
Asun®
• microsystems

L

Using NROFF and TROFF

Part Number: 800-1755-10
Revision A, of 9 May 1988

UNIX is a registered trademark of AT&T.
SunOS is a trademark of Sun Microsystems, Inc.
Sun Workstation is a registered trademark of Sun Microsystems, Inc.

Material in this manual comes from a number of sources: NrofJITroff User's
Manual, Joseph F. Ossanna, Bell Laboratories, Murray Hill, New Jersey; A Troff
Tutorial, Brian W. Kernighan, Bell Laboratories, Murray Hill, New Jersey; Typ
ing Documents on the UNIX System: Using the -ms Macros with Troff and Nroff,
M. E. Lesk, Bell Laboratories, Murray Hill, New Jersey; A Guide to Preparing
Documents with -ms , M. E. Lesk, Bell Laboratories, Murray Hill, New Jersey;
Document Formatting on UNIX Using the -ms Macros, Joel Kies, University of
California, Berkeley, California; Writing Papers with Nroff Using -me, Eric P.
Allman, University of California, Berkeley; and Introducing the UNIX System,
Henry McGilton, Rachel Morgan, McGraw-Hill Book Company, 1983. These
materials are gratefully acknowledged.

Copyright © 1987, 1988 by Sun Microsystems, Inc.

This publication is protected by Federal Copyright Law, with all rights reselVed.
No part of this publication may be reproduced, stored in a retrieval system,
translated, transcribed, or transmitted, in any fonn, or by any means manual,
electric, electronic, electro-magnetic, mechanical, chemical, optical, or other
wise, without prior explicit written pennission from Sun Microsystems.

Contents

Chapter 1 Introduction .. 3

1.1. nroff aIld troff .. 3

Text Fonnatting Versus Word Processing ... 4

The Evolution of nroff and troff .. 5

Preprocessors and Postprocessors ... 6

1.2. troff, Typesetters, and Special-Purpose Formatters 6

1.3. Using the nroff and troff Text Formatters ... 6

Options Common to nroff and troff ... 7

Options Applicable Only to nroff .. 7

Options Applicable Only to trof f .. 8

1.4. General Explanation of t ro f f and nr 0 f f Source Files 8

Backspacing ... 9

Comments ... 9

Continuation Lines ... 10

Transparent Throughput .. 10

Formatter and Device Resolution .. 10

Specifying Numerical Parameters .. ,',:

Numerical Expressions ... ,., ,;,.: :0'; ;-••. ;: ••••••••

1.5. Output and Error Messages , ":~~ .. ;; , ... , ... ;.; ... ;;:;:;.:"~ .. ;.~,, ;;;;

Chapter 2 Line Fonnat .. ;;; ,~ .. :,:, :,:;,:;;;; :,,:.:.: ;:::>::>

2.1. Controlling Line Breaks ... i: ••.• ;.;";:;; ••..• ~~,, i;; ... ;;;;;;.: .. · ;; ••• >:::::>

. br - Break Lines .. ":; .. ; ... ;.; .. ;;.;:; ~;;.:." ... ,, .. .

Continuation Lines and Interrupted Text : ••. ,.;.:

- iii-

Contents - Continued

2.2. Justifying Text and Filling Lines .. 21

· ad - Specify Adjusting Styles .. 21

· na -No Adjusting ... 22

· nf and . f i-Tum Filling Off and On ... 23

2.3. Hyphenation ... 24

· nh and . h Y - Control Hyphenation .. 24

· hw - Specify Hyphenation Word List .. 25

· he - Specify Hyphenation Character .. 26

2.4 .. ee - Center Lines of Text .. 27

2.5. . ul and . eu - Underline or Emphasize Text .. 28

2.6. . uf - Underline Font .. 29

Chapter 3 Page Layout ... 33

3.1. Margins and Indentations .. 35

· po - Set Page Offset ... 35

· 11 - Set Line Length ... 35

· in - Set Indent .. 36

· ti -Temporarily Indent One Line .. 38

3.2. Page Lengths, Page Breaks, and Conditional Page Breaks 41

· pI - Set Page Length ... 41

· bp - Start a New Page ... 41

· pn - Set Page Numl>er .. 42

· ne - Specify Space Needed .. 42

3.3. Multi-Column Page Layout by Marking and Returning 43

• mk - Mark Current Vertical Position .. 43

· rt - Return to Marked Vertical Position ... 44

Chapter 4 Line Spacing and Character Sizes .. 47

4.1. . sp - Space Vertically ... 47

4.2. . ps - Change the Size of the Type ... 48

4.3 .. vs - Change Vertical Distance Between Lines 50

4.4. . 1 s - Change Line Spacing .. 51

4.5. \x Function - Get Extra Line-Space .. 52

-iv-

Contents - Continued

4.6. . sv - Save Block of Vertical Space

4.7 .. as - Output Saved Vertical Space

4.8. . ns - Set No Space Mode

4.9. . r s - Restore Space Mode

4.10 .. ss - Set Size of Space Character

4.11 .. cs - Set Constant-Width Characters

Chapter 5 Fonts and Special Characters

5.1 .. ft - Set Font .. .

5.2 .. fp - Set Font Position

5.3. . f z - Force Font Size .. .

5.4. . bd - Artificial Boldface .. .

5.5. Olaracter Set

5.6. Fonts

5.7. . 1 g - Control Ligatures .. .

Chapter 6 Tabs, Leaders, and Fields

6.1. . ta - Set Tabs .. .

Setting Relative Tab Stops

Right-Adjusted Tab Stops

Centered Tab Stops

. t c - Change Tab Replacement Olaracter .. .

Summary of Tabs

6.2. Leaders - Repeated Runs of Characters

. 1 c - Change the Leader Character .. .

6.3. . f c - Set Field Characters .. .

Chapter 7 Titles and Page Numbering

7.1. Titles in Page Headers

7.2. Fonts and Point Sizes in Titles .. .

7.3. . pc - Page Number Character .. .

7.4. . t 1 Request - Three Parameters

Chapter 8 traff Input and Output .. .

-v-

52

53

53

53

54

54

57

58

59

59

60

61

62

62

67
67

68

68

68

69

70

71

73

74

81

81

83
011
U"T

85

89

Contents - Continued

8.1. . so -Read Text from a File ... 89

8.2 .. nx -Read Next Source File .. 91

8.3. Pipe Output to a Specified Program (nrof f only) 91

8.4. . rd - Read from the Standard Input .. 92

8.5. . ex - Exit from nroff or troff ... 94

8.6. . tm - Send Messages to the Standard Error File 94

Chapter 9 Strings ... 97

9.1. . ds - Define Strings .. 98

9.2 .. as - Append to a String .. 99

9.3. Removing or Renaming String Definitions .. 101

Chapter 10 Macros, Diversions, and Traps ... lOS

10.1. Macros ... 105

· de - Define a Macro ... 105

· rm - Remove Requests, Macros, or Strings .. 107

· rn -Rename Requests, Macros or Strings .. 108

Macros With Arguments .. 108

· am-Append to a Macro .. 112

Copy Mode Input Intetpretation ... 112

10.2. Using Diversions to Store Text for Later Processing 112

· di -Divert Text ... 113

· da - Append to a Diversion ... 114

10.3. Using Traps to Process Text at Specific Places on a Page 114

· wh - Set Page or Position Traps ... 115

· ch - Change Position of a Page Trap ... 116

· dt - Set a Diversion Trap ... 116

· it - Set an Input-Line Count Trap .. 116

· em - Set the End of Processing Trap ... 117

Chapter 11 Number Registers ... 121

11.1 .. nr - Set Number Registers ... 121

11.2. Auto-Increment Number Registers ... 123

-vi-

Contents - Continued

11.3. Arithmetic Expressions with Number Registers ... 124

11.4 .. af - Specify Fonnat of Number Registers .. 125

11.5 .. rr - Remove Number Registers ... 127

Chapter 12 Drawing Lines and Characters ... 131

12.1. \ u and \ d Functions - Half-Line Vertical Movements 131

12.2. Arbitrary Local Horizontal and Vertical Motions 132

\ v Function - Arbitrary Vertical Motion .. 132

\h Function - Arbitrary Horizontal Motion .. 133

12.3. \ 0 Function - Digit-Size Spaces .. 134

12.4. '\ ' Function - Unpaddable Space ... 136

12.5. \ I and \ ... Functions - Thick and Thin Spaces 136

12.6. \& Function-Non-Printing Zero-Width Character 137

12.7. \ 0 Function - Overstriking Characters ... 138

12.8. \ z Function - Zero Motion Characters .. 139

12.9. \ w Function - Get Width of a String .. 140

12.10. \k Function - Mark Current Horizontal Place 141

12.11. \b Function - Build Large Brackets ... 142

12.12. \r Function - Reverse Vertical Motions .. 143

12.13. Drawing Horizontal and Vertical Lines .. 143

\ 1 Function - Draw Horizontal Lines ... 143

\ L Function - Draw Vertical Lines .. 144

Combining the Horizontal and Vertical Line Drawing

Functions ... 145

12.14 .. mc - Place Characters in the Margin .. 145

Chapter 13 Character Translations .. 149

13.1. Input Character Translations .. 149

13.2 .. ec and . eo - Set Escape Character or Stop Escapes 149

13.3. . cc and . c2 - Set Control Characters .. 150

13.4 .. tr - Output Translation ... 150

Chapter 14 Automatic Line Numbering .. 153

14.1 .. nm - Number Output Lines ... 153

-vii-

Contents - Continued

14.2 .. nn - Stop Numbering Lines ... 154

Chapter 15 Conditional Requests ... 157

15.1. . if - Conditional Request .. 157

15.2. . ie and . el- If-Else and Else Conditionals .. 160

15.3 .. ig - Ignore Input Text .. 160

Chapter 16 Debugging Requests ... 165

16.1. . pm - Display Names and Sizes of Defined Macros 165

16.2. . f 1 - Flush Output Buffer .. 166

16.3 .. ab - Aoort .. 166

Chapter 17 Environments ... 169

17.1 .. ev - Switch Environment ... 169

Appendix A traff Request Summary ... 173

Appendix B Font and Character Examples .. 181

B.1. Font Style Examples ... 181

B.2. Non-ASCII Characters and minus on the Standard Fonts 182

B.3. Non-ASCII Characters and " "', G, +, -, =, and * on the Special
Font ... 182

Appendix C Escape Sequences ... 187

Appendix D Predefined Number Registers .. 191

Appendix E traff Output Codes .. 195

E.1. Codes 0 Oxxxxxx - Flash Codes to Expose Characters 196

E.2. Codes lxxxxxxx - Escape Codes Specifying Horizontal
Motion ... 197

E.3. Codes Ollxxxxx-Lead Codes Specifying Vertical Motion 197

EA. Codes 010 lxxxx - Size Change Codes .. 197

E.5. Codes 010 Oxxxx - Control Codes ... 198

E.6. How Fonts are Selected ... 199

- viii-

Contents - Continued

E.7. Initial State of the elM .. 199

Index ... 201

-ix-

Tables

Table 1-1 Scale Indicators for Numerical Input .. 11

Table 1-2 Default Scale Indicators for Certain traff Requests and
Functions ... 11

Table 1-3 Arithmetic Operators and Logical Operators for Expressions 12

Table 2-1 Constructs that Break the Filling Process .. 19

Table 2-2 Formatter Requests that Cause a Line Break ... 20

Table 2-3 Adjusting Styles for Filled Text .. 21

Table 5 -1 Exceptions to the Standard Ascn Character Mapping 62

Table 6-1 Types of Tab Stops ... 70

Table 7-1 Requests that Cause a Line Break .. 83

Table 11-1 Access Sequences for Auto-incrementing Number
Registers _... 124

Table 11-2 Arithmetic Operators and Logical Operators for
Expressions 124

Table 11-3 Interpolation Formats for Number Re gisters .. , .. , : ;: ;;:.;;:,.; .. , : ... ; :", .. .

Table 12-1 t r a f f Width Function - c t

Table 12-2 Pieces for Constructing Large Brackets : •.•. ; ,:,.;.;.:;; ;;;,,;:.,., ... ;:,.:;; ..

Table 15-1 Built-In Condition Names for Conditional Yrolce~;smlg ." 159

-xi-

Tables - Continued

Table A-I Summary of nraff and traff Requests ... 173

Table A-2 Notes in the Tables ... 178

Table B-1 Summary of t ro f f Special Characters .. 182

Table C-l t r 0 f f Escape Sequences ... 187

Table D-l General Number Registers ... 191

Table D-2 Read-Only Number Registers .. 191

Table E-l Size Change Codes ... 197

Table E-2 Single Point-Sizes versus Double Point-Sizes .. 198

Table E-3 C/ A{f Corttrol Codes and their Meanings .. 198

Table E-4 Correspondence Between Rail, Mag, Tilt, and Font Number 199

-xii-

Figures

Figure 2-1 Filling and Adjusting Styles .. 22

Figure 3-1 Layout of a Page ... 34

- xiii-

Summary of Contents

Preface

This manual provides reference information and examples for the text fonnatters
nraff and traff. We assume you are familiar with a tenninal keyboard and
the Sun system. If you are not, see Getting Started with SunOS: Beginner's
Guide for infonnation on the basics, like logging in and the Sun file system. If
you are not familiar with text editors, read Doing More with SunOS: Beginner's
Guide and the chapter "Introduction to Text Editing" in Editing Text Files.
Finally, we assume that you are using a Sun Workstation, although specific ter
minal infonnation is also provided.

For additional details on Sun system commands and programs, see the SunOS
Reference Manual.

Here is a summary of the chapters that follow:

1. Introduction - Describes what t r a f f can do for you, some tools you can
use with traff or nraff to refine your results, how to use nraff and
traff, the differences between the two text formatting programs, and a lit
tle about the mechanisms built-in to nraf f and traf f.

2. Line Format- Explains how the text formatting programs fill and adjust
text input lines and how various formatting requests affect filling and adjust
ing functions in traff.

3. Page Layout - Describes the default page layout parameters built-in to
traff and how you can alter them. Also explains how certain fonnatting
requests interact in laying out pages.

4. Line Spacing and Character Sizes - Explains the availabl~>tYPejffid ·spac-
ing sizes in traff and nraff, and how to change.theln.

. "..

5. Fonts and Special Characters - Describes thefoflt~av~¥apH~witlfhf6f:E
and t r a f f and how to change them.

6. Tabs, Leaders, and Fields - Explains what tabs, ldlderS,andfie14sarelarid
how to set them.

7. Titles and Page Numbering - Explains how to create page head.erS and
page footers. Also covers how to use the built-in traff pagcfriumber regis
ter to print page numbers on your document automatically.

-xv-

Preface - Continued

Conventions Used in This
Manual

8. troff Input and Output - Describes how to embed files within files, to
switch input from one file to another, to display a message on your tenninal
when troff reaches a certain point in a file, and in nroff only, how to
pipe the output from a file to a program by using a special nroff command
in the file.

9. Strings - Explains how to give a string of characters a new name so you
can reference them easily. Also provides a facility for referencing the values
of the strings.

10. Macros, Diversions, and Traps - Describes how to define macros, store
infonnation in diversions, and use diversions and traps to process text at
specific places on pages.

11. Number Registers - Explains what troff number registers are and what
you can use their values for.

12. Drawing Lines and Characters - Describes the several built-in troff
functions for moving to arbitrary places on the page and for drawing things.

13. Character Translations - Describes how to change the escape character
and translate the value of one character into another.

14. Automatic Line Numbering - Explains how to use the troff requests for
numbering lines in the output file.

15. Conditional Requests - Describes troff mechanisms for conditionally
accepting input.

16. Debugging Requests - Explains requests for displaying names and sizes of
defined macros, flushing the output buffer, and aborting the fonnatting.

17. Environments - Describes how to shift input processing between the three
nroff /troff environments.

A. t ro f f Request Summary - A quick reference summarizing nro f f and
t ro f f requests.

B. Font and Character Examples - Several tables of special characters like
Greek letters, foreign punctuation, and math'symbols.

C. Escape Sequences - Summarizes escape sequences for obtaining values of
number registers, for describing arbitrary motions and drawing things, and
for specifying certain miscellaneous functions.

D. Predefined Number Registers - Tables of trof f General and Predefined
Number Registers

E. t ro f f Output Codes - A summary of the binary codes for the C/ A{f pho
totypesetter.

Throughout this manual we use

(~h_o_s_t_n_a_m_e_% __ ~]

-xvi-

Notation Used in This Manual

Preface - Continued

as the prompt to which you type system commands. Bo1dface type
writer font indicates commands that you type in exactly as printed on the
page of this manual. Regular typewriter font represents what the sys
tem prints out to your screen. Typewriter font also specifies Sun system com
mand names (program names) and illustrates source code listings. Italics indi
cates general arguments or parameters that you should replace with a specific
word or string. We also occasionally use italics to emphasize important tenns.

Numerical parameters are indicated in this manual in two ways. ±N means that
the argument may take the forms N, +N, or -N and that the corresponding effect
is to set the affected parameter to N, to increment it by N, or to decrement it by N
respectively. Plain N means that an initial algebraic sign is not an increment
indicator, but merely the sign of N. Generally, unreasonable numerical input is
either ignored or truncated to a reasonable value. For example, most requests
expect to set parameters to non-negative values; exceptions are . sp, . wh, . ch,
.nr,and .if. The requests .ps, .ft, .po, .vs, .ls, .11, .in,and .It
restore the previous parameter value in the absence of an argument.

Single-character arguments are indicated by single lower case letters and one- or
two-character arguments are indicated by a pair of lower case letters. Character
string arguments are indicated by multi-character mnemonics.

- xvii-

1
Introduction

Introduction ... 3

1.1. nroff and troff .. 3

Text Fonnatting Versus Word Processing ... 4

The Evolution of nroff and troff .. 5

Preprocessors and Postprocessors 6

1.2. troff, Typesetters, and Special-Purpose Formatters 6

1.3. Using the nraff and traff Text Fonnatters ... 6

Options Common to nraff and troff ... 7

Options Applicable Only to nroff .. 7

Options Applicable Only to trof f .. 8

1.4. General Explanation oftroff and nroff Source Files 8

B ackspacing ... 9

Comments ... 9

Continuation Lines 10

Transparent Throughput .. 10

Formatter and Device Resolution .. 10

Specifying Numerical Parameters ... 10

Numerical Expressions .. 12

1.5. Output and Error Messages .. 13

1.1. nroff and traff

1
Introduction

nroff and troff are text processing utilities for the Sun system. nroff for
mats text for typewriter-like tenninals (such as Diablo printers). trof f is
specifically oriented to formatting text for a phototypesetter. nroff and traff
accept lines of text (to be printed on the final output device) interspersed with
lines of format control information (to specify how the text is to be laid out on
the page) and format the text into a printable, paginated document having a user
designed style. nroff and troff offer unusual freedom in document styling,
including:

o detailed control over page layout;

o arbitrary style headers and footers;

o arbitrary style footnotes;

o automatic sequence numbering for paragraphs, sections, etc;

o multiple-column output;

o dynamic font and point-size control;

o arbitrary horizontal and vertical local motions at any point;

o a family of automatic overstriking, bracket construction, and line drawing
functions.

nroff and troff are highly compatible with each other and it is almost
always possible to prepare input acceptable to both. The formatters provide
requests (conditional input) so that you can embed input expressly destined for
either nroff or troff. nroff can prepare output directly for a variety ofter
minal types and is capable of utilizing the full resolution of each terminal.

This manual provides a user's guide and reference section for nroff and
troff. Note that throughout the text we refer to nroff and troff more or
less interchangeably - places where the narrative refers specifically to one or the
other processor are noted. 1

You should be aware that using nroff or troff 'in the raw' requires a
detailed knowledge of the way that these programs work and a certain knowledge

1 The material in this chapter evolved fnm A troffTuJorial, by Brian Kernighan of Bell Laboratories, and
from nroffltroff User's Manual, originally wrinen by Joseph Os sanna of Bell Laboratories.

3 Revision A, of9 May 1988

4 Using nroff and troff

Text Formatting Versus Word
Processing

of typographical tenns. nroff and troff don't do a great deal of work for you
- for example, you have to explicitly tell them how to indent paragraphs and
number pages and things like that.

If what you are trying to do is just get a job done (like writing a memo), you
shouldn't be reading this manual at all, but rather the chapter "Fonnatting Docu
ments with the -ms Macros" in the Formatting Documents manual. If, on the
other hand, you would like to learn the fine details of a programming language
designed to control a typesetter, this is the place to start reading.

In many ways, nroff's and troff's control language resembles an assembly
language for a computer - a remarkably powerful and flexible one - many
operations must be specified at a level of detail and in a form that is too hard for
most people to use effectively.

The single most important rule when using troff is not to use it directly, but
through some intermediary such as one of the macro packages, or one of the vari-
0us preprocessors described in Formauing Documents. In the few cases where
existing macro packages don't do the whole job, the solution is not to write an
entirely new set of t r 0 f f instructions from scratch, but to make small changes
to adapt existing packages. In accordance with this strategy of letting someone
else do the work, the part oftroff described here is only a small part of the
whole, although it tries to concentrate on the more useful parts. In any case,
there is no attempt to be complete. Rather, the emphasis is on showing how to
do simple things, and how to make incremental changes to what already exists.
If you are interested in the complete story, look into the t r 0 f f source itself.

Many newcomers to the UNIX system are surprised to find that there are no word
processors available. This is largely historical- the types of documents (such
as the Sun manuals) that people do with the UNIX system's text formatting pack
ages just can't be done with existing word processors. Before you get into the
details of nrcff and troff, here is a short discussion on the differences
between text fonnatters and word processors, and their relative strengths and
weaknesses.

A word processor is a program that to some extent simulates a typewriter - text
is edited· and fonnatted by one program. You type text at a computer tenninal,
and the word processor fonnats the text on the screen for you as you go. You
usually get special effects like underlining and boldface by typing control indica
tors. The word processor usually displays these activated features using inverse
video or special marks on the screen. The document is displayed on the tenninal
screen in the same fonnat as it will appear on the printing device. The effects of
this are often tenned 'What You See Is What You Get' (usually called
WYSIWYG and pronounced 'wizzi-wig'). Unfortunately, as has been pointed
out, the problem with many WYSIWYG editors is that 'What You See Is All You
Get'. In general, word processors cannot handle large documents. In principle, it
is possible to write large manuals and even whole books with word processors,
but the process gets painful for large manuscripts. Sometimes a change, such as
deleting a sentence or inserting a new one, in the early part of a document can
require that the whole document has to be refonnatted. A change in the overall
structure of the formatting requirements (for example, a changed indentation

Revision A, of 9 May 1988

The Evolution ofnraff and
traff

Chapter 1 - Introduction 5

depth) will also mean that the whole document has to be reformatted. Word pro
cessors usually don't cope with automatic chapter and section numbering (of the
kind you see in the Sun manuals), neither can they generate tables of contents
and indices automatically. These tasks have to be done manually, and are a
potential source of error. Word processors are eminently suitable for memos and
letters, and can handle short documents. But large documents, or formatting
documents for sophisticated devices like modem phototypesetters, requires a text
formatter.

A textformatter such as nroff or troff does not in general perform anyedit
ing - its only job is reading text from a file and formatting that text for printing
on some device. Entering the text into the file, and formatting the text from that
file for printing are two separate and independent operations. You prepare your
file of text using a text editor such as vi (described elsewhere in this manual).
The file contains text to be formatted, interspersed with formatting instructions
which control the layout of the final text. The text formatter reads this file of
text, and obeys the fonnatting instructions contained in the file. The results of
the formatting process is a finished document. The disadvantage of a text for
matter is that you have to run them to find out what the final result will look like.
Many people find the idea of embedded 'formatting commands' foreign, as they
do the idea of two separate processes (an edit followed by a run of the formatter)
to get the final document.

Notwithstanding all of the above, the UNIX system has had text formatting utili
ties since the very beginning, and many documents were written using the capa
bilities of nroff or traff.

One of the very first text fonnatting programs was called runoff and was a utility
for the Compatible Time Sharing System (crSS) at MIT in the early 1960's.
Runoffwas named for the way that people would say 'I'll just run off a docu
ment'.

When the UNIX system came to have a text formatter, the text formatter was
called roff, because UNIX people like to call things by short and cryptic names.
Roffwas a simple program that was easy to work with as long as you were writ
ing very small and simple documents for a line-printer. In some ways, roff is
easier to use than nraf f or traf f because roffhad built-in facilities such as
being able to specify running headers and footers for a document with simple
commands.

nraff stands for 'Newer roff. troff is an adaptation ofnroff to drive a
phototypesetting machine. Although traff is supposed to mean 'typesetter
roff, some people have formed the theory that traff actually stands for 'Times
Romanoff' because of t ra f f' s penchant for the Times Roman typeface.

nraff and traff are much more flexible (and much more complicated) pro
grams - it's safe to say that they don't do a lot for you - for instance, you have
to manage your own pagination, headers, and footers. The way that nraff and
trof f ease the burden is via facilities to define your own text formatting com
mands (macros), define strings, and store and manipulate numbers. Without
these facilities, you would go mad (many people have - the author of this

Revision A, of 9 May 1988

6 Using nroff and troff

Preprocessors and
Postprocessors

1.2. troff, Typesetters,
and Special-Purpose
Formatters

1.3. Using the nroff and
troff Text
Formatters

document among them). In ad~tion, there are supporting packages for doing
special effects such as mathematics and tabular layouts.

Because troff or nroff are so hard to use 'in the raw', various tools have
evolved to convert from human-oriented ways of specifying things into codes
that troff or nroff can understand. Tools that do translations for troff or ,
nrof f before the fact are called preprocessors. There are also tools that hack
over the output of nroff for different devices or for other requirements. Tools
that do conversions of t r 0 f f or nr 0 f f output after the fact are called postpro
cessors. Refer to the manual Formatting Documents for explanations of nrof f
and tro f f pre- and postprocessors.

Please be sure to read this: this section covers some aspects oftroff that
are generally glossed over in the traditional UNIX system manuals. trof f was
originally designed as a text fonnatter targeted to one specific machine - that
machine was called a Graphics Systems Incorporated (GSI) C/Aff (Computer
Assisted Typesetter). The C/Aff is a strange and wonderful device with strips of
film mounted on a revolving drum, lenses, and light pipes. The C/ A{f flashes
character images on film which you then develop to produce page proofs for your
book or manual or whatever. The C/ Aff is almost extinct now except for some
odd niches like Berlceley.

troff was written very much with the C/Aff in mind. The internal units of
measurement that troff uses are C/A/f units, troff only understands four
fonts at a time, and so on. Throughout this chapter, much of the tenninology is
based on troff's intimate relationship with the C/Aff.

To use nroff or troff you first prepare your file of text with nroff or
troff requests embedded in the file to control the formatting actions. The
remainder of this document discusses the fonnatting commands. Then you run
the fonnatter at the command level like this:

(hostname% nroff options files

or, of course:

(hostname% troff options files

where options represents any of a number of option arguments and files
represents the list of files containing the document to be fonnatted.

An argument consisting of a single minus (-) is taken to be a file name
corresponding to the standard input. If no file names are given, input is taken
from the standard input.

J

J

Options may appear in any order so long as they appear before the files. There
are three parts to the list of options below: the first list of options are common to
both nroff and troff; the second list of options are only applicable to
nroff; the third list of options are only applicable to troff.

Revision A, of 9 May 1988

Options Common to nraff
and traff

Options Applicable Only to
nraff

Chapter 1 - Introduction 7

Each option is typed as a separate argument - for example,

hostname% nroff -04,8-10 -T300S -ms file1 file2

fonnats pages 4, 8,9, and 10 of a document contained in the files namedfilel and
file2, specifies the output terminal as a DASI-300S, and invokes the -msun macro
package.

-olist
Print only pages whose page numbers appear in list, which consists of
comma-separated numbers and number ranges. A number range has the
fonn N-M and means pages N through M; an initial -N means from the
beginning to page N; and a final N- means from N to the end.

-nN
Number first generated page N.

-aN
Stop every N pages. nraff will halt prior to every N pages (default N=I)
to allow paper loading or changing, and will resume upon receipt of a new
line.

-mname
Adds the macro file /usr / lib/tmac/tmac. name before the inputfiles.

-raN
Register a (one-character) is set to N.

- i Read standard input after the input files are exhausted.

-q Invoke the simultaneous input-output mode of the . rd request.

-z Suppress formatted output. The only output you get are messages from. tm
(tenninal message) requests, and from diagnostics.

- h Output tabs used during horizontal spacing to speed output as well as reduce
byte count. Device tab settings assumed to be every 8 nominal character
widths. Default settings of input (logical) tabs is also initialized to every 8
nominal character widths.

-Tname
Specifies the name of the output tenninal type. Currently-defined names are
37 for the (default) Model 37 Teletype®, tn300 for the GE TermiNet 300
(or any terminal without half-line capabilities), 300 S for the DASI-300S,
300 for the DASI-300, and 450 for the DASI-450 (Diablo Hytenn).

-e Produce equally-spaced words in adjusted lines, using full tenninal resolu
tion.

Revision A, of 9 May 1988

8 Using nroff and troff

Options Applicable Only to
traff

1.4. General Explanation
oftroff andnroff
Source Files

-t Direct output to the standard output instead of the phototypesetter.

-a Send a printable (ASCII) approximation of the results to the standard output.

-pN
Print all characters in point size N while retaining all prescribed spacings
and motions, to reduce phototypesetter elapsed time.

This section of the nraff and traff manual covers generic topics related to
the fonnat of the input file, how requests are fonned, and how numeric parame
ters to requests are stated.

To use traff, you have to prepare not only the actual text you want printed, but
some infonnation that tells how you want it printed. For traff, the text and the
formatting information are often intertwined. Most commands to tra f f are
placed on a line separate from the text itself, beginning with a period (one com
mand per line). For example:

Here is some text in the regular size characters,
but we want to make some of the text in a
.ps 14
larger size to emphasize something

changes the 'point size', that is, the size of the letters being printed, to '14 point'
(one point is In2 inch) like this:

Here is some text in the regular size characters, but we want to make some of the
text in a larger size to emphasize something

Occasionally, though, something special occurs in the middle of a line - to
produce Area = 1tr 2 you have to type

(Area = \(*p\flr\fR\ I \s8\u2\d\sO J

(which we will explain shortly). The backslash character (\) introduces traff
commands and special characters within a line of text.

To state the above more formally, an input file to be processed by traff or
nraff consists of text lines, which are destined to be printed, interspersed with
control lines, which set parameters or otherwise control subsequent processing.
A control line is usually called a request.

A request begins with a control character - nonnally. (period) or ' (apos
trophe or acute accent) - followed by a one or two character name. A request is
either:

a basic request
(also called a command) which is one of the many predefined things that
nraff or traff can do. For example, .11 6. 5i is a basic request to set
the line-length to 6.5 inches, and . in 5 is a basic request to indent the left
margin by five en-spaces.

Revision A, of 9 May 1988

Backspacing

Comments

Chapter 1 - Introduction 9

a macro reference
specifies substitution of a user-defined macro in place of the request. A
macro is a predefined collection of basic requests and (possibly) other mac
ros. For example, in the -ms macro package discussed elsewhere in this
manual, . LP is a macro to start a new left-blocked paragraph.

The ' (apostrophe or acute accent) control character suppresses the break
function- the forced output of a partially filled line- caused by certain
requests.

The control character may be separated from the request or macro name by white
space (spaces and/or tabs) for aesthetic reasons. Names must be followed by
either space or newline. nraff or traff ignores control lines whose names
are unrecognized.

Various special functions may be introduced anywhere in the input by means of
an escape character, normally \. For example, the function \ nR interpolates the
contents of the number register whose name is R in place of the function. Here R
is either a single character name in which case the escape sequence has the form
\ nx, or else R is a two-character name, in which case the escape sequence must
have the form \n (xx. In general, there are many escape sequences whose one
character form is \ fx and whose two-character form is \ f (xx, where f is the
function and x or xx is the name.

To print the escape character (usually backslash), use \e (backslash e).

Unless in copy mode, the ASCII backspace character is replaced by a backward
horizontal motion having the width of the space character. Underlining as a form
of line-drawing is discussed in the section on Arbitrary Motions and Drawing
Lines and Characters. A generalized overstriking function is also described in
the above- mentioned section.

Comments may be placed at the end of any line by prefacing them with \ ". A
comment line cannot be continued by placing a \ at the end of the line - see the
discussion on continuation lines below.

A line beginning with \" appears as a blank line and behaves like a . sp 1
request:

Here is a line of text.
\" Here is a comment on a line by itself.
Here is another line of text.

when we format the above lines we get this:

Here is a line of text.

Here is another line of text.

If you want a comment on a line by itself but you don't want it to appear as a
blank line, type it as . \ " :

Revision A, of 9 May 1988

10 Using nroff and troff

Continuation Lines

Transparent Throughput

Formatter and Device
Resolution

Specifying Numerical
Parameters

Here is a line of text
.\" and here is a comment on a line by itself
and here is another line of text

when we fonnat the above lines we get this:

Here is a line of text
and here is another line of text

An uncomfortably long input line that must stay one line (for example, a string
definition, or unfilled text) can be split into many physical lines by ending all but
the last one with the escape \. The sequence \ (newline) is always ignored -
except in a comment - see below. This provides a continuation line facility.
The \ at the end of the line is called a concealed newline in the jargon.

An input line beginning with a \ ! is read in copy mode and transparently output
(without the initial \ !); the text processor is otherwise unaware of the line's
presence. This mechanism may be used to pass control infonnation to a post
processor or to embed control lines in a macro created by a diversion. Refer to
Chapter 10 for infonnation describing diversions.

traff internally uses 432 units/inch, corresponding to the phototypesetter
which has a horizontal resolution of 1/432 inch and a vertical resolution of 1/144
inch. nraff internally uses 240 units/inch, corresponding to the least common
multiple of the horizontal and vertical resolutions of various typewriter-like out
put devices. traff rounds horizontal/vertical numerical parameter input to the
actual horizontal/vertical resolution of the Graphic Systems typesetter. nraff
similarly rounds numerical input to the actual resolution of the output device
indicated by the -T option (default Model 37 Teletype).

Many requests can have numerical arguments. Both nroff and traff accept
numerical input in a variety of units. The general fonn of such input is

(~_.x_x ____ n_n_nn ____ u_n_l_'t_s __ -JJ

where. xx is the request, nnnn is the number, and units is the "scale indicator."

Scale indicators are shown in the following table, where S is the current type size
in points, V is the current vertical line spacing in basic units, and C is a nominal
character width in basic units.

Revision A. of 9 May 1988

Table 1-1

Chapter 1 -Introduction 11

Scale Indicatorsfor Numerical Input

Scale
Meaning

Number of basic units
Indicator troff nroff

i Inch 432 240
c Centimeter 432><50/127 240><50/127
p Pica = 1/6 inch 72 240/6
m Em = Spoints 6XS C
n En=Em/2 3XS C,sameasEm
p Point = 1n2 inch 6 240n2
u Basic unit 1 1
v Vertical line space V V

none Default, see below

In nroff, both the em and the en are taken to be equal to the C, which is
output-device dependent; common values are 1/10 and 1/12 inch. Actual charac
ter widths in nraff need not be all the same and constructed characters such as
-> (~) are often extra-wide.

The default scaling is ems for the horizontally-oriented requests and functions,
V s for the vertically-oriented requests and functions, p for the vertical spacing
request; and u for the number register and conditional requests. See Table 1-2 for
a summary of the default scale indicators for the traff requests and functions
that take scale indicators.

Table 1-2 Default Scale Indicatorsfor Certain troff Requests and Functions

Request Default Scaling Unit Request Default Scaling Unit

.11 ems .pl vertical units (Vs)

.in " .wh "

.ti " .ch "

.ta " .dt "

.1t " .sp "

.po " .sv "

.mc " .ne "
\h " .rt "
\1 " \v "
.nr machine units (u) \x "
.if " \L "
.ie " .vs picas (p)

All other requests ignore any scale indicators. When a number register contain
ing an already appropriately-scaled number is interpolated to provide numerical
input, the unit scale indicator u may need to be appended to prevent an additional
inappropriate default scaling. The number, N, may be specified in decimal fonn,
but the parameter finally stored is rounded to an integer number of basic units.

Revision A, of 9 May 1988

12 Using nroff and troff

Numerical Expressions

Table 1-3

The absolute position indicator I (the pipe character) may precede a number N to
generate the absolute distance to the vertical or horizontal place N. For
vertically-oriented requests and functions, I N becomes the absolute distance in
basic units from the current vertical place on the page or in a diversion (see
Chapter 10 for the section on diversions) to the vertical place N. For all other
requests and functions, I N becomes the distance from the current horizontal
place on the input line to the horizontal place N. For example,

[_,_S_P __ I_3_._2_C __ J

will space in the required direction to 3.2 centimeters from the top of the page.

Wherever numerical input is expected, you can type an arithmetic expression.
An expression involves parentheses and the arithmetic operators and logical
operators shown in the table below:

Arithmetic Operators and Logical Operators for Expressions

Arithmetic Operator Meaning

+ Addition
- Subtraction
I Division

* Multiplication
% Modulo

Logical Operator Meaning

< Less than
> Greater than

<= Less than or equal to
>= Greater than or equal to

=or== Equal to
& and

or

Except where controlled by parentheses, evaluation of expressions is left-to-right
- there is no operator precedence.

In certain requests, an initial + or- is stripped and interpreted as an increment or
decrement indicator respectively. In the presence of default scaling, the desired
scale indicator must be attached to every number in an expression for which the
desired and default scaling differ. For example, if the number register x contains
2 and the current point size is 10, then

(,II (4,25i+\nxP+3)/2u
J

will set the line length to 1/2 the sum of 4.25 inches + 2 picas + 30 points.

Revision A, of 9 May 1988

1.5. Output and Error
Messages

Chapter 1 - Introduction 13

The output from . tm, . pm, and the prompt from . rd, as well as various error
messages are written onto the standard error message output. The latter is dif
ferent from the standard output, where nroff fonnatted output goes. By
default, both are written onto the user's tenninal, but they can be independently
redirected - in the case of t r a f f, the standard output should always be
redirected unless the -a option is in effect, because troff's output is a strange
binary format destined to drive a typesetter.

Various error conditions may occur during the operation of nroff and traff.
Certain less serious errors having only local impact do not stop processing. Two
examples are word overflow, caused by a word that is too large to fit into the
word buffer (in fill mode), and line overflow, caused by an output line that grew
too large to fit in the line buffer; in both cases, a message is printed, the offend
ing excess is discarded, and the affected word or line is marked at the point of
truncation with a * in nroff and a ¢:::: in traff. The philosophy is to continue
processing, if possible, on the grounds that output useful for debugging may be
produced. If a serious error occurs, processing tenninates, and an appropriate
message is printed. Examples are the inability to create, read, or write files, and
the exceeding of certain internal limits that make future output unlikely to be
useful.

Revision A, of 9 May 1988

2
Line Format

Line Fonnat .. 17

2.1. Controlling Line Breaks .. 18

· br - Break Lines .. 20

Continuation Lines and Interrupted Text .. 20

2.2. Justifying Text and Filling Lines .. 21

· ad - Specify Adjusting Styles .. 21

· na - No Adjusting ... 22

· nf and . f i-Tum Filling Off and On ... 23

2.3. Hyphenation ... 24

· nh and . hy - Control Hyphenation .. 24

· hw - Specify Hyphenation Word List .. 25

· he - Specify Hyphenation Character .. 26

2.4 .. ce - Center Lines of Text .. 27

2.5 .. ul and . eu - Underline or Emphasize Text .. 28

2.6. . uf - Underline Font .. 29

2
". s • • ~ •• i!:

Line Format

Perhaps the most important reason for using troff or nroff is to use its filling
and adjusting capabilities. Here is what filling and adjusting mean:

Filling means that t r 0 f f or nr 0 f f collects words from your input text
lines and assembles the collected words into an output text line until
some word doesn't fit. An attempt is then made to hyphenate the
word in an effort to assemble a part of it into the output line. Filling
continues until something happens to break the filling process, such
as a blank line in the text, or one of the troff or nroff requests
that break the line - things that break the filling process are dis
cussed later on.

Adjusting means that once the line has been filled as full as possible, spaces
between words on the output line are then increased to spread out the
line to the current line-length minus any current indent. The para
graphs you have just been reading are both filled and adjusted.
Justification implies filling - it makes no sense to adjust lines
without also filling them.

In the absence of any other infonnation, t ro f f 's or nro f f 's standard behavior
is to fill1ines and adjust for straight left and right margins, so it is quite possible
to create a neatly fonnatted document which only contains lines of text an9 no
fonnatting requests. Given this as a starting point, the simplest document of all
contains nothing but blocks of text separated by blank lines - t ro f f or nro f f
will fill and justify those blocks of text into paragraphs for you. To get further
control over the layout of text, you have to use requests and functions embedded
in the text, and that is the subject of this entire paper on using t ro f f.

A word is any string of characters delimited by the space character or the begin
ning or end of the input line. Any adjacent pair of words that must be kept
together (neither split across output lines nor spread apart in the adjustment pro
cess) can be tied together by separating them with the unpaddable space charac
ter '\ '(backslash-space)- also called a 'hard blank' in other systems. The
adjusted word spacings are unifonn in troff and the minimum interword spac
ing can be controlled with the .55 (space size) request. In nroff, interword
spaces are nonnally nonunifonn because of quantization to character-size spaces,
but the -e command line option requests unifonn spacing to the full resolution
of the output device. Multiple inter-word space characters found in the input are
retained, except for trailing spaces.

17 Revision A, of 9 May 1988

18 Using nroff and troff

2.1. Controlling Line
Breaks

Filling and adjusting and hyphenation can all be prevented or controlled by
requests that are discussed later in this part of the manual.

An input text line ending with. , ?, or ! is taken to be the end of a sentence, and
an additional space character is automatically provided during filling.

A text input line that happens to begin with a control character can be made to
not look like a control line by prefacing it with the non-printing, zero-width filler
character \ &. Still another way is to specify output translation of some con
venient character into the control character using the . t r (translate) request -
see the relevant section.

The text length on the last line output is available in the . n number register, and
text baseline position on the page for this line is in the nl number register. The
text baseline high-water mark on the current page is in the . h number register.

When filling is turned on, words of text are taken from input lines and placed on
output lines to make the output lines as long as they can be without overflowing
the line length, until something happens to break the filling process. When a
break occurs, the current output line is printed just as it is, and a new output line
is started for the following input text. There are various things that cause a break
to occur:

Revision A, of 9 May 1988

Table 2-1

Construct

Blank liner s)

Spaces

A . b r request

traff or nraff requests

A \p Function

End offile

Chapter 2 - Line Format 19

Constructs that Break the Filling Process

Explanation

If your input text contains any completely blank lines, traff or nraff
assumes you mean them. So it prints the current output line, then your blank
lines, then starts the following text on a new line.

at the beginning of a line are significant. If there are spaces at the start of a
line, traff or nraff assumes you know what you are doing and that you
really want spaces there. Obviously, to achieve this, the current output line
must be printed and a new line begun. Avoid using tabs for this purpose,
since they do not cause a break.

A . br request (break) request can be used to make sure that the following
text is started on a new line.

Some traff or nraff requests cause a break in the filling process.
However, there is an alternate format of these requests which does not cause a
break. That is the format where the initial period character (.) in the request
is replaced by the apostrophe or single quote character ('). The list of
requests that cause a break appears in the table below this one.

When filling is in effect, the in-line \p function may be embedded or attached
to a word to cause a break at the end of the word and have the resulting output
line spread out to fill the current line length.

Filling stops when the end of the input file is reached.

Breaks caused by blank lines or spaces at the beginning of a line enable you to
take advantage of the filling and justification features provided by traff or
nraff without having to use any traff or nraff requests in your text.

As mentioned in the table above in the item entitled "traff or nraff
requests," there are some requests that cause a break when they are encountered.
The list of requests that break lines is short and natural:

Revision A, of9 May 1988

20 Using nroff and troff

Table 2-2 Formatter Requests that Cause a Line Break

. br - Break Lines

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

Continuation Lines and
Interrupted Text

Convnand Ex.plananon

· bp Begin a new page
· br Break the current output line
· ce Center line(s)
· f i Start filling text lines
· n f Stop filling text lines
· sp Space vertically
· in Indent the left margin
· t i Temporary indent the left margin for the next line only

No other requests break lines, regardless of whether you use a . or a ' as the con
trol character. If you really do need a break, add a . br (break) request at the
appropriate place, as described below.

The . b r (break) request breaks the current output line and stops filling that line .
Any new output will start on a new line.

Summary o/the . br Request

break

.br

Not Applicable

cause break

Stop filling the line currently being collected and output the line without
adjustment. Text lines beginning with space characters and empty text lines
(blank lines) also cause a break.

The copying of an input line in nofill (non-fill) mode (see below) can be inter
rupted by tenninating the partial line with a \ c. The next encountered input text
line will be considered to be a continuation of the same line of input text. Simi
larly, a word within filled text may be interrupted by tenninating the word (and
line) with \c; the next encountered text will be taken as a continuation of the
interrupted word. If the intervening control lines cause a break, any partial line
will be forced out along with any partial word.

Revision A. of 9 May 1988

2.2. Justifying Text and
Filling Lines

. ad - Specify Adjusting
Styles

Table 2-3

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

Notes:

Chapter 2 - Line Format 21

To change the style of text justification, use the . ad (adjust) request to specify
one of the four different methods for adjusting text:

Adjusting Styles for Filled Text

Adjusting
Indicator

.ad 1

.ad r

.ad c

.ad b

.ad n

.ad

Adjusting
Style

Left

Right
Center

Both
Nonna!
Reset

Description

Produces flush-left, ragged-right output, which
is the same as filling with no adjustment.
Produces flush-right, ragged-left output
Centers each output line, giving both left and
right ragged margins.

Justifies both left and right margins.

Resumes adjusting lines in the last mode
requested.

It makes no sense to try to adjust lines when they are not being filled, so if filling
is off when a . ad request is seen, the adjusting is deferred until filling is turned
on again.

Summary of the . ad Request

adjust

.adc

. ad b - that is, adjust both margins.

Adjust in the last specified adjusting mode.

Adjust lines - if fill mode is off, adjustment is be deferred until fill mode is
back on. If the type indicator c is present, the adjustment type is changed as
shown in Table 2-3.

E (see Table A-2)

The current adjustment indicator c can be obtained from the . j number register.

The following figure illustrates the different appearances of filled and justified
text.

Revision A, of 9 May 1988

22 Using nroff and troff

This paragraph is filled and adjusted on both margins. This is the easiest fonnatting style to achieve
using nraff or traff because you don't have to place any requests in your text - you just type the
blocks of text into the input file and the formatter does something reasonably sane with them. Although
we specified nothing to get the paragraph filled and adjusted, we could have used an . ad b (adjust
both) request, or a . ad n (adjust normal) request - they both mean the same thing, namely, fill lines
and adjust both margins.

This paragraph is an example of 'flush left, ragged right', which is what you get when you have filling
without adjusting - words are placed on the line to fill lines out as far as possible, but no interword
spaces are inserted so the right-hand margin looks ragged. This paragraph was formatted using an . ad
1 (adjust left) request, which has the same effect as using a . na (no adjust) request described later.

Then this paragraph is an illustration of text fonnatted as 'flush right, ragged left' - words are placed on
the line to fill lines out as far as possible, then the lines are made to line up on the right-hand margin, no
interword spaces are inserted, and so the left-hand margin looks ragged. This paragraph was fonnatted

using an . ad r (adjust right) request.

Finally, this paragraph is an instance of a fonnatting style called 'centered' adjusting, also known as
'ragged left, ragged right' - words are placed on the line to fill lines out as far as possible, then the lines

are centered so that both margins look ragged. This paragraph was formatted using an . ad c (adjust
center) request.

Figure 2-1 Filling and Adjusting Styles

. na - No Adjusting If you don't specify otherwise, traff or nroff justifies your text so that both
left and right margins are straight. This can be changed if necessary - one way,
as we showed above, is to use the . ad 1 request to get left adjusting only so
that the left margin is straight and the right margin is ragged. Another way to
achieve this same effect is to use the . na (no adjust) request. Output lines are
still filled, providing that filling hasn't also been turned off - see the . n f (no
fill) and . f i (fill) requests below. If filling is still on, troff or nroff pro
duces flush left, ragged right output. To tum adjusting back on (return to the pre
vious state), use the . ad request.

Revision A, of9 May 1988

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

Notes:

. n f and . f i-Turn Filling
Off and On

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Exp lanation:

Notes:

Summary of the . na Request

no adjust

.na

Adjusting is on by default

adjusting is turned off

Chapter 2 - Line Format 23

Turn off adjustment - the right margin will be ragged. The adjustment
type for the . ad request is not changed. Output lines are still filled if fill
mode is on. To turn adjusting back on (return to the previous state), use the
. a d request.

E (see Table A-2)

The . nf (no fill) request turns off filling. Lines in the result are neither filled
nor adjusted. The output text appears exactly as it was typed in, complete with
any extra spaces and blank lines you might type - this is often called 'as-
is text', or 'verbatim'. No filling is mainly used for showing examples, espe
cially in computer books where you want to show examples of program source
code.

You should be aware that traditional typesetting people have trouble with the
concept of no filling, because their typesetting systems are geared up to fill and
adjust text all the time. When you ask for stuff to be printed exactly the way you
typed it, they have problems, especially when you want blank lines left in the
unfilled text exactly where you put them. In the world of typography, things that
don't fit into the Procrustean mold of filled text are often called 'displays' and
have to be handled specially.

The . f i (fill) request turns on filling. If adjusting has not been turned off by a
. na request, output lines are also adjusted in the prevailing mode set by any pre
vious . ad request.

Summary of the . fi Request

fill

.fi

Filling is on by default

filling is turned on

Fill subsequent output lines. The number register . u is 1 in fill mode and 0
in nofill mode.

E,B (see Table A-2)

+~I!! Revision A, of9 May 1988

24 Using nroff and troff

Mnemonic:

Form o/Request:

Initial Value:

If No Argument:

Explanation:

Notes:

2.3. Hyphenation

. nh and . hy - Control
Hyphenation

Summary o/the . nf Request

no fill

.nf

Filling is on by default

filling is turned off

Subsequent output lines are neither filled nor adjusted. Input text lines are
copied directly to output lines without regard for the current line length.
The number register . u is 1 in fill mode and 0 in nofill mode.

E,B (see Table A-2)

When troff or nroff fills lines, it takes each word in tum from the input text
line, and puts the word on the output text line, until it finds a word that will not
fit on the output line. At this point, troff or nroff tries to hyphenate the
word. If possible, the first part of the hyphenated word is put on the output line
followed by a -, and the remainder of the word is put on the next line. We
should emphasize that, although the examples show text that is both filled and
justified, it is during filling that troff or nroff hyphenates words, not adjust
ing.

If you have words in your input text containing hyphens (such as jack-in-the-box,
or co-worker), troff or nroff will, if necessary, split these words over two
lines, even if hyphenation is turned off.

Nonnally, when you invoke troff or nroff, hyphenation is turned on, but
you can change this. The . nh (no hyphenation) request turns off automatic
hyphenation. When hyphenation is turned off, the only words that are split over
more than one line are those that already contain hyphens. Hyphenation can be
turned on again with the . h Y (hyphenate) request.

You can give. hy an argument to restrict the amount of hyphenation that troff
or nroff does. The argument is numeric. The request. hy 2 stops troff or
nroff from hyphenating the last word on a page .. hy 4 instructs troff or
nrof f not to split the last two characters from a word; so, for example,
'repeated' will never be hyphenated 'repeat-ed' .. hy 8 requests the same thing
for the first two characters of a word; so, for example, 'repeated' will not be
hyphenated 're-peated'.

The values of the arguments are additive: . h Y 12 makes sure that words like
'repeated' will never be hyphenated either as 'repeat -ed' or as 're-peated'. . h Y
14 calls up all three restrictions on hyphenation.

A . h y 1 request is the same as the simple . h y request - it turns on hyphena
tion everywhere. Finally, a . hy 0 request is the same as the . nh request - it
tums off automatic hyphenation altogether.

Revision A. of 9 May 1988

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

Notes:

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

Notes:

. h w - Specify Hyphenation
Word List

Chapter 2 - Line Format 25

Only words that consist of a central alphabetic string surrounded by (usually
null) non-alphabetic strings are considered candidates for automatic hyphenation.
Words that were input containing hyphens (minus), em-dashes (\ (em), or
hyphenation characters - such as mother-in-law - are always subject to split
ting after those characters, whether or not automatic hyphenation is on or off.

Summary of the . nh Request

no hyphenation

.nh

Hyphenation is on by default

hyphenation is turned off

Turn automatic hyphenation off.

E (see Table A-2)

Summary of the . hy Request

hyphenation

.hyN

Hyphenation is on by default in mode 1.

N=1.

Turn automatic hyphenation on for N ~ 1, or off for N =0. If n = 1, all words
are subject to hyphenation. If N =2, do not hyphenate last lines (ones that
cause a trap). If N =4, do not hyphenate the last two characters of a word. If
N =8, do not hyphenate the first two characters of a word. These values are
additive - that is, N =14 invokes all three restrictions. Note: odd values of
N (except 1) don't make sense.

E (see Table A-2)

If there are words that you want troff or nroff to hyphenate in some special
way, you can specify them with the . hw (hyphenate words) request. This
request tells troff or nroff that you have special cases it should know about,
for example:

(.hw pre-empt ant-eater

Now, if either of the words 'preempt' or 'anteater' need to be hyphenated, they
will appear as specified in the . hw request, regardless of what troff or
nroff 's usual hyphenation rules would do. If you use the . hw request, be
aware that there is a limit of about 128 characters in total, for the list of special
words.

J

Revision A, of 9 May 1988

26 Using nroff and troff

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

. he --- Specify Hyphenation
Character

Summary of the . hw Request

hyphenate word

.hw word1 ...

None

Ignored

Specify hyphenation points in words with embedded minus signs. Versions
of a word with tenninal s are implied - that is, dig-it implies dig-its. This
list is examined initially and after each suffix stripping. The space available
is small- about 128 characters .

A hyphenation indicator character may be embedded in a word to specify desired
hyphenation points, or may precede the word to suppress hyphenation. For
example, hyphenation looks particularly disruptive if it occurs in titles. So, if
you had a long title like:

Input and Output Conventions and Character Translations,

you could shorten it, or you could insert the hyphenation character just before the
first character of each of the long words at the end of the title. The input might
look like this:

.R C "Input and Output Conventions and \%Character \%Translations'

(If you are using a reasonable line length, you don't need to worry about hyphe
nation occurring earlier in the title in this example.)

Here is an example of using the hyphenation character to specify acceptabl~
hyphenation points within a word. The word "workstation" is often mis
hyphenated because of the collection of consonants at the end of "work" and the
beginning of "station". So, your input might look like this:

(~w_o_r_k__%_s_t_a_t_i_o_n __ ~J

Revision A, of 9 May 1988

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

Notes:

2.4. . ce - Center Lines of
Text

Chapter 2 - Line Format 27

Summary of the . he Request

hyphenation character

.he c

\%

\%

Set hyphenation indicator character to c or to the default \ %. The indicator
does not appear in the output.

E (see Table A-2)

When we described "Filling and Adjusting," we showed how the text produced
by nroff or troff could be centered by using the . ad e request. Setting
text adjustment for centering is a fairly unusual way of getting centered text,
because the text is being filled at the same time. The more usual use for center
ing is to have unfilled lines that are centered - that is, each line that you type is
centered within the output line. You get lines centered via the . ee (center)
request, which centers lines of text.

If you just use a . ee request without an argument, troff or nroff centers the
next line of text:

(.ce
centers the following line of text, whereas:

(.ce 5

centers the following five lines of text. Filling is temporarily turned off when
lines are centered, so each line in the input appears as a line in the output, cen
tered between the left and right margins. For centering purposes, the left margin
includes both the page offset (see later) and any indentation (also see later) that
may be in effect.

J

J

An argument of zero to the . ee request simply stops any centering that might be
in progress. So, if you don't want to count how many lines you want centered,
you can ask for some large number of lines to be centered, then follow the last of
the lines with a . ee 0 request:

Revision A, of9 May 1988

28 Using nroff and troff

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

Notes:

2.5. . ul and. cu -
Underline or
Emphasize Text

.ce 100

lines of text to be centered

.ce 0

The '100' in the example above could be any large number that you think is
bigger than the number of lines to center.

Note that the argument to the . ce request only applies to following text lines in
the input. Lines containing nroff or troff requests are not counted.

Summary of the . ce Request

center

.ceN

Centering is off by default.

N=l

Center the next N input text lines within the current line (line-length minus
indent). If N=O, any residual count is cleared. A break occurs after each of
the N input lines. If the input line is too long, it is left adjusted.

E,B (see Table A-2)

There are times when you want to lend emphasis to a word in a piece of text.
The nonnal way to do this is to place the word or piece of text in italics if you
have an italic font, or underline the word if you don't have an italic font. The
· ul (underline) request underlines alphanumeric characters in nroff, and
prints those characters in the italic font in troff. As with the . ce request, a
· ul request with no argument underlines a single line of text, so:

simply underlines the following line of text. Unlike. ce, though, . ul does not
tum filling off. A numeric argument to the . ul request specifies the number of
text lines you want underlined, so:

(.ul 3)

underlines the next three lines of text. As with centering, an argument of zero
· u 1 0 cancels the underlining process.

Revision A, of 9 May 1988

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Exp lanation:

Notes:

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

Notes:

2.6. . u f - Underline Font

Summary of the . ul Request

underline

.ulN

Underlining is off by default.

N=l

Chapter 2 - Line Format 29

Underline in nroff (italicize in troff) the next N input text lines. Actu
ally, switch to underline font, saving the current font for later restoration;
other font changes within the span of a . ul will take effect, but the restora
tion will undo the last change. Output generated by a . t 1 request is
affected by the font change, but does not decrement N. If N > 1, there is the
risk that a trap-interpolated macro may provide text lines within the span
environment switching can prevent this.

E (see Table A-2)

Another form of underlining is called up with the . eu request, and asks for con
tinuous underlining. This is the same as the . ul request, except that all charac
ters are underlined. Again, if you are using troff the characters are printed in
the italic font instead of underlined. There is a way to get characters underlined
in troff, and this technique is explained later in this manual.

As with. ee, only lines of text to be underlined are counted in the number given
to the underline request. nroff or troff requests interspersed with the text
lines are not counted.

Summary of the . eu Request

continuousl y underline

.euN

Underlining is off by default.

N=l

A variant of . ul that underlines every character in nroff. Identical to
. ul in troff.

E (see Table A-2)

nroff automatically underlines characters in the underline font, specifiable
with a . uf (underline font) request. The underline font is nonnally Times Italic
and is mounted on font position 2. In addition to the . ft (font) request and the
\fF, the underline font may be selected by the . ul (underline) request and the
. eu (continuous underline) request. Underlining is restricted to an output-
device-dependent subset of reasonable characters.

Revision A, of9 May 1988

30 Using nroff and troff

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

Summary of the . uf Request

underline font

.uf F

Italic

Italic

Set underline font to F. In nro f f, F may not be on position 1 (initially
Times Roman).

Revision A, of 9 May 1988

3
Page Layout

Page Layout .. 33

3.1. Margins and Indentations .. 35

· po - Set Page Offset ... 35

· 11 - Set Line Length ... 35

· in - Set Indent .. 36

· t i-Temporarily Indent One Line .. 38

3.2. Page Lengths, Page Breaks, and Conditional Page Breaks 41

· pl- Set Page Length ... 41

· bp - Start a New Page ... 41

· pn - Set Page Number .. 42

· ne - Specify Space Needed .. 42

3.3. Multi-Column Page Layout by Marking and Returning 43

· mk - Mark Current Vertical Position .. 43

· rt - Return to Marked Vertical Position ... 44

3
Page Layout

Now we get into the subject of altering the physical dimensions of the layout of
text on a page. There are two major parts to page control, and they can be
roughly divided into controlling the horizontal aspects of lines, and controlling
the vertical aspects of the page dimensions.

Horizontal page control Deals with subjects such as the location of the left margin, the location of the
right margin (the length of the line), and indentation of lines.

Vertical page control Deals with the physical length of the page, when pages get started, and whether
there's enough room on the current page for a block of text. Page numbering is
also covered in this area.
These topics are covered in this section. We deal first with horizontal page con
trol, then with the vertical aspects of page control.

We should explain how traff thinks of a page. The next page contains a
diagram of a page of text, and here we explain what some of the terms mean:

Page Offset is the distance from the physical edge of the paper to the place where all text
begins. In normal-world terms, this distance is called the 'left margin'. Nor
mally you only set the page-offset at the very start of a formatting job and you
never change it again.

Line Length is the distance from the left margin (or page-offset) to the right edge of the text.
The line-length is relative to the page-offset. In some respects, 'line-length' is a
bit of a misnomer, because once you have set the page-offset at the start of the
document (and assuming you never change it), the line-length really nails down
the position of the right margin and has little to do with the length of the line.

Indent is where the left edge of your text starts. Normally the indent is zero, so that the
edge of the text is where the page-offset is, but you can change the indent so that
the text starts somewhere else. Note that the line-length is not affected by the
indent - that is, indenting the text doesn't change the position of the right mar
gin.

Page Length is the distance from the extreme top of the page to the extreme bottom of the
page, that is, the page length is the physical length of the paper.

The following figure is a diagram of a page of text with the relevant parts pointed
out. This diagram is a scale-model of an 8.5 x II-inch sheet of paper, so while
the numbers quoted in the text below are expressed in 'real' units, the actual
dimensions are scaled.

33 Revision A, of 9 May 1988

34 Using nroff and troff

Figure 3-1 Layoutofa Page

left header center header right header

This paragraph has the page-offset set to give a left margin of approximately one inch (scaled). The
line-length is set to 6.5 inches (scaled). This means there is a one-inch (scaled) left margin and a one
inch (scaled) right margin. The indent is set to zero so that the current left margin is at the same place
as the page-offset.

This paragraph has the page-offset and the line-length the same as the last paragraph, but
we've used a . in +0. Si request to indent the left margin by half an inch - the current left
margin is now page-offset + indent. Note that the position of the right margin remains the
same as in the previous paragraph - only the left margin moved, so the effective length of the
lines is shorter.

This paragraph now has the left margin back to the original position because we inserted a . in
- 0 . 5 i request before it.

This paragraph could have the left margin moved, not by indenting, but by changing the page-offset via
a .po +0. Si request. Now all text would be moved to the left, and because the line-length hasn't
changed, the right margin would move as well. The example can't show this because page offset is
measured from the margin, and because this example is in a box, changing the page offset within the
box is meaningless.

This is the regular old paragraph where the first line is indented and the rest of the text in the para
graph is flushed to the left margin. The first line was indented via a . ti +0. 25i request to give a
temporary indent of the first line.

• This paragraph is an example of an 'item' or 'bulleted' or 'hanging' paragraph, where the left mar
gin is moved to the right, and the 'bullet' or 'tag' is moved back to the old left margin. This effect
was achieved via a . in +0. 2Si request to move the left margin rightward, and then the 'bullet'
was preceded by a . t i - 0 . 25 i request to get a temporary indent to the old position of the left
margin.

Finally, note that tab stops are relative to the current left margin as we show here with a couple of
blocks of text with different indents. Note that the positions of the tab stops are shown with exclama
tion point (!) characters:
! ! ! !
You can see by the line of ! marks above where the tab stops are.

Now we have another block of text here but with the indent moved over a half-inch. As you
can see by the line of ! marks below, the tab stops have moved with the left margin:
! ! ! ! !

left footer center footer right footer

Revision A, of 9 May 1988

3.1. Margins and
Indentations

. po - Set Page Offset

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

Notes:

. 11 - Set Line Length

Chapter 3 - Page Layout 35

As we said above, the positions of the left-hand and right-hand margins are con
trolled via the page-offset and the line-length. After that, any movements of the
left-hand margin are controlled via indent and temporary indent requests. These
topics are discussed in the following subsections.

The usable page width on the Graphic Systems phototypesetter is about 7.54
inches, beginning about 1/27 inch from the left edge of the 8 inch wide, continu
ous roll paper. The physical limitations on nroff output are output-device
dependent

The page-offset is the distance from the extreme left-hand edge of the paper to
the left margin of your text When you use 'standard' 8.5xll-inch paper, it is
customary to have the left and right margins be one inch each, so that the physi
cal length of the printed lines are 6.5 inches - or you'd say that the measure was
39 picas if you're a typographer and can't handle inches.

In general, you only set the page-offset once in the course of formatting a docu
ment. Setting the page-offset determines the position of the physical left margin
for the text, and then you (almost) never change the page-offset again - all
indentation is done via. in (indent) requests and . ti (temporary indent)
requests. We talk about these requests later in this part of the manual.

The position of the physical right margin for the text is determined by the line
length relative to the page-offset. The .11 (line length) request is discussed
below.

Summary of the . po Request

page offset

.po±N

o in nrof f, 26/27 inch in trof f .

Previous value

Set the current left margin to ±N. In trof f the initial value is 26{27 inch,
which provides about one inch of paper margin including the physical
typesetter margin of 1/27 inch. In trof f the maximum (line
length)+(page-offset) is about 7.54 inches. In nroff the initial page-offset
is zero.

v (see Table A-2)

The current page-offset is available in the . 0 register.

troff gives you full control over the length of the printed lines. By the way,
typographers don't use terms like 'line-length', they use the word 'measure' to
mean the length of a line. They always measure vertical distances in 'picas'.

Nevertheless, to set the line-length in troff, use the .11 (line length) request,
as in

Revision A, of 9 May 1988

36 Using nroff and troff

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

Notes:

. in - Set Indent

[.11 6i

As with the . sp request, the actual length can be specified in several ways -
inches are probably the most intuitive unless you live in one of the very few
places in the world where they don't use inches.

The maximum line-length provided by the typesetter is 7.5 inches, by the way.
To use the full width, you have to reset the default physical left margin ('page
offset'), which is nonnally slightly less than one inch from the left edge of the
paper. This is done by the . po (page offset) request discussed above.

J

(.po 0 J
sets the offset as far to the left as it will go.

Note that the line-length includes indent space but not page-offset space. The
line-length minus the indent is the basis for centering with the . ce request. The
effect of the .11 request is delayed, if a partially-collected line exists, until after
that line is output. In fill mode, the length of text on an output line is less than or
equal to the line-length minus the indent. The current line-length is available in
the . 1 number register. The length of three-part titles produced by a . t 1
request (see Chapter 7, Titles and Page Numbering) is independent of the line
length set by the . 11 request - the length of a three-part title is set by the . It
request.

Summary o/the .11 Request

line length

.11±N

6.5 inches

Previous value

Set the line-length to N where N is the value of the line length, or an incre
ment or decrement for the line-length. In t ro f f the maximum (line
length)+(page-offset) is about 7.54 inches.

E, m (see Table A-2)

Given that you've got your page-offset and line-length correctly set for a docu
ment to establish the position of the left and right margins, you now make all
other movements of the left margin via the . in (indent) request discussed here,
and via the . ti (temporary indent) request described below.

The . in (indent) request indents the left margin by some specified amount from
the page-offset. This means that all the following text will be indented by the
specified amount until you do something to change the indent. To get only the
first line of a paragraph indented, you don't use the . in request, but you use the

Revision ~ of 9 May 1988

Chapter 3 - Page Layout 37

. ti (temporary indent) request described below.

As an example, a common text structure in books and magazines is the 'quota
tion' - a paragraph that is indented both on the right and the left of the line. A
quotation is used for precisely that purpose, namely to set some text off from the
rest of the copy. We can achieve such a paragraph by using the . in request to
move the left margin in, and the .11 request to move the right margin leftward:

.in +O.Si

.11 -O.Si
I was to learn later in life that we tend to meet any new
situation by reorganizing; and a wonderful method
it can be for creating the illusion of progress
while producing confusion, inefficiency, and demoralization .
. 11 +O.Si
.in -O.Si

When you fonnat the above construct you get a block that looks like this:

I was to learn later in life that we tend to meet any new situation
by reorganizing; and a wonderful method it can be for creating
the illusion of progress while producing confusion, inefficiency,
and demoralization.2

Notice the use of' +' and '-' to specify the amount of change. These change the
previous setting by the specified amount rather than just overriding it. The dis
tinction is quite important: .11 +2.0 i makes lines two inches longer, whereas
. 11 2. 0 i makes them two inches long:

.11 2.0i
I was to learn later in life that we tend to meet any new
situation by reorganizing; and a wonderful method
it can be for creating the illusion of progress
while producing confusion, inefficiency, and demoralization.

I was to learn later in life that
we tend to meet any new situa
tion by reorganizing; and a
wonderful method it can be for
creating the illusion of progress
while producing confusion,
inefficiency, and demoraliza
tion.

With . in, . 11, and . po, the previous value is used if no argument is specified.
So, in the above example, the lines:

2 Petronius Arbiter, A.D. 60.

Revision A, of 9 May 1988

38 Using nroff and troff

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

Notes:

. t i-Temporarily Indent
One Line

+O.5i
-O.Si

could have been

and would have had the same effect.

Note that the line-length includes indent space but not page-offset space. The
line-length minus the indent is the basis for centering with the . ce request. The
effect of the . in request is delayed, if a partially collected line exists, until after
that line is output. In fill mode the length of text on an output line is less than or
equal to the line-length minus the indent. The current indent is available in the
. i number register.

Summary of the . in Request

indent

.in±N

o
Previous value

Set the indent to ±N where N is the value of the indent, or an increment or
decrement on the current value of the indent. The . in request causes a
break.

E, m (see Table A-2)

The . t i (temporary indent) request indents the next text line by a specified
amount.

J

]

A common application for . t i is where the first line of a paragraph must be
indented just like the one you're reading now. You get such a construct with a
sequence like:

.ti 3
A common application for . . .

and when the paragraph is formatted, the first line of the paragraph is
indented by three specified units just like this one. Three of what? The default
unit for the . t i request, as for most horizontally-oriented requests - . 11 (line
length), . in (indent), and . po (page offset) - is ems. An em is roughly the

Revision A, of 9 May 1988

Chapter 3 - Page Layout 39

width of the letter 'm' in the current point size. Thus, an em is always propor
tional to the point size you are using. An em in size p is the number of p points
in the width of an 'm'. Here's an em followed by an em dash in several point
sizes to show why this is a proportional unit of measure. You wouldn't want a
20-point dash if you are printing the rest of a document in 12-point text. Here's
12-point text:

m
1-1

Here's 16-point text:

m
I-I

And here's 20-point text:

I~
Thus a temporary indent of . t i 3 in the current point size results in an indent
of three m's width or Immmi.

Although inches are usually clearer than ems to people who don't set type for a
living, ems have a place: they are a measure of size that is proportional to the
current point size. If you want to make text that keeps its proportions regardless
of point size, you should use ems for all dimensions. Ems can be specified as
scale factors directly, as in . ti 2. Sm.

Lines can also be indented negatively if the indent is already positive:

(.ti -O.3i]

moves the next line back three tenths of an inch. A common text structure found
in documents is 'itemized lists' where the paragraphs are indented but are set off
by 'bullets' or some such. Item lists are often called 'hanging paragraphs'
because the first line with the item on it 'hangs' to the left. For example, you
could type the following series of lines like this (we've deliberately shortened the
length of the line to illustrate the effects):

+~t!! Revision A, of 9 May 1988

40 Using nroff and troff

Mnemonic:

Form o/Request:

Initial Value:

1/ No Argument:

Explanation:

Notes:

.11 4.0i

.in +O.2i

.ta +O.2i

.ce
Indent Control Requests

shorten lines for this example
indent left margin by afifth inch
set a tab for the hanging indent
center a line of title

· t i - 0 • 2 i melle left margin back temporarily
\(bu tab the \fL\&.po\fp request sets the
page-offset to the desired amount thereby making
sure the left margin is correct.
· t i - 0 • 2 i melle left margin back temporarily
\(bu tab the \fL\&.in\fp request sets the
indent from the left margin for all following text.
· t i - 0 • 2 i melle left margin back temporarily
\(bu tab the \fL\&.ti\fP request sets the indent for
the following line of text only, thus providing for
fancy paragraph effects.

We had to play some tricks with tabs as well to get everything lined up, but that
won't affect the main point of the discussion. The tab markers in the lines above
show where there's a tab character, and the \ {bu sequence at the start of the
lines gets you a bullet (•) like that - we'll show the special character sequences
later in this manual. When you fonnat the text as shown in the example above,
you get this effect:

Indent Control Requests
• the. po request sets the page-offset to the desired amount

thereby making sure the left margin is correct.
• the. in request sets the indent from the left margin for all

following text.
• the. t i request sets the indent for the following line of text

only, thus providing for fancy paragraph effects.

Remember that the line-length includes indent space but not page-offset space.
The effect of a . ti request is delayed, if a partially collected line exists, until
after that line is output. In fill mode the length of text on an output line is less
than or equal to the line-length minus the indent. The current indent is available
in the . i register.

Summary of the . ti Request

temporary indent

.ti±N

o
Ignored

Indent the next output text line a distance ±N with respect to the current
indent. The resulting total indent may not be negative. The current indent
is not changed. The . t i request causes a break.

E, m (see Table A-2)

Revision A. of 9 May 1988

3.2. Page Lengths, Page
Breaks, and
Conditional Page
Breaks

. pl - Set Page Length

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

Notes:

. bp - Start a New Page

Chapter 3 - Page Layout 41

Neither nroff nor troff provide any facilities for top and bottom margins on
a page, nor for any kind of page numbering at all. The -ms macro package
described in a previous section of this manual sets things up so that reasonable
pagination with top and bottom margins and page numbers is done automatically.

If you want top and bottom margins when using raw troff or nroff, you have
to do some tricky stuff. The tricky stuff is done via traps and macros. The trap
tells troff or nroff when to do some processing for the margins (for exam
pIe, you might set a trap to start the bottom margin 0.75 inches from the bottom
of the page), and the macro defines what to do when the trap is sprung. It is con
ventional to set traps for them at vertical positions 0 (top) and -N (N from the
bottom).

A pseudo-page transition onto the first page occurs either when the first break
occurs or when the first non-diverted text processing occurs. Arrangements for a
trap to occur at the top of the first page must be completed before this transition.

In the following tables, references to the current diversion mean that the mechan
ism being described works during both ordinary and diverted output (the fonner
considered as the top diversion level). Refer to Chapter 10 for more infonnation
on diversions.

Just as the . po, .11, . in, and . ti requests changed the horizontal aspects of
the page, the . p 1 (page length) request detennines the physical length of the
page. In general you won't need to use the . pl request because the standard set
ting is right for all but the most esoteric purposes.

Summary of the . pi Request

page length

.pl±N

11 inches

11 inches

Set page length to ±N. The internal limitation is about 75 inches in troff
and about 136 inches in nroff. The current page length is available in the
. p number register.

v (see Table A-2)

This request causes a break and skips to a new page.

Revision A, of9 May 1988

42 Using nroff and troff

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

Notes:

. pn - Set Page Number

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

. ne - Specify Space Needed

Summary of the . bp Request

begin page

.bp±N

N=l

Increment current page number by 1.

Eject the current page and start a new page. If ±N is given, the new page
number will be ±N. Also see the . ns (no space) request. The . bp request
causes a break.

v (see Table A-2)

Summary of the . pn Request

page number

.pn±N

N=l

Ignored

The next page (when it occurs) will have the page number ±N. A . pn
request must occur before the initial pseudo-page transition to affect the
page number of the first page. The current page number is in the % register.

In some applications you need to make sure that a few lines of text all appear
together on the same page. There are several ways to achieve this ranging from
simple to complicated. One of the simplest ways is to use the . ne (need) verti
cal space request:

.ne 3
some
lines
of
text
to
be
kept
on the
same page

specify we need at least three lines

The arrangement of the . ne request specifies that if there are many lines of text
in (say) a paragraph, at least three of the lines will appear together on the same
page, otherwise a new page will be started. The object of this exercise is to avoid
what typographers call 'orphans' - that is, the first line of a paragraph appearing

Revision A, of 9 May 1988

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

Notes:

3.3. Multi-Column Page
Layout by Marking
and Returning

. mk - Mark Current
Vertical Position

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

Chapter 3 - Page Layout 43

all alone and lonely on the bottom of a page, while the rest of the paragraph
appears on the next page. This is generally considered to be somewhat ugly and
should be avoided if possible. By itself, troff is too stupid to recognize the
existence of orphans (indeed of any text constructs at all), but the facilities are
there to avoid these situations. In general, macro packages such as the -ms
macro package discussed elsewhere have 'begin paragraph' macros such as . PP

which take care of controlling orphans.

Summary of the . ne Request

need

.neN

Not applicable

tv

Need N vertical space. If the distance, D, to the next trap position is less
than N, a forward vertical space of size D occurs, which will spring the trap.
If there are no remaining traps on the page, D is the distance to the bottom
of the page. If D < V, another line could still be output and spring the trap.
In a diversion, D is the distance to the diversion trap, if any, or is very large.

v (see Table A-2)

It is possible to achieve multi-column output in trof f or nrof f via the . mk
(mark) and . rt (return) requests. Other useful special effects can also be
obtained using these requests, but one of the common uses is to do multi-column
output. Basically, the . mk request marks the current vertical position on the
page (you can place the result of the mark in a register). You do a column's
worth of output, then when you get to the end of the page, instead of starting the
next page, you return (via the . rt request) to the marked position, set up a new
indent and line-length, and crank out another column .

Summary of the . mk Request

mark

.mkR

Not applicable

R is an internal register

Mark the current vertical place in an internal register (both associated with
the current diversion level), or in register R, if given. See the . rt request.

Revision A, of9 May 1988

44 Using nroff and troff

. rt - Return to Marked
Vertical Position

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

Summary of the . rt Request

return

.rt±N

Not applicable

return to place marked by a previous . mk request

Return upward only to a marked vertical place in the current diversion. If
±N (with respect to the current place) is given, the place is ±N from the top
of the page or diversion or, if N is absent, to a place marked by a previous
.mk. Note that the . sp request (refer to the chapter Line Spacing and
Character Sizes) may be used in all cases instead of . rt by spacing to the
absolute place stored in a explicit register; for example, using the sequence
.mkR sp - \nRu.

Revision A, of 9 May 1988

4
Line Spacing and Character Sizes

Line Spacing and Character Sizes ... 47

4.1. . sp - Space Vertically ... 47

4.2. . p s - Change the Size of the Type ... 48

4.3 .. vs - Change Vertical Distance Between Lines 50

4.4. . 1 s - Change Line Spacing .. 51

4.5. \x Function - Get Extra Line-Space .. 52

4.6. . s v - Save Block of Vertical Space ... 52

4.7 .. os - Output Saved Vertical Space .. 53

4.8. . ns - Set No Space Mode .. 53

4.9 .. rs -Restore Space Mode .. 53

4.10. . S8 - Set Size of Space Character .. 54

4.11. . C 8 - Set Constant-Width Characters .. 54

4.1. . sp - Space
Vertically

4
Line Spacing and Character Sizes

You get extra vertical space with the . sp (space) request. A simple

(.sp)
request with no argument gives you one extra blank line (one. VS, whatever that
has been set to). Typically, that's more or less than you want, so . sp can be fol
lowed by infonnation about how much space you want-

[_.SP_2i _______ J
means 'two inches of vertical space'.

(.sp 2p
J

means 'two points of vertical space'; and

(.sp 2
J

means 'two vertical spaces' - two of whatever . vs is set to (this can also be
made explicit with. sp 2v); troff also understands decimal fractions in most
places, so

(.sp 1.Si J

is a space of 1.5 inches. These same scale factors can be used after the . vs
request to define line spacing, and in fact after most requests that deal with physi
cal dimensions.

It should be noted that all size numbers are converted internally to 'machine
units', which are 1/432 inch 0/6 point). For most purposes, this is;enough reso
lution that you don't have to worry about the accuracy of the representation. The
situation is not quite so good vertically, where resolution is 1/144 inch (1/2
point).

47 Revision A, of9 May 1988

48 Using nroff and troff

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

Notes:

4.2. . ps - Change the
Size of the Type

6 point: Pu:k my box with fiw: dozen liquor jugs.
7 point: Pack my box with five dazen liquor jugs.
8 point: Pack my box with five dozen liquor jugs.

Summary of the . sp Request

space

.spN

Not applicable

N=lV

Space vertically in either direction. If N is negative, the motion is backward
(upward) and is limited to the distance to the top of the page. Forward
(downward) motion is truncated to the distance to the nearest trap. If the
no-space mode is on, no spacing occurs (see. ns, and . rs below).

B, v (see Table A-2)

In t ro f f, you can change the physical size of the characters that are printed on
the page. The . ps (point size) request sets the point size. One point is In2
inch, so 6-point characters are at most l/12-inch high, and 36-point characters are
l/2-inch. troff and the machine it was originally designed for understand 15
point sizes, listed below.

9 point: Pack my box with five dozen liquor jugs.
10 point: Pack my box with five dozen liquor jugs.
11 point: Pack my box with five dozen liquor jugs.
12 point: Pack my box with five dozen liquor jugs.

14 point: Pack my box with five dozen liquor jugs.
16 point: Pack my box with five dozen liquor jugs.
18 point: Pack my box with five dozen liquor jugs.
20 point: Pack my box with five dozen liquor jugs.
22 point: Pack my box with five dozen liquor jugs.
24 point: Pack my box with five dozen liquor jugs.
28 point: Pack my box with five dozen liquor

36 point: Pack my box with five doz
If the nUIIlber after a . ps request is not one of these legal sizes, it is rounded up
to the next valid value, with a maximum of 36. If no number follows . ps,
troff reverts to the previous size, whatever it was. troff begins with point
size 10, which is usually fine. This document is in II-point.

Revision A, of 9 May 1988

Chapter 4 - Line Spacing and Character Sizes 49

The point size can also be changed in the middle of a line or even a word with an
in-line size change sequence. In general, text which is in ALL CAPITALS in the
middle of a sentence tends to 100m large over the rest of the text and so it is cus
tomary to drop the point size of the capitals so that it looks like ALL CAPITALS

instead. You use the \8 (for size) sequence to state what the point size should
be. You can state the size explicitly as in this line here:

(The \s8POWER\sO of a \s8SUN\sO

to produce the output line like:

The POWER of a SUN

As above, \ s should be followed by a legal point size, except that \ 8 0 makes
the size revert to its previous value (before you just changed it).

Note that because there are a fixed number of point sizes that the system knows
about, the sequence \ s 96 gets you a nine-point 6 instead of 96;:POint type like you
wanted, whereas the sequence \ s 18 0 gets you an 18-point U instead of 180-
point type.

]

Stating the point size in absolute tenns as above is not always a good idea -
what you really want is for the changed size to be relative to the surrounding text,
so that if your document is in II-point type like this one, you'd really like the
bigger (or smaller stuff) to be a couple of points different without your having to
know explicitly what the actual size is. So in this case, you can use a relative
size-change sequence of the fonn \ 8+ n to raise the point size, and \ s- n to
lower the point size. The number n is restricted to a single digit. So we can
rework our previous example from above like this:

(The \s-2POWER\s+2 of a \s-2SUN\s+2]
to produce the output line like:

[~T_h_e ___ p_O_~_R ___ O_f ___ a ___ SU_N __ ~]
Relative size changes have the advantage that the size difference is independent
of the starting size of the document. Of course this stuff only works really well
(in typography terms) when the changes in size aren't too violently out of whack
with the point size - a change of two points in 36-point type doesn't have quite
the same impact as it does for 12-point type - there is a question of the weight
of the type, but by the time you get to that stuff you'll be much more knowledge
able about typography.

The current size is available in the . s number register. nroff ignores type size
control.

Revision A. of 9 May 1988

50 Using nroff and troff

Mnemonic:

Form o/Request:

Initial Value:

If No Argument:

Explanation:

Notes:

4.3. . vs - Change
Vertical Distance
Between Lines

Summary of the . p s Request

point size

.ps±N

10 points

Previous value

Set point-size to ±N. Alternatively embed \ sN or \ s±N. Any positive size
value may be requested; if invalid, the next larger valid size will result, with
a maximum of 36. The sequence

.ps +N

.ps N

works the same as

.ps +N

.ps -N

because the previous requested value is also remembered. Ignored in
nroff.

E (see Table A-2)

The other parameter that detennines what the type looks like is the spacing
between lines, which is set independently of the point size. Vertical spacing is
measured from the bottom of one line to the bottom of the next. The bottom of
the text on a line is often called the baseline. The vertical spacing is often called
leading (pronounced 'led-ing') and comes from the days when text was produced
with lead slugs instead of electronic widgets like laser printers.

You control vertical spacing with the . vs (vertical spacing) request. For run
ning text, it is usually best to set the vertical spacing about 20% bigger than the
character size. For example, so far in this document, we have used II-point type
with a vertical line-spacing of 13 points between baselines. Typographers call
this'll on 13', so when you hear some one say that a book is set in 'lIon 13',
you know that it's II-point type with 13-point vertical spacing.

So, somewhere at the start of this document, the macro package that formats this
document for us had requests like:

[

.ps IIp]

.vs 13p

'------------
Had we set the point size and the vertical spacing like this:

[

.ps IIp]

.vs IIp

'------------

Revision A, of 9 May 1988

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Exp lanation:

Notes:

4.4. . 1 s - Change Line
Spacing

Chapter 4 - Line Spacing and Character Sizes 51

the running text would look like this. After a few lines, you will agree it looks a
little cramped. The right vertical spacing is partly a matter of taste, depending on
how much text you want to squeeze into a given space, and partly a matter of
traditional printing style. By default, troff uses 10 on 12.

Point size and vertical spacing make a substantial difference in the amount
of text per square inch. This is 12 on 14.
Point size and wrtic:al SJ*:ing IJlIIkc a substaDtial. difference in the amount oftcxt per rquam inch. For example, 10 on 12 USCII about twice as much
space as 7 on 8. This is 6 00 7, which is even smaller. It packs a lot IDOIC words per line, but you can go blind trying to n:ad it.

When used without arguments, both . ps and . vs revert to the previous size and
vertical spacing respectively.

The vertical spacing (V) between the base-lines of successive output lines can be
set using the . vs request with a resolution of 1/144 inch = 1/2 point in troff,
and to the output device resolution in nr 0 f f. V must be large enough to accom
modate the character sizes on the affected output lines. For the common type
sizes (9-12 points), usual typesetting practice is to set V to 2 points greater than
the point size; troff default is 10-point type on a 12-point spacing. This docu
ment is set in II-point type with a 13-point vertical spacing. The current V is
available in the . v number register.

Summary of the . vs Request

vertical spacing

.vsN

1/6 inch in nroff, 12 points in troff.

Previous value

Set vertical base-line spacing size V. Transient extra vertical space avail
able with \x'N ' (see section on \x Function).

E, p (see Table A-2)

Multiple-V line separation (for instance, double spacing) can be requested with
the . 1 s (line spacing) request.

Revision A, of 9 May 1988

52 Using nroff and troff

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

Notes:

4.5. \ x Function - Get
Extra Line-Space

4.6 .. sv - Save Block of
Vertical Space

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

Notes:

Summary of the .ls Request

line spacing

.1sN

N=l

Previous value

Set line spacing to ±N. N-l Vs (blank lines) are appended to each output
text line. Appended blank lines are omitted, if the text or previous appended
blank line reached a trap position.

E (see Table A-2)

If a word contains a vertically tall construct requiring the output line containing it
to have extra vertical space before and/or after it, the extra-line-space function
\ x'N ' can be embedded in or attached to that word. In this and other functions
having a pair of delimiters around their parameter (here '), the delimiter choice
is arbitrary, except that it can't look like the continuation of a number expression
for N. If N is negative, the output line containing the word will be preceded by N
extra vertical space; if N is positive, the output line containing the word will be
followed by N extra vertical space. If successive requests for extra space apply
to the same line, the maximum values are used. The most recently used post-line
extra line-space is available in the . a register.

A block of vertical space is ordinarily requested using the . sp (space) request,
which honors the no-space mode and which does not space past a trap. A con
tiguous block of vertical space may be reserved using the . sv request (see
below).

Summary of the . sv Request

save space

.svN

Not applicable

N=lV

Save a contiguous vertical block of size N. If the distance to the next trap is
greater than N, N vertical space is output. No-space mode has no effect. If
this distance is less than N, no vertical space is immediately output, but N is
remembered for later output (see the . as request). Subsequent. sv
requests will overwrite any still-remembered N.

v (see Table A-2)

Revision At of 9 May 1988

4.7 .. os - Output Saved
Vertical Space

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

4.8. . ns - Set No Space
Mode

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

Notes:

4.9 .. rs - Restore Space
Mode

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

Notes:

Chapter 4 - Line Spacing and Character Sizes 53

Summary of the . as Request

output saved space

.os

Not applicable

Output saved vertical space

Output saved vertical space. No-space mode has no effect. Used to finally
output a block of vertical space requested by an earlier . s v request.

Summary of the . ns Request

no-space mode

.ns

Not applicable

Tum on no-space mode

Tum on no-space mode - When on, the no-space mode inhibits . sp
requests and . bp requests without a next page number. The no-space mode
is turned off when a line of output occurs, or with . r s.

D (see Table A-2)

Summary of the . r s Request

restore space mode

.rs

Not applicable

Tum off no-space mode

Restore spacing - tum off no-space mode.

D (see Table A-2)

Revision A, of 9 May 1988

54 Using nroff and troff

4.10 .. 88 - Set Size of
Space Character

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

Notes:

4.11. . C8 - Set Constant
Width Characters

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

Notes:

Summary of the . ss Request

space-character size

.ssN

12/36 em

Ignored

Set space-character size to N /36 ems. This size is the minimum word spac
ing in adjusted text. Ignored in nroff.

E (see Table A-2)

Summary of the . cs Request

constant spacing

.csFNM

Off

Ignored

Constant character space (width) mode is set on for font F (if mounted); the
width of every character is taken as N/36 ems. If M is absent, the em is that
of the character's point size; if M is given, the em is M-points. All affected
characters are centered in this space, including those with an actual width
larger than this space. Special Font characters occurring while the current
font is F are also so treated. If N is absent, the mode is turned off. The
mode must be still or again in effect when the characters are physically
printed. Ignored in nroff.

P (see Table A-2)

Revision A, of9 May 1988

5
Fonts and Special Characters

Fonts and Special Characters .. 57

5.1. . ft - Set Font ... 58

5.2 .. fp - Set Font Position .. 59

5.3 .. fz -Force Font Size ... 59

5.4. . bd - Artificial Boldface ... 60

5.5. Character Set .. 61

5.6. Fonts .. 62

5.7. . 1 g - Control Ligatures ... 62

5
Fonts and Special Characters

trof f and the typesetter allow four different fonts at anyone time. Nonnally
three fonts (Times Roman, italic and bold) and one collection of special charac
ters are pennanently mounted.

abcdefghijklmnopqrstuvwxyz 0123456789
ABCDEFGIDJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz 0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz 0123456789
ABCDEFGIllJKLMNOPQRSTUVWXYZ

The Greek, mathematical symbols, and miscellany of the special font are listed in
Appendix B, Font and Character Examples.

troff prints in Roman unless told otherwise. To switch into bold, use the . ft
(font) request:

(.ft B

and for italics,

(. ft I

To return to Roman, use. ft R; to return to the previous font, whatever it was,
use either. ft P or just. ft.

J

J

57 Revision A. of9 May 1988

58 Using nroff and troff

5.1 • . ft - Set Font

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

Notes:

Summary of the . ft Request

font

.ftF

Roman

Previous Font

Change font to F. Alternatively, embed \ fF. The font name P is reserved
to mean the previous font.

E (see Table A-2)

The 'underline' request

(.ul]
makes the next input line print in italics. . ul can be followed by a count to indi
cate that more than one line is to be italicized. Refer to Chapter 2 for a more
detailed description of the . ul request.

Fonts can also be changed within a line or word with the in-line request \f:

boldface text

is produced by the input

(\fBbold\flface\fR text

If you want to do this so the previous font, whatever it was, is left undisturbed,
insert extra in-line \fP commands, like this:

(\fBbold\fP\flface\fP\fR text\fP

Because only the immediately previous font is remembered, you have to restore
the previous font after each change or you lose it. The same is true of . p s and
. vs when used without an argument.

]

]

There are other fonts available besides the standard set, although you can still use
only four at any given time. The . fp (font position) request tells troff what
fonts are physically mounted on the typesetter:

(. fp 3 H

says that the Helvetica font is mounted on position 3. Appropriate . fp requests
should appear at the beginning of your document if you do not use the standard
fonts.

]

Revision A, of 9 May 1988

5.2. . fp - Set Font
Position

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

5.3. . f z - Force Font Size

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

Chapter 5 - Fonts and Special Characters 59

It is possible to make a document relatively independent of the actual fonts used
to print it by using font numbers instead of names; for example, \ f 3 and . f t 3
mean 'whatever font is mounted at position 3' , and thus work for any setting.
Nonnal settings are Roman font (R) on font position 1, italic en on position 2,
bold (B) on position 3, and special (S) on position 4 - the mnemonic 'R I B S'
might help you remember.

Summary of the . fp Request

font position

.fpNF

R,I,B,S

Ignored

Font position - this is a statement that a font named F is mounted on posi
tion N (1-4). It is a fatal error if F is not known. The phototypesetter has
four fonts physically mounted. Each font consists of a film strip that can be
mounted on a numbered quadrant of a wheel. The default mounting
sequence assumed by traff is R, I, B, and S on positions 1,2,3 and 4.
Any . fp request specifying a font on some position must precede . f z
requests relating to that position.

Summary of the . fz Request

font size

. fz SF N

None

None

Forces font F or S for special characters to be in size N. A . f z 3 -2
causes implicit\S-2 every time font 3 is entered, and a matching\s+2 when
left. Same for special font characters that are used during F. Use S to han
dle special characters during F. . f z 3 -3 or . f z S 3 -0 causes
automatic reduction of font 3 by 3 points while special characters are not
affected. Any. fp request specifying a font on some position must precede
. f z requests relating to that position.

There is also a way to get 'synthetic' bold fonts by overstriking letters with a
slight offset. Look at the . bd request.

Revision A, of 9 May 1988

60 Using nroff and troff

5.4. . bd - Artificial
Boldface

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

Form of Request:

Explanation:

Notes:

Summary of the . bd Request

bold

.bdFN

Off

No Emboldening

Artificially embolden characters in font F by printing each one twice,
separated by N-l basic units. A reasonable value for N is 3 when the char
acter size is in the vicinity of 10 points. If N is missing the embolden mode
is turned off. The mode must be still or again in effect when the characters
are physically printed. Ignored in nroff.

.bd SF N

Embolden characters in the special font whenever the current font is F. The
mode must be still or again in effect when the characters are physically
printed.

P (see Table A-2)

Special characters have four-character names beginning with \ (, and they may
be inserted anywhere. For example,

Ih+ Ih= 3h

is produced by

(__(_1_4 __ + __ _(1_2 __ = __ _(_3_4 __________________________________ ~]
In particular, Greek letters are all of the form \ (* x, where x represents an upper
or lower-case Roman letter reminiscent of the Greek. Thus to get

in raw t ro f f we have to type

[\(*S(\(*a\(mu\(*b) \(-> \(if]
That line is unscrambled as follows:

Revision A. of 9 May 1988

5.5. Character Set

Chapter 5 - Fonts and Special Characters 61

Escape Character
Description

Sequence Printed

\(*8 1: Upper-case Sigma or Sum
((
\(*a a lower-case alpha
\ (mu x multiplication sign or signum
\(*b J3 lower-case beta
))
\(-> ~ tends toward
\(if 00 infinity

A complete list of these special names occurs in Appendix B, Font and Charac
ter Examples.

In eqn, explained in the chapter "Fonnatting Mathematics with eqn" in Format
ting Documents, you can achieve the same effect with the input

(
SIGMA (alpha times beta) -> inf]

,---, ------
which is less concise (31 keystrokes instead of 27!), but clearer to the uninitiated.

Notice that each four-character name is a single character as far as troff is con
cerned. For example, the translate request

(
.tr \ (mi\(em]

"'------------
is perfectly clear, meaning

[. tr - -

that is, to translate - (minus sign) into - (em-dash).

Some characters are automatically translated into others: grave" and acute '
accents (apostrophes) become open and close single quotes' '; the combination
of" ... " is generally preferable to the double quotes" ... ". Similarly a typed
minus sign becomes a hyphen -. To print an explicit - sign, use \ -. To get a
backslash printed, use \ e.

J

The troff character set consists of the Graphics Systems Commercial II char
acter set plus a Special Mathematical Font character set - each having 102 char
acters. These character sets are shown in Appendix B, Font and Character
Examples. All ASCII characters are included, with some on the Special Font.
With three exceptions, the ASCII characters are input as themselves, and non
ASCII characters are input in the fonn \ (.xx where .xx is a two-character name
also explained in Appendix B. The three ASCII exceptions are mapped as fol
lows:

Revision A, of9 May 1988

62 Using nroff and troff

Table 5-1 Exceptions to the Standard ASCII Character Mapping

5.6. Fonts

5.7 .. lg - Control
Ligatures

ASCII Input Printed by trof f
Character Name Character Name

,
acute accent

,
close quote ..

grave accent
,

open quote
- minus - hyphen

The characters " ' , and - may be input by \ " \ ' , and \ - respectively or by
their names found in Appendix B. The ASCII characters @, :fI:, n, " ' , <, >, \, {,
}, -, ,. , and _ exist only on the Special Font and are printed as -a one-em space if
that font is not mounted.

nroff understands the entire troff character set, but can in general print only
ASCII characters, additional characters as may be available on the output device,
such characters as may be constructed by overstriking or other combination, and
those that can reasonably be mapped into other printable characters. The exact
behavior is determined by a driving table prepared for each device. The charac
ters " ' , and _ print as themselves.

The default mounted fonts are Times Roman (R), Times Italic (I), Times Bold
(B), and the Special Mathematical Font (S) on physical typesetter positions 1,2,
3, and 4 respectively. These fonts and others are used in this document. The
current font, initially Roman, may be changed (among the mounted fonts) by use
of the . ft request, or by embedding at any desired point either \fx, \f (xx, or
\ fN where x and xx are the name of a mounted font and N is a numerical font
position. It is not necessary to change to the Special font; characters on that font
are automatically handled. A request for a named but not-mounted font is
ignored. trof f can be infonned that any particular font is mounted by use of
the . fp request The list oflrnown fonts is installation-dependent. In the subse
quent discussion of font-related requests, F represents either a one- or two
character font name or the numerical font position, 1 through 4. The current font
is available (as numerical position) in the read-only number register. f.

nroff understands font control and nonnally underlines italic characters.

A ligature is a special way of joining two characters together as one. Way back
in the days before Gutenberg, scribes would have a variety of special fonns to
choose from to make lines come out all the same length on a manuscript. Some
of these forms are still with us today.

Five ligatures are available in the current troff character set - fi, fI, ff, ffi, and
ffl. They may be input (even in nroff) by \ (fi, \ (fl, \ (ff, \ (Fi, and
\ (Fl respectively.

The ligature mode is normally on in troff, and automatically invokes ligatures
during input.

Revision A, of 9 May 1988

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

Chapter 5 - Fonts and Special Characters 63

If you want other ligatures like the cc, re, IE, andCE ligatures, you have to make
them up yourself- troff doesn't know about them. See Chapter 12 the sec
tion on "Arbitrary Horizontal Motion" (the \h function) for some examples on
constructing these ligatures.

Summary of the .lg Request

ligature

.1gN

Offin nroff, on in troff.

on

Tum Ligature mode on if N is absent or non-zero. Turn ligature mode off if
N=O. If N=2, only the two-character ligatures are automatically invoked.
Ligature mode is inhibited for request, macro, string, register, or file names,
and in copy mode. No effect in nroff.

Revision A, of 9 May 1988

6
Tabs, Leaders, and Fields

Tabs, Leaders, and Fields ... 67

6.1. . ta - Set Tabs ... 67

Setting Relative Tab Stops .. 68

Right-Adjusted Tab Stops .. 68

Centered Tab Stops .. 68

. t c - Change Tab Replacement Character ... 69

Summary of Tabs .. 70

6.2. Leaders - Repeated Runs of Characters .. 71

ole - Change the Leader Character ... 73

6.3. . f c - Set Field Characters ... 74

6.1. . t a - Set Tabs

!
word-one

!
word-two

6
Tabs, Leaders, and Fields

There are several ways to get stuff lined up in columns, and to achieve other
effects such as horizontal motion and repeated strings of characters. The three
related topics we discuss in this section are tabs, leaders, and fields .

tabs behave just like the tab stops on a typewriter.

leaders are for generating repeated strings of characters.

fields are a general mechanism for helping to line stuff up into
columns.

This part of the document concentrates on the 'easy' parts, so to speak. Later
sections of this document contain discussions on the facilities for drawing lines
and for producing arbitrary motions on the page.

Tabs (the ASCII horizontal tab character) can be used to produce output in
columns, or to set the horizontal position of output. Typically tabs are used only
in unfilled text. Tab stops are set by default every half inch from the current
indent (in troff) and every 0.8 inch from the current indent (in nroff), but
can be changed by the . ta (tab) request. In the example below, we set tab stops
every one-and-a-half inches and set some text in columns based on those tab
stops. We place a line of exclamation marks (!) above and below the text to
show where the tabs stops are in the output page:

. tal. 5 i 3. 0 i 4. 5 i 6. 0 i set tabs
I tab ! tab I tab ! tab ! show where tabs are with! character
word-one tab word-two tab word-three tab word-four tab word-five
I tab ! tab I tab I tab I

When we format the above example, we get this output:

!
word-three word-four

67

!
word-five

Revision A, of 9 May 1988

68 Using nroff and troff

Setting Relative Tab Stops

Right-Adjusted Tab Stops

Centered Tab Stops

The tab stops set in the example above are in tenns of absolute position on the
line. You could also set tabs relative to previous tabs stops by preceding the tab
stop number with a + sign, and get exactly the same result:

.ta 1.Si +l.Si +l.Si +l.Si
!tab!tab!tab!tab!

set tabs
show where tabs are with! character

word-one tab word-two tab word-three tab word-four tab word-five
! tab ! tab ! tab ! tab !

In the standard case as shown in the above examples, the tab stops are left
adjusted (as on a typewriter). You can also make the tab stops right-adjusting for
doing things like lining up columns of numbers. When you right-adjust a tab
stop, the action of placing a tab before the field places the material behind the tab
stop on the output line. Here's an example of some input with both alphabetic
and numeric items:

.nf

.ta 2.0iR
July tab 5
August tab 9
September tab 15
October tab 60
November tab 85
December tab 126
.fi

Notice the . ta request - it has the letter R on the end to indicate that this is a
right-adjusted tab. When we fonnat that table, we get this result:

July
August
September
October
November
December

5
9

15
60
85

126

Notice how the numbers in the second column line up.

Finally you can make a centered tab stop, so that things get centered between the
tabs. We can use the centering tabs to put a title on our table from above:

Revision A, of 9 May 1988

. tc - Change Tab
Replacement Character

Chapter 6 - Tabs, Leaders, and Fields 69

.nf

.ta 2.0iC
Month tab Shipments
.ta 2.0iR
July tab 5
August tab 9
September tab 15
October tab 60
November tab 85
December tab 126
.fi

and when we fonnat this table now, we get this result:

Month
July
August
September
October
November
December

Shipments
5
9

15
60
85

126

Notice that the column headings are centered over the data in the table.

If you have a complex table, instead of using troff or nroff directly, use the
tbl program described in the chapter "Fonnatting Tables with tbl" in Format
ting Documents. A good example of where tbl does more work for you is when
numerically-aligned items have decimal points in them - it is really hard to do
this using the raw troff or nroff capabilities .

A tab inserts blank spaces between the item that came before and after it. You
can change this by filling up tabbed-over space with some other character. Set
the 'tab replacement character' with the . t c (tab character) request:

[

.ta 2.5i 4.5i 1

.tc

~~_a_m_e __ t_ab __ A_g_e_m_b __ ~

This produces

Name ____________ Age

There is a more general mechanism for drawing lines, described in the sections
uDrawing Vertical Lines" and "Drawing Horizontal Lines" in the chapter "Arbi
trary Motions and Drawing Lines and Characters."

To reset the tab replacement character to a space, use the . t c request with no
argument. Lines can also be drawn with the in-line \ 1 command, described in
the chapter "Arbitrary Motions and Drawing Lines and Characters."

Revision At of 9 May 1988

70 Using nroff and troff

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

Notes:

Summary of Tabs

Table 6-1

Summary of the . tc Request

tab character

.tc c

space

Removed

The tab repetition character becomes c, or is removed, specifying motion.

E (see Table A-2)

The table below is a summary of the types of tab stops. There are three types of
internal tab stops -left-adjusting, right-adjusting, and centering. In the follow
ing table:

D

next-string

w

is the distance from the current position on the input line
(where a tab was found) to the next tab stop.

consists of the input characters following the tab up to the next
tab or end of line.

is the width of next-string.

Types of Tab Stops

Tab Tab Length of motion or Location of
letter type repeated characters next-string

blank Left D FollowingD
R Right D-W Right adjusted within D
C Centered D-W/2 Centered on right end of D

Revision A, of 9 May 1988

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

Notes:

6.2. Leaders - Repeated
Runs of Characters

Chapter 6 - Tabs, Leaders, and Fields 71

Summary of the . ta Request

tab

.taNt ...

0.8 inches in nroff, 0.5 inches in troff.

Ignored

Set tab stops and types - N is the tab stop value and t is the type. t ro f f
tab stops are preset every 0.5 inches; nroff tab stops are preset every 0.8
inches. t=R means right-adjusting tabs, t=C means centering tabs, and if t is
absent, the tabs are left-adjusting tab stops. Stop values in the list of tab
stops are separated by spaces, and a value preceded by + is treated as an
increment to the previous stop value.

E, m (see Table A-2)

Leaders are repeated runs of the same character between tab stops. Leaders are
most often used to hang two separated pieces of text together. A common appli
cation is in tables of contents. If you look at the contents for this manual you
will see that the chapter and section titles (on the left of the line) are separated
from the page number (on the right end of the line) by a row of dots. In fact here
is a short example to illustrate what the leaders look like:

Contents

2.0 Blunt Uses of Clubs 13
16
18
25
29

2.1 Social Clubs
2.2 Arthritic Clubs
2.3 Golf Clubs .. .
2.4 Two-by-Four Clubs

2.0 Blunt Uses of Clubs
2.1 Social Clubs
2.2 Arthritic Clubs
2.3 Golf Clubs
2.4 Two-by-Four Clubs

The dots are called leaders, because they 'lead' your eye from one thing to the
other. It is not nearly so easy to read stuff like that if the leaders aren't there:

Contents

13
16
18
25
29

The leader character is normally a period, but it can in fact be any character you
like - some people prefer dots and some people prefer a solid line:

Revision A, of9 May 1988

72 Using nroff and troff

Contents

2.0 Blunt Uses of Clubs _____________ _ 13
16
18
25
29

2.1 Social Clubs
2.2 Arthritic Clubs
2.3 Golf Clubs
2.4 Two-by-Four Clubs

A leader is very similar to a tab, but you get the" repeated characters by typing an
in-line \ a sequence instead of a tab or a \ t sequence. The \ a sequence is a
control-A character or an ASCn SOH (start of heading) character and is hereafter
known as the leader character for the purposes of this discussion. When the
leader character is encountered in text it generates a string of repeated characters.
The length of the repeated string of characters is governed by internal tab stops
specified just as for ordinary tabs as discussed in the section on tabs above. The
major difference between tabs and leaders is that tabs generate motion and
leaders generate a string o/periods. Let's look at a fragment of the text that gen
erated the examples above:

.DS

.ta 5.0i-SnR S.OiR
2.0 Blunt Uses of Clubs \a\t13"

2.1 Social Clubs \a\t16"
2.2 Arthritic Clubs \a\t18"
2.3 Golf Clubs \a\t2S"
2.4 Two-by-Four Clubs \a\t29"

.DE

What we're trying to get here are lines of text with the section numbers and the
titles, followed by a string of leader characters, followed by some space and then
the page number at the right-hand end of the line. Tables of contents tend to look
better with shorter line lengths, so we set our first tab to five inches minus five
en-spaces to leave a gap at the end of the leader. The second tab is set to a right
adjusting tab at five inches. Each line of the table now contains the text to appear
on the left end, followed by a couple of spaces, followed by the \ a sequence to
indicated the leader, followed by the \ t sequence to indicate the tab, and finally
followed by the page number. The result of fonnatting all that stuff is:

2.0 Blunt Uses of Clubs .. 13
2.1 Social Clubs 16
2.2 Arthritic Clubs 18
2.3 Golf Clubs ... 25
2.4 Two-by-Four Clubs 29

~~ sun Revision A, of 9 May 1988
.,. microsystems

. Ie - Change the Leader
Character

2.0 Blunt Uses of Clubs
2.1 Social Clubs
2.2 Arthritic Clubs
2.3 Golf Clubs
2.4 Two-by-Four Clubs

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

Notes:

Chapter 6 - Tabs, Leaders, and Fields 73

Just as you could use the . te request to change the character that gets generated
with tabs, you can use the . I e (leader character) request to specify the character
that is generated by a leader. The standard leader character is the period. We can
show this by taking our last fragment and placing a 0 Ie request before it to
change the leader character to an underline:

oDS
.lc set leader character
. ta 50 Oi-5nR 5. OiR set tabs
2.0 Blunt Uses of Clubs \a\t13"

2.1 Social Clubs \a\t16"
2.2 Arthritic Clubs \a\t18"
2.3 Golf Clubs \a\t25"
2.4 Two-by-Four Clubs \a\t29"

.DE

Then when we fonnat the thing, it looks like this:

13
16
18
25
29

Whereas the length of generated motion for a tab can be negative, the length of a
repeated character string cannot be. Repeated character strings contain an integer
number of characters, and any residual distance is added before the leaders as
space. Tabs or leaders found after the last tab stop are ignored, but may be used
as next-string tenninators.

Tabs and leaders are not intetpreted in copy mode. \ t and \ a always generate a
non-intetpreted tab and leader respectively, and are equivalent to actual tabs and
leaders in copy mode.

Summary of the ole Request

leader character

.le c

Removed - successive \ as act like tabs

The leader repetition character becomes c, or is removed. Successive leader
requests (\as) act like tabs.

E (see Table A-2)

Revision A, of9 May 1988

74 Using nroff and troff

6.3. . f c - Set Field
Characters

A field is a more general mechanism for laying out material between tab stops.
Hardly anyone ever needs to use fields, but the tbl preprocessor uses them for
placing tabular material on the page. This section is a very short discussion on
how to use fields. In general, when you want to layout tabular material you
should use tbl to do the job for you. Fields are a way of reducing the number of
tab stops you have to set, and also have troff or nroff do some automatic
worlc in parceling out padding space for you.

A field lives between the current position on the input line and the next tab stop.
The start and end of the field are indicated by a field delimiter character. troff
or nroff places the field on the line and pads out any excess space with spaces.
You indicate where the padding actually goes by placing padding indicator char
acters at various places in the field. You set the field delimiter character and the
padding indicator character with the . fc (field characters) request. In the
absence of any other infonnation, troff or nroff has the field mechanism
turned off entirely. The . f c request looks like:

(.fc dp]

where d is the field delimiter character and p is the padding indicator character.
If you do not specify any character for a padding indicator, the space character is
the default. However, this means that you could not have spaces within the field,
so you nonnally specify the padding indicator as something other than a space.

So let's start with a very simple example of a single field and see what we get.
Here is the input:

. t a 3. 0 i set a single tab at three inches

. fc # @ setfield cklimiter character to # and
set padding indicator character to @

! tab ! the ! characters show where tabs are
#string of characters#
! tab the ! characters show where tabs are
.fc

and here is the output after formatting:

!
string of characters
!

This is not very exciting - the characters in the field are simply left-adjusted in
the field, and the rest of the field up to the tab stop are padded with spaces. You
would get exactly the same result if you placed the padding indicator character at
the right end of the field to indicate that you wanted the padding on the right:

Revision A. of 9 May 1988

.ta 3.0i

.fc # @

! tab !
#string of characters@#
! tab
.fc

Chapter 6 - Tabs, Leaders, and Fields 75

set a single tab at three inches
setfield delimiter character to #
set padding indicator character to @

the ! characters show where tabs are

the ! characters show where tabs are

As you can see, the result is identical to the one just above:

!
string of characters
!

But now we can place a padding indicator character at the left end of the field
and get strings right-adjusted in the field:

.ta 3.0i

.fc # @

! tab !
#@string of characters#

set a single tab at three inches
set field delimiter character to #
set padding indicator character as @

the! characters show where tabs are

#@another string of characters#
! tab the ! characters show where tabs are
.fc

We used two strings of different length here to show how they are right-adjusted
against the tab stop:

!
string of characters

another string of characters
!

You can see how the spaces were placed on the left end of the field because that
is we where we placed the padding indicator character, and the strings got
adjusted right to the tab stop.

Then we can get fields centered by placing the padding indicator character at
both ends of the string:

.ta 3.0i

.fc # @

! tab !

#@string
#@longer
! tab
.fc

of characters@#

set a single tab at three inches
setfield delimiter character to #
set padding indicator character as @

the ! characters show where tabs are

string of characters@#
the ! characters show where tabs are

Again we used two strings of different lengths to show the effect of centering the
field:

Revision A, of 9 May 1988

76 Using nroff and troff

!
string of characters
string of characters
!

left string
longer left string
!

string of characters
longer string of characters

In general, a field or a sub-field between a pair of padding indicator characters is
centered in its space on the line.

Things get even more useful when you have multiple sub-fields in a field - the
padding spaces are then parceled out so that the sub-fields are unifonnly left
adjusted, right-adjusted, or centered between the current position and the next tab
stop:

.ta S.Oi

.fc #: @
set a single tab at five inches
set field delimiter character to #
set padding indicator character as @

! tab ! use the ! characters to show where tabs are
#:string of characters#
#:string of characters@another string#
! tab ! use the ! characters to show where tabs are

and here is the output after we fonnat that:

another string
!

And finally we can show three strings within a field, with the left part left
adjusted, the center part centered, and the right part right-adjusted:

.ta S.Oi

.fc # @
! tab !

#left string@center string@right string#
#longer left string@longer center string@longer right string#
! tab !

and here is the output after we fonnat that:

center string
longer center string

!
right string

longer right string
!

So to summarize, a field is contained between a pair of field delimiter characters.
A field consists of sub-fields separated by padding indicator characters. The field
length is the distance on the input line from the position where the field begins to
the next tab stop. The difference between the total length of all the sub-fields and
the field length is incorporated as horizontal padding space that is divided among
the indicated padding places. The incorporated padding can be negative.

Revision A, of 9 May 1988

Mnemonic:

Form oj Request:

Initial Value:

If No Argument:

Explanation:

Chapter 6 - Tabs. Leaders, and Fields 77

Summary of the . fc Request

field character

.fcJ p

Field mechanism is off

Field mechanism is turned off.

Set the field delimiter to f, set the padding indicator to p (if specified) or to
the space character if p is not specified. In the absence of arguments, the
field mechanism is turned off.

Revision A. of 9 May 1988

7
Titles and Page Numbering

Titles and Page Numbering .. 81

7.1. Titles in Page Headers .. 81

7.2. Fonts and Point Sizes in Titles ... 83

7.3. . pc - Page Number Character ... 84

7.4. . t 1 Request - Three Parameters .. 85

7.1. Titles in Page Headers

7
Titles and Page Numbering

This is an area where things get tougher, because troff doesn't do any of this
automatically. Of necessity, some of this section is a cookbook, to be copied
literally until you get some experience.

Suppose you want a title at the top of each page, saying just

left top center top right top

There was a very early text formatter called roff, where you could say

.he 'left top'center top' right top'

.fo 'left bottom'center bottom'right bottom'

to get headers and footers automatically on every page. Alas, this doesn't work
in troff, which is a serious hardship for the novice. Instead you have to do a
lot of specification:

o You have to say what the actual title is (reasonably easy - you just use the
. t 1 request to specify the title).

o You have to specify when to print the title (also reasonably easy - you set a
trap to call a macro that actually does the work),

o and finally you have to say what to do at and around the title line (this is the
hard part).

Taking these three things in reverse order, first we define a . NP macro (for new
page) to process titles and the like at the end of one page and the beginning of the
next:

.de NP
'bp
'sp O.5i
.tl 'left top'center top'right top'
'sp O.3i

To make sure we're at the top of a page, we issue a 'begin page' request 'bp,
which skips to top-of-page (we'll explain the' shortly). Then we space down
half an inch (with the ' sp O. 5 i request), and print the title (the use of . t 1

81 Revision A. of 9 May 1988

82 Using nroff and troff

should be self explanatory -later we will discuss the title parameters), space
another 0.3 inches (with the' sp O. 3i request), and we're done.

To ask for . NP at the bottom of each page, we have to say something like 'when
the text is within an inch of the bottom of the page, start the processing for a new
page'. This is done with a 'when' request. wh:

(~.W_h_-l_iN_P ____________________ ~)
See Chapter 10 for a more detailed description of the . wh request. No dot (.) is
used before NP in the when request because in this case, we're specifying the
name of a macro, not calling a macro. The minus sign means measure up from
the bottom of the page, so '-1 i' means one inch from the bottom.

The . wh request appears in the input outside the definition of . NP; typically the
input would be

.de NP
definition of the NP macro

.wh -li NP

Now what happens? As text is actually being output, traff keeps track of its
vertical position on the page. After a line is printed within one inch from the bot
tom, the . NP macro is activated. In the jargon, the . wh request sets a trap at the
specified place, which is 'sprung' when that point is passed .. NP skips to the top
of the next page (that's what the 'bp was for), then prints the title with the
appropriate margins.

Why 'bp and ' sp instead of . bp and . sp? The answer is that. bp and . sp,
like several other requests, break the current line - that is, all the input text col
lected but not yet printed is flushed out as soon as possible, and the next input
line is guaranteed to start a new line of output. If we had used . bp or . spin the
. NP macro, a break would occur in the middle of the current output line when a
new page is started. The effect would be to print the left -over part of that line at
the top of the page, followed by the next input line on a new output line, some
thing like this:

last line but one at almost the bottom of the page
last line at the bottom of the

title on the bottom of the page

page break

Revision A, of 9 May 1988

Table 7-1

7.2. Fonts and Point Sizes
in Titles

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

Notes:

Chapter 7 - Titles and Page Numbering 83

title on the top of the next page

page.

This is not what we want. Using' instead of. for a request tells troff that no
break is to take place - the output line currently being filled should not be
forced out before the space or new page.

The list of requests that break lines is short and natural:

Requests that Cause a Line Break

Command Explanation

· bp Begin a new page
· br Break the current output line
· ce Center line(s)
· f i Start filling text lines
· n f Stop filling text lines
· s p Space vertically
· in Indent the left margin
· t i Temporary indent the left margin for the next line only

No other requests break lines, regardless of whether you use a . or a '. If you
really do need a break, add a . br (break) request at the appropriate place.

One other thing to beware of - if you're changing fonts or point sizes a lot, you
may find that if you cross a page boundary in an unexpected font or size, your
titles come out in that size and font instead of what you intended. Furthennore,
the length of a title is independent of the current line length, so titles will come
out at the default length of 6.5 inches unless you change it, which is done with
the .1 t (length of title) request.

Summary of the . 1 t Request

length of title

.It ±N

6.5 inches

Previous value

Set length of title to ±N. The line-length and the title-length are indepen
dent. Indents do not apply to titles; page-offsets do.

E, m (see Table A-2)

There are several ways to fix the problems of point sizes and fonts in titles. For

Revision A, of 9 May 1988

84 Using nroff and troff

7.3. . pc - Page Number
Character

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

the simplest applications, we can define the . NP macro to set the proper size and
font for the title, then restore the previous values, like this:

.de NP
'bp
'sp O.Si
. ft R \" set title font to Roman
.ps 10 \" and size to 10 point
.It 6i \" and length to 6 inches
.tl , left' center' right'
.ps \" revert to previous size
.ft P \" and to previous font
'sp 0.3i

This version of . NP does not work if the fields in the . t 1 request contain size or
font changes. What we would like to do in cases like this is remember the status
of certain aspects of the environment, change them to meet our needs for the time
being, and then restore them after we're done with the special stuff. This require
ment is satisfied by troff's environment mechanism discussed in Chapter 17,
Environments.

To get a footer at the bottom of a page, you can modify . NP so it does some pro
cessing before the 'bp request, or split the job so that there is a separate footer
macro invoked at the bottom margin and a header macro invoked at the top of the
page.

Output page numbers are computed automatically as each page is produced
(starting at 1), but no numbers are printed unless you ask for them explicitly. To
get page numbers printed, include the character % in the . tIline at the position
where you want the number to appear. For example

[.tl u_ % _u

centers the page number inside hyphens.

You can change the page number character with the . pc request.

Summary of the . pc Request

page-number character

.pe c

%

Off

Set the page-number character to c, or remove it if there is no c argument.
The page-number register remains %.

]

Revision A, of 9 May 1988

7.4. . t 1 Request - Three
Parameters

Hunting the Snark

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

Chapter 7 - Titles and Page Numbering 85

You can set the page number at any time with either. bp n, which immediately
starts a new page numbered n, or with . pn n, which sets the page number for the
next page but doesn't skip to the new page. Again, . bp +n sets the page number
to n more than its current value; . bp means . bp + 1.

The . t 1 (title) request automatically places three text fields at the left, center,
and right of a line (with a title-length specifiable via the . It (length of title)
request. The most common use for three-part titles is to put running headers and
footers at the top and bottom of pages just like those in this manual. In fact, the
. tl request may be used anywhere, and is independent of the nonnal text col-
lecting process. For example, we just placed a three-part title right here in the
text:

-85- Smiles and Soap

by typing the a three-part title request that looks like:

.tl 'Hunting the Snark'- % -'Smiles and Soap'

and you might notice that the page number in the formatted example is the same
as the page number for this page.

Summary of the . tl Request

title

. t 1 ' left' center' right'

Nothing

Nothing

The strings in the left, center, and right fields are respectively left-adjusted,
centered, and right-adjusted in the current title-length. Any of the strings
may be empty, and overlapping is pennitted. If the page-number character
(initially %) is found within any of the fields it is replaced by the current
page number having the fonnat assigned to register %. Any character may
be used as the string delimiter.

Revision A, of9 May 1988

8
t ro f f Input and Output

traff Input and Output .. 89

8.1. . so - Read Text from a File ... 89

8.2. . nx - Read Next Source File .. 91

8.3. Pipe Output to a Specified Program (nraff only) 91

8.4 .. rd - Read from the Standard Input .. 92

8.5. . ex - Exit from nraff or traff ... 94

8.6. . trn - Send Messages to the Standard Error File 94

8.1. . SO - Read Text
from a File

8
traff Input and Output

We now describe two troff requests that we omitted earlier, because their use
fulness is more apparent when you understand the troff command line. Nor
mally troff takes its input from the files given when it is called up. However
there are ways in which the formatter can be made to take part of its input from
elsewhere, using t r 0 f f requests embedded in the document text.

The . so request, which tells troff to switch over and take its source from the
named file. For example, suppose you have a set of macros that you have
defined, and you have them in a file called macros. We can call them up from
the troff command line:

hostname% troff macros document
hostname%

as we showed earlier, but it's a bit of a nuisance having to do this all the time.
Also, if only some of our documents use the macros, and others don't, it can be
difficult to remember which is which. An alternative is to make the first line of
the document file look like this:

(~_.s_o_m_a_c_r_o_s __ ~]
Now we can format the document by:

[
hostname% troff document J
hostname%
""'------------"'"

The first thing troff sees in the file document is the request. so macros
which tells it to read input from the file called macros. When it finishes taking
input from macros, troff continues to read the original file document.

Another way of using the . so request lets you format a complete document, held
in several files, by only giving one filename to the troff command. Let us
create a file called document containing:

89 Revision A, of 9 May 1988

90 Using nroff and troff

.so macros

.so section.l

.so section.2

.so section.3
and so on through the document until . ..

. so appendix.C

We can now format it with the traff command line:

hostname% troff document I 1pr
hostname%

This is a lot easier than typing all the filenames each time you format the docu
ment, and a lot less prone to error.

This technique is especially useful if your filenames reflect the contents of the
various sections, rather than the order in which they appear. For instance, look at
this file which describes a whole book (something like the one you are reading):

hostname% cat book
.so bookmacros
.so preface
.so intro
.so login
.so directs
.so stdio

\"Getting Started on the UNIX System
\"Directories and the File System
\"Commands, Processes, and Standard Files

<etc ... >
.so biblio \"Bibliography
hostname%

It is obviously much easier to fonnat the whole thing with a traff command
line like this:

hostname% troff book I 1pr
hostname%

than it would be if you had to supply all the filenames in the right order. Notice
that we used the comment feature of traff to tie chapter titles to filenames.

Revision A, of 9 May 1988

Mnemonic:

Form of Request:

Exp lanation:

8.2. . nx - Read Next
Source File

Mnemonic:

Form of Request:

If No Argument:

Explanation:

8.3. Pipe Output to a
Specified Program
(nro ff only)

Mnemonic:

Form of Request:

Explanation:

Chapter 8 - troff Input and Output 91

Summary of the . so Request

source

· so filename

Switch source file - the top input (file reading) level is switched to
filename. The sourced-in file is read directly and processed immediately
when the . so line is encountered. When the new file ends, input is again
taken from the original file. . s os may be nested.

Summary of the . nx Request

next

· nxfilename

end-of-file

Next file isfilename. The current file is considered ended, and the input is
immediately switched to filename. There is no return to the file containing
the . nx command.

A couple of examples of programs you might want you pipe your nroff output
to are lpr and col. Your source line might look like this:

(.Pi /usr/ucb/lpr J

or

(.pi /usr/bin/col

if you had formatted tables in your source file.

Summary of the . pi Request

pipe

· pi program_name

Pipe output to program (nro f f only). This request must occur before any
printing occurs. No arguments are transmitted to program.

J

Revision A, of 9 May 1988

92 Using nroff and troff

8.4. . rd - Read from the
Standard Input

Another troff request that switches input from the file you specify is the . rd
(read) request. The standard input can be the user's keyboard, a pipe, or a file.
The . rd request reads an insertion from the standard input. When troff
encounters the . r d request, it prompts for input by sounding the tenninal bell or
flashing the screen. A visible prompt can be given by adding an argument to
. rd, as we show in the example below.

Everything typed up to a blank line (two newline characters in a row) is inserted
into the text being formatted at that point. This can be used to 'personalize' form
letters. If you have an input file with this text:

.po 10

.nf

.in 20
14th February
.in 0
Dear
.rd who

will you be my Valentine?
If you will, give me a sign
(I like roses, I like wine) .

then when you format it, you will be prompted for input:

hostname% troff valentine I Ipr
who:Peter

hostname%

After typing the name Peter you have to press the RETURN key twice, since
troff needs a blank line to end input. The result offonnatting that file is:

Dear
Peter

14th February

will you be my Valentine?
If you will, give me a sign
(I like roses, I like wine) .

To get another copy of this for Bill, you just run the t ro f f command again:

hostname% troff valentine I Ipr
who:Bill

hostname%

and again for Joe, and for Manuel, and Louis, and Alphonse, and ...

Revision A. of 9 May 1988

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

Chapter 8 - troff Input and Output 93

Since traff takes input from the tenninal up to a blank line, you are not limited
to a single word, or even a single line of input. You can use this method to insert
addresses or anything else into form letters.

Summary of the . rd Request

read

.rdprompt

Not applicable

prompt=BEL

Read insertion from the standard input until two newlines in a row are
found. If the standard input is the user's keyboard, prompt (or a BEL) is
written onto the user's tenninal .. rd behaves like a macro, and arguments
may be placed after prompt. Use the standard way to access arguments in
macros (see Chapter 10.

If insertions are to be taken from the tenninal keyboard while output is being
printed on the terminal, the command line option -q will tum off the echoing of
keyboard input and prompt only with BEL. The regular input and insertion input
cannot simultaneously come from the standard input.

As an example, multiple copies of a form letter may be prepared by entering the
insertions for all the copies in one file to be used as the standard input, and caus
ing the file containing the letter to reinvoke itself using. nx (see the previous
section); the process would ultimately be ended by a . ex in the insertion file.
Example:

Letter File
Dear
.rd

.nx Letter

Names File
John

blank line
Bill
blank line
.ex

To put everything together, you could use:

(hostname% cat Names I troff Letter
J

Revision A, of 9 May 1988

94 Using nroff and troff

8.5 .. ex - Exit from
nroff or troff

Mnemonic:

Form of Request:

Explanation:

8.6. . tm - Send Messages
to the Standard Error
File

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

Summary of the . ex Request

exit

. ex prompt

Exit from nro f f or t ro f f. Text processing is terminated exactly as if all
input had ended.

The . tm (terminal message) request displays a message on the standard error
file. The request looks like:

(.tm tell me some good news]

and when troff or nroff encounters this in the input file, it displays the string

(~t_e_l_l __ m_e __ s_o_m_e __ g_O_O_d __ n_e_w_s __________________________________ ~]
on the standard error file. This request has been used in older versions of the
-ms macro package to rebuke the user when (for instance) an abstract for a paper
was longer than a page. Other macro packages use the . tm request for assisting
in generating tables of contents and indices and such supplementary material.

Summary of the . tm Request

terminal message

. tmstring

Not applicable

Display a newline

After skipping initial blanks, string (rest of the line) is read in copy mode
and written on the user's terminal.

Revision A. of 9 May 1988

9
Strings

Strings ... 97

9.1 .. ds - Define Strings .. 98

9.2. . as - Append to a String .. 99

9.3. Removing or Renaming String Definitions .. 101

9
Strings

Obviously if a paper contains a large number of occurrences of an acute accent
over a letter 'e' , typing \ 0 " e \ ,,, for each e would be a great nuisance. (See
Chapter 12 for more detailed infonnation on drawing lines and characters.

Fortunately, troff provides a way that you can store an arbitrary collection of
text in a string, and thereafter use the string name as a shorthand for its contents.
Strings are one of several t ro f f mechanisms whose judicious use lets you type
a document with less effort and organize it so that extensive fonnat changes can
be made with few editing changes. A reference to a string is replaced in the text
by the string definition.

A string is a named sequence of characters, not including a newline character,
that may be interpolated by name at any point in your text. Note that names of
trof f requests, names of macros, and names of strings all share the same name
list. String names may be one or two characters long and may usurp previously
defined request, macro, or string names.

You create a string (and give it an initial value) with the . ds (define string)
request. You can later add more characters to the end of the string by using the
. as (append to string) request.

String names may be either one or two characters long. You get the value of a
string placed in the text, where it is said to be interpolated, by using the notation:

(_____ '*X _____ -----")

for a one-character string named x, and the more complicated notation:

(* (xx]
for a two-character string named xx.

String references and macro invocations may be nested.

97 Revision A. of 9 May 1988

98 Using nroff and troff

9.1 .. ds - Define Strings You create a string (and define its initial value) with the . ds (define string)
request The line

(.ds e \o"e\'"

defines the string e to have the value \ a " e \ ,,,

You refer to them with the sequence \ * x for one-character names or \ * (xy for
two-character names. Thus, to get telephone, given the definition of the string e
as above, we can say t*el*ephone.

As another live example, in the section on ligatures in Chapter 5 , Fonts and Spe
cial Characters, we noted that traff doesn't know about the Scandinavian
ligatures - you have to decide for yourself how to define them. Here are our
definitions of the strings for those ligatures:

.ds ae a\h'-(\w'a'u*4/10)'e

.ds Ae A\h'-(\w'A'u*4/10)'E

.ds oe o\h'-(\w'o'u*4/10)'e

.ds Oe O\h'-(\w'O'u*4/10)'E

See the section entitled "\ h Function - Arbitrary Horizontal Motion" in
Chapter 12 for a discussion on what the \ h constructs are doing in the string
definitions above. Having defined the strings, all you have to do is type the
string references like this:

... the Scandinavian ligatures *(oe, *(ae, *(Oe, and *(Ae ...

in order to get ... the Scandinavian ligatures re, 3!, (E, and IE ... into your
stream of text.

If a string must begin with spaces, define it as

J

(.ds xx " text
J

The double quote character signals the beginning of the definition. There is no
trailing quote - the end of the line tenninates the string.

A string may actually be several lines long; iftraff encounters a \ at the end
of any line, the backslash and the newline characters are disregarded resulting in
the next line being added to the current one. So you can make a long string sim
ply by ending each line except the last with a backslash:

.ds xx this \
is a very \
long string

Strings may be defined in tetms of other strings, or even in tenns of themselves.

Revision A. of 9 May 1988

Mnemonic:

Form of Request:

Initial Value:

IJ No Argument:

Exp lanation:

9.2 .. as - Append to a
String

Chapter 9 - Strings 99

Summary of the . ds Request

define string

. ds xx string

Not applicable

Ignored

Define a string xx containing string. Any initial double-quote in string is
stripped off to pennit initial spaces.

The . as (append to string) request adds characters to the end of a string. You
use the . a s request like this:

(. as xx string-of-characters

where string-oJ-characters is appended to the end of whatever is already in the
string xx.

Note that the string mentioned in a . a s request is created if it didn't already
exist, so in that respect an initial. as request acts just like a . ds request.

For example, here's a short fragment from the . H macro that was used to gen
erate the section numbers in this document. The . H macro is called up like

]

[~_.H __ le_ve_l_-n_u_mV __ er __ "_Te_x_t_of_t_h_e_n_·d_e_" ________________________________ ~]
where level-number is 1, 2, 3, ... to indicate that this is a first, second,
third, ... level heading. The . H macro keeps track of the various section
numbers via a bunch of number registers HI through H5, and they are tested for
and appended to the SN string if appropriate. For example:

Revision A, of9 May 1988

100 Using nroff and troff

. ds SN \\n(Rl . set the initial section number string

.if \\n(NS>l .as SN \\n(R2. append H2 if needed

.if \\n(NS>2 .as SN \\n(R3. append H3 if needed

.if \\n(NS>3 .as SN \\n(R4. append H4 if needed

.if \\n(NS>4 .as SN \\n(RS. append H5 if needed

more processing to compute indentations and such . ..

*(SN\\ \\ \t\c
\&\\$2

Now output the text

and yet more processing . ..

Let's unscramble that mess. The essential parts are the initial line that says:

.ds SN \\n(Rl. set the initial section number string

which sets the SN (section number) string to the value of the HI number register
that counts chapter level numbers. Then the following four lines essentially all
perform a test that says:

. if the level-number is greater than N, append the next higher sec
tion counter to the string. That is, if the current section number is
greater than 2, we append the value of the level 3 counter, then if the
section number is greater than 3, we append the value of the level 4
counter, and so on.

Finally, the built-up SN string, followed by the text of the title, gets placed into
the output text with the lines that read:

*(SN\\ \\ \t\c
\&\\$2

Now output the text

And in fact we can use the mechanisms that exist to play games like that because
we are using a macro package to format this document, and those number regis
ters are available to us. So we can define a string like this:

(.ds xx \n(H!.
J

and interpolate that string like this:

(__*_(X_X __ ~]
to get the value

Revision A, of 9 May 1988

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

9.3. Removing or
Renaming String
Definitions

Chapter 9 - Strings 101

9.

printed in the text. Now we can append the rest of the section counters to that XX
string like this (without caring whether they have any values):

(.as xx \n(H2.\n(H3.\n(H4.\n(HS.

and then when we interpolate that string we get this:

9.2.0.0.0.

which, if you look, should be the section number of the stuff you are now read
ing.

Summary of the . as Request

append to string

. as xx string

Not applicable

Ignored

Append string to string xx (append version of . ds). The string xx is created
if it didn't already exist

Strings (just like macros) can be renamed with the . rn (rename) request, or can
be removed from the namelist with the . rm (remove) request. Refer to Chapter
10 for more detailed descriptions of the . rn and . rm commands.

J

Revision A, of 9 May 1988

10
Macros, Diversions, and Traps

Macros, Diversions, and Traps ... 105

10.1. Macros ... 105

· de - Define a Macro ... 105

· rm - Remove Requests, Macros, or Strings .. 107

· rn - Rename Requests, Macros or Strings .. 108

Macros With Arguments .. 108

· am - Append to a Macro .. 112

Copy Mode Input Interpretation ... 112

10.2. Using Diversions to Store Text for Later Processing 112

· di - Divert Text ... 113

· da - Append to a Diversion ... 114

10.3. Using Traps to Process Text at Specific Places on a Page 114

· wh - Set Page or Position Traps ... 115

· ch - Change Position of a Page Trap ... 116

· dt - Set a Diversion Trap ... 116

· it - Set an Input-Line Count Trap .. 116

• ern - Set the End of Processing Trap ... 117

10.1. Macros

. de - Define a Macro

10
Macros, Diversions, and Traps

Before we can go much further in nr 0 f f or t rof f, we need to learn something
about the macro facility. In its simplest form, a macro is just shorthand notation
similar to a string. A macro is a collection of several separate troff commands
which, when bundled together, achieves (sometimes complex) fonnatting when
the macro is invoked. Whereas a string is somewhat limited because its
definition is specific, a macro can interpret arguments that can change its
behavior from one invocation to the next.

A macro is a named set of arbitrary lines that may be invoked by name or with a
trap. Macros are created by . de and . di requests, and appended to by . am and
· da requests; . di and . da requests cause nonnal output to be stored in a
macro. A macro is invoked in the same way as a request; a control line beginning
· xx interpolates the contents of macro xx. The remainder of the line may contain
up to nine arguments. Request, macro, and string names share the same name
list. Macro names may be one or two characters long and may usurp previously
defined request, macro, or string names. String references and macro invocations
may be nested. Any of these entities may be renamed with a . rn request or
removed with a . rm request.

Suppose we want every paragraph to start in exactly the same way - with a
space and a temporary indent of two ems. We show a (very simplified) version
of the . PP (paragraph) macro from the -ms macro package:

[
.sp]

~.t_i+_2m ____________________ ~

Then to save typing, we would like to collapse these into one shorthand line, a
troff 'request' like

(.PP

that would be treated by t ro f f exactly as if you had typed:

[.sp
.ti +2m

· PP is called a macro. The way we tell troff what. PP means is to define it

J

]

105 Revision A, of 9 May 1988

106 Using nroff and troff

with the . de (define) request:

.de PP

.sp

.ti +2m

The first line names the macro (we used. pp) which is a standard macro notation
for 'paragraph'. It is common practice to use upper-case names for macros so
that their names don't conflict with ordinary traff requests. The last line. .
marks the end of the definition. In between the beginning and end of the
definition, is the text (often called the replacement text), which is simply
inserted whenever troff sees the request or macro call

(.PP

The definition of . PP has to precede its first use; undefined macros are simply
ignored. Names are restricted to one or two characters.

Using macros for commonly-occurring sequences of requests is critically impor
tant. Not only does it save typing, but it makes later changes much easier. Sup
pose we decide that the paragraph indent should be greater, the vertical space
should be less, and the font should be Roman. Instead of changing the whole
document, we need only change the definition of the . PP macro to something
like

.de PP \" paragraph macro

.sp 2p

.ti +3m

.ft R

and the change takes effect everywhere we used . PP .

The notation \ " is an in-line t r a f f function that means that the rest of the line
is to be ignored. We use it here to add comments to the macro definition (a wise
idea once definitions get complicated).

J

Revision A, of 9 May 1988

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

. rm - Remove Requests,
Macros, or Strings

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

Summary of the . de Request

define

. de xxyy

Not applicable

.yy= ..

Chapter 10 - Macros, Diversions, and Traps 107

Define or redefine the macro xx. The contents of the macro begin on the
next input line. Input lines are copied in copy mode until the definition is
tenninated by a line beginning with . yy, whereupon the macro yy is called.
In the absence ofyy, the definition is tenninated by a line beginning with
'. .'. A macro may contain . de requests provided the tenninating macros
differ or the contained definition tenninator is concealed. '. .' can be con
cealed as \ \. . which will copy as \. . and be reread as '. .' .

Summary of the . rm Request

remove

.rmxx

Not applicable

Ignored

Remove request, macro, or string. The name xx is removed from the name
list and any related storage space is freed. Subsequent references will have
no effect.

Revision A, of 9 May 1988

108 Using nroff and traff

. rn - Rename Requests,
Macros or Strings

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

Macros With Arguments

Summary of the . rn Request

rename

. rn xxyy

Not applicable

Ignored

Rename request, macro, or string xx to yy. Ifyy exists, it is removed first.

Refer to Chapter 9, Strings for information on defining strings.

As another example of macros, consider these two, which start and end a block of
offset, unfilled text, like most of the examples in this paper:

.de BS \" start indented block

.sp

.nf

.in +O.3i

.de BE \" end indented block

.sp

.fi

.in -O.3i

Now we can surround text like

Copy to:
JobnDoe
Richard Roberts
Stanley Smith

by the requests. BS and . BE, and it will come out as it did above. Notice that
we indented by an incremental amount: . in +0. 3i instead of . in o. 3i.
This way we can nest our uses of . BS and . BE to get blocks within blocks.

If later on we decide that the indent should be half an inch, then it is only neces
sary to change the definitions of . BS and . BE, not the whole paper.

The next step is to define macros that can change from one use to the next
according to parameters supplied as arguments to the macro. To make this work,
we need two things: first, when we define the macro, we have to indicate that
some parts of it will be provided as arguments when the macro is called. Then
when the macro is called we have to provide actual arguments to be plugged into
the definition.

Revision A, of 9 May 1988

Chapter 10 - Macros, Diversions, and Traps 109

When a macro is invoked by name, the remainder of the line can contain up to
nine arguments. The argument separator is the space character, and arguments
may be surrounded by double-quotes to pennit embedded space characters. Pairs
of double-quotes may be embedded in double-quoted arguments to represent a
single double-quote. If the desired arguments won't fit on a line, a concealed
newline (\) may be used to continue the arguments on the next line.

When a macro is invoked the input level is pushed down and any arguments
available at the previous level become unavailable until the macro is completely
read and the previous level is restored. A macro's own arguments can be inter
polated at any point within the macro with \ $N, which interpolates the Nth argu
ment (l~~9). If an invoked argument doesn't exist, a null string results. For
example, the macro xx may be defined by

.de xx \"begin definition
Today is \\$1 the \\$2.

\"end definition

and called by

(.XX Monday 14th

to produce the text

(Today is Monday the 14th.

Note that the \$ was concealed in the definition with a preceding backslash (\).
The number of currently available arguments is in the . $ register.

J

J

No arguments are available at the top (non-macro) level in this implementation.
Because string referencing is implemented as an input-level push-down, no argu
ments are available from within a string. No arguments are available within a
trap-invoked macro.

Arguments are copied in copy mode onto a stack where they are available for
reference. The mechanism does not allow an argument to contain a direct refer
ence to a long string (interpolated at copy time) and it is advisable to conceal
string references (with an extra \) to delay interpolation until argument reference
time.

Let's illustrate by defining a macro. SM that will print its argument two point
sizes smaller than the surrounding text. That is, the macro call

(.SM UNIX

will produce UNIX.

The definition of . SM is

J

Revision A, of9 May 1988

110 Using nroff and troff

[_~_~_~2_~_~_$_1_S_+_2 ____________________________________ l
Within a macro definition, the symbol \ \ $n refers to the nth argument that the
macro was called with. Thus \ \ $1 is the string to be placed in a smaller point
size when . SM is called.

As a slightly more complicated version, the following definition of . SM pennits
optional second and third arguments that will be printed in the nonnal size:

[

.de SM

~~$3\S-2\\$1\S+2\\$2

Arguments not provided when the macro is called are treated as empty, so

1

(.SM UNIX) ,]
produces

UNIX),

while

[.SM UNIX) . _______________ J
produces

(UNIX).

It is convenient to reverse the order of arguments because trailing punctuation is
much more common than leading.

The following macro. ED is the one used to make the 'bold Roman' we have
been using for troff request names in text. It combines horizontal motions,
width computations, and argument rearrangement.

.de BD
\&\\$3\fl\\$1\h'-\w'\\$1'u+lu'\\$1\fP\\$2

The \ h and \ w commands need no extra backslash, as we discuss in the section
Copy Mode Input Interpretation. The \ & is there in case the argument begins
with a period.

Two backslashes are needed with the \ \ $ n commands, though, to protect one of
them when the macro is being defined. Perhaps a second example will make this
clearer. Consider a macro called. SH which produces section headings like the
ones in this manual, with the sections numbered automatically, and the title in

Revision A, of 9 May 1988

Chapter 10 - Macros, Diversions, and Traps 111

bold in a smaller size. The use is

(.SH "Section title ... n

If the argument to a macro is to contain spaces, then it must be surrounded by
double quotes, unlike a string, where only the leading quote is permitted.

Here is the definition of the . SH macro:

.nr SH 0 \" initialize section number

.de SH

.sp O.3i

.ft B

.nr SH \\n(SH+l\" increment number

.ps \\n(PS-l \" decrease PS
\ \n (SH. \ \$1 \" number. title
.ps \\n(PS \" restore PS
.sp O.3i
.ft R

The section number is kept in number register SH, which is incremented each
time just before it is used. A number register may have the same name as a
macro without conflict but a string may not.

We used \ \n (SH instead of \n (SH and \ \n (PS instead of \n (PS. If we had
used \n (SH, we would get the value of the register at the time the macro was
defined, not at the time it was called. If that's what you want, fine, but that isn't
the case here. Similarly, by using \ \n (PS, we get the point size at the time the
macro is called.

As an example that does not involve numbers, recall our . NP macro which had:

(.tl 'left'center'right'

We could make these into parameters by using instead

(.tl '*(LT'*(CT'*(RT'

so the title comes from three strings called LT, CT and RT for left title, center
title, and right title, respectively. If these are empty, then the title will be a blank
line. Normally CT would be set with something like

)

J

)

(___ .dS _CT _-% -_______)

to give just the page number between hyphens, but a user could supply private
definitions for any of the strings.

Revision A, of 9 May 1988

112 Using nroff and troff

. am - Append to a Macro

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

Copy Mode Input
Interpretation

10.2. Using Diversions to
Store Text for Later
Processing

Summary of the . am Request

append to macro

.amxxyy

Not applicable

.yy=. •

Append to macro xx (append version of . de).

During definition and extension of strings and macros (not by diversion) the
input is read in copy mode. The input is copied without interpretation except
that:

o The contents of number registers indicated by \ n are interpolated.

o Strings indicated by \ * are interpolated.

o Arguments indicated by \ $ are interpolated.

o Concealed newlines preceded by backslash (\ newline) are eliminated.

o Comments indicated by \ n are eliminated.

o \ t and \a are interpreted as ASCII horizontal tab and SOH respectively (see
Chapter 6, Tabs, Leaders, and Fields for more information).

o \ \ is interpreted as \

o \ . is interpreted as " • "

These interpretations can be suppressed by adding another \ (backslash) to the
beginning of the command. For example, since \ \ maps into a \, \ \ n will copy
as \ n which will be interpreted as a number register indicator when the macro or
string is reread.

There are numerous occasions in page layout when it is necessary to store some
text for a period of time without actually printing it. Footnotes are the most
obvious example: the text of the footnote usually appears in the input well
before the place on the page where it is to be printed is reached. In fact, the place
where it is output normally depends on how big it is, which implies that there
must be a way to process the footnote at least enough to decide its size without
printing it.

traff provides a mechanism called a diversion for doing this processing. A
diversion is very similar to a macro and in fact uses the same mechanisms as the
macro facility. Any part of the output may be sent into a diversion instead of
being printed, and then at some convenient time the diversion may be brought
back into the input.

Revision A. of9 May 1988

. di - Divert Text

Chapter 10 - Macros, Diversions, and Traps 113

The request . di .xy begins a diversion - all subsequent output is collected into
the diversion called xy until a . di request with no argument is encountered,
which tenninates the diversion. The processed text is available at any time
thereafter, simply by giving the request:

('---oxy ______ J
The vertical size of the last finished diversion is contained in the built-in number
register dn.

As a simple example, suppose we want to implement a 'keep-release' operation,
so that text between the requests . KS and . KE will not be split across a page
boundary (as for a figure or table). Clearly, when a . KS is encountered, we have
to begin diverting the output so we can find out how big it is. Then when a . KE

is seen, we decide whether the diverted text will fit on the current page, and print
it either there if it fits, or at the top of the next page if it doesn't. So:

.de KS \" start keep

.br \" start fresh line

.ev 1 \" collect in new environment

.fi \" make it filled text

.di XX \" collect in XX

.de KE \" end keep

.br \" get last partial line

.di \" end diversion

.if \ \n (dn>=\ \n (.t .bp \" bp if doesn't fit

.nf \" bring it back in no-fill

.xx \" text

.ev \" return to normal environment

Recall that number register n 1 is the current position on the output page. Since
output was being diverted, this remains at its value when the diversion started.
dn is the amount of text in the diversion; . t (another built-in register) is the dis
tance to the next trap, which we assume is at the bottom margin of the page. If
the diversion is large enough to go past the trap, the . if is satisfied, and a . bp
is issued. In either case, the diverted output is then brought back with It . xx.
trof f will do no further processing on it.

This is not the most general keep-release, nor is it robust in the face of all con
ceivable inputs, but it would require more space than we have here to write it in
full generality. This section is not intended to teach everything about diversions,
but to sketch out enough that you can read existing macro packages with some
comprehension.

Processed output may be diverted into a macro for purposes such as footnote pro
cessing or determining the horizontal and vertical size of some text for condi
tional changing of pages or columns. A single diversion trap may be set at a
specified vertical position. The number registers dn and dl respectively contain
the vertical and horizontal size of the most recently ended diversion.

Revision A, of9 May 1988

114 Using nroff and troff

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

Notes:

. da - Append to a Diversion

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

10.3. Using Traps to
Process Text at
Specific Places on a
Page

Processed text that is diverted into a macro retains the vertical size of each of its
lines when reread in nofill mode regardless of the current V. Constant-spaced
(. cs) or emboldened (. bd) text that is diverted can be reread correctly only if
these modes are again or still in effect at reread time. One way to do this is to
embed in the diversion the appropriate. cs or . bd requests with the 'tran
sparent' mechanism described in the chapter Introduction to nroff and troff.

Diversions may be nested and certain parameters and registers are associated
with the current diversion level (the top non-diversion level may be thought of as
the Oth diversion level). These are the diversion trap and associated macro, no
space mode, lhe internally-saved marked place (see .rnk and . rt), the current
vertical place (. d register), the current high-water text baseline (. h register), and
the current diversion name (. z register).

Summary of the . di Request

divert

.dixx

Not applicable

End of diversion

Divert output to macro xx. Normal text processing occurs during diversion
except that page offsetting is not done. The diversion ends when the request
. di or . da is encountered without an argument; extraneous requests of this
type should not appear when nested diversions are being used.

D (see Table A-2)

Summary of the . da Request

append to diversion

.daxx

Not applicable

End of diversion

Append to diversion xx. This is the diversion equivalent of the . am (append
to macro) request.

Three types of trap mechanisms are available, namely page traps, diversion
traps, and input-line-count traps.

Macro-invocation traps may be planted using the . wh (when) request at any page
position including the top. This trap position may be changed using the . ch
(change) request. Trap positions at or below the bottom of the page have no
effect unless or until moved to within the page or rendered effective by an

Revision A, of 9 May 1988

. w h - Set Page or Position
Traps

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

Notes:

Chapter 10 - Macros, Diversions, and Traps 115

increase in page length.

Two traps may be planted at the same position only by first planting them at dif
ferent positions and then moving one of the traps; the first planted trap will con
ceal the second unless and until the first one is moved. If the first one is moved
back, it again conceals the second trap.

The macro associated with a page trap is automatically invoked when a line of
text is output whose vertical size reaches or 'sweeps past' the trap position.
Reaching the bottom of a page springs the top-of-page trap, if any, provided there
is a next page.

The distance to the next trap position is available in the . t register; if there are
no traps between the current position and the bottom of the page, the distance
returned is the distance to the page bottom.

A macro-invocation trap effective in the current diversion may be planted using
the . dt (diversion trap) request. The . t register works in a diversion; if there is
no subsequent trap a large distance is returned. For a description of input-line
count traps, see the . it request below .

Summary of the . wh Request

when

.whNxx

Not applicable

Not applicable

Install a trap to invoke xx at page position N; a negative N is interpreted
with respect to the page bottom. Any macro previously planted at N is
replaced by xx. A zero N refers to the top of a page. In the absence of xx,
the first-found trap at N, if any, is removed.

v (see Table A-2)

+~t!! Revision A, of 9 May 1988

116 Using nroff and troff

· ch - Change Position of a
Page Trap

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

Notes:

· dt - Set a Diversion Trap

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

Notes:

· it - Set an Input-Line
Count Trap

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

Notes:

Summary of the . ch Request

change trap

.chxxN

Not applicable

Not applicable

Change the trap position for macro xx to be N. In the absence of N, the trap,
if any, is removed.

v (see Table A-2)

Summary of the . dt Request

diversion trap

.dtNxx

Not applicable

Tum off diversion trap

Install a diversion trap at position N in the current diversion to invoke macro
xx. Another . dt will redefine the diversion trap. If no arguments are
given, the diversion trap is removed.

D, v (see Table A-2)

Summary of the . it Request

input-line-count trap

.it Nxx

Not applicable

Tum off trap

Set an input-line-count trap to invoke the macro xx after N lines of text input
have been read (control or request lines don't count). The text may be in
line text or text interpolated by in-line or trap-invoked macros.

E (see Table A-2)

Revision A, of9 May 1988

. em - Set the End of
Processing Trap

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Exp lanation:

Summary of the . em Request

end macro

. em xx

Not applicable

No trap installed

Chapter 10 - Macros, Diversions, and Traps 117

Call the macro xx when all input has ended. The effect is the same as if the
contents of xx had been at the end of the last file processed.

+~,!! Revision A, of 9 May 1988

11
Number Registers

Number Registers ... 121

11.1. . nr - Set Number Registers ... 121

11.2. Auto-Increment Number Registers ... 123

11.3. Arithmetic Expressions with Number Registers ... 124

11.4. . af - Specify Format of Number Registers .. 125

11.5 .. rr - Remove Number Registers ... 127

11.1. . nr - Set Number
Registers

11
Number Registers

In a programmable text formatter such as troff, you need a facility for storing
numbers somewhere, retrieving the numbers, and for doing arithmetic on those
numbers. trof f meets this need by providing things called number registers.
Number registers give you the ability to define variables where you can place
numbers, retrieve the values of the variables, and do arithmetic on those values.
Number registers, like strings and macros, can be useful in setting up a document
so it is easy to change later. And of course number registers serve for any sort of
arithmetic computation.

Number registers, just like strings, have one- or two-character names. They are
set by the . nr (number register) request, and are referenced anywhere by \ n x
(one-character name) or \n (.xy (two-character name). When you access a
number register so that its value appears in the printed text, the jargon says that
you have interpolated the value of the number register.

A variety of parameters are available to the user as predefined, named number
registers (see Appendix D). In addition, users may define their own named regis
ters. Register names are one or two characters long and do not conflict with
request, macro, or string names. Except for certain predefined read-only regis
ters, a number register can be read, written, automatically incremented or decre
mented, and interpolated into the input in a variety of formats. One common use
of user-defined registers is to automatically number sections, paragraphs, lines,
etc. A number register may be used any time numerical input is expected or
desired and may be used in numerical expressions.

troff defines several pre-defined number registers listed in Appendix D.
Among them are % for the current page number, nl for the current vertical posi
tion on the page, dy, rna, and yr for the current day, month and year (see Table
D-l) for a complete list); and. s and . f for the current size and font - the font
is a number from 1 to 4. Any of these number registers can be used in computa
tions like any other register, but some, like. s and . f, cannot be changed with a
. nr request because they are "read only" (see Table D-2) for a complete list).

You create and modify number registers using the . nr (number register) request.
In its simplest form, the . nr request places a value into a number register - the
register is created if it doesn't already exist. The . nr request specifies the name
of the number register, and also specifies the initial value to be placed in there.
So the request

121 Revision A. of 9 May 1988

122 Using nroff and troff

(.nr PD 1.5v

would be a request to set a register called PD (which we might know as 'Para
graph Depth' if we were writing a macro package) to the value 1.5v (l.5 of
troff's vertical units).

As an example of the use of number registers, in the -IDS macro package, most
significant parameters are defined in tenus of the values of a handful of number
registers (see the chapter "Formatting Documents with the -ms Macros" in F or
matting Documents). These include the point size for text, the vertical spacing,
and the line and title lengths. To set the point size and vertical spacing for the
following paragraphs, for example, a user may say:

(

.nr PS 10
.. nr VS 12

The paragraph macro . PP is defined (roughly) as follows:

.de PP

.ps \\n(PS \" reset size

.vs \\n(VSp \" spacing

.ft R \" font

.sp O.5v \" half a line

.ti +3m

This sets the font to Roman and the point size and line spacing to whatever
values are stored in the P S and vs number registers.

Why are there two backslashes? When troff originally reads the macro
definition, it peels off one backslash to see what's coming next. To ensure that
another is left in the definition when the macro is used, we have to put two
backslashes in the definition. If only one backslash is used, point size and verti
cal spacing will be frozen at the time the macro is defined, not when the macro is
used.

Protecting by an extra layer of backslashes is only needed for \n, \ *, \$, and \
itself. Things like \ s, \ f, \ h, \ v, and so on do not need an extra backslash,
since they are converted by t ro f f to an internal code immediately upon being
seen

]

]

Revision A, of9 May 1988

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

Notes:

11.2. Auto-Increment
Number Registers

Summary of the . nr Request

number register

.nrR±NM

Not applicable

Ignored

Chapter II-Number Registers 123

Assign the value ±N to number register R, with respect to the previous
value, if any. Set the increment for auto-incrementing to M.

u (see Table A-2)

When you set a number register with the . nr request, you can also specify an
additional number as an auto-increment value - that is, the number is added to
the number register every time you access the number register. You specify the
auto-increment value with a request such as:

(,---onr _sn 0_1 _____]

to specify a (hypothetical) section number register that starts off with the value 0
and is incremented by 1 every time you use it. This might be applicable (for
instance) to numbering the sections of a document automatically - something
you might expect a computer to do for you. You might also define a numbered
list macro that would clock up the item number every time you added a new list
item.

Here's a very quick and dirty example of the use of auto-incrementing a number
register:

.nr en -1 2

the odd numbers \n+(cn, \n+(cn, \n+(cn, \n+(cn, \n+(cn, \n+(cn,

When we format the above sequence, we get the following:

... the odd numbers 1,3,5,7,9, 11, ...

The table below shows the effects of accessing the number registers x and .xx
after a . nr request that sets them to the value N with an auto-increment value of
M.

Revision A, of 9 May 1988

124 Using nroff and troff

Table 11-1 Access Sequences for Auto-incrementing Number Registers

11.3. Arithmetic
Expressions with
Number Registers

Request
Access Effect on Value

Sequence Register Interpolated

.nr x N M \nx none N

.nr XX N M \n (xx none N

.nr x N M \n+x x incremented by M N+M

.nr x N M \n-x x decremented by M N-M

.nr xx N M \n+ (xx xx incremented by M N+M

.nr xx N M \n-(xx xx decremented by M N-M

Arithmetic expressions can appear anywhere that a number is expected. As a
trivial example,

(.nr PS \\n(PS-2]

decrements the value in the PS macro by 2.

Expressions can use the arithmetic operators and logical operators as shown in
the table below. Parts of an expression can be surrounded by parentheses.

Table 11-2 Arithmetic Operators and Logical Operators for Expressions

Arithmetic Operator Meaning

+ Addition
- Subtraction
/ Division

* Multiplication
% Modulo.

Logical Operator Meaning

< Less than
> Greater than

<= Less than or equal to
>= Greater than or equal to

= or = = Equal to
& and
: or

Except where controlled by parentheses, evaluation of expressions is left-to-right
- there is no operator precedence .

• \sun ,~ microsystems
Revision A. of 9 May 1988

11.4 .. af - Specify
Format of Number
Registers

Chapter 11 - Number Registers 125

Although the arithmetic we have done so far has been straightforward, more
complicated things are somewhat tricky. First, number registers hold only
integers. traff arithmetic uses truncating integer division. Second, in the
absence of parentheses, evaluation is done from left to right without any operator
precedence (including relational operators). Thus

7*-4+3/13

becomes' -1'. Number registers can occur anywhere in an expression, and so
can scale indicators like p, i, In, and so on (but no spaces). Although integer
division causes truncation, each number and its scale indicator is converted to
machine units (1/432 inch) before any arithmetic is done, so 1 i/2u evaluates to
O.Si correctly.

The scale indicator u often has to appear where you would not expect it - in
particular, when arithmetic is being done in a context that implies horizontal or
vertical dimensions. For example,

[.11 7 /2i

would seem obvious enough - 3.5 inches. Sorry - remember that the default
units for horizontal parameters like the .11 request are ems. So that expression
is really '7 ems / 2 inches', and when translated into machine units, it becomes
zero. How about

(.11 7i /2

Still no good-the '2' is '2 ems', so '7i{2' is small, although not zero. You
must use

(.11 7i/2u

So again, a safe rule is to attach a scale indicator to every number, even con
stants.

]

]

]

For arithmetic done within a . nr request, there is no implication of horizontal or
vertical dimension, so the default units are 'units', and 7i/2 and 7i/2u mean the
same thing. Thus

[

.nr 11 7i/2 J
_._1_1 __ _\n __ <I_I_U __ __

does just what you want, so long as you don't forget the u on the .11 request.

When you use a number register as part of the text, the contents of the register
are said to be interpolated into the text at that point. For example, you could use
the following sequence:

Revision A, of 9 May 1988

126 Using nroff and troff

.nr xy 567

the value of the \flxy\fP number register is: \n(xy.

and when you fonnatted that sequence, it would appear as:

... the value of the xy number register is: 567

When interpolated, the value of the number register is read out as a decimal
number. You can change this fonnat by using the . af (assign fonnat) request to
get things like Roman numerals or sequences of letters. Here is the example of
the auto-incrementing section above, but with the interpolation fonnat now set
for lower-case Roman numerals:

.nr en -1 2

.af en i

the odd Roman numerals \n+(en, \n+(en, \n+(en, \n+(en, \n+(en, \n+(en,

When we fonnat the above sequence, we get the following:

:: : the odd Roman numerals L iii, v, vii, ix. xi. :::

A decimal fonnat having N digits specifies a field width of N digits.

Read-only number registers and the width function are always decimal.

The table below shows the different fonnats you can apply to a number register
when it is interpolated.

Table 11-3 Interpolation Formats for Nwnber Registers

Format Description
Numbering
Sequence

1 decimal 0, 1,2, 3,4,5, ...
001 decimal with leading zeros 000, 001, 002, 003, 004, 005, ...

i lower-case Roman numerals 0, i, ii, iii, iv, v, ...
I upper-case Roman numerals 0, I, II, III, IV, V, ...
a lower-case letters 0, a, b, c, ... aa, ab, ... aaa, ...
A upper -case letters 0, A, B, C, ... AA, AB, ... AAA, ...

Revision A, of 9 May 1988

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

11.5. . rr - Remove
Number Registers

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

Chapter 11- Number Registers 127

Summary of the . af Request

assign fonnat

.afR c

Arabic

Ignored

Assign fonnat c to register R.

If you create many number registers dynamically, you may have to remove
number registers that you aren't using any more to recapture internal storage
space for newer registers. You remove a number register with the . rr (remove
register) request:

(.rr xy

removes the xy number register from the list.

Summary of the . rr Request

remove register

.rrR

Not applicable

Ignored

Remove register R. If many registers are being created dynamically, it may
become necessary to remove no-longer-used registers to recapture internal
storage space for newer registers.

]

Revision A. of 9 May 1988

12
Drawing Lines and Characters

Drawing Lines and Characters ... 131

12.1. \ u and \d Functions - Half-Line Vertical Movements 131

12.2. Arbitrary Local Horizontal and Vertical Motions 132

\ v Function - Arbitrary Vertical Motion .. 132

\ h Function - Arbitrary Horizontal Motion .. 133

12.3. \ 0 Function - Digit-Size Spaces .. 134

12.4. '\ 'Function - Unpaddable Space ... 136

12.5. \ I and \ Functions - Thick and Thin Spaces 136

12.6. \& Function-Non-Printing Zero-Width Character 137

12.7. \0 Function - Overstriking Characters ... 138

12.8. \ z Function - Zero Motion Characters .. 139

12.9. \ w Function - Get Width of a String .. 140

12.10. \k Function - Mark Current Horizontal Place 141

12.11. \b Function - Build Large Brackets ... 142

12.12. \r Function - Reverse Vertical Motions .. 143

12.13. Drawing Horizontal and Vertical Lines .. 143

\ 1 Function - Draw Horizontal Lines ... 143

\L Function - Draw Vertical Lines .. 144

Combining the Horizontal and Vertical Line Drawing
Functions ... 145

12.14. . me - Place Characters in the Margin .. 145

12.1. \ u and \ d Functions
- Half-Line Vertical
Movements

12
Drawing Lines and Characters

This section is a grab-bag of functions for moving to arbitrary places on the page
and for drawing things. This section covers a number of useful topics:

o Local motions - how to move forward and backward and up and down on
the page to get special effects.

o Constructing whole characters out of pieces of characters that are available
in the special font - these facilities are for doing mathematical typesetting.

o Drawing horizontal and vertical lines to make boxes and underlines and
such.

o Various types of padding characters, zero-width characters, and functions for
obtaining the width of a character string.

Most of these commands are straightforward, but messy to read and tough to type
correctly.

If you can't or don't want to use eqn, subscripts and superscripts are then most
easily done with the half-line local motions \ u (for up) and \d (for down). To
move up the page half a point, insert a \ u at the desired place, and to go down
the page half a point, insert a \ d at the desired place. The \ u and \ din-line
functions should always be used in pairs, as explained below. Thus if your input
consists of the following fragment:

... area of a circle is 'Area = \ (*pr\u2\d' when calculating

the output when that fragment is formatted consists of:

. .. area of a circle is 'Area = 1Cl-' when calculating ...

This is a first approximation of what you want, but the superscript '2' is too
large. To make the '2' smaller, bracket it with \ s-2 ... \ sO. This reduces the
point-size by two points before the superscript and restores the point-size to the
previous value after the superscript. This example input:

... area of a circle is 'Area = \ (*pr\u\s-22\sO\d' when calculating ..

when fonnatted, generates:

131 Revision A, of 9 May 1988

132 Using nroff and troff

. .. area of a circle is ' Area = 1tr2, when calculating ...

Now the reason that the \ u and \ d functions should always be correctly paired is
that they refer to the current vertical spacing, so you must be sure to put any
local motions either both inside or both outside any size changes, or you will get
an unbalanced vertical motion. Carrying this example further, the input could
look like this:

... area of a circle is 'Area = \ (*pr\u\s-22\d\sO' when calculating ..

We'l1 format that example in a larger point-size so that you can see the effect of
the baseline being out of whack. So when we format the above construct with
the motions incorrectly paired, we get this:

• • • area of a circle is 'Area = nr2, when calculating ...

12.2. Arbitrary Local
Horizontal and
Vertical Motions

\ v Function - Arbitrary
Vertical Motion

As you can see, the baseline is higher after the incorrectly-displayed equation.

The next two sections describe the in-line \ v (vertical) and the \h (horizontal)
local motion functions. The general form of these functions is \ v ' N ' for the
vertical motion function, and \ h ' N ' for the horizontal motion function. The
argument N in the functions is the distance to move. The distance N may be
negative - the positive directions are to the right and down.

A local motion is one contained within a line. To avoid unexpected vertical
dislocations, it is necessary that the net vertical local motion within a word in
filled text, and otherwise within a line, be zero.

Sometimes the space given by \u and \d is not the right amount (usually too
much). The in-line \ v function requests an arbitrary amount of vertical motion.
The in-line \ v function

(__V __ '_a_~ __ un_t ___]

moves up or down the page by the amount specified in amount. For example,
here's how to get a large letter at the start of a verse:

.in +.3i

.ti -.3i
\v'1.O'\s36A\sO\v'-1.O'\h'-4p'wake! for Morning in the Bowl of Night
\h'2p'Has flung the Stone that puts the Stars to Flight:
.in -.3i
And Lo! the Hunter of the East has caught
The Sultan's Turret in a Noose of Light.

and when we format that verse we get:

sun
microsystems

Revision A, of 9 May 1988

\ h Function - Arbitrary
Horizontal Motion

Chapter 12 - Drawing Lines and Characters 133

A wake! for Morning in the Bowl of Night
J-\.Has flung the Stone that puts the Stars to Flight:
And Lo! the Hunter of the East has caught
The Sultan's Turret in a Noose of Light. 3

The indent amount we used here (0.3 inch) was detennined by fiddling around
until it looked reasonable. Later we show another in-line function for measuring
the actual width of something.

A minus sign means upward motion, while no sign or a plus sign means move
down the page. Thus \ v' -1 I means an upward vertical motion of one line space.

There are many other ways to specify the amount of motion. The following three
examples are all legal.

\ v'O .li'

\ v'3p'

\ v'-O oSm'

Notice that the scale specifier (i, p, or m) goes inside the quotes. Any character
can be used in place of the quotes; this is also true of all other traff commands
described in this section.

Since traff does not take within-the-line vertical motions into account when
figuring out where it is on the page, output lines can have unexpected positions if
the left and right ends aren't at the same vertical position. Thus \ v, like \ u and
\d, should always balance upward vertical motion in a line with the same
amount in the downward direction.

Arbitrary horizontal motions are also available - \ h is quite analogous to \ v,
except that the default scale factor is ems instead of line spaces. As an example,

('h'-D.li')
causes a backward motion of a tenth of an inch. As a practical matter, consider
printing the mathematical symbol '»'. The standard spacing is too wide, so
eqn replaces this by

(_>__h_'_-_O_o3_m_'_> __)

to produce» 0

Frequently \h is used with the width function, \w, to generate motions equal to
the width of some character string. The construction

3 Omar Khayyam - the Rubdiytit

Revision A. of 9 May 1988

134 Using nroff and troff

12.3. \ 0 Function
Digit-Size Spaces

(\ w' thing' J

is a number equal to the width of 'thing' in machine units (1/432 inch). All
troff computations are ultimately done in these units. To move horizontally
the width of an 'x', we can say

(\h'\w'x'u' J

As we mentioned above, the default scale factor for all horizontal dimensions is
m (ems), so here we must have the u for machine units, or the motion produced
will be far too large. troff is quite happy with the nested quotes, by the way,
so long as you don't leave any out.

As a live example of this kind of construction, the re, re, ffi, and IE ligatures dis
cussed in the section on ligatures in the chapter Fonts and Special Characters,
were constructed using the \ h function to define the following strings:

.ds ae a\h'-(\w'a'u*4/10)'e

.ds Ae A\h'-(\w'A'u*4/10)'E

.ds oe o\h'-(\w'o'u*4/10)'e

.ds Oe O\h'-(\w'O'u*4/10)'E

and for any given one of those strings, the mess is unscrambled like this:

Construct

. ds ae
a
\h'-(\w'a'u*4/10)'
e

Explanation

Define a string called 'ae' .
Letter' a' in the string.
Move backward 0.4 of the width of the letter' a' .
Letter' e' in the string.

The in-line \ 0 function is an unpaddable white space of the same width as a
digit. 'Unpaddable' means that it will never be widened or split across a line by
line justification and filling. You could use the digit space to get numerical
columns correctly lined up. For example, suppose you have this list of items:

Revision A, of 9 May 1988

Chapter 12 - Drawing Lines and Characters 135

.nf

. ta sr1

Step Description
.sp sp
1. Unpack the handy dandy fuse blower.
2. Inspect for obvious shipping defects.

9. Find a wall socket.
10. Insert handy dandy fuse blower in wall socket.
11. Push red button to blow all fuses .
. fi

When you fornat this list of operations, you get this result:

Step Description

1. Unpack the handy dandy fuse blower.
2. Inspect for obvious shipping defects.

9. Find a wall socket.
10. Insert handy dandy fuse blower in wall socket.
11. Push red button to blow all fuses.

As you can see, the numbers do not line up at the decimal point, but instead are
lined up on the left. Placing a space character in front of the digits in the input is
not sufficient measure to line up the digits at the decimal. A space is not the
same width as a digit (at least not in traff). A solution is to use the unpad
dable digit-space character \ 0 in front of the single digits like this:

\ODescription

.nf

.ta sn
Step
.sp 5p
\01.
\02.

Unpack the handy dandy fuse blower.
Inspect for obvious shipping defects.

\09. Find a wall socket.
10. Insert handy dandy fuse blower in wall socket.
11. Push red button to blow all fuses .
. fi

Now when you fornat the text, you get this result:

Revision A, of9 May 1988

136 Using nroff and troff

12.4. '\ ' Function -
UnpaddabJe Space

12.5. \ I and \ - Functions
- Thick and Thin
Spaces

Step Description

1. Unpack the handy dandy fuse blower.
2. Inspect for obvious shipping defects.

9. Find a wall socket.
10. Insert handy dandy fuse blower in wall socket
11. Push red button to blow all fuses.

which looks better than the previous example.

There is also the in-line \ function, which is the \ character (backslash) followed
by a space character. This function is an unpaddable character the width of a
space. You can use this to make sure that things don't get split across line boun
daries, for instance if you want to see something like nrof£ -T1p myfile in
the stream of text, with the command line set off like it was here and ensuring
that it all appears on one line, you would type it in as
\ \ \f(LBnroff\ -Tlp\fP\ \fImyfile\fP\ \
in-line in the text.

In typography, there are times when you need spaces that are one-sixth or one
twelfth of the width of an em-space. troff supplies the in-line \ I function
which is one-sixth of an em -space wide - this is sometimes called a 'thick
space'. Where would you want such a thing? Well one place it could be used is
in making an ellipsis look better. In general, an ellipsis in a proportional font
looks too cramped if you just string three dots together:

["",----... -------]
and the dots tend to look too spread out if you just place spaces between them:

(...]
and so the answer is often to use the thick space to get a more pleasing effect like
this:

(---.. _. ----------]
which was actually achieved by typing:

(. \ I . \ I .

Lastly, the in-line \ ... function is one-twelfth of the width of an em-space space.
This function is almost always used for a typographical application called italic
correction. Consider an italic word followed by some punctuation such as do
tell! Because the italic letters are slanted to the right, they lean slightly on the

]

Revision A. of 9 May 1988

12.6. \ & Function - Non
Printing Zero-Width
Character

Chapter 12 - Drawing Lines and Characters 137

trailing punctuation, especially when the last letter is a tall one like the I in the
example. So, what typographers do is to apply the italic correction in the fonn of
a thin space just before the punctuation, so that the effect is now do tell! What
we actually typed here was

(~_f_I_d_o __ t_e_l_l__f_P__A_! __ ~J
with the italic correction just before the exclamation mark.

Typing the italic correction at every instance of adjacent Roman and italic text,
would be a lot of work. Some macro packages construct special-purpose macros
for applying the italic correction. For example, the -man macro package has a
• I R macro that joins alternating italic and Roman words together so that you can
italicize parts of words or have italic text with trailing Roman punctuation. You
use the . IR macro like:

(.IR well spring

to get the composite effect of wellspring in your text. The . IR macro (some
what simplified) looks like this:

.de IR
\&\fI\\$1\~\fR\\$2\fI\\$3\~\fR\\$4\fI\\$5\~\fR\\$6\fI\\$7\~\fR\\$8\fI\\$9\~\fR

and you can see the italic correction applied after every parameter that is set in
the italic font.

J

The \ & function is a character that does not print, and does not take up any space
in the output text. You might wonder what use it is at all? One application of
the non-printing character used throughout this manual is to display examples of
text containing troff or nroff requests. To print a trof f request just as it
appears in the input, you have to distinguish it from a real troff request. You
cannot print an example whose input looks just like this:

.in +O.Si indent the text half an inch

lots of lines of text to be processed

.in -O.Si unindent the text half an inch

The . characters at the beginning of each line would be interpreted as troff
requests instead of text representing examples of requests. In such cases, we
have to use the \ & function to stop troff or nroff from interpreting the. at
the start of the line as a control character. We would type the example like this:

Revision A, of 9 May 1988

138 Using nroff and troff

12.7. \ 0 Function -
Overstriking
Characters

\&.in +O.Si
\&.
\&.
\&.

indent the text half an inch

lots of lines of text to be processed
\&.
\&.
\&.

\&.in -O.Si unindent the text half an inch

Another place where the \ & function is useful is within some of the other in-line
functions such as the \ 1 function. The \ 1 function draws lines and you type the
function like:

(\ l' length character']
where length is the length of the line you want to draw, and character is the char
acter to use. Sometimes, the character might look like a part of length, for
instance,

(\1'1.0i=']

doesn't get you a one-inch line of = signs as you might expect, because the =
sign looks like an expression where you are trying to say that "1.Oi is equal to"
something else. When you encounter this situation, type the \ 1 function like
this:

(\l'l.Oi\&=']

and the result is a one-inch line of =========== signs as you see here.

Automatically-centered overstriking of up to nine characters is possible with the
in-line \ a (overstrike) function. The \ a function looks like \ a' string' where
the characters in string are overprinted with their centers aligned. This means for
example, that you can print from one to nine different characters superimposed
upon each other. traff detennines the width of this "character" you are creat
ing to be the width of the widest character in your string. The superimposed
characters are then centered on the widest character. The string should not con
tain local vertical motion. The in-line \ a function is used like this:

(~_O_'_'s_e_to_if_c_ha_r_a_c_~_n_'_' __]

This is useful for printing accents, as in

syst\o"e\(ga"me t\o"e\(aa"l\o"e\(aa"phonique

Revision A, of 9 May 1988

12.8. \ z Function - Zero
Motion Characters

Chapter 12 - Drawing Lines and Characters 139

which produces

systeme telephonique

The accents are \ (ga (grave accent) and \ (aa (acute accent), or \' and \ ';
remember that each is just one character to tr off.

(__o_"e__'_" __ J

produces

e
and

(\0"\ (mo\ (51"

produces

fie

J

You can make your own overstrikes with another special convention, \ z, the
zero-motion command. \ z x suppresses the normal horizontal motion after
printing the single character x, so another character can be laid on top of it.
Although sizes can be changed within \0, troff centers the characters on the
widest of them, and there can be no horizontal or vertical motions, so \ z may be
the only way to get what you want:

is produced by

.sp 2
\s8\z\(ci\s14\z\(ci\s22\z\(ci\s36\z\(ci

The . s p 2 line is needed to leave enough vertical space for the result.

As another example, an extra-heavy semicolon that looks like

; instead of ; or ;

can be constructed with a big comma and a big period above it:

(\s+6\z,\v'-O.25m' .\v'O.25m'\sO

where 0 . 2 Sm is an empirical constant.

As further examples, \ z \ (ci \ (pI produces

Ef)

J

Revision A, of9 May 1988

140 Using nroff and troff

12.9. \ w Function - Get
Width of a String

and \ (br\z\ (rn \ (ul \ (br produces the smallest possible constructed box:

o
There is also a more general overstriking function for piling things up vertically
- this topic is discussed in the section "\b Function - Build Large Brackets"
later in this chapter.

Back in the section on using tabs, we saw how we could set tab stops to various
positions on the line and lay stuff out in columns based on the tab stops. Some
times it is hard to figure out where the tab stops should go because you can't
always tell in advance how wide things are - this is especially true for propor
tional fonts (by definition the characters aren't all the same size). Often what you
want is to set tab stops based on the width of an item. Then you can set tab stops
based on that width and remain independent of the size of the characters if you
decide to change point size.

The in-line width function \ w' string , generates the numerical width of string
(in basic units). For example, . ti -\ w' 1. 'u could be used to temporarily
indent leftward a distance equal to the size of the string '1. '. Size and font
changes may be safely embedded in string, and do not affect the current environ
ment.

In a previous example we showed how a large capital letter could be placed in a
verse with vertical motions and we played some games with indenting to get the
thing to come out more-or-Iess right. The problem with that approach is that we
had to measure the size of the character and arrive at the indent by trial and error
(actually, error and trial). Another problem is that the measured indent didn't
take the point-size into account - if we decide to change sizes, the measure
ments are all wrong. The width function can measure the size of the thing
directly, so here's our example all over again using the \ w function:

.in +\w'\s36A\sO'u

.ti -\w'\s36A\sO'u
\v'1.O'\s36A\sO\v'-1.O'\h'-5p'wake! for Morning in the Bowl of Night
\h'lp'Has flung the Stone that puts the Stars to Flight:
.in -\w'\s36A\sO'u
And La! the Hunter of the East has caught
The Sultan's Turret in a Noose of Light.

and when we fonnat that text we get this result:

A wake! for Morning in the Bowl of Night
ft. Has flung the Stone that puts the Stars to Hight:
And Lo! the Hunter of the East has caught
The Sultan's Turret in a Noose of Light.

The width function also sets three number registers. The registers st (string top)
and sb (string bottom) are set respectively to the highest and lowest extent of
string relative to the baseline; then, for example, the total height of the string is
\n (stu-\n (sbu. In troff the number register ct (character type) is set to a
value between 0 and 3:

Revision A, of 9 May 1988

Table 12-1

12.10. \ k Function -
Mark Current
Horizontal Place

Chapter 12 - Drawing Lines and Characters 141

troff Width Function- ct Number Register Values

ct Number
Register

Value

o

1

2

3

Meaning

all of the characters in
string were short lower
case characters without
descenders (like e)
at least one character has a
descender (like y)
at least one character is tall
(like H)
both tall characters and
characters with descenders
are present.

The in-line \k.x function stores the current horizontal position in the input line
into register x. As an example, we could get a bold italic effect by the construc
tion:

(\kxword \h' I \nxu+2u 'word

This emboldens word by backing up to its absolute (hence, the I) beginning
(\kxword\h'I\rnm) plus 2 machine units (+2u) and overprinting it, resulting in

word

)

Revision A, of 9 May 1988

142 Using nroff and troff

12.11. \b Function -
Build Large
Brackets

Table 12-2

The Special (mathematical) font contains a number of characters for constructing
large brackets out of pieces. The table below shows the escape-sequences for the
individual pieces, what they look like, and their names.

Pieces for Constructing Large Brackets

Escape
Character Description

Sequence

\(It r left top of big curly bracket

\(lb L left bottom of big curly bracket

\(rt l right top of big curly bracket

\(rb J right bottom of big curly bracket

\(lk ~ left center of big curly bracket

\(rk ~ right center of big curly bracket

\(bv I bold vertical

\(If L left floor (left bottom of big square bracket)

\(rf J right floor (right bottom of big square bracket)

\(le r left ceiling (left top of big square bracket)

\(re 1 right ceiling (right top of big square bracket)

These pieces can be combined into various styles and sizes of brackets and
braces by using the in-line \b (for bracketing) function. The \b function is used
like this:

(\b' string ,]
to pile up the characters vertically in string with the first character on top and the
last on the bottom. The characters are vertically separated by one em and the
total pile is centered 1/2-em above the current baseline (1/2-line in nroff). For
example:

\x' -O.Sm' \x'O.Sm' \b' \(lc\(lf'E\I\b' \(rc\(rf'

produces [E] . As with previous examples, we should unscramble the whole

mess for you:

Revision A, of 9 May 1988

12.12. \r Function
Reverse Vertical
Motions

12.13. Drawing Horizontal
and Vertical Lines

\ 1 Function - Draw
Horizontal Lines

Chapter 12 - Drawing Lines and Characters 143

Escape
Character Description

Sequence

\b start bracketing function

\(le r left ceiling

\(If L leftfioor

E letter E

\b start bracketing function

\(re 1 right ceiling

\(rf J right floor

Here's another example of using braces and brackets. You get this effect:

{[xJ}
by typing this:

\b~\(lt\(lk\(lb~ \b~\(lc\(lf' x \b'\(rc\(rf' \b'\(rt\(rk\(rb'

The \r function makes a single reverse motion of one em upward in troff,
and one line upward in nroff.

Typesetting systems commonly have commands to draw horizontal and vertical
lines. Of course typographers don't call them lines - they are called 'rules'
because once upon a time they were drawn with rulers. troff provides a con
venient facility for drawing horizontal and vertical lines of arbitrary length with
arbitrary characters, and these facilities are described in the subsections follow
ing.

The in-line \ 1 (lower-case ell) function draws a horizontal line. For example,
the function \ 1 ' 1 . 0 i ' draws a one-inch horizontal line like this
______ in the text.

The line is actually drawn using the baseline rule character in troff, and the
underline character in nro f f, but you can in fact make the character that draws
the line any character you like by placing the character after the length designa
tion. For example, you could draw a two inches of tildes by using \1'2 . Oi _I to
get in the text. The construction \L is entirely
analogous, except that it draws a vertical line instead of horizontal.

The general form of the \ 1 function is

(~_l __ 'l_en_g_t_h_Ch_a_r_a_ct_er_' ____________________ ~J

Revision A, of 9 May 1988

144 Using nroff and troff

\ L Function - Draw Vertical
Lines

where length is the length of the string of characters to be drawn, and character
is the character to use to draw the line. If character looks like a continuation of
length, you can insulate character from length with the zero-width \ & sequence.
If length is negative, a backward horizontal motion of size length is made before
drawing the string. Any space resulting from length/ (size of character) having a
remainder is put at the beginning (left end) of the string. In the case of characters
that are designed to be connected such as baseline-rule (_), underrule C), and
root-en (-), the remainder space is covered by overlapping. If length is less than
the width of character, a single character is centered on a distance length. As an
example, here is a macro to underscore a string:

[

ode us 1
~~_$_l__l_'_I_O__(U_l_' ____________________________________ ~
and you use the 0 us macro like this:

[~_ou_s __ '_'u_n_d_e_r_l_i_n_e_d __ wo_r_d_s_'_' __________________________________ ~]
to yield underlined words in the stream of text. You could also write a macro to
draw a box around a string:

ode bx
\(br\\$l\(br\ l'IO\(rn'\ l'IO\(ul'

and SO you can type:

(.bX "words in a box"

to get some !Words in a boX! in the text stream.

The in-line \L (upper-case ell) function draws a vertical line. As in the case of
the \ 1 function, the general fonn of the function is

]

[_\ __ L __ '_k_n_g_ffl_C_ha __ ra_c_te_r_' ______________________________________ ~]
This draws a vertical line consisting of the (optional) character character stacked
vertically apart 1 em (1 line in nroff), with the first two characters overlapped,
if necessary, to fonn a continuous line. The default character is the box rule,
I (\ (br); the other suitable character is the bold vertical I (\ (bv). The line
is begun without any initial motion relative to the current base line. A positive
length specifies a line drawn downward and a negative length specifies a line
drawn upward. After the line is drawn no compensating motions are made; the
instantaneous baseline is at the end of the line.

Revision A, of9 May 1988

Chapter 12 - Drawing Lines and Characters 145

Combining the Horizontal
and Vertical Line Drawing
Functions
The horizontal and vertical line drawing functions may be used in combination to produce large boxes. The zero
width box-rule and the 1/2- em wide underrule were designed to fonn comers when using one-em vertical spacings.
For example the macro

.de eb

.sp -1 \"compensate for next automatic baseline spacing

.nf \"avoid possibly overflowing word buffer
\h '-.5n '\L' 1 \ \nzu-1 '\1'\ \n(.lu+1n\ (ul '\L '-1 \ \nzu+1 '\1' 1 Ou-. Sn\ (ul'

\"draw box
.fi

draws a box around some text whose beginning vertical place was saved in number register z (using. mk z) as done
for this paragraph.

12.14. . me - Place
Characters in the
Margin

Many types of documents require placing specific characters in the margins. The
most common use of this is placing bars down the margins to indicate what's
changed in a document from one revision of a document to the next. This para
graph and the remainder of the text in this section were preceded by a

(.mc \s12\(br\sO

request (that is, place a l2-point box-rule character in the margin) to tum on the
marginal bars, and followed by a simple

J

[_.mc _________ J
request to tum off the marginal bars.

Currently, this request is not bug-free, and the margin character only appears to
the right of the right margin, but not in left margins. Also, you'l1 notice that the
marginal bars do not appear on incomplete lines, such as this one .

• \sun
• microsystems

Revision A, of 9 May 1988

146 Using nroff and troff

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

Notes:

Summary of the . me Request

margin character

.mccN

Not applicable

Tum off margin characters

Specifies that a margin character c appear a distance N to the right of the
right margin after each non-empty text line (except those produced by . tl).
If the output line is too long (as can happen in nofill mode) the character is
appended to the line. If N is not given, the previous N is used; the initial N
is 0.2 inches in nroff and 1 em in troff.

E, m (see Table A-2)

Revision A, of 9 May 1988

13
Character Translations

Character Translations .. 149

13.1. Input Character Translations .. 149

13.2 .. ec and . eo - Set Escape Character or Stop Escapes 149

13.3. . cc and . c2 - Set Control Characters .. 150

13.4. . tr - Output Translation ... 150

13.1. Input Character
Translations

13.2 .. ec and. eo - Set
Escape Character or
Stop Escapes

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

13
Character Translations

The newline delimits input lines. In addition, STX, ETX, ENQ, ACK, and BEL are
accepted, and may be used as delimiters or translated into a graphic with a . tr
(translate) request (refer to the section entitled . tr - Output Translation). All
others are ignored.

The escape character \ introduces escape sequences - meaning the following
character is something else, or indicates some function. A complete list of such
sequences is given in a later chapter. The \ character should not be confused
with the ASCII control character ESC of the same name. The escape character
can be changed with an . e c (escape character) request, and all that has been said
about the default \ becomes true for the new escape character. \ e can be used to
print whatever the current escape character is. If necessary or convenient, the
escape mechanism can be turned off with an . eo (escape oft) request and
restored with the . e c request.

Summary of the . ec Request

escape character

.ec c

\

\

Set escape character to \, or to c, if given.

Summary of the . eo Request

escape mechanism off

.eo

Escape mechanism is on

Tum escape mechanism off.

Turn escape mechanism off.

149 Revision A, of 9 May 1988

150 Using nroff and troff

13.3. . cc and . c2 - Set
Control Characters

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

13.4. . t r - Output
Translation

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Exp lanation:

Notes:

Both the control character. and the no-break control character' may be
changed, if desired. Such a change must be compatible with the design of any
macros used in the span of the change, and particularly of any trap-invoked mac
ros.

Summary of the . cc Request

control character

. cc c

Set the basic control character to c, or reset to ' . '.

Summary of the . c2 Request

no-break control character

. c2 c

Set the no-break control character to c, or reset to '

One character can be made a stand-in for another character using the. tr
(translate) request. All text processing (for instance, character comparisons)
takes place with the input (stand-in) character that appears to have the width of
the final character. The graphic translation occurs at the moment of output
(including diversion).

Summary of the . tr Request

translate

.tr abed

Not Applicable

No translation

Translate a into b, c into d, etc. If an odd number of characters is given, the
last one is mapped into the space character. To be consistent, a particular
translation must stay in effect from input to output time.

o (see Table A-2)

Revision A, of 9 May 1988

14

Automatic Line Numbering

Automatic Line Numbering .. 153

14.1 .. nm - Number Output Lines ... 153

14.2. . nn - Stop Numbering Lines ... 154

14.1 .. nm - Number
Output Lines

3

6

9

12

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

Notes:

14
Automatic Line Numbering

Output lines may be numbered automatically via the . nm (number) request.
Refer to the following table for a summary of the . nm request. When in
effect, a three-digit, Arabic number and a digit-space begins each line of
output text. The text lines are thus offset by four digit-spaces, and otherwise
retain their line length. To keep the right margin aligned with an earlier
margin, you may want to reduce the line length by the equivalent of four
digit spaces. Blank lines, other vertical spaces, and lines generated by . t I
are not numbered. Numbering can be temporarily suspended with the . nn
(no number) request (see below), or with an . nm followed by a later . nm
+0. In addition, a line number indent I, and the number-text separation S
may be specified in digit-spaces. Further, it can be specified that only those
line numbers that are multiples of some number M are to be printed (the oth
ers will appear as blank number fields).

Summary of the . nm Request

numbering

.nm±NMSI

Line numbering turned off.

Line numbering turned off.

Tum on line numbering if±N is given. The next output line numbered is
numbered ±N. Default values are M= 1, S= 1, and 1= O. N is the line
number counter (or incrementer if you use ±N), M is the multiple of the
numbered lines to be printed on the page, S is the spacing between line
numbers and text, and I is the amount of indent for the line numbers.
Parameters corresponding to missing arguments are unaffected; a non
numeric argument is considered missing. In the absence of all arguments,
numbering is turned off; the next line number is preserved for possible
further use in number register In.

E (see Table A-2)

153 Revision A, of 9 May 1988

154 Using nroff and troff

14.2. . nn - Stop
Numbering Lines

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

Notes:

15

18

21

When you are using the . nm request to number lines (as discussed above), you
can temporarily suspend the numbering with the . nn (no number) request.

Summary of the . nn Request

no numbering

.nnN

Not applicable

N=l

The next N text output lines are not numbered.

E (see Table A-2)

As an example, the paragraph portions of this chapter are numbered with
M= 3: . nm 1 3 was placed at the beginning of the chapter, . nm was
placed at the end of the first paragraph; and . nm + 0 was placed in front of
this paragraph; and . nm finally placed at the end. Line lengths were also
changed (by \ w ' 00 00 ' u) to keep the right side aligned.

Another example is

[.nm +5 5 x 3

which turns on numbering with the line number of the next line to be 5
greater than the last-numbered line, M= 5, spacing S is untouched, and with
the indent I set to 3.

Revision A, of 9 May 1988

15
Conditional Requests

Conditional Requests ... 157

15.1. . if - Conditional Request .. 157

15.2. . ie and . e1 -If-Else and Else Conditionals .. 160

15.3 .. ig - Ignore Input Text .. 160

15.1. . if - Conditional
Request

15
Conditional Requests

Suppose we want the . S H macro to leave two extra inches of space just before
section 1, but nowhere else. The cleanest way to do that is to test inside the . S H

macro whether the section number is 1, and add some space if it is. The . if
request provides the conditional test that we can add just before the heading line
is output:

(.if \\n(SH-1 .sp 2i \" first section only

The condition after the . if can be any arithmetic or logical expression. If the
condition is logically true, or arithmetically greater than zero, the rest of the line
is treated as if it were text - here a request. If the condition is false, or zero, or
negative, the rest of the line is skipped.

It is possible to perfonn more than one request if a condition is true. Suppose
several operations are to be done before section 1. One possibility is to define a
macro . S 1 and invoke it if we are about to do section 1 (as detennined by a
. if) .

. de 81
processing for section 1 ---

.de 8H

.if \\n(SH=1 .S1

An alternate way is to use the extended fonn of the . if, like this:

.if \\n(SH=1 \{--- processing for section 1 ----\}

The braces \ { and \} must occur in the positions shown or you will get unex
pected extra lines in your output. troff also provides an 'if-else' construction,
which we will not go into here.

A condition can be negated by preceding it with !; we get the same effect as
above (but less clearly) by using

J

157 Revision A. of 9 May 1988

158 Using nroff and troff

(~_.l_'f ___ !__n_(_S_H_>_l __ ._S_l __ ~J
There are a handful of other conditions that can be tested with . if. For exam
ple, is the current page even or odd?

.if e .tl "even page title"

.if 0 .tl "odd page title"

gives facing pages different titles when used inside an appropriate new page
macro.

Two other conditions are t and n, which tell you whether the fonnatter is
troff or nroff.

[

.if t troff stuff ... J

.if n nroff stuff .. .

'"-----------'

Finally, string comparisons may be made in an . if:

(.if 'stringl'string2' stuff

does 'stuff' if string 1 is the same as string2. The character separating the strings
can be anything reasonable that is not contained in either string. The strings
themselves can reference strings with \ * , arguments with \ $, and so on.

In the following table, c is a one-character, built-in condition name, ! signifies
not, N is a numerical expression, string1 and string2 are strings delimited by any
non-blank, non-numeric character not in the strings, and anything represents
what is conditionally accepted .

J

• sun
~ microsystems

Revision A, of 9 May 1988

Mnemonic :Iif, if-else, else

Form of Request:

Initial Value:

If No Argument:

Explanation

Form of Request:

Explanation

Form of Request:

Explanation

Form of Request:

Explanation

Form of Request:

Explanation

Form of Request:

Explanation

Form of Request:

Explanation

Form of Request:

Explanation

Table 15-1

Chapter 15 - Conditional Requests 159

Summary of the . if Requests

· if c anything

Not Applicable

Not Applicable

If condition c true, accept anything as input. In multi-line case use \{any
thingV.

· if! c anything

If condition c false, accept anything.

· if N anything

If expression N > 0, accept anything.

· if !N anything

If expression N sO, accept anything.

· if 'string1 'string2 ' anything

If string1 identical to string2, accept anything.

· if! ' string 1 'string2 ' anything

If string1 is not identical to string2, accept anything.

· ie c anything

If portion of if-else (like above i f forms).

· el anything

Else portion of if-else.

The built-in condition names are:

Built-In Condition Namesfor Conditional Processing

Condition
Name True 1f

0 Current page number is odd
e Current page number is even
t Formatter is traff
n Formatter is nraff

Revision A, of 9 May 1988

160 Using nroff and troff

15.2 .. ie and. el - If
Else and Else
Conditionals

15.3. . i g - Ignore Input
Text

If the condition c is true, or if the number N is greater than zero, or if the strings
compare identically (including motions and character size and font), anything is
accepted as input. If a ! precedes the condition, number, or string comparison,
the sense of the acceptance is reversed.

Any spaces between the condition and the beginning of anything are skipped
over. The anything can be either a single input line (text, macro, or whatever) or
a number of input lines. In the multi-line case, the first line must begin with a
left delimiter \ { and the last line must end with a right delimiter \ }.

The request . i e (if-else) is almost identical to . if except that the acceptance
state is remembered. A subsequent and matching . e1 (else) request then uses
the reverse sense of that state. . ie - . e1 pairs may be nested. Refer to the
Summary of the . if Requests for summaries of . ie and . el.

Some examples are:

(.if e .tl ' Even Page %'"

which outputs a title if the page number is even; and

.ie \n%>l \{\
'sp O.5i
.tl ' Page %'"
'sp - 1.2i \}
.el .sp - 2.Si

which treats page 1 different! y from other pages.

J

Another mechanism for conditionally accepting input text is via the . ig (ignore)
request. Basically, you place the . ig request before a block of text you want to
ignore:

. ig start of ignored block of text

block of text you don't want to appear in the printed output

end of ignore block signalled with. .

The . ig request functions like a macro definition via the . de request except
that the text between the . ig and the tenninating. . is discarded instead of
being processed for printing.

You can give the . ig request an argument - that is, an

Revision A. of 9 May 1988

Chapter 15 - Conditional Requests 161

(. ig xy J
'--------
request ignores all text up to and including a line that reads

[.xy]
which looks just like a request:

.ig zz start of ignored block of text

block of text you don't want to appear in the printed output

. zz end of ignore block signalled with . zz

You can of course combine the . ig request with the other conditionals to ignore
a block of text if a condition is satisfied. For example, you might want to omit
blocks of text if the printed pages are destined for different audiences:

.nr W 1 This manual is for Wizards only

further processing

.if \nW .ig wz If the manual is for wizards

Tutorial material beneath the attention of wizards

.wz end of ignored block of text

.\sun ~~ microsystems
Revision A, of 9 May 1988

162 Using nroff and troff

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Exp lanation:

Summary of the . ig Request

ignore

.igyy

Not applicable

Ignore text up to a line starting with. .

Ignore input lines up to and including a line starting with . yy - use. . if
no argument is specified on the request .. ig behaves exactly like the . de
(define macro) request except that the input is discarded. The input is read
in copy mode, and any auto-incremented number registers will be affected.

+~t!! Revision A, of 9 May 1988

16
Debugging Requests

Debugging Requests ... 165

16.1. . pm - Display Names and Sizes of Defined Macros 165

16.2. . f 1 - Flush Output Buffer .. 166

16.3. . ab - Abort .. 166

16.1. . pm - Display
Names and Sizes of
Defined Macros

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

16
Debugging Requests

troff and nroff resemble languages for programming a typesetter rather than
a mechanism to describe how a document should be put together. There are
times when you just can't figure out why things are going wrong and not generat
ing results as advertised. The requests described here are for dyed-in-the-wool
macro wizards.

The . pm (print macros) request displays the names of all defined macros and
how big they are. Why would anybody want to do such a thing? Well, if you're
using a macro as a diversion, you might find out (by printing its size) that it is far
bigger than you expect (that it's swallowing your entire file).

Summary of the . pm Request

print macros

.pmt

Not applicable

All

Print macros. The names and sizes of all of the defined macros and strings
are printed on the user's terminal; if tis given, only the total of the sizes is
printed. The sizes are given in blocks of 128 characters.

165 Revision A, of9 May 1988

166 Using nroff and troff

16.2 .. f1 - Flush Output
Buffer

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Exp lanation:

16.3. . ab - Abort

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

The . f 1 (flush) request flushes the output buffer - this can be used when you're
using nroff interactively.

Summary of the . f1 Request

flush

.fl

Not applicable

adjusting is turned off

Hush output buffer. Used in interactive debugging to force output.

A final useful request in the debugging category is the . ab (abort) request which
basically bails out and stops the formatting.

Summary of the . ab Request

abort

. ab text

Not applicable

No text is displayed

Displays text and terminates without further processing. If text is missing,
'User Abort' is displayed. Does not cause a break. The output buffer is
flushed .

• ~sun
• microsystems

Revision A, of 9 May 1988

17
Environments

Environments ... 169

17.1. . ev - Switch Environment ... 169

17.1. . ev - Switch
Environment

17
Environments

As we mentioned, there is a potential problem when going across a page bound
ary: parameters like size and font for a page title may well be different from
those in effect in the text when the page boundary occurs. traff provides a
very general way to deal with this and similar situations. There are six environ
ments, each of which has independently-settable versions of many of the parame
ters associated with processing, including size, font, line and title lengths,
fill/nofill mode, tab stops, and even partially-collected lines. Thus the titling
problem may be readily solved by processing the main text in one environment
and titles in a separate one with its own suitable parameters.

The command. ev n shifts to environment n; n must be in the range 0 through 2.
A . ev command with no argument returns to the previous environment.
Environment names are maintained in a stack, so calls for different environments
may be nested and unwound consistently.

When t r 0 f f starts up, environment 0 is the default environment, so in general,
the main text of your document is processed in this environment in the absence
of any information to the contrary. Given this, we can modify the . NP (new
page) macro to process titles in environment 1 like this:

.de NP

.ev 1 \" shift to new environment

.it 6i \" set parameters here

.ft R

.ps 10
any other processing

.ev \" return to previous environment

It is also possible to initialize the parameters for an environment outside the . NP

macro, but the version shown keeps all the processing in one place and is thus
easier to understand and change.

Another major application for environments is for blocks of text that must be
kept together.

A number of the parameters that control the text processing are gathered together
into an environment, which can be switched by the user. The environment
parameters are those associated with requests noting E in their Notes column; in

~\sun ~ microsystems
169 Revision A, of 9 May 1988

170 Using nroff and troff

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

addition, partially-collected lines and words are in the environment. Everything
else is global; examples are page-oriented parameters, diversion-oriented param
eters' number registers, and macro and string definitions. All environments are
initialized with default parameter values.

Summary of the . ev Request

environment

.evN

N=O

Switch back to previous environment

Switch to environment N, where 0g{'5:2. Switching is done in push-down
fashion so that restoring a previous environment must be done with. ev
rather than specific reference.

Revision A, of9 May 1988

A
traff Request Summary

troff Request Summary ... 173

.ab text

.ad c

. af Rc

. am xxyy

Table A-I

Request
Form

. as xx string

. bd FN

.bd S FN

.bp ±N

. br

.c2 c

. cc c

A
traff Request Summary

This appendix is a quick-reference summary oftroff and nroff requests. In
the following table, values separated by a : are for nroff and troff respec
tively.

The notes in column four are explained at the end of this summary.

Summary oJnroff andtroff Requests

Initial
Value

none

adj,both

Arabic

off

off

N=1

If No
Argument

User Abort

adjust

.yy= ..

ignored

Notes

E

P

P

B:j:,v

B

E

E

173

Explanation

Displays text and tenninates without
further processing; flush output buffer.

Adjust output lines with mode c from
. j .

Assign fonnat to register R (c = 1, i,
I,a,A).

Append to a macro .

Append string to string xx .

Embolden fontF by N-l units.t

Embolden Special Font when current
font is F.t

Eject current page. Next page is
numberN.

Break .

Set nobreak control character to c.

Set control character to c .

Revision A, of9 May 1988

174 Using nroff and troff

Table A-I Summary oJnroff and troff Requests- Continued

Request Initial IJNo
Notes Explanation

Form Value Argument

.ce N off N=l B,E Center following N input text lines.

.ch xxN v Change trap location.

.cs FNM off P Constant character space (width) mode
(fontF).t

.cu N off N=l E Continuous underline in nroff; like
. ul in t roff.

.da XX end D Divert and append to xx.

.de xxyy .YY= .. Define or redefine macro xx; end at call
ofyy.

.di XX end D Divert output to macro xx.

.ds xx string ignored Define a string xx containing string.

.dt Nxx off D,v Set a diversion trap.

.ec c \ \ Set escape character.

. el anything Else portion of if-else .

• em XX none none End macro is xx .

. eo on Turn off escape character mechanism .

.ev N N=O previous Environment switched (push down).

. ex Exit from nroff/troff .

.fc ab off off Set field delimiter a and pad character
b.

.f i fill B,E Fill output lines.

.f 1 B Flush output buffer.

.fp NF R,I,B,S ignored Font named F mounted on physical
position 1~~4.

Revision A, of9 May 1988

Appendix A - troff Request Summary 175

Table A-I Summary oJnroff and troff Requests- Continued

.ft F

. fz SFN

.hc c

Request
Form

.hw word1 ...

.hy N

· ie c anything

· if c anything

· if ! c anything

· if N anything

· if ! N anything

· if 'string1 'string2 ' anything

Initial
Value

Roman

none

\%

ignored

on

· if ! 'string1 'string2 ' anything -

. iq yy

. in ±N N=O

.it Nxx

. lc c

.lq N on

.11 ±N 6.5 in

. 1s N N=1

If No
Argument

previous

\%

previous

. yy= ..

previous

off

none

on

previous

previous

Notes

E

E

E

B,E,m

E

E

E,m

E

Explanation

Change to font F = x, xx, or 1 through
4. Also \fr, \f(xx, 'iN .

Forces font F or S for special characters
to be in size N.

Hyphenation indicator character c.

Exception words.

Hyphenate. N = mode.

If portion of if-else; all above forms
(like. if).

If condition c true, accept anything as
input, for multi-line use \{anything V.

If condition c false, accept anything.

If expression N > 0, accept anything.

If expression N $ 0, accept anything.

If string1 identical to string2, accept
anything.

If string1 not identical to string2,
accept anything .

Ignore until call of yy .

Indent.

Set an input-line count trap.

Leader repetition character .

Ligature mode on if N>O.

Line length .

Output N-I V s after each text output
line.

Revision A, of 9 May 1988

176 Using nroff and troff

Table A-I

Request
Form

. It ±N

.InC eN

.mk R

.na

.ne N

.nf

.nh

.nm±NMSI

.nn N

.nr R±NM

.ns

. nx filename

. os

.pc e

.pi program

.pm t

. ps ±N

.pl ±N

.pn ±N

.po ±N

Summary o/nroff and traff Requests- Continued

Initial
Value

6.5 in

none

adjust

fill

hyphenate

off

space

%

10-point

11 in

N=l

0: 26/27 in

II No
Argument

previous

off

internal

N=lV

N=l

end-of-file

off

all

previous

11 in

ignored

previous

Notes

E,m

E,m

D

E

D,v

B,E

E

E

E

u

D

E

v

v

Explanation

Length of title .

Set margin character c and separation
N.

Mark current vertical place in register
R.

No output line adjusting.

Need N vertical space (V = vertical
spacing).

No filling or adjusting of output lines.

No hyphenation.

Number mode on or off, set parameters.

Do not number next N lines.

Define and set number register R by
±N; auto-increment by M.

Tum no-space mode on.

Next file.

Output saved vertical distance .

Page number character.

Pipe output to program (nroff only).

Print macro names and sizes. If t
present, print only total of sizes .

Point size, also \S±N.t

Page length.

Next page number is N.

Page offset.

Revision A, of 9 May 1988

Appendix A - troff Request Summary 177

Table A-I Summary oJnraff and traff Requests-- Continued

Request Initial IJNo Notes Explanation
Form Value Argument

. rd prompt prompt=BEL Read insertion .

.rn xxyy ignored Rename request, macro, or string xx to
yy.

.rIn xx ignored Remove request, macro, or string.

. rr R Remove register R .

.rs D Restore spacing. Turn no-space mode
off.

.rt ±N none internal D,v Return (upward only) to marked verti-
cal place.

. so filename Interpolate contents of source file name
when . so encountered.

.sp N N=lV B,v Space vertical distance N in either
direction.

.ss N 12{36 em ignored E Space-character size set to N/36 em.t

.sv N N=lV v Save vertical distance N.

.ta Nt ... 0.8: O.Sin none E,rn Tab settings: left type, unless t equals R

(right), or C (centered).

.tc e space removed E Tab repetition character.

.ti ±N ignored B,E,m Temporary indent.

. tl 'left 'center 'right' Three-part title .

.tm string newline Print string on terminal (to standard
error) .

. tr abed none 0 Translate a into b, c into d, etc. on out-
put .

. uf F Italic Italic Underline font set to F (to be switched
to by . ul) .

. ul N off N=l E Underline N input lines (italicize in
troff) .

• ~sun ~~ microsystems
Revision A, of 9 May 1988

178 Using nroff and troff

Table A-I Summary oJnroff and troff Requests- Continued

Request
Form

Initial
Value

If No
Argument

Notes Explanation

. vs N 1I6in: 12pts previous E,p Vertical base line spacing (V) .

.wh Nxx v Set location trap. Negative is with
respect to page bottom.

t Point size changes have no effect in nroff.

+ The use of ' as the control character (instead of .) suppresses the break function.

Table A-2 Notes in the Tables

Note Explanation

B Request nonnally causes a break.
D Mode or relevant parameters associated with current diversion level.
E Relevant parameters are a part of the current environment.
o Must stay in effect until logical output.
P Mode must be still or again in effect at the time of physical output.
v Default scale indicator - if not specified, scale indicators are ignored.
p Default scale indicator - if not specified, scale indicators are ignored.
m Default scale indicator - if not specified, scale indicators are ignored.
u Default scale indicator - if not specified, scale indicators are ignored.

Revision A, of 9 May 1988

B
Font and Character Examples

Font and Character Examples ... 181

B.1. Font Style Examples ... 181

B.2. Non-ASCII Characters and minus on the Standard Fonts 182

B.3. Non-ASCII Characters and " ',G, +, -, =, and * on the Special
Font ... 182

B.1. Font Style Examples

B
Font and Character Examples

The following fonts are printed in 12-point, with a vertical spacing of 14-point,
and with non-alphanumeric characters separated by lA-em space. They are Times
Roman, Italic, Bold, and a special mathematical font.

Times Roman

abcdefghijklmnopqrstuvwxyz
ABCDEFGIDJKLMNOPQRSTUVWXYZ
1234567890
!$%&()"*+-.,/:;=?[]I
• 0 - - _ IA ~ % fi fl ff ffi ffl 0 t ' ¢ ® © TM

Times Italic

abcdefg hijklmnopqrstuvwxyz
ABCDEFGHllKLMNOPQRSTUVWXYZ
1234567890
!$%&()"*+-.,I:;=?[]/
• 0- - _ 114 lh 314 fiflffffiffl 0 t' ¢ ® © TM

Times Bold

abcdefghijklmnopqrstuvwxyz
ABCDEFGHUKLMNOPQRSTUVWXYZ
1234567890
!$% &()"*+-.,/:;=?[]I
• 0 - - _ 1;" ~ ¥4 fi ft ff ffi fft 0 t ' ¢ ® © TM

Special Mathematical Font

" '\ A _ ,_ / < > { } #@+_=*

apyOE~~etKA~v~oxpO~~U$X~ro
rL\8AEII1:Y<I>lJIQ
-V-~~=-~:#~f- i .tx+±U(lC::)C::)ood

§ V -, f oc 0 E =I: ~ <= lor L 1 J i r I LJ rl I

+~t!! 181 Revision A, of 9 May 1988

182 Using nroff and troff

B.2. NOn-ASCII Characters
and minus on the
Standard Fonts

B.3. Non-ASCII Characters
and ',', ,+, -, =, and
* on the Special Font

Table B-1

Char

+

=

*
§

-
/
ex
~
y
8
e
~
11
e
t

Input Character Input Character
Char Name Name Char Name Name

close quote fi \(fi fi
open quote fl \(fl fl

\(em 3/4 Em dash ff \(ff ff
hyphen or ffi \(Fi ffi

\(hy hyphen ffl \(Fl ffl
\- current font minus 0 \(de degree

• \(bu bullet t \(dg dagger
0 \(sq square \(fm foot mark

\(ru rule ¢ \(ct cent sign
~ \(14 1/4 ® \(rg registered
Ih \(12 1/2 © \(co copyright
3A \(34 3/4

The ASCII characters @, #, ", " " <, >, \ {, }, -, "', and _ exist only on the special
font and are printed as a I-em space if that font is not mounted. The following
characters exist only on the special font except for the upper case Greek letter
names followed by t which are mapped into upper case English letters in what
ever font is mounted on font position one (default Times Roman). The special
math plus, minus, and equals are provided to insulate the appearance of equations
from the choice of standard fonts.

Summary oftroff Special Characters

Input Character Input Character
Name Name Char Name Name

\(pl math plus cr \(*s sigma
\ (mi math minus <; \(ts terminal sigma
\(eq math equals 't \(*t tau
\(** math star u \(*u upsilon
\(sc section <P \(*f phi
\(aa acute accent X \(*x chi
\(ga grave accent 'I' \(*q psi
\(ul underrule ill \(*w omega
\(sl slash (matching backslash) A \(*A Alphat
\(*a alpha B \(*B Betat
\(*b beta r \(*G Gamma
\(*g gamma L\ \(*D Delta
\(*d delta E \(*E Epsilont
\(*e epsilon Z \(*Z Zetat
\(*z zeta H \(*Y Etat
\(*y eta 9 \(*H Theta
\(*h theta I \(*1 Iotat
\(*i iota K \(*K Kappat

+~!t!! Revision A, of 9 May 1988

Appendix B - Font and Character Examples 183

Table B-1 Summary oJtroff Special Characters-Continued

Input Character Input Character
Char Name Name Char Name Name

K: \(*k kappa A \(*L Lambda
A, \(*1 lambda M \(*M Mut

Jl \(*m mu N \(*N Nut
v \(*n nu ... \(*C Xi

~ \(*e xi a \(*0 Omicront
0 \(*0 omicron n \(*P Pi
1t \(*p pi P \(*R Rhot
p \(*r rho L \(*S Sigma
T \(*T Taut 00 \(if infinity
y \(*U Upsilon a \(pd partial derivative
<I> \(*F Phi V \(gr gradient
X \(*X Chit --, \(no not
'P \(*Q Psi J \(is integral sign
n \(*w Omega oc \(pt proportional to
...J \(sr square root 0 \(es empty set

\(rn root en extender E \ (mo member of
~ \(>= >= I \(br box vertical rule
~ \«= <= =1= \(dd double dagger

- \(== identically equal => \(rh right hand
;:::: \(-= appro x = ¢= \(lh left hand

\(ap approximates I \(or or
t: \ (! = not equal 0 \(ei circle
~ \(-> right arrow r \(It left top of big curly

bracket
~ \«- left arrow L \(lb left bottom
i \(ua up arrow 1 \(rt right top
! \(da down arrow j \(rb right bot
x \ (mu multiply ~ \(lk left center of big

curly bracket
\(di divide r \(rk right center of big

curl y bracket
± \(+- plus-minus I \(bv bold vertical
u \(eu cup (union) L \(If left floor (left bottom

of big square bracket)
() \(ea cap (intersection) J \(rf right floor (right

bottom)
c \(sb subset of r \(Ie left ceiling (left top)
::) \(sp superset of 1 \(re right ceiling (right top)
~ \(ib improper subset \ \e backslash (escape character;
~ \(ip improper superset

Revision A, of 9 May 1988

8
Manipulating Files

Manipulating Files ... 185

8.1. Comparing Different Files ... 185

Comparing Binaries with crop .. 185

Comparing Text with di f f ... 186

diff -First Form ... 187

diff - Second Form ... 187

diff -Third Form ... 187

Three Files - diff3 ... 191

Finding Common Lines with cormn ... 192

Combining Files with join .. 195

Repeated Lines and uniq ... 196

8.2. Modifying Files .. 197

8.3. Printing Files 197

8.1. Comparing Different
Files

Comparing Binaries with crop

8
Manipulating Files

Occasionally you want to know whether two files are identical, or if they are not,
what the differences are. There exist several different text utilities for comparing
the contents of files. You can choose the command best for the task at hand,
based on what kind of infonnation it conveys to you. Most of the commands
issue no output if the files are the same. Some return terse output stating barely
more than the fact that the files differ. Others give a more complete summary of
how the files differ and how you would have to modify one file to match the
other(s).

The command crop is an example of a command that issues terse output. At
most, crop prints the byte and line number where the files differ. Two other
functions for directly comparing files are diff and camm. camm compares two
files, putting the comparison infonnation into three different columns: column
one lists lines only injilel, column two lists lines only injile2, and column three
lists lines common to both files. di f f compares files and also directories. A
special version of diff, diff3, also compares three files, identifying the
differing contents with special flags.

The relational database operator j a in compares a specific field or fields in two
files. Each time j a in finds the compared fields in the two files identical, it pro
duces one output line.

For comparing adjacent lines in a single file, there is the command uniq. uniq
can be made to report merely the repeated lines or to count them or to remove all
but the first occurrence.

The command crop is for comparing two files. The synopsis of the crop com
mand is:

(cmp [-1] [-8] file 1 file2

crop comparesjilel andjile2. Iffilel is the standard input ('-'), crop reads from
the standard input. Under default options, cmp makeS no comment if the files
are the same. If the files differ, crop announces the byte and line number at
which the difference occurred. If one file is an initial subsequence of the other,
that fact is noted.

J

185 Revision A, of9 May 1988

186 Editing Text Files

Comparing Text with diff

The options available with crop are:

-1 Print the byte number (decimal) and the differing bytes (octal) for each
difference.

-g Print nothing for differing files; return codes only.

For summarizing the differences between two files or directories, diff is the
appropriate tool. To use the di f f command, you would follow one of these
models:

di££ [-cefh] [-b] filelfile2

di££ [-D5tring] [-b] filelfile2

di££ [-1] [-r] [-5] [] [-Sname] [-cefh] [-b] dirl dir2

diff is a differential file comparator. When run on regular files, and when com
paring text files that differ during directory comparison (see the notes below on
comparing directories), diff tells what lines must be changed in the files to
bring them into agreement. Except in rare circumstances, diff finds a smallest
sufficient set of file differences. If neither filel nor file2 is a directory, either may
be given as '-', in which case the standard input is used. Ufilel is a directory, a
file in that directory whose file-name is the same as the file-name of file2 is used
(and vice versa).

There are several options for output format; the default output format contains
lines of these fonns:

[nl a nJ.n4
nl,n2 d n3
~l ,n2 c n3 ,n4 1

These lines resemble ed commands to convertfilel intofile2. The numbers after
the letters pertain to file2. In fact, by exchanging 'a' for 'd' and reading back
ward you can see how to convertfile2 into filel. As in ed, identical pairs where
nl = n2 or n3 = n4 are abbreviated as a single number.

Following each of these specification lines come all the lines that are affected in
the first file flagged by the character '<', then all the lines that arc affected in the
second file flagged by the '>' character.

If both arguments are directories, di f f sorts the contents of the directories by
name, and then runs the regular file di f f program as described above on text
files that are different. Binary files that differ, common subdirectories, and files
that appear in only one directory are listed.

Revision A, of 9 May 1988

di f f - First Form

di f f - Second Form

di f f - Third Form

Chapter 8 - Manipulating Files 187

To produce a script of append (a), change (c), and delete (d) commands for the
editor ed, which will recreatefile2 fromfileJ, use the first form of diff with the
option -e.

Extra commands are added to the output when comparing directories with diff
-e, so that the result is a Bourne shell (sh) script for converting text files com
mon to the two directories from their state in dir J to their state in dir2.

To produce a script similar to that using -e, but in the opposite order, that is, to
recreatefilel fromfile2, use diff -f. The script generated with the -f option
is not useful with ed, however.

To surround the specification lines the simplest use of diff puts out with some
lines of context, use di f f -c. The default is to present three lines of context.
To change this (to 10, for example), add 10 to the -c option (-cl0). With the-c
option, the output format is slightly different from other di f f output. It begins
by identifying the files involved and the dates they were created. Then each
change is separated by a line with a dozen stars (*). The lines removed fromfilel
are marked with '-'; those added to file2 are marked '+'. Lines that are changed
from one file to the other are marked in both files with' !'.

If you know you've only made small changes to the files you are comparing, and
you want to speed up the time diff takes to work, you can use diff -h. This
command only does a fast, half-hearted job. diff -h works only when changed
stretches are short and well-separated, but does work on files of unlimited length.

Except for the -b option, which my be given with any of the others, the options
-c, -e, -f, and -h are mutually exclusive.

To create a merged version offilel andfile2 on the standard output with C
preprocessor controls included, use the second form of diff with the option -
Dstring. Compiling the result without defining string is equivalent to compiling
file 1 , while compiling the result with string defined will yieldfile2.

If you want diff to ignore trailing blanks (spaces and tabs), use the option -b.
Other strings of blanks compare equal. The way di f f works, when it compares
directories with the -b option specified, diff first compares the files (as in
cmp), and then decides to run the di f f algorithm if they are not equal. This
may cause a small amount of spurious output if the files then tum out to be ident
ical, because the only differences are insignificant blank string differences.

When comparing directories, you might be interested in several different things.
If diff puts out a lot of output, you probably want to use the -1 option (for
long output). Each text file di f f is piped through the program pr to paginate it,
(see "Printing Files" later in this manual). Other differences are remembered and
summarized after all text file differences are reported.

To compare directories and subdirectories, use the -r option. -r applies di f f
recursively to common subdirectories encountered.

Since di f f ordinarily only outputs information on files and directories that
differ, if a file or several files are identical in directories you are comparing, you
won't see the identical files listed in the output. The -8 option reports files that

Revision A, of 9 May 1988

188 Editing Text Files

are the same, in addition to the usual di f f output, which are otherwise not men
tioned.

Here are two directories, macros and new. For this example, here are lists of
their contents.

hostname% 1s macros
Makefile
SunMacros.msun
contents.pic
contentsfile.msun

making. index. msun
mechanisms.msun
mmemo.7
model.makefile.msun

document.styles.msun process.pic
intro.msun structures.msun

hostname% 1s new
Makefile
SunMacros.msun
contents.pic
contentsfile.msun

making. index. msun
mechanisms.msun
mmemo.7
model.makefile.msun

document.styles.msun process.pic
intro.msun structures.msun

summary.msun
test.tr
text.effects.msun
troff.msun

summary. msun
test.tr
text.effects.msun
troff.msun

Right now these two directories are identical. The output of dif f for these two
directories macros and new, if there are no differences is:

(hostname% diff macros new

The nonnal output is nothing, no response. Now if we edit some files and
remove some others in the directory new, leaving the files like this:

hostname% 1s macros new
macros:
Makefile making.index.msun
SunMacros.msun mechanisms.msun
contents.pic mmemo.7
contentsfile.msun model.makefile.msun
document.styles.msun process.pic
intro.msun structures. msun

new:
Makefile intro.msun
SunMacros.msun making.index.msun
contents.pic mechanisms.msun
document.styles.msun model.makefile.msun

summary.msun
test.tr
text.effects.msun
troff.msun

structures .msun
summary .msun
text.effects.msun
troff.msun

]

Revision A. of 9 May 1988

The regular diff output looks like this:

hostname% diff macros new
diff macros/Makefile new/Makefile
7c7
< FORMATTER /usr/local/iroff

> FORMATTER /usr/doctools/bin/troff
Only in macros: contentsfile.msun
diff macros/intro.msun new/intro.msun
Oal
> .LP
6,lOc7,9

Chapter 8 - Manipulating Files 189

< Document preparation at Sun Microsystems relies on variations of the
< .I troff
< text formatter as the underlying mechanism for turning your wishes into
< printed words and outlines on paper. Using
< .I troff

> Document preparation at Sun Microsystems relies on variations of the
> troff text formatter as the underlying mechanism for turning your wishes
> into printed words and outlines on paper. Using troff
Only in macros: mmemo.7
diff macros/model.makefile.msun new/model.makefile.msun
3,7c3
< The
< .I Makefile
< below is the

: < . I Makefile
< used to actually make this document:

> The Makefile below is the Makefile used to actually make this document:
Only in macros: process.pic
Only in macros: test.tr
hostname%

The output of diff is rather cryptic. But if you look carefully at the
specification lines and the direction of the angle brackets, you can decipher the
results accurately.

To get a more complete picture of how the two directories compare, you might
want to know which files are identical and which files exist only in one directory.
For this, you use di f f -8. The di f f -8 output from our example above
looks like this:

Revision A, of 9 May 1988

190 Editing Text Files

hostname% diff -s macros new
diff -s macros/Makefile new/Makefile
7c7
< FORMATTER /usr/local/iroff

> FORMATTER /usr/doctools/bin/troff
Files macros/SunMacros.msun and new/SunMacros.msun are identical
Files macros/contents.pic and new/contents.pic are identical
Only in macros: contentsfile.msun
Files macros/document.styles.msun and new/document.styles.msun are identical
diff -s macros/intro.msun new/intro.msun
Oal
> .LP
6,lOc7,9
< Document preparation at Sun Microsystems relies on variations of the
< .1 troff
< text formatter as the underlying mechanism for turning your wishes into
< printed words and outlines on paper. Using
< .1 troff

> Document preparation at Sun Microsystems relies on variations of the
> troff text formatter as the underlying mechanism for turning your wishes
> into printed words and outlines on paper. Using troff
Files macros/making.index.msun and new/making.index.msun are identical
Files macros/mechanisms.msun and new/mechanisms.msun are identical
Only in macros: mmemo.7
diff -s macros/model.makefile.msun new/model.makefile.msun
3,7c3
< The
< .1 Makefile
< below is the
< .1 Makefile
< used to actually make this document:

> The Makefile below is the Makefile used to actually make this document:
Only in macros: process.pic
Files macros/structures.msun and new/structures.msun are identical
Files macros/summary.msun and new/summary.msun are identical
Only in macros: test.tr
Files macros/text.effects.msun and new/text.effects.msun are identical
Files macros/troff.msun and new/troff.msun are identical
hostname%

To compare two directories beginning somewhere in the middle of the direc
tories, use the option - Sfilename where filename is a file in one of the directories
you are comparing. The syntax for this command is

(~d_i_f_f __ -_S_~_k_n_anre ___ d_U_l_~_·r_2 ______________________________________ ~]
For example, comparing the two directories from the example above, and

Revision A, of 9 May 1988

Chapter 8 - Manipulating Files 191

beginning with the file model.makefile .msun:

hostname% diff -Smode1.makefi1e.msun macros new
diff macros/model.makefile.msun new/model.makefile.msun
3,7c3
< The
< .I Makefile
< below is the
< .I Makefile
< used to actually make this document:

> The Makefile below is the Makefile used to actually make this document:
Only in macros: process.pic
Only in macros: test.tr

Three Files - di f f 3 If you have three versions of a file that you want to compare at once, use the
diff3 command. The synopsis for the diff3 command is:

(<liff3 [-ex3] file] file2 file3]
di f f 3 compares three versions of a file, and publishes disagreeing ranges of
text flagged with these codes:

all three files differ

====1 filel is different

==== 2 file2 is different

==== 3 file3 is different

The type of change required to convert a given range of a given file to a range in
some other file is indicated in one of these ways:

Text is to be appended after line number nl in filef, where/= 1,2, or 3.

Text is to be changed in the range line nl to line n2. If nl = n2, the range may be
abbreviated to nl.

The original contents of the range follows immediately after a c indication.
When the contents of two files are identical, the contents of the lower-numbered
file is suppressed.

Revision A, of 9 May 1988

192 Editing Text Files

Table 8-1

Finding Common Lines with
cornm

Under the -e option, di f f 3 publishes a script for the editor ed that will incor
porate into filel all changes betweenfile2 andfile3, (that is, the changes that nor
mally would be flagged ==== and ====3). Option -x produces a script to
incorporate only changes flagged ====. Option -3 produces a script to incor
porate only changes flagged ====3. The following command will apply the
resulting script to filel .

(~ ____ (_c_a_t __ s_c_r_i_p_t_;_e_C_h_O __ '_l_'_$_P_'_) __ I __ e_d __ -_fi_l_e_l __________________ J

Note: Text lines that consist of a single dot (' . ') will defeat the -e option.

di f f 3 Option Summary

OPTIONS

-e Publish a script for the editor ed that will incorporate into filel all
changes betweenfile2 andfile3, (that is, the changes that normally would
be flagged ==== and ==== 3).

-x Produce a script for ed to incorporate only changes flagged ====.

-3 Produce a script for ed to incorporate only changes flagged ====3.

The cornm command prints lines that are common to two files. comm readsfilel
and file2, which should be ordered in ASCII collating sequence, but at least in the
same order, and produces a three-column output:

Column 1 Column 2 Column 3
lines only infilel lines only infile2 lines in both files

The synopsis of the c ornm command is:

(comm [-[123]] filelfile2
J

As an example of the cornm command's output, consider these files:

Revision A, of 9 May 1988

hostname% cat all
Aaron
Bruce
Dave
Elaine
Greg
Joe
Jon
Kevin
Larry G
Larry K
Linda
Mary
Mike B
Mike F

Niel
Pam
Randy
Sid
Tad
Tom
Wanda
hostname%

hostname% cat women
Christy
Cyndi
Elaine
Gale
Jeanette
Julia
Katherine
Katy
Linda
Lori
Mary
Pam
Pat
Patti
Rose Marie
Susan
Wanda

Chapter 8 - Manipulating Files 193

Here is the output of COItUn. The three columns overlap making output from files
with long lines a little difficult to read.

Revision A, of 9 May 1988

194 Editing Text Files

hostname% comm. women al.l
Aaron
Bruce

Christy
Cyndi

Dave
Elaine

Gale
Greg

Jeanette
Joe
Jon

Julia
Katherine
Katy

Kevin
Larry G

Larry K
Linda

Lori
Mary

Mike B
Mike F
Niel

Pam
Pat
Patti

Randy
Rose Marie

Sid
Susan

Tad
Tom

Wanda

The filename '-' means the standard input. The flags 1,2, or 3, suppress printing
of the corresponding column. Thus:

(~h_o_s_t_n __ a_m_e_% __ c_o_mm ___ -_l_2 __ ~)
prints only the lines common to the two files, and

(~h_o_s_t_n __ am __ e_% __ c_o_mm ___ -_2_3 __ ~J
prints only lines in the first file, but not in the second. (cornm -123 does noth
ing).

+~t!! Revision A, of 9 May 1988

Combining Files with join

Table 8-2

Chapter 8 - Manipulating Files 195

To compare two files of database information and output a join of two fields,
there is a utility called join. join is a relational database operator. The
synopsis of the command is:

hostname% join [-an] [-e string] [-j [112] m] [-0 list] [-te] file] file2

The program j 0 informs, on the standard output, a join of the two relations
specified by the lines offilel andfile2. Iffilel is '-', the standard input is used.

filel andfiIe2 must be sorted in increasing ASCII collating sequence on the fields
on which they are to be joined, normally the first in each line.

There is one line in the output for each pair of lines in filel and file2 that have
identical join fields. The output line normally consists of the common field, then
the rest of the line from file 1, then the rest of the line from file2. Fields are
separated by blanks, tabs or newlines. Multiple separators count as one, and
leading separators are discarded.

Note: With default field separation, the collating sequence is that of sort -b.
Using the join -t, the sequence is that of a plain sort.

join Option Summary

OPTIONS

-an The parameter n can be one of the values:

-e string

1 produce a line for each unpairable line in filel.
2 produce a line for each unpairable line in fiIe2.
3 produce a line for each unpairable line in bothfilel andfiIe2.

in addition to producing the nonnal output.

Replace empty output fields with string.

-j [112] m Join on the mth field of file n, where n is 1 or 2. If n is missing,
use the mth field in each file. Note that join counts fields from
1 instead of 0 like sort does.

-0 list

-tc

Each output line comprises the fields specified in list, each ele
ment of which has the form n.m, where n is a file number and m
is a field number.

Use character c as a separator (tab character). Every appearance
of c in a line is significant.

Revision A, of 9 May 1988

196 Editing Text Files

Repeated Lines and uniq

Table 8-3

If you want to check your input file for repeated lines, use uniq uniq reports
repeated lines in a file.

The synopsis of the uniq command is:

uniq [-udc [+n] [-n]] [inputfile [outputfile]]

uniq reads the input file comparing adjacent lines. In the nonnal case, the
second and succeeding copies of repeated lines are removed; the remainder of the
text (no repeated lines) is written in the output file. Note that repeated lines must
be adjacent in order to be found.

Nonnally, the lines in the input file that were not repeated and the first
occurrence of the lines that were repeated fonns the output. If you want to iso
late either of these functions, you can specify either the -u or the -d option.
uniq -u copies only the lines not repeated in the original file to the output file.
uniq -d writes one copy of just the repeated lines to the output file.

In case you are interested in knowing how many occurrences of a given line
appear in the input file, you can use the option uniq -c. With the -c option,
you get first the number of occurrences, then the output in default fonnat (all of
the unique lines and no adjacent repeated lines).

There is also an option to compare the latter parts of lines rather than entire lines.
The n arguments specify skipping an initial portion of each line in the com
parison:

-n The first n fields, together with any blanks before each, are ignored. A
field is defined as a string of non-space, non-tab characters separated by
tabs and spaces from its neighbors.

+n The first n characters are ignored. Fields are skipped before characters.

uniq Option Summary

OPTIONS

-u Copy only those lines that are not repeated in the original file.

-d Write one copy of just the repeated lines.

-c Supersedes -u and -d and generates an output report in default style but
with each line preceded by a count of the number of times it occurred.

-n The first n fields together with any blanks before each are ignored. A
field is defined as a string of non-space, non-tab characters separated by
tabs and spaces from its neighbors.

+n The first n characters are ignored. Fields are skipped before characters.

Revision A, of 9 May 1988

8.2. Modifying Files

8.3. Printing Files

Chapter 8 - Manipulating Files 197

The following commands can be used to modify files: colrm, compact,
compress, fold, pack, sort, split, tr, and tsort. All of these com
mands are described in the SunOS Reference Manual.

To print files on paper, use the lpr command. To examine the print queue, use
the lpq command. To remove jobs from the print queue, use the lprm com
mand. All three of these commands are described in the SunOS Reference
Manual.

Revision A, of 9 May 1988

Index

A
awk command, 169 thru 181
awk programming, 169 thru 181

action statements, 176
arrays, 180
assignment statements, 176
BEGIN and END sections, 173
Boolean operators, 176
built-in functions, 179
concatenation of strings, 178
control flow statements, 180
displaying text, 171
END and BEGIN sections, 173
expressions, 176
field variables, 177
fields and records, 171
flow of control statements, 180
index () function, 179
length () function, 179
pattern specification, 173
printing tex~ 171
program structure, 170
ranges for patterns, 176
records and fields, 171
regular expressions, 174
relational operators, 175
setting variables, 176
sprintf () function, 179
string concatenation, 178
substr () function, 179
usage on command line, 170
variables, 176

C
cat command, 156
emp command, 185
carom command, 192
count lines, words, characters with we, 165

D
dictionary word search, 165
diff command, 186
diff3 command, 191
display editor vi, 9 thru 57

-199-

E
ed editor, 91 thru 136

$ for end ofline, 122
& for remembered text, 105
* to match repeated expressions, 124
. to match any character, 119
; command separator, 114
[...] for character classes, 127
\ to escape magic, 120
A for beginning of line, 124
address arithmetic, 110
all lines in file, 116
appending tex~ 92
changing lines of tex~ 107
command fonnat, 108
commandsununary, 135
copying lines, 132
current line and dot, 100
cutting and pasting, 128
deleting lines, 101
dot and current line number, 113
edit new file, 94
editing scripts, 133
error messages, 93
field rearrangement, 131
find current filename, 96
global commands, 116
inserting text, 107
interrupting actions, 116
joining lines, 131
line addressing, 108
listing lines in buffer, 99
magic characters, 119
marking lines, 132
metacharacters, 119
moving lines, 128
newline substitution, 130
printing lines in buffer,
quit from, 94
read text from file, 96
rearranging fields in a line,
repeating searches, 112
running system commands from,
searching for strings. 108
shell escape. 133
special characters, 119
starting, 91
substituting text, 102
summary of commands, 135

Index Continued

ed editor, continued
tool creation, 133
transferring lines, 132
undoing changes, 106
write file, 93

editing text
ed line editor, 91 Ihru 136
ex line editor, 63 Ihru 85
5 ed stream editor, 139 thru 152
v i display editor, 9 thru 57

error messages in ed editor, 93
error messages in ex editor, 66
ex editor, 63 Ihru 85

t as alternate file, 65
% as current file, 65
addressing combinations, 68
addressing primitives, 68
alternate file, 64
command parameters, 67
command reference. 70
commandstrucnrre,66
command variants, 67
comments in edit scripts, 67
current file, 64
errors and interrupts, 66
file manipulation, 64
flags after commands, 67
limitations, 84
magic and nomagic, 69
magic characters, 65
metacharacters, 65
modes for editing, 66
multiple commands on line, 67
named buffers, 65
options, 80
readonly mode, 65
recovering after crash, 66
regular expressions, 68, 69
replacement patterns, 70
special characters, 65
starting up, 63
substituting text, 68

G
grep command, 157

H
head command, 155

J
join command, 195

L
line editors

ed, 91 Ihru 136
ex, 63 Ihru 85

look command, 165
look up word in dictionary, 165

-200-

M
manipulating files, 185 Ihru 197
more command, 156

p
pattern scanning and processing with awk, 169 Ihru 181

R
regular expressions, 68, 119, 158, 174

$ end of line, 158
* repeated expression, 161
• match any character, 159
[...] character class, 160

A beginning ofline, 158
closure of pattern *, 161

rev command, 165
reversing lines with rev, 165

S
screen editor vi, 9 thru 57
search for string pattern, 157
search on-line dictionary for word, 165
sed stream editor, 1391hru 152

address arithmetic, 142
address ranges, 143
command functions, 144
command-line options, 141
context addresses, 142
flow-of-control commands, 151
hold space for lines, 150
input and output, 148
line commands, 144
line numbers, 142
miscellaneous commands, 152
multi-line commands, 149
order of execution, 142
starting up, 140
substituting text, 147
uses of,139

stream editor sed, 139 Ihru 152

T
tail command, 155
text editing

ed line editor, 91 Ihru 136
ex line editor, 63 Ihru 85
sed stream editor, 1391hru 152
vi display editor, 9 Ihru 57

text manipUlation
awk program, 169 Ihru 181
cat - view files sequentially, 156
comm - find common lines, 192
comparing binary files, 185
comparing directories, 186
comparing files, 185 thru 196
comparing text files, 186
di f f - compare directories, 187
diff - compare text files, 186, 187
diff - merge text files, 187
diff3 - compare three files, 191
egrep - extended pattern search, 162
fgrep - fixed string search, 162

text manipulation, conJmued
file manipulation, 185 thru 197
grep - pattern searching, 157
head - top of file, 155
inverted search for pattern, 158
join - join database fields, 195
modifying files, 197
more - view files selectively, 156
pattern searching, 156 thru 166
printing files, 197
regular expressions, 158
scanning files, 155 thru 166
search for string pattern, 157
searching through files, 156 thru 166
sed stream editor, 139 thru 152
tail- bottom of file, 155
uniq- for repeated lines, 196
view - view files randomly, 156
viewing files, 155 thru 156

text processing with awk, 169 thru 181
textedit command, used in SunView, 3

U
uniq command, 196

V
vi editor, 9 thru 57

abbreviating text, 28
adding text, 37
adjusting the screen, 21
appending text, 37
arrow keys, 11
buffer for editing, 11
Cprogramming, 25
character by character, 46
colon commands, 41
command mode and insert mode, 10
command reference, 33
compared to ex, 9
corrections, 16
counted commands, 29
cutting and pasting, 18,20,38
deleting text, 17,38
editing a file, 10
editing new files, 20
escape key, 11
EXINIT environment variable, 55
exiting from, 12
. exrc file, 55
file manipUlation commands, 30
filtering lines, 25
getting out of, 12
go to line number, 13
implementation details, 28
input mode, 32
insert mode and command mode, 10
inserting text, 15, 37
line-oriented operations, 17
LISP programming, 26
low-level details, 28
macro mapping, 26
marking and returning, 21
miscellaneous commands, 39

-201-

v i editor, conJinued
modes (command and insert), 10
modifying text, 38
moving around file, 12
moving around screen, 14
moving cursor and positioning screen, 34
moving on line, 18
moving within a line, 14
options and set variables, 22
paging forward and backward, 12
power typing, 24
primitiveterminals,55
programming aids, 25
quitting, 12
read-only option, 15
recovering deleted lines, 23
recovering lost files, 24
removing text, 38
replacing text, 38
scrolling forward and backward, 12
searching for strings, 13,31,37
set commands, 42
shell escape, 21
simple changes, 15
slow tenninals, 56
starting up, 10
starting up and quitting, 34
startup files, 55
tags and tagstack, 40, 41
TERM environment variable, 55
TERMCAP environment variable, 55
terminal type, 54
textual objects, 19
tools for filtering lines, 25
undoing changes, 18
upper-case-only terminals, 57
viewing a file (read only), 15
write and quit, 20

v iew command, 156

W
we command, 165
word (line, character) count with we, 165

Index - ConJinued

Notes

Notes

Notes

Notes

Notes

Notes

Notes

c
Escape Sequences

Escape Sequences .. 187

Table C-l

c
Escape Sequences

Note: The escape sequences \ \, \ ., \", \$, *, \a, \n, \t, and \(newline)
are interpreted in copy mode (see Chapter 10).

trof f Escape Sequences

\\
\e
\ '

\'
\-

\ .

Escape
Sequence

\ (space)
\0
\ I
\"

\&
\ !
\"
\$N
\%

\ (xx
*x, * (xx
\a
\b' abc ... '
\c

Meaning

\ (to prevent or delay the interpretation of\)
Printable version of the current escape character.
, (acute accent); equivalent to \ (aa
.. (grave accent); equivalent to \ (g a
- Minus sign in the current font

Period (dot) (see. de)
Unpaddable space-size space character
Digit-width space
1/6 em-narrow space character (zero width in nroff)
1/I2-em half-narrow space character (zero width in
nroff)

Non-printing, zero width character
Transparent line indicator
Beginning of comment
Interpolate argument 1 ~ N ~9
Default optional hyphenation character

Character named xx
Interpolate string x or xx
Non-interpreted leader character
Bracket building function
Interrupt text processing

\d Forward (down) 1/2-em vertical motion (l/2-line in
nroff)

\ fx, \ f (xx, \ fN Change to font named x or xx, or position N

187 Revision A, of 9 May 1988

188 Using nroff and troff

Table C-l trof f Escape Sequences- Continued

Escape
Sequence

\h' N'
\kx
\1' Nc'

\L' Nc'

\nx, \n (xx

\0' abc ... '
\p
\r

\sN, \s±N
\t
\u
\v' N'
\ w' string'

\x' N'

\zc
\{
\}
\ (newline)
\X

~\sun ,~ microsystems

Meaning

Local horizontal motion; move right N (negative=left)
Mark horizontal input place in register x
Horizontal line drawing function (default character is
baseline rule in traff or underline in nroff; option
all y with character c)

Vertical line drawing function (default character is box
rule; optionally with character c)
Interpolate number register x or xx
Overstrike characters a, b, c, ...
Break and spread output line
Reverse one-em vertical motion (reverse line in nroff)

Point-size change function
Non-interpreted horizontal tab
Reverse (up) l/2-em vertical motion (l/l-line in nroff)
Local vertical motion; move downN (negative=up)
Interpolate width of string

Extra line-space function (negative before, positive
after)
Print c with zero width (without spacing)
Begin conditional input
End conditional input
Concealed (ignored) newline
X, any character not listed above

Revision A, of 9 May 1988

D
Predefined Number Registers

Predefined Number Registers .. 191

D
Predefined Number Registers

Table D-l General Number Registers

Register
Name Description

c. Input line-number in current input file; same as . c.
% Current page number.
ct Character type (set by width function).
dl Width (maximum) of last completed diversion.
dn Height (vertical size) of last completed diversion.

dw Current day of the week (1-7).
dy Current day of the month (1-31).
hp Current horizontal place on input line.
In Output line number.
rna Current month (1-12).

nl Vertical position of last printed text baseline.
sb Depth of string below base line (generated by width function).
st Height of string above base line (generated by width function).
yr Last two digits of current year.

Table D-2 Read-Only Number Registers

Register
Name

. $

. A

. R

. L

. P

. T

. v

. a

.\sun ,~ microsystems

Description

Number of arguments available at the current macro level.
Set to 1 in troff, if -a option used; always I in nraff .
Available horizontal resolution in basic units .
Current line-spacing parameter (. Is) .
I if current page is printed, otherwise zero .

Set to 1 in nroff, if -T option used; always a in traff .
Available vertical resolution in basic units .
Post-line extra line-space most recently utilized using \x' N' .

191 Revision A, of 9 May 1988

192 Using nroff and troff

Table D-2 Read-Only Number Registers- Continued

Register
Name

· c
.d

· f
. h

· i
· j
. k

. 1

. n

. 0

. p

· s

. t

. U

. V

. W

. X

. y

· z

Description

Number of lines read from current input file.
Current vertical place in current diversion; equal to nl, if no
diversion.

Current font as physical quadrant (1-4).
Text baseline high-water mark on current page or diversion .
Current indent.
Current adjustment mode and type.
Horizontal text portion size of current output line .

Current line length .
Length of text portion on previous output line .
Current page offset .
Current page length .
Current point size.

Distance to the next trap .
Equal to 1 in fill mode and 0 in nofill mode .
Current vertical line spacing .
Width of previous character .
Reserved version-dependent register .

Reserved version-dependent register .
Name of current diversion (a string, not a number).

Revision A. of 9 May 1988

E
troff Output Codes

traff Output Codes .. 195

E.1. Codes 0 Oxxxxxx - Flash Codes to Expose Characters 196

E.2. Codes lxxxxxxx - Escape Codes Specifying Horizontal
Motion ... 197

E.3. Codes Ollnxxx-Lead Codes Specifying Vertical Motion 197

E.4. Codes OlOlxxxx- Size Change Codes .. 197

E.5. Codes OlOOxux- Control Codes ... 198

E.6. How Fonts are Selected ... 199

E.7. Initial State of the C/Arr .. 199

BIT 7
Major Code

Type

E
t r 0 f f Output Codes

As we mentioned before, t r 0 f f is geared up to produce binary codes for a pho
totypesetter called a C/Arr. This appendix describes the codes for the C/A{f in
detail. This information is for people who want to translate C/A{f codes for
other purposes.

The basic mechanism of the C/ A{f typesetter is a revolving drum divided into
four quadrants. On each quadrant of the drum you can mount a strip of film -
one strip of film corresponds to a font. Each font has 108 characters in it. Char
acters are exposed on the final photographic paper by 'flashing' a light through
the appropriate position of the film strip on the drum. The actual font to be used
is selected (as you will see later) by a combination of 'rail', 'mag', and 'font
half' -the terms 'rail' and 'mag' are hangovers from very old hot-lead typeset
ting technology and have no place in electro-mechanical systems, but they were
carried over because typesetters can't handle new things. Point size changes are
handled in the C/ A!f by a series of magnifying lenses.

The C/A{f's basic unit of length (machine unit) is 1/432 inch (there are six of
these units to a typesetter's 'point'). The quantum of horizontal motion is one
unit. The quantum of vertical motion is three units 0/144 inch or half a point).
trof f uses the same system of units in its internal computations.

The C/A{f phototypesetter is driven by sending it a sequence of one-byte (eight
bit byte) codes to specify characters, fonts, point sizes, and other information.
The encoding scheme used was obviously designed by someone wanting to send
the minimum amount of information across a communications channel at the
expense of doing vast amounts of work in the computer driving the typesetter.

A complete CIM file is supposed to start with an initialize code (described
later), followed by an escape-16 code, then the body of the text destined for the
C/A!f. The whole file ends with 14 inches of trailer, followed by a stop code. In
practice, looking at troff's output file has generated disagreements on what the
file really looks like, but we don't have a C/Arr around to really try it out.

Bit 7 of a code byte classifies the byte into one of two major types:

6 5 4 3 2 1 o

Further Encoding

195 Revision A, of 9 May 1988

196 Using nroff and troff

BIT

BIT

BIT

BIT

7

Bit 7 = 1

Escape Code

7

The top bit (bit 7) is encoded thus:

1 - An Escape Code, specifying horizontal motion, as described below.

6 5 4 3 2 1 o
One's Complement of Amount of Motion

o - indicates that bits 7 and 6 are used to further encode the code byte, as fol
lows:

6 5 4 3 2 1 o
Flash Code or

Control Code
Further Encoding

The two upper bits have these meanings:

00 - A Flash Code, which selects a character out of a font, as described below.

7 6 5 4 3 2 1 o
Bits 6 and 7 = 00

Flash Code
Character Number to Flash (1-63)

7

01 - A Control Code, which is thenfurther encoded into one of two categories
depending on whether the next bit is a one or a zero:

6 5 4 3 2 1 o
Control Code Further Encoding

1 - This is a lead code, described below, or

0- in which case the control code isfurther encoded into one of three
categories of:

o Initialization and termination.

o Selecting fonts.

o Specifying the direction of motion for escapes and leading.

We have finally reached the end of this encoding scheme. The following sections
discuss each type of code in detail.

E.1. Codes 0 Oxxxxx:x -
Flash Codes to Expose
Characters

A code with the bits six and seven equal to zero (0 Oxxxxxx) is afiash code. A
flash code specifies flashing one of 63 characters - the lower six bits of the flash
code specify which character to flash. This is not enough character combinations
to select even all the characters within a single font (there are 108 characters per
font) and so there are control codes (described later) to select the font and which
half of the font. Given that a specific font is selected via the rail, mag, and (for
the eight-font C/A/T) the tilt codes, you then select an upper-font-half or a
lower-font-half. The lower-font-halfis the first 63 characters of the font, and the
upper-font-halfis the remaining 45 characters of the font. A flash code of greater

~\sun
• microsystems

Revision A, of 9 May 1988

E.2. Codes lxxxxxxx -
Escape Codes
Specifying Horizontal
Motion

E.3. Codes 0 llxxxxx -
Lead Codes Specifying
Vertical Motion

E.4. Codes 010 lx:ux -
Size Change Codes

Table E-1

Point-Size

6
7
8
9

10
11
12
14

Appendix E - troff Output Codes 197

than 46 in the upper-half of the font is considered illegal.

A code with bit seven equal to 1 (lxxxxxxx) is an escape code. An escape code
specifies horizontal motion. The C/A{f is a boustrophedonic device - that is, it
can move in both directions, and so the direction of motion is specified by one of
the control codes described later on. The amount of horizontal motion is
specified by the one's complement of the lower seven bits of the escape code.

A codes with the top three bits equal to 011 is a lead code. A lead code is a
subset of the control codes in that the top three bits are 0 11. Such a code
specifies vertical motion. The amount of the vertical motion is specified by the
one's complement of the lower five bits, in vertical quanta. 'Lead' is a
typesetter's tenn deriving from the days of hot-lead machines - the terminology
sticks with us because the industry moves slowly.

A byte with the top four bits equal to 0 101 is a size-change code. Such a code
specifies movement of a lens turret and a doubler lens to change the point size of
the characters. The size-change codes are as follows:

Size Change Codes

Binary Code Octal Code Point-Size Binary Code Octal Code

01011000 0130 16 01011001 0131
01010000 0120 18 01010110 0126
01010001 0121 20 01011010 0132
01010111 0127 22 01011011 0133
01010010 0122 24 01011100 0134
01010011 0123 28 01011101 0135
01010100 0124 36 01011110 0136
01010101 0125

Changes in size using the doubler lens change the horizontal position on the
page:

If you changefrom: Follow the change with:

Single to double A forward escape of 55 quanta

Double to single A reverse escape of 55 quanta

Revision A. of9 May 1988

198 Using nroff and troff

Table E-2 Single Point-Sizes versus Double Point-Sizes

E.S. Codes 010 Oxxx:x -
Control Codes

Single Double

6 16
7 20
8 22
9 24

10 28
11 36
12
14
18

A byte with the top four bits equal to 0100 is a control code. Not all of the con
trol codes have meaning to the typesetter. The control codes are in three classes,
namely:

o Initialization and termination.

o Selecting fonts.

o Specifying the direction of motion for escapes and leading. The control
codes and their meanings are:

Table E-3 CIAIT Control Codes and their Meanings

Category Meaning Binary Code Octal Code

Initializing Initialize 01000000 0100
and Terminating Stop 0100 1001 0111

Upper Rail 01000010 0102
Lower Rail 01000001 0101
Upper Mag 01000011 0103

Selecting Fonts
Lower Mag 01000100 0104
Tilt Up 01001110 0116
Tilt Down 01001111 0117
Upper Font Half 01000110 0106
Lower Font Half 01000101 0105

Specifying Direction Escape Forward 01000111 0107
Escape Backward 01001000 0110

Of Motion Lead Forward 01001010 0112
Lead Backward 0100 1100 0114

~~sun ~ microsystems
Revision A, of9 May 1988

E.6. How Fonts are
Selected

Appendix E - troff Output Codes 199

Note that tilt up and tilt down are unimplemented op-codes on the four-font
C/Arr. However, the illustrious hackers at Berkeley implemented a program
called rvcat to drive the Versatec or the Varian printers, and they used the
0116

8
code to mean 'multiply the next lead-code by 64' to avoid having enor

mous runs of small lead-codes.

Fonts are selected by a combination of rail, mag, and tilt. The tilt codes exist
only on the eight-font C/A/f and this is the 0n!y difference between the two
machines that is visible to the user. The standard version of troff doesn't
know about the eight-font machine - University of lliinois is one of the places
that hacked over troff to make it understand the eight-font C/Arr. The
correspondence between rail, mag, and tilt codes is shown in this table:

Table E-4 Correspondence Between Rail, Mag, Tilt, and Font Number

E. 7. Initial State of the
CIAIT

Rail Mag Tilt Four-Font Eight-Font

Lower Lower Up 1 1
Lower Lower Down 1 2
Upper Lower Up 2 3
Upper Lower Down 2 4
Lower Upper Up 3 5
Lower Upper Down 3 6
Upper Upper Up 4 7
Upper Upper Down 4 8

For those wishing to write postprocessors to hack over C/Arr codes, here is the
initial state of the beast:

Attribute Initial State

Escape Forward

Lead Forward

Font-Half Lower

Rail Lower

Mag Lower

Tilt Down

~\sun ~ microsystems
Revision A, of 9 May 1988

Index

Special Characters
• $ (number of arguments) number register, 109
\& (zero-width non-printing) function, 137
% (page-number) number register, 42, 121
\ (unpaddable space) function, 136
\ A (thin space) function, 136
\ I (thick space) function, 136

o
\0 (digit-size space) function, 134

A
\a (leader character) function, 72
· a (post-line extra space) number register, 52
· ab (abort) request, 166
access format for number registers, 125
accessing strings, 98
· ad (adjust) request, 21
adjusting, 17

center, 21
flush left, ragged right, 21
flush right, ragged left, 21
justified, 21

· af (format of number register) request, 125
• am (append to a macro) request, 112
append to a

diversion, 114
macro, 112
string, 99

arguments to macros, 109
arithmetic expressions with number registers, 124
· as (append to string) request, 99
auto-incrementing number registers, 123
automatic hyphenation, 24

B
\b (bracket) function, 142
backslash - how to print it in troff, 9
basic request, 8
· bd (boldface) request, 60
begin page, 41
blank lines, 19
bold-face request, 60
box lines, 145
· bp (start new page) request, 41

-201-

· br (break lines) request, 20, 19
bracket drawing function, 142
break request, 19, 20

C
\c (continuation line) function, 20
elM codes

control, 196
escape, 196
file organization, 195
flash, 196, 196

· c2 (set no-break control character) request, 150
· cc (set control character) request, 150
· ce (center lines) request, 28, 27 thru 28
centered tabs, 68
· ch (change position of a trap) request, 116
change bars, 145
change position of a trap, 116
character translation (substitution), 150
comments in troff source files, 9
concealed new lines, 10
conditional page break, 42
conditional processing of input, 157
conditional request

· el, 159
· ie, 159
· if, 157
· ig, 160

constant character space width mode request, 54
continuation lines, 10, 20
continuously underline request, 29
control character setting, 150
control code, 196
control lines in troff, 8
copy mode, 112
creating number registers, 121
· cs (set constant character space width mode) request, 54
ct (character type) number register,> 141
· cu (continuously underline) request, 29

D
\d (move down) function, 131
· d (vertical place in current diversion) number register, 114
· da (append to a diversion) request, 114
· de (define macro) request, 105

Index - Continued

defining troff objects
macros, 105
number registers, 121
strings, 98

deleting number registers, 127
device resolution, 10
· di (divert text) request, 114
diversion traps, 114, 116
diversions, 113, 114
divert text, 114
dl (width of last finished diversion) number register, 113
dn (height of last finished diversion) number register, 113
document preparation

formatters, 3 thru 13
nroff program, 3 Ihr" 13
text formatters, 3 Ihru 13
troff program, 3 Ihr" 13

drawing in troff
boxes, 145
brackets, 142
horizontal lines, 143
vertical lines, 143, 144

· ds (define string) request, 98
· dt (set a diversion trap) request, 116
dy (day of month) number register, 121

E
· ee (set escape character) request, 149
· el (else conditional) request, 159
• em (set the end-of-processing trap) request, 117
end-of-file, 19
end-of-processing traps, 117
end-of-sentence,18
environmentswioching, 169
· eo (set escape off) request, 149
escape character, 149
escape code for elM, 196
· ev (switch environment) request, 169
· ex (terminal message) request, 94
expressions with number registers, 124

F
· f (current font) number register, 62
· fe (set field characters) request, 74
· fi (fill) request, 23
field character, 74
fields, 74
fill request, 23
filler character, 18
filling, 17
· fl (flush buffer) request, 166
flash code, 196, 196
flush output buffer, 166
font position request, 59
footers, 81, 85
force font size request, 59
· fp (change font position) request, 59
· ft (set font) request, 58
· f z (force font size) request, 59

-202-

G
general number registers

% -page-number, 42,121
et - character type, 141
dl - width of last finished diversion, 113
dn - height of last finished diversion, 113
dy -day of month, 121
mo -month of year, 121
nl - vertical position of last baseline, 121, 113
sb - string depth below baseline, 140
s t - string height above baseline, 140
yr -last two digits of year, 121

get vertical space request, 47

H
\h (horizontal motion) function, 133
• h (text high-water mark) number register, 18, 114
half em-space, 136
half-line motions

\d (move down) function, 131
\ u (move up) function, 131

hanging indent, 39
hard blank, 17
• he (hyphenation character) request, 26
headers, 81, 85
horizontal lines, 143
horizontal motion, 133, 134, 136, 138
horizontal place marker, 141
• hw (hyphenate word) request, 25
· hy (hyphenate) request, 24,25
hyphenation, 24

automatic, 24
control,24
indicator, 25
indicator character, 26
special cases, 25
specuyinglocation, 25
tum on and off, 24

I
· i (current indent) number register, 38, 40
· ie (if-else conditional) request, 159
· if (conditional processing) request, 157
· ig (ignore lines) request, 160
ignoring input lines, 160
· in (indent) request. 37
in-line functions

\ (unpaddable space) function, 136
\ & (zero-width non-printing) function, 137
\ A (thin space) function, 136
\ I (thick space) function, 136
\ 0 (digit-size space) function, 134
\ a (leader character) function, 72
\b (bracket) function, 142
\e (continuation line) function, 20
\d (move down) function, 131
\h (horizontal motion) function, 133
\k (mark horizontal position) function, 141
\ 1 (horizontal line) function, 143
\L (vertical line) function, 144, 143
\ 0 (overstrike) function, 138

in-line functions, continued
\p (break and spread) function, 19
\r (reverse line) function, 143
\ u (move up) function, 131
\ v (vertical motion) function, 132
\w (width) function, 140
\x (get extra line space) function, 52
\ z (zero motion) function, 139

include
from file, 89
from standard input, 92

incrementing number registers, 123
indentation

first line of paragraph, 38
permanent, 37
temporary, 38

input-line-count traps, 114, 116
interpolating number registers, 121, 125
interrupted line, 20
· it (set an input-line-count trap) request, 116
italic correction, 136
itemized lists, 39

J
· j (current adjustment indicator) number register, 21

K
\k (mark horizontal position) function, 141

L
\1 (horizontal line) function, 143
\L (vertical line) function, 144, 143
· 1 (line-length) number register, 36
large boxes, 145
.1c (set leader character) request, 73
leaders and leader characters, 71, 72
left margin, 35
length of title, 83
.1g (set ligature mode) request, 63
ligatures, 63
line adjusttnent indicators

both,21
center, 21
indentation, 37
left, 21
normal,21
right, 21

line drawing
functions, 143, 144
horizontal, 143
vertical, 143, 144

line numbering
start, 153
suspend,154

line spacing request, 51
line-length, 35
.11 (set line-length) request, 35
local motions, 132

\ (unpaddable space) function, 136
\ & (zero-width non-printing) function, 137

-203-

local motions, continued
\ A (thin space) function, 136
\ I (thick space) function, 136
\0 (digit-size space) function, 134
\b (bracket) function, 142
\d (move down) function, 131
\h (horizontal motion) function, 133
\ 1 (horizontal line) function, 143
\L (vertical line) function, 144, 143
\0 (overstrike) function, 138
\r (reverse line) function, 143
\u (move up) function, 131
\ v (vertical motion) function, 132
\ z (zero motion) function, 139

long lines, 10
.1s (change line spacing) request, 51
· It (set length of title) request, 83

M
macros,9,105

append to, 112
arguments to, 109
copy mode, 112
defining, 105
embedded blanks, 111
invoking, 105
print names and sizes, 165
remove, 107
renaming, 108

margin character, 145
margins on a page

with nroff and troff, 21, 35
mark

horizontal position, 141
vertical position, 43, 114

• me (margin character) request, 145
measure, 35
• mk (mark vertical position) request, 43, 114
mo (month of year) number register, 121

N
· n (text length) number register, 18
· na (no adjust) request, 22
· ne (need space) request, 42
need space, 42
newpage, 41
· nf (no fill) request, 23
· nh (no hyphenation) request, 25, 24

Index - Continued

nl (vertical position of last baseline) number register, 121, 113
· nm (number lines) request, 153
· nn (no number) request, 154
no adjust request, 22
no fill request, 23
no hyphenation request, 24, 25
no space mode request, 53
no-break control character setting, 150
non-printing character, 137
· nr (set number register) request, 121
n roff command

exit from, 94
introduction to, 3, 13

Index - Continued

· n s (no space mode) request, 53
number registers, 121

access format, 125
auto-incrementing, 123
creating, 121
expressions, 124
interpolating, 121
removing, 127
setting, 121

numbering lines, 153, 154
· nx (next file) request, 91

o
\ 0 (overstrike) function, 138
.0 (page-offset) number register, 35
one-twelfth em-space, 136
orphans, 43
· os (output saved vertical space) request, 53
output saved vertical request, 53
overstriking, 138

P
\p (break and spread) function, 19
· p (page-length) number register, 41
padding indicators, 74
page length changes, 41
page number, 42, 84
page traps, 114
page-offset, 35
· pc (set page number character) request, 84
· pi (pipe to program) request, 91
pipe to program, 91
· pI (set page length) request, 41
· pm (print macros) request, 165
· pn (set page number) request, 42
· po (set page-offset) request, 35
point size request, 49
predefined number registers

% -page-number, 42,121
• $ - number of arguments, 109
· a - post-line extra space, 52
· d - vertical place in current diversion, 114
• f - current font, 62
· h - text high-water mark, 18, 114
· i-current indent, 38, 40
· j - current adjustment indicator, 21
· I -line-length, 36
· n - text length, 18
• 0 - page-offset, 35
· p - page-length, 41
· s - point-size, 49
· t - distance to next trap, 113, 115
· u - fill mode indicator, 23
· v - vertical spacing, 51
· z - name of current diversion, 114
ct - character type, 141
dl- width of last finished diversion, 113
dn - height of last finished diversion, 113
dy - day of month, 121
mo - month of year, 121
n I - vertical position of last baseline, 121, 113

-204-

predefined number registers, continued
sb - string depth below baseline, 140
st - string height above baseline, 140
yr -last two digits of year, 121

print macros, 165
Procrustean mold, 23
. ps (change point size) request, 49

R
\r (reverse line) function, 143
. rd (read standard input) request, 92
read-only number registers

• $ - number of arguments, 109
· a - post-line extra space, 52
· d - vertical place in current diversion, 114
· f - current font, 62
· h - text high-water mark, 18, 114
· i-current indent, 38, 40
· j - current adjustment indicator, 21
.1-line-Iength,36
· n - text length, 18
• 0 - page-offset, 35
· p - page-length, 41
· s - point-size, 49
· t - distance to next trap, 113, 115
· u - fill mode indicator, 23
· v - vertical spacing, 51
• z -name of current diversion, 114

reading from standard input, 92
referencing strings, 98
removing

macro definitions, 107
number registers, 127
string definitions, 107

renaming macros and strings, 108
requests, 8

· ab - abort, 166
· ad - adjust, 21
· af - format of number register, 125
· am - append to a macro, 112
· as - append to string, 99
· bd - break line, 60
· bp - begin page, 41
· br - break line, 20, 19
· e2 - set no-break control character, 150
· ee - set control character, 150
· ee - center lines, 28, 27 thru 28
· eh - change position of a trap, 116
· es - constant spacing, 54
· eu - continuously underline, 29
· da - append to a diversion, 114
· de - define macro, 105
· di - divert text, 114
· ds - define string, 98
· dt - set a diversion trap, 116
· ee - set escape character, 149
· el - else conditional, 159
· em - set the end-of-processing trap, 117
· eo - set escape off, 149
· ev - switch environment, 169
· ex - exit from nroff or troff, 94
· fe - set field characters, 74
· fi - fill, 23

requests, continued
• f1-flush buffer, 166
· fp - font position, 59
· ft - set font, 58
· f z - force font size, 59
• he - hyphenation character, 26
· hw - hyphenate word, 25
.hy-hyphenate, 24, 25
· ie - if-else conditional, 159
• if - conditional processing, 157
· ig - ignore lines, 160
• in - indent, 37
· it - set an input-line-count trap, 116
.1e - set leader character, 73
· 19 - set ligature mode, 63
.11- set line-length, 35
.15 -line spacing, 51
· It - set length of title, 83
· me - margin character, 145
• mk - mark vertical position, 43, 114
· na - no adjust, 22
.ne -need space, 42
· nf - no fill, 23
· nh - no hyphenation, 25, 24
· nm - number lines, 153
· nn - no numbering, 154
· nr - set number register, 121
· ns - no space mode, 53
· nx - read next source file, 91
· os - output saved vertical space, 53
· pc - set page number character, 84
· pi - pipe to program, 91
· pI - set page length, 41
· pm - print macros, 165
· pn - set page number, 42
· po - set page-offset, 35
· ps -point size, 49
· rd - read from standard input, 92
removing, 107
renaming, 108
· rm - remove request, macro, or string, 107
· rn - rename request, macro, or string, 108
· rr - remove number register, 127
· rs - restore space mode, 53
· rt - return to position, 44, 114
· so - switch source file, 89
· sp - space, 47
· s s - set space size, 54
• sv - save vertical space, 52
· ta - set tab stops, 67
· tc - set tab character, 69
· t i-temporary indent, 38
· t 1 - define title, 85
· tm - tenninal message, 94
· tr - translate characters, 150
· uf -underline font, 29
· u1 - underline, 28
· vs - vertical spacing, 51
· wh - when something, lIS, 82

resolution, 10
restore space mode request, 53
return to marked vertical position, 114
return to vertical position, 44

-205-

reverse line function, 143
revision bars, 145
right-adjusted tabs, 68

Index - Coruinued

· rm (remove request, macro, or string) request, 107
· rn (rename request, macro, or string) request, 108
· rr (remove number register) request, 127
· rs (restore space mode) request, 53
· rt (return to position) request, 44, 114
rules

horizontal,143
vertical, 143, 144

running headers and footers, 81, 85

s
· s (point-size) number register, 49
save vertical space request, 52
saving state, 169
sb (string depth below baseline) number register, 140
sentence endings, 18
set font request, 58
set ligature mode request, 63
set page number, 42
set space-character size request, 54
setting line-length, 35
setting number registers, 121
setting tabs, 67
skipping input lines, 160
· so (switch source) request, 89
· sp (get vertical space) request, 47
space request, 47
spaces, 19
· s s (set space-character size) request, 54
st (string height above baseline) number register, 140
standard input

reading t ro f f input from, 92
start line numbering, 153
start new page, 41
strings, 97

accessing, 98
appending to, 99
beginning with blanks, 98
defining, 98
removing, 107
renaming, 108

substituting characters, 150
suspend line numbering, 154
· sv (save vertical space) request, 52
switch source file, 89

T
· t (distance to next trap) number register, 113, 115
· ta (set tab stops) request, 67
tabs

absolute, 68
centered, 68
relative, 68
replacement character, 69
right-adjusted, 68
setting, 67

Index - Continued

· t c (set tab character) request, 69
temporary indent of one line, 38
text lines

as trof f input, 8
ignoring, 160
words in, 17

thick space, 136
thin space, 136
three-part titles, 85
· ti (temporary indent) request, 38
title length, 83
titles, 81
· tl (title) request, 85
• tm (terminal message) request, 94
· tr (translate characters) request, 150
translating characters, 150
transparent throughput, 10
traps

change position of, 116
diversion, 116
end-of-processing, 117
input-line-count, 116
page, 114

troff command
exit from, 94
introductionto,3,13

turn escape mechanism on and off, 149

U
\u (move up) function, 131
· u (fill mode indicator) number register, 23
· uf (underline font) request, 29
· u 1 (underline) request, 28
underline font request, 29
underline request, 28
units, 10
unpaddable space, 17

V
\ v (vertical motion) function, 132
· v (vertical spacing) number register, 51
vertical lines, 143, 144
vertical motion, 132
vertical position

mark,43
return to, 44

vertical spacing request, 51
· vs (change vertical spacing) request, 51

W
\w (width) function, 140
• wh (when something) request, 115, 82
when something request, 82, 115
width function, 140
word,17

-206-

X
\x (get extra line space) function, 52

y
yr (last two digits of year) number register, 121

Z
\ z (zero motion) function, 139
. z (name of current diversion) number register, 114
zero motion function, 139
zero-width character, 18, 137

~"sun®
• microsystems

Formatting Documents

Part Number: 800-1756-10
Revision A, of 9 May 1988

UNIX is a registered trademark of AT&T.
SunOS is a trademark of Sun Microsystems, Inc.
Sun Workstation is a registered trademark of Sun Microsystems, Inc.

Material in this manual comes from a number of sources: Typing Documents on
the UNIX System: Using the -ms Macros with Troff and Nroff, M. E. Lesk, Bell
Laboratories, Murray Hill, New Jersey; A Guide to Preparing Documents with
-ms, M. E. Lesk, Bell Laboratories, Murray Hill, New Jersey; Document Format
ting on UNIX Using the -ms Macros, Joel Kies, University of California, Berke
ley, California; Tbl-A Program to Format Tables, M. E. Lesk, Bell Labora
tories, Murray Hill, New Jersey; A Systemfor Typesetting Mathematics, Brian W.
Kernighan, Lorinda L. Cherry, Bell Laboratories, Murray Hill, New Jersey;
Typesetting Mathematics - User's Guide, Brian W. Kernighan, Lorinda L.
Cherry, Bell Laboratories, Murray Hill, New Jersey; Updating Publications Lists,
M. E. Lesk, Bell Laboratories, Murray Hill, New Jersey; Some Applications of
Inverted Indexes on the UNIX System, M. E. Lesk, Bell Laboratories, Murray
Hill, New Jersey; Writing Papers with Nroff Using -me, Eric P. Allman, Univer
sity of California, Berkeley; The -me Reference Manual, Eric P. Allman, Univer
sity of California, Berkeley; and Introducing the UNIX System, Henry McGilton,
Rachel Morgan, McGraw-Hill Book Company, 1983. These materials are grate
fully acknowledged.

Copyright © 1987, 1988 by Sun Microsystems, Inc.

This publication is protected by Federal Copyright L~w, with all rights reseIVed.
No part of this publication may be reproduced, stored in a retrieval system,
translated, transcribed, or transmitted, in any form, or by any means manual,
electric, electronic, electro-magnetic, mechanical, chemical, optical, or other
wise, without prior explicit written permission from Sun Microsystems.

Contents

Chapter 1 Introduction to Document Preparation .. 3

1.1. What Do Text Formatters Do? ... 3

1.2. What is a Macro Package? ... 4

1.3. What is a Preprocessor? ... 4

1.4. Typesetting Jargon .. 5

1.5. Hints for Typing in Text .. 6

1.6. Types of Paragraphs ... 7

Paragraph Illustrations ... 9

1.7. Quick References ... 10

Displaying and Printing Documents .. 11

Technical Memorandum ... 12

Section Headings for Documents .. 13

Changing Fonts .. 13

Making a Simple List ... 14

Multiple Indents for Lists and Outlines ... 15

Displays .. 16

Footnotes 16

Keeping Text Together - Keeps ~ .•.. ;",+~ ... , ~~ :"." .. , ..

Double-Column Format .. ,.;" .. ~ ;; ~~ ;::.:;~" ,.;~~<

Sample Tables .. ; •... ~ ;;; , ;:':;;::''''';'.«<

Writing Mathematical Equations ,;; ... ;.;.; ,: •. ;.: "".:.;•.. :.:. ;.:::

Registers You Can Change .. " ,.': ... ;" :.:.:.: : .. :.:':': ; ..

Chapter 2 Formatting Documents with the -ms Macros:,:.:;;;.: 27

- iii-

Contents - Continued

2.1. Changes in the New -ms Macro Package ... 27

2.2. Displaying and Printing Documents with -ms .. 27

2.3. What Can Macros Do? ... 28

2.4. Formatting Requests .. 28

Paragraphs ... 29

Standard Paragraph - . PP .. 29

Left-Block Paragraph - . LP .. 29

Indented Paragraph - . IP ... 30

Nested Indentation - . RS and . RE ... 31

Quoted Paragraph - . QP .. 32

Section Headings - . SHand . NH .. 33

Cover Sheets and Title Pages - . TL and . AU .. 34

Running Heads and Feet - LH, CH, RH ... 35

Custom Headers and Footers - .OH, . EH, . OF, and . EF 36

Multi-Column Formats - . 2C and . MC ... 37

Foomotes - . FS and . FE ... 38

Endnotes .. ~................... 39

Displays and Tables - . DS and . DE .. 39

Keeping Text Together - . KS, . KE and . KF .. 40

Boxing Words or Lines - . BX and . Bland . B 2 40

Changing Fonts - . I, . B, . Rand. UL .. 41

Changing the Type Size - . LG, . SM and . NL ... 41

Dates- .DA and .ND .. 42

Thesis Format Mode - . TM ... 42

Bibliography - . XP .. 42

Table of Contents - . XS, . XE, . XA, . PX ... 43

Defining Quotation Marks ... 43

Accent Marks .. 43

2.5. Modifying Default Features .. 45

Dimensions ... 45

2.6. Using nroff and troff Requests .. 47

2.7. Using -ms with eqn to Typeset Mathematics .. 48

2.8. Using -ms with tbl to Fonnat Tables .. 49

-iv-

Contents - Continued

2.9. Register Names ... 49

2.10. Order of Requests in Input ... 49

2.11. -ms Request Summary ... 51

Chapter 3 The -man Macro Package ... 59

3.1. Parts of a Manual Page ... 59

3.2. Coding Conventions .. 60

The Header and Footer Line (. TH) - Identifying the Page 60

The NAME Line ... 60

The SYNOPSIS Section .. 61

The DESCRIPTION Section ... 61

The OPTIONS Section .. 62

The FILES Section ... 63

The SEE ALSO Section .. 64

The BUGS Section .. 64

3.3. New Features of the -man Macro Package .. 64

New Num1:>er Registers .. 64

Using the Num1:>er Registers ... 65

3.4. How to Fonn.at a Manual Page .. 65

Chapter 4 Formatting Documents with the -me Macros 69

4.1. Using -me ... 70

4.2. Basic -me Requests ... 70

Paragraphs ... 70

Standard Paragraph - . pp .. 70

Left Block Paragraphs - .lp .. 71

Indented Paragraphs - . i p and . n p .. 71

Paragraph Reference .. 73

4.3. Headers and Footers - . he and . fa .. 74

Headers and Footers Reference .. 74

Double Spacing - . Is 2 ... 75

Page Layout ... 75

Underlining - . ul .. 77

-v-

Contents - Continued

Displays .. 77

Major Quotes - . (q and .) q .. 77

Lists - . (1 and .) 1 .. 77

Keeps - . (b and .) b, . (z and .) z .. 78

4.4. Fancy Displays .. 78

Display Reference .. 80

Annotations .. 81

Footnotes - . (f and .) f ... 82

Delayed Text ... 82

Indexes- . (x .) x and . xp .. 82

Annotations Reference ... 83

4.5. Fancy Features .. 84

Section Headings - . sh and . uh .. 84

Section Heading Reference ... 85

Parts of the Standard Pa{>er ... 86

Standard Paper Reference ... 88

Two-Column Output - . 2 c ... 90

Column Output Reference .. 90

Defining Macros - . de .. 90

Annotations Inside Keeps .. 90

4.6. Using traff for Phototypesetting ... 91

Fonts ... 91

Point Sizes - . s z .. 93

Fonts and Sizes Reference ... 93

Quotes - \ * (lq and \ * (rq .. 94

4.7. Adjusting Macro Parameters ... 94

4.8. raff Support .. 96

4.9. Preprocessor Support ... 96

4.10. Predefined Strings ... 97

4.11. Miscellaneous Requests .. 97

4.12. Special Characters and Diacritical Marks - . sc 98

4.13. -me Request Summary ... 98

-vi-

Contents - Continued

Chapter 5 refer - A Bibliography System .. 103

5.1. Introduction ... 103

5.2. Features ... 103

5.3. Data Entry with addbib ... 105

5.4. Printing the Bibliography ... 106

5.5. Citing Papers with. refer ... 107

5.6. refer Command Line Options ... 108

5.7. Making an Index .. 109

5.8. refer Bugs and Some Solutions ... 110

BlaI1k.s at Ends of Lines ... 110

Interpolated Strings .. 111

Interpreting Foreign Surnames .. 111

Footnote Num1:>ers .. 111

5.9. Internal Details of refer .. 112

5.10. Changing the refer Macros .. 114

Chapter 6 Formatting Tables with tbl ... 119

6.1. Running tbl .. 121

6.2. Input Commands .. 122

Options That Affect the Whole Table ... 123

Key Letters - Fonnat Describing Data Items .. 123

Optional Features of Key Letters ... 125

Data to 1:>e Fonnatted in the Table ... 127

Changing the Format of a Table ... 128

6.3. Examples .. 129

6.4. tbl Commands .. 140

Chapter 7 Typesetting Mathematics with eqn .. 143

7.1. Displaying Equations - . EQ and . EN ... 144

7.2. Running eqn and neqn .. 145

7.3. Putting Spaces in the Input Text ... 146

7.4. Producing Spaces in the Output Text ... 147

7.5. Symbols, Special Names, and Greek Letters ... 147

-vii-

Contents - Continued

7.6. Subscripts and Superscripts - sub and sup ,........... 148

7.7. Grouping Equation Parts - { and } .. 149

7.8. Fractions - over .. 150

7.9. Square Roots - sqrt ... 151

7.10. Summation, Integral, and Other Large Operators 152

7.11. Size and Font Changes ... 153

7.12. Diacritical Marks .. 154

7.13. Quoted Text ... 155

7.14. Lining Up Equations - mark and lineup ... 156

7.15. Big Brackets ... 156

7.16. Piles-pile ... 157

7.17. Matrices-matrix .. 158

7.18. Shorthand for In-line Equations - delim .. 159

7.19. Definitions - define ... 159

7.20. Tuning th.e Spacing .. 161

7.21. Troubleshooting ... 161

7.22. Precedences and Keywords ... 162

7.23. Several Examples .. 166

Chapter 8 Verification Tools .. 173

8.1. spell ... 173

8.2. checknr ... 173

8.3. soelim .. 173

8.4. deroff .. 173

8.5. fmt .. 173

8.6. col .. 173

8.7. colcrt .. 173

8.8. ul ... 173

Index ... 175

- viii-

Tables

Table 1-1 How to Display and Print Documents .. 11

Table 1-2 Registers You Can Change ... 23

Table 2-1 Display Macros ... 40

Table 2-2 Old Accent Marks .. 44

Table 2-3 Accent Marks ... 44

Table 2-4 Units of Measurement in nroff and traff .. 46

Table 2-5 Summary of -ms Number Registers .. 47

Table 2-6 Bell Laboratories Macros Deleted From -ms ... 51

Table 2-7 New -ms Requests .. 51

Table 2-8 New String Definitions ... 52

Table 2-9 -ms Macro Request Summary ... 52

Table 2-10 -ms String Definitions ... 55

Table 2-11 Printing and Displaying Documents ... 55

Table 3-1 Summary of the -man Macro Requests ... 66

Table 4-1 Special Characters and Diacritical Marks 98

Table 4-2 -me Request Summary .. ,.,.:,:,:,: •... ; .• ~ ... ,.;,,:''':,:,:~.~.; ..•••.. :::-.

Table 7-1 Character Sequence Translation ;.,.; i.:.;.;.;; •.•• ;·.; :.:,;, ... ,,::-: ..

Table 7-2 Greek Letters ... " " ;.O:;;+,.;;:;:;.:;:+~.;;;'H;;; ••••••

Table 7-3 eqn Keywords " .. " ;;,

-ix-

164

165

Figures

Figure 2-1 Order of Requests in -IDS Documents ... 50

Figure 4-1 Outline of a Sample Paper .. 88

-xi-

Summary of Contents

Preface

This manual provides user's guides and reference information for various docu
ment processing tools. We assume you are familiar with a terminal keyboard and
the Sun system. If you are not, see Getting Started with SunOS: Beginner's
Guide for infonnation on the basics, like logging in and the Sun file system. If
you are not familiar with text editing, read "An Introduction to Text Editing" in
the manual Editing Text Files, or" An Introduction to Document Preparation" in
this manual. Finally, we assume that you are using a Sun Workstation, although
specific terminal information is also provided.

If you choose to read one of the user's guides, sit down at your workstation and
try the exercises and examples. The reference sections provide additional expla
nations and examples on how to use certain facilities and can be dipped into as
necessary. For additional details on Sun system commands and programs, see
the SunOS Reference Manual.

This manual is divided into three sections:

o Macro Packages

o traff Preprocessors

o Verification and Reformatting Programs

1. Introduction to Document Preparation - Describes the basics of text pro
cessing, macros and macro packages, provides a guide to the available tools
and several simple examples after which to pattern your pa~rs~d docu
ments. Newcomers to the Sun document fonnatters shoul<i..$lli)'th¢.re.

In Section I, Macro Packages, the chapters are:

2. Formatting Documents with the -ms Macros - .. Us¢r's·gui4e··ana .. reter~n~
information for the -ms macros for formatting pape~>Clrid·4Ocllmep.ts.<· ..
Includes new -ms macros.

.... « .. ".:<-:.:.' .';<';',"

............ -:::». -::';::":":.. "," . .:::::"<:"

3. The -man Macro Package - User's guide and referer1cettlfortrtatidJl>f6r the
-man macros for formatting manual pages (man pages).<liicHi<ie.Snew
options to the -man macro package.

4. Formatting Documents with the -me Macros - Describes the -me macro
package for producing papers and documents.

- xiii-

Preface - Continued

Conventions Used in This
Manual

In Section II, troff Preprocessors, the chapters are:

5. refer - a Bibliography System - Explains how to use the bibliographic
citation program ref er. Includes infonnation on the auxiliary programs
addbib, indxbib,lookbib,and sortbib.

6. Formatting Tables with tbl- A user's guide and numerous examples to
the table processing utility tbl.

7. Typesetting Mathematics with eqn - A user's guide to the eqn mathemati
cal equation processor.

Section III, Verification and Fonnatting Programs, discusses:

8. checknr - a program to report unmatched pairs of macros and unpaired
font or size changes.

spell- a program that prints strings of characters to your terminal screen
that spell doesn't have in its dictionary (/usr/ diet/words).

The refonnatting commands frot, deroff, pti, colcrt, col, ul, and
ptx.

Throughout this manual we use

(hostname%

as the prompt to which you type system commands. Bol.d£ace type
writer font indicates commands that you type in exactly as printed on the
page of this manual. Regular typewriter font represents what the
system prints out to your screen. Typewriter font also specifies Sun system com
mand names (program names) and illustrates source code listings. Italics indi
cates general arguments or parameters that you should replace with a specific
word or string. We also occasionally use italics to emphasize important tenns.

- xiv-

1
lntroduction to Document Preparation

lntroduction to Document Preparation ... 3

1.1. What Do Text Fonnatters Do? ... 3

1.2. What is a Macro Package? ... 4

1.3. What is a Preprocessor? ... 4

1.4. Typesetting Jargon .. 5

1.5. Hints for Typing in Text .. 6

1.6. Types of Paragraphs ... 7

Paragraph Illustrations ... 9

1.7. Quick References ... 10

Displaying and Printing Documents .. 11

Technical MemoraIldum ... 12

Section Headings for Documents .. 13

Changing Fonts .. 13

Making a Simple List ... 14

Multiple Indents for Lists aIld Outlines ... 15

Displays .. 16

Foomotes ... 16

Keeping Text Together - Keeps .. 17

Double-Column Fonnat .. 17

Sample Tables ... 19

Writing Mathematical Equations ... 21

Registers You Can ChaIlge ... 23

1.1. What Do Text
Formatters Do?

Unfilled text:

Filled but not adjusted:

Filled and adjusted:

1
Introduction to Document Preparation

The document preparation tools nroff and troff are standard with SunOS.
These programs read files containing the text to be fonnatted, interspersed with
requests specifying how output should look. From this, the programs produce
fonnatted output. nroff is for typewriter-like printers, while troff is for
typesetters and laser printers. Although they are separate programs, they are
compatible: the fonnatters share a common command language and produce out
put from the same input file. Descriptions here apply to both formatters unless
stated otherwise.

You can type in text on lines of any length, and the fonnatters produce lines of
unifonn length in the finished document. This process is called filling, which
means that the formatter collects words from what you type as input, and places
them on an output line until no more fit within a given line length. The formatter
hyphenates words automatically, so a line may end with part of a word to pro
duce the right line length. The formatter also adjusts a line after it has been filled
by inserting spaces between words as necessary to align the right margin exactly.

3 Revision A, of 9 May 1988

4 Fonnatting Documents

1.2. What is a Macro
Package?

1.3. What is a
,Preprocessor?

Given a file of input consisting only of lines of text without any fonnatting
requests, the fonnatter simply produces a continuous stream of filled, adjusted
and hyphenated output.

To obtain paragraphs, numbered sections, multiple column layout, tops and bot
toms of pages, and footnotes, for example, require the addition of fonnatting
requests. Requests look like . xx where xx is one or two lower-case letters or a
lower-case letter and a digit. Refer to Using nroff and troff for
details.

nroff and troff provide a flexible, sophisticated command language for
requesting operations like those just mentioned. They are very flexible, but this
flexibility can make them difficult to use because you have to use several
requests to produce a simple fonnat. For this reason, it's a good idea to use a
macro package.

A macro is simply a "predefined sequence of trof f requests or text" which you
can use by including just one request in your input file. You can then handle
repetitious tasks, such as starting paragraphs and numbering pages, by typing one
macro request each time instead of several. For example, some macro requests
look like . XX where XX is one or two upper-case letters or an upper-case letter
and a digit (Different macro packages follow various conventions.)

A macro package also does a lot of things without the instructions that you have
to give nroff, footnotes and page transitions for example. Some packages set
up a page layout style by default, but you can change that style if you wish.
Although a macro package offers only a limited subset of the wide range of for
matting possibilities that nroff provides, it is much easier to use. We explain
how to use a macro package in conjunction with nroff and troff in the sec
tion "Displaying and Printing Documents."

Sample input with both fonnatting requests, macros in this case, and text looks
like:

.LP
Now is the time
for all good men
to come to the aid of their country .
. LP

Refer to the chapter "Fonnatting Documents with the -IDS Macros" and to the
"QUick References" in this chapter for more infonnation on macros.

A preprocessor is a program that you run your text file through first before pass
ing it on to a text fonnatter. You can put tables in a document by preprocessing a
file with the table-builder called tbl. You can add mathematical equations with
their special fonts and symbols with the equation fonnatters, eqn for troff
files and neqn for nroff files. These preprocessors convert material entered in
their specific command languages to straight troff or nroff input Those
text fonnatters then produce the tables or mathematical equations for the output.

Revision A, of 9 May 1988

1.4. Typesetting Jargon

Chapter 1 - Introduction to Document Preparation 5

What you type in a file is very much the same as for simple formatting. You
include table or equation material in your t ro f f input file along with ordinary
text and add several specific tbl or eqn requests. Refer to the chapters "For
matting Tables with tbl" and "Formatting Mathematics with eqn" for details.

There are several printer's measurement tenns that are borrowed from traditional
typesetting. These terms describe the size of the letters, the distance between
lines and paragraphs, how long each line is, where the text is placed on the page,
and so on.

Point Points specify the size of a letter or type. A point measures about
In2 of an inch, which means that there are 72 points to the inch.
This manual is in 10-point type, for instance.

Ems and Ens
Ems and ens are measures of distance and are proportional to the
type size being used. An em is the distance equal to the number of
points in the width of the letter 'm' in that point size. For examples,
here's an em in several point sizes followed by an em dash to show
why this is a proportional unit of measure. You wouldn't want a
20-point dash if you are printing the rest of a document in 12-point.
Here's 12-point:

m
1-1

And here's 20-point:

An en space is one half of an em or about the width of the letter 'n'. Ens are typi
cally used for indicating indentation.

Vertical Spacing
Vertical spacing called leading (pronounced 'led-ding') is the dis
tance between the bottom of one line and the bottom of the next.
This manual has 12-point vertical spacing for example. The rule of
thumb is that the spacing be approximately 20% larger than the char
acter size for easy readability. A printer would call the ratio for this
manual "ten on twelve."

Paragraph Depth
As there is a specification for the distance between lines, there is also
a tenn for the space between paragraphs. This is the paragraph
depth. If you are using the standard. PP or . LP macro, for
instance, the paragraph depth is whatever one vertical space has been
set to.

Paragraph Indent

This is the amount of space that the first line is indented in relation to the
rest of the paragraph. If you use a . PP macro to format a standard indented

Revision A, of 9 May 1988

6 Fonnatting Documents

1.5. Hints for Typing in
Text

paragraph, the indent is two em-spaces as shown by the first line in this para
graph.

Line Length

Page Offset

Indent

Line length specifies the width of text on a page. Here we use a 5-
inch line length. Shortening the line length generally makes text
easier to read. Recall that many magazines and newspapers have 2-
1/4 inch columns for quick reading.

Page offset detennines the left margin, that is how far in the text is
set from the left edge of the paper. On a nonna! 8-1/2-by-l1 letter
size page, the page offset is nonnally 26/27 of an inch.

The indent of text is the distance the text is set in from the page
offset. The indent emphasizes the text by setting it off from the rest.

The following provides a few tricks for typing in text and for further online edit
ing and fonnatting.

o A period (.) or apostrophe (') as the first character on a line indicates that
the line contains a fonnatting request. If you type a line of text beginning
with either of these control characters, nroff tries to interpret them as a
request, and the rest of the text on that line disappears. If you have to type a
period or an apostrophe as the first character on a line, escape their nonna!
meanings by prefixing them with a backslash and an ampersand. For
instance, to display this sample input:

\&.LP
Here is some sample input for a left-blocked paragraph. In order
to accurately display ·ms or troff requests that
begin lines, you have to precede them with the character sequence
backslash, ampersand (\&). This insulates the macro request
from the beginning of the line so the dot in the first column isn't
seen by troff.
\&.LP
\&.sp
The .LP, .EQ and .EN requests shown here are ·ms macro requests
and the .sp line is a typical troff request.
\&.EQ (1.3)

x sup 2 over a sup 2 -=- sqrt {p z sup 2 +qz+r}
\&.EN

o Following the control character is a one- or two-character name of a fonnat
ting request. As described earlier, nroff and troff names usually consist
of one or two lower-case letters or a lower-case letter and a digit. -ms macro
package names usually consist of one or two upper-case letters or one
upper-case letter and a digit. For example, . sp is an troff request for a
space and . PP is an -ms macro request for an indented paragraph.

o End a line of text with the end of a word along with any trailing punctuation.
nroff inserts a space between whatever ends one line of input text and
whatever begins the next

Revision A, of 9 May 1988

1.6. Types of Paragraphs

Chapter 1 - Introduction to Document Preparation 7

o Start lines in the input file with something other than a space. A space at the
beginning of an input line creates a break at that point in the output and
nroff skips to a new output line, interrupting the process of filling and
adjusting. This is the easiest way to get spaces between paragraphs, but it
does not leave much flexibility for changing things later.

o Some requests go on a line by themselves, while others can take one or more
additional pieces of information on the same line. These extra pieces of
information on the request line are called arguments. Separate them from
the request name and from each other by one or more spaces. Sometimes
the argument is a piece of text on which the request operates; other times it
can be some additional information about what the request is to do. For
example, the vertical space request. sp 3 shows a troff request with one
argument. It requests three blank lines.

There are several types of paragraphs. When should you use one type of para
graph instead of another? Here are a few words about paragraphs, their charac
teristics, and formatting in general. See the "Types of Paragraphs" figure that
follows for examples.

Use regular indented and block paragraphs for narrative descriptions. It is a
matter of style as to which type you choose to use. In general, indented para
graphs remove the need for extra space between paragraphs - the indent tells
you where the start of the new paragraph is. Most business communication is
done with block paragraphs.

If you want to indicate a set of points without any specific order, use a bulleted
list. For example:

There are many kinds of coffee:

• Jamaica Blue Mountain

• Colombian

• Java

• Mocha

• French Roast

• Major Dickenson's Blend

When you want to describe a set of things in some order, such as a step-by-step
procedure, use a numbered list:

To repair television, follow these steps:

1. Remove screws in rear casing.

2. Carefully slide out picture tube.

3. Gently smash with hammer.

Use description lists to explain a set of related or unrelated things, or sometimes
to highlight keywords. For instance,

.~sun
• microsystems

Revision A, of 9 May 1988

8 Fonnatting Documents

Options

-v Verbose

-f filename Take script from filename

-0 Use old fonnat

In typographic parlance, anything that is not part of the "body text" - regular
paragraphs and such- is considered a display, and often has to be specially han
dled. Generally a display is "displayed" exactly as you type it or draw it origi
nally, with no interference from the fonnatter. Displays are used to set off
important text, special effects, drawings, or examples, as we do throughout this
manual, The following paragraph is a display:

Tom appeared on the sidewalk with a bucket of whitewash and
a long-handled brush.
He surveyed the fence, and all gladness left him and
a deep melancholy settled down upon his spirit.
Thirty yards of board fence nine feet high.
Life to him seemed hollow, and
existence but a burden.

Quotations set off quoted material from the rest of the text for emphasis. For
example,

" ... in the conversation between Alice and the Queen, we read this piece of
homespun philosophy:

"A slow sort of country!" said the Queen. "Now, here, you see, it
takes all the running you can do, to keep in the same place. If you
want to get somewhere else, you must run at least twice as fast as
that!"

Through the Looking Glass
Lewis Carroll

Revision A, of 9 May 1988

Paragraph lliustrations

Indented - . pp

Left Block - . LP

Quotation - . QP

Display - . DS

Chapter 1 -Introduction to Document Preparation 9

Examine this section to see how the various paragraph types can serve different
functions.

Revision A. of 9 May 1988

10 Fonnatting Documents

Bulleted -- . IP \ (bu

Numbered -- . IP 1.

Lists -- . IP "tag" n

1.7. Quick References

•

•

•

1.

2

This section provides some simple templates for producing your documents with
the -ms macro package. 1 Remember that for a quick, paginated, and justified
document, you can simply type an . LP to start your document, and then type in
the text separated by blank lines to produce paragraphs. Throughout the exam
ples, the text file input is displayed in

(~t_yp __ e_w_r_~_'t_e_r __ f_o_n_t ___ l_i_ke ___ t_h_i_S ____________________________________ ~)
while the output is displayed in

Times Roman font.

1 Some of the material in this section is derived from A Guide to Preparing Documents with '-ms' , M.E.
Lesk, Bell Laboratories, Murray Hill, New Jersey.

Revision A, of 9 May 1988

Displaying and Printing
Documents

Table 1-1

What You Want to Do

Display simple text

Display text with tables only

Display text with equations only

Chapter 1 - Introduction to Document Preparation 11

Use the following to fonnat and print your documents. You can use either
nroff or troff depending on the output you desire. Use nroff to either
display formatted output on your workstation screen or to print a formatted docu
ment. The default is to display on the standard output, your workstation screen.
For easy viewing, pipe your output to more or redirect the output to a file.

Using t r 0 f f or your installation's equivalent prepares your output for photo
typesetting.

How to Display and Print Documents

How to Dolt

nroff -options files

tb1 files I nroff -options

neqn files I nroff -options

Display text with both tables and equations

Print raw text and requests

tb1 files I neqn I nroff -options

pr files I l.pr -Pprinter

Print text

Print text with tables only

Print text with equations only

Print text with both tables and equations

Phototypeset simple text

Phototypeset text with tables

Phototypeset text with equations

Phototypeset text with both tables and equations

nroff -options files I 1pr -Pprinter

tb1 files I nroff -options I 1pr -Pprinter

neqn files I nroff -options I 1pr -Pprinter

tb1 files I neqn I nroff -options I 1pr -Pprinter

troff -options files

tb1 files I troff -options

eqn files I troff -options

tb1 files I eqn I troff -options

Revision A, of 9 May 1988

12 Formatting Documents

Technical Memorandum Here we provide a sample fonnat for a technical memorandum.

Input:

.DA March 11, 1983

.TL
An Analysis of
Cucumbers and Pickles
.AU
A. B. Hacker
.AU
C. D. Wizard
.AI
Stanford University
Stanford, California
.AB
This abstract should be short enough to
fit on a single page cover sheet.
It provides a summary of memorandum
contents .
• AE

.NH
Introduction .
• PP
Now the first paragraph of actual text ...

Last line of text .
• NH
References

Output:

An Analysis of
Cucumbers and Pickles

A. B. Hacker
C.D. Wizard

Stanford University
Stanford, California

ABSTRACT

This abstract should be short enough to fit on a single page cover sheet. It provides a summary of
memorandum contents.

1. Introduction.

Now the first paragraph of actual text ...
Last line of text.

2. References

Revision A, of 9 May 1988

Section Headings for
Documents

Changing Fonts

.NH
Introduction.
.PP
text text text

1. Introduction

text text text

Chapter 1 - Introduction to Document Preparation 13

.SH
Appendix I
.PP
text text text

Appendix I

text text text

The following table shows the easiest way to change the default roman font to
italic or bold. To change the font of a single word, put the word on the same line
as the macro request. To change the font in more than one word, put the text on
the lines following the macro request.

The font will remain changed until another font change request or a macro
request causing a break (a paragraph macro, for example) is encountered.

Input Output

. I Hello Hello

. I

Prints this line in italics. Prints this line in italics.

.B Goodbye Goodbye

.B
Prints this line in bold . Prints this line in bold.

. R
Prints this line in roman. Prints this line in roman.

Revision A, of 9 May 1988

14 Formatting Documents

Making a Simple List Use the following template for a simple list.

Input:

.IP 1.
J. Pencilpusher and X. Hardwired,
.1
A New Kind of Set Screw,
.R
Proc. IEEE
.B 75
(1976), 23-255 .
. IP 2.
H. Nails and R. Irons,
.1
Fasteners for Printed Circuit Boards,
.R
Proc. ASME
.B 23
(1974), 23-24 •
• LP (terminates list)

Output:

1. J. Pencilpusher and X. Hardwired, A New Kind of Set Screw, Proc. IEEE 75
(1976),23-255.

2. H. Nails and R. Irons, Fastenersfor Printed Circuit Boards, Proc. ASME 23
(1974), 23-24.

Revision A, of 9 May 1988

Multiple Indents for Lists and
Outlines

Chapter 1 - Introduction to Document Preparation 15

This template shows how to fonnat lists or outlines.

Input:

This is ordinary text to highlight the
results of outline format .
. IP 1.
First level item .
. RS
.IP a)

Second level .
. IP b)

Continued here with another second
level item, but somewhat longer .
• RE

.IP 2.
Return to previous value of the
indenting at this point .
. IP 3.
Another
line.

Output:

This is ordinary text to highlight the results of outline fonnaL

1. First level item.

a) Second level.

b) Continued here with another second level item, but somewhat longer.

2. Return to previous value of the indenting at this point.

3. Another line.

Revision A, of 9 May 1988

16 Formatting Documents

Displays

Footnotes

A display does not fill or justify the text. It keeps the text together, and sets the
lines off from the rest.

Input:

hoboken harrison newark roseville avenue grove street
east orange brick church orange highland avenue
mountain station south orange maplewood millburn short hills
summit new providence
.DS
and now
for something
completely different
.DE
murray hill berkeley heights
gillette stirling millington lyons basking ridge
bernardsville far hills peapack gladstone

Output:

hoboken harrison newark roseville avenue grove street east orange brick church orange highland avenue moun
tain station south orange maplewood millburn short hills summit new providence

and now
for something
completely different

murray hill berkeley heights gillette stirling millington lyons basking ridge bernardsville far hills peapack glad-

stone

Display Options
oDS L
oDS C
oDS B

Description
left-adjust
line-by-line center
make block, then center

For automatically-numbered footnotes, put the string ** at the end of the text
you want to footnote like this:2

you want to footnote like this:**
.FS
Here's a numbered footnote .
. FE

To mark footnotes with other symbols, put the symbol as the first argument to
o FS and at the end of the text you want to footnote like this:t

2 Here' s a numbered footnote.

t You can also use an asterisk (*) or a double dagger :j: (\ (dd).

Revision A, of 9 May 1988

Keeping Text Together -
Keeps

Double-Column Format

Chapter 1 - Introduction to Document Preparation 17

you want to footnote like this:\(dg
.FS \(dg
You can also use an asterisk (\fL*\fR)
or a double dagger * (\fL\(dd\fR) .
. FE

Lines bracketed by the following commands are kept together, and will appear
entirely on one page:

.KS

.KE

lines of text
lines of text
lines of text
lines of text

not moved
through text

.KF

.KE

lines of text
lines of text
lines of text
lines of text

may float
in text

Put a . 2 C at the beginning of the material you want printed in two columns. To
return to one-column fonnat, use .1C. Note that .1C breaks to a new page.

Input:

.TL
The Declaration of Independence
.sp 2
.2C
.LP
When in the course of human events, it becomes necessary
for one people to dissolve the political bonds which have
connected them with another, and to assume among the
powers of the earth the separate and equal station to which
the laws of Nature and of Nature's God entitle them,
a decent respect to the opinions of . . .

Output:

The Declaration of Independence

When in the course of human events, it becomes
necessary for one people to dissolve the political
bonds which have connected them with another,
and to assume among the powers of the earth the

separate and equal station to which the laws of
Nature and of Nature's God entitle them, a
decent respect to the opinions of ...

Revision A, of 9 May 1988

18 Formatting Documents

The . 2 C macro request only works in this way: When you invoke the . 2 C
macro somewhere on a page of text, . 2 C marks that height on the page and pro
duces a narrow column of text all the way to the bottom of that page. When it
reaches the bottom of the page, . 2 C resumes the second column at the height it
originally marked off when the . 2 C macro was invoked. If the second column is
only partially filled up with text when the . 1 C request is encountered, a page
break occurs and the single-column text begins the next page. This means . 2 C

will do this:

I am the voice of today, the bcrald of

tommrow. I am the leaden army that
conqucn 1hc world. I am type!

Of my inplutic
earliest clay in the
ana:my dim put by
neither BabylODian
biat«y buildcn
DClI'Jdial forcsbldowcd

zcmain. me: frCllD
Thcwc:dF- them,cn

IIbapcd tbrougb. the

symbols hieroglyphs

imprcaI:d of 1hc mcimlt

or this:

I am the voice of today, the bcrald of
tommrow. I am the leaden army that
amq1lllrll1hc world. I am type!

Of my
earliest

ana:stry
neither
biat«y
DClI'Jdial

zcmain.
ThcwcciF-

IIbapcd
symbols

impJcacd

in plastic
clayintbc
dim put by
BabylODian
buildcn

fcm:llt.dowcd

The important fact to remember about this macro request, is that it has no other
way to determine where to begin column two except upon reaching the bottom of
the page.

If the material you want in two columns occupies less space than the distance to
the bottom of the current page, it will only occupy one narrow column if you use
the . 2 C macro request This means you cannot do this:

Revision A, of 9 May 1988

Sample Tables

Chapter 1 - Introduction to Document Preparation 19

I am the voice of today, the herald of
tomorrow. I am the leaden umy that
conquers the world I am type!

Of my earliest ancestry neither history
nor relics remain. The wccIgc-abapcd
symbol. imprcacd in plastic clay in the

Two sample table templates follow.

Input:

.TS
box center tab (/);
IB IB
1 1.
Column Header

text/text
text/text
text/text
text/text
.TE

Output:

Column Header
text
text
text
text

Column Header

Column Header
text
text
text
text

Revision A, of 9 May 1988

20 Formatting Documents

Input:

.TS
allbox tab (/);
cB s s
c c c
n n n.
AT&T Common Stock
Year/Price/Dividend
1971/41-54/$2.60
2/41-54/2.70
3/46-55/2.87
4/40-53/3.24
5/45-52/3.40
6/51-59/.95*
.TE
* (first quarter only)

Output:

AT&T Common Stock

Year Price Dividend

1971 41-54 $2.60
2 41-54 2.70
3 46-55 2.87
4 40-53 3.24
5 45-52 3.40
6 51-59 .95*

* (first quarter only)

The meanings of the key-letters describing the alignment of each entry are:

tbl Column
Key-Letter Described

c centered
r right-adjusted
1 left -adjusted
n numerical
a alphabetical
s spanned

The global table options are center, expand, box; doublebox, allbox,
tab (x), and linesize (n).

Revision A, of 9 May 1988

Writing Mathematical
Equations

Chapter 1 - Introduction to Document Preparation 21

Input:

.TS
center box tab (/)
cB cB
1 l.
Name/Definition

-
Gamma/$GAMMA (z) = int sub 0 sup inf t sup {z-l} e sup -t dt$
Sine/$sin (x) = lover 2i (e sup ix - e sup -ix)$
Error/$roman erf (z) = 2 over sqrt pi int sub 0 sup z e sup {-t sup 2} dt$
Bessel/$J sub 0 (z) = lover pi int sub 0 sup pi cos (z sin theta) d the a$
Zeta/$zeta (s) = sum from k=l to inf k sup -s --(Re-s > 1)$
.TE

Output:

Name

Gamma

Sine

Error

Bessel

Zeta

Definition

r(z Ff"tZ- 1e-t dt
1 . .

sin(x)= 2i (eIX-e-lX)

erf(z)=~ rZ e-t'dt
.,JiJ>
1 1t

J rl..z F1t"! cos(z sinG)d G

~(s)= I:k-6 (Re s > 1)
1=1

A displayed equation is marked with an equation number at the right margin by
adding an argument to the . EQ line:

Input:

.EO (1.3)
x sup 2 over a sup 2 - sqrt {p z sup 2 +qz+r}
.EN

A displayed equation is marked with an equation number at the right margin by
adding an argument to the . EQ line:

Output:

(1.3)

Revision A, of 9 May 1988

22 Formatting Documents

Input:

.EQ (2.2a)
bold V bar sub nu-=-left [pile {a above b above
c } right] + left [matrix { col { A(ll) above .
above. } col { . above. above .} col {. above.
above A(33) }} right] cdot left [pile { alpha
above beta above gamma } right]
.EN

OUtpUt:

--[1 [A (11). . J rJ Vv - b + . .. ~
C •• A (33) 1.

Input:

.EQ I '"' 2. 75i
F hat (chi) - mark - I del V I sup 2
.EN
.EQ I '"' 2. 75i
lineup =- {left ({partial V} over {partial x} right) } sup 2
+ { left ({partial V} over {partial y} right) } sup 2

lambda -> inf
.EN

Output:

Input:

$ a dot $, $ b dotdot$, $ rho tilde-times-y vec$.

Output:

a, b", p xy.
(with delim $$ on).

(2.2a)

Revision A, of 9 May 1988

Chapter 1 - Introduction to Document Preparation 23

Registers You Can Change

Table 1-2 Registers You Can Change

Register Controls Default Setting Command to Takes Effect
Name Change Next

LL Line length of text 6 inches (6i) .nr LL 7.Si paragraph

LT Length of titles LL .nr LT Si page

FL Line length of footnotes 5.5i .nr FL LL .FS request

FI Footnote indent 5 ens (5n) .nr FI 2n .FS request

PS Point size 10 .nr PS 11 paragraph

VS Vertical spacing 12 .nr VS 13 paragraph

CW Column width LL.7/15 .nr CW 3i · 2C or • MC request

GW Intercolurnn spacing LL.l/15 .nr GW .Si • 2 C or . MC request

HM Header margin Ii .nr HM .7Si page

FM Footer margin Ii .nr FM .7Si page

PI Paragraph indent 5 ens (5n) .nr PI 2n paragraph

PD Paragraph depth .3 vertical space .nr PD 0 paragraph

(.3v)

QI Left and right indent for 5n .nr QI 8n .QP request
quote paragraph (. Qp)

DD Vertical distance around .5v .nr DD 1v · DS request
displays

PO Page offset Ii .nr PO O.Si page

LH Left page header null .ds LH Sun page

CH Center page header null .ds CH Confidential page

RH Right page header null .ds RH Software page

LF Left page footer null .ds LF Do Not Copy page

CF Center page footer page number register .ds CF Draft page

(-'nPN-)

RF Right page footer null .ds RF % page

% Page number .nr % 3 page

Revision A, of 9 May 1988

Fonnatting Documents with the -ms

Macros

2

Fonnatting Documents with the -ms Macros .. 27

2.1. Changes in the New -IDS Macro Package ... 27

2.2. Displaying and Printing Documents with -IDS .. 27

2.3. What Can Macros Do? ... 28

2.4. Fonnatting Requests .. 28

Paragraphs ... 29

Standard Paragraph - . p p .. 29

Left-Block Paragraph - . LP .. 29

Indented Paragraph - . IP ... 30

Nested Indentation - . RS and . RE ... 31

Quoted Paragraph - . QP .. 32

Section Headings - . SHand . NH .. 33

Cover Sheets and Title Pages - . TL and . AU .. 34

Running Heads and Feet - LH, CH, RH ... 35

Custom Headers and Footers - .OH, . EH, . OF, and . EF 36

Multi-Column Formats - . 2C and .MC ... 37

Footnotes - . F S and . FE ... 38

Endnotes ... 39

Displays and Tables - . D Sand . D E .. 39

Keeping Text Together - . KS, . KE and . KF .. 40

Boxing Words or Lines - . BX and . Bl and . B2 40

Changing Fonts - . I, . B, . Rand. UL .. 41

Changing the Type Size - . LG, . SM and . NL ... 41

Dates - . DA aIld . ND .. 42

Thesis Fonnat Mode - . TM ... 42

Bibliography - . XP .. 42

Table of Contents - . XS, • XE, • XA, • PX ... 43

Defining Quotation Marks ... 43

Accent Marks .. 43

2.5. Modifying Default Features .. 45

Dimension3 ... 45

2.6. Using nroff aIld troff Requests .. 47

2.7. Using -ms with eqn to Typeset Mathematics ... 48

2.8. Using -ms with tbl to Fonnat Tables .. 49

2.9. Register Names ... 49

2.10. Order of Requests in Input ... 49

2.11. -ms Request Summary ... 51

2.1. Changes in the New -
ms Macro Package

2.2. Displaying and
Printing Documents
with -ms

2
Formatting Documents with the -IDS

Macros

This chapter describes the -IDS macro package for preparing documents with
nroff and troff on the Sun system. 1 The -IDS Request Summary at the end
of this chapter provides a quick reference for all the -ms macros and for useful
displaying and printing commands. If you are acquainted with -IDS, there is a
quick reference for the new requests and string definitions as well. The differ
ences between the new and the old -IDS macro packages are described in the sec
tion entitled "Changes in the New -ms Macro Package." The section "Display
ing and Printing Documents with -IDS" describes how you can produce docu
ments on either your workstation, printer, or phototypesetter without changing
the text and formatting request input.

The old -ms macro package has been revised, and the new macro package
assumes the name -IDS. There are some extensions to previous -IDS macros and
a number of new macros, but all the previously documented -IDS macros still
work exactly as they did before, and have the same names as before. The new
-ms macro package includes several bug fixes, including a problem with the
single-column . 1 C macro, minor difficulties with boxed text, a break induced by
• EQ before initialization, the failure to set tab stops in displays, and several both
ersome errors in the refer bibliographic citation macros. Macros used only at
Bell Laboratories have been removed from the new version. We list them at the
end of this chapter in the

After you have prepared your document with text and -IDS formatting requests
and stored it in a file, you can display it on your workstation screen or print it
with nroff or troff with the -ms option to use the -IDS macro package. A
good way to start is to pipe your file through IDO re for viewing:

(hostname% nroff -ms ji/ennme ... I more
J

If you forget the -IDS option, you get continuous, justified, unpaginated output in
which -IDS requests are ignored. You can format more than one file on the

1 The material in this chapler is derived from A Revised Version of -ms, B. Tuthill, University of California,
Berkeley; Typing DocUlTU!ntson the UNIX System: Using tM -ms Macros with traff and nraff, M.E. Lesk,
Bell Laboratories, Murray Hill, New Jersey; and Document Formatting on UNIX: Using the -ms Macros, Joel
Kies, University of California, Berkeley.

27 Revision A, of9 May 1988

28 Formatting Documents

2.3. What Can Macros Do?

2.4. Formatting Requests

command line at a time, in which case nroff simply processes all of them in
the order they appear, as if they were one file. There are other options to use
with nroff and troff; see the SunOS Reference Manual for details.

You can get preview and final output of various sorts with the following com
mands. To send nroff output to the line printer, type:

(...... h_o_s_t_n_a_m_e_%_n_r_O_f_f_-_mB __ fi_le_name ___ 1 _l_p_r_-_p_p_r_in_te_r _____________ J

To produce a file with tables, use:

hostname% tbl filename I nroff -ms I Ipr -printer

To produce a file with equations, type:

hostname% neqn filename I nroff -ms I Ipr -printer

To produce a file with tables and equations, use the following order:

hostname% tbl filename I neqn I nroff -ms I Ipr -printer

To print your document with troff, use:

hostname % troff -ms filename I Ipr -t -printer

See Ipr(l) in the SunOS Reference Manual for details on printing.

Macros can help you produce paragraphs, lists, sections (optionally with
automatic numbering), page titles, footnotes, equations, tables, two-column for
mat, a table of contents, endnotes, running heads and feet, and cover pages for
papers. As with other fonnatting utilities such as nroff and troff, you
prepare text interspersed with fonnatting requests. However, the macro package,
which itself is written in traff commands, provides higher-level commands
than those provided with the basic traff program. In other words, you can do
a lot more with just one macro than with one t ra f f request.

An -ms request usually consists of one or two upper-case characters, and usually
in the form . XX.

The easiest way to produce simple fonnatted text is to put a . LP request on a
line by itself at the beginning of the document. Add your text, on the following
lines, leaving just a blank line to separate paragraphs. The . LP request produces
a left-blocked paragraph, as we used throughout this chapter. Your output will
have paragraphs and be paginated with right and left-justified margins.

When you use a macro package, you type in text as you nonnally do and inter
sperse it with formatting requests. For example, instead of spacing in with the
space bar or typing a tab to indent paragraphs, put a . PP request on a line by

Revision At of 9 May 1988

Paragraphs

Standard Paragraph - . p P

Left-Block Paragraph - . LP

Chapter 2 - Formatting Documents with the -ros Macros 29

itself before each paragraph. When formatted, this indents the first line of the
following paragraph.

Note: You cannot just begin a document with a line of text. You must include
an -ms request before any text input. When in doubt, use . LP to properly ini
tialize the file, although any of the requests. PP, . LP, . TL, . SH, . NH is good
enough. See the section "Cover Sheets and Title Pages" later in this chapter for
the correct arrangement of requests at the start of a document.

You can produce several different kinds of paragraphs with the -ms macro pack
age: standard, left-block, indented, labeled, and quoted.

To get an ordinary paragraph, use the . PP request, followed on subsequent lines
by the text of the paragraph. For example, you type:

.PP
Tom appeared on the sidewalk with a bucket of whitewash and a long-handled
brush.
He surveyed the fence, and all gladness left him and a deep melancholy
settled down upon his spirit.
Thirty yards of board fence nine feet high.
Life to him seemed hollow, and
existence but a burden.

to produce:

Tom appeared on the sidewalk with a bucket of whitewash and a long
handled brush. He surveyed the fence, and all gladness left him and a deep
melancholy settled down upon his spirit. Thirty yards of board fence nine feet
high. Life to him seemed hollow, and existence but a burden.

You can also produce a left-block paragraph, like those in this manual, with . LP.
The first line is not indented as it is with the . PP request. For example, you
type:

[~~_·~_~ __ a_p_p_e_a_r_e_d ___ ~]
to produce:

Tom appeared on the sidewalk with a bucket of whitewash and a long-handled
brush. He surveyed the fence, and all gladness left him and a deep melancholy
settled down upon his spirit. Thirty yards of board fence nine feet high. Life to
him seemed hollow, and existence but a burden.

There are default values for the vertical spacing before paragraphs and for the
width of the indentation. To change the paragraph spacing, see the section
"Modifying Default Features."

Revision A. of 9 May 1988

30 Formatting Documents

Indented Paragraph - . IP Another kind of paragraph is the indented paragraph, produced by the . I P
request. These paragraphs can have hanging numbers or labels. For example:

. IP [1]
Text for first paragraph, typed
normally for as long as you would
like on as many lines as needed .
. IP [2]
Text for second paragraph, ...
. LP

produces

[1] Text for first paragraph, typed normally for as long as you would like on as
many lines as needed.

[2] Text for second paragraph, ...

A series of indented paragraphs must be followed by an ordinary paragraph
beginning with . P P or . LP, depending on whether you wish indenting" or not
Here we used the . LP request.

More sophisticated uses of . IP are also possible. If the label is omitted, for
example, you get a plain block indent:

Torn appeared on the sidewalk with a bucket of whitewash and a long-handled
brush .
. IP
He surveyed the fence, and all gladness left him and a deep melancholy
settled down upon his spirit.
Thirty yards of board fence nine feet high.
Life to him seemed hollow, and
existence but a burden .
. LP

which produces

Tom appeared on the sidewalk with a bucket of whitewash and a long-handled
brush.

He surveyed the fence, and all gladness left him and a deep melancholy set
tled down upon his spirit. Thirty yards of board fence nine feet high. Life to
him seemed hollow, and existence but a burden.

If a non-standard amount of indenting is required, specify it after the label in
character positions. It remains in effect until the next . PP or . LP. Thus, the
general form of the . IP request contains two additional fields: the label and the
indenting length. For example,

Revision A, of 9 May 1988

Nested Indentation - 0 RS and
oRE

Chapter 2 - Formatting Documents with the -ms Macros 31

.IP "Example one:" 15
Notice the longer label, requ1r1ng larger
indenting for these paragraphs .
. IP "Example two:"
And so forth .
. LP

produces this:

Example one: Notice the longer label, requiring larger indenting for these
paragraphs.

Example two: And so forth.

Notice that you must enclose the label in double quote marks because it contains
a space; otherwise, the space signifies the end of the argument. The indentation
request above is in the number of ens, a unit of dimension used in typesetting.
An en is approximately the width of a lowercase 'n' in the particular point size
you are using.

The . IP macro adjusts properly by causing a break to the next line if you type in
a label longer than the space you allowed for. For example, if you have a very
long label and have allowed 10 en-spaces for it, your input looks like:

.IP "A very, very, long and verbose label" 10
And now here's the text that you want.
And now here's the text that you want.
And now here's the text that you want.
And now here's the text that you want.
And now here's the text that you want.

And your output is adjusted accordingly with a break between the label and the
text body:

A very, very, long and verbose label
And now here's the text that you want. And now here's the text that
you want. And now here's the text that you want. And now here's
the text that you want. And now here's the text that you want.

It is also possible to produce multiple (or relative) nested indents; the . RS
request indicates that the next 0 IP starts its indentation from the current indenta
tion leve1. Each 0 RE undoes one level of indenting, so you should balance 0 RS
and 0 RE requests. Think of the 0 RS request as 'move right' and the 0 RE request
as 'move left'. As an example:

Revision A, of 9 May 1988

32 Formatting Documents

Quoted Paragraph - . QP

.IP I.
South Bay Area Restaurants
.RS
.IP A.
Palo Alto
.RS
.IP 1.
La Terrasse
.RE
.IP B.
Mountain View
.RS
. IP 1.
Grand China
.RE
.IP C.
Menlo Park
.RS
. IP 1.
Late for the Train
.IP 2.
Flea Street Cafe
.RE
.RE
.LP

results in:

I. South Bay Area Restaurants

A. Palo Alto

1. La Terrasse

B. Mountain View

1. Grand China

C. Menlo Park

1. Late for the Train

2. Flea Street Cafe

Note the two . RE requests in a row at the end of the list. Remember that you
need one end for each start.

All of the variations on . LP leave the right margin untouched. Sometimes, you
need a a paragraph indented on both right and left sides. To set off a quotation as
such, use:

Revision A, of 9 May 1988

Section Headings - . SHand
.NH

Chapter 2 - Formatting Documents with the -ms Macros 33

.QP
Precede each paragraph that you want offset as a quotation
with a .QP. This produces a paragraph like this.
Notice that the right edge is also indented from the right margin.

to produce

Precede each paragraph that you want offset as a quotation with a
• QP. This produces a paragraph like this. Notice that the right edge
is also indented from the right margin.

There are two varieties of section headings, unnumbered with. SH and numbered
with . NH. In either case, type the text of the section heading on one or more
lines following the request. End the section heading by typing a subsequent
paragraph request or another section heading request. When printed, one line of
vertical space precedes the heading, which begins at the left margin. nra f f
offsets the heading with blank lines, while traff sets it in boldface type .. NH
section headings are numbered automatically. The macro takes an argument
number representing the level-number of the heading, up to 5. A third-level sec
tion number is one like' 1.2.1'. The macro adds one to the section number at the
requested level, as shown in the following example:

.NH
Bay Area Recreation
.NH 2
Beaches
.NH 3
San Gregorio
.NH 3
Half Moon Bay
.NH 2
Parks
.NH 3
Wunderlich
.NH 3
Los Trancos
.NH 2
Amusement Parks
.NH 3
Marine World/Africa USA

generates:

Revision A, of 9 May 1988

34 Formatting Documents

Cover Sheets and Title Pages
- . TL and .AU

2. Bay Area Recreation

2.1 Beaches

2.1.1 San Gregorio

2.1.2 Half Moon Bay

2.2 Parks

2.2.1 Wunderlich

2.2.2 Los Trancos

2.3 Amusement Parks

2.3.1 Marine World/Africa USA

• NH without a level-number means the same thing as . NH 1, and . NH 0 cancels
the numbering sequence in effect and produces a section heading numbered 1.

-InS provides a group of macros to format items that typically appear on the
cover sheet or title page ofa formally laid-out paper. You can use them selec
tively, but if you use several, you must put them in the order shown below, nor
mally at or near the beginning of the input file.

The first line of a document signals the general fonnat of the first page. In partic
ular, if it is . RP (released paper), a cover sheet with title and abstract is prepared.
The default fonnat is useful for scanning drafts.

Revision A, of9 May 1988

Running Heads and Feet -
LH,CH,RH

Chapter 2 - Formatting Documents with the -ms Macros 35

Sample input is:

• RP (Optional; usefor released paper format)
.TL
Title of document (one or more lines)
.AU
Author(s) (may also be several lines)
.AI

Author's institution(s)
.AB
Abstract; to be placed on the cover sheet of a paper.
Line length is 5/6 of normal; use .11 here to change .
• AE (abstract end)
text ... (begins with. pp)

(See Order of Requests in Input for a quick example of this scheme.)

If the . RP request precedes. TL, the title, author, and abstract material are
printed separately on a cover sheet. The title and author information (not the
abstract) is then repeated automatically on page one (the title page) of the paper,
without your having to type it again. If you do not include an . RP request, all of
this material appears on page one, followed on the same page by the main text of
the paper.

To omit some of the standard headings (such as no abstract, or no author's insti
tution)' just omit the corresponding fields and command lines. To suppress the
word ABSTRACf type . AB no rather than . AB. You can intersperse several
• AU and . AI lines to format for multiple authors.

These macros are optional; you may begin a paper simply with a section heading
or paragraph request. When you do precede the main text with cover sheet and
title page material, include a paragraph or section heading between the last title
page request and the beginning of the main text. Don't forget that some -ms
request must precede any input text.

The -ms macros, by default, print a page heading containing a page number (if
greater than 1). You can make minor adjustments to the page headings and foot
ings by redefining the strings LH, CH, and RH which are the left, center and right
portions of the page headings, respectively; and the strings LF, CF, and RF,
which are the left, center and right portions of the page footer. For nroff out
put, there are two default values: CH is the current page number surrounded on
either side by hyphens, and CF contains the current date as supplied by the com
puter. For t r 0 f f CH also contains the page number, but CF is empty. The
other four registers are empty by default for both nroff and troff. You can
use the . ds request to assign a value to a string register. For example:

(.ds RF Draft Only \ (em Do Not Distribute)
This prints the character string

Revision At of 9 May 1988

36 Formatting Documents

Custom Headers and Footers
- .OH, • EH, • OF, and . EF

Draft Only - Do Not Distribute

at the bottom right of every page. You do not need to enclose the string in dou
ble quote marks. To remove the contents of a string register, simply redefine it
as empty. For instance, to clear string register CH, and make the center header
blank on the following pages, use the request:

(____ odS _CH _______]

To put the page number in the right header, use:

(ods RH %]
In a string definition, '%' is a special symbol referring to nro f f 's automatic
page counter. If you want hyphens on either side of the page number, place them
on either side of the '%' in the command, that is:

(ods RH -%-]

Remember that putting the page number in the right header as shown above does
not remove it from the default CH; you still have to clear out CH.

If you want requests that set the values of string and number registers to take
effect on the first page of output, put them at or near the beginning of the input
file, before the initializing macro, which in turn must precede the first line of text.
Among other functions, the initializing macro causes a 'pseudo page break' onto
page one of the paper, including the top-of-page processing for that page. Be
sure to put requests that change the value of the PO (page offset), HM (top or
head margin), and PM (bottom or foot margin) number registers and the page
header string registers before the transition onto the page where they are to take
effect.

For more complex fonnats, you can redefine the macros Pf (page top) and BT
(page bottom), which are invoked respectively at the top and bottom of each
page. The margins (taken from registers HM and PM for the top and bottom
margin respectively) are nonnally 1 inch; the page header/footer are in the mid
dle of that space. If you redefine these macros, be careful not to change parame
ters such as point size or font without resetting them to default values.

You can also produce custom headers and footers that are different on even and
odd pages. The . OR and . EH macros define odd and even headers, while .OF
and . EF define odd and even footers. Arguments to these four macros are
specified as with the nrof f . tl, that is, there are three fields (left, center and
right), each separated by a single apostrophe. For example, to get odd-page
headers with the chapter name followed by the page number and the reverse on
even pages, use:

Revision A, of 9 May 1988

Multi-Column Formats -
. 2C and .MC

Chapter 2 - Formatting Documents with the -ms Macros 37

.OH ' For Whom the Bell Tolls' , Page %'

.EH ' Page %' , For Whom the Bell Tolls'

Note that it is an error to have an apostrophe in the header text; if you need an
apostrophe, use a backslash and apostrophe (') or a delimiter other than apos
trophe around the left, center, and right portions of the title. You can use any
character as a delimiter, provided it doesn't appear elsewhere in the argument to
.OR, .ER, .OF,or .EF.

You can use the . PI (dot-P-one) macro to print the header on page 1. If you
want roman numeral page numbering, use an . af PN i request.

If you place the request . 2 C in your document, the document will be printed in
double column fonnat beginning at that point. This is often desirable on the
typesetter. Each column will have a width 7/15 that of the text line length in
single-column fonnat, and a gutter (the space between the columns) of 1/15 of
the fu11line length. Remember that when you use the two-column . 2 C request,
either pipe the nroff output through col or make the first line of the input .pi
/usr /bin/ col.

The . 2 C request is actually a special case of the . MC request that produces for
mats of more than two spaces:

(. Me [column width [gutter width 1 1
J

This formats output in as many columns of column width as will fit across the
page with a gap of gutter width. You can specify the column width in any unit of
scale, but if you do not specify a unit, the setting defaults to ens. . Me without
any column width is the same thing as . 2 C. For example:

.Me
Tom appeared on the sidewalk with a bucket of whitewash and a long-handled
brush.
He surveyed the fence, and all gladness left him and a deep melancholy
settled down upon his spirit.

To return to single-column output, use . 1 C. Switching from double to single
column always causes a skip to a new page.

Revision A, of 9 May 1988

38 Formatting Documents

Footnotes - . F Sand . FE Material placed between lines with the commands. FS (footnote start) and . FE
(footnote end) is collected, remembered, and placed at the bottom of the current
page. * The formatting of the footnote is:

... at the bottom of the current page.*

.FS
* Like this .
. FE

By default, footnotes are 1l/12th the length of normal text, but you can modify
this by changing the FL register (see the "Modifying Default Features" section).
When typeset, footnotes appear in smaller size type.

Because the macros only save a passage of text for printing at the bottom of the
page, you have to mark the footnote reference in some way, both in the text
preceding the footnote and again as part of the footnote text. We use a simple
asterisk, but you can use anything you want.

You can also produce automatically-numbered footnotes. Footnote numbers are
printed by a predefined string (\ **), which you invoke separately from. FS and
. FE. Each time this string is used, it increases the footnote number by one,
whether or not you use . F S and . FE in your text. Footnote numbers are super
scripted on the phototypesetter and on daisy-wheel terminals, but on low
resolution devices (such as the line printer and a treminal), they are bracketed. If
you use \ * * to indicate numbered footnotes, the . F S macro automatically
includes the footnote number at the bottom of the page. This footnote, for exam
ple, was produced as follows:2

This footnote, for example, was produced as follows:**
.FS
If you never use the ...
. FE

If you are using \ * * to number footnotes, but want a footnote of the same style
marked with an asterisk or dagger, give that mark as the first argument to . FS:t

give that mark as the first argument to .FS:\(dg
.FS \ (dg
In the footnote, the dagger
.FE

Footnote numbering is temporarily suspended, because the \ ** string is not
used. Instead of a dagger, you could use an asterisk * or double dagger +,
represented as \ (dd.

* Like this.

2 If you never use the \ * * string, no footnote numbers will appear anywhere in the text, including down
here. The output footnotes will look exactly like footnotes produced with -mos, the old -ms macro package.

t In the footnote, the dagger will appear where the footnote number would otherwise appear, as shown here.

+~t!! Revision A, of 9 May 1988

Endnotes

Displays and Tables - . D S
and. DE

Chapter 2 - Fonnatting Documents with the -rns Macros 39

If you want to produce endnotes rather than footnotes, put the references in a file
of their own. This is similar to what you would do if you were typing the paper
on a conventional typewriter. Note that you can use automatic footnote number
ing without actually having the . F S and . FE pairs in your text. If you place
footnotes in a separate file, you can use . IP macros with ** as a hanging tag;
this gives you numbers at the left-hand margin. With some styles of endnotes,
you would want to use . PP rather than . IP macros, and specify ** before the
reference begins.

To prepare displays of lines, such as tables, in which the lines should not be re
arranged or broken between pages, enclose them in the requests . D S and . DE:

.DS
lines, like the
examples here, are placed
between .DS and .DE macros
.DE

which produces:

lines, like the
examples here, are placed
between .DS and .DE macros

By default, lines between. DS and . DE are indented from the left margin.

If you don't want the indentation, use . DS L to begin and . DE to produce a
left-justified display:

to get
something like
this

You can also center lines with the . DS C and . DE requests:

This is an
example

of a centered display.

Note that each line is centered individually.

A plain. DS is equivalent to . DS I, which indents and left-adjusts. An extra
argument to the . DS I or . DS request is taken as an amount to indent. For
example, . DS I 3 or . DS 3 begins a display to be indented 3 ens from the
margin.

There is a variant. DS B that makes the display into a left-adjusted block of
text, and then centers that entire block.

Nonnally a display is kept together on one page. If you wish to have a long
display which may be split across page boundaries, use. CD, • LD, and . BD in
place of the requests. DS C, . DS L, and . DS B respectively. Use. ID for
either a plain . DS or . DS I. You can also specify the amount of indentation
with the . ID macro. Use the following table as a quick reference:

Revision A, of 9 May 1988

40 Fonnatting Documents

Table 2-1

Keeping Text Together -
.KS, .KE and .KF

Boxing Words or Lines -
.BX and .BI and. B2

Display Macros

Macro with Keep Macro without Keep
.DS I .ID
.DS L .LD
.DS C .CD
.DS B .BD
.DS .ID

Note: It is tempting to assume that. DS R will right-adjust lines, but it doesn't.

It you wish to keep a table or other block of lines together on a page, there are
'keep - release' requests. Ita block of lines preceded by . KS and followed by
• KE does not fit on the remainder of the current page, it will begin on a new
page. There is also a 'keep floating' request. If the block to be kept together is
preceded by . KF instead of . KS and does not fit on the current page, it will be
moved down through the text to the top of the next page. nroff fills in the
current page with the ordinary text that follows the keep in the input file to avoid
leaving blank space at the bottom of the page preceding the keep. Thus, no large
blank space will be introduced in the document

In multi-column output, the keep macros attempt to place all the kept material in
the same column. If the material enclosed in a keep requires more than one page,
or more than a column in multi-column fonnat, it will start on a new page or
column and simply run over onto the following page or column.

To draw rectangular boxes around words, use the request

(.BX word

to print 1W0rd las shown. You can box longer pieces of text by enclosing them
with. BI and . B2:

.Bl
Tom appeared on the sidewalk with a bucket of whitewash
and a long-handled brush.
He surveyed the fence, and all gladness left him and a deep melancholy
settled down upon his spirit.
Thirty yards of board fence nine feet high.
Life to him seemed hollow, and
existence but a burden .
. B2

This produces:

Tom appeared on the sidewalk with a bucket of whitewash and a long-handled
brush. He sUlVeyed the fence, and all gladness left him and a deep melancholy
settled down upon his spirit. Thirty yards of board fence nine feet high. Life to
him seemed hollow, and existence but a burden.

)

Revision A, of 9 May 1988

Changing Fonts - 0 I, 0 B, 0 R
and 0 UL

Changing the Type Size -
• LG, 0 SM and 0 NL

Chapter 2 - Formatting Documents with the -ms Macros 41

To get italics on the typesetter or reverse display on the workstation, say:

.1
as much text as you want
can be typed here
oR

as was done for these three words. The 0 R request restores the nonnal (usually
Roman) font. If only one word is to be italicized, you can put it on the line with
the . I request:

(oI word J
and in this case you do not need to use an . R to restore the previous font.

You can print boldface font by

.B
Text to be set in boldface
goes here
.R

As with . I, you can place a single word in boldface font by putting it on the
same line as the . B request. Also, when . I or . B is used with a word as an
argument, it can take as a second argument any trailing punctuation to be printed
immediately after the word but set in normal typeface. For example:

(oB word

prints

word)

that is, the word in boldface and the closing parenthesis in nonnal Roman
directly adjacent to the word.

If you want actual underlining as opposed to italicizing on the typesetter, use the
request

J

(,,---oUL _word _____ ~J
to underline a word. There is no way to underline multiple words on the
typesetter.

You can specify a few size changes in troff output with the requests. LG

(make larger), . SM (make smaller), and . NL (return to nonnal size). The size
change is two points (see the "Dimensions" section for a discussion of point
size); you can repeat the requests for increased effect (here one 0 NL canceled two
• SM requests). These requests are primarily useful for temporary size changes

Revision ~ of 9 May 1988

42 Formatting Documents

Dates - . DA and . ND

Thesis Format Mode - . TM

Bibliography - . XP

for a small number of words. They do not affect vertical spacing of lines of text.
See the section on "Modifying Default Features" for other techniques for chang
ing the type size and vertical spacing of longer passages.

When you use -ms, nroff prints the date at the bottom of each page, but
troff does not Both nroff and troff print it on the cover sheet if you
have requested one with . RP .. To make t ro f f print the date as the center page
footer, say. DA (date). To suppress the date, say. ND (no date). To lie about the
date, type • DA July 4, 1776, which puts the specified date at the bottom
of each page. The request:

(.ND September 16, 1959

in . RP fonnat places the specified date on the cover sheet and nowhere else.
Place either . ND or . DA before the . RP Notice this is one instance that you do
not need to put double quote marlcs around the arguments.

]

To fonnat a paper as a thesis, use the . TM macro (thesis mode). It is much like
the . th macro in the -me macro package. It puts page numbers in the upper
right-hand comer, numbers the first page, suppresses the date, and doublespaces
everything except quotes, displays, and keeps. Use it at the top of each file mak
ing up your thesis. Calling . TM defines the . CT macro for chapter titles, which
skips to a new page and moves the page number to the center footer. You can
use the . P 1 (p one) macro even without thesis mode to print the header on page
one, which is suppressed except in thesis mode. If you want roman numeral page
numbering, use an . af PN i request

To fonnat bibliography entries, use the . XP macro, which stands for exdented
paragraph. It exdents the first line of the paragraph by \n(pI units, usually 5n,
the same as the indent for the first line of a . PP. An example of exdented para
graphs is:

.XP
Lumley, Lyle S., \fISex in Crustaceans: Shell Fish Habits,\fp\~
Harbinger Press, Tampa Bay and San Diego, October 1979.
243 pages.
The pioneering work in this field .
• XP
Leffadinger, Harry A., ~Mollusk Mating Season: 52 Weeks, or All Year?"
in \fIActa Biologica,\fP\~ vol. 42, no. 11, November 1980.
A provocative thesis, but the conclusions are wrong.

which produces:

Lumley, Lyle S., Sex in Crustaceans: Shell Fish Habits, Harbinger Press, Tampa
Bay and San Diego, October 1979. 243 pages. The pioneering work in this
field.

Leffadinger, Harry A., "Mollusk Mating Season: 52 Weeks, or All Year?" in
Acta Biologica, vol. 42, no.11, November 1980. A provocative thesis, but
the conclusions are wrong.

Revision A, of 9 May 1988

Table of Contents - . XS,
. XE, .XA, .PX

Chapter 2 - Formatting Documents with the -ms Macros 43

You do have to italicize the book andjoumal titles and quote the title of the jour
nal article. You can change the indentation and exdentation by setting the value
of number register PI.

There are four macros that produce a table of contents. Enclose table of contents
entries in . XS and. XE pairs, with optional . XA macros for additional entries .
Arguments to . xs and . XA specify the page number, to be printed at the right.
A final . P X macro prints out the table of contents. A sample of typical input and
output text is:

.xs ii
Introduction
.XA 1
Chapter 1: Review of the Literature
.XA 23
Chapter 2: Experimental Evidence
.XE
.px

Table of Contents

Introduction ii
Chapter 1: Review of the Literature .. 1
Chapter 2: Experimental Evidence 23

Defining Quotation Marks

Accent Marks

You can also use the . xs and . XE pairs in the text, after a section header for
instance, in which case page numbers are supplied automatically. However,
most documents that require a table of contents are too long to produce in one
run, which is necessary if this method is to work. It is recommended that you
make the table of contents after finishing your document. To print out the table
of contents, use the . P X macro or nothing will happen.

To produce quotation marks and dashes that fonnat correctly with both nroff
and troff, there are some string definitions for each of the formatting pro
grams. The *- string yields two hyphens in nroff, and produces an em-dash
-like this one in troff. The *Q and *u strings produce" and" in troff,
but" in nroff.

To simplify typing certain foreign words, the -ms macro package defines strings
representing common accent marks. There are a large number of optional
foreign accent marks defined by the -ms macros. All the accent marks available
in -mos are present, and they all work just as they always did.

For the old accent marks, type the string before the letter over which the mark is
to appear. For example, to print 't'el'qtxne with the old macros, you type:

(t*'el*'ePhone
J

Revision A, of9 May 1988

44 Formatting Documents

Unlike the old accent marks, the new accent strings should be placed after the
letter being accented. Place . AM (accent mark) at the beginning of your docu
ment, and type the accent strings after the letter being accented. A list of both
sets of diacritical marks and examples of what they look like follows. Note: Do
not use the tbl macros. TS and . TE with any of the accent marks as the marks
do not line up correctly.

Table 2-2 Old Accent Marks

Accent Name Input Output

acute *'e e
grave *'e e
umlaut *:u ti
circumflex * e ~

tilde *-a a
haeek *Cr

v
r

cedilla *,c c

Table 2-3 AccentMarks

Accent Name Input Output

acute e* ' e
grave e*' e
circumflex 0* 6
cedilla c*, C
tilde n*- fi.
question *? J
exclamation *! I

umlaut u*: ii
digraphes *8 J3
harek c*v

v
c

macron a* a -
o-slash 0*/ r/J
yogh kni*3t kni3t
angstrom a*o ~
Thorn *(Th P
thorn *(th p
Eth * (D- D
eth *(d- a
hooked 0 *q Q
ae ligature *(ae 3!

AEligature * (Ae .IE
oe ligature *(oe re
OEligature *(Oe (E

If you want to use these new diacritical marks, don't forget the . AM at the top of
your file. Without it, some of these marks will not print at all, and others will be
placed on the wrong letter.

Revision A, of9 May 1988

2.5. Modifying Default
Features

Dimensions

Chapter 2 - Formatting Documents with the -ros Macros 45

The -ms macro package supplies a standard page layout style. The text line has
a default length of six inches; the indentation of the first line of a paragraph is
five ens; the page number is printed at the top center of every page after page
one; and so on for standard papers. You can alter many of these default features
by changing the values that control them.

The computer memory locations where these values are stored are called number
registers and string registers. Number and string registers have names like those
of requests, one or two characters long. For instance, the value of the line length
is stored in a number register named LL. Unless you give a request to change the
value stored in register LL, it will contain the standard or default value assigned
to it by -ms. The "Summary of -ms Number Registers" table lists the number
registers you can change along with their default values.

To change a dimension like the line length from its default value, reset the asso
ciated number register with the troff request. nr (number register):

[.nr LL 5i

The first argument, LL, is the name of a number register, and the second, 5 i is
the value being assigned to it In the case above, the line length is adjusted from
the default six inches to five inches. As another example, consider:

(.nr PS 9

which makes the default point size 9 point.

The value may be expressed as an integer or may contain a decimal fraction.
When setting the value of a number register, it is almost always necessary to
include a unit of scale immediately after the value. In the example above, the 'i'
as the unit of scale lets troff know you mean five inches and not five of some
other unit of distance. But the point size cPS) and vertical spacing (VS) registers
are exceptions to this rule; ordinarily they should be assigned a value as a
number of points without indicating the unit of scale. For example, to set the
vertical spacing to 24 points, or one-third of an inch (double-spacing), use the
request:

(.nr VS 24

In the unusual case where you want to set the vertical spacing to more than half
an inch (more than 36 points), include a unit of scale in setting the VS register.
The "Units of Measurement in nrof f and trof f" table explains the units of
measurement

J

J

J

+~t!! Revision A, of 9 May 1988

46 Formatting Documents

Table 2-4 Units o/Measurement in nroff and troff

Unit
point
pica
em

en
vertical space

inch
centimeter
machine unit

Abbr
p
p
m

n
v

i
c
u

nroff

1n2 inch
1/6 inch
width of one character

width of one character
amount of space in
which each line of
text is set, measured
baseline to baseline
inch
centimeter
1/240 inch

troff

1n2 inch
1/6 inch
distance equal
to number of
points in the
current typesize
half an em
same

inch
centimeter
1/432 inch

The units point, pica, em, and en are units of measurement used by tradition in
typesetting. The vertical space unit also corresponds to the typesetting tenn
leading, which refers to the distance from the baseline of one line of type to the
baseline of the next. Em and en are particularly interesting in that they are pro
portional to the type size currently in use (normally expressed as a number of
points). An em is the distance equal to the number of points in the type size
(roughly the width of the letter 'm' in that point size), while an en is half that
(about the width of the letter en'). These units are convenient for specifying
dimensions such as indentation. In t r 0 f f, em and en have their traditional
meanings, that is one em of distance is equal to two ens. For nroff, on the
other hand, em and en both mean the same quantity of distance, the width of one
typewritten character.

The machine unit is a special unit of dimension used by nroff and troff
internally. This is the unit to which the programs convert almost all dimensions
when storing them in memory, and is included here primarily for completeness.
In using the features of -ms, it is sufficient to know that such a unit of measure
exists.

Note that a change to a number register such as LL does not immediately change
the related dimension at that point in the output. Instead, in the case of the line
length for example, the change takes place at the beginning of the next para
graph, where -ms resets various dimensions to the current values of the related
number registers.

If you need the effect immediately, use the nonna! troff command in addition
to changing the number register. For example, to control the vertical spacing
immediately, use:

(.vs

This takes effect at the place where it occurs in your input file. Since it does not

]

Revision A, of 9 May 1988

Chapter 2 - Formatting Documents with the -ms Macros 47

change the VS register, however, its effect lasts only until the beginning of the
next paragraph. As a general rule, to make a pennanent change, or one that will
last for several paragraphs until you want to change it again, alter the value of the
-ms register. If the change must happen immediately, somewhere other than the
point shown in the table, use the t r a f f request. If you want the change to be
both immediate and lasting, do both.

Table 2-5 Summary of -ms Number Registers

2.6. Using nroff and
troff Requests

Register Controls
Takes

Default
Effect

PS point size next para. 10
VS line spacing next para. 12 pts
LL line length next para. 6"
LT title length next para. 6"
PD para. spacing next para. 0.3 VS
PI para. indent next para. S ens
FL footnote length next. FS 11/12 LL
CW column width next.2C 7/15 LL
GW intercolumn gap next.2C 1/15 LL
PO page offset next page 26/27"
HM top margin next page 1"
FM bottom margin next page I"

You may also alter the strings and which are the left, center, and right headings
respectively; and similarly and which are strings in the page footer. Use the
traff . ds (define string) request to alter the string registers, as you use the
· nr request for number registers. The page number on output is taken from
register to pennit changing its output style. For more complicated headers and
footers, you can redefine the macros and as explained earlier. See the "Register
Names" section for a full list.

You can use a small subset of the t r a f f requests to supplement the -ms macro
package. .

Use. nr and . ds requests to manipulate the -ms number and string registers as
described in the "Modifying Default Features" section. You can also freely use
the other following requests in a file for processing with the -ms macro package.
They all work with both typesetter and workstation or tenninal output.

· ad b Adjust both margins. This is the default adjust mode.

· bp Begin new page.

· br 'Break' line; start a new output line whether or not the current one
has been completely filled with text.

· ce n Center the following n input text lines individually in the output. If n
is omitted, only the next (one) line of text is centered.

~), sun Revision A. of 9 May 1988
~ microsystems

48 Formatting Documents

2.7. Using -ms with eqn to
Typeset Mathematics

• ds XX Define string register named XX.

· na Tum off adjusting of right margins to produce ragged right.

· nr XX Define number register named xx.
· sp n Insert n blank lines. If n is omitted, one blank line is produced (the

current value of the unit v). You can attach a unit of dimension to n
to specify the quantity in units other than a number of blank lines.

Note: The macro package executes sequences of troff requests on its own, in
a manner invisible to you. By inserting your own troff requests, you run the
risk of introducing errors. The most likely result is simply for your troff
requests to be ignored, but in some cases the results can include fatal troff
errors and garbled typesetter output.

As a simple example, if you try to produce a centered heading with the input:

[.ce
.SH
Text of section heading

you will discover that the heading comes out left-adjusted; the . SH macro,
appearing after the . ce request overrules it and forces left-adjusting. But con
sider the following sequence:

.sp

.ce

.B
Line of text

which successfully produces a centered, boldface heading preceded by one line
of vertical space. There are lots of tricks like this, so be careful.

To learn more about troff see the chapter on "Formatting Documents with
nroff and troff."

If you have to print Greek letters or mathematical equations, see the chapter
''Typesetting Mathematics with eqn" for equation setting. To aid eqn users, -
rns provides definitions of . EQ and . EN which nonnally center the equation and
set it off slightly. An argument to . EQ is taken to be an equation number and
placed in the right margin near the equation. In addition, there are three special
arguments to . EQ: the letters C, I, and L indicate centered (default), indented,
and left adjusted equations, respectively. If there is both a format argument and
an equation number, give the fonnat argument first, as in

1

(• EQ L (1. 3a)]

for a left-adjusted equation numbered (1.3a).

Revision A, of 9 May 1988

2.8. Using -ms with tbl to
Format Tables

2.9. Register Names

. DW GW .
#T EF HI
T. FC H2
IT FL H3
AV FM H4
CW FP H5

,
AS CB

... AB CC
'" AE CD
- AI CF

AU CH
, B CM
lC BG CS
2C BT CT
Al C D
A2 C1 DA
A3 C2 DE
A4 CA DS

2.10. Order of Requests in
Input

Chapter 2 - Formatting Documents with the -ms Macros 49

Similar to the eqn macros are the macros. TS and . TE defined to separate
tables from text with a little space (see the chapter "Formatting Tables with
tbl"). A very long table with a heading may be broken across pages by begin
ning it with . T S H instead of . T S, and placing the line . THin the table data
after the heading. If the table has no heading repeated from page to page, just
use the ordinary . T S and . TE macros.

The -ms macro package uses the following register names internally. Indepen
dent use of these names in your own macros may produce incorrect output. Note
that there are no lower case letters in any -ms internal name.

Number Registers Used in -ms

HM IQ LL NA OJ PO T. TV
HT IR LT NC PD PQ TB VS
IF IT MF ND PE PS TC WF
IK KI MM NF PF PX TD YE
1M LI MN NS PI RO TN YY
IP LE MO 01 PN ST TQ ZN

String Registers Used in -ms

DW EZ I KF MR Rl RT TL
DY FA 11 KQ ND R2 SO TM
E1 FE 12 KS NH R3 SI TQ
E2 FJ 13 LB NL R4 S2 TS
E3 FK 14 LD NP R5 SG TT
E4 FN 15 LG OD RC SH UL
E5 FO ID LP OK RE SM WB
EE FQ IE ME PP RF SN WH
EL FS 1M MF Pf RH SY WT
EM FV IP MH PY RP TA XD
EN FY IZ MN QF RQ TE XF
EQ HO KE MO R RS TH XK

The following diagram provides a quick reference for how to order macro
requests when using the -IDS macro package to format documents. The central
arrow indicates that the minimum formatting requests you need with -ms are the
paragraph macros. These initialize certain quantities and are necessary to obtain
predictable results when you use other macros.

The double-edged arrows indicate optional requests. The single-edged arrows
indicate dependencies. For example, if you use a . AB request, you need a . AE
request. If you use a . AU request, you don't need a . AI request, but if you use a
. AI request, you have to use a . AU request first. The locations of the side
arrows relative to the other requests indicate the relative locations of the requests
in the document source.

Revision A, of 9 May 1988

50 Formatting Documents

Figure 2-1

For simpler documents, use just a . LP initializing request and just leave blank
lines between paragraphs.

Order of Requests in -ms Documents

.AM

.NO

• RP

• TM

.nrXX

. dsXX

.EH .0

.na

.1sN

...

-
-...
...

H .EF

-
-

~

SH .NH

-
...

...

.OF~

.TL -

...

. LP .PP

!IE--': ---;...:;. . nh

text

-- _ .. .AU

+
.AI

.AB

.- .AE

Revision A, of9 May 1988

2.11. -ms Request
Summary

Table 2-6

Chapter 2 - Formatting Documents with the -ms Macros 51

This section includes tables of the old Bell Laboratories that have been removed
from the new -ms package, of new -ms requests and string definitions, and of
useful printing and displaying commands. It also includes a complete -ms
request and string summary for easy reference.

Bell Laboratories Macros Deleted From -ms

Macro Request
.CS
.EG
.HO
.IH
.1M
.MF
. MH
.MR
.ND
.OK
. py
.SG
.TM
.TR
. WH

Explanation
Cover sheet
BTL Engineer's Notes
Bell Labs, Holmdel, N.J.
Bell Labs, Naperville, Ill .
BTL internal memo
BTL file memo
Bell Labs, Murray Hill, N.J .
BTL record memo
BTL date
BTL keywords for tech memo
Bell Labs, Piscataway, N.J .
Signatures for tech memo
BTL technical memo
BTL report format
Bell Labs, Whippany, N.J .

Table 2-7 New -ms Requests

Macro Request
. AM
.cr
. EH
. EF
. FE
. FS
.IP**
.IX
. OF
. OH
. PI
. PX
.TM
.XS
. XE
. XA
. PX
. XP

Explanation
New accent mark definitions .
Chapter title in . TM format.
Define even three-part page header .
Define even three-part page footer .
End automatically numbered footnote .
Begin automatically numbered footnote .
Endnotes with automatic numbering .
Index words .
Define odd three-part page footer .
Define odd three-part page header .
Put header on page one in . TM format .
Print table of contents .
Thesis mode format.
Start table of contents entry.
End table of contents entry .
Additional table of contents entry .
Prints table of contents .
Exdented paragraph .

Revision A, of 9 May 1988

52 Formatting Documents

Table 2-8 New String Definitions

Definition In nroff In troff

*- Two dashes -- Em dash-
*Q Open quote " Open quote"
*U Oose quote" Close quote "

Table 2-9 -ms Macro Request Summary

Macro Initial Cause Explanation
Request Value Break?

. 1C yes yes One column fonnat on a new page .

.2C no yes Two column fonnat.

.AB no yes Begin abstract.

.AE yes End abstract.

. AI no yes Author's institution follows .

.AM no New accent mark definitions

.AT no yes Print ' ... Attached' and turn off line
filling.

. AU no yes Author's name follows .

.B x no no Print x in boldface; if no argument
switch to boldface.

. BI no yes Begin text to be enclosed in a box .

.B2 no yes End text to be boxed and print it.

.BT date no Bottom title, automatically invoked
at foot of page. May be redefined.

. BX x no no Print x in a box .

.CM no Cut mark between pages (only if
troff).

. CT yes Chapter title in thesis mode only .
Page number moved to CF.

.DA x date no 'Date line' at bottom of page is x
(only in nroff). Default is today.

. DE yes End displayed text. Implies . KE .

.DS x no yes Start of displayed text to appear ver-
batim line-by-line. x=I for
indented display (default), x=L for
left-adjusted on the page, x=C for
centered, s=B for make left-justified
block, then center whole block.
Implies . KS.

.EF x no Even three-part page footer x

.EN yes Space after equation produced by
eqn or neqn.

Revision A, of 9 May 1988

Chapter 2 - Formatting Documents with the -InS Macros 53

Table 2-9 -ms Macro Request Summary- Continued

Macro Initial Cause Explanation
Request Value Break?

.EQ xy yes Precede equation; break out and add
space. Equation number is y. The
optional argument x may be I to
indent equation (default), L to
left-adjust the equation, or C to
center it.

. FE yes End footnote .

.FS x no Start footnote. x is optional foot-
note label. The note will be printed
at the bottom of the page.

.1 x no no Italicize x; if x is missing, italic text
follows.

.IP xy no yes Start indented paragraph, with hang-
ing tag x. Indentation is y ens
(default 5).

.KE yes End keep. Put kept text on next
page if not enough room.

.KF no yes Start floating keep. If the kept text
must be moved to the next page,
float later text back to this page.

. KS no yes Start keeping following text .

. LG no yes Make letters larger .

. LP yes yes Start left -blocked paragraph .

.ND date no Use date supplied if any as page
footer; only in special format posi-
tions.

.NH n yes Same as . S H with section number
supplied automatically. Numbers
are multilevel, like 1.2.3, where n
tells what level is wanted (default is
1).

. NL yes no Make letters normal size .

.IX xy yes Index entries wand y and so on up
to 5 levels. Make letters normal
size.

. OF x no Odd three-part page footer .

.OH header no Odd three-part page header.

.Pl no Print header on first page (only in
thesis mode).

.PP no yes Begin paragraph. First line
indented.

.PT pg# Page title, automatically invoked at
top of page. May be redefined.

+~~t!! Revision A, of 9 May 1988

54 Formatting Documents

Table 2-9 -ms Macro Request Summa~ Continued

Macro Initial Cause Explanation
Request Value Break?

.PX x yes Print table of contents; x=no
suppresses title.

.QP yes Begin single paragraph which is
indented and shorter.

. R yes no Roman text follows .

.RE yes End relative indent leve1.

.RP no Cover sheet and first page for
released paper. Must precede other
requests.

. RS yes Start level of relative indentation .
Following. IPs are measured from
current indentation.

. SH yes Section head follows, font automati-
cally bold.

. SM no no Make letters smaller .

. TA x ... 5 ... no Set tabs in ens. Default is 5 10 15 ...

. TE yes End table .

. TH yes End heading section of table .

. TL no yes Title follows .

.TM off no Thesis mode fonnat.

.TS x yes Begin table; if x is H, table has
repeated heading on subsequent
pages.

.UL x yes Underline argument, even in
troff.

.XA xy yes Another index entry; x=page for no
for none, y=indent.

.XE yes End index entry or series of . IX
entries.

.XS xy yes Begin index entry; x=page or no for
none, y=indent.

.UL x yes Underline argument, even in
troff.

Revision A. of 9 May 1988

Table 2-10

Table 2-11

Chapter 2 - Formatting Documents with the -ms Macros 55

-ms String Definitions

Name Definition In nroff In troff

quote *Q " "
unquote *U " "
dash *-
month of year *(MO March March
current date *(DY 6 March 1988 6 March 1988
numbered footnote ** [1]footnote 1ootnote

The following table summarizes command lines you use to print and display
documents. Use the same order with troff for preprocessing files with tbl
and eqn.

If you use the two-column. 2C request, either pipe the nroff output through
col or make the first line of the input. pi /usr /bin/ col.

Printing and Displaying Documents

What You Want to Do How to Do it

Display file on screen nroff -ms file(s) more

Print file on line printer nroff -ms file(s) l.pr

Print file with tables tbl. file(s) I nro£f -ms I 1pr

Print file with equations neqn file(s) I nroff -ms I 1pr

Print file with both tb1 file(s) I neqn i nroff -ms I 1pr

Print file using t r 0 f f troff -ms file(s) I 1pr -t

Revision A, of 9 May 1988

3
The -man Macro Package

The -man Macro Package .. 59

3.1. Parts of a Manual Page ... 59

3.2. Coding Conventions .. 60

The Header and Footer Line (. TH) - Identifying the Page 60

The NAME Line ... 60

The SYNOPSIS Section .. 61

The DESCRIPTION Section ... 61

The OPTIONS Section .. 62

The FILES Section ... 63

The SEE ALSO Section .. 64

The BUGS Section .. 64

3.3. New Features of the -man Macro Package .. 64

New Number Registers .. 64

Using the Number Registers ... 65

3.4. How to Fonnat a Manual Page .. 65

3.1. Parts of a Manual
Page

3
The -man Macro Package

The -man macro package is used to format the manual pages to look like those
in the SunOS Reference Manual, for example.

A manual page consists of several parts:

o The first part is the header and/ooter or . TH line. This line identifies the
manual page and sets up the titles and other information to print the page
headers and footers.

o The next few sections are all introduced by . S H macro requests.

A skeleton command file would look something like this:

.TH :xx I "7 November 1984"

.SHNAME

.SH SYNOPSIS

.SH DESCRIPTION

.SHOPTIONS

.SHFILES

.SH "SEE ALSO"

.SH DIAGNOSTICS

.SHBUGS

The sections have the following meanings:

NAME

SYNOPSIS

The name of the command and a short description.

DESCRIPI'ION

OPTIONS

FILES

SEE ALSO

BUGS

A short synopsis of the command including its options
and arguments.
A brief narrative description of what the command does.
A list of the options in terse itemized list format.
Names of files that this command uses or creates.
Other relevant commands and files and manuals.
Known deficiencies in the command.

Occasionally there may be other sections you can add. For instance, a couple of
the manual pages have a section called RESTRICTIONS, which contains the
notice that this software is not distributed outside of the United States of Amer
ica.

59 Revision A, of 9 May 1988

60 Formatting Documents

3.2. Coding Conventions

The Header and Footer Line
(. TH) - Identifying the Page

The NAME Line

Leave out sections that do not apply - it is not necessary to have a title without
any content to go with it. Definitely avoid sections that read:

BUGS
None.

The following subsections compose a fairly detailed description of what the dif
ferent sections of the manual page contain.

The . T H macro is the macro that identifies the page. The fonnat is

(.TH n cxvm

This means, for example: Begin page named n of chapter c. The x argument is
for extra commentary for the center page footer. The v argument alters the left
portion of the page footer. The m argument alters the center portion of the page
header. The . T H command line also incidentally sets the prevailing indent and
tabs to .5i.

To code a manual page called traff (1), for example, you would code a . TH
macro like:

(. TH TROFF 1 "today' s date"

The third parameter to the . T H macro is the date on which you created or last
changed the manual page. You code today's date in international fonn:

numerical day spelled-out month numerical year

So if today is September 3rd, 1984, you code the . TB macro like:

(.TH TROFF 1 "3 September 1984"

The NAME line is a one-liner that identifies the command or program. You
code the infonnation like this:

.SH NAME
troff \- typeset or format documents

This line must be typed all in the Roman font with no font changes or point-size
changes or any other text manipulation. Typing the command line all in Roman
with no text manipulation is for the pennuted index generator. It gets all con
fused if there is anything in that line other than plain text

]

]

]

Revision ~ of 9 May 1988

The SYNOPSIS Section

The DESCRIPTION Section

Chapter 3 - The -man Macro Package 61

Note the \- in there - why do we type a \-? Well, in troff jargon, a simple -
sign gets you a hyphen. We actually would like a en-dash Oike -) instead of a
hyphen, in lieu of actually having a em-dash (like -). This use of the \- to get a
- is a UNIXt tradition.

The SYNOPSIS line(s) show the user what options and arguments can be typed.
The conventions for the SYNOPSIS have varied wildly over the years. Nonethe
less, here are the guidelines:

D Literal text (that is, what the user types) is coded in boldface.

D Variables (that is, things someone might substitute for) are typed in italic
text.

D Optional things are enclosed in brackets - that is the characters [and] .

D Alternatives are separated by the vertical bar sign (I).

The synopsis should show what the options are - some manual pages used to
read like this:

SYNOPSIS
trofT [options] filename ...

but it should read:

SYNOPSIS
trofT [-opagelist] [-oN] [-m name] ... [filename]

The DESCRIPTION section of a manual page should contain a brief description
of what the command does for the user, in tenns that the user cares about.

Within the DESCRIPTION and OPTIONS sections, italic text is used for
filenames and command names. The rationale here is that UNIX commands are
simply files. When referring to other manual pages, you type the name in italics
and the following parenthesized section number in Roman, as in make (1). Use
the -man macro. IR to get alternating words joined in italic and Roman fonts.
Note that the macros that join alternating words in different fonts (. IR, . IB,
• BR, . BI, . RI, . RB) all accept only six parameters. See the section on how to
fonnat a manual page for more fonnatting rules.

Part of the description in the grep manual page used to read:

..... grep patterns are limited regular expressions in the style of ed (1) ; it
uses a compact nondetenninistic algorithm. egrep patterns are full regular
expressions; it uses a fast deterministic algorithm that sometimes needs exponen
tial space. fgrep patterns are fixed strings; it is fast and compact

Most users do not care that egrep uses a fast detenninistic algorithm. As an
example of a more useful way of describing a command for the user, here is how

t UNIX is a registered trademark of AT&T.

Revision A, of9 May 1988

62 Formatting Documents

The OPTIONS Section

that sentence in the grep manual page currently reads.

. grep patterns are limited regular expressions in the style of ed (1) .
egrep patterns are full regular expressions including alternation. fgrep
searches for lines that contain one of the (newline-separated) strings. f grep
patterns are fixed strings - no regular expression metacharacters are supported.

Here's another bad example: the Ipr (1) command used to tell you that the -s
option uses the symlink (2) system call to make a symbolic link to the data file
instead of copying the data file to the spool area. The user may not know what
this means or how to use the infonnation. The description was changed to just
tell you that the -s option makes a symbolic link to the data file. How it is done
is of little concern to some poor blighter who just wants to print a file.

The OPTIONS section of a manual page contains an itemized list of the options
that the command recognizes, and how the options affect the behavior of the
command. The general fonnat for this section is

-option Description of what the option does.

A specific example from the troff manual page looks like this:

OPTIONS
Options may appear in any order as long as they appear before the files.

-olist
Print only pages whose page numbers appear in the comma-separated
list of numbers and ranges. A range N-M means pages N through M;
an initial -N means from the beginning to page N; and a final N- means
from N to the end.

-oN
Number first generated page N.

-mname
Prepend the macro file /usr/lib/tmac/tmac.name to the input files.

-raN

-i

-q

-t

-a

Set register a (one-character) to N.

Read standard input after the input files are exhausted.

Invoke the simultaneous input -output mode of the rd request.

Direct output to the standard output instead of the
phototypesetter. In general, you will have to use this option
if you don't have a typesetter attached to the system.

Revision A, of 9 May 1988

The FILES Section

Chapter 3 - The -man Macro Package 63

Send a printable ASCn approximation of the results to the standard
output.

Some options oftroff only apply if you have a C/Aff typesetter
attached to your system. These options are here for historical reasons:

-sN

-f

Stop every N pages. troff stops the phototypesetter
every N pages, produces a trailer to allow changing
cassettes, and resumes when the typesetter's start button is pressed.

Refrain from feeding out paper and stopping phototypesetter at the
end of the run.

-w

-b

Wait until phototypesetter is available, if currently busy.

Report whether the phototypesetter is busy or available. No text
processing is done.

-pN
Print all characters in point size N while retaining all
prescribed spacings and motions, to reduce phototypesetter elapsed time.

The FILES section of a manual page contains a list of the files that the program
accesses, creates, or modifies. Obviously, you can leave this section out if the
program uses no files.

The example from the troff manual page looks like this:

If the file /usr / adm/tracct is writable, troff keeps
phototypesetter accounting records there. The integrity of that file
may be secured by making troff a 'set user-id' program.

FILES
/tmp/ta*
/usr/lib/tmac/tmac. *
/usr/lib/term/*
/usr/lib/font/*
/dev/cat
/usr/admltracct

temporary file
standard macro files
terminal driving tables for nroff
font width tables for troff
phototypesetter
accounting statistics for Idev Icat

Revision A, of 9 May 1988

64 Formatting Documents

The SEE ALSO Section

The BUGS Section

3.3. New Features of the -
man Macro Package

New Number Registers

The SEE ALSO section of a manual page contains a list of references to other
programs, files, and manuals relating to this program. For example, on the
troff manual page, the SEE ALSO section looks like this:

SEE ALSO
Formatting Documents and Using NROFF and TROFF,
nroff(1),eqn(1),tbl(1),ms(7),me(7),
man(7),col(1)

Make sure that the references are useful- the rm (1) command references the
unlink (2) system call. Does the user care what system call is used to get rid
of a file? It's not intuitive that you use a function called unlink to remove a
file.

Leave this section out if there are no interesting references.

The BUGS section of a manual page is to convey limitations or bad behavior of
the command to the reader. Please limit bugs to these categories.

Leave this section out altogether if there are no bugs worth noting.

Recent enhancements to the -man macro package facilitate including manual
pages in manuals. The major new features are number registers that can be set
from the itroff, iroff, troff, di troff, or nroff command line. The
number registers are:

D Fonnat the document for double-sided printing if the D number
register is set to 1. Double-sided printing means that the page
numbers appear in different locations on odd and even pages.
Page numbers appear in the running footers in the lower right
comer of odd-numbered pages and in the lower left comer of
even-numbered pages.

C Number pages contiguously - pages are numbered 1,2,3, •••
even when you fonnat more than one manual page at a time.
Every new topic used to start numbering at page 1.

Pnnn Start Page numbering at page nnn - page numbering starts at
page 1 if not otherwise specified.

Xnnn Number pages as nnna, nnn b, etc when the current page number
becomes nnn. This feature is for generating update pages to slot
in between existing pages. For example, if a new page called
s/cyversion(8) should be included in an interim release, we can
number that page as page '26a' and drop it into the existing
manual in a reasonable fashion.

~) sun Revision A, of 9 May 1988
~ microsystems

Using the Number Registers

3.4. How to Format a
Manual Page

Chapter 3 - The -man Macro Package 65

Number registers are set from the itroff, iroff, troff, ditroff, or
nroff command line by the -r (set register) option, followed immediately by
the one-letter name of the register, followed immediately by the value to put into
the number register:

hostname% troff -man -rDl manpage.1
hostname%

This example shows how to request a fonnat suitable for double-sided printing.

If your gr ab (1) manual page used to be three pages long and is now five pages
long, you need the pages numbered 1, 2, 3, 3a, and 3b instead of 1, 2, 3, 4, and 5.
You get this effect by using the -rX option on the command line, setting the X
register to 3:

hostnarne% troff -man -rX3 grab.l
hostnarne%

We introduced the screendump (1) and screenload (1) manual pages in
the 1.2 release. screendump (1) and screenload (1) come immediately
after the sec s di f f (1) manual page. sec s di f f 's last page number is page
260, so we get screendump (1) and screenload (1) formatted with this
command to start page numbering at 260 and to start putting in extra page letters
at 260 as well:

hostname% troff -man -rP260 -rX260 acreandump.l acreenload.l
hostname%

Any text argument t to a macro request may be from zero to six words. Quotes
my be used to include blanks in a 'word'. If the text field is empty, the macro
request is applied to the next input line with text to be printed. In this way, .I
italicizes an entire line, and .SM followed on a separate line by .B creates small,
bold letters.

A prevailing indent distance is remembered between successive indented para
graphs, and is reset to the default value upon reaching a non-indented paragraph.
Default units for indents i are ens.

Type font and size are reset to the default values before each paragraph, and after
processing font-and size-setting macros.

These strings are predefined by -man:

*R ®, '(Reg)' in nroff.
*S Change to default type size.

~~ sun Revision A, of 9 May 1988
~ microsystems

66 Fonnatting Documents

Table 3-1 Summary of the -man Macro Requests

Request
Cause
Break

. B t no

. BI t no

.BR t no

. DT no

.HP i yes
o I t no
oIB t no
.IP xi yes
. IR t no
. LP yes
.PD d no
.PP yes
.RE yes

.RB t no

.RI t no
oRS yes

. SB t no

.SH t yes

.SM t yes

.TH ncxvm yes

.TP yes

• TX tp no

II no
Explanation

Argument

t=next text line Text t is bold .
t=next text line Join words of t alternating bold and italic .
t=next text line Join words of t alternating bold and Roman.
.5i 1i... Restore default tabs .
i =prevailing indent Set prevailing indent to i. Begin paragraph with hanging indent.
t=next text line Text t is italic.
t=next text line Join words of talternating italic and bold.
x="" Same as .TP with tag x.
t=next text line Join words of t alternating italic and Roman .

Same as .PP .
d=.4v Interparagraph distance is d.

Begin paragraph. Set prevailing indent to .5i.
End of relative indent. Set prevailing indent to amount of start-
ing .RS.

t=next text line Join words of t alternating Roman and bold.
t=next text line Join words of t alternating Roman and italic.
i=prevailing indent Start relative indent, move left margin in distance i. Set prevail-

ing indent to .5i for nested indents.
Print t in smaller boldface .

t=next text line Subheading.
t=next text line Text t is two point sizes smaller than surrounding text.

Begin page named n of chapter c. The x argument is for extra
commentary for the center page footer. The v argument alters
the left portion of the page footer. The m argument alters the
center portion of the page header. The . TH command line also
incidentally sets the prevailing indent and tabs to .5i.

i =prevailing indent Set the prevailing indent to i. Begin indented paragraph with
hanging tag given by the next text line. If the tag does not fit,
place it on a separate line.
Resolve the title abbreviation 1; join to punctuation p .

To learn. how to format manual pages on your tenninal or workstation screen,
refer to the man (1) manual page.

Revision A. of 9 May 1988

Fonnatting Documents with the -me

Macros

4

Formatting Documents with the -me Macros .. 69

4.1. Using -me ... 70

4.2. Basic -me Requests ... 70

Paragraphs ... 70

Standard Paragraph - . pp .. 70

Left Block Paragraphs - . lp .. 71

Indented Paragraphs - . i P and . n p .. 71

Paragraph Reference .. 73

4.3. Headers and Footers - . he and . fo .. 74

Headers and Footers Reference .. 74

Double Spacing - . 1 s 2 ... 75

Page Layout ... 75

Underlining- . ul .. 77

Displays .. 77

Major Quotes - . (q and .) q .. 77

Lists - . (1 and .) 1 .. 77

Keeps - . (b and .) b, . (z and .) z .. 78

4.4. Fancy Displays .. 78

Display Reference .. 80

Annotations .. 81

Footnotes - . (f and .) f ... 82

Delayed Text ... 82

Indexes- . (x .) x and . xp .. 82

Annotations Reference ... 83

4.5. Fancy Features .. 84

Section Headings - . shand . uh .. 84

Section Heading Reference ... 85

Parts of tile StaIldard Paper ... 86

Standard Pa{)er Reference ... 88

Two-Column Output - . 2 c ... 90

Column Output Reference .. 90

Defining Macros - . de .. 90

Annotations Inside Keeps .. 90

4.6. Using troff for Phototypesetting ... 91

Fonts ... 91

Point Sizes - . s z .. 93

Fonts and Sizes Reference ... 93

Quotes - \ * (lq and \ * (rq .. 94

4.7. Adjusting Macro Parameters ... 94

4.8. roff SUPIX>rt .. 96

4.9. Preprocessor Sup{X>rt ... 96

4.10. Predefined Strings ... 97

4.11. Miscellaneous Requests .. 97

4.12. Special Characters and Diacritical Marks - . sc 98

4.13. -me Request Summary ... 98

4
• :0 •••••• ~ .:~. • ~.:! •• :;

Formatting Docutnents with the -me

Macros

This chapter describes the -me macro package.1 The first part of each section
presents the material in user's guide format and the second part lists the macro
requests for quick reference. The chapter contents include descriptions of the
basic requests, displays, annotations, such as footnotes, and how to use -me with
nroff and troff.

We assume that you are somewhat familiar with nroff and traff and that
you know something about breaks, fonts, point sizes, the use and definition of
number registers and strings, and scaling factors for ens, points, vertical line
spaces, etc. If you are a newcomer, try out the basic features as you read along.

All request names in -me follow a naming convention. You may define number
registers, strings, and macros, provided that you use single-character, upper case
names or double-character names consisting of letters and digits with at least one
upper case letter. Do not use special characters in the names you define. The
word argument in this chapter means a word or number which appears on the
same line as a request and which modifies the meaning of that request. Default
parameter values are given in brackets. For example, the request

(.sp

spaces one line, and

(.sp 4

spaces four lines. The number '4' is an argument to the . sp request; it modifies
. s p to produce four lines instead of one. Spaces separate arguments from the
request and from each other.

1 The material in this chapter is derived from Writing Papers with nro f f Using -me, E. P. Allman, and -
me Reference Manual, E. P. Allman, University of California, Berkeley.

J

J

69 Revision A, of 9 May 1988

70 Formatting Documents

4.1. Using -me

4.2. Basic -me Requests

Paragraphs

Standard Paragraph - . pp

When you have your raw text ready, run the nraff fonnatter with the -me
option to send the output to the standard output, your workstation screen. Type:

hostname% nro££ -me -Ttypefiles
hostname%

where type describes the type of tenninal you are outputting to. Common values
are dtc for a DTC 300s (daisy-wheel type) printer and Ipr for the line printer.
If you omit the -T flag, a 'lowest common denominator' tenninal is assumed;
this is good for previewing output on most terminals.

For easier viewing, pipe the output to more or redirect it to another file.

For formatting on the phototypesetter with traff (or your installation's
equivalent), use:

[

hostname% tro££ -me file
hostname%

The following sections provide descriptions and examples of the basic -me
requests.

The -me package has requests for formatting standard, left block, and indented
paragraphs.

Begin standard paragraphs by using the . pp request. For example, the input:

.pp
Now is the time for all good men
to come to the aid of their party.
Four score and seven years ago, ...

produces

Now is the time for all good men to come to the aid of their party. Four
score and seven years ago, ...

that is, a blank line followed by an indented first line.

Do not begin the sentences of a paragraph with a space, since blank lines and
lines beginning with spaces cause a break. For example, if you type:

.pp
Now is the time for all good men

to come to the aid of their party.
Four score and seven years ago, ...

The output is:

]

Revision A, of 9 May 1988

Left Block Paragraphs - . 1 P

Indented Paragraphs - . i P
and . np

Chapter 4 - Formatting Documents with the -me Macros 71

Now is the time for all good men
to come to the aid of their party. Four score and seven years ago, ...

A new line begins after the word 'men' because the second line begins with a
space character.

Because the first call to one of the paragraph macros defined in a section or the
• H macro initializes the macro processor, do not use any of the following
requests: . sc, .10, . th, or . ac (see the section called "Section Headings").
Also, avoid changing parameters, notably page length and header and footer mar
gins, which have a global effect on the format of the page.

A formatted paragraph can start with a blank line and with the first line indented.
You can get left-justified block-style paragraphs as shown throughout this
manual by using .1p (left paragraph) instead of . pp.

Sometimes you want to use paragraphs that have the body indented, and the first
line exdented, that is, the opposite of indented, with a labe1. Use the . ip request
for this. A word specified on the same line as . i P is printed in the margin, and
the body is lined up at a specified position. For example, the input:

.ip one
This is the first paragraph.
Notice how the first line
of the resulting paragraph lines up
with the other lines in the paragraph .
. ip two
And here we are at the second paragraph already.
You may notice that the argument to .ip
appears in the margin .
. lp
We can continue text ...

produces as output:

one This is the first paragraph. Notice how the first line of the resulting para
graph lines up with the other lines in the paragraph.

two And here we are at the second paragraph already. You may notice that
the argument to . i P appears in the margin.

We can continue text without starting a new indented paragraph by using the
. 1 P request.

If you have spaces in the label of an . i P request, use an unpaddable space
instead of a regular space. This is typed as a backslash character (\) followed by
a space. For example, to print the label 'Part 1', type:

(~_.l_·P __ ,_,p_a_r_t_\ __ l_" __ ~J
If a label of an indented paragraph, that is, the argument to . i p, is longer than
the space allocated for the label, . ip begins a new line after the label. For

Revision A, of 9 May 1988

72 Formatting Documents

example, the input:

.ip longlabel
This paragraph has a long label.
The first character of text on the first line will not
line up with the text on second and subsequent lines,
although they will line up with each other.

produces:

longlabel
This paragraph has a long label. The first character of text on the first line
will not line up with the text on second and subsequent lines, although
they will line up with each other.

You can change the size of the label by using a second argument which is the
size of the label. For example, you can produce the above example correctly by
saying:

(.ip longlabel 10

which will make the paragraph indent 10 spaces for this paragraph only. For
example:

longlabel
This paragraph has a long label. The first character of text on the
first line will not line up with the text on second and subsequent
lines, although they will line up with each other.

If you have many paragraphs to indent all the same amount, use the number
register i i. For example, to leave one inch of space for the label, type:

]

(,,---.nr _ii li ___________ J
somewhere before the first call to . i p.

If you use . ip without an argument, no hanging tag is printed. For example, the
input:

. ip [a]
This is the first paragraph of the example.
We have seen this sort of example before .
. ip
This paragraph is lined up with the previous paragraph,
but it does not have a tag in the margin.

produces as output:

Revision A, of 9 May 1988

Paragraph Reference

Chapter 4 - Formatting Documents with the -me Macros 73

[a] This is the first paragraph of the example. We have seen this sort of
example before.

This paragraph is lined up with the previous paragraph, but it does not
have a tag in the margin.

A special case of . ip is . np, which automatically numbers paragraphs sequen
tially from 1. The numbering is reset at the next. pp, .lp, or . H request. For
example, the input:

.np
This is the first point .
. np
This is the second point.
Points are just regular paragraphs
which are given sequence numbers automatically
by the .np request .
. lp
This paragraph will reset numbering by .np .
. np
For example,
we have reverted to numbering from one now.

generates:

(I) This is the first point.

(2) This is the second point. Points are just regular paragraphs which are
given sequence numbers automatically by the . np request.

This paragraph will reset numbering by . np.

(1) For example, we have reverted to numbering from one now.

.lp Begin left-justified paragraph. Centering and underlining are turned
off if they were on, the font is set to \n (pf [1], the type size is set·
to \n (pp [lOp], and a \ (nps space is inserted before the paragraph
(O.35v in troff, Iv or O.5v in nroff depending on device resolu
tion). The indent is reset to \n ($1 [0] plus \n (po [0] unless the
paragraph is inside a display (see . ba in "Miscellaneous Requests'').
At least the first two lines of the paragraph are kept together on a
page .

. pp Like .lp, except that it puts \n (pi [5n] units of indent This is the
standard paragraph macro .

. i P T I Indented paragraph with hanging tag. The body of the following
paragraph is indented I spaces (or \ n (ii [5n] spaces if I is not
specified) more than a non-indented paragraph is (such as with . Ip).
The title Tis exdented. The result is a paragraph with an even left
edge and T printed in the margin. Any spaces in T must be unpadd
able. If T will not fit in the space provided, . ip starts a new line.

~) sun Revision A. of 9 May 1988
.... microsystems

74 Fonnatting Documents

4.3. Headers and Footers
- .heand .fo

Headers and Footers
Reference

· np An . ip variant that numbers paragraphs. Numbering is reset after
-an .lp, . pp, or . H. The current paragraph number is in \n$p.

You can put arbitrary headers and footers at the top and bottom of every page.
Two requests of the fonn . he title and . f 0 title' define the titles to put at the
head and the foot of every page, respectively. The titles are called three-part
titles, that is, there is a left-justified part, a centered part, and a right-justified
part. The first character of title (whatever it may be) is used as a delimiter to
separate these three parts. You can use any character but avoid the backslash and
double quote marks. The percent sign is replaced by the current page number
whenever it is found in the title. For example, the input:

(• he " %"
. fo ' Jane Jones" My Book'

results in the page number centered at the top of each page, 'Jane Jones' in the
lower left comer, and 'My Book' in the lower right corner.

If there are two blanks adjacent anywhere in the title or more than eight blanks
total, you must enclose three-part titles in single quotes.

Headers and footers are set in font \ n (t f [3] and size \ n (t p [lOp]. Each of
the definitions applies as of the next page.

]

Three number registers control the spacing of headers and footers. \n (hm [4v]
is the distance from the top of the page to the top of the header, \ n (fm [3v] is
the distance from the bottom of the page to the bottom of the footer, \ n (tm [7v]
is the distance from the top of the page to the top of the text, and \n (bm [6v] is
the distance from the bottom of the page to the bottom of the text (nominal).
You can also specify the space between the top of the page and the header, the
header and the first line of text, the bottom of the text and the footer, and the
footer and the bottom of the page with the macros . ml, . m2, . m3, and . m 4.

· he 'I'm'r' Define three-part header, to be printed on the top of every page.

· f 0 'I'm'r' Define footer, to be printed at the bottom of every page.

· eh 'I'm'r' Define header, to be printed at the top of every even-numbered
page .

. oh 'I'm'r' Define header, to be printed at the top of every odd-numbered
page.

· e f 'I'm'r' Define footer, to be printed at the bottom of every even-numbered
page.

· of 'I'm'r' Define footer, to be printed at the bottom of every odd-numbered
page.

. hx Suppress headers and footers on the next page .

. ml +N Set the space between the top of the page and the header [4v] .

Revision A, of 9 May 1988

Double Spacing - . 1 s 2

Page Layout

• m2 +N

• m3 +N

. m4 +N

.ep

.$h

. $f

.$H

Chapter 4 - Formatting Documents with the -me Macros 75

Set the space between the header and the first line of text [2v] .

Set the space between the bottom of the text and the footer [2v] .

Set the space between the footer and the bottom of the page [4v] .

End this page, but do not begin the next page. Useful for forcing
out footnotes. Must be followed by a . bp or the end of input.

Called at every page to print the header. May be redefined to pro
vide fancy headers, such as, multi-line, but doing so loses the
function of the . he, . fo, . eh, .oh, . ef, and . of requests, as
well as the chapter-style title feature of . +c.

Print footer, same comments apply as in . $ h .

A normally undefined macro which is called at the top of each
page after processing the header, initial saved floating keeps, etc.;
in other words, this macro is called immediately before printing
text on a page. Used for column headings and the like.

nrof f will double space output text automatically if you use the request

. 1 s 2, as is done in this section. You can revert to single-space mode by typ-

ing .ls 1.

You can change the way the printed copy looks, sometimes called the layout of
the output page with the following requests. Most of these requests adjust the
placing of 'white space' (blank lines or spaces). In these explanations, replace
characters in italics with values you wish to use; bold characters represent char
acters which you should actually type.

Use. bp (break page) to start a new page.

The request. sp N leaves N lines of blank space. You can omit N to skip a sin
gle line or you can use the form N i (for N inches) or N c (for N centimeters).
For example, the input:

.sp 1.5i
My thoughts on the subject
.sp

leaves one and a half inches of space, followed by the line 'My thoughts on the
subject', followed by a single blank line.

The . in +N (indent) request changes the amount of white space on the left of
the page. The argument N can be of the form + N (meaning leave N spaces more
than you are already leaving), - N' (meaning leave N spaces less than you do
now), or just N (meaning leave exactly N spaces). N can be of the form N i or
N c also. For example, the input:

Revision A, of 9 May 1988

76 Formatting Documents

initial text
.in 5
some text
.in +li
mLJre text
.in -2c

final text

produces 'some text' indented exactly five spaces from the left margin, 'more
text' indented five spaces plus one inch from the left margin (fifteen spaces on a
pica typewriter), and 'final text' indented five spaces plus one inch minus two
centimeters from the margin. That is, the output is:

initial text
some text

more text
final text

The . t i +N (temporary indent) request is used like . in +N when the indent
should apply to one line only, after which it should revert to the previous indent.
For example, the input:

.in Ii

.ti 0
Ware, James R. The Best of Confucius,
Halcyon House, 1950.
An excellent book containing translations of
most of Confucius' most delightful sayings.
A definite must for anyone interested in the
early foundations of Chinese philosophy.

produces:

Ware, James R. The Best of Confucius, Halcyon House, 1950. An excellent book containing translations of most of
Confucius' most delightful sayings. A definite must for anyone interested in the early foundations of
Chinese philosophy.

You can center text lines with the . ce (center) request. The line after the . ce is
centered horizontally on the page. To center more than one line, use . ce N,
where N is the number of lines to center, followed by the N lines. If you want to
center many lines but don't want to count them, type:

[oce 1000
~ines to center
.ce 0

The . ce 0 request tells nroff to center zero more lines, in other words, to
stop centering.

1

Revision A, of 9 May 1988

Underlining - . ul

Displays

Major Quotes - . (q and .) q

Lists - . (1 and .) 1

Chapter 4 - Formatting Documents with the -me Macros 77

All of these requests cause a break; that is, they always start a new line. If you
want to start a new line without performing any other action, use . br (break).

Use the . ul (underline) request to underline text. The . ul request operates on
the next input line when it is processed. You can underline multiple lines by
stating a count of input lines to underline, followed by those lines, the same as
with the . ce request. For example, the input:

.ul 2
The quick brown fox
jumped over the lazy dog.

underlines those words in nroff. In troff they are italicized.

Use displays to set off sections of text from the body of the paper. Major quotes,
tables, and figures are types of displays, as are all the examples used in this
manual. All displays except centered text blocks are single-spaced.

Major quotes are quotes which are several lines long, and hence are set in from
the rest of the text without quote marks around them. Use . (q and .) q to sur
round the quote. For example, the input:

As Weizenbaum points out:
• (q
It is said that to explain is to explain away.
This maxim is nowhere so well fulfilled
as in the areas of computer programming, ...
.) q

generates as output:

As Weizenbaum points out:

It is said that to explain is to explain away. This maxim is nowhere
so well fulfilled as in the areas of computer programming, ...

A list is an indented, single-spaced, unfilled display. You should use lists when
the material to be printed should not be filled and justified like normal text. This
is useful for columns of figures, for example. Surround the list text by the
requests . (1 and .) 1. For example, type:

Alternatives to avoid deadlock are:
· (I
Lock in a specified order
Detect deadlock and back out one process
Lock all resources needed before proceeding
·) I

to produce:

Revision A, of9 May 1988

78 Formatting Documents

Keeps - . (b and .) b, . (z

and .) z

4.4. Fancy Displays

Alternatives to avoid deadlock are:
Lock in a specified order
Detect deadlock and back out one process
Lock all resources needed before proceeding

A keep is a group of lines that are kept together on a single page. If less vertical
space exists on the current page than can accommodate text within a keep, the
fonnatter begins a new page and keeps those lines together. Keeps are useful for
printing diagrams because you don't want them spread across two pages. For
comparison, lists may be broken over a page boundary, whereas keeps may not.

Blocks are the basic kind of keep. They begin with the request. (b and end with
the request .) b. If there is not enough room on the current page for everything
in the block, the fonnatter begins a new page. This has the unaesthetic effect of
leaving blank space at the bottom of the page. When this is not appropriate, you
can use the alternative called a floating keep.

Floating keeps move relative to the text. Hence, they are good for things which
will be referred to by name, such as 'See figure 3'. A floating keep will appear at
the bottom of the current page if it will fit; otherwise, it will appear at the top of
the next page. Floating keeps begin with the line . (z and end with the line
.) z. An example of a floating keep is:

• (z
.hl
Text of keep to be floated .
. sp
.ce
Figure 1. Example of a Floating Keep .
. hl
·) z

The . hI request draws a horizontal line so the figure stands out from the text.

Keeps and lists are nonnally collected in nofill mode, so they are good for tables
and displays. If you want a display in fill mode (for text), type . (1 F.
Throughout this section, comments applied to . (1 also apply to . (b and . (z.

This kind of display produced by . (1 is indented from both margins. For exam
ple, the input:

· (1 F
And now boys and girls,
a newer, bigger, better toy than ever before!
Be the first on your block to have your own computer!
Yes kids, you too can have one of these modern
data processing devices.
You too can produce beautifully formatted papers
without even batting an eye!
·) 1

Revision A, of9 May 1988

Chapter 4 - Formatting Documents with the -me Macros 79

will be fonnatted as:

And now boys and girls, a newer, bigger, better toy than ever before!
Be the first on your block to have your own computer! Yes kids,
you too can have one of these modem data processing devices. You
too can produce beautifully formatted papers without even batting an
eye!

Lists and blocks are also normally indented, while floating keeps are normally
left-justified. To get a left-justified list, type . (1 L. To center a list line-for
line, type . (1 c. For example, to get a filled, left-justified list, use:

[• (1 L F
text of block
.) 1

The input:

. (1

first line of unfilled display
more lines
.) 1

produces the indented text:

first line of unfilled display
more lines

Typing the character L after the . (1 request produces the left-justified result:

first line of unfilled display
more lines

Using C instead of L produces the line-at-a-time centered output:

first line of unfilled display
more lines

1

Sometimes you may want to center several lines as a group, rather than centering
them one line at a time. To do this use centered blocks, which are surrounded by
the requests . (c and .) c. All the lines are centered as a unit, such that the
longest line is centered, and the rest are lined up around that line. Notice that
lines do not move relative to each other using centered blocks, whereas they do
using the C keep argument.

Centered blocks are not keeps, and you may use them in conjunction with keeps.
For example, to center a group of lines as a unit and keep them on one page, use:

Revision A. of9 May 1988

80 Formatting Documents

Display Reference

. (b L
• (c

first line of unfilled display
more lines
.) c
.) b

to produce:

first line of unfilled display
more lines

the result would have been the same, but with no guarantee that the lines of the
centered block would have all been on one page. Note the use of the L argument
to . (b; this centers the centered block within the entire line rather than within
the line minus the indent. Also, you must nest the center requests inside the keep
requests.

All displays except centered blocks and block quotes are preceded and followed
by an extra \n (bs (same as \n (ps) space. Quote spacing is stored in a
separate register; centered blocks have no default initial or trailing space. The
vertical spacing of all displays except quotes and centered blocks is stored in
register \n ($R instead of \n ($r.

· (1 m / Begin list Lists are single-spaced, unfilled text If/ is F, the list will
be filled. If m [I] is I the list is indented by \n (bi [4n]; if it is M,
the list is indented to the left margin; if it is L, the list is left-justified
with respect to the text (different from M only if the base indent
(stored in \n ($i and set with .ba) is not zero); and if it is C, the
list is centered on a line-by-line basis. The list is set in font \n (df
[0]. You must use a matching .) 1 to end the list. This macro is
almost like. DS except that no attempt is made to keep the display
on one page.

·) 1 End list.

· (q Begin major quote. The lines are single-spaced, filled, moved in
from the main body of text on both sides by \n (qi [4n], preceded
and followed by \n (qs (same as \n (bs) space, and are set in point
size \ n (qp, that is, one point smaller than the surrounding text.

·) q End major quote.

· (b m/ Begin block. Blocks are a form of keep, where the text of a keep is
kept together on one page if possible. Keeps are useful for tables
and figures which should not be broken over a page. If the block
will not fit on the current page a new page is begun, unless that
would leave more than \n (bt [0] white space at the bottom of the
text. If \ n (bt is zero, the threshold feature is turned off. Blocks
are not filled unless/is F, when they are filled. The block will be
left-justified if m is L, indented by \n (bi [4n] if m is I or absent,

sun Revision A, of 9 May 1988
microsystems

Annotations

Chapter 4 - Formatting Documents with the -me Macros 81

centered (line-for-line) if m is C, and left justified to the margin, not
to the base indent, if m is M. The block is set in font \n (df [0].

·) b End block.

• (z mf Begin floating keep. Like. (b except that the keep isfloated to the
bottom·ofthe page or the top of the next page. Therefore, its posi
tion relative to the text changes. The floating keep is preceded and
followed by \ n (z s [Iv] space. Also, it defaults to mode M.

·) z End floating keep.

· (c Begin centered block. The next keep is centered as a block, rather
than on a line-by-line basis as with. (b C. This call may be nested
inside keeps.

·) c End centered block.

There are a number of requests to save text for later printing. Footnotes are
printed at the bottom of the current page. Delayed text is intended to be a variant
form of footnote; the text is printed only when explicitly called for, such as at the
end of each chapter. Indexes are a type of delayed text having a tag, usually the
page number, attached to each entry after a row of dots. Indexes are also saved
until explicitly called for.

Revision A, of9 May 1988

82 Formatting Documents

Footnotes - . (f and .) f

Delayed Text

Indexes - . (x .) x and . xp

Footnotes begin with the request . (f and end with the request .) f. The current
footnote number is maintained automatically, and can be used by typing \ **, to
produce a footnote number.2 The number is automatically incremented after
every footnote. For example, the input:

• (q

A man who is not upright
and at the same time is presumptuous;
one who is not diligent and at the same time is ignorant;
one who is untruthful and at the same time is incompetent;
such men I do not count among acquaintances.**
. (f

**James R. Ware,
.ul
The Best of Confucius,
Halcyon House, 1950.
Page 77 .
.) f
.) q

generates the result:

A man who is not upright and at the same time is presumptuous; one
who is not diligent and at the same time is ignorant; one who is
untruthful and at the same time is incompetent; such men I do not
count among acquaintances.3

Make sure that the footnote appears inside the quote, so that the footnote will
appear on the same page as the quote.

Delayed text is very similar to a footnote except that it is printed when explicitly
called for. Use this feature to put a list of references at the end of each chapter,
as is the convention in some disciplines. Use \ *# on delayed text instead of
\ * * as on footnotes.

If you are using delayed text as your standard reference mechanism, you can still
use footnotes, except that you may want to refer to them with special characters*
rather than numbers.

An index resembles delayed text, in that it is saved until called for. It is actually
more like a table of contents, since the entries are not sorted alphabetically.
However, each entry has the page number or some other tag appended to the last
line of the index entry after a row of dots.

Index entries begin with the request . (x and end with .) x. An argument to the
.) x indicates the value to print as the 'page number.' It defaults to the current
page number. If the page number given is an underscore L), no page number or

2 Like this.

3 James R. Ware, The Best o/Conjucius, Halcyon House, 1950. Page 77.

* Such as an asterisk.

Revision A, of 9 May 1988

Chapter 4 - Formatting Documents with the -me Macros 83

line of dots is printed at all. To get the line of dots without a page number, type
·) x "", which specifies an explicitly null page number.

The . xp request prints the index.

For example, the input:

• (x

Sealing wax
.) x 9
• (x

Cabbages and kings
.xp

generates:

Sealing wax 9

Cabbages and kings

< etc. >

Annotations Reference

The . (x request may have a single-character argument, specifying the name of
the index; the normal index is x. Thus, you can maintain several indices simul
taneously, such as a list of tables and a table of contents.

Notice that the index must be printed at the end of the paper, rather than at the
beginning where it will probably appear (as a table of contents); you may have to
rearrange the pages after printing.

· (d Begin delayed text. Everything in the next keep is saved for output
later with . pd in a manner similar to footnotes.

·) d n End delayed text. The delayed text number register \ n ($ d and the
associated string \ * # are incremented if \ * =#= has been referenced.

· pd Print delayed text. Everything diverted via . (d is printed and trun
cated. You might use this at the end of each chapter.

· (f Begin footnote. The text of the footnote is floated to the bottom of
the page and set in font \ n (f f [1] and size \ n (fp [8p]. Each entry
is preceded by \ n (f s [O.2v] space, is indented \ n (f i [3n] on the
first line, and is indented \ n (f u [0] from the right margin. Foot
notes line up underneath two-column output. If the text of the foot
note will not all fit on one page, it will be carried over to the next
page.

·) f n End footnote. The number register \ n ($ f and the associated string
\ * * are incremented if they have been referenced.

· $ s The macro to generate the footnote separator. You may redefine this
macro to give other size lines or other types of separators. It
currently draws a I.S-inch line.

~~ sun Revision A, of 9 May 1988
~ mlcrosystems

84 Fonnatting Documents

4.5. Fancy Features

Section Headings - . shand
.uh

· (x X Begin index entry. Index entries are saved in the index x until called
up with. xp. Each entry is preceded by a \n (xs [O.2v] space.
Each entry is 'undented' by \ n (xu [O.5i]; this register tells how far
the page number extends into the right margin.

•) x P A End index entry. The index entry is finished with a row of dots with
A [null] right justified on the last line, such as for an author's name,
followed by P [\n%]. If A is specified, P must be specified; \n%
can be used to print the current page number. If P is an underscore,
no page number and no row of dots are printed.

· xp x Print index x [x]. The index is fonnatted in the font, size, and so
forth in effect at the time it is printed, rather than at the time it is col
lected.

A large number of fancier requests exist, notably requests to provide other sorts
of paragraphs, numbered sections of the fonn '1.2.3', such as those used in this
manual, and multicolumn output.

You can automatically generate section numbers, using the . sh request. You
must tell . s h the depth of the section number and a section title. The depth
specifies how many numbers separated by decimal points are to appear in the
section number. For example, the section number '4.2.5' has a depth of three.

Section numbers are incremented if you add a number. Hence, you increase the
depth, and the new number starts out at one. If you subtract section numbers, or
keep the same number, the final number is incremented. For example, the input:

.sh 1 "The Preprocessor"

.sh 2 "Basic Concepts"

.sh 2 "Control Inputs"

.sh 3

.sh 3

.sh 1 "Code Generation"

.sh 3

produces as output the result:

1. The Preprocessor
1.1. Basic Concepts
1.2. Control Inputs
1.2.1.
1.2.2.
2. Code Generation
2.1.1.

You can specify the beginning section number by placing the section number
after the section title, using spaces instead of dots. For example, the request:

(.sh 3 "Another section" 7 3 4 J

~~sun ~ microsystems
Revision A, of 9 May 1988

Section Heading Reference

Chapter 4 - Formatting Documents with the -me Macros 85

will begin the section numbered '7.3.4'; all subsequent. sh requests will be
numbered relative to this number.

There are more complex features which indent each section proportionally to the
depth of the section. For example, if you type:

[__ onr _Si NX _________ J

each section will be indented by an amount N. N must have a scaling factor
attached, that is, it must be of the fonn Nx, where x is a character telling what
units N is in. Common values for x are 'i' for inches, 'c' for centimeters, and 'n'
for 'ens,' the width of a single character. For example, to indent each section
one-half inch, type:

(_._n_r __ S_i __ O_.5_i __ ~J
The request indents sections by one-half inch per level of depth in the section
number. As another example, consider:

(onr si 3n

which gives three spaces of indent per section depth.

You can produce section headers without automatically generated numbers
using:

(0 uh "Title"

which will do a section heading, but will not put a number on the section .

. sh +NTabcdef
Begin numbered section of depth N. If N is missing, the current
depth (maintained in the number register \ n ($ O) is used. The
values of the individual parts of the section number are maintained
in \ n ($1 through \ n ($ 6. There is a \ n (s s [Iv] space before the
section. Tis printed as a section title in font \n (sf [8] and size
\n (sp [lOp]. The 'name' of the section may be accessed via

J

J

\ * ($n. If \ n (si is non-zero, the base indent is set to \ n (si
times the section depth, and the section title is exdented (see . ba in
"Miscellaneous Requests"). Also, an additional indent of \ n (so [0]
is added to the section title but not to the body of the section. The
font is then set to the paragraph font, so that more infonnation may
occur on the line with the section number and title. A . s h insures
that there is enough room to print the section head plus the begin
ning of a paragraph, which is about 3 lines total. If you specify a
through/, the section number is set to that number rather than incre
mented automatically. If any of a throughfare a hyphen that
number is not reset. If T is a single underscore (_), the section depth

Revision A, of 9 May 1988

86 Formatting Documents

Parts of the Standard Paper

and numbering is reset, but the base indent is not reset and nothing is
printed. This is useful to automatically coordinate section numbers
with chapter numbers.

· sx +N Go to section depth 'N [-1]', but do not print the number and title,
and do not increment the section number at level N. This has the
effect of starting a new paragraph at level N .

· uh T Unnumbered section heading. The title T is printed with the same

· $p TB N

· $0 T B N

. $1- .$6

rules for spacing, font, etc., as for. she

Print section heading. May be redefined to get fancier headings. T
is the title passed on the . sh or . uh line; B is the section number
for this section, and N is the depth of this section. These parameters
are not always present; in particular, . sh passes all three, . uh
passes only the first, and . sx passes three, but the first two are null
strings. Be careful if you redefine this macro, as it is quite complex
and subtle.

Called automatically after every call to . $p. It is normally
undefined, but may be used to put every section title automatically
into the table of contents, or for some similar function. T is the sec
tion title for the section title just printed, B is the section number,
and N is the section depth .

Traps called just before printing that depth section. May be defined
to give variable spacing before sections. These macros are called
from . $p, so if you redefine that macro you may lose this feature.

Some requests help you to format papers. The . t p request initializes for a title
page. There are no headers or footers on a title page, and unlike other pages, you
can space down and leave blank space at the top. For example, source for a typi
cal title page might be:

.tp

.sp 2i

. (1 C

A BENCHMARK FOR THE NEW SYSTEM
.sp
by
.sp
J. P. Hacker
.) 1
.bp

The request. th sets up the environment of the nroff processor to do a thesis.
It defines the correct headers, footers, a page number in the upper right-hand
comer only, sets the margins correctly, and double spaces.

Revision A, of9 May 1988

Chapter 4 - Formatting Documents with the -me Macros 87

Use the . +c T request to start chapters. Each chapter is automatically numbered
from one, and a heading is printed at the top of each chapter with the chapter
number and the chapter name T. For example, to begin a chapter called Conclu
sions, use the request:

[~_.+_C __ '_'C_O_N_C_L_U_S_I_O_N_S_" ______________________________________ ~J
which produces on a new page, the lines

CONCLUSIONS

with appropriate spacing for a thesis. Also, the header is moved to the foot of the
page on the first page of a chapter. Although the . +c request was not designed
to work only with the . t h request, it is tuned for the format acceptable for a
standard PhD thesis.

If the title parameter T is omitted from the . +c request, the result is a chapter
with no heading. You can also use this at the beginning of a paper.

Although papers traditionally have the abstract, table of contents, and so forth at
the front, it is more convenient to format and print them last when using nroff.
This is so that index entries can be collected and then printed for the table of con
tents. At the end of the paper, give the . ++ P request, which begins the prelim
inary part of the paper. After using this request, the . +c request will begin a
preliminary section of the paper. Most notably, this prints the page number res
tarted from one in lower case Roman numbers. You may use . +c repeatedly to
begin different parts of the front material for example, the abstract, the table of
contents, acknowledgments, list of illustrations, and so on. You may also use the
request . ++ B to begin the bibliographic section at the end of the paper. For
example, the paper might appear as outlined below. (In this figure, comments
begin with the sequence \" .)

Revision A, of 9 May 1988

88 Formatting Documents

Figure 4-1 Outline of a Sample Paper

Standard Paper Reference

.th
· fa "DRAFT"
.tp

· (l C
A BENCHMARK FOR THE NEW SYSTEM
.sp
by
.sp
J.P. Hacker
.) 1
.+c INTRODUCTION

• (x t
Introduction
.)x

text of chapter one
.+c "NEXT CHAPTER"

• (x t
Next Chapter
.)x

text of chapter two
.+c CONCLUSIONS

• (x t
Conclusions
.)x

text of chapter three
.++ B
.+c BIBLIOGRAPHY

• (x t
Bibliography
.)x

text of bibliography
.++ P
.+c "TABLE OF CONTENTS"
.xp t
.+c PREFACE
text of preface

'" set for thesis mode
'" define footer for each page
'" begin title page
'" center a large block

'" end centered part
," begin chapter named 'INTRODUCTION'
," make an entry into index 't'

," end of index entry

'" begin another chapter
," enter into index 't' again

," begin bibliographic information
'" begin another 'chapter'

'" begin preliminary material

'" print index 't' collected above
\" begin another preliminary section

.tp Begin title page. Spacing at the top of the page can occur, and
headers and footers are suppressed. Also, the page number is not
incremented for this page .

. t h Set thesis mode. This defines the modes acceptable for a doctoral
dissertation. It double spaces, defines the header to be a single page
number, and changes the margins to be 1.5 inch on the left and one
inch on the top. Use. ++ and . +c with it. This macro must be
stated before initialization, that is, before the first call of a paragraph
macro or . H .

. ++ m H This request defines the section of the paper you are typing. The sec
tion type is defined by m: C means you are entering the chapterpor
tion of the paper, A means you are entering the appendix portion of
the paper, P means the material following should be the preliminary
portion (abstract, table of contents, etc.) of the paper, AB means that
you are entering the abstract (numbered independently from 1 in
Arabic numerals), and B means that you are entering the

• sun Revision A, of 9 May 1988
... microsysterns

.+eT

.$eT

. $CKNT

Chapter 4 - Formatting Documents with the -me Macros 89

bibliographic portion at the end of the paper. You can also use the
variants RC and RA, which specify renumbering of pages from one at
the beginning of each chapter or appendix, respectively. The H

parameter defines the new header. If there are any spaces in it, the
entire header must be quoted. If you want the header to have the
chapter number in it, use the string \ \ \ \n (ch . For example, to
number appendixes' A.I ' etc., type . ++ RA ",

\ \ \ \n (eh. % '. Precede each section (chapter, appendix, etc.) by
the . + e request. When using t r 0 f f, it is easier to put the front
material at the end of the paper, so that the table of contents can be
collected and generated; you can then physically move this material
to the beginning of the paper.

Begin chapter with title T. The chapter number is maintained in
\ n (eh. This register is incremented every time . +e is called with
a parameter. The title and chapter number are printed by . $ e. The
header is moved to the footer on the first page of each chapter. If T
is omitted, . $ e is not called; this is useful for doing your own 'title
page' at the beginning of papers without a title page proper. . $ e
calls . $ C as a hook so that chapter titles can be inserted into a table
of contents automatically. The footnote numbering is reset to one.

Print chapter number (from \n (eh) and T. You can redefine this
macro to your liking. It is defined by default to be acceptable for a
standard PhD thesis. This macro calls $C, which can be defined to
make index entries, or whatever .

This macro is called by . $e. It is normally undefined, but can be
used to automatically insert index entries, or whatever. K is a key
word, either 'Chapter' or' Appendix' (depending on the . ++ mode);
N is the chapter or appendix number, and T is the chapter or appen
dix title .

. ae A N This macro (short for. aem) sets up the nroff environment for
photo-ready papers as used by the Association for Computing
Machinery (ACM). This format is 25% larger, and has no headers or
footers. The author's name A is printed at the bottom of the page,
but off the part which will be printed in the conference proceedings,
together with the current page number and the total number of pages
N. Additionally, this macro loads the file /usrllib/me/acm.me, which
may later be augmented with other macros for printing papers for
ACM conferences. Note that this macro will not work correctly in
t ro f f, since it sets the page length wider than the physical width of
the phototypesetter roll.

~) sun Revision A. of9 May 1988
" microsystems

90 Formatting Documents

Two-Column Output - . 2 c

Column Output Reference

Defining Macros - . de

Annotations Inside Keeps

You can get two-column output automatically by using the request . 4 c. This
produces everything after it in two-column fonn. The request . be will start a
new column; it differs from . bp in that . bp may leave a totally blank column
when it starts a new page. To revert to single-column output, use . 1 c.

.2e+SN
Enter two-column mode. The column separation is set to +S [4n,
O.Si in ACM mode] (saved in \ n ($ s). The column width, calcu
lated to fill the single-column line length with both columns, is
stored in \ n ($1. The current column is in \ n ($ c. You can test
register \n ($m [1] to see if you are in single-column or double
column mode. Actually, the request enters N-column [2] output.

. 1 e Revert to single-column mode .

. b c Begin column. This is like . bp except that it begins a new column
on a new page only if necessary, rather than forcing a whole new
page if there is another column left on the current page.

A macro is a collection of requests and text which you may invoke with a simple
request. Macros definitions begin with the line . de xx where xx is the name of
the macro to be defined, and end with a line consisting of only two dots. After
defining the macro, invoking it with the line . xx is the same as invoking all the
other macros. For example, to define a macro that spaces vertically three lines
and then centers the next input line, type:

.de SS

.sp 3

.ce

and use it by typing:

.ss
Title Line
(beginning of text)

Macro names may be one or two characters. In order to avoid conflicts with
command names in -me, always use upper case letters as names. Avoid the
names TS, TH, TE, EQ, and EN.

Sometimes you may want to put a footnote or index entry inside a keep. For
example, if you want to maintain a 'list of figures', you will want to use some
thing like:

Revision A, of 9 May 1988

4.6. Using troff for
Phototypesetting

Fonts

• (z

• (c
Text of figure
.) c
.ce
Figure 5.
\ ! . (x f

\!Figure 5
\ ! .) x

·) z

Chapter 4 - Formatting Documents with the -me Macros 91

which will give you a figure with a label and an entry in the index 'f', presum
ably a list of figures index. Because the index entry is read and interpreted when
the keep is read, and not when it is printed, you have is to use the magic string
\! at the beginning of all the lines dealing with the index. Otherwise, the page
number in the index is likely to be wrong. This defers index processing until the
figure is generated, and guarantees that the page number in the index is correct.
The same comments apply to blocks with. (b and .) b.

You can prepare documents for either displaying on a workstation or for photo
typesetting using the troff fonnatting program.

A/ont is a style of type. There are three fonts that are available simultaneously,
Times Roman, Times Italic, and Times Bold, plus the special math font for use
with the eqn and neqn mathematical equation processors. The notmal font is
Roman. Text which would be underlined in nroff with the . ul request is set
in italics in trof f.

There are ways of switching between fonts. The requests . r, . i, and . b switch
to Roman, italic, and bold fonts respectively. You can set a single word in one of
these fonts by typing, for example:

(____ oi w_ord _______]

which will set word in italics but does not affect the surrounding text. In nroff,
italic and bold text is underlined.

Notice that if you are setting more than one word in a different font, you must
surround that word with double quote marks (n) so it will appear to the nroff
processor as a single word. The quote marks will not appear in the fotmatted
text. If you do want a quote mark to appear, quote the entire string even if a sin
gle word, and use two quote marks where you want one to appear. For example,
if you want to produce the text:

"Master Control"

in italics, you must type:

(~_.l_'_'_"_"_'M_a_s_t_e_r __ c_o_n_t_r_O_l__I_"_"_" ________________________________ -JJ

Revision A, of9 May 1988

92 Formatting Documents

The \ I produces a narrow space so that the '1' does not overlap the quote sign in
troff.

There are also several pseudo-fonts available. For example, the input:

(.u underlined

generates

underlined

and

(.bX "words in a box"

produces

I words in a box I
You can also get bold italics with

(.bi "bold italics"

]

]

]
Notice that pseudo font requests set only the single parameter in the pseudo font;
ordinary font requests will begin setting all text in the special font if you do not
provide a parameter. No more than one word should appear with these three font
requests in the middle of lines. This is because of the way troff justifies text.
For example, if you were to give the requests:

(.bi "some bold italics"

and

(.bx "words in a box"

in the middle of a line, troff would overwrite the first and the box lines on the
second would be poorly drawn.

J

]

The second parameter of all font requests is set in the original font. For example,
the font request:

(~._b __ b_O_l_d __ f_ac_e __ ~J
generates 'bold' in bold font, but sets 'face' in the font of the surrounding text,
resulting in:

boldface

To set the two words 'bold' and 'face' both in bold face, type:

Revision A, of 9 May 1988

Point Sizes - . s z

Fonts and Sizes Reference

Chapter 4 - Formatting Documents with the -me Macros 93

(~_.b __ '_'b_O_l_d __ f_a_c_e_" __ ~]
You can mix fonts in a word by using the special sequence \ c at the end of a
line to indicate 'continue text processing'; you can join input lines together
without a space between them. For example, the input:

(.~ ~nde~ \c
· .1. 1.tal1.cs

generates undeitalics ,but if you type:

[.u under
~i italics

the result is under italics as two words.

The phototypesetter supports different sizes of type, measured in points. The
default point size is lO points for most text and eight points for footnotes. To
change the point size, type:

]

]

(.SZ +N]

where N is the size wanted in points. The 'vertical spacing,' that is, the distance
between the bottom of most letters (the baseline) and the adjacent line is set to be
proportional to the type size.

Note: Changing point sizes on the phototypesetter is a slow mechanical opera
tion. Consider size changes carefully.

· sz +P The point size is set to P [lOp], and the line spacing is set proportion
ally. The ratio of line spacing to point size is stored in \n($r. The
ratio used internally by displays and annotations is stored in \n($R,
although . s z does not use this.

· r W X Set W in roman font, appending X in the previous font. To append
different font requests, use 'X = \ c. If no parameters, change to
roman font.

· i W X Set W in italics, appending X in the previous font. If no parameters,
change to italic font. Underlines in nroff.

· b W X Set W in bold font and append X in the previous font. If no parame-
ters, switch to bold font. Underlines in nroff.

· r b W X Set W in bold font and append X in the previous font. If no parame
ters, switch to bold font .. rb differs from. b in that. rb does not
underline in n r 0 f f .

· u W X Underline W and append X. This is a true underlining, as opposed to
the . ul request, which changes to 'underline font' (usually italics in

~~ sun Revision A, of 9 May 1988
... microsystems

94 Formatting Documents

Quotes- \ * (lq and \ * (rq

4.7. Adjusting Macro
Parameters

t ro f f). It won't work right if W is spread or broken, which
includes being hyphenated, so in other words, it is only safe in nofill
mode.

· q W X Quote Wand append X. In nroff this just surrounds W with double
quote marks (" "), but in t r 0 f f uses directed quotes.

· bi W X Set Win bold italics and append X. Actually, sets Win italic and
overstrikes once. Underlines in nrof f. It won't work right if W is
spread or broken, which includes being hyphenated, so it is only safe
in nofill mode.

· bx W X Sets W in a box, with X appended. Underlines in nrof f. It won't
work right if W is spread or broken, which includes being
hyphenated, so it is only safe in nofill mode.

It looks better to use pairs of grave and acute accents to generate double quotes,
rather than the double quote character (n) on a phototypesetter. For example,
compare "quote" to "quote". In order to make quotes compatible between the
typesetter and the workstation or a tenninal, use the sequences \ * (lq and
\ * (rq to stand for the left and right quote respectively. These both appear as "
on most terminals, but are typeset as " and " respectively. For example, use:

*(lqSome things aren't true
even if they did happen.*(rq

to generate the result:

"Some things aren't true even if they did happen."

As a shorthand, the special font request:

(~_.q __ ,_,qu __ o_t_e_d __ t_e_x_t_" ______________________________________ ~]
which generates "quoted text". Notice that you must surround the material to be
quoted with double quote marks if it is more than one word.

You may adjust a number of macro parameters. You may set fonts to a font
number only. In nroff font 8 is underlined, and is set in bold font in troff
(although font 3, bold in troff, is not underlined in nroff). Font 0 is no font
change; the font of the surrounding text is used instead. Notice that fonts 0 and 8
are pseudo-Jonts; that is, they are simulated by the macros. This means that
although it is legal to set a font register to zero or eight, it is not legal to use the
escape character fonn, such as:

[\f8 J
All distances are in basic units, so it is nearly always necessary to use a scaling
factor. For example, the request to set the paragraph indent to eight one-en
spaces is:

Revision A, of 9 May 1988

Chapter 4 - Formatting Documents with the -me Macros 95

(.nr pi 8n
J

and not

(.nr pi 8]
which would set the paragraph indent to eight basic units, or about 0.02 inch.

You may use registers and strings of the fonn $ x in expressions but you should
not change them. Macros of the fonn $ x perfonn some function as described
and may be redefined to change this function. This may be a sensitive operation;
look at the body of the original macro before changing it.

On daisy wheel printers in twelve-pitch, you can use the -rxl flag to make lines
default to one-eighth inch, which is the nonnal spacing for a newline in twelve
pitch. This is nonnally too small for easy readability, so the default is to space
one-sixth inch.

Revision A, of 9 May 1988

96 Formatting Documents

4.8. raff Support

4.9. Preprocessor Support

o ix +N Indent, no break. Equivalent to " in N'.

obI N Leave N contiguous white spaces, on the next page if not enough
room on this page. Equivalent to a 0 sp N inside a block.

opa +N Equivalent to obp.

oro Set page number in Roman numerals. Equivalent to 0 af % i.

oar Set page number in Arabic. Equivalent to 0 af % 1.

o n 1 Number lines in margin from one on each page.

o n 2 N Number lines from N, stop if N = O.

o s k Leave the next output page blank, except for headers and footers.
Use this to leave space for a full-page diagram which is produced
externally and pasted in later. To get a partial-page paste-in display,
say 0 s v N, where N is the amount of space to leave; this space will
be generated immediately if there is room, and will otherwise be
generated at the top of the next page. However, be warned: if N is
greater than the amount of available space on an empty page, no
space will be reserved.

o EQ m T Begin equation. The equation is centered if m is C or omitted,
indented \n (bi [4n] if m is I, and left-justified if m is L. T is a title
printed on the right margin next to the equation. See the ''Typeset
ting Mathematics with eqn" chapter in this manual for more about
equation fonnatting.

o EN c End equation. If cis C, the equation must be continued by immedi-
ately following with another 0 EQ, the text of which can be centered
along with this one. Otherwise, the equation is printed, always on
one page, with \n (es [O.5v in troff, Iv in nroff] space above
and below it.

o T S h Table start. Tables are single-spaced and kept on one page, if possi-
ble. If you have a large table that will not fit on one page, use h = H

and follow the header part to be printed on every page of the table
with a 0 TH. See the "Formatting Tables with tbl" chapter in this
manual for more infonnation on laying out tables.

o TH With 0 TS H, ends the header portion of the table.

o TE Table end. Note that this table does not float, in fact, it is not even
guaranteed to stay on one page if you use requests such as 0 s p inter
mixed with the text of the table. If you want it to float (or if you use
requests inside the table), surround the entire table (including the

o TS and 0 TE requests) with 0 (z and 0) z.

~) sun Revision A. of 9 May 1988
~ microsystems

4.10. Predefined Strings

4.11. Miscellaneous
Requests

**

*#

\ * [

*]

*<

*>

*(dw

*(mo

*(td

*(lq

*(rq

*-

Chapter 4 - Formatting Documents with the -me Macros 97

Footnote number, actually \ * [\ n ($ f \ *]. This macro is incre
mented after each call to .) f.

Delayed text number. Actually [\n ($d].

Superscript. This string gives upward movement and a change to a
smaller point size if possible, otherwise it gives the left bracket char
acter ([). Extra space is left above the line to allow room for the
superscript. For example, to produce a superscript you can type
x\ * [2 \ *] , which will produce x2.

Unsuperscript. Inverse of \ * [.

Subscript. Defaults to < if half-carriage motion not possible. Extra
space is left below the line to allow for the subscript.

Inverse of \ * <.

The day of the week, as a word.

The month, as a word.

Today's date, directly printable. The date is of the form September
16, 1983. Other fonns of the date can be used by using \n (dy (the
day of the month; for example, 16), \ * (rna (as noted above) or
\n (rna (the same, but as an ordinal number, for example, September
is 9), and \n (yr (the last two digits of the current year).

Left quote marks; double quote in nrof f.

Right quote marks; double quote in nr 0 f f.

An em-dash in troff; two hyphens in nroff.

· re Reset tabs. Set to every O.Si in troff and every 0.8i in nroff.

· ba +N Set the base indent to +N [0] (saved in \n ($ i). All paragraphs,
sections, and displays come out indented by this amount. Titles and
footnotes are unaffected. The . H request performs a . ba request if
\n (si [0] is not zero, and sets the base indent to \n (si *\n ($0.

· xl +N Set the line length to N [6.0i]. This differs from .11 because it only
affects the current environment.

.11 +N Set line length in all environments to N [6.0i]. Do not use this after
output has begun, and particularly not in two-column output. The
current line length is stored in \ n ($1.

· hI Draws a horizontal line the length of the page. This is useful inside
floating keeps to differentiate between the text and the figure .

. 10 This macro loads another set of macros in
/usr / lib/mel local. me, which is a set of locally-defined mac
ros. These macros should all be of the form . * X, where X is any
letter (upper or lower case) or digit.

~) sun Revision A, of 9 May 1988
~ microsystems

98 Fonnatting Documents

4.12. Special Characters
and Diacritical Marks
- .sc

There are a number of special characters and diacritical marks, such as accents,
available with -me. To use these characters, you must call the macro . S c to
define the characters before using them.

• S c Define special characters and diacritical marks. You must state this
macro before initialization.

The special characters available are listed below.

Table 4-1 Special Characters and Diacritical Marks

Name
Acute accent
Grave accent
Umlaut
Tilde
Caret
Cedilla
Czech
Circle

Usage
\ * '
*'
*:
*-
"'/e-f/
,/c,t/:.
*v/e*v/e
*0

Example

a\ *' 'a
e*' 'e
u\ *: "u
n\ *--n

A*o ~

4.13. -me Request Summary

Request

· (c

· (d

· (f

· (1

• (q
· (x x
• (z

·) c
·) d
·) f
·) 1
·) q
·) x
•) z
.++ mH

Table 4-2 -me Request Summary

Initial Value Cause Break
yes
no
no
yes
yes
no
no
yes
yes
yes
yes
yes
yes
yes
no

Explanation

Begin centered block.
Begin delayed text.
Begin footnote.
Begin list
Begin major quote.
Begin indexed item in index x.
Begin floating keep.
End centered block.
End delayed text
End footnote.
End list
End major quote.
End index item.
End floating keep.
Define paper section. m defines the part of the
paper and can be C (chapter), A (appendix), P

(preliminary, for example, abstract, table of con
tents, etc.), B (bibliography), RC (chapters
renumbered from page one each chapter), or RA

(appendix renumbered from page one).

Revision A. of 9 May 1988

Chapter 4 - Formatting Documents with the -me Macros 99

Table 4-2 -me Request Summary- Continued

Request Initial Value Cause Break Explanation
.+e T yes Begin chapter (or appendix, etc., as set by . ++).

T is the chapter title.
.le 1 yes One-column fonnat on a new page.
.2e 1 yes Two-column fonnat.
. EN yes Space after equation produced by eqn or neqn .
. EQ xy yes Precede equation; break out and add space .

Equation number is y. The optional argument x
may be I to indent equation (default), L to left-
adjust the equation, ore to center the equation.

. TE yes End table .

. TH yes End heading section of table .

. TS x yes Begin table; if x is H, table has repeated heading .

.ae AN no Set up for ACM-style output. A is the Author's
name(s), N is the total number of pages. Must
be given before the first initialization.

.b x no yes Print x in boldface; if no argument switch to
boldface.

.ba +n 0 yes Augments the base indent by n. This indent is
used to set the indent on regular text (like para-
graphs).

. be no yes Begin new column .

. bi x no no Print x in bold italics (nofill only) .

. bx x no no Print x in a box (nofill only) .

.ef 'x'y'z' " " no Set even footer to x y z.

.eh 'x'y'z' " " no Set even header to x y z.

. fo ' x' y' z' no Set footer to x y z .

. he ' x' y' z' no Set header to x y z .

. hl yes Draw a horizontal line .

. hx no Suppress headers and footers on next page .

. i x no no Italicize X; if x is missing, italic text follows .

. ip xy no yes Start indented paragraph, with hanging tag x .
Indentation is yens (default 5).

. lp yes yes Start left -block paragraph .

. 10 no Read in a file of local macros of the fonn . *x .
Must be given before initialization.

.np 1 yes Start numbered paragraph.

.of ' x'y' z' " " no Set odd footer to x y z.

.oh 'x'Y'z' "" no Set odd header to x y z.

.pd yes Print delayed text.

.pp no yes Begin paragraph. First line indented.

.r yes no Roman text follows.

.re no Reset tabs to default values.

.se no Read in a file of special characters and diacriti-
cal marks. Must be given before initialization.

Revision A, of 9 May 1988

loo Formatting Documents

Table 4-2 -me Request Summary- Continued

Request Initial Value
.sh nx

.sk no

.sz +n lOp

.th no

. tp no

.u x

. uh

.xp x

Cause Break
yes

no

no
no

yes
no

yes
no

Explanation
Section head follows, font automatically bold. n
is level of section, x is title of section.
Leave the next page blank. Only one page is
remembered ahead.
Increase the point size by n points.
Produce the paper in thesis fonnat. Must be
given before initialization.
Begin title page .
Underline argument (even in trott) (nofill
only).
Like '.sh' but unnumbered .
Print index x.

Revision A, of9 May 1988

5
re fer - A Bibliography System

re fer - A Bibliography System ... 103

5.1. Introduction ... 103

5.2. Features ... 103

5.3. Data Entry with addbib ... 105

5.4. Printing the Bibliography ... 106

5.5. Citing Papers with refer ... 107

5.6. refer Command Line Options ... 108

5.7. Making an Index .. 109

5.8. refer Bugs and Some Solutions ... 110

BlaIlks at Ends of Lines ... 110

Interpolated Strings .. 111

Interpreting Foreign Surnames .. 111

Footnote Numbers .. 111

5.9. Internal Details of refer .. 112

5.10. Changing the refer Macros .. 114

5.1. Introduction

5.2. Features

5
re fer - A Bibliography System

refer is a bibliography system that supports data entry, indexing, retrieval,
sorting, runoff, convenient citations, and footnote or endnote numbering. You
can enter new bibliographic data into the database, index the selected data, and
retrieve bibliographic references from the database. This document assumes you
know how to use a Unix editor, and that you are familiar with the nroff and
t r 0 f f text formatters.

The refer program is a preprocessor for nroff and troff, and works like
like eqn and tbl. refer is used for literature citations, rather than for equa
tions and tables. Given incomplete but sufficiently precise citations, refer
finds references in a bibliographic database. The complete references are fonnat
ted as footnotes, numbered, and placed either at the bottom of the page, or at the
end of a chapter.

A number of related programs make refer easier to use. The addbib pro
gram is for creating and extending the bibliographic database; sortbib sorts
the bibliography by author and date, or other selected criteria; and roffbib
runs off the entire database, fonnatting it not as footnotes, but as a bibliography
or annotated bibliography.

Once a full bibliography has been created, access time can be improved by male
ing an index to the references with indxbib. Then, the lookbib program can
be used to quickly retrieve individual citations or groups of citations. Creating
this inverted index will speed up refer, and lookbib will allow you to verify
that a citation is sufficiently precise to deliver just one reference.

Taken together, the refer programs constitute a database system for use with
variable-length information. To distinguish various types of bibliographic
material, the system uses labels composed of upper case letters, preceded by a
percent sign and followed by a space. For example, one document might be
given this entry:

%A Joel Kies
%T Document Formatting on Unix Using the -ms Macros
%1 Computing Services
%C Berkeley
%D 1980

103 Revision A, of 9 May 1988

104 Formatting Documents

Each line is called a field, and lines grouped together are called a record; records
are separated from each other by a blank line. Bibliographic infonnation follows
the labels. This field contains data to be used by the refer system. The order
of fields is not important, except that authors should be entered in the same order
as they are listed on the document. Fields can be as long as necessary, and may
even be continued on the following line(s).

The labels are meaningful to nroff and troff macros, and, with a few excep
tions, the refer program itself does not pay attention to the labels. This
implies that you can change the label codes, if you also change the macros used
by nroff and troff. The macro package takes care of details like proper ord
ering, underlining the book title or journal name, and quoting the article's title.
Here are the labels used by refer, with an indication of what they represent:

%H Header commentary, printed before reference
%A Author's name
%Q Corporate or foreign author (unreversed)
%T Title of article or book
%S Series title
%J Journal containing article
%B Book containing article
%R Report, paper, or thesis (for unpublished material)
%V Volume
%N Number within volume
%E Editor of book containing article
%P Page number(s)
%1 Issuer (publisher)
%C City where published
%D Date of publication
%0 Other commentary, printed at end of reference
%K Keywords used to locate reference
%L Label used by -k option of refer
%X Abstract (used by roffbib, not by refer)

Only relevant fields (lines) should be supplied. Except for %A, the author field,
each field should be given only once. In the case of multiple authors, the senior
author should be entered first. Your entry in such a case, might look like this:

%A Brian W. Kernighan
%A P. J. Plauger
%T Software Tools in Pascal
%I Addison-Wesley
%C Reading, Massachusetts
%D 1981

The %Q is for organizational authors, or authors with Japanese or Arabic names,
in which cases there is no clear last name. Books should be labeled with the % T,
not with the %B, which is reserved for books containing articles. The %J and
%B fields should never appear together, although if they do, the %J will override
the %B. If there is no author, just an editor, it is best to type the editor in the %A

Revision A, of 9 May 1988

5.3. Data Entry with
addbib

Chapter 5 - refer - A Bibliography System 105

field, as in this example:

(%A Bertrand Bronson, ed.

The %E field is used for the editor of a book (%B) containing an article, which
has its own author. For unpublished material such as theses, use the %R field;
the title in the %T field will be quoted, but the contents of the %R field will not
be underlined. Unlike other fields, %H, %0, and %X should contain their own
punctuation Here is an example:

%A Mike E. Lesk
%T Some Applications of Inverted Indexes on the Unix System
%B Unix Programmer's Manual
%1 Bell Laboratories
%C Murray Hill, NJ
%0 1978
%V 2a
%K refer mkey inv hunt
%X Difficult to read paper that dwells on indexing strategies,
giving little practical advice about using \fBrefer\fP.

Note that the author's name is given in normal order, without inverting the sur
name; inversion is done automatically, except when %Q is used instead of %A.
We use %X rather than %0 for the commentary because we do not want the
comment printed every time the reference is used. The %0 and %H fields are
printed by both refer and roffbib; the %X field is printed only by
roffbib, as a detached annotation paragraph.

The addbib program is for creating and extending bibliographic databases.
You must give it the filename of your bibliography:

(hostname% addbib database

]

]
Every time you enter addbib, it asks if you want instructions. To get them,
type y; to skip them, type RETURN. addbib prompts for various fields, reads
from the keyboard, and writes records containing the refer codes to the data
base. After finishing a field entry, you should end it by typing RETURN. Ifa
field is too long to fit on a line, type a backslash (\) at the end of the line, and you
will be able to continue on the following line. Note: the backslash works in this
capacity only inside addbib.

A field will not be written to the database if nothing is entered into it. Typing a
minus sign as the first character of any field will cause addbib to back up one
field at a time. Backing up is the best way to add multiple authors, and it really
helps if you forget to add something important. Fields not contained in the
prompting skeleton may be entered by typing a backslash as the last character
before RETURN. The following line will be sent verbatim to the database and
addbib will resume with the next field. This is identical to the procedure for
dealing with long fields, but with new fields, don't forget the % key-letter.

Revision A, of 9 May 1988

106 Formatting Documents

5.4. Printing the
Bibliography

Finally, you will be asked for an abstract (or annotation), which will be preselVed
as the %X field. Type in as many lines as you need, and end with a control-D
(hold down the CfRL button, then press the "d" key). This prompting for an
abstract can be suppressed with the -a command line option.

After one bibliographic record has been completed, addbib will ask if you want
to continue. If you do, type RETURN; to quit, type q or n (quit or no). It is
also possible to use one of the system editors to correct mistakes made while
entering data. After the Continue? prompt, type any of the following: edi.t,
ex, vi, or ed - you will be placed inside the corresponding editor, and
returned to addbib afterwards, from where you can either quit or add more
data.

If the prompts nonnally supplied by addbib are not enough, are in the wrong
order, or are too numerous, you can redefine the skeleton by constructing a
promptfile. Create some file, to be named after the -p command line option.
Place the prompts you want on the left side, followed by a single TAB (control-I),
then the refer code that is to appear in the bibliographic database. addbib
will send the left side to the screen, and the right side, along with data entered, to
the database.

sortbib is for sorting the bibliography by author (%A) and date (%D), or by
data in other fields. Sortbib is quite useful for producing bibliographies and
annotated bibliographies, which are seldom entered in strict alphabetical order.

Sortbib takes as arguments the names of up to 16 bibliography files, and sends
the sorted records to standard output (the tenninal screen), which may be
redirected through a pipe or into a file.

The -sKEYS flag to sortbib will sort by fields whose key-letters are in the
KEYS string, rather than merely by author and date. Key-letters in KEYS may be
followed by a + to indicate that all such fields are to be used. The default is to
sort by senior author and date (printing the senior author last name first), but
-sA+D will sort by all authors and then date, and -sATD will sort on senior
author, then title, and then date.

roffbib is for running off the (probably sorted) bibliography. It can handle
annotated bibliographies - annotations are entered in the %X (abstract) field.
roffbib is a shell script that calls refer -B and nroff -mbib. It uses the
macro definitions that reside in /usr / lib/tmac/tmac. bib, which you can
redefine if you know nroff and troff. Note that refer will print the %H
and %0 commentaries, but will ignore abstracts in the %X field; roffbib will
print both fields, unless annotations are suppressed with the -x option.

The following command sequence willlineprint the entire bibliography, organ
ized alphabetically by author and date:

(hostname% sortbib database I roffbib I Ipr)
This is a good way to proofread the bibliography, or to produce a stand-alone
bibliography at the end of a paper. Incidentally, rof fbib accepts all flags used

Revision A, of 9 May 1988

5.5. Citing Papers with
refer

Chapter 5 - refer - A Bibliography System 107

with nroff. For example:

hostname% sortb1b database I ro£fbib -Txerox -sl

will make accent marks work on a Xerox printer, and stop at the bottom of every
page for changing paper. The -n and -0 flags may also be quite useful, to start
page numbering at a selected point, or to produce only specific pages.

roffbib understands four command-line number registers: N, V, L, and o.
These are something like the two-letter number registers in -ms. The -rNl argu
ment will number references beginning at one (1); use another number to start
somewhere besides one. The -rV2 flag will double-space the entire bibliogra
phy, while -rVl will double-space the references, but single-space the annota
tion paragraphs. Finally, specifying -rL6i changes the line length from 6.5
inches to 6 inches, and saying -rO 1 i sets the page offset to one inch, instead of
zero. (That's a capital 0 after -r, not a zero.)

The refer program normally copies input to output, except when it encounters
an item of the form:

[~;rtial citation

The partial citation may be just an author's name and a date, or perhaps a title
and a keyword, or maybe just a document number. refer looks up the citation
in the bibliographic database, and transfonns it into a full, properly-formatted
reference. If the partial citation does not correctly identify a single work (either
finding nothing, or more than one reference), a diagnostic message is given. If
nothing is found, it will say "No such paper." If more than one reference is
found, it will say ''Too many hits." Other diagnostic messages can be quite cryp
tic; if you are in doubt, use checknr to verify that all your.[s have matching
.] s.

When everything goes well, the reference will be brought in from the database,
numbered, and placed at the bottom of the page. This citation, for example, was
produced by:

This citation,
. [
lesk inverted indexes
.]
for example, was produced by

1

The . [and .] markers, in essence, replace the . F S and . FE of the -ms macros,
and also provide a numbering mechanism. Footnote numbers will be bracketed

1 Mike E. Lesk, ""Some Applications of Inverted Indexes on the Unix System," in Unix Programmer's
MOIlIlLll, Bell Laboratories, Murray Hill, NJ, 1978.

Revision A, of 9 May 1988

108 Fonnatting Documents

5.6. refer Command Line
Options

on the lineprinter, but superscripted on daisy-wheel tenninals and in troff. In
the reference itself, articles will be quoted, and books and journals will be under
lined in nroff , and italicized in troff .

Sometimes you need to cite a specific page number along with more general
bibliographic material. You may have, for instance, a single document that you
refer to several times, each time giving a different page citation. This is how you
could get "p. 1 0" in the reference:

. [
kies document for.matting
%P 10
.]

The first line, a partial citation, will find the reference in your bibliography. The
second line will insert the page number into the final citation. Ranges of pages
may be specified as "%P 56-78".

When the time comes to run off a paper, you will need to have two files: the
bibliographic database, and the paper to format Use a command line something
like one of these:

hostname% refer -p database paper I nroff -ms
hostname% refer -p database paper I tbl nroff -IDS

hostname% refer -p database paper I tbl I neqn I nroff -ms

If other preprocessors are used, refer should precede th1, which must in tum
precede eqn, or neqn. The -p option specifies a "private" database, which
most bibliographies are.

Many people like to place references at the end of a chapter, rather than at the
bottom of the page. The -e option will accumulate references until a macro
sequence of the form

[~~IST$ 1
is encountered (or until the end of file). refer will then write out all references
collected up to that point, collapsing identical references. Warning: there is a
limit (currently 200) on the number of references that can be accumulated at one
time.

It is also possible to sort references that appear at the end of text. The - sKEYS
flag will sort references by fields whose key-letters are in the KEYS string, and
permute reference numbers in the text accordingly. It is unnecessary to use-e
with the -sKEYS flag, since -s implies -e. See the section "Printing the
Bibliography" for additional features of the - sKEYS flag.

refer can also make citations in what is known as the Social or Natural Sci
ences format. Instead of numbering references, the -1 Getter ell) flag makes

Revision A, of 9 May 1988

5.7. Making an Index

Chapter 5 - refer - A Bibliography System 109

labels from the senior author's last name and the year of publication. For exam
ple, a reference to the paper on Inverted Indexes cited above might appear as
[Lesk1978a]. It is possible to control the number of characters in the last name,
and the number of digits in the date. For instance, the command line argument
-16,2 might produce a reference such as [Kemig78c].

Some bibliography standards shun both footnote numbers and labels composed
of author and date, requiring some keyword to identify the reference. The - k
flag indicates that, instead of numbering references, key labels specified on the
%L line should be used to mark references.

The -n flag means to not search the default reference file, located in
/usr / dict/papers/Rv7man. Using this flag may make refer marginally
faster. The -an flag will reverse the first n author names, printing Jones, 1. A.
instead of J. A. Jones. Often -al is enough; this will reverse the first and last
names of only the senior author. In some versions of refer there is also the-f
flag to set the footnote number to some predetermined value; for example, -f 2 3
would start numbering with footnote 23.

Once your database is large and relatively stable, it is a good idea to make an
index to it, so that references can be found quickly and efficiently. The indx
bib program makes an inverted index to the bibliographic database (this pro
gram is called pubindex in the Bell Labs manual). An inverted index could be
compared to the thumb cuts of a dictionary - instead of going all the way
through your bibliography, programs can move to the exact location where a cita
tion is found.

indxbib itself takes a while to run, and you will need sufficient disk space to
store the indexes. But once it has been run, access time will improve dramati
cally. Furthermore, large databases of several million characters can be indexed
with no problem. The program is exceedingly simple to use:

(~h_o_s_t_n_a_m_e_% __ i_n_dxb ___ ib __ da __ t_ab __ a_s_e ________________________________ l
Be aware that changing your database will require that you run indxbib over
again. If you don't, you may fail to find a reference that really is in the database.

Once you have built an inverted index, you can use lookbib to find references
in the database. lookbib cannot be used until you have run indxbib. When
editing a paper, lookbib is very useful to make sure that a citation can be
found as specified. It takes one argument, the name of the bibliography, and then
reads partial citations from the terminal, returning references that match, or noth
ing if none match. Its prompt is the greater-than sign.

Revision A, of9 May 1988

110 Fonnatting Documents

5.8. refer Bugs and Some
Solutions

Blanks at Ends of Lines

hostname% lookbib databa ••
Instructions? n

> l.ak inv.rted index ••
%A Mike E. Lesk
%T Some Applications of Inverted Indexes on the Unix System
%J Unix Programmer's Manual
%I Bell Laboratories
%C Murray Hill, NJ
%0 1978
%V 2a
%X Difficult to read paper that dwells on indexing strategies,
giving little practical advice about using \fLrefer\fP.

>

If more than one reference comes back, you will have to give a more precise cita
tion for re fer. Experiment until you find something that works; remember that
it is hannless to overspecify.

To get out of the lookbib program, type a CTRL-D alone on a line; lookbib
then exits with an "EOT" message.

lookbib can also be used to extract groups of related citations. For example,
to find all the papers by Brian Kernighan in the system database, and send the
output to a file, type:

hostname% 1ookb1b /usr/dict/papers/Ind > kern. refs
Instructions ? n
> kernighan
> CTRL-D
EOT

hostname% cat kern.refs

Your file, "kern.refs", will be full of references. A similar procedure can be used
to pull out all papers of some date, all papers from a given journal, all papers
containing a certain group of keywords, etc.

The refer program will mess up if there are blanks at the end of lines, espe
cially the %A author line. addbib carefully removes trailing blanks, but they
may creep in again during editing. Use an ex editor command-

[g/ *$/s/// J

- or similar method to remove trailing blanks from your bibliography.

Revision A, of 9 May 1988

Interpolated Strings

Interpreting Foreign
Surnames

Footnote Numbers

Chapter 5 - refer - A Bibliography System 111

Having bibliographic fields passed through as string definitions implies that
interpolated strings (such as accent marks) must have two backslashes, so they
can pass through copy mode intact. For instance, the word "telephone" would
have to be represented:

J
in order to come out correctly. In the %X field, by contrast, you will have to use
single backslashes instead. This is because the %X field is not passed through as
a string, but as the body of a paragraph macro.

Another problem arises from authors with foreign names. When a name like
"Valery Giscard d'Estaing" is turned around by the -a option of refer, it will
appear as "d'Estaing, Valery Giscard," rather than as "Giscard d'Estaing,
Valery." To prevent this, enter names as follows:

%A Vale*'ry Giscard\Od'Estaing
%A Alexander Csoma\Ode\OKo*:ro*:s

(The second is the name of a famous Hungarian linguist.) The backslash-zero is
an nraff and traff request meaning to insert a digit-width space. Because
the seccnd argument to the %A field contains no blank spaces to confuse the
refer program, refer will treat the second field as a single word. This pro
tects against faulty name reversal, and also against mis-sorting.

Footnote numbers are placed at the end of the line before the.[macro. This line
should be a line of text, not a macro. As an example, if the line before the . [is
a . R macro, then the . R will eat the footnote number. (fhe . R is an -ms request
meaning change to Roman font.) In cases where the font needs changing, it is
necessary to use the following method immediately before the citation:

Abo \fIet al.\fP
. [
awk aho kernighan weinberger
.]

Now the reference will be to Aho et al. 2 The \ f I changes to italics, and the \ fR
changes back to Roman font. Both these requests are nraff and traff
requests, not part of -ms. If and when a footnote number is added after this
sequence, it will indeed appear in the output.

2 Alfred V. Abo, Brian w. Kernighan, and Peter I. Weinberger, Awk-A Pattern Scanning and Text
Processing Language, Bell Laboratories, Murray Hill, NI.

Revision A, of 9 May 1988

112 Formatting Documents

5.9. Internal Details of
refer

You have already read everything you need to know in order to use the refer
bibliography system. The remaining sections are provided only for extra infor
mation, and in case you need to change the way refer works.

The output of ref er is a stream of string definitions, one for each field in a
reference. To create string names, percent signs are simply changed to an open
bracket, and an [F string is added, containing the footnote number. The %X, % Y
and %Z fields are ignored; however, the annobib program changes the %X to
an 0 AP (annotation paragraph) macro. The Lesk citation used above yields this
intermediate output:

.ds [F 1

.] -

.ds [A Mike E. Lesk

.ds [T Some Applications of Inverted Indexes on the Unix System
ods [J Unix Programmer's Manual
.ds [I Bell Laboratories
.ds [C Murray Hill, NJ
.ds [0 1978
.ds [V 2a
.nr [T 0

.nr [A 0

.nr [0 0

.] [1 journal-article

These string definitions are sent to nroff, which can use the -msmacros
defined in / u s r /1 ib / rnx / rns . xre f to take care of formatting things properly.
The initializing macro .] - precedes the string definitions, and the labeled macro
0] [follows. These are changed from the input 0 [and 0] so that running a file
twice through refer is hannless.

The 0] [macro, used to print the reference, is given a type-number argument,
which is a numeric label indicating the type of reference involved. Here is a list
of the various kinds of references:

Field Value Kind of Reference

%J 1 Journal Article
%B 3 Article in Book
%G 4 Report, Government Report
%1 2 Book
%M 5 Bell Labs Memorandum (undefined)
none 0 Other

The order listed above is indicative of the precedence of the various fields. In
other words, a reference that has both the %J and %B fields will be classified as a
journal article. If none of the fields listed is present, then the reference will be
classified as "other."

The footnote number is flagged in the text with the following sequence, where
number is the footnote number:

Revision A, of 9 May 1988

Chapter 5 - refer - A Bibliography System 113

('* ([. number' * (. 1]

The \ *([. and \ *(.] stand for bracketing or superscripting. In nr 0 f f with low
resolution devices such as the lpr and a crt, footnote numbers will be bracketed.
In troff, or on daisy-wheel printers, footnote numbers will be superscripted.
Punctuation nonnally comes before the reference number; this can be changed by
using the -P (postpunctuation) option of re fer.

In some cases, it is necessary to override certain fields in a reference. For
instance, each time a work is cited, you may want to specify different page
numbers, and you may want to change certain fields. This citation will find the
Lesk reference, but will add specific page numbers to the output, even though no
page numbers appeared in the original reference.

· [
lesk inverted indexes
%p 7-13
%I Computing Services
%0 UNX 12.2.2.

·]

The %1 line will also override any previous publisher infonnation, and the %0
line will append some commentary. The refer program simply adds the new
%P, %1, and %0 strings to the output, and later strings definitions cancel earlier
ones.

It is also possible to insert an entire citation that does not appear in the biblio
graphic database. This reference, for example, could be added as follows:

· [
%A Brian Kernighan
%T A troff Tutorial
%I Bell Laboratories
%D 1978

·]

This will cause refer to interpret the fields exactly as given, without searching
the bibliographic database. This practice is not recommended, however, because
it's better to add new references to the database, so they can be used again later.

If you want to change the way footnote numbers are printed, signals can be given
on the . [and .] lines. For example, to say ~'See reference (2)," the citation
should appear as:

See reference
· [(

partial citation
·]) ,

Revision A, of 9 May 1988

114 Formatting Documents

5.10. Changing the refer
Macros

Note that blanks are significant on these signal lines. If a permanent change in
the footnote format is desired, it is best to redefine the [. and .] strings.

This section is provided for those who wish to rewrite or modify the refer
macros. This is necessary in order to make output correspond to specific journal
requirements, or departmental standards. First there is an explanation of how
new macros can be substituted for the old ones. Then several alterations are
given as examples.

The refer macros for nroff and troff supplied by the -ms macro package
reside in /usr / lib/ms/ms . xref; they are reference macros, for producing
footnotes or endnotes. The refer macros used by roffbib, on the other
hand, reside in /usr/lib/tmac/tmac .bib; they are for producing a stand
alone bibliography.

To change the macros used by roffbib, you will need to get your own version
of this shell script into the directory where you are worldng. This command will
get you a copy of roffbib and the macros it uses:

(hostname% cp /usr/lib/tmac/tmac.bib bibmac

You can proceed to change bibmac as much as you like. Then when you use
roffbib, you should specify your own version of the macros, which will be
substituted for the normal ones

]

[hostname% roffbib --m bibmac fi/e1lOl1le J
-. ---------
where filename is the name of your bibliography file. Make sure there's a space
between -m and bibmac.

If you want to modify the refer macros for use with nroff and the -ms mac
ros, you will need to get a copy of "ms.ref':

(hostname% cp /usr/lib/ms/ms.ref refmac]
These macros are much like "bibmac", except they have . F S and . FE requests,
to be used in conjunction with the -ms macros, rather than independently defined
• XP and . AP requests. Now you can put this line at the top of the paper to be
fonnatted:

(.50 refmae

Your new refer macros will override the definitions previously read in by the
-ms package. This method works only if "refmac" is in the working directory.

Suppose you didn't like the way dates are printed, and wanted them to be
parenthesized, with no comma before. There are five identical lines you will
have to change. The first line below is the old way, while the second is the new
way:

]

Revision A, of 9 May 1988

Chapter 5 - refer - A Bibliography System 115

.if !"*([O'''', *([O\c

.if !"*([O"" \& (*([O)\c

In the first line, there is a comma and a space, but no parentheses. The ''\e'' at the
end of each line indicates to nr 0 f f that it should continue, leaving no extra
space in the output. The '\&" in the second line is the do-nothing character;
when followed by a space, a space is sent to the output.

If you need to format a reference in the style favored by the Modem Language
Association or Chicago University Press, in the form (city: publisher, date), then
you will have to change the middle of the book macro [2 as follows:

\& (\c
.if !"*([C"" *([c:
*([I\c
.if ! "\ * ([0"" , \ * ([o\c
)\c

This would print (Berkeley: Computing Services, 1982) if all three strings were
present. The first line prints a space and a parenthesis; the second prints the city
(and a colon) if present; the third always prints the publisher (books must have a
publisher, or else they're classified as other); the fourth line prints a comma and
the date if present; and the fifth line closes the parentheses. You would need to
make similar changes to the other macros as well.

Revision A, of 9 May 1988

I

6
Formatting Tables with tbl

Fonnatting Tables with tbl .. 119

6.1. Running tbl .. 121

6.2. Input Commands .. 122

Options That Affect the Whole Table ... 123

Key Letters - Fonnat Describing Data Items .. 123

Optional Features of Key Letters ... 125

Data to be Fonnatted in the Table ... 127

Changing the Fonnat of a Table ... 128

6.3. Examples .. 129

6.4. tbl Commands .. 140

6
Formatting Tables with tbl

This chapter provides instructions for preparing tbl input to fonnat tables and
for running the tbl preprocessor on a file. 1 It also supplies numerous examples
after which to pattern your own tables. The description of instructions is precise
but technical, and the newcomer may prefer to glance over the examples first, as

tbl turns a simple description of a table into a troff or nroff program that
prints the table. From now on, unless noted specifically, we'll refer to both
troff and nroff as troff since tbl treats them the same. tbl makes pho
totypesetting tabular material relatively simple compared to normal typesetting
methods. You may use tbl with the equation formatting program eqn or vari
ous layout macro packages, as tb 1 does not duplicate their functions.

Tables are made up of columns which may be independently centered, right
adjusted, left-adjusted, or aligned by decimal points. Headings may be placed
over single columns or groups of columns. A table entry may contain equations,
or may consist of several rows of text. Horizontal or vertical lines may be drawn
as desired in the table, and any table or element may be enclosed in a box. For
example:

1970 Federal Budget Transfers
(in billions of dollars)

State
Taxes Money

Net
collected spent

New York 22.91 21.35 -1.56
New Jersey 8.33 6.96 -1.37
Connecticut 4.12 3.10 -1.02
Maine 0.74 0.67 -0.07
California 22.29 22.42 +0.13
New Mexico 0.70 1.49 +0.79
Georgia 3.30 4.28 +0.98
Mississippi 1.15 2.32 +1.17
Texas 9.33 11.13 +1.80

1 The material in this chapter is derived from Tbl-A Program to Format Tables. M.E. Lesk. Bell
Laboratories. Murray Hill. New Jersey.

119 Revision A, of9 May 1988

120 Formatting Documents

The input to tbl is text for a document, with the text preceded by a . TS (table
start) command and followed by a . TE (table end) command. tbl processes the
tables, generating traff fonnatting commands, and leaves the remainder of the
text unchanged. The . TS and . TE lines are copied, too, so that traff page
layout macros, such as the formatting macros, can use these lines to delimit and
place tables as necessary. In particular, any arguments on the . TS or . TE lines
are copied but otherwise ignored, and may be used by document layout macro
commands.

The fonnat of the input is as follows:

ordinary text of your document

.TS
first table
.TE

ordinary text of your document

.TS
second table
.TE

ordinary text of your document

where the fomat of each table is as follows:

.TS
options for the table
format describing the layout of the table .
data to be laid out in the table

data to be laid out in the table
.TE

Each table is independent, and must contain formatting infonnation, indicated by
format describing the layout of the table, followed by the data to be laid out in
the table. You may precede the fonnatting infonnation, which describes the
individual columns and rows of the table, by options for the table that affect the
entire table.

Revision A, of9 May 1988

6.1. Running tb 1

Chapter 6 - Formatting Tables with tbl 121

You can run tbl on a simple table by piping the tbl output to troff (or your
installation's equivalent for the phototypesetter) with the command:

(hostname% tbl file I troff -opti01l.'l

where file is the name of the file you want to format. For more complicated use,
where there are several input files, and they contain equations and -IDS macro
package requests as well as tables, the normal command is:

)

[...... h_o_s_t_n_a_m_e_%_t_b_1._fi_le_l_fi_l_e2_._._. _1_e_qn __ I_t_r_O_f_f_-mB ____________ J

You can, of course, use the usual options on the troff and eqn commands.
The usage for nroff is similar to that for troff, but only printers such as the
TELETYPE® Model 37 and Diablo-mechanism (DASI or as!) or other printers
that can handle reverse paper motions can print boxed tables directly. If you are
running tbl on a line printer that does not filter reverse paper motions, use the
co 1 processor to filter the multicolumn output.

If you are using an IBM 1403 line printer without adequate driving tables or
post-filters, there is a special-TX command line option to tbl which produces
output that does not have fractional line motions in it. The only other command
line options recognized by tbl are macro package specifications such as -ms
and -mm. These options are turned into commands to fetch the corresponding
macro files; usually it is more convenient to place these arguments on the troff
part of the command line, tb 1 accepts them as well.

Caveats: Note that when you use eqn and tbl together on the same file, put
tbl first. If there are no equations within tables, either order works, but it is
usually faster to run tbl first, since eqn normally produces a larger expansion
of the input than tbl. However, if there are equations within tables, using the
de lim mechanism in eqn, you must put tbl first or the output will be scram
bled.

Also, beware of using equations in n-style columns; this is nearly always wrong,
since tbl attempts to split numerical fonnat items into two parts, and this is not
possible with equations. To avoid this, use the delim (xx) table option to
prevent splitting numerical columns within the delimiters.

For example, if the eqn delimiters are $ $, giving de 1 im ($ $) a numerical
column such as 1245±16, means the column entry will not be divided after 1245,
but after 16. This is the output: '1245±16' (all in one column within the table).

The only recommended in-line equation delimiters inside tables (tbl) are $$ or
@@. Most of the other special characters have special meanings either inside
eqn ortbl.

Some versions of tbllimit tables to twenty columns; however, use of more than
16 numerical columns may fail because of limits in troff, producing the 'too
many number registers' message. Avoid using troff number registers used by
tbl within tables; these include two-digit names from 31 to 99, and names of
the fOnTIS #x, X+, x I, "X, and X-, where x is any lower-case letter. The names ##,

Revision A. of 9 May 1988

122 Formatting Documents

6.2. Input Commands

#-, and #'" are also used in certain circumstances. To conselVe number register
names, the n and a fonnats share a register; hence the restriction that you may
not use them in the same column.

For aid in writing layout macros, tbl defines a number register TW which is the
table width; it is defined by the time that the . TE macro is invoked and may be
used in the expansion of that macro. More importantly, to assist in laying out
multi -page boxed tables the macro . T #= is defined to produce the bottom lines
and side lines of a boxed table, and then invoked at its end. Use of this macro in
the page footer boxes a multi-page table. In particular, you can use the -ms mac
ros to print a multi-page boxed table with a repeated heading by giving the argu
ment H to the . TS macro.

If the table start macro is written

(.TS H

a line of the fonn

(.TH

must be given in the table after any table heading, or at the start if there aren't
any. Material up to the . THis placed at the top of each page of table; the
remaining lines in the table are placed on several pages as required. For exam
pIe:

.TS H
center box tab (/);
c s
11.
Employees

Name/Phone

.TH
Jonathan Doe/123-4567
< etc. >
.TE

Note that this is not a feature of tbl, but of the -ms layout macros.

As indicated above, a table contains, first, global options, then a fonnat section
describing the layout of the table entries, and then the data to be printed. The
fonnat and data are always required, but not the options. The sections that fol
low explain how to enter the various parts of the table.

]

]

Revision A, of 9 May 1988

Options That Affect the
Whole Table

Key Letters - Format
Describing Data Items

Chapter 6 - Formatting Tables with tbl 123

There may be a single line of options affecting the whole table. If present, this
line must follow the . T S line immediately, must contain a list of option names
separated by spaces, tabs, or commas, and must be tenninated by a semicolon.
The allowable options are:

center center the table (default is left-adjusted).

expand make the table as wide as the current line length.

bo x enclose the table in a box.

allbox enclose each item in the table in a box.

doub lebox enclose the table in two boxes - a frame.

tab(x) use x instead of tab to separate data items.

linesize (n) set lines or rules (such as from box) in n point type.

delim(xy) recognize x and y as the eqn delimiters.

A standard option line is:

(~c_e_n_t_e_r __ b_o_x __ t_a_b __ (_/_) __ ~J
which centers the table on the page, draws a box around it, and uses the slash '/'
character as the column separator for data items.

The tbl program tries to keep boxed tables on one page by issuing appropriate
troff 'need' (. ne) commands. These requests are calculated from the number
of lines in the tables, so if there are spacing commands embedded in the input,
these requests may be inaccurate. Use nonnal troff procedures, such as keep
release macros, in this case. If you must have a multi -page boxed table, use mac
ros designed for the purpose, as explained above under Running 'tbl'.

The fonnat section of the table specifies the layout of the columns. Each line in
this section corresponds to one line of the table, except that the last line
corresponds to all following lines up to the next. T&, if present as shown below.
Each line contains a key-letter for each column of the table. It is good practice to
separate the key letters for each column by spaces, tabs, or a visible character
such as a slash '/'. Each key-letter is one of the following:

Lor 1 indicates a left-adjusted column entry.

R or r indicates a right-adjusted column entry.

C or c indicates a centered column entry.

N or n indicates a numerical column entry, to line up the units digits of
numerical entries.

A or a indicates an alphabetic subcolumn; all corresponding entries are
aligned on the left, and positioned so that the widest is centered
within the column (see the "Some London Transport Statistics"
example).

~) sun Revision A, of 9 May 1988
~ microsystems

124 Fonnatting Documents

S or s indicates a spanned heading; that is, it indicates that the entry from
the previous column continues across this column; not allowed for
the first column.

indicates a vertically spanned heading; that is, it indicates that the
entry from the previous row continues down through this row; not
allowed for the first row of the table.

When you specify numerical alignment, tbl requires a location for the decimal
point. The rightmost dot (.) adjacent to a digit is used as a decimal point; if there
is no dot adjoining a digit, the rightmost digit is used as a units digit; if no align
ment is indicated, the item is centered in the column. However, you may use the
special non-printing character string \ & to override unconditionally dots and
digits, or to align alphabetic data; this string lines up where a dot normally
would, and then disappears from the final output. In the example below, the
items shown at the left will be aligned in a numerical column as shown on the
right:

13 13
4.2 4.2
26.4.12 26.4.12
abc abc
abc\& abc
43\&3.22 433.22
749.12 749.12

Note: If numerical data are used in the same column with wider L or r type
table entries, the widest number is centered relative to the wider L or r items (we
use L here instead of 1 for readability; they have the same meaning as key
letters). Alignment within the numerical items is preserved. This is similar to
the way a type data are formatted, as explained above. However, alphabetic sub
columns (requested by the a key-letter) are always slightly indented relative to L

items; if necessary, the column width is increased to force this. This is not true
for n type entries.

Note: Do not use the n and a items in the same column.

For readability, separate the key-letters describing each column with spaces.
Indicate the end of the format section by a period. The layout of the key-letters
in the format section resembles the layout of the actual data in the table. Thus a
simple format is:

.TS
c s s
1 n n.
text
.TE

which specifies a table of three columns. The first line of the table contains a cen
tered heading that spans across all three columns; each remaining line contains a
left-adjusted item in the first column followed by two columns of numerical data.

Revision A, of 9 May 1988

Optional Features of Key
Letters

Chapter 6 - Formatting Tables with tbl 125

A sample table in this fonnat is:

Overall title
Item-a 34.22 9.1
Item-b 12.65 .02
Items: c,d,e 23 5.8
Total 69.87 14.92

There may be extra infonnation following a key-letter that modifies its basic
behavior. Additional features of the key-letter system follow:

Horizontal lines
- A key-letter may be replaced by '_' (underscore) to indicate a horizontal
line in place of the corresponding column entry, or by '=' to indicate a dou
ble horizontal line. You can also type this in the data portion. If an adjacent
column contains a horizontal line, or if there are vertical lines adjoining this
column, this horizontal line is extended to meet the nearby lines. If any data
entry is provided for this column, it is ignored and a warning message is
displayed.

Vertical lines
- A vertical bar may be placed between column key-letters. This draws a
vertical line between the corresponding columns of the table. A vertical bar
to the left of the first key-letter or to the right of the last one produces a line
at the edge of the table. If two vertical bars appear between key-letters, a
double vertical line is drawn.

Space between columns
- A number may follow the key-letter. This indicates the amount of
separation between this column and the next column. The number nonnally
specifies the separation in ens (one en is about the width of the letter 'n')2.
If the expand option is used, these numbers are multiplied by a constant
such that the table is as wide as the current line length. The default column
separation number is 3. If the separation is changed, the largest space
requested prevails.

Vertical spanning
- Nonnally, vertically-spanned items extending over several rows of the
table are centered in their vertical range. If a key-letter is followed by t or
T, any corresponding vertically-spanned item begins at the top line of its
range.

Font chuages
- A key-letter may be followed by a string containing a font name or
number preceded by the letter f or F. This indicates that the corresponding
column should be in a different font from the default font, which is usually
Roman. All font names are one or two letters; a one-letter font name should
be separated from whatever follows by a space or tab. The single letters B,
b, I, and i are shorter synonyms for fB and f1. Font change commands

2 More precisely, an en is a number of points (1 point = In2 inch) equal to half the current type size.

Revision A, of9 May 1988

126 Formatting Documents

given with the table entries override these specifications.

Point size changes
- A key-letter may be followed by the letter p or P and a number to indi
cate the point size of the corresponding table entries. The number may be a
signed digit, in which case it is taken as an increment or decrement from the
current point size. If both a point size and a column separation value are
given, one or more blanks must separate them.

Vertical spacing changes
- A key-letter may be followed by the letter v or V and a number to indi
cate the vertical line spacing to be used within a multi-line corresponding
table entry. The number may be a signed digit, in which case it is taken as
an increment or decrement from the current vertical spacing. A column
separation value must be separated by blanks or some other specification
from a vertical spacing request. This request has no effect unless the
corresponding table entry is a text block (see Text Blocks below).

Column width indication
- A key-letter may be followed by the letter w or w and a width value in
parentheses. This width is used as a minimum column width. If the largest
element in the column is not as wide as the width value given after the w, the
largest element is considered to be that wide. If the largest element in the
column is wider than the specified value, its width is used. The width is also
used as a default line length for included text blocks. Nonnal troff units
can be used to scale the width value; if none is used, the default is ens. If the
width specification is a unitless integer, you may omit the parentheses. If
the width value is changed in a column, the last one given controls.

Equal width columns
- A key-letter may be followed by the letter e or E to indicate equal width
columns. All columns whose key-letters are followed bye or E are made
the same width. In this way, you can fonnat a group of regularly spaced
columns.

Note:
The order of the above features is immaterial; they need not be separated by
spaces, except as indicated above to avoid ambiguities involving point size
and font changes. Thus a numerical column entry in italic font and 12-point
type with a minimum width of 2.5 inches and separated by 6 ens from the
next column could be specified as

(~ _____ n_p_l_2_W ____ (2_._5_i_)_f ____ I _____ 6 __ ~J
Alternative notation

- Instead of listing the fonnat of successive lines of a table on consecutive
lines of the fonnat section, separate successive line fonnats on the same line
by commas. The fonnat for the sample table above can be written:

Revision A, of 9 May 1988

Data to be Formatted in the
Table

Chapter 6 - Formatting Tables with tbl 127

(____ C __ S __ s_, __ l __ n __ n __ . __ J

Default
- Column descriptors missing from the end of a fonnat line are assumed to
be L. The longest line in the fonnat section, however, defines the number of
columns in the table; extra columns in the data are ignored silently.

Type the data for the table after the fonnat line. Normally, each table line is
typed as one line of data. Break very long input lines by typing a backslash '\'
as a continuation marker at the end of the run-on line. That line is combined
with the following line upon fonnatting and the '\' vanishes. The data for dif
ferent columns, that is, the table entries, are separated by tabs, or by whatever
character has been specified in the option tabs option. We recommend using a
visible character such as the slash character' /'. There are a few special cases:

traff commands within tables
- An input line beginning with a ' . ' followed by anything except a digit is
assumed to be a command to traff and is passed through unchanged,
retaining its position in the table. So, for example, you can produce space
within a table by . sp commands in the data.

Full width horizontal lines
- An input line containing only the character '_' (underscore) or '=' (equal
sign) represents a single or double line, respectively, extending the full width
of the table.

Single column horizontal lines
- An input table entry containing only the character '_' or '=' represents a
single or double line extending the full width of the column. Such lines are
extended to meet horizontal or vertical lines adjoining this column. To
obtain these characters explicitly in a column, either precede them by '\&' or
follow them by a space before the usual tab or newline.

Short horizontal lines
- An input table entry containing only the string ',-' represents a single line
as wide as the contents of the column. It is not extended to meet adjoining
lines.

Vertically spanned items
- An input table entry containing only the character string ,\,.., indicates
that the table entry immediately above spans downward over this row. It is
equivalent to a table fonnat key-letter of 'A'.

Text blocks
- To include a block of text as a table entry, precede it by T { and follow it
by T}. To enter, as a single entry in the table, something that cannot con
veniently be typed as a simple string between tabs, use:

Revision A, of 9 May 1988

128 Formatting Documents

Changing the Format of a
Table

[

••• T { 1
block of text
T} • • •

'--------

Note that the T} end delimiter must begin a line; additional columns of data
may follow after a tab on the same line. See the 'New York Area Rocks'
example for an illustration of included text blocks in a table. If you use
more than twenty or thirty text blocks in a table, various limits in the t ro f f
program are likely to be exceeded, producing diagnostics such as too
many text block diversions.

Text blocks are pulled out from the table, processed separately by troff,
and replaced in the table as a solid block. If no line length is specified in the
block of text itself, or in the table fonnat, the default is to use L xC /(N + 1)

where L is the current line length, C is the number of table columns spanned
by the text, and N is the total number of columns in the table. The other
parameters (point size, font, etc.) used in setting the block of text are those in
effect at the beginning of the table (including the effect of the . T S macro)
and any table fonnat specifications of size, spacing and font, using the p, v
and f modifiers to the column key-letters. Commands within the text block
itself are also recognized, of course. However, traft commands within
the table data but not within the text block do not affect that block.

Note:
Although you can put any number of lines in a table, only the first 200 lines
are used in calculating the widths of the various columns. Arrange a multi
page table as several single-page tables if this proves to be a problem. Other
difficulties with fonnatting may arise because, in the calculation of column
widths all table entries are assumed to be in the font and size being used
when the . TS command was encountered, except for font and size changes
indicated (a) in the table format section and (b) within the table data (as in
the entry \s+3\fldata \fP\sO). Therefore, although arbitrary troff
requests may be sprinkled in a table, use requests such as . p s (set the point
size) with care to avoid confusing the width calculations.

If you must change the format of a table after many similar lines, as with sub
headings or summarizations, use the . T& (table continue) command to change
column parameters. The outline of such a table input is:

Revision A, of 9 May 1988

6.3. Examples

Chapter 6 - Formatting Tables with tbl 129

• T S start of the table
options afecting the whole table
format of the columns
data to beformatted in the table

data to beformatted in the table
• T & indicates a new format for the table

format of the columns
data to be formatted in the table

data to be formatted in the table
• T & indicates a new format for the table

format of the columns
data to be formatted in the table

data to be formatted in the table
• TE end of the table

as in the 'Composition of Foods' and 'Some London Transport Statistics' exam
ples. Using this procedure, each table line can be close to its corresponding for
mat line.

Note: It is not possible to change the number of columns, the space between
columns, the global options such as box, or the selection of columns to be made
equal width.

Here are some examples illustrating features of tbl. Glance through them to
find one that you can adapt to your needs.

Although you can use a tab to separate columns of data, a visible character is
easier to read. The standard column separator here is the slash (/). If a slash is
part of the data, we indicate a different separator, as in the first example.

Revision A, of 9 May 1988

130 Formatting Documents

Input:

.TS

tab (%) box

c c c

III .

Language%Authors%Runs on

Fortran%Many%Almost anything

PL/1%IBM%360/370

C%BTL%11/45,H6000,370

BLISS%Carnegie-Mellon%PDP-10,11

IDS%Honeywell%H6000

Pascal%Stanford%370

.TE

Input:

.TS

tab (/) allbox;

C 5 5

C C C

n n n .

AT&T Common Stock

Year/Price/Dividend

1971/41-54/$2.60

2/41-54/2.70

3/46-55/2.87

4/40-53/3.24

5/45-52/3.40

6/51-59/.95*

.TE

* (first quarter only)

Output:

Language Authors Runs on

Fortran Many Almost anything
PL/l mM 360/370
C BTL 11/45,H6000,370
BLISS Camegie-Mellon PDP-I0,11
IDS Honeywell H6000
Pascal Stanford 370

Output:

AT&T Common Stock

Year Price Dividend

1971 41-54 $2.60

2 41-54 2.70

3 46-55 2.87

4 40-53 3.24

5 45-52 3.40

6 51-59 .95*

* (first quarter only)

Revision A, of 9 May 1988

Input:

.TS

tab (/) box;

c s s

c I c I c

1 I 1 In.
Major New York Bridges

Bridge/Designer/Length

Brooklyn/J. A. Roebling/1595

Manhattan/G. Lindenthal/1470

Williamsburg/L. L. Buck/1600

Queensborough/Palmer &/1182

/ Hornbostel

//1380

Triborough/O. H. Ammann/_

//383

Bronx Whitestone/O. H. Ammann/2300

Throgs Neck/O. H. Ammann/1800

George Washington/O. H. Ammann/3500

.TE

Input:

.TS

tab (/) ;

c c

np-2 I n I
/Stack

/ -
1/46

/ -
2/23

/ -
3/15

/ -
4/6.5

/ -
5/2.1

/ -
.TE

Chapter 6 - Formatting Tables with tbl 131

Output:

Major New York Bridges
Bridge Designer Length

Brooldyn J. A. Roebling 1595
Manhattan G. Lindenthal 1470
Williamsburg L.L.Buck 1600
Queensborough Palmer & 1182

Hornbostel
1380

Triborough O.H.Ammann
383

Bronx Whitestone O.H.Ammann 2300
Throgs Neck O. H~Ammann 1800
George Washington O. H.Ammann 3500

Output:

Stack
1 46
2 23
3 15
4 6.5
5 2.1

Revision A, of 9 May 1988

132 Formatting Documents

Input:

.TS

tab C/) box;

LLL
L L
L L I LB
L L

L L L .

january/february/march

april/may

june/july/Months

august/september

october/november/december

.TE

Input:

.TS
tab (/) box;

cfB s s s •

Composition of Foods

.T&

c c s s

c c s s

c I c I c c •

Food/Percent by Weight
\A/_

\A/Protein/Fat/Carbo

\A/\A/\A/hydrate

.T&

1 I n I n In.
Apples/.4/.5/13.0

Halibut/18.4/5.2/.

Lima beans/7.5/.8/22.0

Milk/3.3/4.0/5.0

Mushrooms/3.5/.4/6.0

Rye bread/9.0/.6/52.7

.TE

Output:

february march

july Months

january
april
june
august
october

may I
september '------1

november december

Output:

Composition of Foods
Percent by Weight

Food
Protein Fat

Carbo-
hydrate

Apples .4 .5 13.0
Halibut 18.4 5.2 ...
Lima beans 7.5 .8 22.0
Milk 3.3 4.0 5.0
Mushrooms 3.5 .4 6.0
Rye bread 9.0 .6 52.7

Revision A, of 9 May 1988

Input:

.TS

tab (/) allbox;

cfI s s

c cw(li) cw(li)

lp9 lp9 lp9 .

New York Area Rocks

Era/Formation/Age (years)

Precambrian/Reading Prong/>l billion

Paleozoic/Manhattan Prong/400 million

Mesozoic/T{

. na

Newark Basin, incl.

Stockton, Lockatong, and Brunswick

formations; also Watchungs

and Palisades.

T}/200 million

Cenozoic/Coastal Plain/Ti

On Long Island 30,000 years;

Cretaceous sediments redeposited

by recent glaciation •

. ad

T}
.TE

Input:

.EQ
delim $$

.EN

.TS

tab (/) doublebox

c c

11.
Name/Definition

. sp

.vs +2p

Output:

Era

Precambrian

Paleozoic

Mesozoic

Cenozoic

Output:

Name

Gamma

Sine

Error

Bessel

Zeta

Chapter 6 - Formatting Tables with tbl 133

New York Area Rocks
Formation

Reading Prong

Manhattan Prong

Newark Basin, incl.
Stockton, Locka-
tong, and
Brunswick fonna-
lions; also
Watchlmgs and
Palisades .

Coastal Plain

Definition

r(z)={DtZ-le-t dt

1 . .
sin(x)= 2i (el.X_e-l.X)

2 z
erf(z)= .J1t 1 e-t"dt

1 " J rl..z)="1t L cos(z sin9)d 9

s(s)= l:k-.r (Re s > 1)
1=1

Age (years)

>1 billion

400 million

200 million

On Long Island
30,000 years; Cre-
taceous sediments
redeposited by
recent glaciation.

Gamma/$GAMMA (z) = int sub 0 sup inf t sup {z-i} e sup -t dt$

Sine/$sin (x) = lover 2i (e sup ix - e sup -ix)$

Error/$ roman erf (z) = 2 over sqrt pi int sub 0 sup z e sup {-t sup 2} dt$

Bessel/$ J sub 0 (z) = lover pi int sub 0 sup pi cos (z sin theta) d thetaS

Zeta/$ zeta (s) = sum from k=l to inf k sup -s --(Re-s > 1)$

.vs -2p

.TE

Revision A, of 9 May 1988

134 Formatting Documents

Input:

.TS

box, tab (:)

cbssss

cp-2 s s s s

c I I c I c I c I c

c I I c I c I c I c

r2 I I n2 I n2 I n2 In.

Readability of Text

Line Width & Leading for 10-Pt. Type

Line:Set:1-Point:2-Point:4-Point

Width: Solid: Leading: Leading:Leading

9 Pica:\-9.3:\-6.0:\-5.3:\-7.1

14 Pica:\-4.5:\-0.6:\-0.3:\-1.7

19 Pica:\-5.0:\-5.1: 0.0:\-2.0

31 Pica:\-3.7:\-3.8:\-2.4:\-3.6

43 Pica:\-9.1:\-9.0:\-5.9:\-8.8

.TE

Output:

Line
Width
9 Pica

14 Pica
19 Pica
31 Pica
43 Pica

Readability of Text
Line Width & Leading for 10-Pt. Type

Set I-Point 2-Point 4-Point
Solid Leading Leading Leading
-9.3 -6.0 -S.3 -7.1
-4.S -0.6 -0.3 -1.7
-5.0 -S.l 0.0 -2.0
-3.7 -3.8 -2.4 -3.6
-9.1 -9.0 -S.9 -8.8

Input:

.TS

tab (/1

c s

cip-2 s

1 n

an.

Some London Transport statistics

(Year 19641

Railway route miles/244

Tube/66

sub-surface/22

Surface/156

.sp .5

.T&

1 r

a r
passenger traffic \- railway

Journeys/674 million

Average length/4.55 miles

Passenger miles/3,066 million

.T&

1 r

a r
Passenger traffic \- road

Journeys/2,252 million

Average length/2.26 miles

Passenger miles/5,094 million

.T&

1 n

a n

.sp .5

Vehicles/12,521

Railway motor cars/2,905

Railway trailer cars/1,269

Total railway/4,174

Omnibuses/B,347

.T&

1 n

a n

.sp .5

Staff/73,739

Administrative, etc. /B, 553

Civil engineering/5,134

Electrical eng./l,714

Mech. eng. \- railway/4,310

Mech. eng. \- road/9,152

Railway operations/B,930

Road operations/35,946

.TE

Chapter 6 - Formatting Tables with tbl 135

Output:

Some London Transport Statistics
(Year 1964)

Railway route miles
Tube
Sub-surface
Surface

Passenger traffic - railway
Journeys
Average length
Passenger miles

Passenger traffic - road
Journeys
Average length
Passenger miles

Vehicles
Railway motor cars
Rail way trailer cars
Total railway
Omnibuses

Staff
Administrative, etc.
Ci viI engineering
Electrical eng.
Mech. eng. - railway
Mech. eng. - road
Railway operations
Road operations

244
66
22

156

674 million
4.55 miles

3,066 million

2,252 million
2.26 miles

5,094 million

12,521
2,905
1,269
4,174
8,347

73,739
5,553
5,134
1,714
4,310
9,152
8,930

35,946

136 Formatting Documents

Input:

.ps 8

.vs lOp

.TS

tab (I) center box;

c s s
ci s s

c c c

IB 1 n

New Jersey Representatives

(Democrats)

.sp .5

Name/Office address/Phone

.sp .5

James J. Florio/23 s. White Horse Pike, Somerdale 080831609-627-8222

William J. Hughes/2920 Atlantic Ave., Atlantic city 08401/609-345-4844

James J. Howard/801 Bangs Ave., Asbury Park 07712/201-774-1600

Frank Thompson, Jr./10 Rutgers Pl., Trenton 08618/609-599-1619

Andrew Maguire/115 W. Passaic st., Rochelle Park 07662/201-843-0240

Robert A. Roe/U.S.P.O., 194 Ward st., Paterson 07510/201-523-5152

Henry He1stoski/666 Paterson Ave., East Rutherford 07073/201-939-9090

Peter W. Rodino, Jr./Suite 1435A, 970 Broad st., Newark 07102/201-645-3213

Joseph G. Minish/308 Main St., Orange 07050/201-645-6363

Helen s. Meyner/32 Bridge st., Lambertville 08530/609-397-1830

Dominick V. Daniels/895 Bergen Ave., Jersey City 07306/201-659-7700

Edward J. Patten/Natl. Bank Bldg., Perth Amboy 088611201-826-4610

.sp .5

.T&

ci s s

1B 1 n

(Republicans)

.sp .5v

Millicent Fenwick/41 N. Bridge St., Somerville 08876/201-722-8200

Edwin B. Forsythe/301 Mill st., Moorestown 08057/609-235-6622

Matthew J. Rina1do/1961 Morris Ave., Union 07083/201-687-4235

.TE

.ps 10

.vs 12p

Output:

New Jersey Representatives
(Democrats)

Name Office address

James J. Florio 23 S. White Horse Pike, Somerdale 08083
William J. Hughes 2920 Atlantic Ave., Atlantic City 08401
James J. Howard 801 Bangs Ave., Asbury Park 07712
Frank Thompson, Jr. 10 Rutgers Pl., Trenton 08618
Andrew Maguire 115 W. Passaic SL, Rochelle Park 07662
Robert A. Roe U.S.P.O., 194 Ward St., Paterson 07510
Henry Helstoski 666 Paterson Ave., East Rutherford 07073
Peter W. Rodino, Jr. Suite 1435A, 970 Broad SL, Newark 07102
Joseph G. Minish 308 Main SL, Orange 07050
Helen S. Meyner 32 Bridge St., Lambertville 08530
Dominick V. Daniels 895 Bergen Ave., Jersey City 07306
Edward J. Patten Natl. Bank Bldg., Perth Amboy 08861

(Republicans)

Millicent Fenwick 41 N. Bridge St., Somerville 08876
Edwin B. Forsythe 301 Mill St., Moorestown 08057
Matthew J. Rinaldo 1961 Morris Ave., Union 07083

Phone

609-627 -8222
609-345-4844
201-774-1600
609-599-1619
201-843-0240
201-523-5152
201-939-9090
201-645-3213
201-645-6363
609-397 -1830
201-659-7700
201-826-4610

201-722-8200
609-235-6622
201-687 -4235

This is a paragraph of normal text placed here only to indicate where the left and right margins are. Examine the appearance of
centered tables or expanded tables, and observe how such tables are formatted.

Revision A, of 9 May 1988

Chapter 6 - Formatting Tables with tbl 137

Input:

.TS

center tab (/)

c s s s

c s s s

c c c c

n n n n .

LYKE WAKE WALK

Successful Crossings 1959-1966

Year/First Crossings/Repeats/Total

1959/89/23/112

1960/222/33/255

1961/650/150/800

1962/1100/267/1367

1963/1054/409/1463

1964/1413/592/2005

1965/2042/771/2813

1966/2537/723/3260

.TE

Output:

LYKE WAKE WALK
Successful Crossings 1959-1966

Year First Crossings Repeats Total
1959 89 23 112
1960 222 33 255
1961 650 150 800
1962 1100 267 1367
1963 1054 409 1463
1964 1413 592 2005
1965 2042 771 2813
1966 2537 723 3260

Revision A. of 9 May 1988

138 Formatting Documents

Input:

.TS

tab (Il box;

cb

c I c I c

ltiw(li) I Itw(2i) I Ip8 I Iw(1.6i)p8 .

Some Interesting Places

Name/Description/Practical Information

T{

American Museum of Natural History

T}/T{

The collections fill 11.5 acres (Michelin) or 25 acres (MTA)

of exhibition halls on four floors. There is a full-sized replica

of a blue whale and the world's largest star sapphire (stolen in 1964).

T}/Hours/10-5, ex. Sun 11-5, Wed. to 9

\-/\-/Location/T{

Central Park West & 79th st.

T}

\-/\-/Admission/Donation: $1.00 asked

\-/\-/Subway/AA to 81st st.

\-/\-/Telephone/212-873-4225

Bronx Zoo/T{

About a mile long and .6 mile wide, this is the largest zoo in America.

A lion eats 18 pounds

of meat a day while a sea lion eats 15 pounds of fish.

T}/Hours/T{

10-4: 30 winter, to 5: 00 summer

T}

\-/\-/Location/T{

185th st. & Southern Blvd, the Bronx.

T}

\-/\-/Admission/$1.00, but Tu,We,Th free

\-/\-/Subway/2, 5 to East Tremont Ave.

\-/\-/Telephone/212-933-1759

Brooklyn Museum/T{

Five floors of galleries contain American and ancient art.

There are American period rooms and architectural ornaments saved

from wreckers, such as a classical figure from pennsylvania station.

T}/Hours/Wed-Sat, 10-5, Sun 12-5

\-/\-/Location/T{

Eastern Parkway & Washington Ave., Brooklyn.

T}

\-/\-/Admission/Free

\-/\-/Subway/2,3 to Eastern Parkway.

\-/\-/Telephone/212-638-5000

T{

New-York Historical society

T}/T{

All the original paintings for Audubon's

. I

Birds of America

.R

are here, as are exhibits of American decorative arts, New York history,

Hudson River school paintings, carriages, and glass paperweights.

T}/Hours/T{

Tues-Fri & Sun, 1-5; Sat 10-5

T}

\-/\-/Location/T{

Central Park West & 77th st.

T}

\-/\-/Admission/Free

\-/\-/Subway/AA to 81st st.

\-/\-/Telephone/212-873-3400

.TE

sun
microsystems

Revision A, of 9 May 1988

Chapter 6 - Formatting Tables with tbl 139

Output:

Some Interesting Places
Name Description Practical Infonnation

American M use- The collections fill 11.5 acres Hours 10-5. ex. Sun 11-5. Wed. to 9

um of Natural (Michelin) or 25 acres (MT A) Location Central Park West & 79th St.

History of exhibition halls on four Admission Donation: $1.00 asked

floors. There is a full-sized re- Subway AA to 81st St.

plica of a blue whale and the Telephone 212-873-4225

world's largest star sapphire
(stolen in 1964).

Bronx Zoo About a mile long and .6 mile Hours 10-4:30 winter, to 5:00 summer

wide, this is the largest zoo in Location 185th St. & Southern Blvd, the

America. A lion eats 18 pounds Bronx.

of meat a day while a sea lion Admission $1.00, but TU,We,Th free

eats 15 pounds of fish. Subway 2,5 to East Tremont Ave.

Telephone 212-933-1759

Brooklyn Museum Five floors of galleries contain Hours Wed-Sat. 10-5. Sun 12-5

American and ancient art. Location Eastern Parkway & Washington

There are American period Ave .• Brooklyn.

rooms and architectural oma- Admission Free

ments saved from wreckers, Subway 2.3 to Eastern Parkway.

such as a classical figure from Telephone 212-638-5000

Pennsylvania Station.
New-York Histor- All the original paintings for Hours Tues-Fri & Sun. 1-5; Sat 10-5

ical Society Audubon's Birds of America are Location Central Park West & 77th St.

here, as are exhibits of Ameri- Admission Free

can decorative arts, New York Subway AA to 8Ist St.

history, Hudsol1 River school Telephone 212-873-3400

paintings, carriages, and glass
paperweights.

Revision A. of 9 May 1988

140 Formatting Documents

6.4. tbl Commands

Table 6-1 tbl Command Characters and Words

Command

a A
allbox
b B
box
c C

Meaning

Alphabetic subcolumn
Draw box around all items
Boldface item
Draw box around table
Centered column

center Center table in page
doublebox Doubled box around table
e E
expand
f F

i I
1 L

n N
nnn
p p

r R
s S
t T
tab (x)
T{ T}

v V

w W

.xx
I
I I

\---

\ -

Equal width columns
Make table full line width
Font change

Italic item
Left adjusted column
Numerical column
Column separation
Point size change

Right adjusted column
Spanned item
Vertical spanning at top
Change data separator character
Text block

Vertical spacing change
Minimum width value
Included troff command
Vertical line
Double vertical line

Vertical span
Vertical span
Double horizontal line
Horizontal line
Short horizontal line

Revision A, of9 May 1988

7
Typesetting Mathematics with eqn

Typesetting Mathematics with e qn ... 143

7.1. Displaying Equations- .EQ and .EN ... 144

7.2. Running eqn and neqn .. 145

7.3. Putting Spaces in the Input Text ... 146

7.4. Producing Spaces in the Output Text ... 147

7.5. Symbols, Special Names, and Greek Letters ... 147

7.6. Subscripts and Superscripts - sub and sup .. 148

7.7. Grouping Equation Parts - { and } .. 149

7.8. Fractions - over .. 150

7.9. Square Roots - sqrt ... 151

7.10. Summation, Integral, and Other Large Operators 152

7.11. Size and Font Changes ... 153

7.12. Diacritical Marks .. 154

7.13. Quoted Text ... 155

7.14. Lining Up Equations - mark and lineup ... 156

7.15. Big Brackets ... 156

7.16. Piles-pile ... 157

7.17. Matrices - matrix .. 158

7.18. Shorthand for In-line Equations - delim .. 159

7.19. Definitions - define ... 159

7.20. Tuning the Spacing .. 161

7.21. Troubleshooting ... 161

7.22. Precedences and Keywords ... 162

7.23. Several Examples .. 166

7
Typesetting Mathematics with e qn

This chapter explains how to use the eqn preprocessor for printing mathematics
on a phototypesetter, and provides numerous examples after which to model
equations in your documents. 1

You describe mathematical expressions in an English-like language that the eqn
program translates into t rof f commands for final tr 0 f f formatting. In other
words, eqn sets the mathematics while troff does the body of the text. eqn
provides accurate and relatively easy mathematical phototypesetting, which is
not easy to accomplish with normal typesetting machines. Because the
mathematical expressions are embedded in the running text of a manuscript, the
entire document is produced in one process .. For example, you can set in-line
expressions like lim (tanX).m2x = 1 or display equations like

%-i11t12

lnG()
[

SiZ"] S %I/i G(z)=e % =exp l:-- =Ile 1

i~l k i~l

eqn knows relatively little about mathematics. In particular, mathematical sym
bols like +, -, x, parentheses, and so on have no special meanings. eqn is quite
happy to set these symbols, and they will look good.

eqn also produces mathematics with nr 0 £ £. The input is identical, but you
have to use the programs neqn and nro££ instead of eqn and tro££. Of
course, some things won't look as good because your workstation or terminal
does not provide the variety of characters, sizes and fonts that a phototypesetter
does, but the output is usually adequate for proofreadin~.

1 The material in this chapter is derived from A System/or Typesetting Mathematics, B.W. Kernighan. L. L.
Cherry and Typesetting Mathematics - User's Gu.ide, B.W. Kernighan. L.L Cherry. Bell Laboratories. Murray
Hill. New Jersey.

143 Revision A, of 9 May 1988

144 Formatting Documents

7.1. Displaying Equations
- .EQ and .EN

To tell eqn where a mathematical expression begins and ends, mark it with lines
beginning .EQ and . EN. Thus if you type the lines:

[

.EQ 1 x=y+z

.EN -

-------------'
your output will look like:

x=y+z

eqn copies' .EQ'and '.EN' through untouched. This means that you have to
take care of things like centering, numbering, and so on yourself. The common
way is to use the troff and nrcff macro package package '-ms', which pro
vides macros for centering, indenting, left-justifying and making numbered equa
tions.

With the -ms package, equations are centered by default. To left-justify an equa
tion, use . EQ L instead of . EQ. To indent it, use . EQ I.

You can also supplement eqn with t rc f f commands as desired; for example,
you can produce a centered display with the input:

.ce

.EQ
x sub i Y sub i
.EN

which produces

x;=y;.' .

You can call out any of these by an arbitrary 'equation number,' which will be
placed at the right margin. For example, the input

[

.EQ I (3.1a)
x - f(y/2) + y/2

.• EN 1
produces the output

x=J (y/2)+yl2 (3.1a)

There is also a shorthand notation so you can enter in-line expressions like xl
without. EQ and . EN. This is described in the section "Shorthand for In-line
Equations. "

Revision A. of 9 May 1988

7.2. Running eqn and
neqn

Chapter 7 - Typesetting Mathematics with eqn 145

To print a document that contains mathematics on the phototypesetter, use:

hostname% eqn files I troff -options I l.pr -t -Printer

troff or your installation's equivalent does the formatting, which is sent to
your phototypesetter as indicated by -Pprinter. If you use the -IDS macro pack
age for example, type:

hostname% eqn files I troff --ms -t I l.pr -t -Printer

To display equations on the standard output, your workstation screen, use nroff
as follows:

(hostname% neqn files I nroff -options

The language for equations recognized by neqn is identical to that of eqn,
although of course the output is more restricted. You can use the online rendi
tion of the mathematical formulae for proofing, but the output does not accu
rately represent the symbols and fonts. You can of course pipe the output
through mor e for easier viewing:

hostname% neqn files I nroff -options I more

or redirect it to a file:

hostname% neqn files I nroff -options> newfile

To use a GSI or DASI tenninal as the output device, type:

(hostname% naqn files I nroff -Tx

where x is the tenninal type you are using, such as 300 or 300S. To send neqn
output to the printer, type:

hostname% neqn file I nroff -options I l.pr -Pprinter

J

]

You can use eqn and neqn with the tbl program for setting tables that contain
mathematics. Use tbl before eqn or neqn, like this:

hostname% tbl files I eqn I troff -options

or

hostname% tbl files I neqn I nroff -options

Revision A, of 9 May 1988

146 Formatting Documents

7.3. Putting Spaces in the
Input Text

eqn removes spaces and newlines within an expression and leaves normal text
alone. Thus, between. EQ and . EN,

r
OEQ
x-y+z
.EN

and

[~E~ Y + z

.. EN

and

.EQ

x y
+ z

.EN

all produce the same output, namely:

x=y+z

1

1

You should use spaces and newlines freely to make your input equations readable
and easy to edit. In particular, very long lines are a bad idea, since they are often
hard to fix if you make a mistake.

The only way eqn can deduce that some sequence of letters might be special is if
that sequence is separated from the letters on either side of it. To do this, sur
round a special word by ordinary spaces (or tabs or newlines) , as shown in the
previous section.

You can also make special words stand out by surrounding them with tildes or
circumflexes:

is much the same as the last example, except that the tildes not only separate the
magic words like sin, omega, and so on, but also add extra spaces, one space
per tilde:

x = 2 7t J sin (00 t) dt

You can also use braces { } and double quotes " . . . " to separate special
words; these characters that have special meanings are described later.

Remembering that a blank is a delimiter can be a problem. For instance, a com
mon mistake is typing:

1

sun
microsystems

Revision A, of 9 May 1988

7.4. Producing Spaces in
the Output Text

7.5. Symbols, Special
Names, and Greek
Letters

Chapter 7 - Typesetting Mathematics with eqn 147

[

.EQ 1 f (x sub i)

.EN

which produces

instead of

!(Xj)

eqn cannot tell that the right parenthesis is not part of the subscript. Type
instead:

[.EQ f(x
.EN

sub i

To force extra spaces into the output, use a tilde - for each space you want:

gives

x =y +z

1

1

You can also use a circumflex "', which gives a space half the width of a tilde. It
is mainly useful for fine-tuning. Use tabs to position pieces of an expression, but
you must use troff commands to set the tab stops.

eqn knows some mathematical symbols, some mathematical names, and the
Greek alphabet. For example,

x=2 pi int sin (omega t)dt
[

.EQ

_ .EN

produces

X=21tfsin(CJY)dt

Here the spaces in the input are necessary to tell eqn that int, pi, sin, and
omega are separate entities that should get special treatment. The sin, digit 2,
and parentheses are set in roman type instead of italic; pi and omega are made
Greek; and int becomes the integral sign.

When in doubt, leave spaces around separate parts of the input. A very common
error is to type

1

Revision A, of9 May 1988

148 Formatting Documents

7.6. Subscripts and
Superscripts - sub
and sup

[_f_<_P_i> ___ J

without leaving spaces on both sides of the pi. As a result, eqn does not recog
nize pi as a special word, and it appears as f (Pi) instead of f (x).

A complete list of eqn names appears in the section "Precedences and Key
words. n You can also use special characters available in t r 0 f f for anything
eqn doesn't know about

To obtain subscripts and superscripts, use the words sub and sup.

[

.EQ 1 x sup 2 + y sub k

.EN

gives

eqn takes care of all the size changes and vertical motions needed to make the
output look right. You must surround the words sub and sup by spaces; x sub2
gives you xsub 2 instead of X2. As another example, consider:

[

.EQ
x sup 2 + Y sup 2

_ .EN

z sup 2

which produces:

Furthermore, don't forget to leave a space (or a tilde, etc.) to mark the end of a
subscript or superscript. A common error is to say something like

.EQ
Y = (x sup 2)+1
.EN

which causes

instead of the intended

y=(x2)+1

which is produced by:

.EQ
y = (x sup 2)+ 1
.EN

1

.sun
• microsystems

Revision A, of 9 May 1988

7.7. Grouping Equation
Parts - { and }

Chapter 7 - Typesetting Mathematics with eqn 149

Subscripted subscripts and superscripted superscripts also work:

.EQ

is

x sub i sub 1
.EN

A subscript and superscript on the same thing are printed one above the other if
the subscript comes first:

is

.EQ
x sub i sup 2
.EN

Other than this special case, sub and sup group to the right, so

(x sup Y sub z

means xJ
• , not xJ z •

Nonnally, the end of a subscript or superscript is marked simply by a blank, tab,
tilde, and so on. If the subscript or superscript is something that has to be typed
with blanks in it, use the braces { and } to mark. the beginning and end of the
subscript or superscript:

J

[

.EQ 1 e sup {i omega t}

.EN

""--------------"

is

You can always use braces to force eqn to treat something as a unit, or just to
make your intent perfectly clear. Thus:

[

.EQ
x sub Ii sub 1} sup 2

, .EN

is

with braces, but

1

Revision A, of 9 May 1988

150 Formatting Documents

7.8. Fractions - over

[

.EQ 1 x sub i sub 1 sup 2

.EN

'-----------'"

is

which is rather different.

Braces can occur within braces if necessary:

[

.EQ
e sup {i pi sup {rho +1}}

_ .EN 1
is

The general rule is that anywhere you could use some single entry like x, you can
use an arbitrarily complicated entry if you enclose it in braces. eqn looks after
all the details of positioning it and making it the right size.

In all cases, make sure you have the right number of braces. Leaving one out or
adding an extra causes eqn to complain bitterly.

Occasionally you have to print braces. To do this, enclose them in double
quotes, like" { ". Quoting is discussed in more detail in Quoted Text.

To make a fraction, use the word over:

[OEQ
a+b
.EN

gives

over 2c =1

a+b=l
2c

The line is made the right length and positioned automatically.

a+b over c+d+e
[

.EQ
1

_ .EN

produces

a+b =1
c+d+e

1

1

Revision A, of 9 May 1988

7.9. Square Roots - sqrt

Chapter 7 - Typesetting Mathematics with eqn 151

Use braces to clarify what goes over what:

.EQ
{alpha T beta} over {sin (x)}
.EN

is

a+~
sin(x)

When there is both an over and a sup in the same expression, eqn does the
sup before the over, so

-b sup 2 over pi
[OEQ

.EN

2 ~
is -b instead of -b 7t The rules that detennine which operation is done first in

7t

cases like this are summarized in the section "Precedences and Keywords."
When in doubt, however, use braces to make clear what goes with what.

To draw a square root, use sqrt:

[OEQ
sqrt a+b
.EN

produces

and

.EQ
sqrt a+b + lover sqrt {ax sup 2 +bx+c}
.EN

is

..Ja+b +-;=::;:;=1==
..Jax2+bx+c

Note: Square roots of tall quantities look sloppy because a root-sign big enough
to cover the quantity is too dark and heavy:

1

1

[

OEQ 1 sqrt {a sup 2 over b sub 2}
.EN

-------------"

Revision A, of 9 May 1988

152 Formatting Documents

7.10. Summation, Integral,
and Other Large
Operators

is

Big square roots are generally better written as something to a power:

which is

.EQ
(a sup 2 /b sub 2) sup {lover 2}
.EN

To produce summations, integrals, and similar constructions, use:

sum from i=O to {i= inf} x sub i
[

.EQ

_ .EN

which produces
;=-

;=0

Notice that you use braces to indicate where the upper part i=oo begins and ends.
No braces are necessary for the lower part i=O, because it does not contain any
blanks. The braces will never hurt, and if the f rom and to parts contain any
blanks, you must use braces around them.

1

The from and to parts are both optional, but if both are used, they have to occur
in that order.

Other useful characters can replace the sum in our example:

prod union inter

become, respectively,

f nun
Since the thing before the from can be anything, even something in braces,
from-to can often be used in unexpected ways:

1

[.~Q 1 Ilm from {n -> inf} x sub n =0
.EN

'----------"'

+~t!! Revision A, of9 May 1988

7.11. Size and Font
Changes

Chapter 7 - Typesetting Mathematics with eqn 153

is

By default, equations are set in 10-point type with standard mathematical con
ventions to detennine what characters are in roman and what in italic. Although
eqn makes a valiant attempt to use aesthetically pleasing sizes and fonts, it is not
perfect. To change sizes and fonts, use size n and roman, italic, bold
and fat. Like sub and sup, size and font changes affect only the thing that
follows them; they revert to the normal situation at the end of it. Thus

[

.EQ 1 bold x y

.EN

'------------"

is

xy

and

.EQ
size 14 bold x = y +

size 14 {alpha + beta}
.EN

gives

X=y-t<l+(3
As always, you can use braces if you want to affect something more complicated
than a single letter. For example, you can change the size of an entire equation
by

[

.EQ 1 size 12 { ...
• EN

---------"
Legal sizes that may follow size are the same as those allowed in troff: 6, 7,
8,9, 10, 11, 12, 14, 16, 18,20,22,24,28, 36. You can also change the size by a
given increment or decrement. For example, you can say size +2 to make the
size two points bigger, or size -3 to make it three points smaller. This is
easier because you don't have to know what the current size is.

The s i z e variable in e qn translates into a t r off \ s construct. However,
trof f only recognizes one digit after the + or - sign. Therefore, \ s+ 9 or
\ s - 9 are respectively the largest incremental and decremental point size
changes.

If you are using fonts other than roman, italic and bold, you can say font X
where X is a one charactertroff name or number for the font. Since eqn is

Revision A, of 9 May 1988

154 Formatting Documents

7.12. Diacritical Marks

tuned for roman, italic and bold, other fonts may not appear quite as good.

The fat operation takes the current font and widens it by overstriking: fat
grad is V and fat {x sub i} is Xi.

If an entire document is to be in a non-standard size or font, it is a severe nui
sance to have to write out a size and font change for each equation. Accordingly,
you can set a global size or font which thereafter affects all equations. At the
beginning of any equation, you might say, for instance,

.EQ
gsize 16
gfont R

.EN

to set the size to 16 and the font to roman thereafter. In place of R, you can use
any of the troff font names. The size after gsize can be a relative change
with + or-.

Generally, gsize and gfont will appear at the beginning of a document but
they can also appear throughout a document: you can change the global font and
size as often as needed. For example, in a footnote2 you will typically want the
size of equations to match the size of the footnote text, which is two points
smaller than the main text. Don't forget to reset the global size at the end of the
footnote.

To get accent marks on top of letters, there are several words:

x dot i
x dotdot x
x hat :i
x tilde x
x vee x
x dyad ~

x bar x
x under !

The diacritical mark is placed at the right height. The bar and under are made
the right length for the entire construct, as in x +y +z; other marks are centered.
For example

2 Like this one, in which we have a few random expressions like Xi and 1il. The sizes for these were set by
the command gsize --2.

Revision A. of 9 May 1988

7.13. Quoted Text

Chapter 7 - Typesetting Mathematics with eqn 155

.EQ
x dot under + x hat + y tilde
+ X hat + Y dotdot = z+Z bar
.EN

produces

Any input entirely within quotes (II ••• II) is not subject to any of the font changes
and spacing adjustments that you nonnally set. This provides a way to do your
own spacing and adjusting if needed:

.EQ
italic "sin(x)" + sin (x)
.EN

is

sin(x) +sin(x)

You also use quotes to get braces and other eqn keywords printed:

[

.EQ 1 "I size alpha }"

.EN

'---------
is

{ size alpha }

and

[

.EQ 1 roman "I size alpha }"

.EN

---------"
is

{ size alpha }

The construction II II is often used as a place-holder when grammatically eqn
needs something, but you don't actually want anything in your output. For
example, to make 2He, you can't just type sup 2 roman He because a sup
has to be a superscript on something. Thus you must say

[

.EQ
"" sup 2 roman He

, .EN 1
Revision A, of9 May 1988

156 Formatting Documents

7.14. Lining Up Equations
- mark and lineup

7.15. Big Brackets

To get a literal quote use \ ". t r 0 f f characters like \ (b s can appear unquoted,
but more complicated things like horizontal and vertical motions with \ h and \ v
should always be quoted.

Sometimes it's necessary to line up a series of equations at some horizontal posi
tion, often at an equals sign. To do this, use the two operations called mar k and
lineup.

The word mar k may appear once at any place in an equation. It remembers the
horizontal position where it appeared. Successive equations can contain one
occurrence of the word lineup. The place where lineup appears is made to
line up with the place marked by the previous mark if at all possible. Thus, for
example, you can say

.EQ I
x+y mark = z
.EN

.EQ I

x lineup 1
.EN

to produce

x+y=z

x=1

For reasons beyond the scope of this chapter, when you use eqn and -IDS, use
either. EQ lor. EQ L, as mark and lineup don't work with centered equa
tions. Also bear in mind that mar k doesn't look ahead;

.EQ
x mark =1

x+y lineup =z
.EN

isn't going to work, because there isn't room for the x+y part after the mark has
processed the x.

To get big brackets [], braces { } ,parentheses (), and bars I I around
things, use the left and right commands:

.EQ
left { a over b + 1 right }

- left (cover d right)
+ left [e right]

.EN

is

Revision A, of 9 May 1988

7.16. Piles - pile

Chapter 7 - Typesetting Mathematics with eqn 157

The resulting brackets are made big enough to cover whatever they enclose.
Other characters can be used besides these, but they are not likely to look very
good. Two exceptions are the floor and ceiling characters:

.EQ
left floor x over y right floor
<= left ceiling a over b right ceiling
.EN

produces

Several warnings about brackets are in order. First, braces are typically bigger
than brackets and parentheses, because they are made up of three, five, seven,
etc., pieces, while brackets can be made up of two, three, etc. Second, big left
and right parentheses often look poor, because the character set is poorly
designed.

The right part may be omitted: a 'left something' need not have a correspond
ing 'right something'. If the right part is omitted, put braces around the thing
you want the left bracket to encompass. Otherwise, the resulting brackets may be
too large.

If you want to omit the left part, things are more complicated, because techni
cally you can't have a right without a corresponding left. Instead you have
to say

[~l_e_f_t __ '_"_' __ .. _._._. __ r_i_g_h_t __) ____________________________________ -J]
for example. The left "" means a 'left nothing'. This satisfies the rules
without hurting your output.

There is a general facility for making vertical piles of things; it comes in several
flavors. For example:

.EQ
A -=- left [

pile { a above b above c }
-- pile { x above y above z

right]
.EN

will make

Revision A, of 9 May 1988

158 Formatting Documents

7.17. Matrices - matrix

The elements of the pile are centered one above another at the right height for
most purposes. There can be as many elements as you want. The keyword
above is used to separate the pieces; put braces around the entire list. The ele
ments of a pile can be as complicated as needed, even containing more piles.

Three other forms of pile exist: lpile makes a pile with the elements left
justified; rpile makes a right-justified pile; and cpile makes a centered pile,
just like pile. The vertical spacing between the pieces is somewhat larger for
lpiles, rpiles, and cpiles than it is for ordinary piles. For example:

.EQ
roman sign (x)-=
left {

.EN

Ipile {l above 0 above -l}
-- Ipile

{if-x>O above if-x=O above if-x<O}

makes

1
1 ifx>O

sign(x) = 0 if x=O
-1 ifx<O

Notice the left brace without a matching right one.

It is also possible to make matrices. For example, to make a neat array like

you have to type

.EQ
matrix

ccol x sub i above y sub i
ccol x sup 2 above y sup 2

.EN

Thisproduces a matrix with two centered columns. The elements of the columns
are then listed just as for a pile, each element separated by the word above.
You can also use leol or reol to left or right adjust columns. Each column
can be separately adjusted, and there can be as many columns as you like.

The reason for using a matrix instead of two adjacent piles, by the way, is that if
the elements of the piles don't all have the same height, they won't line up prop
erly. A matrix forces them to line up, because it looks at the entire structure
before deciding what spacing to use.

A word of warning about matrices: each column must have the same number
of elements in it. Otherwise, results are unpredictable.

Revision A. of 9 May 1988

7.18. Shorthand for In-line
Equations - delim

7.19. Definitions
define

Chapter 7 - Typesetting Mathematics with eqn 159

In a mathematical document, it is necessary to follow mathematical conventions
not just in display equations, but also in the body of the text. For example you
need variable names like x to be in italics. Although you can do this by sur
rounding the appropriate parts with the macro requests. EQ and. EN, the con
tinual repetition of . EQ and . EN is a nuisance. Furthermore, with -IDS, • EQ and
. EN imply a displayed equation.

eqn provides a shorthand for short in-line expressions. You can define two char
acters to mark the left and right ends of an in-line equation, and then type expres
sions in the middle of text lines. To set both the left and right characters to dollar
signs, for example, add to the beginning of your document the three lines

[.EQ
delim $$
.EN

Having done this, you can then say things like

Let $alpha sub i$ be the primary variable, and let $beta$
be zero. Then we can show that $x sub 1$ is $>=0$.

1

This works as you might expect; spaces, newlines, and so on are significant in the
text, but not in the equation part itself. Multiple equations can occur in a single
input line.

Enough room is left before and after a line that contains in-line expressions that
something like $sum from i=1 to n x sub i$ does not interfere with the lines sur
rounding it.

The printed result looks like: Let Clj be the primary variable, and let ~ be zero.
Then we can show that x 1 is ~.

To tum off the delimiters, use:

[.EQ
delim off
.EN

Notes: Don't use braces, tildes, circumflexes, or double quotes as delimiters;
chaos will result. Also, if you're using tbl, don't use sharps (pound signs)
either.

1

eqn provides a string-naming facility so you can give a frequently-used string of
characters a name, and thereafter just type the name instead of the whole string.
For example, if the sequence

1 [

.EQ
x sub i sub 1 + Y sub i sub 1

, .EN

Revision A, of 9 May 1988

160 Formatting Documents

appears repeatedly throughout a paper, you can save re-typing it each time by
defining it like this:

.EQ
define xy 'x sub i sub 1 + Y sub i sub l'
.EN

This makes xy a shorthand for whatever characters occur between the single
quotes in the definition. You can use any character instead of quote to mark the
ends of the definition, as long as it doesn't appear inside the definition.

Now you can use xy like this:

[

.EQ
fIx) = xy ...

· .EN 1
and so on. Each occurrence of xy will expand into what it was defined as. Be
sure to leave spaces or their equivalent around the name when you actually use it,
so eqn will be able to identify it as special.

There are several things to watch out for. First, although definitions can use pre
vious definitions, as in

.EQ
define
define
.EN

xi ' x sub i '
xi1 ' xi sub 1 '

Don't define something in terms of itself. A common error is to say

[

.EQ
define X • roman X •

· .EN 1
This is a guaranteed disaster, since X is now defined in tenns of itself. If you say

[

.EQ
define X • roman "X" •

· .EN 1
however, the quotes protect the second X, and everything works fine.

You can redefine eqn keywords. You can make slash C/) mean over by saying

[

.EQ
define / • over •

· .EN 1
Revision A, of 9 May 1988

7.20. Tuning the Spacing

7.21. Troubleshooting

Chapter 7 - Typesetting Mathematics with eqn 161

or redefine over as / with

[

.EQ
define over ' / '

_ .EN 1
If you need things to print on a workstation or tenninal as well as on the photo
typesetter, it is sometimes worth defining a symbol differently in neqn and eqn.
To do this, use ndefine and tdefine. A definition made with ndefine
only takes effect if you are running neqn; if you use tdef ine, the definition
only applies for eqn. Names defined with plain def ine apply to both eqn and
neqn.

Although eqn tries to get most things at the right place on the paper, it isn't per
fect, and occasionally you will need to tune the output to make it just right. You
can get small extra horizontal spaces with tilde and circumflex. You can also say
back n and fwd n to move small amounts horizontally. The n is how far to
move in 1/100s of an em (an em is about the width of the letter 'm'.) Thus back
50 moves back about half the width of an m. Similarly you can move things up
or down with up n and down n. As with sub or sup, the local motions affect
the next thing in the input, and this can be anything if it is enclosed in braces.

If you make a mistake in an equation, like leaving out a brace, having one too
many, or having a sup with nothing before it, eqn tells you with the message:

syntax error between lines x and y, file z

where x and yare approximately the lines between which the trouble occurred,
and z is the name of the file in question. The line numbers are approximate, so
look nearby as well. There are also self-explanatory messages that arise if you
leave out a quote or try to run eqn on a non-existent file.

If you want to check a document before actually printing it, run:

(hostname% eqn files >/dev/null

to throwaway the output but display the messages.

If you use something like dollar signs as delimiters, it is easy to leave one out.
You may also occasionally forget one half of a pair of macros or have an unbal
anced font change. These can cause problems, but you can check for balanced
pairs of delimiters and macros with checkeq and checknr. For instance, to
run checkeq on this chapter called eqn . ug to check for unbalanced pairs of
. EQs and . ENS, type:

J

Revision A, of 9 May 1988

162 Formatting Documents

7.22. Precedences and
Keywords

hostname% checkeq eqn.uq
eqn.ug:

New delims , line 2
in EQ, line 2

Spurious EN, line 46
Delim off, line 1254
New delims , line 1278
New delims , line 1635
in EQ, line 1635

New delims tt, line 1991
Delim off, line 1999

hostname%

We left out the . EQ before the . EN on line 46 to show you some sample output.
This also reports on the delimiters. You can also use checknr with specific
options to check specifically for a particular macro pair. For example, to run
checknr to check that there is an . EQ for every. EN, type:

hostname% checknr -s -£ -a.EO.EN eqn.uq
46: Unmatched .EN
hostname%

Specify the macro pair you want to check for with the -a option and the six char
acters in the pair. The -s option ignores size changes and the -f option ignores
font changes. See checknr(l) in the SunOS Reference Manual for more
details.

Inline equations can only be so big because of an internal buffer in t ro f f. If
you get a message word overflow, you have exceeded this limit. If you print
the equation as a displayed equation, that is, offset from the body of the text with
. EQ and . EN, this message will usually go away. The message line over
flow indicates you have exceeded an even bigger buffer. The only cure for this
is to break the equation into two separate ones.

On a related topic, eqn does not break equations by itself; you must split long
equations up across multiple lines by yourself, marking each by a separate . EQ

. •. . EN sequence. eqn does warn about equations that are too long to fit on
one line.

If you don't use braces, eqn will do operations in the order shown in this list.

dyad vec under bar tilde hat dot dotdot
Vwd back down up
fat roman italic bold size
sub sup sqrt over
from to

The operations that group to the left are:

over sqrt left right

All others group to the right. For example, in the expression

Revision A, of9 May 1988

Table 7-1

Chapter 7 - Typesetting Mathematics with eqn 163

[

.EQ
a sup 2 over b

_ .EN 1
sup is defined to have a higher precedence than over, so this construction is

2 2

parsed as ~ instead of a b. Naturally, you can always force a particular parsing

by placing braces around expressions.

Digits, parentheses, brackets, punctuation marks, and the following mathematical
words are converted to Roman font when encountered:

sin
max
Re

cos tan sinh
min lim log

1m and if for

cosh tanh
ln exp

det

arc

The following character sequences are recognized and translated as shown.

Character Sequence Translation

You Type Translation
>= ~

<= ~

-
!= '*
+- ±
-> ~

<- f-

« «
» »
inf
partial a
prime
approx :::

nothing
cdot
times x
del V

grad V

, ... ,
sum L
int J
prod n
union U
inter n

Revision A, of 9 May 1988

164 Formatting Documents

To obtain Greek letters, simply spell them out in whatever case you want:
Table 7-2 Greek Letters

You Type Translation You Type Translation
DELTA II iota 1

GAMMA r kappa K

LAMBDA A lambda A
OMEGA n mu Jl
PHI cI> nu v
PI n omega co
PSI 'I' omicron 0

SIGMA 1: phi 4>

THETA 8 pi 1t

UPSILON y psi 'I'
XI rho p
alpha a sigma 0'

beta p tau 't

chi X theta 0

delta ~ upsilon '\)

epsilon £ xi l;
eta 11 zeta ~
gamma "I

Revision A, of 9 May 1988

Chapter 7 - Typesetting Mathematics with eqn 165

The eqn keywords, except for characters with names, follow.
Table 7-3 eqn Keywords

above lpile
back mark
bar matrix
bold ndefine
ccol over
col pile
cpile rcol
define right
delim roman
dot rpile
dotdot size
down sqrt
dyad sub
fat sup
font tdefine
from tilde
fwd to
gfont under
gsize up
hat vec
italic

_ A

,
leol { }
left " " ...
lineup

Revision A, of9 May 1988

166 Formatting Documents

7.23. Several Examples Here is the complete source for several examples and for the three display equa
tions in the introduction to this chapter.

Square root

Input:

.EQ
x = {-b +- sqrt{b sup 2 - 4ac}} over 2a
.EN

Output:

x
-b±~

2a

Summation, Integral, and Other Large Operators

Input:

.EQ
lim from {x -> pi /2} (tan-x) inf
.EN

Output:

lim (tan x)=00
x~1tI2

Input:

.EQ
sum from i=O to infinity x sub i
.EN

pi over 2

Output:

00 1t

D·=-
i=() I 2

Input:

.EQ
lim from {x-> pi /2} (tan-x) sup{sin-2x}-=-1
.EN

Output

lim (tan x)sin 2x = 1
x-m/2

Revision A, of 9 May 1988

Chapter 7 - Typesetting Mathematics with eqn 167

Input:

.EQ
define ernx "{e sup rnx}"
define mab "{m sqrt ab}"
define
define
int dx
left

sa "{sqrt a}"
sb "{sqrt b}"
over {a ernx - be sup -rnx}-=
lpile {

1 over {2 mab} -log-
{sa ernx - sb}over{sa ernx + sb}

above
1 over mab-tanh sup -1 (sa over sb ernx

above
-1 over mab-coth sup -1 (sa over sb ernx)

}

.EN

Output:

Quoted Text

Input:

[

.EQ
lim
.EN

roman "sup" -x sub n

Ouput:

Big Brackets

Input:

lim SUPX/l=O

o

left [x+y over 2a right 1-~-1
[

.EQ

.. EN

Output:

[x:] ~ 1

1

1

Revision A, of 9 May 1988

168 Formatting Documents

Fractions

Input:

.EQ
a sub 0 + b sub lover

{a sub 1 + bsub 2 over
{a sub 2 + b sub 3 over

{a sub 3 + ... }}}
.EN

Output:

Input:

.EQ I
G(z)-mark =- e sup { In - G(z) }

exp left (
sum from k>=l {S sub k z sup k} over k right)

prod from k>=l e sup {S sub k z sup k /k}
.EN

Output:

G()

[

Sk
Zk

] S z'/k G(z)= eln z =exp l:-- = TIe I

k~l k k~l

Input:

.EQ I
lineup = left (1 + S sub 1 z +
{ S sub 1 sup 2 z sup 2 } over 2! + ... right)
left (1+ { S sub 2 z sup 2 } over 2
+ { S sub 2 sup 2 z sup 4 } over { 2 sup 2 cdot 2! }
+ ... right) ...
. EN

Output:

= 1+S1z+--+'" 1+--+--+'" ... [
Slz2 1 [S2

Z2
SiZ4 l·

2! 2 22'2!

Revision A, of 9 May 1988

Chapter 7 - Typesetting Mathematics with eqn 169

Input:

.EQ I
lineup
sum from

sum from m>=O left (

pile { k sub 1 ,k sub 2 , ... , k sub m >=0
above
k sub 1 +2k sub 2 + ... +mk sub m =m}
{ S sub 1 sup {k sub I} } over {I sup k sub 1 k sub 1 }
{ S sub 2 sup {k sub 2} } over {2 sup k sub 2 k sub 2 }-

{ S sub m sup {k sub m}
right z sup m

over {m sup k sub m k sub m

.EN

Output:

[

S~, S~·
= L L -k-, -k-. -,
m~ k,.k k..~ 1 'k l • 2 k2•

k,+2k.+ ..• +mk.=m

Shorthand for In-line Equations

Input:

[.EQ
delim IH
.EN

Let #x sub i#, #yt and #alpha# be positive

Output:

Let Xi, Y and a be positive

1

Revision A, of 9 May 1988

8
Verification Tools

Verification Tools .. 173

8.1. spell ... 173

8.2. checknr ... 173

8.3. soelim .. 173

8.4. deroff .. 173

8.5. fmt .. 173

8.6. col .. 173

8.7. colcrt .. 173

8.8. ul ... 173

8.1. spell

8.2. checknr

8.3. soelim

8.4. deroff

8.5. fmt

8.6. col

8.7. colcrt

8.8. ul

8
Verification Tools

This command returns a list of misspelled words in a file. Because of the limited
size of the on-line dictionary -less than 25,()()() words - some words spell
thinks are misspelled are in fact correct.

This program checks the syntax oftroff files, in much the same way lint
checks the syntax of C programs. People who try it often find it very helpful.

This program follows. so commands in troff files, incOlporating the contents
of these sourced files into the output. This program is helpful for searching
groups of source files, and is also useful with preprocessors such as refer, tbl,
and eqn, none of which follow source commands to fruition.

This command removes troff constructs from source files, and sends the
results to standard output. Because some troff constructs necessarily contain
text, some information may be lost from the output.

This command is a simplified formatter for use inside vi or mail. Devoid of
hyphenation facilities, it does very little except fill text.

This command takes two-column text from nroff containing reverse line-feed
escape sequences for the model 37 Teletype, and displays the two columns side
by-side, so they can be printed on a dumb lineprinter.

This command is analogous to col, but was designed for CRT terminals, as it
makes use of terminal capabilities when available.

Also designed for CRTs, this command highlights underlined text using a
terminal's underline mode, if available, and otherwise reverse video mode.

173 Revision A, of 9 May 1988

Index

A
accent marks, 43, 98, 111, 154

B
bibliographies and citations, see refer program

C
citations and bibliographies, see refer program

D
document formatting, see document preparation
document preparation, 3 thru 23

bibliographies and citations, 103 thru 115
changing fonts, 13
display breakout, 16
displaying documents, 11
entering text, 6
eqn program, 143 thru 169
equation formatting, 21, 143 thru 169
font changes, 13
footnotes, 16
formatters, 3
jargon for typesetting, 5
keeping text on one page, 17
list of items, 14
macro packages, 4
-man macros, 59 thru 66
mathematical equations, 21, 143 thru 169
-me macros, 69 thru 100
-ms macros, 27 Ihru 55
multiple columns, 17
number registers, 23
outline of items, 15
paragraph types, 7
preprocessors, 4
printing documents, 11
quick reference, 10
refer program, 103 thru 115
sample paragraphs, 9
section headers, 13
tables inside documents, 19, 119 thru 140
tbl program, 119 Ihru 140
technical memorandum, 12
text fonnatters, 3
typesetting jargon, 5
typing in text, 6

-175-

E
eqn program, 143/hru 169

accent marks, 154
adjusting the spacing, 161
big brackets, 156
bracketing expressions, 156
defining prepackaged strings, 159
diacritical marks, 154
displaying finished equations, 145
.EQ/ .ENpairs, 144
escaping eqn's fonnatting, 155
examples, 166
font changes, 153
fractions, 150
Greek letters, 147
grouping parts of an equation, 149
in-line equations, 159
integrals, 152
keywords and precedence, 162
lining up two equations, 156
mark and lineup, 156
matrices with matrix, 158
over and under expressions, 150
piles with pile, 157
point size changes, 153
precedence and keywords, 162
printing finished equations, 145
quoted text, 155
separating equations from text, 144
spaces in the input, 146
spaces in the output, 147
square roots, 151
subscripts and superscripts, 148
summations, 152
superscripts and subscripts, 148
symbols and special names, 147
text with in-line equations, 159
troubleshooting, 161
tuning the spacing, 161

equation formatting in documents, s~fe,art nroQ:iratirf

F
fonnatting documents, see document pn;~pa:ratiioIl

M
-man macro package, 59 thru 66

bugs in programs, 64
coding conventions, 60

Index - Continued

-man macro package, continued
cross references, 64
description of program, 61
elements of a manual page, 59
files related to program, 63
formatting a manual page, 65
identifying the page, 60
name of program, 60
new features, 64
number register usage, 65
options of program, 62
parts of a manual page, 59
request summary, 66
see also section, 64
swnmary of requests, 66
synopsis of program, 61
title header line, 60

margins on a page
with -me macros, 71, 86, 88, 97
with -ms macros, 36, 45

mathematical equations in documents, see eqn program
-me macro package, 69 thru 100

accent marks, 98
adjusting macro parameters, 94
annotation reference, 83
annotations, 81
basic requests, 70
changing font and point size, 91
defining macros, 90
delayed text, 82
delayed text inside keeps, 90
diacritical marks, 98
display reference, 80
displaying documents, 70
displays, 77
displays (fancy), 78
double column format, 90
double spacing, 75
elements of document, 86
endnotes, 82
font changes, 91
footers and headers, 74
footnotes, 82
footnotes inside keeps, 90
headers and footers, 74
indented paragraph, 71
keeping text on a single page, 78
left block paragraph, 71
listing items, 77
miscellaneous requests, 97
mUltiple column reference, 90
numbered headers, 85
page layout, 75
paragraph reference, 73
paragraphs, 70
parameters of macros, 94
parts of document, 86
point size changes, 93
predefined strings, 97
preprocessor support, 96
printing documents, 70
quotation marks, 94
quoted text, 77
request summary, 98

-176-

-me macro package, continued
rof f support, 96
section header reference, 85
section headers, 84
special characters, 98
standard paragraph, 70
string registers, 97
summary of requests, 98
table of contents, 82
thesis format, 88
two column format, 90
typesetting caveats, 91
typography reference, 93
underlining, 77
unnumbered headers, 86

-ms macro package, 27 thru 55
accent marks, 43
bibliographies, 42
boxing words and text, 40
capabilities of various macros, 28
changes in new package, 27
changing fonts, 41
changing point sizes, 41
cover sheet, 34
date stamp, 42
defaults and how to change them, 45
diacritical marks, 43
dimensions of page elements, 45
displaying documents, 27
displays, 39
double column format, 37
endnotes, 39
eqn preprocessor use, 48
even page header and footer, 36
font changes, 41
footers and headers, 35
footnotes, 38
formatting requests, 28
headers and footers, 35
indented paragraph, 30
keeping text on a single page, 40
left block paragraph, 29
left shift - • RE, 31
modifying defaults, 45
multiple column format, 37
nested indentation, 31
nro f f requests, 47
number register names, 49
numbered section headers, 33
odd page header and footer, 36
order of requests, 49
paragraphs, 29
point size changes, 41
printing documents, 27
proper order of requests, 49
quotation marks, 43
quote paragraph, 32
register names, 49
relative indentation, 31
request summary. 51
right shift - • RS, 31
running headers and footers, 35
section headers, 33
standard paragraph, 29

-ms macro package, continued
string register names, 49
smnmary of requests, 51
table of contents, 43
tbl preprocessor use, 49
thesis format, 42
title page, 34
t roff requests, 47
unnumbered section headers, 33

N
nroff command, 3

R
refer program. 103 thru 115

accent marks, 111
adding bibliographic data. 105
altering refer macros, 114
bugs and solutions, 110
capabilities explained, 103
citing papers and books, 107
command line options, 108
creating a bibliography, 105
efficiency improvements, 109
endnotes instead of footnotes, 108
features explained, 103
footnote numbering, 111
foreign names in data, 111
indexing the bibliography, 109
internal details, 112
macro modifications for refer, 114
printing the bibliography, 106
referring to papers and books, 107
sorting the bibliography, 106

T
table formatting in documents, see tbl program
tbl program, 119 thru 140

" - vertically span data, 124
a - alphabetic data, 123
allbox option, 123
blocks of text - T { and T}, 127
box option, 123
c - center data. 123
center option, 123
changing format in mid-table, 128
cornrnandsummary, 140
continued headings with . TH, 122
data and specifications, 122
data to be formatted, 127
del im () option, 123
displaying finished tables, 121
doublebox option, 123
e - equal width columns, 126
examples of tables, 129
expand option, 123
fields of data, 127
font change control, 125
format specification keys, 123
format specification options, 125
horizontal lines, 125
input structure for tables, 122
1 - left adjust data, 123

-177-

tbl program, continued
lines of data, 127
linesize option, 123
multi-page tables, 122
n - numeric data, 123
option specification, 123
p - point size changes, 126
printing finished tables, 121
r - right adjust data, 123
s - span data, 123
space between columns, 125
specifications and data, 122
summary of commands, 140
t - top of vertical span, 125
T & to change format, 128
tab () option, 123
table continue with T&, 128
text blocks - T { and T}, 127
v - change vertical space, 126
vertical lines, 125
w - width of column, 126

troff command, 3

Index - Continued

Notes

