

(2) The symbolic name of the function must not appear
in any nonexecutable statement in this program unit, except
as the symbolic name of the function in the FUNCTION
statement.

(3) The symbolic names of the dummy arguments may
not appear in an EQUIVALENCE, COMMON, or DATA
statement in the function subprogram.

(4) The function subprogram may define or redefine
one or more of its arguments so as to effectively return
results in addition to the value of the function.

(5) The function subprogram may contain any state
ments except BLOCK DATA, SUBROUTINE, another
FUNCTION statement, or any statement that directly or
indirectly references the function being defined.

(6) The function subprogram must contain at least
one RETURN statement.

8.3.2 Referencing External Functions. An external
function is referenced by using its reference (5.2) as a
primary in an arithmetic or logical expression. The actual
arguments, which constitute the argument list, must agree
in order, number, and type with the corresponding dummy
arguments in the defining program unit. An actual argument
in an external function reference may be one of the following:

(1) A variable name.
(2) An array element name.
(3) An array name.
(4) Any other expression.
(5) The name of an external procedure.
If an actual argument is an external function name or

a subroutine name, then the corresponding dummy argu
ment must be used as an external function name or a
subroutine name, respectively.

If an actual argument corresponds to a dummy argu
ment that is defined or redefined in the referenced sub
program, the actual argument must be a variable name, an
array element name, or an array name. Execution of an
external function reference as described in the foregoing,
results in an association (10.2.2) of actual arguments with
all appearances of dummy arguments in executable state
ments, function definition statements, and as adjustable
dimensions in the defining subprogram. If the actual argu
ment is as specified in item (4) in the foregoing, this associa
tion is by value rather than by name. Following these
associations, execution of the first executable statement of

, the defining subprogram is undertaken. An actual argument
which is an array element name containing variables in the
subscript could in every case be replaced by the same
argument with a constant subscript containing the same
values as would be derived by computing the variable
subscript just before the association of arguments takes
place.

If a dummy argument of an external function is an
array name, the corresponding actual argument must be
an array name or array element name (10.1.3).

If a function reference causes a dummy argument in
the referenced function to become associated with another
dummy argument in the same function or with an entity
in common, a definition of either within the function is
prohibited.

Unless it is a dummy argument, an external function is
also referenced (in that it must be defined) by the appear
ance of its symbolic name in an EXTERNAL statement.

S.3.3 Basic External Functions. FORTRAN processors
must supply the external functions listed in Table 4.
Referencing of these functions is accomplished as described

�~�i� in (8.3.2). Arguments for which the result of these functions
�~�)�

is not mathematically defined or is of type other than that
specified are improper.

8.4 SUBROUTINE. An external subroutine is defined
externally to the program unit that references it. An external
subroutine defined by FORTRAN statements headed by a
SUBROUTINE statement is called a subroutine subpro-
gram.

TABLE 4. BASIC EXTERNAL FUNCTIONS

Number Type of:
Basic External Definition of Symbolic

Function Argu- Name Argu- Function ments ment

Exponential ea 1 EXP Real Real
1 DEXP Double Double
1 CEXP Complex Complex

Natural Logs- log, (a) 1 ALOG Real Real
rithm I DLOG Double Double

1 CLOG Complex Complex

Common Loga- log,. (a) ALOGIO Real Real
rithm DLOGIO Double Double

Trigonometric sin (a) 1 SIN Real Real
Sine 1 DSIN Double Double

I CSIN Complex Complex

Trigonometric cos (a) COS Real Real
Cosine DCOS Double Double

CCOS Complex Complex

Hyperbolic tanh (a) TANH Real Real
Tangent

Square Root (a),/' 1 SQRT Real Real
1 DSQRT Double Double
1 CSQRT Complex Complex

Arctangent arctan (a) 1 ATAN Real Real
1 DATAN Double Double

arctan (a,/a.) 2 ATAN2 Real Real
2 DATAN2 Double Double

Ramaindering* a, (mod a.) 2 DMOD Double Double

Modulus 1 CABS Complex Real

*The function DMOD (al. a.) is defined as al - [aI/a,]a •• where [xJ ,is the
integer whose magnitude does not exceed the magnitude of x and whose
sign is the same as the sign of x.

8.4.1 Defining Subroutine Subprograms. A SUBROU
TINE statement is of one of the forms:

where:

SUBROUTINE 8 (ab a2, .. ' , an)
or

SUBROUTINE 8

(1) s is the symbolic name of the subroutine to be
defined.

(2) The a's, called the dummy arguments, are each
either a variable name, an may name, or an external pro
cedure name.

Subroutine subprograms are constructed as specified
in 9.1.3 with the following restrictions:

(1) The symbolic name of the subroutine must not
appear in any statement in this subprogram except as the
symbolic name of the subroutine in the SUBROUTINE
statement itself.

(2) The symbolic names of the dummy arguments may
,not appear in an EQUIVALENCE, COMMON, or DATA
statement in the subprogram.

(3) The subroutine subprogram may define or redefine
one or more of its arguments 80 as to effectively return
results.

(4) The subroutine subprogram may contain any state
ments except BLOCK DATA, FUNCTION, another SUB-

,G-17

ROUTINE statement, or any statement that directly or
indirectly references the subroutine being defined.

(5) The subroutine subprogram must contain at least
one 'RETURN statement.

8.4.2 Referencing Subroutines. A subroutine is refer
enced by a CALL statement (7.1.2.4). The actual arguments,
which constitute the argument list, must agree in order,
number, and type with the corresponding dummy argu
ments in the defining program. The use of a Hollerith
constant as an actual argument is an exception to the rule
requiring agreement of type. An actual argument in a
subroutine reference may be one of the following:

(1) A Hollerith constant.
(2) A variable name.
(3) An array element name.
(4) An array name.
(5) Any other expression.
(6) The name of an external procedure.
If an actual argument is an external function name or

a subroutine name, the corresponding dummy argument
must be used as an external function name or a subroutine
name, respectively.

If an actual argument corresponds to a dummy argu
ment that is defined or redefined in the referenced sub
program, the actual argument must be a variable name, an
array element name, or an array name.

Execution of a subroutine reference as described in the
foregoing results in an association of actual arguments with
all appearances of dummy arguments in executable state
ments, function definition statements, and as adjustable
dimensions in the defining subprogram. If the actual argu
ment is as specified in item (5) in the foregoing, this associa
tion is by value rather than by name. Following these
associations, execution of the first executable statement of
the defining subprogram is undertaken.

An actual argument which is an array element name
containing variables in the subscript could in every case be
replaced by the same argument with a constant slolbscript
containing the same values as would be derived by com
puting the variable subscript just before the association of
arguments takes place.

If a dummy argument of an external function is an
array name, the corresponding actual argument must be
an array name or array element name (10.1.3).

If a subroutine reference causes a dummy argument in
the referenced subroutine to become associated with another
dummy argument in the same subroutine or with an entity
in common, a definition of either entity within the sub
routine is prohibited.

Unless it is a dummy argument, a subroutine is also
referenced (in that it must be defined) by the appearance
of its symbolic name in an EXTERNAL statement.

8.0 BLOCK DATA SUBPROGRAM. A BLOCK DATA
statement is of the form:

BLOCK DATA

This statement may only appear as the first statement of
specification subprograms that are called block data sub
programs, and that are used to enter initial values into
elements of labeled common blocks. This special subprogram
contains only type-statements, EQUIVALENCE, DATA,
DIMENSION, and COMMON statements.

If any entity of a given common block is being given an
initial value in such a subprogram, a complete set of specifi
cation statements for. the entire block must be included,
even though some of the elements of the block do not appear

G-18

in DATA statements. Initial values may be entered into
more than one block in a single subprogram.

9. PROGRAMS
An executable program is a collection of statements,

comment lines, and end lines that completely (except for
input data values and their effects) describe a computing
procedure.

9.1 PROGRAM COMPONENTS. Programs consist of
program parts, program bodies, and subprogram statements.

9.1.1 Program Part. A program part must contain
at least one executable statement and may contain FOR
MAT statements, and data initialization statements. It
need not contain any statements from either of the latter
two classes of statement. This collection of statements may
optionally be preceded by statement function definitions,
data initialization statements, and FORMAT statements.
As before only some or none of these need be present.

9.1.2 Program Body. A program body is a collec
tion of specification statements, FORMAT statements or
both, or neither, followed by a program part, followed by
an end line.

9.1.3 Subprogram. A subprogram consists of a
SUBROUTINE or FUNCTION statement followed by a
program body, or is a block data subprogram.

9.1.4 Block Data Subprogram. A block data sub
program consists of a BLOCK DATA statement, followed
by the appropriate (8.5) specification statements, followed
by data initialization statements, followed by an end line.

9.1.5 Main Program. A main program consists of
a program body.

9.1.6 Executable Program. An executable program
consists of a main program plus any number of subpro
grams, external procedures, or both.

9.1.7 Program Unit. A program UIiit is a main
program or a subprogram.

9.2 NORMAL EXECUTION SEQUENCE. When an ex
ecutable program begins operation, execution commences
with the execution of the first executable statement of the
main program. A subprogram, when referenced, starts ex
ecution with execution of the first executable statement of
that subprogram. Unless a statement is a GO TO, arithmetic
IF, RETURN, or STOP statement or the terminal state
ment of a DO, completion of execution of that statement
causes execution of the next following executable statement.
The sequence of execution following execution of any of
these statements is described in Section 7. A program part
may not (in the sense of 1.1) contain an executable state
ment that can never be ~xecuted.

A program part must contain a first executable state
ment.

10. INTRA- AND INTERPROGRAM
RELATIONSHIPS

10.1 SYMBOLIC NAMES. A symbolic name has been
defined to consist of from one to six alphanumeric characters,
the first of which must be alphabetic. Sequences of characters
that are format field descriptors or uniquely identify certain
statement types, e.g., GO TO, READ, FORMAT, etc. are
not symbolic names in such occurrences nor do they form
the first characters of symbolic names in these cases. In a
program unit, a symbolic name (perhaps qualified by a
subscript) must identify an element of one (and usually only
one) of the following classes:

Class I
Class II
Class III
Class IV
Class V

An array and the elements of that array.
A variable.
A statement function.
An intrinsic function.
An external function.

Class VI A subroutine.
Class VII An external procedure which cannot be

classified as either a subroutine or an external function in
the program unit in question.

Class VIII A block name.
10.1.1 Restrictions on Class. A symbolic name in

Class VIII in a program unit may also be in anyone of the
Classes I, II, or III in that program unit.

In the program unit in which a symbolic name in Class
V appears immediately following the word FUNCTION in
a FUNCTION statement, that name must also be in
Class n.

Once a symbolic name is used in Class V, VI, VII, or
VIII in any unit of an executable program, no other pro
gram unit of that executable program may use that name
to identify an entity of these classes other than the one
originally identified. In the totality of the program units
that make up an executable program, a Class VII name
must be associated with a Class V or VI name. Class VII
can only exist locally in program units.

In a program unit, no symbolic name can be in more
than one class except as noted in the foregoing. There are
no restrictions on uses of symbolic names in different pro
gram units of an executable program other than those noted
in the foregoing.

10.1.2 Implications of Mentions in Specification and
DATA Statements. A symbolic name is in Class I if and
only if it appears as a declarator name. Only one such ap
pearance for a symbolic name in a program unit is permitted.

A symbolic name that appears in a COMMON state
I ment (other than as a block name) is either in Class I, or

in Class II but not Class V. (8.3.1) Only one such appearance
for a symbolic name in a program unit is permitted.

A symbolic name that appears in an EQUIVALENCE
statement is either in Class I, or in Class II but not Class V.
(8.3,1).

A symbolic name that appears in a type-statement
cannot be in Class VI or Class VII. Only one such ap
pearance for a symbolic name in a program unit is permitted.

A symbolic name that appears in an EXTERNAL
statement is in either Class V, Class VI, or Class VII. Only
one such appearance for a symbolic name in a program unit
is permitted.

A symbolic name that appears in a DATA statement is
in either Class I, or in Class II but not Class V. (8.3.1)In an
executable program, a storage unit (7.2.1.3.1) may have its
value initialized one time at the most.

10.1.3 Array and Array Element. In a program unit,
any appearance of a symbolic name that identifies an array
must be immediately followed by a subscript, except for
the following cases:

(1) In the list of an input,ioutput statement.
(2) In a list of dummy arguments.
(3) In the list of actual arguments in a reference to an

external procedure.
(4) In a COMMON statement.
(5) In a type-statement.

't;

Only when an actual argument of an external procedure
reference is an array name or an array element name may
the corresponding dummy argument be an array name. If
the actual argument is an' array name, the length of the

w

dummy argument array must be no greater than the length
of the actual argument array. If the actual arg\lment is an
array element name, the length of the dummy argument
array must be less than or equal to the length of the actual
argument array plus one minus the value of the subscript
of the array element.

10.1.4 External Procedures. The only case when a
symbolic name is in Class VII occurs when that name ap
pears only in an EXTERNAL statement and as an actual
argument to an external procedure in a program unit.

Only when an actual argument of an external procedure
reference is an external procedure name may the correspond
ing dummy argument be an external procedure name.

In the execution of an executable program, a procedure
subprogram may not be referenced twice without the ex
ecution of a RETURN statement in that procedure having
intervened.

10.1.5 Subroutine. A symbolic name is in Class VI
if it appears:

(1) Immediately following the word SUBROUTINE
in a SUBROUTINE statement.

(2) Immediately following the word CALL in a CALL
statement.

10.1.6 Statement Function. A symbolic name is in
Class III in a program unit if and only if it meets all three
of the following conditions:

(1) It does not appear in an EXTERNAL statement
nor is it in Class I.

(2) Every appearance of the name, except in a type
statement, is immediately followed by a left parenthesis.

(3) A function defining statement (8.1.1) is present for
that symbolic name.

10.1.7 Intrinsic Function. A symbolic name is in
Class IV in a program unit if and only if it meets all four
of the following conditions:

(1) It does not appear in an EXTERNAL statement
nor is it in Class I or Class III.

(2) The symbolic name appears in the name column of
the table in Section 8.2.

(3) The symbolic name does not appear in a type-state
ment of type different from the intrinsic type specified in
the table.

(4) Every appearance of the symbolic name (except in
a type-statement as described in the foregoing) is im
mediately followed by an actual argument list enclosed in
parentheses.

The use of an intrinsic function in a program unit of an
executable program does not preclude the use of the same
symbolic name to identify some other entity in a different
program unit of that executable program.

10.1.8 External Function. A symbolic name is in
Class V if it:

(1) Appears immediately following the word FUNC
TION in a FUNCTION statement

(2) Is not in Class I, Class Ill, Class IV, or Class VI
and appears immediately followed by a left parenthesis on
every occurrence except in a type-statement, in an EX
TERNAL statement, or as an actual argument. There
must be at least one such appearance in the program unit in
which it is so used.

10.1.9 Variable. In a program unit, a symbolic name
is in Class II if it meets all three of the following conditions:

. (1) It is not in Class VI or Class VII.
(2) It is never immediately followed by a left paren

thesis unless it is immediately preceded by the word FUNC.
TION in a FUNCTION statement.

0-19

(3) It occurs other than in a Class VIII appearance.
10.1.10 Block Name. A symbolic name is in Class

VIlI if and only if it is used lis a block name in a COMMON
statement. ",

10.2 DEFINITION. There 'are two levels of defini
tion of numeric values, first level definition and second level
definition. The concept of definition on the first level applies
to array elements and variables; that of second liwel defini
tion to integer variables only. These concepts are defined in
terms of progression of execution;'and thus, an executable
program; complete and in execution, is assumed in what
follows.

There are two other varieties of definition that should
be noted. The first, effected by GO TO assignment and
referring to an integer variable being defined with other than
an integer value, is discussed in 7.1.1.3 and 7.1.2.1.2; the
second, which refers to when an external procedure may be
referenced, will be discussed in the next section.

In what follows, otherwise unqualified use of the terms
definition and undefinition (or their alternate forms) as
applied to variables and array elements will imply modifica
tion by the phrase on the first level.

10.2.1 Definition of Procedures. If an executable pro
gram contains information describing an external procedure,
such an external procedure with the applicable symbolic
name is defined for use in that executable program. An ex
ternal function reference or subroutine reference (as the
case may be) to that symbolic name may then appear ill the
executable program, provided that number of arguments
agrees between definition and reference. In addition, for an
external function, the type of function must agree between
definition and reference. Other restrictions on agreements
are contained in 8.3.1., 8.3.2, 8.4.1., 8.4.2., 10.1.3, and 10.1.4.

The basic external functions listed in (8.3.3) are always
defined and may be referenced subject to the restrictions
alluded to in the foregoing.

A symbolic name in Class III or Class IV is defined for
such use.

10.2.2 Associations That Effect Definition. Entities
may become associated by:

(1) COMMON association.
(2) EQUIVALENCE association.
(3) Argument substitution.
Multiple association to one or more entities can be the

result of combinations of the foregoing.' Any definition or
undefinition of one of a set of associated entities effects the
definition or undefinition of each entity of the entire set.

For purposes of definition, in a program unit there is no
association between any two entities both of which appear
in COMMON statements. Further, there is no other as
sociation' for common and equivalenced entities other than
those $tated in 7.2.1.3.1 and 7.2.1.4.

If an actual argument of an external procedure reference
is an array name, an array element name, or a variable
name, then the discussions in 10.1.3 and 10.2.1 allow an
association of dummy arguments with the actual arguments
only between the time of execution of the first' executable
statement of the procedure and the inception of ,execution
of the next encountered RETURN statement of that pro
cedure. Note specifically that this association can be carried
through more than one level of external procedure reference.

In what follows, variables or array elements associated
, by the information in 7.2.1.3.1 and 7.2.1.4 will be equivalent
if and only if they are of the same type.

If an entity of a .given type becomes defined, then all
associated entities of different type become undefined at the

G-20

same tune,' whlle" all aSsociated entities of the, same type
become defined unless otherwise noted.

Association by argument, substitution is only valid in
the case of identity of type, so, the rule in this case is that
an entity created by argument substitution is defined at
time of entry if and only if the actual argument was defined.
If, an entity created hy, argument substitution becomes
defined or undefined (while the assoCiation' exists) during
execution of a subprogram, then the corresponding actual
entities in all calling program units becomes defined or un-
defined' accordingly. ,

10.2.3 Events, That Effect Definition. Variables and
array elements become initially defined if and only if their
names are associated in a data initialization statement with
a, constant of the same type as the variable or array in
question. 'Any entity not initially defined is undefined at
the time of the first execution of the first executable state
ment of the main program. Redefinition of a defined entity

,is always permissible except for certain integer variables
('1.1.2.8, 7.1.3.1.1, and 7.2.1.1.2) or certain entities in sub-
programs (6.4, 8.3.2, and 8.4.2). ,

Variables and array elements become defined or rede-
fined as follows: '

(1) Completion of execution of an arithmetic or logical
assignment statement causes definition of the entity that
precedes the equals.

(2) As execution of an input statement proceeds, each
entity, which is assigned a value of its corresponding type
from the input medium, is defined' at the time of such as
sociation. Only at the completion of execution of the state
ment do associated entities of the same type become defined.

(3) Completion of execution of a DO statement causes
definition of the control variable.

(4) ,Inception of execution of action specified by a DO
implied list causes definition of the control variable.

Variables and array elements become undefined as
follows:

(1) At the time a DO is satisfied, the control variable
becomes undefined.

(2) Completion of execution of an ASSIGN statement
causes undefinition of the integer variable in the statement.

(3) Certain entities in function 'subprograIns (10.2.9)
become undefined.

(4) Completion of execution of action specified by a
DO-implied list causes undefinition of the control variable.

(5) When an associated entity of different type be-
comes defined. '

(6) When an associated entity of the same type be
comes undefined.

10.2.4 Entities in 'Blank Common. Entities in blank
common and those entities associated with them !nay not
be initially defined.

Such entities, once defined by any of the rules previously
mentioned, remain defined until they become undefined.

10.2.5 Entities' in Labeled Common. Entities in la
beled common or any associates of those entitieS may' be
initially defined.

A program unit contains a labeled common block namE
if the name appears as a block name in the program unit.
If a main program or referenced subprogram contains a

, labeled common block name, any entity in the block,(and its
associates) once defined re!nain defined until they become
undefined.

It should be noted that redefinition of an initially de
fined entity will allow later undefinition of that entity. ~

Specifically, if a subprof{ram contains a labeled common
block name that is not contained in any program unit
currently referencinf{ the subprof{ram directly or indirectly,
the execution of a HETUHN statement in the subprof{ram
causes undefinition of all entities in the block (and their
associates) except for initially defined entities that have
maintained their initial definitions.

10.2.6 Entities Not in Common. An entity not in
common except for a dummy argument or the value of a
function may be initially defined.

Such entities once defined by any of the rules previously
mentioned, remain defined until they become undefined.

If such an entity is in a subprogram, the completion of
execution of a HETURN statement in that subprogram
causes all such entities and their associates at that time
(except for initially defined entities that have not been
redefined or become undefined) to become undefined. In
this respect, it should be noted that the association between
dummy arf{uments and actual arguments is terminated at
the inception of execution of the RETURN statement.

Again, it should be emphasized, the redefinition of an
initially defined entity can result in a subsequent undef
inition of that entity. .

10.2.7 Hosie Block. In a program unit, a basic block
is a group of one or more executable statements defined as
follows.

The following statements are block terminal statements:
(1) DO statement.
(2) CALL statement.
(3) GO TO statement of all types.
(4) Arithmetic IF statement.
IS) STOP statement.
(6) RETURN statement.
(7) The first executable statement, if it exists, preceding

a statement whose label is mentioned in a GO TO or arith
metic IF statement.

(8) An arithmetic statement in which an integer var
iable precedes the equals.

(9) A READ statement with an integer variable in the
list.

(10) A logical I F containing any of the admissible forms
given in the foregoing.

The following statements are block initial statements:
II) The first executable statement of a program unit.
(2) The first executable statement, if it exists, follow-

ing a block terminal statement.
Every block initial statement defines a basic block. If

that initial statement is also a block terminal statement, the
basic block consists of that one statement. Otherwise, the
basic block consists of the initial statement and all ex
ecutable ",tatements that follow until a block terminal state
ment is encountered. The terminal statement is included in
the basic block.

10.2.7.1 Last Executable Statement. In a program unit
the last executable st'ltement (which cannot be part aLa
logical I F) must be one of the following statements: GO TO
statement, arithmetic IF statement, STOP statement, or
HETURN statement.

10.2.8 Second Level Df'/inition. Integer variables
must be defined on the second level when used in subscripts
and computed GO TO statements.

Hedefinition of an integer entity causes all associated
. variables to be undefined for use on the second level during

this execution of this program unit until the associated
integer variable is explicitly redefined.

Except as just noted, an integer variable is defined on
the second le\'el upon execution of the initial statement of

a basic block only if both of the following conditions apply:
(1) The variable is used in a subscript or in a computed

GO TO in the basic block in question. .
(2) The variable is defined on the first level at the time

of execution of the initial statement in question.
This definition persists until one· of the following

happens:
(1) Completion of execution of the terminal statement

of the basic block in question.
(2) The variable in question becomes undefined or re

ceives a new definition on the first level.
At this time, the variable becomes undefined on the

second level.
In addition, the occurrence of an integer variable in the

list of an input statement in which that integer variable
appears following in a subscript causes that variable to be
defined on the second level. This definition persists until one
of the following happens:

(1) Completion of execution of the terminal statement
of the basic block containing the input statement.

(2) The variable becomes undefined or receives a new
definition on the first level.

An integer variable defined as the control variable of a
DO-implied list is defined on the second level over the range
of that DO-implied list and only over that range.

10.2.9 Certain Entities in Function Subprograms. If
a function subprogram is referenced more than once with an
identical argument list in a single statement, the execution
of that subprogram must yield identical results for those
cases mentioned, no matter what the order of evaluation
of the statement.

If a statement contains a factor that may not be
evaluated (6.4), and if this factor contains a function ref
erence, then all entities that might be defined in that ref
erence become undefined at the completion of evaluation of
the expression containing the factor.

10.3 DEFINITION REQUIREMENTS FOR USE OF EN
TITIES. Any variable referenced in a subscript or a com
puted GO TO must be defined on the second level at the
time of this use.

Any variable, array element, or function referenced as a
primary in an expression and any subroutine referenced by a
CALL statement must be defined at the time of this use.
In the case where an actual argument in the argument list
of an external procedure reference is a variable name or
an array element name, this in itself is not a requirement
that the entity be defined at the time of the procedure
reference; however, when such an argument is an external
procedure name, it must be defined.

Any variable used as an initial value, terminal value, or
incrementation value of a DO statement or a DO-implied
list must be defined at the time of this use.

Any variable used to identify an input output unit
must be defined at the time of this use.

At the time of execution of a RETURN statement in a
function subprogram, the value 18.3.1) of that function must
be defined.

At the time of execution of an output statement, every
entity whose value is to be transferred to the output medium
must be defined unless the. output is under control of a for
mat specification and the corresponding conversion code is
A. If the output is under control of a format specification, a
correct association of conversion code with type of entity
is required unless the conversion code is A. The following
are the correct associations: I with integer; D with double
precision; E, F, and G with real and complex; and L with
logical.

G-21

APPENDIX H

S-C 4060 TEST PROORAMS

1. Card reader test (for card reader option)

2. Central processor test

3. Core memory test #1 (tests contiguous memory limits)

4. Core memory test #2 (to insure that the contents of core
memory are not disturbed when AC power is disconnected)

5 . Power failure interrupt test

6. Teleprinter test for ASR-33 keyboard, reader, and punch

7. Alignment and performance test for print head section

8. DAP assembler test

9. Magnetic tape read/write test

H-1

Input

APPENDIX I

A complete list of instructions is contained in Document Number
HMO-208, S-C 4060 Stored Program Recording System, Opera
tor's Handbook.

Action Normal Reply
---------------------- ----------- -------- ---- -------------- ------------- -------------------------- ---

LOADp

S

The specified processor will be loaded from the
library. p may be 4020, META, P704, P709, P360

Execution will halt

**OK or **p
NOT FOUND

**STOPPED
----------------- ----------- --- ----------------------

REWTn Tape n will be rewound **OK

BKSRn Tape n will backspace one record

BKSFn Tape n will backspace one file

SKPRn Tape n will skip forward one file

SKPFn Tape n will skip forward one file

RESTART

NEXT

START

GO

STATUS

(OTHER)

Input tape will backspace to beginning of the
current job and system will be initialized.

Input tape will skip forward to beginning of
next job and system will be initialized.

Execution of the process will begin

Execution will be resumed

System status will be printed on ASR-33. Execu
tion will be resumed upon completion of printout.

Not recognized by MCS

**OK

**OK

**OK

**OK

**READY

**READY

**ST ART JOB n

**OK

JOB NO.,
FRAME NO.,
and the name
of the processor

**WHAT?
----------------------------- ----------------- -----

INP== n Input tape will be set to logical unit n **OK

LIB= n Library tape \\ill be set to logical unit n **OK
--------------- - ----------- ------------------------

1-1

REVISIOR SHEET '"OR 9500236

Date Deacription of Chan,. R.vi.ion Approval

4/4/68 PRODUCTION RELEASE 68/248 "A" iff .Jfa (.(;' .. t.·~

I

...

.

~

