
Assembly Language Reference Manual
TM TM for the Sun-2 and Sun-3

Sun Microsystems, Inc. • 2550 Garcia Avenue • Mountain View, CA 94043 • 415-960-1300

Part No: 800-1773-10
Revision A of May 9, 1988

Sun Workstation® and Sun Microsystems® are registered trademarks of Sun "-_,.
Microsystems, Inc.

Sun View™, SunOS™, Sun386i™, and the combination of Sun with a numeric
suffix are trademarks of Sun Microsystems, Inc.

UNIX is a registered trademark of AT&T Bell Laboratories.

All other products or services mentioned in this document are identified by the
trademarks or service marks of their respective companies or organizations.

Copyright© 1987, 1988 by Sun Microsystems, Inc.

This publication is protected by Federal Copyright Law, with all rights reserved.
No part of this publication may be reproduced, stored in a retrieval system,
translated, transcribed, or transmitted, in any form, or by any means manual,
electric, electronic, electro-magnetic, mechanical, chemical, optical, or other
wise, without prior explicit written permission from Sun Microsystems.

Contents

Chapter 1 Introduction .. -·---·-----·-·-----·---·---·-------·--- 3
1.1. Using the Assembler ·-----·---·--·-·-·----·----··--·----·---·-·-- 3

1.2. Notation ·----------··------·---·-····---····---····---···--·-···----- 4

Chapter 2 Elements of Assembly Language ·----·------·---·-·----- 9

2.1. Olaracter Set .. ------·--·-·---·-----·-····--·--·--·---····-·--···-·--·· 9

2.2. Identifiers ·------···------·--·--··--···-·--··-------·-·--·- 9

2.3. Numeric Labels --·--··--·------···-·-···-·--···-···-·--···--·-·-·--·--·--··· 10

2.4. Local Labels -------------------····-·----·--·--····---·· 10

2.S. Scope of Labels -------------------·-··--·-·---·----·---- 10

2.6. Constants ·---------------·---·-·----·-·----·------ 11

2.7. Numeric Constants -------·-----------·--·-----·----·---·-- 11

2.8. String Constants ·-----------------·-----·--·----.. --- 12

2.9. Assembly Location Count.er --·------·--·-------·-·--·--·-··----- 12

Chapter 3 Expressions-------·-----·-----··---·-·------------ 17

3.1. Operators ·---·---·-----·----·-·--·· .. --··---· .. -·-----:.!-!i.!.!:'.'·'·!·.· .. ---- 17
18

-iii-

Contents - Continued

4.3. Operand Field ·-----·--·-····--·-·--·······-----·-···----·---·---·-·-·-·--

4.4. Comment Field --·--·---·---·----·---·------·----·---·----· .. ··

4.5. Direct Assignment Statements ··--···------······--····-----------· ..

Chapter 5 Assembler Directives ·-···-·-··-·--···--·--··---·····-···-·--·······--·-·--

5.1. • ascii -Generate Character Data··--·-----··----·-------·--··

5.2. • asciz -Generate z.ero-Terminated Sequence of Character

Data·---···-·-·---·----··--·-·-···--··-·--·-··-····----·------·-·-·--
5.3. Directives to Generate Data·-·-·--· .. ····----·--···---·------·----·-

5.4. Directives to Switch Location Counter ·----··-------·--------

5.5. • skip - Advance the Location Counter --·---·--·-·-----·----

5.6. • lcomm-Reserve Space in bss Area--··-···--·-----·----·-····
5.1. • q lobl - Designate an External Identifier ·-----·-----·-·----

5.8. • comm- Define Name and Size of a Common Area -·----······-·-

5.9. • aliqn -Force Location Counter to Particular Byte

Boundary ·-------···-·-----·-·-··-·-·------·-·----·-·--···----
5.10. • even - Force Location Counter to Even Byte Boundary --· .. -·-

S.11. • stabx - Build Special Symbol Table Entry --·--·----·--·

S.12. • proc -Separate Procedures for Span-Dependent

Instruction Resolution ··------····---------------·-·-------

S.13. • cpid-Name Default Coprocessor ID ··---------·---·--·-··

Chapter 6 Instructions and Addressing Modes -------·-····--·-----··

6.1. Instruction MneJ11onics ----·--··-----·---····-···------·--·-··--·-·--..

6.2. Extended Branch Instruction Mnemonics ·-----------·-----·-

6.3. Addressing Modes ------·--------·-------·--··--·--·---·-

6.4. Addressing Categories -----.. --------·--·-------·--·--------

Appendix A as Error Codes ·---------·--·------------···-·---

A.1. Usage Enors -·------·-----·-·---·------·----------·--·-·---

A.2. Assembler El'IOr Messages ··-··--·--·-----------·---····--·-·----·-···

Appendix B List of as Opcodes ··--·---···--····-·---·-····-··-··-·-······-··-·····

-iv-

25
"-----'

26

26

31
32

33

33

34

35

35

36
"-..._/

36

37

37

37

~,

38

38

41
41

41

42
'--./

46

51
51

51

59

Contents - Continued

Appendix C FP A Assembler Syntax -······-···---··-·-·-·············-····--···-·--···- 83

C.1. Insttuction Syntax ·····----··--·-··-···--·-···-·--···--·······-···-·····----·······-····· 83

C.2. Register Syntax ---·--···-·------···----··---····-···-----·-····-·---·- 84

C.3. Operand Types --·-·-····---·-··-···-·--··-···-··-·······-·········-·-·-····-··-····--·-····-·-·· 84

C.4. Two-Operand Insttuctions ···-·-·--···-·····-······-·····--·············-····-·--·-·-···--- 84

C.S. Three-Operand Insttuctions ···----····-····--·-·-·-·······--·-·-··-··-··--····---·· 85

C.6. Four-Operand Insttuctions -·--·---·--·-·-··---···--·-···--·-········-····-·-····-·· 86

C. 7. Other Insttuctions ·-·--···-·········--·-·-···-·--·-··-····---·-·-······--··---·-···-······ 90

C.8. Restrictions and Errors ··-·-···--·--··-····---·-·-·--··--·-··-···-····-· .. ·--·-·---··· 91

C.9. Insttuction Set Summary -·---·--·-·----·-·----·--··-···---···---···-·-- 91

Index ··-·--·---··--------·--···---····---·---···--·-··-·--·-····-·-·-···--·-·--- 95

-v-

Tables

Table 3-1 Unary Operators in Expressions -----------···--·--·----- 17

Table 3-2 Binary Operators in Expressions·--·---------·-···----·-·--··--- 17

Table 5-1 Assembler Directives ··---·-···--·-·-······--···-·-·-·--···--··-------·-- 31

Table 6-1 Addressing Modes ·--·--·-···---·-·-·--·-···--···-·-····--····-·--·-··-···-·· 44

Table 6-2 Addressing Categories ··-·--·-···-···-·-·-·-·······-···---·-···-···-----··--·- 46

Table B-1 List of MC680x0 Instruction Codes .. -·-·--·--····-·-·-----·····-·-·--·· 60

Table B-2 MC68881 Instructions supported by as -----·····---·--····---- 68

Table C-1 Other Instructions ,-------·----·---····-·--·--·--·-·--------·-- 92

Table C-2 Floating-Point Instructions ·--·-·-···-·-·-····-···-··-·--------·-·-·---- 93

-vii-

Introduction

Introduction.-~·---~------~~~-----·-----

1.1. Using the Assembler--------·-------
1.2. Notation··--------------------

1

3

3

4

1.1. Using the Assembler

1
Introduction

By convention, the assembly language source code of the program should be in
one or more files with a • s suffix. Suppose that your program is in two files
called parts.sand rest. s. To run the assembler, type the command:

(tutorial% as parts.a rest.a

as runs silently (If there are no em>rs), and generates a file called a . out.

as also accepts several command-line options. These are:

~file Place the output of the assembler in file instead of a.out.

-m68010 This is the default on Sun-2 systems. Accept only the MC68010
instruction set and addressing modes. This also puts the MC68010
machine type tag into the a.out file.

-m68020 This is the default on Sun-3 systems. Accept the full MC68020,
MC68881, and Sun FPA instruction sets and addressing modes.
Includes the MC68010 instruction set and addressing modes as a
subset, and also puts the MC68020 machine type tag into the a.out
file.

-k Generate position-independent code as required by

J

[_____________ c_c __ -_p_i_c/_-_P_r_c ______________________________ J

WARNING Don't apply this flag to hand-coded assembU!r programs unU!ss they are written
to be position-independent

-0 Perform span-dependent instruction resolution over each entire file,
rather than just over each procedure (see the description of the .proc

pseudo-operation in Chapter 5).

-R Make initialized data segments read-only (actually the assembler
places them at the end of the . text area).

-L Keep local (compiler-generated) symbols that start with the letter L.

This is a debugging feature. If the -L option is omitted, the assem
bler discards those symbols and does not include them in the symbol
table.

3 Revision A of May 9, 1988

4 Assembly Language Reference

1.2. Notation

-j Make all jumps to external symbols (jsr and jmp)

PC-relative rather than long-absolute. This is intended for use when
the programmer knows that the program is short, since it only per
mits jumps (forward or back) up to 32K. bytes long. If there are any
externals which are too far away, the loader will complain when the
program is linked.

-J Suppress span-dependent instruction calculations and force all
branches and calls to take the most general form. This is used when
assembly time must be minimized, but program size and run time
are not important

-h Suppress span-dependent instruction calculations and force all
branches to be of medium length, but all calls to take the most gen
eral form. This is used when assembly time must be minimized, but
program size and running time are not impor..ant This option results
in a smaller and faster program than that produced by the -J option,
but some very large programs may not be able to use it because of '-----'
the limits of the medium-length branches.

-d2 This is intended for small stand-alone programs. The assembler
makes all program references PC-relative and all data references
short-absolute. Note that the -j option does half this job.

You should also consult the SunOS Reference Manual entry on as.

The notation used in this manual is a somewhat modified Backus-Naur Form
(BNF). A string of characters on its own stands for itself, for example:

(WIDGET

is an occurrence of the literal string 'WIDGET', and:

(1983

is an occurrence of the literal constant 1983. An element enclosed in< and>

signs is a non-terminal symbol, and must eventually be defined in terms of some
other entities. For example,

stands for the syntactic construct called 'identifier', which is eventually defined
in terms of basic objects. A syntactic object followed by an ellipsis:

(<thing> • • •

denotes one or more occurrences of <thing>.
Syntactic objects occurring one after the other, as in:

J

)

l

)

Revision A of May 9, 1988

·-~

Chapter 1 - InllOduction 5

(<first thing > <second thing >

simply means an occunence of first thing followed by second thing. Syntactic
elements separated by a vertical bar sign (I), as in:

)

(<k~r> I <digit> J

mean an occurrence of <letter> or <digit> but not both. Brackets and braces
define the order of interpretation. Brackets also indicate that the syntax
described by the subexpression they enclose is optional. That is:

([<thing>])

denotes zero or one occurrences of <thing>, while { and } are used for grouping

so that

({ <thing ou> I <thing two> } <thing three>

denotes a <thing one> or a <thing two>, followed by a <thing three> .

)

• §l!!! Revision A of May 9, 1988

2
........ :· ••• • ; ., ., : ,. •• • •• :..; .. •• • .. • ""''- • ., ... Y' :y">. ••••• ~:-.-- :-· :-· •• .,

Elements of Assembly Language

Elements of Assembly Language ---------------·----

2.1. 01aracter Set ·---·---·

2.2. Identifiers·----·---------------·--·----
2.3. Numeric Labels---------------------··

2.4. Local Labels -------------------------

2.5. Scope of Labels ------------------------···-

2.6. Constants ·-·---·----·---------------
2.7. Numeric Constants ---· ·---------------·--
2.8. String Constants ----------------

2.9. Assembly Location Counter----·

9

9

9

10

10

10

11

11

12

12

2.L Character Set

2.2. Identifiers

2
Elements of Assembly Language

This chapter covers the lexical elements which comprise an assembly language
program. (Olapter 3 discusses the rules for expression and operand formation.)
Topics covered in this chapter are:

a The character set that the assembler recognizes,

a Rules for identifiers and labels,

a Syntax for numeric constants,

a Syntax for string constants,

a The assembly location counter.

An assembly language program is ultimately consnucted from characters. Char
acters are combined to make up lexical elements or tokens of the language. Com
binations of tokens fonn assembly language statements, and sequences of state
ments fonn an assembly language program. 'Ibis section describes the basic lexi
cal elements of as.

as recognizes the following character set:

a The letters A through Z and a through z.

a The digits 0 through 9.

a 1be ASCII graphic characters- the printing characters other th.an letters
and digits.

a 1be ASCII non-graphics: space, tab, caniage return, and newline (also
known as linefeed).

lde11lifiers are used to tag assembler statements (where they are called labels), as
location tags for data. and as the symbolic names of constants.

An identifier in an as program is a sequence of from 1 to 255 characters from the
set:

a Upper case letters A through z.

a Lower case letters a through z.

a Digits 0 through 9.

9 Revision A of May 9, 1988

10 Assemb~LanguageRdenn~

2.3. Numeric Labels

2.4. Local Labels

2.S. Scope of Labels

o The characters underline (_),period (.), and dollar sign ($).

The first character of an identifier must not be numeric. Other than that restric
tion, there are a few other points to note:

a All characters of an identifier are significant and are checked in comparisons
with other identifiers.

a Upper case letters and lower case letters are distinct, so that
kit_ of _parts and KIT_ OF_ PARTS are two different identifiers.

o Although the period (.) and dollar sign ($)characters can be used to con
struct identifiers, they are reserved for special purposes (pseudo-ops for
instance) and should not appear in user-defined identifiers.

Here are some examples oflegal identifiers:

Grab_Ho1d
Widqet
l?ot_of_Messaqe
MAXNAME

A numeric label comists of a digit (0 to 9) followed by a colon. As in the case of
alphanumeric labels, a numeric label assigns the current value of the location
counter to the symbol However, several numeric labels with the same digit may
be used within the same assembly: References of the fonn nb referto the first
numeric label named n backwards from the reference; n f symbols refer to the
first numeric label named n foiwards from the reference.

Local labels are a special fonn of identifier which are strictly local to a control
section (see Section 5.4). Local labels provide a convenient means of generating
labels for branch instructions and such. Use of local labels reduces the possibil
ity of multiply defined labels in a program, and separates entry point labels from
local references, such as the top of a loop. Local labels cannot be referenced
from outside the current assembly unit Local labels are of the fonn n$ where n
is any integer. Valid local labels include:

[1$
27$
394$

The scope of a label is the 'distance' over which it is visible to other parts of the
program which may reference it An ordinary label which tags a location in the
program or data is visible only within the current assembly. An identifier which
is designated as an external identifier via a • globl directive is visible to other
assembly units at link time.

l

Local labels have a scope, or span of reference, which extends between one ordi
nary label and the next Every time an ordinary label is encountered, all previous

·~!! Revision A of May 9, 1988

first: addl dO,dl

100$: addqw f7,d3
bees 100$

second: and! t0x7ff,d4

100$: cmpw dl,d3
beqs 100$

third: movw d0,d7
beqs 100$

·-....__..

.__.,. 2.6. Constants

2.7. Numeric Constants

Chapter 2-Elements of Assembly Language 11

local labels associated with the current location counter are discarded, and a new
local label scope is created. The following example illustrates the scopes of the
different kinds of labels:

creates a new local label scope

first appearance of 100$
branches to the label above

above 100$ has qone away

this is a different 100$
branches to the previous instruction

now 100$ has qone away again
generates an error message if no 100$ below

1be labels first, second, and third all have a scope which is the entire
source file containing them. 1be first appearance of the local label 1 O O $ has a.
scope which extends between first and second.
1be second appearance of the local label 1 O O $ has a scope which extends
between second and third. After the appearance of the label third. the
branch to 100 $ will generate an error message because that label is no longer
defined in this scope .

1bere are two forms of constants available to as users, namely numeric con
stants and string constants. All constants are considered absolute quantities
when they appear in an expression (see Section 3.4 for a discussion on absolute
and relocatable expressions).

as assumes that any token which starts with a digit is a numeric constant. as
accepts numeric quantities in decimal (base 10), hexadecimal (base 16), or octal
(base 8) radices. Numeric constants can represent quantities up to 32 bits in
length. ·

Decimal numbers consist of between one and ten decimal digits (m the range 0
through 9). The range of decimal numbers is between -2,147,483,648 and
2,147,483,647. Note that you can't have commas in decimal numbers even
though they are shown here for readability. Note also ttiat decimal numbers can't
be written with leading zeros, because a numeric constant starting with a zero is
taken as either an octal comtant or a hexadecimal constant, as described below.

Hexadecimal constants start with the notation Ox or OX (zero-ex) and can then
have between one and eight hexadecimal digits. The hexadecimal digits consist
of the decimal digits O through 9 and the hexadecimal digits a through f or
Athrough F.

Octal constants start with the digit o. There can then be from one to 11 octal
digits (0 through 7) in the number. But note that 11 octal digits is 33 bits, so the
largest octal number is 03777777m7.

Revision A of May 9, 1988

12 Assembly Language Reference

2.8. String Constants

2.9. Assembly Location
Counter

Floating-point constants must start with #Or or #:OR, which may be followed by
an optional sign and either a number, an infinity or a nan ("not a number"). The
syntax is

({fOr I fOR} [+ I -l {<number> I inf I nan})
where the syntax of a <number> is

({<digits> C • [<digits>]] I • <digitS'>} CE C + I - l <digits> l J

and <digits> is a string of decimal digits.

A string is a sequence of ASCil characteis, enclosed in quote signs ".

Within string constants, the quote sign is represented by a backslash character
followed by a quote sign. The backslash character itself is represented by two
backslash cbaracteIS. Any other character can be represented by a backslash

charac1er followed by one, two, or three octal digits, or by a backslash followed
by Ox or OX and a one- or two-digit hexadecimal constant The table below
shows the octal representation of some of the more common non-printing charac
ters.

CharacUr Octal Bu

Backspace \010 Ox8

Horimntal Tab \011 Ox9

Newline (Linefeed) \012 OxA

Formfeed \014 OxC

Caniage Return \015 OxD

The assembly location counter is the period character (.). It is colloquially
known as dot When used in the operand field of any statement, dot represents
the address of the first byte of the statement. Even in assembler directives, dot
represents the address of the start of that assembler directive. For example, if dot
appears as the third argument in a • lonq directive, the value placed at that loca
tion is the address of the first location of the directive - dot is not updated until
the next machine instruction or assembler directive. For example:

Ralph: movl .,aO I load value of Ralph into aO

.!!!!! Revision A of May 9, 1988

Chapter 2-Elements of Assembly Language 13

You can reserve storage by advancing dot.
For example, the statement

(Table: .-.+OxlOO)
reserves 256 byteS (100 hexadecimal) of storage, with the address of the first byte
as the value of Table. This is exactly equivalent to using • skip (the preferred
syntax) as follows:

(Table: .skip OxlOO

The value of dot is always relative to the start of the cwrent control section. For
example,

(. • OxlOOO

)

)
doesn't set dot to absolute location Ox.1000, but to location Ox.1000 relative to the
start of the current control section. This practice is not recommended.

Revision A of May 9, 1988

3
Expressions

Expressions ·---------·---- __ 17

3.1. Operators ·---------------------·---------- 17

3.2. Tenns ----------------------·----- 18
3.3. Expressions-------·------------------- 18

3.4. Absolute, Relocatable, and External Expressions -----------· 18

3
Expressions

Expressions are combinations of operands (numeric constants and identifiers) and
operators, forming new values. The sections below define the operators which
as provides, then gives the rules for combining tenns into expressions.

·"'--" 3.1. Operators Identifiers and numeric constants can be combined, via arithmetic operators, to
fonn expressions. as provides unary operators and binary operators, as
described below.

Table 3-1 Unary Operators in Expressions

Operator Functi.on Descripti.on

- unary minus Two's complement of its argument.

- logical negation One's complement (logical negation) of its argu-
ment.

Table 3-2 Binary Operators in Expressions

Operator Function Descriptl.on

+ addition Arithmetic addition of its arguments.

- subtraction Arithmetic subtraction of its arguments.

* multiplication Arithmetic multiplication of its arguments.

I division Arithmetic division of its arguments. Note that
division in as is integer division, which nun-
cates towards zero.

Each operator worlcs on 32-bit numbers. If the value of a particular tenn occu
pies only 8 bits or 16 bits, it is sign extended to a full 32-bit value.

·~!! 17 Revision A of May 9, 1988

18 Assembly Language Reference

3.2. Terms

3.3. Expressions

3.4. Absolute, Relocatable,
and External
Expressions

A term is a component of an expression. A term may be any of the following:

o A numeric constant, whose 32-bit value is used. The assembly location
counter, known as dot, is considered a number in this context.

o An identifier.

a An expression or term enclosed in parentheses () .
Any quantity enclosed in parentheses is evaluated before the rest of the

expression. This can be used to alter the normal left-to-right evaluation of
expressions - for example, differentiating between a *b+c and a* (b+c)
or to apply a unary operator to an entire expression- for example,
-(a*b+c).

a A term preceded by a unary operator. For example, both
double_plus_ungood and ·double_plus_ungood are terms.

Multiple unary operators can beused in a term. For example, - -positive
has the same value as positive. ,__,.

Expression are combinations of terms joined together by binary operators. An
expression is always evaluated to a 32-bit value.

If the operand requires only a single-byte value (a .byte directive or an addq
instruction, for example) the low-order eight bits of the expression are used.

If the operand requires only a 16-bit value (a • word directive or amovem
instruction, for example) the low-order 16 bits of the expression are used.

Expressions are evaluated left to right with no operator precedence. Thus

(1+2*3)
evaluates to 9, oot 7. Unary operators have precedence over binary operators
since they are considered part of a tenn, and both terms of a binary operator must
be evaluated before the binary operator can be applied.

A missing expression or term is interpreted as having a value of zero. In this
case, an Invalid expression error is generated.

An Invalid Operator error means that a valid end-of-line character or binary
operator was not detected after the assembler processed a term. In particular, this
error is generated if an expression contains an identifier with an illegal character,
or if an incorrect comment character was used.

When an expression is evaluated, its value is either absolute, relocatable, or
external:

An expression is absolute if its value is fixed.

a An expression whose terms are constants is absolute.

a An identifier whose value is a constant via a direct assignment statement is
absolute.

·~!! Revision A of May 9, 1988

Chapter 3 - Expressions 19

c A relocatable expression minus a relocatable term is absolute, if both items
belong to the same program section.

An expression is relocatable if its value is fixed relative to a base address, but
will have an offset value when it is linked or loaded into memory. All labels of a
program defined in relocatable sections are relocatable terms.

Expressions which contain relocatable terms must only add or subtract constants
to their value. For example, assuming the identifiers widget and bli vet
were defined in a relocatable section of the program, then the following demon
strates the use of relocatable expressions:

Expression Description

widget is a simple relocatable term. Its value is an offset from
the base address of the current control section.

widqet+S is a simple relocatable expression. Since the value of
widget is an offset from the base address of the current
control section, adding a constant to it does not change
its relocatable status.

widqet*2 Not relocatable. Multiplying a relocatable term by a
constant invalidates the relocatable status.

2-widqet Not relocatable, since the expression cannot be linked by
adding widget's offset to it.

widqet-blivet Absolute, since the offsets added to widget and
bli vet cancel each other out.

An expression is external (or global) if it contains an external identifier not
defined in the current program. With one exception, the same restrictions on
expressions containing relocatable identifiers apply to expressions containing
external identifiers. The exception is that the expression

(widqet-bli vet

is incorrect when both widget and bli vet are external identifiers - you
cannot subtract two external relocatable expressions. In addition, you cannot
multiply or divide any relocatable expression.

)

Revision A of May 9, 1988

Assembly Language Program Layout

Assembly Language Program Layout -·--

4.1. Label Field·------·------·

4.2. Operation Code Field --------------

4.3. OperandField -----------------

4

23

23

24

25

4.4. CommentField -------------------- 26

4.S. Direct Assignment Statements --------------·· 26

"---

4.L Label Field

4
Assembly Language Program Layout

An as program consists of a series of statements. Several statements can be
written on one line. but statements cannot cross line boundaries. The foIDlat of a
statement is:

([<label.field>] [<opcode> [<operand.field>]])
It is possible to have a statement which consists of only a label field.

The fields of a statement can be separated by spaces or tabs. There must be at
least one space or tab separating the opcode field from the operand field, but
spaces are unnecessary elsewhere. Spaces may appear in the operand field.
Spaces and tabs are significant when they appear in a character string (for
instance, as the operand of an . ascii pseudo-op) or in a character constant In
these cases,. a space or tab stands for itself.

A line is a sequence of zero or more statements, optionally followed by a com
ment, ending with a <newline> character. A line can be up to 4096 characters
long. Multiple statements on a line are separated by semicolons. Blank lines are
allowed. The foIDl of a line is:

[[<statement> [;<statement> .••]] [I <comment>]

Labels are identifiers which the programmer may use to tag the locations of pro
gram and data objects. The foIDlat of a <label.field> is:

[<.Wntifier> : [<.Wntifier> : J • • •

If present, a label always occurs first in a statement and must be teIDlinated by a
colon:

(sticky: label defined here.

l

)

l
23 Revision A of May 9, 1988

24 Assembly Language Refe:renc:e

4.2. Operation Code Field

More than one label may appear in the same source statement, each one being
terminated by a colon:

presson: grab: hold: multiple labels defined here.

The collection of label definitions in a statement is called the label field.

When a label is encountered in the program, the assembler assigns that label the
value of the current location counter. The value of a label is relocatable. The
symbol's absolute value is assigned when the program is linked with the system
linker ld(l).

The operation code field of an assembly language statement identifies the state
ment as either a machine instruction or an assembler directive.

One or more spaces (or tabs) must separate the operation code field from the fol
lowing operand field in a statement. Spaces or tabs are unnecessary between the
label and operation code fields, but they are recommended to improve readability
of the program.

A machine instruction is indicated by an instruction mnemonic. The assembly
language statement is intended to produce a single executable machine instruc
tion. 1be operation of each instruction is described in the manufacblrer's user
manual. Conventions used in as for instruction mnemonics are described in
Chapter 6 and a complete list of the instructions is presented in Appendix B.

An assembler directive, or pseudo-op, performs some function during the assem
bly process. It does not produce any executable code, but it may assign space for
data in a program.

Note that as expects that all instruction mnemonics in the op-code field should
be in lower case only. Using upper case letters in instruction mnemonics gives
rise to an error message.

The names of register operands must also be in lower case only. This behavior
differs from the case of identifiers, where both upper and lower case letters may
be used and are considered distinct.

Many MC68010 and MC68020 machine instructions can operate upon byte (8-
bit), word (16-bit), or long word (32-bit) data. The size which the programmer
requires is indicated as part of the instruction mnemonic. For instance, a movb
instruction moves a byte of data, a movw instruction moves a 16-bit word of data,
and a mov 1 instruction moves a 32-bit long word of data. In general, the default
size for data manipulation instructions is word.

Many MC68881 machine instructions can operate on byte, word or long word
integer data, on single-precision (32-bit), double-precision (64-bit) or extended
precision (96-bit) floating-point data or on packed-decimal (96-bit) data. The
size required is specified as part of the instruction mnemonic by a trailing "b",
"w", "l", "s", "d", "x" orp, respectively.

An alternate coprocessor id can be specified for MC68881 instructions by
appending @id to the opcode, such as fadd@2. If you don't do this, the

·~!! Revision A of May 9, 1988

4.3. Operand Field

·--

Chapter 4 -Assembly Language Program Layout 25

coprocessor id specified by the most recent . cpid pseudo-operation is used.
(See Chapter 5.)

Similarly, branch instructions can use a long or short offset specifier to indicate
the destination. So the beq instruction uses a 16-bit offset, whereas the beqs
uses a short (8-bit) offset.

Note that this implementation of as provides an extended set of branch instruc
tions which start with the letter j instead of the letter b. If the programmer uses
the j forms, the assembler computes the offset size for the instruction. See Sec
tion 1.1 for the assembler options which control this.

The operand field of an assembly language statement supplies the arguments to
the machine instruction or assembler directive.

as makes a distinction between the <operand field> and individual <operands>
in a machine instruction or assembler directive. Some machine instructions and
assembler directives require two or more arguments, and each of these is referred
to as an ''operand''.

In general, an operand field consists of zero or more operands, and in all cases,
operands are separated by commas. In other words, the format of an <operand
field> is:

([<operand> [, <operand>] • • •]

1be general format of the operand field for machine instructions is the same for
all instructions, and is described in Chapter 6. 1be fonnat of the operand field
for assembler directives depends on the directive itself, and is included in the
directive's description in Chapter S of this manual.

l
Depending upon the machine instruction or assembler directive, the operand field
consists of one or more operands. The kinds of objects which can form an
operand are:

c Register operands

c Register pairs

c Address Operands

c String constants

c Floating-point constants

a Register lists

a Expressions

Register operands in a machine instruction refer to the machine registers of the
processor or coprocessor.

Note that register names must be in lower case; as does not recognize register
names in upper case or a combination of upper case and lower case.

Revision A of May 9, 1988

26 Assembly Language Reference

4.4. Comment Field

4.5. Direct Assignment
Statements

Expressions are described in Chapter 3, address operands in Section 6.3, and con
stants in Chapter 2.

as provides the means for the programmer to place comments in the source
code. There are two ways of representing comments.

A line whose first non-whitespace character is the hash character (t) is con
sidered a comment. This feature is handy for passing C preprocessor output
through the assembler. For example, these lines are comments:

This is a comment line.
And this one is also a comment line.

The other way to introduce a comment is when a comment field appears on a line
with a statement. The comment field is indicated by the presence of the vertical
bar character (I) after the source statement

The comment field consists of all characters on a source line following and
including the comment character. The assembler ignores the comment field.
Any character may appear in the comment field, with the obvious exception of
the <newline> character, which starts a new line.

An assembly language source line can consist of just a comment field. For exam
ple, the two statements below are quite acceptable to the assembler:

[I Thi• is a comment field.
I So is th.ts.

A direct assignment statement assigns the value of an arbitrary expression to a
specified identifier. The fonnat of a direct assignment statement is:

(<wntifier> = <expression>

Examples of direct assignments are:

vect_size • 4
vectora • OxFFFE
vectorb • vectora-vect_size
CRLF • OxODOA

dtemp • dO use register dO as temporary

Any identifier defined by direct assignment may be redefined later in the pro
gram, in which case its value is the result of the last such statement This is
analogous to the SET operation found in other assemblers.

A local identifier may be defined by direct assignment, though this doesn't make
much sense.

l
)

Revision A of May 9, 1988

Chapter 4-Assembly Language Program Layout 27

Register identifiers may not be redefined.

An identifier which has already been used as a label may not be redefined, since
this would be tantamount to redefining the address of a place in the program. In
addition, an identifier which has been defined in a direct assignment statement
cannot later be used as a label Both situations give rise to assembler error mes
sages.

If the <expression> in a direct assignment is absolute, the identifier is also abso
lute, and may be treated as a constant in subsequent expressions. If the <expres
sion> is relocatable, however, the< identifier> is also relocatable, and it is con
sidered to be declared in the same program section as the expression.

If the <expression> contains an external identifier, the identifier defined by direct
assignment is also considered external. For example:

.qlobl x
holder - X

X is declared as external identifier
holder becomes an external identifier

assigns the value of X (zero if it is undefined) to holder and makes holder an
external identifier. External identifiers may be defined by direct assignment

•~.!! Revision A of May 9, 1988

5
Assembler Directives

Assembler Directives -·---·--------------·--- 31

S.1. • ascii -Generate Character Data----- -----·- 32

S.2. .asciz -Generate Zero-Terminated Sequence of Character

Data_ ---- ---·-- 33

S.3. Directives to Generate Data·---------------- 33

S.4. Directives to Switch Location Counter·-----------·· 34

S.S. • skip -Advance the Location Co1Dlter ------------- 35

S.6. • lcomm-Reserve Space in bss Area__ ·------ 35

S.1. • qlobl - Designate an Extemal Identifier. ----- 36

S.8. • comm-Define Name and Size of a Common Area ------- 36

S.9. • aliqn -Force Location Counter to Particular Byte

Boundary·---- ------------- 37
S.10. • even - Force Location Counter to Even Byte Boundary ----- . 37

S.11. • stabx-Build Special Symbol Table Entty ------- 37

S.12. • proc - Separate Procedures for Span-Dependent

Instruction Resolution·----------------- 38

5.13. • cpid-Name Default Coprocessor ID --------- 38

5
Assembler Directives

Assembler directives are also known as pseudo operations or pseudo-ops.
Pseudo-ops are used to direct the actions of the assembler, and to achieve effects
such as generating data. The pseudo-ops available in as are listed in Table 5-1
below.

Table 5-1 Assembler Directives

Pseu4o
OJ#ration

.ascii
• asciz

.byte

. bytez
• word

• lonq

.sinqle

De1crlption

Generates a sequence of ASCII characters. · · ·

Generates a sequence of ASCU characters, tt.nninated by a zero byte •

Generates a sequence of bytes in dara storage.

Generates a sequence of bytes in dara storage initialized to zero •

Generates a sequence of WOids in dara storage •

Generates a sequence of Jong WOids in dara storage •

Generates a sequence of single-precision ftoating-point constants in
dara storage.

• double Generates a sequence of double-precision ftoating-point constants in
dara storage •

. text Specifies that generated code be placed in the tut control section until
further notice.

. data Specifies that generated code be placed in the data control section until
further notice.

. datal Specifies that generated code be placed in the data1 control section
until further notice •

. data2 Specifies that generated code be placed in the data2 control section
until further notice •

• bs s Specifies that space will be reserved in the bss control section until
further notice.

• qlobl Declares an identifier as global (extemal) .

• comm Declares the name and size of a common area.

·~!! 31 Revision A of May 9, 1988

32 Assembly Language Reference

Table 5-1 Assembler Directives- Continued

S.1. . ascii - Generate
Character Data

Octal Cod6 G•araud:

150 145 154 154 157 040
164 150 145 162 145

127 141 162 156 151 156
147 055 007 007 040 012

141 142 143 144 145 146
147

Pseudo-
Description Operation

. lconun Reserves a specified amount of space in the bss control section .

.skip Advances the location counter by a specified amomtt.

.align Forces location counter to next one-, two- or four-byte boundary.
• even Forces location counter to next word (even-byte) boundary .

.stabx Builds special symbol table entries. These directives are included for
the benefit of compilers which generate information for the symbolic
debuggers dbx and dbxtool.

. proc Separates procedures for faster span-dependent instruction resolution .

.cpid Assigns a coprocessor number.

These assembler directives are discussed in detail in the following sections.

The . ascii directive translates character sUings into their ASCII equivalents
for use in the source program. The fonnat of the . ascii directive is:

([<label> :] • ascii "<character string>" J
<character string> contains any character or escape sequence which can appear
in a character sUing. Obviously, a newline must not appear within the character
string. A newline can be represented by the escape sequence 'il12. The following
examples illustrate the use of the . ascii directive:

Sm.nNnt:

.ascii "hello there"

.ascii "Warninq-\007\007 \012"

.ascii "abcdefg"

Revision A of May 9, 1988

'---

v

5.2. • asciz - Generate
Zero-Terminated
Sequence of Character
Data

Octal Code G1aral8d:

110 145 154 154 157 040
127 157 162 144 041 000

124 150 105 040 107 162
145 141 164 040 120 122
117 115 160 153 151 156
040 163 164 162 151 153
145 163 040 141 147 141
151 156 041" 000

5.3. Directives to Generate
Data

Chapter S - Assembler Directives 33

The • asciz directive is equivalent to the . ascii directive except that a zero
byte is automatically inserted as the final character of the string. This feature is
intended for generating strings which C programs can use. The following exam
ples illustrate the use of the • asciz directive:

Sk*IMnt:

.asciz "Hello World!"

.asciz "The Great PROMpkin strikes again!"

The • byte, . word, . long, . single, and • double directives reserve
storage locations and initialize them with specified values.

The fonnat of the various forms of data generation statements are:

<lobll>: .byte <expression> , <expression>] ...
<labll>: .bytez <expression> , <1xpression>] ...

<label>: .word <expression> , <expression>] ...
<labll>: .long <expression> , <expression>] ...

<label>: .single <expression> , <expression>] ...
<label>: .double <expression> , <expression>] ...

The • byte directive reserves one byte (8 bits) for each expression in the
operand field, and initializes it to the low-order 8 bits of the corresponding
expression.

The • bytez directive reserves one byte (8 bits) for each expression in the
operand field, and initializes it to zero.

The • word directive reserves one word (16 bits) for each expression in the
operand field, and initializes it to the low-order 16 bits of the corresponding
expression.

The • long directive reserves one long word (32 bits) for each expression in the
operand field, and initializes it to the value of the corresponding expression.

Revision A of May 9, 1988

34 Assembly Language Reference

5.4. Directives to Switch
Location Counter

Space

text

data

bss

The • single directive reserves one long word for each expression in the
operand field, and initializes it to the low-order 32 bits of the corresponding
expression.

The • double directive reserves a pair of long words for each expression in the
operand field, and initializes them to the value of the corresponding expression.

Multiple expressions can appear in the operand field of the • byte, . word,
. long, . single, and • double directives. Multiple expressions must be
separated by commas.

These statements • text, . data, .bss, . datal, and • data2, change the
'conttol section' where assembled code is loaded.

as (and the system linker) view programs as divided into three distinct sections
or address spaces:

Description

The address space where the executable machine instructions are
placed.

The address space where initialized data is placed. The assem-
bier actually knows about three data areas, namely, data, datal,
and data2. The second and third data areas are mainly for the
benefit of compilers and are of minimal interest to the assembly
language programmer.

If the -R option is coded on the as command line, it means that
the initialized data should be considered read-only. It is actually
placed at the end of the text area.

1be address space where the uninitialized data areas are placed.
Also, see the • !comm directive described below.

For historical reasons, the different areas are frequently referred to as 'control
sections' (csects for shott). '---'

1bese sections are equivalent as far as as is concerned, with the exception that
no instructions or data are generated for the bss section- only its size is com-
puted and its symbol values are output.

During the first pass of the assembly, as maintains a separate location counter
for each section. Consider the following code fragments:

Revision A of May 9, 1988

S.S. • skip - Advance the
Location Counter

5.6 •. lcomm-Reserve
Space in bss Area

Chapter 5 - Assembler Directives 35

.text place next instruction
code: movw dl,d2 in text section

.data now generate data in
grab: .long 27 data section

.text now revert to text

more: addw d2,dl section

.data now back to data section
hold: .byte 4

During the first pass, as creates the intermediate output in two separate chunks:
one for the text section and one for the data section. In the text section, code
immediately precedes more; in the data section, grab immediately precedes
hold. At the end of the first pass, as rearranges all the addresses so that the
sections are sent to the output file in the order: text, data and bss.

Tue resulting output file is an executable image file with all addresses correctly
resolved, with the exception of undefined . globl 'sand . comm's.

For more information on the format of the assembler's output file, consult the
a.out(S) entry in the System Programmer's Reference Manual.

The • skip directive reserves storage by advancing the current location counter
a specified amount. The format of the • skip directive is:

([<la«l>:] . skip < size >)

where <size> is the number of bytes by which the location counter should be
advanced. The • skip directive is equivalent to performing direct assignment
on the location counter. For instance, a . skip directive like this:

(Table .skip 1000 l
reserves 1000 bytes of storage, with the value of Table equal to the address of the
first byte.

Tue . lcormn directive is a compact way to get a specific amount of space
reserved in the bss area. Tue format of the . lcomm directive is:

(.lcomm < ~ >,< size >)
where <name> is the name of the area to reserve, and <size> is the number of
bytes to reserve. The • lcomm directive specifically reseives the space in the bss
area, regardless of which location counter is currently in effect.

Revision A of May 9, 1988

36 Assembly Language Reference

S.7 •. globl -Designate
an External Identifier

S.8. • comm - Define Name
and Size of a Common
Area

A • lcommdirective like this:

[.lcomm lower_forty, 1200

is equivalent to these directives:

.bss
lower_forty: .skip size
revert to previous control section

switch to .bss area

A program may be assembled in separate modules, and then linked together to
fom a single executable unit See the ld(l) command in the SunOS Reference
Manual.

External identifiers are defined in each of these separate modules. An identifier
which is defined (given a value) in one module may be referenced.in another
module by declaring it external in both modules.

There are two foms of external identifiers, namely, those declared with the
• globl and those declared with the . comm directive. The . comm directive is
described in the next section.

External symbols are declared with the . q lobl assembler directive. The format
is:

)

[. qlobl <Symbol> [, <symbol>] • • •)
For example, the following statements declare the array TABLE and the routine
SRCH as external symbols, and then define them as locations in the current con
trol section:

.qlobl TABLE, SRCH
TABLE: .word 0,0,0,0,0
SRCH: movw TABLE,dO

etc.

The • comm directive declares the name and size of a common area, for compati
bility with FOR1RAN and other languages which use common. The format of the
• comm statement is:

(. comm <name>, <constant expression>

where <name> is the name of the common area, and <constant expression> is
the size of the common area. The • comm directive implicitly declares the
identifier <name> as an external identifier.

)

Revision A of May 9, 1988

."----'.

5.9. • align - Force
Location Counter to
Particular Byte
Boundary

5.10. • even - Force
Location Counter to
Even Byte Boundary

S.lL • stabx - Build
Special Symbol Table
Entry

Chapter 5 - Assembler Directives 37

as does not allocate storage for common symbols; this task is left to the linker.
The linker computes the maximum declared size of each common symbol (which
may appear in several load modules), allocates storage for it in the final bss sec
tion, and resolves linkages. If, however, <name> appears as a global symbol
(label) in any module of the program, all references to <name> are linked to it,
and no additional space is allocated in the bss area.

1be • align directive advances the location counter to the next one-, two- or
four-byte boundary, if it is not cunmtly on such a boundary. Inteivening bytes
are filled with mros. The format of the • align directive is:

(.align < siu >]

where <size> must be an assembler expression which evaluates to 1, 2 or 4.

'Ibis directive is necessary because word and long w0rd data values must lie on
even-byte boundaries, because machine instructions must start on even-byte
boundaries, and because the MC68020 is much more efficient if word and ·long
word data are on even-byte and four-byte boundaries, respectively.

1be . even directive advances the location counter to the next even-byte boun
dary, if its current value is odd. 'Ibis directive is necessary because word and
long word data values must lie on even-byte boundaries, and also because
machine instructions must start on even-byte boundaries. . even is equivalent
to .aliqn2.

(.even

1be • stab% directives are provided for the use of compilers which can generate
information for the symbolic debuggers dbxand dbxtool. The directives
• stabs, • stabd, and • stabn build various types of symbol table entries.

The • stab directives have the following forms:

.stabs nanre, type, O, eksc, value

. stabn type, 0 , desc, value

or

l

(.stabd type, 0 , desc l

.§l!!! Revision A of May 9, 1988

38 Assembly Language Reference

S.U. . proc - Separate
Procedures for Span·
Dependent
Instruction
Resolution

S.13. • cpid - Name
Default Coprocessor
ID

The • stabs directives are used to describe types, variables, procedures, and so
on, while the • stabn directives convey information about scopes and the map
ping from source statements to object code.

A . stabd directive is identical ii:l meaning to a corresponding • stabn direc
tive with the value field set to "." (dot), which the assembler uses to mean the
current location. Most of the needed information, for example symbol name and
type structure, is contained in the name field. The type field identifies the type of
symbolic information, for example source file, global symbol, or source line.
The dac field specifies the number of bytes occupied by a variable or type or the
nesting level for a scope symbol The value field specifies an address or an
offset

The • proc directive separates procedures for span-dependent instruction resolu
tion. In its absence the assembler does span-dependent instruction resolution
over entire files. If . proc is used, the resolution is done between occurrences of
the directive and between either end of the file and its nearest occurrences. Since
the algorithm used requires more than linear time, using • proc can save
significant time for large assemblies. Branch insttuctions must not cross • proc
directives, although calls may.

(.proc

The • cpid directive gives the assembler a coprocessor id value to use for
MC68881 instructions that don't have an explicit coprocessor id given. The
form of the directive is

(.cpid < id >

If no • cpid directive is given in a program, a value of 1 is assumed. Since no
Sun systems cmrently have more than one coprocessor, you don't need to use
this directive.

l

l

Revision A of May 9, 1988

6
Instructions and Addressing Modes

Instructions and Addressing Modes ------------------- 41

6.1. Instruction Mnemonics·-----------·----------

6.2. Extended Branch Instruction Mnemonics ·--------------

6.3. Addressing Modes----------------..

6.4. Addressing Categories ---------------------------

41

41

42

46

6

Instructions and Addressing Modes

This chapter describes the conventions used in as to specify instruction
mnemonics and addressing modes. 'The information in this chapter is specific to

the machine instructions and addressing modes of the MC68010 and MC68020
microprocessors and the MC68881 coprocessor. See Appendix C for informa-

'-'. tion on the Sun FPA's instructions set and addressing modes. ·

6.1. Instruction Mnemonics 1be instruction mnemonics that as uses are based on the mnemonics described
in the relevant Motorola processor manuals. However, as deviates from them in
several areas.

6.2. Extended Branch
Instruction Mnemonics

Most of the MC68010 and MC68020 instructions can apply to byte, word or long
operands. Instead of using a qualifier of • b, . w, or . 1 to indicate byte, word, or
long as in the Motorola assembler, as appends a suffix to the normal instruction
mnemonic, thereby creating a separate mnemonic to indicate which length
operand was intended.

For example, there are three mnemonics for the or instruction: orb, orw, and
or 1, meaning or byte, or word, and or long, respectively.

Instruction mnemonics for instructions with unusual opcodes may have addi
tional suffixes. Thus in addition to the normal add variations, there also exist
addqb, addqw and addql for the add quick instruction.

Branch instructions come in two flavors for the MC68010, byte (or short) and
word, and an additional flavor, long, for the MC68020. Append the suffix s to
the word mnemonic to specify the short version of the instruction. For example,
beq refers to the word version of the Branch if Equal instruction, beqs refers to
the short version, while beql refers to the long version.

In addition to the instructions which explicitly specify the instruction length, as
supports extended branch instructions, whose names are, in most cases, con
structed from the word versions by replacing the b with j.

If the operand of the extended branch instruction is a simple address in the text
segment, and the offset to that address is sufficiently small, as automatically
generates the corresponding short branch instruction.

If the offset is too large for a short branch, but small enough for a branch, the
corresponding branch instruction is generated. If the operand references an
external address or is complex (see next paragraph), the extended branch

41 Revision A of May 9, 1988

42 Assembly Language Reference

6.3. Addressing Modes

instruction is implemented either by a jmp or j sr (for jra or jbsr), or (for
the MC68010) by a conditional branch (with the sense of the condition inverted)
around a jmp forthe extended conditional branches and (for the MC68020) the
corresponding long branch.

The extended mnemonics should only be used in the text segment - if they are
used in the data segment, the most general form of the branch is generated.

In this context, a complex address is either an address which specifies other than
normal mode addressing, or a relocatable expression containing more than one
relocatable symbol. For instance, if a, b and c are symbols in the cwrent seg
ment, the expression a+b-c is relocatable, but not simple.

Consult Appendix B for a complete list of the instruction opcodes.

Table ~1 below describes the addressing modes that asrecognizes. Note that
certain modes are not valid for the MC68010. The notations used in this table
have these meanings:

Notation Meanin..8_

an An address register.
dn A data register.
ri Either a data register or an address register.
fi A ftoating-point register.

d A displacement, which is a constant expression in as. In
MC68020 mode, a length specifier (: L, described below) may be
appended to the displacement Any forward or external refer-
ences require the length specifier to be : l. All other references
permit either : l or : w or nulls.

L The index register's length. This may be either long (1) or word
(w) or null. If the only value permitted by a particular addressing
mode or category is l or w, then L will be replaced by the
appropriate value in the table notatioIL

s A scale factor that may be used to multiply the index register's
length. The scale factor may have a value of 1, 2, 4, or 8.

The table notation of two or three items separated by colons, such as ri: L : s,
indicate items that may be optional. In that panicular case, you may not specify
: s unless you have specified :L, which you may not specify unless you have
specified ri. The items in the list must appear in the order given in the notation
of the tables that follow.

In the table where both d and <f are specified, d corresponds to a MC68020 outer
displacement and <f corresponds to a MC68020 base displacement

xu refers to a constant expression.

·~!! Revision A of May 9, 1988

Chapter 6 - Jnsttuctions and Addressing Modes 43

Certain instructions, particularly move, accept a variety of special registers
including:

Name Register

Sp the stack pointer, which is equivalent to a 7
sr the status register
cc the condition codes of the status register

usp the user mode stack pointer
pc the program counter
sfc the source function code register
dfc the destination function code register
fpcr the floating-point control register
fpsr the floating-point status register
fpiar the ftoating-point instruction address register

The memory-indirect and program counter memory-indirect addressing modes
listed in the following tables are usable only with the MC68020.

In each of these addressing modes, up to four user-specified values are used to
generate the final operand address:

D base register

D base displacement

a index register

a outer dispacement

All four user-specified values are optional. Both base and outer displacements
may be null, word or long. When a displacement is null, or an element is
suppressed, its value is taken as zero in the effective address calculation.

In the case of memory-indirect addressing, an address register (an) is used as a
base register, and its value can be adjusted by an optional base displacement (er).
An index register (ri) specifies an index operand (ri: L : s) and finally, an outer
displacement (d) can be added to the address operand, yielding the effective
address.

Program CO\Dlter memory-indirect mode is exactly the same. The only difference
is that the program counter is used as the base register.

Some examples of these addressing modes follow:

Revision A of May 9, 1988

44 Assembly Language Reference

Table 6-1

Mode

Register

Register Deferred
Register List

FP A register

Floating-Point Register

(MC68881 only)

Postincrement

Predecrement

Displacement

Word Index

Long Index

Absolute Short

Absolute Long

PC Displacement

PC Word Index
PC Long Index
PC-Memory Indirect

Pre-Indexed (68020)

PC-Memory In<lirect

Post-Indexed (68020)

Memory Indirect

Pre-Indexed (68020)

Memory Indirect

Post-Indexed (68020)

an@ (d' : L, ri:L:s)@(d:L)
an@(d:L)@(<f :L,ri:L:s)
an@@
an@(d:L)@
an@(d' :L,ri:L:s)@
pc@@
pc@(d:L)@
pc@(<f :L,ri:L:s)@(d:L)
pc@(d:L)@(<f :L,ri:L:s)
@(d:L)@
@(<I :L,ri:L:s)@(d:L)
@(d:L)@(<f :L,ri:L:s)
@(cf :L,ri:L:s)@

In the table below, note that the notation ri/rj means ri and rj, while ri_rj means ri

through rj.

Addressing Modes

Notation Example

an,dn,sp,pc,cc,sr,usp movw a3,d2

an@ movw a3@,d2

ri-rj or rilrj movem a0-a4, a6@-

fpai fpmoves fpal,d2

fpi fmoves fpl,a3@(24)

an@+ movw a3@+,d2

an@- movw a3@-,d2

an@ (d) movw a3@(24),d2

an@(d,ri:w) movw a3@(16, d2:w),d3

an@ (d, ri: l) movw a3@(16, d2:1) ,d3

xa:w movw 14:w,d2

xa:l movw 14:1,d2

pc@ (d) movw pc@(20),d3

pc@ (d,ri:w) movw pc@(14, d2:w),d3

pc@ (d, ri: 1) movw pc@(14, d2:1),d3

pc@ (d' :L,ri:L:s)@ (d:L) movl pc@(2:w,d4:w:4)@(14:1),d3

pc@(d:L)@(d':L,ri:L:s) movl pc@(d:l)@(3:w,d2:1:4),d3

an@ (d' :L, ri:L: s)@ (d:L) movl al@(d:L,d2:1:4)@(14:w)

an@ (d: L) @ (d' : L, ri: L: s) movl a2@(2:w)@(l4:w,d4:w:2)

Revision A of May 9, 1988

Mob
Nonnal

Immediare

Chapt.er 6 - Instructions and Addressing Modes 45

Table 6-1 Addressing Modu-Continued

Notation Examp/4

idllllifatr movw widqet,d3

fDr movw f27+3,d3

Normal mode assembles as PC-relative if the assembler can determine that this is
appropriate, otherwise it assembles as either absolute short or absolute long,
under control of the -d2 command line option.

1be Motorola manuals present different mnemonics (and in fact different forms
of the actual machine instroctions) for instroctions that use the literal effective
address as data instead of using the contents of the effective address. For
instance, they use the mnemonic adda for add address. as does not make
these distinctions because it can determine the type of opcode required from the
form of the operand. Thus an insnuction of the form:

[aven~~'. .word 0

addl. favenue,aO l
assembles to the add address instruction because as can determine that afJ is an
address register.

riqht_now: • 40000

addl. friqht_now,dO

assembles to an add immediate instroction because as can determine that
rlght_now is a constant.

Because of this determination of operand forms, some of the mnemonics listed in
the Motorola manuals are missing from the set of mnemonics that as recognizes.

Certain classes of instructions accept only sumets of the addressing modes
above. For example, the add instruction does not accept a PC-relative address as
a destination, and register lists may be used only with the movem and fmovem
instructions.

as tties to check all these restrictions and generates the illegal operand error
code for instroctions that do not satisfy the address mode restrictions.

1be next section describes how the address modes are grouped into addressing
categories.

Revision A of May 9, 1988

46 Assembly Language Reference

6.4. Addressing Categories The processors group the effective address modes into categories derived from
the manner in which they are used to address operands. Note the distinction
between address modes and address categories. There are 14 addressing modes
in the MC68010 and 18 in the MC68020, and they fall into one or more of four
addressing categories. The addressing categories are defined here, followed by a
table summarizing the grouping of the addressing modes into categories. Note
that register lists can be used only by the movem and fmovem instructions.

Atldnaing

Mod•

Register Direct

A-Register Indirect

A-Register Indirect
with Displacement

A-Register Indirect

with Word Index

A-Register Indirect

with Long Index

A-Register Indirect

with Post Increment

A-Register Indirect

with Pre Decrement

Category Meaning

Data means that the effective address mode is used to refer to data
operands such as a d register or immediate data

Memory means that the effective address mode can refer to memory
operands. Examples include all the a-register indirect address
modes and all the absolute address modes.

Alterable means that the effective address mode refers to operands which
are writeable (alterable). This category takes in every addressing
mode except the PC-relative addressing modes and the immedi-
ate address mode.

Control means that the effective address mode refers to memory
operands with no explicit size specification.

Some addressing categories can be intersected to make more restrictive ones.
For example, the Motorola MC68010 manual mentions the Data Alterable
Addressing Mode to mean that the particular instruction can only use those
modes which provided data addressing and are alterable as well.

Table 6-2 Addressing Categories

Asllftfl/Mr Data Manary Co"'1'ol A/Urabk MC68020
Syntaz Only

an, dn, sp, pc,
cc, sr, usp x x

an@ x x x x
an@ (d: L) x x x x x

an@ (d: L, ri:w: s) x x x x x

an@ (d: L, ri : 1 : s) x x x x x

an@+ x x x

an@- x x x

Revision A of May 9, 1988

Chapter 6 - Instructions and Addressing Modes 47

Table 6-2 Addressing Categories- Continued

Atlllreaing Aannb"1r Dala MmlDry Colllrol A1*rab"1 MC68020

Mob Syntc ' Only

A-Register Indirect an@ (d) x x x x
with Displacement

A-Register Indirect an@ (d, ri:w) x x x x
with Word Index

A-Register Indirect an@(d,ri:l) x x x x
with Long Index

Memmy-Jndinlct an@ (d:L)@ (d' :L, ri:L:s) x x x x x
Post-Indexed

Memmy-Jndinlct an@ (d' :L, ri:L:s)@ (d:L) x x x x x
Pm-Indexed

Absolure Short xxx:w x x x x
Absolute Long JXt:l x x x x
PC-relalive pc@ (d) x x x
PC-IndUect pc@(d:L) x x x x
with Displacement

PC-relalive with pc@ (d, ri: w) x x x
; Wordlndex

PC-IndUect with pc@ (d:L, ri:w:s) x x x x
Word Index

PC-relalive pc@ (d, ri: l) x x x
with Long Index

PC-Indhect with pc@ (d: L, ri: l: s) x x x x
Longlndex

PC-Memmy Indirect pc@(d:L)@(d':L,ri:L:s) x x x x x
Post-Indexed

PC-Memory Indirect pc@(d':L,ri:L:s)@(d:L) x x x x x
Pre-Indexed

Immediare Data tnnn x x

Revision A of May 9, 1988

A
V• .!' """ • N ""• """" • •.• • • •. • • •" ••-. • .!' • ••• • <..

as Error Codes

as Error Codes ------·----------------

A.1. Usage Errors ·-------------------------------

A.2. Assembler Error Messages ----·-----------------···-

51

51

51

·._/

A.L Usage Errors

A.2. Aaembler Error
Messages

A
as Error Codes

Cannot open output file
The specified output file cannot be created. Check that the pennissions
allow opening this file.

Cannot open source file
The assembler cannot open the specified source file. Check the spelling, that
the pathname supplied is correct. and that you have read pennission for the
file.

No input file
One or more input files must be specified- as cannot accept the output of
a pipe as its input.

Too WllllfY file nama given
The assembler cannot cope with more than one sour<:e file. Break the job
into smaller stages. ·

Unknown option 'r ignored
as does not recognize the option x. Valid options are listed in Section 1.1 of
this manual.

If as detects any errom during the assembly process, it prints out a message of
thefonn:

(as: error (<liM_no» : <error _code> l
Error messages are sent to standard error. Here is a list of as error codes, and
their possible causes.

Illegal .align
The expression following a • align evaluates to some value other than 1, 2
or4.

·~!! 51 Revision A of May 9, 1988

52 Assembly Language Reference

/nva/,id assignment
An attempt was made to redefine a label with a direct assignment statement.

lnva/,id Character
An unexpected character was encountered in the program text.

Jnva/,id Constant

[

An invalid digit was encountered in a number. For example, using an 8 or 9
in an octal number. Also happens when an out-of-range constant operand is
found in an instruction - for example:

addq #200,dO
asll #12,dO

Inva/,id opcode
The assembler did not recognize an instruction mnemonic. Probably a
misspelling.

Jnva/,id operand
The operand used is not consistent with the instruction used - for example:

l

[~ ___ a_d_d-qb ___ 1_1_,a_s _____________________________________ J
is an invalid combination of instruction and operand. Check the instruction
set descriptions for valid combinations of instructions and operands.

Inva/,id Operator
Check the operand field for a bad operator. The operators that as recog
nizes are plus (+), minus (-), negate or one's complement C-), multiply
(•), and divide (/).

Jnva/,id register expression
A register name was found where one should not appear- for example:

[~ ___ a_d_d_i ___ 'd_o_, ___ t_h_e_r __ e ________________________________ __,)

lnva/,id Register List
The register list in a movem or fmovem instruction is malformed. Note
that the list must contain more than one register name: to express a list con
taining just a single register, you must write its name twice separated by a
slash, e.g. fpO/fpO."

Revision A of May 9, 1988

Appendix A --. as Error Codes 53

Invalid string
An invalid string was encountered in an . ascii or • asciz directive.

a Make sure the string is enclosed in double quotes.

a Remember that you must use the sequence \" to represent a quote inside
a string.

Invalid symbol
An operand that should be a symbol is not - for example:

(.globl 3

because the constant 3 is not a symbol

Invalid Term
The expression evaluator could not find a valid term: a symbol. constant or
<expression>.
An invalid prefix to a number or a bad symbol name in an operand gen

erates this message.

UM too long

)

A statement was found which has more than 4096 characters before the new
line character.

Missing close-paren ')'
An unmatched '(' was found in-an expression.

Multiply defined symbol

a AD identifier appears twice as a label.

a An attempt to redefine a label using a direct assignment statement.

a An attempt to use, as a label. an identifier which was previously defined
in a direct assignment statement.

Multiply Defined Symbol (Phase E"or)
This mrely occurring message indicates an inconsistency in the assembler.
Repott it to Sun MicrosystemS Customer Suppott if it occurs.

Non-relocatable expression
If an expression contains a relocatable symbol (a label, for instance), the
only operations that can be applied to it are the addition of absolute expres
sions or the subtraction of another relocatable symbol (which produces an
absolute result).

Revision A of May 9, 1988

Odd address
The previous instruction or pseudo-<>p required an odd number of bytes and
this instruction requires word aligmnem. This error can only follow an
• ascii, an . asciz. a . byte, or a • skip pseudo-operation.

NOTE Use a • even directive to ensure that 1M location counter is forced to a 16-bit
bountlary.

Offect too lllrge
The insttudion is a relative addressing instruction and the displacement
between this instruction and the label specified is too large for the addmss
field of the instruction.

Out of strings space
~o mom room is left in the assembler's intemal string table. Divide the pro
gram into smaller portions; assemble portions of the program separately.
then bind them together using the linker.

Rcgiste out of range
In the FPA;s dot product, matrix move and transpOse instructions when the
regisrer specified does not fall within the specified range. then this error is
reporred. Note that for most insttudions where one operand is an effective
address. the register range is 0 to 15. If all operands are FP A registers. the
register range is 0 to 31. For constant RAM registers, the range is 0 to 511.
'Ibis type of enor would probably also cause the Invalid operand error to be
reported.

Stab storage acesWJ
No more room is left in the assembler's symbol table for debug information.·
Cut the program into smaller portions; assemble portions of the program
separately, then bind them together using the linker.

Symbol storage aceetW:l
No more room is left in the assembler's symbol table. Divide the program
inro smaller portions; assemble portions of the program separarely. then bind
them together using the linker.

Symbol Too Long
A Joca1 label refen:nce longer than one digit was found.

Revision A of May 9, 1988

Appendix A- as Enor Codes SS

Undefined L-symbol
This is a warning message. A symbol beginning with the letter 'L' was used
but not defined. It is treated as an external symbol Compiler-generated
labels usually start with the letter 'L' and should be defined in this assembly.
The absence of such a definition usually indicates a compiler code genera
tion error. This message is also generated by the use of symbols such as n$
if n$ has not been defined.

Unqualifiedforward reference
The displacement field in an MC68020 based/indexed address mode con
tains an unqualified forward reference. Note that the displacement in a
based/indexed address mode for the MC68020 instruction set can contain a
forward or external reference only if the length specifier is present. The
length specifier should be : 1 (long). This type of error would probably also
cause Multiply defined symbol (Phase e"or).

Undefined Symbol
A label reference to an undefined local label was found

Wrong number of operands
Check Appendix B for the correct number of operands for the current
instruction.

Revision A of May 9, 1988

'-...._,_/

B
. . ". ~ '-. • v ••. " . • ... '- . '- •• .• ~ ... :. ./ • • •... . ;/""·'".

List of as Opcodes

List of as Opcodes----·------------ 59

B
List of as Opcodes

'Ibis appendix is a list of the instruction mnemonics accepted by as, grouped
alphabetically. The list is divided into two tables, the first covers the MC680x0
processor's instructions, the second covers the MC68881 floating-point
processor's instructions. For more information about floating-point program
ming. see the Floating-Point Programmer's Gui.de.

Each entry describes the following things:

a 1be mnemonics for the instruction,

a 1be generic name of the instruction,

a 1be assembly language syntax and the variations on the insttuction,

a Whether the instruction is specific to the MC68020, or has extended capabil-
ities on the MC68020 compared to the MC68010.

1be syntax for as machine instructions differs somewhat from the instruction
layouts and categOries shown in the Motorola processor manuals. For example,
as provides a single set of mnemonics for add (add binary), adda (add
addless), and addi (add immediate), differentiated only by the length of the
operands. In general. as selects the appropriate instruction from the form of the
operands.

Hens is a brief explanation of the notations used below.

a An instruction of the form addx in the assembly language syntax column
means that the instruction is coded as addb, addw, addl, etc.

a An operand field of an means any A-register.

a An operand field of dn means any D-reg:ister.

a An operand field of r n means any A· or D-reg:ister.

a An operand field of fn means any floating-point register.

a An operand field of en means any control register.

a An operand field of ea means an effective address designated by one of the
permissible addressing modes. Consult the relevant Motorola processor
manual for details of the allowed addressing modes for each instruction.

59 Revision A of May 9, 1988

60 Assembly Language Reference

MnemonU:
abed

addb
addw
addl

addqb
addqw
addql

addxb
addxw
addxl.

anclb

andw
andl

as lb
aslw
asll

a An operand field of vector means an exception vector location.

a An operand field of #data means an immediate operand.

a Other special registers such as cc (condition code register) and sr (status

register) are specifically indicated where appropriate.

The MC68020provides a set of bit-field manipulating instructions that don't

exist on the MC68010. Their notation includes a bit field specifier of the fonn

{ offeer.width}, where the offset denotes the beginning of the bit field in the word

and the width is the number of bits in the field.

Offset values are counted from the high-order bit, as 0, to the low-order bit, as

31.

NOTE This orckrlng is the reverse of the convention used in the bchq, bclr, bset,

andbtst instructions.

Offset and width may be either constants or data registers. For example:

a bfins d0,a5@(4){t0:t9}

a bfexta a5@(4){d0:t8},d7

In the table that follows, the processor is assumed to be the MC68010 unless

specifically stated otherwise.

Table B-1 ListofMC680:xO Instruction Coda

O~radon NatM S..1_nlll% Processor

add decimal with extend abed o.,,dz
abed a,e-,aX8-

add bina.z:y adc:IK IJ4,dll

adc:IK dn,etl.

adc:IK ea, an (except addb)

adc:IK tdata, ca

add quiclc addqX t""'4, ea

add extended addxX dy,dX

addxX ay8-,aX8-

loqical and andX ea,dll

andX dll,ca

andX tdata, dn

arithmetic shift left aslX dK,dy

aslX tdata, dy

aslX ca

Revision A of May 9, 1988

Appendix B - List of as Opcodes 61

Table B-1 List of MC680x0 Instruction Codes-Continued

Mnemonic OJ!!.rati.on Name S~tax Processor

asrb arithmetic shift right asrX dX,dy

asrw asrX tdata, dy

asrl as:r:X ea

bee branch conditionally bccX label

bccl MC68020

bees

bchg test a bit and change bchq dn,ea

bchg tdata, ea

bclr test a bit and clear bclr dn,ea

bclr tdata,ea

bkpt breakpoint bk pt tdata MC68020

bset test a bit and set bset dn,ea

bset · tdata,ea

btst test a bit btst dn,ea

btst tdata,ea

bf chg test a bit field and change bf chg ea{ offset.width} MC68020

bf clr test a bit field and clear bfclr ea{ offset.width} MC68020

bf exts extract a bit field signed bfexts ea{ offset .-width} , dn MC68020

bf extu extract a bit field unsigned bf extu ea{ offset.width} , dn MC68020

bf ff o find first one in bit field bfffo ea{ offset.width} , dn MC68020

bf ins insert a bit field bf ins dn, eo,{ ojfut.width} MC68020

bf set test a bit field and set bf set ea{ offset.width} MC68020

bftst test a bit field bftst ea{offset:width} MC68020

bes branch carry set bcaX «I

bcsl MC68020

bcss

beq branch on equal beqX «I

beql MC68020

beqs

bq• branch greater or equal bqeX ea

bqel MC68020

bqes

bqt branch greater than bqtX ea

bqtl MC68020

bqts

·~!! Revision A of May 9, 1988

62 Assembly Lmguage Reference

TableB-1 List of MC680xfJ Instruction Coda-Continued

MMmanie O"radlJn NaJM Syntax Processor
bhi branch hiqher bhiX ea
bhi·l MC68020
bhis

bl• branch less than or equal blaX ea
blel. MC68020
bl es

bls branch lower or same bl.sX ea
blsl MC68020

blt branch less than bltX ea
bltl
bl ts

bmi branch minus bniX ea
bmil
bads

bne branch not equal bneX ea
bn•l. MC68020
bnes

bpl. branch positive bplX ea
bpll MC68020
bpla

bra branch al.ways braX label
bral MC68020
bras

bar subroutine branch bsrX label
barl MC68020
bars

bvc branch overflow clear bvcX ea
bvcl MC68020
bvcs

bvs branch overflow set bvsX ea
bval. bvsl MC68020
bvss

eallm call module callm tdata, ea MC68020

cas2b compare ' swap with operand cas2X dcl:dc2,dal:du2, (rnl): (rn2) MC68020
cas21 MC68020
cas2w MC68020

ca ab compare ' swap with operand casX de, die, ea MC68020
casl MC68020
casw MC68020

Revision A of May 9, 1988

Appendix B - List of as Opcodes 63

Table B-1 Ust of MC680x0 Instruction Codes-Continued

Mnemonic O~ration Name S..I_ntax Processor
chkb check reqister against bounds chkX ea, dn MC68020

chkw MC68020

chkl MC68020

chk2b check register against bounds chk2X ea, rn MC68020

chk2l MC68020

chk2w MC68020

clrb clear an operand clrX ea

clrw
clrl

crap2b corapare reqister aqainst bounds cmp2X ea,rn MC68020

crap2l MC68020

crap2w MC68020

crapmb compare memory cmpmX' ay@+, aX@+

crapmw
crapml

crapb arithmetic compare cmpX e.a, dn

crapw cmpX fdata,ea

crapl

dbcc decrement & branch on carry clear dbcc dn, label

dbcs " on carry set dbcs dn, label

dbeq " on equal dbeq dn,label

dbf " on fal.se dbf dn,label

clbge " on qreater than or equal. clbge dn, label

dbqt " on greater than dbqt dn,label

dbhi " on high dbhi dn,label

dble " on less than or equal. db le dn, label

dbls " on low or same db ls dn,label

dbl.t " on less than dblt dn, label

c:lbmi " on minus dbmi dn,label

dbne " on not equal. dbne dn, label

dbpl. " on plus dbpl dn, label

dbra " al.ways (same as dbf) dbra dn, label

dbt " on True dbt dn,label

dbvc " on overfl.ow clear dbvc dn, label

dbvs " on overflow set dbvs dn, label

divs siqned divide divs ea,dn

divsl divsX e.a,dn MC68020

divsll divsX ea, dq MC68020
divsX e.a, dr:dq MC68020

di vu unsiqned divide di vu ea,dn

divul di vuX t!4, dn MC68020

Revision A of May 9, 1988

Table B-1 List of MC680xlJ Instruction Coda-Continued

Mnemonic O~~nN1D1111 ~·= Procesror
d.ivuw di vuX ea, dn MC68020

di vuX ea, dq MC68020
di vuX ea, dr: dq MC68020

d.ivul.1 di vull ea, dr: dq MC68020

eorb loqical exclusive or eorX dn,ez
eorw eorX tdam,ea
eorl eorb ldam,cc

eo:cw ldam,SI'

exq exchanqe reqisters exq :cz,ry

extbl. sign extend extbl dn MC68020
extw extX dn
extl

jmp juqt jmp -jsr jump to sub:r:outine jsr ea
jcc jump carry clear jcc ea
jcs jump on carxy jcs ea
jeq jump on equal. jeq ea
jge jump greater or equal jqe ea
jqt jump greater than jqt ea
jhi. jump hiqher jhi. -jle jump less than or equal. jl• -.jls jump low.r or same jls -jlt jump less than jlt -jmi jump minus jmi -jn• jump not equal jne -jpl jump positive jpl -jra jump always jra -jb8r jump to sub:r:outine jbsr -jvc jump no ove~low jvc -jvs jump on ove~low jvs -
lea load effective address lea az,.an

link link and allocate link an, ldisp
linkl linkl an,tdisp MC68020

lslb loqical shift left lslX dz,dy
lslw lslX tdam,dy
lsll lslX ea

lsrb loqical shift riqht lsrX dz,dy
lsrw lsrX tdam,dy
lsrl lsrX ea

movb move data movX ea, ea
movl
lllOVW movX ldata, dn

Revision A of May 9, 1988

Appendix B - List of as Opcodes 65

Table B-1 Ust of MC680x0 Instruction Codes-Continued

Mnemonic O~ration Name Sy_ntax Processor
movw move from condition code register movw cc,ea

movw move from status register movw sr,ea

move move to/from control register move rn,cr

move er, rn

moveml move multiple registers movemX lmask,ea

movemw movemX ea,lmask
movemX ea, reglist
movemX reglist, ea

movepl move peripheral movepK dn,an@ (d)

movepw movepK an@(d),dn

moveq move quick moveq ldata, dn

movsb move to/from address space movsX rn,ea

movsw movsX ea, rn

movsl

muls signed multiply mu ls ea,dn

mulslw mulsX ea,dl MC68020

mulsll mulsX ea, dh: di MC68020

mulu unsigned multiply mulu ea,dn

mulul muluX ea,dl MC68020

muluX ea,dh:dl MC68020

nbcd negate decimal with extend nbcd ea

neqb negate binary neqX ea

neqw
neql

neqxb negate binary with extend negxX ea

neqxw
neqxl

nop no operation nop

notb logical complement notX ea

notw
notl

orb inclusive or orX ea,dn

orw orX dn,ea

orl or ldata,ea
orb ldata,cc
orw ldata,sr

pack pack pack aX@-,ay@-, tdata MC68020

pack dX' dy' ldata MC68020

pea push effective address pea ea

Revision A of May 9, 1988

66 Aaembly Language Reference

Table B-1 List of MC680xf) Instruction Codes-Continued

Ma11111nic
.....

0~.......,11 NtlllN. ~nfla Processor
r .. et reset device reset

rolb rotate left rolX clx,dy
rolw rotate la.ft rolX tdata,dy
roll rolX -
rorb rotate riqht rorX clx,dy
rorw rorX tdata,dy
rorl rorX -
roxlb rotate left with extend roxlX clx,dy
roxlw roxlX tdata,dy
roxll roxlX ca

roxrb rotate riqht with extend roxrX clx, dy ·.___,.,·
:rox%W roxrX tdata,dy
roxrl roxrX ca

rtd retu:rn and deal.locate pa.r...tars rtd #data
rte retu:rn from exception rt•
rtm retuzn from modul.a rtm rn MC68020
rtr retu:rn and restore codes rtr
rt• re tum from subroutine rts

rts tn

abed subtract decimal with.extend sbcd dy,clx
sbcd ayt-,aX8-

stop halt machine stop t.xzr

subb arithmetic subtract s11hr ez,dn
subw s11hr dn,ca

s11hr ez,an
subl su.br tdata,ca

st sat all ones at -sf sat all zeros sf -•hi set hiqh shi -sls sat lower or same als -ace set ca.ay clear sec -sea set ca.ay sat sea -SDe sat not equal ane -seq sat equal seq -SVC sat no overflow SVC -sva sat on overflow SVS -spl sat plus spl -smi sat minus smi ea
sqe set qreater or equal sqe -alt set less than alt ea
•qt sat qraater than sqt -sle set less than or equal ale -

Revision A of May 9, 1988

---,...·

Mnemoni.c
sul:>qb
subqw
subql

subxb
subxw
subxl

swap

tas

trap

trapcc
trapccl
trapccw

trapcs
trapcsl
trapcsw

trapeq
trapeql
trapeqw

trap£
trapfl
trapfw

trapqe
trapqel
trapqew

trapqt -- trapqtl
trapqt

Appendix B - List of as Opcodes 67

Table B-1 Ust of MC680xfJ Instruction Codes-Continued

O_ll!ratlon Name ~ntax Processor

subtract quick subqX tdata,ea

subtract quick

subtract extended subxX dy,~

subxX ay@-,aX@-

swap reqister halves swap dn

test operand then set tas ea

trap trap twc:tor

trap on car:ry clear trapccX MC68020

trapccX tdata MC68020
MC68020

trap on car:ry set trapcsx MC68020

trapcsX tdata MC68020
MC68020

trap on equal trapeql MC68020

trapeql tdata MC68020
MC68020

trap on never true trapf.X MC68020

trapfX tdata MC68020
MC68020

trap on qreater or equal trapqeX MC68020

trapqeX tdata MC68020
MC68020

trap on qreater trapqtX MC68020

trapqtX tdata MC68020

The following table describes the MC68881 instruction mnemonics suppotted by
as.
Each mnemonic indicates the data type that it operates on by the last character of
the mnemonic:

c b indicates a byte format instruction

c w indicates a word format instruction

c l indicates a long format instruction

c s indicates a single-precision format instruction

c d indicates a double-precision format instruction

Revision A of May 9, 1988

68 Assembly Language Reference

TableB-2

Mnemonic

fabsx
fabsl
fabss
fabsp
fabsw
fabsd
fabsb

facosx
facosl
facoss
facosp
facosw
facosd
faeosb

faddx
faddl.
fadds
faddp
faddw
faddd
faddb

fasinx
fasinl
fa sins
fasinp
fasinw
fas ind
fasinb

fatanx
fatanl
fa tans
fatanp
fatanw
fatand
fatanb

fatanhx
fatanhl
fatanhs

c x indicates an extended-precision format instruction

c p indicates a packed format instruction

c y indicates that any of 1, s, p, w, d, orb, are acceptable.

MC68881 Instructions supported by as

Operation Name Syntax

absolute value fabsx ea,fn

fabsx fm, fn
fabsy l!a, fn

arc cosine facosx ea;fn

facosx fm, fn
facosy «l, fn

add faddx l!a, fn
faddx fm,fn
faddy 8a,fn

arc sin fasinx ea,fn

fasinx fm, fn
fasiny «l,fn

ll'C tangent fatanx «l, fn
fatanx fm, fn
fatany «l,fn

hyperbolic ll'C tangent fatanhx «l, fn
fatanhx fm, fn
fatanhy l!O, fn

Revision A of May 9, 1988

Appendix B -List of as Opcodes 69

Table B-2 MC68881 rnstructions supported by as-Continued

Mnemonic Operation Name Syntax

fatanhp hyperbolic an: tangent (contd.)

fatanhw
fatanhd
fatanhb

.fbcc branch conditionally fbcc label

fbeq (equal)

fbeql
fbf (false)

fbfl
fbgt (greater than)

fbgtl
fble (less than or equal)

fbl•l
fblt (less than)

fbltl

fb<J• (greater than or equal)

fb<J•l
fbgl (greater than or less)

fbqll
fbgl• (greater less or equal)

fbqlel
fbgt (greater than)

fbne (not equal)

fbnel
fbneq (not (equal))

fbneql
fbnge (not greater than or equal)

fbngel
fbngl (not greater than or less)

fbngll
fbnqle (not greater than. less or equal)

fbnglel
fbnqt (not greater than)

fbnqtl
fbnle (not less than or equal)

fbnlel
fbnlt (not less than)

fbnltl
fbt (true)

fbtl
fbor (ordered)

fborl

fboge (ordered greater or equal)

fbogel
fbogl (ordered greater or less)

.ll!!! Revision A of May 9, 1988

70 Assembly Language Refenace

Table B-2 MC68881 lnstTUCtions supported by as-Continusd
'~c•

MamonU: Operalioa NtDM Syfttll%

fboqll
,,

fbo9t (mdlnd pllllr dim)

fbo9tl
fbol• (Clldend less or equal)

fbol•l
fbolt (mdlnd leu dim)

fboltl
fbseq (signalling equal)

fbseql
fbsf (signalling false)

fbsf l
fbsne (signalling not equal)

fbsnel
fbat (lign•Ding truo)

fbatl
fbueq (1JllDl'drnd equal)

fbueql
fbuqe (unordfnd greater or eqUll)

fbuqel
fbuqt ('llllOldmlcl pllllr than)

fbuqtl
fbule (unmdmed less or equal)

fbulel
fbult (lJDDldencl lea dual)

fbultl
fbun (unmdered)

:fbunl

fcmpx compme fcmpx ea, £11
fcqil fcmpx fm, fll
fcmps fcmp)' ea,f11
fcmpp
fcqiw
fcmpd
fcmpb

fcosx cosine fcosx ea,fn
fcosl fcosx fm,fn
fcoss fcosy ea, fl&

fcosp
fcosw
fcosd
fcosb

fcoshx hyperbolic cosine fcoshx ea, fn
fcoshl fcoshx fm,fn
fcoshs fcoshy ea, fn

Revision A of May 9, 1988

Appendix B -List of as Opcodes 71

Table B-2 MC68881 Instructions supported by as-Continued

Mnemonic Operati.on Name Syntax

fcoshp
fcoshw hyperbolic cosine (conld.)

fcoshd
fcoshb

fdbcc deaement&branchoncondition fdbcc dn, label

fdbeq (equal)

fdbne (not equal)

fdbqt (greater than)

fdbngt (not greater than)

fdbqe (greater or equal)

fdbnqe (not greater or equal)

fdblt (less than)

fdbnlt (not less than)

fdble (less or equal)

fdbnle (not less or equal)

fdbql (greater or less)

fdbnql (not greater or less)

fdbqle (greater, less or equal)

fdbnqle (not greater, less or equal)

fdbogt (on:lered greater than)

fdbule (unordmed less or equal)

fdboqe (unordmed greater or equal)

fdbult (unordered less than)

fdbolt (ordmld less than)

fdbuqe (unordmed greater or equal)

fdbole (on:lered less or equal)

fdbugt (unordered greater than)

fdboql (ordezed greater or less)

fdbueq (unordered equal)

fdbor (on:lered)

fdbun (unordered)

fdbf . (false)

fdbt (1nle)

fdbsf (signalling false)

fdbst (signalling true)

fdbseq (signalling equal)

fdbsne (signalling not equal)

fdivx divide fdivx ea,fn
fdivl fdivx fm,fn
fdivs fdivy ea,fn

fdivp
fdivw
fdivd
fdivb

Revision A of May 9, 1988

72 Assembly Language Reference

Table B•2 MC68881 lnstTUCtions supported by as-Continued

Mnemonic O~rat/on Name SyntllX

fetoxx ex fetoxx ea.,fn

fetox.l fetoxx fm, fn

fetoxs fetoX1 eci,fn

fetoxp
fetoxw
fetoxd
fetoxb

fetoxmlx ex-1 fetoxmlx eci, fn

fetoxmll fetoxmlx fm, fn

fetoxmls feto.xmly ea, fn

fetoxmlp
feto.xmlw
fetoxinl.d
feto.xmlb

fqetexpx get exponent fqetexpx ea, tn

fqetexpl fqetexpx fm, fn

fqetexps fgetexP,1 ea.,fn

fgetexpp
fgetexpw
fgetexpd
fgetexpb

fgetmanx getmandssa fgetmanx ea., tn

fqetmanl fgetmanx fm, tn

fqetmans fgetman)' ea, fn

fgetmanp
fqetmanw
fgetmand
fqetmanb

fintx inlegerpmt fintx ea.,fn

fintl fintx flla,fn

fints finty ea, fn

fintp
fintw
fintd
fintb

fint:r:x inllepr pllt, nnmd 1DWml 9 fint:x ea, fn

fintrzl fint:x fm, fn

fintrzs fint:ey eci, fn

tintrzp
fintrzw
fintrzd
fintrzb

·~!!
'-----

Revision A of May 9, 1988

Appendix B - List of as Opcodes 73

Table B-2 MC68881 Instructions supported by as-Continued

Mnemonic Operation Name Syntax

fjcc jump on condition fjcc label

fjeq (equal)

fjne (not equal)

fjneq (not equal or equal)

fjgt (greater thm)

fjngt (not greater thm)

fjge (greater or equal)

fjnge (not greater or equal)

fjlt (less thm)

fjnlt (not less th121)

fjle (less or equal)

fjnle ('1ot less or t '}ual)

fjgl (greater or less)

fjngl (not greater or less)

fjgle (greater, less or equal)

fjngle (not greater, less or equal)

fjogt (OldeRd greater thm)

fjule (unordered less or equal)

fjoge (ordered greater or equal)

fjult (unordered less thm)

fjolt (OldeRd less thm)

fjuge (unordered greater or equal)

fjole (ordered less or equal)

fjugt (unordered grearer thm)

fjogl (ordered greater or less)

fjueq (unordered equal)

fjor (ordered)

fjun (unordered)

fjf (false)

fjt (true)

fjsf (signalling false)

fjst (signalling ttue)

fjseq (signalling equal)

fjsne (signalling not equal)

floglOx IoglO floglOx ea, fn

floglOl floglOx fm, fn

floglOs floglOy fn

floglOp
floglOw
floglOd
floglOb

flog2x 101z flog2x ea, fn

flog21 flog2x fm, fn

flog2s flog2y ea, fn

flog2p

Revision A of May 9, 1988

7 4 Assembly Language Reference

Table B-2 MC68881 lnstructions supported by as-Continued

Mnemonic Operation Name Syntax

floq2w Iosi (contd.)

tloq2d
floq2b

floqnx loge floqnx ea, fn

floqnl. fl.oqnx fm, fn

floqns floqn)' ea, fn

floqnp

floqnw

floqnd

floqnb

floqnplx Joge(x+l) floqnplx ea, fn

floqnpll floqnplx fm, fn

floqnpls floqnpl)' ea, fn

floqnplp

floqnplw

floqnpld

floqnplb

fmodx modulo fmodx ea, fn

fmodl fmodx fm,fn

fmoda fmod)' ea, fn

fmodp
/

fmodw

fmodd

fmodb

fmovex mcNe fp register fmovex ea, fn

fmovel fmovex fm, ea

fmoves fmove)' ea, fn

fmovep

fmovew

fmoved

fmoveb

fmovecrx move conmm ROM fmoveca tccc, fn

fmovemx move multiple data registers fmovemy ea, list

fmoveml. fmovemx list, ea

fmov- fmoveml. ea, dn

fmovem dn, ea

fmul.x multiply fmulx ea,fn

fmull fmulx fm, fn

fmuls fmul)' ea, fn

fmulp

Revision A of May 9. 1988

Appendix B -List of as Opcodes 75

Table B-2 MC68881 Instructions supported by as-Continued

Mnemonic Operation Name Syntax

fmulw multiply (contd.)

fmuld
fmulb

fneqx negate fneqx ea,fn

fneql fneqx fm,fn
fneqs fneqy ea,fn

fnegp
fneqw
fneqd
fneqb

fnop no operaL.m fnop

fremx IEEE remainder fremx ia,fn

freml fremx fm,fn
frems fremy ea,fn

fremp
fremw
fremd
fremb

£restore restore internal state £restore ea

fsave save imemal state £save ea

fscalex scale exponent fscalex ea, fn
fscalel fscalex fm, fn
£scales facaley ea, fn
fscalep
fscalew
£scaled
fscaleb

face set ICCOlding to condition face ea
fseq (equal)

fsne (not equal)

fsneq (not equal or equal)

fsgt (greater 1han)

fsngt (mt pater than)

fs9e (greater or equal)

fsn9e (not greater or equal)
fslt (less than)

fsnlt (not less 1han)

fsle (less or equal)
fsnle (not less or equal)

fsgl (greater or less)

fsngl (not greater or less)

fsgle (greater, less or equal)

Revision A of May 9, 1988

76 Assembly Language Reference

Table B-2 MC68881 Instructions supported by as-Continued

Mnemonic Operation Name Syntax

fsnqle (gnsater, less or equal)

fsoqt (not grearer, less or equal)

fsule (un:mlered less or equal)

fsoqe (ordered greater or equal)

fault (unordezed less thm)

fsolt (ordered less thm)

fsuqe (unordered greater or equal)

fsole (ordmed less or equal)

fsuqt (uncmlered greater thm)

fsoql (Oldaed greater <ll' less)

fsueq (unordered equal)

fsor (ordered)

faun (unmdered)

fsf (false)

fat (lrUe)

fssf (signalling false)

fast (signalling true)

fsseq (signalling equal)

fssne (sigmlling not equal)

fsqldivx single-precision divide fsqldivx ea,fn

fsqldivs fsgldivx fm, fn

fsqldivl fsgldivy ea,fn

fsqldivp
fsqldivw
fsqldivb

fsqlllllllx singJe-precisio multiply fsglnmlx ea, fn

fsqlllllllS fsglimilx fm, fn

fsqlmull fsglmuly ea, fn

fsqlmulp
fsqlllllllW
fsqlllllllb

fsinx sin fsinx ea, £11

fsinl fsinx fm, £11

fains fsiny ea, fn

fsinp
fsinw
fsind
fsinb

fsincosx simultaneous sine and cosine fsincosx ea,fc:fs

fsincosl fsincosx fm,fc:fs

fsincoss fsincosy ea,fc:fs

fsincosp

Revision A of May 9, 1988

Appendix B - List of as Opcodes 77

Table B-2 MC68881 Instructions supported by as-Continued

Mnemonic OperatiDn Name Syntax

fsincosw simultaneous sine and cosine (conld.)

fsincosd

fsincosb

fsinhx hyperbolic sine fsinhx ea, fn

fsinhs fsinhx fm, fn

fsinhp fsinhy ea, fn

fsinhw

fsinhd

fsinhb

fsqrtx square root fsqrtx ea, fn

fsqrtl fsqrtx fm, fn

fsqrts fsqrty ea, fn

fsqrtp

fsqrtw

fsqrtd

fsqrtb

fsubx subtract fsubx ea, fn

fsubl fsubx fm,fn

fsubs fsuby ea,fn

fsubp

fsubw

fsubd

fsubb

ftanx tangent ftanx ea, fn

ftanl ftanx fm, fn

ftans ftany ea,fn

ftanp

ftanw

ftand

ftanb

ftanhx hyperbolic tangent ftanhx ea, fn

ftanhl ftanhx fm, fn

ftanhs ftanhy ea, fn

ftanhp

ftanhw

ftanhd

ftanhb

ftentoxx 10X ftentoxx ea, fn

ftentoxl ftentoxx fm, fn

ftentoxs ftentoxy ea, fn

ftentoxp

Revision A of May 9, 1988

78 .Aaemb1y Language Refenm:e

Table B-2 MC68881 Instructions supported by as-Co111ituwl

MMmonk Opmltlon NIDM Syntla

ttentoxw 1cr , CtJll/ILJ
ftento.xd
ftentoxb

ftrapa: lrlp c:onclirionaJly ftrapa:
ftrapeq (equal) ftrapa: tdata

ftrapeqw
ftrapeql
ttrapne (nae equal)

ftrapnew
ftrapnel
firapgt (grafllr than)

ftrapgtw
ftrapgtl
ftrapnqt (not pe.rer than)

ftrapnqtw
ttrapnqtl.
ftrapge (greamr or equal)

ftrapgew
ftrapgel
ftrapnge (not peamr QI' equal)

ftrapnqew
ftrapngel
ftraplt (leuthan)

ftrapltw
ftrapltl.
ftrapnl.t (not lea than)

ftrapnl.tw
ftrapnltl
ftraple (lea thm or equal)

ftraplew
ftraplel
ftrapnle (not lea than or equal)

ftrapnlew
ftrapnl.el
ftrapql (gmrer than or lea)
ftrapglw
ftrapqll
ftrapnql (DOC grater than or less)
ftrap.nqlw
ftrap.nqll
ftrapgle (paler. less or equal)

ftrapglew
ftrapglel

Revision A of May 9, 1988

Mnemonic

ftrapnqle

ftrapnqlew

ftrapnqlel

ftrapoqt

ftrapoqtw

ftrapoqtl

ftrapule

ftrapulew

ftrapulel

ftrapoqe

ftrapoqew

ftrapoqel

ftrapult

ftrapultw

ftrapultl

ftrapolt

ftrapoltw

ftrapoltl

ftrapuqe

ftrapuqew

ftrapuqel

ftrapole

ftrapolew

ftrapolel

ftrapuqt

ftrapuqtw

ftrapuqtl

ftrapoql

.ftrapoqlw

ftrapoqll

ftrapueq

ftrapueqw

ftrapueql

ftrapor

fftraporw

ftraporl

tr a pun

ftrapunw

ftrapunl

ftrapf

ftrapfw

ftrapfl

ft rapt

ftraptw

ftraptl

Appendix B - List of as Opcodes 79

Table B-2 MC68881 lnstructi.ons supported by as-Continued

Operation Name Syntax

(not greater. less or equal)

(otdaed greater than)

(ordenld greater or equal)

(unordered less than)

(Oldered less than)

(unordered greater or equal)

(ordenld less or equal)

(Oldered greater or less)

(unordered equal)

(onfaed)

(unordered)

(false)

(true)

.§!!!! Revision A of May 9, 1988

80 Assembly Language Reference

Table B•2 MC68881 lnstrucdons supportl!d by as-Continued

Mnemoni.c OfM"tldon NtlllN Synta

ftrapsf (sigmlling false)

ftraptw
ftrapsfl
ftrapst (sign•Ding lrUe)

ftraps:fw
ftrapstl
ftrapseq (llignllling equal)

ftrapseqw
ftrapseql
ftrapsne (sign•lling not equal)
ftrapsnew
ftrapsnel

ftstx tmtopnad ftstx -
ftstl ftstx fm

ftsts ftsty •
:ftstp
ftstw
ft std
ftstb

:ftwotoxx i' ftwotoxx «i,fll
ftwotoxl ftwotoxx f•,fll
:ftwotoxs ftwotoxy as, fn
ftwotoxp
ftwotoxw
ftwotoxd
:ftwotoxb

Revision A of May 9, 1988

c
FP A Assembler Syntax

FP A Assembler Syntax ·--------------------------·--- 83

C.l. Instruction Syntax ----------------·---·------

C.2. Register Syntax ------------------

C.3. Operand Types -----

C.4. Two-Operand Instructions ----------------------

C.S. Three-Operand Instructions --------·-------

C.6. Four-Operand Instructions-·----------------

C.7. Other Instructions --------------------

83

84

84

84

85

86

90

C.8. Restrictions and Errors·---- 91

C.9. Instruction Set Summary ----------------·- 91

C.L Instruction Syntax

c
FP A Assembler Syntax

This appendix describes the Sun Floating-Point Accelerator (FP A) support exten
sions to as included in Sun software release 3.1 and later.

The extensions to as are described in general, with discussions of two-, three-,
and four-operand instruction examples. Some instructions covered separately
don't follow the formats described at the beginning of the appendix. The appen
dix includes restrictions and potential errors, followed by a summary of sup
ported floating-point instructions.

The general format for floating-point instructions is

(fpopt@A operands

where

fp indicates an FP A instruction.

op is the opcode name.

t is the operand type, either single (s) or double (d).

l

The @A part of the instruction is optional. When present. A specifies the address
register which contains the base address for the FP A and can be in the range 0 .. 7.
If this form is used, a previous instruction must load the FP A address
(OxeOOOOOOO) into the specified address register.

If @A is not present, then abS<>lute long addressing is used to refer to the FP A.
This form is more efficient for short routines.

Depending on the instruction, there may be from zero to four operands specified.
The operands can be any of the following forms:

a Any MC68020 effective address, with the exception that absolute short ·
addresses are not allowed for double-precision values.

a If either of the data register or the address register is used to hold a double
precision value, then the value will be in a register pair and both registers,
separated by a colon, must be specified in the instruction. For example:

(fpaddd dO:dl, fpaO J

83 Revision A of May 9, 1988

84 Assembly Language Reference

C.2. Register Syntax

C.3. Operand Types

C.4. Two-Operand
Instructions

The only exception to this rule is the fpltod instruction (convert integer to
double-precision value).

a In some instructions (command register type) it is possible to specify that the
register be in constant RAM. The syntax used for this case is %n, where n is
a register number in the range 0 to 511.

The 32 floating-point data registers are designated fpaO, fpal, ... ,
fpa31. The supported control registers are:

Hardware Software

MODE3 0 fpamode -
WSTATUS fpastatus

as supports three floating-point operand types:

a s for single-precision floating-point operands.

a d for double-precision floating-point operands.

a l for 32-bit integer operands, used for integer to floating-point conversions.

Opcodes such as add, subtract, multiply, divide, negate, absolute value, square
root, conversion from integer to floating-point, conversion from single to double
(and vice versa) are all represented as:

(£-popt X, fpan)
where t= s or d, and Xis any valid MC68020 effective address for an operand or
is an FP A data register.

If Xis an FP A register which is in the constant RAM, then it can be in the range
0 to 511. If it is not in constant RAM, then it is one of the 32 FP A data registers.
When Xis an FP A register, then fpan is one of the 32 floating-point data regis
ters. If X is an effective address, then fpan is one of the FP A registers in the
range 0 to 15. The following are examples of such instructions:

fpnegs
fpsqrd
fpsubs
fprsubs
fpdivs
fprdivs

Instruction

<effecti.w address>, fpal
<e/fecti.w address>, fpa2
fpal, fpa2
fpal, fpa2
dO, fpa2
dO, fpa2

Computes

fpa2 +- fpa2 - fpal
fpa2 +- fpal - fpa2
fpa2 +- fpa2 / dO
fpa2 +- dO I fpa2

In the above examples fprsubs and fprdivs are the reverse subtract and
reverse divide operators, respectively.

Revision A of May 9, 1988

C.S. Three-Operand
Instructions

Appendix C - FPA Assemblec Syntax 85

Theopcodesfor sine. cosine, atan. eAx. eAx -1. ln(x),
ln (l+x), sqrt (x), and sincos (x) are all supported as command register
type instructions:

(fpopt fpax, fpan

where t= s or d.

fpax is either a floating-point register or a register in the constant RAM (which
is specified as %number). For the sincos instruction, the destination operand
is actually a register pair:

(fpsincost f-pax, fpac: fpas

where fpac is the cosine's destination and fpas is the sine's destination.

The opcodes +. -, •. I are supported in extended and command register fonns as

(fpop3t X, fpam, fpan

where t = s or d and Xis an <effective addresS> for an extended instruction or
a floating-point register for a command register type of instruction.

l

)

)

In the command register form. X and fpam can indicate a register number in the
constant RAM. That is, they can either be in the range 0 to 511 or in the range O
to 31. In the extended instructionform. fpam and fpan must be in the range
0 to 15. In the above fonnat the positions of X and fpam can be exchanged for
the commutative operators add and multiply (the result of the operation remains
the same).

For example,

(fpa2 +- <effective address> + fpal

can be represented by either of the following fonns:

fpadd3s
fpadd3s

<effective address>, fpal, fpa2
fpal, <effective address>, fpa2

1be same rule applies to subtract and divide operations. However. they are not
commutative, so different answers result from each order. For example,

(fpa2 +- fpal - <effective address>

must be coded as:

(fpsub3s <effective address>, fpal, fpa2

l

)

l
Revision A of May 9, 1988

86 Assembly Language Reference

C.6. Four-Operand
Instructions

whereas

(fpa2 +- <effective address> - fpal

must be coded as:

(fpsub3s fpal, <effective address>, fpa2

Following the same format,

(fpa3 +- fpa2 - fpal

must be coded as:

(fpsub3s fpal, fpa2, fpa3

In the extended and command register formats there are pivot instructions of the
form:

(fpopt X, fpax, fpay, fpan

where fpan is the destination floating-point data register, t = s or d, and Xis
an effective address or a floating-point register.

In the extended form, the positions of X and fpay can be exchanged for both
single- and double-precision types of instructions. In single-precision extended
form, it is possible for two of the four operands to be effective addresses. This is
in general either the first and third or the second and third operands.

)

)

)

)

)

In the command register form, fpax and fpay can be replaced by %x and %y
indicating register numbers x and y in the constant RAM.

For four-operand instructions, fpax, fpay and fpan can each be in the range
0 to 15 when X is an effective address. If Xis an FP A register, then X and fpan
must be in the range 0 to 31 and fpax and fpay can either be in the range 0 to
511 (designating a location in constant RAM) or else in the range 0 to 31.

These pivot instructions are rather complicated and will be dealt with com
pletely. The following shows the forms of each operation, the assembly code
equivalent to each form, a generalization of the assembly instruction and a
sequence of operations equivalent to the pivot instruction.

Revision A of May 9, 1988

'-.___./

'-'

fpma{s,d}
fpma{s,d}
fpma{s,d}
fpmas

fpms {s, d}
fpms {s,d}
fpms{s,d}
fpmss

''c,. ...

Appendix C - FP A Assembler Syntax 87

Instruction

<ejfecti:ve address>, req2, req3,
req2, req3, <effective address>,
req4, req2, req3, reql
<eal>, req2, <ea2>, reql

reql
reql

Meaninq

regi ~ reg3 + {reg2 * operand)
regi ~ opemnd + {reg3 * reg2)

regi ~ reg3 + {reg2 * reg4)
regi ~ opemnd2 + (reg2 * operandi)

The fpma instruction, where m stands for multiply, and a stands for add, can
be generalized as

(fpmat X, fpax, fpay, fpan l
where tis s or d. and Xis an <effective addresS> or one of the floating-point
data registers. In the extended type of instruction, the positions of X and fpay
can be exchanged. Also, for single precision either the first and third operands or
the second and third operands can be effective addresses. Note that, for example,

(fpmas dO, fpal, fpa2, fpa3

is equivalent to the following sequence of instructions

fpmul3s
fpadd3s
fpmoves

dO, fpal, temp
temp, fpa2, temp
temp, fpa3

where temp is a temporary register.

Instruction Meaninq

<effective address>, req2, req3, reql regi ~ reg3 - {reg2 * operand)
req2, req3, <effecti.ve address>, reql regi ~ opemnd - {reg3 * reg2)
req4, req2, req3, reql regi ~ reg3 - {reg2 * reg4)
<eal>, req2, <ea2>, reql regi ~ opemnd2-{reg2 *operandi)

The fpms instruction, where m stands for multiply, and s stands for subtract,
can be generalized as

(£pm.st X, fpax, £pay, fpan

where tis s or d, and Xis an <effective addresS> or one of the floating-point
data registers. In the extended type of instruction, the positions of X and fpay
can be exchanged. Also, in single-precision two-memory instructions, either the
first and third operands or the second and third operands can be effective
addresses. Note that, for example,

(fpmss fpal, fpa2, dO, fpa3

l

l

l
·~!! Revision A of May 9, 1988

88 Assembly Language Reference

fpmr{s,d}
fpmr{s,d}
fpmr{s,d}
fpmrs

is equivalent to the following sequence of instructions

fpmul3s
fpsub3s
fpmoves

fpal, fpa2, temp
temp, dO, temp
temp, fpa3

The fpmr instruction, where m st.ands for multiply, and r stands for reverse
subtract, can be generalized as

(fpmrt X, fpax,fpay,fpan

where tis s or d, and Xis an <effective addresS> or one of the floating-point
data registers. In the extended type of instruction, the positions of X and fpay
can be exchanged.

Instruction Meaninq

<efft!ctive addrt!ss>, req2, reg3, regl regl +- (-reg3) + (reg2 •operand)
reg2, req3, <ef/t!cti.ve address>, reql regl +-(-operand)+ (reg3 • reg2)
reg4, reg2, reg3, reql regl +-(-reg3) + (reg2 • reg4)
<eal>, reg2, <t!a2>, regl regl +-(-operand2) + (reg2 •operand!)

]

In single-precision extended form either the first and third operands or the second
and third operands can be effective addresses. Note that. for example,

(fpmrs dO, fpal, fpa2, fpa3

is equivalent to the following sequence of instructions:

fpmul3s
fpsub3s
fpmoves

dO, fpal, temp
fpa2, temp, temp
temp, fpa3

1be fpam instruction, where a stands for add, and m stands for multiply, can
be generalized as

(fpamt X, fpu. fpay, fpan

where tis s or d, and Xis an <effective addresS> or one of the floating-point
data registers. In the extended type of instruction, the positions of X and £pay
can be excharu?ed.

)

]

Revision A of May 9, 1988

fpam{s,d}
fpam{s,d}
fpam{s,d}
fpams

fpsm{s,d}
fpsm{s,d}
fpsm{s,d}
fpsm{s,d}
fpsm{s,d}
fpsms
fpsm8

Appendix C - FP A Assembler Syntax 89

Instruction Meaning

<effective address>, reg2, reg3, regl regi +- reg3 * (reg2 +operand}
reg2, reg3, <effective address>, regl regi +-operand* (reg3 + reg2)

reg4, reg2, reg3, regl regi +- reg3 * (reg2 + reg4)
<eal>, reg2, <ea2>, regl regi+-operand2*(reg2+operandi)

In single-precision two-memory instructions, either the first and third operands or
the second and third operands can be effective addresses. Note that, for example,

(fpams fpal, fpa2, fpa3, fpa4

is equivalent to the following sequence of instructions:

fpadd.3s
fpmul3s
fpmoves

fpal, fpa2, temp
temp, fpa3, temp
temp, fpa4

Th.e fpsm instruction, where s stands for subtract, and m stands for multiply,
can be generalized as

(fpsmt X, fpax, fpay, fpan

where tis s or d. and Xis an effective address or one of the floating-point data
registers. In the extended type of instruction, the positions of X and £pay can
be exchanged. The special cases for single-precision instructions are that either
the first and third operands or the second and third operands can be effective
addresses.

Instruction

<effective address>, req2, reg3,
reg2, reg3, <effective address>,
reg4, reg2, reg3, regl
reg2, <effective address>, reg3,
reg2, reg4, reg3, reql
<eal>, reg2, <ea2>, regl
reg2, <eal>, <ea2>, regl

Meaning

regl regi +- reg3 * (reg2 - operand}
regl regi +- operand * (reg3 - reg2)

regi +- reg3 * (reg2 - reg4)
regl regi +- reg3 * (-reg2 +operand)

regi +- reg3 * (-reg2 + reg4)
regi +-operand2 * (reg2- operandi)

regi +-operand2 * (-reg2 +operandi)

Note that, for example,

l

)

(fpsms dO, fpal, fpa2, fpa3)
is equivalent to the following sequence of instructions:

·~!! Revision A of May 9, 1988

90 Assembly Language Reference

C. 7. Other Instructions

TableC-1

Mnemonic

fpnop

fptstt

fpcmpt

fpmcmpt

fpmovet

fpmove2t

fpmove3t

fpmove4t

fpdot2t

:fpdot3t

fpdot4t

fptran2t

fptran3t

fptran4t

fpmove

fpmove
fpmove

fpmove
fpmovet

fpmovet

fpsu.b3s
fpmul3s
fpmoves

dO, fpal, temp
temp, fpa2, temp
temp, fpa3

Other special instructions are listed below. In each of them the last operand is
also the destination, except for tst, cmp and mcmp where fpastatus is
the implied destination. Xis either an effective address or an FP A data register
and tis either s or d for all instructions except fpmovet, where t can be s,
d,or L

Other Instructions

Operand Operatf.on Name

nop

x operand compam with :zero

x, fpam registerm compare with operand

x, fpam reqister m compare maqnituda with operand

fpam,fpan move floatinq-point reqisters

fpam,fpan 2x2 matrix move

fpam, fpan 3x3 matrix move

fpam,fpan 4x4 matrix move

fpa.r, fpay, fpan fpan +- f~fpay +
(fpu+J). (fpay+J)

fpa.r, fpay, fpan fpan+- f~fpay +
(fpu+J). (fpay+J) +
(fpu+2) • (fpay+2)

fpa.r, fpay, fpan fpan +- fpaz4'fpay +

(fpu+J)•(fpay+J) + (fpu+2>-(fpay+2) +

(fpu+3)-Cfpay+3)

fpam, fpan transpose 2x2 matrix
fpam, fpan transpose 3x3 matrix
fpam,fpan transpose 4x4 matrix

fpamode, <ea> read mode register

<ea>, fpamode write to mode register

fpastatus, <ea> read status register

<ea>, fpastatus write to status register

fpam, <ea> read a floating-point data register

<ea>, fpan write to a floating-point data register

Revision A of May 9, 1988

C.8. Restrictions and
Errors

C.9. Instruction Set
Summary

Table C-2

Instruction O]!_erand

fpnegs x, fpan

fpnegd x, fpan

fpabss x, fpan

fpabsd x, fpan

fpltos x, fpan

fpltod x, fpan

fpstol x, fpan

fpdtol x, fpan

fpstod x, fpan

fpdtos x, fpan

fpsqrs x, fpan

fpsqrd x, fpan

fpadds x, fpan

fpadd3s x, fpam, fpan

fpaddd x, fpan

fpadd3d x, fpam, fpan

fpsubs x, fpan

fpsub3s x, fpam, fpan

fprsubs <ea>, fpan

fpsubd x, fpan

fpsub3d x, fpam, fpan

fprsubd. <ea>, fpan

fpmuls x, fpan

fpmul3s x, fpam, fpan

Appendix C - FP A Assembler Syntax 91

In double-precision instructions, when absolute short addressing or a single data
or address register is used, as reports an invalid operand error.

For the dot product and matrix move and transpose instructions, when the regis
ter specified does not fall within the specified range, as reports a register out of
range error.

For most instructions where one operand is an effective address, the register
range is 0 to 15. If all operands are FPA registers, then the register range is 0 to
31. For constant RAM registers, the range is 0 to 511. as reports an invalid
operand error when any of these registers are not within the permitted range.

In the following table, X is any valid MC68020 effective address (the form
(x:a) : w is not allowed for double) or FP A register. In some three- or four
address instructions Jie position of the X and one of the FP A register can be
exchanged. This is shown in the fourth column of the following table.

Floating-Point Instructions

Operation Alternative

negate single

negate double

absolute value single

absolute value double

convert integer to single

convert integer to double

convert single to integer

convert double to integer

convert single to double

convert double to single

square single

square double

add single

add single fpam, x, fpan

add double

add double fpam, x, fpan

subtract single

subtract single fpam, x, fpan

reverse subtract single

subtract double

subtract double fpam, x, fpan

reverse subtract double

multiply single

multiply single fpam, X, fpan

Revision A of May 9, 1988

92 Assembly Lmguage Reference

Table C-2 Floating-Point lnstructiona-Continlled

InstructiDn 0_1!._erand O.J!...eradon AIUrnative
fpaml.d x, fpan multiply double

fpmul3d x, fpam, fpan multiply double fpam, x, fpan

fpdivs x, fpan divide single

fpdiv3s x, fpam, fpan divide single fpam, x, fpan
fprdivs «<&>, fpan nwene diYide single

fpdivd X, fpan divide doub1e

fpdiv3d x, fpam, fpan divide doub1e fpam, X, fpan

fprdivd «<&>, fpan nwene divide double

fpnop nap

fptsts]{ single compare with 0
fptstd]{ daub1e compare with 0

fpcmps x, fpam single compare
fpcmpd x, fpam daab1e compare

fpmcmpa]{, fpam single magnicude compare

fpmcmpd x, fpam doub1e magnitude c:ompml

fps ins fpax, fpan sine single

fps ind fpax, fpan sinedoubJe

fpcoss fpax, fpan c:asim sing1e

fpcosd fpax, fpan CClline double

fpatans fpax, fpan a&msingle

fpatand fpax, fpan lllndouble

.tpetoxs fpax, fpan e·xsmgle

fpetoxd fpaz, fpan e·xdouble

fpetoxmls fpax, fpan e·x-1 single

fpetoxmld fpax, fpan e·x-1 double

fplogns fpax, fpan Jn(x) single

fplognd fpaz, fpall ln(x) double

fplognpla fpax, fpan ln(l+x)single

fplognpld fpax, fpall ln(l+x) double

fpsincoss fpax, fpac:fpa.r !pie~ coaim(x). fpa.r ~ sine (x)
fpsincosd fpaz, fpac:fpa.r !pie~ coaim(x). fpa.r ~ sin• (x)

fpma• X, fpax, fpa1, fpan fpu ~ (fpu • X) + fpa1 fpax,]{, fpa,, fpan
fpa'J, fpax,]{, fpan
x, fpax, x, fpan
fpax, x, x, fpan

fpmad x, fpax, fpa,, fpan fpM ~ (fpu. X) + fpay fpax, x, fpay, fpan
fpay, fpu, x, fpan

fpmss x, fpu, fpa'J, fpan fp111~ fpa'J - (fpu * X) fpax, x, fpay, fpan
fpa'J, fpu, x, fpan
X, fpu, X, fpan
fpax, x, x, fpan

Revision A of May 9, 1988

Appendix C - FP A Assembler Syntax 93

Table C-2 Floati.ng-Point lnstructi.ona-Continued

Instruction O]!_erand O~ration Alternative

fpmsd x, fpax, fpay, fpan fpan +- fpay - (fpaz * x) fpax, X, fpay, fpan

fpay, fpaz, X, fpan

fpmrs x, fpaz, fpay, fpan fpan +- (fpu • x) - fpay fpaz, x, fpay, fpan

fpay, fpaz, x, fpan

X, fpaz, x, fpan
fpaz, x, x, fpan

fpmrd X, fpax, fpay, fpan fpan +- (fpu • x) - fpay fpax, x, fpay, fpan

fpay, fpax, X, fpan

fpams x, fpax, fpay, fpan fpan +- (fpu + x) • fpay

fpax, x, fpay, fpan

fpay, fpaz, X, fpan

X, fpax, x, fpan
fpax, X; x, fpan

fpamd X, fpax, fpay, fpan fpan +- (fpu + x) • fpay
fpax, x, fpay, fpan

fpay, fpaz, X, fpan

fps ms X, fpaz, fpay, fpan fpan +- (fpu - x) • fpay
fpax, x, fpay, fpan
fpay, fpax, X, fpan

X, fpaz, x, fpan
fpax, x, x, fpan

fpsmd X, fpaz, fpay, fpan fpan +- (fpax - x) • fpay

fpax, x, fpay, fpan
fpay, fpax, X, fpan

fpmoves <Iii>, fpan write to a registm', single

fpmovecl <Iii>, fpan write to a registm', double

fpmovel <Iii>, fpan write to a registm', integer

tpmovea fpam, <Iii> read a register, single

fpmoved fpam, <Iii> read a registm', double

·"---·
fpmove2s fpam, fpan 2x2 malrix move, single

fpmove2d fpam, fpan 2x2 malrix move, double

fpmove3a fpam, fpan 3x3 mattix move, single

fpmove3d fpam, fpan 3x3 mattix move, double

fpmove4s fpam, fpan 4x4 mattix move. single

fpmove4d fpam, fpan 4x4 mattix move, double

fpdot2s fpax, fpay, fpan fpan +- fpax* fpay + (fpax+l) * (fpay+l)

fpdot2d fpax, fpay, fpan fpan+- fpax*fpay + (fpax+J) * (fpay+J)

fpdot3s fpaz, fpay, fpan fpan +- fpaz* fpay + (fpax+J) * (fpay+J) +
(fpax+2) • (fpay+2)

fpdot3d fpax, fpay, fpan fpan+- fpax*fpay + (fpax+J) * (fpay+J) +

(fpax+2) • (fpay+2)

Revision A of May 9, 1988

94 Assembly Language Reference

Table C-2 Floating-Point lnstructio113-Co~d

Instruction O~rand C!I!_eratlon Alternative

fpdot4a fpaz, fpa,, fpan fpul4- fpu*fpa1 + (fpaz+l) * (fpa1+J) +

(fpa+2)•(fpa1+2) + (fpu+J)-Cfpa1+J)

fpdot4d fpaz, fpa,, fpan fpul4- fpu*fpa1 + (fpaz+l) * (fpa1+l) +

(fpa+2)•(fpa1+2) + (fpu+J)•(tpay+J)

fptran2s fpam, fpan tnmpose 2x2 malrix. single

fptran2d fpam,fpan tnmpose 2x2 malrix. double

fptran3s fpam; fpan tnmpose 3x3 mattix, single

fptran3d fpam,fpan tnmpose 3x3 mmix. double

fptran4a fpam, fpan tnmpose 4x4 mattix, single

fptran4d fpam,fpan tnmpose 4x4 mmix. double

fpmove fpamocle, <a> rad 1be mode n:gister

fpmove <..:>, fpamoda write on mode iegister

fpmove fpaatatua, <Ml> rad 1be StalUS n:gister

fpmove <..:>, fpaatatua write to ... iegister

·~J! Revision A of May 9, 1988

Index

A
absolute expressions, 18 thl'll 19
addressing categories, 46 thru 47

. alterable, 46
control,46
data, 46
memory,46

addressing modes, 42 ,,_ 45
• align directive, 37
• ascii directive, 32
• asciz directive, 33
assembler directives, 31 thru 38

.al.ign, 37

.ascii,32

.asciz,33

.bss,34

.byte,33

.comm,36

.data,34

.even,37

.globl,36

.lcomm,35

.long,33

.proc,38
• skip,35
.text,34
.word, 33

assembler options, 3 tJru 4
-d2,4
-h,4
-j,4
-k,3
-L,3
-m68010,3
-m68020,3
-o,3
-R,3

assignment statemem:s, 26 thl'll 21

B
basic elements, 9 tJru 13
.bss directive, 34
.byte directive, 33

-95-

c
character set, 9
• COlllll directive, 36
comment field, 26
constants, 11 ,,_ 12

decimal, 11
floating-point, 12
hexadecimal, 11
numeric.11
octal, 11
string, 12

D
-d2 option, 4
• data directive, 34
decimal constants, 11
dinc:t assignment, 26 thl'll 21
directives, 31tJru38

.align,37

.ascii,32

.asciz,33

.bss,34

.byte,33
• COlllll, 36
.data, 34
.even,37
.globl,36
.lcomm,35
.long, 33
.proc,38
.skip,35
.text,34
.word, 33

E
Bnor Codes, 51
• even directive, 37
expressions, 17,,_19

absolute, 18 thl'll 19
extemal, 18 thru 19
operators, 17
relocatable, 18""" 19
terms, 18

external expressions, 18 ,,_ 19

Index- Continud

F opciom. continud
JloGlg-point c:onstalUI. 12 -o.3 '-.__/

PP A Assembler Syntax. 83 U- 90 -R.3

G
p

• qlobl dhec:t.ive. 36
• proc dinlclive, 38

progrmn layout. 23 '""' 27
H ~31U-38

-hopcicm.4
.aliqn.37
.a•cii.32

hmadecimal constants. 11 .a•ciz. 33

I
.b••.34
.byte.33

ideluifien. 9 "'"' 10 • conn. 36
Jmtruction Syntax, 83 .data,34
Instructions, Two-Opennd, 84 .even.37

.qlobJ..36

J .lcomm,3S

-j option,.4
.lonq,33
.proc,38

K
• skip.3S
.text.34

-k option. 3 .word,33

L R
-Loption,. 3 -Roption, 3

label 1ield, 23 "'"' 24 register operands. 2S '""' 26
labels, 10 "'"' 11 lddress registers. 42

Jocal. 10 data registers, 42
mune:ric, 10 special registers, 42
scope.10 Register Syntax. 84

• lcomm dileclive. 3S relocalable expaessions. 18 tJwu 19
lexical elemems, 9 "'"' 13 ''-...../

lines.23 s
local labels, 10 scopeoflabels, 10
location counter, 12 • skip dinlclive. 3S
• long direc:tive. 33 special register opermds

cc,42
M cttc,42

-m68010 option. 3 fpcr.42

-m68020 option. 3 fpiar,42
fp•r,42

N pc,42

JIOCllion. 4 "'"' s
sfc,42 ,__,
•p.42

numeric constants. 11 sr,42
numeric labels, 10 usp.42

0
swemenis. 23

comment field, 26
-ooptioa, 3 dUec:l mignm.em, 26 """ 1:1
octal c::onstants. 11 Jabel field, 23 "'"'24

operand field, 2S """ 26 operml field, 2S "'"' 26
Operand Types, 84 operation code field, 24"'"' 2S

operation code field, 24"'"' 2S siring constancs. 12

options, 3 '""' 4 T -k, 3
-d.2,4 • text dinctive. 34
-h.4 Two-Operand Instructi.ons, 84
-j,4
-L, 3
-m68010, 3
-m68020, 3 --

-96-

u
Usage Enors, 51

w
• word directive, 33

Index - Continued

-97-

