(exp++) return ('e');
/* will cause syntax error */

continue;

/* end of number */
break;
}

*cp , \0';
if((cp-buf) >= BSZ

printf ("constant too long: truncated\n");
else ungetc(c, stdin); /* push back last char read */
yylval.dval atof(buf);
return (CONST);
}

c) ;

a, b, c, d double a, b, c, d;
/* returns the smalles.t interval containing a, b, c, and d */
/* used by *, / routines */
INTERVAL v;

if (a>b v.hi a; v.lo b;
else v.hi b; v.lo a;

if (c>d
if (c>v.hi v.hi c;

+ sun
microsystems

Revision A of 9 May 1988

266 Programming Utilities and Libraries

if (
}

else
if(
if (
}

return (v) ;

}

INTERVAL vrnul (a, b,
return (hilo (

d<v.lo v.lo

d>v.hi v.hi
c<v.lo v.lo

v double a,
a*v.hi, a*v.lo,

dcheck (v INTERVAL v;

d;

d;
c;

b; INTERVAL v;
b*v.hi, b*v.lo);

if(v.hi >= O. && v.lo <= O.){
printf("divisor interval contains O.\n");
return (1);
}

return (0);
}

INTERVAL vdi v (a, b,
return (hilo (
}

11.14. Old Features
Supported but not
Encouraged

v double a,
a/v.hi, a/v.lo,

b; INTERVAL v;
b/v.hi, b/v.lo

{

) ;

This section mentions synonyms and features which are supported for historical
continuity, but, for various reasons, are not encouraged.

1. Literals may also be delimited by double quotes ''''.

2. Literals may be more than one character long. If all the characters are alpha
betic, numeric, or _, the type number of the literal is defined, just as if the
literal did not have the quotes around it. Otherwise, it is difficult to find the
value for such literals.

The use of multi-character literals is likely to mislead those unfamiliar with
yacc, since it suggests that yacc is doing a job which must be actually
done by the lexical analyzer.

3. Most places where % is legal, backslash '\' may be used. In particular, \\ is
the same as %%, \left the same as %left, etc.

4. There are a number of other synonyms:

%< is the same as %left
%> is the same as %right
%binary and %2 are the same as %nonassoc
%0 and %term are the same as %token
%= is the same as %prec

5. Actions may also have the form

= { . . • }

and the curly braces can be dropped if the action is a single C statement.

Revision A of9 May 1988

Chapter ll-yacc - Yet Another Compiler-Compiler 267

6. C code between %{ and %} used to be permitted at the head of the rules sec
tion, as well as in the declaration section.

Revision A of 9 May 1988

12
The curses Library: Screen-Oriented
Cursor Motions

The curses Library: Screen-Oriented Cursor Motions 271

Overview .. 271

Terminology .. 271

Cursor Addressing Conventions ... 272

Compiling Things ... 272

Screen Updating .. 273

Naming Conventions .. 273

12.1. Variables .. 274

12.2. Programming Curses ... 275

Starting Up .. 275

The Nitty-Gritty ... 275

Output .. 275

Input .. 276

Miscellaneous .. 276

Finishing Up .. 276

12.3. Cursor Motion Optimization: Standing Alone ... 276

Terminal Infonnation ... 277

Movement Optimizations, or, Getting Over Yonder 277

12.4. Curses Functions ... 278

Output Functions ... 278

addch () and waddch () - Add Character to Window............. 278

addstr () and waddstr () - Add String to Window.............. 278

box () - Draw Box Around Window .. 279

clear () and wclear () -Reset Window 279

clearok () - Set Clear Flag .. 279

clrtobot () and wclrtobot () - Clear to Bottom 279

clrtoeol () and wclrtoeol () - Clear to End of
Line .. 279

delch () and wdelch () - Delete Character 279

deleteln () and wdeleteln () - Delete Current Line 280

erase and werase () - Erase Window... 280

flushok - Control Flushing of stdout ... 280

idlok - Control Use of Insert/Delete Line ... 280

insch () and winsch () - Insert Character 280

insertln () and winsertln () - Insert Line 281

move and wmove () - Move ... 281

over lay () - Overlay Windows ... 281

overwri te () - Overwrite Windows .. 281

printw() andwprintw() -Print to Window 281

refresh () and wrefresh () - Synchronize 282

standout () and wstandout () - Put Characters in
Standout Mode .. 282

Input Functions .. 282

crbreak and nocrbreak - Set or Unset from Cbreak
mode ... 282

echo () and noecho () - Tum Echo On or Off 282

get ch () and wget ch () - Get Character from Terminal....... 282

getstr() andwgetstr () -GetStringfromTerminal 283

raw () and noraw () - Tum Raw Mode On or Off 283

scanw () and wscanw () - Read String from Terminal........... 283

Miscellaneous Functions .. 283

baudrate - Get the Baudrate .. 283

delwin () - Delete a Window .. 284

endwin () - Finish up Window Routines ... 284

erasechar - Get Erase Character ... 284

get ca p () - Get Termcap Capability .. 284

get yx () - Get Current Coordinates '.. 284

inch () and winch () - Get Character at Current
Coordinates ... 284

ini tscr () - Initialize Screen Routines ... 285

killchar - Get Kill Character .. 285

leaveok () - Set Leave Cursor Flag .. 285

longname () - Get Full Name of Terminal 285

mvwin - Move Home Position of Window ... 286

newwin () - Create a New Window ... 286

nl () and nonl () -Tum Newline Mode On or Off 286

scrollok - Set Scroll Flag for Window .. 286

subwin () - Create a Subwindow ... 286

touchline - Indicate Line Has Been Changed 287

touchoverlap - Indicate Overlapping Regions Have
Been Changed ... 287

touchwin () - Indicate Window Has Been Changed 287

unctr 1 () - Return Representation of Character 287

Details .. 287

get tmode () - Get tty Statistics .. 287

mvcur () - Move Cursor ... 287

scroll () - Scroll Window ... 288

savetty () and resetty () - Save and Reset tty Flags 288

setterm () - Set Terminal Characteristics 288

tstp .. 288

yutchar () ... 288

12.5. Capabilities from termcap .. 288

Overview .. 288

Variables Set By setterm () ... 290

Variables Set By gettmode () ... 291

12.6. The WINDOW structure ... 291

12.7. Example .. 293

Overview

Terminology

12
The curses Library: Screen-Oriented

Cursor Motions

curses is a Library Package for:

o Updating a screen with reasonable optimization,

o Getting input from the terminal in a screen-oriented fashion, and

o Moving the cursor from one point to another, independent of the two previ
ous functions.

These routines all use the terrncap database to describe the capabilities of the
tenninal.

In making available the generalized terminal descriptions in terrncap, much
information was made available to the programmer, but little work was taken out
of one's hands. curses helps the programmer perfonn the required functions,
those of movement optimization and optimal screen updating, without doing any
of the dirty work, and (hopefully) with nearly as much ease as is necessary to
simply print or read things.

The curses package is split into three parts:

1. Screen updating without user input;

2. Screen updating with user input; and

3. Cursor motion optimization.

It is possible to use the motion optimization without using either of the other
two, and screen updating and input can be done without any programmer
knowledge of the motion optimization, or indeed the t e rrnc a p database itself.

In this chapter, the terminology illustrated in the table below is used with reason
able consistency.

271 Revision A of 9 May 1988

272 Programming Utilities and Libraries

Table 12-1

Cursor Addressing Conventions

Compiling Things

Description of Terms

Term Description

window An internal representation containing an image of what a section
of the tenninal screen may look like at some point in time. This
subsection can either encompass the entire terminal screen, or
any smaller portion down to a single character within that screen.
Note that the tenn window is used elsewhere in the Sun system
manuals when describing the window management packages for
driving the bitmapped screens. curses windows bear little, if
any, resemblance to the window system concepts.

terminal Sometimes called terminal screen. The package's idea of what
the terminal's screen currently looks like, that is, what the user
sees now. This is a special screen:

screen This is a subset of windows which are as large as the tenninal
screen, that is, they start at the upper left hand comer and encom
pass the lower right hand corner. One of these, s t ds cr, is
automatically provided for the programmer.

The curses library routines address positions on a screen with the y coordinate
first and the x coordinate second. This follows the convention of most terminals
that address the screen in row, column order. The reader should note this con
vention.

To use the curses library, it is necessary to have certain types and variables
defined. Therefore, the programmer must have a line:

(~ ___ #_l_·n_C_l_U_d_e ___ <_c_u_r_s_e_S_._h_> _______________________________________ J

at the top of the program source.33

Also, compilations should have the following form:

t utorial% cc [C-compiler options] filename ... -lcurses -ltermcap

33 The header file <curses. h> needs to include <sgtty. h>, so one should not do so oneself. The
screen package also uses the Standard I/O library, so <curses. h> includes <stdio. h>. It is redundant (but
harmless) to include it again.

Revision A of 9 May 1988

Screen Updating

Naming Conventions

Chapter 12 - The curses Library: Screen-Oriented Cursor Motions 273

To update the screen optimally, it is necessary for the routines to know what the
screen currently looks like and what the programmer wants it to look like next.
For this purpose, a data type (structure) named window () is defined which
describes a window image to the routines, including its starting position on the
screen (the (y, x) coordinates of the upper left hand comer) and its size. One of
these (called curser for current screen) is a screen image of what the terminal
currently looks like. Another screen (called stdscr, for standard screen) is
provided by default to make changes on.

A window is a purely internal representation. It is used to build and store a
potential image of a portion of the terminal. It doesn't bear any necessary rela
tion to what is really on the terminal screen. It is more like an array of characters
on which to make changes.

When one has a window which describes what some part the terminal should
look like, the routine refresh () (or wrefresh () if the window is not
stdscr) is called. refresh () makes the terminal, in the area covered by the
window, look like that window. Note, therefore, that changing something on a
window does not change the terminal. Actual updates to the terminal screen are
made only by calling refresh () or wrefresh (). This allows the program
mer to maintain several different ideas of what a portion of the terminal screen
should look like. Also, changes can be made to windows in any order, without
regard to motion efficiency. Then, at will, the programmer can effectively say
'make it look like this,' and let the package worry about the best way to do this.

As hinted above, the routines can use several windows, but two are automatically
given: curser, which knows what the terminal looks like, and stdser, which
is what the programmer wants the terminal to look like next. The user should
never really access e ur s c r directly. Changes should be made to the a ppropri
ate screen, and then the routine refresh () (or wrefresh (» should be
called.

Many functions are set up to deal with stdscr as a default screen. For exam
ple, to add a character to stds cr, one calls addeh () with the desired charac
ter. If a different window is to be used, the routine waddch () (for "window
specific" addch ()) is provided34. This convention of prepending function
names with a w when they are to be applied to specific windows is consistent.
The only routines which do not do this are those to which a window must always
be specified.

34 Actually, addch () is really a macro with arguments, as are most of the "functions" which deal with
stdscr as a default.

Revision A of 9 May 1988

274 Programming Utilities and Libraries

12.1. Variables

Table 12-2

To move the current (y, x) coordinates from one point to another, the routines
move () and wrnove () are provided. However, it is often desirable to first
move and then perform some I/O operation. To avoid clumsiness, most I/O rou
tines can be preceded by the prefix mv and the desired (y, x) coordinates then can
be added to the arguments to the function. For example, the calls:

move(y, x);
addch(ch);

can be replaced by

and

mvaddch(y, x, ch);

wmove(win, y, x);
waddch(win, ch);

can be replaced by

mvwaddch(win, y, x, ch);

Note that the window description pointer (win) comes before the added (y, x)
coordinates. If such pointers are needed, they are always the first parameters
passed.

Many variables that describe the terminal environment are available to the pro
grammer. They are:

Variables to Describe the Terminal Environment

Type Name Description

WINDOW * curser current version of the screen (terminal screen).
WINDOW * stdscr standard screen. Most updates are done here.
char * Def term default terminal type if type cannot be deter-

mined
bool My_term use the terminal specification in Def_ term as

terminal, irrelevant of real terminal type
char * ttytype full name of the current terminal.
int LINES number of lines on the terminal
int eOLS number of columns on the terminal
int ERR error flag returned by routines on a fail.
int OK error flag returned by routines when things go

right.

Revision A of 9 May 1988

Chapter 12 - The curses Library: Screen-Oriented Cursor Motions 275

There are also several #define constants and types which are of general useful
ness:

reg

bool

TRUE

FALSE

storage class register (for example, reg int i;)

boolean type, actually.a char (for example, bool donei t;)

boolean 'true' flag (1).

boolean 'false' flag (0).

12.2. Programming Curses This is a description of how to actually use the screen package. In it, we assume
all updating, reading, and so on, is applied to s t ds cr. All instructions will
work on any window, by changing the function name and parameters as men
tioned above.

Starting Up

The Nitty-Gritty
Output

To use the screen package, the routines must know about terminal characteristics,
and the space for curscr and stdscr must be allocated. These functions are
performed by initscr (). Since it must allocate space for the windows, it can
overflow core when attempting to do so. On this rather rare occasion,
initscr () returns ERR. initscr () must always be called before any of
the routines which affect windows are used. If it is not, the program will core
dump as soon as either curscr or stdscr are referenced. However, it is usu
ally best to wait to call it until after you are sure you will need it, like after
checking for startup errors. Terminal status changing routines like nl () and
cbreak () should be called after initscr () .

Now that the screen windows have been allocated, you can set them up for the
run. If you want to, say, allow the window to scroll, use scrollok (). If you
want the cursor to be left after the last change, use leaveok (). If this isn't
done, refresh () moves the cursor to the window's current (y, x) coordinates
after updating it. New windows of your own can be created, too, by using the
functions newwin () and subwin (). delwin () gets rid of old windows. If
you wish to change the official size of the terminal by hand, just set the variables
LINES and eOLS to be what you want, and then call ini tscr (). This is best
done before, but can be done either before or after, the first call to i ni t s cr () ,
as it always deletes any existing stdscr and/or curscr before creating new
ones.

Now that we have set things up, we will want to actually update the terminal.
The basic functions used to change what appears on a window are addch () and
move (). addch () adds a character at the current (y, x) coordinates, returning
ERR if it would cause the window to illegally scroll, that is, printing a character
in the lower right-hand corner of a terminal which automatically scrolls if scrol
ling is not allowed. move () changes the current (y, x) coordinates to whatever
you want them to be. It returns ERR if you try to move off the window when
scrolling is not allowed. As mentioned above, you can combine the two into
mvaddch () to do both things in one fell swoop .

• \sun ~" microsystems
Revision A of 9 May 1988

276 Programming Utilities and Libraries

Input

Miscellaneous

Finishing Up

12.3. Cursor Motion
Optimization:
Standing Alone

The other output functions, such as addstr () and printw (), all call
addch () to add characters to the window.

After you have put on the window what you want there, when you want the por
tion of the tenninal covered by the window to be made to look like it, you must
call refresh (). To optimize finding changes, refresh () assumes that any
part of the window not changed since the last refresh () of that window has
not been changed on the terminal, that is, that you have not refreshed a portion of
the terminal with an overlapping window. If this is not the case, the routines
touchwin () ,touchline () ,and touchoverlap () are provided to make
it look like the entire window has been changed, thus forcing refresh () check
the whole subsection of the terminal for changes.

If you call wrefresh () with curscr, it will make the screen look like
cur s cr thinks it looks like. This is useful for implementing a command to
redraw the screen in case it get messed up.

Input is essentially a mirror image of output The complementary function to
addch () is getch () which, if echo is set, calls addch () to echo the charac
ter. Since the screen package needs to know what is on the terminal at all times,
if characters are to be echoed, the tty must be in raw or cbreak mode. If it is not,
getch () sets it to be cbreak, reads in the character, and then resets the mode of
the terminal to what it was before the call.

All sorts of functions exist for maintaining and changing information about the
windows. For the most part, the descriptions in section 5.4. should suffice.

To do certain optimizations, and, on some terminals, to work at all, some things
must be done before the screen routines start up. These functions are performed
in getttmode () and setterm (), which are called by initscr (). To
clean up after the routines, the routine endwin () is provided. It restores tty
modes to what they were when ini tscr () was first called. Thus, anytime
after the call to initscr, endwin () should be called before exiting.

It is possible to use the cursor optimization functions of this screen package
without the overhead and additional size of the screen updating functions. The
screen updating functions are designed for uses where parts of the screen are
changed, but the overall image remains the same. Certain other programs will
find it difficult to use these functions in this manner without considerable
unnecessary program overhead. For such applications, such as some' 'crt
hacks,,35 and optimizing cat(l)-type programs, all that is needed is the motion
optimizations. This, therefore, is a description of what goes on at the lower lev
els of this screen package. The descriptions assume a certain amount of familiar
ity with programming problems and some finer points of C. None of it is terribly
difficult, but you should be forewarned.

35 Graphics programs designed to run on character-oriented tenninals.

Revision A of 9 May 1988

Terminal Information

Movement Optimizations, or,
Getting Over Yonder

Chapter 12 - The curses Library: Screen-Oriented Cursor Motions 277

To use a terminal's features to the best of a program's abilities, you must first
know what they are. The termcap database describes these, but a certain
amount of decoding is necessary, and there are, of course, both efficient and
inefficient ways of reading them in. The algorithm that curses uses is taken
from vi(1) and is efficient. It reads them into a set of variables whose names are
two uppercase letters with some mnemonic value. For example, HO is a string
which moves the cursor to the "home" position36. As there are two types ofvari
abIes involving ttys, there are two routines. The first, get tmode () , sets some
variables based upon the tty modes accessed by gt t Y (2) and s t t y(2). The
second, set term () , does a larger task by reading in the descriptions from the
termcap database. This is the way these routines are used by initscr () :

if (isatty(O» {
gettmode;

else

if (sp=getenv(rlTERMrI»
setterm (sp) i

setterm(Def_term) ;
_puts(TI)i
_puts(VS);

isatty () checks to see if file descriptor 0 is a terminal37. If it is,
gettmode () sets the terminal description modes from a gt ty (2) •

getenv () is then called to get the name of the terminal, and that value (if there
is one) is passed to setterrn () , which reads in the variables from termcap
associated with that terminal. getenv () returns a pointer to a string containing
the name of the terminal, which we save in the character pointer sp. If
isatty () returns false, the default terminal Def_term is used. The TI and
vs sequences initialize the terminal. yut s () is a macro which uses
tputs () (see terrncap(3X)) to put out a string. It is these things which
endwin () undoes.

Now that we have all this useful information, it would be nice to do something
with it. The most difficult thing to do properly is motion optimization. When
you consider how many different features various terminals have (tabs, backtabs,
non-destructive space, home sequences, absolute tabs, ...) you can see that
deciding how to get from here to there can be a decidedly non-trivial task.

After using gettrnode () and setterrn () to get the terminal descriptions, the
function rnvcur () deals with this task. Its usage is simple: you simply tell it
where you are now and where you want to go, as shown below.

36 These names are identical to those variables used in the / etc/termcap database to describe each
capability. See Appendix A for a complete list of those read, and termcap(5) for a full description.

37 i sa tty () is defined in the default C library function routines. It does a gt t Y (2) on the file descriptor
and checks the return value.

Revision A of 9 May 1988

278 Programming Utilities and Libraries

12.4. Curses Functions

Output Functions
addch () and waddch () -
Add Character to Window

addstr () and waddstr ()
- Add String to Window

[~ ___ m_v_c_u_r_(_0_' __ 0_' __ L_I_N_E_S_/_2_' __ C_O_L_S_/_2_) __________________________ -J)
would move the cursor from the home position (0, 0) to the middle of the screen.
If you wish to force absolute addressing, you can use the function tgoto ()
from the termcap(3X) routines, or you can tell mvcur () that you are impossi
bly far away. For example, to absolutely address the lower left hand comer of
the screen from anywhere just claim that you are in the upper right hand comer:

(mvcur(O, COLS-l, LINES-l, 0)

In the following definitions, " means that the 'function' is really a ""define
macro with arguments. This means that it will not show up in stack traces in the
debugger, or, in the case of such functions as addch () , it will show up as its
'w' counterpart. The arguments are given to show the order and type of each.
Their names are not mandatory, just suggestive.

addch (ch)
char ch;

waddch(win, ch)
WINDOW *win;
char ch;

Add the character ch on the window at the current (y, x) co-ordinates. If the
character is a (NEWLINE I ('\n') the line is cleared to the end, and the current
(y, x) co-ordinates are changed to the beginning of the next line if newline map
ping is on, or to the next line at the same x co-ordinate if it is off. A return ('\r')
moves to the beginning of the line on the window. Tabs ('\t') are expanded into
spaces in the normal tabstop positions of every eight characters. This returns
ERR if it would cause the screen to scroll illegally.

addstr(st)
char *str;

waddstr(win, str)
WINDOW *win;
char *str;

Add the string pointed to by str on the window at the current (y, x) co
ordinates. This returns ERR if it would cause the screen to scroll illegally. In this
case, it puts on as much as it can.

)

Revision A of 9 May 1988

box () - Draw Box Around
Window

clear () and wclear () -
Reset Window

clearok () - Set Clear Flag

clrt obot () and
wclrtobot () - Clear to
Bottom

clrtoeol () and
wclrtoeol () - Clear to
End of Line

delch () and wdelch ()
Delete Character

Chapter 12 - The curses Library: Screen-Oriented Cursor Motions 279

bex(win, vert, her)
WINDOW *win:
char vert, her;

Draws a box around the window using vert as the character for drawing the
vertical sides, and hor for drawing the horizontal lines. If scrolling is not
allowed, and the window encompasses the lower right-hand corner of the ternii
nal, the corners are left blank to avoid a scroll.

clear ()

wclear(win)
WINDOW *win:

Resets the entire window to blanks. If win is a screen, this sets the clear flag,
which sends a clear-screen sequence on the next ref res h () call. This also
moves the current (y, x) co-ordinates to (0, 0).

clearok(scr, boolf)
WINDOW *scr;
bool beolf:

Sets the clear flag for the screen scr. If boolf is TRUE, this forces a clear
screen to be printed on the next refresh () , or stop it from doing so ifboolf
is FALSE. This only works on screens, and, unlike clear () ,does not alter the
contents of the screen. If scr is curscr, the next refresh () call causes a
clear-screen, even if the window passed to refresh () is not a screen.

clrtobot ()

wclrtobet(win)
WINDOW *win:

Wipes the window clear from the current (y, x) co-ordinates to the bottom. This
does not force a clear-screen sequence on the next refresh under any cir
cumstances. This has no associated mv function.

clrtoeol ()

wclrtoeol(win)
WINDOW *win:

Wipes the window clear from the current (y, x) co-ordinates to the end of the
line. This has no associated mv function.

delch ()

wdelch(win)
WINDOW *win:

Delete the character at the current (y, x) co-ordinates. Each character after it on
the line shifts to the left, and the last character becomes blank .

• ~sun
• microsystems

Revision A of 9 May 1988

280 Programming Utilities and Libraries

deleteln () and
wdeleteln () - Delete
Current Line

erase and werase () -
Erase Window

flushok - Control Flushing
ofstdout

idlok - Control Use of
Insert/Delete Line

insch () and winsch ()
Insert Character

deleteln ()

wdeleteln(win)
WINDOW *win;

Delete the current line. Every line below the current one moves up, and the bot
tom line becomes blank. The current (y, x) co-ordinates remains unchanged.

erase ()

werase(win)
WINDOW *win;

Erases the window to blanks without setting the clear flag. This is analagous to
clear () ,except that it never causes a clear-screen sequence to be generated on
a refresh (). This has no associated mv function.

flushok(win, boolf)
WINDOW *win;
bool boolf;

Normally, refresh () performs an fflush () on stdout when it is
finished. flushok () allows you to control this. Ifboolf is TRUE (non-zero),
refresh () performs the fflush () ; if FALSE, refresh () does not.

idlok(win, boolf)
WINDOW *win;
bool boolf;

Reserved for future use. When implemented, this will signal refresh () as to
whether it is safe to use "insert line" and "delete line" sequences to update a
window.

insch(c)
char c;

winsch(win, c)
WINDOW *win;
char c;

Insert c at the current (y, x) co-ordinates Each character after it shifts to the right,
and the last character disappears. This returns ERR if it would cause the screen
to scroll illegally.

Revision A of 9 May 1988

insertln () and
winsertln () - Insert Line

move and wmove () - Move

overlay () - Overlay
Windows

overwr i te () - Overwrite
Windows

printw () and wprintw ()
- Print to Window

Chapter 12 - The curses Library: Screen-Oriented Cursor Motions 281

insertln

winsertln(win)
WINDOW *wini

Insert a line above the current one. Every line below the current line is shifted
down, and the bottom line disappears. The current line becomes blank, and the
current (y, x) co-ordinates remains unchanged. This returns ERR if it would
cause the screen to scroll illegally.

move(y, x)
int y, x;

wmove(win, y, x)
WINDOW *win;
int y, x;

Change the current (y, x) co-ordinates of the window to y, x. This returns ERR if
it would cause the screen to scroll illegally.

overlay (winl, win2)
WINDOW *winl, *win2i

Overlay winl on win2. The contents of winl, insofar as they fit, are placed on
win2 at their starting (y, x) co-ordinates. This is done non-destructively, that is,
blanks on winlleave the contents of the space on win2 untouched.

overwrite (winl, win2)
WINDOW *winl, *win2;

Overwrite winl on win2. The contents of winl, insofar as they fit, are placed
on win2 at their starting (y, x) co-ordinates. This is done destructively, that is,
blanks on winl become blank on win2.

printw(fmt, argl, arg2, ...)
char *fmt;

wprintw(win, fmt, argl, arg2, ...)
WINDOW *win;
char *fmt;

Performs a printf () on the window starting at the current (y, x) co-ordinates.
It uses addstr () to add the string on the window. It is often advisable to use
the field width options ofprintf () to avoid leaving things on the window
from earlier calls. This returns ERR if it would cause the screen to scroll ille
gally~

Revision A of 9 May 1988

282 Programming Utilities and Libraries

refresh () and
wrefresh () - Synchronize

standout () and
wstandout () - Put
Characters in Standout Mode

Input Functions
crbreak and nocrbreak
Set or Unset from Cbreak mode

echo () and noecho ()
Tum Echo On or Off

getch () and wgetch () -
Get Character from Terminal

refresh ()

wrefresh(win)
WINDOW *wini

Synchronize the term~nal screen with the desired window. If the window is not a
screen, only that part covered by it is updated. This returns ERR if it would cause
the screen to scroll illegally. In this case, it updates whatever it can without caus
ing the scroll.

As a special case, if wrefresh () is called with the window curser, the
screen is cleared and repainted. This is useful for allowing the user to redraw the
screen as needed.

standout ()

wstandout(win)
WINDOW *wini

standend()

wstandend(win)
WINDOW *wini

Start and stop putting characters onto win in standoutO mode. standout ()
causes any characters added to the window to be put in standout mode on the ter
minal (ifit has that capability). standend () stops this. The sequences SO and
SE (or us and UE if they are not defined) are used (see Appendix A).

crbreak ()

nocrbreak ()

Set or unset the terminal to/from cbreak mode. The misnamed macros
crmode () and nocrmode () are retained for backward compatibility.

echo ()

noecho ()

Sets the terminal to echo or not echo characters.

getch ()

wgetch(win)
WINDOW *wini

Gets a character from the te~nal and (if necessary) echos it on the window.
This returns ERR if it would cause the screen to scroll illegally. Otherwise, the
character gotten is returned. If noecho () has been set, then the window is left
unaltered. In order to retain control of the terminal, it is necessary to have one of

Revision A of9 May 1988

getstr () and wgetstr ()
- Get String from Terminal

raw () and noraw () - Tum
Raw Mode On or Off

scanw () and wscanw () -
Read String from Terminal

Miscellaneous Functions

baudrate - Get the
Baudrate

Chapter 12 - The curses Library: Screen-Oriented Cursor Motions 283

noecho () , cbreak () ,or rawmode set. If you do not set one, whatever rou
tine you call to read characters sets cbreak for you, and then resets to the original
mode when finished.

getstr(st)
char *stri

wgetstr(win, str)
WINDOW *wini
char *str i

Get a string through the window and put it in the location pointed to by str,
which is assumed to be large enough to handle it. It sets tty modes if necessary,
and then calls getch () (or wgetch (win » to get the characters needed to
fill in the string until a I NEWLINE I or EOF is encountered. The (NEWLINE I is
stripped off the string. This returns ERR if it would cause the screen to scroll
illegally.

raw()

noraw ()

Set or unset the terminal to/from raw mode. On version 7 UNIXt systems, this
also turns off NEWLINE mapping (see nl ()).

scanw(fmt, argl, arg2, ...)
char *fmti

wscanw(win, fmt, argl, arg2, ...)
WINDOW *wini
char *fmti

Perform a scanf () through the window using frnt. It does this using consecu
tive getch () 's (or wgetch (win) 's). This returns ERR if it would cause
the screen to scroll illegally.

Returns the baud rate of the terminal. This is a system-dependent constant
(defined in the header file <sys/tty. h>, which is included in <curses. h».

t UNIX is a registered trademark of AT&T.

~\Slln ~~ microsystems
Revision A of 9 May 1988

284 Programming Utilities and Libraries

del win () - Delete a
Window

endwin () - Finish up
Window Routines

erase char - Get Erase
Character

get cap () - Get Termcap
Capability

get yx () - Get Current
Coordinates

inch () and winch () - Get
Character at Current
Coordinates

delwin(win)
WINDOW *wini

Deletes the window from existence. All resources are freed for future use by
calloc (3). If a window has a subwin () allocated window inside of it,
deleting the outer window does not affect the subwindow, even though this does
invalidate it. Therefore, subwindows should be deleted before their outer win
dows are.

endwin ()

Finish up window routines before exit. This restores the terminal to the state it
was in before initscr () (or gettmode () and setterm ()) was called.
endwin () should always be called before exiting. endwin () does not itself
exit - this is especially useful for resetting tty stats when trapping rubouts via
signal (2) .

erasechar ()

Returns the erase character for the terminal; that is, the character used by the ter
minal to erase single characters from the input.

char *getcap(str)
char *stri

Return a pointer th the termcap capability described by str (see termcap(5)
for details).

getyx(win, y, x)
WINDOW *wini
int y, Xi

Puts the current (y, x) co-ordinates of win in the variables y and x. Since it is a
macro, not a function, you do not pass the address of y and x.

inch ()

winch (win)
WINDOW *wini

Returns the character at the current (y, x) co-ordinates on the given window.
This does not make any changes to the window. This has no associated mv func
tion.

Revision A of 9 May 1988

initscr () - Initialize
Screen Routines

kill char - Get Kill
Character

leaveok () - Set Leave
Cursor Flag

longname () - Get Full
Name of Tenninal

Chapter 12 - The curses Library: Screen-Oriented Cursor Motions 285

initscr ()

Initialize the screen routines. This must be called before any of the screen rou
tines are used. It initializes the terminal-type data and such, and without it, none
of the routines can operate. If standard input is not a tty, it sets the specifications
to the tenninal whose name is pointed to by Def_term (initialy dumb). If the
boolean My _term is true, Def _term is always used. If the window size values
for rows and columns as returned by the TIOCGWINSZ ioctl (2) request are
non-zero, they are used. Otherwise, sizes are taken from the termcap descrip
tion.

killchar ()

Returns the terminal's line kill character; that is, the character used to erase an
entire line from input.

leaveok(win, boolf)
WINDOW *win;
bool boolf;

Sets the boolean flag for leaving the cursor after the last change. If boolf is
TRUE, the cursor is left after the last update on the terminal, and the current
(y, x) co-ordinates for win are changed accordingly. If it is FALSE, it is moved
to the current (y, x) co-ordinates. This flag (initially FALSE) retains its value
until changed by the user.

For example, say the current position is (0, 0) and we change the character at
position (5, 10) in the window. After calling refresh () , the cursor is either
moved to position (5, 10) (if the flag is TRUE) or the cursor is left at position
(0,0) (if the flag is FALSE).

longname(termbuf, name)
char *termbuf, *name;

longname(termbuf, name)
char *termbuf, *name;

Fills in name with the long (full) name of the terminal described by the
termcap entry in termbuf. It is generally of little use, but is nice for telling
the user in a readable format what terminal we think he has. This is available in
the global variable ttytype. termbuf is usually set via the termcap rou
tine tgetent. fullname is the same as longname () , except that it gives
the fullest name given in the entry, which can be quite verbose.

Revision A of 9 May 1988

286 Programming Utilities and Libraries

mvw in - Move Home Position
of Window

newwin () - Create a New
Window

nl () and nonl () -Tum
Newline Mode On or Off

serollek - Set Scroll Flag
for Window

subwin () - Create a
Subwindow

mvwin(win, y, x)
WINDOW *win;
int y, x;

Move the home position of the window win from its current starting coordinates
to y, x. If that would put part or all of the window off the edge of the terminal
screen, mvwin () returns ERR and does not change anything. For subwindo-ws,
mvwin () also returns ERR if you attempt to move it off its main window. If
you move a main window, all sub windows are moved along with it.

WINDOW *
newwin(lines, eols, begin_y, begin_x)
int lines, eols, begin_y, begin_x;

Create a new window with lines lines and eels columns starting at position
begin_y, begin_x. If either lines or eols is 0 (zero), that dimension is
set to (lines - begin_y) or(eols - begin_x) respectively. Thus, to
get a new window of dimensions lines x eols, use
newwin (0, 0, 0, 0).

nl ()

nonl ()

Set or unset the terminal to/from nl () mode, that is, start/stop the system from
mapping I RETURN) to I NEWLINE I. If the mapping is not done, refresh ()
can do more optimization, so it is recommended, but not required, that it be
turned off.

serollok(win, boolf)
WINDOW *win;
bool boolf;

Set the scroll flag for the given window. If boelf is FALSE, scrolling is not
allowed. This is its default setting.

WINDOW *
subwin(win, lines, eols, begin_y, begin_x)
WINDOW *win;
int lines, eols, begin-y, begin_x;

Create a new window with lines lines and eels columns starting at position
(begin_y, begin_x) in the middle of the window win. This means that any
change made to either window in the area covered by the subwindow is made on
both windows. (begin _y, begin_x) are specified relative to the overall
screen, not the relative (0,0) of win. If either lines or eels is 0 (zero), that
dimension is set to (LINES - begin _y) or (eOLS - begin_x) respectively.

Revision A of 9 May 1988

touchline - Indicate Line
Has Been Changed

touchoverlap - Indicate
Overlapping Regions Have
Been Changed

touchwin () - Indicate
Window Has Been Changed

unctrl () - Return
Representation of Character

Details
get tmode () - Get tty
Statistics

mvcur () - Move Cursor

Chapter 12 - The curses Library: Screen-Oriented Cursor Motions 287

touchline(win, y, startx, endx)
WINDOW *win;
int y, startx, endx;

This function performs a function similar to touchwin () , but on a single line.
It marks the first change for the given line to be startx, if it is before the
current first change mark, and the last change mark is set to be endx if it is
currently less than endx.

touchoverlap(winl, win2)
WINDOW *win, *win2;

Touch the window win2 in the area which overlaps with winI. If they do not
overlap, no changes are made.

touchwin(win)
WINDOW *win;

Make it appear that the every location on the window has been changed. This is
usually only needed for refreshes with overlapping windows.

unctrl(ch)
char Chi

This is actually a debug function for the library, but it is of general usefulness. It
returns a string which is a representation of ch. Control characters become their
upper-case equivalents preceded by a - (circumflex character). Other letters stay
just as they are.

gettmode ()

Get the tty stats. This is normally called by ini t scr () .

mvcur(lasty, lastx, newy, newx)
int lasty, lastx, newy, neWXi

Moves the terminal's cursor from lasty, lastx to newy, newx in an approxi
mation of optimal fashion.

It is possible to use this optimization without the benefit of the screen routines.
With the screen routines, this should not be called by the user. move () and
refresh () should be used to move the cursor position, so that the routines
know what's going on.

~\sun ~ microsystems
Revision A of 9 May 1988

288 Programming Utilities and Libraries

scroll () - Scroll Window

savetty () and resetty ()
- Save and Reset tty Flags

set term () - Set Terminal
Characteristics

tstp

_putchar ()

12.5. Capabilities from
termcap

Overview

scroll (win)
WINDOW *win;

Scroll the window upward one line. This is normally not used by the user.

savetty ()

resetty ()

savetty () saves the current tty characteristic flags. resetty () restores
them to what savetty () stored. These functions are performed automatically
by initser () and endwin () .

setterm(name)
char *name;

Set the terminal characteristics to be those of the terminal named name, getting
the terminal size from the TIOCGWINSZ ioctl (2) request if that size is non
zero, and otherwise from the environment. This is normally called by
initscr ().

tstp ()

This function saves the current tty state and then puts the process to sleep. When
the process gets restarted, it restores the tty state and then calls
wrefresh (curser) to redraw the screen. The initser () function sets
the signal SIGTSTP to trap to this routine.

yutchar ()

Put out a character using the putchar () macro. This function is used to out
put every character that eur se s generates. Thus, it can be redefined by the user
who wants to do non-standard things with the output. It is named with an initial
'_' because it usually should be invisible to the programmer.

Note that the description of terminals is a difficult business, and we only attempt
to summarize the capabilities here. For a full description see the termeap(5)
manual pages.

Capabilities from termcap are ofthn:e kinds: string valued options, numeric
valued options, and boolean options. The string valued options are the most
complicated, since they may include padding information.

Intelligent terminals often require padding on intelligent operations at high (and
sometimes even low) speed. This is specified by a number before the string in
the capability, and has meaning for the capabilities which have a LP at the front
of their comment. This normally is a number of milliseconds to pad the opera
tion. In the current system which has no true programmable delays, we do this
by sending a sequence of pad characters (normally nulls, but can be changed -
specified by PC). In some cases, the pad is better computed as some number of

Revision A of9 May 1988

Chapter 12 - The curses Library: Screen-Oriented Cursor Motions 289

milliseconds times the number of affected lines (to the bottom of the screen usu
ally, except when terminals have insert modes which will shift several lines.)
This is specified as, for example, 12 * before the capability, to say 12 mil
liseconds per affected whatever (currently always line). Capabilities where this
makes sense say 'P * ' .

• \sun ~~ microsystems
Revision A of 9 May 1988

290 Programming Utilities and Libraries

Variables Set By set term ()

Table 12-3 Variables Set by setterm ()

Type Name Pad Description

char * AL P* Add new blank Line
bool AM Automatic Margins
char * BC Back Cursor movement
bool BS BackSpace works
char * BT P Back Tab

bool CA Cursor Addressable
char * CD P* Clear to end of Display
char * CE P Clear to End of line
char * CL P* CLear screen
char * CM P Cursor Motion

char * DC P* Delete Character
char * DL P* Delete Line sequence
char * DM Delete Mode (enter)
char * DO DOwn line sequence
char * ED End Delete mode

bool EO can Erase Overstrikes with ' ,
char * EI End Insert mode
char * HO HOme cursor
bool HZ HaZeltine - braindamage
char * IC P Insert Character

bool IN Insert-Null blessing
char * 1M enter Insert Mode (IC usually set, too)
char * IP P* Pad after char Inserted using IM+IE
char * LL quick to Last Line, column 0
char * MA ctrl character MAp for cmd mode

bool MI can Move in Insert mode
bool NC No Cr: \r sends \r\n then eats \n

char * ND Non-Destructive space
bool OS OverStrike works
char PC Pad Character

char * SE Standout End (may leave space)
char * SF P Scroll Forwards
char * SO Stand Out begin (may leave space)
char * SR P Scroll in Reverse
char * TA P TAb (not "lor with padding)

char * TE Terminal address enable Ending sequence
char * TI Terminal address enable Initialization
char * UC Underline a single Character
char * UE Underline Ending sequence
bool UL UnderLining works even though lOS

char * UP UPline
char * US Underline Starting sequence
char * VB Visible Bell
char * VE Visual End sequence
char * VS Visual Start sequence
bool XN a Newline gets eaten after wrap

+~I!! Revision A of9 May 1988

Variables Set By
gettmode ()

Chapter 12 - The curses Library: Screen-Oriented Cursor Motions 291

Names starting with X are reserved for severely nauseous glitches

For purposes of standout () ,if SG is not 0, SO is set to NULL, and if UG is not
0, US is set to NULL. If, after this, SO is NULL, and US is not, SO is set to be US,
and SE is set to be UE.

Table 12-4 Variables Set By gettmode ()

12.6. The WINDOW
structure

type name description

bool
bool
bool

NONL

GT
UPPERCASE

Term can't hack linefeeds doing a CR
Gtty indicates Tabs
Terminal generates only uppercase letters

The WINDOW structure is defined as follows:

1*
* Copyright (c) 1980 Regents of the University of California.
* All rights reserved. The Berkeley software License Agreement
* specifies the terms and conditions for redistribution.

*
* 6.1 (Berkeley) 4/24/86";
*1

define WINDOW struct win st

struct _win st {
short
short
short
short
short
bool
bool
bool
char
short
short
struct win st

} ;

define ENDLINE 001
define FULLWIN 002
define SCROLLWIN004
define FLUSH
define FULLLINE 020
define IDLINE
define STANDOUT 0200
define NOCHANGE-1

_cury, _curx;
_maxy, _maxx;
_begy, _begx;

flags;
_ch_off;
_clear;

leave;
scroll;

**-y;
*_firstch;
*_lastch;
"'_nextp, '" orig;

010

040

~) sun Revision A of 9 May 1988
~ microsystems

292 Programming Utilities and Libraries

_ cury () 38 and _ curx () are the current (y, x) coordinates for the window.
New characters added to the screen are added at this point. _ maxy () and
maxx () are the maximum values allowed for (cury, _ curx). _ begy ()
and _begx () are the starting (y, x) coordinates on the terminal for the window,
that is, the window's home. _ cury () ,_ curx () ,_ maxy () , and _ maxx ()
are measured relative to (_ begy, _begx), not the terminal's home.

_clear () tells if a clear-screen sequence is to be generated on the next
refresh () call. This is only meaningful for screens. The initial clear-screen
for the first refresh () call is generated by initially setting clear to be TRUE
for cur s cr, which always generates a clear-screen if set, irrelevant of the
dimensions of the window involved. _leave () is TRUE if the current (y, x)
coordinates and the cursor are to be left after the last character changed on the
terminal, or not moved if there is no change. _scroll () is TRUE if scrolling
is allowed.

_y () is a pointer to an array of lines which describe the terminal. Thus:

_y[i]

is a pointer to the ith line, and

_y [i] [j]

is the jth character on the ith line. _flags () can have one or more values
or'd into it

For windows that are not subwindows, _or ig is NULL. For subwindows, it
points to the main window to which the window is subsidiary. _nextp is a
pointer in a circularly linked list of all the windows which are subwindows of the
same main window, plus the main window itself.

_firstch and _lastch are malloc () ed arrays which contain the index of
the first and last changed characters on the line. _ ch _of f is the x offset for the
window in the _firstch and _Iastch arrays for this window. For main win
dows, this is always 0; for subwindows it is the difference between the starting
point of the main window and that of the subwindow,.so that change markers can
be set relative to the main window. This makes these markers global in scope.

All subwindows share the appropriate portions of _y (), _firstch, _lastch,
and insdel with their main window.

_ ENDLINE says that the end of the line for this window is also the end of a
screen. _FULLWIN says that this window is a screen. _ SCROLLWIN indicates
that the last character of this screen is at the lower right-hand comer of the termi
nal; that is, if a character was put there, the terminal would scroll. _ FULLLINE
says that the width of a line is the same as the width of the terminal. If FLUSH

38 All variables not nonnally accessed directly by the user are named with an initial '_' to avoid conflicts
with the user's variables.

.\sun
• microsystems

Revision A of 9 May 1988

Chapter 12 - The curses Library: Screen-Oriented Cursor Motions 293

is set, it says that fflush (stdout) should be called at the end of each re
fresh (). _STANDOUT says that all characters added to the screen are in stan
dout mode. _ INSDEL is reserved for future use, and is set by idlok () .
_firstch is set to _NOCHANGE for lines on which there has been no change
since the last refresh () .

12.7. Example Here is a simple example of how to use the package.

This example (twinkle) is intended to demonstrate the basic structure of a pro
gram using the screen updating sections of the package.

This is a moderately simple program which prints pretty patterns on the screen
that might even hold your interest for 30 seconds or more. It switches between
patterns of asterisks, putting them on one by one in random order, and then tak
ing them off in the same fashion.

include
include

/*

<curses.h>
<signal.h>

* the idea for this program was a product
* of the imagination of Kurt Schoens. Not
* responsible for minds lost or stolen.
*/

define NCOLS 80
define NLINES 24
define MAXPATTERNS 4

struct locs
char y, X;

} ;

typedef struct locs LOCS;

LOCS Layout[NCOLS * NLINES]; /* current board layout */

int

main ()

Pattern,
Numstars;

/* current pattern number */
/* number of stars in pattern */

char *getenv();
int die();

srand(getpid(»; /* initialize random sequence */

initscr () ;'
signal(SIGINT, die);
noecho();
nonl () ;
leaveok(stdscr, TRUE);
scrollok(stdscr, FALSE);

.~ sun ~ microsystems
Revision A of 9 May 1988

294 Programming Utilities and Libraries

/*

for (;;) {
makeboard () ;
puton('*');
puton (' ');

/* make the board setup */
/* put on '*'s */
/* cover up with' 's */

* On program exit, move the cursor to the lower
* left corner by direct addressing, since current
* location is not guaranteed. We lie and say we
* used to be at the upper right corner to guarantee
* absolute addressing.
*/

die () {

/*

signal (SIGINT, SIG_IGN);
mvcur(O, eOLS-I, LINES-I, 0);
endwin();
exit(O);

* Make the current board setup. It picks a random
* pattern and calls ison() to determine if the
* character is on that pattern or not.
*/

makeboard ()

/*

reg int
reg LOCS

y, x;
*lp;

Pattern = rand() % MAXPATTERNS;
lp = Layout;
for (y = 0; y < NLINES; y++)

Numstars

for (x = 0; x < NCOLS; x++)
if (ison (y, x») {

lp->y = y;
lp++->x = x;

lp - Layout;

* Return TRUE if (y, x) is on the current pattern.
*/

ison(y, x)
reg int y, x; {

switch (Pattern)
case 0: /* alternating lines */

return! (y & 01);

Revision A of 9 May 1988

Chapter 12 - The curses Library: Screen-Oriented Cursor Motions 295

case 1: /* box */
if (x >= LINES && Y >= NCOLS)

return FALSE;
if (y < 3 I I y >= NLINES - 3)

return TRUE;
return

case 2:
(x < 3 I I x >= NCOLS - 3);
/* holy pattern! */

return «x + y) & 01);
case 3: /* bar across center */

(y>= 9 && Y <= 15); return

/* NOTREACHED */

puton(ch)
reg char

reg LOCS
reg int
reg LOCS
LOCS

Chi

*lp;
ri
*end;
temp;

end &Layout[Numstars]i
for (lp = Layout; lp < end; lp++)

r = rand() % Numstars;
temp = *lp;
*lp = Layout[r];
Layout[r] = temp;

for (lp = Layout; Ip < end; lp++) {
mvaddch(lp->y, lp->x, ch);
refresh () ;

~~sun ~ microsystems
Revision A of 9 May 1988

13
System V curses and terminfo

System V curses and terminfo: ... 299

13.1. Overview .. 300

What is curses? .. 300

What is terminfo? .. 301

How cur ses and terminfo Work Together ... 302

Other Components of the Terminal Infonnation Utilities
Package ... 302

13.2. Working with curses Routines .. 303

What Every curses Program Needs .. 303

The Header File < c ur s e s . h> ... 303

The Routines initscr ()., refresh () ,and endwin () 304

Compiling a curses Program .. 305

More about ini tscr () and Lines and Columns 305

More about refresh () and Windows ... 305

Simple Output and Input .. 307

Output .. 307

addch () - Write a single character to stdscr 307

addstr () - write a string of characters to stdscr 308

printw () - fonnatted printing on stdscr 308

move () - position the cursor for stdscr .. 309

mvaddch - move and print a character .. 310

mvaddstr - move and print a string .. 310

mvpr int w - move and print a formatted string 311

clear () and erase () - clear the screen .. 311

clrtoeol () and clrtobot () - partial screen clears 311

Input .. 312

getch () - read a single character from the current
terminal ... 312

getstr () - read character string into a buffer 313

scanw () - formatted input conversion ... 314

Controlling Output and Input ... 315

Output Attributes .. 315

Bit Masks ... 316

attron (), attrset () ,and attroff () - set or
modify attributes .. 317

standout () and standend () - highlight with
preferred attribute .. 317

Bells, Whistles, and Flashing Lights ... 317

beep () and flash () - ring bell or flash screen 318

Input Options ... 318

echo () and noecho () - tum echoing on and off 320

cbreak () and nocbreak () - tum "break for each
character" on or off ... 320

Building Windows and Pads .. 320

Window Output and Input .. 320

The Routines wnoutrefresh () and doupdate () 321

New Windows ... 322

neww in () - open and return a pointer to new window.............. 322

subwin () ... 323

Using Advanced curses Features ... 323

Routines for Drawing Lines and Other Graphics 324

Routines for Using Soft Labels ... 325

Working with More than One Terminal... 326

13.3. Working with terminfo Routines .. 327

What Every terminfo Program Needs ... 327

Compiling and Running a terminfo Program .. 328

An Example terminfo Program ... 328

13.4. Working with the terminfo Database ... 331

Writing Terminal Descriptions ... 331

Naming me Terminal .. 331

Learning About the Capabilities ... 332

Specifying Capabilities .. 332

Basic Capabilities .. 334

Screen-Oriented Capabilities .. 334

Keyboard-Entered Capabilities ... 335

Parameter String Capabilities ... 335

Compiling the Description ... 336

Testing the Description .. 337

Comparing or Printing terminfo Descriptions 337

Converting a termcap Description to a terminfo
Description ... 338

13.5. curses Program Examples .. 338

The editor Program ... 338

edi tor - a Sample Program Listing .. 340

The highlight Program ... 343

The scat t er Program .. 345

The show Program .. 346

The two Program ... 347

The window Program ... 349

13
System V curses and terminfo

Screen management programs are a common component of many commercial
computer applications. These programs handle input and output at a video
display terminal. A screen program might move a cursor, print a menu, divide a
terminal screen into windows, or draw a display on the screen to help users enter
and retrieve information from a database.

This tutorial explains how to use the System V curses and terminfo
libraries to write screen management programs on a SunOS system. This pack
age includes a library of C routines, a database of terminals and terminal capabil
ities, and a set of SunOS system support tools. To start you writing screen
management programs as soon as possible, the tutorial does not attempt to cover
every part of the package. For instance, it covers only the most frequently used
routines and then points you to curses(3V) and terminfo(5V) in the SunOS
Reference Manual for more information.

Because the routines are compiled C functions, you should be familiar with the C
programming language before using curses/terminfo. You should also be
familiar with the C language Standard I/O library.

This chapter has five sections: The Overview describes curses, terminfo,
and the other components of the System V terminal information utilities package.

Working with curses Routines describes the basic routines making up the
curses(3V) library. It covers the routines for writing to a screen, reading from
a screen, and building windows .39 It also covers routines for more advanced
screen management programs that draw line graphics, use a terminal's soft
labels, and work with more than one terminal at the same time. Many examples
are included to show the effect of using these routines.

Working with terminfo Routines describes the routines in the curses library
that deal directly with the terminfo database to handle certain terminal capa
bilities, such as programming function keys.

Working with the terminfo Database describes the terminfo database,
related support tools, and th~ir relationship to the curses library.

curses Program Examples includes six programs that illustrate various
curses routines.

39 Here the tenn windows refers to a region within a single tenninal screen.

4}\sun
~ microsystems

299 Revision A of9 May 1988

300 Programming Utilities and Libraries

13.1. Overview

What is curses? cur s e s (3 V) is the library of routines that you use to write screen management
programs on the SunOS system. The routines are C functions and macros; many
of them resemble routines in the standard C library. For example, there's a rou
tine printw () that behaves like printf(3V), and another named getch 0
that behaves like get c(3V). The automatic teller program at your bank might
use printw () to print its menus and getch () to accept your requests for
withdrawals (or, better yet, deposits). A visual screen editor like the SunOS
screen editor vi(l) might also use these and other curses routines.

The curses library is located in the file /usr / Slib/ libcurses . a. To
compile a program using routines in this library, you must use the System V
optional /usr / Sbin/ cc(lV) command, and include the -lcurses on the
command line so that the link editor can locate and load them:

/ us r / Sbin/ cc file.c -lcurses -0 file

The name curses comes from the cursor optimization that this library ofrou
tines provides. Cursor optimization minimizes the amount a cursor has to move
around a screen to update it. For example, if you had designed a screen editor
program with cur s e s routines and edited the sentence

curses/terrninfo is a great package for creating screens.

to read

curses/terrninfo is the best package for creating screens.

the program would output only the string 'thebest in place of' .agreat The other
characters would be preserved. Because the amount of data transmitted-the
output-is minimized, cursor optimization is also referred to as output optimiza
tion.

Cursor optimization takes care of updating the screen in a manner appropriate for
the terminal on which a curses program is run. This means that the curses
library can do what is required to update any of a large number of different termi
nal types. It searches the terminfo database (described below) to find the
correct description for a terminal.

How does cursor optimization help you and those who use your programs? First,
it saves you time in describing in a program how you want to update screens.
Second, it saves a user's time when the screen is updated. Third, it reduces the
load on your system. Fourth, it handles a large variety of terminals on which
your program might be run.

Here's a simple curses program. It uses some of the basic curses routines to
move· a cursor to the middle of a screen and print the character string
BullsEye. Each of these routines is described in the section Working with
curses Routines later in this chapter. For now, just look at their names below
and you will get an idea of what each of them does.

~\sun ~ microsystems
Revision A of 9 May 1988

Chapter 13 -System V curses and terminfo: 301

Figure 13-1 A Simple curses Program

What is terminfo?

finclude <curses.h>

main ()
{

initscr () ;

move (LINES/2 - 1, COLS/2 - 4);
addstr ("Bulls");
refresh();
addstr ("Eye") ;
refresh () ;
endwin () ;

terrninfo refers to both of the following:

Terminfo Routines
This is a group of routines within the curses library for handling certain
terminal capabilities. You can use these routines to program function keys
(if your terminal has programmable keys), or write filters, for example.
Shell programmers, as well as C programmers, can use the terminfo rou
tines in their programs.

Terminfo Database
This is a database containing the descriptions of many terminals that can be
used with cur ses programs. These descriptions specify the capabilities of
a terminal and the way it performs various operations-for example, how
many lines and columns it has and how its control characters are interpreted.

Each terminal description in the database is a separate, compiled file. You
use the source code that terrninfo(5V) describes to create these files and
the command tic(8V) to compile them.

The compiled files are normally located in the directories
/usr/ share/ lib/terminfo/? These directories have single character
names, each of which is the first character in the name of a terminal. For exam
ple, an entry for a virtual terminal emulator is normally located in the file
/usr/share/lib/terminfo/v/virtual.

~~sun ~ microsystems
Revision A of 9 May 1988

302 Programming Utilities and Libraries

Figure 13-2

How curses and terminfo
Work Together

Other Components of the
Terminal Information Utilities
Package

Here is a simple shell script that uses the terminfo database.

A Shell Script Using terminfo Routines

* Clear the screen apd show the 0,0 position.

* tput clear
tput cup 0 0 =11= or tput home
echo "<- this is 0 0"

* * Show the 5,10 position.

* tput cup 5 10
echo ,,<- this is 5 10"

A screen management program with curses routines refers to the terminfo
database at run time to obtain the information it needs about the terminal being
used.

For example, suppose you are using a virtual terminal emulator to display the
simple "BullsEye" program shown above. To execute properly, the program
needs to know how many . lines and columns the terminal screen has, in order to
print the BullsEye in the middle of it. The description of the ansi tenninal
type in the terminfo database contains these values. All the curses program
needs to know beforehand is the name of the terminal type. This is generally set
automatically when you log in.

Here is a complete list of the components discussed in this tutorial:

captoinfo(8V)
a tool for converting terminal descriptions developed on earlier releases of
the SunGS system to terminfo descriptions

curses(3V)
the curses library

infocmp(8V)
a tool for printing and comparing compiled terminal descriptions

tabs(lV)
a tool for setting non-standard tab stops

terminfo(5V)
the System V terminal information database

tic(8V)
a tool for compiling terminal descriptions for the terminfo database

tput(IV)
a tool for initializing the tab stops on a terminal and for outputting the value
of a terminal capability

Revision A of9 May 1988

13.2. Working with
curses Routines

What Every curses
Program Needs

The Header File <curses. h>

Chapter 13 - System V curses and terminfo: 303

This section describes the basic cur s e s routines for creating interactive screen
management programs. It begins by describing the routines and other program
components that every cur ses program needs to work properly. Then it tells
you how to compile and run a curses program. Finally, it describes the most
frequently used cur se s routines that

o write output to and read input from a terminal screen

o control the data output and input - for example, to print output in bold type
or prevent it from echoing (printing back on a screen)

o manipulate multiple screen images (windows)

o draw simple graphics

o manipulate soft labels on a terminal screen

o send output to and accept input from more than one terminal.

To illustrate the effect of using these routines, we include simple example pro
grams as the routines are introduced. We also refer to a group of larger examples
located in the section curses Program Examples in this chapter. These larger
examples are more challenging; some make use of routines not discussed here.

All cur ses programs need to include the header file <curses. h> and call the
routines ini tscr () , refresh () or similar related routines, and endwin () .

The header file <curses. h> defines several global variables and data struc
tures and defines several curses routines as macros.

To begin, let's consider the variables and data structures defined. <curses. h>
defines all the parameters used by curses routines. It also defines the integer
variables LINES and eOLS; when a cur ses program is run on a particular ter
minal, these variables are assigned the vertical and horizontal dimensions of the
terminal screen, respectively, by the routine ini tscr () described below. The
header file defines the constants OK and ERR, too. Most curses routines have
return values; the OK value is returned if a routine is properly completed, and the
ERR value if some error occurs.

LINES and eOLS are external (global) variables that represent the size of a ter
minal screen. The environment variables, LINES and COLUMNS, may be set in
a user's shell environment; a cur se s program uses the environment variables to
determine the size of a screen.

For more information about these variables, see The Routines ini t scr () ,
refresh () , and endwin () and More about ini tscr () and Lines and
Columns, below.

Now let's consider the macro definitions. The <curses. h> header file defines
many curses routines as macros that call (other macros or) curses routines.
The line

#define refresh() wrefresh(stdscr)

shows when refresh is called, it is expanded to call the curses routine

.~sun ~ microsystems
Revision A of 9 May 1988

304 Programming Utilities and Libraries

wrefresh (). The latter routine, in tum, calls the two curses routines
wnoutrefre sh () and doupda te (). Many other macros also combine two
or three routines together to achieve a particular result.

Macro expansion in curses programs may cause problems with certain sophis
ticated C feature&, such as the use of automatic incrementing variables.

One final point about <curses. h>: it automatically includes <stdio. h> and
the <termio. h>, terminal driver interface file. Including either file again in a
program is redundant, but harmless.

The Routines initscr (),
refre sh () , and endwin ()

The routines ini tscr () , refresh () , and endwin () initialize a tenninal
screen to an "in curses state," update the contents of the screen, and restore the
terminal to an "out of curses state," respectively. Use the simple program that
we introduced earlier to learn about each of these routines:

Figure 13-3 ini t scr () , refre sh () , and endwin () in a Program

finclude <curses.h>

main ()
{

initscr () ; /* initialize terminal settings and <curses.h>
data structures and variables */

move (LINES/2 - 1, COLS/2 - 4);
addstr("Bulls");
refresh(); /* send output to (update) terminal screen */
addstr ("Eye") ;
refresh() ;
endwin () ;

/* send more output to terminal screen */
/* restore all terminal settings */

A curses program usually starts by calling initscr (); the program should
call ini t s cr () only once. Using the environment variable TERM as the sec
tion How curses and terminfo Work Together describes, this routine deter
mines what terminal is being used. It then initializes all the declared data struc
tures and other variables from <curses. h>. For example, initscr () would
initialize LINES and COLS for the sample program on whatever terminal it was
run. If a virtual terminal emulator were to be used, this routine would initialize
LINES to 24 and COLS to 80. Finally, this routine writes error messages to
stderr and exits if errors occur.

During the execution of the program, output and input is handled by routines like
move () and addstr () in the sample program. For example,

move (LINES/2 - 1, COLS/2 - 4);

says to move the cursor to the left of the middle of the screen. Then the line

addstr("Bulls");

says to write the character string Bulls. With a virtual terminal, these routines
would position the cursor and write the character string at (11,36) .

• ~sun ~ microsystems
Revision A of9 May 1988

A" curses routines that move the CUI

sor move it from its home position in
the upper left comer of a screen. The
(LINES, eOLS) coordinate at this

position is (0,0) not (1,1). Notice that
the vertical coordinate is given first and
the horizontal second, which is the
opposite of the more common 'x,y'
order of screen (or graph) coordinates.

Compiling a curses
Program

More about initscr () and
Lines and Columns

More about refresh () and
Windows

Chapter 13 - System V curses and terminfo: 305

The -1 in the sample program takes the (0,0) position into account to place the
cursor on the center line of the terminal screen.

Routines like move () and addstr () do not actually change a physical termi
nal screen when they are called. The screen is updated only when refresh ()
is called. Before, this, an internal representation of the screen called a window is
updated. This is a very important concept, which we discuss below under More
about refresh () and Windows.

Finally, a curses program ends by calling endwin (). This routine restores
all terminal settings and positions the cursor at the lower left corner of the screen.

You compile programs that include curses routines as C language programs
using the /usr / Sbin/ cc command, which invokes the C compiler.

The routines are stored in the library /usr / Slib/ libcur ses . a. To direct
the link editor to search this library, you must use the -1 option with the c c
command.

The general command line for compiling a curses program follows:

/usr / Sbin/ cc file. c -lcurses -0 file

file. c is the name of the source program; andfile is the resulting executable pro
gram.

After determining a terminal's screen dimensions, ini t scr () sets the vari
ables LINES and COLS. These variables are set from the terminfo variables
lines and columns. These, in turn, are set from the values in the terminfo
database, unless overridden by the window size obtained by the TIOCGWINSZ
ioct 1(2) request. If that size is zero, the values of the environment variables
LINES and COLUMNS are used.

As mentioned above, curses routines do not update a terminal until
refresh () is called. Instead, they write to an internal representation of the
screen called a window. When refresh () is called, the accumulated output is
sent from the window to the current terminal screen.

A window acts a lot like the buffer used by vi(l). When you invoke vi to edit a
file, the changes you make to the contents of the file are reflected in the buffer.
The changes become part of the permanent file only when you use the w or Z Z

command. Similarly, when you invoke a screen program made up of curses
routines, they change the contents of a window. The changes become part of the
current terminal screen only when refresh () is called.

<curses. h> supplies a default window named stdscr (standard screen),
which is the size of the current terminal's screen, for all programs using curses
routines. The header file defines stdscr to be of the type WINDOW*, a pointer
to a C structure which you can think of as a two-dimensional array of characters
representing a terminal screen. The program always keeps track of what is on the
physical screen, as well as what is in stdscr. When refresh () is called, it
compares the two screen images and sends a stream of characters to the terminal
that make the current screen look like stdscr. A curses program considers

Revision A of 9 May 1988

306 Programming Utilities and Libraries

Figure 13-4

many different ways to do this, taking into account the various capabilities of the
terminal, and similarities between what is on the screen and what is on the win
dow. It optimizes output by printing as few characters as is possible. The fol
lowing figure illustrates what happens when you execute the "BullsEye" curses
program.

You can create other windows and use them instead of s tds cr. Windows are
useful for maintaining several different screen images. For example, many data
entry and retrieval applications use two windows: one to control input and output
and one to print error messages that don't mess up the other window.

It is possible to subdivide a screen into many windows, refreshing each one of
them as desired. When windows overlap, the contents of the current screen show
the most recently refreshed window. It is also possible to create a window within
a window; the smaller window is called a subwindow. Assume that you are
designing an application that uses fonns, for example, an expense voucher, as a
user interface. You could use subwindows to control access to certain fields on
the form.

Some curses routines are designed to work with a special type of window
called a pad. A pad is a window whose size is not restricted by the size of a
screen or associated with a particular part of a screen. You can use a pad when
you have a particularly large window or only need part of the window on the
screen at anyone time. For example, you might use a pad for an application with
a spread sheet.

The illustration below represents what a pad, a subwindow, and some other win
dows might look like in comparison to a terminal screen.

Multiple Windows and Pads Mapped to a Terminal Screen

tenninal screen

window window

- pad

pad

I ~~d I -;r-

~window

f
window 1

Revision A of 9 May 1988

Simple Output and Input
OUtput

addch () - Write a single
character to stdscr

Chapter 13 - System V curses and terminfo: 307

The section Building Windows and Pads, later in this chapter, describes the rou
tines you use to create and use them.

The routines that curses provides for writing to stdscr are similar to those
provided by the stdio(3V) library for writing to a file. They let you:

o write a character at a time - addch ()

o write a string - addstr ()

o format a string from a variety of input arguments - p r in t w ()

o move a cursor or move a cursor and print character(s) - move () ,
mvaddch(),mvaddstr(),mvprintw()

o clear a screen ora part of it- clear (), erase (), clrtoeol (),-
clrtobot()

Following are descriptions and examples of these routines.

The cur ses library provides its own set of output and input functions. You
should not use other I/O routines or system calls, like read(2) and wr i te(2), in
a cur s e s program. They may cause undesirable results when you run the pro
gram.

#include <curses.h>
int addch(ch)
chtype ch;

addch () is a macro that writes a single character to stdscr. The character is
of the type chtype, which is defined in <curses. h>. chtype contains both
data and attributes (see Output Attributes in this chapter for information about
attributes); when working with variables of this type, make sure you declare them
as chtype, and not as the underlying data type (for example, short) of
chtype. This will ensure future compatibility.

addch () does some character translations. For example, it maps the
(NEWLINE) character to a c1ear-to-end-of-line, and moves the cursor to the next
line. It maps the (TAB) character to an appropriate number of blanks. It maps
other control characters to the appropriate' AX' notation.

addch () normally returns OK. The only time addch () returns ERR is after
adding a character to the lower right-hand comer of a window that does not
scroll .

• \sun ~ microsystems
Revision A of 9 May 1988

308 Programming Utilities and Libraries

addstr () - write a string of
characters to stdscr

printw () - fonnatted
printing on stdscr

Example:

#include <curses.h>

main ()
{

produces:

initscr();
addch('a');
refresh();
endwin () ;

Also see the show program under curses Example Programs later in this
chapter.

#include <curses.h>

int addstr(str)
char *str;

addstr () is a macro that follows the same translation rules as addch () ; it
calls addch () to write each character. addstr () returns OK on success and
ERR on error.

For an example, refer to the "BullsEye" program, above.

#include <curses.h>

int printw(fmt [,arg ...])
char *fmt

Like printf, printw () takes a format string and a variable number of argu
ments. Like addstr (), printw () calls addch () to write the string.
printw () returns OK on success and ERR on error.

Revision A of 9 May 1988

#include <curses.h>

main ()
{

Chapter 13 - System V curses and terminfo: 309

Example:

char* title
int no = 0;

"Not specified";

initscr () ;
printw("%s is not in stock.\n", title);
printw("Please ask the cashier to order %d for you.\n", no);
refresh () ;
endwin();

move () - position the cursor
for stdscr

produces:

#include <curses.h>

int move(y, x);
int y, x;

move () positions the cursor for stdscr at the given row y and the given
column x.

Notice that move () takes the y coordinate before the x coordinate. The upper
left-hand coordinates for stdscr are (0,0), the lower right-hand (LINES - 1,
eOLS -1). See the section initscr (), refresh () , and endwin () for
more information.

move () returns OK on success and ERR on error. Trying to move to a screen
position of less than (0,0) or more than (LINES - 1, eOLS - 1) causes an error.

Revision A of 9 May 1988

310 Programming Utilities and Libraries

#include <curses.h>

main ()
{

initscr();

Example:

addstr("Cursor should be here --> if move() works."};
printw("\n\n\nPress <CR> to end test. "};
move(O,25) ;
refresh();
getch(); /* Gets <CR>; discussed below. */
endwin () ;

mvaddch - move and print a
character

mvaddstr - move and print a
string

produces:

After you press (RETURN \, the screen looks like:

See the scatter program under curses Program Examples in this chapter
for another example.

*include <curses.h>

int mvaddch(y, x, ch

mvaddch () is a macro that moves the cursor to a given position and prints a
character.

#include <curses.h>

int mvaddstr(y, x, str)

mvaddstr () is a macro that moves the cursor to a given position and prints a
string of characters.

Revision A of 9 May 1988

mvprintw - move and print a
formatted string

clear () and erase ()
clear the screen

clrtoeol () and
clrtobot () - partial screen
clears

#include <curses.h>

main ()
{

initscr();

Chapter 13 -System V curses and terminfo: 311

*include <curses.h>

int mvprintw (y, x, fmt [, arg]...)

mvpr in t w () is a macro that moves the cursor to a given position and prints a
formatted string. of using move () .

*include <curses.h>

int clear ()
int erase ()

clear () and erase () are macros that convert stdscr to all blanks.
clear () assumes that the screen may have garbage that it doesn't know about;
it first calls erase () and then clearok () , which clears the physical screen
completely on the next call to refresh (). initscr () automatically calls
clear ().

clear () always returns OK; erase () returns no useful value.

*include <curses.h>

int clrtoeol ()
int clrtobot ()

clrtoeol () and clrtobot () are macros that clear a portion of the screen.
clrtoeol () changes the remainder of a line to all blanks. clrtobot ()
changes the remainder of a screen to all blanks. Both start with the current cur
sor position inclusive.

Neither returns any useful value.

Example:

addstr("Press <CR> to delete from here to the end of the line and on.");
addstr("\nDelete this too.\nAnd this.");
move(O,30);
refresh();
getch () ;
clrtobot();
refresh();
endwin();

~\sun ,~ microsystems
Revision A of9 May 1988

312 Programming Utilities and Libraries

Input

getch () - read asingle
character from the current
terminal

produces:

Notice the two calls to refresh () : one to send the full screen of text to a ter
minal, the other to clear from the position indicated to the bottom of a screen.

Here's what the screen looks like when you press I RETURN I:

See the show and two programs under curses Example Programs for exam
ples of clrtoeol () .

curses routines for reading from the current terminal are similar to those pro
vided by the stdio(3V) library for reading from a file. They let you

o read a character at a time - getch ()

o read a I NEWLINE I-terminated string - getstr ()

o parse input, converting and assigning selected data to an argument list -
scanw ()

The primary routine is get ch () , which processes a single input character and
then returns that character. This routine is like the C library routine
getchar () (3V) except that it makes several terminal- or system-dependent
options available that are not possible with getchar (). For example, you can
use getch () with the curses routine keypad () ,which allows a curses
program to interpret extra keys on a user's terminal, such as arrow keys, function
keys, and other special keys that transmit escape sequences, and treat them as just
another key.

#include <curses.h>

int getch ()

getch () is a macro that returns the value of the character or ERR on 'end of
file', receipt of signals, or non-blocking read with no input.

See the discussions about echo () , noecho () , cbreak () , nocbreak () ,
raw () , noraw () , halfdelay () , nodelay () , and keypad () below.

~~sun
• microsystems

Revision A of 9 May 1988

#include <curses.h>

main ()
{

int Chi

initscr () ;
cbreak();

Chapter 13 - System V curses and terminfo: 313

Example:

/* Explained later in the section "Input Options" */
addstr(flPress any character: fI);
refresh();
ch = getch () ;
printw(fI\n\n\nThe character entered was a '%c' .\n", ch);
refresh () ;
endwin() ;

ge t s t r () - read character
string into a buffer

The first refresh () sends the addstr () character string from stdscr to
the terminal:

Then assume that a w is typed at the keyboard. getch () accepts the character
and assigns it to ch. Finally, the second refresh () is called:

For another example of getch (), see the show program under curses Exam
ple Programs.

#include <curses.h>

int getstr (str)
char *str;

getstr () is a macro that calls getch () to read a string of characters into a
buffer, until a (RETURN], (NEWLINE), or (ENTER) key is received from
stdscr.o getstr () does not check for buffer overflow.

getstr () returns ERR if getch () returns ERR; otherwise it returns OK.

See the discussions about echo () , noecho () , cbreak () , nocbreak () ,
raw () , noraw () , halfdelay () , nodelay () , and keypad () below.

Revision A of9 May 1988

314 Programming Utilities and Libraries

tinclude <curses.h>

main ()
{

char str[256];

initscr () ;

Example:

cbreak () ; /* Explained later in the section "Input Options" */
addstr("Enter a character string terminated by <CR>:\n\n");
refresh ()
getstr(str);
printw("\n\n\nThe string entered was \n'%s'\n", str);
refresh();
endwin();

scanw () - fonnatted input
conversion

If you enter the string 'I enjoy learning about the SunOS system', the final screen
(after entering I RETURN I) would appear as:

tinclude <curses.h>

int scanw(fmt [, arg ...])
char *fmt;

Like scanf(3V), scanw () uses a format string to convert input words and
assign them to a variable number of arguments. scan w () returns the same
values as s canf ()

See scanf(3V) for more information .

• ~sun
• microsystems

Revision A of 9 May 1988

*include <curses.h>

main ()
{

char string[lOO];
float number;

initscr() ;

Chapter 13 - System V curses and terminfo: 315

Example:

cbreak(); /* Explained later in the */
echo(); /* section "Input Options" */
addstr("Enter a number and a string separated by a comma: ");
refresh () ;
scanw("%f,%s",&number,string);
clear () ;
printw("The string was \"%s\" and the number was %f.",string,nurnber);
refresh() ;
endwin();

Controlling Output and Input
Output Attributes

Notice the two calls to refresh (). The first call updates the screen with the
character string passed to addstr () , the second with the string returned from
scanw (). Also notice the call to clear (). Assume you entered the follow
ing when prompted: 2, twin. After running this program, your terminal screen
would appear, as follows:

When we talked about addc h () , we said that it writes a single character of the
type chtype to stdscr. chtype has two parts: a part with information about
the character itself, and another part with information about a set of attributes
associated with the character. These attributes allow a character to be printed in
reverse video, bold, underlined, and so on.

stdscr always has a set of current attributes that it associates with each charac
ter as it is written. However, using the routine attrset () and the related
curses routines described below, you can change the current attributes. Below
is a list of the attributes and what they mean.

~\sun ~ microsysterns
Revision A of9 May 1988

316 Programming Utilities and Libraries

Not all terminals are capable of
displaying all attributes. If a particu
lar terminal cannot display a
requested attribute, a curses pro
gram attempts to find a substitute attri
bute. If none is possible, the attribute is
ignored.

Bit Masks

A BLINK
A BOLD
A DIM
A REVERSE
A STANDOUT
A UNDERLINE
A ALTCHARSET

blinking
extra bright or bold
half bright
reverse video
a terminal's best highlighting mode
underlining
alternate character set

(See the section Drawing Lines and Other Graphics, below, for more informa
tion about these attributes.)

To use these attributes, you must pass them as arguments to attrset ()and
related routines; they can also be OR'ed with the bitwise OR (I) to addch () .

Let's consider a use of one of these attributes. To display a word in bold, use the
following code:

printw("A word in H);
attrset(A_BOLD);
printw("boldface");
attrset(O);
printw(" really stands out.\n");
refresh();

Attributes can be turned on singly, such as attrset (A_BOLD) in the example,
or in combination. To tum on blinking bold text, for example, you would use
attrset (A_BLINK I A_BOLD). Individual attributes can be turned on
and off with the curses routines attron () and attroff () without affect
ing other attributes. at trset (0) turns all attributes off.

Notice the attribute called A_STANDOUT. You might use it to make text attract
the attention of a user. The particular hardware attribute used for standout is the
most visually pleasing attribute a terminal has. Standout is typically imple
mented as reverse video or bold. Many programs don't really need a specific
attribute, such as bold or reverse video, but instead just need to highlight some
text. For such applications, the A _ S T ANDO UT attribute is recommended. Two
convenient functions, standout () and standend () can be used to tum on
and off this attribute. standend () , in fact, turns off all attributes.

In addition to the attributes listed above, there are two bit masks called
A CHARTEXT and A ATTRIBUTES. You can use these bit masks with the - -
curses function inch () and the C logical AND (&) operator to extract the
character or attributes of a position on a terminal screen. See the discussion of
inch () for more information.

Following are descriptions of attrset () and the other curses routines that
you can use to manipulate attributes.

~~sun ,~ microsystems
Revision A of9 May 1988

attron () , attrset (), and
attroff () - set or modify
attributes

standout () and
standend () - highlight
with preferred attribute

Bells, Whistles, and Flashing
Lights

iinclude <curses.h>

int attron(attrs)
chtype attrs;

int attrset(attrs
chtype attrs;

int attroff(attrs
chtype attrs;

Chapter 13 - System V curses and terminfo: 317

attron () turns on the requested attribute attrs in addition to any that are
currently on. Attrs is of the type chtype and is defined in <curses. h>.

at tr set () turns on the requested attributes at tr s instead of any that are
currently turned on.

attroff () turns off the requested attributes, attrs, if they are on.

Attributes may be combined using the bitwise OR (I).

All return OK.

Example:
See the highlight program under cur ses Example Programs, below.

iinclude <curses.h>

int standout()
int standend ()

standout () turns on the preferred highlighting attribute, A_STANDOUT, for
the current terminal. This routine is equivalent to attron (A_STANDOUT).

standend () turns off all attributes. This routine is equivalent to
attrset (0).

Both always return OK.

Example:
See the highlight program under curses Example Programs, below.

Occasionally, you may want to get a user's attention. Two curses
routines were designed to help you do this. They let you ring the terminal's bell
and flash its screen.

flash () flashes the screen if possible, and otherwise rings the bell. Flashing
the screen is intended as a bell replacement, and is particularly useful if the bell
bothers someone within ear shot of the user. The routine beep () can be called
when an audible bell is desired. (If for some reason the terminal is unable to
beep, but able to flash, a call to beep () will flash the screen.)

.\sun ~ microsystems
Revision A of 9 May 1988

318 Programming Utilities and Libraries

beep () and flash () - ring
bell or flash screen

Input Options

*include <curses.h>

int flash ()
int beep ()

flash () tries to flash the terminal screen, if possible, otherwise it tries to ring
the terminal bell.

beep () tries to ring the terminal bell, if possible, and, if not, tries to flash the
terminal screen.

Neither returns any useful value.

The SunOS system does a considerable amount of processing on input before an
application ever sees a character; amongst other things, it:

o echoes (prints back) characters to a terminal as they are typed

o interprets an erase character, typically (DELETE] and a line kill character,
typically
(CTRL-U I (control-V)

o interprets a (CTRL-D] as end-of-file (EOF) character.

o interprets interrupt and quit characters

o strips the character's parity bit

o translates (RETURN I characters to (NEWLINE Is.

Because a curses program maintains total control over the screen, curses
turns off echoing; it does the echoing itself. For an interactive screen, you may
not want the system to process characters in the standard way. Some curses
routines, noecho () and cbreak () ,for example, have been designed so that
you can alter the standard character processing. Using these routines in an appli
cation controls how input is interpreted.

Every cur s e s program accepting input should set some input options so that
when the program starts running, the terminal on which it runs will be in
cbreak (), raw () ,nocbreak (), or noraw () mode. Although the
curses program starts up in echo () mode, as shown below, none of the other
modes are guaranteed.

The combination of noecho () and cbreak () is most common in interactive
screen management programs. Suppose, for instance, that you don't want the
characters sent to your application program to be echoed wherever the cursor
currently happens to be; instead, you want them echoed at the bottom of the
screen. The curses routine noecho () is designed for this purpose. How
ever, when noecho () turns off echoing, normal erase and kill processing is still
on. Using the routine cbreak () causes these characters to be uninterpreted.

Revision A of 9 May 1988

Figure 13-5

Chapter 13 - System V curses and terminfo: 319

Input Option Settings/or curses Programs

Input Characters
Options Interpreted Uninterpreted

Nonnal interrupt, quit
'out of curses stripping
state' <CR> to <NL>

echoing
erase, kill
EOF

Nonnal echoing All else
curses 'start up (simulated) undefined.
state'

cbreak () interrupt, quit erase, kill
and echo () stripping EOF

echoing

cbreak () interrupt, quit echoing
and noecho () stripping erase, kill

EOF

nocbreak () break, quit echoing
and no echo () stripping

erase, kill
EOF

nocbreak () See cauti Dn below.
and echo ()

n1 () <CR> to <NL>

non 1 () <CR> to <NL>

raw() break, quit
(instead of stripping
cbreak (»)

Do not use the combination nocbreak () and noecho (). If you use it in a
program and also use get ch () , the program will go in and out of cbreak ()
mode to get each character. Depending on the state of the terminal driver when
each character is typed, the program may produce undesirable output.

In addition to the routines noted above, you can use the curses routines
noraw (), ha1fdelay () , and node1ay () to control input. These routines
are described in curses(3V) .

• \sun ~~ microsystems
Revision A of9 May 1988

320 Programming Utilities and Libraries

echo () and noecho ()
tum echoing on and off

cbreak () and nocbreak ()
- tum "break for each
character" on or off

Building Windows and Pads

Window Output and Input

#include <curses.h>

int echo ()
int noecho()

echo () turns on echoing of characters by curses as they are read in. This is
the initial setting.

noecho () turns off the echoing.

Neither returns any useful value.

curses programs may not run properly if you tum on echoing with noc
break (). After you tum echoing off, you can still echo characters with
addch ().

Examples:
See the editor and show programs under curses Program Examples,
below.

#include < curses.h >
int cbreak ()
int nocbreak ()

cbreak () turns on 'break for each character' processing. A program gets each
character as soon as it is typed, but the erase, line kill, and (CTRL-D I characters
are not interpreted.

nocbreak () returns to normal 'line at a time' processing. This is typically the
initial setting.

Neither returns any useful value.

A curses program may not run properly if cbreak () is turned on and off
within the same program or if the combination nocbreak () and echo () is
used.

Example:
See the editor and show programs under curses Program Examples.

The section above entitled More about refresh () and Windows explained
what windows and pads are and why you might want to use them. This section
describes the cur se s routines you use to manipulate and create windows and
pads.

The routines that you use to send output to and get input from windows and pads
are similar to those you use with stdscr. The only difference is that you have
to give the name of the window to receive the action. Generally, these functions
have names formed by putting the letter w at the beginning of the name of a
stdscr routine and adding the window name as the first parameter. For exam
ple, addch (' c') would become waddch (my win , ' c ') if you
wanted to write the character c to the window my win. Here's a
list of the window (or w) versions of the output routines discussed in Getting
Simple Output and Input.

~\sun ~~ microsystems
Revision A of 9 May 1988

The Routines
wnoutrefresh () and
doupdate ()

Chapter 13 - System V curses and terminfo: 321

waddch(win, ch)
mvwaddch(win, y, x, ch)
waddstr(win, str)
mvwaddstr(win, y, x, str)
wprintw (win, fmt [, arq ...])
mvwprintw(win, y, x, fmt [, arg ...])
wrnove(win, y, x)
wclear (win) and werase (win)
wclrtoeol (win) and wclrtobot (win)
wrefresh ()

You can see from their declarations that these routines differ from the versions
that manipulate stdscr only in their names and the addition of a win argument.
Notice that the routines whose names begin with mvw take the win argument
before the y, x coordinates, which is contrary to what the names imply. See
cu r s e s (3 V) for more information about these routines, or the versions of the
input routines getch, getstr () , and so on that you should use with win
dows.

All w routines can be used with pads except for wrefresh () and
wnoutrefresh (). In place of these two routines, you have to use
prefresh () and pnoutrefresh () with pads.

If you recall from the earlier discussion about refresh () , we said that it sends
the output from stdscr to the terminal screen. We also said that it was a macro
that expands to wrefresh (stdscr) (see What Every curses Program
Needs and More about refresh () and Windows).

The wrefresh () routine is used to send the contents of a window (stdscr or
one that you create) to a screen; it calls the routines wnoutrefresh () and
doupdate (). Similarly, prefresh () sends the contents of a pad to a screen
by calling pnoutrefresh () and doupdate () .

Using wnoutrefresh () --orpnoutrefresh () (this discussion will be
limited to the former routine for simplicity)-and doupdate () , you can update
terminal screens with more efficiency than using wrefresh () by itself.
wrefresh () works by first calling wnoutrefresh () , which copies the
named window to a data structure referred to as the virtual screen; The virtual
screen contains what a program intends to display at a terminal. After calling
wnoutrefresh () , wrefresh () then calls doupdate () , which compares
the virtual screen to the physical screen and does the actual update. If you want
to output several windows at once, calling wrefresh () will result in alternat
ing calls to wnoutrefresh () and doupdate () , causing several bursts of
output to a screen. However, by calling wnoutrefresh () for each window
and then doupdate () only once, you can minimize the total number of charac
ters transmitted and the processor time used. The sample program below uses
only one doupdate () .

Revision A of9 May 1988

322 Programming Utilities and Libraries

New Windows

newwin () - open and return
a pointer to new window

finelude <eurses.h>

main ()
{

WINDOW *wl, *w2;

initser();
wl = newwin(2,6,O,3);
w2 = newwin(l,4,S,4);
waddstr(wl, "Bulls");
wnoutrefresh(wl);
waddstr(w2, "Eye");
wnoutrefresh(w2);
doupdate();
endwin();

Notice from the sample that you declare a new window at the beginning of a
curses program. The lines

wI newwin(2,6,O,3);
w2 newwin(l,4,S,4);

declare two windows named wI and w2 with the routine newwin () according
to certain specifications.

Following are descriptions of the routines newwin () and subwin (), which
you use to create new windows. For information about creating new pads with
newpad () and subpad () , see cur se s(3V).

iinelude <eurses.h>

WINDOW *newwin(nlines, neols, begin_y, begin_x)
int nlines, neols, begin_y, begin_xi

neww in () returns a pointer to a new window with a new data area. The vari
ables nlines and ncols give the size of the new window. begin_yand
begin _x give the screen coordinates from (0,0) of the upper left comer of the
window as it is refreshed to the current screen.

Example:
See the window program under curses Program Examples.

Revision A of 9 May 1988

subwin ()

#include <curses.h>

main ()
{

WINDOW *sub;

initser () ;

Chapter 13 - System V curses and terminfo: 323

#inelude <curses.h>

WINDOW *subwin(orig, nlines, ncols, begin_y, begin_x)
WINDOW *orig;
int nlines, neols, begin_y, begin_x;

subwin () returns a new window that points to a section of another window,
orig. nlines and ncols give the size of the new subwindow. begin_y
and begin _x give the screen coordinates of the upper left corner of the window
as it is refreshed to the current screen.

Subwindows and original windows can accidentally overwrite one another.

Subwindows of subwindows are not allowed.

Example:

box(stdscr,'w','w'); /* See the curses (3V) manual page for box() */
mvwaddstr(stdscr,7, 10, "------- this is 10,10");
mvwaddch (stdscr, 8, 10,' I');
mvwaddch(stdser,9,10,'v');
sub = subwin(stdscr,lO,20,lO,lO);
box(sub,'s' ,'s');
wnoutrefresh(stdscr) ;
wrefresh(sub) ;
endwin() ;

Using Advanced cur s e s
Features

This program prints a border of ws around the stdscr (the sides of your termi
nal screen) and a border of s characters around the subwindow sub when it is
run.

Knowing how to use the basic cur se s routines to get output and input and to
work with windows, you can design screen management programs that meet the
needs of many users. The curses library, however, has routines that let you do
more in a program than handle 110 and multiple windows. The following few
pages briefly describe some of these routines and what they can help you do
namely, draw simple graphics, use a terminal's soft labels, and work with more
than one terminal in a single curses program.

You should be comfortable using the routines previously discussed in this
chapter and the other routines for I/O and window manipulation discussed on the
curses(3V) manual page before you try to use the advanced curses features.

~~sun ~ microsystems
Revision A of 9 May 1988

324 Programming Utilities and Libraries

Routines for Drawing Lines and
Other Graphics

Many terminals have an alternate character set for drawing simple graphics (or
glyphs, or graphic symbols). You can use this character set in curses pro
grams. curses use the same names for glyphs as the VT100 line drawing char
acter set.

To use the alternate character set in a cur s e s program, pass a set of variables
whose names begin with ACS_ to the Gurses routine waddch () or a related
routine. For example, ACS _ ULCORNER is the variable for the upper left comer
glyph. If a terminal has a line drawing character for this glyph,
ACS _ ULCORNER's value is the terminal's character for that glyph, ORed (I)
with the bit-mask A _ ALTCHARSET. If no line-drawing character is available for
that glyph, a standard ASCII character that approximates the glyph is stored in its
place. For example, the default character for ACS _ HLINE, a horizontal line, is a
- (minus sign). When a close approximation is not available, a + (plus sign) is
used. All the standard ACS_ names and their defaults are listed in curses(3V).

Part of an example program that uses line drawing characters follows. The
example uses the curses routine box () to draw a box around a menu on a
screen. box () uses the line drawing characters by default or when I (the pipe)
and - are chosen. (See cur ses(3V).) Up and down more indicators are drawn
on the box border (using ACS _ UARROW and ACS _DARROW) if the menu con
tained within the box continues above or below the screen:

box (menuwin, ACS_VLINE, ACS_HLINE);

/* output the up/down arrows */
wmove(menuwin, maxy, maxx - 5);

/* output up arrow or horizontal line */
if (moreabove)

waddch(menuwin, ACS_UARROW);
else

addch(menuwin, ACS_HLINE);

/*output down arrow or horizontal line */
if (morebelow)

waddch(menuwin, ACS_DARROW);
else

waddch(menuwin, ACS_HLINE);

Here's another example. Because a default down arrow (like the lowercase letter
v) isn't very discernible on a screen with many lowercase characters on it, you
can change it to an uppercase V.

if (! (ACS_DARROW & A_ALTCHARSET»
ACS DARROW = 'V';

+~t!! Revision A of9 May 1988

Routines for Using Soft Labels

Chapter 13 - System V curses and terminfo: 325

Another feature available on most terminals is a set of soft labels across the bot
tom of their screens. A terminal's soft labels are usually matched with a set of
hard function keys on the keyboard. There are usually eight of these labels, each
of which is usually eight characters wide and one or two lines high.

The curses library has routines that provide a uniform model of eight soft
labels on the screen. If a terminal does not have soft labels, the bottom line of its
screen is converted into a soft label area. It is not necessary for the keyboard to
have hard function keys to match the soft labels for a curses program to make
use of them.

Let's briefly discuss most of the curses routines needed to use soft labels:
slk_init (), slk_set (), slk_refresh () and slk_noutrefresh (),
slk_clear, and slk_restore.

When you use soft labels in a curses program, you have to call the routine
slk_int () before initscr (). This sets an internal flag for initscr () to
look at that says to use the soft labels. If ini t scr () discovers that there are
fewer than eight soft labels on the screen, that they are smaller than eight charac
ters in size, or that there is no way to program them, then it will remove a line
from the bottom of stdscr to use for the soft labels. The size of stdscr and
the LINES variable will be reduced by 1 to reflect this change. A properly writ
ten program, one that is written to use the LINES and eOLS variables, will con
tinue to run as if the line had never existed on the screen.

slk_init () takes a single argument. It determines how the labels are
grouped on the screen should a line get removed from stdscr. The choices are
between a 3-2-3 arrangement, and a 4-4 arrangement. The cur se s routines
adjust the width and placement of the labels to maintain the pattern. The widest
label generated is eight characters.

The routine s lk _set () takes three arguments, the label number (1-8), the
string to go on the label (up to eight characters), and the justification within the
label (0 = left-justified, 1 = centered, and 2 = right-justified).

The routine slk_noutrefresh () is comparable to wnoutrefresh () in
that it copies the label information onto the internal screen image, but it does not
cause the screen to be updated. Since a wrefresh () commonly follows,
slk_noutrefresh () is the function that is most commonly used to output
the labels.

Just as wrefresh () is equivalent to a wnoutrefresh () followed by a
doupdate () ,so too the function slk_refresh () is equivalent to a
slk_noutrefresh () followed by a doupdate ().

To prevent the soft labels from getting in the way of a shell escape,
slk --,-clear () may be called before doing the endwin (). This clears the soft
labels off the screen and does a doupdate (). The function
slk_restore () may be used to restore them to the screen. See the
curses(3V) manual page for more information about the routines for using soft
labels .

• \sun ~ microsystems
Revision A of 9 May 1988

326 Programming Utilities and Libraries

Working with More than One
Terminal

A cur s e s program can produce output on more than one terminal at the same
time. This is useful for single process programs that access a common database,
such as multi-player games.

Writing programs that output to multiple terminals is a difficult business, and the
curses library does-not solve all the problems you-might encounter. For
instance, the programs-not the library routines-must determine the filename
and terminal-type of each terminal. The standard method, checking TERM in the
environment, does not work, because each process can only examine its own
environment.

Another problem you might face is that of multiple programs reading from one
tty line. This situation produces a race condition and should be avoided. How
ever, a program trying to take over another terminal cannot just shut off whatever
program is currently running on its line. (Usually, security reasons would also
make this inappropriate. But, for some applications, such as an inter-terminal
communication program, or a program that takes over unused terminal lines, it
would be appropriate.) A typical solution to this problem requires each user
logged in on a line to run a program that notifies a master program that the user is
interested in joining the master program and tells it the notification program's
process ID, the name of the tty line, and the type of terminal being used. Then
the program goes to sleep until the master program finishes. When done, the
master program wakes up the notification program and all programs exit.

A cur ses program handles multiple terminals by always having a current ter
minal. All function calls always affect the current terminal. The master program
should set up each terminal, saving a reference to the terminals in its own vari
ables. When it wishes to affect a terminal, it should set the current terminal as
desired, and then call ordinary curses routines.

References to terminals in a curses program have the type SCREEN*. A new
terminal is initialized by calling newterm (type, outfd, infd). newterm ()
returns a screen reference to the terminal being set up. type is a character string,
naming the kind of terminal being used. outfd is a stdio(3V) file pointer
(FILE*) used for output to the terminal and infd a file pointer for input from the
terminal. This call replaces the normal call to initscr (), which calls
newterm(getenv("TERM"), stdout, stdin).

To change the current terminal, call set_term (sp) where sp is the screen refer
ence to be made current. set _term () returns a reference to the previous ter
minal.

It is important to realize that each terminal has its own set of windows and
options. Each terminal must be initialized separately with newterm () .
Options such as cbreak () and noecho () must be set separately for each ter
minal. The functions endwin () and refresh () must be called separately
for each terminal. The figur.e below shows a typical scenario to output a message
to several terminals.

Revision A of 9 May 1988

Figure 13-6

13.3. Working with
terminfo Routines

terminfo routines should not be used
directly, except in the circumstances
noted at right; the equivalent curses
routines protect your program from the
idiosyncracies of physical terminals.
When you use the terminfo routines,
you must deal with them yourself.
Also, these low-level routines may
change, rendering programs that rely on
them obsolete.

What Every terminfo
Program Needs

Figure 13-7

Chapter 13 - System V curses and terminfo: 327

Sending a Message to Several Terminals

for (i=O; i<nterm; i++)
{

set_term (terms [i]) ;
mvaddstr(O, 0, "Important message");
refresh() ;

See the two program under curses Program Examples for a more complete
example.

Some programs need to use lower-level routines than those offered by the
curses routines. For such programs, the terminfo routines are offered.
They do not manage your terminal screen, but rather, give you access to strings
and capabilities which you can use yourself to manipulate the terminal.

There are three circumstances when it is proper to use terminfo routines
directly. The first is when you need only some screen management capabilities,
for example, making text standout on a screen. The second is when writing a
filter. A typical filter does one transformation on an input stream without clear
ing the screen or addressing the cursor. If this transformation is terminal depen
dent and clearing the screen is inappropriate, use of the terminfo routines is
worthwhile. The third is when you are writing a special-purpose tool that sends a
special string to the terminal, such as programming a function key, setting tab
stops, sending output to a printer port, or dealing with the status line.

Otherwise, you are discouraged from using these routines: the higher level
curses routines make your program more portable to other SunOS systems,
and to a wider class of terminals.

A terminfo program typically includes the header files and routines shown
below:

Typical Framework of a terminfo Program

finclude <curses.h>
finclude <term.h>

setupterm((char*)O, 1, (int*)O);

putp(clear_screen);

reset_shell_mode();
exit(O);

+~I!! Revision A of 9 May 1988

328 Programming Utilities and Libraries

Compiling and Running a
terminfo Program

An Example terminfo
Program

/*

The header files <cur ses . h> and <term. h> are required because they con
tain the definitions of the strings, numbers, and flags used by the terminfo
routines. setupterm () takes care of initialization. Passing this routine the
values (char*) 0, 1, and (int*) 0 invokes reasonable defaults. If setup
term () can't figure out what kind of terminal you are on, it prints an error mes
sage and exits. reset_sheIl_mode () performs' functions similar to
endwin () and should be called before a terminfo program exits.

A global variable like clear_screen is defined by the call to setup-
term (). It can be output using the terminfo routines putp () or tputs () ,
which gives a user more control. This string should not be directly output to the
terminal using the C library routine printf(3V), because it contains padding
information. A program that directly outputs strings will fail on terminals that
require padding or that use the xon/xoff flow control protocol.

At the terminfo level, the higher level routines like addch () and getch ()
are not available. It is up to you to output whatever is needed. For a list of capa
bilities and a description of what they do, see terminfo(5V); see curses(3V)
for a list of all the terminfo routines.

The general command line for compiling, and the guidelines for running a pro
gram with terminfo routines are the same as those for compiling any other
curses program.

The example program, termhl, shows a simple use of terminfo routines. It
is a version of the highlight program (see curses Program Examples) that
does not use the higher level curses routines. termhl can be used as a filter.
It includes the strings to enter bold and underline mode and to tum off all attri
butes.

* A terminfo level version of the highlight program.
*/

#include <curses.h>
#include <term.h>

int ulmode = 0;

main(argc, argv)
int argc;
char **argv;

FILE *fd;
int c, c2;
int outch () ;

if (argc > 2)

/* Currently underlining */

fprintf(stderr, "Usage: termhl [file]\n"); .
exit(l);

Revision A of 9 May 1988

/*

if (argc == 2)

fd = fopen(argv[l], "r");
if (fd == NULL)
{

else

perror(argv[l]);
exit(2);

fd = stdin;

setupterm«char*)O, 1, (int*)O);

for (;;)
{

c = getc(fd);
if (c == EOF)
break;
if (c '\')

c2 = getc (fd) ;
switch (c2)
{

case 'B':
tputs(enter_bold_rnode, 1, outch);
continue;
case 'U':
tputs(enter_underline_rnode, 1, outch);
ulrnode = 1;
continue;
case 'N':
tputs(exit_attribute_rnode, 1, outch);
ulrnode = 0;
continue;

putch(c);
putch(c2);

else
putch (c) ;

fclose(fd);
fflush(stdout);
resetterm() ;
exit (0);

Chapter 13 - System V curses and terrninfo: 329

* This function is like putchar, but it checks for underlining.
*/

putch (c)
int c;

outch (c);
if (ulmode && underline_char)
{

sun
microsystems

Revision A of 9 May 1988

330 Programming Utilities and Libraries

outch (' \h') ;
tputs(underline_char, 1, outch);

/*
* Outchar is a function version of put char that can he passed to
* tputs as a routine to call.
*/

outch (c)
int c;

putchar (c) ;

Let's discuss the use of the function tputs (cap, affcnt, outc) in this program
to gain some insight into the terminfo routines. tputs () applies padding
information. Some terminals have the capability to delay output. Their tenninal
descriptions in the terminfo database probably contain strings like $<20>,
which means to pad for 20 milliseconds (see the following section Specifying
Capabilities). tputs generates enough pad characters to delay for the appropri
ate time.

tput () has three parameters. The first parameter is the string capability to be
output.

The second is the number of lines affected by the capability. Some capabilities
may require padding that depends on the number of lines affected. For example,
insert_line may have to copy all lines below the current line, and may
require time proportional to the number of lines copied. By convention affcnt is
1 if no lines are affected. The value 1 is used, rather than 0, for safety, since
affcnt is multiplied by the amount of time per item, and anything multiplied by 0
is o.
The third parameter is a routine to be called with each character.

For many simple programs, affcnt is always 1 and outc always calls put char.
For these programs, the routine pu t p (cap) is a convenient abbreviation.
termhl could be simplified by using putp ().

Now to understand why you should use the cur se s level routines instead of
terminfo level routines whenever possible, note the special check for the
underline_char capability in this sample program. Some terminals, rather
than having a code to start underlining and a code to stop underlining, have a
code to underline the current character. termhl keeps track of the current
mode, and if the current character is supposed to be underlined, outputs
unde,rline_char, if necessary. Low level details such as this are precisely
why the curses level is recommended over the terminfo level. curses takes
care of terminals with different methods of underlining and other terminal func
tions. Programs at the terminfo level must handle such details themselves.

termhl was written to illustrate a typical use of the terminfo routines. It is
more complex than it need be in order to illustrate some properties of ter
minfo programs. The routine vidattr (see curses(3V)) could have been

Revision A of 9 May 1988

13.4. Working with the
terminfo Database

Writing Terminal
Descriptions

Naming the Terminal

Chapter 13 - System V curses and terminfo: 331

used instead of directly outputting enter_bold _mode,
enter_underline_mode, and exit_at tribute_mode. In fact, the pro
gram would be more robust if it did, since there are several ways to change video
attribute modes.

The terminfo database describes the many terminals with which curses pro
grams, as well as some SunGS system tools, like v i(1), can be used. Each ter
minal description is a compiled file containing the names that the terminal is
known by and a group of comma-separated fields describing the actions and
capabilities of the terminal. This section describes the terminfo database,
related support tools, and their relationship to the curses library.

Descriptions of many popular terminals are already provided in the terminfo
database. However, it is possible that you'll want to run a curses program on a
terminal for which there is no existing description. In this case, you'll have to
build the description.

The general procedure for building a terminal description is as follows:

1. Give the known names of the terminal.

2. Learn about, list, and define the known capabilities.

3. Compile the newly-created description entry.

4. Test the entry for correct operation.

5. Go back to step 2, add more capabilities, and repeat, as necessary.

Building a terminal description is sometimes easier when you build small parts
of the description and test them as you go along. These tests can expose
deficiencies in the ability to describe the terminal. Also, modifying an existing
description of a similar terminal can make the building task easier.

The name of a terminal is the first information given in a terminfo terminal
description. This string of names, assuming there is more than one name, is
separated by vertical bars (I). The first name given should be the most common
abbreviation for the terminal. The last name given is typically a verbose entry
that fully identifies the terminal by make and model. The long name or "ver
bose" is typically the manufacturer's formal name for the terminal. Names
between the first and last entries are known synonyms for the terminal name. All
but the verbose name should be typed in lowercase letters and contain no blanks.
Naturally, the formal name is entered as closely as possible to the manufacturer's
name.

Here is the name string from the description for a virtual terminal.

virtualIVIRTUALlcbunixlcb-unixlcb-unix virtual terminal,

Notice that the first name is the most commonly used abbreviation and the last is
the long name. Also notice the comma at the end of the name string .

• \sun ~~ microsystems
Revision A of 9 May 1988

332 Programming Utilities and Libraries

Learning About the Capabilities

Specifying Capabilities

For a curses program to run on any
given terminal, its description in the
terminfo database must include, at
least, the capabilities to move a cursor
in all four directions and to clear the
screen.

Here's the name string for a fictitious terminal, my term:

mytermlmytmlminelfancylterminallMy FANCY Terminal,

Terminal names should follow common naming conventions. These conventions
start with a root name, like v irt ual or myt erm, for example. Possible
hardware modes or user preferences should be shown by adding a hyphen and a
'mode indicator' at the end of the name. For example, the 'wide mode' (which is
shown by a -w) version of our fictitious terminal would be described as
myterm-w. terminfo(5V) describes mode indicators in greater detail.

After you complete the string of terminal names for your description, you have to
learn about the terminal's capabilities so that you can properly describe them. To
learn about the capabilities your terminal has, you should do the following:

See the owner's manual for your terminal. It should have infonnation about the
capabilities available and the character strings that make up the sequence
transmitted from the keyboard for each capability.

Test the keys on your terminal to see what they transmit, if this information is
not available in the manual. You can test the keys in one of the following wayss,
type:

stty -echo; cat -vu

followed by the keys you want to test. To return to the shell and restore echo,
type:

"'D

stty echo

Note that stty echo is not displayed on the terminal screen.

Once you know the capabilities of your terminal, you have to provide them in
your terminal description. Capability entries consist of a list of comma-separated
fields containing the abbreviated terminfo name and, in some cases, the
terminal's value for each capability. For example, be 1 is the abbreviated name
for the beeping or ringing capability. On most terminals, a (CTRL-G I is the
instruction that produces a beeping sound. Therefore, the beeping capability
would be shown in the terminal description as bel="'G,.

The list of capabilities may continue across input lines as long as the continua
tion lines start with a White-space character, or consist of a comment. Comments
can be included within the description by putting a =I/: at the beginning of the line.

The terminfo(5V) manual page has a complete list of the capabilities you can
use in a terminal description.

A terminal's character sequence (value) for a capability can be a keyed operation
(like I CTRL-G)), a numeric value, or a parameter string containing the sequence
of operations required to achieve the particular capability. In a terminal descrip
tion, certain characters are used after the capability name to show what type of
character sequence is required. Explanations of these characters are given below.

Revision A of9 May 1988

Chapter 13 - System V curses and terminfo: 333

41= This shows that a numeric value is to follow. This character follows a capa
bility that needs a number as a value. For example, the number of columns
is defined as cols4l=80,.

This shows that the capability value is the character string that follows. This
string instructs the terminal how to act and may actually be a sequence of
commands. There are certain characters used in the instruction strings that
have special meanings. These special characters follow:

This shows a control character is to be used. For example, the beeping
sound is produced by a CTRL-G. This would be shown as ~G.

\E \ e These characters followed by another character show an escape
instruction. An entry of \EC would transmit to the terminal as
[ESC-C.]

\ n These characters provide a I NEWLINE] character sequence.

\ 1 These characters provide a (LINEFEED] character sequence.

\ r These characters provide a [RETURN] character sequence.

\ t These characters provide a crAlD character sequence.

\b These characters provide a (BACKSPACE) character sequence.

\ f These characters provide a I FORMFEED) character sequence.

\ s These characters provide a (SPACE I character sequence.

\nnn This is a character whose three-digit octal is nnn (nnn can be from
one to three digits).

$<n> These symbols are used to show a delay in milliseconds. The
desired length of delay is enclosed inside the brackets. The amount
of delay may be a whole number, a numeric value to one decimal
place (tenths), or either form followed by an asterisk (*). The *
shows that the delay is to be proportional to the number of lines
affected by the operation. For example, a 20-millisecond delay per
line would appear as $<20*>. See the terminfo(5V) manual
page for more information about delays and padding.

Sometimes, it may be necessary to comment out a capability so that the terminal
ignores this particular field. This is done by placing a period (.) in front of the
abbreviated name for the capability. For example, if you would like to comment
out the beeping capability, the description entry would appear as

• bel="'G,

With this background information about specifying capabilities, let's add the
capability string to our description of my term. We'll consider basic capabili
ties, screen-oriented capabilities, keyboard-entered capabilities, and parameter
string capabilities.

Revision A of 9 May 1988

334 Programming Utilities and Libraries

Basic Capabilities

Screen-Oriented Capabilities

Some capabilities common to most terminals are bells, columns, lines on the
screen, and overstriking of characters, if necessary. Suppose our fictitious termi
nal has these and a few other capabilities, as listed below. Note that the list gives
the abbreviated terminfo name for each capability in the parentheses follow
ing the capability description:

o An automatic wrap around to the beginning of the next line whenever the
cursor reaches the right-hand margin (am).

o The ability to produce a beeping sound. The instruction required to produce
the beeping sound is "'G (bel).

o An 80-column wide screen (cels).

o A 30-line long screen (lines).

o Use of xonlxoff protocol (x en}.

By combining the name string with the capability descriptions that we now have,
we get the following general terminfe database entry:

mytermlmytmlminel fancy I terminal IMy FANCY terminal,
am, bel="'G, colst80, linest30, xon,

Screen-oriented capabilities manipulate the contents of a screen. Our example
terminal my term has the following screen-oriented capabilities. Again, the
abbreviated command associated with the given capability is shown in
parentheses.

o A I RETURN) is a (CTRL-M) (cr).

o A cursor up one line motion is a (CTRL-K) (cuul).

o A cursor down one line motion is a (CTRL-J I (cudl).

o Moving the cursor to the left one space is a (CTRL-H I (cubl).

o Moving the cursor to the right one space is a (CTRL-L) (cufl).

o Entering reverse video mode is an (ESCAPE-D) (smso).

o Exiting reverse video mode is an (ESCAPE-Z) (rmso).

o A clear to the end of a line sequence is an (ESCAPE-K) and should have a
3-millisecond delay (el).

A terminal scrolls when receiving a I NEWLINE) at the bottom of a page (ind).

The revised terminal description for my term including these screen-oriented
capabilities follows:

mytermlmytmlminelfancylterminallMy FANCY Terminal,
am, bel=AG, colst80, linest30, xon,

.\sun ~~ microsystems

cr=AM, cuul=AK, cudl=AJ, cubl=AH, cufl=AL,
smso=\ED, rmso=\EZ, el=\EK$<3>, ind=\n,

Revision A of 9 May 1988

Keyboard-Entered Capabilities

Parameter String Capabilities

Chapter 13 - System V curses and terminfo: 335

Keyboard-entered capabilities are sequences generated when a key is typed on a
tenninal keyboard. Most terminals have, at least, a few special keys on their key
board, such as arrow keys and the backspace key. Our example tenninal has
several of these keys whose sequences are, as follows:

o The backspace key generates a I CTRL-H I (kbs).

o The up arrow key generates an (ESCAPE-[A) (kcuul).

o The down arrow key generates an I ESCAPE-(B) (kcudl).

o The right arrow key generates an (ESCAPE-[C I (kcufl).

o The left arrow key generates an I ESCAPE-[D I (kcubl).

The home key generates an I ESCAPE-[H I (khome).

Adding this new infonnation to our database entry for my term produces:

mytermlmytmlminelfancylterrninallMy FANCY Terminal,
am, bel=AG, colsi80, linesi30, xon,
cr=AM, cuul=AK, cudl=AJ, cubl=AH, cufl=AL,
smso=\ED, rmso=\EZ, el=\EK$<3>, ind=O
kbs=AH, kcuul=\E[A, kcudl=\E[B, kcufl=\E[C,
kcubl=\E[D, khorne=\E[H,

Parameter string capabilities are capabilities that can take parameters, such as
those used to position a cursor on a screen, or to turn on a combination of video
modes. To address a cursor, the cup capability is used and is passed two param
eters: the row and column to address. String capabilities, such as cup and set
attributes (sgr) capabilities, are passed arguments in a terminfo program by
the tparm () routine.

The arguments to string capabilities are manipulated with special % sequences
similar to those found in a call to printf(3V). In addition, many of the
features found on a simple stack-based RPN calculator are available. cup, as
noted above, takes two arguments: the row and column. sgr, takes nine argu
ments, one for each of the nine video attributes. See terminfo(5V) for the list
and order of the attributes and further examples of sgr.

Our fancy terminal's cursor position sequence requires a row and column to be
output as numbers separated by a semicolon, preceded by (ESCAPE-[I and fol
lowed with H. The coordinate numbers are I-based rather than O-based. Thus, to
move to row 5, column 18, from (0,0), the sequence ;r "ESCAPE- [6 would be
output.

Integer arguments are pushed onto the stack with a %p sequence followed by the
argument number, such as %p2 to push the second argument. A shorthand
sequence to increment the first two arguments is '% i '. To output the top number
on the stack as a decimal, a %d sequence is used, exactly as in pr int f.

~\sun ~~ microsystems
Revision A of 9 May 1988

336 Programming Utilities and Libraries

Compiling the Description

Our terminal's cup sequence is built up as follows:

cup= Meaning

\E[output ESCAPE- [
%i increment the two argu~ents

%pl push the 1st argument (the row) onto the stack
%d output the row as a decimal
, output a semi -colon

%p2 push the 2nd argument (the column) onto the stack
%d output the column as a decimal
H output the trailing letter

or

cup=\E[%i%pl%d;%p2%dH,

Adding this new information to our database entry for my term produces:

mytermlmytmlminelfancylterminallMy FANCY Terminal,
am, bel=AG, cols*80, linesi30, xon,
cr=AM, cuul=AK, cudl=AJ, cubl=AH, cufl=AL,
smso=\ED, rmso=\EZ, el=\EK$<3>, ind=O
kbs=AH, kcuul=\E[A, kcudl=\E[B, kcufl=\E[C,
kcubl=\E[D, khome=\E[H,
cup=\E[%i%pl%d;%p2%dH,

See terminfo(5V) for more information about parameter string capabilities.

The terminfo database entries are compiled using tic, the terminfo com
piler command. This compiler translates terminfo source entries into the
compiled format used by the terminfo and curses routines.

The source file for the source file is usually suffixed with . t i. For example, the
description of my term would be in a source file named my term. ti. The com
piled description of my term would usually be placed in
/usr/ share/lib/terminfo/m/myterm, since the first letter in the
description entry is m. Links would also be made to synonyms of myt erm, for
example, to / f / fane y. If the environment variable TE RM INFO were set to a
directory and exported before the entry was compiled, the compiled entry would
be placed in the TERMINFO directory. All programs using the entry would then
look in the new directory for the description file if TERMINFO were set, before
looking in the default /usr / share/ lib/terminfo. The general format for
the tic command is:

tic [-v] [-c] sourcefile

.\sun ~ microsystems
Revision A of 9 May 1988

Testing the Description

Comparing or Printing
terminfo Descriptions

Chapter 13 - System V curses and terminfo: 337

With the -v, verbose option, the compiler traces its actions and prints messages
regarding its progress. The -c option checks for errors. t ic(8V) compiles only
one file at a time. The following command line shows how to compile the ter
minfo source file for my term.

tic -v myterm. ti

Refer to tic(8V) for more infonnation.

Let's consider ways to test a terminal description. First, you can test it by setting
the environment variable TERMINFO to the path name of the directory contain
ing the description. If programs run the same on the new terminal as they did on
the older known terminals, then the new description is functional.

Or, you can use the tput(lV) command. This command outputs a string or an
integer according to the type of capability being described. If the capability is a
Boolean expression, then tput sets the exit code (0 for TRUE, 1 for FALSE) and
produces no output. The general format for the tput command is as follows:

tput [-Ttype] capname

The type of tenninal you are requesting information about is identified with the
-T type option. Usually, this option is not necessary because the default terminal
name is taken from the environment variable TERM. The cap name field is used
to show what capability to output from the terminfo database.

The following command line shows how to output the "clear screen" character
sequence for the tenninal being used:

tput clear

The following command line shows how to output the number of columns for the
tenninal being used:

tput cols

tput(8V) contains more information on the usage and possible messages associ
ated with this command.

Sometime you may want to compare two terminal descriptions or quickly look at
a description without going to the terminfo source directory. The
infocmp(8V) command was designed to help you with both of these tasks.
Compare two descriptions of the same terminal; for example,

mkdir /tmp/old /tmp/new
TERMINFO=/tmp/old tic oldvirtual.ti
TERMINFO=/tmp/new tic newvirtual.ti
infocmp -A /tmp/old -8 /tmp/new -d virtual virtual

compares the old and new virtual entries.

Revision A of 9 May 1988

338 Programming Utilities and Libraries

Converting a termcap
Description to a terminfo
Description

13.5. curses Program
Examples

The edi tor Program

To print out the terminfo source for the virtual, type:

infocmp -I virtual

The terminfo database is an alternative to the termcap database. Because
of the many programs and processes that have been written with and for the
termcap database, it is not feasible to do a complete conversion from
termcap to terminfo. Since converting between the two requires experience
with both, all entries into the databases should be handled with extreme caution.
These files are important to the operation of your terminal.

The captoinfo(8V) command converts termcap(5) descriptions to
terminfo(5V) descriptions. When a file is passed to captoinfo, it looks for
termcap descriptions and writes the equivalent terminfo descriptions on the
standard output. For example,

captoinfo /etc/ter.mcap

converts the file / etc/termcap to terminfo source, preserving comments
and other extraneous information within the file. The command line

captoinfo

looks up the current terminal in the termcap database, as specified by the
TERM and TERMCAP environment variables and converts it to terminfo.

To convert a terminfo description into a termcap entry, use infocmp --C.

If you have been using cursor optimization programs with the -1 t e rmca p or
-ltermlib option in the /usr / Sbin/ cc command line, those programs
should still be functional.

The following examples demonstrate uses of curses routines.

This program illustrates how to use cur se s routines to write a screen editor.
For simplicity, editor keeps the buffer in stdscr; obviously, a real screen
editor would have a separate data structure for the buffer. This program has
many other simplifications: no provision is made for files of any length other
than the size of the screen, for lines longer than the width of the screen, or for
control characters in the file.

Several points about this program are worth making. First, it uses the move () ,
mvaddstr () , flash () , wnoutrefresh () and clrtoeol () routines.
These routines are all discussed in this chapter under Working with curses
Routines.

Second, it also uses some curses routines that we have not discussed. For
example, the function to write out a file uses the mvinch () routine, which
returns a character in a window at a given position. The data structure used to
write out a file ·does not keep track of the number of characters in a line or the

Revision A of 9 May 1988

Since not all terminals have arrow
keys, your curses programs will
work with more terminals if there is an
ASCII character associated with each
special key.

Chapter 13 - System V curses and terminfo: 339

number of lines in the file, so trailing blanks are eliminated when the file is writ
ten. The program also uses the insch () ,delch () , insertln () ,and
deleteln () routines. These functions insert and delete a character or line.
See curses(3V) for more information about these routines.

Third, the editor ~ommand interpreter accepts special keys, as well as ASCII
characters. On one hand, new users find an editor that handles special keys easier
to learn about. For example, it's easier for new users to use the arrow keys to
move a cursor than it is to memorize that the letter h means left, j means down, k
means up, and I means right. On the other hand, experienced users usually like
having the ASCII characters to avoid moving their hands from the home row
position to use special keys.

Fourth, the (CTRL-L) command illustrates a feature most programs using
cur s e s routines should have. Often some program beyond the control of the
routines writes something to the screen (for instance, a broadcast message) or
some line noise affects the screen so much that the routines cannot keep track of
it. A user invoking editor can type (CTRL-L I, causing the screen to be cleared
and redrawn with a call to wrefresh (curser).

Finally, another important point is that the input command is terminated by
(CTRL-D], not the (ESCAPE) key. It is very tempting to use (ESCAPE) as a
command, since it is one of the few special keys available on all keyboards.
(I RETURN) and (BREAK) are the only others.) However, using escape as a
separate key introduces an ambiguity. Most terminals use sequences of charac
ters beginning with escape (i.e., escape sequences) to control the terminal, and
have special keys that send escape sequences to the computer. If a computer
recei ves an escape from a terminal, it cannot tell whether the user depressed the
[ESCAPE 1 key or whether a special key was pressed.

editor and other curses programs handle the ambiguity by setting a timer.
If another character is received during this time, and if that character might be
the beginning of a special key, the program reads more input until either a full
special key is read, the time out is reached, or a character is received that could
not have been generated by a special key. While this strategy works most of the
time, it is not foolproof. It is possible for the user to press (ESCAPE], then to
type another key quickly, which causes the curses program to think a special
key has been pressed. Also, a pause occurs until the escape can be passed to the
user program, resulting in a slower response to the (ESCAPE) key.

Many existing programs use (ESCAPE) as a fundamental command, which can
not be changed without infuriating a large class of users. These programs cannot
make use of special keys without dealing with this ambiguity, and at best must
resort to a time-out solution. The moral is clear: when designing your curses
programs, avoid the (ESCAPE) key .

• \sun ~ microsystems
Revision A of 9 May 1988

340 Programming Utilities and Libraries

edi tor - a Sample Program Listing

/* editor: A screen-oriented editor. The user
* interface is similar to a subset of vi.
* The buffer is kept in stdscr to simplify
* the program.
*/

#include <stdio.h>
#include <curses.h>

#define CTRL (c) «c) & 037)

main (argc, argv)
int argc;
char **argv;

extern void perror(), exit();
int i, n, 1;
int c;
int line = 0;
FILE *fd;

if (argc != 2)

fprintf(stderr, "Usage: %s file\n", argv[O]);
exit(l);

fd fopen(argv[l], Itrlt);
if (fd == NULL)

perror(argv[l);
exit (2);

initscr () ;
cbreak();
nonl () ;
noecho();
idlok(stdscr, TRUE);
keypad (stdscr, TRUE);

/* Read in the file */
while «c = getc(fd» != EOF)

if (c == '\n')

line++;
if (line > LINES - 2)

break:
addch (c) ;

fclose (fd) ;

move(O,O);
refresh ();
edit () ;

sun
microsystems

Revision A of 9 May 1988

Chapter 13 -System V curses and terminfo: 341

/* Write out the file */
fd = fopen(argv[l), "wit);
for (1 = 0; 1 < LINES - 1; 1++)

n = len(l);
for (i = 0; i < n; i++)

putc(mvinch(l, i) & A_CHARTEXT, fd);
putc (' \n', fd);

fclose(fd);

endwin () ;
exit (0) ;

len (lineno)
int lineno;

int linelen = COLS - 1;

while (linelen >= 0 && mvinch(lineno, linelen) ")
linelen--;

return linelen + 1;

/* Global value of current cursor position */
int row, col;

edit ()
{

int c;

for (;;)

move (row, col);
refresh();
c = getch () ;

/* Editor commands */
switch (c)
{

/* hjkl and arrow keys: move cursor
* in direction indicated */

case 'h':
case KEY LEFT:

if (col > 0)
col--;

else
flash () ;

break;

case 'j':
case KEY DOWN:

if (row < LINES - 1)
row++;

else
flash () ;

break;

case 'k':
case KEY UP:

sun
microsystems

Revision A of 9 May 1988

342 Programming Utilities and Libraries

/*

if (row > 0)
row--;

else
flash () ;

break;

case ' l' :
case KEY RIGHT:

if (col < COLS - 1)
col++;

else
flash () ;

break;

/* i: enter input mode */
case KEY IC:
case ' i' :

input () ;
break;

/* x: delete current character */
case KEY DC:
case ' x' :

delch () ;
break;

/* 0: open up a new line and enter input mode */
case KEY IL:
case ' 0' :

move (++row, colO};
insertln () :
input () ;
break:

/* d: delete current line */
case KEY DL:
case ' d' :

deleteln(};
break;

/* AL: redraw screen */
case KEY CLEAR:
case CTRL (' L') :

wrefresh(curscr};
break;

/* w: write and quit */
case ' w' :

return;

/* q: quit without writing */
case ' q' :

endwin () ;
exit (2) ;

default:
flash () ;
break;

sun
microsystems

Revision A of 9 May 1988

* Insert mode: accept characters and insert them.
* End with ~D or EIC

*/
input ()
{

int c;

standout () ;
mvaddstr(LINES - 1, COLS - 20, "INPUT MODE");
standend () ;
move (row, col);
refresh();
for (;;)

c = getch () ;
if (c == CTRL('D') I I c

break;
insch(c);
move (row, ++col);
refresh();

move(LINES - 1, COLS - 20);
clrtoeol () ;
move (row, col);
refresh ();

Chapter 13 - System V curses and terminfo: 343

The highlight Program This program illustrates a use of the routine attrset (). highlight reads a
text file and uses embedded escape sequences to control attributes. \ U turns on
underlining, \ B turns on bold, and \ N restores the default output attributes.

Note the first call to scrollok () , a routine that we have not previously dis
cussed (see cur se s(3V)). This routine allows the terminal to scroll if the file is
longer than one screen. When an attempt is made to draw past the bottom of the
screen, scrollok () automatically scrolls the terminal up a line and calls
refresh ().

/*
* highlight: a program to turn \U, \B, and
* \N sequences into highlighted
* output, allowing words to be
* displayed underlined or in bold.
*/

#include <stdio.h>
#include <curses.h>

main (argc, argv)
int argc;
char **argv;

FILE *fd;
int c, c2;
void exit(), perror();

if (argc != 2)

sun
microsystems

Revision A of 9 May 1988

344 Programming Utilities and Libraries

fprintf(stderr, "Usage: highlight file\n");
exit(l);

fd fopen(argv[l], "r");

if (fd == NULL)

perror(argv[l]);
exit(2);

initscr ();
scrollok(stdscr, TRUE);
nonl () ;
while «c = getc(fd» != EOF)
{

if (c == ' \ \')
{

else

fclose(fd);
refresh ();
endwin () ;
exit (0);

c2 = getc(fd);
switch (c2)
{

case 'B':
attrset(A_BOLD);
continue;

case 'U':
attrset(A_UNDERLINE);
continue;

case 'N':
attrset(O);
continue;

addch (c) ;
addch(c2);

addch (c) ;

Revision A of 9 May 1988

Chapter 13 - System V curses and terminfo: 345

The scatter Program This program takes the first LINES - 1 lines of characters from the standard
input and displays the characters on a terminal screen in a random order. For this
program to work properly, the input file should not contain tabs or non-printing
characters.

/*
* The scatter program.
*/

#include
#include

<curses.h>
<sys/types.h>

extern time_t time();

#define MAXLINES 120
#define MAXCOLS 160
char s[MAXLINES] [MAXCOLS]; /* Screen Array */
int T[MAXLINES] [MAXCOLS]; /* Tag Array - Keeps track of *

main ()
{

* the number of characters *
* printed and their positions. */

register int row = O,col 0;
register int c;
int char count = 0;
time_t t;
void exit(), srand(};

initscr ();
for (row = O;row < MAXLINES;row++)

for (col = O;col < MAXCOLS;col++)
s[row] [col]=' ';

col = row = 0;
/* Read screen in */
while «c=getchar(}) != EOF && row < LINES) {

if (c ! = ' \n')

else

time (&t) ;

/* Place char in screen array */
s[row] [col++] = c;
if(c != ' ')

char_count++;

col = 0;
row++;

/* Seed the random number generator */
srand ((unsigned) t) ;

while (char_count)

row = rand() % LINES;
col = (rand() » 2) % COLS;
if (T[row] [col] != 1 && s [row] [col] != , ')

sun
micros ystems

Revision A of 9 May 1988

346 Programming Utilities and Libraries

endwin () ;
exit (0) ;

The show Program

#include <curses.h>
#include <signal.h>

main (argc, argv)
int argc;
char *argv [] i

FILE *fd;

move (row, col);
addch(s[row] [col]);
T[row] [col] = 1;
char_count--;
refresh ();

show pages through a file, showing one screen of its contents each time you
depress the space bar. The program calls cbreak () so that you can depress the
space bar without having to hit return; it calls noecho () to prevent the space
from echoing on the screen. The nonl () routine, which we have not previously
discussed, is called to enable more cursor optimization. The idlok () routine,
which we also have not discussed, is called to allow insert and delete line. (See
curses(3V) for more infonnation about these routines). Also notice that
clrtoeol () and clrtobot () are called.

By creating an input file for show made up of screen-sized (about 24 lines)
pages, each varying slightly from the previous page, nearly any exercise for a
curses () program can be created. This type of input file is called a show
script.

char linebuf[BUFSIZ];
int line;
void donee), perror(), exit();

if (argc != 2)
{

fprintf(stderr, "usage: %s file\n", argv[O]);
exit (1);

if «fd=fopen (argv [1], "r"» == NULL)

perror(argv[l]);
exit(2);

signal (SIGINT, done);

initscr () i

noecho()i
cbreak () i

nonl () ;

Revision A of 9 May 1988

Chapter 13 - System V curses and terminfo: 347

idlok(stdscr, TRUE);

while(l)
{

move(O,O);
for (line 0; line < LINES; line++)

if (!fgets{linebuf, sizeof linebuf, fd»

clrtobot () ;
done ();

move (line, 0);
printw("%s", linebuf);

refresh{);
if (getch () , q')

done () ;

void done ()

move(LINES - 1, 0);
clrtoeol () ;
refresh () ;
endwin () ;
exit(O);

The two Program

#include <curses.h>
#include <signal.h>

SCREEN *me, *you;
SCREEN *set_term();

FILE *fd, *fdyou;
char linebuf[512];

main (argc, argv)
int argc;
char **argv;

This program pages through a file, writing one page to the terminal from which
the program is invoked and the next page to the terminal named on the command
line. It then waits for a space to be typed on either terminal and writes the next
page to the terminal at which the space is typed.

two is just a simple example of a two-terminal cur se s program. It does not
handle notification; instead, it requires the name and type of the second terminal
on the command line. As written, the command "sleep 100000" must be
typed at the second terminal to put it to sleep while the program runs, and the
user of the first tenninal must have both read and write permission on the second
tenninal.

void done 0 , exit();
unsigned sleep{);

.~ sun ~ microsystems
Revision A of 9 May 1988

348 Programming Utilities and Libraries

char *getenv () ;
int c;

if (argc ! = 4)
{

fprintf(stderr, "Usage: two othertty ·otherttytype inputfile\n");
exit(1);

fd = fopen(argv[3J, "r");
fdyou = fopen (argv [1], "w+ fI

);

signal (SIGINT, done); /* die gracefully */

me = newterm(getenv(flTERM fI
), stdout, stdin);

you = newterm(argv[2] , fdyou, fdyou);
/* initialize my tty */

/* Initialize the other terminal */

set_term(me);
noecho();
cbreak () ;

/* Set modes for my terminal */
/* turn off tty echo */
/* enter cbreak mode */
/* Allow linefeed */ nonl () ;

nodelay(stdscr, TRUE); /* No hang on input */

set_term(you);
noecho();

/* Set modes for other terminal */

cbreak () ;
nonl () ;
nodelay(stdscr,TRUE);

/* Dump first screen full on my terminal */
dumpyage (me);

/* Dump second screen full on the other terminal */
dumpyage(you);

for (;;) /* for each screen full */

set_term(me);
c = getch () ;
if (c == 'q')
done () ;

/* wait for user to read it */

if (c == ' ')
dump_page (me) ;

set_term(you);
c = getch () ;
if (c == 'q')
done () ;

/* wait for user to read it */

if (c == ' ')

dump yage (you) ;
sleep(l);

dump_page (term)
SCREEN *term;

int line;

set_term(term);
move (0, 0);
for (line = 0; line < LINES - 1; line++) {

if (fgets(linebuf, sizeof linebuf, fd)
clrtobot () ;
done () ;
}

sun
microsystems

NULL) {

Revision A of9 May 1988

/*

mvaddstr(line, 0, linebuf);

standout () ;
mvprintw(LINES - 1, 0, "--More--");
standend () ;
refresh(); /* sync screen */

Chapter 13 - System V curses and terminfo: 349

* Clean up and exit.
*/

void done ()

/* Clean up first terminal */
set_term (you) ;
move(LINES - 1,0);

clrtoeol () ;
refresh () ;
endwin () ;

/* to lower left corner */

/* clear bottom line */
/* flush out everything */
/* curses cleanup */

/* Clean up second terminal */
set_term (me) ;
move(LINES - 1,0); /* to lower left corner */
clrtoeol(); /* clear bottom line */
refresh(); /* flush out everything */
endwin(); /* curses cleanup */
exit (0) ;

The window Program This example program demonstrates the use of multiple windows. The main
display is kept in stdscr. When you want to put something other than what is
in stdscr on the physical terminal screen temporarily, a new window is created
covering part of the screen. A call to wrefresh () for that window causes it to
be written over the stdscr image on the terminal screen. Calling refresh ()
on stdscr results in the original window being redrawn on the screen. Note
the calls to the touchwin () routine (which we have not discussed - see
curses(3V)) that occur before writing out a window over an existing window
on the terminal screen. This routine prevents screen optimization in a cur s e S

program. If you have trouble refreshing a new window that overlaps an old win
dow, it may be necessary to call touchwin () for the new window to get it
completely written out.

#include <curses.h>

WINDOW *cmdwin;

main ()

int i, c;
char buf[120);
void exit () ;

initscr () ;
nonl () ;
noecho();

sun Revision A of 9 May 1988
microsystems

350 Programming Utilities and Libraries

cbreak():

cmdwin = newwin(3, eOLS, 0, 0):/* top 3 lines */
for (i = 0: i < LINES: i++)

mvprintw(i, 0, "This is line %d of stdscr", i);

for (::)

refresh():
c = getch () :
switch (c)

case 'c': /* Enter command from keyboard */
werase(cmdwin):
wprintw(cmdwin, "Enter command:"):
wmove(cmdwin, 2, 0):
for (i = 0; i < eOLS: i++)

waddch(cmdwin, '-');
wmove(cmdwin, 1, 0):
touchwin(cmdwin);
wrefresh(cmdwin);
wgetstr(cmdwin, buf):
touchwin(stdscr}:

/*
* The command is now in buf.
* It should be processed here.
*/

case' q' :
endwin () :
exit(O):

~\sun ~~ microsystems
Revision A of 9 May 1988

A
SCCS Low-Level Commands

sees Low-Level Commands ... 353

A.I. Low Level SCCS For Beginners ... 353

TenIlinology .. 353

A.2. SCCS File Numbering Conventions .. 354

A.3. Summary of SCCS Commands .. 356

A.4. SCCS Command Conventions .. 357

Flags ... 357

Real/Effective User .. 358

Back-up Files Created During Processing .. 358

Diagnostics ... 358

A.5. admin - Create and Administer SCCS Files ... 358

admin Options .. 359

Flags In SCCS Files .. 361

Examples of Using admin ... 363

A.6. cdc - Change Delta Commentary .. 365

cdc Options .. 365

A.7. comb - Combine SCCS Deltas ... 366

comb Options ... 367

A.8. delta - Make a Delta .. 367

delta Options .. 368

Examples of Using de 1 t a... 369

More Notes on del ta .. 370

A.9. get - Get Version of SCCS File ... 372

get Options .. 372

Identification Keywords .. 376

A.10. help - Ask for sees Help ... 384

A.1I. prs -Print sees File .. 385

prs Options .. 385

Data Keywords ... 386

A.12. rmdel- Remove Delta from sees File ... 388

A.13. sact - Display sees Editing Activity ... 389

A.14. sccsdiff - Display Differences in sees Versions 390

sccsdiff Options .. 390

A.15. unget - Undo a Previous sees get .. 390

unget Options .. 390

A.16. val- Validate sees File .. 391

val Options .. 391

what - Identify sees Files ... 392

A.17. sees Files .. 393

Protection .. 393

Layout of an sees File .. 394

Auditing .. 394

A.I. Low Level sees For
Beginners

Terminology

A
SCCS Low-Level Commands

This appendix contains a summary of the individual sees commands. The
user-level interface to sees is described in chapter 8 of this manual. In the
unlikely event that you need to use the 'raw' commands of sees, here they are.
Be aware that the commands described here do not make any assumptions about
where the SeeS-files are - you must spell them out in excruciating detail. The
individual sees tools are not easy to use, but they do provide extremely close
control over the sees database files. Of particular interest are the numbering of
versions and branch versions, the 1. file, which gives a description of what deltas
were used on a get, and certain other sees commands.

The following topics are covered here:

D The scheme used to identify versions of text kept in an sees file.

D Basic information needed for day-to-day use of sees commands, including
a discussion of the more useful arguments.

D Protection and auditing of sees files, including the differences between the
use of sees by individual users on one hand, and groups of users on the
other.

In this section, we present some basic concepts of sees. Examples are fragments
of terminal sessions, with what you type shown in bold typewriter font,
and what the terminal displays shown in typewri ter font.

Note that all the sees commands described here live in the /usr / sees direc
tory, so you must either include the directory pathname explicitly when using
sees commands, or include it in your shell's search path. This chapter assumes
that you included have / us r / see s in your path.

Each sees file is composed of one or more sets of changes applied to the null
(empty) version of the file; each set of changes usually depends on all previous
sets. Each set of changes is called a delta and is assigned a name called the sees
Identification string (SID).

The SID is composed of at most four components; for now let's focus on only the
first two: the "release" and "level" numbers. Each set of changes to a file is
named 'release. level'; hence, the first delta is called '1.1', the second '1.2', the
third' 1.3', and so on. The release number can also be changed, allowing, for
example, deltas '2.1', '3.19', etc. A change in the release number can be used,

353 Revision A of 9 May 1988

354 Programming Utilities and Libraries

A.2. secs File Numbering
Conventions

Figure A-I

Branches

perhaps, to indicate a major update to the file, or to signal the start of a new
round of related updates.

Each delta of an sees file defines a particular version of the file. For example,
delta 1.5 defines the version of the sees file obtained by applying the changes
that constitute deltas 1.1, 1.2, etc., up to and including delta 1.5 itself, in that
order, to the null (empty) version of the. file. A.16.2.

You can think of the deltas applied to an sees file as the nodes of a tree; the root
is the initial version of the file. The root delta (node) is normally named '1.1'
and successor deltas (nodes) are named' 1.2', '1.3', etc. We have already dis
cussed these two components of the names of the deltas, the 'release' and 'level'
numbers; and you have seen that normal naming of successor deltas proceeds by
incrementing the level number, which is performed automatically by sees when
ever a delta is made. In addition, you have seen how to change the release
number when making a delta, to indicate that a major change to the file is being
made. The new release number applies to all successor deltas, unless it is
specifically changed again. Thus, the evolution of a particular file may be
represented as in Figure A-I.

s.file file

1.1

1.2

11.3 -
'" ,. 1.4

'"
,. -L'"

2.1
I--

-,
'" -~-

Evolution of an sees File

We can call this structure the 'trunk' of the sees tree. It represents the normal
sequential development of an sees file, in which changes that are part of any
given delta are dependent upon all the preceding deltas.

However, there are situations when a branch is needed on the tree: when changes
applied as part.of a given delta are not dependent upon all previous deltas. As an
example, consider a program which is in production use at version 1.3, and for
which development work on release 2 is already in progress. Thus, release 2 may
already have some deltas, precisely as shown in Figure 1. Assume that a produc
tion user reports a problem in version 1.3 which cannot wait until release 2 to be

Revision A of 9 May 1988

Figure A-2

Appendix A - SCCS Low-Level Commands 355

repaired. The changes necessary to repair the trouble will be applied as a delta to
version 1.3 (the version in production use). This creates a new version that will
then be released to the user, but will not affect the changes being applied for
release 2 (that is, deltas 1.4, 2.1,2.2, etc.).

The new delta is.a node on a 'branch' of the tree, and its name consists of four
components: the release and level numbers, as with trunk deltas, plus the
'branch' and 'sequence' numbers. Its SID thus appears as:
'release . level. branch. sequence. The branch number is assigned to each
branch that is a descendant of a particular trunk delta; the first such branch is 1,
the next one 2, and so on. The sequence number is assigned, in order, to each
delta on a particular branch. Thus, 1.3.1.2 identifies the second delta of the first
branch that derives from delta 1.3. This is shown in Figure A-2.

s.file file

11.1
11.2

1.3 'i'~ r----...
1.4 1.3.1.1 -...

-""

2.1 " "
'~~

... ---""
...

Tree Structure with Branch Deltas

The concept of branching may be extended to any delta in the tree; the naming of
the resulting deltas proceeds in the manner just illustrated.

Two observations are of importance with regard to naming deltas. First, the
names of trunk deltas contain exactly two components, and the names of branch
deltas contain exactly four components. Second, the first two components of the
name of a branch delta are always those of the ancestral trunk delta, and the
branch component is assigned in the order of creation of the branch, indepen
dently of its location relative to the trunk delta. Thus, a branch delta may always
be identified as such from its name. Although the ancestral trunk delta may be
identified from the branch delta's name, it is not possible to determine the entire
path leading from the trunk delta to the branch delta. For example, if delta 1.3
has one branch emanating from it, all deltas on that branch will be named 1.3. Ln.
If a delta on this branch then has another branch emanating from it, all deltas on
the new branch will be named 1.3.2.n (see Figure A-3. The only information that
may be derived from the name of delta 1.3.2.2 is that it is the second

~\Slln ~~ microsystems
Revision A of 9 May 1988

356 Programming Utilities and Libraries

chronological delta on the second chronological branch whose trunk ancestor is
delta 1.3. In particular, it is not possible to detennine from the name of delta
1.3.2.2 all of the deltas between it and its trunk ancestor (1.3).

s.file

... 1.4

2.2

file

1.3

" "
"

" " ",,,? 1. 3 . 2 . 1 I
,

1.3.2.2

1.3.1.2

-

Figure A-3 Extending the Branching Concept

A.3. Summary of sees
Commands

It is obvious that the concept of branch deltas allows the generation of arbitrarily
complex tree structures. Although this capability has been provided for certain
specialized uses, it is strongly recommended that the sees tree be kept as simple
as possible, because comprehension of its structure becomes extremely difficult
as the tree becomes more complex.

Here is a summary of all the sees commands and their major functions:

admin

cdc

comb

delta

get

help

prs

~~sun ~ microsystems

Creates sees files and applies changes to parameters of sees files.
admin is described in section A.S.

Changes the commentary associated with a delta. cdc is described
in section A.6.

Combines two or more consecutive deltas of an sees file into a sin
gle delta. comb is described in section A.7.

Applies changes (deltas) to the text of sees files; that is, delta
creates new versions. delta is described in section A.8.

Retrieves versions of secs files. get is described in section A.9.

Explains sees commands and diagnostic messages. help is
described in section A.IO.

Prints portions of an sees file in user-specified fonnat. prs is
described in section A.ll.

Revision A of 9 May 1988

A.4. secs Command
Conventions

Options

Filename Arguments

Flags

rmdel

sccsdiff

val

what

Appendix A - SCCS Low-Level Commands 357

Removes a delta from an sees file; useful for removing deltas that
were created by mistake. rmdel is described in section A.12.

Shows the differences between any two versions of an sees file.
sccsdiff is described in section A.14.

Validates an sees file. val is described in section A.16.

Searches file(s) for all occurrences of a special pattern and prints
what follows it. what is useful in finding identifying information
inserted by get. what is described in section

This section discusses the conventions and rules that apply to sees commands.
These rules and conventions are generally applicable to all sees commands,
except as indicated below.

sees commands, like most SunOS commands, accept options and filename argu
ments.

Options begin with a minus sign (-), followed by a lower-case alphabetic charac
ter, and, in some cases, a value. Options modify actions of commands on which
they are specified.

Filename arguments (which may be names of files and/or directories) specify the
file(s) that the given sees command is to process; naming a directory is
equivalent to naming all the sees files within the directory. Non-sees files and
unreadable files in the named directories are silently ignored.

In general, file arguments may not begin with a minus sign. However, if the
name '-' (a lone minus sign) is specified as an argument to a command, the com
mand reads the standard input for lines and takes each line as the name of an
sees file to be processed. The standard input is read until end-of-file. This
feature is often used in pipelines with, for example, the find(l) or Is(1) com
mands. Again, names of non-SeeS files and of unreadable files are silently
ignored.

Options specified for a given command apply to all filename arguments. Options
are processed before any file arguments; therefore the placement of options is
arbitrary, that is, options may be interspersed with file arguments. File argu
ments, however, are processed left to right.

Somewhat different argument conventions apply to the help, what,
sccsdiff, and val commands.

Certain actions of various sees commands are modified by flags embedded in
the text of sees files. Some of these flags are discussed below. For a complete
description of all such flags, see admin.

~~sun ~ microsystems
Revision A of 9 May 1988

358 Programming Utilities and Libraries

Real/Effective User

Back-up Files Created During
Processing

Diagnostics

A.S. admin - Create and
Administer SCCS
Files

The distinction between the real user (see pas sWd(l)) and the effective user ID
is of concern in discussing various actions of sees commands. For the present,
it is assumed that both the real user and the effective user are one and the same,
that is, the user who is logged into the system.

All sees commands that modify an sees file do so by writing a temporary copy,
called the x . file, to ensure that the sees file will not be damaged if processing
terminates abnormally. The name of the x. file is formed by replacing the's. '
of the SeeS-file name with 'x. '. When processing is complete, the old sees file
is removed and the x . file is renamed to take its place. The x . file is created in
the directory containing the sees file, given the same permission mode (see
chmod(l)), and is owned by the effective user.

To prevent simultaneous updates to an sees file, commands that modify sees
files create a lock file, called the z . file, whose (formed by replacing the's. '
with' z . '). The z . file contains the process ID number of the command that
creates it, and its existence is an indication to other commands that that sees file
is being updated. Thus, other commands that modify sees files will not process
an sees file if the corresponding z . file exists. The z . file is created with mode
444 (read-only) in the directory containing the sees file, and is owned by the
effective user. The z . file exists only for the duration of the execution of the
command that creates it. In general, users can ignore x . files and z . files; they
may be useful in the event of system crashes or similar situations.

sees commands direct their diagnostic responses to the standard error file.
sees diagnostics generally look like this:

ERROR [filename]: message text (code)

The code in parentheses may be used as an argument to ahelptoobtain

If the sees command detects a fatal error during the processing of a file it ter
minates processing of that file and proceeds with the next file in the series, if
more than one file has been named.

admin creates new sees files and changes parameters of existing ones. Options
and sees file names may appear in any order on the admin command line.
sees file names must begin with the characters's. '. A named file is created if
it doesn't exist already, and its parameters are initialized according to the
specified options. Any parameter not initialized by an option is assigned a
default value. If a named file does exist, parameters corresponding to specified
options are changed, and other parameters are left as is.

admin [-n] [- i [name]] [- rrel] [-t [name]] [-fflag [flag-val]] ...
[-dflag [flag-val]] ... [-alogin] ... [-elogin] ... [-m [mrlist]]
[-y [comment]] [-~ 1 [-z] filename ...

If a directory is named, admin behaves as though each file in the directory were
specified as a named file, except that non-SeeS files (last component of the path
name does not begin with s .) and unreadable files are silently ignored. A name

Revision A of 9 May 1988

admin Options

Creating aNew sees File

Initial Text

Initial Release

Descriptive Text

Set a Flag

Delete a Flag

Unlock Releases

Appendix A - SCCS Low-Level Commands 359

of - means the standard input - each line of the standard input is taken as the
name of an sees file to be processed. Again, non-SeeS files and unreadable
files are silently ignored.

Options are explained as though only one named file is to be processed, since
options apply independently to each named file.

-n A new sees file is being created.

-i [name]
Initial text: file name contains the text of a new sees file. The text is the
first delta of the file - see -r option for delta numbering scheme. If name
is omitted, the text is obtained from the standard input. Omitting the - i
option altogether creates an empty sees file. You can only create one sees
file with an admin -i command. Creating more than one sees file
with a single admin command requires that they be created empty, in which
case the - i option should be omitted. Note that the - i option implies the
-n option.

-r reI

Initial release: the reI ease into which the initial delta is inserted. -r may
be used only if the - i option is also used. The initial delta is inserted into
release 1 if the -r option is not used. The level of the initial delta is always
1, and initial deltas are named 1.1 by default.

-t [name]
Descriptive text: The file name contains descriptive text for the sees file.
The descriptive text file name must be supplied when creating a new sees
file (either or both -n and - i options) and the -t option is used. In the
case of existing sees files: 1) a -t option without a file name removes
descriptive text (if any) currently in the sees file, and 2) a -t option with a
file name replaces the descriptive text currently in the sees file with any
text in the named file.

-fjiag
Setjiag: specifies ajiag, and, possibly, a value for thejiag, to be placed in
the sees file. Several -f options may be supplied on a single admin
command line. Flags and their values appear in the FLAGS section after
this list of options.

-djiag
Delete flag from an sees file. The -d option may be specified only when
processing existing sees files. Several -d options may be supplied on a
single admin command. See the FLAGS section below.

-I list
Unlock the specified list of releases. See the - f option for a description of
the I flag and the syntax of a list.

Revision A of 9 May 1988

360 Programming Utilities and Libraries

Add Login Name

Erase Login Name

Insert Comment Text

Modification List

Check Structures o/sees File

Recompute Checksum

-a login
Add login name, or numerical group ID, to the list of users who may make
deltas (changes) to the sees file. A group ID is equivalent to specifying all
login names common to that group ID. Several -a options may appear on a
single admin command line. As many logins, or numerical group IDs, as
desired may be on the list simultaneously. If the list of users is empty, any
one may add deltas.

-e login
Erase login name, or numerical group ID, from the list of users allowed to
make deltas (changes) to the sees file. Specifying a group ID is equivalent
to specifying all login names common to that group ID. Several -e options
may be used on a single admin command line.

-y [comment]
The comment text is inserted into the sees file as a comment for the initial
delta in a manner identical to that of del tao If the -y option is omitted, a
default comment line is inserted in the form:

date and time created yy/mm/dd hh:mm:ss by login

The -y option is valid only if the -i and/or -n options are specified (that
is, a new sees file is being created).

-rn [mrlist]
The list of Modification Requests (MR) numbers is inserted into the sees
file as the reason for creating the initial delta in a manner identical to
de 1 t a. The v flag must be set and the MR numbers are validated if the v
flag has a value (the name of an MR number validation program). Diagnos
tics are displayed if the v flag is not set or MR validation fails.

- h Check the structure of the sees file (see sccsfile(5)), and compare a newly
computed check-sum (the sum of all the characters in the sees file except
those in the first line) with the check-sum that is stored in the first line of the
sees file.

The - h option inhibits writing on the file, so that it nullifies the effect of any
other options supplied, and is, therefore, only meaningful when processing
existing files.

- z recompute the sees file check-sum and store it in the first line of the sees
file (see -h, above).

Using the -z option on a truly corrupted file may prevent future detection of
the corruption.

+~I!! Revision A of 9 May 1988

Flags In sees Files

Branch Deltas can be Created

Highest Retrievable Release

Lowest Retrievable Release

Default Delta Number

No ID Keywords Fatal Error

Encoded Binary File

Allow Concurrent Edits

Locked Releases

Create Null Deltas

Appendix A - SCCS Low-Level Commands 361

The list below is a description of the flags which may appear as arguments to the
-f (set flags) and -d (delete flags) options.

b When set, the -b option can be used on a get command to create branch
deltas.

c ceil
The highest release (ceiling) which may be retrieved by a get command for
editing. The ceiling is a number less than or equal to 9999. The default
value for an unspecified c flag is 9999.

ffloor
The lowest release (floor) which may be retrieved by a get command for
editing. The floor is a number greater than 0 but less than 9999. The default
value for an unspecified f flag is 1.

dSID

The default delta number (ID) to be used by a get command.

i Treats the 'No id keywords (ge6)' message issued by get or del ta as a
fatal error. In the absence of the i flag, the message is only a warning. The
message is displayed if no sees identification keywords (see get) are
found in the text retrieved or stored in the sees file.

e 1
If the e flag appears with a 1 argument, the file is an encoded (see
uuencode(lC) representation of a binary data file.

j Concurrent get commands for editing may apply to the same SID of an
sees file. This allows multiple concurrent updates to the same version of
the sees file.

I list
A list of locked releases to which deltas can no longer be made. A
get -e fails when applied against one of these locked releases. The list
has the following syntax:

< list> ::= < range> I < list> ,< range>
< range> ::= RELEASE NUMBER I a

The character a in the list is equi valent to specifying all releases for the
named sees file.

n The del ta command creates a 'null' delta in each release (if any) being
skipped when a delta is made in a new release. For example, releases 3 and
4 are skipped when making delta 5.1 after delta 2.7. These null deltas serve
as 'anchor points' so that branch deltas may be created from them later. If
the n flag is absent from the sees file, skipped releases will be non-existent
in the sees file, preventing branch deltas from being created from them in

Revision A of 9 May 1988

362 Programming Utilities and Libraries

Module Name

Module Type

Validity Checking Program

Files Used

the future.

qtext
text is defined by the user. The text is subst~tuted for all occurrences of the
%Q% keyword in sees file text retrieved by get.

mmodule
Module name of the sees file substituted for all occurrences of the %M%
keyword in sees file text retrieved by get. If the m flag is not specified, the
value assigned is the name of the sees file with the leading s. removed.

t type
Type of module in the sees file substituted for all occurrences of % Y% key
word in sees file text retrieved by get.

v [program]
Validity checking program: delta prompts for Modification Request (MR)
numbers as the reason for creating a delta. The optional program specifies
the name of an MR number validity checking program (see de 1 t a). If this
flag is set when creating an sees file, the -m option must also be used even
if its value is null.

The last component of all sees file names must be of the form s .filename.
New sees files are given mode 444 (see chmod). Write permission in the per
tinent directory is, of course, required to create a file. All writing done by
admin is to a temporary x. file, called x .filename, (see get(!», created with
mode 444 if the admin command is creating a new sees file, or with the same
mode as the sees file if it exists. After successful execution of admin, the sees
file is removed (if it exists), and the x . file is renamed with the name of the sees
file. This ensures that changes are made to the sees file only if no errors
occurred.

It is recommended that directories containing sees files be mode 755 and that
sees files themselves be mode 444. The mode of the directories allows only the
owner to modify sees files contained in the directories. The mode of the sees
files prevents any modification at all except by sees commands.

If it should be necessary to patch an sees file for any reason, the mode may be
changed to 644 by the owner allowing use of a text editor. Care must be taken!
The edited file should always be processed by an admin - h to check for corr
uption followed by an admin - z to generate a proper check-sum. Another
admin -h is recommended to ensure the sees file is valid.

admin also uses a transient lock file (called z .filename, to prevent simultaneous
updates to the sees file by different users. See get for further information.

+~t!! Revision A of 9 May 1988

Examples of Using adrnin

Inserting Commentary for the
Initial Delta

Initializing and Modifying
sces File Parameters

Appendix A - SCCS Low-Level Commands 363

Suppose you have a file called lang that contains a list of programming
languages:

We wish to give sees custody of 'lang' by using adrnin (which administers
sees files) to create an sees file and initialize delta 1.1. To do so, we use
adrnin as shown, and adrnin responds with a message:

All sees files must have names that begin with's.' ,hence, 's.lang'. The - i
option, together with its value 'lang', indicates that adrnin is to create a new
sees file and initialize it with the contents of the file 'lang'. This initial version
is a set of changes applied to the null sees file; it is delta 1.1.

The message is a warning message (which may also be issued by other sees
commands) that you can ignore for the present.

Remove the file 'lang' now - it can easily be reconstructed with the get com
mand, described in section

You can use the -yand -moptions with adrnin, just as with delta, to insert
initial descriptive commentary and/or MR numbers when an sees file is created.
If you don't use -y to comment, admin automatically inserts a comment line
of the form:

date and time created YY/MM/DD HH:MM:SS by logname

If you want to supply MR numbers (-m option), the v flag must also be set
(using the -f option described below). The v flag simply determines whether
or not MR numbers must be supplied when using any sees command that
modifies a delta commentary in the sees file (see sccsfile(5). Thus:

[,,-. __ h_e_r_m_e..;..s_%_ •.. ..;..a_dm-'--i..;..n..;....;.._c....._.i_f_i_r_s_t_..;..'-_mm..;....;..r..;..n..;..um_ .. _1_._. _-:-..;..f_V_· ..;....;..s..;..._.a~b..;-.c..;..· ~..;....;....;....;...:..;,;,.;......;....;..~J
Note that the -yand -m options are only effective if a new sees file is being
created.

The portion of the sees file reserved for descriptive text may be initialized or
changed through the use of the -t option. The descriptive text is intended as a
summary of the contents and purpose of the sees file; actually its contents and
length are up to you.

~\sun ,~ microsystems
Revision A of 9 May 1988

364 Programming Utilities and Libraries

When an sees file is being created and the -t option is supplied, it must be fol
lowed by the name of a file from which the descriptive text is to be taken. For
example, the command

specifies that the descriptive text is to be taken from file 'desc'.

When processing an existing sees file, the -t option specifies that the descrip
tive text (if any) currently in the file is to be replaced with the text in the named
file. Thus:

specifies that the descriptive text of the sees file is to be replaced by the con
tents of 'desc'. Omitting the filename after the -t option removes the descrip
tive text from the sees file:

The flags - see the section entitled Descriptive Text - of an sees file may be
initialized and changed with the -f (flag) option, or may be deleted with the -d
(delete) option. The flags of an sees file direct certain actions of the various
commands. See adrnin for a description of all the flags. For example, the i flag
specifies that the warning message stating there are no ID keywords contained in
the sees file should be treated as an error, and the d (default SID) flag specifies
the default version of the sees file to be retrieved by the get command. The
- f option sets a flag and, possibly, sets its value. For example:

~
c:.:::.:: :. .. :.:.:.:.:.:.:.:.: :,:,:,:,:,:.:,:.:,:,:,:,.,:.:, .. :,:,:,:,:,: .. ,:. ..:>:::::>:>:::..:,.::::,:..,.,.::.,.:.,.:.:.,.,.:.::: ,. ,. ::.:.:.::.:.:.:.:.:.:.:.:.::.:.: . .:.:. ... :..:.:.:.~

.

::.:.: •. : .. :.: .•.. :: ..•. : •. ::.::.:.:::::: ••... : •..•• : ..•• : .• : ••.... :: •.. :::::.:: .•.. :: ••.. :.: ... :.:: ... ::.: .. :h·.·:· .• :· . .:.e:.:· . .: rm.·· :·.:··.:··.::·e:: .. "·.·.:.:s:·.:·.:.:.···.~.·~.:·.·.· .••. ·.: •. · .. :.:·.a·.·:.::·.·.:~.·: •. ·:.<:;;;;;;.·:·.·:·.::.·.:·~.:·.·:·n::: .. ':..·:.: ... :: ~ ...••. ::.: •...• ~.~.:. ::.·£:.:'."·.:.;'.·.:"::.:.r·.:·.::.·s:'·.:·.::.·t·.:::.: .. : .•.. :.:: .•. :::.·::.:~.·: .•. :·f·:·.·.-.';'::' .• :.:.:: •. : •. ::.·: ... ::-.•. • .•.•. · •. :·.·£:.:.: ·mm:·.·.·.:· ... ·.··.:·.·.·.··.··.:·.··.:·o.:.:··.··.:dri·.': . .:· ... ·.·ame:· ... · ... ·.·.•· . .:·.:· ::· . .:·.·: .••.• :.· •. · : •. ··.·: :s·:.:.·.·:.·· .• :.:.·:·.·:.·:.·a:.·.··.:p·.:.·.·.·c·.··.·.::.:·:::::::::::::::::::::::::: .. :::·::::
. ~ ULLloI.·.!..!i!!i!!!!?!!UU
sets the i flag and the m (module name) flag. The value 'modname' specified
for the m flag is the value that the get command uses to replace the %M% ID key
word. In the absence of the m flag, the name of the g-file is used as the replace
ment for the %M% ill keyword. Note that several -f options may be supplied on
a single admin command, and that - f options may be supplied whether the
command is creating a new sees file or processing an existing one.

The -d option deletes a flag from an sees file, and may only be specified when
processing an existing file. As an example, the command:

removes the m flag from the sees file. Several -d options may be supplied on a
single admin command, and may be interspersed with - f options.

sees files contain a list (user list) of login names and/or group IDs of users who
are allowed to create deltas. This list is normally empty, implying that anyone
may create deltas. To add login names and/or group IDs to the list, use the
admin command with the -a option. For example:

Revision A of 9 May 1988

A.6. cdc - Change Delta
Commentary

cdc Options

SID Identification String

MR List

Appendix A - SCCS Low-Level Commands 365

adds the login names 'wendy' and 'alison' and the group ill '1234' to the list.
The -a option may be used whether admin is creating a new sees file or pro
cessing an existing one, and may appear several times. The -e option is used in
an analogous manner if one wishes to remove ('erase') login names or group IDs
from the list. A. 9.

cdc changes the delta commentary, for the SID specified by the -r option, of
each named sees file.

cdc - rSID [-m [mrlist]] [-y [comment]] filename ...

Delta commentary is defined to be the Modification Request (MR) and comment
information normally specified via the del ta command (-m and -y options).

If a directory is named, cdc behaves as though each file in the directory were
specified as a named file, except that non-sees files (last component of the path
name does not begin with s.) and unreadable files are silently ignored. If a
name of - is given, the standard input is read (see the NOTES below) each line of
the standard input is taken to be the name of an sees file to be processed.

Arguments to cdc, which may appear in any order, consist of options and file
names.

All the described options apply independently to each named file:

-rSID
Specifies the sees IDentification string of a delta for which the delta com
mentary is to be changed.

-m[mrlist]
If the sees file has the v flag set (see admin), a list of MR numbers to be
added and/or deleted in the delta commentary of the SID specified by the - r
option may be supplied. A null MR list has no effect.

MR entries are added to the list of MRs in the same manner as that of
del tao To delete an MR, precede the MR number with the character ! (see
EXAMPLES. If the MR to be deleted is currently in the list of MRs, it is
removed and changed into a "comment" line. A list of all deleted MRs is
placed in the comment section of the delta commentary and preceded by a
comment line stating that they were deleted.

If -m is not used and the standard input is a terminal, the prompt MRs? is
issued on the standard output before the standard input is read; if the stan
dard input is not a terminal, no prompt is issued. The MRs? prompt always
precedes the corrunents? prompt (see -y option).

MRs in a list are separated by blanks and/or tab characters. An unescaped
new-line character terminates the MR list.

~~sun ~ microsystems
Revision A of 9 May 1988

366 Programming Utilities and Libraries

Comment Text

Examples of Using cdc

Note that if the v flag has a value (see admin), it is taken to be the name of
a program (or shell procedure) which validates the correctness of the MR
numbers. If a non-zero exit status is returned from the MR number valida
tion program, cdc terminates and the delta commentary remains unchanged.

-y[comment]
Arbitrary text used to replace the comment(s) already existing for the delta
specified by the -r option. The previous comments are kept and preceded
by a comment line stating that they were changed. A null comment has no
effect.

If -y is not specified and the standard input is a terminal, the prompt com
men t s? is issued on the standard output before the standard input is read; if
the standard input is not a terminal, no prompt is issued. An unescaped
new-line character terminates the comment text.

adds b178-12345 and b179-00001 to the MR list, removes b177-54321 from the
MR list, and adds the comment trouble to delta 1 .6 of s. file.

does the same thing.

NOTE If sees file names are supplied to the cdc command via the standard input (- on
the command line), then the -m and - y options must also be used.

Files Used

A.7. comb - Combine
secs Deltas

x. file
z . file

(see del ta)
(see delta)

comb generates a Bourne Shell procedure which, when run, will reconstruct the
gi ven sees files.

(comb [-0] [-8] [-p SID] [-c list] filename ...]
If a directory is named, c ornb behaves as though each file in the directory were
specified as a named file, except that non-sees files (last component of the path
name does not begin with s.) and unreadable files are silently ignored. If a
name of - is given, the standard input is read; each line of the standard input is
taken to be the name of an sees file to be processed; non-sees files and unread
able files are silently ignored. The generated shell procedure is written on the
standard output.

~\sun ~ microsystems
Revision A of 9 May 1988

comb Options

ID String

Preserve List

Access at Release

Generate Report

Files Used

Limitations of the comb
Command

A.S. delta - Make a
Delta

Appendix A - SCCS Low-Level Commands 367

Options are explained as though only one named file is to be processed, but the
effects of any option apply independently to each named file.

-pSID
The sees IDentification string (SID) of the oldest delta to be preseIVed.
All older deltas are discarded in the reconstructed file.

-c list
A list of deltas to be preserved. All other deltas are discarded. See get for
the syntax of a list.

-0 For each get -e generated, the reconstructed file is accessed at the release
of the delta to be created. In the absence of the -0 option, the reconstructed
file is accessed at the most recent ancestor. Use of the -0 option may
decrease the size of the reconstructed sees file. It may also alter the shape
of the delta tree of the original file.

- s Generate a shell procedure which, when run, will produce a report giving,
for each file: the file name, size (in blocks) after combining, original size
(also in blocks), and percentage change computed by:

100 * (original combined) / original

It is recommended that before any sees files are actually combined, you
should use this option to detennine exactly how much space is saved by the
combining process.

If no options are specified, comb preserves only leaf deltas and the minimal
number of ancestors needed to preserve the tree.

s.COMB
The name of the reconstructed sees file.

comb?????
Temporary.

comb may rearrange the shape of the tree of deltas. It may not save any space;
in fact, it is possible for the reconstructed file to actually be larger than the origi
nal.

delta pennanently introduces into the named sees file changes that were made
to the file retrieved by get (called the ,g-file or generated file).

delta [-r SID] [-s] [-n] [-g list] [-m [mrlist]] [-y [commenJ]] [-p] filename •••

de 1 t a makes a delta to each named sees file. If a directory is named, de 1 t a
behaves as though each file in the directory were specified as a named file, except
that non-sees files Oast component of the path name does not begin with s .)
and unreadable files are silently ignored. If a name of - is given, the standard
input is read (see WARNINGS; each line of the standard input is taken to be the

Revision A of 9 May 1988

368 Programming Utilities and Libraries

del ta Options

Delta Number

No Report

Retain g-file

Ignore List

MRNumber

Comment Text

name of an sees file to be processed.

de 1 t a may issue prompts on the standard output depending upon certain
options specified and flags (see admin) that may be present in the sees file (see
-m and -y options below).

Options apply independently to each named file.

-rSID
Uniquely identifies which delta is to be made to the sees file. The use of
this option is necessary only if two or more outstanding get's for editing (get
-e) on the same sees file were done by the same person (login name). The
SIn value specified with the -r option can be either the SIn specified on the
get command line or the SID to be made as reported by the get command
(see get). A diagnostic results if the specified SID is ambiguous, or, if
necessary and omitted on the command line.

-s Do not display the created delta's ID, number of lines inserted, deleted and
unchanged in the sees file.

-n Retain the edited g-file which is normally removed at completion of delta
processing.

-g list
Specifies a list of deltas to be ignored when the file is accessed at the change
level (ID) created by this delta. See get for the definition of list.

-m [mrlist]
If the sees file has the v flag set (see admin), a Modification Request (MR)
number must be supplied as the reason for creating the new delta.

If -m is not used and the standard input is a terminal, the prompt MRs? is
issued on the standard output before the standard input is read; if the stan
dard input is not a terminal, no prompt is issued. The MRs? prompt always
precedes the caromen t s? prompt (see -y option).

MR's in a list are separated by blanks and/or tab characters. An unescaped
new-line character terminates the MR list.

Note that if the v flag has a value (see admin), it is taken to be the name of
a program (or shell procedure) which will validate the correctness of the MR
numbers. If a non-zero exit status is returned from MR number validation
program, del ta terminates (it is assumed that the MR numbers were not all
valid).

-y [comment]
Arbitrary text to describe the reason for making the delta. A null string is
considered a valid comment.

If -y is not specified and the standard input is a terminal, the prompt com
men t s? is issued on the standard output before the standard input is read;

.\sun ~ microsystems
Revision A of 9 May 1988

Display Differences

Files Used

Appendix A - secs Low-Level Commands 369

if the standard input is not a tenninal, no prompt is issued. An unescaped
new-line character terminates the comment text.

-p Display (on the standard output) the sees file differences before and after
the delta is applied in a dif f format.

g-file

p. file

q. file

x. file

z . file

d. file

Existed before the execution of del ta; removed after completion
of delta.
Existed before the execution of del ta; may exist after completion
of delta.
Created during the execution of del ta; removed after completion
of delta.
Created during the execution of del ta; renamed to sees file after
completion of del tao
Created during the execution of delta; removed during the execu
tion of del tao
Created during the execution of de 1 t a; removed after completion
of delta.

/bin/diff
Program to compute differences between the" gotten" file and the
g-file.

NOTE Lines beginning with an ASCII SOH character (binary 001) cannot be placed in
the sces file unless the SOH is escaped. This character has special meaning to
sces (see sccsfile(5)) and will cause an error.

NOTE A get of many SeCSfiles,followed by a delta ofthosefiles, should be avoided
when the get generates a large amount of data. Instead, multiple get / del ta
sequences should be used.

NOTE If the standard input (-) is specified on the delta command line, the -m (if
necessary) and -y options must also be present. Omission of these options is an
error.

Examples of Using delta To record the changes that were applied to 'lang' within the sees file, use the
de 1 t a command. de 1 t a asks for comments describing the change, and you
respond with a description of why the changes were made:

de 1 t a then reads the p . file and determines what changes were made to the file
lang. delta does this by doing its own get to retrieve the original version,
and then applying diff(l) to the original version and the edited version. When
the changes to 'lang' have been stored in 's.lang', the dialogue with delta
looks like:

.\sun ~ microsystems
Revision A of 9 May 1988

370 Programming Utilities and Libraries

More Notes on delta

The number' 1.2' is the name of the delta just created, and the next three lines are
a summary of the changes made to 's.1ang'.

de 1 t a does a series of checks before creating the delta:

1. Searches the p. file for an entry containing the user's login name, because
the user who retrieved the g-file must be the one who creates the delta.
de 1 t a displays an error message if the entry is not found. Note that if the
login name of the user appears in more than one entry (that is, the same user
did a get -e more than once on the same sees file), the -r option must
be used with delta to specify an SID that uniquely identifies the p.file
entry40.

2. Performs the same permission checks as get -e.

If these checks succeed, delta compares the g-file (via diff(l)) with its own,
temporary copy of the g-file as it was before editing, to determine what has been
changed. This temporary copy of the g-file is called the d . file (its name is
formed by replacing the s. of the sees file name with d.); del ta retrieves it
by doing its own get at the SID specified in the p. file entry. If you would like
to see the results of de 1 t a's di f f, use the -p option to display it on standard
output.

In practice, the most common use of delta is:

If your standard output is a terminal, delta replies: 'comments?'. You may
now type a response - usually a description of why the delta is being made
of up to 512 characters, terminating with a newline character. Newline charac
ters not intended to terminate the response should be preceded by '\'.

If the sees file has a v flag, delta asks for 'MRs?' before prompting for
'comments?' (again, this prompt is printed only if the standard output is a termi
nal). Enter MR41 numbers, separated by blanks and/or tabs, and terminate your
response with a newline character.

If you want to enter commentary (comments and/or MR numbers) directly on the
command line, use the -yand/or -m options, respectively. For example:

40 The SID specified may be either the SID retrieved by get, or the SID de 1 t a is to create.

41 In a tightly controlled environment. one would expect deltas to be created only as a result of some trouble
report, change request, trouble ticket, etc. (collectively called here Modification Requests, or MRs) and would
think it desirable or necessary to record such MR number(s) within each delta.

Revision A of 9 May 1988

Appendix A - sces Low-Level Commands 371

inserts the 'descriptive comment' and the MR numbers 'mrnum1' and 'mrnum2'
without prompting or reading from. standard input. -m can only be used if the
sees file has a v flag. These options are useful when delta is executed from
within a Shell procedure.

The commentary (comments and/or MR numbers), whether solicited by delta
or supplied via options, is recorded as part of the entry for the delta being
created, and applies to all sees files processed by the same invocation of
de 1 t a. Thus if de 1 t a is used with more than one file argument, and the first
file named has a v flag, all files named must have this flag. Similarly, if the first
file named does not have this flag, then none of the files named may have it.
Only files conforming to these rules are processed.

After the prompts for commentary, and before any other output, delta displays:

No id keywords (cm7)

if it finds no ID keywords in the edited g-file while making a delta. If there were
any ID keywords in the sees file, this might mean one of two things. The key
words may have been replaced by their values (if a get without the -e option
was used to retrieve the g-file). Or, the keywords may have been accidentally
deleted or changed while editing the g-file. Of course, the file may never have
had any ID keywords. In any case, it is left up to you to decide whether any
action is necessary, but the delta is made regardless (unless there is an i flag in
the sees file, which makes this a fatal error and kills the delta).

When processing is complete, delta displays a message containing the SID of
the created delta (obtained from the p . file entry), and the counts of lines
inserted, deleted, and left unchanged. Thus, a typical message might be:

1.4
14 inserted
7 deleted
345 unchanged

The reported counts may not agree with your sense of changes made; there are a
number of ways to describe a set of such changes, especially if lines are moved
around in the g-file, and delta may describe the set differently than you.
However, the total number of lines of the new delta (the number inserted plus the
number left unchanged) should agree with the number of lines in the edited g
file.

After processing of an sees file is complete, the corresponding p . file entry is
removed from the p. f ile42. If there is only one entry in the p. file, the p. file
itself is removed.

42 All updates to the p . file are made to a temporary copy, the q . file, whose use is similar to the use of the
x . file described above.

~~sun ~ microsystems
Revision A of 9 May 1988

372 Programming Utilities and Libraries

A.9. get - Get Version of
sees File

In addition, del ta removes the edited g-file, unless the -n option is specified.
Thus:

keeps the g-file upon completion of processing.

The - s (silent) option suppresses all output that is normally directed to the stan
dard output, except the initial prompts for commentary. If you use -8 with -y
(and, possibly, -m), delta neither reads standard input nor writes to standard
output.

get generates an ASeII text file from each named sees file according to the
specified option. Arguments may be specified in any order, options apply to all
named sees files. If a directory is named, get behaves as though each file in
the directory were specified as a named file, except that non-sees files (last com
ponent of the path name does not begin with s.) and unreadable files are silently
ignored. If a name of - is given, the standard input is read; each line of the stan
dard input is taken to be the name of an sees file to be processed. Again, non
sees files and unreadable files are silently ignored.

get [-rSID] [-ccutofJ] [-iUst] [-xlist] [-aseq-no.] [-k] [-e

get Options

ID String

Cutoff

[-1 [p]] [-p [-m] [-n] [-5] [-b] [-g] [-t] filename

The generated text is normally written into a file called the g-file (whose name is
derived from the sees file name by simply removing the leading s.; see also
FILES, below).

Options are explained below as though only one sees file is to be processed, but
the effects of any option argument applies independently to each named file.

-rSID
The string (lD) of the version (delta) of an sees file to be retrieved. Table 1
below shows, for the most useful cases, what version of an sees file is
retrieved (as well as the ID of the version to be eventually created by delta
if the -e option is also used), as a function of the SID specified.

-c cutoff
Cutoff date-time, in the form: YY[MM[DD[HH[MM[SS]]]]]

No changes (deltas) to the sees file which were created after the specified
cutoff date-time are included in the generated AseII text file. Units omitted
from the date-time default to their maximum possible values; that is, -
c7 502 is equivalent to -c7 50228235959. Any number of non-numeric
characters may separate the various 2 digit pieces of the cutoff date-time.
This feature allows one to specify a cutoff date in the form: -c77/2/2
9 : 22 : 25. Note that this implies that one may use the % E % and % U %
identification keywords.

Revision A of 9 May 1988

Get for Editing

Appendix A - SCCS Low-Level Commands 373

-e This get is for editing or making a change (delta) to the sees file via a sub
sequent use of delta. A get -e applied to a particular version (ID) of
the sees file prevents further get -e commands on the same SID until
del ta is run or the j (joint edit) flag is set in the sees file (see admin).
Concurrent use of get "':'e for different IDs is always allowed.

If the g-file generated by a get -e is accidentally ruined in the process
of editing it, it may be regenerated by re-running a get with the -k option
in place of the - e option.

sees file protection specified via the ceiling, floor, and authorized user list
stored in the sees file (see admin) are enforced when the -e option is
used.

New Branch -b Used with the -e option to indicate that the new delta should have an SID in
a new branch as shown in Table 1. This option is ignored if the b flag is not
present in the file (see admin) or if the retrieved del ta is not a leaf delta.
A leaf de 1 t a is one that has no successors on the sees file tree.

NOTE A branch delta may always be createdfrom a non-leaf delta.

Include List -i list

Exclude List

Don't Expand ID Keywords

Write Delta Summary

Write Text to Standard Output

A list of deltas to be included (forced to be applied) in the creation of the
generated file. The list has the following syntax:

< list> ::= < range> I < list> , < range>
< range> ::= ID I ID-ID

ID, the sees Identification of a delta, may be in any fonn shown in the 'ID
Specified' column of Table 1. Partial IDs are interpreted as shown in the 'ID
Retrieved' column of Table 1.

-x list
A list of deltas to be excluded (forced not to be applied) in the creation of
the generated file. See the - i option for the list fonnat.

- k Do not replace identification keywords (see below) in the retrieved text h';'
their value. The -k option is implied by the -e option.

-l[p]
Write a delta summary into an 1. file. If -lp is used, the delta summary is
written on the standard output and the 1 . file is not created. See FILES for
the format of the 1 . file.

-p Write the text retrieved from the sees file to the standard output. No g-file
is created. All output which normally goes to the standard output goes to the
standard error file instead, unless the - s option is used, in which case it
disappears.

Revision A of 9 May 1988

374 Programming Utilities and Libraries

Suppress All Output

Show delta IDs

Show Module Names

Don't Retrieve Text

Access Top Delta

Delta Sequence Number

- s Suppress all output normally written on the standard output. However, fatal
error messages (which always go to the standard error file) remain unaf
fected.

-m Precede each text line retrieved from the sees f.ile with the ill of the delta
that inserted the text line in the sees file. The format is: ID, followed by a
horizontal tab, followed by the text line.

-n Precede each generated text line with the %M% identification keyword value
(see below). The format is: %M% value, followed by a horizontal tab, fol
lowed by the text line. When both the -m and -n options are used, the for
mat is: %M% value, followed by a horizontal tab, followed by the -m option
generated fonnat.

-g Do not actually retrieve text from the sees file. It is primarily used to gen
erate an 1 . file, or to verify the existence of a particular ID.

-t Access the most recently created ('top') delta in a given release (for exam
ple, -rl), or release and level (for example, -rl.2).

-a seq-no.
The delta sequence number of the sees file delta (version) to be retrieved
(see sccsfile(5)). This option is used by the comb command; it is not a gen
erally useful option, and users should not use it. If both the -r and -a
options are specified, the -a option is used. Care should be taken when
using the -a option in conjunction with the -e option, as the SID of the
delta to be created may not be what one expects. The -r option can be
used with the -a and -e options to control the naming of the SIn of the
delta to be created.

For each file processed, get responds (on the standard output) with the SID
being accessed and with the number of lines retrieved from the sees file.

If the -e option is used, the SID of the delta to be made appears after the SID
accessed and before the number of lines generated. If there is more than one
named file or if a directory or standard input is named, each file name is printed
(preceded by a new-line) before it is processed. If the - i option is used included
deltas are listed following the notation 'Included'; if the -x option is used,
excluded deltas are listed following the notation 'Excluded'.

~\sun ~~ microsystems
Revision A of9 May 1988

Table A-I

Appendix A - SCCS Low-Level Commands 375

Determination of sees Identification String

SID * -b Option Other SID SID of Delta
Specified Usedt Conditions Retrieved to be Created

none:j: no R defaults to mR mR.mL mR.(mL+l)

none:j: yes R defaults to mR mR.mL mR.mL.(mB+l).1
R no R>mR mR.mL R.l***

R no R=mR mR.mL mR.(mL+l)

R yes R>mR mR.mL mR.mL.(mB+l).1

R yes R=mR mR.mL mR.mL.(mB+ 1).1

R R <mR and hR.mL** hR.mL.(mB+l).1
R does not exist

R Trunk succ.# R.mL R.mL.(mB+l).l
in release > R
andR exists

R.L no No trunk succ. R.L R.(L+l)

R.L yes No trunk succ. R.L R.L.(mB+l).l

R.L Trunk succ. R.L R.L.(mB+l).l
in release ~ R

R.L.B no No branch succ. R.L.B.mS R.L.B.(mS+l)

R.L.B yes No branch succ. R.L.B.mS R.L.(mB+l).l
R.L.B.S no No branch succ. R.L.B.S R.L.B.(S+l)

R.L.B.S yes No branch succ. R.L.B.S R.L.(mB+l).l

R.L.B.S Branch succ. R.L.B.S R.L.(mB+l).l

* 'R', 'L', 'B', and'S' are the 'release', 'level', 'branch', and 'sequence' com
ponents of the SID, respectively; 'm' means 'maximum'. Thus, for example,
'R.mL' means 'the maximum level number within release R';
'R.L.(mB+I).l' means 'the first sequence number on the new branch (that is,
maximum branch number plus one) of level L within release R'. Note that if
the SID specified is of the form 'R.L', 'R.L.B', or 'R.L.B.S', each of the
specified components must exist.

** 'hR' is the highest existing release that is lower than the specified, nonex
istent, release R.

Forces creation of the first delta in a new release.

Successor.
t The -b option is effective only if the b flag (see admin) is present in the

file. An entry of - means 'irrelevant'.
=1= This case applies if the d (default SID) flag is not present in the file. If the

d flag is present in the file, the SIn obtained from the d flag is interpreted as
if it had been specified on the command line. Thus, one of the other cases in
this table applies.

~~sun ~ microsystems
Revision A of 9 May 1988

376 Programming Utilities and Libraries

Identification Keywords
When you generate a g-file to be used for compilation, it is useful and informa
tive to record the date and time of creation, the version retrieved, the module's
name, etc., within the g-file, so that this information appears in a load module
when one is eventually created. sees provides a convenient mechanism for
doing this automatically. Identification (ID) keywords appearing anywhere in the
generated file are replaced by appropriate values according to the definitions of
these ID keywords.

The format of an ID keyword is an upper-case letter enclosed by percent signs
(%). For example, % I % is an ID keyword that is replaced by the SID of the
retrieved version of a file. Similarly, % H % is an ID keyword for the current date
(in the form 'mmldd/yy'), and %M% is the name of the g-file.

Thus, using get on an sees file that contains the C declaration:

char identification [] = rr·%M% %1% %H%rr ;

gives (for example) the following:

char identification [] = rrmodulename 2.3 03/17/83 rr ;

If there are no ID keywords in the text, get might display:

This message is normally treated as a warning by get.
However, if an i flag is present in the sees file, it is treated as an error - see
section A.8 for further information.

Table A-2 Identification Keywords

Keyword Value

%M% Module name: either the value of the m flag in the file (see adrnin),
or if absent, the name of the sees file with the leading s. removed.

%1% sees identification (ID) (%R%. %L%. %B%. %S%) of the retrieved
text.

%R% Release.
%L% Level.
%B% Branch.
% S % Sequence.
%D % Current date (YY/MMlDD).
% H % Current date (MMlDD/YY).
% T % Current time (HH:MM:SS).
%E% Date newest applied delta was created (YY/MMlDD).
%G% Date newest applied delta was created (MMlDD/YY).
%U% Time newest applied delta was created (HH:MM:SS).
%Y% Module type: value of the t flag in the sees file (see admin).
% F % sees file name.

~ §,~!! Revision A of 9 May 1988

Appendix A - SCCS Low-Level Commands 377

Table A-2 Identification Keywords- Continued

Retrieving Different Versions

Keyword Value

%P % Fully qualified sees file name.
%Q% The value of the q flag in the file (see adrnin).
%c% Current line number. This keyword is intended for identifying mes

sages output by the program such as 'this shouldn't have happened'
type errors. It is not intended to be used on every line to provide
sequence numbers.

%Z% The4-characterstring @ (#) recognizable by what.
%W% A shorthand notation for constructing what strings for program

files. %W% = %Z%%M%<tab>%I%

%A% Another shorthand notation for constructing
what strings for nonstandard program files.
%A% = %Z%%Y% %M% %I%%Z%

You can retrieve versions other than the default version of an sees file by using
various options. Normally, the default version is the most recent delta of the
highest-numbered release on the trunk of the sees file tree. However, if the
sees file being processed has a d (default SID) flag, the SID specified as the
value of this flag is used as a default. The default SID is interpreted in exactly
the same way as the value supplied with the -r option of get.

The -r option specifies an SID to be retrieved, in which case the d (default SID)
flag (if any) is ignored. For example, to retrieve version 1.3 of file 's.abc', type:

A branch delta may be retrieved in the same way:

When a two- or four-component SID is specified as a value for the -r option (as
above) and the particular version does not exist in the sees file, an error message
results.

If you omit the level number of the SID, get retrieves the trunk delta with the
highest level number within the given release, if the given release exists:

~\sun ~ microsystems
Revision A of 9 May 1988

378 Programming Utilities and Libraries

Retrieving to Make Changes

get retrieved delta 3.7, the highest level trunk delta in release 3. If the given
release does not exist, get goes to the next-highest existing release, and retrieves
the trunk delta with the highest level number. For example, if release 9 does not
exist in file 's.abc', and release 7 is actually the highest-numbered release below
9, then get would generate:

indicating that trunk delta 7.6 is the latest version of file 's.abc' below release 9.

Similarly, if you omit the sequence number of an SID, as in:

get retrieves the branch delta with the highest sequence number on the given
branch, if it exists. If the given branch does not exist, an error message results.

The -t option retrieves the latest ('top') version in a particular release (that is,
when no -r option is supplied, or when its value is simply a release number).
The latest version is defined as that delta which was produced most recently,
independent of its location on the sees file tree. Thus, if the most recent delta in
release 3 is trunk delta 3.5, doing a get -t on release 3 produces:

:.:.::.

However, if branch delta 3.2.1.5 were the latest delta (created after delta 3.5), the
same command produces:

!::!:! .. , . '~ ':::::':"::::'::'::':'::: co::::
":,, co:::::::: co:::::::

::-c:
::.::

({< :\::,:::
:,::,":

:): :
,:,':,:,:::,: "'H:-:-:// :.,,:.<:?,. >{ m: ,:>

.. ~~.......,J?i ... ".'.'.' ::
m.II :,:::>:, co:::::::::: :.:::. ::::.:

t/: .

Specifying the -e option to the get command indicates the intent to make a
delta sometime later, and, as such, its use is restricted. If the -e option is

Revision A of 9 May 1988

Appendix A - SCCS Low-Level Commands 379

present, get checks the following things:

1. The user list, the list of login names and/or group IDs of users allowed
to make deltas, to determine if the login name or group ID of the user
executing get is on that list. Note that a null (empty) user list behaves
as if it contained all possible login names.

2. That the release (R) of the version being retrieved satisfies the relation:

floor ~ R ~ ceiling

to determine if the release being accessed is a protected release. The
floor and ceiling are specified as flags in the sees file.

3. That the release (R) is not locked against editing. The lock is specified
as a flag in the sees file.

4. Whether or not multiple concurrent edits are allowed for the sees file
as specified by the j flag in the sees file. Multiple concurrent edits are
described in the section entitled Concurrent Edits of the Same SID.

get terminates processing of the corresponding sees file if any of the first three
conditions fails.

If the above checks succeed, get with the -e option creates a g-file in the
current directory with mode 644 (readable by everyone, writable only by the
owner) owned by the real user.

get terminates with an error if a writable g-file already exists - this is to
prevent inadvertent destruction of a g-file that already exists and is being edited
for the purpose of making a delta.

ID keywords appearing in the g-file are not substituted by get when the -e
option is specified, because the generated g-file is to be subsequently used to
create another delta, and replacement of ID keywords would permanently change
them within the sees file. In view of this, get does not check for the presence
ofID keywords within the g-file, so that the message: 'No id keywords (cm7)' is
never displayed when get is invoked with the -e option.

In addition, a get with the -e option creates (or updates) a p . file, for passing
information to the delta command. Let's look at an example of get -e:

The message indicates that get has retrieved version 1.3, which has 67 lines; the
version del ta will create is version 1.4.

If the - rand/or -t options are used together with the -e option, the version
retrieved for editing is as specified by the -r and/or -t options.

The options -i and -x may be used to specify a list of deltas to be included
and excluded, respectively, by get. See get for the syntax of such a list.

~~sun ~ microsystems
Revision A of 9 May 1988

380 Programming Utilities and Libraries

NOTE

Concurrent Edits of Different
SIDs

'Including a delta' forces the changes that constitute the particular delta to be
included in the retrieved version - this is useful for applying the same changes
to more than one version of the sees file. 'Excluding a delta' forces it not to be
applied. This is useful for undoing the effects of a previous delta in the version
of the sees file to be created ..

Whenever deltas are included or excluded, get checks for possible interference
between such deltas and those deltas that are normally used in retrieving the par
ticular version of the sees file. Two deltas can interfere, for example, when
each one changes the same line of the retrieved g-file. Any interference is indi
cated by a warning that displays the range of lines within the retrieved g-file in
which the problem may exist. The user is expected to examine the g-file to
determine whether a problem actually exists, and to take whatever corrective
measures are deemed necessary.

The - i and -x options should be used with extreme care.

The -k option to get can be used to regenerate a g-file that may have been
accidentally removed or ruined after executing get with the -e option, or to
simply generate a g-file in which the replacement ofID keywords has been
suppressed. Thus, a g-file generated by the -k option is identical to one pro
duced by get executed with the -e option. However, no processing related to
the p . file takes place.

The ability to retrieve different versions of an sees file allows a number of del
tas to be 'in progress' at any given time. In general, several people may simul
taneously edit the same sees file provided they are editing different versions of
that file. This is the situation we discuss in this section. However, there is a pro
vision for multiple concurrent edits, so that more than one person can edit the
same version - see the section entitled Concurrent Edits of the Same SID.

The p. file - created via a get -e command - is named by replacing the's.'
in the sees file name with 'p.'. The p . file is created in the directory containing
the sees file, is given mode 644 (readable by everyone, writable only by the
owner), and is owned by the effective user. The p. file contains the following
information for each delta that is still 'in progress' :43

o The SID of the retrieved version.

o The SID that will be given to the new delta when it is created.

o The login name of the real user executing get.

The first execution of get -e creates the p . file for the corresponding sees
file. Subsequent executions only update the p . file by inserting a line containing
the above information. Before inserting this line, however, get performs two
checks. First, it searches the entries in the p . file for an SID which matches that
of the requested version, to make sure that the requested version has not already
been retrieved. Secondly, get determines whether or not multiple concurrent
edits are allowed. If the requested version has been retrieved and multiple

43 Other infonnation may be present, but is not of concern here. See get for further discussion.

Revision A of9 May 1988

Concurrent Edits of the Same
SID

Options that Affect Output

Appendix A - SCCS Low-Level Commands 381

concurrent edits are not allowed, an error message results. Otherwise, the user is
informed that other deltas are in progress, and processing continues.

It is important to note that the various executions of get should be carried out
from different directories. OthelWise, only the first use of get will succeed;
since subsequent gets would attempt to overwrite a writable g-file, they pro
duce an sees error condition. In practice, this problem does not arise: normally
such multiple executions are performed by different users44 from different work
ing directories.

Table A-I shows, for the most useful cases, what version of an sees file is
retrieved by get, as well as the SID of the version to be eventually created by
delta, as a function of the SID specified to get.

Normally, get s for editing (- e option specified) cannot operate concurrently
on the same SID. Usually del ta must be used before another get -e on the
same SID. However, multiple concurrent edits (two or more successive
get -e commands based on the same retrieved SID) are allowed if the j flag
is set in the sees file. Thus:

may be immediately followed by:

without an intervening use of delta. In this case, a delta command
corresponding to the first get produces delta 1.2 (assuming 1.1 is the latest
(most recent) trunk delta), and the delta command corresponding to the
second get produces delta 1.1.1.1.

When the -p option is specified, get writes the retrieved text to the standard
output, rather than to a g-file. In addition, all output normally directed to the
standard output (such as the SID of the version retrieved and the number of lines
retrieved) is directed instead to the diagnostic output. This may be used, for
example, to create g-files with arbitrary names:

44 See the section entitled Protection for a discussion of how different users can use sees commands on the
same files.

~~sun ~ microsystems
Revision A of 9 May 1988

382 Programming Utilities and Libraries

The - s option suppresses all output that is normally directed to the standard
output. Thus, the SID of the retrieved version, the number of lines retrieved, and
so on, do not appear on the standard output. -s does not affect messages directed
to the diagnostic output. - s is often used in conjunction with the -p option to
'pipe' the output of get, as in:

A get -g verifies the existence of a particular SID in an sees file but does not
actually retrieve the text. This may be useful in a number of ways. For example,

displays the specified SID if it exists in the sees file, and generates an error mes
sage if it doesn't. -g can also be used to regenerate a p. file that has been des
troyed:

get used with the -1 option creates an 1. file, which is named by replacing the
's.' of the sees file name with '1.'. This file is created in the current directory,
with mode 444 (read-only), and is owned by the real user. It contains a table
(format described in get) showing which deltas were used in constructing a par
ticular version of the sees file. For example:

generates an 1 . file showing which deltas were applied to retrieve version 2.3 of
the sees file. Specifying a value of 'p' with the -1 option, as in:

sends the generated output to the standard output rather than to the 1. file.
Note that the -g option may be used with the -1 option to suppress the actual
text retrieval.

The -m option identifies the origin of each change applied to an sees file. -m
tags each line of the generated g-file with the SID of the delta it came from. The
SID precedes the line, and is separated from the text by a tab character.

When the -n option is specified, each line of the generated g-file is preceded by
the value of the %M% ID keyword and a tab character. The -n option is most
often used in a pipeline with grep(l).
For example, to find all lines that match a gi ven pattern in the latest version of

each sees file in a directory:

If both the -m and -n options are specified, each line of the generated g-file is
preceded by the value of the %M% ID keyword and a tab (the effect of the -n

~~sun ~ microsystems
Revision A of 9 May 1988

Files Used

g-file

I-file

Format of Lines in the I-file

p. file

Appendix A - SCCS Low-Level Commands 383

option), followed by the line in the format produced by the -m option.

Since using the -m option, the -n option, or both, modifies the contents of the
g-file, such a g-file must not be used for creating a delta. Therefore, neither the
-m nor the -n option may be used with the -e option.

Several auxiliary files may be created by get, These files are known generically
as the g-file, 1 . file, p . file, and z . file. The letter before the" dot" is called the
tag. The current version, or" g-file has no tag. An auxiliary file name is based
on the format of the SeeS-file name: the last component of the SeeS-file name is
of the form s. version-name, the auxiliary files are named by replacing the lead
ing s. with the tag. The g-file is an exception to this scheme: its name is
derived by removing the s. prefix. For example, for s . xy z . c, the auxiliary
file names would be xyz . c (g-file), 1. xyz . c, p. xyz . c, and z . xyz . c.

The g-file, which contains the generated text, is created in the current directory
(unless the -p option is used). A g-file is created in all cases, whether or not any
lines of text were generated by the get. It is owned by the real user. If the - k
option is used or implied its mode is 644; otherwise its mode is 444. Only the
real user need have write permission in the current directory.

The 1 . file contains a table showing which deltas were applied in generating the
retrieved text. The 1 . file is created in the current directory if the -1 option is
used; its mode is 444 and it is owned by the real user. Only the real user need
have write permission in the current directory.

Lines in the 1 . file have the following format:

a. A blank character if the delta was applied; * otherwise.
b. A blank character if the delta was applied or wasn't applied and ignored;

* if the delta wasn't applied and wasn't ignored.
c. A code indicating a 'special' reason why the delta was or was not applied:

'I': Included.
'X': Excluded.
'C': Cut off (by a -c option).

d. Blank.
e. sees identification (ID).
f. Tab character.
g. Date and time (in the form YY/MMJDD HH:MM:SS) of creation.
h. Blank.
i. Login name of person who created del tao

The comments and MR data follow on subsequent lines, indented one horizontal
tab character. A blank line terminates each entry.

The p. file passes information resulting from a get -e along to delta. Its
contents are also used to prevent a subsequent execution of a get -e for the
same SID until delta is executed or the joint edit flag, j, (see admin) is set in
the sees file. The p. file is created in the directory containing the sees file and
the effective user must have write pennission in that directory. Its mode is 644

~\sun ~ microsystems
Revision A of 9 May 1988

384 Programming Utilities and Libraries

z-file

Limitations of the get
Command

A.I0. help - Ask for
sees Help

Example of help

and it is owned by the effective user. The fonnat of the p.file is: the gotten ID,
followed by a blank:, followed by the SID that the new delta will have when it is
made, followed by a blank, followed by the login name of the real user, followed
by a blank, followed by the date-time the get was executed, followed by a blank
and the - i option if it was present,. followed by a blank and the - x option if it
was present, followed by a new-line. There can be an arbitrary number of lines
in the p . file at any time; no two lines can have the same new delta ID.

The z-file serves as a lock-out mechanism against simultaneous updates. Its con
tents are the binary (2 bytes) process ill of the command (that is, get) that
created it. The z . file is created in the directory containing the sees file for the
duration of get. The same protection restrictions as those for the p . file apply for
the z-file. The z-file is created mode 444.

If the effective user has write permission (either explicitly or implicitly) in the
directory containing the sees files, but the real user doesn't, only one file may
be named when the -e option is used.

help finds infonnation to explain a message from a command or explain the use
of a command. Zero or more arguments may be supplied. If no arguments are
given, help prompts for one.

[______ he_l_p ____ [_a_rg_s_J ___ J

The arguments may be either mrssage numbers (which nonnally appear in
parentheses following messages) or command names, of one of the following
types:

type 1

type 2

type 3

Begins with non-numerics, ends in numerics. The non-numeric prefix
is usually an abbreviation for the program or set of routines which pro
duced the message (for example, ge 6, for message 6 from the get
command).

Does not contain numerics (as a command, such as get)

Is all numeric (for example, 212)

The response of the program is the explanatory infonnation related to the argu
ment, if there is any.

When all else fails, try help stuck.

The following asks for help on the ge 5 error message and information about the
rmde 1 command:

~\sun ~ microsysterns
Revision A of 9 May 1988

Files Used

A.II. prs - Print sees
File

Appendix A - sces Low-Level Commands 385

lusr/lib/hel p
directory containing files of message text.

pr s prints, on the standard output, parts or all of an sees file (see
sccsfi1e(5)) in a user supplied fonnat. If a directory is named, prs behaves
as though each file in the directory were specified as a named file, except that
non-SCCS files (last component of the path name does not begin with s.), and
unreadable files are silently ignored. If a name of - is given, the standard input is
read, in which case each line is taken to be the name of an sees file or directory
to be processed; non-SeCS files and unreadable files are silently ignored.

prs [-d[dataspec]] [-r[SID]] [-e] [-1] [-a] filename .•.

prs Options

Output data specification

ID string

Information on earlier deltas

Information on later deltas

Information for all deltas

Options apply independently to each named file.

-d [dataspec]
Specifies the output data specification. The dataspec is a string consisting of
sees file data keywords (see A.ll.2) interspersed with optional user sup
plied text.

-r [SID]
Specifies the sees IDentification (ID) string of a delta for which infonna
tion is desired. If no SID is specified, the SID of the most recently created
delta is assumed.

-e Requests information for all deltas created earlier than and including the
delta designated via the -r option.

-1 Requests information for all deltas created later than and including the delta
designated via the - r option.

-a Requests printing of infonnation for both removed, that is, delta type = R,
(see rmde1) and existing, that is, delta type = D, deltas. If the -a option is
not specified, information for existing deltas only is provided.

~~sun ~ microsystems
Revision A of 9 May 1988

386 Programming Utilities and Libraries

Data Keywords

Table A-3

In the absence of the -d options, pr s displays a default set of infonnation con
sisting of: delta-type, release number and level number, date and time last
changed, user-name of the person who changed the file, lines inserted, changed,
and unchanged, the MR numbers, and the comments.

Data keywords specify which parts of an sees file are to be retrieved and output.
All parts of an sees file (see sccsfiie(5)) have an associated data keyword.
There is no limit on the number of times a data keyword may appear in a
dataspec.

The information printed by prs consists of: 1) the user supplied text; and 2)
appropriate values (extracted from the sees file) substituted for the recognized
data keywords in the order of appearance in the dataspec. The fonnat of a data
keyword value is either Simple (S), in which keyword substitution is direct, or
Multi-line (M), in which keyword substitution is followed by a carriage return.

User supplied text is any text other than recognized data keywords. A tab is
specified by \t and carriage returnlnew-line is specified by \n.

sees Files Data Keywords

Keyword Data Item

: Dt : Delta information
:DL:
:Li:
:Ld:
:Lu:
:DT:
: I:
:R:
:L:

:8:
:S:

:D:

:Dy:
:Dm:

:Dd:

:T:
:Th:
:Tm:
:T5:
:P:
:DS:
:DP:
:DI:

:Dn:
:Dx:

:Dg:

:MR:

:c:

Delta line statistics
Lines inserted by Delta
Lines deleted by Delta
Lines unchanged by Delta
Delta type
sees ID string (SID)
Release number
Level number
Branch number
Sequence number
Date Delta created
Year Delta created
Month Delta created
Day Delta created
Time Delta created
Hour Delta created
Minutes Delta created
Seconds Delta created
Programmer who created Delta
Delta sequence number
Predecessor Delta seq-no.
Seq-no. of deltas incl.,
excl., ignored
Deltas included (seq #)

Ddtas excluded (seq #)

Deltas ignored (seq #)

MR numbers for delta
Comments for delta

File Section

Delta Table

Value Format

See below* S
:Li:/:Ld:/:Lu: S
nnnnn S
nnnnn S
nnnnn S
DorR S
:R:.:L:.:B:.:S: S
nnnn S
nnnn S
nnnn S
nnnn S
:Dy:/:Dm:/:Dd: S
nn S
nn S
nn S
:Th:::Tm:::Ts: S
nn S
nn S
nn S
logname S
nnnn S
nnnn S
: Dn:/:Dx:I:Dg: S

:DS: :DS: ... S
:DS: :DS: ... S
:DS::DS: ... S
text M
text M

Revision A of 9 May 1988

Appendix A - SCCS Low-Level Commands 387

Table A-3 SCCS Files Data Keywords- Continued

Examples of Using pr s

Keyword Data Item

:UN: User names
:FL: Flag list
:Y: Module type flag
:MF: MR validation flag
:MP: MR validation pgm name
:KF: Keyword error/warning flag
:BF: Branch flag
:J: Joint edit flag
:LK: Locked releases
:Q: User defined keyword
:M: Module name
:FB: Floor boundary
:CB: Ceiling boundary
:Ds: Default SID
:ND: Null delta flag
:FD: File descriptive text
:BD: Body
:GB: Gotten body
:W: A form of what(1) string
:A: A form ofwhat(l) string
: Z: what(l) string delimiter
:F: sees file name
:PN: sees file path name

* :Dt: = :DT: :1: :D: :T: :P: :DS: :DP:

may produce on the standard output:

File Section

User Names
Flags

Comments
Body

N/A
N/A
N/A
N/A
N/A

Users and/or user IDs for s.file are:
xyz
131
abc

del tao ••• fo.rpgm : M: : .: I

may produce on the standard output:

Value Format

text M
text M
text S
yes or no S
text S
yes or no S
yes or no S
yes or no S
:R: ... S
text S
text S
:R: S
:R: S
:1: S
yes or no S
text M
text M
text M
:Z::M:\t:I: S
:Z::Y: :M: :I::Z: S
@(#) S
text S
text S

Newest delta for pgrn main.c: 3.7 Created 77/12/1 By cas

As a special case.'

l __ h_e_· · ... _r_m_e_s_%_·· _p_. r_S_S_._f_i_l...;..e_· ""'---_________ ---'--'-'--'-'-_--'-__ -'--'--'-___ J

~~sun ~ microsystems
Revision A of9 May 1988

388 Programming Utilities and Libraries

Files Used

A.12. rmdel- Remove
Delta from sees
File

may produce on the standard output:

D 1.1 77/12/1 00:00:00 cas 1 000000/00000/00000
MRs:

b178-12345
b179-54321
COMMENTS:
this is the comment line for s.file initial delta

for each delta table entry of the "D" type. The only option argument allowed to
be used with the special case is the -a option.

/tmp/pr?????

rmde 1 removes the delta specified by the SID from each named sees file. The
delta to be removed must be the newest (most recent) delta in its branch in the
delta chain of each named sees file. In addition, the SID specified must not be
that of a version being edited for the purpose of making a delta (that is, if a
p . file (see get) exists for the named sees file, the SID specified must not
appear in any entry of the p . file).

(rmdel -rSID filename . . . J
If a directory is named, rmde 1 behaves as though each file in the directory were
specified as a named file, except that non-sees files (last component of the path
name does not begin with s.) and unreadable files are silently ignored. If a
name of - is given, the standard input is read; each line of the standard input is
taken to be the name of an sees file to be processed; non-sees files and unread
able files are silently ignored.

The exact permissions necessary to remove a delta are documented earlier in this
manual under sees User's-SeeS Simply stated, they are either 1) if you make
a delta you can remove it; or 2) if you own the file and directory you can remove
a delta.

The delta to be removed must be a 'leaf delta; that is, it must be the latest (most
recently created) delta on its branch or on the trunk of the sees file tree. In Fig
ure A-3, only deltas 1.3.1.2, 1.3.2.2, and 2.2 can be removed; once they are
removed, deltas 1.3.2.1 and 2.1 can be removed, and so on.

To remove a delta, the effective user must have write permission in the directory
containing the sees file. In addition, the real user must either have created the
delta being removed, or be the owner of the sees file and its directory.

You must specify the complete SID of the delta to be removed, preceded by -r.
The SID must have two components for a trunk delta, and four components for a
branch delta. Thus:

removes (trunk) delta '2.3' of the sees file.

~\sun ~ microsystems
Revision A of 9 May 1988

Files Used

A.13. sact - Display
sees Editing
Activity

Appendix A - SCCS Low-Level Commands 389

Before removing the delta, rmde 1 checks the following things:

1. the release number (R) of the given SID satisfies the relation:

floor ~ R ~ ceiling

2. the SID specified is not that of a version for which a get for editing has
been executed and whose associated del ta has not yet been made.

3. the login name or group ID of the user either appears in the file's user list or
the user list is empty.

4. the release specified cannot be locked against editing (that is, if the 1 flag is
set (see admin), the release specified must not be contained in the list).

If these conditions are satisfied, the delta is removed. Otherwise, processing is
terminated.

After the specified delta has been removed, its type indicator in the delta table of
the sees file is changed from 'D' (delta) to 'R' (removed).

x-file (see delta)

z-file (see del ta)

sact informs the user of any sees files which have had one or more get -e
commands applied to them, that is, there are files out for editing, and deltas are
pending. If a directory is named on the command line, sact behaves as though
each file in the directory were specified as a named file, except that non-SeeS
files and unreadable files are silently ignored. If a name of - is given, the stan
dard input is read with each line being taken as the name of an sees file to be
processed.

[~ ___ s_a_c_t __ fi_le_n_a_~ __ ~J
The output for each named file consists of five fields separated by spaces.

Field
Number

1

2
3

4
5

~~sun ~ microsystems

Meaning

specifies the SID of a delta that currently exists in the sees file to
which changes will be made to make the new delta.
specifies the SID for the new delta to be created.
contains the log name of the user who will make the delta (that is,
executed a get for editing).
contains the date that get -e was executed.
contains the time that get -e was executed.

Revision A of 9 May 1988

390 Programming Utilities and Libraries

A.14. sccsdi ff -
Display Differences
in sees Versions

sccsdiff Options

Files Used

Diagnostics from sccsdif f

A.IS. unget - Undo a
Previous sees get

unget Options

Delta to be removed

Suppress delta ID

Retain gotten file

sccsdiff compares two versions of an sees file and generates the differences
between the two versions. Any number of sees files may be specified, but
options apply to all files.

(____ S_C_C_S_d_i_f_f_-_r_SI_D_l_-_r_S_ID_2_[_-_P_J_[_-_s_n_J _fi_l_e_n_ame __ • _0 _. ______ J

-rSID?
SID1 and SID2 specify the deltas of an sees file that are to be compared.
Versions are passed to diff in the order given.

-p pipe output for each file through pro

-sn
n is the file segment size that di f f (1) will use. This is useful when the sys
tem load is high.

Itmp/get?????
Temporary files

fik : No differences

If the two versions are the same.

Unget undoes the effect of a get -e done prior to creating the intended new
delta. If a directory is named, unget behaves as though each file in the direc
tory were specified as a named file, except that non-SeeS files and unreadable
files are silently ignored. If a name of - is given, the standard input is read with
each line being taken as the name of an sees file to be processed.

(____ u_n_g_e_t_[_-_r_~_D_J_[_-_S_J_[_-_n_J_fi_k_n_ame __ o_. __ . ______ ~J

Options apply independently to each named file.

-rSID
Uniquely identifies which delta is no longer intended. (This would have
been specified by get as the "new delta"). The -r option is necessary
only if two or more outstanding gets for editing on the same sees file were
done by the same person (login name). A diagnostic results if the specified
SID is ambiguous, or if it is necessary but omitted from the command line.

-s Suppress displaying tht:: intended delta's SID.

-n Retain the gotten file - it is normally removed from the current directory.

Revision A of 9 May 1988

A.16. val - Validate
sees File

val Options

Suppress error messages

Delta number

Compare module names

Compare module types

Appendix A - SCCS Low-Level Commands 391

val detetmines if the specifiedjile is an sees file meeting the characteristics
specified by the optional argument list. Arguments to val may appear in any
order.

val -

or
val [-s] [-rSID] [-mname] [-ytype] filename . . .

val has a special argument, -, which means read the standard input until an
end-of-file condition is detected. Each line read is independently processed as if
it were a command line argument list.

val generates diagnostic messages on the standard output for each command
line and file processed and also returns a single 8-bit code upon exit as described
below.

Options apply independently to each named file on the command line.

- s Silence diagnostic messages notmally generated for errors detected while
processing the specified files.

-rSID
The argument value ID (SeeS IDentification String) is an sees delta
number. A check is made to detetmine if the SID is ambiguous (for instance,
-rl is ambiguous because it physically does not exist but implies 1.1, 1.2,
etc. which may exist) or invalid (for instance, -r 1.0 or -r 1.1.0 are invalid
because neither case can exist as a valid delta number). If the SID is valid
and not ambiguous, a check is made to determine if it actually exists.

-mname
name is compared with the sees %M% keyword in/zle.

-y type
type is compared with the sees % Y% keyword injile.

The 8-bit code returned by val is a disjunction of the possible errors, that is, can
be interpreted as a bit string where (moving from left to right) set bits are inter
preted as follows:

~\sun ~ microsystems
Revision A of9 May 1988

392 Programming Utilities and Libraries

Table A-4

Limitations of the val
Command

what -Identify SCCS Files

Codes Returned/rom val Command

Bit Meaning

a missing file argument
1 unknown or duplicate option
2 corrupted sees file
3 can't open file or file not sees
4 SID is invalid or ambiguous
5 SID does not exist
6 %Y%, -y mismatch
7 %M%, -m mismatch

Note that val can process two or more files on a given command line and in turn
can process multiple command lines (when reading the standard input). In these
cases an aggregate code is returned - logical OR of the codes generated for each
command line and file processed.

val can process up to 50 files on a single command line. Any number above 50
produces a memory dump.

what finds sees identifying information within any specified file. what does
not use any options, nor does it treat directory names and a name of '-' (a lone
minus sign) in any special way, as do other sees commands.

what searches the given file(s) for all occurrences of the string @ (#), which is
the replacement for the % Z % ID keyword (see get). wha t then displays what
ever follows that string until the first double quote), (greater than (»,
backslash (\), newline, or (non-printing) NUL character.

As an example, let's begin with the sees file s . prog . c (a C program), which
contains the following line:

char id [] n %Z%%M%: %I% n ;

We then do the following get:

and finally compile the resulting g-file to produce prog . a and a. out. Using
what as follows then displays:

.~sun ~ microsystems
Revision A of 9 May 1988

A.I7. sees Files

Protection

Appendix A - SCCS Low-Level Commands 393

The string what searches for need not be inserted via an ID keyword of get -
it may be inserted in any convenient manner.

This section discusses several topics that must be considered before extensive use
is made of sees. These topics deal with the protectipn mechanisms relied upon
by sees, the format of sees files, and the recommended procedures for auditing
sees files.

sees relies on the capabilities of the operating system for most of the protection
mechanisms required to prevent unauthorized changes to sees files (that is,
changes made by non-sees commands). The only protection features provided
directly by sees are the release lock flag, the release floor and ceiling flags, and
the user list.

New sees files created by admin are given mode 444 (read-only). It is best not
to change this mode, as it prevents any direct modification of the files by non
sees commands.

sees files should be kept in directories that contain only sees files and any tem
porary files created by sees commands. This simplifies protection and auditing
of sees files. The contents of directories should correspond to convenient logi
cal groupings, for example, subsystems of a large project.

sees files must have only one link (name). Commands that modify sees files
do so by creating a temporary copy of the file (called the x-file), and, upon com
pletion of processing, remove the old file and rename the x-file. If the old file has
more than one link, removing it and renaming the x-file would break the link.
Rather than process such files, sees commands produce an error message. All
sees files must have names that begin with's.'.

When only one user uses sees, the real and effective user IDs are the same, and
that user ID owns the directories containing sees files. Therefore, sees may be
used directly without any preliminary preparation.

However, in those situations in which several users with different user IDs are
assigned responsibility for one sees file (for example, in large software develop
ment projects), one user (equivalently, one user ID) must be chosen as the
'owner' of the sees files and as the one who will 'administer' them (for exam
ple, by using admin).
This user is termed the sees administrator for that project. Because other users
of sees do not have the same privileges and permissions as the sees adminis
trator, they are not able to execute directly those commands that require write
permission in the directory containing the sees files. Therefore, a project
dependent program is required to provide an interface to the get, delta, and,
if desired, rmdel and cdc commands.

The interface program must be owned by the sees administrator, and must have
the set-us'er- ID on execution bit on (see chmod(l)), so that the effective user ID
is the administrator's user ID. This program's function is to invoke the desired
sees command and to cause it to inherit the privileges of the interface program
for the duration of that command's execution. In this manner, the owner of an
sees file can modify it at will. Other users whose login names or group IDs are

~\sun ~~ microsystems
Revision A of 9 May 1988

394 Programming Utilities and Libraries

Layout of an SCCS File

in the user list for that file (but who are not its owners) are given the necessary
permissions only for the duration of the execution of the interface program, and
are thus able to modify the sees files only through the use of delta and, pos
sibly, rmdel and cdc.
The project-dependent interface program, as its name implies, must be custom
built for each project.

sees files are composed of lines of ASen text arranged in six parts, as follows:

Checksum

Delta Table

User Names

Flags

A line containing the 'logical' sum of all the characters of
the file (not including this checksum itselt).

Information about each delta, such as its type, SID, date and
time of creation, and commentary included.

List of login names and/or group IDs of users who are
allowed to modify the file by adding or removing deltas.

Indicators that control certain actions of various sees com
mands.

Descriptive Text Text provided by the user; usually a summary of the con
tents and purpose of the file.

Body Actual text that is being administered by sees, intermixed
with internal sees control lines.

Detailed information about the contents of the various sections of the file may be
found in sccsfile(5). In the following, the checksum is the only portion of
the file discussed.

Because sees files are AselI files, they may be processed by various commands:
editors such as vi(l), text processing programs such as grep(l), awk(l), and
cat(l), and so on. This is quite useful when an sees file must be modified
manually (for example, when the time and date of a delta was recorded
incorrectly because the system clock was set incorrectly), or when one wants to
simply 'look' at the file.

CA UTION Extreme care should be exercised when modifying sees files with non-sees
commands.

Auditing On rare occasions, perhaps due to an operating system or hardware malfunction,
all or part of an sees file is destroyed. sees commands (like most commands)
display an error message when a file does not exist. In addition, sees commands
use the checksum stored in the sees file to determine whether a file has been
corrupted since it was last accessed (has lost data, or has been changed). The
only sees command which will process a corrupted sees file is admin with
the -'h or - z options. This is discussed below.

sees files should be audited (checked) for possible corruptions on a regular
basis. The simplest and fastest way to audit such files is to use admin with the
- h option on them:

Revision A of 9 May 1988

Appendix A - SCCS Low-Level Commands 395

If the new checksum pf any file is not equal to the checksum in the first line of
that file, the message

corrupted file (co6)

is produced for that file. This process continues until all files have been exam
ined. When examining directories (as in the second example above), the process
just described does not detect missing files. A simple way to detect whether any
files are missing from a directory is to periodically list the contents of the direc
tory (using ls(I)), and compare the current listing with the previous one. Any
file which appears on the previous list but not the current one has been removed
by some means.

When a file has been corrupted, the appropriate method of restoration depends
upon the extent of the corruption. If damage is extensive, the best solution is to
restore the file from a backup copy. When damage is minor, repairing the file
with your favorite text editor may be possible. If you do repair the file with the
system's text processing capabilities, you must use admin with the - z option
to recompute the checksum to bring it into agreement with the actual contents of
the file:

After this command is executed on a file, any corruption which may have existed
in that file will no longer be detectable.

~\sun ,~ microsystems
Revision A of 9 May 1988

B
mak e Enhancements Summary

make Enhancements Summary .. 399

B.I. New Features ... 399

Default Makefile .. 399

The State File .make. state .. 399

Hidden Dependency Checking .. 399

Command Dependency Checking ... 399

Automatic sees Extraction ... 400

Tilde Rules Superceded ... 400

see s History Files .. 400

Pattern Matching Rules: More Convenient than Suffix Rules 400

Pattern Replacement Macro References .. 40 I

New Options .. 402

Support for Modula-2 ... 402

Naming Scheme for Predefined Macros .. 402

New Special-Purpose Targets .. 403

New Implicit Rule for lint .. 403

Macro Processing Changes ... 403

Macros: Definition, Substitution, and Suffix Replacement 403

Improved ar Library Support ... 404

Lists of Members ... 404

Handling of ar's Name Length Limitation ... 404

Target Groups ... 404

Clearing Definitions of Special Targets and Implicit Rules 404

B.2. Incompatibilities with Previous Versions of make 404

New Meaning for -d Option ... 404

Dynamic Macros ... 404

B.I. New Features

Default Makefile

The State File. make. state

Hidden Dependency Checking

Command Dependency
Checking

B
make Enhancements Summary

make's implicit rules and macro definitions are no longer hard-coded within the
program itself. They are now contained in the default makefile
/usr/include/make/default .mk. make reads this file automatically,
unless there is a file in the local directory named default. mk. When you use
a local defaul t . mk file, you must add an incl ude
/usr/include/make/default .mk directive to get the standard implicit
rules and predefined macros.

make also reads from a state file, .make. state in the directory. When the
special-function target. KEEP_STATE is used in the makefile, make writes out
a cumulative report for each target containing a list of hidden dependencies (as
reported by compilation processors such as cpp), and the most recent rule used
to build each target. The state file is very similar in format to an ordinary
makefile.

When activated by the presence of the . KEEP_STATE target, make uses infor
mation reported from cpp, f7 7, make, pc and other compilation commands,
and performs a dependency check against any header files (or in some cases,
libraries) that are incorporated into the target file. These "hidden" dependency
files do not appear in the dependency list, and often do not reside in the local
directory.

When . KEEP_STATE is in effect, if any command line used to build a target
changes between make runs (either as a result of editing the makefile or because
of a different macro expansion), the target is treated as if it were out of date;
make rebuilds it (even if it is newer that the files it depends on).

~\sun ~ microsystems
399 Revision A of 9 May 1988

400 Programming Utilities and Libraries

Automatic sees Extraction

Tilde Rules Superceded

see s History Files

Pattern Matching Rules:
More Convenient than Suffix
Rules

This version of make automatically runs sees get, as appropriate, when there
is no rule to build a target file. A tilde appended to a suffix in the suffixes list
indicates that see s extraction is appropriate for files having that suffix. There
are no longer special versions of implicit rules that include commands to extract
current versions of see s files.

To inhibit or alter the procedure for automatic extraction of the current sees
version, redefine the . sees _GET special-function target. An empty rule for this
target inhibits automatic extraction entirely.

make no longer searches the current directory for sees history (s.) files.
These files must now reside in an sees subdirectory.

Pattern matching rules have been added to simplify the process of adding new
implicit rules of your own design. A target entry of the form:

tp %ts : dp %ds
rule

defines a pattern matching rule for building a target from a a related dependency
file. tp is the target's prefix; ts, its suffix. dp is the dependency's prefix; ds, its
suffix. The % symbol is a wild card that matches a contiguous string of zero or
more characters appearing in both the target and the dependency filename. For
example, the following target entry defines a pattern matching rule for building a
troff output file, ending in . tr from a file that uses the -ms macro package
ending in . ms :

%. tr: % .ms
troff -t -ms $< > $@

With this entry in the makefile, the command:

make doc.tr

produces:

Using that same entry, if there is a file named doe2 . ms the command:

make doc2.tr

produces:

An explicit target entry overrides any pattern matching rule that might apply to a
target. Pattern matching rules, in tum, normally override implicit rules. An
exception to this is when the pattern matching rule has no commands in the rule

~\sun ~ microsysterns
Revision A of 9 May 1988

Pattern Replacelnent Macro
References

Appendix B - make Enhancements Summary 401

portion of its target entry. In this case, make continues the search for a rule to

build the target, and using as its dependency the file that matched the (depen
dency) pattern.

As with suffix rules and pattern matching rules, pattern replacement macro refer
ences has been added to provide a more general method for altering the values of
words in a specific macro reference than that already provided by suffix replace
ment in macro references. A pattern replacement macro reference takes the
form:

$ (macro :p %s=np %ns)

where p is an existing prefix (if any), s is an existing suffix (if any), np and ns are
the new prefix and suffix, respectively, and % is a wild card character matching a
string of zero or more characters within a word. The prefix and suffix replace
ments are applied to all words in the macro value that match the existing pattern.
This feature is useful for prefixing the name of a subdirectory to each item in a
list of files. For instance, the following makefile:

SOURCES= X.c y.c z.c
SUBFILES.o= $(SOURCES:%.c=subdir/%.o)

all:
echo $ (SUBFILES.o)

produces:

Please note that pattern replacement macro references should not appear on the
dependency line of a pattern matching rule's target entry. This produces unex
pected results. With the makefile:

OBJECT= .0

x:
%: %.$(OBJECT:%o=%Z)

cp $< $@

it looks as if make should attempt to build a target named, x from a file named
x. Z. However, the pattern matching rule is not recognized; make cannot deter
mine which of the % characters in the dependency line apply to the pattern
matching rule, and which apply to the macro reference. Consequently, the target
entry for x . Z is never reached. To avoid problems like this, you can use an
intermediate macro on another line:

.\sun
• microsystems

Revision A of 9 May 1988

402 Programming Utilities and Libraries

New Options

Support for Modula-2

Naming Scheme for
Predefined Macros

OBJECT= .0

ZMAC= $(OBJECT:%O=%Z)
%: %.$ (ZMAC)

x:
%: %$ (ZMAC)

cp $< $@

,There are a number of new options:

-d Display dependency-check results for each target processed. Displays all
dependencies that are newer, or indicates that the target was built as the
result of a command dependency.

-dd The same function as -d had in earlier versions of make. Displays a great
deal of output about all details of the make run, including internal states,
etc.

-D Display the text of the makefile.

-DD Display the text of the makefile, and of the default makefile being used.

-p Print macro definitions and target entries.

-P Report on dependency checks without rebuilding targets.

This version of make contains predefined macros and implicit rules for compil
ing Modula-2 sources.

The naming scheme for predefined macros has been rationalized, and the implicit
rules have been rewritten to reflect the new scheme. The macros and implicit
rules are upward compatible with existing makefiles.

For example, there is now a macro called SUFFIXES, that contains the default
entries for the suffixes list; the target entry for the default suffixes list looks like:

.SUFFIXES: $ (SUFFIXES)

If you want to insert new suffixes at the head of the list, you can do so quite sim
ply as follows:

.SUFFIXES:

.SUFFIXES: .ms .tr $(SUFFIXES)

Other examples include the macros for standard compilations commands:

LINK.c
COMPILE.c

Standard cc command line for producing executable files.
Standard cc command line for producing object files.

Revision A of 9 May 1988

New Special-Purpose Targets
The . KEEP STATE target should
not be remOVed once it has been
used in a make run.

New Ilnplicit Rule for lint

Macro Processing Changes

Macros: Definition,
Substitution, and Suffix
Replacement

Appendix B - make Enhancements Summary 403

. KEEP STATE When included in a makefile, this target enables hidden depen
dency and command dependency checking. In addition, make
updates the state file . make. s ta te after each run.

. INIT and. DONE

.sces GET

These targets can be used to supply commands to perform at
the beginning and end, respectively, of each make run.

This target contains the rule for extracting current versions
from s cc S history files.

Implicit rules have been added to support incremental verification with lint.

A macro's value can now be of virtually any length.

New Append Operator: +=
This operator appends a (SPACE I, followed by a word or
words, onto the existing value of the macro.

Conditional Macro Definitions: : =

This operator indicates a conditional (targetwise) macro
definition. A makefile entry of the form:

target : = macro = value

indicates that macro takes the indicated value while process
ing target and its dependencies.

Suffix Replacement Precedence
Substring replacement now takes place following expansion of
the macro being referred to. Previous versions of make
applied the substitution first, with results that were counterin
tuitive.

Nested Macro References
make now expands inner references before parsing the outer
reference. So, a nested reference as in this example:

CFLAGS-g = -I .. /include
OPTION = -g
$(CFLAGS$(OPTION))

now yields the value -I .. / include, rather than a null
value, as it would have in previous versions.

Cross-Compilation Macros
The predefined macros HOST_ARCH HOST_MACH

TARGET ARCH and TARGET MACH are available for use in
cross-compilations. By default, the arch macros are set to the
value returned by the arch command; the mach macros are
set to the value returned by mach .

• \sun ~'f/I microsystems
Revision A of 9 May 1988

404 Programming Utilities and Libraries

Improved ar Library Support

Lists of Members

Handling of ar' s Name Length
Limitation

Target Groups

Clearing Definitions of Special
Targets and Implicit Rules

B.2. Incompatibilities with
Previous Versions of
make

New Meaning for -d Option

Dynamic Macros

make automatically updates an ar library member from a file having the same
name as the member. Also, mak e now supports lists of members as dependency
names of the form:

/ih.a: lih.a (member member . ..)

make now copes with the IS-character member-name length limitation in ar. It
now recognizes a member name that matches the first 15 characters of a filename
as the member corresponding to the file.

It is now possible to specify that a rule produces a set of target files. A + sign
between target names in the target entry indicates that the named targets
comprise a group. The target group's rule is performed once, at most, in a make
invocation.

To clear the dependency list and rule for a special target, implicit rule, or any tar
get with a name beginning with ' . " add a target entry to the make file with no
dependency list and no rule. For example, to clear a previous. DEFAULT rule,
add the line:

(~ ___ ._D_E_F_A_U_L_T __ : __ -J]

to your makefile.

The -d option now reports the reason why a target is considered out of date.

Although the dynamic macros < and * were documented being assigned only for
implicit rules and the . DEFAULT target, in some cases they actually were
assigned for explicit target entries. The assignment action is now documented
properly.

The actual value assigned to each of these macros is derived by the same pro
cedure used within implicit rules (this hasn't changed). This can lead to unex
pected results when they are used in explicit target entries.

Even if you supply explicit dependencies, make doesn't use them to derive
values for these macros. Instead, it searches for an appropriate implicit rule and
dependency file. For instance, if you have the explicit target entry:

test: test.f
echo $<

and the files: test. c and test. f, you might expect that $< would be

~\'sun ~ microsystems
Revision A of 9 May 1988

Appendix B - make Enhancements Summary 405

assigned the value test. f. This is not the case. It is assigned test. c,
because . c is ahead of . f in the suffixes list:

For explicit entries, we recommend a strictly deterministic method for deriving a
dependency name using macro references and suffix replacements. For example,
you could use: $@ . f instead of $< to derive the dependency name. To derive
the basename of a . 0 target file, you could use the suffix replacement macro
reference: $ (@ : • o=) instead of $ *.
When hidden dependency checking is in effect, the $? dynamic macro's value
includes the names of hidden dependencies, such as header files. This can lead to
failed compilations when using a target entry such as:

[___ x_: __ x_.c ___ $_(_CC_) __ -_O_$_@ __ $_? ____________________________]

and the file x . c =It inc 1 u de's header files. The workaround is to replace $?
with $<.

~~sun ~ microsystems
Revision A of 9 May 1988

Index

A
actions

in yacc, 236
in lex, 212 thru 216

addch () , 278
adding suffix rules in make, 143
addstr (), 278
admin - administer sees, 358 thru 365
advanced features, System V curses, 323 thru 327
ambiguity

in lex, 216
in yacc, 244

application programs and shared libraries, 52
ARGSUSED -lint control, 78
assertion checking with ld's -assert option, 55
associativity in yacc

%left, 248
%nonassoc, 248
%right, 248

auditing sees files, 394 thru 395

B
backup files with sees commands

z. file, 358
x. file, 358

basic
capabilities, terminfo, 334
basic specifications for yacc, 234

baudrate (), 283
bells and whistles, System V curses, 317
binary files and sees, 103
binding semantics and shared libraries, 56
box (), 279
branch number in sees file, 355
BSD and System V compatibility in SunOS, 41
building

a better shared library, 63 thru 65
a data definition • sa file, 62
a shared library, simple case, 61
a shared object . so file, 62
an entire project with make, 181
libraries with make, 147
PIe components, 61

built-in m4 macros
changequote, 196
define, 194

-407-

built-in m4 macros, continued
divert, 199
divnum, 199
dnl,201
dumpdef,201
errprint, 201
eval,198
ifdef,196
ifelse, 199
include, 198
incr, 197
index, 200
len,200
mktemp, 199
sinclude, 198
substr, 200
syscmd, 199
translit, 200
undefine, 196
undi vert, 199

C
e language tools
e language tools, lint - check e programs, 69 thru 80
call graph profile - gprof, 88 thru 90
capabilities, terminal, terminfo, 332
cdc - change delta commentary, 365 thru 366
changequote built-in m4 macro, 196
checksum in sees files, 394
chown () and System V compatibility, 43
clear () , 279
clearok () , 279
close (), unlink (), open (), and ,-:.,L:~:;";~.~<'.,

clrtobot () , 279«\
clrtoeol (), 279.<:>.<.:
code coverage - tcov, 90 thrlf?~:.::?:···}':<.
comb - combine deltas, 366 tN~ .. 'J§:1.:>:<::··
comLine sees deltas, 366 thru 361' .. »:
co~and ..•.••• : .•• (:;:>::.:

dependency checking in make, 1:3{::.:<::)/:::.
command conventions for sees, 357 t~i/~:?§«.:.
command line arguments, in SunOS prograiri~fR:(
comments in m4, 196
compare versions of sees file - sccsdiff,390
compatible and incompatible versions of shared library, 58
compiler generators

lex lexical generator, 205 thru 228

Index - Continued

compiler-compiler, yacc, 231 thru 267
compiling

a terminfo program, 328
System V curses programs, 305
the terminal description, terminfo, 336

compiling alternate library variants in make, 158
complex compilations and make, 149
conditional macro definitions in make, 155
conflicts in yacc, 245

disambiguating rules, 245
precedence, 248
"reduce/reduce" conflicts, 245
shifUreduce conflicts, 245

control functions
flu shok, 280
idlok,280

converting the terminal description, captoinfo, terminfo,
338

crbreak, 282
create

delta, 367 thru 372
sees data bases, 358 thru 365
sees delta, 367 thru 372
sees history file, 101

creat (), close (), unlink (), and open (), 18
crmode () macro, compatibility, 282
crt 0 () and shared libraries, 60
crtO: no /usr/lib/ld.so,65
current screen, 273
curses library

and terminfo database, 299 thru 350
System V curses advanced features, 323 thru 327
System V curses and terminfo related, 302
System V curses bells and whistles, 317
System V curses example programs, 338 thru 350
System V curses functions, 303
System V curses 110 control, 315
System V curses input options, 318
System V curses library overview, 300
System V curses output attrubutes, 315
System V curses program requirements, 303
System V curses screen initialization functions, 304
System V curses terminalI/O, 307
System V curses windows and pads, 320 thru 323

D
data keywords in sees files, 386 thru 387
-dc and -dp ld options: shared libraries, 55
define built-in m4 macro, 194
defining macros in make, 129
definition of lex source, 218 thru 219
delayed macro references in make, 142
delch (), 279
deleteln (), 280
delta, 353,99

change commentary, 365 thru 366
combine, 366 thru 367
remove - rmdel, 388 thru 389
table in sees files, 394

delta -create delta, 367 thru 372
delwin (), 284

-408-

dependencies, checking and processing of, in make, 123
descriptions, terminal, terminfo, 331
descriptive text in sees files, 394
descriptors, file, in SunOS programs, 16
detail functions, 287 thru 288

putchar (), 288
get tmode () , 287
mvcur () , 287
resetty (), 288
savetty (), 288
scroll (), 288
set term (), 288
tstp, 288

diagnostics and standard error, in SunOS programs, 15
disambiguating rules in yacc, 245
display

sees file editing status - sact, 389
sees hIstory - prs, 385 thru 388
the terminal description, infocmp, terminfo, 337

di vert built-in m4 macro, 199
di vnum built-in m4 macro, 199
dnl built-in m4 macro, 201
Don't know how to make 'target'., 126
dumpdef built-in m4 macro, 201
dynamic binding option for ld: -Bdynamic,54
dynamic link editing, 52
dynamic macros

and implicit rules in make, 141
and modifiers in make, 141

E
echo (), 282
get an SeeS-file for editing - sccs edit, 102
endwin (), 284
enhancements to make, 399
erase, 280
erase character, and System V, 43
erasechar, 284
error processing

functions in SunOS programs, 20
standard error diagnostics and exit codes, in SunOS programs,

15
errprint built-in m4 macro, 201
eval built-in m4 macro, 198
examples

of lex, 220 thru 223
testing with make, 177

execl () and execv () functions, in SunOS programs, 21
exit codes, in SunOS programs, 15
extracting current file versions from sees, in make, 128

F
f cntl () function and System V compatibility, 43
features in make, new, 399
file

access in SunOS programs, 12
arguments for sees commands, 357
descriptors in SunOS programs, 16
manipUlation functions, in SunOS programs, 18
System V curses header, 303

flags
in sees files, 361, 362
to sees commands, 357

flags in sees files, 394
flushok,280
forcing execution of a target's rule: dummy dependencies in make,

126
fork () and wai t (), process control in SunOS programs, 22
functions

details, 287 thru 288
error processing, in SunOS programs, 20
file manipulation, in SunOS programs, 18
input, 282 thru 283
low-level I/O, in SunOS programs, 16
misc. 110, in SunOS programs, 15
miscellaneous, 283 thru 287
output, 278 thru 282
process control in SunOS programs, fork () and wai t (),

22
process creation, execl () and execv () , in SunOS pro-

grams, 21
random access, in SunOS programs, 20
screen initialization, System V curses, 304
standard 110, in SunOS programs, 12,30
System V curses, 303, 305 thru 327
system () , in SunOS programs, 21
terminfo,327

G
get - get sees file, 372 thru 384
getcap () , 284
getch () , 282
getstr () , 283
gettmode (), 287
getyx (), 284
gprof - call graph, 88 thru 90
group

ID semantics, System V vs. BSD, 43

H
header file, System V curses, 303
header files

as hidden dependencies in make, 132
maintaining a directory of, in make, 164

help - get sees help, 384 thru 385
hidden dependency

and missing file problem in make, 133
checking in make, 132

high-level sees interface, 97 thru 115
history file, sees, 98

I
ID keywords, sees, 100
identification keywords in sees files, 376 thru 377
identify sees file - what, 392 thru 393
idlok,280
ifdef built-in m4 macro, 196
ifelse built-in m4 macro, 199
ignored exit status of commands in make, 127
implicit rules vs. explicit target entries in make, 140
improved library support in make, 404

-409-

Index - COnlinued

inch (), 284
include built-in m4 macro, 198
incompatibilities with older versions, make, 404 thru 405
incompatible versions of shared library, 58
incr built-in m4 macro, 197
index built-in m4 macro, 200
infocmp viewing the termi~fo terminal description, 337
information package components, terminal, System V, 302
. INIT - special target, perform rule initially, 160
initialization functions, screen, System V curses, 304
initscr (), 285
input functions, 282 thru 283

c rbreak, 282
echo (), 282
getch (), 282
getstr (), 283
nocrbreak, 282
noecho () , 282
noraw () , 283
raw (), 283
scanw (), 283
wgetch () , 282
wgetstr (), 283
wscanw (), 283

insch (), 280
insertln (), 281
installing finished programs and libraries with make, 180

K
• KEEP STATE - special target in make, 131
keyboard-entered capabilities, terminfo, 335
kill character, and System V, 43
kill ()

and System V compatibility, 43

L
language tools

lint - check e programs, 69 thru 80
yacc compiler-compiler, 231 thru 267

layout of sees files, 394
body, 394
checksum, 394
delta table, 394
descriptive text, 394
flags, 394
user names, 394

ld and ld. so, link editors, 52
ld. so dynamic link editor, 60,61
Id. so: libname.so.major not found,65
learning about terminal capabilities, terminfo, 332
leaveok (), 285
left

associativity in yacc, 244
context-sensitivity in lex, 223 thru 225

len built-in m4 macro, 200
level number in sees file, 353
lex

actions, 212 thru 216
character set, 225 thru 226
examples, 220 thru 223
left context-sensitivity, 223 thru 225

Index - Continued

lex, continued
regular expressions, 209 thru 212
source definitions, 218 thru 219
source format, 208
source format summary, 226 thru 227
usage, 219
with yaec, 220

lex regular expressions
arbitrary character, 210
character classes, 210
context sensitivity, 211
operators, 209
optional expressions, 211
repeated expressions, 211
repetitions and definition, 212

lexical analysis for yace, 238
libraries, building with make, 147
library

overview of System V curses, 300
standard 110, in SunOS programs, 12
support, improved in make, 404

library functions
misc. 110, in SunOS programs, 15
standard 110, in SunOS programs, 30
System V curses, 303, 305 thru 327
terminfo, 327

link editing, overview for shared libraries, 52
link editor

-Bstatic and -Bdynamic options, 54
-de and -dp options, 55
debuggers, 56
dynamic,61
dynamic binding, 54
-n and -N options, 54
static, 60
static binding, 54

linking with system-supplied libraries in make, 153
lint

and make, 151
controls, 77 thru 78
library directives, 78 thru 79
options, 79 thru 80

lint - C program checker, 69 thru 80

LINTLIBRARY -lint control, 78
LINTLIBRARY -lint library directives, 78
longname () , 285
low-level

110 functions, in SunOS programs, 16
sees interface, 353 thru 395

lseek and seek (), 20

M
m4 built-in macros

changequote, 196
define, 194
divert, 199
divnum, 199
dnl,201
dumpdef, 201
errprint,201
eval, 198
ifdef,196

-410-

m4 built-in macros, continued
ifelse, 199
include, 198
incr, 197
index, 200
len, 200
mktemp, 199
sinclude, 198
substr, 200
syscmd, 199
transli t, 200
undefine, 196
undi vert, 199

m4 macro processor, 193 thru 202
macro

processing changes for make, 403
references in make, 129

maintaining
software projects, organization issues, and make, 178
subsidiary libraries with make, 185

make
-t (touch) option, warning against use, 135
and. make. state, 132
and lint, 151
and sees, 119
assumes static source files, 120
command line options described, 134
incompatibilities with older versions, 404 thru 405
new features in, 399
null rules, 126
passing command-line parameters in, 129
precedence of macro values in nested commands, 168
simple make file entry for a C program, 123
vs. shell scripts, 119

MAKEFLAGS macro in make, 168
metacharacters (shell) in make rules, 122
misc. 110 functions, in SunOS programs, 15
miscellaneous curses functions, 283 thru 287

baudrate, 283
delwin (), 284
endwin () ,284
erasechar, 284
getcap (), 284
get yx () , 284
inch (), 284
ini tscr (), 285
killchar, 285
leaveok (), 285
longname () , 285
newwin () ,286
nl (), 286
nonl (), 286
nvwin () ,286
scrollok,286
subwip () , 286
touchline, 287
touchoverlap, 287
touchwin (), 287
unctrl (), 287
winch (), 284

mknod () and System V compatibility, 43
mktemp built-in m4 macro, 199
move, 281

mvcur (), 287

N
-n and -N ld options, and shared libraries, 54
name, terminal, terminfo, 331
nested make commands, described, 165
new

features in make, 399, 405
special targets for make, 403

NEWLINE,283
newwin 0,286
nl () ,286
nocrbreak,282
nocrmode () macro, compatibility, 282
noecho () , 282
nonl (), 286
noraw (), 283
not a text file, 103
NOTREACHED -lint control, 78
nvwin () , 286

o
open () , creat () , close (), and unlink () , 18
options

lint, 79,80
make, 134
sees commands, 357

output functions, curses, 278 thru 282
addch () , 278
addstr (), 278
box 0,279
clear () , 279
clearok () , 279
clrtobot (), 279
clrtoeol (), 279
delch (), 279
deleteln () , 280
erase, 280
insch (), 280
insertln (), 281
move, 281
overlay 0,281
overwrite 0, 281
printw (), 281
refresh (), 282
standend (), 282
standout () , 282
waddch (), 278
waddstr (), 278
wclear (), 279
wclrtobot (), 279
wclrtoeol (), 279
wdelch (), 279
wdeleteln (), 280
werase (), 280
winsch (), 280
winsertln (), 281
wmove (), 281
wprintw (), 281
wrefresh (), 282
wstandend (), 282

-411-

output functions, curses, conJinued
wstandout () , 282

overlay () , 281
overwrite 0,281

p

Index - ConJinued

pads and windows, System V curses, 320 thru 323
parameter string capabilities, terminfo, 335
parser generator, yacc, 231 thru 267

passing command-line arguments to make, 129
pattern

matching rules in make, 144
replacement macro references in make, 159

performance analysis, 83 thru 93
gprof - call graph, 88 thru 90
prof - profile, 86 thru 88
tcov - code coverage, 90 thru 93
time - time used, 83 thru 86

performance, and shared libraries, 57
PIC

binding with non-PIC, 55
position-independent code, 52

pipes, in SunOS programs, 23
precedence in yacc, 248
predefined macros

and their peculiarities in make, 134
using, in make, 137

preparing yacc specifications, 253 thru 256

printw (), 281
process

control functions, fork () and wait (), in SunOS, 22
creation functions, execl () and execv () , in SunOS pro

grams, 21
processes, 21
prof - profile, 86 thru 88
program

compiling a System V curses, 305
requirements, terminfo, 327
requirements, System V curses, 303

program requirements, terminfo, 331
programming basics, SunOS, 9
programming tools

lint - check e programs, 69 thru 80
yacc compiler-compiler, 231 thru 267

programming with SunOS, 9 thru 38
protections on sees files, 393 thru 394
prs - display sees history, 385 thru 388
_putchar (), 288

Q
quoting in m4, 195 thru 196

R
random access functions, in SunOS programs, 20
raw (), 283
read () and write () functions, in SunOS programs, 16
recovering selected edits, SeeS-files, 110
recursive

makcfiles and directory hierarchies in make, 182
targets, as distinct from nested make commands, 182

Index - Continued

"reduce/reduce" conflicts in yacc, 245
refresh () ,282
regular expressions in lex, 209 thru 212
release number in sees file, 353
requirements, program, terminfo, 327, 331
requirements, program, System V curses, 303
resetty () ,288
return code

and SunOS programs, 15
right association in yacc, 244
rmdel- remove delta from sees file, 388 thru 389
running

a terminfo program, 328
tests with make, 176

s
s. file - sees history file, 98, 99
savetty () ,288
scanw (), 283
sees

and binary files, 103
backup files, 358
branch number, 355
command conventions, 357 thru 358
data keywords, 386 thru 387
display - pr s, 385 thru 388
file arguments, 357
sees frontend- sees, 97,115
ID keywords, 100
identification keywords, 376, 377
identification string, 353
level number, 353
options, 357
recovering selected edits, 110
release number, 353
sequence number, 355
vs. make, 119

sees commands
admin - administer sees, 358 thru 365
ede - change delta commentary, 365 thru 366
eomb - combine deltas, 366 thru 367
get - get sees file, 372 thru 384
help - get sees help, 384 thru 385
prs - display sees history, 385 thru 388
rmdel - remove delta, 388 thru 389
saet - display sees file editing status, 389
see sdif f - compare versions of sees file, 390
unget - unget sees file, 390
val - validate sees file, 391 thru 392
wha t - identify sees file, 392 thru 393

sees ereate - create sees history file, 101
sees delta - make sees delta, 102
sees delta

change commentary, 365thru 366
combine, 366 thru 367
create, 367 thru 372
remove - rmdel, 388 thru 389

sees edit - get an SeeS-file for editing, 102
sees files, 393 thru 395

auditing, 394 thru 395
body, 394
checksum, 394

-412-

sees files, continued
delta table, 394
descriptive text, 394
flags, 394
flags in, 361 thru 362 .
layc;>ut, 394
protection, 393 thru 394
user names, 394

sees get - get an SeeS-file for compiling, 102
sces history files, not searched for in current directory by make,

400
sees info - who's editing files, 105
seesdiff - compare versions of sees file, 390
screen, 271

current, 273
initialization functions, System V curses, 304
oriented capabilities, terminfo, 334
standard, 273
updating, 273

seroll (), 288
scrollok,286
seek () and lseek, 20
sequence number in sees file, 355
set term () , 288
setuid programs and shared libraries, 58
shared libraries, 51

and application programs, 52
and run-time file dependencies, 57
and setuid programs, 58
and system performance, 57
assembler, 59
assertion checking with ld,55
binding semantics, 56
building a shared library, 61 thru 65
building the . so file, 62
building the data definition . sa file, 62
e compiler, 59
compatible and incompatible versions, 58
components should be PIC, 61
crtO (), 60
-de and -dp ld options, 55
definitions, 52
dynamic link editor, ld. so, 60
dynamic vs. static link editing, 52
impact on dcbuggers, 56
and ldeonf ig, 64
and ld binding options, 54
memory sharing, 59
-N and -n ld options, 54
PIC and non-PIC, 55
position-independent code, 52
problems and hints, 65
supplied in SunOS, 56
tips on building a library, 63 thru 65
version control, 58

shared library, defined, 52
shared object, defined, 52
shell

scripts vs. make, 119
variables, references in make, 177

SHELL environment variable, and make, 168
shift/reduce conflicts in yace, 245

SID, 353, 100
signals, in SunOS programs, 26
silent execution of commands by make, 127
sinclude built-in m4 macro, 198
source

definitions in lex, 218 thru 219
files must be static for make, 120

source code control
high-level sees interface, 97 thru 115
low-level sees interface, 353 thru 395

specifying terminal capabilities, terminfo, 332
standard error diagnostics and exit codes, in SunOS programs, 15
standard lIO library, in SunOS programs, 12
standard input and output, in SunOS programs, 10
standard screen, 273
standend () , 282
standout () , 282
statement analysis - t cov, 90 thru 93
static binding option for ld: -Bstatic,54
static link editing, 52
STREAMS

110 Interface Operating System Service Routines, 48
substr built-in m4 macro, 200
subwin (), 286
suffix

replacement macro references in make, 151
rules in make, 120
rules used within makefiles in make, 138

suffixes list, in make, 139
summary

lex source format, 226 thru 227
sees commands, 353 thru 395

SunOS
command line arguments, processing in programs, 9
error handling, standard error diagnostics and exit codes, 15
error processing functions, 20
file access, 12
file descriptors in programs, 16
file manipUlation functions, creat (), close () ,

unlink (), and open (), 18
low-level 110 functions, 16
misc. 110 functions, 15
pipes, 23
process control functions, fork () and wai t () ,22
process creation functions, execl () and execv () , 21
processes, 21
programming basics, 9
random access functions, seek () and lseek, 20
read () and wri te () functions, 16
signals, 26
standard 110 library, 12
standard input and output, 10
SunOS programming, 9, 38
System V curses library and terminfo databse, 299 thru

350
system () function, 21

support mechanisms for shared libraries, 59
suppressing automatic sees extraction in make, 129
SVID

Administered Systems Extension Utilities, 46
Advanced Utilities Extension, 45

-413-

SVID, continued
Base System General Library Routines, 44
Base System OS Service Routines, 44
Basic Utilities Extension, 45
compliance in SunOS, 44
Kernel Extension OS Service Routines, 45

Index - Continued

Open Systems Networking Interfaces Library Routines, 48
Shared Resource Environment Utilities, 48
Software Development Extension Additional Routines, 46
Software Development Extension Utilities, 46
STREAMS 110 Interface Operating System Service Routines,

48
Terminal Interface Extension Library Routines, 47
Terminal Interface Extension Utilities, 47

syscmd built-in m4 macro, 199
system calls

file manipulation, in SunOS programs, 18
110, in SunOS programs, 16

system () function, in SunOS programs, 21
System V

and BSD, historical note, 42
basic terminfo capabilities, 334
batch utilities SunOS, 42
choosing compatible utilities and libraries, 42
compatibility, 41
compatibility tools in SunOS, 42
compiling curses programs, 305
compiling and running a terminfo program, 328
compiling the terminfo terminal description, 336
converting the terminfo terminal description, cap-

toinfo,338
curses library and terminfo databse
curses example programs, 338 thru 350
using curses functions, 303
curses library overview, 300
curses library and terminfo databse, 299 thru 350
displaying the terminfo terminal description, infocmp,

337
features in 4.0,41
group 10 semantics vs. BSD semantics, 43
keyboard-entered terminfo capabilities, 335
learning about terminf 0 terminal capabilities, 332
parameter string terminfo capabilities, 335
programs and Sun-supplied libraries, 42
screen oriented terminfo capabilities, 334
specifying terminfo capabilities, 332
SVID Release 3 compliance, 41
system call compatibility in SunOS, 43
terminal information package components, 302
terminal name, terminfo, 331
terminfo database and curses library, 299 thru 350
terminfo database overview, 301
terminfo library functions, '327
terminfo program requirements, 327
testing the terminfo terminal description, 337
tty interface in SunOS, 41
using the terminfo database, 331
viewing the terminfo terminal description, infocmp, 337
writing terminfo terminal descriptions, 331

Index - Continued

T
target

and dependencies in make, 120
entry format for make, 121

tcov - code coverage, 90 thru 93
termcap, 288 thru 291
terminal, 271

capabilities, ~erminfo, 332
descriptions, 'terminfo, 331
information package components, System V, 302
name, terminfo, 331
screen, 271
testing the description, terminfo, 337

terminfo
and System V curses, related, 302
basic capabilities, 334
compiling and running a terminfo program, 328
compiling the terminal description, 336
converting the terminal description, captoinfo, 338
database and System V curses library, 299 thru 350
displaying the tenninal description, infocmp, 337
keyboard-entered capabilities, 335
learning about capabilities, 332
library functions, 327
library overview, 301
naming a terminal, 331
parameter string capabilities, 335
program requirements, 327
screen oriented capabilities, 334
specifying capabilities, 332
testing the terminal description, 337
using the terminfo database, 331
viewing the terminal description, infocmp, 337
writing terminfo descriptions, 331

time - time used, 83 thru 86
touchl ine, 287
touchoverlap, 287
touchw in () , 287
transitive closure, none for suffix rules in make, 140
translit built-in m4 macro, 200
trunk of sees tree, 354
tstp, 288

U
unctrl (), 287
undefine built-in m4 macro, 196
undi vert built-in m4 macro, 199
unget - unget sees file, 390
unlink (), open () , creat (), and close () , 18
updating screen, 273
user names in sees files, 394
using

curses, 272
lex, 219

utime () and System V compatibi~ity, 43

V
val- validate sees file, 391 thru 392
validate sees file - val, 391 thru 392
VARARGS -lint control, 78
VARARGS2 -lint control, 78

-414 -

variant object files and programs from the same sources in make
156 '

version control, 97
version control of shared library,. 58
viewing the terminal description, infocmp, terminfo, 337

W
waddch () , 278
waddstr (), 278
wai t () and fork (), process control in SunGS programs, 22
wclear (), 279
wclrtobot (), 279
wclrtoeol (), 279
wdelch (), 279
wdeleteln () , 280
werase () , 280
wgetch (), 282
wgetstr () , 283
what - identify sees file, 392 thru 393
who's editing sees files - sccs info, 105
winch (), 284
window, 271, 273
window structure, 291 thru 293

_begx, 292
_begy, 292
clear (), 292

=curx, 292
_cury, 291
_flags, 293
_leave, 292
_maxx, 292
_maxy,292

scroll (), 292
=y,292

windows and pads, System V cur se s, 320 thru 323
winsch (), 280
winsertln (), 281
wmove () , 281
wprintw (), 281
wrefresh (), 282
write () and read () functions, in SunGS programs, 16
wscanw (), 283
wstandend () , 282
wstandout () , 282

x
x . file in sees commands, 358

y
yacc

"reduce/reduce" conflicts, 245
actions, 236
basic speCifications, 234
conflicts, 245
disambiguating rules, 245
left association, 244
lexical analysis, 238
precedence, 248, 249
yacc, 253, 256
right association, 244

yacc, cOnJinued
shifUreduce conflicts, 245

yacc associativity
%left, 248
%nonassoc, 248
%right, 248

z
z . file in sees commands, 358

Index - ConJinued

-415-

Notes

