
V·System 6.0 Reference Manual

Distributed Systems Group
David R. Cheriton and Keith A. Lantz. Principal Inv~tigators

Computer Systems Laboratory
Deparanents of Computer Science and Electrical Engineering

Stanford University

20 June 1986

Preface

The following are a list of some of the major changes evident in Version 6.0 as compared to Version 5.0:

• General changes:
o Support for Sun2lS0's, Sun .. 3's and VaxStation-Irs.

o Better documenltation: as you can see ...

• Lots of new commands. including:

Hi

o the C program development environment, including ccS8, 1 de8, and bu 11 d, an enhanced
version ofmaka

o draw has been completely redone, including Postscript support

o the Revision COllltrol System

o xli sp, a variant ofUsp

o 'The family ofTeX document compilers, including tax and 1 atax (sorry, no sources)

• New or changed services:
o Global authentircation scnices: Users now authenticate themselves once and need no longer

authenticate each "session" independently. This is implemented by a combination of a global
authentication server and V-to-UNIX "correspondence tables" maintained by the V servers
running under UNIX.

o Decentralized object naming: Local name servers have been eliminated in favor of each manager
maintaining the name space of the objccts it manages. Objccts are located with group [PC.

e Group IPC: Logically. messages arc now sent to groups of processes, rather than to individual
. proccsscs. ("Singleton" groups arc. in fact. special cased.) This pennits a sender to send one copy
of a message, but have it delivered to multiple recipients, in response to which multiple rcpHes
may (and can) be received.

.) "RAM disk": A V-storage-scrver-compatible server whose files arc stored in main memory.
Useful for temporary files and the like.

This reference manual attempts to be as faithful to the indicated release of the system as possible.
Unfortunately. there are almost certainly many errors - most frequently errors of omission. rlne typical
solution to this problem is to read the source code. but this too has its problems. The V-System is the product
of a r~search effort and is constantly undergoing revision. It has not always been possible to keep released
and experimental versions sUictly separated. Often. the source will include conditionally compiled code, or
dcclarnlions fhr constant'i alild dala types t11at are not fully supported in the released version of the system.
'Illerefore. programmers should be wary of using teatures found in the code that are not documented in this
manual. In brief:

W""';",.· Any pan of the V-System may changc without notice. As a result. this document should be regarded strictly as
advisory.

Notes for installing the Y-System are to be found in Appendix C.

Contributing authors include Lance M. Rcrc. Eric 1. Berglund. Per Rothner. Kenneth P. Brooks, David
R. Chc!riton. Stephen E. Deering. J. Craig Dunwoody. Judy L. Edighoffer. Ross S. Finlayson, Cary Gray,
Bruce L. Hitson, David R. Kaelbling. Keith A. Lanu.. TimotilY P. Mann. rl110mas Maslen. Robert 1. Nagler,

V·Systelll 6.0 RCrt'ft'ncc Manual 16Junc 1986

William I. Nowicki, Joseph Pallas, Paul J. Roy, Jay Schuster, Michael Stumm, Marvin M. Theimer,
Christopher Zuleeg. and Willy Zwaenepoel.

The following arc trademarks of Digital Equipment Corporation: DEC, DECSystem-20, Tops-20, Unibus.
VAX, V AxStation. VMS, vr -100, and Micro V AX.

Ethernet is a trademark of Xerox Corporation.

SlDl Workstation is a trademark of Sun Microsystems Inc.

UNIX is a trademark of AT&T Bell Laboratories.

V-System is a trademark QfLeland Stanford Junior University.

V·Syst('ft16.0 Reference Manual 16 June 1986

Table of Contents

Preface .'

1. Introduction

1.1. The Hardware Environment
1.2. The User Model
1.3 .. The System Model
1.4. The Application Model
1.5. Outline

Part I. Using V'

2. User Interface Overview

2.1. The User Interface Architecture
2.2. Oetting Started
2.3. VOl'S Conventions . "
2.4. Workstation ~fanagement
2.5. Line Editing Faci1iti(~
2.6. Paged Output Mode
2.7. Sending Mouse Events to Text-:oriented Applications
2.8. Emulating the Mouse with the Keyboard
2.9. STS Conventions

3. Using the V executive

3.1. Introduction
3.2. Naming
3.3. Logging [n and Out
3.4. Remote Program Execution on a Unix Server
3.5. Remote Exccution on V Hosts
3.6. Facilities for Command Specification and Modification
3.7. Support for Heterogeneous Processors

4. Command Summary

4.1. Workstation Comm2lnds
4.2. Commands on Non-V Hosts

5. am,aze: A Maze Game
6. checkers
7. bits: a bitmap and faInt editor

7.1. Command Input
7.2. Rasters
7.3. Changing Raster Siz1e
7.4. Bitmap I/O
7.5. Painting
7.6. Inverting a Raster
7.7. Raster Operations (BitBlt)

V-System 6.0 Reference Manual

,

iii
1·1

1-1
1-1
1-2
1-4
1-7

2·1

2-1
2-4
2-6
2-7

2-10
2-11
2-11
2-12
2-13
3-1

3-1
3-1
3-2
3-3
3-4
3-4
3-7

4·1

4-1
4-9

5-1

6·1

7·1

7-1
7-1
7-1
7-2
7-2
7 .. 2
7 .. 2

17.June 19M

7.8. Reflection and Rotation
7.9. [Replace in table]
7.10. Making a Copy of the Screen,; CURRENTLY NON-WORKING
7.11. Fonts
7.12. Sample Texts
7.13. Printing a Raster
7.14. Bugs and Problems

8. build: Maintaingroups of dependent programs

8.1. Macros
8.2. Including other dependency files
8.3. Conditional dependency rules
8.4. Search paths
8.5. Dependency patterns:··';
8.6. Suggestion .. ~.; .
8.7. Bugs

9. debug: The V Debugger

9.1. Synopsis
9.2. Description
9.3. Commands
9.4. Bugs

10. draw: A Drawing Editor

10.1. Conceptual Model
10.2. Screen Layout
10.3. Generalstyle ofintcraction
10.4. Control Points and Sticky Points
10.5. Mouse Duttons
10.6. Verbs
10.7. Nouns

. 10.8. Attributes
10.9. Commands
10.10. groups
10.11. Inserting Draw pictures in text documents
10.12. Joumalling

11. hack: Exploring The Dungeons of Doom

11.1. Command format
11.2. Description
11.3. Options
11.4. Authors
11.5. Files
11.6. Bugs

12. siledit: A Simple Illustrator

12.1. Dasic Operation
12.2. Commands. -·1

12.3. Selecting Alternate Fonts
12.4. Generating Printed Copy

7-2
7-2
7-2
7-3
7-3
7-4
7-4

8·1

8-1
8-1
8-1
8-r .
8-2
8-2
8-2

9-1

9-1
9-1
9-2 ..
9-6

10·1

10-1
10-1
10-3
10-3
10-4
10-4
10-5
10-6
10-7
10-9
10-9

10-11
11·1

11-1
11-1 .
11-2
11-2
11-2
ll-2

'12·1

12-1
12-1
12-3
12-3

V'Syst"m 6.0 Reference Manual 17 June 1986

..

13. timeipc: A V Perfornlance Measu rement Tool

13.1. Types of Tests
13.2. Process Configurations
13.3. Input to limeipc
13.4. Output from limeipc
13.5. ~arnings and Precautions

14. ved: A Text Editor ''; I

14.1. Starting up
14.2. Some Notational Conventions
14.3. Special Commands
14.4. Cursor Motion
14.5. Paging and Scrolling
14.6. Special Characters
14.7. The Kill Buffer
14.8. Ba<;ic Editing Commands
14.9. Mark and Region
14.10. C-Spccific Editing Commands
14.11. Searching and Replacing '" -.1

14.12. File Access
14.13. Windows and 8utT(~rs
14.14. lbe Mouse
14.15. lbe Right Hand and the Left
14.16. Ved Initialization
14.17. Crash Recovery
14.18. Some Hints on Usage

15. xlisp: An Experimental Object Oriented Language

15.1. Introduction
15.2. A Note From the Alllthor
15.3. XLISP Command Loop
15.4. Break Command Loop
15.5. Data Types
15.6 .. lhe Evaluator
15.7. Lexical Conventions
15.8. ObjeCts
15.9. Symbols
15.10. Evaluation Functions
15.11. Symbol functions
15.12. Property List Functions
15.13. r .ist Functions
15.14. I >CStnictivc loist Functions
15.1.5. Predicate Function:s
15.16. Control Functions
15.17. Looping Functions
15.18. The Program Featlllre
15.19. Debugging and Error Handling
15.20. Arithmetic Functions
15.21. nitwisc I.ogical FUllctions
15.22. Relational Functions
15.2.3. String Functions

V'Syslcm 6.0 Reference Manual

vii

13-1

13-1
13-3
13-4
13-5
13-6

14-1

14-1
14-1
14-2
14-2
14-3
14-3
14-3
14-3
14-4
14-4
14-5
14-5
14-6
14-7
14-8
14-9

14-12
14-13
15-1

15-1
15-1
15-2
15-2
15-2
15-3
15-3
15-4
15-6
15-6
15-7
15-8
15-9

15-11
15-12
15-13
15-14
15-15
15-16
15-17
15-18
15-18
15-19

17 Junr 1986

nU

15.24. Input/Output Functions
15.25. File 110 Functions
15.26. System Functions

16. Standalone Commands

16.1. Vload
16.2. Netwatch··. "
16.3. Postmortem
16.4. Diskdiag-

.
Part II. V Programmi"ng'

.' '(:;i

17. Program Environment Overview.

17.l. Groups of Functions .:
17.2. Header Files

18. Program Construction and.:~xecutlon

18.1. Writing the C Program '.
18.2. Compiling and Linking
18.3. Program Execution "
18.4. Program Initialization ',.

19. The V·System Configuration. Database

19.1. Querying the Database:· ~,:
19.2. Currently Defined Keywords
19.3. Implementation
19.4. Usage

20. Control of Executives
21. Fields: Using an AVT as a Menti ~

21.1. Formats· , I

2L2.1be l--ield Table as a Menu: Selecting an Action
21.3. Displaying Fields
21.4. User Input to Fields
21.5. An Example:
21.6. Limitations 11\ ,,',

22. Input and Output

22.1. Standard C I/O Routines
22.2. V I/O Conventions
22.3. V 110 Routines
22.4. Portable binary integer I/O

23. Intra-Team Locking
24. Memory Management" ,

24:1. Usc in multi-process teams
25. Naming

25.1. Current Context
25.2. Descriptor Manipulation
25.3. Local Names or Aliases
25.4. Naming Protocol Routines
25.5. Direct Name Cache Manipulation

V'SyslC!m 6.0 R~rcrc.'ncc Manual

15-19
15-21
1S~21

16-1

16-1 l

16-4
16-6
16-6

11-1

17-1 j

17-2
18·1

18-1
18-1.
18 .. 2
18-3

19·1

19-1
19 .. 1
19.-2
19-3

20·1
21·1

21-1
21-2
21-2
21-2
21-3
21-4

22·1

22-1
22-1
22-2
22-9

23·1
24·1

24'-2
25·1

25-1
25-1
25-2
25 .. 3
25-4

17 .June 1986

25.6. Environment Variables
26. Numeric and Mathematical Functions

26.1. Numeric Functions
26.2. Mathematical Functions

27. Processes and Interprocess Communication

27.1. Process-Related Kernel Operations
27.2. Logical Host-Related Functions' .. '
27.3. Other Process-Relat(:d Functions
27.4. Process Group Operations
27.5. Interprocess CommUlnicritioii"

28. Program Execution Functions

28.1. Program Execution "
28.2. Host Selection
28.3. Remote Exccutio~,~fUnix Commands
28.4. Other Program Executio~ I~outines

29. User Interface Funct,ions

29.1. Virtual Tenninal and View Management
29.2. ANSI Tenninal Emulation
29.3. Graphical Output
29.4. Graphical Input
29.5. Miscellaneous Functions
29.6. Example Program
29.7. Some Logistics
29.8. Rolling Your Own

30. Miscellaneous Functions

30.1. Time Manipulation Functions
30.2. Strings
30.3. Exception Handling Functions
30.4. Other Functions

Part UI. V Servers

31. Servers Overview

31.1. The 8asic Servers - hI Isolation
31.2. 'Inc System in Operation
31.3. Summary

32. Message Codes and Format Conventions

32.1. Message Fonnat Conventions
32.2. Byte-Ordering Considerations
32.3. Standard System Request Codes
32.4. Standard System Reply Codes

33. Tho V-Syste~ 1/0 Pr'otocol

33.1. CREATE INSTANCE
33.2. QUERY INSTANCE
33.3. CREATE DUPLEX INSTANCE
33.4. RELEASE INSTANCE
33.5. READ INSTANCE

V·System 6.0 Rdercncc Manual

Ix

2S-S
26·1

26·1
26-1

27·1

.27-1
"27-6
'21-7
27-8

"'27-9

~8·1

. ·28-1
i ;28-3
; .. ,28-3

'\ .-28-4
.29·1

29-1
29-2
29-5

, 29~12
29-14
29-15
29-17
29-17
30·1

30-1
30-2
30-4
30-4

31·1

31-1
31-5
31-8

32·1

32-1
32-1
32-2
32-2

33·1

33-3
33-4
33-4
33-5
33-6

17 June 1986

x

33.6. WRITE INSTANCE
33.7. SEf INSTANCE OWNER
33.8. SET BREAK PROCESS
33.9. SET PROMPI'
33.10. QUERY FILE and NQUERY FILE
33.11. MODIFY FILE and NMODIFY FILE

34. The V-System Naming Protocol

34.1. Overview
34.2. Character String Names
34.3. Contexts and Context Ids
34.4. Prefix Caching
~4.5. Static Context Identifiers
34.6. Generic Names and Group Names
34.7. Name Request Fonnat.
34.8. Name Lookup Algorithm
34.9. Standard CSNH Server Requests
34.10. Context Directories and Object Descriptors

35. Authentication and the Authentication Server

35.1. Authserver
35.2. User Numbers
35.3. Authentication Library Functions
35.4. Adding a New User
35.5. Authentication Database .

36. Device Server

36.1. Ethernet
36.2. Disk
36.3. Mouse: The Graphics Pointing DeviCe
36.4. Serial Line
36.5. Console
36.6. Framcbuffer
36.7. Null Devices

37. Exception Server
38. Exec Serve~
39. Internet Server

39.1. Running the Internet Server
39.2. Acccs.c;ing the Internet Server
39.3. DARPA Internet Protocol (lP)
39.4. DARPA Transmission Control Protocol (rCP)
39.5. Adding New Protoculs
39.6. Monitoring and Debug Facilities

40. Memory Server
41. Pipe Server
42. Team Server

42.1. Overview
42.2. Team I.oading
42.3. Team Tennination and Exit Status Values
42.4. Host Status

V·System 6.0 Ih,rercnce Manual

33-6
33-7
33-7
33-8
33-8
33-8

34·1

34-1
34-2
34-2
34-3
34-3
34-4
34-5
34-5
34-6
34-9

35·1

35-1
35-1
35-2
35-4
35-4

36-1

36-1
36-2
36-2
36-3
36-3
36-3
36-4

37·1
38·1
39·1

39-1
39-1
39-2
39-2
39-3

39-11
40-1

41·1
42·1

42-1
42-1
42-2
42-2

17 .Junt 1986

42.S. Remote Execution
42.6. Round-Robin Scheduling
42.7. Exception Handling
42.8. Migration

43. Unix Server

43.1. Sessions
43.2. File Access
43.3. Program Execution,
43.4. File Descriptors
43.5. Debugging Se·ssions

44. Workstation Agents

44.1. Implementation of Workstation Agents
45. Simple 'Terminal Server

45.1. STS Line Editing Facilities
45.2. Hardware Environment
45.3. Remote Tenninal Server

46. Virtual Graphics Terminal Server

46.1. Current VOTS Versions
46.2. A vr Escape Sequences
46.3.~OTS Message Interface
46.4. Internal Organization
46.5. Debugging the VOTS

Part IV. Appendices

Appendix A. A V-System Bibliography
Appendix B. C Programming Style

0.1. General Format
0.2. Names
R.3. Comments
8.4. Indenting
B.s. File Contents
0.6. Parentheses
B.7. Messages

Appendix C. Installatioln Notes

C.l. V-System Distribution Tapes
C.2. Binary Distribution Tape
C.3. Source Distributiol1l Tape

Appendix O. List of Library Functions defined in libc
Index

V 'System 6.0 Rder('ncc M:mual

xi

42-2
42-3
42-3
42-3

43-1

43-1
43-2
43-3
43-3
43-4

44-1

44-1
45-1

4S-1
4S-1
4S-2

46-1

46-1
46-1 .
46-3
46-4
46-S

A-1
B-1

0-1
8-1
8-2
8-3
U-J
8-4
8-S

C-1
C-l
C-l
C-7
0-1

Index-1

17 June 1986

xii

'List of Figu res

Figure t-l: A workstation-based distributed system.
Figure 1-2: rille distributed V kernel.
Figure 1-3: Client interfaces to the V-System
Figure 1-4: Some possible applications.
Hgure 10-1: The Draw menu
Figure 10-2: An example figure .
Figure 31-1: The V-System: A single workstation view.
Figure 31-2: VOTS process structure.
Figure 31-3: Loading a team.
Figure 31 -4: Handling an exception.
Figure 34-1: Decentralized Global Directory

V·System 6.0 Hdcrrnce Manual

1-2
1-3
1-4
1-6

10-2
10-10
31-2
31-4
31-6
31-7
34-2

.7 June 1986

List of T'ables

Table 2-1: Accelerators thr workstation management functions.
Table 2-2: Events that generate escape sequences.
Table 29-1: Encodings for graphical escape sequences.

V·S1~tCn1 6.0 RcCercll('e Manuol

"iii

2-10
2-12
29-4

17 JUlie 1986

1·1

-1-
I nt rod u ction

The V-System is a message-based distributed operating system designed primarily for high-performance
workstations connected by local networks. It permits the workstation to be treated as a multi-function
component of the distributed system. rather than solely as a intelligent terminal or personal computer.
Ultimately. it is intended to provide a general-purpose program execution environment similar to some
degree to UNIX. The programs are intended to interact with each other, and with programs running on
traditional timesharing systems. to produce an integrated distributed system.

1.1. The Hardware Environment

1be V-System is targeted for a hardware environment consisting of(sce Figure 1-1):

• powerful workstationsl with:
o a high-resolution (e.g. 1024 by 1024) raster display;
o a general-purpose 1 MIPS (or better) processor;
o 2 Mbytes or motre oflocal memory;
o a large (greater than 20 bits) virtual address space;
o a graphics input device, such as a mouse: and optionally,
o adist

which. typically. will be dedicated to a single u~r at a time;

• a fast (greater than 1 ~,1H7.) communications network that wil1link the works~1tions;

• a number of dedicatc~d processors providing printing, file storage. general computation support. and
other services; and

• access to time-sharing or special-purpose computers and to long-haul computer networks.

This release of the system runs on Sun and VaxStation workstations interconnected by either 3 or 10 Mb
Ethernet "Guest-lever' implementations are available for 4.2BSD and 4.38SD UNIX systems (with Stanford
enhancements).

1.2. The Use r Model

One of the most important functions for the workstation is to provide state-of-the-art user interface support.
rille workstation should function (1S a frolll elld to all available resourccs. whether lncal to the worksL1tion or
remote. To do so. tJ1C V-System adhercs to tJuee fundament,,1 principles:

1. '1111e interface to app~ication programs is (reasonably) independent of particular physical devices or
intervening networks.

2. The user is allowed to perform multiple tasks simultaneously.

3. Response to user interaction is fast
Adhering to these principles. the V-System supports a reasonably sophisticated "window system", Multiple

exccutives or shells may be run simultaneously. each of which may run one "pptication in the "foreground"
and any number in tJ1C "background" (a la the UN IX C-shell). Applications may nm local to thc workstation
or remote. r.:ach application may be associatcd with one or more scptlratc.,irlualtermillals, each of which may

V'S,stclIU 6.0 Rderence Manual 17 June 1986

1-1

User

USer --==-----.

Cluster

Network . ,
User

User t.=::cr--.

Gateway

Workstation

Printer Server

File Server

Timesharing System

Cluster

Network

User

User a.==...---_

14'igurc I-I: A workstation-based distributed system.

-be used to emulate either a vr-lOO terminal or-A 2-D "structured graphics" tenninal.

1.3. The System Model

IntrodlictioD

Cluster

Network

Trunk
Network

Long-haul

Network

The V-System adheres to the server model: rille world consists of a concetion of resources al'Cessible by
diellls l and managed by servl'rs. 1\ server dcfines the abstract reprcsentation of its rcsourcc(s) and the
operations on Ulis representatiun. A resuurce may only be "cccs.~d or manipulaled through its server.
Because servers are constructed with well-defined interfaces. Ule implementation demils of a resource are of
concern only to its server. Note that a server frequen~ly acts as a client when it accesses resources managed by
other servers. Thus. client and server are merely roles played by a process.

Clients and servers may be distributed throughout the (inter)network. By default. access to resources is
network transparent; a client may llCCCSS a remote resource with the same semantics as it accesses a local
resource. The result is an environment in which clients may communicate with servers without regard for the

1 A client is a program requesting access to a resource, typically on behalf or a human US".

V-System 6.0 Reference Manual 17 June 1986

The System Model 1-3

topology of the distributed system as a whole. However. we do not intend that a client cannot detenninc or
influence the location of a particular resource, rather that a transparent mechanism is available. Moreover. we
allow for clients and servers that were not written with network-transparent access in mind. '

Architecturally. then. the V-System consists of a distributed kernel and a distributed set of server processes.

1.3.1. the Distributed ICernel

The distributed kernel consists of the collection of kernels resident on each participating machine (see
Figure 1-2). Each host kernel provides process management. interprocess communication. and low-level
device management faciliti'cs. All other operating system services are implemented as (collections) of
processes outside the kernel. A host kernel may be implemented at a base level (as on the SUN workstation) or
a guest/evel (as under 4.2BSD).

workstation

distributed kernel

I
r - - - -1'--

11 ____ ---01
----- -------1-1

~
II

IL

kernel kernel

------- -

kernel

interkernel protocol

I
1

- - - - _~ __ I
______ ~ ___ . __________________ ~Arl.I~-----------------

r Ethernet

Figure 1-2: The distributed V kernel.

The host kernels arc integrated via a low-overhead illler-kenlel protocol (lKP) that supports transparent
interproces.') communication between machincs. IKP is a reliable request-response protocol. intermediate in
complexity between conventional datagram and virtual circuit protocols.

1.3.2. Servers

Servers include:

virtual graphics lenninal server

interne! server'

Provides all terminal management functions. including Vr-lOO emulation and 2-D
graphics. One per workstation. . .

Provides network and transport level support for'traditional network nrchitcctures. nnmcly,
ARPA Inllernet and Xerox PUP. Higher-level protocols. such a~ TEI.NET. are provided as
separate packages that interface to the internet servcr.

V,SYS."nI 6.0 Reference Manual 17.June 1986

1-4 IntroducUOD

pipe server Provides asynchronous, butTered communication facilities similar to UNIX pipes.

team server Provides team creation, destruction, and management One per workstation.

exception server Fields process exceptions and dispatches them to registered handlers, such as debuggers.
One per workstation.

storage server Provides file storage.

device server(s) Interfaces to a specific physical device, such as the console, mouse, serial1inc, or disk.

1.4. The Application Model

In general. it is just as easy to write applications to run under the V-System as it is to write applications to
run under any traditional operating system. such as UNIX. A standard program environment is defined, the
principal instance of which is the C program library. The C library provides runtime suppon for standard C
and UNIx-like library functions, including both byte-stream and block-I/O facilities (see Figure 1-3). In
effect. these libraries can be used to "hide" the underlying V-System kernel ~ thus facilitating the porting
of existing C programs.

User Programs

" .. '
C Library

Byte Stream Library

JL
1/0 Protocol

---- --T.-- - ----
Kernel Stub Library

" "
Kernel

Figure 1-3: Client interfaces to the V-System

On the other hand. an application programmer may choose to ~1ke advan~,ge of the enhanced £.1Cilities
provided by the V-System. These Ihcililic..'S fall in two major categories: user interaction and concurrent
programming. Additional advantage accrues from tJle fact that applications may be distributed across
multiple m~lchincs.

V'Systl'm 6.0 Reference Manual 17 June 1986

The ApplicatioD Model 1·5

1.4.1. User Interaction

With respect to user intc:raction, the V-System provides two principal enhancements over traditional
UNIx-like systems. First, a program may manipulate multiple vinual tenninals (windows) simultaneously.
Second. an application may employ structured graphics. Specifically. a graphical object can be defined in
terms of other objects, which can in turn be defined in terms of yet other objects. Thus. the VGTS supports
structured display files rather than the more common segmented display files. The resulting l'irtual graphics
tenninal protocol (VGTP) is a high-level object-oriented protocol that minimizes both the frequency of
communication between application and VGTS and the amount of data transmitted at anyone time.

1.4.2. Concurrent Programming

Using the distributed kernel well requires understanding the model of processes and messages that the
kernel provides, and how they ar~ intended to be used. Processes represent logical activities within the
application. 'Illey are intended to be sufficiently inexpensive to allow the use of multiple processes to achieve
the desired level of concurrency. In panicular. multiple processes may share the same address space or leam.
to facilitate fine-grain sharing of code and data. A team must be entirely contained on a single machine.

Processes can be dynamically created and destroyed. When a process is created, it is assigned a unique
process identifier that is used subsequently to specify that process.

Synchronous messagc-pas.~ing &1Cititates communication between processes that looks to the sender like a
procedure call. That is, the sender blocks until a reply to his request is received. Greater flexibility is
provided to the receiver to allow scheduling of requests. Messages are addressed to thc process identificr of
the recipient; thcre is no con1cept of a mailbox or port distinct from a process.

Messages arc short and fixed-length. To facilitate transfer of large amounts of data. a separate data transfer
facility is provided. Spccifically. a process can pass. in a message. access to an area in its team space. This
facility follows the procedure paradigm in being used primarily to access what are logically "cail-by
refcrencc" parameters. Sync:hronil.ation between the two processes involved in the data transfer is guaranteed
by vinue of thc fact that the recipient will not reply to the sender (and hence awaken him) until the transfer is
complete.

lbe lcernet also provides process groups and group interprocess communication. Each process can create,
join. and leave groups dymllmically. and can belong to many groups simultaneously. A message sent to a
group is delivered reliably tu the first group member lo reply, and unreliably to the rest Replies subsequent
to the first may be received (unreliably) by the sender. or ignored. at its option.

Procc.'SS scheduling is stric:tly priority~bascd. The effcctive priority of a process is the sum of its process
priority and its team priority. Team priorities are dynamically varied by the team server to provide time-
slicing. . .

1.4.3. Classes of Applic:ations

From the previous discussion it should be apparent that applications may run local to the user's workstation
or on any other host accc~ssibic via the various network protocols. Ultimately. all applications must
communicate with the user via the virtual graphics tenninal server (VGTS) resident Oil the user's workst41tion.
The application inter'lacc to Ilhe VGTS is referred to as the virtual graphics tenninal protocol (VGTP).

111e VGTP is cons~'nt over all applications. However, some applications have no knowledge of the VGTP
and some applications arc running on machines that do not support the interproccss communication
mechanisms underlying the' VGTP. The following situations arise (see Figure 1-4, in which each intcr
machine arc is labeled with an example (presentation pr%col. transport protocol) pair):

• Application A runs (>n the workstation and communicat~ via the VGTP. Current examples includc text
editors, document illustrators, ~md design aids, many of which arc documented here .

• Application B runs on a machine that supports V kernel services, specifically, network-transparent

V·Syslem 6.0 Reference Manual 17 June 1986

1-6

SUN
Compiler

VGTP

IKP

DEC·20

Text Editor

Tetnet

TCP

Local
Illustrator

Custom

NaP

Figure 1-4: Some possible applications.

Introductioa

VAX
VLSI Layout

Editor

VGTP

RTP/BSP

VAX

Distributed
Game

interproccss communication via IKP. B communicates with the VGTS via the VGTP, as in the case of a
application A.

• Application C nms on a machine that docs not suppon IKP. but docs support a traditional network
architecture such as the (ntemet protocol filmily. In addition. a VOTP interface package is available
that encapsulates the VOTI' within the appropriate transport protocol. Similarly. a local agent fhr the
application. C: is created on the workstation to d(.'Capsulate the VOTP. 'l1lUs. the application may still
be written in tcnns of the VOTP and neither it nor the VOl'S have any knowledge that the other is
remote. Our VLSllayout editor, for example. can be run in this fashion under VAX/UNIX.

• Application D has no knowledge of the VOTS or the VOTP; it wishes to regard the workstation as just
another tcmlinal. The local agent, D: is "user TELNET" and pcrfonns the appropriate translations
between Tl!LNET and VGTP. Any pre-existing application that runs on a remote host falls into this
class.

• Application E is distributed hetween the workstltion and one or more other machincs. 'Ine local agent,
E: is responsible for representing the multitude to the VOTS. It must perfonn the appropriate set of
protocol conversions indicated above. In addition. it may wish to perfonn application-sp<.'Cific
functions. such as caching. In that case, the protocol used to communicate with the remote applications
may require more than simple transpon service. The Amaze game documented herein is an example of
such an application.

V-System 6.0 Rdercft(,c Manual 17 June 1986

The Application Model 1·7

1.5. Outline

The remainder of this manual c?nsists of four parts:
Part'l Using V: describes the user interface and available application programs.

Part 2

Part 3

Part 4

V Programming: defines the V-System program environment in terms of the existing C
program Inbrary.

V Servers:: defines the standard message fonnats, request and reply types, and protocols;
presents the various server-specific protocols: and gives some implementation details. .

Appcndic(s: a V-System bibliography, notes on programming style, installation notes, and
a list of where the various library functions are defined. •

V·System 6.0 Reference Manual 17.June 1986

Part I:

Using V

2·1

-2-
User Interface Overview

This chapter presents an overview of what it is like for the user to interact with the V-System. Details of
tenninal emulation or graphics support' are not 'discussed, since that is best described by the programmer's
interface in Chapter 29. Rather. the basic stylistic conventions are presented. including an o\"erview of how
applications' actions are manifested to the user. Also included is a discussion of the the basic architecture of
the user interface. in the hop·e that it will enable the us~r to better understand the style of inte:-dction and the
facilities available to him. 111e user who is "in a hurry" to get started may skip this discussion, at least on first
readin& and begin with Section 2.2. The following chapter discusses command interpretation in some detail.

2.1. '·he User Interface Architecture

In a typical operating syst1em, the user is presented with the illusion of interacting with a single, unified
front end. often referred to as an "executive" or "shell". However, in contemporary workstation-based
systems., this front end actuaUy provides three basic levels of interaction: "

l. dc,ice 110: Manipulation of input devices and generation of output on output devices.

2. command interpretation: Command (or argument) specification and response handling, and invocation
. of applications.

3. window management: ~,fanagement of multiple simultaneous applications (in separate "windows").

Rather than combine these three levels of function in one module, the V-System distinguishes three
separate software components - respectively:

1. the workslation agent,
2. the execU/ive. and
3. the work.slalion ma"agi~r.

This separation was inspired by a desire to be able to configure each component independent of the others.
While this release of the V-System docs not reflect the ideal realil.ation of this separation. it nevertheless fits
the basic framework.

Womilf,: The workstation agcnt was originally refcrred to as the terminal agent. The two tenns arc used int.crchangc:lbly.

" 2.1.1. Workstation Agents

The workstation agent provides the lowest-level interface between the hardware and the rest of the system.
One of it') principal functions is to hide any idiosyncrasies of that hardware - through a virtual tenninal
interface.

2.1.1.1. Virtual Terminals

Rather than dealing with Ithe "raw" hardware. applications internet with a virtual tenninal. They request
input from a virtual keyboard or mouse, for example. and write output to a virtual stocc. Depending on the
"class" of reat tenninal (workstation) being emulated. the characteristics of the virtual input and output
devices may vary widely. In the simplest implementation. each workstltion agent emulatl.'S exactly one class
of real tenllinal: emulating a different tenninal requires a new workstation agent More sophi3ticated
workstation agents emulate multiple classes pf tenninals simultaneously. Note that the number of classes 0/
lenninGls emulated is independent of the number of virlual/enuillals being emulated at anyone time.

Using V 17 June 1986

1·1 User Interface Ove"iew

Historically, the most common clas.ct of terminal emulated has been the page-mode (character) tenninal
exemplified by the DEC Vr-lOO. Even in this case. the workstation agent can be thought of as emulating
different types of terminals, corresponding to the various input and output modes provided by a Vf-lOO
character-at-a-time versus block transmission. local editing facilities, and the like. In general. the workstation
agent. through its virtual tenninals, provides a set of facilitics that might be refcrred to as "cooked lion -
ranging from character cc:hoing to line-editing to page-editing to graphics-editing. These facilities are enabled
and disabled on a virtual terminal by virtual terminal basis.

True to its name, a virtual terminal nced have no physical, real-world manifestation. In particular, it is
possible to write output to a virtual terminal without seeing that output displayed on the screen. Hence, any
application may run and change the store of any virtual tenninal at any time.

While it is common for multiple applications to be generating output simultaneously, it has historically (if
erroneously) been thought less desirable to permit the user to direct input to multiple applications
simultaneously. True to this historical bias, the V-System currently restricts input to one application at a time.
We refer to the application and associated virtual tenninals as being "selected" (for input). Selection for
input has no effect on the underlying application's ability to generate output. As with output, however, it is
possible to generate kcyboard input for a virtual tenninal without having the virtual tcnninal mapped to the
screen; users should be wary of the possible consequencesl

2.1.1.2. Views

In order for the user to actually see the output from or generate graphical input to a virtual terminal, the
virtual tcnninal must bc mapped to thc· screcn through a view. A view defines thc portion of the vinual
tenninars store that should be displayed, the area on thc screen in which it should be displayed, and the
transformation that should be applied whcn mapping thc store to the screcn. Using traditional graphics
tenninology, the store is referred to as the display file, the portion of the store is a Willdow, the area of the
screen is a viewport. and the transfonnation is a viewing Irans/onnalion.2 Viewportsarc invariably rectangular, ...
although there l'i no conceptual reason for this to b.e the case.

Typically. an .lpplication will create one view of a virtual tcnninal at the same time it creates the virtual
terminal. Nevc,thelcss, vicws are main~1ined as entities distinct from virtual terminals because, in general,
each virtual terminal may have more than one view associated with it When using the YGTS. for example,
the same picture. maintained as one entity by the program. may appear in two separate view ports on the
screen. possibly with different viewing transformations. That is. a second view may look upon a different
portion of the virtual terminal's store from the first. or at a different magnification.

Note: UCCIUSC a view is the physical mnnircstation of a vinuallCrminal on the di!q)lay scrccrt. we will tend to U.4iC the lcnn
"vicw" rathcr than "vinual tcrminal" when discussing screen management is.\"Ues. Where ncccssary to be even more
specific. we wil~ usc the tcrm "viewport".

So. a virtual tenninal may be ac;.c;ociated with more than one view. On the other hand because the virtual
terminal is independent of its physical manifestation. there need be no views associated with it Destruction
of all views does not in any way affect the virtual terminal. though it will make it rather difficult for the user to
sec what is going on. .

One common policy is that views are the domain of the user. A program that creates a virtual terminal
should create a view of it. so that the lIser knows lhat it exists. hut "fler that. in the ordinary course ur things.
the program should leave the view alone. The program should not depend on the continue existence of that
view, nor need it be aware of any other views of the virtual terminal that the user chooses to create. Let the
user decide where on the screen he wants views to be, and how big. and with what viewing transformations.
That is what the workstation manager is for.

2UnronUnalCly, traditional "window systcm" tcrminology tends to usc the word "window" to mean any or aU or window (as just
defincd). vicwpon.. view. or vinual tcnninai.

17 .June 1986 V·Sys'~m 6.0 Rcrcrcncc Manual

The Uscr Interrace Architecture 1·3

2.1.1.3. V-System Agents ." • t

lbe V-System currently supports two workstat~on agents. the simple lenninai server (STS) and the ~irtual
graphics tenninal server (VGTS). The STS providcs basic text tenninal emulation by making the workstation
appear as a single. traditional. page-mode tenninal - compatible with ANSI standard X3.64.) Character
echoing and line-editing arc optional. The STS is used principally to interface to ASCII terminals. but it can
also be used over remote tc:rminal connections and as the interface to the nonnal workstation keyboard and
display. . -

The VGTS provides considerably greater functionality, including support of what is commonly referred to
as a window system (more on this later). Any "window" may emulate the same type of terminal provided by
the STS. Alternatively. a window may emulate a (structured) graphics terminal that provides roughly the
tacilities available in the ISO standard Graphical Kernel System, together with rudimentary modeling
facilities in the fonn of stru1ctured display files. Thus, the VGTS provides simultaneous support for two very
different types of real teoninal. Each virtual terminal may have any number of views associated with it. Any
number of views of any number of virtual terminals can be mapped to the screen at the same time.
Applications arc unaware of the number of views or what is being displayed in them. except insofar as
graphical input events return the appropriate world coordinatcs. The VGTS is used when it is desired to
make the best use of devic(:s typically found on contemporary workstati9ns - such as bit-mapped displays,
en~odcd keyboards, and mice.

While the abstractions lfor keyboard and mouse are common across (existing) virtual terminals, the
abstractions for the store are quite different, as discussed in Chapter 29. When neccs.~ry to distinguish the
two classes of virtual terminals currently supported,· we wilt refer to the type of virtual terminal that emulates -
an ANSI standard tenninal as an ANSI virtual tennillai (A Vf) and the type of virtual terminal that emulates a
structured graphics tenninal as a structured graphics virlual tenninal (SGV1). '

Wami",: The "store" of an A VT is referred to as a pad UnfortunalCly~ that lCnn has been most frequently (and
erroneously) used ac; a plateholder for the complete A VI' abstraction, While this manual attempts to use each lenn where it

-is appropriate, thc code uses "pad" almost exclusively, Consequently, many of the routines described herein also refer to
"pad", Similarly, the term "vinual graphics tcnnina'" (or VG1,) has been used almost exclusivcly in the code, rather than
the lcnn "structured graphics vinual tcnninal", In both cases, we trust the readcr will be able to make thc appropriate
semantic substibJtions.

The bulk of the discussion to fonow assumes usc of the VOTS.

2.1.2. Workstation Managers

111e workstation manager permits the user to control multiple simultaneous execlltives -- with
accompanying applications.. 'lluough it executives are created and destroyed. programs arc interrupted and
kH1ed. and both virtual telnninal and views arc manipulated. With respect to the last. in particular, the
workstation manager is the module that enforccs the cOllslraillls on view management that the user desires.
For example, it enforces thc~ precise position and front-to-back "ordering" of view ports.

It is crucial to appreciat:e the distinction between workstntion managers and workslc1tion agents. rille
manager exerts "control" over the "facilitics" provided by the agent. while at the same time using those
facilities to internct with thc~ user. Different users may want diflerent styk.'S of control. For example. one user
may prefer to spccify all views llIanually~ where~ls ,mother user may prefer the system to determine the "best"
view "ulUmatically: one user may prefer his view ports to be tiled. whereas another may prefer them to
overlap. 'I1,CSC styles are independent of the basic facilities provided by the workstation agent.

In principle. it should be possible to define the ideal workstation manager. independent of all workstation
agents. But, just as workstation agents arc limited in pmctice by the classes of real terminals they support,
workstation managers are -limited in practice by the av,lilable classes of workstation agents.. For example, the
VGTS comes with a large and powerful workstation agent, called the view manager, which is accessed via

lrhc most widcsprc:ld examplc of a lcrminaladhcring to this standard is the Doc vr -100,

UsllII V 17 JUlie 1986

User laterfate OYeniew

popup menus. Many of its commands require the user to select or position view ports on the screen. Such "::\..
interaction works best in an environment with a mouse, for example. yet some workstation agents may not'
provide an efficient emulation of a !Jlouse. The S1'S, on the other hand. has only a trivial vestige of a
workstation manager. Its primary function is to guarantee thc existence of one cxecutive running on the
tenninal at aU times.

2.1.3. Executives . ~L ,'_ :" '_ ;.: '" \~ t...l

Workstation agents and managers provide the basic facilities by which the user interacts with the
workstation. But little has been said about how the user actually specifics commands and applications. In
fact. these functions are providcd by executives (or shells).

Some systems penn it only one executive. often running only one application at a time, but sometimes
capable of running multiple applications at' a time - onc in the Uforegroundtt and the rest in the
"background", for example. Under the STS. the V-System provides one executive (of the latter variety).
Under thc VGTS, multiple executives are supponed simultaneously; the view manager is responsible for
creating (and destroying) them. ,.,. :~r:,'v,: ": .1: !

.' .. ,', - : ...
2.1.4. Summary

,~;\ "

We have outlined th'e ba.c;fc concepts underlying thc user interface to the V-System. The rest of this chapter
discusses the more practical details of how the user actually interacts with the system via its workstation agents.: ':; ... '
and workstation managers. Interaction with executives is discussed in thencxt chapter. .

2.2. Getting Started" .. '. , '. ':II:;

When you come up to an idle workstc1tion, it may be in one of several states. If the screen is blank. it is
probably running V, but idle. The VGTS blanks the screen on idle workstations after a few minutes of
inactivity. Move the mouse slightly or press any key on the keyboard to restore the display. A previous user
may have left one or more of his sessions (see below) active. The command

logout
, :":1;

will tenninate them all and get you otT to a fresh start. If the workstation is running something other than V,
is dead. powered down. or the like. it will be necessary to reboot it. as described in the following paragraphs;

2.2.1. Booting the Workstation,

As previously noted. the V-System runs on a variety of workstations. Hooting procedures vary depending
on the manuf:,cturer and un the model. Section 16.1 describes in detail how to boot al1 of the workstt1tion

, configurations supponed with this rel~1SC. 'lbe following is an overview that should cover most situations.

2.2.1.1. Vax Stations

When in the PROM monitor VaxS~,tinns display a »> prompt If the works~'tion is not in this state. press
the hal t bullon twice (once to put it in. once to bring it OUl). If this utx,.'sn"t h"lt the machine, prcs.c; reset.
These bultuns are on the front panel of the Vax Station CPU. Once at the PROM prompt. the command b
xqaO will cause the workstation to boot over the ethe~net

2.2.1.2. SM. Workstations, ·t,. . .:;
An SMI workstation in a random state can be reset to the PROM monitor by holding down thc key in the

upper left hand corner of the keyboard. and hitting the "A" key. (,Ille key in the upper Jefl hand corner may
be laheled either LI. SI~r-UI). or ERASE EOF depending on the exact muueI.) There is no reset button on SMI
workstations. so a very serious crash can make it necessary to power-cycle the workstation.

17 June 1986 V'Sysl(,DI 6.0 Rererence I\-lanunl

.• ".!

Getting Started 1·5

Once you have gotten into the PROM monitor. the next thing to do is to type the k2 command, which
simulates a power-up reset (Shortcuts are sometimes possible. but k2 is the safest route.) After the power-up
memory test i.4\ completed, the workstation will try to boot its default program. Most Sun workstations at
Stanford are configured to boot the V-System with VOTS. The bootstrap program first loads the
workstation's configuration file (see Chapter 19) to find out what its defaults are. It next prints "V-System" or
"xV-System" to ind!cate whc:thcr the production or experimental version of V is being loaded, then prints the
filenames. of the kernel and initial team as it loads them.

If you notice the workstaHon is not booting what you want it to, you can interrupt the autoboot with the
reset key sequence described above. then type in the exact boot command you want. Most of the time, one of
the following simple commands will do the job:

b Boots the default program.

b V

b xV

Boots the production verSion of the V'System, with the VOTS.

Boots the experimental version of the V-System, with the VOTS.

General boot commands and the V bootstrap loader are described fully in section 16.

", ' . .' .• j

: .!' ,',111 I'

Note: M~t SMt workstati(ms at Stanford use the Sun-2 processor board. but a few Sun-Is have not been upgraded. The
above description is correct for SMI workstations with Sun-l processors as well as Sun-2s, but the details of the general boot
command and other PROM monitor commands vary. The V k.ernel tickles a bug in the current Sun-3 PROMS. Rebooting a
Sun-3 usually requires pow~r cycling the workstation.

2.2.1.3. Cadlinc Workstations ' .. . '

A Cadlinc workstation in a random state can be reset to the PROM monitor by typing
<Cl"RLXSIIIPTXBREAK), pressing the reset button. or (in desperation) power-cyc1ing the workstation. It is best
to try prcs.~ing the comma klcy on a Cadlinc's numeric keypad before resetting it If the V kernel is act~ve at
that point this key instructs it to turn off the mouse, necessary for proper operation of the PROM monitor.
Otherwise. you may have to power cycle the workstation or keyboard to regain controL

On the Cadlinc. either k1 or k2 will simulate a powerup reset You may need to type the command twice
for it to take effect The Cadlinc PROM monitor uses n in place of b in the simple boot commands above. See
section }6 for a full description ofCadtinc boot commands.

All Cadlinc workstations usc a version of the Sun-! processor board.

2.2.1.4. Rack-Mount Suns

Suns that have an ordinary terminal as their console can usually be brought into the PROM monitor by
hitting the terminars BREAK key. Sometimes there is a reset button or switch attached. Some rack-niount
Suns at Stanford contain Sun-} proces.~ors: others usc the Sun-2. Some boot using the n command; others
use b. In most cases, the boot commands listed above wilt work. and the STS will automCltically be loaded in
place of the VGTS. but in general it is best to check with a wizard before rebooting a rack-mount Sun. ."

2.2.2. An Overview of Subsequent Interaction
','

Noll': '111 is liCClion is somcwhat redund.1nt with &.'Ction 1J since it is 3,\Sumcd thalmany people will read it without reading
!.holt section!

: ; ..
Once the user has booted his workstation he may communicate with one of two entities: an execulive or the

view manager. rille user executes commands (application programs) from within an executive, which is
similar to the UN IX Cashen. The applications may run local to the workSi41tion or remote. They may be
written with the particular workstation in mind. or run in "terminal emut'ltion"·mode. They may require [/0
modalities other than trauitional text. namely. graphics. Each application may be associated with one or more
separale virtuul terminals as discussed above. '.

When the user wishes to initiate a new application concurrent with existing applications. he must first create

Using V 17 June 1986

Vser IDterface OYerriew

a new executive. To do so, the user communicates with the view manager. The executive serves as a
command interpreter from which the desired application may be initiated. The user can create a new
executive, with associated virtual tenninal, at any time, asynchronous to any existing activities. When a
particular application requires additional virtual terminals, it is free to create them. These virtual terminals
will be deallocated when the application terminates.

A virtual terminal is made "visible" by mapping it to the screen. Each such mapping is termed a view.
When an application creates a new virtual terminaL the application may specify where on the screen the view
should appear or the application may request that the user should specify the view interactively. Thereafter.
the user may create as many additional views as he wishes. To some extent, he may manipulate views of the
same virtual terminal indep.endent of all other views of that virtual terminal, for example, pan or zoom one
view independent of all other views of the same virtual terminals. All such virtual terminal management is
performed via the view manager.

2.3. VGTS Conventions

When using the VGTS, views appear as white overlapping rectangles on the screen, with a black border and
a "banner" across the top edge. The banner contains the following information:

• a virtual terminal identifier
• a view identifier
• the "name" of the associated application (if any)

Every view of every ANSI virtual terminal displays the text input cursor as a small black box. An additional
cursor is associated with the mouse; it may change shape depending on what graphical input event is
expected, for example.

2.3.1. Selecting for Input

As discussed above. at most one application is selected for input at one time. At most one of its virtual
terminals (usually an AVT) may be selected for keyboard input Any subset of its virtual tenninals may be
selected simultaneously for mouse input; the application may selectively enable and disable mouse input for
each virtual terminal.

All views of all virtual terminals selected for input (of any kind) display a "blackened" banner - white text
on black background. In c.lddition. the virtual lennim.1 selected for keyboard input will display a flashing
black box at the cursor. Unselected virtual terminals have whitened banners - black text on white
background.

2.3.2. Using the Mouse

There are a few conventions for using the mouse with the VOTS. First, we assume a three-button mouse.
In the discussion that follows. the buttons arc labeled simply "left", "middle", and "right".

We as.c;ume that there is always a cursor as.';ociated with the mouse. Wherever the tenn "cursor" is used
withuut qualilicutiol1. we ilrc prubahly "'liking about the muuse cursuI' - rather than the keyboard cursor.
Also, we will often usc the phrase "pointing to" to mean "the mouse cursor is in" or .. the mouse cursor is
pointing to".

A "click" consists of pressing any number of buttons down and releasing them at a certain point on the
screen. While the buttons arc down there may be some kind of feedback, like an object which follows the
cun;or. The click is usually only acted upon when all the buttons arc released. so if you decide you have made
a mistake after prcs.c;ing the buttons you can slide the mouse to some harmless position before releasing the
buttons. Iioiding 4111 three)uttons down is also interpreted as a universal abort by most programs and the
view manager. rille click event is sent to the program associated with the view in which the event occurred
(through its virtual terminal). . .

17 June 1986 V'Sysll'lR 6.0 Rererence Manual

VGTS ComentjollS 7,·7

A "transition" consists ofa. press ora release of any combination of buttons. A transition event is scnt to the
program associated with the view in which the event occurred. Since it typically is acted on immediately. the
VaTS provides no feedback and ~e universal abort feature described above does not work.

2.3.3. The Screen Saver

The VaTS will automatic;ally disable (blacken) the screen if no keyboard or mouse events have occurred
within the preceding 10 minutes. This helps protect the screen's phosphor. The screen is rcenabled by a
subsequent keyboard or mouse event Note that other VaTS events will not reenable the screen, so. the
screen save will work even if a program such as mon (which periodically updates the screen) is being run.

2.4. Workstation Mclnagement

Almost aU workstation management functions are accessible via a set of menus manag·!d by the view
manager. The only exception is selection of an application for input Many view manager functions are also
available via "accelerators" - "appropriate" mouse clicks in "appropriate" places. Some functions are
triggered by program-generated requests. We discuss each situation in turn.

2.4.1. Selection for Input

Clicknng the left or middle button of the mouse in a view of a non-selected virtual terminal will cause the
associated application to be selected for input The view will be brought to the top.

2.4.2. Using the View M.anagerMetius

The view manager menus can always be invoked by moving the cursor to the grey background area or to
any view not selected for iJ1lput (except in the banner area) and pressing the right button. The following
commands are available from the view manager menus. The commands are presented in alphabetical order,
followed by a summary of what each (sub-)menu contains.

2.4.2.'1. View ManagerMenuCommands

Center Window Change the "window" associated with a view - without changing the position of the
assodilted viewport Click any button at the position in the vicwport th'lt you want to
become the center of the viewport I)oing this to AVT's is almost always a mistake.

Create Executive Create a Itlew· executive, with associatcd A VT.. lbe cursor changes to the word "Exec".

Crcilte View

Whcn you press a button, an outline of the new A VT will appCilr. and will follow the
cursor as you hold the button down. Lift dlO button up at the desircd position, or press all
three buttons to abort

Notle: Comes in two flavors. for two different default sizcs or A vr (sec Set Alternate Exec Size
below). .

Crcate another view of an existing virtual terminal. '111C cursor changes to the word
"View". Move the cursor to the desired position of anyone of thc tllUr corners for the new
viewport Hold any button down. and move the cursor to the di"gonally opposite corner.
An outline of the new view wi11 fol1ow the cursor as it moves with the button down. Let
thc button uP. and then point ilt the virtual tenninal that you would like to see with the left
or middle: button. or hit the right button ilnd select the virtual terminal from dle menu.
Normally only used with SO ITs.

Deletc Executive Delcte an executive. Click any button in ilny view ilssociated with the executive.

Delcte View Delete a view. Click any button in dlC associated viewport.

Using V 17.Jullc 1986

1-8 User Interface Otemew

WIU7Ii",: If you delete the last view of a virtual terminal. it does not destroy the virtual tcnninal or
the process associated with it. You can stiD create views of the vinual tcmlinal by using the right
buuon menu in the Create Viewamunand.

Exec Con.U'ol Select the submenu for executive and program control functions. A shortcut to the Exec
Control menu is obtained by pressing both the middle and right buttons. while the cursor is
in the gray background or in a view not selected for mouse input.

Expansion Depth Set the "expansion depth" for a SOVT. For hierarchically defined graphical symbols, this
determines how much (how deep) of the hierarchy will be displayed. If this causes some
graphical item not to be displayed, its bounding box is displayed, possibly with a tcxt name
(if there is room). The default expansion depth is infinity, such that all levels will be
expanded. Click any button in the view whose expansion depth you wish to set, then select
the ncw expansion depth from the menu that pops up.

Graphics Commands
. Select the submenu for graphics functions. A shortcut to the Graphics Commands menu is
obtained by pressing both the left and right buttons while the cursor is in the gray
background or in a view that is not selected for mouse input.

Interrupt Program Interrupt a program, forcing it into the debugger. Click any button in any view associated
with the program.

Kill Program

Make Bottom

Make Top

Kill a program. Click any button in any view associated with the program.

Push a view to the bottom. potentially making visible other views. Click any button in the
desired view. A shortcut to this function is obtained by pressing the right button while the
cursor is in the banner of the desired view.

Bring a view to the top. potentially obscuring other views. Click any button in the desired
view. Does not select the associated virtual terminal for input. A ~hortcut to this function
is obtained by pressing the left button while pointing to the banner of the desired viewport.
which action action does select the virtual terminal for input.

Move Edges Change the viewport associated with a view by moving one or more edges. Scating is not
provided. so this also changes the window (the portion of the object being viewed), but
without moving the object relative to the screen. Push any button down next to an edgc or
corner. move that edge or corner to the new position. and let the button up. The edge
outline should follow the cursor as long as you hold the button down.

Move Edges + Object
Similar to Move Edges.. but drags the underlying object around with the moved edgc or
comer. .

Move Viewport Change the viewport associated with a view by changing its position. but retaining its size.
Press any button in the desired view. While the button is being held down. the outline of
the viewport will move. following the cursor. Lift up the button nt the desired position. A
shortcut to this function is obwined by pressing the middle button while pointing to the
banner of the desired view: the viewport outline will follow the cursor until the middle
bUllon is released.

Redraw Erase and redmw the entire scrccn. Should be necessary only when low-level debugging
in fonnation trashes the screen.

Reset State Reset the state of an A VT. Click in any view of the A VT. This is equivalent to pushing the
"reset" key on a VI'-lOO or m~t other page-mode tenninals and is necessary only in
extraordinary situ(ltions where the A VT appears to be "wedged".

Set Alternate Exec SilC

17.June 1986

Set the "alternate" size for executives. Type in the size to the VGTS window. Executives
of the new size can then be created using the Exec Control submenu.

V-System 6.0 Reference Manual

Workstation Management 1·9

Toggle Grid G Togglc thc background grid in a vicw of SGVf. Click once to tum the grid on if it is off.
or off it is on in the view you select. The grid dots are evcry 16 screen pixels, and always
line up with the origin.

Togglc Paged Output Mode

Zoom

Enable or disable paged-output mode in a A VT. Click in any view of the A VT.

Invoke "loom mode" in an SGVT. The cursor changes to the word "Zoom". You can get
out of thas mode in two different ways: First, clicking the lcft. or middle buttons when the
cursor is inside a vicw of an A VT returns from the vicw manager and selects that A VT for
input As a side effect that view is also brought to the top. Secondly, you can click the
right mouse button. The cursor should change back to the nonnal arrow.

The left. and middle buttons in Zoom mode zoom out and in respectively. That is, thc left
button makes the object look smaller, and the middle button makes it look larger. You can
remembe~r this because the "outcr" (left) button zooms out, and the "inner" (middle)
button zooms in. A shortcut to this mode is available by clicking the middle and left
buttons at the same timc while the cursor points to the gray background or to a vicw not
selected for mouse input

2.4.2,,2. Assignment of Commands to Menus

The top-l.!vel view manager menu contains the following commands:

Create View
Delete View
Exec Control
Graphics Commands
Make Bottom
MakcTop
Move Viewport

The uExcc Control" sub-menu contains:

Creatc Exocutivc (two flavors!)
l)c)ete Executive
I nterrupt Program
Kill Program
Reset State
Sct Altcrnate Exec Size
Togglc Paged Output Mode

'[be "Graphics Commands" sub-menu contains:

Ccnter Window
Expansion Depth
Move Edgc~
Move Edg<:5 + Object
Redraw
Togglc Grid
Zoom

2.4.3. Summary of A~clelerators

The workstation management functions avai141ble though mouse clicks arc listed in Table 2-1. Sec also
section 2.7.

llsing V 17.June 1986

2·10 User Interrace Overview

Mouse
Buttons Where Effect
L M B
x In banner Make Top and select

x In banner Move Viewport
x In banner Make Bottom

x In non-selected viewport Make Top and select
x In non-selected viewport Make Top and select

x In gray or non-selected viewport Top-level menu
x x In gray or non-selected viewport Exec Control

x x In gray or non-selected viewport Graphics Commands
x x In gray or non-selected viewport Zoom
x x x During any workstation management command Abort

Table 2-1: Accelerators for workstation management functions.

2.4.4. Program-generated Requests

When a program requcsts the creation of a view, the VGTS enters the same interaction cycle as described
for the Create View command above. However. since the virtual terminal will have been specified in the
function call. you do not need to select the virtual terminal, and universal abort typically will not work.

When a program requcsts the creation of an A VT. the cursor will change to the word "Pad" (sorry about
that). At this point. hold down any button, and an outline of the viewport that will be created will be tracked
on the screen. Position the viewport where desired. and let go of the button.

2.5. Line Editing Facilities

Keyboard input can be edited with Emacs-style line-editing commands. More specifically, the commands
listed below are available. CfRL-x means holding down the Control key and the x key simultaneously; ESC-x
means striking the Escape key and then the x key.
CfRL-a Move cursor to beginning of the command line.

CfRL-b Move cursor back one character.

CfRL-C Kills the Break Process. usually the command .running in the current executive.

CfRL-d Delete character under the cursor.

CfRL-e Move cursor to the end of the command line.

CfRL-f Move cursor forward one character.

CfRL-g Abort the command. The line editor will pass the command line. followed by a CfRL-g. to the client
program. which is responsible for detccting the CfRL-g and reacting to it. (The standard executive
responds to such a Hnc by printing "XXX".)

CrRL-h Delcte the character before the cursor. Equivalent to the DEL key.

CfRL-i Insert an appropriate number of spaces, to simulate a TAD character. Equivalent to the TAB key.

CfRL-k Delcte the command line from the cursor to the end of the line.

CfRL-t Transpose the two characters preceding the cursor.

Cl'RL-u Delete the command line up to the cursor.

CfRL·w Delete from the cursor to the beginning of the current word.

CfRL-z Causes an End of File indication to be sent to the application reading the line. This will tcrnninate

17 June 1986 V-Syslem 6.0 Rder('RCc Manual

Unc Editing Facilities 2·11

the Executive if no application is running.

ESc-b Move cursor to the beginning of the current word

ESc-d Delete from the cursor to the end of the current word.

ESc-f Move cursor past the end of the current word.

ESc-h Delete from the cursor to the beginning of the current word. Same as CfRL-w.

CR Return the line-edited text to the client. Even if struck in the middle of the "line", the entire line
will be returned.

Printing characters are normally inserted at the cursor.

2.6. Paged Output Mode

When paged output mode: is on, the workstation agent stops writing to an A VT when the A V1' fills up with
output. The workstation agent then displays the message "Type (space) for next page" in the banner and
waits for the user to issue a command that unblocks the A Yr.

Most commands are optionally preceded by an integer argument Ie. Defaults arc in brackets. Star (III)
indicates that the argument becomes the new default.
(space) Display the next k lines [current page size]

Z, Z Display the next k lines [current page size]-

CR, LF Display the next k lines [1]

q, Q Throwaway all output until the next time input is sent to ~e application program.

s Scroll forward k lines [1]

S Scroll forward to the last line

f Scroll forward k pages [1]

F Scrotl forward to the last page

85. DEL Erase the last char(JlCter of the numeric argument

Repeat the previoUls command

I f the user types a chamcter that is not a valid command. the character is treated as a normal input
character. If line-editing mode is on, the CTRL-C and CfRL-z commands (see section 2.5) have their usual
effect here.

2.7. Sending Mouse Events to Text-oriented Appiications

Many applications exist that have not been written expressly for the V-System. but can be accessed via the
text termimll ellluinlion protocol. A few minor additions to this protocol pennit applications tu receive a
number of mouse clicks as escape sequences that they may interpret as tJley wish. rIlle precise escape
sequences generated are given in Chapter 29.

1\ complete list of the events that generate escape sequences. and the use to which the UNIX EMACS text
editor puts them. is given in Table 2-2. The actual escape sequences generated arc given in Section 29.2.2.

Using V 17.June 1986

Hl

Mouse
Buttons
L M R

Emacs Interpretation

x Position the cursor at the position of the click.
x x Set the mark to the clicked position.
x x Delete from the mark to the clicked position.

x x Insert the kill buffer at the clicked position.

Table 2-2: Events that generate escape sequences.

2.8. Emulating the Mouse with the Keyboard

User laterface Oreniew

For the benefit of hardware configurations without a working mouse, the VaTS can interpret certain
keyboard escape sequences as mouse input

2.8.1. Workstation Management

The input virtual terminal can be changed by using CI'RL-t (octal 036) followed by a single command
character. The only command characters interpreted by the VaTS are 1-9 to select the given virtual terminal
for input

2.8.2. Graphics Events

The VaTS also interprets certain character sequences as mouse movements or button transitions.
However, the VOTS will only intercept these escape sequences if they are sent as a rapid burst of characters,
as is the case wr.en they are sent by pressing a function key. If the escape sequences are typed manually, the
VGTS detects the space between characters and passes them through in the normal fashion.

The following is a list of the escape sequences used and the function keys with which they are normally
associated on an ANSI (VnOO-style) keyboard:

ESC-[A (ANSI Down Arrow)
Move the mouse cursor down.

ESC-[R (ANSI Up Arrow)
Move the mouse cursor up.

~C-[C (ANS(Right Arrow)
Move the mouse cursor to the right

ESC-[0 (ANSI Left Arrow)
Move the mouse cursor to the left.

ESC-O P (ANS I PFl)
Toggle the value of the left mouse button. The new value of the left mouse button is
displayed in the view manager window.

ESC-o Q (ANSII'F2)
Toggle the value of the middle mouse button. The new value of the middle mouse button
is displayed in the view manager window.

ESC-O R (ANSI PF3)
Toggle the value of the right mouse button. lbe new value of the right mouse button is
displayed in ·the view manager window.

~c-O S (ANSI P"""4)

17 June 1986

Toggle mouse emulation mode. When mouse emulation mode is OFF, all esc,lpe
sequences except this one are passed through as nonnal t allowing the associated function

V·Syslem 6.0 Reference Manual

Emulating tbe Mouse with the Key/lJoard 2-13

keys to p1crform application-defined functions. The new state of mouse emulation mode is
displayed in the view manager window.

When the VGTS receives input from a "real" mouse, this type of emulation is pennanently disabled If
your mouse fails, you must use the "newterm" command to create a new VGTS in order to use mouse
emulation.

WGtJJing: These sequences only work on Sun-loo's,

2.9. STS Conventions

The bulk of the discussion thus far has assumed the availability of the VGTS. However, there are occasions
when lISCrs may have the interact with the STS instead. In that case, the user sees exactly one view of exactly
one terminal associated with exactly one executive. That view occupies the entire screen. The user interacts
with this executive exactly as he would with an execut.ive running under the VGTS. Line-editing facilities and
output paging arc provided.

Using V 17 June 1986

3.1. Introduction

3-1

-3-
Using the V Executive

The V executive is the part of the V system that accepts user commands from the keyboard and causes them
to be executed. It corresponds to the Unix shell or Tops·20 Exec. The executive is available as a program and
as a service provided by the exec server. Each executive usually runs in a vinual terminal provided by the
works~1tion agent - either the STS or the VGTS. See the description of the STS in section 4S and the
description of the Exec Control menu of the VGTS View Manager in section 2.4.2.

The basic operation of the: executive is to read command lines and execute commands. The first field on a
comma.nd line is the command name; the rest are arguments to be passed to the command. Fields are.
separated by spaces, except when quoted (see section 3.6.6). A command name can be a built-in exec
command. the name of a file containing a program compiled to run under the V system. or the name of a
program t~ be run on a server, such as Unix. The executive provides a simple search path mechanism for
commands. By default. it lcK>ks first for a V program in the current context (i.e .• current working directory),
then il1l the [bin] context You can specify a different search path using the PATH environment variable
(section 3.6.7). If the command is not found on your search path, the exec will try to execute it remotely, on
the server that is providing your current c~>ntext

The executive waits for c~ach command to exit. unless the last field on the command line is the single
character &. In this case, the command runs in the background, while the executive continues to accept
commands from the keyboard. The View Manager and STS provide mechanisms for stopping or interrupting
a command running in the foreground. A program running in the background may be terminated using the
des troy command (see chapter 4).

Other exec features arc described in section 3.6.

3 .. 2. Naming

A context in the V system is similar to the directories provided by other systems such as Unix. Each process
(and thus each executive) h;ils its own current context, i.e., current 'working directory. A filename is normally
interpreted in the current context. unless it begins with a square bracket f['). The square bracket flags the
name as being either an absolute name, or a local alias.

In V. the first component of an absolute name generally specifies the type of object or service being named.
The second component often specifics a particular server. For example,

[storage/pescadero]/etc/passwd
names the liJe letc/passwd on the storage server pescadero. 'nle closing square bracket is optional
here. Most servers accept it as an alternative to the sumdard slash character f r) used to separate name
components.

Usel's can define their own local aliases for contexts. using the define and undefine commands. For
example,

define 9 [sto~age/gregorio]/user/mann
defines, [g] as an abbreviation for user Mann's home directory on the storage server Gregorio. The
comm,and

undef1ne 9

Using V 7.June 1986

Using the V Exccati.e

removes this definition. The command
printdef

lists the local aliases that are currently defined. Several other standard aliases are automatically defined by the
executive when you log in. These include

[home] The 10~ged-in lIser's home directory.

[sys] The directory containing standard V-System files.

[b 1 n] The directory from which standard V -System commands are loaded. Normally the same as
[sys]b1n.

[V]

[xV]

[hom.x]

The directory containing standard production V-System files. The same as [sya] if you
are running the production V-~ystem.

The directory containing standard experimental V-System files. The same as [sys] if you
are running the experimental V-System.

The "home" server used for program execution. Nonnally [team/local], the local
team server. See section 3.6.9. .

When running with the VGTS, aliases defined in any exec created by the view manager are global to all such
execs. since all the execs run on the same team. A program run under the exec inherits a copy of the exec's
aliases. Later changes to the exec's aliases do not affect it.

3.2.1. Changing the Current Context '

The cd (change directory) command can be used to change the current context for an exec. The command
format is

cd pathflame

The path name is interpreted in the (previous) current context. If the path name is omitte<L [home] is assumed.
When an exec i.e; created, its current context is set to the current value of [home).

The pwd command prints the absolute name of the current context.

3.3. Logging In and Out

3.3.1. Login'

TIle log 1 n command is used to authenticate a user to the V-System. The command format is
log 1 n flags username

The optional flags arc described below.

The login command promptc; for a password. The pas.c;word is not echoed when typed. An error messa~e is
printed if the user types an invalid nCllne or pas.c;word. or cannot be authenticated for some other reason. If
aUlhenlication is sllcc~'Ssrlll, lhe given user is registered with the ex~'C server and learn server as the primary
user of this workstation. The exec then forces an)' guest programs running on the workstation to migrate
elsewhere.

The exec next defines the local alias [home] to be the user's preferred home context, as recorded in the
system authentication database, and undeflnes all other user-defined aliases. TIl us, if user Mann's home
context is [storag./teton]/ds/mann, after logging in, he can· refer to the file

4"ne m~ge "Scrver nOlI'Cl'Poodins" indiQtcs tlml no authentication server could be contacted. lbc command lut.hslrvor'
will !I1art one locally. after which il ~ould be pos.4\iblc to log in.

7.Iune 1986 V·System 6.0 Reference Manu31

Logging In and Out

Ids/mann/phone-numbEtrS under the name [home]phone-numbers. In this case it would be possible
to get at the "root" directory on Teton by using a I imll)ediately following the alias, for example.
[home]/usr/V/misc/termcap. . .

Next, the exec changes its current context to be thc new value of [home]. Finally. the exec executes a
command script from the file [h ome] • Vi nit. if such a file exists.

The login command's behavior can be modified by specifying one or more of the following flags on the
command line:
-y

-q

-x

-r

-t

Verbose nag. Commands in .Vinit are echoed as they are executed.

Quick flag. Prevents. Vinit from being executed.

Exclusive flag. Normally, when a user is logged in to a workstation, that workstation is
registercd as being unavailable for remote execution of commands, but if some other
workstation insists on requesting remote execution there, the team server will still grant the
request If the exclusive flag is given to the login program, the local team server is
instructed to refuse all requests for remote execution.

Remote flag. Register the workstation as being fully available for remote execution, as
though no one were logged in.

Finish flag. Allow guest programs currently executing on the workstation to fmish. If this
flag is nOlt given, guest programs are forced to migrate to another workstation.

After a user has logged in to a workstation. all further execs crcated on that workstation using the View .
Manager run as that user. The su command can bc used to authenticate individual execs as some othcr user.
The command fonnat is·

su username
Like the log 1 n command. the su command prompts for a password, which is not echoed. Howcver, it only
authenticates the exec in which the command is typed. It docs not affect the cxec server's record of the
primary togged-in user, or perfonn any of the other actions of log 1 n.

Execs created when no one is Jogged in to a workstation run as the unknown user. Most system servers place
severe restrictions on what the unknown user is allowed to do.

3.3.2. Logout

Give the logout comma.nd when you are done using a workstation. The command fonnat is
logout userllame •••

where the user names are optional. If no name is given. the user owning the exec in which tllC command was
typed is togged out If one: or more user names arc given, thc given users are logged out If the flag -a is
given in place of the list of user names, all users with authenticated execs on the workstation arc logged out
rille talter two options arc restricted to the primary logged-in user.)

I.ogging out a user destroys 4111 execs authenticated as that user, and hence all foregnlUnd programs run by
that user. I)u not log out if you want such programs to cuntinue running.

3.4. Remote Progrc:lm Execution on a Unix Server

If the executive fails to find an appropriate load file for a command. it will attempt to execute the command
on the server providing it') c:urrent context by invoking the fexecute program. Thus. for exnmple, when a V
server on Unix is providing the current context. all the stA.l1ldard Unix commands like finger, man, or ps are
available. rille olltput Or lhl~ Unix command is printed on the s~1ndard output file.

You can also supply input to remote commands. The character echoing and line editing on this input are

Using V 7 June 1986

Using the V F.."eaaU,.

done on the workstation, not by the session server machine.

Since both the input and output are done through pipes. and 'input is a line at a time. many Unix programs
which expect to be run on tty devices tsuch as emacs, more, etc.) do not work in this mode. Such programs
can only be run by logging in to the Unix machine, perhaps using the V telnet program to connect to it (see
chapter 4).

The V servers do not provide execution of Unix commands to users who are not logged in to V or do not
have a Unix account If the executive tries to execute a Unix command for such a user, the V server returns
an "No pennission" error.

3.5. Remote Execution on V Hosts

A command can also be executed remotely by designating. either a specific remote V host or any remote V
host A specific host can be specified either by the process id of its team server or by its string name (e.g.
sun-mj416). (Syntax details arc described in 3.6.9.) Remote execution of this type is transparent to the user in
that 110 is still directed to the local host.

3.6. Facilities for Command Specification and Modification

The executive provides various facilities for specifying commands and for 'redefining various aspects of
command execution. The syntax and semantics of each is described below.

3.6.1. Line Editing Facilities

Command lines can be edited as described in Section 2.S.

3.6.2. Pattern Expansion

A command argument that contains one or more asterisks (.) is considered a pattern, and is replaced by a
list of existing filenames that match the pattern. unless it is quoted with "" or • • (section 3.6.6). The asterisk
character matches any string of zero or more characters other than slash (I). right square bracket (]), or an
initial period (.). Other characters in the pattern match themselves.

3.6.3. Command History References

The executive maintains a history of the last 20 command lines that the user has typed in. These command
lines may be referenced by typing the character I immediately follo~ed by a prefix of the desired command
line. 'lbus if the command line

ep Ing/ng/V/emds/exee/exec.c Itmp/exec.c
was typed in, then it can be referenced by typing (for example)

lep
If a non-unique prefix is specified lhen the most recent command with that prefix is taken. Anolher special
form of reference is I I. which referenc<..'S the previous command line.

When a command line is referenced it is redisplayed for further line editing and verification. lbus in the
previous example typing

lep
will cause the executive to display

ep Ing/ng/V/cmds/exee/exec.e Itmp/exec.c
with the cursor sitting at the end of the line. The user can then hit carriage return to rc-execute the tine or can

7.June 1986 V·System 6.0 Reference Manual

Facilities for Command Specific:atioln and ModiOcatioD 3-5

edit it first to derive a new command.

The command h 1 s to r y will cause the executive to list the command lines it has stored in its history
record. The most recently executed command will be at the bottom of the list.

3.6.4. Command. Aliases

Command names can be aliascd by means of the a 11 as command. Thus, for example. typing
alias e ved

will cause the command name "e" to be replaced by "ved" in subsequent command lines. Note that aliasing
is done only for command n,ames and not for command arguments. (Remember that the command name is
the first word of a. command line.)

Alias(,.~ specify a string for :replacement of the alias word. Thus one can create aliases such as
alias test Ing/mmt/test/testcopy -d

Thcn typing something like
test f11e1 file~~

will cause the command
Ing/mmt/test/testcopy -d file1 f11e2

to be submitted to thc executive for execution.

A list of all defined aliases can be obtained by typing a 11 as without any arguments. The command
una 11 as is used to remove ian alias definition. Specifying a new alias definition for a command name simply
replaces the old one.

3.6.5. 1/0 Redirection and Pipes

110 redirection and specification of pipes between two (or more) commands is done using the same syntax
as is used by the Unix shells. Thus input.can be redirected to come from a file by specifying

cmd < file
and output can be redirected to a tile by specifying

cmd > file
or

cmd » file
The latter form specifies that the output should be appended to the ft1e whereas the first form wi1t overwrite
any data ulready existent in the ft1e. Error output can be redirected by specifying >1 or »1. The forms >&
and> >& redirect both stand,llrd output and standard error to the same file.

A special fonn of redirection is available for bidirectional ft1es, such as the serial lines available on Suns.
Specifying .

cmd <> file
cmlses the command's input and output to be redirected to the same file. To be precise. the file is opened in
FCREATE mode, and standard output is redirected lo the ins~1nce thus created. Sl4mdurd input is redirected
to come frum an instUlce whiose id is equal to the output instance id plus 1. This matches a convention used
by severul V-System I/O servers. 111e fonn <>& also redirects standard error to the same instance as standard
output

Pipes can be set up between several commands by separating them with a I·on the command line. Thus.
for exumple. the command line

cmd1 I cmd2 I cmd3 > log
will create two pipes and redirect [/0 so that the output of cmdl wilt be used as the input to cmd2. the output

Using V 7 .June 1986

Using the V Execud,e

of cmd2 will be used as the input to cmd2 • .and the output of cmd2 will be redirected into the file log.

All the special characters described above must be surrounded by spaces for the executive to recognize
them. Redirection clauses must appear after all arguments to be passed to the command.

3.6.6. Quoting Command Arguments

Sometimes it is desirable to include a space in a single argument to a command. To do thi~ put a pair of
either single quotes (t) or double quotes (") around the argument An argument quoted by one ofthesc may
contain the other. Unmatched quotes are ma~hed by ,the end of the line.

3.6.7. Environment Variables

The command
setenv vaT valut

sets the environment variable WlT to the character-string value value. (The latter should be quoted if it
contains spaces.) As with local aliases for context names, environment variables are shared among all execs
created by the View Manager. and are inherited by programs run under any excc. .

The command
unsetenv vaT

removes the definition of var, while the command
pr 1 ntenv var

prints its definition. The pr 1 ntdet command with no arguments prints all environment variables.

A command argument that begins with a dollar sign ('$') is replaced by, the value of the rest of the nrgument
interpreted as an environment variable, if such a variable is defined. Otherwise the argument is left
unchanged.

When trying to execute a V command. the exec detennines the search path to be used from the
environment variable PATH. if it is set. as ~o all programs that use the stand1rd V-System program execution
library routines. The value of PATH should be a list of context names separated by spaces. The default path,
used if PATH is not set. is"./ [bin)".

3.6.8. Concu rrent Commands

, Commands can be specified as beillg concurrent by including an .. at the end of the command line. This
causes the executive to return immediately to the user for another command rather than waiting until the
current command completes. Also. while nonconcurrent (foreground) commands are tenninated if their
executive is deleted. concurrent (background) commands will continue even if the executive that initiated'
them goes away. In fact, concurrent commands continue to execute even if the user that initiated them logs
out

The & must be preceded by a space for the executive to recognize iL

3.6.9. Execution of Commands on Another Host ','

Commands can be designated to execute on another host by including
i <host-designation)

on the command line. Here <host-designatioll) can be one of three things:

• '111e hexadecimal pnx:cs." id of the host's team server. This must given in the fonn Oxpid, i.e. as the
characters Ox followed by the hex process ide

7.June 1986 V·System 6." Rcrcrence Manual

11ac:ilities for Command Specification and Modification 3-7

elbe string name ofthc~ host. e.g. sun-mj430.

elbe string any, designating any suitable V host other than the local one. A suitable host is defined as a
" host on which no one is logged in, and whose unused memory and CPU time meet certain minimum

requirements.

Remote execution. is transparent to the user in that the I/O of the command is still directed to the local host
and will be displayed in the same manner as if the command were executing locally.

The 8 sign must be surrounded by spaces for the executive to recognize it The remote execution clause, if
present. must follow all arguments to the command (but may be intennixed freely with redirection clauses).

Another way to specify that commands should be executed remotely is to usc the ex command to change
the exec's cu"ent executioll context-that is, the server (and context) where commands are executed when a
remote execution clause is not given. The command format is

ex [team/hostname]
Giving the ex command with no arguments resets the execution context to [homex], the exec's "homett

execution context, which is 1l0nnalJy [team/loeal]. The command
pwx

prints the name of the current execution context.

3.7. Support for He'terogeneous Processors

The V-System currently runs on machines with two different types ofproccssor: the Motorola 68000 family
and the DEC Vax family. More proces..c;or types may be supported in the future. Thus, scveml versions of the
same V program may exist. each compiled for a different processor~

Diffi:rent versions of the same V program that appear in the same directory may be distinguished by a
machine-specific filc-name suffix. This suffix is , •• m6ak" for Motorola 68000-bascd machines (in particular,
Sun workstations), and" • vax" for the Vax. Note. in particular. that the directory for installed V-System
command binaries (at Stanfbrd. Ius r IV /b 1 n) contains two such versions of almost everY' command. When
searching for a command binary. the executive automatical1y searches for a file name both with and without
an appropriate machine-specific suffix. VillUS. it is not necessary for the user to enter a machine-specific suffix
when typing a command to the executive. This is true even if the command is executed remotely (sec section
3.6.9) on a host with a different processor type.

In light of the abovc, the executive's search path mechanism needs to be explained further. When a
command is to be executed on a specific host (that is, one that is known in advance), then the executive looks
down !\.he search path, until it finds a version of the command that can be executed on this particular host
This is the usual ca..'tC. When Cl command is to be executed 011 an arbitrary host ('" any"), then a slightly
different mechanism is used. In this case, the executive looks down the search path until it finds allY version
of this command. It then determines all versions of the command that exist in this location, and selects a
suitable remote host that is able to execute one of these versions. In most circumsta"nces the difference
between these two mechanisms will not be noticeable.

Using V 7 June 1986

4·1

-4-
Command Summary

4.1. Workstation Commands

The following briefly summarizes the currently available commands for V.

addcorr

amaze

ar

biopsy

bitcompile

Add correspondences from your V user identity to UNIX user accounts. Each V user can
correspond to one account on each local UNIX machine that is running a V /UNIX server.
The V superuser can add correspondences for other users as well as itself. See Chapter 43
for more inlfonnation about user correspondences.

A multi-person distributed game. Does not (yet) run under the VGTS. See Chapter S.

Constructs library files ("archives"). See the UNIX manual for documentation.

Prints infonnation about all the processes 'on the .workstation, sorted by team. Several
options are: recognized. The -1 option also includes the filename from which each team was
loaded. (fhis generally makes the output longer than one screenful.) The -t option
followed by a pid or the suffIX of a team's filename will cause infonnation to be printed
only about. the team associated with the pid or filename. More than one pid or filename
can be specified - information for each will be printed. To obtain detailed infonnation
about one lOr more processes, invoke biopsy with just the pid(s) of the relevant process(es).

Converts human readable bitmap specifications into initialized C data structures. Usage:
bitcompile [options] [file].

The file argument specifies the source, otherwise standard input is used. Output goes to
standard output by default

The following options are interpreted by bitcompile:
-DBIG_ENDIAN

Order the bytes (and bits) of the bitmap for big enwan machines. This
is the default

-DBLf\CK_IS_l
Generate bits of 1 for black. This is the default

-DBLf\CK_IS_O
Generate bits of 0 for black.

-OCOLUMN_ORDER
. Generate bitmaps as columns of 16 bit words.

-DLITTI..E_ENDIAN
Order the bytes (and bits) of the bitmap for little endian machines.

-DNOHDR Do not place a header before each output bitmap.

-DROW_ORDER
Generate bitmaps ~ rows of 16 bit words. This is the default

-DSUNlOOFB
Generate bitmaps for (the current implementation of) SUN 1 frame
buffers. This is equivalent to specifying -OCOLUMN_ORDER.

18 June 1986

bits

boise

build

cat

cc68

cd

checkers

checkexecs

18 June 1986

Command Summary

-DSUN120FB

-DVAX

-0 file

Generate bitmaps for (the current implementation of) SUN 2 frame
buffers. This is equivalent to specifying -OCOLUMN_ORDER.

Generate bitmaps for (the current implementation of) MicroVax frame
buffers. This is equivalent to specifying -OLITILE_ENDIAN
-DBLACK_IS_O.

Send the output to file.

A program for manipulating (e.g. hand-editing) bitmaps and fonts. See Chapter 7.

Prints files on the Boise laser printer.

Several switches are allowe<i preceding the filenames:
-r Print rotated, that is, in landscape (horizontal) mode.

-n namt Use name to label the output If this option is not given, the user's name
is fetched from the system authentication database.

-b banner Use banner in the "File:" field instead of the filename. '

-h hoslname Host name to use instead of "V-Systemtt.

-m mode Print mode. Possible modes are
o Line printer. For' printing ordinary text files. The

default unless the filename ends in ".dvi" or ".press".

1 OVI. For printing TeX output. The default if the
filename ends in ".dvi".

2 Press. Not implemented. The default if the tile
name ends in ".press".

3 HP2680a. For files in HP2680a "spool file" format

-w File is in the Sail ("W AITStt) character set instead of standard ASCIL
(Line printer mode only).

-W FUe is in the TeX character set instead of standard ASCIL All
characters with the high-order (8th) bit set are treated as printing
characters after the high-order bit is stripped. This feature pennits
access to the printing characters "hidden under" the ASCII codes for
carriage return, linefeed, etc. (Line printer mode only).

If no filenames are give~ boise reads its standard input.

Automatically run programs depending on which files are out-of-date. See Chapter 8. build
is an extension of the Unix make program.

File concatenation program. Copies each named file to the standard output A hyphen
(U_") represents standard input If no arguments are given, standard input is assumed.
There are no flags.

Compiles C source programs for running on the m68000 processors. See the Unix man
page.

Change directory: change the current context Built in to the exec.

Lets you play a game of checkers against the workstation. This is also a good
demonstration of the VGTS's graphics capabilities. See Chapter 6.

Kill off any exec whose standard input server or standard output server has died.

V·System 6.0 Reference Manual

Workstation Commands 4·3

ci

clear

clock

co

cp

cpdir

ex

dale·

date

debug

debugvgts

define

delcorr

delexec

destroy

ditT

Part of the: Revision Control System. Described by a UNIX manual page.

Oears the A VT.

An analog clock. Understands two flags: -s (with second hand) and -t (without text, in case
you want 1:0 zoom the clock).

Pan of the: Revision Control System. Described by a UNIX manual page.

If two filenames are given, cp copies the first file specified to the second file (or to stdout
if the second filename is "_tt). If more than two filenames are given, or the -d flag is
given, the last argument is assumed to be a directory name, cp copies the first n-l files
specified Rnto that directory, fonning the name of each new file by appending the last
component of the corresponding old file to the directory name. Note that this behavior is
not quite identical to that of the Unix cp program: the V cp program does not attempt to
determine whether the last argument "isH a directory.

Invoked a1:
cp eli r flags fromdir todir

copies all files in the fromdir directory to todir. todir must previously exist The - r flag
specifies that the copy should be recursive: the entire subtree rooted at fromdir is copied.
The -y flag suppresses copying files if a destination file of the corresponding name already
exists and is younger than the source file, i.e., has a more recent modifi~d date. The -y flag
causes a 'verbose' message to be printed each time a file is copied. .

Changes your current execution context-see section 3.6.9. This command is built into the
exec.

Distributed version of YALE (yet Another Layout Editor). This is a VLSI layout editor
that provides graphics editing of SILT chip descriptions. YALE is documented in a
Stanford CSL Techni~ Report

Prints the date as maintained by the local workstation kernel, and as maintained by first
responding network time server. The kernel-maintained time on a workstation is set from
a time server when the workstation is booted. The command date -s resets the kernel
maintained time from a network time server.

The V debugger. See Chapter 9.

Allows thl~ user to tum onl ott debugging output from the VGTS. See section 46.5 for
funher de:tails. .

Defines a local name (alias) for a context The first argument is the new name to be
defined. 1be last argument is a context name, specifying the value to be given to the new
name. Built in to the exec.

Delete cOlTespondences from your V user identity to UNIX user accounts. Each V user
can correspond to one account on each local UNIX machine that is running a V IUNIX
server. TIle V superuser can delete correspondences for other users as well as itself. See
Chapter 43 for more infonnation about user correspondences.

Delete an executive, specified by its exec ide The first exec created when the workstation is
booted willI always have an id ofO.

Takes the name of a team (or any suffix) as an argument, and destroys the root process of
that team. If the argument begins with the characters Ox, it is taken as a process id, and
that process is destroyed. This is useful for killing processes run in the background. The
-1 flag c:auses the process to be interrupted (with ForceExcept .. on) instead of
destroyed.

This command has the same syntax and semantics as under Unix 4.28SD, with the

18 June 1986

4·4

do

do make

dopar

doseq

draw

echo

. fexecute

freemem

gftodvi

gftype

grep

hack

ident

instances

internetserver

iphost

kiUprog

listdir

listdesc

login

logout

mail

18 June 1986

Command Summary

addition of the -n option of the Revision Control System's rd1ff program.

Create an exec with a named file as its input This file should contain a list of V
commands. exactly as you would type them, one to a line. If the -Y option is give~ then
each command line is typed out at the time that it is executed.

A synonym for doseq (described below).

A program similar to doseq, except that it allows the executions of its command
arguments to take place in parallel on different hostS. For each context, the program
prompts for the name of a host on which to execute the commancL and pops up an A VT
that acts as the command's standard input and output If "any" is entered as the host
name, then an arbitrary remote host will be selected. The local host can be selected by
entering "0".

This program takes two string arguments: a list of context names, and a command to
execute. The command is executed in each context in tum. doseq is often useful in
buildfiles.

An interactive drawing program that runs under the VOTS. See Chapter 10.

Echos its arguments. The - n flag suppresses the newline at the end of the outpUL

Force a command to be executed on the server providing the current context, as described
in section 3.4. .

Displays a bar graph showing the current percentage of ~ memory, and the percentage
before the last change.

For producing magnified proofs of fonts created by m1 (q. ,.).

Produces terminal-readable output from a gf font file. See.,.
This command has the same syntax and semantics as under Unix 4.2BSD.

A rogue-like game. See chapter 11 •.

Part of the Revision Control System. Described by a UNIX manual page.

A diagnostic program that prints out information about any file instances (see chapter 33)
that are being maintained by the server that is providing your current context At present
this will work only if your current context is being provided by a Unix server (see chapter
43).

A version of the Internet Server. See chapter 39.

If given a single host name as an argument, iphoSI lists all IP addresses corresponding to
that host If no argument is given, the IP address of the local workstation is printed.

Kill the program, if any, running in the specified executive.

Lists the names defined in one or more context directories. If the -I flag is given, iisldir
prints one line of information about each objecL The output is sorted by default; the ·n
flag specifies "no sorting." If no argument is given. the current context is assumed.

Prints one line of infonnation about each named object, extracted from its object
descriptor. If no argument is given, the current context is assumed.

Log in to the V system. See section 3.3.1.

Log out of the V system. See section 3J.2 •.

The UC Berkeley Unix 4.2 mail program, ported to the V-system. Note that this program
is merely a front end (for composing. reading and editing mail). In order to use this
progr~ .yourcurrent context must be on a Unix system. The program's commands are

V·System 6.0 Reference Manual

Workstation Commands

memserver

mf

migrateprog

mon

name

newterm

the same as in the Unix version, with the following exceptions:

1. The -e command invokes ved by default

2. The new command "Quittt (or "Q" for short) behaves just like the "quit" (or "q'1
command, except that if new mall has arrived, you will be immediately put back in
the "mail" program so that you can read it

3. The new command "Update" (or "U") is like ~'Quit", except that you will be put
bad~ in "mail" even if no new mail has arrived. (This command is equivalent to
exiting the program, and then re-running it)

4. "me 11 -c n" will cause the program to check your mail file, every "n" minutes, for
the arrival of new mail. If new mall is found, the "Update" command described
above will be run automatically (unless another command is in progress at the time).

A server that allows unused main memory to be used for temporary file storage. See
section 40 for more details.

Metafont-S4 is Donald Knuth's language for compiling algebraic shape descriptions into
bitmap images and fonts (m68t only)., See Knuth's book The Meta/onlBook (Addison
Wesley,1986). Also note the programs gftodv1 and gftype.

Migrate a guest program from the local machine to another machine.. Invoked as
m1grateprog [-p] E-h <host-name>] [<prog~>]

The unit of migration is the logical host. not individual teams. All remotely executed
programs are created in their own logical host. whereas all locally executed programs are
run in the system logical host, which never migrates. Thus only remotely executed "guest"
programs will ever migrate. Currently there is noway to create a locally invoked program
in a separate logical host other than to invoke it remotely from another machine.

If no arguments are specified then all guest programs on a machine are migrated to "lightly
loaded" machines.. where lightly loaded is defined in the same sense as any is defined
when initially executing a program remotely. The -p flag specifies that information about
what programs are being migrated where should be printed out The -h flag allows
specification of a particular machine to migrate to. The machine to migrate to may be
specified by either the hex pid of its team server (in the form Ox(pid» or by giving its
official string name (e.g. sun-mj416). If specific programs are specified then only those
programs are migrated. Programs may be specified by the hex pid of one of their processes
or by theill' full invocation name, as stored by the team server.

This program monitors resource utilization of the workstation and presents it graphically.
The -d fla,g specifies a vertical display ("down") instead of horizontal. The default display
shows percentage used of memory and processor, and the number of incoming Ethernet
packets per second. The flags em, -p, and -e limit' the display to only those specified. The
-f flag violates the user interface standards by putting the display in the upper right corner
of the workstation instead of requiring th~ user to position it with the mouse.

Prints the login name of the user under whose account the command is running.

Change te:rminal agents. Takes one argument. the filename of a new terminal agent to take
the place of the existing one. All executives running underthe old terminal agent are
destroyed; the new one will presumably provide means of creating a new one. For
example. :newterm sts replaces the VGTS with the Simple Terminal Server~ which does no '
graphics 'but simply presents the workstation as an ascii terminal. If no argument is given,
it defaults to "vgts".

Wambrr: If the named program is not in fact a terminal agent. you will probably lose control of your
workstation.

18 June 1986

4-6

pagemode

password

pc68

pwd

pwx

Q

query

queryexec

ranlib68

res

rcsdiff

rcsmerge

rename

rlog

rm

18 June 1986

Command Summary

Enable or disable paged output mode in the current executive. Takes one argument, which
may have one of two values: "on" or "otr'. When paged output mode is on. the tcnninal
agent stops writing to a A VT when the A VT fills up with output The terminal agent then
displays the message ''Type (space) for next page" and waits for the user to issue a
command which unblocks the A VT. The user interface for paged output mode is
described in section 2.6.

Use this program to change your V password, home directory, or personal name. The V
superuser can also use it to create new accounts or modify other users' accounts. Uses the
f1el ds package (section 21). To modify the displayed Name, fname, or Home, click on
the old value with the mouse, use the normal line-editor commands to change the value,
then hit return. To make the change take effect, click on Alodify and supply your old and
new passwords.

Other functions: click on find to flDd another user's authentication database entry. Click
add to add a new user account (a unique user number is selected for you). Click delete to
delete the displayed account Qick exit to leave the program.

Compiles Pascal source programs for running on the m68000 processors. See the Unix
man page. The flags are similar to those ofcc68.

Prints the absolute name of the current working directory. Built in to the exec.

Prints the (absolute) name of your current execution context-see section 3.6.9. This
command is built into the exec.

This is an experimental interactive functional programming language (m68k only). See Per
Bothner (bothner@su-pescadero) for information and a user guide.

Prints out the result of perfonning various 'query' operations. In particular, query
kernel prints the result of the QueryKernel () library routine (see page 27-3), query
conf1 g prints the contents of the workstation's configuration file (see Chapter 19), and
query ethernet prints the result of querying the "ethemet" device (see section 36.1).
query ? lists the possible options. "

Find out the status of the specified executive. Useful mainly for system testing.

Identical to the UNIX ran 11 b command, but handles archives of either m68k or vax
binaries. This command is installed on UNIX under the name ranl1b88, and on V
under both the names ranl1b and ranl1b88.

Part of the Revision Control System. Described by a UNIX manual page.

Part of the Revision Control System. Described by a UNIX manual page.

Part of the Revision Control System. Described by a UNIX manual page. Currently, this
program must remotely execute the rd"1ff3 and merge programs of RCS on a UNIX
host, since the latter have not been ported to V.

Renames the object specified by the first argument to the name given as the second
argument Will not move objects from one server to another: there are also restrictions on
moving objects within one server (for example, from one file system to another under the
U nix server).

Part of the Revision Control System. Described by a UNIX manual page.

Takes one or more filenames as arguments, and removes each file. The -f flag suppresses
error messages if some of the files do not exist

Note that in particular, rm may be used, as an alternative to the destroy command, to
destroy one or more teams (by name). For example.

rm [team/toto/[b1n]1nternetserver

V-System 6.0 Rererence Manual

Workst:1tion Commands 4-7

sed

serial

show

sleep

sort

startexec

storagestats

stuffboot

tail

talk

will 'remove' (i.e. destroy) the program "{bin]intemetserver' that was executing on host
"toto". Unlike the des,troy command, the fhll program name must be given.

Stream editor. Described by a UNIX manual page.

This program provides a full-duplex conversation between its standard input and output,
and a device connected to one of the serial ports of the workstation. The argument is a
device name, specifying the line to be opened. It defaults to [device]seriaIO if omitted.
Names of the form [device]serialn (with n a single digit) can be abbreviated by giving only
the digit If the serial line, is connected to a modem or a terminal port on another
computer. this program allows the workstation to act as a terminal. The flag -b b i trate
can be used to specify the bit rate (baud rate) of the connection; it defaults to 9600 bps.

Displays a • dv1 file or a • press file. It creates a menu in the invoking window;
commands are normally selected with the mouse. A new window is created for displaying a
page from the • dv1 or • press file. You can invoke the program with show filename, or
you can set the filename in the menu. More details are given by the "helptt command
(type h o:r select [He 1 p] with the mouse). TeX generated dv 1 files are handled pretty
well, except for possibly missing fonts (and perhaps speed). The press support is pretty
minimal.

Delays for a time, then exits. The delay time (in seconds) must be specified as an
argument.

This command has the same syntax and semantics as under Unix 4.2BSD.

Create an exec in a new A VT. The new exec will have the same context as the exec from
which startexec was invoked, not the [home] context For most purposes the view
manager's Create Executive commands are to be preferred over this one, as the view
manager will not work on an executive created by startexec. startexec prints out
the exec id and process id of the new exec.

Obtains accesS statistics collected by the V storage server and disk driver. The -c flag
causes the statistics to be cleared to zero.

A program that stuffs the file named in argument 2 into the boot block of the disk named
as argument 1. The file to be stuffed normally will be Vload and is needed during auto
boot when the boot program is read out of the boot block on the root disk device. Ifa third
argument is present, it is taken as the name of a file to copy into block #0 of the root
device (tbe disk label).

This comrnand has the same syntax and semantics as under Unix 4.2BSD.

Allows interworkstation communication among V hosts similar to talk under Unix.
Invoked as

ta'i k [person]
Person is optional. If person is 'specified, it can either be in the form us 8 r 1 d to specify a
user on doe first host we find that user to be logged in, user1d8host to specify a
particular user on a particular host, or 'host to get anyone on that host

Once inside ta 1 k, you can enter commands by first typing [ESq, and then another letter.
The available commands are:

invite a new user. You are prompted for, who you want to invite, and
you can respond in any of the ways mentioned for person above.

log in A VT. This allows you to,see in a temporal fashion who says whaL
You are prompted for a new' A VT to write the log in. Giving this
command again terminates logging.

18 June 1986

4·S

tel net

telne tse rver

testexcept

timeipc

time kernel

IS June 1986

q

r

w

Command SUmJDarr

quit Only you quit; any other persons engaged in the conversation can
continue to do so, even, if you were the one who initiated the
conversation.

read from file. It reads the tile into the conversation such that it looks as
though you typed it all. However, there is currently no pagenation. If
what was read is very long it will quickly get overwritten.

write to tile. This is the same as "log in A IT' above, except logging is
done to a file you specify. Giving this command again terminates
writing.

WIII'JIi",: tal k runs only under the VOTS. There is currently a compiled in maximum of six talkers
in one conversation. tal k A VTs are fixed at 24 by SO.

Due to om'ent VOTS restrictions. tal k is forced to initiate a conversation by writing to the VOTS
A VT (the small one originally in the lower ri&ht hand comer) and then opening a new A Yr. which
gives the victim a PAD cursor. To accept the invitation the A Yr is placed normally: to reject the
invitation click all three mouse buttons. This is bad if the VOTS A VT is obscured- the victim win
let a beep and a A vr prompt and not know why.

IP rfCP-based tel net implementation. It can run under the S1'S, or in a VGTS A Vf. A
destination host name or address may be given as a command argument; if none is given,
telnel prompts for one. A host name is a string of non-white-space characters starting with
a non-numeric character. A host address is a string of the form a.b.c.d, where a,b,c and d
are decimal integers. Both names and addresses may be followed by a dot and a decimal
port number (with no intervening spaces).

If the -e flag is given when it is invoked, lelnet recognizes a set of commands prefixed by
ctrl-t while connected to a remote host Ctrl-t? prints a list of all such commands. These
functions are not available by default because they sometimes interfere with higher level
protocols such as that used by the VGTS.

After disconnecting from a remote hos~ lelnet prompts for another host To exit lelnet,
enter ctrl-c or ctrl-z in response to the prompt

If there is no internet server on your workstation when lelnet is loaded, it runs one in the
background. The -I flag inhibits loading a local server9 instead looking for a public internet
server running on another V host.

The -d flag enables debug mode. In this mode, all transmitted and received telnet protocol
commands are printed, and all received non-printable characters are printed in an escaped
notation. Debug mode can be toggled on and off by typing ctrl-t d while connected to a
remote host if the -e option is specified on the command line.

The -g flag enables logging mode, which implies the -d debug mode above. A file,
"telnetloigfile" will be created in the current directory. This file will contain a complete
transcript of bothe sides of the telnet session. Lines preceded by "(" originated from the
host while those preceded by">" originated from the workstation. All non-printing
characters are quoted and all tel net proteol commands are printed. Password input is
automatically deleted. This mode is transparent to both sides of the connection. Logging
mode can be toggled on and off by typing ctrl-t g while connected to a remote host if the -e
option is specified on the command line.

IPrfCP teinet listener. This program listens for incoming telnet connections on the local
, intemetserver, spawning a remote terminal server (RTS) for each connection received.

Simple interactive program for testing the exception server.

Perfonns timing tests of the V interprocess communication primitives. See chapter 13.

Program to measure the time for Send/Receive/Reply kernel p,rimitives.

V·Syslem 6.0 Rererence Manual

Workstation Commands 4·9

tsart

type

undefine

ved

vemacs

w

we

wh

whi

Topological sort. Identical to the UNIX program of the same name.

Type out one or more files on the tenninal. Types a page-full and then stops and waits for
input. Pn~sing [SPACE] brings up another page, while [RETURN] brings up another line ..
Hit q or tC to quit

Removes the definitions of one or more local context names (aliases). Built in to the exec.

A text editor, somewhat similar to Emacs, that runs under the VGTS. Described in
Chapter 14.

A version of the Emacs text editor that can, among other things. make use of the window
features of the VGTS. When vemacs is invoked without any arguments, it will display a
help file d.~scribing how vemacs differs from standard Emacs.

Lists logged-in V users throughout the network.

Counts characters, words, and lines in a text file. See the UNIX manual for full
documentation.

Usts hosts on the network together with information such as logical host name, free
memory, average processor usage, number of free process descriptors, host type, etc.,
sorted by host name.

Lists curre:ntly executing teams for each host. If one or more 'host' arguments are givetly
then only the teams on the specified host(s) are listed. Such arguments can take the
following form: a hostname, a pid (Ox •••), or "0" (indicating the local host).

4.2. Commands on Non-V Hosts

There are also several useful commands that can be invoked on non-V hosts (usually a Vax/Unix system).
Use these commands once you have logged into a machine through a tel net connection. Most of these
commands also have versions that run locally on the workstation under the VGTS, and the Unix versions can
also be run remotely under the VGTS, using the exec's remote execution feature (section 3.4).

dale A version of the Yale layout editor that runs under the VOTS.

draw An interactive drawing program that runs under the VGTS. See Chapter 10.

photo

siledit

silpress

Reads and displays a U .sun" format raster file.

A program which edits .SIL format files. SIL, a Simple Interactive Layout program, is a
graphics editor for logic designs and illustrations.

A program which takes a .sil format me and produces a .press format file that can be
printed on the Dover. .

18 June 1986

5-1

-5-
amaze: A Maze Game

Amaze is a game for two to five players which runs under the STS on a workstation with a framebuffer. If
you see the letters VGTS in a small window on your screen you are not running the STS. See section 2.2 for
instructions on how to start up the STS.

To run amaze, type the command
amaze

If no one else is playing •. it will type "New game starting" and then draw the maze. Otherwise it responds
with "Joining game as player number x" and then draws the maze. Your player token. called a monster, will
be sitting in the center of the screen just above a checkered flashing door. From this point, you control your
monster through the keyboard. The commands are:

i Move the monster up.
, Move the monster down.
j Move the monster lef~.
1 Move the monster right.
k. Hold the monster at its current position.
a Let the monster's moves be se 1 elcted randomly.

e Fi re the monster's missile up.
e Fi re the monster's missile down.
s Fi re the monster's missile left.
f Fire the monster's missile righ·t.

(Note: the missile can be fired only once every six
seconds.)

h Hide the monster from other players -- no shooting allowed
while hidden.

v Let the monster be seen again -- can shoot again, too.

o
1
2
3
4
5

(Note: monsters stay hidden for ten seconds, but once
they become visible, they remain visible for 16 seconds.)

Set monster velocity to o.
Set monster velocity to 1.
Set monster velocity to 2.
Set monster velocity to 3 -- the starting velocity.
Se't monster velocity to 4.
Set monster velocity to 5.

q Quit the game. but continue to watch other players.
t Rejoin the game just above the door.
r Rejoin the game at a random corner in the maze.
Ctrl-C Terminate your involvement with the game.

R Redraw the maze and players.

Notc that to leave thc game entirely you hold down the CfRL key and type 'c'.

Using V 30 April 1986

amaze: A Maze Game

To rejoin the game after being shot by another monster. usc either the t or the r command. The game
currently docs not keep score of the number of hits you inflict or suffer.

Problems and questions should be directed to Eric Berglund.

30 April 1986 V·Syslent 6.0 Rderrttcc Manual

6-1

-6-
checkers

checkers allows you to playa game of checkers against the computer. The default version of the program
executes entirely on the players workstation. .

On starting the program. the view manager will prompt you for the position of the sovr representing the
checkerboard..

The player moves the 'red' (white) pieces; the progrclm's pieces are black. You are expected to make the
first move. You can, however, force the program to move first by "passing". (Sec the paragraph describing the
menu, to follow.) To make a move, move the mouse to the square containing the piece that you wish to move,
and click either the left or the middle mouse button. If this piece can be legally moved. it will then be
highlighted. Complete the move by moving the mouse to the destination square and once again clicking the
left or the middle button.

If the move that you have selected is legal, your piece will be moved, and the program will then make its
move. Note that having selected a piece to move. you can abort this selection by clicking all illegal destination
square (the source square itSi~lf, for example). If a capture of an opposing (ie. black) piece is possible, your
next move must be a capture. A message indicating such "forced captures" will be displayed just below the
board. In such a case, the program will not allow you to make a move that is not a capture. Multiple captures
arc handled correctly - if you move a piece by making a capture, your mov.c will not be completed until all
possible captures with this piece have been made.

The standard rules of checkers apply. If a piece reaches the eighth rank of the board, it is promoted to a
king; kings may move in any direction. A side wins either by capturing all of the opposing pieces, or if the
opposing side can make no legal move.

When it is your turn to move, you 'may also usc the right mouse button to select from a menu of options,
which are described below: '

Redraw This caUS<:8 the VaTS to redraw the entire board. This command should rarely be
necessary.

Pass (skip turn) This command can be used if you want the program to make the first move. You can also
use this to avoid any capturing obligations. .

Change search depth
. By default, the program searches 4 half-moves ahead when choosing its next move. That is,

it considers its own move, your response to this move. its next move. and your response to
that The "Change search depth" command ullows you to change the depth of lookahead
to any value from 1 to 8. Don't select any of the higher depths unless you have a lot of
putience, however. '111e program takes about 20s to respond to a typical opening move
when the depth is 6, about 50s when the gepth is 7. and about) minutes when the depth is
8. (These times were taken on a 10 MHz SMI workstation - Cadlincs will be slightly
slower.) Note that you may find out the current search depth by selecting "Change search
depth", and then clicking outside the 'depth' menu.

Edit board This command puts you into /;:dilmodc. which allows you to cheat by adding pieces to, or
removing pieces from, the board. Edit mode is described below.

Back up one moveThis allows you to retract (eg. to correct) your last movc.

Resign The quick and cowardly way to end the game.

Usin. V 1 May 1986

dlecken

The program chooses it's move by performing a 'brute-force' search, using alpha-beta pruning. It evaluates
the board positions at the 'leaves' of the search tree using a simple heuristic based on the number and position
of pieces on each side. A 'value indicator' to the right of the board indicates the value of the current position;
as seen by the program. (If the indicator is above the halfway mark, for example, then the program 'believeS'
that you are winning.) There are also counters immediately above and below the value indicator, giving the
number of pieces on eac~ side. 'lbe value indicator and the piece counters are updated whenever the program
completes its move.

'. :"
You can malec 'changes to the board (between moves) in Edit mode. In this mode, a special menu is

displayed to the right of the board. To add a piece to the board (or change an existing piece), click the square
in the menu that contains that piece. You may place a copy of this piece on any (shaded) square of the board,
by click ing that square. You may do this repeatedly; it is not necessary to select from the menu each time.
Note that you use the 'empty square' to delete one or more pieces from the board. You may remove aU pieces
from the board by clicking "Clear". When you have finished making changes to the board, click "Done" to
leave Edit mode. It will still be your tum'to move next.

- . ,-:.")
A distributed version of the game may be started by specifying the r flag: checkers -r <NoOjSlaves>. The

program. will then try to create up to NoOfSlaves slave processes on lightly loaded remote workstations, that
help in the search of the alpha-beta search tree. As far as the player in concerned, the only two noticeable
differences to the default sequential version of the game, arc the pos.'iible improved response times and that
the computers moves may be nondeterministic. (Note: it is only worthwhile to play the distributed version of
the game if the search depth is chosen greater than four.)

Mail comments and/or gripes to stumrn@p~dero.

I May 1986 V-System 6.0 Rderence Manual

-7-
bits: a bitmap and font editor:

"

b 1 t3 is a special-purpose editor for working with bitmaps and fonts. It makes intensive use of the VGTS.
The virtual terminal Qf tll(~ executive under which b 1 ts is started up, is used to display various status
informatio~ as well as being the menu of commands to execute. When started. b 1 ts will ask for you to
create a new view (of a new virtual terminal) in which the actual editing is performed. If you request to view
sample text, you will be asked to create a third virtual terminal (see below). These las~ two vinual terminals
are SGVT's and can be zoomed.;.. "'1

(Note: If you are using a Sun-120 framebuffer (including a model SO), you should read the Bugs section!)

7.1. Command Input

In this chapter, when you are asked to do the command [xxx], it means that you should select and cUc(
the mouse at the field [xxx] of the status/command virtual terminal. You get the same feedback as witt\.
pop-up menus, with the field in inverse video. Some of these fields, when activated. expect you to type in ..
some number or string. In those cases, you have the full power of the line editor, until you type a <rctu~~r
(To abort input, type CfRL-g.) . . -

7 .. 2. Rasters

llle important thing to remember is that b1 ts handles pointers to bitmaps. These we call rasters. A raster
also contains size and offset data. so it can point to part of a bitmap. You can name a raster using the [Store,
with new name] command, and later retrieve it from the Table ot saved rasters. You can thus'
save multiple pointers to thlC same bitmaps under different names. If you change bil~ in one of the bitmaps,
the bits will also change in the other ra~ters, since they refer to the same biunaps. Usc the [Save a tresh·
copy] comm,md to make a virgin copy of a bitmap. which is guar-dntccd to have no other rasters pointing at'
iL :1

7.3. Changing Raste r Size.

To change the size of a raster, point at the boundary, hold down the middle button and "drag" the boundary
to where you want iL You (:an also change the size of a raster with the [W 1 d t h J Hnd [He 1 9 h t] commands.;
To do this, select one of thlcse fields, and type in a number. The absolule value typed in becomes the new
size. If the value is positive, the old and new rasters coincide at the top left corner: if the value is negative.
they coincide at the boltom right corner.'

Note that when you ch~nge a raster's size, all other r.asters pointing at the same bitmap will be adjusted to
point at whatever bits they 'used to point aL This is true even when you illcrease the size. (When the size is
increased, and the underlyilllg biunap is larger tllan the part pointed to by the current raster, the hidden part.
of the bitmap will appear. If this isn't enough, a new biunap will be allocated. and all the pointers adjusted.) 'I~~

Using V I Mo,1986

1·1 bits: a bitmap and font editor

7.4. Bitmap 1/0

You can read and write biunaps in • sun fonnat (as used by the photo program), using the [Read
raster] and [Write raster] commands. To write a raw raster in hex suitable for putting in a C
program, use the [Wr 1 te hex] command.

7.5. Painting

To set (blacken) a pixel, point at it with the mouse, and click. the left button. To clear (whiten) a pixel in a
bitmap, use the middle button. .

7.6. Inverting a Raster

Selecting [I n ve r t black and wh 1 te] itiverts the interpretation of black. and .white pixels. This
interpretation is actually stored as part of the raster object, so no pixels are actually changed (except on the
display).

7.7. Raste r Ope rations (Bit Bit)

You can do a general 2-operand Bitolt with the [Raster oplrat ion] command. The current
(displayed) raster is used as one of the operands (the "destination"). so this should be selected first Then give
the [Raster operation] command. after which you will be asked to select an operation. Available are
plain copy, 'and', 'or' (paint) and ·xor'. In addition. the [Invert Source] modifier first inverts the source.
[Invert Destination] does the same for the destination. which means inverting the destination
operand and the output result Finally. you must select the other operand (the "source") from the name table.

You can also select [Get the empty raster] as a source. This gives you an infinite plane of white
pixels. This. together with the [Invert Source] option, allows you to conveniently clear or se't any
rectangle.

7.8. Reflection and Rotation

Selccting [Refl ect/Rotate] will do one of these transformations. (A popup menu asks for the
particular transfonnation.) Note that the result is a "fresh" raster: lbere are no other rasters or tables
pointing at its biun~p.

7.9. [Replace in table]

This command asks you to select an element in the r3ster table or the current font The element is replaced
by the current raster. If a [Table of saved raster] clement is replaced by the Empty Raster, its space
is freed.

7.10. Making a Copy of the Screen • CURR~NTLY NON-WORKING

You can make copy of the frome buffer. with a little bother. Select [Get framebuffer]. which gets a
pointer to the frame-buffer. You should now lise [Height] and [Width] to reduce the time and space
required to de31 with it. (The framebuffer is big.) You should [Save a fresh copy] to see what's going
on. 3nd then use the middle hutton to select the part th3t inlercst~ you. '1l1is will be slow, since such a big
raster is involved. and you will also have to use the VGTS workstation manager commands.

I May 1986 V·System 6.0 I~crcrence Manual

Making a COP7 of the ScreeD • CURRENTLY NON· WORKING 7·J

7.11. Fonts

A fonl is a collection of characlers. From b 1 t s' perspective, a character is a bitmap with some extra
information. b1 ts currently knows about fonts in the following formats:

• sf format ("Sun fonnat"), which is specially optimized for the Sun-l graphics hardware. (Will soon be
obsolete.) ,

• The same fonnat. but the font is stored in an archive (library) of relocatable binary files. Thus fonts can
be linked in with programs, or read in at run time. The standard fonts are stored in
lusrlsun/l1b/l1bsfonts.a.

• Pxl format. which can be generated by MetaFont78, and is used by a lot of the TeX people.

• Gf ("generic font") fonnat. a compact format generated by MetaFont84.

To read / write a font. select the desired field in the Read font I Wr1 te font table. Note that you
cannot write a font to an archive.

7.11.1. Displaying Fonts

When a character in a font is displayed, there are funny lines sticking out of the bitmap picture. The
inte'rsection of the left and top segments indicates the origin of the character: The left segment indicates the
baseline, and the top segment the starting position. The intersection of the right and bottom segments show
the "ending position": the vcctor from the origin to the ending position is the widlh of the character. The .
width vector is almost always horizontal, and indicates the spacing between adjacent characters: The "next"
character in a string should be positioned so that its origin coincides with the ending position of the current·
character.

You can selcct any of these: lines (with the middle button), and adjust them with the mouse.

7.11.2. Font parameter ••

This is a section of the A VT with magic numbers about the current fonl They can all be changed, but you
should !Know what you arc doing.

Des 1 gn s 1 ze is the size in points at which the font is designed for. Resol ut 1 on is ratio of pixels per
point (vertically and horizontally) at which the font is designed for. (To be compatible with the Altos, we
have decided that the resolution of the Sun display should be defined to be 80 pixels/inch. Older Pxl fonts
usc a magnijication relative to a default Pxl resolution of 200 pixels/inch.) lloth these arc TeX/Pxl
parameters.

[Raster ali gnment] is the bit boundary character bitmaps should be aligned on in sf font files. It
must be 1, 8. or 16.

[Max. height] and [descent] give the maximuin total heigh~ and descent below the baseline, of all
the characters in the current font If you change [descent]. the baseline of all the characters will be
adjusted accordingly.

7.12. Sample Texts

To study how a text string would look at no magnification. select [Sampl e text]. You should then type
in the text you want display1ed. This text will be placed in a new virtual terminal. To change the text. just
reselect [Sample text]: the old text will be placed in the line editor buffer, to simplify small changes. If
you edit the font. select [Redraw] to update the sample.

Note that in the St1mple. the character t \. is special. It is used to indicate special non-ascii charucters. as in
C. Specifically, • \ t followed by a 3-digit octal number is the character with that ordinal value. \ \ displays \,

UslnlV I May 1986

7·4 bits: a bitmap aad roat editor

and \b, \ t. \8. \r and \n are Backspace, Horizontal Tab, Escape, Carriage Return and Une Feed,
respectively. \8, \A, ... _ arc control characters: t8, tAtJ

7.13. Printing a Raster

There is a Unix program to convert a • sun file to a • press file. To run it (on some Stanford VAXen)9 do:
lusrlsun/src/graph1cs/p1x/sunpress -p X.press X.sun

This, together with the (non-working) [Get framebuffer] command, allows you to print a hardcopy of .
the screen on a Dover printer.

7.14. Bugs and Problems

• sun files use 1 to mean 'white' while b 1 ts uses O. This means that you should [I nvert black and
white] after reading and before writing, if you want to use the bitmaps for programs lik.e sunpress and
photo.

The arc some limitations on how bitmaps are displayed by the VaTS. A bitmap can only be magnified 1, 2,
4. 8. or ~6 times. so other zoom factors will be wrong. Also, it is over-conscrvative when clipping rasters,
which means that a whole row of bits could be missing. On Suns with the 120 frame-buffer. biunaps cannot
yet be magnified at alL BUT bits still starts up with the working window magnified 8 times!

Raster operations do not take into account that rasters may be overlapping.

bi ts is not very robust against things like running out of memory. Caution would imply that you save
your wor~ often. .

The whole mechanism for grabbing a copy of (part of) the fraine-bUffer is very unclean (and currently
doesn't work). It should be done by the VaTS. not application programs.

I May 1986 V·SysCem 6.0 Rererence Manual

8-1

-8-
build.: Maintain groups of dependent programs

bu 11 d is an enhanced version of Feldman's make program for Unix. It runs both under V and 4.2bsd
Unix.

Except in pathological cases, bu 11 d is meant to be backward-compatible with make. Sec the Unix
man-page for make. In this chapter, we describe only differences between bu 11 d and make.

bu 11 d reads in a file describing dependencies. By default it looks for the files bu 11 dt 118, makat 118 or
Makaf '11 a (in that order) in the current directory.

8.1. Macros

A dependency file can contain lines of the form:
OBJECTS-f1lel.b file2.b

• This defines OBJECTS as a macro name, which can be used as in:
ee6S -r -vV S(OBJECTS)

Macro namcs can also be defined in the command line:
build "-DOBJECTS=filel.b file2.b"

or equivalently:
build "OBJECTS=f1lel.b f1le2.b"

8.2. Including other dependency files

A line of the fonn
#i ne 1 ude filename

will parse the filename when reading dependency rules. (The filename may optionally be surrounded by
< •••) or " ".)

The filename is rcsolved relative to the directory containing the currently-being-read file (the one
containing the'1 ncl ude). not the current working directory. I

8.3. Conditional dependency rules

IIi fdef name
#1 fndef name
/lelse
lIendif

These act like C preprocessor directives. For example'1 fdef X succeeds iff the macro X is defined.

NOT.:: Iftherc is white·space after a' #'-sign, the line is taken as a commentl

Using V 12 March 1986

8-1 bui;d: Maiatain groups or dependent programs ' ..

8.4. Sea rch paths

A line of the form
VPATH- .. /68k .. /m1

or, equivalently.
VPATH- .. /68k: .. /m1

causes bu 11 d to search for files first in the current directory, then in the directory •• /e8k and finally in
•• /m1. lbe first fonn is probably preferable as the VPATH macro may then also be used elsewhere in the
buildfile for other purposes.

One use of this is for maintaining libraries for multiple machines, where most of the sources are fin a
machine-dependcnt directory • • /m1, but some of the sources and all of the binaries are in the current
directory.

Another use is for program maintenance: The sources being worked on can be in a private directory, while
the rcmainder can stay in the mastcr directory, if you put the master directory on the search path.

NOTE: After macro-substituting command lines, bu 11 d will look for words (i.e. strings between spaces). If
there exists an alias for a word and the file is up-to-date. it will be replaced by the alias. Art alias exists for a
word. if build has searched for the file with that name, failed in the current directory, but found it on the
search path.

This simple-minded algorithm will usually do the right thing, but in pathological cases it might lose.

8.5. Dependency patterns

In addition to the old way of expressing dependencies using file suffixes: .
• SUFFIXES: ,e .b
Ie. b:

eee8 -e S·.e
you can also usc more general pattern-matching:

• I b: S·. e
eee8 -e S·.e

That is: a rule for making files can have as its target a pattern containing at most one •••. The part of the file
name matching the .• ' defines the value of S·.

8.6. Suggestion

If there are many tiles, you can speed up build (quite significantly for the V version at least) by starting out
with a empty. SUFFIXES: line. and explicitly dcfining just ·the suffixes you need. 'Ill is saves bu11 d from
having to check for the existence of • y files ct£.

8.7. Bugs

Docs not undcrstand Res.

12 March 1986 V·Syslem 6.0 Reference Manoal

9-1

-9-
debug: The V Debugger

9.1. Synopsis

debug [-d] [-10 origin] progName progArgl pr-ogArg2 •••

9.2. Description

9.2.1. Invoking the Debugger With a Program

Debug is an assembler-level symbolic debugger for V programs. Versions exist for both the Vax and the
68000.

It can be called as a command to the V exec and takes the following arguments:
-d If the VGTS is available. then this argument causes an A VT to be created fi)r the debugger

which is separate from the one used by the program to be debugged. This option is a
necessity for programs which read· keyboard input via separate reader processes since these
may interfere with the debugger's keyboard input requests.

-0 origin

progName

progArgll

The origin is the location where the program to be debugged was Hnked to load (e.g .• 1000
or 2000 in the case of the kernel). The default value is the normal team origin (currently
200(0). This option is usually only used by kernel hackers in place of getting a symbol
table dump and assembler listing when debugging. They issue the command debug -0
2000 IxV/kernel/sun2+ec/sun2+ec (for example). and can find out exactly what
is at the address where it crashed. The debugger disables the g. x. etc. commands when in
this mode.

The namc~ of the program to be debugged.

The nth argument of the program to be debugged.

Thus. to debug a program which is nonnally invoked by:
progName argl arg2

one types
debug progName argl arg2

I f a separate A vr is desired (for VGTS resident envirollments only) then one would type
debug -d progName argl arg2

9.2.2. Postmortem Debugger

The deb",gger can also be used as a "postmortem" debugger. The V team server is stmctured so that if an
exception occurs in the program currently being run, the debugger is automatically loaded and given control.
The postmortem debugger is always run with the -d flag.

Usinc V I May 1986

debug: The Y Debugger

9.2.3. Common Usage

A program invoked with the debugger will start out at the debugger's command level. Breakpoints may be
set and the program code and global variables may be examined. lbe program can then be started using the
commands described below.

A frequent "postrnort~m" use of the debugger is to obtain a stack trace to find out where a program
incurred an exception and then quit This is done by typing s after having been transferred into the
postmortem debugger to get a stack trace, and q to quit:

I Drog arol arg2

Bus error on read from address f in process 2ed0024
Instruction Program Counter

1010 10172
BO> 10174 4880
• .1.

dl
I

Slack lrace

9.3. Commands

Status Register/PSL
10

main+2C extw dO

The debugger begins by displaying the line .of code at which execution has paused, and then gives a period
('.') as a prompt. The user can then enter commands using the keyboard. Most commands are terminated
with a carriage return: exceptions will be noted in the command descriptions. The only characters that may
be used to erase previously typed input are backspace (\b) and delete (DEL). The entire line may be erased
by typing CfRL-u. When omitting optional arguments in commands which take more than one argument,
be sure to include the correct number of commas for the command. In this way the debugger can detennine
which argument is to be assumed.

9.3.1. Definitions

Within the command descriptions below, an expression is some combination of numeric constants. register
symbols. globally visible symbols from the program being debugged. and the operators +, -. and It
representing 2's complement addition. subtraction, Hnd bitwise inclusive or, respectively. manks arc not
significant except in strings. All operations are carried out using 32-bit arithmetic and ev~lluated strictly left to
righL

. .
Register symbols are symbols which represent the various processor registers. The following symbols are

recognized on the 68000:

%dO - %d7 Data registers 0 - 7.

%aO - %a7 Address registers 0 -7.

%rp

%sp

%pc

%sr

Frame pointer (synonym for %a6).

Slack pointer (synonym for %a7).

Program counter.

Status register.

The following symbols are rccognizedon the MicroVAX:

%rO - %rll General registers 0 -11.

%up General register 12 (argument pointer).

%rp General register 13 (fmme pointer).

11\131 1986 Y·Syslcm 6.0 Rcfcrcnrc Manual

ColllllWlds

%sp

%pc

%psl'

%psw

General register 14 (stack pointer)

General r1egistcr 15 (program counter).
Program status 10ngworcL .,.. - '.'

Program status word. . ,

In all commands except the replace-register (rr) command a register symbol represents the contents of the
specified register. In the replace-register command it represents the address of the register specified.

Globally visible program symbols are names of program routines or global program variables. Note that
the V AX C compiler p'repends an underscore to the names of all global symbols. The debugger attempts to
guess the correct symbol if no underscore is typed by the user, but it docs get confused sometimes. "

:; q. ~

The single character '.' (dot) is treated as a symbol representing the last memory location examined. Its
value upon entrance to the command level of the debugger is set to the current value of the program counter~.

9.3.2. Execution Control Commands:

expression, number, b . ",
Set breakpoint number (in the range 2-15 decimal) at expression. expression must be a legal
instructioltl address. If number is omitted the first unused breakpoint number is used. If
expression is 0 the named breakpoint is cleared. or if number is omitted then all breakpoints
are cleared. If expression is omitted all breakpoints are printed. Note: if expression is ,
omitted then number must also be omitted or must be preceded by a comma in order
distinguish it from being interpreted as the expression argument.

V AX note (not applicable to the 68000): The VAX C compiler uses the calls instruction for all function cans: '
This instruction expects to find a 2-byte register mask at the address specified and ~tually
transfers <:ontrol to that address plus 2. Therefore you have to add 2, to the address when
setting breakpoints at functions in a C program on a V AX. This mayor may not apply to
subroutin1c calls in assembly language or in code generated by other compilers, depending

expression, g

expression. gh

expressio~ x

expression. y

xx

Using V

on which instruction is used. ,: 0

Go. Start. or resume execution at expression. If expression is omitted. then start execution
at the current pc value.

Go past breakpoint. Like go with no argument. except that if we are presently stopped at a
breakpoilllt. then expressioll counts the number of times to pass this breakpoint before
breaking. If expression is omitted. then 1 is assumed.

Execute the next expressioll instructions. starting from the current pc and printing out all
executed instnlctions. If expressioll is omitted. then 1 is assumed. Note: traps are executed
as single instructions; i.e. the instructions executed in a trap routine arc not displayed or
counted. '

Same as " except that subroutine calls are executed as single instnlctions; i.e. do not
descend into the called subroutine. Note that breakpoints within the subroutines are
ignured.

xx is a synonym for y

A synonym for x. except that each instnlction executed is displayed on the same line as the
command, providing a more compact display. No carriage return is needed to terminate
this command; the semi-colon triggers execution. ..

A synonym for y. except that each instruction executed is displayed on the same line as the
command. providing' a more compact display. No carriage return is needed to tenninate
this command; the colon triggers execution.

J 1\1:111986

debug: The V Debugger

The typeout mode referred to in the command descriptions is described under the t command.

sp Toggle the flag that determines whether the whole team stops at an exception or just the
process that incurred the exception. The debugger's default behavior is to stop the whole
team when an exception occurs, not allowing any of its processes to proceed until one of
the above Execution Commands restarts the team. (Of course, at that point ANY of the
processes could resume execution - i.e., single-stepping one process could allow ~other to·
execute indefinitely.) If this command is typed, an exception in anyone process will not
halt any of the other processes on the team. Typing sp again makes the debugger go back
to its original behavior.

q Quit Exits the debugger and kills both the debugger and the program being debugged.

9.3.3. Display Commands

The following commands arc executed immediately without waiting for a carriage-return (CR) to be typed,
and their output overwrites the current line. (This provides a more compact display format)

expression!

expression\

1

\

@

expression@

. 1 ~ .

=
expression =

Display the contents of expression. The typeout mode used is determined from the
program symbol table and the current typeout mode. The value of dot is set to expression.
The \ command is not very useful in instruction-typeout mode on the V AX (i.e. after
giving the "'i"tt" command) because the V AX uses variable length instnlctions and almost
every byte value is a valid op-code. thus making it impossible to tell where the previous
instruction really starts. Similar problems occur less frequently on the 68000.

Display the contents of dot after having respectively incremented (I) or decremented (\) it
lbe typeout mode used is determined from the program symbol table and the current
typeout mode.

Display the contents of the ·memory locations pointed to by the value of dot or expression,
respectively. 'Inc typeout mode used is determined from the program symbol table and
the current typeout mode. 'Inc v,llue of dot is set to the address of the memory location
just displayed. Note that %pc will yield the contents of the memory 1(>Ciltion pointed to by
the pc register (Le. the current instruction) and that %pcCW will attempt to place an
additional indirection on that memory .. location. %pc@ is almost always an invalid
reference.

Display the value of dot or expression. respectively.

The following display commands are exccuted when a carriage-return is typed.
d I)isplay U1C contents uf all the registers.

expression.s Print out a s~1ck trace describing the chain of subroutine calls and their parametcrs, to a
maximum of expressioll calls. (express;ull defaulL~ to infinity.) Warning: the debugger's
stack trace examines the values of parameters as they currently exist on Ule stack. not as
they were when the routine was called. Routines which change the values of their
parameters wiIJ similarly afTcctlhe stack trace output

expression, numlines, n
Display the next lIum/illes memory locations. 's~1rting at expression. If expression is
omitted. then display st:.1rt'i at dot If numlines is omitted. then 24 lines are displayed.

express;oll, IlUmlilleS, p

1 Ma11986 . V~Syslem 6.0 Rert'rence Manual

Conunaods

type, t

type, tt

base, ir

base, or

offset, or

charcount, sl

Display tthe previous numlines memory locations, starting at expression. If expression is
omitted, then display starts at dot If numlines is omitted, then 24 lines are displayed.

Temporarily set typeout mode to type where type is one of:

'e'
'h'

'w'

'I'

'st, strLength

type out bytes as ascii characters.

type out bytes in current output radix.

type out words (2-bytes) in current output radix.

type out longs (4-bytes) in current output radix.

type out strings. Set the maximum length of strings to be strLength.
The maximum string length determines how far the debugger is willing
to look for the end of a string, which is assumed to be a '\0' byte. For
programming languages such as Pascal which don't tenninate their
strings with a '\0' byte this limit is important to prevent endless string
searches. The string maximum length is sticky (i.e. it need be set to the
desired value only once). The default value is 80.

'r type out as symbolic assembler instructions.

Note that the type characters must be surrounded by single quotes. If no argument is
supplied then the default typeout mode is used. This mode tries to set the typeout mode
based on the type of symbol(s) being displayed and uses 'I' fonnat when the mode is not
obvious. lbe new typeout mode stays in effect until execution is resumed with one of the .
Executio:n Control Commands.

Permanently set typeout mode to type. The typeout mode is set to the default typeout
mode if (ype is omitted.

Set the illlPut radix 'to base. If base is illegal (less than 2 or greater than 2S, decimal) or
omitted, then hexadecimal is assumed. (Illis is the default radix.)

Set the output radix to base. If base is illegal (Jess than 2 or greater than 2S, decimal) or
omitted, then hexadecimal is assumed. (This is the default radix.)

Set the maximum off.~et from a symbol to offset. If offset is illegal (less than 1) or omitted,
then hex,adecimal 1000 is as.c;umed. Ollis is the default offset) 'Ibis command is useful
when examining areas of the team, such as the stack, which arc more accurately labeled by
hex addn:8S<.."S than by symbol + offset notation.

Set the maximum number of characters in a symbol which will be displayed to charcount.
If charcount is illegal (less than lor greater than 128) or omitted, then 16 is assumed.

9.3.4. Tracing Commands

expression, W

expression, wb

"

Using V

Watch tlhe memory .location at expression. When program execution resumes, the
debugger regains control afier every instnlction and checks whether the contents of the
locatiun have changed. I f so, a mcs.liage is printed and the user gets cuntrol. Otherwise, the
program cuntinues. This causes the program to run several hundred times slower than
normal. If expression is 0, watching is turned off.

Watch the memory location at expressioll, but only at breakpoints. A breakpoint will not
stop the program if the watched location is unchanged.

Print infi>nnation about watched location.

1 May 1986

debug: ne V Debugger

9.3.5. Replacement and Search Commands

expression I, expression2, type, r
Replace the contents of the memory location specified by expressiolll with expressio;'2~·
expression2 is interpreted to have type type. Note: It is not currently possible to replace
strings with this command. and instnlctions should be specified in 16-bit quantities and
replaced with type T. If expression2 is omitted. then the value 0 is used.

register. expression, rr
Replace the contents of the specified register with expression. If expression is omitted, then .
the value 0 is used. expression is interpreted to be a 32-bit quantity.

expression, /owlimit, highlimil, type. f . _ :

expression. m

Search for (find) pattem in the range lowlimit (inclusive) to highlimit (exclusive).
expression is interpreted as an object of type type. Objects are assumed to be aligned on
word (2-byte) boundaries except for I-byte types and strings. which are aligned on byte
boundaries. A mask (set with the mask command) determines how much of the expression
is significant in the search. unless expression is a string constant. The first three arguments
to the search command are sticky; thus if any of them are omitted then their previously
specified value is used. r is the only debllgger command which al10ws the specification of a
string constant as expression. A string constant is delimited by the character .. on either
side; to usc " in the string itself, precede it with a \. An example of a string is: "'This is a
string with \" in it". The typeout limit of strings detennines how much of the string is
Significant in the search, not the search mask. .

Set the search mask to expression. I f expression is omitted then 0 is used. -l,m fortes a
complete match, f.m (that's hex t) checks only the low order 4 bi~ O,m will make the
search pattern match anything.

9.3.6. Help Commands

h

·9.4. Bugs

Print a brief description of each of the debugger's commandS.

Print a set of internal debugger statistics. This was implemented fbr the convenience of the
designers and may change frequently in content and fhnnat It replaces the obsolete qq
which, due to the debugger's unsophisticated command parsing will ~ehave exactly as docs
q.

The debugger as it is currently implemented has some Ufeaturcs" one must be a~.qf.:

Currently, the version of the debugger that nms on the Vax can only debug Vax programs. and the version
that runs on the 68000 can only debug 68000 programs. 'Illis limitation C41USCS little: difficultly since the
debugger is ordinarily run on the same host as the program to be debugged. .__ I •

'Ille debugger as!mmcs thHt any trace trcsp exceptiuns I"lve been C4lllscd by its own single-stepping
mechanism. Though it will recognize the first one, and print an error mC8.'Wlge, subsequent tmp exceptions
can cause intolerable behavior.

'. •• ! I I: •• ~.

The stackdump routines depend upon knowing the string names of the kernel routines to produce correct.
stack traces which include those routines. Right now, this list is being kept up to date by hand.

Putting breakpoints in code which is shared by two or more processes can be hazardous to your mental·
health. . ·i:

:1

I M1I11986 V-Sys.em 6.11 Rererence Manual

16-1

-10-
draw: A Drawing Editor

The draw program is a document illustrator that can be used to add figures to documents created with
programs such as Scribe. This program is loosely based on the Xerox Alto Draw and SIL programs, and the
Apple Mac Draw program. Many of the same primitive objects are common to all four programs, but there
are many features unique to V Draw.

10. 1. Conceptual Model

Draw is an "object" oriented graphics editor as opposed to a "bitmap" oriented editor. This means that
Draw allows you to freely manipulate the figures that you create after they have been placed on the screen at
the expense of being able to do fine freehand sketching and other functions such as seed filling.

The graphics model offered by Draw is very close to that provided by the underlying Virtual Graphics
Tenninal System (VGTS). All graphic objects manipulated by Draw are variations on three general types:
splines, text, and groups.

Splines are b·splines of order 2. 3, or 5. Order 2 splines have straight edges and are thus referred to as
polygons. Order 3 splines usc quadratic interpolation. and are thus referred to as cuncs. Circles usc order 5
splines which use quartic interpolation. Other shapes such as·ovals. rectangle~ and arro\Vhead~ arc special
cases of the more general order 2 and 3 splines. Note that the tenn, spline, will be used to collectively denote
all of these objects. .

Splines can either be open or closed. Open splines have two ends. Closed splines do not have any
endpoints. Any spline can have a border drawn with one of 15 pens or nibs. A closed spline may also be filled
with any of 27 patterns. All splines must have either a border. a fill pattern. or both. Fill patterns can either
be opaque or tr.msparent. Any parts of objects lying behind an opaque object will not be visible. On the other
hand. if the object is transparent. then it will act as a screen where the objects underneath will show through
in the are,lS where the upper object is not black.

Text objects allow you to place any type of written message on the page. Text can be in one of various
fonts . It can ;:tlso be either left center, or right justified. .

Groups do not have any graphic shape of their own. but are used to keep various objects together. Any
operation performed on a group is performed on all of its tnembers. Groups can be nested; that is. one group
may be a member of another group. This nested relationship is strictly hierarchical. No recursive nesting is
allowed. .

10.2. Screen Layouit

When tile program is first invoked. it will create two new windows on the screen. The large empty one is
the main drawing area (known as "drawing area" to the VaTS). and the smaller one is the commands window
(known as "Draw menu" to the VGTS). The drawing area is zoomable. and the grid spacing available at
nonnal magnitication is the same as that used by the program when the right m.ouse button is pressed. Since
the program has no way of knowing what magnification you arc using. it aligns to the unzoomed grid values.
The VGTS will place grid poinl'i at a const1nt separation •. regardless of magnitication. You may create
additional views. move existing views. etc .. to your satisfaction. '1l1e derault drawing area is in the proportion
of 8.S by 11, and centered. 1\ fmme is put an,und the actual size of a drawing page to provide some reference

Uslne V 17 June 1986

10-2 draw: A DrawiDl Editor

points if you zoom the view or change its centering. The frame is normally not visible, as it lies entirely
outside the de£:mlt view. It will not appear in any output While this rectangle defines the absolute bounds of
the page, the default view defines the ~rea which is "safe" to draw on since printers canno~ in general, print in
the extreme margins.

The menu window is shown in figure 10-1.

.·igure 10-1: The Draw menu

The ~fenu window is divided into several sections. Near the top. there is a set of square icons known as nouns.
These define the various primitive objccts which can be created with Draw. Along the left hand side are the
elongated verb icons. These define the types of transformations which can be performed on already existing
objccts. Below the nouns are the nib and p~'Uern sections, collectively known as the attribute section. These
can be used to modify the appearance of all spline objectc;. Below these are various Draw comnmnds which
are lIsed to perfonn various functions. Ilclow the commands is a rec~1ngle which displays the currently
selected ront. '1l1is window displays the name of the font in its own typeface and is also used to set and
displllY text justification. The Fontl and Fona "commands" as well as the font rectangle also fall under the

17 June 1986 V·System 6.0 Rererence Manual

Screen Layout 16-3

heading of" Attributes" as t1hcsc are used to set text attributes like the nib and pattern sections are used to set
attributes of spline objects. At the very bottom of the menu is another rectangle where various Draw messages
and prompts are displayed. .

I

The original window which you used to run the Draw program will serve as an area where text will be input
It is also used for printing unexpected error messages such as memory full errors.

10.3,. General style of interaction

Almost all Draw interaction (except for text and filename input) is done with the mouse. To create an
object. click on one of the noun icons in the menu and then click one or more times in the drawing area to set
control points for that object. There are three types of objects: indefinite point objects, definite point objects,
and text objects. Indefinite point objects, such as curves and polygons will accept input for an arbitrary
number of points. To terminate one of these objects, click the Done command in the menu. Definite point
objects. such as circles, rec1tangles, and arrowheads require a fixed number of control points. Each point
displays a prompt in the mes.c;age box which indicates what this point will be used for. For example, a circle
first asks for a center point, and then for a point along the edge. Text objects ask for a single control point to
positiolll the text. and then prompt for the text string from the keyboard.

Draw maintains a current object. l1tis objcct is indicated by framing it with a rectangle. A newly created
object becomes the current one. To change the current object. simply click on another one with any single
mouse button. Draw will find the object that is closest to. the point that you click on and select that object No
object need always be current To un-select al1 objects, click in a blank section of the drawing area window.
More than one object may be selected at a time by using the ToggleSclect or Range commands. 'Ibis is
provided primarily in order Ito create groups.

To manipulate an object. first select it. thus making it the current object, and then click on one of the verb
or attribute icons. Depending on the operation involved, Draw will request zero or more data points required
to perform the given operation. These wi11 be prompted for in the message rectangle. At any time, you can
halt an operation with the 'Abort' command. [fmore than one object is selected, then the verb applies to all of
the selected objects.

10.40 Control Pointu and Sticky Points

When you create a spline object (remember, d1is also includes polygons), you will be asked to specify its
Control Points. '111cse points are the places which you wish the curve to pass near. '111e more control points
you put in one place, the nearer the curve will come to that place. Also, placing multiple control points at a
single point will make the curve much sharper at that point Except for the end points of open curves. and
multiple control points, the curve will not, in general. pass through any of the control points.

Sticky points (similar to IKnotc;) are points which actually lie un the curve. They are calculated by the
program to help you with the alignment of objects. There wi11 be d1e $elme number of control points and
sticky points on curvcs. Polygons are a special case, in that since the control pointe; of a polygon actual1y lie on
it. the program considers them to be sticky points too, This means thalthe slicky points on polygons lie at the
corners and in the middle uf each edge. Circk'S also have a sticky point at their center. Sticky points ror text
objccts arc on th.c lett. right. and center or the baseline (the line which most letters lie on top ot: but which
letters such as small'p' descend below.) as well as the line just above the text. Groups don't have sticky points
tor themselves but include nny sticky pointe; of objccts within the group. This, in essence. means. that when
looking for sticky points, all objecte; are considered regardless of whether or not they are part of a group, no
matter how deeply tlle groups are nested.

Using V 17.June 1986

10·4 draw: A Drawing Editor

10.5. Mouse Buttons

When the mouse is clicked inside the menu. it is unimportant which buttons you usc. (The debug command
is a hack and is the only exception.) 'Within a popup menu (a list of choice which 'pops up' after you do
something), you can abort by either clicking outside the menu or by pressing all three mouse buttons down
and releac;ing them. In general. you don't have to release (or press) the buttons all at once, but the mouse
position is based upon where the cursor is when you release the last button.

Clicking the mouse inside the drawing area can cause one of several different commands (and mouse
locations) to be used by the program. lbe use of mouse buttons within the drawing area is as follows:

Buttons Effect '

x
- X -

x
X X
X - X
- X X
X X X

Specifies a data point right where you are pOinting.
Requests the program to find a sticky point.
Requests the program to use the nearest grid point.
The 'Again' command. (see below)
The 'ToggleSelect' command. (see groups below)
Equivalent to the 'Undo' command.
Equivalent to the 'Abort' command.

Sticky,points were explained above. When you request that the program select a sticky point, it will choose
the nearest such point which is within a given radius (about 1 inch).

Grid points arc spaced every 16 pixels (at no"nnal magnification). If you wish to sec these grid poin~ use
the Toggle Grid command within the VGTS. For printed output, pixels arc assumed to be distributed at 72
per inch.

The Again command allows the previous operation to be repeated. It is equivalent to issuing the Done
command (if necessary) and then clicking in the icon for the previous operation. lbe mouse position where
you issue the Again command is ignored as long as it is anywhere within the drawing area

The easiest way to make fine adjustments to the position of an object is to first click on the Moye verb icon,
and then click on a source and destination data point If you are not satisfied with the move, click Agairn and
repeat the operation without having to go, all the way over to the menu. lbis command is also quite useful
when drawing a series of objects of similar type. You can specify that you wish to draw a closed curve, place
the control points for the curve. and then confirm with Again. 'Inc program will complete the curve you have
outlined. and wait for you to specify another closed curve. just as if you had confirmed with Donc, and then
selected Closed CU"C again.

The Abort command is used to cancel the current operation without creating or manipulating any objects.
Abort will never throw you completely out of Draw. Use Quit for that' Some commands. such as Raise and
Lower. are executed immediately and thus cannot be aborted. Use U~do to back out of these.

The Undo and TogglcSclcct functions are described more fully in the sections on Undo and Groups below.

10.6. Verbs

There are cleven verbs in Draw. rlney arc indicated by the set of elongated icons along the left-hand side of
the menu. Each is useful for manipulating one or more objects. All verbs require mat an object be selected
befhre they arc executed. Here they arc described as they appear from top to bottom.

Move

Copy

Er.lSC

17 JUlie 1986

This verb will pennit you to specify a pair of points which define a displacement vector.
This vector tells the program how far and in which direction to move the object. By using
this command, you can move existing object about on the screen.

111is verb is similar to Move. except that it leaves behind an image of the object.

This command allows you to delete (crase) the selected object This requires no extra data

V'System 6.0 Rererence Manual

Verbs

Alter

Rotate

Scale

Stretch

Group

Ra.ise

Lower

Opaque

10.7 .. Nouns

10-5

points. If you make a mistake, you can always issue the Undo command.

This verb is useful for changing the characteristics of an existing object It will permit you
to move the control points on splines, change aspects of text objects, etc. (Not yet
implemented)

This verb will permit you to specify a fixed point about which the rotation is to take place.
and two points which will define tlle angle of rotation.

Text is rotated about its positioning point Only the position of the text is changed; the
orientation of individual letters is always horizontal from left to right

This verb will permit you to specify a fixed point for the scaling. and two points which
define the scaling factor. This command is useful for expanding and contracting objects. X
and Y dinlensions are scaled equally.

Scaling text will "not change its size or font It will change the location of the string based
upon its positioning point

This verb is similar to the Scale command except that X and Y scaling is independent
Thus an object may be made taller or shorter but not wider and vice versa.

lbis verb binds a collection of objects into a group. If a single group is selected. it will
un-bind that group back into a collection, Collections are created with the ToggleSclect
mouse sequence to allow more than one object to be selected at one time. rill is, in a sense,
creates a t.emporary group. The Group verb makes this permanent, or makes a permanent
group temporary.

This verb will place the selected object on top of all of the other objects. Note that you can
still point to objects you can't see; the program will find sticky points on completely
obscured objects with no difficulty. "

This verb will place the seiected objcct behind all of the other objecl~. This is useful when
you use opaque ink to fill something, and it winds up obscuring an object you want to sec.
This verb will toggle between upaque and transparent filled objects. Opaque objects
completely obscure anything they overlap. Transpurent objects act like a screen in that they
allow Wh<Jlt is under them to show through white areas.

There are eighteen icons in the noun section. These are indicated by SQuare icons ncar the top of the menu.
Polygons ~,"d Curves

Arrowheads

Circles

There arc~ three polygon icons and three curve icons. The three icons in each class
correspond to open-unfilled. closed-unfilled. and c1oscd-filled respec;tively. (It docs not
make sense to have an open filled shape.) To create one of these types of objccts, first select
the icon. and then click on as many control points as desired. and then click on the Done
commandl. You can also "hort the objcct hy clicking the Ahort command either from the
menu. or hy the (alllhree buttons duwn) mouse sequence. Closcd unfilled polygons look
just like open polygons except that no line is drawn from the l41st point back to the first
Closed CUlrves are continuous and need not cross any control points. Open curves, however
will begin and end at the first and last control point

There arc four types of arrowheads: wide-open. wide-close~, narrow-open. and narrow·
closed, "All are entered in the same way. First the tip of the arrowhead is requcsted. and
then it~ root Arrowheads are separate objects (rom the main stem of the arrow and are
generally placed aner the stems have been drawn.

Circles come in two types - filled and unfilled. The two required data points are the center

17 .June 19R6

10-6

Ovals

rectangles

Text

draw: A Drawing Editor

point and any point along the edge. Circles are the only shapes drawn as order S b-splines.
Ovals and curves use order 3 b-splines.

Ovals also come in filled and unfilled varieties. The data points are two opposite comers of
the inscribing rectangle. The shape of an oval is exactly the same shape as would be
produced by creating a curve. specifying the four comers of the inscribing rectangle as
control points.

These work exactly like ovals but with (Amazingly) straight edges!

Creating a text object will first prompt tor a single control point This will specify the le~
center. ot right side of the text at the baseline. (the bottom line which most characters
touch. Letters such as p's and q's descend below the baseline.) Draw will then prompt for
the text itself to be entered from the keyboard.

PrcssEclit symbol « = =«)
This is a special text object which is used to match a Draw illustration with a Scribe
generated document when printing to J Press printer. (see the section below on including
Draw-generated illustrations in documents.)

10.8. Attributes

Both text and spline objects have certain attributes. Text objccts have font and justifications attributes.
Spline objects have filling and border attributes~ No attribute currently applies to both of these types nor to
groups. Applying an attribute to a group. however. applies it to all of its members.

Various functions in Draw can be used to change thesc attributes. These same functions set the default
attributes for newly created objects. To change the attribute of an existing object. select it. and then click in
onc of the attribute functions in the menu. To set attribut·~ for a new object. first un-select any selected object
by clicking in white space in the drawing area. set dle desired attributes. and create the object. Attributes can
also be changed while an object is being created. Th~ attributes that are indicated when the object is
completed are the ones that stick.

The following attributes are available

J.'onts Fonts are changed using the Fontl and Font2 commands. Even though these are
technically "commnnds" in that they nppear in the commands section. they actually work
more like attributes and are d,US described here.

Both bring up a pop-up menu with a list of available fonts. Fonti provides some fairly
standard fonts while Font2 provides some more exotic ones. Once a font is selected, it is
loaded from disk if necessary. and then its name is displayed in the font recumgle in the
menu in its own typeface. (Non- Ascii fonts such as Template64 may look weird.)

Tex"t Justification "Ilterc are three different ways of positioning text: you can specify (with a data point
entered via the mouse) either the left-hand corner. the center. or the right-hand corner of
the ha.'iCline of lite lext. This provides for left. center. or right justification. Note lhat the
b"scline is the bultom line lhal MOST tellers just touch. Small lelters wilh descenders may
aClually go below the baseline. The current justilic"lion is indicated by tJle position of the
name of the current font in the font rectangle. You will notice six small tick marks just
inside the funt rectangle which divide it into three parts. Clicking in eiLlter the left, center,
or right area will set the respective justification and move dle font mlme accordingly. Note
that the observed action if there is a text object selected in dle drawing area is not
intuitively obvious. Selecting len justification will cause an object to be shifted right if it
w"s not already lett justified. This is because the object's control point is kept stationary.
(Think about il.) I f you are still confuscd aboul where text should appear. try positioning a
few strings. using dle exact positioning (leftmust) mouse button.

17 .Jllnt 1986 V'Systt'RI 6.0 Rl'fl'rl'nce Manual

Attributes

Nib

Fill Pattern

10-7

Nibs select the "bnlsh" that the borders· of non-text objects arc drawn with. There arc 15
different types of nibs arranged in a four-by-four square of four shapes (square, circle,
dash, and bar). by four sizes. The sixteenth nib, corresponding to the smallest square is
replaced by the letter "N" meaning (N)o border. The square shapes provide sharp corners
while the circular shapes provide rounded comers. The largest of these also make nice dots
if a polygon or curve is created with just one point. The dashes and bars create interesting
calligraphic effects, especially for curvcs. The no border feature only applies to filled
objects. Draw prevents you from accidentally making an object invisible by deleting both
its boder and its fill pattern.

Next to the nibs arc a set of 27 till patterns arranged in a 4 x 7 rectangle. TIle 28th, at the
top-left: comer is marked with a letter "N" which stands for (N)o fill pattern. This is
different t.o the one just to its right which looks blank. lbis is actually a white pattern
which can be used to erase parts of oQjects that the white object overlaps.

By default, all till patterns are transparent. White areas of transparent objects allow objects
below them to show through. This feature can be used to create interesting effects such as
Venn diagrams. A fin pattern may be made opaque by clicking on the opaque verb which
toggles the opacity of an object This means that any objects underneath it do not show
through. The white pattern when transparent is equivalent to no fill pattern at all.

'10.9. Commands

Below the nib and patteml attribute section and above the font rectangle is the commund section of the
Draw menu.

Done 'Ibis command is used to tenninate a curve or polygon which can have an arbitrary number
of points. You will notice that the command is outlined in heavy black lines when it is
appropriate. At other times, this command is equivalent to the Abort command.

Undo

Abort

Load

Save

Using V

This allows you to back-out of the previous operation. There arc two levels of Undo in
Draw. If you are in the middle of an operation that requires multiple mouse clicks. then
Undo will back out of the last mOllsc-click. Pressing Undo several times will cause more of
the command to be undone until you back out completely from the command. 'lllerc is
also a global Undo which works by taking a snapshot of the currently visible objects on the
screen jllSlt before each command is executed. Tcn of these snapshots are 5aved. Undo will
bring back the previous snapshot The last ten opemtions can be backed out of in this way.
Pressing Undo 10 times is effectively a redo because you return to the top of the circular
Undo stack. 'Ibis is handy in C41SC that you pressed Undo too many times. Note that ALL
operations can be undone· even acar! Undo can also be executed by pressing the center
and right mouse buttons simultaneously.

This command is used to back out of an operation which requires several mouse clicks
completely. The state of Draw will be left as if the operation had never been started. Abort
can also be executed by pressing all three mouse buttons simultaneously.

'Illis command is used to load mes from disk. Anything luaded from disk is actmllly
appended onto what may already be on the screen. To load only what is in the me. use the
Clear command first. Draw understands how to read several ditTerent file tormats: its own
V Draw files. Alto Draw files; Alto/V SIL files. and journal tilcs. Obviously, V Draw files
arc the preferred format as they describe all of the information that V Draw is capable of
editing. Alto Draw and SIL file support is provided so that users who previously uscd one
of these two drawing editors can port thcir files over. Unfbrtumltely. the translation is not
perfect For example. Alto Draw d4lshed lines and the" Arrows" font are not supported.
Juurnal mes are discussed below in the section about journalling.

Although Draw can read files in the various formats discussed above. it will only write its

17 June 1986

100a

Print

Range

Qear

Quit

draw: A Drnwing Editor

own V Draw filcs. Journal files are created by a completely different mechanism as
discussed in "Jounalling" below.

Draw supports two different types of printers: Press and Postscript •

Press printers are somewhat old. but rather fast workhorses which can print a page every
second. The Press document fonnat does not allow the full generality available in Draw. In
particular. tilled spline objects are not supported and hence patterns. opaque, and even
raise and lower operations do not affect the final output to Press printers. All of the fonts
available in Draw. however. are printable on Press printers. There are three Press printers
'at Stanford: Dover (Margaret Jacks Hall second floor), Rover (Margaret Jacks Hall fourth
floor), and Plover (Durand building basement). The current page can be output to any of
these printers directly from the Draw menu. .

Postscript printers arc more modem, but somewhat slower printers. A typical example is
the Apple LaserWritcr. Postscript printers are capable of displaying any graphic objects
created with Draw. Only the printer's internal fonts are available, though. l11is includes
the Helvetica and Times fonts. Also the Ascii font is mapped onto the Courier font, and the
Greek typeface becomes Symbol. lbese translations are not perfect but they do work most
of the time. Postscript printers tend to be owned by specifIC groups and are not generally
publicly available. For this reason, Draw checks to see which printers are available to the
local UNIX V server and only displays those printers (if any).

The Print menu. besides letting you send tiles directly to various printers. also allows you
to save print files to disk for later printing or for inclusion inside other text documents.
This latter operation is described in a section below.

This command allows the selection of many objects simultaneously. The program will
prompt for two control points which fonn opposite cO,mel'S of a rectangle. It will then scan
the entire list of objects and issue the ToggleSelect command on any which intersect the
given rectangle. Any unselected objects will be selected. Any previously selected objects
will be unselected. To select all objects within a given rectangle. tirst click in a blank area to
unselect everything. and then usc the Itange command to select the desired items. "Ibis
command behaves exactly like issuing a ToggJeSelect on the given items individually.

This provides a method of completely wiping Draw's "slate" and starting from a fresh
page. Because this operation is dangerous. Draw requires that you click on the command
lWIC .. : before it is actually executed. Even then. however, it can still be backed out of
using the Undo command.

This is the best way to get out of the Draw program. Like the Clear command. above. it
must be clicked on twice to actually be executed. For some strangely bi7.arre reason. Quit
cannot be undone! The Undo button goes away, but so docs everything elsc, for that
matter.

Fontl and FORt2 '1,CSC two commands bring up menus which provide a selection of fonts. Fontl provides
some more common fonts while Font2 provides more exotic ones. Selecting one of these
will make it the current lont. I f a tcxt ohject is already selected. it will change to the newly
selected tont. Otherwise. any newly created objl.'Cts will use this fORL

Help

(Debug)

17.'une 1986

"n,is command will provide a brief description of any other operation you like. To get help
on a specific operation. just select that operation after you select help. To get help with the
mouse buttons. push anyone button in the drawing area. To exit help. select Help again.

This command is hidden. It can only be invoked by pressing all three mouse buttons in the
message rectangle. ~111is brings up a menu which provides several internal Draw debugging
features which are generally not of interest to tfle uscr. One function. "Keep juurnal," is
documented bclow in the section on jourmilling. For the curious. you might "Iso try the
monkey which generates (pseudo) random events as if a monkey were at the keyboard and

V-S,stem 6.0 Rderence Manual

Commands 10-9

mouse. (Don't worry. It's safe and protected from issuing dangerous commands like Save
and Print!)

10.10. groups

Groups provide access to the structured graphics capabilities of the VGTS. A group is a collection of
objects. Groups may contain other groups, but a lower level group, may not call a higher level group which
called it Whenever possible. Draw tries to maintain a ~ ~ of a group. even if it is called from many
places. The only thing that differentiates two copies of a group when they are drawn on the screen is their
absolute position. A group is created out of already existing objects at the top level. To create a group, usc the
TogglcSelect command (push the left and right mouse buttons simultaneously) or the Range command (from
the commands section of the menu) to select more than one object Any un-selected object becomes selected.
and likewise, any selected object becomes unselected regardless of the number of objects already selected.
Use ToggleSelect to affect individual objects and Range to change the selection status of a number of objects
within a given rectangle. A S(:t of selected objects work very much like a temporary group. Any modifications,
such as rotation. scaling, or attribute changes, will be applied to all selected objects as if they were one object
Selecting any other object, 011' selecting nothing (clicking in white space) using the nonnal selection process
undoes this "temporary groulP" but not any modifications that were made. To make a set of selected objects
into a pcnnanent group, usc fhe group verb. This makes a set of selected objects into a group. and vice versa.
In this way. groups Cc1n be created and destroyed. Groups arc highlighted with a heavy rectangle around all of
the members. Once a group is created, any operations performed on the group are perfonned on all of its
members. Clicking on any of its members sclects the entill'e group, but clicking in white space that happens to '
lie inside the group rec~1ngl(~ docs not No operation may be perfonned on a member of a group without
either dismantling the group or affecting all other members.

Groups are implemnted internally in a very efficient man'ner. For example, multiple copics of a group (or
any object for that matter) arc only pointers to a single part Only when one of the copies is modified is a true
copy made. This is all automatic, however. and the user need not worry about this.

Use of groups may also speed up selection as a group who's bounding box docs not contain the given
selection point .is skipped and all objects within that group are ignored.

10.11. Inse rting 0 raw pictu res in text documents

Draw has the capability of creating a tile suitable filr sending to a Press or Post'ICript printer. or fi)r inclusion
inside a Scribe document The method for doing this is slightly different for Press than for Postscript.

10.11.1. Press
. '

To insert a picture in a Scribe document, first pletce a prcssEdit symbol (a text item showing "< = = «") in
the bottom center of your picture. Note that this symbol is already provided as one of the available pre-made
objects in the lJraw menu. This actually has some special significance to Draw as it will not allow you to
change the font or the justification of thi~ object. It will also be automatically skipped when creating Postscript
output

Choose the "Press file" optnon from the Ilrint menu. You wi11 be prompted for a file name. Because of the
limitations of the Dover, filled splines and polygons cannot be printed. 'lbcsc objccL'i will appear unfilled and
a warning message will be dislPlayed on the tenninal. Some objects are also just too complicated for the Dover
to print In this casco either garbage output will be produced. or the "press file too complicated" message will
be printed on the header page' with no other output

Once the Press file has been created. you can now edit your Scribe file to automatically embed the picture
in your document inscrt the line

Ilibraryfile(picture)

Using V 17 June 1986

10010 draw: A Drawing Editor

ncar the beginning of your scribe input (.mss) file, and lines like the ones shown below at the point where
you want the picture to appear •

... 1ike that shown.in figure 8ref(press-example).

88egin (Figure)
8PressPicture(file-"example.press", height a "3.41nches")
8Caption (An example figure)
8tag (press-example)
8End (Figure)

This will produce output like that shown in'figure 10-2.

Sun mVax

EtherNet

Unix

'----I TOPS20

Figure 16-2: An example figure

10.11.2. Postscript

MVS

Postscript file inclusion is quite a bit different from Press printing. For starters. the PressEdit symbol is not
used. Instead. Draw automaticaUy figures out Lhe extremes of the drawing and centers the picture accordingly.
There are two menu items in the Print .menu which generdte Posl'ICript tiles. The "(print later)" option create
a file which is exactly like the one sent directly to the printers. The '"(scribe)" version is suitable for inclusion
in Scribe generated documents.

Scribe requires a special varintion on the normal Postscript device driver tile in order to correctly print
documents with I)raw illustrations. 'l1lis tile. "Vp()sl~.dev" mllst be either in yuur local directory or in the
Scribe da'-'lbasc directory. This me diners from the normal POSL'iCripl driver in that it cont41ins special header
infonnation which defines macros used by Draw pictures. '1'0 used this driver. place the line

8device(Vpostscript)
at the beginning of your scribe input (.mss) file, and lines like the ones shown below at the point where you

want the picture to appear.

17 ,June 1986 V-System 6.0 R('r('rencc Manual

Inserting Draw pictures in text doc:ulments

... like that shown in figure 8ref(postscript-example).

@Begin (Figure)
8Picture(Postscript-"example.psf". size-3.4inches)
8Caption (An example figure)
8tag (postscript-example)
@End (Figur I9)

This wilJ produce output like that shown in figure 10-2.

10.11.3. Both

10-11

Oftcn you will want to have a Scribe document which is printable on both types of printers. You would like
to be able to have Draw generated illustrations in both Press and Postscript format. and have the Scribe file
choose the correct illustration by just changi,ng the @Device command. To do this. add the @LibraryFile
command at the top of your documcnt as you would for a Press flle. and add the following lines at the
position where you want the illustration to appear.

08eg1n (Figure)
@Case(GenericDevice.

PRESS "8PressPicture(File-example.press. height-3.4inches)".
Postscript "8Picture(Postscr1pt-example.psf. size-3.4inches)")

0Caption (An example figure)
0tag (example-figure)
lEnd (Figure) 0

10.12. Jou rnalling

Whenever Draw St:c1rts up. it creates a file caned "Draw.journal" in the local directory. In this file, Draw will
keep a record of al1 user input events. If the program should crash in any way, the journal file wilt be left so
that the entire Draw session can be rc-constructed. Under normal circumstanc~ this file will be automatically
deleted when you quit Draw using the Quit command. You can explicitly ask that the journal file be kept
around by choosing the "kC(~p journal file" from the Debug menu which is found by pressing all three mouse
buttons in the message area.

Should you ever find yourself in the V debugger because Draw bombed. the best thing to do is to type
"Quit.g" . This will cause Draw to clean up its windows and to ensure that the journal me is closed.

1\ journal file can be played back by first renaming it so that it docs not get clobbered the next time that
Draw runs anod then using the Loud command to read it in like any other file. You will then see your entire
previous Uraw session performed very quickly before your eyes.

Note that journal files af(~ extremely context sensitive. They depend on everything being exactly as it was
when the journal was recorded. For example, if during the session, you loaded a regular file. edited it and
saved it. the journal will probably fail because the tile being loaded will be the new copy and not tlle old one.

Using V 17 June 1986

11·1

-11-
hack: Exploring The Dungeons ·of Doom

11. 1. Command fo rmat

To start up a game of hack,. usc the command
hack -u playername -role -n -0 -d directory

All arguments are optional. and most are nonnally omitted. You can use the -u flag to specify your name on
the command line. [f this flag is not given, hack will use your V login name, or if you are not logged in, it will
ask your name after starting. [fyour name is suffixed by a hyphen and a single letter, the letter specifies your
character type. For example -u tred-t specifies that Fred wants to playas a Tourist You can also select a
character without changing your name by giving the character type as a flag, e.g .• -t to playas a Tourist The
-n flag suppresses printing of the latest "hack news". (Usually there is no news anyway.) The -0 flag lets
you play in "wil..ard mode". [t is (almost) impossible to die in this mode. and you get a free wand of wishing
with 20 charges. but your score is not counted. lois mode is mostly good for debugging the game. The-d
flag specifies the directory hack is to usc for storing temporary files, the score record, etc. If this flag is
omitted, the default directory [sys]run/hack is used.

To see the current scores without playing, use the command
hac k - s - roles playemames - d directory

The -s flag is required. It may be followed by one or more role flags. or one or more player names to see
scores for only those players or roles. [f no player or role names are given. hack prints only your own scores.
The -d flag is optional and functions as described above.

11.2. Oesc ription

Hack is a display oriented game inspired by the popular Dungeons and Dragons fantasy game. 80th
display and command structure resemble rogue, but hack has many more types of monsters. magic items, and
so forth.

To g<:t started you really only need to know two commands. l:'he command? will give you a list of the
available commands and the command I will identify the things you see on the screen.

To win the game (as opposed to merely playing to beat other people high scores) you must locate. the
Amulet of Yendor which is somewhere below the 20th level of the dungeon and get it out TIlis is easier to do
in hack than in rogue.

When the game ends. eith'cr by your death. when you quit. or if you escape from the caves. hack will give
you (&I fragment (1) the list of top scorers. '111\! scoring is based Oil many aspects of your behavior. but a rough
estimate is obtained by taking the amount of gold you've found in the cave plus four times your (real)
experience. Precious stones may be worth a lot of gold when brought to the exit There is a 10% penalty for
getting yourself killed.

The administration of the game is kept in the directory specified with the -d option, or, if no such option is
given. a defhult directory specified at compile time. (Currently [sys] run/hack.) This S41me directory
contains several auxiliary files such as lockfiles and the list of top scorers, and a subdirectory save where
games are saved.

Using V 12 March 1986

11-1 hack: Exploring The Dungeons of Doom

11.3. Options

You may set options using the HACKOPTS environment variable. or the 0 command within the game.
The flag or command is followed by a comma-separated list of options. Available options are echo. terschelp,
name. oneline. and passgo. A description of these is available through the ? command. All boolean options
default to being false. To set a boolean option true, specify it in the option list To set your characters name,
use the cons~ct name·Your name. For example, to set tersehclp, passgo, and your name to Yen Goi, the
optioll string would be tersehel p. passgo. name·Yen Go1. You cannot change your name once you
start playing.

11.4. Authors

Jay Fenlason (plus Kenny Woodland. Mike Thome and Jon Payne) wrote the original hack, very much like
rogue (but full of bugs). Andries Brouwer continuously deformed their sources into the current version - in
fact an entirely different game. Poned to the V-System. and additional hacking done, by Tim Mann. The
V-System version is based on Andries Brouwer's version 1.0.3.

11.5. Files

Filcsother than the hack program itself are kept in the administration directory mentioned above.

data Data file for the I comman~

help. hh Data files for the ? help command. respectively the long and terse forms.

news

rumors

record

11.6. Bugs

Hack news, printed whenever a game is. started.

Fortune cookie database.

The list of top scorers.

A subdirectory containing the saved games.

Descriptions of the ghost and belongings of a deceased adventurer.

Probably infinite. You can mail complaints to gamcs@Pcscadero. but we suggest volunteering to fix it
yoursclfif you want it fixed.

This game is a huge time sink.

12 March 1986 V·System 6.0 Kderencc Manual

11-1

-12-
siledit: A Simple Illustrator

The ail ed 1 t program can be used to edit simple illustrations. It is uses a compatible tile fonnat with the
Alto SIL program, although some obscure features such as macros arc not implemented. The main limitation
of this format is that only horizontal and venical lines arc supported, with a limited range of fonts. On the
other hand, it is simpler and faster than draw. and illustrations produced by s 11 ad1 t can be easily inserted
into other documents or printed out A remote version of this program will run under UNIX, although users
will probably prefer the V-System version of the program ifpennitted by workstation memory limitations.

12.1. Basic Operation

The s 11 ad 1 t program is invoked with one argument::
ail edit filename. ail

It first attempts to open the file name given as an argument Ifno such file exists. the program continues and
allows one to be created. An SOVT is created. and the (..~rsor should change tathe "View" prompt indicating .
the creation ofa default view. The default view will'be slightly larger than the illustration, or a whole page if
the illustration is empty. Press and hold any button an an outline the size of the default view will appear and
track the cursor. Position the upper left corner of the desired default yiew with the cursor, and lift the button
up when the view is in the right place. Next the s 11 ed 1 t program prints out the text fonts that will be used.
and tries to load the appropriate fontS into the VGTS.. Then the existing illustration is displayed. and the
following prompt appears:

Use mouse buttons: Mark, Select. Menu
Thus two mouse buttons are used for the basic commands, with other commands available through
combinations of buttons or from the popup menu.

lbc Mark. indicated by an "X" shaped cross. is used as one end of lines and the position of added text
Once object') arc added to lhe illustration. they c.m be modified by first selecting them and then performing
one of the modification commands. Selected (}bjCCl~ wilt appear higlighted in some way, although the exact
form of the highlight is dependent on the VGTS implementation. In the SUN implementation. objects arc
normally black on while, wnth selected lines appcaringas half-tone gray and selected text appearing within a
gray box.

12.2. Commands

'Ille commands available on the mouse are as follows:

I.eft Button Moves the mark lo the point or lhe dick. 'Ille "X" shaped cross moves to the new location.
lbe mark is normally moved before drawing lines or placing text

Middle Button Selects the single object at or near the click. Any other objects previously selected are no
longer selected. The program will echo the kind of objcct selected, or issue a diagnostic if
no objects are fou~d.

Left+ Middle Button

Usilll V

Draws a line from the mark to the point of the click. 111e line is either horizontal or
vertical. depending on which difference in position is larger. 'Ibis is a faster way of
drawing lines than using the menu. The current line width is uSed for the line. 'Ille mark

t Mar 1986

ll-l siledit: A Simple Dluslll'lltor

is moved to the point of the click, to facilitate drawing a series of connected line segments.

Middle + Right Button

Right Button

Adds the object ncar the click to the selection. This is in contrast to the Middle Button.
which causes exactly one object to be selected. Use this command to select several objects.

Command menu, as described below.

~1ore advanced commands arc available on the menu as follows:

Quit Exits without saving the illustration. Usually you want to do the Write command first, so if
there have been changes since the last W.rite command, confinnation is requested first.

Line Width Pops up another menu of default line widths. Select the desired hew width from 1 to 8 units.

Delete

Unselcct

Qicking outside the menu results in no change to the width.

The selected objects are deleted. Currently there is no Undelete, so be careful!

Another click is requested.. and the object near that click will no longer be selccted.

Draw Line Another click is requested, and a horizontal or vertical line is drawn between the mark and the
position of the click.

Add Text A line of text is requested.. and the text is added at the position of the mark in the current font.

Modify Text Selccts another menu for modifying text.

Write Writes the illustration back to the file given on the command line.

Stretch Line Position the cursor near one end of the selected 1ine, and hold down a button. The end of the
line will move following the cursor until the button is released. (Available only in the native
V -System version.)

Move Position the cursor anywhere in any view of the illustration and press any button. The selected
objects will follow the cursor until the button is released. (Available only in the native V
System version.)

Copy Position the cursor anywhere in any view of the illustration and press any button. A copy of the
selected objects will follow the cursor until the button is released. (Available only in the native
V-System version). .

Box Move the cursor to one comer of the box. and press any button. While holding down the
button, position the opposite corner of the box. The box will be drawn in dle current line
width. lbe box can be aborted by pressing all three buttons at the same time. (Available only
in the native V-System version.)

Select Area Move the cursor to one comer of the area, and press any button. White holding down the
button. position the opposite corner of the area. All objects within the area will be selected. .
(Available only in the native V-System version.)

Debug Enables several debugging print statements, for maintenance use only. (Available only in UNIX
version.)

rille following commands are used to mudify text:

Edit Text First select some text, dlen issue this command. The text is stuffed into the VGTS tine
buffer, and edited by the user.

Default Font Displays ~ menu of fonts to be chosen to become the new default font Text added with the
Add Text command will use the new default font.

Change Font Changes the font of the selected text Displays a menu of fonts to be chosen as the new font
for the selected text.

I M3yl986 Y·Syst(,Rl6.1J Rererence M:anu:lI

Commanclls 12·3

12.3. Selecting Alternate ·Fonts

Only two text font/size combinations are available, but with all of the regular, bold and italic faces. Default
fonts arc Helvetica? and HelveticalO, with Helvetica7B. the bold face. Helvetica?1 the italic face, etc. A third
font. Template64. is used to draw circles and diagonal1ines. A one-page chan of the Template64 character set
is probably required to use any of these shapes. .

Other fonts can replace thc~ two Helvetica fonts by creating a file with the name filename. fonts. This file
should contain the names of the fonts to be used, one per nne. Comments in this file are indicated by a #
character at the start of a lin(~. The default fonts are acceptable for illustrations to be included in papers, but
for slides larger fonts like 12 and 18 point should be used. Thus. for example, the font file:

, font file for slides
Helvet1ca12
Helvet1ca18

could be used when making slides. The command:
nm68 -d -g lusr/sun/l1b/l1bsfonts.a

can be used to detennine what fonts are available. This command lists the defined global symbols in the font
library.

12.4. Generating Printed Copy

The s 11 press program is used to produce the printed illustrations from SIL format Currently this
command only runs under UNIX. Alternate fonts can be selected as in the s 11ed 1 t program. The
command line:

s1'lpress f11ename.s11
will convert the named illustration into a Pr~ format file and print it on the Dover. Most of the options
available to the CZ program arc available in s 11 press. Use the man cz command for more details. In
particular. me -p f11 e. pr'ess option can be used to specify the name of a press file and inhibit printing.
This is useful if the illustration is to be merged into a document produced with the Scribe or TEX document
compilers. .

When using Scribe, inc1ud1c the command
811braryfile(picture)

near the beginning of your manuscript file. rnlen, for each illustration include the fbllowing commands:
IBeg1n(Figure)
8PressP1cture(Height -"6.26 Inches". File - "filename.press")
8Capt1on(A caption for this illustration)
EtEnd(Figure)

Where the height is an estimate of the vertical sb:e of the picture. Then place the character sequence <= =«
with s 111 ed 1 t near the bottom center of the iIIustmtion. and run s 11 press to create the Press file. The CZ
program of UNIX will insert the figures automatically. It usually several iterations to get the positioning and
size right. hut it is much n.Sl<!r lhan using a scissors and paste.

Usinl V

I siled1t f11ename.s11
I s11press -p filename. press filename.sil
I cz paper. pres:s
[Inserting f11ename.press on page 1]

I May 1986

13-1

-13-
timeipc: A V Performance Measu rementTool

The limeipe program perfonns timing tests of the V interprocess communication primitives (Send.
Recei ve[W1 thSegm.ent]. Rep 1y[W1 thSegment], MoveTo and MoveFrom).

To run the program, simply enter the command t1me1pc. For some tests, timeipc invokes a second
program named timeipesen'er to serve as a target thr IPC messages; timeipcserver need never be invoked
directly by users.

13.1 . Types of Test:s

Timeipe allows you to conduct a number of tests. A test consists of a number of trials. A trial consists of a
number of message Iransaeltons.

Each test measures one of the following types of message transaction:
Send-Receive-Rep1y without segments
Se n d-Rece1 ve -Re p 1 yW 1 thSe gme n t with short segments
Send-Rece1veW1 thSegment-Rep 1y with short segments
Send-Rece1ve-MoveTo-Reply with long segments.
Send-Rece1ve-Mo'veFrom-~eply with long segments

Short segments arc up to ~"AX_APPENDED_SEGMENT bytes long (1024 in the current version of the
kernel). Long segments are llonger than MAX_APPENOED_SEGMENT bytes.

For each trial the Sender process executes the following code:
MsgCounter - msgsPerTr,ial;
<record start time>
do

{

}

msg->timingCode - typeOfrest;
Send(msg. receiverPid):
1f(msg->ti~ingCode I- OK) <abort trial>

wh11e(msgCounter--);
<record stop ti~e>

TIle Receiver process executes different code depending on the type of message transaction being tested.
For Send-Rece1ve-Reply tests. the Receiver e x\..,<: utcs:

Usilll V

msgCounter - msgsPerTr1al:
do

{

}

senderP1d • Recl1ve(msg):
ir(msg->t1mingCode I- typeOrTest) <abort trial>
msg->tim1ngCode - OK;
Reply(msg. senderPid):

whi1e(msgCounter--);

1 M:l11986

timeipc: A V Performance Measurement Tool

For Se n d - Rece 1 ve - Rep 1 yW 1 t hSe gme n t tests, the Receiver executes: .
msgCounter - msgsPerTrtal;
do

(.
. . .

senderP1d - Rece1ve(msg);
1f(msg->tim1ngCode I- typeOfTest) <abort trial>
msg->timingCode - OK;
ReplyWithSegment(msg, senderPid, localSegPtr, msg->segPtr. msg->segS1ze); '* NOTE: lost reply segments are not detected I *'

}
wh1le(msgCounter--);

For Send-Rece1veW1 thSegment-Rep 1y tests, the Receiver executes:
msgCounter - msgsPerTr1al;
do

(
senderP1d - Rece1veWithSegment(msg. localSegPtr. "ocalSegS1ze);
1f(msg->t1~ingCode ,- typeOfTest II

msg->segSize ,- localSegSize) <abort trial>
msg->t1mingCode - OK;
Reply(mig. lenderPid);

}
while(msgCounter--):

For Send-Rece1ve-MoveTo-Rep 1y tests, the Receiver executes:
msgCounter - msg_PerTr1al;
do

(

}

senderP1d - Receive(msg);
if(msg->timingCode ,- typeOfTest) <abort trial>
MoveTo(senderPid. msg->segPtr. localSegPtr. msg->legSizl);
msg->ti~ingCode - OK;
Reply(~sg. senderPid);

while(msgCounter--);

For Send-Receive-MoveFrom-Rep1y test. the Receiver executes:
msgCounter - msgsPerTr1al;
do

(

}

senderPid - Receive(msg):
if(msg->timingCode I- typeOfTest) <abort trial>
MoveFro_(senderPid. localSegPtr, msg->segPtr, msg~>segS1ze);
msg->tim1ngCode • OK;
Reply(msg. senderPid);

wh11e(msgCounter--);

V'System 6.0 ncrerl'ncc Manuol

Types ofTesls

13.2. Process Configu rations

Each type of test can be perfonned in any of the following three process configurations:

(1) IPC between two processes on the same team.

timei~c team

---->Root-----
I (4) I
I I
I v

Sender······>Receiver
(1) (0/1/2)

•••• > indicates Sending of test messages
----> indicates Sending of control messages
(n) indicates process priority

(2) !PC between two processes on different teams on the same host.

timeipc team t1me1pcserver team

---->Root--------------------------------
I (4) I
I I
I v

Sender·················~···············>Rece1ver
(1) (0/1/2)

(3) IPC between two processes on different teams on different hosts.

t1meipc team time1pcserver team · , · ---->Root-----------~--------------------

I (4) I
I : ' I
I v

Sender·································>Rece1ver
(1)

Looper
(254). · .'

(0/1/2)

'Looper
(254)

13-3

Both limeipc and limeipcserver execute at REAL-"nMEI team priority. giving their processes precedence
over an other processes excc:pt the Kernel Process (or other teams executing at REAL_ TIME1). For tests
within a singlc host. the Sender and Receiver consume all processor cycles outside of the kernel. for the
duration of a trial. For teste; between hoste;. each testing team nllls an additional I.ooper proces.~ which loops
forever. consuming and mensuring all cycles not used by the Sender or Receivcr. Thus. during a trial. the
testing worksUltion(s) will appc;'lr to frecze -- thc cursur will nol track mouse movement and keyboard input
wilt be queued in the kernel. It is also possible that concurrently-running. time-dependent applications may
suffer (c.g. TCP connections 'via the internet server may time out during a trial).

Using V I May 1986

timeipc:: A V Perfol'llWlc:e Measurement Tool

13.3. Input to timeipc

Before each test, you must answer a series of prompts to specify the type of test and the process
configuration for the test. For each prompt. you may enter a null reply to request the default value specified
in brackets, or enter tz to terminate the program. tc is ignored d':1ring prompting. . .

receiver host name, 'local', 'sameteam', or 'quit'? [sameteam] ""
Reply with the name of a workstation on which to execute the Receiver team. or enter one of the thr~.
keywords. (The Sender team always executes on the workstation where the limeipc program was executed.l.
local requests that the test be performed between two teams on the local workstation. sameteam requests
that only one team be used.. qu it terminates the timeipc program. Any of the keywords may be abbreviated
to a single letter.

receiver at higher, same, or lower priority than sender? [lower]
'.!.

- "I
This prompt occurs if the test is to be performed within a single host. Reply h 1 g he r or h to run the Receiver
at process priority 0, same or s for priority 1, or lower or 1 for priority 2. . I

segment s1z1 in bytes, K bytes. or M· bytes? [0]
Specify the si7.e of segment to be moved in the tcst message transaction. Don't leave any space between the'
number and the optional K or M suffix. A size of zero requests a simple Send-Receive-Reply test.

read or write? [read] . ' •. f.

• i r . (

This prompt occurs if a non-zero segment size was requested. read or r requests a
Send-Receive-ReplyW1thSegment tcst (if segment size <= MAX_APPENDED_SEGMENU or a
Send-Receive-MoveTo-Repl'Y test (if segment size> MAX_APPENDED_SEGMENlj. write or ,i
requests a Send-Rece1veW1thSegment-Reply tcst (if segment size <=
MAX_APPENDED_SEGMENT) or a Send-Receive-MoveFroll-Reply test (if segment size.~~·
MAX_APPENDED_SEGMENT).

number ot messages per trial? [10000] \ ~ i .

Enter the number of times the message tranS&1ction is to be repeated within a single trial. Note that
MoveTo/MoveFroll operations arc not counted as separate transactions.

number ot trials? [10] . . . (~
Enter the number of trials to be performed. Enter lero to start the prompting all over again.

1 May 1986 V·System 6.0 Hcr~rcnce Manual

Input to Ilmtipc 13-5

13.4. Output from timeipc

The results of the tests Clre written to stdout. All prompts and error messages arc writt~n ~ stderr.
Here is an example oftcst output:

Send-Reeeive-MoveTo-Reply test with 4098 byte segments
between sender host tnanaimo' and receiver host 'lubbock'
600 messages per trial, 6 trials Wed Nov 8 18:60:16 1985

sender receiver sender receiver
trial elapsed elapsed overhead overhead idle CPU idle CPU
number seconds usee/msg usee/msg . usee/msg usee/msg usee/mIg

1 13.030 28080 5 5 16022 14859
2 13.320 28840 5 5 15818 15253
3 13.490 28980 5 5 15889 15784
4 14.800 29800 5 5 18387 18255
5 13.020 28040 5 5 14925 14888

avg. 13.532 27084 5 5 15988 15783

seg rate
bits/sec

1257408
1230030
1214529
1107027
1258372

1213473

Not aRl columns are printed for all tests, and the "avg." row is only printed when there is more than one trial
per test The meanings of the various statistics are described here:

elapsed secondl
is the total elapsed time taken for the specified number of message transactions. It is determined by calling
the kernel's GetTime funlction before and after the sequence of messages, and thus is only as accurate as
GetT'tme. Although it is printed to three decimal places. the current version of the kernel only keeps time to
,hundredths of a second. so the low-order digit should always be zero.

elapsed usee/mig
is the elapsed seconds divided by the number of message transactions, printed in microseconds.

sender overhead usee/msg
receiver overhead usec/msg

are the number of microseconds of "overhead" instructions expended for each mcs.~ge tran~1Ction. in the
Sender pruccs." and the Receiver process. They are computed by calling GetTime before and after 50,000
itcnatiuns of the tran~lcti()n loop with the IPC primitives removed. and dividing by 50.000. These overhead
values shu'uld be subtracted! from the elapsed usee/lllsg to obtain the bare m~lge transaction time.

sender idle CPU ~sec/msg
receiver idle CPU usec/msg

are only printed thr tests between two hosts, and indicate for each host how many microseconds of the
el apsed usee/msg are spent waiting for the other host or the network. They are measured by having a
luwer priurity process on eatch machine that loops continuously, incrementing a counter. At the start of a trial.
the counter is set to zero. I\t the end of a trial. the counter value is saved. Then, the louper is allowed to run
alone for I second to determine how many times per second it can increment the counter. Th'lt mte is divided
into the Sllved count to "rrive at the printed v~lIue.

seg rate bits/sec
is only printed for tests with a non-zero segment'sile. 'It is the number of bits of segment da~1 moved during
the trial divided by ~e elapsed time of the trial.

Using V I M:ayl986

13-6 Umeipc: A V PerFormaace Measurement Tool

13.5. Warnings and Precautions

• Despite having exclusive access to process-level cycles on the testing workstation(s), the progam can
yield different results for repetitions of the same test due to varying kernel overhead and network load.
For this reason, a test should consist of more than one trial, in order to observe the variance in the
results. A number of steps can be taken to minimize these perturbations, depending on your need for
accuracy:

o Run the test at a time of low network load. even if you are only testing within one workstation -
the kernel expends cycles receiving and handling arriving network. packets. 'Ibe mon program is
very helpful for discovering the current network load (but not while a test is running!) . .
Alternatively. isolate your workstation(s) from the network during the tests. For tests within one
workstation, you can unplug the transceiver cable after you have started up the limeipc program.
For tests between two workstations. you can connect them both to a DELNI which can be isolated
from the network at the flick of a switch. (This is also a polite thing to do to avoid loading the
network with your test messages.) Note that you will not be able to redirect your test output to a
file if you have disconnected from the network.

o Don't touch your keyboard or your mouse while a test is running - they cause interrupts that the
kernel must handle.

o Kill off any extraneous process that are running on your workstation(s), such as mont leinet,
internetsener, etc. I haven't figured out why their presence effccts the results of the tests, but it .
does.

o Be sure that you are logged-in in order to prevent others from remotely executing programs on
your workstation(s).

o Make sure no other REAL_TIMEl teams are running on your workstation(s), such as other
instances of limeipc or limeipcserver.

o It is possible to run timeipc on top of a bare kernel, i.e. without any other teams prescnt. Only
tests within a single team can be performed because the services of the team server are not
available to set up a separate receiver team. An example boot command to load timeipc onto a
Sun2 workstation with 3eom Ethernet interface is:

b V lusr/V/b1n/t1me1pc.m68k Vkernel/sun2+8c
When running in this mode. answers to prompts must be entered using LINE"""EED rather than
RETURN. You may safely ignore warnings about inability to set the team priority.

(Currently, a simple Send-Rece1ve-Reply transaction on a Sun2 workstation is 6
microseconds faster when performed on top of a bare kernel, compared to running on top of a
freshly-booted standard first team and VaTS. Surprisingly, using the STS instead of the VaTS
makes the simple message exchange slo·wer by 2 microscconds.)

• Rc aware that your workstation will appear to frcc1.e up during a trial. You may enter tc to abort the
test and return to the first prompt but the interrupt will not take effect until the end of the current trial.
If you don't know how long a pnrticular triul will luke. try it first with a sm.lll number of mcs.<I)3gcs.
However. test resulL-; for trials nillning less than a second or two should not be considered "ccuratc.

• For Send-Rece1ve-ReplyW1thSeglDent tests, lost reply segments are not detected. Be wary of
inter-host results from such a test.

• For Send-Rece1veW1thSegment-Reply tests. a trial will be aborted if the receiver docs not
receive the sent segment This occurs if the receiver is not ready when the segment arrives. for example
if the receiver is running at lower priority than a sender on the same host. .

• Watch out for VaTS page mode -- you may think you are wailing for a trial to finish when in fact the
progrrun is blocked trying to write to your virtual tenninal.

1 May 1986 V-System 6.0 Rdcrcnce Manual

Warnings and Precautions 13-7

• Be aware that inter-host tcsts consume considerable -Ethernet bandwidth (up to 3 megabits/second or
more) and you are in danger of becoming unpopular with other users of the network .

• Timeipc does not currently measure the performance of Forward or any group fPC operations.

UsinR V t May 1986

14-1

-14-
ved: A Text Editor

Ved is the V system text editor. Its basic keyboard commands arc a subset of Emacs. However, the mouse
adds a whole new style of interaction with the editor. The multiple window capability of the VOTS is put to
good use, as well.

Ved manages one or more editing windows. Each window is thought of as a viewport onto a buffer of text, a
continuously accurate display of some portion of that text A change to the buffer is followed immediately by
a corresponding change to the display. In each buffer there is a cursor, which is guaranteed always to be in
the portion of the text displayed. Each buffer nonnally has a filename associated with it, the file from which
it was read or the file to which it was most recently written.

14.1 u Starting up

Ved is invoked as follows:

ved {-number} {filename}

If a tile name is given, Ved begins by reading in the file. It then requests an A vr, its first editing window.
This is indicated by the mouse pointer. which changes to the word "Pad". Move the mouse to the desired
upper left comer of the A VT and click any button. The A vr will·appear, and in it the first scrcenful of text
will be displayed. The A VT in which ved was invoked is reserved for displaying error messages and typing
special text. such as filenames or search strings. which is not to be inserted into any butTer. Typing into this
window while not specifically being prompted there for text will butTer those characters until input is
requested. This is not, in general, the desired result. ffn normal use it is convenient to shrink this window
down to a few lines at the bottom.

The number of tines in the A VI' created for displaying a file can be specified with the -number option. The
default size is 28 lines.

At the top of the editing window, there is a banner. When the banner is inverted (darkened). then this
window is selected fhr input either by the mOllSC or the keyboard. The banner specifics the ved window
number which is used by the window selection command (described in section 14.13) and the Vgt number
(see section 2.4.2). The rightmost area is reserved for the file name associated with this window. If the file
nume has an asterisk (*) prefix. then ved thinks that this butTer has been modified since the last write or save
of the specified file.

As an added feature, ther'e is a inverted line of text at the bottom of every ved window. This is the fixed
menu area of the window. It can be lIsed to enter some frequently used commands using the mouse instead
of the keyboard (a full description of the tixed menu is in section 14.14.2).

14.2. Some Notational Conventions

In the subsequent command descriptions the following notational conventions will be used:

• tk denotes hitting the erRJ. key simultaneously with the k key.
• Esc-k dellotes hitting dle ESC key followed by hitting the k key.
• tk-jdenotcs hitting th,c (TRL key together with the k key', followed by hitting thejkey.
• Some key hoards have function keys that generate sequences beginning with Esc-[. Where these arc

supported by ved, they will be denoted by t\nsi-k. meaning the sequence Esc-[-k.

Using V t May 1986

14·1 Yed: A Text Editor

In general. there are (roughly) the following categories of key commands:

• Regular key strokes: e.g. k.
• "Control" characters: e.g. tk.
• "Escape" characters: e.g. Esc-k.
• "Control-x" characters: e.g. tx-k.
• "Control-x control" characters: e.g. tx-t k.

14.3. Special Commands

tg

tx-tz, tc

tl

tu

Get out df special states. Whether you have just typed Escape or tX and didn't want to, or
are busy typing a search string, or whatever, tg will get you back to the nonnal state.

Quit the editor. If there are any modified buffers. you will be asked if you want to save
them. If any .CKP files (files with .CKP suffixes are checkpoint files) have been created
during this ved session, they will automatically be deleted. Here and in similar cases, if you
are warned and then decide you don't want to do the command at all, type tg to escape
back to normal editing. Typing anything other than an n or '1 will cause the question to be
asked again.

(CfRL - L) Redraw the display.

Prefix argument. Typing a number after this causes the number to be used as an input
argument to the subsequent editing command. The prefix argument is only used by some
commands. The others simply ignore it. tu is very similar (in intention at least) to the tu
repcaffactor in Emacs.

14.4. Cursor Motion

tf, Ansi-c, right arrow
Move forward (right) one character.

tb. Ansi-d, left arrow .

Esc-f

Esc-b

Move backward (left) one character.

Move forward to the end ora word.

Move backward to tlle beginning of a word.

tp, Ansi-a, up arrow
Move up one line. A half page is scrolled if the cursor would go off the A Yr.

tn, Ansi-b, down arrow

ta

te

Move down one line. A hatfpage is scrolled if the cursor would go off the A Yr.

Move to the beginning of the line.

Move to the end of the line.

Esc-comma, Ansi-h

Esc-period

Esc (

Esc)

Esc-g

1 Ma,l986

Move to top. left-hand corner of the viewport.

Move to bottom. right-hand comer of the viewport.

Move to the beginning of the buffer.

Move to the end of the butTer.

Go to line. Prompts for a line number. and moves the cursor to the head or lhat line in the
file. 111e first tine is numbered 1. If the number is too large. it will go to the end of text
and notify you of the true line number there.

Cursor MOtiOD

14.5 .. Paging and Sc roiling

tv

Esc-v

Page down 1 p~ge.

Page up 1. page.

Esc-down-arrow, Esc-Ansi-b
Page down 1/2 page.

Esc-up·arrow, Esc-Ansi-a
Page up 1./2 page.

. .
tz

Esc-z

Esc-!

Scroll on{~ line up. I.e. move the viewport up one line relative to the text.

Scroll one line down. I.e. move the viewport down one line relative to the test.

Scroll current line to the top of the viewport

14.6 .. Special Cha racte rs

14·3

Typing any printing chamcter, or TAB, inserts the character typed. Ved also supports an "auto-linefeed"
mode. When auto-linefeed is enabled, typing in characters which would extend beyond the viewport's
right-hand edge causes a lin1cfeed character to be inserted before the last word on the current line. The effect
is to split the current tine into two lines, with the last word of the old line becoming the first word of the new
line. This mode can be toggled on or off: .

tx .. l Toggle auto-linefeed option.

Various special characters are handled as follows:

Return Insert a Linefeed, not a CR character- gets the desired effect

Linefe(!d Insert a newline (Linefeed) and then indent the new line to the indentation of the previous
line, using tabs where possible. If the previous 1ine is empty, it will look lip until it finds a
nonempty line and usc that as the standard of indentation.

to Insert a Linefeed, leaving the cursor before it.

tq Quote the following character. Allows you to insert non-printing characters (such as the
useful tl, fonnfccd. which forces a page break on most printers) into the text.

t\ Quote thc (hltowing character and insert it with the high bit set. tq and t\ are the only
exceptions to the tg command: they will quote a following tg, but that simply means the
insertion of a character, which can easily be deleted.

14.7. The Kill Buffer

Ved provides a special butTer, caned the kill buffer, that is used to temporarily store text for various
operations. Various editing commands specify this buffer as the source or d<..'Stination of text they manipulate.
The butler should be thought of as a "clipboard" that is used fur "cutting and pasLing" opentliolls on text.

14.8. Bas,ic Editing Commands

td Delete forward from the cursor- the character under the cursor.

del, backspace, th Delete backward from the cursor.

Esc-d Delete word forward..

Esc-h . Delete word backward..

Using V 1 May 1986

14·4

tk

ty

Esc-y

tt

Esc-u

Esc-I

Esc-c

Esc-tab

"ed: A. Text .:ditOI

As in Emacs. Delete the contents of one (logical) line, or the carriage return on an empty
line. into the ki1lbuffer. A sequence of tk commands uninterrupted by any other command
causes the whole section thus deleted to go into the killbuffer. tk after any other command
restarts the killbuffer from scratch.

Yank - insert contents of the killbuffer at the cursor. The killbuffer is unchanged. The
cursor-cnds up at the beginning of the insertion, and the Mark (see below) en~ up at the
end.

Yank, but without disturbing the Mark. The cursor ends up at the end of the insertion.

Transpose the two characters before the cursor.

Make the word the cursor is in, or just after, all capital letters.

Make the word the cursor is in, or just after, all lower case.

Capitalize the word the cursor is in, or just after.

Add indentation to this line equal to the indentation of the previous line. Intended use: if
you type Return and wish you had typed Linefeed, this will makeup the difference.

Esc-blank, Esc-right-arrow, Esc-Ansi-c
Indent the current line four spaces.

Esc-backspace, Esc-t~ Esc-left-arrow, Esc-Ansi-d
Decrease the indentation of the current line four spaces.

14.9. Mark and Region

Ved maintains an invisible point in the buffer called Mark. Until otherwise set, it is at the beginning. Itcan
be set by txtm or Control-@ (Control-spacebar is the same as Control-@ on some keyboards). "Region"
refers to all the text between Mark and the cursor. The following commands usc these concepts:
tx-tm, t@

tx-tx

tw, tx-tk

tx-tr

Esc-i

Set the Mark at the current cursor position.

Exchange Mark and cursor (changing the display if necessary to keep the cursor on the
screen).

Kill region. Region vanishes and becomes the kitlbufTer-so this command can be undone
with ty.

W rite region. Prompts for a file name, and writes the region into that file. The buffer is
unchanged.

Indent region. Indents all lines in the region by the number of spac~ specified by the
prefix argument If no prefix argument was specified, then all lines are indented one space.

14.10. C-Specific Editing Commands

'1l1e commands described in this section are specific to the editing ofC progmms.
Esc-{ Generate two new lines. the first contlining a { indented two spaces from the previous

cursor position. the second containing the cursor an additional two spaces indented.

Esc-} Generate two new lines. the first containing a } indented two spaces less than the previous
cursor positi~m. the second containing the cursor indented an additional two spaces less.

1 May 1986 V·System (,.0 I~crercnce Manuul

C'Specific Editing Commands 14-5

14.11. Sea rching and Replacing

ts

tr

Esc-s

Esc:-r

&C-q

tx-t

Search for string. Prompts for a string, and finds the first instance of that string after the
cursor. Prints "Not found'" if there is no such instance. If you type Return without typing
any search string. the previous search string is used. Here and elsewhere, a newline can be
inserted into the search string using the Linefeed key. It is echoed as an inverse-video
backslash. Non-printing characters can be searched for, and arc echoed as like "tA". If
the search succeeds, the string found is selected. and several special commands (described
in The Right Hand and the Left, below) are available. In particular, typing s will repeat the
search.

Reverse search. Just like ts but searches backward.

Repeat search. Forward search for the string most recently used in a ts or tr command.
Works regardless of whether there is currently a selection or not.

Repeat search backward. Like &C-S but searches backward.

Query Replace. Prompts for a search string. then a replacement string. Then searches till
it finds thle search string. and selects that text. Type y (yes) to replace, n (no) to leave it
alone and go on. Other options arc described below. These special commands are
available whenever there is a selection, so Query Replace is easily re-enterable.

Tag search. If a tags file is present in the current working directory, then this command
can be used with it to find keywords in various files. S •

14.12. FHe Access

Yed supports various options with respect to file writing operations and checkpointing operations. Files can
be backed up and they can be written out using a "verify" option that ensures that what was written out is
actually what is in a buffer. These options can be togg1ed on or off, as described below. Files can also be
autommicully chcckpointed (!very II editing actions. Specification of the checkpoint frequency is done in the
• Ved-pro initialii'.ation me. (See section 14.16.)

When ved's backup option is on. it preserves the previous version of a file by renaming it to its former name
followed by ".BAK". 111US lPlyfile.c becomes myfile.c.BAK • Similarly, if the checkpuinting option is on. files
are periodic"l1y written out to a file whose name COnSiSl'i of the actual filename followed by ".CKP". Thus
l11yji/e.c b(.'Comcs 1II):file.c:.CKP. The verify option re"d~ files back in after writing them and compares them
against the butTer contents. This feature represents an end-to-end check that was implemented at a time when
the Y-systcm's file writing operations were not completely reliable.

Upon normal exit from v(:d (by either typing tx-t7 .. or tx-d to the last window) the .CKP files that were
created during the current vcd session will be automatically deleted. If ved exits abnormally, these files will
con~1in a copy of your files that are correct as of the last time check pointing was perfonneQ.

Y cd fltenamcs can be up to 256 characters long, but mcnames of this length arc not in general
recommended.
txtv

txts

txtw

Visit" file, whose name will be requested. The new file replaces the current one, so if the
current buffer is modified you will be asked betbre proceeding.

W rite the bu trer back to the file from which it was read.

Write the butTer to a file whose name will be requested.

S'!'hosc unramiUnr with lags should read lhe UNIX manual entry ror ctags. This command creates a file which specifies the loc:llion of
every C'progrnm runction and type definition in a specified set or source files. It provides a means of Ioclting such definitions without
having to pcrlorm a string search 0111 all source files each time.

Usl"" V 11\1:17 1986

14·6

txti

Esc-tm

Esc--

tx-b

tx-v

tx-c

,eel: A Text Editor

Insen file at the cursor. You will be asked for the file name. Cursor and Mark are set just
as in ty above.

Write all modified buffers to the files from which they were read. Esc-Return has the same
effect

Forget that the butTer has been modified. This will cause the file not to be written" out on
exit or when a command is given to write out all modified buffers.

Toggle the .OAK safety feature. Creation of .BAK files makes file writing take about 4
times as long as it otherwise would. so if you really want that speedup, this will tum off the
making of .BAK files. Typing tx-b again will tum it back on.

Toggle the verified write option.

Change current context (working directory). The Ved control window always displays the
absolute name of the current context in its banner, while file windows display the absolute
path name of the me being edited.

14.13. Windows and Buffe rs

Ved is normally started with one editing window. but it can support several. Each editing window is
associated with a separate editing buffer. which includes the text. cursor position. selection if any, associated
filename. and whether this butTer has been modified. Multiple windows on the· same butTer arc not
supported. Since the correspondence is one to one, hereafter we refer to "window" meaning "window andits
associated buffer". At any time one window is selected for editin~ and has its banner inverted (darkened).
Window selection can be changed by clicking a mouse button in an unselected window, or by tx-digit.
Windows are numbered, starting at 1. in the order of their creation.

The search and replacement strings and the killbuffer arc universal across windows. Thus it is possible to
kill some text in one window and yank it into another. It is likewise possible to search for a string in one
window, then select another window and repeat-search on the same string.

The window from which ved was invoked is special. It cannot receive input except during certain
commands. at which time it is selected automatically. It is never receptive to mouse input

tx-g Get file. Prompts for a file name. and reads it into a new window. Ifno file name is given,
creates an empty window. Here and in all other cases. when a window is to be created the
muuse cursor will change to "Pad" ,md let yuu indicate where the window is to go. If you
abort the AVT creation by pressing all three buuons. the command is aborted.

tx-G

tx-d

tx-y

tx-a

tx-m

tx-l- tx-9

tx-o

11\"1:.,1986

Get file and specify window·.size. In addition to prompting for a file name, you also get
prompted for the number of lines the window should have.

Delete the current window. Wilt warn you if it is modified. The next lower numbered
window becomes selected. [~the last window is deleted, ved quits, because it cannot live
without a selected window. "

Yank to window. The killburTcr is cupied into a new window.

Pull Apart Kills the Region in the current window and transfers it to a new window.

Merge windows. Asks the user to indicate a secondary window. and transfers its contents
into the current window at the cursor position. The secondary window is then deleted.
The secondary window is indicated by clicking the mouse in it

Select the corresponding window.

Order bufTers. Redisplays all the butTers, s~1rting with the highest numbered one. 'ntis
leaves the buffers "sulcked" on lOP of each other on the screen. 'Illis is useful if buffers
have been positioned in a "stair-casc'r order, starting at the lower left and moving to the

V·SyslcIII6.n Rcf('r('ncc Manual

Windows and Buffers 14-7

upper right. so that the stacked configuration leaves the file nrune banner of each butTer
displayed.

14.14. The Mouse

The mouse otTers an alternative way of doing several common editing functions.. such as placing the cursor
and deleting or moving text. The mouse has two functions: flXed menu selection and editing.

14.14.1. Editing With the Mouse . .
Left button Click and release it at any character in the text: sets the cursor at that character. Click it at

one character, move the mouse to another point in the window, and release: selects the
text between the point of clicking and the point of release. While you are moving the
mouse with the left button held down, the region which would be selected if you released it
at this moment is displayed in inverse video. When you release. your selection is defined
and remains displayed in inverse video. Carriage returns are invisible, so the selection of a
carriage return is shown by black space from the end of the text on that line to the end of
the window. Note that a selection and a_ normal cursor are mutually exclusive. The
importanCI~ of this will become apparent below. If you have a selection and click the left
button, with or without moving, the former selection is deselected and a new cursor
position or selection is chosen. Caution: The difference between the cursor and a selection
which is only one character long is that the cursor flashes.. while the selection remains
inverted.

Middle button When you have a selection, clicking the middle button deletes it into the killbuffer. If you
have no selection, nothing happens. The position of the mouse is irrelevant.

Right button Brings bac:k the contents of the kiltbuffer and makes it selected. If there i~ nothing in the
killbufTer, nothing happens. If there was a selection already, its contents are swapped with
the contents of the killbufTer. If there was no selection, the contents of the killbuffer
replace th<: cursor.

14.14.2. Fixed Menu

The fixed menu that appears at the bottom of every ved window provides the user with mouse oriented file
perusal capabilities. Clicking the middle or right mouse buttons in the fixed menu area will execute the
command that is nearest tb~ mouse cursor. All the commands in the menu could be entered from the
keyboard, therefore they arc not described here. Refer to the sections on searching, scrolling, and regions for
descriptions.

In the fixed menu area, the semantics of the each of the buttons differ. The middle button (in general)
means forward whereas the .right button means backward. For instance, clicking the middle button at the
Full-I)ugc command will cause the window to be scrolled thrward one full page and the right button will cause
a reverse scroll. The commands l"alr-I)~IAe. Scroll·Linc. and SC~IfC'h behave in this same manner. 'llle Tug
command has exaclly the same semantics Ibr both huttons. Murk/l)oillt is the only "dilTerenC' command: in
it. the middle button causes <:1 jump to the Mark and the right button sets the mark llt the point. Note that the
left button has no effect on any menu. selection. to maint41in continuity during dynamic selection. 'Ille Search
and T~.g commands will eithlcr use the selected string as the pattern or prompt the user for one in the case of
no selection.

Using V 1 May 1986

14-8 fed: A Text Editor

14.15. The Right Hand and the Left

When there is a selection, the cursor is not in a single spot, so it would not make much sense to insert
characters at the cursor. So various printing characters are used as special selection-mode commands. The
most basic of these commands are all assigned to left-hand keys. Thus one possible mode of operation is for
the user to have his right hand on the mouse, selecting things, and his left hand at the usual place on the
keyboard. givi~g commands which arc not available on the mouse buttons. Others of these commands are
designed for use with the search and replacement facility.

Non-printing characters other than those described below deselect. then perfonn their usual function as if
the curso'r had been at the beginning of the selection.
space bar Deselect. 'Ille cursor lands at the beginning of the selection. All printing characters not

mentioned here also have this effect. but the space bar is recommended.

tab Deselect. but the cursor lands following the end of the selection.

d

e

c

g

s

r

tl

y

n

backspace

Y

u

S

R

q

Q

t

1 M:I)' 1986

Delete. Exactly identical to the middle mouse button.

Exchange. Exactly identical to the right mouse button.

Copy in place. A copy of the current selection is inserted right after it. and becomes the
new selection.

Grab. The current selection is copied into the killbuffer without deleting it

Search for the next instance of the selected string. This becomes the search string, as used
in future Repeat Search or search-and-replace commands.

Reverse version of s.
(CfRL - L) Redisplay, with the selection near the top of the screen. Good for long
selections which run off the bottom of the screen.

Yes replace. Replace the selection with the stored replacement string.

No don't replace. Search for the next instance of the stored search string.

Undo replacement Search backward for the first instance of the replacement string an~
replace it with the search string. '1l1e resulting string is selected.

Yes replace but don't move on. 111e selection is replaced and the result remains selected

Undo in place. 111e current selection (which hopefully is the replacement string) is
replaced with the search string. . ,

Search for next instance of the replacement string.

Reverse version of S.

Stan query replace. Takes the current selection as the search string. and" prompts for a
replacement string. Replaces the current selection, and goes on to the next instance of it,
just as "y" would do.

Set replacement string. '1l1e current selection is copied into the replacement string. 111is
makes it possible to alter a Query Replace in mid-flight.

Tag search. Treats the selection as a tag and searches for its location using the tags file of
the current working directory.

V'System (.. 0 Rcrcrenre Manunl

The Right Hand and tbe Left 14-9

14.16. Ved Initialization

Various ved features can be initialized to prespecified values using the • Ved_pro file, which should reside
in the user's home directory. (The existence of this file is optional.) ~lbcse include:

• Redefinition of key bindings.
• Specification of toggle settings for various options.
• Specification of the checkpointing frequency.

14.16.1. Key Bindings

Ved uses a key tablc'to determine what function should be invoked when a panicular key or key sequence
(such as tx-tc) is typed. The default settings in this key table have been described. The user can change the
key table settings by specifying new bindings in the initialization file. The syntax to use for specifying new
key bindings is demonstrated below in the list of default bindings shown. Thus, for example, one could set a
new key binding that defined the tx-tm key sequence to denote WriteModifiedFilcs instead of the Esc-tm
key scQuencc, by placing the following line in one's. Ved_pro file:

~x-~m Wr1teMod1f1edF11es

Thc dcfault key bindings are the following:
\\r InsertReturn

Using V

\\n Newl1neAndIndent
\\t InsertTab .
Esc-\\t IndentL1kePrev1ousL1ne
~u Prov1dePref1xArgument
tx-~z Ex1tEd1toir
~c Ex1tEd1tor
tf ForwardCharacter
Ansi-c ForwardCharacter
rarrow ForwardCharacter
tb BackwardCharacter
Ansi-d BackwardCharacter
larrow BackwardCharacte~
ta BeginningOfL1ne
1'e EndOfLine
tn NextLine
Ansi-b NextL1ne
darrow NextLine
tp PreviousLine
Ansi-a Previousl1ne
uarrow Previ~usL1ne
tz Scroll0neL1neUp
pfl Scroll0neL1neUp
sm1-pfl ScrollOneL1neUp
Esc-z Scrol10nel1neDown .
pf2 Scrol10neL1neDown
sm1-pf2 Scrol10neLineDown
Esc-f ForwardWord
Esc-b BackwardWord
Esc-u CaseWordUpper
Esc-l CaseWordLower
Esc-c CaseWordCapital1ze

I May 1986

14-10

tv NextPage
Esc-v PreviousPage
Esc-darrow NextHalfPage
Esc-Ansi-b NextHalfPage
Esc-pfl NextHalfPage
Esc-smi-pfl NextHalfPage
Esc-uarrow PreviousHalfPage
Esc-Ansi-a PreviousHalfPage
Esc-pf2 PreviousHalfPage
Esc-smi-pf2 PreviousHa1fPag~
t1 RedrawDisp1ay
Esc-, BeginningOfW1ndow
Ansi-h BeginningOfW1ndow
Esc-. EndOfWindow
Esc-l LineToTopOfW1ndow
Esc-< Beginn1ngOfF11e
Esc-> EndOfF11e
Esc-g GotoRequestedLine
tx-t RequestTagSearch
ts RequestStringSearch
Esc-s RepeatStringSearch
pf3 RepeatStr1ngSearch
sm1-pf3 RepeatStr1ngSearch
tr RequestReverseStr1ngSearch
Esc-r RepeatReverseStr1ngSearch
pf4 RepeatReverseStr1ngSearch
sm1-pf4 RepeatReverseStringSearch
Esc-q QueryReplace
th DeletePreviousCharacter
del DeletePrev10usCharacter
td DeleteNextCharacter
Esc-d DeleteNextWord
Esc-h DeletePrev1ousWo~d
tt TransposeCharacters
to New11neAndBackup
tk KillToEndOfL1ne
ty YankK111BufferAfterCursor
Esc-y YankKillBufferBeforeCursor
tx-tv V1s1tF11e
tx-ts SaveCurrentBuffer
tx-tw WriteNamedF11e
Esc-tm Wr1teModif1edF11es
Esc-} MarkUnmod1f1ed
tx-b ToggleBackup
tx-v ToggleVer1fyWr1te
tx-l ToggleAutoLineFeed
tx-c ChangeContext
tx-ti InsertF11e

I M311986

fed: A Text Editor

V'System 6.0 Rcrcrence Manuol

Vcd Illitialization 14·11

Esc-{ OpenBrace1
Esc-} CloseBracel
Esc- IndentFour
Esc-rarrow IndentFour
Esc-Ansi-c IndentFour
Esc-~h OutdentFour
Esc-larrow OutdentFour
Esc-Ansi-d OutdentFour
t SetMark
tx-tm SetMark
set-up SetMark
tx-tx ExchangeOotAndMark
Esc-1 IndentRegion
tx-tr Wr1teRegion
tX-fk DeleteToKillBuffer
tw DeleteToKillBuffer
tx-g VisitF11eNewBuffer
tx-G V1s1tF11eNewBuffer
tx-d OeleteW1ndow
tx-y YankToNewW1ndow
tx-a Reg1onToNewW1ndow
tx-m MergeWindows
tx-l GoToBuffer
tx-2 GoToButfer
tx-3 GoToBuffer
t)(-4 GoToBuffer
tx-5 GoToBuffer
tx-6 GoToBuffer
tx-7 GoToBuffer
tx-3 GoToBuffer
tx-9 GoToBuffer
tx-o OrderBuffers

Several editor functions exist that are not bound to any key by the default definitions. 11lcsc are the
following:
OrderBu fferHackwards

Order the buffers in the opposite order of that used by OrderBuffers. Depending on
whether a user prefers to stack their windows from lower left to upper right. or from lower
right to upper left. one or the other ofthcsc ordering functions should be used.

- OpenR clCC C-program editing command. Generates three new lines, with the first and third line
containing matching { and} braces indented two spaces from the original cursor position.
The middl<: line is blank and indented four spaces from the original cursor position.

Closcllrace C-program editing commnnd. 'Ille same as CloseBrace 1. except that the second. blank line
is not genclI'atcd. 'Ille cursor is left after the } character.

llackwardHackingTabs

llsing V

Same as DeletePreviousCharacter except that tabs arc expanded first if they are'
encountered. Thus. this command will convert a tab into 7 spaces instead of deleting the
equivalent of8 spaces worth of white space.

1 MaJ 1986

14-12 yeel: A Text F..ditor

14.16.2. Specifying Options and Checkpoint Intervals

Various options and the check pointing frequency (in number of editing actions) can be specified in the
initialization file. lbese include:

(checkpoint number)
(defaul trows number)
(autolinefeed on/off)
(backup on/off)
(verifywrite on/off)

The checkpoint specification expects an integer number between 1 and 232_1. To tum off chcc1cpointing
specify some large number. The default is 500, which corresponds roughly to ·typing 10 lines of text The
defaullrows specification sets the default A VT size. The other specifications expect either an on or an ott,
indicating that the option should either be turned on or turn~d off.

The case of the keywords used is unimportant - everything gets converted to lower case before parsing
anyway. However. the parser is unforgiving of extraneous blanks in the specification. No blanks are allowed
between the parentheses and the keywords. (I know, this is easy to fix. It just hasn't been done yet)

14.17. Crash Recovery

In an ideal world. this program would never crash. But in fact it sometimes does- but it is so dcsigned that
it has to crash in two stages to lose your text Nonnally a crash only breaks the first stage. in which case YQU
will generally drop into the debugger. At this point. the debugger command Su 1 c ide. g will destroy the
process that got the exception. This will u~ually activate ved's crash recovery facility, signalled by the
message:

Editor crashl Shall I try to save this buffer?
If you have any changes. and you value them. and the crash did not come during a save. it is probably a good
idea to answer "y", 1\ .BI\K file will be made if the backup option has not been turned ott. so the danger of
total loss is small. If this succeeds you will be asked

Try to continue?
I('you answer "y", the inner editor will be recreated with the buffers just as they were. For some display
related errors, a tl. at this point will set everything right However. you arc on shaky ground, and the best
thing to do first is save any mudified butTers in other windows.

Remember that if the checkpointing feature was on when ved crashed, that there may be good copics of
your files checkpointed in your directory. Take a look at them before y.ou panic, you may end up only losing
a few lines of text

Ved tries to detect the cases in which it runs out of memory. In some activities. such as reading in a file. it
will simply refuse. In others, such as a kill or an insertion, you will get the message

Out of memoryl Please do one of the following:
Pick a window to delete
c - continue (after you free something)
q - save and quit
tC - quit without saving

Ved cannot proceed without more memory, and cannot exit gracefully from this activity, so you have to help
it out To pick a window. select it with one mouse click and signal it with a second click. It will be saved if
modified. then deleted to· reclaim its storage. If you have anything else going on on your Sun. you can delete
a view or terminate a program or delete an exec to frcc some storage. After doing so, type c to continue. If
this won't work, type q to try to save everything and quit gracefully. It will save the current butTer last. trying
to "void the dangers of saving a half-modified text tc is a last resort. "quick and dirty quit

1 May 1986 V·Syslem 6.0 Rererellce Mallual

Crash Recover, 14·13

14.18. Some Hints Ion Usage

If you get into a weird state. try tl, it often restores sanity. If that fails, a save may work anyway- it uses
only the textual data structures. and it is the display structures that usually foul up.

Esc followed by a numb(~r key invokes one of the debugging routines. Avoid them, especially number 9,
which is suicide.

Usilll V II\I:1Y 1986

15-1

-15-
xlisp: An Experimental Object Oriented Language

This chapter is adapted from the document XL/SP.· An Experimental Object Oriented Language, Version
1.4, January 1, 1985, by. David Bctt, 114 Davenport Ave., Manchester, NH 03103.

15.1. Introduction

XLISP is an experimental lProgramming language combining some of the features of LISP with an object
oriented extension capability. It was implemented to allow experimentation with object oriented
programming on small computers. There are currently implementations running on the PDP-II under UNIX
V7. on the VAX-II under VAX/VMS and Berkeley VAX/UNIX, and on the 8088/8086 under CP/M-86 or
MS-DOS. A version is currently being developed for the 68000 under CP/M-68K and for the Apple
Macintosh. It is completely written in the programming language 'C' and is easily extended with user written
built-in functions and classes. It is available in source form frcc of charge to non-commercial users.
Prospective commercial users should contact the author for permission to use XLISP.

Many traditional LISP functions are built into XLISP. In additio~ XLISP defines the objccts 'Object' and
'Class' as primitives. 'Object' is the only class that has no superclass and hence is the root of the class
heirarchy tree. 'Class' is the dass of which all classes arc instances (it is the only object that is an instance of
~~ .

This document is intended to be a brief description of XLISP. It assumes some knowledge of LISP and
some understanding of the concepts of objcct oriented programming.

Version 1.2 ofXLISP diffelrS from version 1.1 in several ways. It supports many more Lisp functions. Also,
many version 1.1 functions have been re~amed and/or changed slightly to follow traditional Lisp usage. One
of the most frequently report,~d problems in version 1.1 resulted from many functions being mlmed after their
equivilent functions in the C language. This turned out to be confusing for people who were trying to learn
XI.ISP using traditionall.lSP texts as references. Version 1.2 renames these functions to be compatible with
more traditional dialects of I.lSP. Version 1.3 introduces many new LISP functions and moves closer to the
goal of being compatible with the Common l.isp standard. Version 1.4 introduces user error handling and
breakpoint support as well as more Common Lisp compatible functions. .

A recommended text for learning LISP programming is the book "LISP" by Winston and Horn and
published by Addison Wesley. The first edition of this book is based on MacLisp and the second edition is
based on Common Lisp. Future versions of XI JSP will continue to migrate towards compatibility with
Common Lisp.

15.2. A Note From the Author

If you have any problems with XLISP. feel free to contact me for help or advice. Please remember that
since XLISP is available in source fonn in a high level language, many users have been making versions
available on a variety ofmachincs. If you call to report a problem with a specific version, I may not be able to
help you if that version runs on a machine to which I don't have access. Please have the version number of
the version that you are running readily accessible before calling me.

If you find a bug in XLISP. first try to fix the bug yourself using the source code provided. If you are
successful in fixing the bug. send the bug report along with the fix to me. If you don't have access to a C

Usi .. V 30 April 1986

15-1 xlisp: AD Experimental Object Oriented Language

compiler or are unable to fix a bug. please send the bug report to me and I'll try to fix it

Any suggcstions for improvements will be v!clcomed. Feel free to extend the language in whatever way
suits your needs. However, PLEASE DO NOT RELEASE ENHANCED VERSIONS WITHOUT
CHECKING WITH ME FIRST!! I would like to be the clearing house for new features added to XLISP. If
you want to add featurcs for your own personal usc, go ahead. But, if you want to distribute your enhanced
version, contact me first Please remember that the goal of XLISP is to provide a .language to learn and
experiment with LISP and object oriented programming on small computers. .

15.3. XLISP Command Loop

When XLISP is startecL it first tries to load "initlsp" from the default directory. It then loads any files
named as parameters on the command line (after appending ".Isp" to their names). It then issues the
following prompt: .

>

This indicates that XLISP is waiting for an expression to be typed. When an incomplete expression has
been typed (one where the left and right parens don't match) XLISP changes its prompt to: ..

n>

where n is an integer indicating how many Icvels of len parens remain unclosed.

When a complete cxpression has bcen cnterccL XLISP attempts to evaluate that expression. If the
expression cvaluates succcssfully, XLISP prints the result of the evaluation and thcn returns to the initial
prompt waiting for another expression to be typed.

Input can be aborted at any time by typing the CONTROL-G key (it may be necessary to follow
CONTROL-G by REf URN). .

15.4. Break Command Loop

When X LISP cncountcrs an crror while cvaluating an expression, it attempts to handlc the error in the
following way:

If thc symbol '*brcakcnablc*' is truc, thc messagc corresponding to the error is printed. If thc error is
correctable, the correction me5.'iage is printed. If Lhe symbol '*tracenable*' is true, a trace back is printed.
111e number of entries printed dcpend~ on Lhe value of thc symbol ·*tracelimit*'. If this symbol is set to
something other than a numbcr, thc cntire trace back stuck is printed. XLISP then enters a read/eval/print
loop to allow thc user to exam inc the state of the interpreter in the context of the error. This loop differs from
the normal top-leva) readleval/print luop in that if thc user types the symbol 'continuc' XLISP will continue
from a correctable error. If the user types the symbol 'quit' XLlSP will abort the break loop and return to the .
top level or the next lower numbered break loop. When in a break loop, XLISP prefixes thc break level to the
normal prompt

If thc symbol '*breakenablc*' is nil. XI.lSP looks for a surrounding errsct function. If one is fhund, XI.lSP
examincs the value of the print nag. If lhis nag is lrue, the error me5.'klge is printed. In any case, XLISP
causes the crrsct function can to return nil.

If there is no surrounding errset function, XLISP p~nts thc error messagc and rcturns to the top level.

15.5. Data Types

There arc several different data types available to XLISP programmers.

• lists

30 April 1986 V'Syst('m 6.0 RdC'rencc Manual

Data Type! 15-3

• symbols

• strings

• integers
.objccts

• tile poin.ters

• subrs/fsubrs (built-in functions)
. ,

Another data type is the strrcam. A stream is a list node whose car points to the head of a list of integers and
whose cdr points to the last list node of the list. An empty stream is a list node whose car and cdr are nil.
Each of the integers in the list represents a character in the stream. When a character is read from a stream,
the first integer from the head of the list is removed and returned. When a character is written to a stream,
the integer representing the character code of the character is appended to the end of the list. When a
function indicates that it takes an input source as a parameter, this parameter can either be an input file
pointer or a stream. Similarly, when a function indicates that it takes an output sink as a parameter, this
parameter can either be an output file pointer or a stream ..

15.6. The Evaluator

The process of evaluation in XLISP:

• Integers, strings, objcct.c;. file pointers, and subrs evaluate to themselves

• Symbols evaluate to thc~ value associated with their current binding

• Lists Jre evaluated by evaluating the first clement of the list
o If it evaluates to at subr, the remaining list elements are evaluated and the subr is called with these

. evaluated expressions ~ arguments.

o If it evaluates to an fsubr, the fsubr is called Illsing the remaining list clements as arguments (they
arc evaluated by the subr itself if necessary)

c· Ifit evaluates to a list and the car of tile list is 'lambda', the remaining list clements arc evaluated
and the resulting expressions arc bound to the formal arguments of the lambda expression. '(ne
body of the functlion is executed within this new binding environment.

.:> I f it evaluates to a list and the car of the list is 'macro', the remaining Jist clemente; arc bound to the
formal arguments of the macro expression. The body of the function is executed within this new
binding environment The result of this evaluation is considered the macro expansion. lnis result
is then evaluated in place of the original expression.

o (f it evaluates to an object. the second list clement is evaluated and used as a message selector.
The message formed by combining the selector with the values of the remaining list clements is
sent to the object,

15.7. Lexical Conventions . . . ~ I .

The following conventions are followed when entering XLISP programs:

Comments in XLISP code begin with a semi-colon character and continue to the end of the line.

Symbol names in XLI.SP can consist of any sequence of non-blank printable characters except the
fol1owing:

()",";

Usina V 30 April 1986

xllsp: AD Experimental Object Oriented Language

Upper and lower case characters are distinct. The symbols 'CAR' and 'car' are not the same. The names of .
all built-in functions are in lower case. The names of all built-in objects are lower case with an initial capital.
Symbol names must not begin with a digit. .

Integer literals consist of a sequence of digits optionally beginning with a '+' or '.'. The range of values an
integer can represent is limited by the size of a C 'int' on the machine that XLISP is running on.

Literal strings are sequences of characters surrounded by double Quotes. Within Quoted strings t;he '~
character is used to allow non-printable characters to be included. The codes recognized are:

\ \ means the character tV
\n means newline
\t means tab
\r means return
\e means escape
\onn means the character whose octal code is nnn

XLISP defines several useful read macros:
'<expr>
#'<expr>
'<expr>
,<expr>
,@<expr>

= = (Quote <expr»
= = (function <expr»
= = (backQuote <expr»
= = (comma <expr»
= = (comma-at <expr»

15.8. Objects

Definitions:
sclector

message

method

a symbol used to select an appropriate method

a sclector and a list of actual arguments

the code that implements a message

Since XI JSP wa.~ created to provide a simple basis for experimenting with object oriented programming.
one of the primitive data types included wns 'object'. In XLISP, an object consists of a data stnlcture
containing a pointer to the object's class as well as a list containing the values of the object's instance variables.

Officially, dlere is nn way to see inside an object (look at dlC values of its instmce variables). The only way
to communicate with an object is by sending it a message. When the XLISt> evaluator evaluates a list the
value of whose first clement is an object. it interprets the value of the second clement of dle list (which must
be a symbol) ns the message selector. The evaluator detcnnines the claliS of the receiving object and attempts
to find a method corresponding to the message selector in the set of messages defined for dlat class. If the
message is not found in the objcct's class and the class has a supcr-clas~ the search continues by looking at the
messages defined for the super-class. This process continues from one supcr-class to the next until a method
thr the message is found. I f no method is fou nd, an error occurs.

When a mcdlod is fhund, the evalualor hinds the receiving objl'Ct to the symbol 'self, binds dle clas.~ in
which the method was round to the symbol 'msgchls.'i'. and evaluates the method using the remaining
elements or the original list a'i arguments to dle method. '111ese arguments are always evaluated prior to being
bound to their corresponding fonnal arguments. The result of evaluating the method becomes the result of
the expression.

Qasscs:

30 April 1986 V·Systl'1II6.0 Rl'fl'rl'ncc Mnnual

Objects

Object THE TOP OF THE CLASS HEIRARCHY

Messages: .
show SHOW AN OBJECT'S INSTANCE VARIABLES

returns the object

class RETURN THE CLASS OF AN OBJECT
returns the class of the object

isnew THE DEFAULT OBJECT INITIALIZATION ROUTINE
returns the object

sendsuper esel> [eargs> .•.] SEND SUPERCLASS A MESSAGE
ese1> the ~essage selector
eargs> . the message arguments
returns the result of sending the message

Class THE CLASS OF ALL OBJECT CLASSES (including itself)

Messages:

new CREATE A NEW INSTANCE OF A CLASS
returns the new class object

isnew [escls>]
escls>"
returns

INITIALIZE A NEW CLASS
the superc1ass
the new class object

15-5

answer emsg>
emsg>
efargs>

efargs> ecode> ADD A MESSAGE TO A CLASS

ecode>
returns

ivars evars>
evars>
returns

cvars evars>
evars>
returns

the message symbol
the formal argument list

this list is of the form:
(efarg> ...
[&optional eoarg> ••.]
[&rest erarg>]
[&aux eaux> .••])

where
cfarg> a formal argument
coarg> an optional argument

. (default is nil)
crarg> bound to the rest of the

arguments
,<aux> a auxiliary variable

(set to' nil)
a list of executable expressions
the object

DEFINE THE LIST OF INSTANCE VARIABLES
"the list of instance variable symbols
the object

DEFINE THE LIST OF CLASS VARIABLES
the list of class variable symbols
the object

When a new instance of a class is created by sending the message t new• to an existing classt the m~1gc

Usinl V 30 Aprill9ft6

15-6 xlisp: An Experimcntal Object Oriented Language

'isnew' followed by whatever parameters were passed to the 'new' message is sent to the newly created object.

When a new class is created by sending the 'new' message to the object 'Class" an optional parameter may
be specified indicating the superclass of the new class. If this parameter is omitted, the new class will be a
subclass of 'Object'. A class inherits all instance variables, class variables, and methods from its super-class.

15.9. Symbols

self

msgclass

oblist

IiIkeylist*

the current object (within a message context)

the class in which the current method was found

the object list

the keyword list

standard-input the standard input file

standard-output the standard output tile

brcakenable flag controlling entering the break loop on errors

traccnable flag controlling trace back printout on errors and breaks

tracelimit maximum number of levels of trace back information printed on errors and breaks

evalhook user substitute for the evaluator function

applyhook (not yet implemented)

unbound indicator for unbound sy~bols

15.10. Evaluation Functions

JO April 1986

(eval <expr»
<expr>
returns

EVALUATE AN XLISP EXPRESSION
the expression to be evaluated
the result of evaluating the expression

(apply <fun>
<fun>
<args>
returns

<args» APPLY A FUNCTION TO A LIST OF ARGUMENTS
the function to apply (or function symbol)
the argument list

(funcall <fun>
<fun>
<arg>
returns

(quote <expr»
<expr>
returns

the result of applying the function
to the argument list

<arg> ...) CALL A FUNCTION WITH ARGUMENTS
the function to call (or function symbol)
arguments to pass to the function
the result of calling the function

with the arguments

RETURN AN EXPRESSION UN EVALUATED
the expression to be quoted (quoted)
<expr> unevaluated

V·System 6.0 Rcrcrcncc Manual

Evaluation Functions

(function <expr» QUOTE A FUNCTION (THIS IS THE SAME AS QUOTE)
<expr> the function to be quoted (quoted)
returns <expr> unevaluated

(backquota <expr» FILL IN A TEMPLATE
<expr> the template
returns a copy of the template with comma and comma-at

15.11. Sym bol Fun(~tions

expressions expanded (see the Common Lisp
reference manual)

(set <sym> <expr» SET THE VALUE OF A SYMBOL
<sym> the symbol being set
<expr> the new value
returns the new value

(setq [<sym> <expr>] ...) SET THE VALUE OF A SYMBOL
<sym> the symbol being set (quoted)
<expr> the new value
returns the·new value

(setf [<p'l ace>
<p 1 aCllt>

<expr>] ...) SET THE VALUE OF A FIELD
specifies the field to. set (quoted):

<sym> the value of a symbol
(car <expr» the car of a list node
(cdr <expr» the cdr of a list node

15-7

(get <sym> <prop» the value of a property

<valuIB>
returns

(symbol-value <sym» the value of a symbol
(symbol-plist <sym» the property list

the new value
the new value

of a symbol

(defun <sym> <fargs> <expr> ...) DEFINE A FUNCTION

Using V 30 :\prilI9R6

15-8

(defmacro <sym>
<sym>
<fargs>

<expr>

returns

"lisp: An Experimental Object Oriented I.anguage

<fargs> <expr> ...). DEFINE A MACRO
symbol being defined (quoted)
list of formal arguments (quoted)
. t his 1 i s tis oft h e form: . :

«farg> .••
[&optiona1 <oarg> •••]
[&rest <rarg>]
[&aux <aux> •••])

where
<~arg> is a formal argument
<oarg> is an optional argument (default nil)
<rarg> bound to the rest of the arguments
<aux> is an auxiliari variable (set to nil)

expressions conltituting the body of the
function (quoted)
the function symbol

(gensym [<tag>]) GENERATE A SYMBOL
<tag> string or number
returns the new symbol

(intern <pname» MAKE AN INTERNED SYMBOL
<pname> the symbol's print name string
returns the ne~ symbol

(make-symbol <pname» MAKE AN UNINTERNED SYMBOL
<pname> the symbol's print name string
returns the new symbol

(symbol-name <sym»· GET THE PRINT NAME OF A SYMBOL
<sym> the symbol
returns the symbol's print name

(symbol-value <sym» GET THE VALUE OF A SYMBOL
<sym> the symbol
returns the symbol's value

(symbol-plist <sym» GET THE PROPERTY LIST OF A SYMBOL
<sym> the symbol
returns the symbol's property list

15.12. Property List Functions

(get <sym> <prop» GET THE' VALUE OF A PROPERTY
<sym> the symbol
<prop> the property symbol
returns the property value or nil

341 April 1986 V·System 6.0 Rcrercn('c Munual

PrOpertl List Functions

(remprop <prop> <sym» REMOVE A PROPERTY
<sym> the symbol
<prop> the property symbol
returns nil

15.13 •. List Fuhctions

(car <expr'»
<expr>
returns

RETURN THE CAR OF A LIST NODE
the list node
the car of the list node

Using V

(cdr <expr»
<expr>
returns

(caar <expr»
(cadr <expr»
(cd~r <expr»
(cddr <expr»

RETURN· THE CDR OF A LIST NODE
the list node
the cdr of the list node

•• (car (car <expr»)
•• (car (cdr <expr»)
•• (cdr (car <expr»)
•• (cdr (cdr <expr»)

(cons <expr1> <expr2» CONSTRUCT A NEW LIST NODE
<exprl> the car of the new list node
<expr2> the cdr of the new list node
returns the new list node

(list <expr> ...) CREATE A LIST OF VALUES
<expr> expressions to be combined into a list
returns the new list

(append <expr> ...) APPEND LISTS
<expr> lists whose elements are to be appended
returns the new list

(reverse cexpr» REVERSE A LIST
<expr> the list to reverse
returns a new list in the reverse order

(last <list»
<list>
returns

RETURN THE LAST LIST NODE OF A LIST
the list
the last list node in the list

15-9

311 April 1986

15-10 xllsp: An Experimental Object Oriented Language

30 April 19R6

(member <expr> <list> [<key> <test>]) FINO AN EXPRESSION
IN A LIST

<expr>
<list>
<key>
<test>
returns

the expression to find
the list to search
the keyword :test or :test-not
the test function (defaults to eql)
the remainder of the list starting

with the expression

(assoc <~xpr> <alist> [<key> <test>]) FINO AN EXPRESSION
IN AN A-LIST

the expression to find
the association list
the keyword :test or :test-not

<expr>
<al1st>
<key>
<test>
returns

the test function (defaults to eql)
the alist entry or nil

(remove <expr> <list> [<key> <test>]) REMOVE AN EXPRESSION
FROM A LIST

the expression to delete
the list
the keyword :test or :test-not

<expr>
<list>
<key>
<test>
returns

the test function (defaults to eql)
the list with the matchirig expressions deleted

(length <expr»
<expr>
returns

FINO THE LENGTH OF A LIST
the list
the length of the list

(nth <n> <list» RET~RN THE NTH ELEMENT OF A LIST
<n> the number of the element to return (zero origin)
<list> the list
returns the nth element

or nil if the list isn't that long

(nthcdr <n> <list» RETURN THE NTH COR OF A LIST
<n> the number of the element to return (zero origin)
<list> the list
returns the nth cdr

or nil if the list isn't that long

(mapc <fcn> <11st1> ... <11stn» APPLY FUNCTION
TO SUCCESSIVE CARS

<fcn> the function or function name
<11st1 .. n> a list for each argument of the function
returns the first list of arguments

V·System 6.0 Udcrl'nre Manual

List FunctioDS 15-11

(mapcar <fcn> <list1> .•• <listn» APPLY FUNCTION
TO SUCCESSIVE CARS

<fcn> the function or function name
<list1 .. ri> a list for each argument of the function
returns the list of values returned

by each function invocation

(mapl <fcn> <list1> ... <listn» APPLY FUNCTION TO SUCCESSIVE CORS
<fcn> the function or function name
<list1 .. n> a'list for each argument of the function
returns the first list of arguments

(maplist <fcn> <list1> .•. <liatn» APPLY FUNCTION
TO SUCCESSIVE CDRS

<fcn> the function or function name
<list1 .. n> a list for each argument of the function
returns the list of values returned

(subst <to>
<to>
<from>
<expr>
<key>
<test>
returns

by each function invocation

<from> <expr> [<key> <test>])· SUBSTITUTE EXPRESSIONS
the new expression
the old expression
the expression in which to do the substitutions
the keyword :test or :test-not
the test function (defaults to eql)
the expression with substitutions

(sublis <alist> <expr> [<key> <test>]) SUBSTITUTE

<alist>
<expr>
<key>
<test>
returns

USING AN A-LIST
·the association list
the expression in which to substitute
the keyword :test or :test-not
the test function (defaults to eql)
the expression with substitutions

15.14. Destructive List Functions

(rplaca <list> <expr» REPLACE THE CAR OF A LIST NODE
<list> the list node
<expr> the new value for the car of the list node
returns the list node after updating the car

(rplacd <list> <expr» REPLACE THE CDR OF A LIST NODE
<list> the list node
<expr> the new' value for the cdr of the list node
.returns the list node after updating the cdr

(nconc <list> ...) DESTRUCTIVELY CONCATENATE LISTS
<list> lists to concatenate
returns the result of concatenating the lists

Using V 30 April 1986

15-11 xlisp: An Experimental Object Oriented LanglWlae

(delete <expr> <list> [<key> <test>]) DELETE AN EXPRESSION
FROM A LIST

<expr>
<list>
<key>
<test>
returns

the expression to delete
the list
the keyword :test or :test-not
the test function (defaults to eq1)
the list with the matching expressions deleted

15.15. Predicate Functions

30 April 1986

(atom <expr» IS THIS AN ATOM?
<expr> the expression to check
returns t if the value is an atom, nil otherwise

(symbolp <expr» IS THIS A SYMBOL?
<expr> the expression to check
returns t if the expression is a symbol, nil otherwise

(numberp <expr» IS THIS A NUMBER?
<expr> the expression to check
returns t if the expression is a symbol, nil otherwise

(null <expr»
<expr>
returns

(not <expr»
<expr>
return

(listp <expr»
<expr>
returns

(consp <expr»
<expr>
returns

(boundp <sym»
<sym>
returns

(minusp <expr»
<expr>
returns

IS THIS· AN EMPTY LIST?
the list to check
t if the list is empty, nil otherwise

IS THIS FALSE?
the expression to check
t if the expression is nil, nil otherwise

IS THIS A LIST?
the expression to check
t if the value is a list node or nil,
nil otherwise

IS THIS A NON-EMPTY LIST?
the expression to check
t if the value is a list node, nil otherwise

IS THIS A BOUND SYMBOL?
the symbol
t if a value is bound to the symbol,
nil otherwise

IS THIS NUMBER NEGATIVE?
the number to test
t if the number is negative, nil otherwise

V'System 6.0 Rdrrencc Manual

Predicate FunctiollS

(zerop <ex.pr»
<expr>·
returns

(plusp <expr»
·<expr>·
returns

(evenp <expr»
<expr>·
returns

IS THIS NUMBER ZERO?
the number to test
t if the number is zero. nil otherwise

IS THIS NUMBER POSITIVE?
the number to test
t if the number is positive. nil otherw~se

IS THIS NUMBER EVEN?
the number to test
t if the number is even, nil otherwise

(oddp <expr» . IS THIS NUMBER ODD?
<expr> the number to test
returns t if the number is odd, nil otherwise

(eq <exprl> <expr2» ARE THE EXPRESSIONS IDENTICAL?
<exprl> the first expression
<expr2> the second expression
returns t if they are equal, nil otherwise

(eql <elprl> <expr2» ARE THE EXPRESSIONS IDENTICAL?

<expr1.>
<expr2>
returns

(WORKS WITH NUMBERS AND STRINGS)
the first expression
the second expression
t if they are equal, nil otherwise

(equal <exprl> <expr2» ARE THE EXPRESSIONS EQUAL?
<exprl> the first expression
<expr2> the second expression
returns t if they are equal. nil otherwise

15.16. Control Functions

(cond <pair> ...) EVALUATE CONDITIONALLY
<pair> pair consisting of:

«pred> <expr> •.•)
where

<pred>
<expr>

is a predicate expression
evaluated if the predicate
is not nil

15-13

returns the value of the first expression whose predicate
is not nil

llsingV 30 April 1986

15-14

(and <expr> ...)
<expr> .. .
returns

(or <expr> ...)
<expr> .. .
retur.ns

xllsp: An Experimental Object Oriented Language

THE LOGICAL AND OF A LIST OF EXPRESSIONS
the expressions tQ be ANDed
nil if any expression evaluates to nil,
otherwise the value of the last expression
(evaluation of expressions stops after the first
expression that evaluates to nil)

THE LOGICAL OR OF A LIST OF EXPRESSIONS
the expressions to be ORed
nil if all expressions evaluate to nil,
else the value of the first non-nil expression
(evaluation of expressions stops after the first
expression that does not evaluate to nil)

(if <texpr>
<texpr>
<expr1>

<expr1> [<expr2>]) EXECUTE EXPRESSIONS CONDITIONALLY
the test expression

<expr2>
returns

the expression to be evaluated
if texpr is non-nil

the expression to be evaluated if texpr is nil
the value of the selected expression

(let «binding> ...) <expr> ...) BIND SYMBOLS AND
EVALUATE EXPRESSIONS

(let- «binding> ...) <expr> ...) LET WITH ,SEQUENTIAL BINDING
<binding> the Yariab1e bindings each of which is either:

1) a symbol (which is initialized to nil)
2) a list whose car is a symbol and whose cadr

is an inttia1ization expression
<expr>... the expressions to be evaluated
returns the value of the last expression

(catch <sym>
<sym>
<expr> ...
returns

[<expr>] ...) EVALUATE EXPRESSIONS AND CATCH THROWS
the catch tag
expressions to evaluate
the value of the last expression or

the throw expression

(throw <sym> [<expr>]) THROW TO 'A CATCH
<sym> the catch tag
<expr> the value for the catch to return (default nil)
returns never'returns

15.17. Looping Functions

30 April 1986 V·System 6.0 Reference Manual

looping FunctioHlS 15-1S

(do ([<binding>] ...) «texpr> [<rexpr>] ..•) [<expr>] •••)
(do* ([<binding>] ...) «texpr> [<rexpr>] ...) [<expr>] ...)

<binding> the variable bindings each of which is either:
· 1) a symbol (which is initialized to nil)

2) a list of t~e form: «sym> <init> [<step>])
where:

<sym> is the symbol to bind
<init> ts the initial value of the symbol

<texpr>
<rexp,r> .. .
<expr> .. .
returns

(dolist «sym>
<sym>,
<expr>
<rexpr>
<expr> ...

<step> is a step expression
t~e ter~ination test expression
result expressions (the default is nil)
the body of the loop (treated like a prog)
the value of the last result expression

<expr> [<rexpr>]) [<expr>] ...) LOOP THRU A LIST
the symbol to bind to each list element
the list expression
the result expression (the default is nil)
the body of the loop (treated like a prog)

(dotimes «sym> <expr> [<rexpr>]) [<expr>] ..•) LOOP FROM ZERO

<sym>
<expr>
<rexpr>
<expr> ...

the
the
the
the

TO N-1
symbol to bind to each value from 0 to n-1
number of times to loop
result expression (the default is nil)
body of the loop (treated like a prog)

15.18. The Program Featu re

Using V

(prog «binding> ...) [<expr>] ...) THE PROGRAM FEATURE
(prog* «binding> ...) [<expr>] ...) PROG WITH SEQUENTIAL BINDING

<binding> the variable bindings each of which is either:
1) a symbol (which is initialized to nil)
2) a list whose car is a symbol and whose cadr

is an initialization expression
<expr> expressions to evaluate or tags (symbols)
returns nil or the argumen1 passed to the return function

(go <sym»
<sym>
returns

GO TO A TAG WITHIN A PROG CONSTRUCT
the tag (quoted)
never returns

(return [<expr>]) CAUSE A PROG CONSTRUCT TO RETURN A VALUE
<expr> the value (defaults to nil)
returns never returns

30 :\ pril 19R6

15-16 xlisp: An Experimental Object Oriented Language

(progl <exprl> [<expr>] ...) EXECUTE EXPRESSIONS SEQUENTIALLY
<exprl> the first expression to evaluate
<expr>... the remaining expressions to evaluate
returns the value of the first expression

(prog2 o<exprl>

<exprl>
<expr2>
<expr> .•.
returns

<expr2> [<expr>] ...) . EXECUTE EXPRESSIONS
SEQUENTIALLY

the first expression to evaluate
the second expression to evaluate
the remaining expressions to evaluate
the value of the secon~ expression

(progn [<expr>] ...) EXECUTE EXPRESSIONS SEQUENTIALLY
<expr>... the expressions to evaluate
returns the value of the last expression (or nil)

15.19. Debugging and Error Handling

30 April 1986

(error <emsg>
<emsg>
<arg>

returns

(cerror <cmsg>
<cmsg>
<emsg>
<arg>

returns

(break [<bmsg>
<bmsg>

<arg>

returns

(errset <expr>
<expr>
<pf1ag>
returns

[<arg>]) SIGNAL A NON-CORRECTABLE ERROR
the error message string
the a~gument expression

(printed after the message)
never returns

<emsg> [<arg>]) SIGNAL A CORRECTABLE ERROR
the continue message string
the error message string
the argument expression

(printed after the message)
nil when continued from the break loop

[<arg>]]) ENTER A BREAK LOOP
the break message strin~

(defaults to "--BREAK--")
the argument expression

(printed after the message)
nil when continuad from the break

[cpf1ag>]) TRAP ERRORS
the expression to execute

loop

flag to control printing of the error message
the value of the last expression consed with nil
or nil on error

(baktrace [en>]) PRINT N LEVELS OF TRACE BACK INFORMATION
en> the number of levels (defaults to all levels)
returns nil

V·System 6.0 ncrerclK'c Manual

Debugging and Error Handling 15-17

(evalhook <expr> <ehook> <ahook>) EVALUATE AN EXPRESSION
WITH HOOKS

<expr>
<ehook>
<ahook>
returns

the expression to evaluate
the value for ·evalhook·
the value for ·applyhook·
the result of evaluating the expression

15.20. Arithmetic F'unctions

Using V

(+ <e~pr> ...)
<expr> .••
returns

ADD A LIST OF NUMBERS
the numbers
the result of the addition

(- <expr> ...) SUBTRACT A LIST OF NUMBERS
OR NEGATE A SINGLE NUMBER

<expr> ... I the numbers
returns the result of the subtraction

(. <expr> ...) MULTIPLY A LIST OF NUMBERS
<expr> ... the numbers
returns the·result of the multiplication

(/ <expr> ...) DIVIDE A LIST OF NUMBERS
<expr> •.. the numbers
returns the result of the division

(1+ <expr:>) ADD ONE TO A NUMBER
<expr> the number
returns the number plus one

(1- <expr:>) SUBTRACT ONE FROM A NUMBER
<expr>
returns

(rem <expr> ...)
<expr:> .. .
returns

(min <expr> ...)
<expr:> .. .
returns

(max <expr> ...)
<expr:> .••
returns

the number
the number minus one

REMAINDER OF A LIST OF NUMBERS
the numbers
the resu 1 t of. the rema i nder operat i on

THE SMALLEST OF A LIST OF NUMBERS
the expressions to be checked
the smallest number in the list

THE LARGEST OF A LIST OF NUMBERS
the expressions to be checked
the largest number in the list

(abs <expr»
<expr>
returns

THE ABSOLUTE VALUE OF A NUMBER
the number
the absolute value of the numbe~

.30 Aprill9R6

15-18 xllsp: An Experimental Object Oriented Language

15.21. Bitwise Logical Functions

(bit-and cexpr> ...) THE BITWISE AND OF A LIST OF NUMBERS
<expr> the numbers
returns the result of the and operation

(bit-ior cexpr ...) THE BITWISE INCLUSIVE OR OF A LIST OF NUMBERS
cexpr> the numbers
returns the result of the inclusive or operation

(bit-xor cexpr ...) THE BITWISE EXCLUSIVE OR OF A LIST OF NUMBERS
cexpr> the numbers
returns the result of tne exclusive or operation

(bit-not cexpr» THE BITWISE NOT OF A NUMBER
cexpr> the number
returns the bitwise inversion of number

15.22. Relational Functions

The relational functions can be used to compare integers or strings. The functions' =' and' 1=' can also be
used to compare other types. The result of these comparisons is computed the same way as for 'eq'.

(c cel> ce2» TEST FOR LESS THAN
eel> the left operand of the comparison
ce2> the right operand of th~ comparison
returns the result of comparing eel> with ce2>

(c- eel> ce2» TEST FOR LESS THAN OR EQUAL TO
eel> the· 1 eft operand of the compari son
ce2> the right operand of the comparison
returns the result of comparing eel> with ce2>

(- cel> ce2» TEST FOR EQUAL TO
eel> the left operand of the.comparison
ce2> the right operand of the comparison
returns the result of comparing eel> with ce2>

(I- cel> ce2» TEST FOR NOT EQUAL TO
cel> the left operand of the comparison
ce2> the right operand of the comparison
returns the result of comparing cel> with ce2>

(>- eel> ce2» TEST FOR GREATER THAN OR EQUAL TO
eel> the left operand of the comparison.
ce2> the right operand of the comparison
returns the result of comparing eel> with ce2>

30 April 1986 V·System 6.lIllcfcrcnce Manual

Relational Fuoctions

(> eel> ce,Z»
eel>
ce2>
returns

15.23 •. St ring 'Functions

TEST FOR GREATER THAN
the left operand of the comparison
the right operand of the comparison
the result of comparing eel> with <e2>

(strcat cexpr> ...) CONCATENATE STRINGS
cexpr>... the strings to concatenate
returns the result of concatenating the strings

(strlen cexpr»
cexpr>
returns

(substr <expr>
cexpr>
csexpr>
clexpr>
returns

(ascii cexpr»
<expr>
returns

(chr cexpr»
cexpr>
returns

(atoi cexpr»
cexpr>
returns

(itoa cexpr»
<expr>·
returns

COMPUTE THE LENGTH OF A STRING
the string
the length of the string

csexpr> [clexpr>]) EXTRACT A SUBSTRING
the string
the starting position
the length (default is rest of string)
substring starting at <sexpr> for <lexpr>

NUMERIC VALUE OF CHARACTER
the string
the ascii code of the first character

CHARACTER EQUIVALENT OF ASCII VALUE
the numeric expression
a one character string

whose first character is cexpr>

CONVERT AN ASCII STRING TO AN INTEGER
the string
the integer value of the string expression

CONVERT AN INTEGER TO AN ASCII STRING
the integer
the string representation of the integer value

15.24. Input/Output Functions

(read [<source> [<eof>]]) READ AN XLISP EXPRESSION
<source> the input source (default is standard input)

15-19

ceof> the value to return on end of file (default nil)
returns the expression read

lIsing V 30 April 1986

xllsp: AD Experimental Object Oriented Language

(print <expr> [<sink>]) PRINT A LIST OF VALUES ON A NEW LINE
<expr> the expressions to be printed
<sink> the output sink (default is standard output)
returns nil

(print <expr> [<sink>]) PRINT A LIST OF VALUES
<expr> the expressions to be printed
<sink> the output sink (default is standard output)
returns nil

'" .
(prine <expr> [<sink>]) PRINT A LIST OF VALUES WITHOUT QUOTING

<expr> the expressions to be printed
<sink> the output sink (default is standard output)
returns nil

(terpr1 [<sink>]) TERMINATE THE CURRENT PRINT LINE
<sink> the output sink (default is standard output)
returns nil

(flatsize <expr>) LENGTH OF PRINTED REPRESENTATION USING PRINt
<expr> the exp~esston
returns the length

(flate <expr»
<expr>
returns

(explode <expr»

<expr>
returns

LENGTH OF PRINTED REPRESENTATION USING PRINe
the 'e x pre s s ion
the length

CHARACTERS IN PRINTED REPRESENTATION
USING PRINt

the expression
the list of characters

(explodec <expr» CHARACTERS IN PRINTED REPRESENTATION
USING PRINC

<expr> the expression
retur~s the list of characters

(maknam <list» BUIL~ AN UNINTERNED SYMBOL FROM
A LIST OF CHARACTERS

<list> list of characters in symbol name
returns the symbol

(implode <list» BUILD AN INTERNED SYMBOL FROM
A LIST OF CHARACTERS

<list> list of characters in symbol name
returns the symbol

30 April 1986 V-System 6.0 Ih,rercnce Manual

InpuVOutput Functions

15.25. File 1/0 Functions

(openi <fname»
<fname> .
returns

OPEN AN INPUT FILE
the file name string
a file pointier

(openo <fname»
<fname>
returns

(close <fp»
<fp>
returns

OPEN AN OUTPUT FILE
the file name string
a file pointer

CLOSE A FILE
the file pOinter
nil

(read-char [<source>]) READ A CHARACTER FROM A FILE OR STREAM
<source> the input source (default is standard input)
returns the character (integer)

(peek-char [<flag> [<source>]]) PEEK AT THE NEXT CHARACTER
<flag~ flag for skipping white s~ace (default is nil)
<source> the input source (default is standard input) .
returns the character (integer)

(write-char <ch> [<sink>]) WRITE A .CHARACTER TO A FILE OR STREAM
<ch> the character to put (integer)
<sink> the output sink (default is standard output)
returns the character (integer)

(readl1ne [<source>]) READ A LINE FROM A FILE OR STREAM
<source> the input source (default is standard input)
returns the input string

15.26. System Fun(ctions

UsilllV

(load <fname>
<fname>
<vflag>
<pf1ag>
returns

[<vflag> [<pflag>]]) LOAD AN XLISP SOURCE
the filename strin~ (".lsp" is appended)
the verbose flag (default is t)
the print flag (default is nil)
the filename

(gc) FORCE GARBAGE COLLECTION
returns nil

(expand <num»
<num>,
returns

EXPAND MEMORY BY ADDING SEGMENTS
the number of segments to add
the number of segments added

FILE

30 April 1986

30 April 1986

(alloc <num»
<num>
returns

xlisp: An E...:perimental Object Orientcci Language

CHANGE NUMBER OF NODES TO ALLOCATE IN EACH SEGMENT
the number of nodes to allocate
the old number of nodes to allocate

(mem) SHOW MEMORY ALLOCATION STATISTICS
returns nil

(type <expr»
<expr>
returns

.. -'.

RETURNS THE TYPE OF THE EXPRESSION
the expression to return the type of
nil if the value is nil, else one of the symbols:

SYM for symbols
OBJ· for objects
LIST for list nodes
SUBR . for subrout i ne nodes

with evaluated arguments
FSUBR for subroutine nodes with

unevaluated arguments
STR for string nodes
INT for integer nodes
FPTR for file pointer nodes

(exit) EXIT XLISP
returns never returns

V·Systl'm 6.11 Ul'fl'fl'nCC Manual

I "':t

16-1

161

-

Standalone Commands

This chapter discusses standalone programs, i.e., programs that do not run under the V kernel, that are
useful with the V·Syst~.·~

16.1. Vload

Vload is the V-System bootstrap loader. The Vload program loads the V kernel and initial team into
memory and starts up the kernel.

There are several versions of Vload. Currently, all versions usc the V 110 protocol and V IKe protoCol to
load programs over the Ethernet. 6 On the Sun-t. the Sun 3 Mbit Ethernet board and Excelan 10"Mbit
Ethernet boards arc supported as boot devices. On Sun-2s, the 3Com 10 Mbit Ethernet board and the built-in
Ethernet interface of the Sun-2/S0 arc supported. l1te standard Sun-3 cpu card (not the 3/50) and
MicroVaxen with DEUNAsare also supported.

Vload detennines the files to load and other actions ~ take at run time, depending on what was typ~d on
the command line and what information is stored in the configuration database for the workstation being
booted (see section 19). For each of its parameters, Vload gives' first priority to command-line information. if
any. second priority to the defaults for this workstation recorded ,in ,the configuration database, if any, and
third priority to a default value determined at compile time. .,'. !

Team and kernel filenam(~ arc interpreted in the V-System "[sys]boot" context. unless they begin with a
square bracket In the latter case, the name inside brackets is taken as a machine name. If" #" is given as the
kernel file name. no kernel is loaded. Instead. the file specified as first team is loaded into the kernel's
memory area and executed as a standalo~e program. .

Resides file names. two other parameters are also understood: "world" and "options." The world may be
either V (product.iun) or xV '(experimental). The only option currently recognized is "b', which causes a break
to the PROM monitor before the kernel is started.

The following sections describe the defaults and special characteristics of the four versions of Vload in use
at this writing.

16.1.1. 3 Mbit Ethernet
'il.

rl1lis version of Vload is intended for booting Cadlinc. SMI Sun-I. and other Sun-} workstation
configurations with 3 Mbit Sun Ethernet:' boarus. '111ese workst.ations ordinarily use a versioll of the S~1nford
PROM monilcu' thal incorporales PUP bootstrap code. The first step in hooting thcse workstalions is to load
Vload lIsing the ho()L"llrUp PROMs. This can be uone by typing a keyboard command (b filename tor SMI
workstations, n, ,111 ename for others), or automatically on powerup or reset (see below).

For these work'stations. the: kernel resides from OxlOOO to Ox20000. and teams are loaded at Ox20000 .

The compiled-in default v;alues for Vload's parameters in this version are as follows:: . :"
, , I, ,"

world V

.!

61n the ruture. there will be a'version orVload that can boot a fi1cscrvcr trulchine directly from its l~ disk.

Using V 16 June 1986

16-1

team

kernel

options

tcaml-vgts

Vkernel/sunl +en

null

Standalone Commaads

The only command line infonnation visible to VIoad is the name it was invoked under. Therefore, V10ad is
installed under several different names. and its action depends on its name. The names and actions are listed
below.

V

VV

xV

xVV

Vload

xVload

null

olhers

When called under this name. VIoad will load the team leam/-vgts and the default kernel
for this workstation. using the default options. The team and kernel are loaded from a V
storage server (production versions) rather than an xV t\tOrage server (experimental
versions). that is. the world parameter is set to Y.

The ~eam is leaml-Sis, and the world is V.

The team is team/-vgls, and the world is xV.

The team is team/-sIs, and the world is xV.

The user is prompted for learn. kemel, and options. The default value is used for any field ; ; -
where the user enters a blank line. The world is V.

Same as Vload. except that the world is set to xV.

If the name is nulL Vload assumes it was autobooted. Default values are used for all
parameters.

If a copy of Vload is installed under any other name, it will use its name as the team Dame
to be loaded. set the options' to null. -and usc defaults for the kernel and world.

No special setup is required to get an SMI Sun-! proccs.c;or to -autoboot-it will do so automatically 30
seconds after powerup or a k2 command. The PUP boot PROM requesL~ boot file number 1 by number,
which causes a file called l.Boot to be loaded from the first responding PUP EI-.... fP server. We have arranged
for this file to be a copy of Vload. so the boot action is as described under the null name above.

A non-SM I processor can be made to au.toboot by insta11ing the proper jumpers in its configuration register.
(Sec the Sun User's Guide for a full description of the configuration register.) Bits 7-4 of Lhe configur.ltion
register are an index into a table of bootfile names stored in the PROM. An in-place jumper or closed DIP
switch corresponds to a 0 bit: no jumper oran open switch corresponds to a 1. These bit~ shuuld be set to the
number correspunding to the name "Vload." rl1,e"W If' comm~lIld typed to the PROM monitor causes it to
list the booUile names and corresponding numbers that it knows about. Vload is usually number 5,
corresponding to jumpers on bits 5 and 7. Vload's action will be as described under the null name above.

16.1.2. Excelan Ethernet if I,

This version of Vload is intended for booting Cadlinc. SMI Sun-I. and other Sun-I workstation
configurations with Excel"n 10 Mbit ELhernet boards. Ordinarily. this version of Vload is used only with
wurkstations lIsing a special version of the PROM monitor that incorporates TFI'P booLc;trap code. '111e first
step in hooting these workstlltions is In load Vluad using the b()uL~lrap PROMS. This can be dune by typing a
keyboard command. not described here.

'1le compiled-in default values for Vload's parameters in this version are as follows:

world V

tcam

kernel

tcaml-vgts

Vkernel/sunl +ex

options IIU/l

The only command tine infonnation visible to Vload is the name it was invoked under. lberefore, Vload is

16 June 1986 V·Syst(' ... 6.0 R('(('rence Manunl

Vload 16-3

installed under several different names, and its action depends on its name. The names and actions are listed
below.

xlnV

xlnVV

$xV

xlnxVV

xlnVload

xlnxVIoad

others

When call.~d under this name, Vload will load the team teamJ-vgts and the default kernel
for this workstation, using the default options. The team and kernel are loaded from a V
storage server (production versions) rather than an xV storage server (experimental
versions). that is, the world parameter is set to V.

The team is teamJ-sts, and the world is V.

The team is teamJ-vgts, and the world is xV.

The team is teamJ-sts, and the world is xV.

The user is prompted for team, kernel, and options. The default value is used for any field
where the user enters a blank line. The world is V.

Same as Vload, except that'the world is set to xV.

If a copy of Vload is installed under any other name, it will use its name as the team name
to be load(~d, set the options to null, and use defaults for the kernel and world.

There is currently no way to autoboot a workstation with TFTP boot PROMs. This limitation may be
removed in the future. .

16.1.3. 3Com Ethernet

This version of VIoad is intended for booting Sun-loSs and Sun-2s with Jeom 10 Mbit Ethernet boards.
These workstations boot using either a local disk or tape, or the SM I network disk protocol. The network disk
protocol does not allow specifying a tile name, so the V-System NP boot server reads the boot file name from
the workstation's configuration file; ordinarily, Vload will be specified. Once loaded, Vload can read the
entire command line typed by the user.

The compiled-in default vmlues for Vload's parameters in this version are as follows:

world V

team

kernel

options

teaml-vgts

Vkernel/sun2 + ec

null

Zero or more arguments may be passed on the command line to Vload. If the first argument to Vload is
one of !the special values described below, it is stripped off and the special action listed is raken. After this
check, the first three remaining arguments arc respectively used to override the defaults for team name, kernel
name, and options. Values set by these arguments have priority over values that may have been set by the
first argument.

V Sets the world to V. and the team to teamJ-vgts. (This team name will be overridden by
the next argument if present.)

VV

xV

xVV

null

vmunix

others

UsiDiV

The team is set to Icam /-sis, and the world is V.

The team is set to team/-vgts, and the world is xV.

The team is set to teamJ-sts. and the world is xV.

If no arguments are present, the default values arc used for all parameters.

The SMt boot PROMs have this name hardwired in for autobooting, so it is treated the
same as a null first argument. .

tfthe first argument is not one ofthesc values, the default world is used, and the arguments
prescnt speci fy team name, kernel name. and options, as described above~

t6June 1986

16-4 StaDdaloDe Coauoaods

For example, the command
b V teaml-vgts [pescadero]/user/fred/mykernel.r

will load the installed version of teaml-vgts as the first team. and a special version of the kernel from
Pescadero.

If the workstation being booted has a disk or some other device that the PROM prefers over the Ethernet for
booting. specify the boot device ee () immediately following the b in the boot command, and preceding the
rust argument (Some older PROM revisions require nd () in place of Ie ().

16.1.4. Sun-2/50 Ethernet

The Sun-2/50 version of Vload is identical to the 3Com version described above, except that the default
kernel is VkerneV sunSO. The boot device name is 1, ().

16.1.5. Sun-3 Ethernet

The Sun-3 version of Vload is also similar to the 3Com version. The default kernel is Vkernel/sun3 + ie, and
the hoot device is 1, (). Currently a Sun prom monitor bug requires one to power cycle Sun-3 workstations
when rebooting. Our Sun salesman has told us that new proms may be available.

16.1.6. MicroVaxen

There are three switches on the back of the MicroVax CPU. One is obviously the console baud rate selector.
The other two have semi-random icons and affect booting.

The flat switch. whose symbol is a triangle inscribed in a circle controls the halt button and auto-reboot.
With the switch at the dot-in-circle position thc halt betton on thc face of the CPU halts the machine and
forces it into the monitor, Icaving you with a ») prompt Remember to press it once more to take the
machine out of the halt statc. When in the other. circle-out-of-dot position. the halt button is disabled and any
action which would cause a halt (such as a kernel halt instruction or a power failure) will cause a reset and
auto-boot attempt

The circular knob has three positions. The downward pointing arrow is the normal position. The outline of
a face causes the proms to prompt for language and keyboard type. The T-in-circle is a test position.

The commands for booting a MicroVax arc:
b Boot according to the contig file specifications.

b/1 Boot into the V world.

bIZ Boot into the xV world.

b/3 Boot into V, but prompt for the kernel and first team.

b/4 Hoot into xV, but prompt for the kernel and first team.

lfthe disk drives are enabled then b xqaO forces the bootstrap to load over dle network.

16.2. Netwatch

netwateh is a standalone tool for examining packets as they are spewn accross the ethemcl It has
knowledge of many different protocol fonnats. including V. IP. XNS, Chaos, and PUP. It maintains packet
buffers seperatc from those of the ethernet hardware for maintaining packet traces.

We have found this to be the most powerful tool we have for debugging all nature of network protocol and
distributed program communication bugs. This includes typical V distrihuled applications as well as protocol
implementations (such as IPrrCP) on other hosts on our networks. There's nothing liRe silencing a roomfull

J6June 1986 V'System 6.0 Reference Manuul

Netwatcb 16-5

of random conjecture with a packet trace printout The utility oflooking at what's actually on the wire cannot
be overemphasized.

16.2. 1. Booting

netwatch runs standalone, so it must be booted fresh on a bare machine. A typical boot command to fire
up the 3com version on a Sun-2 is:

b V netwatch-ecZ #

The sharp sign tells netwatch to load the first argument at the kernel start address and not to load a first team.
Sec 16.1 for the details on booting other hardware configurations. Other versions of Vload supported are:
netwatch-en (Sun-113Mb). netwatch-ec (Sun-l/3Com). netwatch-ec2 (Sun-2/3Com),
netwatch-60 (Sun-2/S0). and netwatch-ie3 (Sun-3/75).

16.2.2. Operation

The standard train of events is to set up the packet fihe~ then commence recording packets until a certain
event has occurcd. When r.etording, packets which pass through the filter arc stored in a 127 butTer fifo
queue. After recording the queue can be examined and/or written to a file. One may authenticate the
netwatch process, which iruns initially as UNKNOWN.. If your storage server allows the unknown user to
write to Itmp this may not be needed.

16.2.3. Commands

The. commands available at the top level are:
h Modify host address tilter (see 16.2.4.1).

r

t

b

s
w

c

m

q

?

Receive'packets into buffer (flushes current butTer).

Same as r. but prints packets as they are received (may drop packets).

Display buffer contents.

Same as b, but allows skipping of initial packets.

Write current buffer to a file.

Login (authenticate).

Change default directory for file writing.

Print an cxclmation mark when a packet is received.

Always display the annoying option menu.

Quit

Print a list of commands along with the current flag status

16.2.4. Filtering by Pac:ket Type

netwatch understands several protocols. and can filter out packets based on the type field in the packet
header. The packet types understood currently arc: V, ARP & RARP. Chaos (Symbolics), lP, PUP and XNS.

16.2.4.1. 110meg Add ress Filter

The ten megabit packet titter is composed of two lists. the primary and secondary host liSl'\~ A packet is
passed through the titler if its source and destination addres.')cs can be found. one in each list Ten megabit
host addresses arc specified using the last four hex digits of the ethemet address. At smrtup, the primary list is

Using V 16 June 1986

16-6 StaDdalone Commands

empty and the secondary list is full (contains all addresses) with multicast turned off. Note: At the time of this
release the netwatch driver for the Intel 85286 chip (Sun-2/50 and Sun-3) randomizes the first short of the
destination address. so filtering on multicast packets doesn't work on those versions. In basic operation, one
fills the secondary list with all addresses. and enters the addresses of "interesting" hosts into the primary list
Another typical use, when trying to debug communications between two hosts, is to have the two hosts in the
primary list and all but one host (usually the the fileserver) in the secondary list.

16.2.4.2. 3meg Address Filter

The 3 meagabit host address filter maintains one list of hosts. and filters in one of two modes. In the first .
mode, AND mode, both the source and destination addresses must be in the list. In the second mode, OR
mode, only of thc source or destination must be present. Hosts addresses are entered in octal form. 111e entire
eight bit address is used.

16.3. Postmortem

The Pos/mortem diagnostic tool is no longer supported. Much of its functionality has been put into the
kernel funtions Ali ens () and Processes (). On Suns these functions can be called manually from the
monitor using the g <addr> command. The address of the function can be gleaned from the kernel's
symbol table with either debug -0 2000 <kernel> or nmeS. These functions arc not normally compiled
into the MicroVax kernel.

16.4. Diskdiag

The diskdiag program is a diagnostic program that allows one to manually access specific sectors on the
disk. It is useful for verifying the correct interaction between the disk controller and disk drives, as well as for
initializing a new disk. Diskdiag is configured to run on a system with a Xylogics 450 or Interphase 2181 disk
controller and Fujitsu M2351 and M2284 disk drives.

To run diskdiag. type the command

b ec() d1skd1ag ,7
for SMt workstations, or

n d1skd1ag

for Cadlinc workstations. There are commands available to format(f). read(r). seek(s). and
wr 1 te (w). '1l1e user is prompted, as necessary. for more in formation o,n each of these commands.

t n addition. it is possible to 1 abe 1 (1) the first sector of a drive with the configuration parameters nceded
by the disk driver in the kernel. Execllting the tbnnat command automatical1y labels the disk after the fonnat
is complete. The va r 1 f Y (v) command reads the label ofT of disk and prints it on the console.

The par t 1 t 1 0 n (p) command prompts the user for the start block and length of each partition on the
disk and creates a disk partition table. Existence of a disk partition lilble is optional as it is not nceoed by any
system sufLware. The exam1 ne(x) command allows one to examine the cuntents of the disk partitiun tlble.

Reinitializing the diskdiag program is accomplished using the aga 1 n (a) command.

One should be aware of the fact that diskdiag's ~l()ck size is the actual disk sector sizc, which may be
different than the block size used by /scheck and the s/orage server.

7 Some SM I workstations with older PROM revisions require that ndO be used in place of OC(),

16 June 1986 V·Sys'rlll 6.0 Reference Manual

Pa rt II:

V Programming

17·1

-17-
Program Environment Overview

This chapter describes the execution environment provided for C programs written to run in the V -System.
The program environment is designed to minimize the difficulty of poning C programs (and C programmers)
from other C program environments. sueh as that provided by UNIX, and to provide access to the distributed
programming facilities provided by the V-System.

The program environment. consists of three major components:

• The base C language implemented by the compiler.

• Routines that arc part iQf the C program library in most C implementations.

• Functions that access V facilities.
The basic C language is not described here. The reader is referred to The C Programming Language by
B. W. Kernighan and D. M. Ritchie. Prenticc-Hall1978 for a tutorial on the language and standard C library
routines.

Standard C library routines are only described here to the degree they differ in the V program environment
from other im.ptementations. particularly the UNIX C library. 'nle reader is referred to the above-cited book
or The Unix Programmers Afallual for details on these standard functions.

The V-specific functions arc described in detail in the following chapters.

While C as a programming language docs not define 1/0 facilities. memory management. etc., an ill
defined de facto standard has arisen from the extensive use of C with the UNIX operating system. 'mere has
been a strong attempt to provide a superset of this environment for the V-System. Attempts to port C
programs have resulted in (l slightly more portable program environment than originally used with UNIX. lne
functions included in the V program environment for C, excluding V and workstation-specific routines,
constitute our proposal for a "standard portable C progr.am environment".

'Inc ditTerences between tllle V C program environment and the UNIX C program environment fall into four
mnjor categories

• Functions that arc UNIX system calls which may be provided as V library routines, e.g .• stime().

• Functions that arc sllightty changed in their implementation, but provide (essentially) the same
functionality, e.g.,.malloc().

• Functions that arc workstation-specific. because they arc not necessary in standard UNIX on. say, a Vax.
For examp1e. the long division rout.ines arc i~ this category.

• Functions that arc particular to the V-System. like CreateO and Ready().

17.1. Groups of Functions

'Ille description of functions is structured by subdividing them according to functional groups as follows.
exec

fields

io

locking

V • ..-ogramming

Functions related ~o the V executive.

Functions that enable an 1\ VT to be llsed as a menu. similar to a data entry tenninal.

Input/output related routines.

Routines providing locking for processes in a single team.

17.June 1986

17-1

math

mem

naming

process

program

user interface

Numeric and mathematical functions.

Memory management and allocation routines.

Name management ·functions.

Process service functions and V kernel traps.

Program execution functions.

User interface routines

Program EnyironmeDt Ove"iew

others Miscellaneous other functions. such as string manipulation and time services.

Subsequent chapters discuss each group of functions in greater detail.

17.2. Header Files

TIle following header files define manifest constants. type definitions and structs used as part of the V C
program environment They arc included as usual by a " # include <hcadername>tt directive in C programs.

Vauthenticate.h

V directory.h

Venviron.h

Vetherneth

Vexec.h

Vexceptions.h

Vfonth

Vgroupids.h

Vgtp.h

Vgts.h

Vikc.h

Vinfo.h

Vinfobuild.h

Vinfoparse.h

Vio.h

Vioprotocol.h

Vrnachine.h

Vmigrate.h

Vmousc.h

Vnnming.h

Vneth

Message formats and definitions for the authentication server.

Defines standard context directory entry formats and message types.

Standard header file for V kernel types and request/reply codes.

Ethernet-specific header information. This is very low-level information; most users will
want to usc the Internet server instead.

Definitions for communication with the exec server.

Exception types and exception request format

Standard internal bitmap and font format

V well-known or static group identifiers.

Virtual grnphics terminal protocol definitions and message formats. Must be known by the
VaTS and stub routines that talk to i~ but is not needed by ordinary VGTS applications.

Virtual graphics terminal server interface. This should be included in any programs that
do graphics.

Manifests and constants relating to the V Interkemel Protocol.

Definitions and structs for InfoRase access.

Structs for building InfoBase.

Definitions and structs for InfoRase scanner/parsers.

I/O Protocol hender "file. Types and mode constants for file manipulation functions
described in chapter of this manual.

I/O Protocol message formats.

Machine-specific definitions.

Migration-specific definitions.

Mouse" device-specific hender information. Most programs will use the VaTS to handle
graphics input

V-System nnming manifest~, types, and stnactures.

Network server definitions. ~Ibis is included in any programs that use the network.

V'Sysll'm ().II Ild"fcncc Manual

I leader Files

Vpipe.h

Vprocess.h

V querykerne1.h

Vserial.h

Vscssion.h

Vspinlock.h

Vstorage.h

Vtcams.h

Vtcrmagenth

Vtime.h

V Programming

Definitions and structures for V pipes.

Processor state structure and other process-specific header information.

QueryKemel operation manifests and types.

Manifests for the seriallincs.

Manifests and message structs for thc V IUNIX server.

Definitions for spin locks. a cheap mechanism for locking within a team.

Definitions and messagc formats for the V storage server.

17-3

Team header file. S~ctures used to communicate with the team server and to pass
information to teams whc.n they arc created.

Information shared by terminal agents and their clients.

Structures used in time services. primarily for gctting time from a session server.

17 June 1986

18·1

18-
Program Construction and Execution

A V-System C program is c:onstructed and executed similar to a C program on UNIX. Only the differences
are discussed here.

18.1. Writing the C Program

An application program on the V-System starts to execute as a single process on a new team. By default, the
process is allocated an initial stack area of about 4000 bytes, just above its uninitialized data segment If this is
not large enough (or is larger than necessary). the declaration

int RootStaekSiz. • ne~ue:
can· be used to set the initial sUlck size to ne~ize bytes.

Note that large dynamically allocated areas of memory should be allocated using ma 11 oc(). call oc (),
or a similar memory allocator. and not be allocated on the process stack. •

Wcuwi",: There is no run-time checking for overflowing the process stack allocation. The program behavior from stack
overflow can be sufficiently bizarre as to cause good programmCni LO seck refuge in monasteries. If thc stack ovcrflow
caused the process in qucstic)n to gct an exception, the standard exception handling routine will usually detect the overflow
and print a messagc. Ilowever. not all stack overflows cause an exception in the process that generated them. and some~mes
the stack is back in bounds by the time the c:(ccption occurs.

The file Venv1 ron. h is a header file defining the types and constants that arise as part of the interface to
the kernel. It is included by the line

'include <Venviron.h>
Programs that use the V input/output Iibmry usually need the file Vi o. h. which corresponds to the UNIX
header tile s td 1 0 • h.8 Other V header files, listed in the previous chapter. ure included similarly.

18.2. Compiling and Linking

When an application program is compiled and linked, references to kernel operations and other standard
routines must be resolved by searching the library tile 11 bV. a. Its entry point must be the _start routine
found in the library, and it must be relocated correctly for the target machine it is to run on. These defaults
are automatically selected wirh the -vV option of the cc6S· or ccvax command. The compile command:

ee68 -vV programfile.e -0 outputfile.m68k
or for the Vax,

ecvax -vV programfile.e -0 outputfile.vax
produces an executable tile for running with the kernel. rille program environment provided by the 11 bV • a
library is described in the remaining chapters of this part of the manual.

8In fact. a V program may includ€! stdi0. h in place ofVi0. h, since thcre is a V vCrl\ion ~f stdi0:h that simply includes Vi0. h.

V Pro~r:tnlllling 17 .June 1986

18·1 Program ConstruCtiOD and Executioa

18.3. Program Execution

There are three models for executing. V C programs, namely:
1. running them in "bare kernel mode", that is. directly on top of the kernel

2. running them from an executive

3. running them as a subprogram of another program

18.3.1. Bare Kernel Mode

When a program runs in bare kernel mode. none of the standard servers are available. unless the program
includes one or more of them itself (as described in Chapter 31). A program written to run in bare kernel
mode begins execution at a procedure called ma 1 n (). No ar~ments may be passed to the program.

A program to be executed in bare kernel mode is loaded by a special loader program called Vl oad. For
example, on an SM [workstation:

b Vload
typed to the PROM monitor causes it to load and execute the loader, which immediately prompts for the name
of the file containing the program. The use of this loader is described more fully in Chapter 16.

18.3.2. Execution With the Executive

Use of the V executive is described in Chapter 3. Basically. one types the name of the file containing the
program to the command interpreter followed by zero or more command arguments. The program is then
loaded and executed. .

When the V executive is used. program execution again begins at a procedure called ma 1 n (). This time,
however, a count of the number of arguments to the program and an array of pointers to the program string
arguments. as given on the command line. are passed to the procedure. Moreover. the program is passed
standard input. output. and error files, and a variety of other information through the TeamRoot message
(described below in Section 18.4).

The following example shows how a program can read its command line arguments. The variable argc
contains the number of arguments including the command namc. 'Ille arguments are kept in argv[0]
through argv[argc-1]: the command name is argv[O]. argv[1] is the first argument,
argv[argc-1] is the last argument. and argv[argc] is NULL. This matches the Unix convention.

ma1n(argc, argv)
1nt argc;

{

}

char -argv[]:
,- Echo arguments -/

1nt 1;

fore 1 • 0: 1 < argc; ++1)
pr1ntf("~s ", argv[i]):

putchar("\n"):

18.3.3. Subprograms

1\ program may run another program as a subprogram by invoking the same 'library functions employed by
the executive. These functions are described in Chapter 28.

V·Sys.em 6.0 Rererence Manual

Program .:Xccutioa 18·3

18.4. P rog ram Initialization

Along with its compiler-generated code and data segments, a newly created program requires some
additional run-time data about its environment before it can start execution. 'Ibis data includes:

• File instances for standard input, output, and error output, and associated flags.

• Command-line arguments (argv and argc).

• Initial values of environment variables.

• Initial contents of the name cache.

• Initial naming context (working directory).

A program's creator passes this information to the new program in the team root message used to start its
execution. extended by a learn environment block of machine-independent format pJaced. in the new team
space by the creator. Thus information is subsequently unpacked by an initialization routine (described
below) automatically linked in with the new team.

The fonnat of the team root message and team environment block are given below, using a C-like notation
with the following extensions:

• The notation char s[] (an array ofcharactcrs of unspecified size) means a null-terminated string.

• The keyword repeat means that the following bracketed structure may be repeated zero or more
times.

• The notation ali gn n means to insert null bytes to align the next field to an address evenly divisible
by n.

and the following common definitions:
typedef Sit32 unsigned, long;
typedef Sit16 unsigned short;

18.4.1. The Team Root Message

/- unsigned 32-bit quantity ./
/- unsigned l6-bit quantity ./

'I11e team root message is sent to the new program just prior to its beginning execution (details below). It is
formatted as follows:

typedef struct
{

lifdef LITTLE_ENDIAN
SystemCode replycode;
Bitt6 rootflags;
InstanceId stdinfile;
InstanceId stdoutfile;
InstanceId stderrfile;
Bitt6 reserved1;

lelse LITTLE_ENDIAN
Sitt6 rootflags;
SystemCode replycode;
InstanceId stdoutt1le;
InstanceId stdinfile;
Bitt6 reserved1;
InstanceId stderrfile;

lendi' LITTLE_ENDIAN
Processld stdinserver;
ProcessId stdoutserver;
ProcessId stderrserver;
Bit32 reserved2;

TeamEnv1ronmentBlock *teb;
}

RootMessage;

V .-rogranlntlllR

,- Flags; see below */
,- Standard 1/0 instance ids ./

'* Standard 1'0 servers */

,* Reserved for e~pansion of
* Instance~d to 32 bits */

17.Junc 1986

18-4 Program Construction and ":Xccution

,- Root flags - bit assignments *'
'define RELEASE_INPUT OxOOtO
'define RELEASE_OUTPUT Ox0020
'define RELEASE_ERR nx0040
'define STDOUT_APPEND OxOOOt
'define STDERR_APPEND oxooeo

18.4.2. The Team Environment Block

,$ Release std1n on close *'
,- Release stdout on close *' '* Release stderr on close *'
,- Open stdout for append *'
,- Open stderr for append *'

The team environment block is formatted as follows:
typedef struct

{

}

align 4;
B1t32 blocksize;
Bit32 argc;
repeat

{
char arg[];

}
args:

align 4;
Bit32 envc;
repeat

{

}
env;

char name[]:
char valuer];

a11gn 4;
B1t32 cachec;
repeat

{

,. Total size of block in byte. *'
,. Number of arguments ~,

'* Number of environment variables ./

,. Number of cache entries ./

a11gn 4;
ContextPair fro.;
ContextPa1r to;
Bit16 flags;
char name[];
char truename(];

}
cache;

a11gn 4;
ContextPair ctx;
char ctxname[];
a11gn 4;

/* Initial naming context: identtfier -, '* Initial naming context: absolute name *'
TeamEnvironmentBlock;

Note that the team environment block. despite containing variable-length fields. can be unambiguolLlsly
parsed len-to-right

'lllC following library routine is available for creating team environment blocks:

SystemCode SetUpEnv1ronment(p1d. args. env, cache. where)
Processld p1d:·
char -args[]:
Env1ronmentVar1able -env:
NameCache -cache:
char -where;

Constructs a team environment block for the specified team, using the given argument vector, environment

V·Sysl(,1II6.n Reference Manual

Program Initializatioa 18·5

variable chain. and name cache, and the caller's current working context The team environment block is
deposited in the new team space at address "where" (rounded up as necessary for alignment).

18.4.3. The Per-Process Area

In addition to sharing the team environment variables (extracted from the team root message and team
environment block). each process on a team has a region of team memory reserved for its own usc, called its
slack space. A ponion of the stc'lck space, called the per-process area, is used to store a few process-global
variables. (On the Sun and Vax Station. a process's stack grows downward from the highest address in its stack
space, and the per-process area begins at its lowest address.) A team-global variable called PerProcess
points to the per-process area.. It is reset by the kernel to point to the correct area on every process switch.

The standard per-process area is described by the PerProcessArea structure in the header file Vio. h.
It contains the following values:
std i 0 An array of three File pointers describing the process's standard input, output, and error

files. <Vio.h> defines the macros stili n, stdout. and stderr to be PerProcess-)
std1o[O], PerProcess->std1o[1], and PerProcess-)stdio[2] respectively.
Note that only pointers. not the File structures themselves. are kept in the per-process
areas.

ctx

stackS1ze

ctxname

eny

namecache

A ContextPair structure giving the context identifier of the process's current naming
contex..t (working directory).

The size of the process's stack space. in bytes.

A charactc~r string giving the absolute name of the process's current naming context. These
strings are allocated on the heap (i.e., by mall oc (» and are freed by the
Chal1geD1 rectory() library routine.

A pointer to the list head f"r this process's environment variable list

A pointer to the list head for this process's name cache.

A newly created process on the same team as its parent (if created with the standard Create() library
routine) inhcrits a copy of its parent's per-process area, with the exception of the stackS 1ze field. which is
specified a'!i a parameter to Create(). and the ctxname pointer, which is modified to point to a fresh copy
of the string to avoid the nlced for reference counting such strings. Thus. each child process inherits its
creator's st.41ndard I/O. current naming context, name cache. and environment variables.

18.4.4. Initialization Prccedu re

A new program is created in the awaiting reply state. waiting for a (reply) mcs.c;age from its creator. In
effcct the kernel simulates" Send from the initial process of the program to its creator, in responsc to which
the creator must Reply before the program can begin exccution. Prior to replying. the creator has access to
the new team's entire address space and uses CopyTo() to deposit the team environment block of the new
program.

Nolf: The creator is r~Jl(Hll1iible for pas."ins the I C,.. and 32-bil lield" in lhe learn environmenl block in lhe correct byte order
for lhe new lc.1m's hosl machine. This ~'i in accord with the general convention that sender.; of messages usc their native
byte order, wilh receivers being responsible for byte-swapping if necessary. In this case, the new leam is logically the sender

. in its initial transaction.

Finally. the creator invokes R.eply() to set the new program running: the reply message constitutes the team
root message. (See Chapter 27 for details of the interprocess communication primitives used.)

Meanwhile. the new program is blocked in tJle middle of it~.initialilation code. 'Illis code is structured as a
small asscmbly-langlwge routine containing the team"s initial entry point (_start). plus a machine
independent routine TeamRoot(). called from _start. _start initializes the stack. receives the team
root message, zeros the initial data segment (bss) and then calls TeamRoot() to do the rest of the

V Programmin~ 17 June 1986

18·6 Program ConstruCtiOD aDd F..xC(!UtiOD

initialization. TeamRoot() "unpacks" the team root message and team environment block, placing pieces of
data in global variables or on the stack or heap as required by the host machine and programming language.
The team environment block is discarded after having been unpacked; generally, the memory it occupied is
reused as. stack space. When TeamRoot() returns. _start calls ma1n(). the main function of the C
program being executed. Finally. ifmain() ever rewrns, _start calls ex1t() with the value returned by
ma1n(). .

V'System 6.0 Rderence Manual

19-1

~19-
The V-System Configu ration Database

The V -System maintains a configuration database, containing information about each workstation. The
information is organized as sets of keyword/value pairs, one set per workstation •

•

19.1. Querying the Database

There is one standard library function provided for extracting information from the configurntion database:

SystemCode QueryWorkstat1onConf1g(keyword, value, maxlength)
char *keyword, *value:
1nt max length:

Given a character string rcpresenting the keyword. this routine returns the corresponding value as another
character string. l'be variab~e keyword points to the keyword. value points to the place to put the. value,
and max length is the size of the buffer. which should include space for a terminating null byte. 'llie routine
rcturns a systcm crror codc if thcre is no configuration information recordcd for the querying workstation
(NOT_FOUND). thcre is some configuration information. but no valuc corrcsponding to the given keyword
(8AD_ARGS), or the buffer was too short to hold the value (BAD_BUFFER). elsc returning OK. In the
buffer-too-short case, it will return as much as there is room for. In unusual situation~ other crror codes may
be generatcd; these can be treated as failures or considered equivalent to NOT_FOUND.

19.2. Cu rrently Defined Keywords

The following keywords are in use at this writing. A list of keyword names and their meanings is presently
kept in the same directory m, the contig files themselves, in a file called "keywords."
name

boot file

ip-addrcss

The name of this workstation. Should! match the name used in locallP name ~1bles for this
workstation's IP address. There is no defaulL

Alternate ethernct addresses for this workstation, one per linc. These are addresses the
workstation may usc. other than the one the- config tile is named for. 10 Mbit addresses
should be given in hexadecimal, in Ithe form xxxx.yyyy.zuz. 3 Mbit addresses may be
given in oct.al. The default. is null. 'This keyword must be present for lISC by the Vax Unix
ND scrver for worksti.ltions that boot using the ND protocol under a different Ethernet
addres.~ than the one the config file is namcd for. This is true of SM I Sun-2's with PROM
revisiun NI or later and JCum Ethernet interfaces.

File to be loaded by ndscrver or mvaxbootscrver. Dcfaults to compiled-in
lusr/V IbootlV)oadlO.d or. lusr/V/bootlVload,vax respectively. 111e former is
appropriate for a Sun-2 or Sun-1.5 with 3eom Ethernet interface. Should be an absolute
pathnamc.

The workstation'S Internet Protocol address. given in the conventional [a.b.c.d] notation,
where a, b. c, and d are decimal integers. On the 3 Mbit Ethernet, the default value of d is
the 8-bit Ethernet host. address. while dcfault values of at b. and c ,trC determined by the
Internet server. For the 10 Mbit Ethernet. this keyword should always be presenL

29 May 1986

19-1

ip-gateways

boot

ndboot

kernel

team

world

boot-options

startup-script

terminal-type

location

comment

The V-System Conliguration Database

Name of a file containing a list of Internet gateways to be used by this workstation. The
file name is given relative to the standard [sys] context If this keyword is omitted, the
Internet server will not forward datagrams through any gateways, i.e., only local traffic will
bcsupportea •

Controls whether the boot server (ndserver for Sun Network Disk protocol,
mvaxbootserver for MicroVAXes with DEC MOP protocol) wi11 respond to b~t requests
from this workstation. The server will refuse to respond only if there is no config file
(although mvaxbootserver has a "-n" flag to override this) or if the config file contains
"boot:no". This field has no effect on Sun-3 RARPITFTP booting.

A synonym for "boot", used only by the ndserver. This is an historical relic and should
vanish in the future. Any existing config files which use "ndboot" should be edited to use
"boot".

Filename of the program to be loaded as the kernel, for use by Vloaa The name is given
relative to the standard [sys)boot context If this keyword is omitted, Vload uses a
compiled-in default .

Filename of the first team, as above. If it is omitted, Vload uses a compiled-in default,
currently tcaml-vgts.

Either V or xV. Used by Vload. If omitted, Vload uses a compiled-in default, currently V.

Boot options for use by Vload. Currently the only option is b, meaning "break before
starting kernel" The default is a null string.

Filename of the startup script Currently used only by teaml-scrver. for workstations that
autoboot as servers. No default In the future. the definition of this keyword will be
changed to allow the startup script to be placed directly in the config tile, and all (or most)
versions of the first team will use it This feature is not tn V6.0.

Type of terminal used as a console. Used by the STS. The default is to assume the
Stanford PROM terminal emulator for Cadlincs, or something ANSI-compatible (like the
SMI PROM terminal emulator) otherwise. The only other recognized value for this option
is "h19".

Optiunallocation field.

Used to put a comment in the file. such as a description of the WOrkS141tion.

19.3. Implementation

Ordinarily, programs should not be aware of the implementation of the configuration database; this
implementation may change in the future. The QueryWorkstationConfig() function should be the only
interface used. Since there is no s141ndard library function provided to modify the configuration datnbasct

however, system maintliners need to be aware of its implementation. '111e current implementation allows the
configuration dntabase to be mudified with an ordinary text editor. and the changes inst41lled with the s.ame
tools th< are used (or insuilling new binm-y program inwgcs on storage servers.

The V configuration database is currently implemented as a set of configuration files, one for each
workstation ::ach configuration file must be present on every publically-available V storage scrver.9

The name of each workstation's configuration file is derived from its hardware Ethernet address (a

9Publically-avnilablc storoge servcrs arc dcfined as those that respond to GctPid(STORAGE_SERVER. ANY_PID) requests from
nonlocal clients.

V'System 6.0 R~f .. 'rl'nce l\'1:Jnual

Implementation 19-3

convenient unique identifier).10 The files are kept in a subcontext named Uconfig", undep the server's [sys]
context For a workstation with Ethernet address 0260.8c01.9954 (a typical 3Com-assigned addr~ss), the
configuration file could then be read by a workstation as a file named 'lsys]config/C.02608c019954"; this is in
fact how QueryWorkstationConfigO is implemented.

A configuration file is an ASCII text file, consisting of a set of keyword/value pairs. arranged in no
particular order. Each keyword appears at the beginning of a new line, and is separated from its
corresponding value by a colon (':'). A line beginning with a colon serves as a continuation of the value on
the previous line. This form.at has been designed to be easy to read and easy to parse. (Note that spaces both
before and after the colon may be considered significant by programs, so take care when creating or editing
con fig files.)

At Stanford, the master copies of configuration tiles are kept in the directory /xV /contig on Pescadero, and
only those copies should be edited. TIle command "build install" (run as user ds) is used to install changes.

19.4 .. Usage

In general, we have implemented programs that use this service in such a way that if a configuration file or
specific keyword/value pair is missing, some reasonable default is used where this is possible. Also, where it
is easy to reliably determine something by examining the hardware present. it is best to do that instead of
putting the information in the configuration tile. Following these principles means that fewer updates to the
configuration tiles arc needed to keep work~tations nmning correctly when something changes.

In some cases, the value of a keyword may be the name of a tile. perhaps because it is more convenient for
the client to read the information from a file, or because the information associated with the keyword is quite
bulky. In the present implementation. such tiles are kept in the "[sys]config" directory along with the
configuration flies themselves. Files whose names begin with ··S." are startup command scripts for
workstations that boot automatically. Files whose names begin with "G." are gateway infonnation files lIsed
by the in ternet server.

lOCurrently, on Sun-2 workstation.o; with Jeorn Ethernet interfaces. the address assigned to the Ethernet boord io; used. not the address
assigned to the processor.

V Programming 29 May 1986

20·1

-20-
Control of Executives

Instances of the V executive, or command interpreter, are normally created and controlled directly by the
user interacting with the system. However, this control is also available to programs through the following
functions:

1nt CreateExec(execserver, 1nserver, 1nt11e, outserver, out111e,
errserver, err111e. ~p1d, cc1d, 11ags, execp1d,
erlror)

ProcessId execserver:
ProcassId 1nserver, outserver, errserver:
InstanceId 1n1118, outf11e, errf11e;
ProcessId cp1d:
ContextId cc1d:
shor't 11 egs:
ProcessId ·execp1d;
SystemCode -error:

. .
Create an i~stancc of the executive with the specified standard input, standard output, standard error output,
and contexl Each of the three standard i/o files is specified by two parameters. the server pid and the
instance idt~ntifler within that server. This means that all these instances must be opened before Create
Exec is called. Context is specified by two parameters., a server pid and a context identifier relative to the
given pid. The GetContextld function will map a context name into such a pair. Execserver is the pid
of the exec server to which the request is being made. The Flags parameter detennines which if any of the
standard i/o insUlOces are to be owned by the newly created executive; it may be any combination of
RELEASE_INPUT. RELEASE_OUTPUT. and REI.I":ASE_ERR. If for example RELEASE_INPUT is
specified. me exccutive will own its sumdard input insulOce and will rele,LIiC it on tennination.

CreateExec returns an exec identifier. a small integer which will be used to refer to this executive in other
executive con.trot requcsts. In the location pointed to by execp 1 d it returns the process id of the new
executive. In the 1ocation pointed to by error it returns a system error code; if this code is not OK, the exec
identiJ1cr and execpid are meaningless.

WARNING: a server process cannot can CreateExec with a file instance pointing to that server itself. or
the server and the execserver will become deadlocked waiting for each other. A server that needs to do this
should create a subprocess to call Create Exec •

SystemCode DeleteExec(execserver, exec1d)
Processld execserver;

:1 nt exec1 d;
Delete the executive specified by exec1 d. along with the program running under it if any. It need not have
been created by this process: there is no concept of ownership of execs. Note'that this is not the only way
executives vanish: they also tenninate on end of file on the st4mdard input De leteExec will return
NOT.J'·OUND if exec1d is, invalid. '

. I

V Itrogramrning 12 March 1986

20-2

SystemCode QueryExec(execserver, exec1d)
Processld execserver:
1nt exec1d;

Control of E.'(cc:uti.es

Inquire about the state of the specified exec. If successful. it returns a code of OK. and the following
infonnation: in execp1d the process id of the exec; in program, the process id of the program I:Unning
under it, if any; in status, the status of the excc. Status can be one of

EXEC_FREE Exec is waiting for a command.

EXEC_LOADING
exec is in the process of loading a program.

EXEC_RUNNING
A program is running under this exec. In this case and this case only, program returns
relevant information. ., :

EXEC_HOLD Exec has been created but not yet started. Hopefully this state should never be observe~
as it is taten care of within CreateExec.

SystemCode KillProgram(execserver, exec1d)
Processld execserver:
1nt execid:

Kill the program. if any, running under the specified exec. Returns OK is successful, NOT_FOUND if
execid was invalid. NONEXISTENT_PROCESS if there was no program running under that exec.

SystemCode CheckExecs(execserver)
Processld execserver:

Causes the execscrver to do a check on all executives. Any of them whose standard input server or standard
output server (but not standard error server) has died is destroyed during the check. This should be called
after an action that might have destroyed an i/o server which was providing stancL1rd i/o for one or more
executives. .

" .

I ~.'.

V·System 6,0 Referencc Manual

21·1

-21-
Fields: Using an AVT as a Menu

These routines allow you to set up a table of fields in a.n A VT. They can be selected with the mouse, so that
you can have a menu. The advantages over the 'standard pop-up menu are that you can have more choices,
you can display more information with each choice, and the menu is always there.

With each field. you can associate a value, which can be displayed and edited.

The menu is an array of F" e 1 ds. These are defined in' (11 e 1 ds • h). Each F 1 e 1 ~ consists of:
typedef struct

{
short row;
short col;
short width;
long *value;
int (*proc){):
char *format;

} Field;

'* field's row number in A VT .,
'* leftmost character of field .,
'* width of field ./

'* format in which to display ·value */

row and co 1 indicate where in the A VT the field begins. (row = 1 and col = 1 is the top left comer of the
A VT.) wi dth is the length of the field in characters. Only one-l~ne fields arc supported. proc is not used
by the package itself. The intended usage is:

field • GetField(...);
if (field) (*f1eld->proc»(field->value);
or perhaps:
if (field) (*f1eld->proc»(field):

format is discussed below.

21.1. Formats

format is a fonnat like those used by pr1 nt1 and scan1. Tpgether with the val ue, it determines the
string to be displayed in the field. This string must be a least wi dth characters long. It is a zero-terminated C
(asciz) string. Formats are of the form:

prefix [conversion) suffix
Here prefix and suffix is COlflstant text which is displayed. IfaX is to be displayed. it must be written as XX.
The tollowing utility routine will do a string copy analogous to strncpy, except that Is are automatically
copied: .

char • StrToFormat{f. s. n) ,
char ·1; '* desltination string buffer where 'X's are to be doubled .,
char ·s; /. source string .,
1 nt n: /. count - buffer size .,

The optioOl,1 COil version describes how va 1 ue is to be displayed/read. hs form is:
X{[-J[OlfieldwidlhJ[. prrcisioll)P-jc .

Here the X indicates the beginning of the conversion specification. The conversion type letter c marks the end

V I'rogramminl 1 May 1986

21·2 Fields: Using an A VT as a MenD

of the conversion specification. 'nle format is exactly as used by p r 1 n t 1. except that there may be a data
length specification A. If val ue is ash 0 rt - rather than a 1 nt-. A must be given as h. If the val ue is a
doub 1 e - rather than a 11 oat -, A must be 1, or the conversion type letter c must be capitalized.

When fields are displayed, S p r 1 n t 1 is used to do the conversion. The length specification A is only used
to dereference va 1 ue (except for fields where the conversion type letter is s): it is stripped from the format
before being passed to s p r 1 n t 1.

On input to fields, only the length specification A and the type code c are passed to sscan1. If the type
code is e or g, it is changed to 1. A type code of S (or 1 s) means that the whole input line (including spaces)
should be accepted.

21.2. The Field Table as a Menu: Selecting an Action

Field - GetF1eld(menu,menuLength, buttons, avt)
Field -menu;
1nt menuLength;
short buttons;
File -avt; ,- output AVT -,

If button I- 0, it is assumed that the mouse is down on procedure entry. GetField returns when the
button state changes; if it changes to non-zero, GetF1eld fails by returning zero. If button -- 0,
Ge t Fie 1 d will first wait for an event (It will fail unless it is a mouse button being pressed down.)

As long as the user keeps the mouse button down. display the selected field (if any) in inverse video. When
the user releases the button, return the last selected Fie 1 d, or if none, return O.

The menu is terminated by the first negative ro~ field, or when tile menuLength count is exhausted.

21.3. Displaying Fields

PutField(buffer, field)
char -buffer: ,- destination string buffer -,
Field -field; ,- source rormatand value -,

More or less like spr1ntf(buffer. f1 e 1 d-)format, -f1el d-)val ue).

DisplayFields(menu, menuLength. avt)
Field -menu:
int menuLength: ,- see GetF1eld function -,
File -avt: ,- output AVT where fields are to be written -,

Display in the avt all the string fields. at the positions given by the row and col components.

The wi dth components are ignored. This aJ10ws convenient display of material which the user cannot
select ("write-protected" fields) either by using fields with wi dth <- 0 or by having a s tr 1 ng longer than
the wi dth.

21.4. User Input to Fields

EditField(field, stuff, out, in)

V'SysC('m 6.0 Rdcrt'ftce ManuAl

User Input to Fields

Field -field; , .. field whose -value is to be edited -,
1 nt stuff: ,- 0: old text should be cleared: 1: stuff into editor .,
File -out. -1 n; ,- input and output sides of A VT to use .,

21-3

Move the cursor to the conversion part of the field. Ifstuff is O:the old value is cleared from the screen;
if it is 1, the old value is placed in the tine editing buffer. Enter line-edit mode, and wait for the user to type
in a line. If the user types tG, abort. redisplay old value and return -1. Else parse the line using
f1eld-)format. If this succeeds, update -f1eld-)value, returning 1, else O. In any case, redisplay
things correctly.

.
Ed1tStdFld(f1eld)

Equivalent to Ed1tF1eld(f1eld, 1. stdout. std1n)

ReadStdFld(f1eld)

F.quivalenttoEd1tF1eld(f1eld. O. stdout, std1n)

21.5. An Example
'* This is a progr'lll which adds. up integers, optionally scaled *'
'include <stdio.h>
'include <fields.h>
double Scale • t.O~ Total • 0.0;
int Value • 0:

Quit() (••• cleanup actions

HewValue(f)

(

}

field *f:

if (ReadStdFld(f) •• t)
Total +. Value * Scale:

Fields Menuel •
{

exH(-t) ;}

/* VAL (defined in fields.h) coerces pointers and values to (1nt *) *'
{1, 41. 10. VAL &Scale. EditStdFld. "Scale: 'G "}.
{t. 1, 15. VAL &Value. HewValue. "New value: '-8d"}.
{2. 1, O. VAf. &Total. O. "Total: ~G. "},
{5. 1. 8, 0. Quit. "--Quit--"}.
LASTFIELD /* defined in fields.h *'

};

maine)
(Field *field;

whl1 e (1)
(

}
}

putc('L' & 31. stdout): /* write FormFeed to clear screen .,
DisplayFields(Menu, 999, stdout);
field • GetField(Menu. 999, O. stdout):
if (field) (*(field->proc» (field);

Since the screen is updatc~d every time here, we do not have to worry about garbage being left behind when
the field becomes shorter. However, one of two fixes shown ab(l~e can be used when this is not desired: In
the Val us field. we make .fure the tield doesn't become shorter. by len justification if needed. 'Illis loses if we
want to output punctuation after the vulue, as in the Total field. In this case .. we can make sure that we
output enough trailing spaces to crase the garbage.

V l'rogramnliRl I Muy 1986

21-4

21.6. Limitations

No facilities yet for arrays.

Fields: Using an A VT as a MenD

V-System 6.0 Rderrnce Manual

The input and output routines can be divided into three categories:

22-1

-22-
Input and Output

1. Basic 1/0 routines like getchar() that are supponed but differ in their implementation from the
standard Unix versions.

2. 110 suppon routines like p r 1 n t f () that are identical with the staQdard Unix version.

3. V-specifie I/O routines like Read() and Wri te() that are used in several cases. to implement the
standard C routines in the V message-based world.

22.1. Standard ClIO Routines

The following standard C 110 routines are available:

clearerr() elosodir() felose()
ferror() fflush() fgete()
fopen() fprintf() fpute()
fread() freopen() fseanf()
ftell() fwrite() gete()
gets() getw() mktemp()
printf() putc() putehar()
putw() readdir() rewind()
seanf() sprintf() seekdir()
sscanf() telldir() ungetc()

feof()
fgets()
fputs()
fseek(}
getchar()
opendir()
puts()
rewi ndd i r()
setbuf()

However. fopen () returns a pointer value of type ·File, where File is defined in <Vio.h) and is a totally
diflcrent record structure from that used by, for instance, the Unix standard 1/0. Also, setbuf () is a no-op
under V.

22.2. V 1/0 Conventions

Program input and output are provided on files, which may include disk files, pipes, mai1~boxes, terminals,
program memory. printers, allld other devices.

To operate on a file, it is nrst uopened," using Open() if the file is specified by a pnthname. otherwise by
OpenFi le() if the file is sp1ccified by a server and instance identifier. The mode is one of the following:

FREAD No write uperaliuns ure allowed. File rem41ins um:hanged.

FCREA TE Any data previously associated with the described file is to be ignored and a new file is to
be created Ik>th read and write operations may be allowed, depending un the file type
described below.

FAPPEND

FMODIFY

Data previously associated with the described me is to remain unchanged. Write
operations are required only to append data to the existing data.

Existing data is to be modified and possibly appended to. Both read and write operations
are allowed.

12 March 1986

22·1 Input and Output

Both open functions return a pointer to an open file descriptor that is used to specify the file for subsequent
operations. Cl ose() removes access to the file. Seek() provides random access to the byte positions in the
file. Note: the value returned from a pyte position that has not been written is not defined. .

Each program is executed with standard input, output and error output files, referred to as s td 1 n,
stdout. and stderr respectively. .

The file type indicates the operations that may be perfonned on the open file as welt as the semantics of
these operations. The fue type is specified as some combination of the following attributes.

READABLE The file can be read.

WRITEABLE The file can be written.

APPEND_ONLY
. Only bytes after the last byte of the data p~vjously associated with the file can be written.

STREAM All reading or writing is strictly sequential. No seeking is allowed. A file instance without
the STREAM attribute must store its associated data for non-scquential access.

FIXED_LENGTH
The file instance is fixed in length. Otherwise the file instance grows to accommodate the
data written, or the length of the file instance is not known as in the caseoftenninal input

VARIABLE_BLOCK .
Blocks shorter than the full block size may be returned in response to read opcr~tions other
than due to end-of-file or other exception conditions. For example, input frames from a .
communication line may differ in length under nonnal conditions.

With a tile instance that is VARIABLE_BLOCK, WRn'EABLE, and not STREAM,
blocks that arc written with less than a full block size number of bytes return exactly the
amount written when read subsequently.

MULrn_BLOCK Read and write operations arc allowed that specify a number of bytes larger than the block
size.

INfERACfIVE The open file is a text-oriented stream. It also has the connotation of supplying
interactively (human) generated input

Not all of the possible combinations of attributes yield a useful tile type.

Fi1es may also be used in a block-oriented mode by specifying FIlLOCK_MODE as part of the mode when
opening the file. No byte-oriented operations arc allowed on a file opened in block mode.

See chapter 33 for morc details on the semantics of the various possible file types and modes.

22.3. V 1/0 Routines

22.3.1. Opening Flies

File ·Open(pathname, mode, error)
char ·pathname; unsigned short mode; SystemCode ·error;

Open the file specified .by pathname with the specified mode and return a file pointer for usc with
subsequent file operations.

mode must be one of FREAn. FCREATE. FAPPEN]). or FMODIFY. with FBLOCK_MOnE if block
mode is required. If Open() filils to open the me. it returns NULL and the locHtion pointed tu by error
contains a sl4lndard system reply code indicating the reason. If an error occurs and error is NUl.L, Open()
calls abort().

V-System 6.0 Rd~rcnce Manllnl

v VO Routiaes 22·3

File -OpenDuplex(fi1e, mode, error)
File -file; unsigned short mode: .SystemCode *error:

Open the "oPler side" of a duplex file, such as a network connection or tenninal. Mode and er ror are as in
Ope'ra().

File *OpenF1le(server, instanee1dent1fier, mode. error)
ProcessId server; InstanceId instance1dent1f1er:
unsigned short mode: SystemCode *error:

Open the file instance specified by the server and 1nstance1dent1f1er arguments and return a file
pointer to be used with subsequent file operations.

mode must be one of FREAD, FCREA TE, FAPPEND, or FMODIFY, with FBLOCK_MODE if block
mode is required. If the instance is to be released when Close () is called on this file pointer,
FRELEASE_ON_CLOSE must also be specffied as part of the mode. IfOpenF1le() fails to open the file,
it returns NULL and the location pointed to by error contains a standard system reply code indicating the
reason. If an error occurs and error is NULL, OpenF 11e () calls abort().

File -_Open(req, modll, server, error)
C.'eateInstanceRe'quest *req: unsigned short mode:
ProcessId server: SystemCode *error:

Open a file by sending the specified I/O protocol rcqucstmessage req to the scrverspecified by server and
return a file pointer to be used with subsequent file operations. This function is only used when additional
server-dependent infonnatio'n must be passed in the request message. or the file is to be opened on a server
that cannot be sp~ified by a character string path name as in Open().

The request req may be either a CreatcInstanceReQucst or a QueryInstanceRequest mode must be one of
FREAD. FCREATE. FAPPEND, or FMODlf"Y. with F8LOCK_MODE if block mode is required. If
_Open() tails to open the file. it returns NULL and the location pointed to by error contains a standard
system reply code indicating the reason. ,lfan error OCCUIl'S and error is NULL. _Open() calls abort().

ProcessId CreateInstance(pathname, mode~ req)
char ·pathname; unsigned short mode; CreateInstanceRequest *req:

Opcn the file spccHied by p,athname in the given mocie using the spccified CrcatelnstanceRequcst, but do
not set up a File structure for it. A CreatelnstanceReply is returned at the location pointed to by req. The
function returns the process id of dle first process that replied. If the crcate instance request was sent to a
group. additional replies can be obtnined using GetRep ly().

SystemCode CreateDuplexInstance(server, 1d. mode, req)
ProcessId server; InstanceId 1d; unsigned short mode;
CreateDuplexInstanceRequest req:

Open the "other side" of the file spl.'Cified by dle server and 1 d. but do not set up a File structure for it. A
CreateDuplexlnstanccReply is returned at the localion pointed to by req. Return a standard system reply
code.

22.3.2. Closing Flies .'

Close(f11e)

V lJ>rogr.lmnlilil 12 March t 986

21-4 Input aDd Output

File ·,11e:

Remove access to the specifi~d file. and free the storage allocated for the File structure and associated bu~ers.
Iftfle file is WRITEABLE and not in FnLOCK..MODE, the output buffer is flushed.

Spec1alClosl(f11e, releasemode)
File ·f11e: unsigned releasemode:

Close the specified file. as in Cl ose(). If Spec1 a lCl ose() releases the file instance associated with the
specified File structure. the release mode will be set to re 1 easlmode. Close () sets the release mode to
zero. See chapter 33 for a explanation of release modes.

ReleaslInstance(f1leserver, f11e1d, releasemode)
ProcessId f11eserver: InstanceId f11e1d: unsigned releasemode:

Close the file instance specified by '11 e s e rv 8 r and f 11 e 1 d, using the specified release mode. This
function is used only when there is no File structure for the given file.

22.3.3. Byte Mode Operations

The purpose of the byte-mode 110 library is to maintain an abstract view of a file instance as an array of
bytes with a known (but extensible) length. and·the ability to read, write, and (in the case of non-STI{EAMs)
seck. at the byte level. A layer of buffering is imposed between the client and server maintaining the actual
file instance, to reduce the amount of actual reading and writing done. The actual file instance is guaranteed
to be identical with the local view when the file is first opened, and after a Flush, barring I/O errors. (Note
that Close caUs rlush before releasing the instance.) At most one block. of the local view of the file instaJ:lce
may differ from the actual instance.

The 110 library can be used on any file type, though somewhat confusing results may be obtained with
VARIAnLE- BLOCK, non-STREAM files. particularly if one attempts to Seek in other than ABS - BLOCK
mode.

The standard Unix functions mentioned above may be used on files opened in byte mode (i.e .• not opened
in PBLOCK_MODE). Several other functions are also available on such fi1cs. as described below.

1nt Seek(f11e, offset, origin)
File ·,11e: 1nt offset, origin:

Set the current byte position of the specified open file to that specified by offset and or1 g1 nand retum
TRUE (nonzero) ifsucccssful.

Ifor1gin is ABS_BLK or ABS_BYI'E. the byte position is set to the offset-th block or byte in the file
starting from O. If or1 g1 n is RELJlYI'E •. offset specifics a signed offset relative ·to the current byte
position. Iforigin is FII.E_END. offset is the signed byte ofT.'»Ct from the end of file.

The end uf tile position is one beyond the last byte written. 'l1,e value of bytes in the tile previolls to the
end of file that have not been explicitly written is undefined.

Seek() may not be used on files opened in block mode. SeekBlock() should be llsed on such files.
Seek() is identical to fseek().

unsigned BytePos1t1on(f11e)
F11e ·f11e:

Return the current byte position in the specified file. The value returned is correct only if the current byte

V-SY!itcm 6.0 Ucfcrcncc Manual

V I/O Routines 22-5

position is less than MAX_UNSIGNED. This function is identical to fte 11 ().

F1ush(f11e)
File ·f11e;

Flush ,any buffered data associated with the file. providing it is WRITEABLE. Flushing a file causes local
buffered changes to the file data to be communicated to the real file. If the file is in block mode or not
WRITEABLE, no action is performed. This function is identical to ff 1 us h ().

Resynch(f11e)
File ·111e:

Identical to Cl earE01().

SystemCode E01(f11e)
File ·111e;

Any of the byte mode read or write operations may return EOF (Exception On File) as a spccial value
indicating an inability to read or write further in the file. Eof() returns a standard system reply code
indicating the nature of the exception. This may be a true end-of-file, i.e .. the current byte position exceeds
the last byte position of the file, or some type of error. '

ClearEof(f11e)
File ·111e: . .

Clear the local record of the: last exception on the given file, and resynchronize the local view of the associated
file instance with that of the server. including the size of the file and (for STREAMs) the next block to read.
This function only clears the local record of the exception: it docs not affect the circumstances that caused the
exception to occur. See Eoir ().

If the file is not of type STREAM. the contents of the local butTer arc discarded even if the buffer was
modified and not yet rewritten. If the file is of type STREAM. and the current file position violates the
stream condition (always r(~ad nextblock or wrile lastblock+ 1), reposition. The contents of the local
buffer are discarded only if repositioning is ncccss&'lry.

int BufferEmpty(f11 18)
File ·111e: .

Test whether or not a file's local buffer is empty. If this function returns TRUE (nonzero). the next getc()
witl cause an actual read. Xf it returns FALSE (zero), the next getc() will return immediately with a byte
from the buffer.

22.3.4. Block Mode Op1eratlons

The following functions ,ire most useful on files opened in block mode. Unless otherwise noted, they may
also be used on files opened in byte mode.

unsigned Read(1i1e, buffer, bytes)
File ·f11e; char -buffer: unsigned bytes:

Read the specified number ofbytcs from the file starting at the beginning of the current block location of the

V Programml .. 12 M:m:1I1986

n-6 Input and Output

file and store contiguously into the byte array starting at buffer, returning the actual number ofbytcs read.

lbe number of bytes returned may be less than the number requested if (1) the file has the type attribute
V ARIABLE_DLOCK and a shon block was being tead, (2) end of file was encountered while reading, (3) an
error occurred while reading (in this case 0 bytes are returned), or (4) more than one block was requested and
either the file does not have the type attribute MULTI_lILOCK. or the server could not return as many
blocks as were requested. If the read request cannot be satisfied. the reason is indicated by the standard reply
code returned by F11eException(). If the end of file is encountered while reading, a partial block is
returned with the reply code END_OF_FILE. Read() is intended for use on files opened in block mode
only. Note: Read() does not increment the current block number stored in the File structure for the given .
file. . .

unsigned Wr1te(f11e, buffer, bytes)
File ·f1le: char ·buffer: unsigned bytes:

Write the specified number of contiguous bytes from the buffer to the file starting at the beginning of the
current block location of the file. and return the actual number of bytes written.

lbe number of bytes to be written must be less than or equal to the block size (as returned by
BlockS1ze(» unless the file has the type attribute MULTI_BLOCK. If the number of bytes written is less
than the number of bytes requested, the reason is indicated by the standard reply code returned by
F1leExcept1on().

Wr i te () should be used only on files opened in block mode. Note: Wr i te () does not increment the
current block number stored in the File structure for the given file.

unsigned BlksInF11e(f11e)
Fil. ·file:

Return the number of blocks in the specified file. If the number of blocks is unknown, MAXUNSIGNED is
returned.

unsigned BlockPosit1on(fi1e)
File ·f11e;

Return the current block position in the specified file.

SeekBlock(file. offset. origin)
File ·f11e: 1nt offset: int origin:

Set the current block position of the specified open tile to that specified by or1 g1 n and offset. rille new
hlock position is the hlock offset from the specified block origin. origin is one of FILE_BEGINNING,
FII.I~_END or FII.E_CURRENTJ~S.

unsigned BlockS1ze(f11e)
File ·f1-le;

Return the block size in bytes of the specified f,ile.

unsigned F11eException(file)
File ·file;

V-System 6.0 Reference Manual

V 110 Routines

Return the standard reply code indicating the last exception incurred on the specified file. lbis is used
primarily on files opened in FBLOCK_MODE. Eof() is used on byte-oriented files.

22.3.5. Server-Specific Operations

This section describes routiines in the I/O library which arc specific to particular servers.

SystemCode CreatePipelnstance(readOwner. writeOwner, buffers, reply)
Processld readOwner, writeOwner; int buffers;
CreatelnstanceReply -reply;

Interact with the pipe server ItO create a pipe. with the specified owners for the reading and writing ends of the
pipe, and the specified number of buffers. buffers should be between 2 and 10 inclusive. The reply to the
create instance request is returned at the location pointed to by rep 1 y; it contains the file instance id of the
writeable er.d of the pipe. The id of the readable end is equal to this value plus 1. Ope-nFi1e() may be used
to set up File structures for either or both ends of the pipe. CreatePi pel nstance () returns a standard
system reply code~ which will be OK if the operation was successfuL

File -OpenTcp(localPort, foreignPort, foreignHost, active.
. precedence, security, error)

unsigned short localPort, foreignPort; unsigned long fore1gnHost:
1nt active, precedence, security; SystemCode -error:

Interact with the Internet server to create a TCP network instance, and return a pointer to a File structure
opened in hyte mode that can be used to send data on the corresponding TCP connection.

To obtain a second File stmcture that can b.e used to re,ad from the connection. use the call
f2 • OpenFile(FileServer(f1). F1leId(f1) + 1,

FREAD + FRELEA5.E_ON_CLOSE, &error)
where f1 is the value returned by OpenTcp(). Note that it is neccs.~ry to .release both the readable and
writeable instances to cause the connection to be deal1ocated. Releasing the writeable instance closes the
caller's end of the connection. Data can still be read from the readable instance until it is released. or the
other end closes (resulting in an END_OF_F1LE indication).

The parameters localPolI't. foreignPort. and foreignHost specify the S()ckel~ on which the TCP
connection is to be opened. act 1 ve specifics whether the connection should be active (i.e., send a
connection "syn" packet), or passive (Le., listen for an incoming "syn" packet). precedence and
secur 1 ty specify the precedence and security values to be used for the connectioll. Specifying lero for
these parameters will cause appropriate default values to be used.

If the open is unsuccessful. OpenTcp() returns NULL. and a standard system reply.code indicating the
reason for failure is returned in the location pointed to by error; else OK is returned in this location.

File *OpenIp(protocol, error)
char protocol: SystemCode -error:

Interact with the Internet server to create an IP network instance, and return a pointer to a File structure
opened in block mode that can be used to write IP packets to the network.

To obtain a second File .stmcture that can be used to read IP packets, use the call
f2 • OpenF11e(F11eServer(fl). F11eId(fl) + 1,

FREAD + FBLOCK_MODE + FRELEASE_ON_CLOSE, &error)
where f1 is the value returned by Openlp(). Note that it is necessary to release both the readable and

V flro~r:tmnti .. 12 March 1986

22-8 Input and Output

writeable instances even if only one of them is used.

The protocol specifies which value of the protocol field in the IP packet headers is of interest. The
readable instance will only return packets with the requested protocol value. and the client program should
only write packets with the specified protocol field to the writeable instance. though this is not currently
checked by the server. If protoco 1 is zero. it specifies "promiscuous" mode. in which all IP packets are
returned which are not of protocol types that have been requested by another client. and packets of any
protocol type may be written.

If the open is unsuccessful, OpenIp() returns NULL. and a standard system reply code indicating the
reason for failure is returned in the location pointed to by error; else OK is returned in this location • .
22.3.6. Miscellaneous 1/0 Functions

InstanceId F11eId(f11e)
File -file:

Return the file instance identifier associated with the open file. This was either generated as part of Open()
or spccified as an argument to the Op en F 11 e () operation that opened the file.

ProcessId F11eServer(f11e)
File -file:

Return the file server identifier associated with the open tile. This was either generated as part ofOpen() or
specified as an argument to the Op e n File () operation that opened the file.

unsigned Fi1eType(f11e)
File -file:

Return the file type. which indicates the operations that may be performed on the open file as well as the
semantics of these operations. .

unsigned Interact1ve(f11e)
File -file:

Return TRUE (nonzero) if the file has the type attribute INTERACI'[VE, else FALSE (zero).

File -OpenStr(str, size, error)
unsigned char -str~ unsigned size: SystemCode -error:

Make the specified string look like a file. The tile is FIXEDJ.ENGTI-r. with one block of size size. and the
end of file set to the end of this hhx:k. str must point to an arc" at least size hytes in length. 1\ lite opened
by OpenStr() is identified as such by its file server (as returned by F11eServer (» being equal to O.

SystemCode RemoveF11e(pathname)
char -pathname:

Remove (delete) the ,file specified by pathname.

1nt un11nk(pathname)

V'Syslem 6.0 Rd('r('nrc Manual

V 110 Routioes 22·9

char ·pathname:
Remove (delete) the file spCJ:ified by pathname. Returns 0 on success, -Ion failure. This interface is
proyidcd for UNIX compatibility.

SystemCode SetBreakProcess(f11e. breakprocess)
File ·f11e; Processld breakprocess;

Sets the break process assocnated with the specified file (which must be INTERACTIVE) to breakprocess.
If a break occurs on the file after a brea~ proce~ has been set, the 10_BREAK reply will be returned to any
outstanding read requests, and the specified break process will be dcstroyed~

SystemCode SetlnstanceOwner(f11eserver, f11e1d. owner)
ProcessId fileserver. owner: Instanceld f11e1d:

Set the owner of the specified file instance to be owner.

Pr1ntFile(name. f110)
char ·name: File ·'11e:

Print the value of each field in the given File structure on the standard output, identifying the file by the
name name. Useful in debugging servers and 110 routines.

22.4. Portable binary integer 1/0

The tollowing routines can be used to write and read integers to a me in a standard binary representation.
l1lis representation stores integers in 1. ~ 3, or 4 bytes. signed or unsigned. 'The integers are written as binary
numbers, 8 bits to a byte, in big-end ian order. For the signed routines. twos-complement is used. (This
convention is followed by a number of systems, including flies read and written by TeX and M~:TAFONT.)

The subroutines arc declared as follows, for N = 1, 2, 3, and 4:

PutSignedN(1. f)
long 1: File ·t::

PutUnsignedN(i. f)
long i: File ·t::

long GetS1gnedN(f)
File ·f:

long GetUns1gnedN(f)
File ·t: .

V Programming 12 March 1986

13-1

-23-
Intra-Team Locking

The V kernel provides message-passing as a means of synchronizing processes, and mutual exclusion may be
enforced by the usc of a server process that executes the critical section for clients. Such an arrangement is
not always suitable. however: for processes communicating via a shared data structure the overhead of a
message exchange may exceed by an order o.fmagnitude the cost of performing the critical section.

The V library includes support for cheap mutual exclusion among processes in a single team. Spin locks
ensure mutmll exclusion in tile presence of contention, but in its absence they introduce very little overhead.
Spin locks <,Iso maintain a c,ount indicating the level of contention so that the programmer can continue to
assess their suitability after they are in use.

Spin locks are essentially binary semaphores without queucing: when a proces.c; fails in an attempt to
acquire a lock, it simply delays (instead of busy-waiting) before trying again ("spinning" the lock).

AdvantagL~: In the absence of contention, spin locks are fast. The optimized macro fonns require only
from one to six machine instructions each; the procedure forms add only the cost of a single-argument
procedure call.

Disadvantages: A process that fails in an attempt to acquire a lock delays one tick before trying again; the
locking overhead in the presence of contention is therefore higher than it would be for a message exchange
with a server process. Also. spin locks are not fair: dhe order in which processes acquire the lock is not
determineci by the order in which they begin ~eir attempts.

Spin locks arc best suited for cases in which contention is expected to occur only rarely. The repeated
attempts at the lock render them less suitable when the lock is held for long periods of time (several clicks),
and the delny period (one click) may be too Jong for some applications with real-time constraints.

Each spin lock maintains ~l colllenlioll COUllt. incremented each time that a process is forced to delay in an
attempt to acquire the lock. The counter is incremented without mutual exclusion; its value is therefore not
guaranteed precise, but should still provide a rough indication of the level of contention.

The following subrOl~tines arc provided in the library, with needed definitions in Vspinlock.h.

Acqu1reSp1nLock(lock)
Sp1nLockType ·lock:

Wait until the named lock is acquired before returning. The delay on failure is one click ..

ReleaseSp1nLock(lock)
Sp1nLockType ·lock:

Release the named lock.

Additionally, the macro Sp 1 nLockCount(lock) provides access to the contention count; it is of type
short integer and may be assigned to as well as read.

Locks must be initialized! to either Sp 1 nLockLocked or Sp 1 nLockUn locked. which also set the
contention count to lero. . .

More efficient macro fonns of the locking operations arc provided for the common cases of the lock bcing a

V ProgrnnlnlinK 12 Marrll 1986

Intra-Team Locking

global variable or an argument to the procedure invoking the operation. The costs of these forms of the
operations arc in the range of one to six machine instructions. The compiler and lint, however, cannot
properly check theses fonns, which may result in either spurious error messages or failure to detect real errors.

Acqu1reGlobalSp1nLock(lockName)
Sp1nLockType lockName:

Equivalent to Acqu1reSp1nLock(&lockName). where lockName is the name of a global (extern)
variable. (This will also work if the global variable 1 ockName is a struct and the lock is its first component)

ReleaseGlobalSp1nLock(lockName)
Sp1nLockType lockName:

Equivalent to Rel.easeSp1nLock(8rlockName). wherc lockName is the name of a global (extern)
variable.

Acqu1reArgumentSp1nLock()
Equivalent to Acqu 1 reSp 1 n Lock(p), where p is tlle first argument of the containing procedure. (This will
also work ifthc lock is the first component in a struct .p.)

ReleaseArgumentSp1nLock()
Equivalent to ReleaseSp1 nLock(p). where p is the first argument of the containing procedure.

V·SystcIII6.0 Rercf('nre Manual

24·1

-24-
Memo ry Management

Blocks within a managed pool of memory can be dynamically allocated and freed within the address space
of a team using the functions described' below. These routines provide essentially the same functionality as
the standard C library. The memory allocation routines are provided on a per-team basis.

Note that there is one pool of free storage for all processes in the tcam: when using the standard library
versions, programmers must be careful to synchronize the processes allocating and freeing this storage. A set
of memory management routines with internal locking for mutual exclusion is also available (see
10ckedmalloc, below). These routines run more slowly than the standard versions.

char *malloc(size)
unsigned size:

Returns a pointer to a memory block that is size bytes long. NULL is returned if there is not enough
memory available.

free(ptr)
char *ptr:

The memory pointed to is returned to the free storage pool. ptr must point to a.block allocat~d by one of the
routines listed here.

char *realloc(ptr, size)
char *ptr: unsigned size:

Changes the size of the block pointed to by ptr to be size bytcs. Returns a possibly moved pointer.

char *calloc(elements, size)
unsigned elements, size:

Equivalent to ma 11 oc (e 1 ements *s i ze). except the area is cleared to zero. Provided for allocating arrays.

cfree(ptr, elements, size)
char ·ptr: unsigned. elements, size;

Frees storage allocated by calloc(). Actually. this function is identical to free(ptr). which may be used
instead. e 1 eme n ts and s i ~~e are ignored.

unsigned Copy(destination, source, count)
char *dest1nation, *source; unsigned count:

A fast block transfer function. Transfers count bytes from source to dest 1 nat i on. Returns count.
Restriction: the source and d<..~tination blocks must not overlap.

V ogramminl 12 March 19H6

24-2 Memory Management

unsigned b1t(dest1nation. source, count)
char ·dest1nat1on. ·source: unsigned count:

Identical to Copy().

char ·Zero(ptr, n)
char ·ptr: unsigned n:

Zero memory. Writes n bytes of zeros starting at ptr. and returns ptr.

c1ear(ptr, n)
char ·ptr: unsigned n:

Clear memory_ \V rites n bytes of zeros starting at ~ t r.

swab(ptrom, pto, n)
char ·pfrom. ·pto: unsigned n:

Swap the bytes in n 16-bit words starting at the location ptrolD into a block starting at the location pto.

The following functions are of interest only to those managing memory (using the kernel primitives) in
addition to that provided by the above routines_ The current implementation of ma 11 oc () prevents these
routines from adding space below the current top of the pool.

GiveToMalloc(start.length)
char ·start: 1nt length:

Add the length bytes ofmernory at start to the pool used by the allocators described above, returning the
number of bytes actually installed after alignment and error-checking is done.

char • GetMoreMa11ocSpace(min.actual)
1nt Min. ·actual:

Ma 11 oc () caUs this function to acquire more spnce for its pool; a det:1ult version is supplied. which is
replaced if the programmer supplies a routine of this name. GetMoreMallocSpace() should return a
pointer to at least ~1 n bytes of space and set ~actua 1 to the number of bytes made available; NULL may be
returned if no more space is to be added to the pool.

In the default version. free memory is detennined and extended based on the memory map and memory
usage of the team (using the V kernel operations GetTeamS1ze() and SetTeamS1ze(».

24.1. Use in multi-process teams

111e standard library versions of Lhe allocation and deal1ocation routines do not enforce exclusion among
processes within a tenm; so disastrous things may hnppen if two or more processes access them
simultaneously. A multi-process team may usc the routines safely by enforcing its own exclusion (e.g., by
having all al1ocation/deallocation occur in a single proccs.c;). or by explicitly linking in a provided veniion of
these routines that does provide locking. The rOlltines affected arc malloe. reallo<;. free. cnlloe. cfree. and
GiveToMalloc. (Note. however. that ctllls to these roulines may be hidden in other standard library routines
as well.) The locking version may be accessed using the compiler thlg -11 ockedma 11 oc; to include it usc,
for example:

ee68 -v -r other flags yourf 11e. 0 -11 ockedma 11 oc olher libraries

V-System 6.0 Reference I\Ianual

Use in multi·process teams 24-3

This provides full exclusion for all of the routines mentioned, but at a execution-time penalty of up to about
25%.

V I"'o~r:lmminl 17.June 1986

25-1

-25-
Naming

The naming section of the library includes a number of functions that provide a convenient interface to
V-System naming protocol messagcs, plus other riamingarelated services. See chapter 34 for an explanation of
the naming protocol. •

25. 1 • Cu r rent Context

Each process has a cu"ent context in which object names that do not begin with the root escape character
('(') are interpreted. similar to . the current working directory of UNIX and other systems. The following
functions are provided to query or reset the current context.

SystemCode ChangeD1rectory(name)
char ·name:

Change the current context (working directory) for the calling process to be the context specitied by name,
and return a standard system reply code, indicating OK if successful, else the reason for fHilure. name is
interpreted in the (previous) current context.

1nt chd1r(name) ,
char ·name:

'Inis function is identical to ChangeD1 rectory(). except that it returns 0 to indicate success or -1 to
indicate failure. (This interface is provided for UNIX compatibility.)

char ·getwd(pathname)
char pathname[]:

Copies the absolute name of the current context (working directory) into the given character "rray and returns
its address. (This interface is provided for UN IX compatibility.).

25.2. Descriptor Mclnipulation

V -System servers generally maintlin a descrif1tor thr each of the ohjectc; they implement. Each descriptor
contains a /)'1'(' field. the associated object's 11(/111(' (relative to ~l particular context), and additiunal type
dependent information such as size, times/amp, o Wiler, etc. The standard header file <Vdircctory.h> defines
the descriptor types currently known to the system.

One can read (and in som(c cases modify) the descriptors of all objects defined in a given naming context by
opening the associated context directory as a file. A context directory appears as a tile of descriptors. A
context directory, can be opened using the standard system Open() routine with the additional bit
FDIRECrORY specified as a part of the requested file mode. Context directories are ordinarily opened ill
Fnl.OCK mode and re"d using the stnndard Read() routine.

One caveat is necessary here: an atteinpt to open a multi-manager context directory in this way will

V Programming IZl\Iarch 1986

Naming

currently fail with the error code MORE_REPI JES. since such context directories are modelled as multiple
files. one per manager. See section 34 for a description of the protocol used to reliably open all partitions of a
multi-manager context, or the 11 s td 1 r program for a sample implementation.

One can also read or modify an individual object descriptor using the following functions:

5ystemCode NReadDescr1ptor(name. desc) .j

char -name:
Arb1traryDescriptor -desc:

Read an object's descriptor, specifying the object by name.

•. .J '".1

SystemCode ReadDescr1ptor(serverpid. 1nstance1d. desc)
ProcessId serverp1d; ,
Instanceld 1n~tance1d;
Arb1traryDescr1ptor -desc: ;, '.! \

Read the descriptor of the object from which. the specified instance was created.

5ystemCode NWr1teDescr1ptor(name. desc).
char -name;
Arb1traryDescr1ptor -desc;

Write an object's descriptor. specifying the object by name.

SystemCode Wr1teDescr1ptor(serverp1~. 1nstance1d. desc)
Processld serverp1 d: I •• ;;

InstanceId 1nstance1d;
Arb1traryDescr1ptor -desc:

Write the descriptor of the object from which the specified instance was created.

25.3. Local Names or Aliases

SystemCode Def1neLocalName(localname. truename)
char -local name. -truename:

Defines a local alias "[1 oca 1 name)" for "truename". which must be the name of a context. If truename
does not begin with a square bracket. it is first mapped in the current context to get an absolute name before
the alias is defined. The alias is local to the tcam defining it. and is inherited by tcams it creates.

5ystemCode Undef1neLocalName(name)
char -na ... ;

Undefincs a local alias.
: ;);

. ... '" i i . ~ :

char -ResolveLocalName(name)
char -name;

Returns the stored absolute name for the given local alias. The returned string should not be modified, and

V·System 6.0 I~er('r('nt(' Manual

'. '

Local Names or Aliases 25-3

will be freed if the name is leiter redefined, so beware.

ClearLocalNames()
Undefincs all local aliases for this team. It may be useful to call Pr1meCache() after calling this routine, to
reinsen definitions for the system standard aliases.

SystemCode Def1neTempArea()
If the local name [tmp] is not already defined, this function selects an appropriate place to store temporary
files and defines [tmp] to point to it lbe function returns OK if successful, else a standard system code
describing the problem.

25.4 .. Naming Protocol Routines

Processld NameSend(req)
NameRequest ·req;

Sends off the given request message, with the destination determined by the name given in the message. The
given name must be a null-terminated string: NameSend() neither examines nor sets req-)namelength.
Like Send(). NameSend() returns the pid of the replier, and modifies its argument to hold the reply
message. GetRep ly() can be used if additional replies are anticipated.

SystemCode GetAbsolUiteName(namebuf. namelength, context)
char namebuf[]:
unsigned namelength:
ContextPa1r ·context:

Accepts a null-terminated OIllme in namcbuf. possibly a relative name or 1()Q11 alias. and modifies it to return
the absolute name. The size ofnamebufis passed in as namelength. If the name specified an existing context,
its context identifier is returned. as with GetContextldO. otherwise context-)pid is set to O. The given name
need not correspond to any (!xisting object, as long JS it is unambiguous what server would implement such an
object if it did exist, and what its absolute name would be.

SystemCode GetF11eName(namebuf, namelength, serverp1d, 1nstance1d)
char namebuf[]:
unsigned namelength:
Processld serverpid:
Instanceld 1nstance1d:

Returns the ahsolute name Ihr the sp<.'Cilied file instance in namebuf. The maximum name length is passed
in name 1 ength. GetContextName () returns OK if the mapping was successful. or a standard system
error code if a failure occurred.

SystemCode GetConte)C:tId(name. context)
char ·name:
ContextPa1r ·context:

Interprets the given name in the current context, and returns a corresponding <process-id. context-id) pair,
suitable for caching. The fillnction returns OK if successful. or a standard system error code if an error is

V ProgranamiRl lZMarch 1986

25-4 Naming

detected, such as the given name specifying an object that is not a context. .

Callers should recognize that the ContcxtPair may become invalid at any time, usually due to the server that
issued it crashing and restaning with a different pid

SystemCode GetContextName(namebuf. namelength. context)
char namebuf[]:
unsigned namelength:
ContextPa1r context:

The inverse of GetContextld(). Returns the absolute name for the given context in namebuf. The
maximum name length is passed in namelength. GetContextName() returns OK if the mapping was
successful, or a standard system error code if a failure occurred

1nt IgnoreRetry(req, p1d. segbuf, segs1ze, .erverp1d)
register MsgStruct ·req:
Processld p1d, serverp1d:
register char ·segbuf:
register unsigned *segs1ze:

This routinc is intended for use only by servers that implement the naming protocol. not for clients that use it.
It determines whcther the callcr is one of the servers that should ignore thc givcn request req (probably a
CREATE_INSTANCE_RETRY). returning 1 (true) if so, 0 if not. It assumes there is a o-terminated list of .
pids beginning at req-)segPtr in the client's address space, and returns true if the given serverp1 d is on
the list. If an appended segment was received. segbuf and *segs 1 ze should indicate its location and size.
This routine may read in more of the segment: if so, it alters the segs tze parameter to reflect what it read.
The routine assumes segbuf points to an area of at least MAX_APPENDED_SEGMENT bytes.

25.5. Di rect Name Cache Manipulation

The following routines arc used internitlly by NameSend() and thc local alias manipulation functions.
Thcy are not ordinarily called directly in user programs.

NameCacheEntry *NameCacheAdd(pref1x, length, from, to, truename, flags)
char *pref1x, *truename:
ContextPa1r from, to:
unsigned short length, flags:

Adds a ncw entry to thc name prefix cache and return a pointcr to the ncw cache record. The cache record
format is defined in the standard header file <Vnamecache.h>. If a cache entry already exists for the givcn
prefix. it is deleted. Returns NU LL if no memory is aVf.lilable to allocate a cachc record. .

The pref1 x "rgument givC8 the namc prefix tp be f.ldded. and 1 ength is its length (nut counting the
terminating null byte, if any). 'lbc prefix is intcrpreted relative to the frOID context i.Uld must namc the to
context.

Thc fl ags may be any combination of the followirig bits:
• DONT_FI...USH

rnle cache entry will never be flushed, ev·cn ifthc specified context-pair becomes invalid.

• ALIAS .
rIlle cachc entry specifics a local alias. In this case, pref 1 x is the alias. while truename is the absolute
name to which the alias maps. .

V·SyslclII 6.0 RererenC'e Manual

Direct Name Cache ManipulatioD

• LOG ICAl_PID
The prncess-id portion of the specificd to context is a logical pid. NameSend() will perform a
"GetP 1 d () with scopc ANY _PIO each time it attempts to use this cache entry. NOTE: This fealure is
provided for backward compalibilily willi servers Ihal implement the naming protocol of V version 5.1 and
earlier. II will be removed in afulure V release.

NameCacheEntry -NameCacheLookup(name, context)
char *name:
ContextPa1r context:

Checks whether any prefix of thc given name matches a cache entry. A pointer to the cache record containing
the longest matching prefix isretumed. If there is no match, NUll is returned. A prefix match is defined as
all the characters in the prefix matching the corresponding characters in the given name, plus the given name
containing a delimiter immediately "following .the match.

SystemCode NameCacheDelete(cacheEntry)
NameCacheEntry ·cacheEntry:

Delctes the specified name cache entry. NOT_FOUND is rcturned if cacheEntry does not point to a
record currently containcd in the cache; otherwise OK is returned.

Pr1meCache()
Adds a standard set of wclt .. known contcxt names and aliases to the name cachc. Nonna1ly callcd only once
by thc'first tcam, but also useful after a call to Cl earLoca 1 Names ().

25.6. Environment 'Variables

The V-Systcm implcmcnts charactcr-string cnvironmcnt variables, much likc those in UNIX. In V, a
process may set variables in its own environment as well as rcading environmcnt variables inhcritcd from its
creator.

By dcfault. cnvironmcnt variables arc global to a tcam. The root process of a tcam begins with an
cnvironment variable list inheritcd from its creator (through its team environment block). 1\ newly created
proccs.~ initially shares the environment variablc list of its creator. 1\ process may separatc its environment
variable list from that of its parent by allocating a new list head of type (EnvironmentVariable *), setting
PcrProccs.')-)env to its addf(~. and assigning it a value- typically cither NULL, indicating an empty list, or
the result of copye nv (old 11 s t) (sec below). "

char -getenv(var)
char *var;

Returns the value of the given environment variable, or NULL if it is undefined. 'Ibc returned string should
not bc moditied.

setenv(var, value)
char -var t -value:

Sets the given environment 'variable to the given valuc, or if value is NULL. sets the variable to be undefincd.

V Progr:llmmiRl 12 March 1986

25-6 Naming

Env1ronmentVar1able ·copyenv(oldl1st)
EnvironmentVar1able ·01dl1st;

Makes a fresh copy of the environment variable chain beginning with 01 d11 at, and returns a pointer to the
first entry. Useful if a process wants to separate its environment from its parent's. The 01 d11 st argument
should be the value (not the address) of the parent's environment list head.

clearenv()
Removes the definitions of all environment v,ariables.

V·Syslem 6.0 Rererence Manual

26-1

-26-
Numeric and Mathematical Functions

26.1 ~ Numeric Functions

Most of the functions in the numeric section of the library are not called directly in user programs; they are
accessed by the C compiler as needed. The following functions are useful in user programs:

unsigned abs(value)
1nt value

Integer absolute value.

int rand()

Random number generator. Generates pseudo-random numbers in the range from 0 to 231_1. This is. a very
poor generator, identical to the one provided in Berkeley Unix 4.1. .

srand(seed)
unsigned seed:

Reseed the rand() random number generator.

26.20 Mathematical Functions

The math-related functions in the V library are listed below. 'Illey are similar to the "section 3M" functions
of the Unix library. See the Unix manual for documenultion.

sine) cos() tan() asin()
acos() atan() atan2() sinh()
cosh() tanh() jOe) j 1()
jn() yO() yl() yn()
hypot() cabs() ganvna() fabs()
foote) cail() expel loge)
log10() pow() sqrt()

V I'rogr:unmillR 12 March 1986

27·1

-27-
Pr~cesses and Interprocess Communication

The V kernel supports processes as abstractions, with operations for process management and interprocess
communication. Several processes may share an address space on one host Processes sharing an address
space are collectively referred to as a team.

The V kernel also supports the concept" of a process group. Any process may create a new group and
processes may join or leave a group. Most functions that operate on a process also operate on a process group.
This is achieved by specifying a group identifier in place of the process identifier. 'Ibus. for example, to
destroy all (he processes in the group specified by groupid, the function DestroyProcess(groupid)
can be invoked. (A single pmcess can be viewed as a special process group: a group with just one member.
with the process identifier serving as the group identifier.)

Similarly, messages may be sent to a group of processes, simply by addressing them to a group identifier.
Typical usages of group communication arc Ilotification (e.g. to notify other processes of some event) and
query (c.g. to locate a specific server). With local area networks providing broadcast and multicast facilities in
hardware, group communication can be significantly more efficient than using repeated one-to-one
communication. .

lbe process and interproc:ess communication-related functions in the V C library provide services and/or
interfaces between processes and the V kernel. '[bey have no direct analog in the standard Unix C library.
These functions provide a convenient interface to kernel-provided services. Some of the functions execute
kernel trap instructions, whHe others send messages to the kernel-server inside the kernel.

A kernel operation executes as a single indivisible function call as far as the C programmer is concerned.
Each kernel operation takes .zero or more arguments and returns a single value.

In the descriptions below. the active process or invoking process always refers to the process that executed
the kernel operation.

Some operations such as Se(l'eamPriority and Se(rime are intended to be used only by "operating system"
or management procC5.'iCS and should not be used by upplication programs.

'Ill is chapter is divided into four sections: 1) process-related kernel operations, 2) other process-related
functions, 3) process group related kernel functions and 4) interprocess communication-related functions.

27.1. Process-Relajted Kernel Operations

SystemCode ClearMod1fedPages(pid)
Processld p1d:

Clears the dirty bits for all pages in the address space in which the process specified by p 1 d resides.

Processld CreateProc8ss(priority. in1t1alpc. init1alsp).
short priority; char *1nitialpc. *1n1t1alsp:

Crcate a new process with the specificd priority. initial program counter and ilTitial stlck pointer and return its
unique process identifier.

V l-..ogrnmmil1R 12 Man'h 1986

27·1 Processes :and Interproc:css Communication

lbc priority must be between 0 and 255 inclusive. with 0 tbe highest priority. (Sec the discussion on
priorities with the description of QueryProcessPrior1ty().) initialpc is the address of the first
instruction of the process to be executed outside of the kernel. Generally, initialsp specifics the
initializati.on of the stack and general registers and is processor-specific. In the case of the Motorola 68000,
1 nit 1 a 1 s P is a simple long word value that is assigned to the user stack pointer.

The process is created awaiting reply from the invoking process and in the same team space. The segment
access is set up to provide read and write access to the entire team space of the newly created process. The
creator must reply to the newly created process before it can execute. If there arc no resources to create the
process or the priority is illegal. a pid of 0 is returned.

Usually programmers will'prefer the Create() call describeC1 tater in this chapter.

ProcessId CreateTeam(prior1ty. in1t1alpc, in1t1alsp. lhost)
short priority; char ·1n1t1alpc, ·1n1tialsp: ProcessId lhost

Create a new team with initial or root process having the specified priority. initial program counter, and initial
stack pointer. 1 host specifies which (existing) logical host the new team should be placed into. A value oro
specifies the logical host of the invoker.

CreateTeam() is similar to Cre.teProcess() except the new process is created on a new team. The
new team initi"Uy has a null team space. It is intended that the creator of the team will initialize the team
address space and root process state using SetTeamSize(). MoveTo(), and Wr1teProcessState().
pr 1 or 1 ty must be a value between 0 and 255.

CreateTeam returns 0 if there arc no resources to create the team or the root process, or the priority is
illegal.

Warning: CreateTeam() will be restric~ed to the first team in the near future.

ProcessId Creator(pid)
ProcessId p1d:

Return the process id of the process that created pi d. If pi d is lero. return the creator of the invoking
process. If P 1 d docs not exist or is the root process of the initial team. return O.

SystemCode DestroyProcess(pid)
ProcessId pid;

Destroy the specified process and an processes that it created. When a process is destroyed, it stops executing,
its pid becomes invalid. and all processes blocked on it become unblocked (eventually).
lIDes troyProcess () may also be used to destroy a process group by specifying a group identifier with
p1d. DestroyProcess() returns OK ifpid if successful. else a reply code indicating the reason for
fhilufe. Des troyProcess (0) is suicide. If pi d specifies a process group. then all proces.liCs in that group
(anu lheir deS(;cnd,mLS) arc destroyed.

Usually programmers wi1l prefer the lDestroy() call described later in this chapter.

ProcessId GetObjectOwner(objectP1d)
ProcessId objectPid:

Return the proccss-id of the owner of the spccifed object Currently the only type of object supported is a

] IProccsscs blocked on a nonexistent processes are detected and unblocked by Ute clock. interru~t routine checking periodically.

V'Sysll'm 6.0 I~d('rl'nce Mimual

Process·Related Kernel Operations

team. ~nlUS objectP1 d must specify a process on the team whose owner is desired.

ProcessId GetP1d(10g1cal1d, scope)
1nt 10g1cal1d. scope;

17·3

Return the pid of the process registered using SetP1d() with the specified 10g1cal1d and scope, or 0 if
not set.

The scope is one of:
LOCAL_PID Return a locally registered process only.

ANY _PI 0 Return a local or remote process.

If log 1 cali d is ACTIVE_PROCESS. the pid of the invoking process is returned. If the scope is any, the
kernel first looks for a locally registered process: if one is not found. the kernel broadcasts a request for a
process identifier registered as this logical id to other workstations running the V kernel on the network. In
this way. a kernel can discover the process identifiers of the standard server processes from other kcrnels. or at
least from the kernel that is running the server process of interest.

Note: GetP1d() and SetP1d are being phased out. New programs should use the group communication
facility instead. The REMOTE_PID scope available in previous releases is no longer supported.

ProcessId GetTeamRoot(p1d)
Processld p1d:

Return the process identifier of the root" process of the team containing p 1 d. or zero if p 1 d is not a valid
process identifier. A p 1 d of zero specifies the invoking process.

char -GetTeamS1ze(p1d)
Processld p1d:

Return the first unused location in the team space associated with p1d. asset by SetTeamS1ze(). Ifp1d is
lero. the size of the invoking process's team is returned. If p 1 d docs not exist. 0 is returned.

QueryKernel(p1d. groupSelect. reply)
Processld p1d: 1nt groupSelect; Message feply:

Query the kernel on the host where process p1d is resident. A p1d oflero specifies the invoking process's
kernel.

The groupSe 1 ect field specifies what information is to be returned in thc rep ly message. The available
group selection codes are MACHINE_CONFIG. to return infhnnation about the processor configuration,
PERIPHERAL_CONFIG, tlO return a list of peripherals available on the machine. KERNEL_CONFIG. to
return the kernel's configuration flarameters. MEMOI~Y_STATS. to return memory usnge stllistics. and
K HR N ~~L_ST"TS. to return other kernel sl41tistks. 'Ill($e codes. and the correspunding structures that may
be returned. are defined in the standard header me <Vquerykernel.h).

SystemCode QueryProcessorUsage(p1d. usage. tusage)
Processld p1d; unsigned ·usage. ·tusage;

Return the time allocated so fhr by the processor to process pi d in ·usage and return total for the entire
team in *tusage if tusage is non-i',ero. Time is returned in "clicks". If p1d is zero. the time for the
invoking process is returned" If p 1 d is equal to the logical host name (LHN) shifted left by 16 bits, the time

V Programming 12 Mar('h 1986

27·4

allocated to the idle process is returned.

The function itsclf returns a rcplycode indicating success or otherwise.

unsigned short QueryProcessPr1or1ty(pid)
Proces~Id p1df

Processes and Interproccss CommunicalioD

Returns the composite priority of the process with p 1 d. Api d of zero specifies the invoking process. If pi d
docs not exist, 0 is returned.

The 16 bit composite priority field of a process effectively consists of two concatenated 8 bit fields. The
higher-order field contains the team priority: the lower-order field the process priority within the team.
These are initializcd when the processes are created (sec Create Process () and CreateTeam()} and
may be manipulated with SetProcessPr1or1ty() and SetTeamPr1or1ty(}. The ready process with
the lowest number in its composite priority field runs.

ProcessId QueryProcessState(p1d, pb)
Processld p1d; ProcessBlock ·pb;

Copy the state of the process into the structure pointed to by pb. The various fields in the structure are
defined in <Vprocess.h). Their meaning.~ should be self-explanatory.

The message buffer is only available if p 1 d is the invoking process or is awaiting reply from the invoking
process. If not. thc appropriate fields in the structure arc zeroed.

If p 1 d is zero, the process state of the invoking process is returned. If p 1 d docs not exist, 0 is returned;
otherwise. p 1 d is returned.

ProcessId ReadProcessState(p1d, state)
ProcessId p1d; Processor_state ·state:

Copy the machine-specific processor st41te into the structure pointed to by state. The information returned
is a subset Ofth,lt returned by QueryProcessState().

If pi d is zero. the processor state of the invoking process is returned. If p 1 d docs not exist. 0 is returned;
otherwise. pi d is returned.

. ,

SystemCode ReturnModif1edPages(pid; buffer, bufferlen)
ProcessId p1d; unsigned buffer[266]; unsigned ·bufferlen

Clears the modified bit of each pagc table entry for the team sped fied by p 1 d. Returns the ,starting address of
each page of mcmory in thc tcam whose modified bit wac; on before being cleared. The size of the buffer may
not be sufficicnt to contain the si(lrting address of al1 dirty pages in the tcam's address space, although it
should be suflicient for must. The operation docs not clear the modified bit of any page whose st41rting
address it cannot place in the invoker's buller. Thus. the invuker need simply reinvokc
ReturnMod1f1edPages to continuc with the the uperation if the return code indicates that more dirty
pagcs might be outstanding. This is indicated with a return codc of Rl:-:-rRY instead of OK. '111e last valid
page addrcs.c; returned is delimited by a NULL word in the case where the buffer is not completely filled.
bufferlen returns the number of modified page addresses returned in buffer.

1nt SameTeam(p1dl, p1d2)
Processld pidl, p1d2:

Return true (nonzcro) if the processes specificd both exist and are on the same team; otherwise rcturn false.

V·System 6.11 Udtrencc Manual

Process·Related Kernel Operations n·s

If either pid is zero, the invoking process is assumed.

SetObjectOwner(objectP1d, newOwner)
ProcessId objectPid, newOwner:

Set thekemel-maintained owner of the object specified by objectP1 d. Currently the only type of object
supported is a team. Thus objectPi d must be the pid of a process on a particular team. Ownership of a
team implies that unrestricted access to the team's address space using MoveTo and MoveFrom operations
without having a process in the team first send a message to the owner.

SetP1d(10gical1d, p1d, scope)
1nt 10gical1d, scope; Processld p1d:

Associate pi d with the specified logical id within the specified scope. Subsequent calls to GetPi d () with
this log 1 ca 1i d and scope return this pid. This provides an efficient, low-level naming service.

The scope is one of:
LOCAL_PI 0 Register the process locally.

Register the process globally.
The local scope is intended for servers serving only the local workstation. The any scope permits both local
and remote access. .

Note: GetPid() and SetP1d are being phased out New programs should u~ the group communication
facility instead. The REMOTE_PID scope available in previous releases is no longer supported.

SystemCode SetProces:sPriority(p1d, priority. decay)
ProcessId pid; unsigned short priority, unsigned decay:

Set the priority ofproccss pid to priority. Ifpid is zero the priority of the invoking process is set to
priority. priority may be any in~eger between 0 and 255. (Sec QueryProcessPriority() for a
discussion of process priorities.) If decay is nonzero. the priority is incremented every decay "clicks" until
it reaches 255.

SystemCode SetTeamPr'iority(pid. priority)
ProcessId pid: unsigned short priority;

Set the team priority of the team associated with pid to priority. If pid is zero the priority of the
invoking process's team is set to priority. prior'lty must be an integer between 0 and 255. (Sec
QueryProcessPrior1tyl() for a discussion of team I>riorities.) Teams with priori ty 254 or 25S do not
run.

SetTeamPriority() changes the absolute scheduling priority of each pr()Cess on the team hy modifying
the team priority lield of the composite priority fur each process. This operation is intended for
implementing macro-level scheduling and is restricted in use to the first team. OUler teams should use
ChangeTe8mPr10rity() to request special scheduling service.

char ·SetTeamSize(pid. addr)
Processld pid; char ·addr:

Sctc; the first unused' address for the team containing pid to addr. The new teitm si1,e may be either greater
or smaller than the previous size. The new team size is returned: this wi11 normally,be equal to addr. If there

V '"'rogranaming 12 March 1986

27·6 Processes and Interproccss CommuaiC3tion

was not.cnough memory available to grant the reques~ the return value will be tess than addr: if addr was
below the starting address for team spaces on the host machine, the team space will be set to null and its
starting address will be returned. Thu~ Se t Ta amS i ze (p 1 d. 0) is a machine-independent way of setting a
team space to null.

A pid of 0 specifics the invoking process. Only the creator of the team or members of the team may change
the team size and (consequently) the specified process must be local.

int ValidPid(p1d)'
Processld pid:

Return true (nonzero) if pi d is a valid process or group identifier; otherwise return false.

Processld Wr1teProcessState(pid, state)
Processld pid: Processor_state -state:

Copy the specified process state record into the kernel state of the process specified by pid and return p1d.

TIle specified process must be the invoking process, or awaiting reply from the invoking process.
Wr1teProcessState() returns 0 if the process docs not exist. is not awaiting reply or there is a problem
with the state record. The kernel checks that the new state cannot compromise the integrity or security of the
kernel.

A p 1 d of 0 specifics the invoking process. A process that writes its own processor state affects only the
machine-independent per-process area inform~tion kept as part of the state record (see section 18.4.3).

27.2. Logical Host-Related Functions

Processld CreateHost(prior1ty, 1n1t1alpc. initialsp)
short priority; char -1nttialpc. -init1alsp; Processld lhost:

Create a new team in a separate logical host with initial or root process having the specified priority, initial
program counter. and initial stack pointer. 'Illis routine is the same as CreateTeam except that a new logical
host is created for the new team.

SystemCode DastroyHost(pid)
ProcessId pid:

Destroy the logical host in which the process specified by pi d resides. . When a process that is frozen is .
destroyed. any queue local IPC operations on it will be re-execllted rather than returned with a failure status
code. Also, queued reply messages will be forwarded rather than simply destroyed.

SystemCode ExtractHost(pid, optype, buffer, length)
ProcessId p1d: int optype; char ·~uffer; unsigned -length:

Extract the kernel descriptor in formation for the logical host in which the process p 1 d resides and place it in
the buffer pointed to by buffer. 1 ength specifics the size of buffer provided on invocation and returns the
size of the descriptor infonnation returned. This operatiun can only be invoked on local logical hosts.
optype is either the m,mifcst conswnt QUERY!!OST£ASE or ~XTRACT!!OST£ASE (specifed in
Vm1 grate'. h). 'l1le former indicates that only summary information should be returned on the number of
processes. te"lllS and memory uscd by the logical host. rille is returned in a HostResourcesRec structure,
as defined in Vm1grate. h. '1l1e latter optype indicates that the full kernel descriptor inrormalion for the

V·Sysll'1II6.0 Ul'fl'rl'ncl' Manual

l.ogicalllost·Rclalcd Functions 27·7

logical host should be returned. The fuJI descriptor information returned is not intended to be interpreted
outside the kernel and shouJd only be used by the TransferHost oper~tion to be reinstalled into another
m~chine's kernel.

SystemCode FreezeHost(pid)
Processld p1d:

Freeze the logical host in which pi d resides so th~t its address spaces and the kernel smte ~ssociated with its
teams and processes are not modified. This will cause all kernel operations on the logical host to be deferred
and the priority of the teams in the logical host to be set to non-runnable.

SystemCode TransferHost(pid. buffer. length)
Procossld pi d: char -buffer:· uns 1 gned 1 ength

Takes the kernel descriptor information generated by ExtractHost and installs it into an existing logical
host that must have an equivalent number of teams already in it. Furthermore. the teams must have only a
root process in them. The existing logical host is renamed by this operation to be the logical host specified in
the descriptor inform~tion. as are all the teams in it. The result is a logical host that is equivalent to the one
described in the descriptor information and the effective deletion of the "blank" logical host that was used as
an installation base. The owner of the "new")ogical host is the invoker of the operation.

SystemCode UnfreezeHost(p1d)
Processld p1d:

Unfreeze the logical host in which pi d resides. All deferred kernel server and IPC operations are executed
and the priority of lhe teams in the logical ho&t are set to their previous runnable values.

27.3. Other Process-Related Functions

Processtd Create(priority. function. stacksize)
short pr1ority: char ·function; unsigned stacks1ze

Create a new process executing lhe specified function with the specified priority and stack size. The new
process is blucked. waiting for a reply from the creator. loe function Ready() should be used to start the
process running. The new process is on the same team as its creator, and inheriLS the creator's standard input.
output. and error files, and the creator's current context (current working directory).

Create returns the pid of the new process. or l.ero if a process could not be created. '111is function is
usually preferable to calling the kernel operation CreateProcess() directly.

ProcessId Ready(pid. nargs, al ••••• an)
Processld pid; unsigned nargs; Unspec al ••••• an:

S~t up the stack of the sp(~i tied proccs.~ and reply to it. thus placing it on the ready queue. 'nle values a 1.
o 0 o. an appear as arguments to the root function of the new process, while nargs is the number of
arguments passed. Zero is returned if there is a problem, else pi d is returned.

Destroy(pid)
Processld p1d:

V .'rogramnaing 12 March 1986

27·8 . Processes ud latcrprocess Communicallo.

Destroy the specified process. If the destroyed process was on the same team as the invoking proc~ the
memory allocated to its stack by Create() is freed. Warning:. Do not invoke Oestroy() on a process that
was not created by Create(); use OestroyProcess() in that case. .

SU,icide()
Destroy the invoking process and free its stack. Suicide() is identical to Oestroy(O), and the same
warning applies.

exit(status)
int status:

Tenninate the execution of the team (i.e., program), after closing all open files. The status is sent to the
creator of the team requesting tennination. 'lbus. using the V executive, conU'OI is returned to the command
interpreter. In bare kernel mode, control is returned to the PROM monitor.

abort()
Abort execution of the team by causing an exception in the calling process. This routine can also be called
with parameters. If it is, the standard exception handler will interpret the first parameter as a pointer to a
printt-style fonnat string. The other parameters will be interpreted as values to be printed using that
string. In an effort to keep the standard exception handler simple and robust. the number of Is's in the
fonnat string must not exceed 8, nor may any of the strings (either the for:mat string or strings to be printed)
exceed 128 characters in length.

'1le fonnat specifier Iz is included in addition to the usual specifierS. Iz will interpret its argument as a
Syste.Code. and print the rcsultofrunning ErrorString with that code as its parameter.

ChangeTeamPriority(pid. priority)
Processld pid; short priority:

Set the priority of the team in which process pid resides to priority. Ifpid is 0 then the invoking process
is implied. priority must be one of the manifcstconstant~: REAL-TIMEI tluuugh REAL-TIMPA (of
which REAL-TIMEl is the most privileged priority). FOREGROUND. UACKGROUND. GUEST" and
STQP-TEAM-PRIORITY. ·111e first team runs at priority REAL-TIME3. locally invoked foreground
programs nan at FOREGROUND, locally invoked concurrent (&,) programs run at BACKGROUND, and
remotely invoked programs run at GUEST priority. STOP-TEAM - PRIORITY makes the processes of a
team nonrunnable. FOREGROUND. BACKGROUND. and GUEST programs are time-sliced in a round
robin scheme. with lower priority teams only getting the, time slice if no 'higher priority teams exist
Management of team priorities is done by the team server, which uses the privileged SetT8 Pr1ority
kernel operation to actually change team priorities.

27.4. Process Group Operations

GroupId CreateGroup(in1tia'_.ember, type)
Processld initial_member: unsigned type:

Create a new gmup of the specified type (UNRFSTRICrED_GROUP_RI'I11.0CAI._GROUP_81T) and
make initial_umber the lirst member. ·1l1e invoking process is made the first member ufthe process
group if initial_member is O. If the UNRESTRICI'ED_GROUP_BIT is set in tlpe, then .my proc~
may join the group, otherwise only processes of the same user may join. One can specify that only processes

V·S,slem 6.0 Rc:rertn(,c Manuat

Process Group OpcratioDS 27·9

on the same host as init1al_member may join the group with the LOCAL_GROUP_BIT bit in type,
thus allowing certain optimizations. 1 nit 1 a l_membe r may also specify a process group. in which case
every member of 1 nit 1 a l_mempe r becomes a member of the newly created group.

Returns the group id of the newly created group if successful, 0 otherwise.

SystemCode JoinGroup(groupId, pid)
GroupId groupId; ProcessId pid:

Add the process or process group speci.fied by pid to the process group groupId. Group group1d must
exist Well known groups are defined in the include file <Vgroupids.h). If p1d is O. the invoking process is
added to the group. If p i d specifies a process group. every process of that group joins the group spccified by
group 1 d. Returns OK if successful, else a reply code indicating the reason for failure.

SystemCode LeaveGroup(groupId. pid)
GroupId groupId; ProcessId pid:

p1d leaves the process group with group id groupicJ. Ifp1d is O. the invoking process leaves the group.
Again. pi d may either specify a process or a process group.

SystemCode QueryGroup(groupId. pid)
GroupId groupId; ProcessId p1d:

Query the kernel to see if pi d (the invoking process if pi d is 0) would be allowed to join the group with the
specified groupId. Returns OK if so. otherwise NO_PERMISSION ifnot allowed. DUPLICATE_NAME
if already in, and NOT_FOUND if group docs not exist (not at leaSt one member located).

27.5. Interprocess Communication

1nt Await1ngReply(frompid. awa1t1ngp1d)
Processld fromp1d. wait1ngp~d:

Return true (nonzero) if awa it 1 ngp i d is awaiting reply from fromp 1 d; otherwise return lalse.

SystemCode ForceExcept1on(pid)
Processld p1d:

Causes process p 1 d to send an exception message to the .exception server. The' exception type is
FORCEEXCEPTION.

SystemCode ForceSend(msg. fromP1d. toPid)
Message msg; ProcessId fromP1d. toPid:

Force process fromP1d to send msg to process'toPid. ForceSendcannot be reinvoked on a process until
the first invocation is tenninuted by replying to the process. I.e. there can only be at most a single
ForceSend in effect for any given process.

ProcessId Forward(msg. fromp1d. topid)
Message msg; ProcessId fromp1d. top1d:

V .troJtramming 12 l\1:Irch 1986

27·10 Processes and Interproccss Commuuicatiol

Forward the message pointed to by msg to the process specified by topid as though it had been sent by the
process fromp 1 d.

The process specified by fromp1 d must be awaiting reply from the invoking process. The effect 'of this
operation is the same as if fromp 1d had sent directly to top 1 d, except that the invoking process is noted as
the forwarder ofthemcssage. Note that Forward() does not block.

Forward(). returns iopid if it was successful, 0 if unsuccessful. If top1d is invalid. frompid is
unblocked with an indication that its Send() failed. (Namely, the Send() returns zero, and the reptycode
field of the reply message is set to BAD_FORWARD.)

ProcessId Forwarder(pid)
ProcessId pid:

Return the process id that forwarded the'last message received from pi d, providing pi d is stilt awaiting reply
from the invoking process. If the message was not forwarded, pi d is returned. If pi d does not exist or is not
awaiting reply from the invoking process, 0 is returned. If the last message received was sent to a process
group, F 0 rwa rde r () returns the group identifier the m~ge was sent to.

ProcessId GetReply(msg. timeout)
Message msg: int timeout:

Returns the next reply message from a group Send() in msg and returns the process identifier of the
replying process. If no messages are available within the timeout period, GetReply() returns O. A typical
message transaction thus consists of a Send() (which returns the first reply) fol1owed by any number of
GetReply(). However. all replies for a message transaction are discarded when the process sends again,
initiating a new ;ncssage transaction. (Note: Many library routines, such as pr 1 nt f () are implemented with
message passing primitives. thus ending the last message transaction when they are called.) The timeout is
given in clicks.

SystemCode MoveFrom(srcpid. dest', src, count)
Processld srcp1d; char -dest, -src: unsigned count:

Copy count bytes from the memory segment starting at src in the team space of srcp1d to the segment
starting at dest in the invoking process's space, and return the stan<L1rd system reply code OK.

Unless the invoker is the owner of the team in which srcpi d resides. the srcp1 d process must be
awaiting reply from the invoking process and must have provided read acccs.~ to the segment of memory in its
space using the mcs.~ge fonnat conventions described for Send(). MoveFrom() returns a standard system
reply code indicating the reason for failure if any of these conditions are violated.

SystemCode MoveTo(destpid. dest. src, count)
Processld destp1d; char -dest, -src: unsigned count:

Copy count bytes from the segment starting at src in the invoking proccs.,,'s team spnce to the segment
starting at des t in the team space of the des tp 1 d process. and return the standard system reply code OK.

Unless the in,'oker is the owner of the team in which srcpid resides. the destp1d process must be
awaiting reply from the invoking process and must have provided write access to the segment of memory in
its sp41ce llsing the message fonnat conventions described under Send(). MoveTo() returns a standard
system reply code indicating the reason for failure if any or these co~ditions are violated.

Processld Rece1ve(msg)

V·SY!ltcm6.0 Rercrence Manual

, Interproccss Communicatloa 17·11

Message msg;
Suspend the invoking process until a message is available from a sending process, returning the pid of this
process, and placing the message in the array pointed to by msg. To determine if the message was sent to a
process group see Forwarder().

Proceilld ReceiveWithSegment(msg. segbuf. segsize)
Message msg: char ·segbuf; unsigned ·segs1ze:

Suspend the invoking process until a message is available from a sending process, returning the pid of this
process. and placing the mes.sage in the array pointed to by msg and at most the first ·,egl1ze bytes of the
segment included with the message in the buffer starting at segbuf. The actual number of bytes in the
portion of the segment received is returned in ·,egs1ze. (Note: This may be zero even if a segment is
specified in the message.) Additional parts of the segment specified in the message may be transferred with
MoveFrom().

Processld ReceiveSpecif1c(msg. pid)
. Message mig: Processld p1d;

Suspend the invoking process until a message is available from the process pi d or from a process in the
process group specified by pi d, returning the pid of this process, and placing the message in the array
pointed to by msg.

If pi d is not a valid process or group identifier, Rece 1 veSpec 1 f 1 c () returns O.

Processld Reply(msg. pid) .
Message msg: Processld pid;

Send the specified reply message to the process specified by p1d and return pid.
The specified process must be awaiting reply from the invoking process. Zero is returned if the process

docs not exist or is not awaiting reply. ~ote: Messages that have been received but not replied to consume
kernel resources until the receiver exits. Therefore. each process should invoke Rep 1 y () on every message it
receives. Ifno reply is required. then Reply() should be invoked with a m~1ge whose replycode is set to
DISCARD_REPLY. Such ,a reply mcssage is not delivered to the sender, but relcases kernel resources and
allows the sender to (eventlJ14llly) unblock (with a KERNEL_TIMEOUT error rcply code if no replies were
received at all).

ReplyW1thSegment(msg. p1d. src. dest. bytes)
Message msg; Processld p1d; char ·src. ·dest; unsigned bytes:

Send the specificd rcply message and segment to the process specificd by p 1 d and return pi d.

'1llC spccificd proccss must be awaiting rcply from Ute invoking proccs.". Zero is rcturncd if the process
do\.':; nut exist or is not awaiting rcply. Thc segment sizc is currently limited to 1024 bytes. A
ReplyWithSegment() with a nonzero segment size may only be used to rcply to an idempotent request
(o;ce Send(».

Processld Send(msg. pid)
Message msg; Processld pid;

(fpid specifics a single proc1css group. send thc mes.'klge in msg to the specified proccs.~. b10cking the invoking
process until the message is both receivcd and rcplicd to. Thc array specified by m$g is asslIlllcd to be 8 long
words. The rcply message overwrites the original message in the array.

V Programminl 12 March 1986

27·11 Processes and lnterprocess Communicatioa

If Send() completes successfully, it returns the pid of the process that replied to the message. The pid
returned wiJI differ from that specified in the call if the message is forwarded by the receiver to another
process that in tum replies to it If th~ send fails (for instance, because the intended receiver does not exist),
Send() returns the pid of the process the message was last forwarded to (the pid it was sent to, ifit was never
forwarded). The kernel indicates the reason for the failure by overwriting the first 16 bits of the message with
a standard system reply code. (This places it in the rep/ycode field for reply messages that follow the standard
system fonnat.)

If p 1 d is a process group identifier, the message is sent to all processes in the group on a beSI efforl basis and
Se n d () blocks until a first process replies. lbe first reply message overwrites the original message. Further .
replies of the current message transaction may be received with GetReply(). Send initiates a new message
transaction, effectively flushing all messages of the last transaction. •

All messages must follow the kernel message format conventions as follows. The first 16 bits of the message
are considered to be a request code or reply code. Some of -high-order 8 bits within request and reply codes
are assigned special meanings. and currently-unused bits within this sub field are reserved for future use. The
bit names given below arc defined in the standard header me <Venviron.h>.

REPLY_BIT is reset if a request message is being sent: set if a reply message.

SYSTEM_CODE is set if the request code or reply code is considered a standard system code. Applications
can use special request codes and reply codes internal to their programs but usc standard
ones for interfacing to other programs and the system.

Several other bits are interpreted with the following speciaJ meanings if the message is a request.

READ_81T is set ifrcad access is provided to a memory segment If this bit is set. the kernel interprets
. the last 2 words of the message as specifying a pointer to the start of the segment and the

size in bytes of the segment, respectively. '(be kernel then makes the segment a~ailable to
the rcceiving process using MoveTo and MoveFroll. .

WRITE_8IT is set if write access is provided to a memory segment The segment is specified as
described above. Both read and write access can be provided by setting both bits 4 and S.

DATAGRAM_SEND_8IT
Experimentally. the V kernel currently supports the concept of real-time communication.
In this mode. messages are communicated to a single process or a group of processes on a
best effort basis. A process will only receive the messc1ge if it is receive-blocked waiting for
it The send operation does nut block. llllls. one cannot reply to a reul-time send. This type
of communication is intended for situatiuns. where. fur example. a process continuously, in
regulur intervals. sends update infonnatioll to a group. 'Ibis mode of communication is
specified by setting the DATAGRAM_SEND_8ITofthe requestcode of the message.

It is intended and assumed that most requests can be ussigned a request code that is stored in the first 16 bits
of the request message; so that the bits are set correctly for the request by the value of the request code.

The following bits have speciaJ meaning in reply codes:

ANONYMOUS_REPLY _BIT
Reply as the forwarder of the mcs.'k1gc. This feuture allows proce~w.; to join groups and
reply to messages anonymously •.

REPLY _SEGMENl"_IlIT
Reply segment has been specified; If this bit is set in a call to Rep lyW1 thSeg (), the
kernel interprcts the last 2 words of the message as specifying a pointer to the start of the
reply segment and the size in bytcs of the segment. respectively.

1M M EDIATE_REPL Y _orr
Don't delay this reply. even if it is to c1 group send. If this bit is not sel replies to group
sends arc delayed slightly within the replying kernel to avoid swamping the sending kernel
with back-to-back packets.

V-System 6.0 Rererence Manual

28-1

-28-
Program 'Execution Functions

This chapter describes a number of routines related to program execution. Included are routines for
program loading and. execution, selecting hosts for remote execution of programs. excclltion of Unix
commands remotely on a Unix V server (see section 43), routines that provide compatibility with various
U nix program execution routincs, and other routines.

28.1. Program Execution

Proc.ssId LoadProgram(argv, hostSpec, r'tMsg. path. concurrent, error)
char ·argv[]: '* Program arguments (including name). *'
Select10nRec *hostSpec:

RootMessage *rtMsg:

'* Specifies the host to execute on.
(NULL .> default. i.e. local host) .,

: ~ .

~har.::.~p~th :
'* Root message to use. NULL .> default settings *' '* Search path to use for finding the program

, . , f: file. NULL indicates 'that the default should
be used •• , '* Specifies whether the program should be
owned by the system (concurrent • 1) or
by the user (concurrent • 0) •• ,

Sy~temCode ·error: '* Return code. *'

,int concurrent:
f .1'

LoadProgram() interacts with the team server on the specified host. to create a new team and load a
program imagc into the new team space. The program is placed in a separate te,lm ,md is set ready to run.

Thc' array argv contains pointers to thc ch,macter string arguments to be pas.'icd to the new tcam. By
convention. argv[0] should point to the name of the program. The last clement of the array must be a null
pointer.

The hostSpec argument is lIsed to select a host to execute the new program. If hostSpec is NULL, the
program is run locally. A~ternatively. hostSpec can be a pointer to a selection record. as defined by the
Se 1 eet 1 onRee structure in Vteams • h. In this cuse. if the TEAMSERVERI)ID field of the selection record is
non-zero. thcn this value is as.'iumed to be a pid of a team server on the desired host. I f. however. the
teamServerPi d field is zero. thcn a'n 'arbitrary' remote host is selected. according to the constraints
specified in the othcr field'S of the record. NOTH: This IIlcthod of host sciection is likely to c/ulIIgc ill future
releases of the system.

The rtMsg argument holds the root mCS&1ge'to be passed to the new team. "lis mCs.~1ge specifics file
instances to be used for stmdard input. output. and error. the team enviro"ment block. and some other
information. The tields in the message arc described in detail in section 18.4.1. If rtMsg is given as NULL,
then a 'default' root message is used (sec the description of the Oefaul tRootMessage() routine, below).

The concurrent argument specifics whether the team is to be "owned" by the process executing the
LoadProgram() call (if concurrent is zero) or hy the tcam scrver it'ielf(if it is nonzero). The team server
destroys any team whose owner ceases to exist: tilliS, programs tu be run "in the background" should be
flagged as concurrent

11l\'lnrch 1986

28·1 Program Exccution Functions

path specifics the search palh that is used to locate the code file for the program that is to be executed. A
search path is a character string consisting of a sequence of name prefixes separated by spaces. If path is
NULL, then the value of the "PATH" environment variable is used instead. or, if the "PATH" environment
variable is not set, the 'default' search' path. This default search path is "., [b i n J", which indicates that
the program code file is searched for first in the invoker's current context, and then in the [b 1 n] context.
(Note that the search path mechanism also involves checking for machine-specific program name suffixes, as
described in section 3.7.)

If the named program is not found, then the fexecute program is invoked instead. to attempt to execute
the program remotely on the server that is providing the invoker's current context. See section 3.4 for further .
~~~ . . 

Note: If argv[O] is an absolute name (that is, beginning with • ['), then a search path is not used, nor is 
the [execute program used in the case of a failed match. 

LoadProgram() returns the pid of the new team's root process. or 0 to indicate an error. A standard 
system code is return in the location pointed to by error. The new team can be staned running by replying 
to the pid returned, using the same root message as ~as passed to LoadProg. 

ProcessId ExecProgram(argv. hostSpec, rtMsg, path, status, error) 
char *argv[]: '* Program arguments (including name). *' 
SelectionRec *hostSpec: 

'* Specifies the host to execute on. 
(NULL .) default, i.e. local host) *' 

RootMessage *rtMsg; '* Root message to us •• NULL .) default settings -, 
char -path: ,- Search path to use for finding the program 

file. -, 
1nt -status; ,- Return code from program executed or NULL 

if the program is to be run concurrently. -, 
SystemCode -error: ,- Return code. -, 

ExecProgram() is like LoadProgram( ). except that it also starts the new team running (by replying to 
it). The arguments argv. hostSpec. rtMsg. path. and error arc the same as for LoadProgram(). 

If the status parameter is NULL then the program is run concurrently. otherwise the function waits until 
the program has lenninated and returns its exit status in statuI. 

Wa1t(p1d, status) 
ProcessId pid; 
1nt -status: 

Wait for the team whose root pid is specified by pi d to expire, and then return its exit status code in the 
location pointed to by status. 

DefaultRootMessage(rtMsg) 
reg1~ter RootMessage -rtMsg: 

'fl1is routine sets up the structure pointed to by rtMsg to be the 'defuult' RootMessage fbr any program 
that the invoker should load. In particular. the std 1 n, stdout and std 1 n servers and instance ids are set to 
be those of the invoker. . 

11 March 1986 V·Syslcm6.0 Ucfcrcnrc l\'I:mual 



Program Execution 

28.2. Host Selection 

int QueryHosts(spec. descArray, numHosts, error) 
SelectionRec *spec; '* Host selection spec. *' 
SelectionRac *descArray: 

'* Array for returning descriptors of selected 
hosts. *' 

1nt numHosts: '* Maximum number of selections to return. 
Also the size of pidArray. *' 

SystemCode *error: '* Status code. *' 

28·3 

Selcct a set of hosts for remote execution of programs. Nothing is actually executed _. this routine merely. 
returns candidate hosts for remote execution. QueryHosts() returns descriptor records for hosts selected 
in descArray which meet the selection criteria specified by spec. At most numHosts selections are 
returned. The number of hosts actually selected is returned as the function value. error returns a system 
S~1tus code for the operation. 

If spec is NULL then the default ~pcc:ification is used (see the description of 
Defaul tSe 1 ect 1 onRec (), below). 

The form;)t of a selection record is specified in Vteams. h. The pid field of a Select 10nRec specifies 
the tcam server of a candidate host It is this proccss-id that should be used with any subsequent caUs to 
ExecProgram()orLoadProgram()~ 

QueryHos ts () finds candidate hosts by sending a message to the proccss group containing all tcam 
servers in the system (the VrEAM_SERVER_GROUP). Only those hosts which satisfy the requirements 
specified in spec will reply to this message. 

DefaultSelectionRec(hostSpec) 
SelectionRec *hostSpec: '* assumed to be non-NULL. *' 

Selc; up the Select10nRec structure pointcd to by hostSpec. so that it can bc used (as an argument to 
QueryHos ts (). ExecProgram() or LoadProgram(» to select an 'arbitrary' remote host lbis 
currently specifics the following minimum resource requiremcnts: 

• 1 free team descriptor. 
• 10 frce process descriptors . 
• 200 Kbytcs offrcc memory. 
• 1.css tll,m 50% proccs.c;or utilization~ 
• No one logged into the host. 

28.3. Remote Ex~cution of Unix Commands 

SystemCode RemoteExecute(processF11e. programname. argy, mode) 
File *processFi1e(2]; char *programname: 
cha~ *argy[]: unsigned short mode: 

Cause the speciticd program to be cxecutcd on thc scrver that providcs the invoking proccss's current context, 
by opcning a filc in FEXECtJTE mode. Of course, this server must be a Unix V server (see section 43). lbis 
function is used by tllC fexe1cute program. . 

The argy parameter is an ~lrray of null-terminatcd strings which are to passed as arguments to the program. 
The array ilself is tenninatcd by a null pointcr. mode should bc FREALJ or FCREATE. A Filc structure 
describing a strcam from whi-ch thc program's standard output can be rC41d is returned in processF1le(O]. 

12 M:arch 1986 



28-4 Program ExeaaUoD Functions 

If the mode is FCREA TE, a File structure describing a writeable stream that is fed into the program's 
standard input is returned in processFile[1]. RemoteExecute() returns OK if successful, else a 
standard system code describing the error condition. . 

Cosing the writeable file passes an end-of-file indication on to the remote program. Cosing the readable 
file terminates the program. 

28.4. Other Program Execution Routines 

ProcessId Execl(input, output, errput, status, error, argO) 
char -argO: 
File -input, -output, -errput: 
SystemCode -error: 
1nt -status: 
Execl () calls ExecProgr8lll() (and thus waits for the program created to finish executing, if status is 
non-NULL). It returns the program exit status in status and a system status code error (which indicates 
the nature orany errors encountered in Execl itseU). input, output. and errput arc used to specify the 
standard 110 of the program to be loaded and run. The remaining fields of the root message passed to 
ExecProgram() arc derived from the invoker's root message. argO actually represents the first of a 
variable number of parameters that represent ~e arguments to be passed to the new program. It is the -first 
element of the argv array passed to Exe~Program(). 

1nt system(clld) 
char -cmd: 
Invokes an 

exec -c 
on the cmd string. The program's exit status is rctum~d. 

12 March 1986 V·Sys'"m 6.0 Rcfl'ftnCC Manual 



29-1 

-29-
User Interface Functions 

This chapter outlines the facilities available to progranls for interacting with the user - via the workstation 
agents. The manner in which this interaction is manifested to the user was discussed in Chapter 2. 
Implementation details of the various workstation agents may be found in Chapters 44, 46, and 45. 

The discussion here is broken down into two basic components: teminal emulation and graphics. The 
tenninal emulation facilities support ANSI virtual tenninals and are common to all configurations of the 
V-System - that is. to both the STS and the VGTS. IndeecL virtually all applications use th\!SC facilities, in 
lieu of or in addition to any graphics facilities they employ. That is, each executive is as':iOCiatcd with a 
separate A VT and any application created by that executive inherits access to the same A VI. 

The graphics facilities are provided only by the VGTS. Attempts to use them in conjunction with the STS 
will fail. 

W"";":Take special note of the "warninJ" in the Preface! 

29.1. Virtual Terminal and View Management 

Several routines for applications' manipulation of virtual terminals and views follow. An of these routines 
may be used with respect to any type of virtual terminal. although some arc morc useful for one type of 
virtual terminal than for othef types. l11e virtual terminal identifier, vt, used in all routines is equal to the 
value returned by Cr8ateVGT() Of to the f11 8i d field of the file descriptor returned by OpenPad() or 
OpenAndPos1t1onPad(). '[l1cse type-dependent routines, and others, are presented in subsequent 
sections. 

1nt' DeleteVGT(vt) 
short vt: 

Destroy the virtual terminal identified by vt. All the views associated with the virtual terminal will also be 
destroyed. . 

Note: Badly named. since i~ may be u~ with A V .... s as well as SOITs (ak.a VOTs). 

1nt DefaultView(vt. width. height, wXm1n. wV.in, 
.zoom, showGr1d, pW1dth, pHe1ght) 

short vt, width, height, wXmin. wYm1n. zoom, showGr1d: 
short ·pW1dth, ·'pHei ght: . 

Create a view of the virtual tenninal identified by vt. with the user detennining the position on the screen 
with the graphical input dc:vice (mouse). The ·w1 dth and he1 ght parameters give the initial size of the 
viewport if they are positive: non-positive values indicate that the user should detennine the size with the 
mousc at run-time.' Note that these are physical device coordinates. not Ilonnalized device coordinates. 
wXm1 nand wYm1 n (Ire the world coordinates to map to the left and bottom edges of the viewport. If the 
pW1dth and pHeight pointers are non-NUI.L. then the shorts that they point to receive the selected width 
and height. Returns negntive on errOf. Sec Chapter 2 for more infomIation about how this call is manifested 
to the user. 

V .lrogrnmmina IMny1986 



User Interface Functions 

zoom and showGrid are relevant only to SO ITs. zoom is the power of two to multiply world 
coordinates to get screen coordinates: it may.be negative. to denote that a view is zoomed out If showGrid 
is non-zero a grid of points every 16 pixels is displayed in the window. 

Note: In general. this routine is not particularly well-suited to creating views of A ITs. as explained in the following section. 

1nt CreateV1ew(vt, sxm1n. sym1n. sxmax, symax. 
xm1n. wymin. zoom, ahowGrid) 

short vt; 
short sxm1n, symin, sx.ax, symax, wxmin, wy.1n. zoom; 
BOOLEAN showGrid; 

Create a view of the virtual terminal identified by vt - without interacting with the user. The initial position 
and size are determined by the sxm1n, sym1n. sxmax and symax parameters. wxmin and wymin are the 
world coordinates to map to the left and bottom edges of the viewport Returns negative on error. 

The zoom factor is the power of two to multiply world coordinates to get screen coordinates. The zoom 
factor may be negative. to denote that a view ~ zoomed out If ahowGr1d is non-zero a grid of points every 
16 pixels is displayed in the window. Again, these paramcters arc relcvant only for SOITs. 

Note: In general. this routine is not particularly well-suitecl to creating views oC A VT's. &I explained in the foUowing section. 

We now proceed with the description of thc terminal emulation and graphics facilities. In the process the 
differences between the two underlying types of virtual terminals should become clear. 

29.2. ANSI Terminal Emulation 

ANSI tcrminal cmulation is providcd by what we call ANSI virluallennina!s (A Vf). An A vr emulates a 
(almost complet'~) subset of ANSI standard X.64"':- often equatcd with thc DEC vr-lOO: the precisc subset is 
given in Chaptcr 46. An application may use the ANSI tcrminal protocol to communicate with the 
workstation agent. including escape sequcnceS for cursor control. Additional V-specific support is provided 
for graphics input and linc-cditing, but applications may ignore these features as thcy wish. 

The "storc" of an A VT is rcferrcd to as a pad. Conceptually. a pad may be of infinitc sizc, allowing an 
application to storc arbitrary amounts of data and allowing a user to scroll back and forth through this data. 
In current pmcticc. a pad providcs only cnough storagc for onc "pagc" of data - onc virtual screen- or 
viewport-full. Consequcntly, it is not particularly useful to crcatc multiplc vicws of a pad. 

Note: Unrortuqatcly, the tenn "pad" has been adopted to mean both pad and A Yr. lIence, most routines specific to A vr 
employ 'ad inthcir names rather than AVT. Con.~ucntly. in the following discussion the terms are used interchangeably. 

29.2.1. Cooking Your AVT's 

The following mode bits arc maintaincd for cach A VT to indicatc the dcgrcc of "cooking" to be applied to 
1/0: 

CR_Input Change the CR (return) character to J.F (UNIX newlinc) on input. 'Ill is is for thc bcnefit of 
UNIX programs which expect '\n' as a linc tcrminator. 

D1 scardOutput Whcn set. this bit causes all output to an AVr to bc ignored. It is automatically set when 
thc user types 'q' to an AVT that is blocked at the cnd of a pagc in PageOutput mode. It 
is automatically clearcd whencvcr thc workstltion agent sends input to a program that is 
reading from thc AVT. Thc bit may also be c1cared "manually'· via Mod1fyPad(). In 
particular, application programs should call Mod.1 fyPad () to clear this bit beforc sending 
a prompt to an AVT, to insurc that thc prompt is nOl discardcd along with any previous 
output that was discardcd at tIlc user's rcquest 

V·SystfDl 6.0 Rdfrcnc:e l\1:lnual 



ANSI Terminal EmUlatiOD 

Echo 

LF_Output 

L1neBuffer 

NoCursor 

Echo input characters. 

Change ILF to CR-LF on output That is; every line-feed operation is preceded by a return. 

Wait for a line of input before returning. In addition, the line will be linc-edited as 
described in section 2.S. 

Do not dlisplay a cursor in the indicated A VT. 

PageOutput Block the writer each time the A \T fills up with output, and wait for the user to issue a 
command which unblocks the A VT. The user interface to the this feature is described in 
section 2.6. This bit is 'on' by default . 

PageOutputEnable 
Associated with each A VT is an internal flag, which, when 'orr, disables turning on the 
PageOutput bit as described above. This internal flag is nonnally sticky, but can be 
changed by setting the PageOutputEnable bit in a Mod1fyPad() request In this 
case, the: PageOutput bit is also used to set the new value of the internal flag. The 
PageOutputEnable bit should only be used by certain "privileged" programs, as a 
means of allowing the user to "penn,anently" disable paged output mode. 

ReportCli ck Report 4"clicks" of the graphical input device - a press of at least one button, followed the 
release of all buttons - in response to requests for graphical events. 

ReportEscSeq Enable the "Emacs hack" described itt Section 2.7. The encodings of the associated escape 
scquenc(~ are presented· in the next subsection. 

ReportTrans1t1on 
Report 'II transitions" of the graphical input device - pressing or releasing any combination 
of buttons - in response to requ~sts. for graphical events. 

By default, keyboard input is tine-buffered and echoed by the workstation agent, with linc-editing. More 
specifically, the following mode bits are set: 

CR_Inpu't 
Echo 
LF_Output 
L 1 neBuf"er 

29.2.2. Encoding Graphical Input· Events 

As noted, ReportEscSeq indicates that the application is capable of interpreting the associated escape 
sequences. This allows m,my useful programs that deal with conventional terminals to be extended to take 
advantc1ge of the graphical input capability - without major redesign. For example. an EMACS library can 
be loaded to bind these character strings to commands that position the cursor. set the EMACS mark, delete 
and insert text In fac~ these sequences were added pr.ecisely to support EMACS - which, unfortunately. 
affected their design somewhat 

The exact encoding of the escape sequences is give!n in Table 26-1, where <Tille> and <column> are the 
position within the A VT where the mouse bUUon(s) were prcssed - encoded as bytes. 

Note: These arc cscnpe sequences that the workstation agent genemtes and the appliCltion must interpret.. l11e standard 
ANSI protocol contains escape sequences that the application genemlcs and the workstation agent must interpret. 

29.2.3. Functions 

Terminal emulation is implemented in terms of the standard V-System flO protocol as defined in Chapters 
22 and 33. For example. applications may read from and write to A VTs using the s~1ndard Re8d() and 
Wr 1 te () primitives. Consequently, the application interface to an A VT is through a V-System file access 
descriptor (of type File). '111e following "A VT-spccific" routines are also provided: 

V l'rogmmmiftl 1 Ma11986 



29-4 

Mouse 
Buttons 
L M R 
x .\ ESC M <lineXcolumn> 

x x ESC M <IineXcolumn> null 

x x ESC M <lineXcolumll>CTRL-w 

x x ESC M <IineXcolumn>CTRL-y 

Escape Seq~ence 

Table 29-1: Encodings for graphical escape sequenc~ 

File ·OpenPad(name, line., columns. error). 
char -name: 
.hort lines, columns: 
SystemCode -error: 

User Interface Functions 

.. ,. 

Create a new A vr and interact with the user to create a view of the A VT. name is a text name for the A VT. 
11 n e s and co 1 umn. specify the size of the pad. Returns a pointer to a file access descriptor for the pad; 
NULL on an error. er ror is a pointer to the reply code. 

Note: The file descriptor returned is open ror writing. If you want to read rrom it. you must usc Op.nF 11e() to create 
another file descriptor with the same fl1 ••• rv.r·(= workstation qenl) and fn.1d (= virtual terminal I AVT id). 

... :. 

File -OpenAndPos1t1onPad( na.e, x. y, lines, colu.n •• arror ) 
char -name: 
short x. y. line., column.: 
SystemCode -error: 

Create a new A VT of size 11 nas and co 1 umn s. and place the view of this A vr at x. y. nama is a text name 
for the /\ vr. Returns a pointer to a file access descriptor for the AVT; NULL on an error. error is a pointer 
to the reply code. 

Note: lbe note for OpenPadO aL4iOapplics to OpenAndPo.1\1onPadO. 

ModifyPad(avt, moda) 
File ·avt: 
1nt moda: 

Set the cooking mode of avt. moda is some combination of the bits described in the previous subsection. 

1nt QueryPad(avt) 
Fila ·avt: 

Return the cooking mode of av t. some combination of the bits described in the previous subsection. 

Note: Rarely used. since its Iunction is subsumed hy QueryPadS1z'0. 

1nt QueryPadS1ze(avt, pl1nes. pe61s) 
File -avt: 
short ·pl1nas, ·peols: 

Get the size and mode of avt. '1le number of lines and co1umns are store in the shorts pointed to by 
p 11 nes and peo 1 s. respectively. 111e cooking mode is returned as the value of the function. 

V·Systcm6.n Rcr"rcncc Manual 



ANSI Tenninal Emulation 

PadFindPoint(avt, nl1nes, x. y. pl1ne, peal) 
short avt. nl1nes. x. y: 
short ·pl1ne, ·peol: 

29-5 

Convert the world coordinates (x,y) into a a line and column position within ayt, stored in the shorts pointed 
to by pl1 ne and peal, respectively. 

Not~: The Ivt parameter is currently unused. and the number of lines in the A vr must be specified in nl1" ••. 

RedrawPad(avt) 
File ·avt: 

Redraw the indicated ayt. 
Note: The same functionality should be available for sa ITs. but isn't. 

SystemCode Ed1tL1ne(ayt. string. eount) 
File ·avt: 
ehar ·string: 
1nt eount: 

Enter line-editing mode in avt, as defined in Section 2.S. The line-edit buffer is pre-loaded with the first 
count characters of string. On return, string will contain the line-edited input Function returns one 
of the standard system reply 'codes. 

29.3. Graphical Output 

The central graphical concept of the VaTS is that application programs should only have to deal with 
creating and maintaining abstract graphical objects. Th(! details of viewing these objccts are taken care of by 
the VaTS. This is in contrast to traditional graphics systems in which users perform the operations directly 
on the screen, or on an area of the screen referred to as a viewport or window. Thus the VaTS deals with 
declarative infonnation rathler than procedural: you describe what the objects are rather than how to dr-clw 
them. 

The abstract graphical obj,ccts created and manipulated by a program arc stored in a structured display file 
(SDF). An SDF is a name space in which graphical items and symbols arc defined: it may be tJlought of as the 
"store" of a virtual tenninal. '111e SDF is structured as a hierarchy, a directed acyclic gmph of symbols calling 
other symbols. A symbol is an interior node of the gmph, a logical grouping of graphical information. The 
leaves of the graph consist of graphical primitives Stich as rectangles. lines. or pieces of text An item may be 
either one of these primitives or a call to another symbol - the "call statement" il~elf, not the symbol 
definition. Regardless,. every item is contained in some symbol. . 

Note that a symbol call is like a procedure call. not like a macro. Changing the symbol definition changes 
all instances. 

I :,ach symbol is defined within its own 2-dimcnsiunal integer world coordinate space - although the 
dimensions of that coordinate space arc the ~1me across 4111 symbols. namely, -32768 to 32767. Translation is 
the only modeling tmnsfunnation pennilted on "cidled" symbols. AI1 other transformations. such as rotation 
or proj<.'Ction from higher dimensions. must be handled by the application. 

As discussed in the previous section. defining symbols and filling them with items docs not make anything 
appear on the screen. In order for a symbol to appear, it must be displayed on a structured graphics virtual 
Icnnillal (SGVT). An SGVr may be thought of as a large. two-dimensional. imaginary display surface upon 
which graphical ()bjcct~ may be· displayed. As for symbols. its coordinate sp,lCe is from -32768 to 32767 in x 
and y. vastly larger than the actual screen. On lhis disflluy space, one symbol in the SDF is displayed as the 
lop-level symbol. Every item that is in that symbol. or in any symbol called by that symbol. etc., will be 

V ProgrnmmiDl I Ma1 1986 



29-6 User Interface Fanctio .. 

displayed on the SaVf. An item in a symbol that is called several times, will be displayed several times. 
Thus for example, in our savr we might display a bicycle as the top-level symbol. The bicycle symbol 
contains a call to the frame symbol, and two calls, with different coordinates, to the wheel symbol. The wheel 
symbol contains several items: a circle for the rim and lines for the spokes. Each of these items will be 
displayed twice, once for each wheel, though they were defined only once. 

29.3.1. SDF Manipulation 

29.3.1.1. Item Attributes 

Each item has the following attributes.. as used in many of the procedures discussed below: 

1 tem A 16 bit unique (within the SDF) identifier for this object, or zero. This identifier is 
assigned by the program, guidelines for which are given in Section 29.3.1.4. 

type One of the predefined primitive types described below. Currently eight bits are allocated 
for this. 

typeData Eight bits of type-dependent information, as described in the next section. 

xmin.xmax.ym1n.ymax 

string 

Typically used to define the bounding box (or extent) of the item. in world coordinates. 
Also may be used for additional purposes, as discusscdin the next section. Stored as16-bit 
signed integers. 

Note: These names are misicadilli. since the VOTS actually sorts the endpoints and calculates the 
bounding ben correctly. 

A "string's" worth oftype-dcpcndent information, as described in the next section. 

29.3.1.2. Primitive Item Types 

Some of the meanings of the fields above depend on the type of the item. The following are the types of 
primitive items that occur in a structured display file. with their type-dependent uses of the various attributes: 

, SDF _CIRCLE A circle. centered at (xIIi n.ymi n) with a radius given by the typeData field. 

Note: lbi5 item type is currently supponcd only ror the Sun model 100 rramebuff'er. 

SDF_FILLED_RECTANGLE 
A fined rectangle. typeData detennincs the pattern. TIlere are two possible sets of 
patterns. each influenced by the application for which they were developed. The first set 
was defined fhr a VLS( layout editor and is not likely to be of general use; they are defined 
in <Vgts. h>. '[be second set was defined thr a document illustrator and are likely to be 
of greater ,interest; they are defined in <splines. h>. To use one of them for a filled 
rectangle. add its index (as defined in <splines. h» to the constant STIPPLE.Q,FfSET 
(defined in <Vgts. h>, an~ use the resulting value as typeData. 

SDF_GENERAL_LINE 
A generaliled line. from (xiai n.ymi n) to (xmax.ymax). 

SDF_HORIZONTAL_LINE 
Horizontal tine from (xmi n.ymi n) to (xmax.ym1 n). ymax is ignored. 

SDF_HORIZONTAL_REF 
A horizontal reference line at (ymi n + ymax / 2). Reference lines consist of a thick line 
with two tick marks at' the ends. and some a.~<;ochlted text. 'llley arc intended for lISC in 
computer aided design applications like the da 1 e layout editor. ' 

SDF _OUTLINE Outline for a selected symbol. xm1 n. xmax. Ylli nand ymax give the box fhr the outline. 
typeData specifies flag bits to select each of the edges: LeftEdge. RightEdge, 

V'Systml 6.0 Herf~R(e Manual 



Graphical Output 1.9-7 

TopEdgo or Bot tomEdge. 

SDF_POINT A point, which usually appears as a 2o by-2 pixel square at (xmi n,ymi n). 

SDF _POLYLINE A poly-line, consisting of a connected set of line segments.. siring points to an array of 
points, as in: 

SDF_RASTER 

typedef struct 
I( 

short x; 
shor y; 

} SdfPoint;, 

NOlte: This item type is currently supported only for the Sun modcllOO framebuffer. 

A generaJl raster bitmap with a lower left comer at (xm1 n,)flli n) and upper right comer at 
(xmax.ymax). typeData dctennines if the raster is written with ones as black or white. 
s t r 1 n 9 points to the actual bitmap, in 16 bit-wide swaths. 

NOlte: On the Sun model 100 framebuffer. a raster can be displayed at zoom factors O. 1. 2, 3. and 4 
(only): on the model 120 framebuffcr. only zoom factor 0 (no magnification) is currently supported. 
In ,all cases. the VGTS only support.4J the "display" of bitmaps. nol nny operations on them. An 
application-Ievellibary containing "RasterOp" routines is. however. available (see Section 29.8). 

SDF_SEL_HORIZ_REF 
A thick (selected) horizontal reference line at (ym1 n + ymax 12). 

SDF_SEL_VERT_REF 
A thick (selected) vertical reference line at (xm1 n + xlDax 12). 

SDF_SIMPLE_TEXT 

SDF_SPLINE 

SDF_TEXT 

A simple text string employing a fixed-width -ront (typically 8 pixels wide by 16 pixels 
high). The lower left corner of the string will be placed at (xm1 n.ym1 n). The values of 
xmax and ymax need not surround the text, but they arc used as aids for redrawing, so 
should correspond roughly to the real bounding box. 

A spline objcct. of which a special case is a polygon. Splines may be fitled with any of a 
number of different patterns or drawn with any of a number of different "nibs", as defined 
in (sp 11 nes. h>. string points to a SPLINE structure as defined in the 
(sp 11 nfts. h>: 

typedef struct 
{ 

short x. y; 
} POINT; 

typedef struct 
{ 

unsigned short 
unsigned short 
enum Nib 
unsigned short 
unsigned short 
unsigned short 
unsigned short 
enum Pattern 
POINT 

} SPLINE; 

order; '* Order of the spline *' 
numvert;'* Number of vertices present. *' 
nib; '* Nib to be used for drawing. *' 
border; '* Is the border visible? *' 
closed; '* Is this object closed or open?*' 
filled: '* Is this Object filled? ., 
opaque; '* Is the filling opaque (solid)?*' 
pat; '* Fill (stipple) pattern. *' 
head: '* Head of the list of vertices *' 

Note: 'l1e patterns used for splines are a subset of those used for filled rectangles. (Sec the 
discussion of SDF _FILLED_RECTANGLE above.) , 

A string of gcnernl text, with lhe left end at xm1 n and the b\lseline at ym1 n. typeData 
detemlincs the font numbcr. (To get the actual bounding box (calculatcd from 
information in the font file), use Inqu1 reItem() after the AddItem(). as defined in 

1 May 1986 



29-8 User interrace FUDCtiOns 

the following section.) See section 29.3.3 for an example. 

SOF_VERTICAL_LINE 
Vertical line from (xm1 n,ym1 n) to (xm1 n,ymax). max is ignored. 

SOF_VERTICAL_REF 
A vertical reference line at (xmi n + xmax / 2). 

29.3'.1.3. Functions 

The following are the currently defined ftmctions used to manipulate an SDF and, hence, generate . 
graphical output All return values except the actual function llalue are passed via pointer parameters. If any 
pointer is NULL. no value is returned for that parameter. For performance reaSons, many of these calls are 
batched (several calls in one request) and/or pipelined (no return values). In either case there are no 
meaningful return values and any error conditions simply cause the VOTS to drop the calion the floor. The 
description for each routine indicates whether this is the case. 

short CreateSOF() 
Create a structured display file. returning its ide Returns -1 if the VOTS runs out of resources. Must be called 
before any symbols are defined. Forces all pending calls to be executed. 

int OeleteSOF(sdt) 
short sdt: 

Return all the items defined in the given sdf to free storage. This includes all data structures associated with 
items in the SDF. Returns sdf or -Ion error. Forces all pending calls to be executed. 

Oef1neSymbol(sdf. symbol. textName) 
short sdf. symbol: 
char *textNue: 

Enter symbo 1 into the sdf and open it for editing. Only one symbol may be open in any given SDF at a 
time. textName is an optional descriptive name for the symbul. used in the hit selection routines for 
disambiguuting sclections. Buflcrcd call. but always returns symbo 1 for backward compatibility. 

short EndSymbol(sdt. symbol, sgvt) 
short sdf, ite.: 
short sgvt: 

Close symbo 1 in sdf so no more insertions can be done and cause an views of sgvt displaying the symbol 
to be redrawn. 11lc VGTS ensures that. if only additions havc been made since the last EndSymbol, only 
tJ10SC auditions are drawn. Called at the enu of a list of AddItem() anu AddCa 11 () calls defining a 
symbol, sl41rtcu wiLh Def1neSymbol () or Ed1tSymbol (). Furc\.'S all pending calls to be executed. 
Always returns symbo 1 for backward compatibility. 

Note: syllbol is actually redundant. since only one !t,),mbol can be "open" in any SDF at a time. but it must be provided 

Ed1tSymbol(sdf. symbol) 
short sdf. symbol: 

Open (already existing) symbo 1 in sdf for modification. This has the effect of calling Oef1 neSymbo 1 () 
Hnd inserting all the already existing entrics. The editing process is ended in the same way as the initial 

V'System 6.n Rrre~lKe Manual 



Graphical Output 29-9 

definition process - a call to EndSymbol (). ButTered call. but always returns symbol for backward 
compatibility. 

short DeleteSymbol(sdt. symbol) 
short sdt •. symbol: 

Delete syinbol from sdt. More correctly. render the symbol definition "empty" to prevent problems with 
dangling references (calls) to the definition. The dangling references will be interpreted but will have no 
effect. since the symbol will no longer contain any items. Returns symbo 1 if successful, else O. Forces all 
pending calls to be executed. 

AddItem(sdt. item. xmin •. xmax. ymin. ymax. 
typeData. type. string) . 

short sdf, item, xmin. xmax, ymin, ymax: 
unsigned char type, typeData: char ·string: 

Add item to the currently open symbol in sdt. Remaining parameters as defined above (Sections 29.3.1.1 
and 29.3.1.2). Buffered call. but always returns item for backward compatibility. 

AddCall(sdt. item. xottset. yottset. ca~ledSymbol) 
short sdt, item, xottset~ yoffset, calledSymbol; 

Add an instance of the ca 11 edSymbo 1 to the currently open symbol in sdf. The "call statement" itself is 
given the name item. rille origin of the called symbol instance is placed at (xoffset.yoffset) in the 
coordinate space of the calling symbol. May be called before the called symbol is defined. in which case a 
dummy entry for the symbol is inserted in ttte SDF: any future attempts to define the symbol will usc the 
dummy entry. flutTered call. but always returns item for backward compatibility. 

DeleteItam(sdf. item) 
short sdf, item: 

Delete item from the currently open symbol in sdf. Symbol c<llls can be deleted just like any other item, 
but symbol definitions are deleled by the De 1 eteSymbo 1 () function. Buffered call. but always returns 
1 tem for backward compatibility. 

int Inqu1reItem(sdf, item, xmin, xmax. 
ymin, ymax, typaData, type, string) 

short sdf, item; short ·xmin. ·xmax. ·ym1n, ·ymax: 
unsigned char ·type, -typeData: char ·string; 

Read the attributes of item in sdf. Parameter semantics are defined above (Sections 29.3.1.1 and 29.3.1.2). 
All parameters except sdf and 1 tam are pointers. Fur each non-null pointcr. the vllluc or Llle ficld thr that 
item is returned. Zero is returned if the item could n()~ be found; otherwise. non-zero. Forces all pending 
calls to be executed. 

short InquireCall(sdf, item) 
short sd', item; 

Return the name of the symbol called by 1 tem in sdt. Returns zero if the item is not a call. or could not be 
found. Forces all pending CHUS to be executed. 

V l'rogr:muniRl I !\-h,y 19R6 



29-10 

Changeltem(sdf. item. xm1n, xmax. 
ymin. ymax. typeData, type, string) 

short sdf, item. xmin. xmax, ymin, ymax: 
unsigned char type, typeData; char ·string: 

User Interrace liUac:tions 

Change the parameters of (already existing) item in sdf. Remaining parameters as defined above ($cctions 
29.3.1.1 and 29.3.1.2). This is equivalent to deleting an item and then reinserting it. so the item must be part 
of me open symbol. ButTered call, but always returns item for backward compatibility. 

29.3.1.4. Naming Items and Symbols 

Items and symbols are both identified by 16-bit identifiers. most commonly thought ofas unsigned integers. 
The identifiers are specified by the application. It is assumed that the application will maintain some 
higher-level data structures, along with the appropriate mapping to these internal item namcs. Items that will 
never be referenced can be given item number zero. The item names are global to each SDFt so the 
programmer should be careful not to assign the same item number within the same SDF twice. However. 
applications may use multiple SDFs for multiple name spaces.12 

For example, a picture of a bicycle might define a symbol for a wheel This definition of the wheel symbol 
is given item number 4. There may then be two instances of item number 4. that are given item numbers 5 
and 6. The individual spokes of the wheel are components of symbol number 4, but arc all given item 
number 0, since we will never want to refer to any of them. If it is desired to delete or move any individual 
spoke, then the items may be given numbers. 

29.3.1.5. Output Modes 

By appropriate use of the various functions. programs may achieve the effect of deferral modes for 
graphical output First. they may construct graphical objects in their e~tirety and thell display them, by 
executing a DefineSymbol () or Ed1tSymbol (). followed by many Addltem() or AddCal1 () calts. 
followed by an EndSymbo 1 (). This corresponds to creating an .... invisible segment" and then displaying it in 
traditional graphics systems. 

Alternatively. an application many construct and display an object '''on the fly", that is. display each item as 
it is added to the object 111is is done. for example. by repeatedly executing an Ed i tSymbo 1 () -
Addltem() - EndSymbol() sequence, such that each EndSymbol() causes the symbol to be redrawn. 
This corresponds to creating a "visible segment" in traditional graphics systems. (Note the optimization 
discussed in d1e description for EndSymbol (), which reduces redraw time.) 

The first style of output yields higher throughput. whereas the second yields faster response. 

29.3.1.6. An Example 

~o create the bicrclc figur~ of the previous section, we would usc code like the following: 

12rhe intended usc of multiple SDFs is that an appliCltiOf' would have both "private" and "shared" graphical data. such that the 
shared data was stored in an SOF used by multiple (coopcmting) applications. 

V'Syst('UI 6.0 Iter"r('ncc Manual 



Graphical Output 

short sdf; 

sdt - CreateSDF(); 
DefineSymbol(sdf, 4, "Wbeel"); 

Addltem(sdf, 0, xmin, xmax, ymin. ymax. O. SDF_GENERAl_lINE, NUll); 

(add the components of the wheel symbol) 

EndSymbol(sdf. 4, 0); 

DefineSymbol(sdf. 3, "8icycle~): 
AddCall(sdf, 5, xl. ymin. 4); 
AddCall(sdf, 6, x2. ymin. 4); 
EndSymbol(sdt. 3, 0); 

(whoops ... forgot the frame) 

EditSymbol(sdf. 4) . 
(add frame) 

EndSymbol(sdf. 4. 0) 

29.3.2. SGVT Management 

int CreateVGT(sdf, type, topSymbol, string) 
short sdf: int type: sh~rt topSymbol: char ·string: 

29-11 

Creatc an SGVr of the indkatcd type. Put the indicated symbol- topSymbo 1 in adf - as the top-level 
symbol in the SGVr. topSymbo 1 can be lCro to indicate a blank savr. type can bc some combination of 
TTY. GRAPHICS. and ZOOMABlE. but programmers Cllre adviscd to use the terminal emulation functions 
dcscribed abovc for TTY's. If thc ZOONABlE bit is set, thc view zooming factor can be changcd by the user. 
Returns the virtual terminal id or negative on errol'S. 

D1splayItem(sdf, topSymbol, sgvt) 
short sdf, topSymbol: int sgvt: 

Change the top·lcvel symboll for sgvt to topSymbol in sdf. lbc ncw symbol is displaycd in cvery view of 
theSGVf. 

29.3.3. Defining and Using Fonts 

short DefineFont(name. fileName) 
char -name, ·fileName: 

Defines a font to be uscd in subscquent SDF.TEXT itcms. '111C name is a pointer to a string giving the name 
of tJ1C font. for example. "Hclvetica lOU". Thc font is rcad by the VGTS from the filc with the p"tJlname 
givcn as thc second argument Thc fileName- argument can be null to indicatc a rcad from thc standard 
placc. The font-id returned by this caU is used as the typeData field for SDVl'EXT items. A negative 
return value indicates an error. For cxample, 

short roman- DefineFont("TimlsRoman12", NULL); 
Addltem(sdf, O. x. x. y. y. roman. SOF_TEXT. "Hello") 

wiJI display the string "Hcllo" in the Times Roman font at 12 point size. at the position (x,y) on the scrccn. 

V l'rogrnmminK I May 1986 



29-11 User Interrace Functions 

29.4. Graphical Input 

The VGTS maintains an event queue for each virtual terminal- whether A VT orSGVT - on which both 
graphical (mouse) and keyboard events arc queued. 

29.4.1. Common Functions 

The following functions are (more or less) indcpendent of the type of virtual terminal. To maintain 
compatibility with the AVT·specific routines and the V 110 protocol, the desired virtual terminal must be 
bound to a V file access descriptor before calling these functions. Specifically. in the descriptions below, 
vt-)f11 asarver must contain the process id of the workstation agent and vt-)fi1 aid must contain the 
id of the virtual terminal. TIle file descriptor returned from OpenPad() is set up precisely in this fashion. 
but if CraateVGT () is used. the application must explicitly construct an appr9priate file descriptor, storing 
the result ofCraateVGT() in vt-)f1laid. lbe file pointer std1n may be used to receive input from the 
virtual terminal (usually an A VT) associated with the application's "standard input". 

GetEvent(vt. px. py. pbuttons. cbuf) 
File ·vt: 
short ·px, .py, ·pbuttons: 
char ·cbuf: 

Wait for any input event in the indicated virtual terminal. This currently means mouse clicks, mouse 
transitions, or keyboard input - not mouse movements. If the virtual terminal is an AVT, then the type of 
graphical event reported depends on the cooking mode of the A VT. Returns the world X and Y coordinates 
of the mouse in the shorts pointed to by px and py, and the buttons in the short pointed to by pbuttons if 
the event is graphical or else returns the characters in the buffer pointed to by cbuf. lbe function value is 
negative on error (in which case, vt-)l astaxcapt ion contains the error code), 0 on mouse event, or the 
number of characters returned on a keyboard event. 

Note: At must IO.MSG.RUFFER (defined in (V1oprotocol • h) • currently 20) characters will be returned in cbut. 
The corresponding actual parameter should be (atleasl) this size. 

int GetGraphicsEvent(vt. PX, py, pbuttons) 
File ·vt: 
short ·px, .py, ·pbuttons: 

Wait for a graphical event in the virtual terminal as.wciated with the file descriptor vt. Currently, graphical 
events consist of tr~msitions and clicks of the mouse buttons - II0t movements. If the virtual terminal is an 
1\ VT. then the type of graphical event reported depends on the cooking mode of the 1\ vr - which must be 
set appropriately via ModifyPad(). Returns the world X and Y coordinates in the shorts pointed toby px 
and py: the state of the buttons is returned both in the short pointed to by pbuttons and as tlle value of the 
function. llle function value is negative on error, in which cast vt-)lastexception contains the error 
code. 

int GatGraph1csStatus(vt, px, py, pbuttons) 
File ·vt: 
short ·px, .py, ·pbuttons: 

Sample the graphical input device relative to the virtual terminal associated with the file descriptor vt. 
Currently. this means returning the current location and button status of the mouse, whether or not the mouse 
currently residL'S in a view of lhe virtual tenninal and willtyut w4liting for the mOllsc to move. All events 
quelled for the virtual terminal are flushed prior lo sampling. Returns the world X and Y coordinates in tllC 
shorts pointed to by px and py; the Slate of the buttons is returned both in the short pointed to by 

V'System ().n Uererence Manual 



Graphical Input 29-13 

pbuttons and as the value of the function. The function returns negative on error, in which case 
vt-)l astexcept ion contains the error code - typically EOF to indicate that the mouse cursor was not in 
a view of the virtual terminal. . 

29.4.1.1. Antiquated Routines 

The following routines pre-date those listed above. The only reason for their continued existence is that 
they currently arc the only graphical input routines that may be employed by applications running on non-V 
hosts (see Section 29.7.2). However. their days are numbered. 

short GetMouseC11ck(x, y, buttons) 
short *x. *y, *buttons: 

Wait for a mouse click in the virtual tenninal corresponding to std1n. The world X and Y coordinates are 
returned in the shorts pointed to by x and y. and the state of the buttons is returned in the short pointed to by 
but tons. If a key is pressed. a message is printed stating that a mouse click is expected. and the key is 
ignored. Forces all pending calls to be executed and blocks until a mouse click docs come in. 

Note: This function is semantically equivalent to both 6et.Graph1csEvent.O and Get.Mou.eOrKeyboardO (where 
any Character returned is dropped on the floor). 

short GetMouseOrKeyboard(c. x," 1, buttons) 
short *x. *y. *buttons: 
char *c: 

Wait for a mouse click or keyboard press in the vinual terminal corresponding to std1n. If the mouse is 
clicked, the world X and Y coordina~cs are returned in the shorts pointed to by x and y, the state of the 
buttons is returned in the short pointed to by but tons, and the function returns the identifier of the virtual 
terminal in which the click occurred. If a key was pressed, the character is returned in the location pointed to 
by c. and the function returns O. 

Note: This function is semantically equivalent to Get.Event.(). 

29.4.2. SGVT-only Functions 

Mouse eventc; often signify an attempt on the part of the user to "sclect" some graphical objl.'Ct When such 
an event is reported to the application. it should respond by calling the following function to determine 
which. if any, graphical objcct was so selected. . 

LISTTYPE F1ndSe1ectodObject(sdt, x, 1. sgvt, searchType) 
short sdt, x, Yo sgvt: 
char searchTypeg 

Return a Jist of itcms that are at or ncar (x.y) in sgvt. Along with cach item is a set of edges. to indicate that 
Ole hit was near one or more edges of the object. rille searchType selects one of several modes of hit 
detection: 

A 11 Anything will do. 
All L 1 nes Any lincs. 
Ju s tHo r 1 z Just horizontal lines. 
JustRasters . 

Just rasters. 
Jus tRects Just rectangles. 
JustSp11nes 

V .lrogrnmnliltl 1 May 1986 



29-14 

Just splines. 
JustText Just text strings. 
JustVerts Just verticallin~ 

Usually the constant value All will be used. The return value is dermed as follows: 
typede' struct M1nElement 

{ 
short 
short 
struct M1nElement 

} MINREC. -MINPTR: 

typede' struct L1stlnto 
{ 

MINPTR Header: 

item; 
edgeset; 

-next; 

short NumOfElements; 
} LISTTYPE: 

29.5. Miscellaneous Functions 

User Interrace Functions 

lbe following functions arc (morc or less) independent of the type of virtual terminal - despite the 
occurrence of Pad. or Vgt in their namcs. As in Section 29.4.1, to maintain compatibility with the A vr
specific routines and the V 110 protocol, the desired virtual terminal must be bound to a V file access 
descriptor before calling thcse functions. Specifically, in the descriptions below, vt-)f11eserver must 
contain the process id of the workstation agent and vt-)f 11 e 1 d must contain the id of the virtual tcnnimil. 
lbe file descriptor returned from OpenPad(} is set up precisely in this fashion, but if CreateVGT() is •. 
used. the application must explicitly construct an appropriate file descriptor, storing the result of 
CreateVGT(} in vt';'>f11e1d. lbe file pointer std1n may be used to receive input from the virtual 
terminal (usually an A VT) associated with the application's "standard input". 

GetTTY() 
Put the tenninat in raw mode. The (remote) UNIX version of this routine docs the appropriate UNIX operation 
ifstanclllrd input is a tty device, otherwise it sends the proper code for the remote execution fclCility. 

short popup(menu) 
PopUpEntry menu[l: 

Display a "pop-up" menu and wait for the user to select an option. The menu argument points to an array of 
PopUpEntry structures: 

typede' struct 
{ 

char -string; ,. String to display •• / 
unsigned char menuNumber; ,- Number returned if entry selected •• / 

} PopUpEntry: 

lbe array is tenninated by a NULL string. The code of the menu item selected by the user is returned. If the 
user clicks olltside the menu, a negative value is returned. 

ResetTTY() 
Restore the mode before the last GetTTY(}. Runs under UNIX as well, checking standard input properly. 

V·Syslem 6.0 Rdercncc Manual 



Miscellaneous Functions 

SelectPad(vt) 
File -vt: 

Cause the virtual terminal associated with vt to be selected for input The (principal) view of the virtual 
terminal is brought to the top of the stack of views. Only works if the calling program also "owns" the virtual 
terminal currently selected for input 

SystemCode SetVgtBanner(vt. name) 
File ·vt: 
char -name: 

Set name to be the banner at the top of each view of the virtual terminal corresponding to vt. 

29.6. Example Program 

The following program can be compiled to run either remotely under Unix or under the V system. The 
'ifdef VAX directives allow the programmer to conditionally compile code for one environment or the 
other. It first creates an SDF and SGVT, then displays 100 random objects of various kinds. 

,-
- tast.c - a teat of "the remote VGTS implementation 
- Bill Nowicki September 1982 -, 

'include <Vgts.h> 
'include <v10.h> 

'define Objects 100 

short sd', sgvt; 

QuitO 
{ 

DelataVGT(sgvt,l); 
DaletaSDF(adf): 
ResetTTYO; 
axHO; 

} 

ma1nO 
{ 

int 1; 
short 1te .. ; 
long start, end: 

'1fd8' VAX 

/- number 0' objects -, 

pr1ntf("Remote VGTS test program\n"): 
'elsa VAX 

printf("VGTS test program\n"); 
Nandif VAX 

fflush(stdout); 
GatTTY() ; 
sdf • CreataSDF(); 
DefineSymbol( sd', 1, "test" ); 
AddItem( sd', 2, 4, 40. 4, 60, NM, SDF_FIllED_RECTANGlE, NULL ); 
EndSymbol( adf, 1. a ); 
sgvt • Creat.VGT(sd'. GRAPHICS+ZOOMABLE. 1, "random objecti" ): 
DefaultView(sgvt, 500, 320. 0, 0, 0, O. 0. ~); 

V Programminl 1 :\13)' 1986 



29-16 

} 

tima(&start); 
for (i-1Z; i<Objects; 1++ ) 

{ 
short x - Random( -Z. 165): 
short y - Random( -10. 169): 
short top - y + Random( 6. 100 ); 
short right - x + Random( 4. 120 ): 
short layer - Random( NM. NG ); 

EditSymbol(sdf. 1); 
Deleteltam( sdf. 1-10); 
switch (Random(1. 6) ) 

( 
case 1: 

Addltem( sd'. i. x. right. y. toP. layer. 

break: 

case 2: 

SDF_FILLED_RECTANGLE. NULL ); 

Addltem( sd'. 1. x. x+l000. y. y+16. 0. SDF_SIMPLE_TEXT, 
"Here is some simple text" ); 

break; 

case 3: 
Addltem( sd'. 1. x. right. y, y+1. 0. 

SDF_HORIZONTAL_LINE, NULL ): 
break: 

case 4: 
Addltem( sd', 1. x, x+l, y. top, 0. 

SDF_VERTICAL_LINE. NULL ); 
break; 

case 5: 
Addltem( sd'. i.' x, right, y, top. 0. 

break; 

case 8: 

SDF_GENERAL_LINE. NULL ); 

Addltem( sd', 1, x. right. top. y. 0. 
SDF_GENERAL_LINE, NULL ); 

break; 
} 

EndSymbol( sd'. 1. sgvt ): 
} 

t1me(&end); l' (end·-start) end - start+1: 
printf("%d objects in %d saconds. or %d objects/second\r\n". 

Objects. end-start. Objects/(and-start»; 
printf("Donel\r\n"); 
Qui to; 

Random( first. last ) 
{ 

} 

1* 
• ganerates a random number 
• between "first" and "last" inclusive. 
*1 

int v~lue - rand()/2; 
value %- (last - first + 1); 
value +- first; 
return(value): 

User Interface Functions 

V-5ystrm 6.0 Rrr('r('ncc Manual 



Example Progr3m 29-17 

29.7 w Some Logistics 

The constants for mouse search types, virtual terminal usage types, etc. are found in the include files 
Vgts. hand Vtermagent. h. • 

29.7.1. Applications Running Under V 

The stub routines are available in the default V library, so just including the option -Von your cc68 
command Ii ne for linking should work. Do not include the -1 VGT S option on your command line. 

29.7.2. Applications Running Under Other Operating Systems • 

To transparently run programs on a UNIX system, use -lVGTS on your cc command line. Use 
-I/usrlsun/1 nc1 ude to get the file Vgts. h. 

This package employs escape sequences that can be used through PUP Telnet. IP Telnet, or with the remote 
command execution facility of the executive. The details of this protocol are explained in Chapter 46. 

Note: The following functions arc IIDt currently available to applications in this class: 
Ed1 tiL 1ne() 
6etE'vent( ) 
6etGraphicsEvent() 
6.tGraph1caStatus() 
ModifyPad( ) 
Op.n,Pad( ) 
QueryPad() 
QueryPadSize() 
R.dra.Pad() 
Sele,ctPad( ) 
SetVgtBannerO 

29.8. Rolling Your Own 

The primitives discussed here have' proven suitable to a wide range of applications. Naturally, a few users 
have found them unsuitable. especial1y for applications that manipulate large bitmaps. such as image 
processing applications. Although a raster item type is supported. raster operations &lre not. Hence, 
applications mllst perform lhe operations themselves and then pass the new bitmaps to the VGTS. 
Subsequent versions of the VGTS will address these and similar problems. 

In th.e meantime. desperate programmers may. in fact. manipulate the frame buffer directly by using the 
tow-level device-dependent graphics libraries employed by both the VGTS and the STS. There is a separate 
library for each real device. The libraries and their document.1tion may be found in the 1 ibc/graph1cs 
directory. . 

Note: As noted above. these libraries also contain a variety of device-independent routines. including some general-purpose 
"RasterOp" routines. thatl1lay be of use to ~me applications. . 

Wum;n/:: Ilirectly 1n.1nipu;lation of the grnl,hics hardware mny be very hlli'':lrdous to your hcalUl. On workstatiuns with the 
Sun mooel 100 frame buffer. lor c:tample. yuur mllllillulation of the frame bulTer may cUllllicl with that of the workstation 
agcnt. leadilll!o to mther odd scrccn images. That i.~. both your application and the workst.1tion agent arc 1Tl.1nil'ulating the 
frame buffer register.;. Fortunately. in this case. you should be able to avoid most problems by rendering all virtual 
tcnninals that are generating uutput and all A VTs lhat have: been select.ed for input invisible - by burying them under 
inactive virtualte~inals, for example. 'lbe lalter step is nccded in order to disable the blinking cursor. 

finally, if you still are not. dissuaded, consider that access to the frame buffer will be Jlrevented in future versions of the 
system, hopefully coincident with the addition of suitable ra.~tcr support to the VGTS. 

V "rogramminR I May 1986 



-30-
Miscellaneous Functions 

30.1. Time Manipul,ation Functions 

The time-related ftuictions in the V C library are described below. A few of them are not prescnt in the 
Unix C library. 

unsigned GetTime(cl~cksptr) 
return the current time in seconds as maintained by the local kernel. The current time is represented as 
seconds since January 1. 1970 GMT. If clicksptr is not NUl~, the number of clicks since the last second is 
stored in location pointed to by clicksptr. The standard manifest CLICKS_PER_SEC indicates the number 
of clicks per second for the host 

SystemCode SetTime{ ~~econds, cli cks) 
sets the local kernel time to the specified seconds and clicks. The time maintained by the kernel is 
normally set on system boot and need not be changed subsequently. . . 

The standard time representation used is the number of seconds· since January 1, 1970 GMT, plus the 
number of clock interrupts since the last second. 

unsigned Delay{seconds, clicks) 
suspend the execution of the invoking process for the specified number of seconds and clicks. (where a click 
is a machine-specific unit. uSlwlly one clock interrupt). De 1 ay returns the number of clicks remaining in the 
delay period. Thus. it nomnally returns O. However, if the delaying process is awakened using Wakeup, it 
may return a non-zero value. 

SystemCode Wakeup{ptd) 
unblock the process specified by p 1 d, returning OK. assuming the proccs.'i is currently delaying using De 1 ay 
and the invoker is the same user as the specified process, or is a privileged user. Otherwise, the return value is 
a stan<L1rd system code indicating the err~r. 

stime{), time{), ft1me{) 
Thcsc are Unix system calls and are implemented here with simple library functions which emulate the Unix 
functions by performing th(! appropriate V kernel operations SetTime( ) and GetT1me( ). They have the 
same interface and functionality as in Unix: however, ft ime() has the timezone hardwired as Pacific Time, 
since the V-System provides, no time ~one information. 

ct1me(). localtime(). gmtime(). asctime{), timezone() 
111CSC are identical to the Unix library functions. 

V l'rogramming 12 March 1986 



Miscellaneous Functions 

sleep(seconds) 
unsignad seconds: 

The invoking process is suspended from execution for the specified number of seconds. The actual time may 
be considerably longer than that specified if the process is not the highest priority ready process when its sleep 
time expires. sleep() is not sensitive to Wakeup()'s. Use the V system call Delay() for a 
Wakeup( )-able suspension. 

unsigned GetRemoteTime() 
Returns the time according to the TIME_SERVER in 'seconds since January 1, 1?70, GMT. Returns zero if it 
fails. e.g.. no time server responded. . 

; , 
I ~ .. 

30.2. St rings . '" 
, ; ":) 

The string-related functions in the V-System C library are described below. 

30.2.1. Unix String Functions 

The following functions are identical to the functions of the same name provided by Unix. See the Unix 
Programmers Afanual for documentation. 

atof() 
ecvt() 
strcat() 
strcpy() 

atoi() 
gcvt() 
strncat() 
strncpy() 

30.2.2. Verex String Functions 

atol() 
index() 
strcmp() 
strlen() 

crypt( ) 
rindex() 
strncmp() 

There is also another set of string manipulation functions which were ported from Verex. These include the 
following: 

int Any(c, string) 
char c: char *string: 

Detennine whether there is any occurrence of the byte c in the string str 1 ng. and return true (nonzero) if 
'so. else falsc(zero). . 

char *Concat(dest, s1, s2, s3) 
char *dest, *s1, *s2, ·s3: 

Concatenate the strings s1, s2, and s3', store the result in dest. and return dest. dest must have enough 
room to store the rcsulting string. If any of s1., s2. s3 llre null pointers. lhe remaining arguments arc 
ignored. 

int Convert_num(s~ring, del1m, base) 
char *string: char **delim; unsigned base: 

Parse the given string to extract a number of base base and return its value. If base is lero, the initial 
character of the string determines the b'L'iC. as follows 

, Base2 

V·SystcIII6.0 Rdcrcnce Mnllunl 



Strings 

o (zero) Base 8 
$ Base 16; 

otherwise Base 10 

JO·3 

Upon return, ·de lim is modified to contain .. a pointer to the delimiter that tenninated the number. 

char ·Copy_str(string) 
char ·string: 

Copy the given string into a newly allocated region of memory and return a pointer to the copy. The new 
region is allocated using mal1oc() and may thus be freed llsing free() when the copy is no longer needed. 
The function strsave() i$ identical to Co.py_str(). 

int Equal(s1, s2) . 
char ·s1, ·s2; 

Compare the strings s1 and s2. Return true (nonzero) if the strings are equal, else false (zero). Strings arc· 
considered to be equal if and only if they arc of equal length (up to the terminating null byte) and each 
corresponding byte is the same. 

int Hex_value(c) 
char c; 

. .. 

Return the value of c, interpreted as a hex digit. Return -1 if c is not a hex digit. 

char ·lower(str1ng) 
char ·string: 

Convert all alphabetic characters in string to lowercase and return string. 

unsigned Nul1_str(str1ng)'~ 
char ·string: 

Return true (nonzero) if string is a null string (Le., of length zero). else return false (zero). 

char ·Shift_'eft(string, chars) 
char ·string; unsigned chars: 

Delete the leftmost chars characters of s tr i ng by shifting the remaining characters to the left, and return 
string. string must be at least chars characters long. but this condition is notchccked. 

unsigned S1ze(str1ng) 
char ·string: 

Return the number of characters in the given string, i.e., the index of the null byte that terminates the string. 

char ·Upper(str1ng) 
char ·string: 

Convert all "tphabetic characters in string to uppercase and return string. 

v l-rogl1lnaming 12 March 1986 



Miscellaneous FunctioDS 

30.3. Exception Handling Functions 

short -StandardExceptionHandler(req, p1d, tout) 
register ExceptionRequest -req: 

,- Exception message. -, 
ProcessId pid: ,- Process incurring exception. -, 
File -tout: ,- Print out messages on this tile -, 

Standard exception handling print routine. Prints out some infonnation about the process incurring the 
exception and returns the p:c at which the exception occurred. req points to the exception request message. 
pi d is the process id of the process that incurred the exception, and t ou t is the file on which the message is 
to be printed. 

Pr1ntStackDump(tout. pid) 
File -tout: ProcessId pid: 

Prints out the stack of the process specified by p 1 d. The process must be in the same address space as the 
invoker. 

30.4. Other Functions 

qsort(baae. nel, width, compare) 
char -base: int nel, width: int (-compare)(): 

Implements the quicksort algorithm. base is a pointer to the base of the data: nel is the number of 
elements; wi dth is the width of an clement in bytcs; and compare is a function to compare two elements. 
The function compare must return an integer les.c; than. equal to, or greater than zero. if the first argument is 
less than, equal to, or greater than the second, respectively. 

setjmp(env) 
jmp_but env: 

10ngjmp(env, value) 
jmp_but env: 1nt value: 

setjmp() saves the stack environment in env, so that a later call to longjmp() will act like a return was 
made from the function which contained the call to setjmp (), with return value va 1 ue. 

char -ErrorStr1ng(error) 
SystemCode error: 

Returns a pointer to a string describing the system requcst or reply code error, in human readable terms. 
Use this in error messages instead of printing the numeric value of the code. 

Pr1ntError(error, mag) 
SystemCode error: char -msg: 

Print" the string mag and an explanation of the SystemCode error on the standard error tile. 

V·Sysl~m 6.0 Rfffrfncc Manual 



Pa rt III: 

V Servers 



31·1 

-31-
Servers Overview 

All system serv'ices other ~han those implemented by the kernel are provided by sending a message to one of 
the system server processes. lbis part of the manual describes the various protocols for requesting these 
services, inc:uding the format of request and reply messages. the possible values for the message fields, and 
the server process that handlcs the request. A secondary role of this part of the manual is to act as an 
implementation guide to the various servers; at some future time. these implementation details will be 
removed to l separate manual. " 

The infonnation contained in this part of the manual is generally not required by application programmers 
because mOit protocols arc implemented in the standard C program library described in Part II of the manual. 
However, more sophisticated use of the system may require the more detailed information in this part of the 
manual 

This chapter givcs an overview of the interactions among the different servers and the kernel. The next 
three chapters prescnt the standard message formats and codcs, and the details of two standard protocols. the 
V-System 1I0 Protocol and V-System Naming Protocol. The remaining chapters give the details of the 
individuul servers. describing which ot the standard protocols they implement. additional server-specific 
protocols they provide, and. in many cases, how they arc implemented. 

31.1. The Basic Servers • In Iso.lation 

Figure 3] -1 shows the cOl1lfiguration of servers on a typical workstation. The various interactions indicated 
arc discussed in the following section. Here we discuss the basic functions and structure of each server more 
or less in isolation from the others. 

31.1.1. General Consid1erations 

There nrc two basic dimensions by which servers may be classified: whether they are implemented as 
pseudo-processcs within the kernel or outside the kernel. and whether an instance of the server exists on each 
workstltion or not Several servers arc implemented internal to the kernel primarily for performance reasons. 
Naturally. these servers must exist on every workstation. As discussed below, there arc several additional 
servers, including those that manage teams and exceptions. instances of which must also exist on every 
workstation. Other servers (~xist, however, that need nOlt be resident on every workstation, the most common 
example being a storage server. 

Regardless of how (or where) servers arc implemented. they arc always accessible via the usuallPC facilities 
and sUlIldard protocols. Thc~ "main" server process typically consists of an infinite luup th~lt receives a request 
"tor service. processes it, recciives the next request, and so on. 

Because all message-pas.~ing is synchronous. the main process typically cannot empluy the Send() 
primitive, lest it block indefinitely. For this reason and others. servers implemented outside the kernel often 
employ additional processes, for example. to send messages for them, to service multiple input streams in a 
responsive ta.'ihion. or to manage multiple open "instances" (of objects) without complex multiplexing. rlbcse 
auxiliary processes are generally called helpen. . 

V Sencrs 17 June 19R6 



VGTSJ 

View 

Manager 

T.". ProCIIIII 

" 

00 

First Team 

Kernel 

Hardware 

SendaTo F0rward8To 

II Forced to Send To 

Figure 31-1: The V-System: A single workstation view. 

V·Syst('n.6.0 Rl'f('r('nce Mllnual 



The Basic Scncrs·1n Isolation 31·3 

31.1.2. Machine- relative Servers 

Machine-relative servers are servers, instances of which exist on every workstation running V. 

31.1.2.1. Kernel Server 

The kernel server is a pseudo-process embedded in the kernel that handles all requests to manage processes, 
as well as the requests to create and tenninate teams. 

31.1.2.2. Device ServeII' 

All hardware I/O dovices attached to the workstation are serviced by the device server, which is a pseudo
process embedded in the ternel. The device server supports the standard 110 and naming protocols 
discllssed in Chapters 33 and 34, respectively. Consequently, it behaves like any other 1/0 server as far as 
applications are concerned 

31.1.2.3. Team Server 

The team server is the manager of the physical host.l3 It toads, executes. and monitors all teams other than 
the first. (Recall that a team usually corresponds to a program, although some programs consist of more than 
one team.) Requests to thc~ team server ac;k it to load and start a team, to tenninate one, or to print the 
directory of currently execut:ing teams. 

The team server also provides the bulk of the remote execution and migration facilities. It implements the , 
policies that detcnnine whether to accept other workstations' programs for execution to begin with and 
whether to preempt them later on. It also implements the facilities needed to migrate programs between 
workstations. 

31.1.2.4. Exception Server 

The exception server is notified whenever a process incurs an exception. If another process has registered 
itself as the exception handler for the process that incurred the exception, the exception server simply 
forwards the exception to the registered handler. Otherwise. it prints a message on the screen (using the 
console device). The latter case docs 1,lOt arise very uften in practice, however, because the team server 
registers itself as the exception handler of last resort for almost alt processes. 

3'1.1.2.5. Workstation Agents 

Workstation agents were discus.~d at length in Chapter 2. Here, we merely present the basic 
implementation of the VOTS as a canonical example of server structure. 

111e VOTS is structured as one server process with three helper proccsses (see Figure 31-2). There is one 
helper process to receive input from the mouse (through the device server). one to read from the keyboard, 
and a timer process to invoke periodic functions like redrawing the screen. The keyboard and mouse helper 
send requests to the device server. and block until input arrives. When they receive a reply. they then send 
the input to the main server proces.C). and request more input from the device server. This is " typical usc of 
helper proccs.C)cs for proccs.liiing multiple input streams. simultaneously und in a responsive manner. 

Note: Although grouped with all the other mnchinc-rel~aive r.crvel'5, workstation agent" are distinguished by the facl that 
they need not exist at all, lbal is, if the workstation doa. not wpport any user 1/0 devices there is no need for it to support 
a workstation agent. 

13ln some documents it i~ also mferred to as the program manager. 

V Scncrs 17.rune 1986 



31·4 

Kernel 

}4'igure 31-2: vaTS process structure. 

31.1.2.6. executives and the Exec SerVer 

While the workSl.1tion agent provides the low-level 1/0 interface for the user. the exeCutive provides the 
command processing interface. It corresponus to the Unix shell ur the Tups-20 Exec. in that it is" user-Icvel 
process providing cOf11lmmu pm"Sing and convenient access to system services. PlllC basic operation of the 
executive is documented fully in Chapter 3. 

All instmces of the executive on a workstation arc managed by the exec server. Its purpose is to allow 
sharing of code anu data (such as aliases) among all executives. 

31.1.3. Global Server. 

A global server is distinguished by the fact that it is designed to service requests from any workstation, not 
just from processes running on the workSl.1tion on which it happens to be runlling. 

V·S1st~Rl6.0 Reference Manual 



Thc Basic Servcrs • In Isolation 31'S 

31.1.3.1. Authentication Server 

The authentication server provides the basic mechanisms by which users log in to the V -System and by 
which security is maintained. 

31.1.3.2. Storage Server 

Storage. servers generally provide for long-tenn information storage. They typically run on workstations 
will large disks attached, or on V AX/UNIX systems. Each host may suppon at most one storage server. A 
"RAM disk" facility is also provided. in the form of the memory server. 

31.1.3.3. Internet Servers 

Internet s'ervers provide thr network communications using standard (inter)net protocols. as compared to 
the inter-kernel protocol implemented by the V kernel. They are essentially protocol converters that allow 
applications that communicate by means of the V 110 protocol to communicate with hosts that can only (or 
prefer to) be reached by a protocol other than the inter-k.ernel protocol. 

31.2~ The System in Operation 

Having summarized the flunctions of each of the major servers in isolation, we now describe some of the 
ways in which these servers interact The intent is not only to help the reader understand the basic structure 
of the system: but also to understand so~e basic techniq1Ues for multi-process structuring. 

31.2.1. System Initialization 

When a workstation is booted, its PROM loads a program that loads the V kernel and thefirsllcam. After the 
kernel hac; completed its internal initialization, it creates an initial team space and an initial bootstrap process 
on this team. and assigns the processor to this process. The bootstrap process starts all the servers necessary to 
run the system on the workstation: the exception server. the team server, the exec server. and some version of 
a workstation agent All but the last are always loaded together on the first team. and thus share a single 
addres.4) space; the workstation agent mayor may not be loaded on the first team. at the discretion of the user. 
The advantage of placing it on its own team is that then it may be replaced dynamically using the newterm 
command. 

31.2.2. Loading a Team 

Teams other than the first can be loaded from object code files lIsing routines in the V C program library. 
These routines package an appropriate request to the team server and take care of matters slich as initializing 
the team's data space as discussed in Section 18.4. The detailed message traffic involved is illustrated in 
Figure 31-3: In its request to the team server (edge 1). a cHent im:ludes an open tile descriptor specifying the 
file to be loaded. rillis descriptor references the storage server that m41nages the tile (edge 2) and from which 
the tile will be loaded. After rcceiving the request. the team server requests the kernel server to create a new 
temu with initial pf(lCl~" (edges J and 4). l.ike all proccs.4)l.~. it is created in the awaitillg reply state - waiting 
Ihr a reply from its creator.. In em~ct. the kernel simulates a Send() from the pnlCCSS to the t~nn server 
(edge 5). The team scrver fbrwards this mes.c;age. and its associ~lted privileges (including access to the entire 
address space of the new team). to the cHent that originally asked for the team to be loaded (edge 6). At this 
point. the client (or the library routine it called) can initiulizc the team's environment variables and the like, 
and then Reply() (edge 7), thus allowing the new team to begin execution - all as discussed in Section 
18.4. 

V Servcn 17.lunc 19M 



31·6 

Team root 
Message 

7. 

Kernel 2. 

Figure 31-3: Loading a team. 

31.2.3. Team Termination and Exit Status 

Seners Overview 

" 

Barring catastrophic failures. the _start routine loaded with every team wiJJ ensure that the tcam's owner 
is always notified of the tennination of the team" - by sending it an appropriate message. If the team 
tenninated gracefully - by calling ex 1 t () or returning from ma 1 n () with a valid exit status - the owner 
will be able to ascertain the team's exit status. 

V'Syst(,Ra 6.0 IlrFrR'nce Mnnu:d 



The System in Operation 

31.2.4. Command Processing 

Prior to running an application, the executive must detcnnine what program is to be run! It does so by 
parsing the command line returned in response to its request for line-edited input from the workstation agent. 
The executive then opens the file that contains the program (edge 2 in Figure 31-3). and any other files as 
necessary to handle redirected 1/0. Finally, it invokes the procedure discussed in Section 31.2.2 above. 

Unless the program is bein~ run in the background, the executive waits for it to complete execution by 
waiting for a message from Rl 4 If the team terminates by calling ex 1 t () or returning from ma 1 n ( ), the 
executive will indeed receive a message from it containing the team's exit status. Otherwise, the team will 
have died abnormally, in which case the executive will awakened by the kernel and infonned of that fact. At 
this point. it is ready to ask for the next command line. 

31.2.5. exception Handling . 

As described above. the team server uses orily the services of the kernel and a storage server. However, the 
team server is also the principal client of the exception server. Figure 31-4 illustrates the message flow 
involved: The team server creates the team to begin with (edges 1 and 2) as described above. It then registers 
itself as the exception handler for the team (edge 3). If a process on the team incur.; an exception. the kernel 
simulates the effect of the offending process sending an exception message to the exception server (edge 4), 
whiCh forwards the mCSS<1ge to the team server (edge 5). The team server then uses its own facilities to load 
the V debugger (edge 6), and forwards the exception message to it (edge 7). 

4. 

Figure 31-4: Handling an exception. 

Upon receipt of the message. the debugger prints the exception data on the sc.reen and registers itself as the 

14progrnm,I\ running in the backgll'Ound have the team server ali their owner, l11cn. ir the e~cculivc that staned them is deleted by the 
user, which usually results in the daitruction or any program it owns. the background program will continue execution. 

V Seners J7 JUlie 1986 



31-8 

(new) exception handler for the offending team. It then handles user commands, one of which may cause the 
team to be "resumed", in which case the debugger simply replies to the original exception message, freeing 
the team to continue execution until it either gets another exception or terminates normally. The next 
exception,. if any, will of course be handled by the debugger. 

Note: If a process other than the team server had registered interest. in the offending process before it incurred an exception, 
the exception mcss.1Se would have been forwarded directly to the registered c,'(ccption handler. The handler can then take 
any action it deems appropriale, including loading the debugger as discussed above. 

31.3. Summary 

One of the principles guiding the V-System design has been to place as many the usual operating system 
functions outside the kernel as efficiency permits. Moreover, functions have been partitioned as far as 
practical into separate servers. Consequently, the kernel and each server have been kept reasonably small and 
independent of each other, which has in turn simplified debugging, maintenance, and experimentation with 
new servers. 

V·Sysfrm 6.11 R"rrrrncc Manual 



32·1 

-32-
Message Codes and Format Conventions 

This chapter describes the standard m~sage fo~ats and codes used throughout the V -System. 

32.1. Message Format Conventions 

System server protocols obey several system-wide conventions. Every request message contains a 16-bit 
request code indicating the service requested. Similarly. every reply message contains a 16-bit code indicating 
the successful completion of the request's execution or the reason that the request was not executed normally. 
A requesting process can assume that the request has been completely executed when the reply message is 
received with a successful reply code (although in cascs such as disk write-behind this may not be strictly 
true). 

32.2 .. Byte-Ordering Considerations 

V may run on a mixture of Suns and VaxStations. The fonner contain Motorola 680xO processors which 
usc the first (lowest-addres..c;ed) byte of a 16-bit or 32-bit quantity to store the most significant byte of the 
quantity ("big-endian"). whHe the latter use VAX-architecture processors which store the least significant byte 
first (nHttle-endian"). When processes running on the two architectures exchange messages. some conversion 
must be done (if messages included floating-point or other highly architecture-specific data. considerably 
more conversion would be nccessary: to date. however. only 16-bit and 32-bit integers have been required). 

The kernel. servers. include-files and library routines have been altered to perfonn the appropriate 
conversion (byte-swapping) for all code in the V-System distribution. However. anyone who implements a 
server or who uses message-passing that docs not fit tlle client-server model shotdd be aware of how byte
swapping is done. 

The kernel always sends inter-kernel packel~ in its own byte order. A kernel which receivl'S an IKC packet 
must determine the byte order of the packet and. if necessary. byte-swap the packet. including the mes.c;age 
contained therein (see IKC_LITTLE_ENDIAN. DifferentI!,CByteOrder and SwapIKPacket in 
Vi kc. h). Currently. the kernel swaps the mcs..'iage as though every message were eight longwords. and treats 
any segment as a stremn of bytes (hence docs nothing to the scgJJ1ent). 

Any further swapping of the message must be done by a process. We have adopted the policy that a cnent 
sends messages and gets replies without regard to byte order. It is then the responsibility of the server to 
perform any necessary swapping of requests and replies. The server can always detcnnine the byte order of 
the message's sender because it is encoded in the sender's logical host id (sec LITTLE_END IAN_HOST and 
D1 fferentByteOrder nn Venv1 ron. h). The server must. ur course, take account ur swapping 
performed by the kernel. 

1n many cases it is not actual1y necessary for the process to byte-swap mCS&1ges at runtime: rather, the struct 
detinition for the message can be #ifdefed tbr big- and liltle-endian architectures so dlat 8- and 16-bit fields 
automatically end up in the right place. The MicroVAX C compiler #defines LITTLE_ENDIAN for this 
purpose; the 680xO C compiler docs not. The definition of a Kerne 1 request in Venvi ron. h 
dcmonstmtes the use of LITTLE_END IAN. 

V Senfrs 17 June 1986 



31·1 Message Codes and I~ormat ComentioDS 

32.3. Standard System Request Codes 

Each system request is allocated a unique request code to be placed in the first word of the request message 
when requesting that service. The request codes obey the message format conventions imposed by the kernel, 
as described for Send() in Chapter 27. The manifest constant definitions for these request codes are defined 
in the standard C include file Venv1 ron. h. . 

32.4. Standard System Reply Codes 

The reply code returned. in a message from a server is normally one of the following standard system 
replies: 
OK Operation successful. 

ABORTED An operation was aboned. For example, a network connection that has been aboned 
returns this code. 

AWOKEN Returned by the kernel server when a Delay request was tenninated by a Wakeup. (It is 
not returned by the Delay library routine, however.) 

DAD~ADDRESS Request contains an invalid memory address. 

BAD_ARGS Request contains ficld(s) with illegal or inconsistent values. 

DAD_BLOCK_NO 
The block number specified in an I/O request docs not specify an existing block. If the file 
instance has attribute STREAM, the block number docs not specify the block which is 
sequentially next in reading or writing. 

BAD_BUFFER A butTer specified in the ~equest lies (perhaps partially) outside the client's address space; 

BAD_BITE_COUNT 
The byte count is larger (or smaller) than that supponed by the server. On a file instance 
without the MULTCBLOCK attribute. this is returned if the number of bytes requested to 
read or write is greater than the block size. 

HAD_FORWARD 
BAD_FORWARD is returned by the kernel when a Send is unblocked due to the receiver 
issuing an invalid Forward kernel operation. 

RAD_PROCESS_PRIORITY 
The request specified an illegal value for a process p~ority. 

BAD_REPLY _SEGMENT 
If a process invokes ReplyW1thSegment() with a segment to which it docs not have 
write access, the kernel sets the reply code of the message returned to the sender to 
BAD_REPLY _SEGMENT. 

BAD_STATE Request invalid at tJlis time. 

BUSY The server cannot satisfy the request at this time, probably h(,..'Causc a single-user resource is 
already allocated to another client. 

DEVICE_ERROR 
File or device-dependent error has occurred. 

DUPLICA TE_NAME 
The request attempted to assign the same name to two different objects. 

DISCARD_REPLY 
'Ibis reply code is used with the Peply() primitive when the process rl'Ceiving a message 
docs not wish to reply. Reply messages containing this reply code arc never delivered. 

V·System 6.0 Rf.'r('rence Manual 



Stondord System Rep., Codes 

END_OF _FILE Attempt to read beyond file boundaries.· 

HAS_SUBSTRUCfURE 

31·3 

Returned by the storage server when a client attempts to remove a file that has a son in the 
directory tree. The attempt fails. 

ILLEGAL_NAME 
Returned by a server that deems a name to be illegal- for example, the name might be too 
long. 

ILLEGAL_REQUEST 
Invalid request code: The request was probably sent to the wrong type of server, one 
which could not perform that function. • 

INTERNAL_ERROR 
The server detected an inconsistencY'in its own state. This error code may indicate a bug in 
the server. 

INVALID_CONTEXT_ID 
The request contained a context identifier (see chapter 34) that was invalid. 

INV ALID_FILE_ID 
The request contained an invalid file instance identifier. 

INVALID_MODE 
The mode specified as part of a CREATE_INSTANCE request is not valid. 

Returned from interactive files when the user hi~ the BREAK (Ctrl-C) key. It currently 
isn't. 

KERNEL_TIMEOUT 
A timeout occurred in the kernel when trying to send to a remote process. This error 
differs from NONEXISTENT_PROCESS in that the sending kernel did not receive a 
negative acknowledgement from the remote kernel. but for most purposes it can be 
handled in the same way. This error code is only generated by the kernel, but may be 
passed on by othee servers. 

MODE_NOT_SUPPORTED 
'Ille mode specified as part of a CREATE_I NSTANCE request is not supported by this 
server. 

MORE_REPLIES"n operation request sent to a group was successful. and the. client should use 
GetRep ly() to check for additional replies from other group members. 

MULTI MANAGER 
- rille requested operation is not supported on multi-manager objects. 

NO_GROUP _DESC 
Returned when the kernel runs out of group descriptors. 

NO_MEMORY The server wns not able to obtain enough memory to satisfy the request. 

rille serv'cr was not able to create a process needed to satisfy the request. 

NO_PERMISSION . 
Some kind of restricted operation was attempted. 

NO _SER VER_R ESOURCES 
The server has (temporarily) inadequate resources to satisfy the request. 

NO_Jl)S The server was not able to create a team needed to satisfy the request. 

V Sencrs 17 June 19R6 



32·4 Message Codes and I;ormat ComcntRons 

The request asked the server to perfonn an operation that is only defined on contexts, but 
the specified object was not a context 

NOT_HERE The character-string name specified in the request docs not specifY an objcct implementing 
by the receiving server, but may be defined by some other server. This reply code is never 
returned to a message sent to a process group unless the replier knows that no member of 
the group implements the name. 

NONEXISTENT_PROCESS 
The request was sent or forwarded to a nonexistent process, or a nonexistent process was 
specified in the request This error code is only generated by the kernel, but may be passed 
on by other servers. 

NONEXISTENT_SESSION 
The request referred to a session (sec chapter 43) which does not exist, or to an object 
which is not a session." Obsolete.. 

NOT_A W AITINGREPLY 
The process specified in a request was not awaiting reply from the client 

NOT_FOUND The object named in the request was not found. 

NOT _READA BlE 
Specified file instance docs not have the attribute READAnLE which is required for the 
requested operation. 

NOT_ WRlTEABLE 
Specified file instance docs not have the attribute WRITEABLE which is required for the 
requested operation. 

POWER_FAILURE 
Operation was unsuccessful due- to a power failure. 

REQUFSf_NOT_SUPPORTED 
The server recognizes the request. but docs not support it 

RETR Y Client should repeat request. 

Rr..lR Y _UN ICAST 
The request wa~ sent to a group. but the responding server refuses to perform it in parallel 
with other members of the group. The client should. retry the request, this time as as a 
one-ta-one Send( ), not a multicast 

SER VER_NOT _RESPONDING 
The server failed to receive a response from another server specified in the request 

TIMEOUT An attempt to satisfy the fCquest failed because of a timeout. Usually applied to network 
connections. 

11le ErrorStr1 ng() function will return a character string version of many of the system reply and 
requcst cutk'S. The string Form is much more infomH,tive lhan plinting the codes in numeric form. 

V·Syslem 6.11 nercrenre Manual 



-33-
The V-System 1/0 Protocol 

A standard input/output protocol is defined in V to provide transfer of data between processes in a unifonn 
fashion. Using this protocol. a client process views and accesses data managed by a server process as ajile. A 
file is a "view" of the data associated with an objcct or activity managed by a server. An object viewed as a 
flle is a sequence of variable"size records or blocks. 

To operate on an object viewing it as a file, it is necessary to create an instance of that filc. "The protocol is 
object-based in the sense that it is defined in terms cf operations on a object. the file instancc. File instance 
operations include: creating a file instancc. querying a file instance. setting the file instance owner, reading, 
writing. and releasing file instances. There are also operations for setting a prompt string and break process 
associated with a file instance which are restricted to interactive file instances. A server that supports this 
protocol is callcd an 110 server or file instance server. (The term "file server" might be more appropriate if it 
did not have a different established meaning in the rescall'Ch literature on distributed systems). 

A file inst.c1nce is created by a server in response to a client request, which specifies the file, i.e. the object or 
data and the particular view and usage required. Conceptually. a file instance is an object which is created at . 
the time of the client's CREATE_INSTANCE request, and (possibly) initialized to contain the same data as 
an existing. permanent file. When the instance is rcleased by the client. the data contained in the instance is 
atomically written back to the corresponding permanent file. For some servers (for example. the internetwork 
server), however. there is no pennanent file corresponding to an instance. while for others (for example, the 
device server). there is effectively no distinction between the instance and the permanent file - changes in the 
instance are immediately reflected in the underlying tile or I/O device. The current implementation of some 
storage servers (c.g., the V Unix server) also causes ,:hanges in an instance to be immediately reflected in the 
underlying file. . 

A file instance is uniquely identified hy the server process identifier and the ins/alice identifier returned by 
the CREATE_INSTANCE request. 'me creating process is made the owner of the me instance. The lifetime 
of the file instance and the 'validity of the insL1nce identifier does not exceed that of the owner of the file 
instance. 'Ille owner of a file inst£U1ce can be changed by the SJ--:-I'_I NSTA NCE_OWNER request. 

The reply message to a CREATE_INSTANCE or QUERY_INS'I~ANCH request specifies the server, file 
instance identifier. block length in bytes, file type. last block (written) in the file instance. number ofbytcs in 
the last block. and the next block to read. 

lne file Iype indicates the operations that may be performed on the file instance as well as the semantics of 
these operations. 'Incsc types are defined in the include me <Vio.h); file types are specified as some 
combination of the following attributes. 

READABLE READ_INSTANCE operations are allowed on the file instance. 

WR ITEABI.E WRITE_INSTANCE operations are allowed on the file inst.c1ncc. 

APPEND_ONL Y WRITE_INSTANCE operations are only effective to bytes in the file instance beyond the 
Jast byte associated with the instance at the time it was created. 

STREAM All reading and writing is strictly sequential. The first READ_INSTANCE operation must 
specify the block number returned as "extblock in the reply to the CREATE_INSTANCE 
requ~t. 'Illis next block number to read is incrcmented after each RI·:AD_INSTANCE 
operation. It') current value is returned hy a QUER Y _INSTANCH. A server that uses the 
ReplyW1thSegment() kernel operation to return the data requcsted in a 
READ_INSTANCE must store the last block read and allow it to be read again. to provide 

12 M:uch 1986 



The V-System 110 Protocol 

duplicate supprcssion on requests. 

WRITE_INSTANCE operations on STREAMs always write to laslblock+ 1, where 
lastblock is a value- returned by CREATE_INSTANCE or QUERY_INSTANCE_ This 
block number is incremented after every write operation. The block number specified in 
the request message is ignored. 

A tile instnnce without the STREAM attribute stores its associated data for non-scqucntial 
(hrandom ") acccss. That is. on a non-stream tile, for any n, block n may be read or wlitten 
at any time, and reading block n wi1l return the same data as was last written to block n. 

Since each file models a single sequence of data blocks, objccts which provide bidirectional 
communication, such as serial lines or network connections, are most appropriately 
modeled as a pair of file instances, one a READABLE STREAM, the other a 
WRITEABLE STREAM. Some servers qlay allow both instances to be created by a single 
CREA TE.JNSTANCE request 15 

FIXED_LENGTH 
The file instance is fixed in length. The length is specified by the last block and last byte 
returned from a create or query instance request Otherwise the file instance grows to 
accommodate the data written or else the length of the file instance is not known (as in the 
case of terminal input). 

VARIABLE_BLOCK 
Blocks shorter than the full block size may be returned in response to read operations other 
than due to end-of-file or other exception conditions. For example, input frames from· a 
communication line may differ in length under normal conditions. 

With a file instance that is VARIABLE_BLOCK, WRITEABLE, and not STI~EAM, 
blocks that arc written with less than a full block sizc number of bytes return exactly the 
amount written when read subscquently. 

M UL TI_DLOCK Read and write operations arc allowed that specify a number of bytes larger than the block 
size. 

INTERACI'IVE The file instance is a text line-oriented input stream on which a prompt can be set using the 
sl:-:r J>ROMPT request and a break process can be dcfined using the 
SE'I,-BREAK_PROCESS request It also has the connotation of supplying interactively 
(human) generated input 

Not all of the possible combinations of attributes yield a useful file type. The file instance types supported 
. by each server arc documented with each servcr. 

A client must specify a mode of usage for the file ins~1nce when c.reating it. The mode is one of FREAD, 
FCREATE. FMODIFY and FAPPEND. The modes of usage have the following semantics. 
FREAD No write operations arc to be performed, only reads. 

FCREATE Any data previously as..'IDCiated with the described file is to be ignored and a new file 
insl4l1lce is to be created. Write operations are permitted: read operations arc also 
permiued irLhe lite insl4lOce has type auribulc READABLE. 

FAPPEND Data previously associated with the described file remain unchanged. Write operations are 

15 A few existing server5 bcn~ this rule by assigning the ·same in.'itance id to the input and output streams. even though block number II 
of the input slrc:tm is unrelated to block· number n of the output stream. Strictly speaking. this behavior is in violation of the protocol, 
and we plan to ch.1ngc th~ servers cventually. A single STREAM 111at iii buth READAm.E and WRITEABI.E would havc to return 
the data wrillen to block n if block II is Iatcr read back. '.lli" type of rile might be used to model a Unix-like pipe. but in fact. the 
V-System ripe ~rver (sec chamer 41) l:lkcs a diITerent 3l'Prooch. creating a separate instance for each end of the pipe, with the 
connection between them invisible to the protocol. 

V·Sysh.'1II6.0 Rcfrfcnce Manunl 



FMODIFY 

33-3 

pennitted only to append data to the existing data. 

Existing data is to be modified and possibly appended to. Both read and write operations 
are required. This is only supported on file instances that arc not STREAM. 

A server creates a file instalnce of a suitable type for the specified usage mode if it can. For example, the 
storage server prqvides file instances with' type ,attributes READABLE, FIXED_LENGTH and 
MULTCULOCK in response to a CREATE_INSTANCE request specifying FREAD usage mode. 

One of three modifiers may be used on the mode field ofa CREATE_INSTANCE request 

FDIRECfORY Indicates tlhat the given name specifies a context directory. See section 34.10. 

FEXECUTE Specifies that the given file is to be executed as a program on the storage server machine. 
The mode must be FREAD or FCREATE. Respectively, one or two file instances are 
returned, which allow reading from the program's standard outpu~ and optionally (in 
FCREATE mode) writing. into its standard input When two instances are created, the 
fileid of the second (readable) file instance is obtained by adding 1 to the fileid of the 
writeable instance (which is returned in the reply message). This mode modifier need not 
be supported by all storage servers. 

The following subsections give the fonnat of the request message and the fonnat of the reply, plus a 
description of the semantics for each operation in the protocol. ~nlCSC message fonnats arc defined in the C 
include file -<Vioprotocol.h). 

33.1. CREATE INSTANCE 

requestcode 

filenamcindex 

type 

filemode 

unspecified 

contextid 

filename 

filenamelen 

replycode 

fileid 

filcscrver 

CREA TE.JNST ANCE 

The index of the first byte in the filename to use in the name mapping. 

Type of file to create an instance of. for servers that do not support character-string 
naming. This is used, for example, to specify the protocol to the internet server.16 

Desired lIsage mode indicating FREAD, FCREATE, FAPPEND or FMODIFY, plus 
optionally FDIRECrORY or FEXECUTE. 

Server-dependent infhrmation specifying the file to be created, for servers that do not 
support character-string naming. 

Specifies the context within the server in which the filename is to be interpreted. (See 
section 34.3.) 

Pointer to a byte array containing the symbolic name of the server or file. 

Number of bytes in filename, not including the terminating null byte. . 

Stantlard system reply. If the reply code is not OK. the file instmce was not created and 
the remainder of the reply is not defined. 

File instance identifier. 111is is the number used in subsequent operations on the file. 

Process itlcntitier of the server managing this file. This is not necessarily tJ1C same as the id 
to which t1he request was sent 

16 All ncwly written servers that provide the CREATlUNSTANCE operation should support charactcr string naming 311d should not. 
usc the type or unspccijicd fields or the Cre:lIelnstanceRcquCSl 

V Scncrs 12 March 1986 



blocksize 

filetype 

file lastb lock 

lbe V·System 110 Protocol 

Maximum size in bytes of a block. 

Type attributes of the file instance as described at the beginning of this section. 

Index of the last block in the file or of the last block written to the rue instance if it is a 
STREAM tile. Indexing is o-origin. 

filelastbytes Number of bytes in the last block. Forflle instances which are not WRITEABLE and not j': 

filenextblock 

FIXED_LENGTH, this field and the fllelaslblock field should return the maximum 
unsigned integer. 

Number of the next block that can be read if this file is a READABLE STREAM. 

The fileltame field of a CRFA TE_INST ANCE request specifies the type and properties of the instance to 
be create~ perhaps by naming some existing permanent object. The request is issued either directly to the 
scrv~r or sent to a group including the server. as described in section 34. 

The fl/eid and flleserver uniquely identify the file instance created. The file instance exists until released or 
until the requesting process ceases to exist. 

33.2. QUERY INSTANCE 

requestcode 

flleid 

replycode 

fileid 

filcscrver 

blocksize 

filetype 

tilelastblock 

filelastbytes 

filenex tb lock 

--- , . 
- .. l 

File instance identifier. 

A standard system reply .. If the reply code is not OK, -the file instance was not queried and 
the remainder of the reply is not defined. 

File instance identifier. same as the request for compatibility with the reply to the 
CRFA TE_INSTANCF. request. 

Server process identifier. ..' 1\ • -

The maximum si7.e in bytes of a block. 

Type attributes of the file instance as described at the beginning of the section. 

I ndex of the last block in the file or the last block written to the tile instance if it is a 
STREAM file. Indexing is (}-origin. 

The number of bytes in the last block. 

Number of the next block that can be read if the file is a READABLE STREAM. 

In response to a QUERY_INSTANCE request mcs.~age. the serv('r queries the file instance spccified by 
fiteid rur the parameters supplied in lhc reply- mcs.'klgc. The reply mcs..~,~c has the same fhnnat ,and semanlics 
as the reply to " CREATE_INSTANCE request excepl thr the reply cude. For example. a reply code of 
NOT_FOUND to a CREATE_INSTANCE request indicates that the file specified does not exist, while a 
reply code of INVALID_FILE_ID to a QUERY_INSTANCE request indicates the file instance docs not 
exist. 

33.3. CREATE DUPLEX INSTANCE 

requestcode 

V·Sysh.'m 6.0 Ilcrcrl'ncc Manual 

" ,"" 



CREATE DUPLEX INSTANCE . 33-S 

fileid 

mode 

replyc~e 

fileid 

fileserver 

blocksize 

filetype 

filelastblock 

filelastbytes 

filenextblock 

File instance identifier. 

Desired usage mode. 

A standard system reply. If the reply code is not OK, the file instance was not created and 
the rcmannder of the reply is not defined. . 

File instance identifier, same as the request for compatibility with the reply to the 
CREATE_INSTANCE request. 

Server process identitier~ 

The maximum size in bytes of a block. 

Type attributes of the file instance as described at the beginning of the section. 

Index -of the last block in the file or the last block written to the file instance if it. is a 
STREAM tile. Indexing is o-origin. . 

The number of bytes in the last block. 

Number of the next block that can be read if the file is a READABLE STREAM. 

In response to a CREATE_DUPLEX.-INSTANCE request message, the server creates (or causes to be 
created) the "other side" of a duplex file (such as a bi··directional network connection, or a terminal). The 
reply messc1ge has the same format and semantics as the reply to a CREATE_INSTANCE request except .for 
the reply code. For example. a reply code of NOT_FOUND to a CREATE_INSTANCE request indicates 
that the' file specified does not ~xist, while a reply code of INVALID_FILE_ID to a 
CREA TE_DUPLEX_INST ANCE request indicates the file instanc,e docs- not exist. 

33.4. RELEASE INSTANCE 

requestcode 

fiJeid 

releascmode 

replycode 

RELEASE_INSTANCE 

File ins~1nce identifier 

Server-o(~pendent action ttl perform when releasing the instance. This field is set to zero 
on a normal close. 

A standard system reply code. 

In response to a RELEASE_INST"NC'j~ request, the server ·invalidates the instance identifier. rec1c1ims 
server resources dedicated to the instance and possibly perthnns some server-dependent function with the file 
ins~1nce datc1. A re/ellscmotir of 0 indicates n(}lmal completion of the lISC of the mc instance. For example. in 
the case of the printer server, thc file instance oall1 is printed. In the case of thc stomgc server. the data 
atomically replaces the previous version ofthc stored file data. A nun-zero release mode causes the data to be 
discarded. 

A server may release a tUc instance with a non-zero release mode if it detcctc; that the process that created 
the instance no longer exists. A server should maximize the time before reusing a file instance identifier. . I .. _ 

V Scncrs 12 March 1986 



The V·System 110 Protocol 

33.5. READ INSTANCE 

requestcode 

tileid 

block number 

bufferpU' 

bytccount 

replycode 

fileid 

shortbuffer 

bytecount 

READ_INSTANCE 

File instance identifier . 
Index of the block in the file from which the read is to begin. 

Address of the data buffer in which the data is to be moved if more than 
IO_MSG_BUFFER bytes are read. That is, IO_MSG_BUFFER is the maximum number 
of data bytes that fit in the message. 

Number of bytes to be read. 

Standard system reply code. 

Same as in request 

IO_MSG_RUFFER bytes containing the data bytes read if less than or equal to 
IO_MSG_BUFFER bytes. 

Number of bytes read. 

In response to a RF.AD_INST ANCE request, the server transfers up to bytecount bytes from the file 
instance starting at the block numbered blocknumber. If the number of bytes read i.~ less than the number 
requested. the reply code indicates the reason. If the file instance has the type attribute VARIABLE_BLOCK 
and the block being read was not the full block size specified for ,the file instance. this case is not an error, and 
the reply may be OK, or END_OF _FILE if the last block was read. Se~ers should set the byte count to zero 
on error conditions. 

If the number of bytes read is less than or equal to IO_MSG_BUFFER. the data read is contained in the 
reply message starting at shortbufJer. If it is greater than IO_MSG_llUFFER. the data read is transferred into 
the space of the requesting process s~1rting at the address bufferptr. 

If the file instance ha~ the type attribute S11~EAM. the block number specified must be the next block to 
read thr this instance. which is incremented after the read. Reads always start at the beginning of the 
specified block. The values of bytes read lhelt were not explicitly written ilre undetined. '111e number of bytes 
requc..'Sted must be less than or equal to the block size unless the file instance has the type attribute 
MULTCllLOCK. 

33.6. WRITE INSTANCE 

requestcude 

fileid 

block number 

shortbu tTer 

buffcrptr 

bytccount 

WRITE_INSTANCE. or WRrrESHORT.JNSTANCE if bylecoullt is less than or equal to 
IO_MSG_BUFFER. 

File instmce identifier. 

Index of the block in the file instance at which the write is to begin. 

Data bytes to be written if less than or equal to IO_MSGJlUFFER. 

Address of the data buffer if no more than IO_MSGJ1UFFER . bytes are being written. 
Otherwisc. this field may be overwritten by the data bytes. 

Number of bytes to be written. 

V·Syslem 6.0 Rcrcrcnt'c Manual 



WRITE INSTANCE 33-7 

replycode Standard system reply code. 

bytecount Number of bytes written. 

In response to a WRITE_.INSTANCE or WRITESHORT_INSTANCE request, the server transfers up to 
byleeoulll bytes to the file instance starting at the block numbered blockllumber. If the number of bytes 
written is less than the number requested, the reply code indicates the reason. As with READ_INSTANCE, 
servers should set the byte count to zero on error conditions. 

If the number of bytes to write is less than or equal to IO_MSG_BUFFER, the data is assumed to be 
contained in the requ~st message staning at shortbuffer. If it is greater than IO_MSG_BUFFER, the data is 
transferred from the space of the requesting process starting at the address bujferplr. Writes always stan at the 
beginning of the specified block. Note that the separate request code WRITESHORT _INSTANCE is used 
when the data is contained fin the message only to be consistent with the kernel message fonnat conventions. 
There is no READSHORT_INSTANCE needed because the data is passed back in the reply. That is, 
WRITE_INSTANCE specifics that segment access i~ being passed while WRITESHORT.JNSTANCE 
specifics no segment access. 

If the file instance has type attribute STREAM, the block number written is one greater than the last block 
in this file instance, regardless of the block number specified. '!be number of bytes to write must be less than 
or equal to the block size unless the file instance has the type attribute MULTI_BLOCK. 

33.7. SET INSTANCE OWNER' 

requestcode . SET_INSTANCE_OWNER 

flleid rue instance identifier 

instanceowner Process identifier of new file instance owner. 

replycode Standard system reply' code. 

In response to a SbTJNSTANCftOWNER request. the server sets the file instance owner process to that 
specified by inslanceowller. The requesting process must be the current owner of the file instance. 111e initial 
owner of a file instance is the process that created the instance. 

33.8. SET BREAK PIROCESS 

rcquestcode 

fileid 

breakproccss 

replycode 

SET _BREAK_PROCESS 

File installlce identifie,r 

Process to be "broken" when next break generated on this file instance. 

Standard system reply code. 

In response to a Shl_BREAK_PROCESS request. the server sets the break process as.~)ciated with the tile 
instance to the process specified by breokprocess. Wh<!n a break .is generated on this file (the 10_BREAK 
reply returned to any outstmding read operations), the server issueS a DestroyProccss kernel operation on the 
specified process. 

121\Iarch 1986 



33-8 ne V·System 110 Protocol 

This request is only supported on file instances with type attribute INTERACTIVE. 

33.9. SET PROMPT 

requcstcode 

fileid 

promptstring 

replycode 

SET_PROMPT 

File instance identifier 

Prompt string. which must· be less than IO_MSG_BUFFER bytes long. 

Standard system reply code. 

In response to a SET_PROMPT request, the server sets the prompt string output previous to every read 
operation to that specified. This request is only supported on file instances with type attribute 
INTERAcnVE. 

33.1 a.-QUERY FILE and NQUERY FILE 

requestcode 

fileid 

unspecified 

requcstcode 

nameindex 

unspecified 

namecontextid 

nameptr 

namelength 

replycode 

unspecified 

QUERY_FILE 

File instance identifier 

Server-specific. 

NQUERY_FILE 

The index of the first byte in the file name to usc in the name mapping. 

Scrver-spcciflc. 

Context in which the name is to be interpreted. 

Pointer to a memory segment containing the file name. 

Length of the segment in bytes. 

Standard system reply code. 

Server dependent information. 

In response to a QUERY_FILE or NQUERY _FILE request, the server returns server specific infonnation 
aholll the file or file instance. For example. the VGTS returns the "c(x)king" bits. ano the internet server 
returns connection infonnation. A QU ER Y _FILE request specifies the file using an instance identitier, while 
a NQU ER Y _FILE request uses a character-string namc. Both types of rcquest return thc same infonnation. 

33.11. MODIFY FILE and NMODIFY FILE 

requcstcode 

filcid 

MODI .. l' _FILE 

File instancc identifier 

V·System 6.0 Reference Manual 



MODIFY FILE and NMOIlIFY FILE 

unspecified 

requestcode 

nameindex 

unspecified 

namecontextid 

nameptr 

namelength 

replycode 

Server-dependent in formation. 

NMODIFY_FILE 

The index of the first byte in the file name to use in the name mapping. 

Server-dependent in formation. 

Context in which the name is to be interpreted. 

Pointer to a memory segment contc'lining the file name. 

Length of the segment in bytes. 

Standard system reply code. 

The MODIFY_FILE and NMODIFY _FILE requests are supported by some servers to modify some 
attributes of the file or file instance. For example, the device server uses MODn .. ~ _FILE to change the data 
rate on RS-232 serial interfaces. 

A MODIFY_FILE request specifies which file is to be modified by passing an instance identifier, while an 
NMODIl-l' _FILE request passes a character string name. 

V Scncrs 12 March 1986 



34·1 

~34-
The V-System Naming Protocol 

A number of V-System services use character string names to specify the objects to be operated on, and 
many standard message types include space for such a name. Examples include the CREATE_INSTANCE 
request and several other requests described above as part of the 110 Protocol. 

Name mapping in the V-System is decentralized. being performed by a collection of cooperating server 
processes rather than a single, monolithic "name server." The V-System Naming Protocol consists of a 
uniform format for request messages that contain high-level names. a method for locating the server that 
implements any given named object, and a small set of request types that must be handled specially by any 
server that implements the protocol. 

In this chapter, we describe! the naming protocol in detail and give implementation hinlc; thr servers that usc 
it Refer to Chapter 25 for a description of the naming library routines available to client programs. 

34.1. Ove rvlew 

-Conceptually, the V-System naming facility is a system-wide global directory providing reference by high
level (character-string) ""me to objects 'implemented by multiple object managers (servers). The global 
directory contains a (name, object)-tuple for each binding of global name to object 17 Each client may also 
have its own directory of bindings from local names (or aliases) to global names. The naming facility provides 
operations for 

• Binding names to objects 

• Removing name bindings 

• Name mapping: finding objects bound to a given name 

• 1nversc name mapping: finding the name bound to a given object 

In the decentralized V nnming facility, the global dircxtory is distributed acros..c; the object managers such 
that each object mannger stores and m<lintains that portion of the directory corresponding to the objects it 
implements. Each client program maintains a cache of binding.~ from name to object manager, as illustrated 
in Figure 34-1. When a client invokes an operation using a high-level object name, the client checks its cache 
for an entry that maps the name to an object manager. I fa caC'he entry for the name is Ibund (as is the case 
with name] in Figure 34-1). the operation and name are then sent to the object manager indicated by" the 
cache entry. Otherwise. a query is multicast to the objcct managers to determine the correct object manager 
for the Jlllmed ohject (as is the case for namel in Figure 34-1). If an object manager r,",'Sponds. a cache entry is 
crcHted and the proces.~ing of the requcst proceeds as bclhre. with the operation being sent to the responding 
ohject manager. Otherwise" the specified ubject name is as.~lllned to be invalid und 4ln errur indic,ltion is 
returned to the client 

Inverse name mapping is simply a lookup in the global directory using an object's low-level identifier (for 
example. its instance identifier) in place of its high-level name. We assume that the low-level idcntifier 
provides enough information to determine which manager implements the object in qucstion. and hence 
which m"n4lger stores the portion of the global directory containing its mlme. rille same (absolute) global 

17Notc that high-level nrunes arc: bound directly to objects. not to low-level names (such as globally unique numeric identifiers). Our 
design views high-level names as the only pcmlanenl. globally unique idenlifierN for objects. 

V Scners 12 March 1986 



The V-System Naming Protocol 

Global 
directory 

Clients Servers 

8 --.+--~? 

name1? 
-----1I-+---I-~ ? 

~.-+--+~.. object2 

name2? 
Hit 

-t---+~/ object1 

Figure 34-1: Decentralized Global Directory 

name is returned for a given objcct cven if the client originally accessed the object using a local name, alias, 
etc. I.ow level identifiers are not standardi7.ed across all objcct types, so the inverse name mapping operators 
provided are typc-speciflC. 

34.2. Character String Names 

Synt4lCtic"l1y t a character string name (CS"ame) is a sequence of lero or more bytes. of a specified length or 
else tenninatcd by a null byte. Operationally. a character string name is a byte string as above that is used to 
specify an objcct relative to a server that can interpret the namc. ~l"erc is no universal limit on the length of 
character string names. Two CSnames are equal if and only if they are byte-wise identical and equal in length 
(where a null in the name takes precedence over the length specification). 

Although CSnamcs may contain arbitrary bytes, they arc generally specified or chosen by the client (as 
opposcd to the server) and are usually human-readable ASCII strings. 

'l1e term character .ftri"n "(/II1C' hal1dlil1~ sen'er (CSN /I sl'nC'r) refers to any server that performs charncter 
string name mapping. regardless or what else it does. The tenn C\'"ome r(,quest dl~ribcs any requcst 
con141ining a character string name thHt must be mapped in order to perform the requested operation. 

34.3. Contexts and Context Ids 

The V-System name space is hierarchically structured. and we refer to each internal node of the naming 
hierarchy as a Coil/ext Names are patJlIlames in that they describe a path through the hierarchy, beginning at 
(Le .• relalive' to) some specific context. Absolute names arc those that begtn at the root context. 

The global directory is divided among objcct managers using a tcchnique we call vertical partitiollillg. Each 

V-Syslem 6.0 Rererence Manual 



Contexts and Context Ids 34·3 

object manager implements a tree of contexts starting at the root of the complete name hierarchy. thus storing 
the absolute names of the objccts it implements. Some contexts (the root in particular) are implemented by 
multiple object managers. Such !llulli-nlanager contexts are partitioned across the managers that participate 
in their implementation. li'lch participating manager stores only that subset of the context needed to name 
objccts it manages. 

A context can be referenced by its absolute name. or by its cOlltext identifier. a compact low-level identifier 
that is effectively a pointer into the name space. providing direct, efficient access to the object manager(s) 
implementing the context. Referencing an object using a context identifier plus relative name allows the 
name lookup to start at the identified context rather than from the global root, thereby reducing the need for 
multicast and reducing the length of the 'name that must be looked up by the object managers. . 

In V. a context identifier is structured as a (manager-ill, specijic-context-id) pair, where the manager-id is a 
process identifier or process group identifier specifying the object manager(s) that implement the context, and 
the specijic-colltext-id is mapped by the identified manager(s) to one of the contexts they implement The 
standard system header file <Venviron.h> defines the types Processld. Contextld (ccrresponding to 
specijic-contexl-id). and ContextPa1 r. for these identifiers. 

When a context is renamed. its old context identifier becomes invalid and another is assigned. Thus, in 
effect. a context identifier is bound to a context name. not to the context object itself. 

Context identifiers are considered hints. That is. a context identifier is allowed to become invalid even if 
the corresponding character-string name is still bound to the same contexl For example, if a V objcct 
manager crashes and is restarted under a different process identifier, all its old context identifiers become 
invalid (since they contain the manager's process identifier as a sub field), even if all the objccts it manages are 
recovered. 

34.4. Prefix Caching 

The client naming library maintains a prefix cache mapping from name prefixes to context identifiers, 
Before sending off any CSname request. the NameSend () library routine finds the longest name prefix that 
can be matched in the cache. (If the matched prefix maps to a mUlti-manager context. NameSend() iss\Jcs a 
QU ER Y _NA M E request (see below} to obtain a longer prefix.) The matched prefix is then stripped off, and 
the resUlting relative name is sent off together with the context identifier to which the prefix mapped. If the 
request filils because the stored context identifier was invalid. NameSend() removes the offending cache 
entry and retries the request, continuing until the request succeeds or the nume is known to be invalid. 

rille naming library also caches the context identifier of each clien,t process's current context ("working 
directory"). The context's absolute name is also stored, aJlowing NameSend() to recover if its context 
identifier becomes invalid. 

34.5. Static Context Identifiers 

Static context identifiers are defined for a few of the most commonly used multi~m(lnager contexts. For 
each iuenlifier. the specific-cnntext-id portion is defined in <Vnmning.h> and the mmlager-id pUition is 
delineu in <Vgl'Oupius.h>. St41tic specific context ids "re small nun-negative integers. less Ulan the manifest 
const4mt MAX_ WELL_KNOWN_CONTEXTS. 

In principle these identifiers need only be known to servers. To improve performance. however. several of 
the identitiers and corresponding name prefixes are preloadcd into client caches by the Pr1meCache() 
library routine. ' 

rn,e following static (or w(~Il-kllow") context identifiers are defined at this writing. 
(VCSNH_SERVER_GROUP. GI.OBAL_ROOT_CONTEXP() 

Corresponds tu the CSname 'T'. 

V~"ers 12 M~lfch 1986 



34·4 

(VfEAM_SERVER_GROUP. TEAM_SERVER_CONTEXT) 
Corresponds to the CSname "[teamy-. 

(VSTORAGE_SERVER_GROUP, STORAGE_SERVER_CONTEXT) 
Corresponds to the CSname "[storage]". 

(VTIMER_SERVER_G~OUP, TIME_SERVER_CONTEXT) 
Currently not used for naming. 

(VA UTH_SER VER_GROUP, AUTICSERVER_CONTEXT) 
Currently not used for naming. 

(VEXCEPTION_SERVER_GROUP, EXCEPTION_SERVER ... CONTEX1') 
Currently unused. 

(VDEVICE_SERVER_GROUP,DEVICE_SERVER_CONTEXT) 
Currently unused. . 

(VINTERNET _SER VER_ G ROUP, INTERNET _SERVER_CONTEXT) 
Currently unused. 

(VPRINT_SERVER_GROUP, PRINT_SERVER_CONTEXT) 
Currently unused. 

(VVGT_SERVER_GROUP, VGT_SERVER_CONTEX1) 
Currently unused. 

(VPIPR_SERVER_GROUP, PIPE_SERVER~CONTEX1) 
Currently unused. . 

(VEX EC_SER VER_ GROUP, EXEC_SERVER_ CONTEXT) 
Currently unused. 

(VfEST_SERVER_GROUP, TEST_SERVER_CONTEXT) 
Reserved. 

DEFAULT_CONTEXT 

The V-System Naming Protocol 

'. Conventionally used for the local root context by many servers that implement a single tree 
ofsinglc-manager contexts. The name is an anachronism, left over from a previous version 
of the naming protocol. 

(VSTORAGltSERVER_GROUP. PUBI-IC_CONTEXT) 
Holds publically-available V programs on storage servers. Corresponds to the CSname 
[sys}. 

34.6. Generic Names and Group Names 

/\ group "a"w is a name thutrefers to a group (Le .• set) of objects. which need not all be implemented by the 
same scrver. /\ J,!CIICriC namc refers to one member sclected from such a group according to a rule associated 
wilh the namc. The simpk-st (anll most communly uscd) rule is to select one member urbilmrily. 

The naming protocol suppurtc; generic and group naming by pennilting more than one scrver to respond to 
a CSname requl.'St In general. tJlC client issuing the name request detcnnines whether the CSname is to be 
interpreted as a group name or gcncric name by recciying and processing all the responses (group namc), or 
only the first (generic name with arbitrary sclection). Selecting the first response has the pleasant side effect 
of favoring the most lightly-loaded server. 

Scrvers can also define gcneric or group names for contexts. In ~is case the servers detennine whether the 
name CilO be llsed as a group namc, or only .as a generic name. Issuing a GetContextld request on a group 

V·System ( •. 0 Reference Manual 



Generic: Names and Group Names 34-5 

name for a set of contexts must return a ContextPa 1 r that refers to all the contexts.18 Subsequent name 
lookups that find the given prefix in the cache and substitute the returned context identifier will then 
correctly refer to all members of the set In contrast. each response to a GetContextld on a generic name 
for the same set of contexts may return an identifier for just one server's member(s) of the set Subsequent 
name lookup., that find this prefix in the cache will then map it to the identifier that was returned in the first 
response. 

34.7. Name Reques·t Format 

All V-System request messages that contain CSnames are built on a common skeleton. defined as the 
NameRequest structure in the standard header file <Vnaming.h>. 

rcquestcode 

nameindex 

unspecified 

namecontextid 

nameptr 

namelength 

Any valid request code that grants read access to a segment 

The byte offset of the name, within the segment specified by the last two long words of the 
message. 

Request-specific in fonnation. 

A 32-bit identifier for the context in which this name is to be interpreted. 

Pointer to the segment containing the symbolic name. 

Length of the segment containing the name. 

The reply is not spccified by this protocol because it is generally dependent on the operation requested. 

The name need not be first in the segment but is considered to start at the byte offset specified by 
Ilameindex. [fthe name is not last in the segment. it must be terminated by a null. 

The CSname request format includes only the spccific-context-id field of the ContextPa1r for the 
context in which the name is to be interpreted. The manager-id portion is implicitly specified by sending the 
request to the appropriate manager or group. 

34.S. Name Lookup Algorithm 

A server receiving a NamcRequcst performs the fol1owing algorithm to look up the name. 
1. Set CurrentNode to the context specified by the namccontextid. If the context identifier is not 

recognized. fail with status INVALlD_CONTP..xT_ID. Go to step 4. 

2. While the name still has unmapped components, do 
• Attempt to map the next component of the name, relative to CurrentNode •. 

o If the name component is not defined local1y. but CurrentNode is a multi-manager 
context. fail with s141lus NOT_II ER E. Go to step 4. 

o If the name component is not defined,. and CurrentNode is not a multi-manager context, 
t:1i1 with status NOT_FOU ND. (We know the mIme cannot be defined by any other server.) 
Go to step 4. 

o If the name component is an upward reference (" .... ). and the context C to which it refers is a 
multi-m«;lnager context implemented by a different (Iarger)'group than CurrentNode, 

18Multi-man:lgcr contexts follow this rule. with the context namc viewed :as a group name for the set of partitions hCld by the 
participating servers. 

VSc"~n 12 !\1:m.-h 1986 



34-6 The V-System Naming Protocol 

advance nameilldex to the next component following the upward reference, set 
namecofllexlidtoC. C 1 d, and Forward the request to C. P 1d. Done. 

o Otherwise, the name component is defined. Set CurrentNode to the object it maps to and 
repeat 

3. The entire name has been mapped, and CurrentNode is the named objcct Done. 

4. Fail. 

• If the failure status was NOT_FOUND, and the request is of a type that permits automatic 
creation of an object in this case (for example, CREATE_INSTANCE in FCREATE mode on a 
file storage server), the object may be created at this point Its name will be the remaining 
unmapped portion of the given name, defined relative to the context CurrentNode. 

• If the request was multicast and the failure status was other than NOT_FOUND, do not reply 
(that is, invoke Rep ly() with replycode DISCARD_REPLY), since another server in the 
multicast group may have succeeded in processing it . 

• Otherwise, the request was unicast Reply with the failure status. 

34.9. Standard CSNH Server Requests 

There are several standard CSNH requests that must be implemented by all CSNH servers, plus a few 
optional oncs. All of the request and reply formats described below are subsets of the ContextRcquest 
structure defined in the standard system header file (Vnaming.h>. 

34.9.1. QUERY NAME 

requcstcode 

nameindex 

namecontextid 

nameptr 

namelength 

replycode 

nameindex 

context 

QUERY_NAME 

The byte offset of the name relative to nameplr. 

Context in which to interpret the given name. 

Pointer to the segment containing the symbolic name. 

Length of the segment containing the name. 

Standard system reply code •. 

Advanced. to indicate the context prefix recogni7.ed by the responding server. 

A ContextPa 1 r for the recogni7.ed context prefix. 

Query a name to get information that can be cached. typically to avoid multicast when mapping the Ilame in 
the future. Implementation required of all CSNU servers. 

The query returns the shortest prefix of the given name that specifics a single-manager context, together 
with a context identifier for that context If nn prefix of the name specifics a valid single-manager context, 
but the entire name specifies a valid multi-manager context. the entire name is returned together with a 
context identifier for that context Otherwise. the query fails. A failing query returns KERN EL.:nMEOUT 
if multicast, or a more specific error code ifunicast. (Multicast is the normal casc.) 

A server receiving this request performs a variant of the general name-mapping algorithm, as follows. 

1. Set CurrentNode to the context specified by the namecontextid. If the context identifier is not 
recognized. fuil with status INVALID_CONTEXTJD. Go to step 4. 

V-System 6.0 Rdcrcocc Manual 



Standard CSNlI Sener Requests 34·7 

2. While CurrentNode is a multi-manager context participated in by this server, do 

• Attempt to map the next component of the name. relative to CurrentNode. 

o If the name has no more components, go to step 3. 

o If the name component is not defined locally, fail with status NOT_HERE. Go to step 4. 

o If the name component is defined, set CurrentNode to the object it maps to and repcaL19 

3. Succeed. In the reply. set Ilameindex to point to to the first component of the name that was not 
mapped. or if the entire name was mapped, to just beyond the last character of the name (Le.t to .the 
terminating null byte if there is one). Set context to the context identifier of Current Node . Done. 

4. Fail. If the request was multicast. do not reply (that is, in·voke Reply() with replycode 
DISCARD_REPLY), since another server in the multicast group may have succeeded in processing iL 
If the request was unicast. reply with the failure S~ltuS. 

34.9.2. GET ABSOLUTE NAME 

requestcode GET_ABSOLUTE_NAME 

nameindex The byte offset of the name relative to nameplr. 

namccontextid Context in which to interpret the given name. 

nameptr Pointer to a buffer containing a symbolic name, and in which the absolute name is to be 
returned. 

namelength Size of the buffer. 

replycode Standard system reply code. 

context If the giv1cn name specified an existing context, a ContextPa1r identifying it is returned 
in this field. 

nameptr The value provided is returned unchanged. 

namelength I.ength of the returned narne. 

Returns an -absolute CSlIlame for the object whoS(! (relative) CSname is given. The returned name 
overwrites the given name. If the name was not bound to a context, contexl.pid is set to 0 in the reply. 
Implementation required of all CSN H servers. 

A server rcceiving this request performs a slight varialllt of the general name-lookup algorithm. The named 
object need not exist. as 10l1lg as it is clear whut its absolute name would be if it were created. If the lookup 
fl,i1s with status NOT_FOU N D. but it wou Id be pos''iible to create an objcct with the- given name. the server 
constructs an absolute name by appending the undefined name suffix to the absolute mime thr the last 
CurrentNode reached. 

34.9.3. GET CONTEXT 10 

GET_CONTEXT_ID -requestcode 

nameindex The byte offset of the name. within the segment specified by the last two long words of the 

19Exa:ption: upward references arc handled as described in section 34.S 

V Scncn J2 March 1986 



34·8 The V-System Naming Protocol 

message. 

namecontcxtid Context in which to interpret the given name. 

nameptr Pointer to the segment containing the symbolic name. 

namelength Length of the segment containing the name. 

replycode Standard system reply code. 

context A ContextPa1r identifying the named context. 

Given a CSname that names a context, this request returns a (serverpid, contextid) pair that identities the 
same context Implementation required of all CSNH servers. 

34.9.4. GET CONTEXT NAME 

rcquestcode 

context 

nameptr 

namelength 

rcplycode 

nameptr 

namelength 

GEf_CONTEXT_NAME 

The ContextPa1r for which a name is to be found 

Pointer to a buffer in which the name is to be returned.

Size of the buffer. 

Standard system reply code. 

The value providcd is returned ':Inchanged. 

Length of the returned name. 

_Invcrse name-mapping for contcxt idcntificrs. Provides a subset of the functionality of 
GE'r_AnSOLUTE_NAME. Implemcntation rccommended for all CSNH servers. 

Returns an absolute CSname fhr the context corresponding to thc spccified context identifier. if the context 
identilier is valid and known to the server receiving the requcst 'Ill is request should be scnt to the process or 
group identified by the pit/component of the Contex tPa 1 r. 

34.9.5. GET FILE NAME 

rcquestcode 

instanccid 

namcptr 

namclcngth 

replycode 

nameptr 

namelength 

GET _FILE_NAME 

A file instance id for the file whose name is desired. 

Pointer to a buficrin which lhc namc is to be returned. 

Size of the buffer. 

Standard systcm reply code. 

llle value provided is rcturned unchanged. 

I .. cngth of the returned name. 

Inverse namc-mapping for instance idcntificrs. Rcturns an absolute CSname for the file associated with the 

V·System b.O Ih,rcr(,Rrc Manual 



Standard CSNlI Sener Requests 34·9 

specified file instance. Implementation recommended for all CSNH scrvers. 

34.9.6. RENAMEOBJEClr 

rCQuestcode RENAME_OBJECI' 

nameindcx The byte offset of the old name relative to nameptr. 

namecontextid Context in which to interpret the old name. 

nameptr Poirtter to the segment containing the old and new names. 

namelength Length of the segment containing tlle names. 

replycode Standard system reply code. 

context A Cont."tPai r identifying the namcd context. 

Givcn a CSname for an c!xisting objcct, this request binds a new name to the object and removes the 
binding of the existing name.. Implementation is optiona:L 

'Ib~ ncw name must be absolute. (Thc initial 'T' character is omitted.) It follows the old name in the 
segment, separated by a single null byte. The request fail~ returning ILLEGAL_NAME. if thc new name is . 
in a portion of the name space not implemented by the object's current manager. and that manager is unable 
or unwilling to expand its namc space as required. 

34.10. Context Directories and Object Descriptors 

An important aspect of system operation is supporting Query operations about objects or sets of objects. A 
simple example is that of listing the names of all objccts in a given context. In general. one may wish to list a 
variety of information about objects in a context, pcrhaps ignoring some of the objccts based on their 
properties. 

Each CSNH server implements a context directory for each context that it manages. A context directory 
appears as a file of records. with each record describing an object in the as.~)Ciated context A directory file is 
acce5.'iCd using the 110 protocol with the CREATEJNSTANCH request specifying the name of the context to 
be used. Pille FDI RECrORY bit is set in the mode field of such a request A client can then use the standard 
(/0 routines to read the contents of the directory Jnd derive the infonnation required. The selection of the 
infonnation required is done by the client. not the server. The client may also be able to modify some or all 
of the fields of a directory r,ccord by writing it, using the standard 110 protocol. A server is not obliged to 
make all field') presented in a directory modifiable. If a client attempts to change a non-modifiable field, that 
field is left unaltered. but any other changes indicated in the request are carried out 

The FDIRECrORY bit is primarily for the benefit of Verex-like file systems. which pennit each node in 
the n"Oling hierarchy to be (in UN IX temls) both a file and a c.iin .. -ctory. It discriminates between acce5.,) to U,C 
data content of such a node. and U,e context directory associated with it 

Each record in a directory starts with a descriptor-type field that specifies the fonnat of the record describing 
the object For space economy. this field is an identifier that specifics a description of U,e record format 
stored elsewhere in a system database of such formats. (The standiud formats and descriptor type identifiers 
arc defined in the header file <Vdirectory.h).) Applications can read a directory and extract the required 
in fonnation by referring to the descriptor-type field and these format descriptions, even when a directory 
contains heterogeneous recolrds. 

A similar query activity involves accessing the descriptor of a single object For,efficiency and consistency. 

VSmen 12 March 1986 



34-10 The V-System Naming Protocol 

this is supported by a separate NRF..AD_Dr-:5CRIPTOR function on the object (as opposed to being 
subsumed by the context directory facility), which returns the same record as found in the context directory. 
A corresponding NWRITE_DESCRI~TOR operation is available for modifying an object's descriptor. 

A server need not store information about objects as it is presented in a context directory. For instlncc. the 
UN IX file system stores the names of files separate from their descriptors with the association provided by 
so-called "i-node numbers." A context directory entry in this case is fabricated dynamically by replacing the 
i-node number in each record by its descriptor. 

The standard descriptor reading and writing operations are described below. TIIC messagc fonnats used are . 
described by the DcscriptorRequest and DcscriptorRcply structures defined in <Vdirectory.h). 

34.10.1. READ DESCRIPTOR and NREAD DESCRIPTOR 

rcquestcode 

nameindex 

dataindex 

namccontextid 

segmentptr 

segmentlen 

requestcode 

fileid 

dataindex 

segmentptr 

scgmentlen 

replycodc 

NREAD_DESCRIPTOR 

The byte offset of the name relative to segmentptr. 

The byte offset from the start of the specified segment where the returned descriptor is to 
be placed. 

The context id of the context in which the given name is to be interpreted. 

Pointer to a buffer that contains the object name and in which the descriptor is to be 
returned. . 

Length of the buffer. 

READ_D ... ::SCRIPTOR 

File instance id of the object whose descriptor is to be read. 

The byte offset from the start of the specified segment where the returned descriptor is to 
be placed. 

Pointer to a buffer in which the descriptor is to be returned. 

Length of the buffer. 

Standard system reply code. 

1'lCSC request types provide a way of reading the descriptor (context directory entry) of a single object. . 
READ_DESCRIPrOR specifies the object by tile instance id. while NREAD_DESCRIPTOR specifics it by 
CSnamc. Implementation of both is recommended for all CSNH servers. 

34.10.2. WRITE DESCRIPTOR and NWRITEDESCRIPTOR 

requestcode NWR fl'ltDESCR JPfOR 

nameindex The byte offset of the name relative to segmelllpir. 

dataindex The byte offset from the start of the specified segment where the new descriptor value 
begins. 

namccontextid The context id of the context in which the given nnme is to be interpreted. 

V'SY!""III 6.0 Rd"rence Manual 



Context Directories and Object Descriptors 34·11 

segmellltptr 

segmentlen 

requestcode 

fileid 

dataindex 

scgmentptr 

segmentlen 

replycode 

Pointer to a buffer that contains the object name and the new descriptor value. 

Length of the buffer. 

.. i ~ ... 

WRITE_DESCRIPTOR 
!', 

File instance id of the file whose descriptor is to be modified. 

The byte offset from the start of the specified segment where the new descriptor value 
begins. 

Pointer to a buffer that contains the new descriptor value. 

Length of the buffer. 

Standard system reply code. 

These request types provide a way of modifying the descriptor (context directory entry) of a single object 
WRITE_DESCRIPTOR specifics the object by file instance id, while NWRrrE_DESCRIPrOR specifies it 
by CSname. "Ibe server will modify each field in the object's descriptor for which the value written differs 
from the existing value. if the field is client-modifiable and the new value is legal. A client normally uses one 
of these operations by first reading the descriptor. then modifying the field(s) of interest. and finally writing it 
bocL . 

34.10.3. Multi-ManagelrContext Directories 

A multi-manager context. directory is implemented as multiple. context directory files, one per manager 
participating in the context To list a multi-~'lClDager context directory, the client opens the context directory 
for each object manager in the context and then merges the object entries into a single list Merging the lists 
entails eliminating duplicates, since some objects in the context may themselves be mUlti-manager contexts, 
and wilt thus appear in several managers' directory tilcs. All the context directories for a context arc opened 
in parallel. using a multicast CREATE_INSTANCE request To compensate for the inherently unreliable 
delivery of multicast mcs.~gcs and responses. a thltowlip mcs.')3ge containing the list of managers from which 
replies were received can be multicast to the object managers. Only omitted object managers respond to the 
followup message. For full reliability. additional followup mcs..~,ges can be transmitted until no more repJies 
are received. 

The fonnat of a folJowup message is as follows. The message structure CreateInstanceRequest, as 
defined in <Vioprotocol.h>. is used. 

requestcode CREATE_INSTANCE_RETRY 

filenameindex PIlle byte otT.l)et of the start of the actual CSname. relative to filename. 

type 

filename 

filenamelen 

unspecincd 
filemode .' 
contextid. 
Identical to the corresponding fields of the original CREATE_INSTANCE request 
(chapter :33). 

Address of a data segment beginning with an array of process ids specifying the managers 
that sh()uld not reply to the request. terminated by a process id of O. The CSname appears 
later in the segment. as specified by jilcllameilldex. 

Length of the segment 

12 i\lnrch 1986 



34-12 The V-System Naming Protocol 

The reply fonnat is identical to that for CREATE_INSTANCE. 

V·Syst(,1II6.0 I~('rl'rl'ncc Manual 



35-1 

-:- 35-
Authenti1cation and the Authentication Server 

Since processes are the active entities in V, the kernel associates each V process with a particular user or 
account on whose behalf it :is acting. Each authorized user within a V domain is assigned a unique user 
number. and each V process bears exactly one -user number.20 A process runs with the privileges associated 
with its user, and that user ns considered responsible for its actions. An authentication server maintains a 
database of information about each user. including login name, personal name, encrypted password, user 
number, and preferred home directory. The authentication server supports simple queries on this database, 
which is keyed by user number and by login name. The authentication server wiU also set the user number of 
a requesting process if the correct password for that user number is presented in the request 

The V authentication service docs not provide a very high level of security. Its main purpose is to provide a 
sense of user identity to programs that need to exhibit user-specific behavior. and to protect against 
inadvertent mistakes. Its design is grounded on the belief that the benefits of increased security in a research 
system like V are very quickly outweighed by its cost in reduced performance and increased complexity. 

35.1. Authserver 

The authentication server itself is available as a program called authserver. Starting the server with the 
-d flag turns on debug output '[be -F flag, followed by a filename, specifies a non-standard authentication 
database file. . 

l'be V executive automaticiaIJy starts up an authentication server if none is running when a user attempts to 
tog in. 

35.2. User Numbers, 

In general, a proccs." running with user number u ha." control over other proccs."cs running as user u, and 
over server-main~'\ined objcc:ts owned by user u. Certain special user numbers are exceptions to this rule, 
however. 

A process nanning with the predefined user number SUPER_USER ha.c; total privilege to do anything that 
the kernel and servers implement '1l1e authentication server runs as super-user. 

Somewhat more restricted privileges are a.c;sociated with the user number SYSTEM_USER. Server 
processes that need special permissions to enable them to act on behalf of other proce~ but do not need the 
full SUPER_USER privilege level. run as SYSTEM_USER. 

User processes running on a workstation in the "not logged in" state have llser number 
- UNKNOWN_USER. '1l1e UNKNOWN_USER is somewhat more restricted lhan nonnal users, since not all 

processes running as UNKNOWN_USER really belong to the same person. An unknown user on one 
machine is ~ot allowed to manipulate processes belonging to unknown users on other machines. 

When a process is created. it initially has the user number of its parent The root process of each 
workstation's initinl team is created with user number SYSTEM_USER. allowing server processes on the first 
team to run as SYSTEM_USER if desired. User numbers can be queried with the User() kernel primitive 

2OProccsscs on the same team need not all run under the same user number. 

V Scners ll.Junc 1986 



35-1 AutheDticatioD and the AuthcnticatioD Sener 

or changed with the SetUsarNumber() kernel primitive. 

35.3. Authentication Library Functions 

The following authenti~ation functions are available in the standard V library. 

SystemCode AddUser(name. passwd. fullname. home) 
char -name. -passwd, -fullname. -home: 

Add a new user with the given login name, password, full name, and home directory. Returns OK if 
successful, else a standard system code indicating the reason for failure. The requesting process must be 
authenticated as SUPER_USER. Requires that an authentication server be running somewhere on the local 
network. . 

SystemCode Authent1cate(name, pass.d) 
char -name, -passwd: 

. Authenticate the calling process as the given user. specified by login name. Returns OK if successful, else a 
standard system code indicating the reason for failure. Requires that an authentication server be running 
somewhere on the local network. 

SystemCode DeleteUser(name) 
char -name: 

Delete the user with the given login name from the authentication database. Returns OK ifsuccessful, else a 
standard system code indicating the reason for failure. The requesting process must be authenticated as 
SUPER_USER. Requires that an authentication server be ruMing somewhere on the local network. 

OestroyAuthRec(ar) 
AuthRec ar: 

Free each string in the given AuthRcc. 

char -Ful1UserName(p1d) 
Processld p1d: 

Return the full name of the user associated with the given process as a dynamically anocated string. The 
string should be freed by the caller when no longet needed, using free. Requires that an· authentication 
server be runningsomewherc on the local network. 

SystemCode MapUID(u1d. ar) 
UIO u1d: AuthRec -ar: 

Obtain an AuthRcc containing the given user's authentication dalc1base entry. The user is specified by user 
number. Returns OK if successful, else a standard system code indicating the reason for failure. Requires 
that an authentic4ltion server be running somewhere on the local network. Note: this function dynamically 
allocates several strings to construct the AuthRcc. The caller should invoke OestroyAuthRec( ar) when 
the AuthRcc is no longer needed. . 

V·System 6.0 Rerercnce MnnuQI 



Authentication Ubral'J Functions 

SystemCode MapUserName(name, ar) 
char ·name: AuthRec ·ar; 

Obtain an AuthRec containing the given user's authentication database entry. The user is specified by login 
name. Returns OK if successful. else a standard system code indicating the reason for failure. Requires that 
an authentication server be running somewhere on the local network. Note: this function ,dynamically 
allocates several strings to construct the AuthRec. The caller should invoke OestroyAuthRec( ar) when 
the AuthRec is no longer needed. 

SystemCode Mod1f1User(ar) 
AuthRec ·ar: 

Modify the given user's authentication database entry Ito be as specified by the given AuthRec. The user is 
specified by the u 1 d (user llumber) field of the AuthRec: a user with the given number must exist Returns 
OK if successful. else a standard system code indicating the reason for failure. The calling process must be 
authenticated as the given user or as superuser. Requires that an authentication server be running somewhere 
on the local network. 

SystemCode Password(name, passwd) 
char ·name, ·passwd: 

Check whether the given password is correct for the given user name. Returns OK if so, else a standard ' 
system code indicating the reason for failure. Requires that an authentication server be running somewhere 
on the local network. 

SystemCode SetUserNumber(p1d, u1d) 
ProcessId p1d: UIO u1d: 

Set the given process's user number to the given value. Returns OK ifsuccessful. else a standard system code 
indicating the reason for failure. The kernel places the following restrictions on setting user numbers: 

1. Any process can set its own user number to be UNKNOWN_USER. 

2. Normal user processes are allowed to set the uscr numbers of descendents to match their own. (This 
privilege is useful if a parent process must change its user number after having created other processes.) 

3. A process running as SYSTEM_USER can set its own uscr number. or that of any descendent. to match 
the user number of any process that is awaiting reply from it (This privilege allows servers to create 
processes that act on behalf of clients.) 

4. The SUPER_USER c"n set any process's user number to any value. 

UIO User(p1d) 
ProcessId p1d: 

Return the user number of tJhe user associated with the given process. 

char ·UserName(p1d) 
ProcessId p1d: 

Return the login name of the user associated with the given process as a dynamically alloc,ited string. The 
string can be freed by the culler-using free() -when no longer needed. Requires that an authentication 
server be running somewher,c on the local network. 

II .Iune 1986 



Authenlic::atioD and the AutheDlicatioD Se"er 

35.4. Adding a New User 

The following is the recommended procedure for adding a new V user. See section 35.5 if you are installing 
V for the first time and need to add many users in one session. 

1. If you arc using a UNIX host for file service, create a UNIX account for the new user. 

2. Under V, use the su superuser command to begin running as the V super-user. 

3. Run the V password program. 

a. Oick on the user name field, edit ~t to con~in the user's desired login name, and hit rerum. 
b. Modify thefoll name field to contain the user's personal name, in the.same way. 

c. Modify the home field to contain the V absolute path name of the user's home directory. 

d Click on add, and enter the user's desired initial password. 

e. Oick on exit, or repeat to add more users. 

4. Run addeorr and answer the prompts. When it requests a password, type the user's UNIX 
password 21 

35.5. Authentication Database, 

There is one Vpassword file per network segment. For each user it contains a username, uscmumbcc, 
password (using the same format as Unix). full namc. and home directory. Each machine providing V 
fileservice needs a user correspondence file. wJ'lich lives in letc/V. It maps between V user numbers and the 
local Unix account namc of the corresponding user. 

The authentication server keeps its database in the tile [sys ]m1 sc/Vpassword. This file should be 
made writeable only by the V super-user. The tile format is similar, but not identical. to the UNIX password 
file. You can convert your UNIX password file to a V password file using the awk program provided in 
lete/V/Vpassword.awk. 

The authentication server supports a simple fonn of p,tSSword file replication. The first few lines of each 
file copy should list the absolute names of the master and all slave copics of the password file. as foUows: 

master: [storage/pescadero/usr/V/misc/Vpassword 
slave:[storage/gregorio/usr/V/misc/Vpassword 
slave:[storage/navajo/usr/V/misc/Vpassword 

,Whenever a new authentication server starts up. it reads [sys]misc/Vp~,ssw()rd. which may come from any 
public Vserver. When modifications arc made, it attempts to first modify the master file. If this file is 
inaccessible. no pas.~word files are updated and the authserver returns the standard reply code 
POWER-FAlLER. If the master file is correctly updated then as many slave sites as possible are also . 
updated ' 

Changes made when the master site is unavailable are kept in the "uthserver"s in-melnory databasc, so 
future updates may cause changes made when the master tile server is lIl" at a later dale. In general. users 
shuuld refrain from changing the authenlication dal.Hhasc when Ule masler pas.o;word file is imlcccssible. 'l1le 
design goal is to have a c1ose-to-cllrrent pas.o;word tile available if the master sile is down when the authserver 
need~ to be res~1rted. Redundant distribution of the master password file should be c"rried out to slave sites 
using rdisl or similar tools on a regular basis. We do it every night. 

Each UNIX system that makes its files accessible from V maintains a correspondence table mapping from V 
user numbers to UNIX login names. See section 43.1.1 for more infimnation about correspondence ~'\blcs. 
Another awk script. lete/V IVusercorr. awk. is provided to create this table. 

2IThe user can run addcorr him!IClf if you do not know his UNIX password. 

v·Sy~.cm ft." Hcr~r~nce Manual 



36-1 

-36-
Device Server 

The device server provides access to the raw kernel-supported devices via the I/O protocol. It is 
implemented directly .by the kernel as a pseudo-process as opposed to being a nonnal process like other 
system servers. Consequentlly, it is always configured when the V kernel is used. However, the device server 
behaves like any other I/O server process as far as applications are concerned. 

The device server appears as a single process that supports different types of devices using the same I/O 
protocol. Access to a device is established by ser.ding a create instance request to the pid returned by 
GetPid(DEVICE_SER VER, LOCAL_PID), or. if using the standard name cache, by prefixing the device 
name with the context name "[device)" in a creat-~ instance request or OpenO call. Using the standard 
information returned by the create instance request, the device can then be accessed using I/O protocol 
messages, either directly or by means of the standard [/0 library routines described in chapter 22. There are 
also some device--specific operations defined for some devices. "Ibe currently supported devices are described 
below. .: . . ; .'r" 

36.1. Ethernet 

The Ethernet interface is accessed by specifying a· device name of the fonn enetts. where t is replaced by 
the Ethernet type, either 3 for 3 Mbit experimcntal Ethernet. or 10 for standard Ethernet, and s is a suffix, 
which is null for the first Ethernet interface. a for the second. b thr the third. and so forth. Currently only one 
Ethernet instance may exist at a time and only one Ethernet interface is supported. and the name elhernet is 
defined as an alias for either ene13 or enellO, whiche'/er is prescnt. 

The standard header filc~ <Vetherneth> definC'§ Ethernet-specific infonnation. including the Ethernet 
packet fonnat and various constants such as EN";I'_MAX_DATA, the maximum size of the data portion of 
an Ethernet packet. 

I n a cre"te instmce request, the filemode must be FCR HATE. rille type of an ELhcrnet instmce is always a 
read4lble. writeable. variable block stream. 

Read and write instance requests are standard except for the Ethernet block format The Ethernet is only 
sensibly accessed as a block (or p<lckct) device. as opposed to a byte stream. The Ethernet block fhrmat is 
exactly that expectcd by the interface. namely. on the 3 Mbit Ethernet. one byte for destination. one byte for 
source, two bytes for Ethernet packet type. followed by some number of data bytes, and on the 10 Mbit 
Ethernet. six bytes for destination. six bytes for source. two bytes fur packet type. followed by data bytes. 'I be 
number of b"ytes specificd in a write and.returned by a ['cad includes the destination. source and type bytes as 
well "s lhe data bytes. 

An Elhernct-spc..'Ci lie QU ER Y _FI I.E request is supported that returns the host numbcr. tllC number of 
collisions, receiver overl1ows. CRC errors. receiver synchronization errors. transmission time()uts dctected, 
,md the number of valid packets received. The host number should be used as the source address for every 
packet transmitted. "Ibe fOlmat for the request and reply messages is given by the QueryEnetRcquest struct 
defined in <Vethernet.h>. 

V Seners 13.June 1986 



Dente Sener 

36.2. Disk 

The disk interface is accessed by specifying the device name diskO or diskl. These names correspond to the 
first and second drives attached to the interface, respectively. Currently, only the Xylogics disk interface is 
supported. 

In a create instance request. the tilcmode must be FCREA TE. The type of the disk instance is .always 
readable, writeable, multi-block. 

Upon "opening" a disk device, the disk driver reads the label off of the first sector to obtain disk-spccific 
infonnation (such as the number of cylinders, numb~r of heads, etc.). The disk label must have previously . 
been written to the disk using the diskdiag program. ,,--;The fonnat of .a disk label is defined in 
"IV IkemeVm68kl disklabel.h" • 

Read and write instance requests are standard and allow a maximum of DISK_ MAX_BITES (as defined in " 
"IV Ikcrnel/m68lc/xyl.h", usually 64 kbytes) bytes to be acCessed. The disk driver translates from a (block, 
byte count) pair to a (cylinder, head sector, sector count) tuple. 

A disk-specific QUERY_FILE request is supported that returns device access statistics (e.g., the average 
seek distance per 110). A MODIFY_FILE request allows these statistics to be modified (e.g., reset to zero). 
The fonnat for the QUERY_FILE reply message is given by the QueryStoragcReply struct defined in 
<V storage.h). 

36.3. Mouse: The Graphics Pointing Device 

The mouse is a graphics pointing device. It provides a means of indicating a coordinate position plus 
signalling different states via its three button!L 'Hle device server provides access to the mouse through the 
1/0 protocol, thus viewing it as a file. 

The mouse tile appears as a lO-byte file divided into 3 major fields. The first two bytes specify the mouse 
button positions. the three buttons being the low-order three bits of the second byte. A bit with value 0 
indicates the button is up, otherwise down. rille next 4 bytes specify its current X coordinate. The last 4 bytes 
specify its current Y coordinate. rIlle kernel updates this tile according to the input from the device. These 
fields are. specified in <Vmouse.h> as buttolls. xcoordillote and ),coorti;Ilole with MBUTTON1, MUUTTON2 
and M llUTTON3 specifying the button bit field assignments in the buttons field. 

A create ins(,.1nce request for a muuse specifies the name mouse in the filename field. Only one mouse and 
one .inS(,.1nce of that mouse are currently supported. The ji/clIloc/e field of the create instance request must be 
FCREATE. '111e mouse tile instance created is initialized to have X and Y coordinates of O. It has type 
attributes READABLE, WRn'EAIlLE. and FIXED_LENGTH. 

Read and write requests must specify block 0 and a byte cOllnt of 10 bytes. A read instance request returns 
10 bytes specifying the current state of the mouse "file." A read instance request is queued until a change to . 
the mouse file occurs. providing no change has occurred since the last read request Thus. for instance, a 
mouse reader process that repeatedly reads from the mouse and updates a cursor is suspended when the 
mouse is not being moved and no button positions are changing. Conversely. the read returns every time a 
change docs occur. 

A write instance operation changes the kernel-maintained record of the mouse button positions and the X 
and Y coordinates to that specified by the 10 bytes in the butTer. Setting the mouse buttons in the kernel has 
no signiticant effect because this record is updated to "agree with the actual button positions on the next input 
(or "squeak") received fr<?m the mouse. 

There is no need to provide a query function that simply returns the current mouse position because that 
should always be stored outc;ide the kernel. That is. the application decides where the mouse is; the kernel 
simply updates the position relative to the absolute position specified. 

lbe kernel docs not provide any scaling of mOllse movements. '(bat is left to the application. 

V·Sysh.'1II 6.0 Ih·rl'fcnce Manual 



Mouse: The Graphics Poindng Dewce 

36.4. Serial Line 

The kernel device server provides access to raw serial lines through the serial device. Two scrial1ines are 
supported, but only one instance for each may exist at a time. 

In a create instance request. the name seriaiO or seriall specifies a serial line. The filemode must be 
FCREA TE. The in5tance id returned is used for output; the instance id + 1 is used for input Parameters for 
the input instance can be obtained using Query Instance. . 

Each serial line is a pair of streams, one readable and one writeable. Characters read from each serial line 
are buffered in the kernel until a process reads from the device, but the buffer is rather small, so a user who is 
interested in input from a serial line should keep a process "listening'" to it at all times. The serial line device 
docs not provide any echoing of input characters, nor does it convert input editing or conversion of newline 
characters to a carriage return/line feed sequence on output 

The serial device drivers suppon Query File and Modify File operations to allow changing such parameters 
as the data rate, bits per character, and the state of the modem control outputs DTR and RTS. The necessary 
message structures and const.ants for these operations arc defined in the standard header file <Vserial.h>. (At 
this writing, the Query and Modify operations are not implemented in the Sun-l serial device driver.) 

36.5 .. Console 

The kernel console device is intended to provide a measure of hardware independence to programs doing 
interactive character stream input and output The console device provides access to the console keyboard 
and display of the workstation the kernel is running on, independent of the type of workstation. On 
workstations whose keyboards are connected to serial line 0, reading from the console device reads from serial 
line 0; on others, it reads from the port to which the keyboard is connected. Likewise, on workstations with 
frame bufft!rs. writing to the console device draws characters on the' frame buffer; for those without, writing to 
the console sends output to serial line O. In cases where the console uses scrialline 0, instances for serial line 0 
and the console may not both exist at the same time. -

A create instance request must specify'filemode FCREATE. and name console. The console device is a pair 
of streams; one readable and one writeablc. As with the serial line device. the instance id returned by a 
Crcatelnstance is writeable. land that instance id + 1 is readnblc. ~Ine parameters of the second instance can 
be obtained using Querylnstance. 80th instances are marked INTERACflVE. but SEl'_PROMPT and 
SET_BREAK_PROCESS are not support;d. 

Console device input is bllltTered in the ~1me way as serial fine input (see above). The console device docs 
not provide any echoing or output conversion, but it docs make an effort to sound thc workstation's beeper 
when an ASCII BEL charact(~r is output.' 

lbe console device is automatically opened by the kernel upon creation of the first team, and is ordinarily 
never closed. 

36.6. Framebuffer 

'lnere are device drivers available for 

36.6.1. Sun framebuffers 

The current Sun (and Cadlinc) drivers allow one to enable and disable video output through modify file 
requests. lbe device may be opened and modified. or may be modified directly with a NMODIPY _PILE 
request The following routine turns the framebuffer off: 

lJJune 1986 



#include <Vframebuffer.h> 
FbOff() 

( 

} 

ModifyFramebufferMsg *req; 

req.sysCode • NMODIFY~FILE; 
req.request • FB __ OFF: 
req.nameindex • 0; 
req.nameptr • "[device]framebuffer"; 
req.namelength • sizeof("[device]framebuffer"); 
NameSend( &req ); 

36.6.2. Mic roVax QVSS Framebuffer 

Delice Senef 

Caution is advised whcn using this device driver. Opening the device maps the QVSS frame buffcr mcmory 
into onc's address space. Onc cannot directly access the framebuffcr until the device has becn opened. To find 
where the framebuffcr has been mapped, perform a QUERY_INSTANCE on the file and look at thc field 
ulOJp;ettTflfJie4glls driver allows direct user access to QVSS device rcgisters. The device is 
made up of six sixteen bit (short) blocks referencing the first six device registers. More information can be 
found in the top secret DEC Engineering specification VCB01-KP./V/kernel/vax/qvss. h dermes all of 
the useful control bits. 

Thcregisters available arc: 
o Control Status 
1 Cursor X position (not used by the V-System) 
2 Mouse Position (x is low byte. y is high by~e) 
3 Spare 
4 CRT controller address pointer 
5 CRT data 

36.7. Null Devices 

Two null devices arc avniJable. and are normally configured into all versions of the V kernel. The nullin 
device is a readable. o-Iength me; it thus returns an end-of-file indication on every read attempt. The /luI/out 
device is an endless sink for output. . 

V-System 6.0 I~crcrcncc Manual 



37·1 

-37-
Exception Se rye r 

When a process incurs an exception, it causes a trap which is fielded by the kernel. The kernel effectively 
causes the process to send a message to the exception server with the contents of the message describing the 
exception incurred. If there is no exception server, the kernel prints an error message and disables the 
faulting process by causing it to send to itself, which pennanent;1y blocks the process. 

The exception server checks to sec if another exception handler has registered for this process or an 
ancestor. If ')0, it forwards Ithe message to the handler. For ordinary programs. arrangements arc made for 
such messag~ to be passed on to the V debugger. The fonnat of the exception request and registration 
messages arc defined in <Vexceptions.h). The only request types supported are EXCEPTION_REQUEST 
and REGISTER_HANDLER. EXCEPTION_REQUEST messages should only be generated by the kernel. 
'Inc REGISTER_HANDLER request code is used both for registering and deregistering handlers. 

If no process was registered. the exception server prints a message on the screen indicating the type of 
exception, the pid of the faulting process, and the instruction. program counter and status register at the time 
the exception occurred. 111e exception server then destroys the faulting process. thus preventing it from 
doing further harm. Note: the program counter may have been incremented beyond the actual instruction 
incurring the exception so it should not be considered exact. although the error message routine attempts to 
find the correct PC by searching for the opcode of the instruction that was reported in the exception message. 

The error printing routine used by the exception server is available to other exception handlers as the 
library rout.ine StandardE:Kcept 1 onHand·'er. 

V Scm~rs l2 March 1986 



-38-
Exec Server 

The exec server is the central control facility for all instances of the V system executive on a workstation. Its 
purpose is to allow sharing of code and data (such as aliases) among all executives. The intention is that while 
each executive is a separate command stream. all exe~utjves on the same workstc,tion should prescnt the same 
command interface to the user. That includes customized aspccts of that command interface, such as aliases. 
Since the exec server is part of the basic environment of the V system, such customizations do not vanish even 
if the terminal agent (Le., the VGTS or STS) is replaced: they remain as long as the user is logged in. 

The exec server allows programs to have instances of the executive (usually referred to simply as "execs") 
created and destroyed. An exec is known to the server by its exec id; exec ids are small integers starting at O. 
There is currently no concept of ownership of execs: any program can destroy any exec regardless of whether 
it created it or not. 

The exec server is located by 
GetPid(EXEC_SERVER, LOCAL_PID) 

It is prescnt in all the standard configurations of the Vsystem. 

The following requests at'\e supported. 

CREA TE_EXEC Creates an executive, with standard Vo and conte~t specified in the request message, and 
returns the exec ide 

START_EXEC Under some circumstances an exec is not started by the CREATE_EXEC request, because 
the requestor needs to do some SetinstanccOwncr operations first. START_EXEC then 
allows the exec to start nanning. Normally all this is transparent and is handled in the 
Crcatc~:"cc library routine. 

DELETE_EXEC Delete an executive. If there is a program running under it, it is abntptly stopped due to 
the death of its parent process. 

KILL_PROGRAM 
Kill the program running under an executive. If there was no program running under that 
executive, nothing happens. . 

QUERY_EXEC Returns infonnation on an executive: its SL1tUS (free. loading a program. or running a 
program). its process id, and the process id of the program running under it, if any. 

CHECK_EXEC Makes a check of all executivcs. If the standard input server or standard output server of 
an exec has died, the exec is destroyed. '111is is used mainly when changing tenninal 
agents. 

The message stnlcture thr the requcstct. the request values and the logical identificntion of the exec server 
can be found in the he,lder file Vexec.h. 

V Servers 12l\1arch 1986 



39-1 

~39-
Internet Server 

'l1le internet servcr is an 1110 server that provides network communications using any of sc\'cral protocols. 
It is essentially a protocol converter which allows applications which communicate by means of the V 110 
protocol to communicate with hosts which can only (or prefer to) be reached by some other protocol. As 
such,. the server has been structured in a manner which allows easy addition and deletion of protocols. The 
server consists of a general framework which is indepel1-dcnt of the particular protocols being supported. and 
one or more protocol-specific modules. Each module implements a particular protocol and mllst interface 
that protocol to the requirements and facilities provided by the server's general framework_ Currently the 
DARP /\ Internet protocols IP and TCP are supported. 22 

39.1. Running the Internet Server 

The internet server can be compiled as an independent V program, or linked into another program. As an 
independent V program, it is often loaded automatically some other V program (e.g .. by telnet), so that users 
usually don't need to invoke it separately. . 

The standard V command Uinternetscryer" may be run in the background to provide a local inten:aet server 
on any workstation. The internet server program by default will only register the server for the logical id 
INTERNE'r_SERVER on a local basis. There are two optional switches that may be used when starting an 
intcrnetscrver. The -g option causes the internet server to register it')clf globally so that it can create 
connections for hosts anywhere in the V-System. This facility allows local hosts to avoid spending some lOOK 
of memory for this server.23 The -d 1# option causes the internet server to enable debug messages up to a 
severity of"'" (an integer in the range [0 .. 9]; 0 is the default). 

To inc1ude the internet server in another V program, have it create a process which executes the function 
InitInternetServer(localFlag, debugFlag) 

int localFlag; '* True if internetserver should be local. *' 
int debugFlag; '* True if debug output should be printed. *' 

and causc the linker to scaK'Ch the V internet library when loading the program (i.e .• add -lVintcrnet on the 
C compilation command line). It is generally preferable to ruil the internet server on its own team by 
invoking the internet server program described above, rather th~!n tinking it into another program. 

39.2. Accessing the Internet Server 

Once the internet server has been Stilrted it can he accessed llsing the V I/O protocol plus the protocol
specific requcst-; mlu parame~ers spcciticd in <Vnet.h>. 

A CREATE_INSTANCE request to the internet server must sp~"Cify the mode FCREATE. It results in the 

22rhe Xerox PUP pr~ocol is no, longcr supportcd (starting with V-System vcrsion 5.2). We continue to show the PUP protocol in 
some of the examplcs oflhis section for illuslrntive purposes only. 

23Using a global intcrnet servcr can dCJ!,rnde performnncc if 11130y connections arc being supported simultaneously. For bursty 
:lppliC3tions !111m a.1i tclnet connections, howevcr. any performancc dcgradation from using a global intcrnet servcr is typically small 
cnough to go unnoticed. 

V Stnt'rI 12 March 1986 



39-1 Intcrnet Sencr 

creation of two instances, one of type READABLE. VARIABLE_BLOCK, and STREAM, the othcr of type 
WRITEABL ... "" VARIABLE_BLOCK, and STREAM. The parameters of the writeable instance are returned 
in the CreatelnstanceReply. '111e readable instance has an instance id equal to the id of the writeablc instance 
plus 1: its parameters can be obtained using QUERY_INSTANCE. Although the intcrnet server does not 
implement the full naming protocol (see Section 34), it docs implement context directories. TI1US, commands 
such as 11std1r -1 [,nternet/local] return useful information. 

An internet ·server connection is owned by the process which requested its creation. Ownership of a 
connection can be passed on to another process by means of the SET_INSTANCE_OWNER request If the 
owner process should die then the connection is aborted. 

39.3. DARPA Internet Protocol (I~) 

Possession of an IP network instance provides a process aCccss to the network for sending and receiving IP 
packets of a specific IP protocol type. Differing lP instances are delineated by the protocol field in the IP 
packets. Any protocol id value may be specified when creating the instance except for those values already 
taken. For example, the value for TCP, is already taken by the TCP implementation inside thc internet server 
itself. Creating an instance with protocol 0 yields a "promiscuous" instance that receives all protocol types 
which have not becnspecified by any other active IP instances. 

IP network instances expect WRITE_INSTANCE to supply completely packaged IP packets. 
READ_INSTANCE similarly will return complete IP packets. This approach allows IP instances to remain 
connectionlcss in concept and thus avoids the overhead of establishing a network connection instance for each 
different set of IP packet parameters. (Remember that READ and WRITE under the 110 protocol don't 
allow for specification ofparamctcrs.) 

To open an II' network instance, use CREATE_INSTANCE and specify the protocol by overlaying the 
IpParms structure definition in Vnet.h onto the ullspecified field of the CreatelnstanceRequest structure. 
QUERY_FILE will return the value of the protocdl field for an IP instance. MODIFY_FILE has no meaning 
for these instances. A standard library routine "Openlp" is provided to allow creating an IP instance and 
allocating a File structure for it, for usc with other 110 library routines. 

39.4. DARPA Transmission Control Protocol (TCP) 

TCP file instances created by the internet server implement DARPA TCP byte stream connections. There 
are three minor differences from the specification in the DARPA Internet Handbook. First. the "push flag" 
is always set -- dat&1 written is transmitted over the network as soon as possible. (Buffering of data is 
performed by the 1/0 library routines and wtluldthus be redundant) Second, the urgent data flag is not set as 
pan of a write operation. Instead. a MODI ... ')' _FILE request is used to set the urgent data flag immediately 
before a write operation contlining urgent data. The urgent data flag is reset immediately after the write 
operation and thus must be set using a MODIFY_FILE requcst before each urgent data write operation. 
Third. there is no concept of connection timeout provided. Connections arc aborted if their owner process 
goes away. 

Two varianL" of CREATE_INSTANCE are permitted on instmces of type Tel). corresponding to tho 
Active and Pas.4iive opens of the Il1lemet Hnndbuok. Note 111at the foreign host must be specified completely 
when issuing a CREATE_INSTANCE request with the active bit set A standard library routine. OpenTcp, is 
provided to allow creating a TCP instance and allocating a File structure for it, for use with other 1/0 library 
routines. 

Two types of release mode are supported thr RELEASE_INSTANCE request" corresponding to 1110 Cose 
and Abort primitives of the DARPA specification. respectively REt_STANDARD (equal to 0, the nonnal 
release mode defined by the V 1/0 protocol) and R I ~I._A BORT. Releas~ng the writenble instlllce closes the 
client's end of the connection. I ),Ila can still be read from lhe readable instance unlil the other end closes. [t 
is necessary to release both the readable and writeuble instances to deallocate a connection. 

V'System 6.0 nderence MgJnual 



DARPA Transmission Control Prl()toc:ol (rCP) 

Since TCP supports the: concept of a byte stream, the READ_INSTANCE and WRITE_INSTANCE 
operations do not segment the data flow in any way. (rhcre is one exception: when a packet is received with 
the urgent flag set. the next READ_INSTANCE receives a BEGIN_URGENT_DATA reply code with zero 
bytes of data. A similar zero-length reply of END_URGENT _DATA is returned when the point in the data 
stream indicated by the urgent pointer is reached.) Any READ_INSTANCE requests outstanding when a 
TCP connection closes for whatever reason arc replied to with a replycode indicating the reason." An attempt 
to read from a closed connection is signaled by an END_OF _FILE reply code. 

The QUERY_FILE operation may be used on TCP instances to find out the state of the TCP connection. 
MODIFY_FILE may be used to change various parameters of the connection. rIlle structure TcpParmsl in 
Vneth defines the param<:ters which can be set both at CREATE_INSTANCE time and by means of a 
MODIFY_FILE request The meaning of the fields are defined in the Internet Handbook. TcpPanns2 
defines both parameters which may be set and state variables which may not be set but whose values are 
returned if QUERY_FILE is executed with TcpPanns2 specified. The parameter in TcpPanns2 which may 
be set is sndUrgFlag. This parameter is used to signal urgent data. The rcvUrgFlag field returns whether or 
not urgent data has been sent from the remote host and not yet received. llle bytesA vail field indicates how 
many bytes of data arc waiting to be received by the user. The state field indicates what state the connection 
is in with respect to being open, listening, established. closed-waiting-for-remote-closc, etc. (see the Internet 
handbook). 

39.5. Adding New Protocols 

lbis section should be of interest only to persons who wish to add an additional protocol to (or remove one 
from) the internet server. It describes the specifications governing the interactions between particular 
communications protocols ;and the general framework of the internet server. 

There arc two interfaces that a protocol must deal with: the exte'rnal interface to clients of the internet 
server. and the internal int(~rface to the general communications facilities provided by the server's framework. 
The external interface consists of the operations. message formats. etc. that the protocol must understand in 
order to interface with a client's V 1/0 connection. The internal interface consists of the routines, message 
butTer conventions. etc. that the protocol implementation must respectively use or provide in order to send 
packets to the network and receive packe~ from the network. 

39.5.1. External Client Interface 

The external interface to a protocol is dictated foJ' the most part by the V I/O protocol specification. 
Interaction between a client and the internet server is by means of a V 1/0 connection and the only variations 
that can be effected arc by means of the QueryFile and ModifyFile operations. 'rhus clients open a 
connection by means ofth(: Createlnstance operation, they read and write data by means of the Readlnstancc 
and WriteInstance operations, they determine the general state of a connection by means of the 
Querylnstance operation, and they close a connection with the Releaselnstance operation. 

A connection is "owned" by the client process which sent its Createfnstance request. but can be transferred 
by means of a SetlnstanceOwner request. The semantics of ownership are that a connection must be aborted 
if its owner process Jics. One of the general Ihcililics proviJed by the internet server is monitoring of the 
existence of conm .. 'Ctions' owners. However, the protocol implemenlUtion module is responsible fbr providing 
an abortion routine. 

Protocol-specific interactions are handled by means of the QueryFile and ModifyFile operations. Protocol
specific instantiation parameters can also be specified as part of the Createlnstance operation. The QueryFile 
operation is used by t.he cli(~nt to detennine the stc1te of protocol-specific connection variables: the ModifyFile 
operation is used to modify these variables. Thus the manner in which things such as the "Urgent Data 
Notification" facility in TCP must. be implemented is the following: 

01. 'Inc client's ReadJnstance operation returns an exception cude indicating ,that something out of the 
ordinary has happenc:d. 

V Stncrs 12 March 1986 



39-4 Internet Se"er 

2. The client docs a QueryFile operation to detennine thc protocol-specific state of the connection and 
obtains thc "Urgent Data Notification" on return. 

Similarly, a client wishing to signal ~'Urgent Data" on a TCP connection must do so with a ModifyFilc 
operation.24 

39.5.2. Internal Protocol Interface 

Protocol implementations must interface both to the extcrnal internct server client and also to the internal 
environment of the server itself. This interna~ interfac.e consists of thc following components: 

1. A network packet bu ffer module which all protocols must use. This module provides a pool of packet 
buffcrs which have a standardized header fonnat so that various general facilities can manipulate them. 

2. A process structure specification for the protocol. All protocol implementations must define certail,l 
processes and be aware of the existence of certain other processes. Part of this specification is a 
specification of the message interactions between these processes. 

3. A set of protocol-independent routines supplied by the server which all protocol implementations must 
use for such things as writing packets out to the network. obtaining and returning packet buffers, etc. 

4. A set of protocol-specific routines supp1ied by the protocol implementation which arc used by the 
general server facilities to return incoming network packcts to a connection. Signal timeout conditions, 
etc. 

These components will be described in more detail in the following subsections. 

39.5.2. t. A Brief Overview Of The Internet Server's Structure 

The internet server consists of the following processes: 
1. A connection-establishment process. ')bis process registers itself as the internet server logical id and 

waits for connection creation requests from new clients. For each new connection creation request it 
invokes a creation routine for the protocol specified in the request This routine is responsible for 
setting up a connection and its associated data structures and handling proccss(cs). 

2. Connection handling proccsscs. Each protocol connection is handled by one or more separate 
proccsscs. It is up to the protocol implementation to decide how to structure the connection handling 
proccs.'iCS for a connection. However. one of these must be designated the "primary" connection 
process. This process will be responsible tor handling ,til communications with the rest of the internet 
server. 

3. A network reader process. The V kernel .allows only one networ'k device instance to exist at any time. 
'Ibe network reader process reads packets from the network device and calls a protocol-specific routine 
for each protocol being supponcd. The protocol-specific· routines invoked are responsible for 
detennining which connection of their protocol type a packet should be given to. The network reader· 
process nms at the highest priority alluwed so that it can read and multiplex incoming network packets 
before they arc overwritten by subsequent packets in the kernel device. . 

4. Two timer proc~'S. The first timer is " timeout timer which wakes up periudically and invokes a 
timeout checking routine lor ellch conm .. 'Ction. If the timeout check rur " connection returns a time 
which is less than the current time then a message is sent Lo that connection's primnry connection 
handling process. 'Inc timer detennincs how long to sleep berore waking up agc.lin by keeping track of 
the minimum timeout time beyond the current time. 'Ille second timer checks whether any connection 
owners have died •. A message is sent to the primary connection handling process of each connection 

24.lbe reason why the V 1/0 protocol spccilic::ltion hashcen structured in this manncr is for reasons of efficicncy. '111C V~L'it majority of 
data read and write opcralion5 done on a conncction arc done with "normal" settings for the connection parameters. Uy removing 
parameter specification from the read and write operations th~ operations c::ln be executed more quickly. 

V·Systt'm 6.0 Reference Manual 



Adding New l»rotocols 39-5 

whose owner has died signalling that the connection should be aborted. This second timer wakes up 
once every 5 seconds. ' 

39.5.2.2. The Packet Buffer Module 

The packet burter module provides a set of routines which manage a pool of packet buffers which are used 
as the medium of data transmission inside the internet server. These packet buffers are handed between 
various parts of the internet server by means of pointers (to avoid copy operations) and their header format 
must be understood by all parts of the internet server. 

The header fonnat for packet buffers is the following: 
typedef struct pbuf 

{ 
.struct pbuf *next; 
int length; 

,. General purpose link field.·' 

char. *datapt,r; 

unsigned unspecified[2]; 
char data[MAXPBUFSIZE]; 

} *PktBuf; 

'* Length of the data in the buffer •• , 
'* Location of the start of the 

data .• , 
'* Scratchpad fields. *' 
'* The actual packet buffer •• , 

'llie next field allows packet buffers to be placed in various queuing data structures. The dataptr field points 
to the start of the data in the data array. Packets arc typically constructed starting from the back of the data 
array, with various headers progressively added on to the front The unspecified fields are intended for' 
storing various packet-specific items of infonnation. They are used as scratch pad working areas. 
MAXPIlUFSIZE must be large enough to accommodate all packets encountered by the internet server. It is 
set to the maximum allowed jpacket size ofdle physical nctwork.25 

The routines provided by packet buffer module arc the following: 
PktBuf AllocBuf(); 

DeallocBuf(pkt)i 
PktBuf pkt; 

ButTers are handed out one at a time by means of calls to AliocUufO. Buffers arc returncd to thc free pool by 
calling UcaliocHuro. Thcse routines manipulate the buffer pool in an atomic man ncr; so that they can be 
used rrom multiple processes without conflict. 

39.5.2.3. Process Inter,lctions 

lbe implementation of a protocol connection must deal with the network reader and (he two timer 
processes in a prescribed manner. In order for these processes to know whom to send messages to each 
connect.ion must have a "primary" process associated with it. 'Ille process ids of these primary processes are 
stored in a global data struct.ure maintained by dlC internet server which contains one entry per connection. 
11lc details of this data structure will be described in a later subsection. 

Ncl\york I~c~,dcr Intcructions 

'111e network render process must run at high priority and cannot afTord to do much procl'SSing because it 
must always be read~ to accept incoming network packets befhre they are ovcrwritten in the kernel device by 
subsequent packets. 6 '.11is has led to an interface tbnnat between dle network reader and the various 
connection handling processes where communication is by means of atomically updated queues of packet 

2SNotc thalthcre is only one packet buffer size ror the entire internet server. A single buffer size was chosen prim.1rily ror rcasons of 
simplicity. Extending the packet buffer module to handle multiple bulTcr sizes would not be dimcult 

26.rhat is, it must be able to keep up with the (possibly many) hosts that are sending it packets. 

V SenfF! 12 March 1986 



39-6 Inlernet Sener 

buffers. The network reader proccss enqueues packets for a connection by calling the EnQucucSarcO routine, 
which pl~ccs a packet in a specified connection qucue. This routine is non-blocking (i.e. no message traffic 
involved) so that the reader process c~n immediately continue on to process any additional packets that may 
have arrived from the network. The connection handling processes then remove packet buffers from their 
queues by calling the DcQucucSaft-() routinc. The definitions for these two routines arc as follows: 

EnQueueSafe(pkt, q) 
PktBuf pkt; 
RingQueue *q; 

OeQueueSafe(q) 
RingQueue *q; 

RingQueues are atomically updated queues which are defined in the general internet servcr module. They 
must be initialized with calls to thc InitSarcQueucO routine: . 

InitSafeQueue(q, ringBufs) 
RingQueue *q; '* Queue header. *' 
RingBufRec ringBufs[]; '* An array of MAX_RING_BUFS queue 

RingQueues consist of the following two data types: 
typedef struct 

{ 
RingBuf head; 
RingBuf tail: 

} RingQueue; 

typedef struct RingBufType 
{ 

PktBuf pkt; 
struct RingBufType *next; 

} Rin~BufRec, *RingBuf; 

records. *' 

The RingQueue structure defines a header record for thc queue. Ringllufficcs arc thc actual queue clements, 
and are placed in a circular list by lhe InitSart~ucuc() routinc.27 The pkt field of a ItingRufRcc is used to 
point to the packet bufTcr which is enqueued by it. 

Note that at most MAX_RING_BUFS packet butTers can be enqueued in a RingQueue. .:nQucucSafc() 
returns 0 if it can't enqueue a packet butTer. 

. There is one caveat to the above description of how the network reader interacts with individual 
connections. The primary connection handling process for a connection may he blocked waiting on client 
requests28 so that the packet butTer queue cannot be processed until a request message is received. To take 
care of this case each primary connection process must also set a variable indicating whether it is blocking . 
awaiting client requests or not 'Ille network reader checks this variable when enqueuing a packet for a 
connection and sends the connection a "wakeup" mcssnge if it is blocked. 'Ille process receiving the message 
must reply immediately to this mCS-'kIge in order to minimize the time that the network reader is blucked. 

Another point to be made here is lIult lI1C actions for the network reuder described above (i.e. invocation of 
EnQucucSarc() and checking to see if a "wakeup" message must be sent) arc actually part of the protocol
specific "network reader" routine that each protocol ~ust supply as part of its implementation. 1his will be 
described in more detlillater. 

27The ~son why a circuL,r queue of this form is needed Slems from the problem of maintaining these queues in an atomic manner. 

28.(bc protocol implcment:llions to date have consisted of a !ringle procCliS per connection which a1tem.1tely waits on client requests 
and processes its pack.et buffer queue. 

V-Syslem b.O R('(cfcnce I\"':lnuol 



Adding New Protocols 39-7 

Timer Interactions 

The two timer processes communicate with connections by means of "timeout" messages. Whenever a 
timeout condition is detected by a timer process it sends a message to the relevant connection process 
indicating that a timeout condition has occurred. The message fonnat employed is the following: 

struct timeoutMsg 
( . 

SystemCode requestcode; 1* Standard message request code 

}; 

field. *1 
short unused; 
unsigned timeoutCondition; 1* Which timeout has occurred. *1 
unsigned unusedl[6]; 

The rcqucstcode field is the same as that used for all other message requests. However. instead of a 
"standard" V 1/0 protocol request code an internet server-specific request code signalling titncout is used. 
The timcoutCondition field specifics which timeout condition has occurred. 

39.5.2.4. Protocol-Independent Interface Routines and Data Structures 

Global I)'.ata Structures 

There is one global data structure that must be maintained by all active connections in the internet server. 
This is the NetInstTablc, which contains an entry for each connection specifying various V 110 protocol
specific parameter values, the process id of the primary connection handling process, and a pointer to a 
control block associated with that connection. The V 110 protocol parameter infonnation is used by the 
Qucrylnstancc() routine for answering Query Instance requests about connections. 29 The process id is used by 
the network reader and timer processes to find the primary process for a given connection. 'Ibe control block 
pointer is used to access connection-specific infonnation. It is -intended for usc by the protocol-specific 
network reader and timeout checking routines. 

The primary manner in which connections manipulate the NctlnstTablc is through the following two 
routines: 

int AllocNetInst(prot, ownerPid, pid, rblocksize, wblocksize, tcbId) 
int prot; '* Instance protocol type 

(TCP, PUP, ICMP, etc.) *1 
ProcessId ownerPid; '* Process id of owner of the 

connection. *1 
ProcessId pid; '* Process id of primary connection 

handling process. *1 
int rblocksize, wblocksize; '* Block sizes for resp. read and write 

V 1/0 connection instances. *1 
unsigned tcbId; '* Pointer to the control block for 

DeallocNetInst(index) 
int index; 

this connection. *1 

1* Index of NetInstTable entry to 
deallocate. *1 

AllocNctln~tO returns an index into the table where the newly allocated entry has been placed. Individual 
fields can then be set by indexing through this value into the table. (E.g. SetlnstanccOwner requests would be 
dealt with in this manner.) 

Each protocol implemeqtation is expected to employ these routines to manage the NctinstTablc in a correct 

29·I'hCliC rcquCSL4i arc actually diircctcd at the conncct;on handling pl'OCC!l."4\CS thcm.liClvcs. implying that Clch connection could employ 
its own Qucrylnsl3ncc routine. HI)wcvcr no benefit would be gained by such duplication. 

J2 !\Ian'" 1986 



39-8 Internet Sener 

manner. I.e. allocation and deallocation of NetlnstTuble entries is II0t done automatically by the server's 
general facilities. 

Useful But Not Essential Routines 

The internet server provides several generally useful but not essential routines which may be employed by 
protocol implementations if they so chose. These include the following: ' 

SystemCode Querylnstance(rqMsg) 
QuerylnstanceRequest *rqM~g; 

Boolean InvalidFileid(rqMsg) 
IoRequest -rqMsg; 

ReplyToRead(replycode, pid, 
SystemCode replycode; 
Processld pid; 
Pk.tBuf pack.et; 

char *bufferPtr: 
1nt length: 

QueryProcess() 

pack.et, bufferPtr, len~th) 
. '* Reply code to send to a reader. *' 

'* Process 1d of the reader. */ 
/* Pack.et buffer containing data to 

return to the reader. NULL if 
there is no data to return. *' 

'* Address of reader's buffer. *' 
/* Length of data to return. *' 

Querylnstancc() returns the state of a specified network connection. It is V I/O protocol-specific and hence 
independent of the particular network protocol being supported by the other end of the connection. It 
obtains its information from the NctinstTablc entry for the connection. Connections arc specified in the 
request message in the same manner as with all other V I/O connections, namely by a filcid. 

(nyalidFilcidO checks whether the Iileid tiCid in a client's request message is reasonable: i.e. whether It maps 
to an existing connection entry in NctinstTable which is in usc. All incoming client requests should be 
checked with this routine to avoid corruption of other connections' control blocks. 

RcplyToRcadO is a generic routine for replying to a client's read request It perfonns the MoveTo 
operation needed to move data from a packet butTer to the client's read buffer and packages an appropriate 
reply message. 

QucryProc~ is a routine which nms in its own process and is used for debugging. It provides a means 
for examining and changing the state of the internet sen'er while it is in operation. 

39.5.2.5. Protocol-Specific Interface Routines and Data Structures 

There are two types of protocol-specific routines that a protocol implementation must provide: network
level routines and connection-level routines. Network-level routines are used by the network reader process 
to multiplex incoming network packets to the correct connection. Connection-level routines arc used to 
initialize a protocol. create a new connection and interface with the connection timeout checking process. 

Protocol implemenl<ltions are uswilly done for I'm/fico/ jimlilirs r .. ther tlHm individual protocols. For 
example. the current internet server implements both the IP and the Tel' Internet protoculs. However, rather 
than implementing these two protucols as separate modules, they are implemented together. so tll<lt the TCP 
module can make use of facilities already defined by the IP module. This results in a situation where only the 
IP module interfaces with the network layer and the TCP module interfaces intcrD41tly to tile IP module. 'nlUS 
the IPrrcp protocol family implementation has three interfaces to the rest of the internet server rather than 
four: it has a single network-level interface and a connection-level interface for both IP and TCP respectively. 

Protocol-specific interface routines are accessed by the general server facilities through function tables 
indexed by protocol type. '1l1ere are two such function tables. one for the network-level routines and one for 
the connection-level routines. The format of these tables is described below. . 

V'Systelll 6.0 Rdl'rcnce Manual 



Adding New Protocols 

Network-level 

The network-level function table is called PnetTable and is defined as follows: 
struct PnetBlock 

{ 
unsigned prot; 
Boolean act.ive; 

int (*initNetProt) (); 

int (*rcv) (): 

} PnetTable[NumPnetProtocols]: 

'* Network protocol type •• , 
'* True if a network connection is 

active for this protocol. *' 
,. Initialization routine for this 

protocol. *' 
'* Receiving routine for this 

protocol. *,. 

The first two fields arc actually not functions. The prot field is used to store the network protocol type id so 
that the network reader process can figure out which table entry to use for a given network packet 

The activc field is used to allow the network reader process to "short circuit" discarding of broadcast and 
invalid packets for inactive protocols. Without this field the reader process would have to call the rcvO 
routine for these packets since it can't tell itself whether they should be discarded. The activc field is 
m~naged through the following two routines: 

ActivateNetProtocol(prot) 
int prot: 

DeactiveateNetProtocol(prot) 
int prot: 

prot specifics which table entry to access. 

Associated with the activc field is another table, called NctLcvcll)rotoeol, which is usc·d to map from 
connection protocols to the network-level protocols which support them. For example. the (P/TCP protocol 
implementation described previously would designate both IP's and TCP's network-level p:otocol as being 
(P. '111e definition of the table data structure. along with an example initiali7.ation is as follows: 

int NetLevelProtocol[NumProtocols] • 
{ 

}; 

0, 
0, 
1, 

° 

'* IP *' '* TCP *' '* PUP *' '* ICMP *' 
The index of each entry corresponds to the index of the corresponding protocol entry in the FuneT~lblc 

table. The contents of each entry is the index of the corresponding network-level protocol in the l)nctTablc 
table. Thus. in the examp1e shown, the FuneT.lhlc defines the IP protocol at index 0, the TCP protocol at 
index I. the PU P protocol at index 2, and the ICM P protocol at index 3. The ~)nctTablc defines the IP 
network-level protocol at index 0 and the PUP nctwork-Ievel protocol at index 1.30 The initNctl)rot field 
spcdfk"S an iniliHlizaliun routine for the protocol whic.:h is called at server boot time. 

The rev field specifics a routine which is called whenever a network packet arrives which has a protocol type 
equal to that specified in thc prot lield of the entry (and the active field is tnle). This routine is responsible 
t()r figuring which connection of it-; protocol. if Clny, should receive the packet. If a connecti(ln is found then 
the routine is responsible for enqueuing the packet in that connection's RingQueue (using the EnQucucSuCcO 
routine) and for checking t.o make sure that the connection's proccss(es) will actually be able to process the 
enqucued packet buffer (Le .• if the connection's process(cs) are receive-blocked awaiting client requests then 

30The actual internet !;Crver code uses manirest Constants instead or integers to fillthcsc fields - making things much morc readable. 
Ilowevcr, lo illustrate the principle. no manirests were employed. 

V ScrYcrs 12 March 1986 



39-10 Internet Sener 

the routine must send a message to "wake" them up). Packets for which no connection is found must be 
returned to the free buffer pool with a call to DcullocBufO. 

The interface definition for the initNctProtO and rcvO routines is as follows: 
InitNetProtocol() 

ReceiveProtoeolPkts(packet) 
PktBuf packet; /* Ptr to the incoming network 

packet. */ 
where InitNctProtocolO and RcccivcProtocolPktsQ are example names. 

Connectioo-Ievel 

The connection-level function table is called FuncTable and is defined as follQws: 
struct FuncBlock 

{ 
int (*InitProtocol) (); 
SystemCode (*CreateConnect1on) (): 
1nt (*NextT1meout) ()i 

} FuncTable[NumProtocols]; 

The Ini"tProtocol field specifies an initialization routine for the protocol which is called at server boot time. 

The CrcatcConncction field specifies a routine which is called by the connection-establishment process 
whcn a clicnt rcquests the crcation of a new connection instance. The routinc must create the data and 
process structures for a new connection and thcn handle the CrcatcInstance rcqucst from the client3L This is 
usually also the place where a call to the ActivatcNetProtocol() routine is made to signal that the protocol is 
active. . 

The NcxtTimcout field specifies a routine whi~h is caned by the timeout checking timer process. This 
routine returns the time of the next timcout for its connection. If that timc is alrcady past then thc timer 
proccss will send a timeout message to the connection's primary process. The connection's data structures are 
accessed through thc tcbld field of the connection's NctlnstTable cntry. 

rille interface definition for the InitProtocolO, CrcutcConncctionO. and NextTimcoutO routines is as 
follows: 

InitProt() 

CreateProtConnect10n(reqMsg, c11entP1d) 
CreateInstanceRequest reqMsg; 

. . '* CreateInstance request message sent 
by a the client. */ 

ProcessId clientP1d: /* Process 1d of the client .• / 

NextProtTimeout(tcbld) 
unsigned tcbId: '* Ptr to the control block for the 

connection .• / 
whcrc Initl)rolO. Crcatcl)rotCollllcclioIiO. and Ncxll)rotTimcoutO arc example names. 

31Thc method recommended for doing this is to have the routinc create thc connection hnndling proccss(cs) and then forward the 
Crc.1lclnstancc request to the connection's primary proc~, '1l1i." allows the connection handling process(cs) to manipulate their own 
data structures (which are typically kellt on the proccss(cs)' ::t1ack(s». 

V·Systl'm 6.0 Ih,rcrl'n('c Manual 



Adding New Protocols 39-11 

39.6. Monitoring and Debug Facilities 

Normally the internet server runs in the background and is accessed using the standard mechanisms 
discussed in the previous sections. In situations where poor network or protocol behavior is suspected, it is 
often useful to inspect the internal state of the internet server and to observe the behavior of particular 
connections. 

A simple approach to debugging or monitoring involves starting an internet server in debug mode (e.g.9 

1 nternetserver -d 6, where the debug level "5" is useful for debugging or monitoring a wide range of 
potential problems). Much of the debug information provided details the operation ofTCP/IP connectio~ 
though some infonnatipn about the V 110 protocol and other protocols is also reported. 

Upon startup, the internet server reads the configuration database for the workstation on which it is running 
and prints out information about how it will route to various internet addrcsscs.32 111is information typically 
takes the form shown below (for a workstation with internet address 36.8.x.y): 

IP Gateway Table: 
36.8 -> local 
36 -> 36.8.0.4 
default -> 36.8.0.1 

The host at 36.8.0.4 is a gateway that can route to sub nets within net 36 (Stanford), while the host at 
36.8.0. 1 is a gateway that can route to all non-Stanford hosts. 'nlis routing information is often useful in 
detcrmining whether the configuration database for the workstation is set up properly. See Section 19 for a ' 
description of the V-System configuration database. 

More flexible debugging is possible using a separate V program that is providcd specifically for this 
purpose. 'Illere are many advantages to this approach: an internet server that is already running can be 
examined. and non-local internet servers can be inspected to name two. Typing . 

1nquery 

to a V executive will start a program that can be used for more advanced inspcction (and modification) of 
the internal state of the internet server. '(nquery will attempt to find an internet server on the local machine. 
If none can be found. or if a different internet server is of interest. the user must type additional commands as 
described below. 

Once the inquery program has started. it will prompt for single letter commands. Most commands arc 
intended for low-level debugging by program maintainers and are not described in detail. rlne commands 
that may be useful for user-)'evel monitoring are described below in approximate order ofuscfulncss: 

? list available commands (including brief description). 

A attach to the debug 1/0 stream of the internet server. The de~lult is for debug 110 to go to 
stdout (as defined at the time the intcrnetscrver program was invoked). You must always 
usc this option when inspccting non-local internet servers. 

u 

d 

unnttach from the debug I/O stream of the intcrnetserver (returning it to sl<.1uut). One 
typically uses "d 0" to turn of debug output before unuttaching (since sending output to 
stdout is not always what is wanted). 

change the verbosity of the debug information thnt is printed. rnle user is prompted for a 
digit in the range [0 .. 9]. where 0 (the default) indicates silence and 9 indicates full verbosity. 
A value of 5 is appropriate for most user-level debugging. as this witl cause only the most 

3lrhis is a tempomry mechanism until more complete stnnd.,rds for internet routing in local netw.ork environmenLS can be defined 
and implemented. 

12l\1arch 19R6 



39-11 

R 

v 

, 
n 

x 

Q 

laternet Sener 

"interesting" events (e.g., retransmission of packets, bad packets. unusual events) to be 
reported. The effect of this command is identical to the -d ,. command line switch that 
can be given to the i}ltemet server at startup. 

reattach to (or relocate) an internet server. User is prompted for the process id of the 
internet server of interest (or 0 to mean the local internet server). The inquery program 
can only communicate with one internet server at a time. 

print version infonnatin about the internet server currently being inspected (workstation 
name, compilation date and time). 

lists free resources (e.g., bu"ffers and network instances). 

list some basic information about active network instances. 

show detailed information about a parti~ular network instance. Only implemented for 
TCP instances. Primarily useful to maintainers - see the DARPA Internet Handbook for 
clues to the meaning of this information. Fields of possible interest at the user-level 
include counts of retransmissions, out-of-order packets and packet delays (lOms units). 

immediately exit the internet server - abort any existing connections. The inquery 
program continues to run - use R to reattach to an internet server. 

quit out of the inquery program (leaving the internet server running). The U and d 0 
commands arc often used before using Q. 

For typical user-level monitoring of a local internet server, the "A" command followed by the "d 6" 
command are the only commands that should needed. They allow a user to observe the frequency of 
retransmissions.. receipt of bad packets. and other unusual events. This may be helpful in identifying the 
source of poor perfonnance - flakey networks or gateways, incorrect or inefficient Tep liP implementations, 
or just long network delays. 

V'System 6.0 Kr(ert'nce Manual 



40-1 

-40-
Memory'Server-

The memory server (or mnmserver) simulates a V storage server, stoting files in main memory that is 
otherwise unused. It has no (;oncept of file protection. It otherwise supports the standard V I/O and naming 
protocols. A file "foo" managed by the mem server can be accessed by referring to [storage//ocal}foo or 
[storage/wsnameU'oo, where tvsname is the n~e of the workstation where the memscrver is running. 

A memory server is not part of the standard first team, but one can be started by using the memse rve r 
command (you will usually want to run this command in the background). On startup. the memory server 
checks that no other memory server or storage server is running on the workstation, to avoid name conflicts. 

By default. the memory server will allocate as much main memory as it needs to store the files that it 
managcs. It could thus use up an remaining main memory, ifit so desired. The -m and -k flags can be used 
to place an upper bound on how much main memory the server can usc for file storage. memserver -m 
100K. for instance. limits the amount of storage space to lOOK bytes. memserver -k 100K. on the other 
han<l sets the storage space limit to lOOK bytes less than the total free memory that is currently available. 
('M' can be ~Jscd in place of'K' to indicat~ 'mega' bytes.) 

V Scncn 12 March 1986 



41·1 

~41-

Pipe Server 

The pipe server is an 1/10 server that implements a synchronized stream file called a pipe. A pipe is a 
unidirectional flow-cQlltrolled communication channel between two processes using the standard 110 
protocol. V pipes are simil'lr to Unix pipes. 

A pipe file instance is type STREAM, VARIABLE_BLOCK, and READABLE (for the read end) or 
WRrrEABLE (for the write end). 

In response to a CREATE_INSTANCE request, the pipe server creates an instance of a pipe, which is 
actually t~o file instances representing the read and write ends of the pipe. The file id returned in the reply to 
the CREATE_INSTANCE request is the file id of the write end. The file id of the file instance for the read 
end is one greater than the: file id for the write end. The file instances are owned initially by the processes 
specified in the readowller and wrileowner fields of the CreatePipeRequest. When a pipe is created, it is 
allocated a fixed number of buffers between 2 and 10 as specified by the buffers field of the 
CreatePipeRcquest. Include <Vpipe.h> in a program to define CreatePipeRequest. 

Pipe synchronization provides that a req'uest to read a block that has not yet been written is queued until 
that block is written. Also, a request to write a block when the current buffer limit for the pipe is exceeded is 
queued until buffer space is avail<lble.33 A request to read from an empty pipe whose write file instance has 
been released is replied to with an END_OF _FILE reply code. When the read end file instance is released, 
unread data is discarded and the data of subsequent writes to the write instance are discarded with the write 
returning successfully. A pipe no longer exists when both the read and write instances arc released. The pipe 
server periodically checks t1hat the owners of both file instances of the pipe exist. When the server detennines 
that the owner of an instance no longer exists, it effectively releases that instance. 

The pipe server is located by 
server_pid • GetPid(PIPE_SERVERt~~X_PID) 

where the pipe server may be local to the workstation or located on a server node. 

The pipe server can be compiled as an independent V program or included in another program. To include 
the pipe server directly in .a V program, call the function In 1 tP1peServer() at the start of the program 
and cause the linker to search the pipe server library when loading the program (i.e .• add -IVpipe on the C 
compi.1ation command tine). The standard V command pipeserver may be run in the background to provide a 
local pipe server on any workstation. The V executive automatically starts up a local pipe server if there is not 
one available when a pipe is needed. 

: .... 

33 Actually only onc reader and one writer arc quclIed: the rest are replied to with a R ErR Y reply code. 

V Scncrs J2 March 19R6 



42.1. Overview 

42·1 

-42-
Team Server 

The tcam server manages the teams of a host (Teams usually correspond to programs-although a 
program may consist of more than one team.) Specifically, it perfonns the following functions: 

• Accepts requests to load teams. Requests can originate both locally and remotely, with the team server 
deciding whether or not remote execution requests will be accepted. 

• Accepts requests to tenrninate teams. 

• Implements a directory of all currently running teams. This directory can be read using the standard 
directory listing protoc1ol. ~ 

• Implements round-robin scheduling for teams. Teams can be run in foreground, background, or guest 
mode. Typically, locally invoked programs arc run eithcr in foreground or background mode.' 
Remotely executed programs are Oll/Y allowed to run in guest mode, which is lower in privilege than 
either foreground or background mode. The team server also provides 4 real-time priority clas.c;es that 
run ahead of the three round-robin cl~ and a "stopped" priority that ensures that no process on a 
stopped team will run. 

• Registers itself as the exception' handler "of last resort." , The exception server forwards process 
exception messages to the team servc( if no one else ha., registered themselves for them. The team 
server invokes a postmortem debugger on the team of the process that incurs an exception. 

• Responds to host state information requeSts. This is the mechanism upon which host selection for 
remote execution of programs is based. ' 

• Acts as an a,gent for migration of logical hosts (i.e. remotely executed guest programs). 

The team server resides on the "first team" of a host. i.e .• it is considered to be a system server that is always 
present on a host and is loaded automatically when a host is booted. Various operations that the team server 
performs. such as tcam creation and team execution priority setting. arc privileged opcmtions that only 
processes on the first team may perform. 

42.2. Team Loading 

The team server is the only process that may create and load new teams. "file library routines 
LoadProgram and EX9cProgram provide the lIser interface to this function. 'I"ese package up an 
appropriate requcst to the learn server and take care of m4ltters slich as selting up the tcnOl environment 
bhx;k. The team server only creates a new leHm ,lIld loaus down it'i ohj~'Ct code from a designated open lite 
instance. Setting up parameters and selting initial exccution priority and stack size is left to the team load 
requ~'St()r in order to allow control over the order of events. This is necessary for programs such as debuggers 
which wish to allow users to set breakpoints and examine the code before a team actually starts to run. 

Load requests to the team server also specify who the uowner" of a team is. Teams arc destroyed if their 
owner process goc'S away (same semantics as for processes created by other processes). Te,lms can optionally 
be specified to be owncd by themselves. tllllS pennitting tJlem.to outlive tllcir load reQucstors. 

Teams owned by the themselves arc run in background mode. all others arc run in foreground modc~ 

12 March 19R6 



41·1 

42.3. Team Termination and Exit Status Values 

A teams can be tenninated by having its root process deStroyed using the DestroyProcess kernel 
operation, or it can exit voluntarily by calling the ex it ( ) library routine or returning from ma 1 n ( ). 

Calling ex it ( ) or returning from ma in ( ) allows an exit status to be associated with the tenninating team. 
Note: By convention. temns that are destroyed without having called ex 1 t () or returned from ma 1 n () are 
considered to have exit status -1. 

The team server also tenninates any teams whose owners have died. It uses a timer process to periodically 
query the state of all tearns which the server thinks are still running and their owners. 

42.4. Host Status 

The standard context directory listing protocol (see section 34.10) can be used to obtain infonnation on all 
tearns that are currently running. The command 

l1std1r [team/local] 
lists teams running on the local host. while the command 

l1std1r [team/hostname] 
lists teams running on the named host 

To obtain infonnation on a specific team only, an NREAD_DESCRIPfOR request can be made. The 
command 

11stdesc [team/local][b1n}telnet 
prints infonnation about a program running locally that was invoked under the name [b1n]telnet. The 
tcam of interest can also specified by setting the request message's cOlllexJiil field to the team's root process id; 
in this case the CSname (character string nahle) in the message should be null. 

The team server also keeps track of host resource in fOtmation such as the number of teams running, 
processor utili7.ation. memory resources available. etc. It returns this information to requests it receives for 
host status information. These request messages are used primarily to implement host selection for remote 
excclltion of programs. Request messages can specify rc~ollrce requirements and the team server will only 
reply if its resource state information conforms to the spec.:ilied requirements. Request mesS(lges are typically 
sent to the welt-known proccs.~ group of all team servers (see include file Vgroup 1 ds . h). although they can 
be sent directly to a particular tcam server. (See the library routine QueryHosts ror more details on remote 
host selection.) The command " 

1 is td 1 r [team/ hostname] 
lists all team servers (and hence all hosts) on the network. 

42.5. Remote Execution 

'1l1e implementntion of the tenm server and team-loading library routines is such that lond requcst~ can be 
made tu both local and remote learn servers, "thus .. lIowing ror transparent remote ex\."Cution of V progmms. 
In order to assure the priority of local requests the team server keeps track of the state of the local host and 
uses this infonnation to determine whether or not a remote load request will be accepted. 

Currently the system's host selection facilities will not select hosts on which a user has logged in. However. 
remote execution requests may still be sent to the team servers of such hosts and they will be accepted. lbis 
policy allows debugging programs to ~e executed on a host even when it has "hung" with a user togged in. 
The policy depends on the goodwill of users to not circumvent the stmldard host selection facilities. '(be-x 
option of the log 1 n command can be used to disallow an remote execution requests. 

V·System 6.0 Refereltce Manual 



Remote E.lccutioa 42·3 

42.6. Round-Robin Scheduling 

The team server implements a round-robin scheduling Scheme for all teams except the first team and the 
workstation agent team (typically either the VOTS or the STS). These are typically run at real-time priority 
levels 3 and 4 respectively. As mentioned, teams can be run either in foreground. background, or guest mode. 
Foreground teams have priority over background teams. which have priority over guest teams. 

Scheduling actually emp]oys an additional team priority value for its implementation: a higher (i.e. more 
privileged) running priority. The running priority is used to implement the concept of a "time-slice" so that 
one team can't bloc,k out all other teams of the same priority. 

. . 
Team priorities are user-settable with the ChangeTeamPr1or1ty opelltion, which allows users to request 

that the priority class of a team be changed. subject to authorization privileges. Users may change the priority 
of any team on a workstation they arc togged in to, even if the ChangeTeamPr1or1ty request is sent from a 
remote location. Guest users of a machine cannot change their priority to anything other than guest or 
Slopped. 

42.7. Exception Handling 

The tcam server is the exception handler of "last resort." It invokes the standard debugger in ··postmortem 
mode" on the tcam ofa process that has incurred an exception. 

The debugger is invoked with the -d flag. so if the VGTS is in use, the debugger will pop up a new window' 
for its command interaction. If the VGTS is not running on the workstation, however. the debugger win use 
the same standard 110 as the root process of the team that has incurred the exception, and may thus come up 
in a state where it is competing with an input reader process in the tcam incurring the exception. This can 
prevent input from reaching the debugger, in which case the debugger will not be of much use. 

42.8. Migration 

'flte team server's duties also include acting as an agent for migration. If a logical host is to be migrated 
from another machine then the team server must first accept the request and then act as a local agent for its 
implemcn~1tion. Implementation includes setting up initial descriptor information in the local kernel and 
team server, and then participating in the transfer operation of the actual descriptor information. 

'n,e team server also implements usage policies with respect to migrating guest lugical hosts (Le. remotely 
invoked guest programs) away from the local machine. The current usage policy is to migrate guest programs 
whenever a user logs into the machine. 

V SenCf! IZMardt 1986 



43-1 

-43-
Unix Server 

The V Unix server is a Unix program (and not a V program or command) designed to simulate a V 
kernel/storage server on a VAX Unix system (currently only Berkeley Unix 4.2 or 4.3). It provides access to 
some of the Unix system services via the V kernel interprocess communication primitives. To workstations 
running the V kernel. the Unix server appears as a standard V server, primarily providing Unix file access 
using the stmldard V'I/O protocol. Note: Unix servers are also frequently referred to as V servers. (Someday 
we may even implement such a serVer for an operating system other than Unix.) 

Unix sen'ers, like true V storage servers, implement the V-System naming protocol. The Unix system's 
complete directory tree is rooted at a node called [storagelhoslname~ where hoslname is the name 
returned by the Unix gethostname() routine (converted to lower case). A Unix server may be either 
public (if it is started with the -p option), or non-public. A public Unix server implements the generic name 
[s-torage/any, and therefore such a host must maintain the up-to-date versions of all the standard V
System files and commands. On the other hand, hosts that run non-public Unix servers are not required to be 
kept up-to-date. 

43.1. Sessions 

If a V server is running on a Unix system, then remote access to the resources of this system is provided by 
session processes. Sessions arc 'forked' copics of the main V server, each dedicated to a particular V user 
number. Like the main V server, each session appears externally as a regular V process. On each Unix host, 
the main V server. plus all of its sessions, belong to a local V process group. The 'group id' of this process 
group is usually used to communicate with the Unix server.35 As mentioned above. each session is dedicated to 
a particular V user number. Any message that is sent to the common group id will be himdled by the 
particular SL'SSion that is responsible for that message's user" number. (If no such session exists. then the main 
server will creat.e one automatically.) 'Ille distribution of incoming packelc; to the individual sessions is 
handled by the packet filterillg code in the Unix kernel (sec the "installation notcs" for further details). -

Wami",: As an oplimizalioo. the packet filter.; for each session currently assume that the high-order 16 bits of each user 
number arc l.cro. Thus. one should beware of using user numbers higher than 65535. 'Ibis restriction is likely to be 
eliminated in future releases of lhe system: 

43.1.1. User Correspondences 

lne main V server always nms as'root'. 'Ille Unix uid of a scs.c;ion. however. is determined by a Veto-Unix 
user cOrre'ipOIu/ellce whle. which is a mapping. from V user numbers to Unix user names. The user 
corrcspol1d~lU:e tahle is maiintaincd as a tile on each Unix host. The name of this lite is given by the macro 
USER_CORRESPONDENCE_I:ILE. defined in the header file confi g. h (in the Unix server source 
directory). (At Stanford. this tile is named lete/V IVusereorrespondenee.) For security, the user 
correspondence tile should be writeable only by "root". The tile should contain user corrcspondences for at 
least the following V user numbers: 

o (SUPER_USER), and 1 (SYSTEM_USER) 

34 "ostnamc can also be set. by st:lrting the IiCrvcr (Vaerver) with the -n option. : 

35 Individual (lids arc used for me instance 110, however. 

VScnm 7 June 1986 



Unix Sener 

These should correspond to whatever Unix account is used to manage V-System files on 
Unix (although preferably nol "root"). 

2 (UNKNOWN_USER) 
This should correspond to a Unix user with very few privileges. 

43.1.1.1. Adding and Deleting User Correspondences 

(f a user correspondence for a particular V user number is not present in the user correspondence file, then 
the user correspondence for the V UNKNOWN_USER is used instead. That is, a ses.4iion for a V user who 
docs /lol have a user correspondence will run with the same pennissions as a non-logged in user. In addition, 
such users arc not pennitted to execute programs remotely on the Unix host (see section 43.3). 

A V user can use the (V) addcorr program to create (or modify) a user correspondence on any Unix host 
(provided that it is running a V server, of course). addcorr repeatedly prompts for a host name, then a 
(Unix) user name and password on this host. It then attempts to create a new user correspondence. (If this is 
successful, then any existing correspondence for the V user will be removed.) 

The del co r r program can be used to delete an existing user correspondence. del co r r repeatedly 
prompts for a host name, and attempts to delete an existing user correspondence for the. V user on this host 

The V.SUPER_USER can use addcorr and del corr to modify user correspondences for any V user (not 
just for SUPER_USER). (In this case these programs will also prompt for a V user name.) 

The following additional points should be noted: 

• When a user correspondence for a V user on a particular host is added/modified (using addcorr) or 
deleted (using del corr). then any existing session for the V user on this host will be destroyed. 
(Subsequently, a new session will still be created automatically, ifneeded.) 

• The V UNKNOWN_USER is not pet:mitted to mojify his own usercorrespondenccs. 

• For security, the Unix servers do not allow user correspondences to be made to "root", nor to Unix 
accounts with a null password. 

• If your current context is a Unix V session, then the (Unix) whoami program can be executed remotely. 
in order to show the Unix uid of this scssio~. (Recall that the (V) name program can be used to show 
your excc's V user number.} 

43.1.2. Lifetime of Sessions 

A SC5.'iion will die automatically if it has been inactive for a ce~,in period of time (defined by 
MAX_SESSION_INACI'IVITY in conf1 g. h -15 minutes at Stanford). and if it is not maintaining any 
instances with valid owner pids. 

43.2. File Access 

When Cl session receives a CREATE_INSTANCE request. it attempt5 tu open the named lite. If the ses.~i()n 
has the correct pennis.'tiol1s. then an instance is created. with the typc lidd set al'Coroing to thc request modc. 
Files opened in FREAD mude arc uf type READABLE. FIXEDJ.ENGTH. and MULTI_BI.OCK. '111e 
modes FCRF.ATE and FMOOIFY crentc instances of type READABLE. 'NRITEABLE. and 
MUL:n_BLOCK. FAPPEND mode adds the further constraint of APPEND_ONLY. All instances arc 
random access. but operations must Stilrt on a block boundary. The block size of these instances is equal to 
the maximum appended segment size for V kernel messages. 

If the mode is FCREATE. ur it is FMODrFY and the tile docs not exist. then a new tile is created along 
with the as."uciated instmce. Files are created with Unix liIe protection bit') ("mode biL,,") set to allow reading 
and writing by the owner. and reading by group and olhers. This protection mode is given by the macro 

V ·Sysh.'m 6.n R('r('rencc Manual 



File Access . 43-3 

DEFAULT_CREAT_MODE, defined in config.h. ·A client may change the mode bits using a 
WRn'I?_DESCRIPTOR or NWRITE_DESCRIPTOR request. 

43.3. Program Execution 

A client can execute Unix programs through a V session by sending a eREA TE_INST ANCE request with 
the FEXECUTE flag set in me mode field. The name and arguments of the program to be executed are sent 
in the segment with the NULL character being a field separator. The last argument need not be null 
terminated. The context in which the program is,to be e,tecuted is also specified in the request. . 

Given a request, the session has a built-in search path that it uses to actermine which Unix program to 
execute. 111is search path is given by the macro PROGRAM_SEARCH_PATH, defined in confi g. h.36rhe 
session tries to find the first file in a directory along the search path that matches the given name. If the name 
contains a '/', then the sean;h path mechanism is not hsed and only the context specified in the request is 
searched. If the program is a shell script, the Bourne shell is invoked explicitly. and it determines which shell 
should execute the script based on the normal Berkeley Unix conventions. As a side-effect, the shell expands 
any wild-card characters (such as '.' and '?') found in dlle arguments. This expansion docs not occur if the 
Unix program is not a shell script. 

After all of the preliminary checking is done, the session forks and its child attempts to run the program. 
The parent process replies ItO the requestor with an OK status. However, there is no guarantee that the 
execution will be successful. A failure can occur after the OK reply has been returned, since the program is 
not loaded until the child has been forked off and the reply is sent asynchronously. If a failure of this. nature 
occurs, then an error mcssagc~ should appear in the program's output. 

In the reply message, the session includes an instance id for the running program. If the file mode in the 
CREATE_INSTANCE request was FREAD, then the insL1nce id specifics an instance of type READABLE, 
VARIABLE_BLOCK, and STREAM. 111e client can read the program's standard output using this instance. 

If the mode was FCREATE. FMODIFY, or FAPPEND. then the instance returned in the reply message is 
of type WRITRABLE, VARIABLE_BLOCK. APPEND_ONLY, and STREAM. Data written into this 
instance is piped into the program's standard input. An instance with id 1 greater than the one returned in the 
reply is also created, of type READABLE. VA RIA ilL E_1lLOCK. and STRl-o:AM. Reading from this instance 
provides access to the program's standard output. 

When the program terminates (either normnlly or abnormally). the session returns an END_OF _FILE 
reply to any write requests. Read requcst') will cuntinue to be accepted as long as data is left in the pipe. 
Write requcsts will block if the pipe is rull and the Unix program is not reading from it. (Unix pipes can 
buffer up to 4096 bytes of data.) . 

A client may terminate the: program by relea.~ing all instances associated with it. If only one of the ins~1nces 
is closed. the program will not tenninate immediately. This atrows a client to close the prugram's input and 
have it clean up before exitgng. One should be careful not to release the rend~lble instance before prog"ram 
termination. because Unix sends a signal to any program that writes to a pipe with only one end. The signal 
will kill the Unix process, if the process is not catching or ignoring it.' . 

43.4. File Descriptors 

The server supports V cotlltext directories and descriptor requests. One can open a Unix directory with the 
FDIRECrORY flag set in the mode field and the server will automatically translate st4tndard Unix directory 
entries to V Unix file descriptors. Directories are not writeable directly, but descriptors can be modified using 
a WRITE_DESCRJPTOR or NWRITE_DESCRlIyrOR request The UllixFileJJescriplor type is defined in 

36 Alternatively, the !iCarch path Cln be found by Cl(CClllingthe Unix command pr1ntenv, This will display the environment 
variables that arc pas,"'iCd on to programs executed via the session. 

V&ners 7.June 1986 



Unix ScrYer 

the system include file <Vd i rectory. h>. 

43.5. Debugging Sessions 

It is possible to turn on debugging output from a session (or the main server), by 'killing' it with the 
SIGTSTP sign~l. Debugging output is redirected to the file Itmp/VserverDebugll. where" is the (Unix) 
pid of the server or session. To tum off debugging output, kill the process with the SlGTSTP signal once 
again. Warning: Debugging should be turned off as soon as possible, because this file quickly gets to be very 
big. Note that debugging output is likely to be of use only to wizards. 

If your current context is a Unix V session, then the (V) instances program can be used to find out the 
status of whatever file instances this session is maintaining at the time. 

V·System 6.0 Rdcrc",'c Mamull 



44·1 

.-44-
Workstation Agents 

Workstation agents are a generic class of server used in the V-System. A workstation agent has the duty of 
mediating between the.workstation hardware. the user, and the other programs in the system. It is responsible 
for line editing functions.e.g. the fact that the back space key does not add a backspace character to the input 
stream but deletes a character from the input stream. It translates the newline character '\n' into a carriage 
return/linefeed sequence on workstations that require it It is also responsible for interacting with the exec 
server to create at least one executive. or providing means for the user to do so. It may. but need not. support 
multiple i/o streams. Workstation agents may differ for two reasons: because they arc designed to offer 
different s~rvices to the user. or because they are designed to run on different types of workstations. 

The V system currently contains two different workstation agents. the Simple Terminal Server (S1'S) and 
the Virtual Graphics Terminal Server (VGTS). The Simple Terminal Server is a minimal workstation agent. 
It provides a single i/o stream. using the terminal facilities provided by the kernel console device, and creates 
one executive using that i/o stream. The standard V tine editing interface is provided, but no mouse or 
graphics facilities arc available. The Virtual Graphics Terminal Server, in contrast. provides a very large set of. 
facilities: multiple i/o streams in multiple windows •. graphics, and mouse-controlled menus. But it supports 
the same line editing facilities. A large c1as.'l of programs should be able to run under either of these 
workstation agents, or any other workstation agent, without any knowledge of which workstation agent is 
prescnt 

'The ncwtcnn command allows the user to replace the workstation agent on his workstation without 
rebooting the workstation. 

44.1. Implementation of Workstation Agents 

These arc the requcstc; that should be supported by a workstation agent. at the minimum: 

• It should support Lhe V (/0 protocol for INTERACTIVE_STREAM files. In simple cases. it may give 
polite replies to CREATE_INSTANCE and RELEASE_INSTANCE without really doing anything, as 
the STS does. 

.It should support the QueryPadRequest allld Mod1fyPadRequest messages in the fashion 
expected by QueryPad() and Mod1fyPad(). In particular.Mod1fyPad(f11e. 0) should turn off 
all "cooking", giving the client access to the raw. unadorned terminal. 

1 n addition. the following conventions should be observed. in order to allow the newte rm command to 
work: 

• Upon starting up, the workstation "sent should join the local workstation agent group. 

• fl should support the 01 e request mcs&1ge. which is a polite way of asking the workstation agent to 
expire. 

V Sencl'1 I M:IY 1986 



45-1 

-45-
Simple Terminal Server 

The Simple Terminal Server (STS) is a minimal terminal agent It does not use graphics. and it takes up less 
memory than the VGTS. Only one I/O stream is supponed. A program that wants to do graphics directly on 
the SUN hardware. not mediated by the VGTS. should be run under the S1'S. 

The STS creates one executive. If this executive is ever destroyed, by encountering end of file or by other 
means. it will be replaced within a second or so. Such a replacement can be forced by the sequence control-t 
x. A program running under the executive can be killed by control-t k. The normal tZ and tC commands 
also work. but they can be disabled by Mod1fyPad() requests, while the control-... sequences cannot be 
disabled. 

45.1. STS Line Editing Facilities 

The STS provides a superset of the line editing facilities that are provided by the VGTS. All 
Mod1tyPad() bits that are not related'to the mouse work as they do under the VGTS: CR_Input, 
I.F_Output. Echo. Lincbuffcr, PagcOutput. PagcOutputJll:nablc. and 1>iscardOutput 

As wen as the line editing commands described ill section 2.5, the STS also supports the following 
commands: 
CTRL-I 

CTRL-n 

CTRL-p 

CrRL-q 

CfRL-y 

ESC-, 

Re-display the input buffer. 

Move cursor down one screen line. 

Move cursor up one screen line. 

Quote next character. ·Control characters are displayed as &tC'. 

Move the contents of killbutTer into the input butTer. inserting at the current cursor 
position. 

Insert next character with the eighth bit set Character is displayed as '\nnn', where nnn is 
the octal representation of the character code. 

Move cursor to the beginning of the input butTer. 

ESC-. Move cursor to the end of the input buffer. 

ESC-BACKSPACE Same as ESC-b. 

ESC-d 

ESC-DEL 

ESC-t 

Kitt from the cursor to' the end oflhe current word. 

Same as ESC-h and CI'RL-w. 

Transpose the two words preceding the cursor. 

45.2. HardwareEnvironment 

The STS communicates with the user via the kernel console device. If the workstation has a framebuffer, 
characters are sent tu the te~mimll emulator built into the wurksUltion's PROM monitor; otherwise, characters 
arc sent through serial line 0 to a characte~ terminal. 

V Sencrs t May 19K6 



45-2 Simple Tcnninal Sc"er 

'Inc attached terminal or terminal emulator must understand the escape sequcnces sent to it by the STS for 
cursor positioning. The STS currently works properly with the following terminal cmulators and terminals: 

• Any PROM monitor terminal emulator that supports ANSI standard escape sequences, e.g., the SMI 
PROM monitor. 

• Cadlinc PROM monitor terminal cmulator. 

• Any character terminal that supports ANSI standard escape sequences, e.g., VI'lOO or Heath-19 in 
ANSI mode. 

45.3. Remote Terminal Server 

The Remotc Tcnninal Server (RTS) supports the same interface as the STS, but encapsulated in the ARPA 
TELNET Protocol; its standard input and output are normally a TCP connection opened by the telnet server 
(p. 4.1). Like the STS. the RTS uses execs created by the local exec server; this may lead to difficulties if there 
is anothcr telnet or local user on the same host. as the exec server assllmes it serves only one user at a time. 

The RTS violates the standard protocol on two points: it insists on echoing input (under the control of 
client programs) even if the ECHO option is not successfully negotiated. and it docs not send go-aheads as 
may be required by some hosts to support half-duplex tenninals. These violations are typically not a problem 
in paractice, as most user Telnet implementations support these options. All other options arc· properly 
refused . 

The RTS works with the Heath-19 terminal (in ANSI mode), the VAT provided by the VGTS, the SMI 
PROM monitor. and possibly others. 

V·System 6.0 Rcrercncc Manunl 



46-1 

-46-
Virtual Graphics Terminal Server 

The Virtual Graphics Terminal Service (VGTS) allows the display of structured graphical objccts on 
workstations (with appropriate displays) that run the V system. This chapter describes how the standard 
library routines interface to the VGTS. as well as describing some of the VGTS's internal structure. 
Applications programmers usually need not cQncern themselves with the details of this section; instead they 
should consult the "Graphics Functions" section of the manual (section 29). 

46.1. Cu rrent VGTS Versions 

There are: currently two working versions of the VGTS. sun 100vgts is used on workstations with SMI 
model 100 framebuffers. whiile sun120vgts is used with the SM) model 120 framebutlcr. (Sun model 50 
workstations also use the model 120 framebuffer.) Users usually will not have to concern themselves with this 
distinction. since team1-vgts (the default first team) automatically loads tlle correct version of the VGTS 
shortly after it begins running. Furthennore, the program vgts is a 'bootstrap' program which loads the 
correct version of the VGTS (in a new team), and then dies. Thus, "vgtstt can be given as an argument to 
newterm (see Section 4), regardless of the workstation's framebuffer type. 

The difference in VGTS vc~rsions is important. however. when loading special first teams that have a VGTS 
already linked in. team'l+sun100vgts will run only with a SMI model 100 framebuffer, and 
teaml+sun120vgts only with a model 120 framebuffcr. 

46.2. AVT Escape Siequences 

Unless otherwise noted. an escape sequences can come with or without the optional len bracket between 
the escapc and the escape command character. Arguments to the escape command are decimal chc.lfacter 
strings separated by a semicolon. The fullowing subset of the ANSI standard escape sequences is decoded by 
the SUN VGTS tenninal emulator: 

BELL Causes some fonn of audio feedback (bu7.ler, bell. etc.) if possible. and flashes all the 
views of the AVT. 

TAB 

FF 
CR 

LF 

BS 
SO 

SI 

NUL 

V Servers 

Positions the cursor at next multiple of eight (plus one) columns. erasing characters 
between the current cursor position and the new position. WARNING: this behavior is not 
VT100 compatible and is subject to change. 

Clears the A VT. 

Returns the cursor to the lirst column or the current line. 

Newline -- Moves the cursor down one line. If it is ut the last line of the scrolling region, 
all lines in the region move up (scroll). 

Cursor moves backwards one space. 

Shin Out -- Select the G 1 character set Currently ignored. 

Shift Out -- Select tlle GO character set Currently ignored 

Null-- ignored; may be used for padding. 

I i\-hlY 1986 



DEL 

ESC A 

ESC[iA 

ESCn 

ESC [iB 

ESCC 

ESC [iC 

ESCD 

ESC[iO 

ESCE 

ESC [/;c f 

ESCH 

ESC [/;c H 

ESCJ 

ESC[nJ 

ESCK 

ESCL 

ESC[nL 

ESCM 

ESC[iM 

ESCP 

ESC riP 

HSC@ 

ESC[i@ 

ESC [im 

ESC [/:b r 

ESC ( 

Delete -- ignored; may be used for padding. 

CursorUp _. move the cursor up one line. 

CursorUp _. move the cursor up i lines. 

NewLine -- move the cursor down, as with LF. 

NewLine -- move the cursor down the ilines. 

Virlual Graphics Tcmlinal Server 

CursorForward -- move the cursor forward, but do not overwrite the character at the 
current position. 

CursorForward -- move the cursor forward tcharacter positions. 

Index -- scroll the. current scroll region up one line. WARNING: this behavior is not 
VT100 compatible and is subject to change. 

CursorBackward -- move the cursor backwards i character positions. 

Next Line _. move the cursor down one line, but if it is at the end of the region, scroll the 
region up (Index). 

CursorPosition - Move the cursor to Hne /, column c. The lines and columns start from the 
upper left, which is 0.1). Specifying zero or leaving an argument blank is equivalent to a 
value of 1. Thus ESC[f alone wil1 "home" the cursor to the upper left. 

Ignored. Used by some terminals to set tab stops. 

CursorPosition -- same as ESC f. 

QearToEOS -- clear from the current cursor position to the end of the A VT. 

Clear -- if the argument i~ 2. clear the entire A VT. Otherwise, clear to end of A VT. 

ClearToEOL -- clear from the cursor to the end of the current line. 

InsertLine -- insert a tine at the cursor position. All the lines below and including the 
current one are moved down. The bottom line goes away. 

Insertl-ine - insert" lines at the cursor position. 

Reverscfndex -- move the seron region down one line. The top line in the scroll region 
becomes blank. Wt\I~NING: this behavior is not VT100 compatible and is subject to 
change. 

DcleteLine -- delete i lines starting from the tine that the cursor is on, and move alllincs 
below them up. 

DcletcChar - delete the character at the cursor position, moving all the rest of the 
characters in the line to the left one column. 

DcletcChar -- delete i characters. smrting from the one under the cursor. 

InsertChar -- move al1 the characters ~() the right of lhe cursor to the right one column. A 
space appears at the cursor position. 

InsertChar -- Insert i characters at the cursor position. 

If the value of the argument is non-lero, standout mode is turned on. which will mean 
characters appear in reverse video. A zero argument resets to normal video. 

Specifics the top and 'bottom lines of a scroll region. 111is is used in the Index and 
Reverse I ndex commands. 

Enter ANS I mode. Currently it is ignored. since A VTs are always in ANSI mode. 
, . 

V·System 6.0 Rderl'nce M:Ulual 



A VT Escape Sequences 

ESC)c 

ESC(c 

Select ao character set Currently it is ignored. 

Selcct a 1. character set. Currently it is ignored. 

The default size of an AVT is 28lines by 80 columns. lbis terminal type is just a 28 line VT-I00, with a few 
additional escape sequences as described above. On (Stanford) Unix 4.2 systems. this corresponds to the 
terminal type vgts (or vg'ts28). (Other common AVT siles are also supportcd in the Unix lenllcap tile, 
namely vgts24. vgts48 and vgts54.) For TOPS-20. the command term VT100 will work. On the 
SU-AI WAITS system, the • tty sun 28 80 command can be used for display service. 

46.3. VGTS Message Interface 

This section describes the internal message interface to the VGTS. 

46.3.1. I/O protocol reiquests 

The following requests of the I/O protocol (see section 33) are supported: 

CREATE_INSTANCE 
Causes a new A VT to be created. The view manager will let the user decide where to put 
the upper left comer of the A VT by (:hanging the cursor and blocking the process until the 
user c1iclks the mousc. The file instances created are READABLE. WR111~AnLE, 
VARIAIU .. E_BLOCK STREAMs. The first two unspccified fields of the mcssage (if non
zero) arc the number of lines and columns in the new A VT. '(be filename field" of the 
message is used as the name of the virtual terminal. Usually this is invoked only by the 
OpenPad( ) routine described in section 29. 

QUERY_INSTANCE 
Returns the standard values, the samc~ as a Create Instance reply. 

WRITE_INSTANCE 
Write the! bytes to the A VT corresponding to the file instance. Output conversions are 
performed if the ap'propriate "Cooking" modes are set 

WRITESHORT_INSTANCE 
Same as WRITE_INSTANCE. 

READ_INSTANCE 
Blocks until some characters ilrc entered into thc A VT. I f there are any characters already 
in the event queue for this AVT. they are returned immediately. Note that since the 
instance iis VARIABLE_BLOCK. un unknown number of characters can be returned. up 
to the blocksizc. 

R ELEASE_'NST ANCE 
The 1\ VT is deleted. along with any views of the A Yr. and storage is reclaimed. 

SET_BR I~A K_PROCESS 
'1l1e brenk proces.~ for each instance is the process which will be killed if the view manager 
"Kill Progrum" command is invoked withill the AVr. 

ShT_INST ANCE_OWNER 
Changes the (process) owner of the A yr. 

46.3.2. Workstation Agent Requests 

The following request cooes (and associated message stnlctures) are defined in <Vtermagent. h>: 

QueryPadRequcst Returns the cooking mode ~tc; for the A VT. as well as the A VT's width and height. 

V Sencrs I 1\1;11 1986 



Virtual Graphics Tcnninal Sener 

ModifyPadRequest 
The AVis cooking mode bits and/or size are modified. The structure ModifyMsg 
describes the fonnat of this message. 

Switchlnput The specified AVT is selected for input 'Ibis is used in the Se 1 ectPad() routine. 

EventRequest The first item from the event queue is returned to the requester. If the event queue is 
empty, the requester is blocked until an event comes in for the given virtual terminaL 

SetllannerRequcstThe specified virtual tenninal's banner string is changed. This request code is used by the 
SetVgtBanner routine. 

Redraw Request The specified A VT is redrawn. 

LineEditRequest The data in the message are treated as line editing commands, rather than simply being 
output to the A VT. Note. however, that the line editor treats most characters as sclf
inserting (see section i.5). 

GetRawIO The server and instance ids of the VOTS's own stdio are returned to the requester. 'lbe 
newterm command uses this code in order to detennine what stdio to give the new 
workstation agent. 

Die This code requests the VOl'S (or other workstation agent) to commit suicide. This is used 
by the newterm command, as a lemporary kludge ollly (to circumvent current problems 
with the system) user number and pennission checking policy). 

46.3.3. Other request. 

SET_DEBUG_MODE 
Sets (or clears) debugging flags within the VGTS. This code is used by the debugvgts 
command. . 

46.4. Internal Organization 

111e current VGTS implementation consists (logically) of the following modules ('modules' in this 
description do not necessarily correspond to procedure names or source files): 

• Master Multiplexor. This is the only module which is operating system dependent. Upun initialb:ation, 
the "lppropl'iate process structure is set lip. The main loop consist.It of waiting for a mcs.c;nge. dispatching 
to the appropriate routine in the other modules, and returning a reply. Synchronization problems are 
avoided by having the data structures accC;SCd only in one process. 

• Tenninal emulator. This module interprets a byte stream as if it were an ANSI standard tenninal. 
Printable characters are added to text objects. and control and escape codes are mapped into the proper 
SOF manipulations. 

• Input handler. There are various device-dependent input handlers. For example. a single process reads 
the keyboard and sends typed chamcters to the multiplexor. Another reuds the mouse and tracks the 
cursor. 

• SDF manipulator. This module handles reqllest.~ of applications to create, destroy, and modify 
graphical object~ in structured display tiles. These routines maintain bounding b()x\"~ for symbols. and 
call the appropriate redrawing routines when necessary. There is a hash table to locate items given their 
client names. . 

• SDF interpreter. 'Illese·are the highest level redrawing operations. The structured display files are 
visited recursively, with appropriate dipping for bounding boxes totally out.c;ide the area being redrawn. 

• Display operations. These are the gmphic.:al operations called by the SDF interpretcr. 111CY are 
generally device independent. 

V·Syslem 6.0 Rererence M:mllal 



Internal Organization 46-5 

• Drawing primitives. 'nlere is one module which implements device dependent graphics primitives. It is 
conditionally compiled for different graphics devices. 

• Hit detection. The stnlctured display file is visited, but instead of actually drawing the primitives, the 
positions arc checked to match the cursor's position. A list of possibly selected objects (under other 
optional constraints) is returned to the application. 

• View manager. This module allows the user to create, d~troy, and modify the screen layout, using the 
mouse. 

• Viewport primitives. These are the routines which perform the view-changing operations, invoked by 
either an application program or the user through the view manager. 

46.4.1. Executive Interf.ace 

The V-System is intended to be modular. so VGTS could conceivably be used with an executive other than 
the standard one. The VGTS module execs. c handles the Exec Control part of the view manager 
command. It starts up new executives as new processes on the same team, using the CreateExec() library 
routine. The Executive calls the functions SetVgtBanner(f11e. banner) and 
SetBreakProcess (file. pi d) as commands are e:lCecuted. 

46.4.2. Frame Buffer Interface 

The device-dependent parts of the VGTS currently reside in the files draw1. c and draw2. c. The 
gl_o. 0 () macros form the interface to the underlying graphics device. These macros are defined in the 
include files gl_sun100. hand gl_sun120 0 h. (Which include file is used depends upon which version 
of the VaTS is being compiled.) 

46.5. Debugging the VGTS 

The debugvgts command al10ws the user to obtain a trace of certain events within the VaTS. The 
command syntax is 

debugvgts <debug code> <VGT # > 
or 

debugvgts trace <VGT # >. 
In the first form, the debug code (interpreted as Cl hexadecimal number) is a disjunction of bit flags ~1ken 
from those defined in the system header file (Vgtp. h>. <VGT.# > is the number of a text VaT to which 
debugging output is to be redirected. I f this number is not that of a valid text VaT. then debugging output is 
directed to the VaTS's stdout (the console) instead. Once VaTS debugging has been turned on. it can be 
turned off again using a debug code of O. A debug code of 0 is also llseful for redirecting trace output as 
explained below. 

In the second form of the debugvgts command. the top-level symbol associated with <VGT .# > is 
dumped in a symbolic textual thnn to lhe current output (as declared in the first Ihl'm.) This is useful for 
debugging programs th~lt usc lhe graphics capabilities or lhe vaTS as well as debugging the internnls. if 
<VUT #' > is positive. then interactive mode is used. and llle trace routine pauses after each item listed. Ifit is 
negative, then the top level symbol of the VaT spccitied by the absolute value of <VGT .# > is dumped 
without pausing. 

V Servers J Muyl986 



Part IV: 

Appendices 



A-I 

- Appendix A -
A V-System Bibliography 

[1] EJ. Berglund and n.R. Cheriton. 
Amaze: A distributed multi-player game program using the distributed V kernel. 
In Proc. 4th International Conference on Distributed Computing Systems, pages 248-253. IEEa May. 

1984. 

[2] E.J. Berglund and D.R. Cheriton. 
Amaze: A multiplaycr computer game. 
IEEl!~ Software 2(3):30-39. May. 1985. 

[3] n.R. Cheriton. 
An experiment using registers for fast message-based interproccss communication. 
Operating Systems Review 18(4):12-20. October, 1984. 

[4] n.R. Cheriton. 
Local networking and intemetworking in the V-System. 
In Proc. 8th Data Communications Symposium. pages 9-16. ACM/IEEa October. 1983. 
Proceedings publishc!d as Computer Communication Review 13(4). 

[5] n.R. Cheriton. 
The V Kernel: A software base for distributed systems. 
IEEE Software 1(2):19-42, April, 1984. 

[6] D. R. Cheriton and T. P. Mann. . 
A O('cl'lIIralized Naming Facility. 
Technical Report. Computer Science OcpanmcJ1Jt. Stanford University. February, 1986. 
Submitted to tiCAl Trallsactions 011 Computer Systems. 

[7] n.R. Cheriton and T.P. Mann. 
Uniform access to distributed name interpretation in the V-System. 
In i'roc. 4th Intenlatiollal Con/erem:e on Distributed Computing Systems, pages 290-297. IEEE. May, 

1984. 

[8] n.R. Cheriton and W. Zwaenepoel. 
Distributed process groups in the V kernel. 
ACAI Trall.')(lctiIJII ... 011 Co",pLller Systrms 3(2):77-107, May, 1985. 
Presented at the SIGCOMM 'H4 Symposium un CommunicuLions Architecturcs nnd Protocols, ACM, 

June 1984. 

[9] n.R. Cheriton and W. Zwaenepoci. 
111e distributed V kernel and its perfonnance for diskless workstations. 
In Proc. 9th SymfJ(~sium 011 Operating Systems Principles. pages 129-140. 'ACM, October, 1983. 
Proceedings published as Operating Systems Review 17(5). 

ApptOOkH .10 April 1986 



A·l A V-System Bibliography 

[10] 1.L. EdighotTcr and K.A. Lantz. 
Talicsin: A distributed bulletin board system. 
Presented at the 2nd International Conference on Computer Message Systems, IFIP, September 1985. 

Proceedings to be published by North-Holland. 

[11] K.A. Lantz. 
An architecture for configurable user interfaces. 
Presented at the Working Conference on the Future of Command Languages: Foundations for 

Human-Computer Interaction, IFIP Working Group 2.7, September 1985. Proceedings to be 
published by North-Holland. 

[12] K.A. Lant7., D.R. Cheriton, and W.I. Nowicki. 
Third generation graphics/or distributed systems. 
Technical Repon STAN-CS-82-958, Department of Computer Science, Stanford University. 

Febnlary, 1983. 

[13] K.A. Lantz and W.I. Nowicki. 
Structured graphics for distributed systems. 
ACM Transactiolls Oil Graphics 3(1):23-51, January, 1984. 

[14] K.A. Lantz and W.I. Nowicki. 
Virtual tcnninal scrviccsin workstation-based distributed systems. 
In Proc. 17th Hawaii International Conference on System Sciences, pages 196-205. ACM/IEEE, 

JanuaJ)',1984. 

[15] K.A. Lantz, W.1. Nowicki, and M.M. Theimer. 
An empirical study of distributed application perfonnance. 
I ERE Transactions Oil Software Ellgineering SE-l1( 10): 1162-1174, October, 1985. 

[16] K.A. Lant7., W.I. Nowicki, and M.M. Theimer. 
Factors affecting the perfonnancc of distributed applications. 
In Proc. SIGCOAIM "84 Symposium on Communications Architectures alld Protocols. pages 116-123. 

ACM, June, 1984. 

[17] W.I. Nowicki. 
Partitioning 0/ Function ill a Distributed Graphics System. 
PhD thesis, Stanford University, 1985. 

[18] M.M. Theimer. K.A. Lantz. and D.R. Cheriton. 
Prccmptable remote execution fC:lcilitics for the V-System. 
In Proc. 10th Symposium on Operating Systems Principles. pages 2-12. ACM, December, 1985. 
Proceedings publishcd as Operating Systems Review 19(5). . 

(19) W. Zwacnepocl. 
I.'essage l)assillg on a I.ocal Network. 
PhD thesis, Stanford University, 1985. 

3 April 1985 V·Sy.t;Il'm 6.0 Reference Manual 



8·1 

- Appendix B -
C Programming Style 

There has been an effort to use a consistent style in V for writing C programs. The style and the unifonnity 
it encourages are motivated by the desire for readability and maintainability of software. Although style is to 
a large extent a matter of individual taste, the following describes some general practices with which most of 
us agree. 

B.1. Gene ral Fo rmat 

Recognizing that software is written to be read by other programmers and only incidentally by compilers, 
the general tbnnat follows principles cs~1b1ished in fonnutting general English documents. Take a few more 
seconds to make things more readable; it is time well spent 

First. software is written to be printed on standard size (8 by 11) paper. This means avoiding lines longer 
than about 80 columns. In general, there is one statement or declaration per line. 

As with other documents, judicious use of white space with short lines and blank lines is encouraged. In 
particular, 

l. At least 2 blank tines between individual procedures. 

2. Blank tines surround "large" comments. 

3. Blank lines around any group of statements. 

4. Blank Jines around cases of a switch statement 

B.2. Names 

Names are chuscn when possible to indicate their semantics and to read well in usc. for example: 
if (GetOev1ce(Etherlnstanc.) •• NULL) return NOT_FOUND; 

Words should be spelled out. not shortened. /\ good test is to read your code aloud. You should be able to 
communicate it over a telephone easily. without resurting to spelling out abbreviations. 

In addition. character cac;e conventions are used to improve readability and suggest the scope and type of 
the name. Global variablcs. procedures. structc;. unions. typedef.c;. and macros all begin with a cllpitalletter, 
and are logically capitalized thereafter (c.g. Ma 1 nHashTab 1 e). A global variable is one defined outside a 
procedure. even though it may not be exported from Ule tile. or an external variable. The motivation for 
treating mucros in ulis way is that uley may then be clwnged LO procedure calls withuut renaming. 

Manifest constants either fhl10w the abuve convemion (since they are essentilll1y macros with no 
parameters) or else are fully capitalized with use of the underscore to separate components of the name. Rg. 
WRITE_INSTANCE. 

I.ocat variables begin with a lower-case letter. but are either logically capitalized thereafter (e.g. b 1 tW1 dth. 
power. maxSumOfSquares) or else totally lower ca'iC. Fields within stnlcturcs or unions are treated in this 
manner also. 

Local variables of limited scope are often dt.'Clared as register. if they are used very onen inside inner loops. 
It is not only more etlicient. but usually more readable. to put a pointer to an array of complicated stnlctures 

AppcndkC5 7 June 1986 



D·2 C Progr:amming St11e 

(a common occurrence in object-oriented programming) into a register variable with a short name. For 
example, 

register struct Descriptor *p • DescriptorTable+objectlndex; 
p->count • 0; 
Init1alize(p->start); 
p->usage • p->default; 
p->length • p->end - p->start; 

instead of the inefficient and cluttered: 
DescriptorTable[objectlndex].count • 0; 
Initialize(DescriptorTable[objectlndex].start): 
DescriptorTableCobjectlndex].usage • Descr1ptorTable[objectlndex].default; 
Descr1ptorTable[objectlndex].length • DescriptorTable[objectlndex].end 

- Descr1ptorTable(objectlndex].start; 

B.3. Comments 

lbere arc generally two types of comments: block-style comments. and on-the-line comments or remarks. 
MultHine. block-style comments have the I*.and */ appearing on lines by themselves. and the body of the 
comment starting with a properly aligned *. The comment should usually be surrounded by blank lines as 
well. '(bus it is easy to add/delete tirst and last lines. and it is easier to detect the common error of omitting 
the */ and thus including all code up to and including the next *1 in a comment. ,. 

* this 11 the first line of a multi-line comment. 
* this is another lin. 
* the last line of text 

On-line comments or remarks arc used to detail deciamtions. to explain single lines of code, and for brief 
(Le. one line) block-style descriptive comments. 

Procedures arc preceded by block-style comments. explaining their (abstract) function in terms of !their 
parameters. results. and side efTeclCi. Note that the parameter declarations are indented, not flushed left. 

SystemCode EnetCheckRequest(req) 
register loRequest *req; 

{ ,* 
* Check that the read or write request has a legitimate buffer. etc. 
*, 

register unsigned count; 
register Systemeod. r; 

'* Check l~ngth *' 
count • req->bytecount: 
if (count <. IO_MSG_BUFFER) return OK; 

req->bytecount • 0; '*·To be left zero if a check fails *' 
if (count> ENET_MAX_PACKET) 

{ 

} 
else 

{ ,. 
* Make sure data pointer is valid. 
• Check that on a word boundary and not in the kernel area. 

7 June 19R6 V'Sys'('11I 6.0 Reference Manual 



} 

} 

if «ICheckUserPointer(req->bufferPointer» II 
(Active->team->teamSpace.size c (req->bufferPointer + count» II 
«int) req->bufferPointer) & 1) 

{ 

} 
else 

{ 

} 

r • 

req->bytecount • count; 
r • OK; 

return r; 

8.4. Indenting 

B-3 

The above example shows many of the indenting rules. Braces ( "{" and "}'t ) appear alone on a tine, and 
are indented two spaces from the statement they are to contain. The body is indented two more spaces from 
the braces (for a total of four spaces). 81 sa's and a1 S8 if's line up with their dominating if statement (to 
avoid marching off to the right, and to reflect the semantics of the statement). 

if «x • y) •• 0) 
( 

nag • 1; 
printf(" the value was zero "); 

} 
else if (y •• 1) 

( 

} 
else 

switch (today) 
{ 

} 

case Thursday: 
flag • 2; 
ThursdayAction(): 
break; 

case Friday: 
flag • 3: 
FridayAction() ; 
break; 

default: 
OtherDayAct1on(); 

printf(" y had the wrong value "): 

B.S. File Contents 

File contents ure arranged as fol1ows. 

1. Initial descriptive comment (see example below), containing a brief descriptive abstract of the contents. 
Some programmers also add a list of all defined procedures in their defined order, or alphabetically. 

2. Included files (avoid ILhe use of absolute path names) 

3. External definitions (imports and exports) 

4. External and forward function declarations 

5. Constant declarations 

6. Macro definitions 

Appendicts 7 .ru~ 1986 



B·4 C Programming Style 

7. Type definitions 

- 8. global variable declarations (usc static declarations whenever possible, and group variables with the 
functions that use them) 

9. procedure and function definitions 

Here is the beginning ora file as an example. 
,* 
* Distributed V Kernel - Copyright (c) 1982 by David Cheriton. Willy Zwaenepoel 
* 
* Kernel Ethernet driver 

*' 
'include " •• ' .. 'libc'include/Vethernet.h" 
'include "interrupt.h" 
'include "ethernet.h" 
'include "ikc.h" 
'include " •• /m1'd •• b" . 

'* Imports *' 
extern Pr~cess *Map-pid(): 
extern SystemCode NotSupported(): 
extern DeviceInstance ·GetDevice(); 

/. Exports *' 
extern SystemCode EnetCreate(): 
extern SystemCode EnetRead(): 
extern SystemCode EnetWrite(); 
extern SystemCode EnetQuery(): 
extern SystemCode EnetCheckRequest(); 
extern SystemCode EnetReadPacket(): 
extern SystemCode EnetPowerup(); 

unsigned char 
lnstanceld 
int 
short 
int 
int 
int 
int 
int 
int 

EnetHostNumber: 
Ethernetlnstance; 
EnetReceiveMask; 
EnetStatus; 
EnetFIFOempty; . 
EnetCollisions • 0; 
EnetOverflows • 0; 
EnetCRCerrors • 0; 
EnetSyncErrors • 0; 
EnetTimeouts • 0; 

/* physical ethernet address ., 
/. Instance id for Ethernet *' 
/. addresses to listen for */ 
/* Current status settings *' 
/* FIFO was emptied by last read */ 
/* Number of collision errors */ 
'* Queue overflow errors *' 
'* Packets with bad CRC's */ 
'* Receiver out of sync */ 
/* Transmitter timeouts *' 

int 
char 

EnetValidPackets • 0; 
kPacketArea(WORDS_PER_PACKET*BYTES_PER_WORD+20]: 

kPacket 
/* Save area for klrnel packets *' 

*kPacketSavl • (kPacket .) kPacketArea; 
/. Pointer to kernel packet area *' 

/* Macro expansion to interrupt-invoked C call to Ethernetinterrupt *' 
CallHandler(Enetlnterrupt) 

B.6. Parentheses 

For function calls. the parentheses "belong to" the calt, so there is no space between function name and 
open parentheses. (There may be some inside the parentheses to make the argument list look nice.) When 
parentheses enclose the expression for a statement (if, for. etc.), the parentheses may be treated as 
belonging to the expression. so there is a space between the keyword and the parenthesized expression. This 
also clearly distinguishes the statement from a function cull. . 

7 June 1986 V-System 6.0 Reference Manual 



it (FuncA(» 
( 

) 
else 

{ 

) 

FuncS«a • b) .~ 0): 
return Nil: 

FuncC(a. b. c): 
return ToSender: 

8-5 

Alternatively. parentheses m,ay be treated as belonging to the statement (since they arc syntactically required 
by the statement) so there is no space between the keyword and the expression. 

it( (bytes • req->bytecount) <. IO_MSG_SUFFER ) 
butfer • (char ~) req->shortbutter: 

else 
return req->butrerPointer; 

Note that parentheses are not syntactically required around the expression of a return statement. 
Nevertheless. such parentheses may still be included. if so desired. 

Note that spaces are used to separate operators from operands for clarity and may be selectively omitted to 
suggest precedence in evaluation. 

B. 7. Messages 

Although V is a messagc~-based system, most services are available by calling standard routines, so 
programming at the "message lever' is rarely necessary or desirable. However. the programming of new 
servers and the non-standard use of services or the use of messages within a program require message-level 
programming. The following conventions have been tbllowed in V~ . 

Space to send or receive a message is declared of type Message (an array) or MsgStruct (a structure with 
appropriate fields). as defined in <Venviron.h>. Standard message formats. as defined in the V header files, 
declare cnch message format to be a new data type. Each messnge format contains enough padding to fill it 
out to tJ1C fixed mes.~ge size used by ~le kernel. Whc!re the same space is used for messages of multiple 
format'i (for example. both request nnd reply messages). access to the space for thc mCSSc1ge can be made by 
casting a pointer to the space! to be of the typc of the message format requires. 'lllC following illustrates this 
style. 

Read(fad. buffer. byte.) 
File ·tad: 
char ·butfer; 
int byte.; 

{ 

Appendices 

,* 
• Read the specified number ot bytes into the butfer trom the 
• file instance specified by fad. The number of bytes read is 
* returned. 

*' 
Message msg; 
register IoRequ~st *request. (IoRequest *) msg; 
register IoReply ·reply. (IoReply .) msg; 
register unsign~d r. count: 
register char -but: 

tore ::) 
{ 

request->requestcode • READ_INSTANCI~: 
request->fileid • fad->fileid: 
request->bufferPointer • buffer; 
request->bytecount • bytes; 
request->blocknumber • fad·>block; 

7 JUlie 1986 



n·6 

} 

7.Junc 19R6 

} 

it (Send{request. tad->t11eserver) •• 0) 
{ 

} 

fad->lastexcept1on • NONEXISTENT_PROCESS; 
return 0; 

if ({r • reply->replycode) I· RETRY) break; 

. 
fad~>1~stexcept1on - r; 
count • reply->bytecount; 

if (count <- IO_MSG_BUFFER) 
{ 

buf - (char .) request->shortbuffer; 
for (r • 0; r < count; ++r) ·buffer++ • *buf++; 

} 
return count.; 

C Progranlming Style 

V·Sysltm 6.0 Ildl'fl'IICe Manual 



C'l 

- Appendix C
Installation Notes 

This document describes the installation and maintenance of the V-System software. The reader should be 
familiar with the V-S)£stem as documented in the V-System manual~ and with the Unix system used for 
development 

C.1. V·System Distribution Tapes 

The software is distributed on a 1600 bpi Unix ~1r format tape. Licensing information and tapes can be 
obtained from: 

Office ofTcchnology Licensing 
. Suite 250 

350 Cambridge Ave. 
Palo Alto. CA 94306 
(415) 723-0651 

An the software is under copyright protection, so you must get a license from Stanford to have this software. 
New versions of the software may be released from time to time. , Send comments on the software and 
documenmtion to the Arpanet addrcs.~ vbugs(Jpescadero. stanford. edu. Please report any bugs you 
find. or improvements you make. . 

The full V distribution consists of two tapes, the binary distribution (or binary tape), and the source 
distribution (or source tape) which has the sources to the V system itself. V6. 0 combines both of these on a 
single tape, with the "logical binary tape" first The combined sp.lce requirement for \'6.0 is approxinmtcly 67 
megabytes. . 

Notc: This V distribution runs on Cadlinc and SUN MicroSystems workslc1tions with 68000s (SUN-Is), 
SM( workstations with 680105 and 68020s (models 2/{50.l00.120.l70} & 3/{7s.160U. Clnd nl':c MicroVAX-1I 
workstations with and without framebutTers. Ethernet drivers arc provided for the Je'OM and Excelan IOmeg 
boards, the Intel 82586 LAN chip (found in SMI '2/50 and 3175 models). the SMI 3 meg board. and the 
DEQNA. "nlere is presently no driver for the SM I MultRbus 10 Mbit Ethernet interface or for the AM!) 7990 
chip found in the Sun-3Is0. 111e VAX server host side must be nmning 4.2 or 4.3 BSO. 

C.2. Bina,ry Distribution Tap~ 

The hinary tnpe contains 3 t..1r (Unix tlpe-archive format) tiles: 

enet: 111e tiles required to instlll our etJlernet pncket filter code in a VaxlUnix 4.2 kernel. The 
ins~1I1ation.doc and enetdoc files that arc part of Olis tlpe file describe how to inslc111 the driver and 
how it works, respectively. This code should be included in the official4.3BSD release. 

unix: TIle binaries and some sources for Unix suppor~ programs and servers used with v. 
usr.V: Files used by workstations nanning the V-system . 

• V binary images for kernel. servers and programs. 

• V libraries foJ' C programs in Unix tar format 

Appendices 17 .June 19R6 



C·l Installation Notes 

• V header files for C programs. defining standard manifest constants and structures. 

• Miscellaneous configuration and documentation files. 

The binary tape is structured to be loaded into a single subtree of a Unix file system. Make a subdirectory 
on a partition with at least 65 megabytes free. We suggest calling it V6.0. Change to the V6.0 directory, make 
another subdirectory called enet and change to it Extract the packet filter from the tape. Change to V6.0 and 
run tar x repeatedly to extract the remaining files from the tape. (Due to extra end-of-files. you may get a 
"0 blocks read" message between files.) 

Several programs expect to find files in certain directories. Run the Vl1 nk shell script to link the . 
distribution into the file structure. ' 

Add the tenncap.vgts entries to letc/termcap. 

C.2.1. V Subdirectories 

There are several subdirectories of interest under the "V" subdirectory in the installation directory: 

bin 

boot 

config 

fonts 

include 

lib. 

·mise 

run 

Binaries of the V-system commands and servers. rI1lese arc the programs that run under V 
on the workstations. 

This directory contains standalone programs (programs that do not run under the V kernel) 
such as Vload (the V-System bootstrap). and the netwatch family of network 
monitoring programs. plus initial teams to run under the V kernel. The subdirectory 
"Vkernel" contains various V kernel configurations. 

Workstation configuration files. One con fig file exists per workstation. These files arc used 
by the ndserver to determine which version of Vload to download. by Vload to 
dctennine which kernel image to load. and by the internetscrver to- detennine the 
workstation's IP address. 

Type fonts used by the VGTS and other V-System programs. 

The include (. h) files. Most V-System include files start with an upper case "V". 

The V-System libraries'. l1te main run-time library is IibV.a Other major libraries are 
libsun lOOVgts.,\ for the SUN-l frame buffer and tibsun 120Vgts.a for the SUN-2 
frameburrer. raw character I/O for various hardware configurations. and low level V ike 
libraries for stundalone programs. There is ,list) a library thr each of the di rrcrent servers, 
e.g.1ibVintemcta contai~s the Internet server. providing primarily IPrrCp ser,icc. 

Other random files. 

Various files that are used by programs for runtim~ support. 

C.2.2. Network File Service and Bootloadlng 

The next slep is to provide network file service and bootloading service. 

1. Provide 'll."CCs.c; to the Ethernet on your V AX/UN IX system (the only configuration fully supported by 
the distribution tape). 

:!. Modify the configuration files. under V IconOg to indicate the desired configuration and network 
addresses of your works~1tions. 

3. Ins~111 and initiate the execution of the Vserver and ndserver on the Vax. 

17 June 1986 V ·Syst"m ().O n"r"r"nce Manual 



Binary Distribution Tape C·3 

C.2.2.1. Ethernet Filter Code 

This code must be added to the Unix kernel. if not already present It allows a user program to open the 
Ethernet directly for reading and writing as a special device file. The user program can then specify by a 
"filter" which packets it wants to receive. See enctllnstallation.doc for installation infonnation and 
enetlenetdoc for a brief description of the code. Note that 4.2 BSD docs not currently provide this 
functionality. However. a group at S~1nford has convinced the weenics at Rcrkeley to include this driver as a 
standard part of Berkeley Unix. starting with the 4.3 release. Make sure the maximum packet size (MTU) is 
large enough to fit all the da~1 bytes in a kernel packet plus the header, currently about 1200 bytes. The va . 0 
release packet filter is incompatible with previous packet filter releases. 

In addition, the network driver files in_proto.c and ip_inputc should be replaced in lusrlsrclsys/netinet 
This adds the IPPROTO_ND protocol family (used by SMI boot proms) to the kernel. 

C.2.2.2. Ethernet multicast reception 

Important: Make sure that your Unix ethernet driver is set up to receive all multicast packets. Ry default 
most drivers do not listen to these packets. Multicast is now a fundamental pan of the V interkernel protocol. 

C.2.2.3. DEC Deuna 

Change the initialization lRne in lusrlsrc/sys/vax 1 f 11f.sl,8. C to include the multicast enable bie 
'ifdef STANFORD 

1* receive all multicast packets to keep V people happy *1 
ds->ds~pcbb.pcbb2 • MOD~TPADIMOD~HDXIMOD~ENAL: 

'elsa 
ds->ds~pcbb.pcbb2 • MOD~TPADIMOD~HDX; 

#endif STANFORD 

C.2.2.4. Interlan 1010a 

Refore sc,tting the Interlan board online send an additional command to enable reception of all multicast 
packets (in lusrlsrc/sys/vax11/1111. c): 

#ifdef STANFORD 
1* 
* For V people: receive all multicast packets 
*1 
addr->il~csr • ILC~ALLMC; 
while «addr->il~csr & IL~CDONE) •• 0) 

#endif STANFORD 

1* 
* Set board online. 
* Hang receive buffer and start any pending 
* writes by faking a transmit complete. 
* Receive bcr is not a muliple of 4 so buffer 
* chaining can't happen. 
*1 

C.2.2.S. Configuration Files 

The "contig" tiles provide information about individual network nodes or' workstations. If a node has 
Ethernet address AAAAAAAAAI\AA (in hex) then it~ configuration file should be 
configlC.AI\I\I\AAI\AAAAA. In general. C.* tiles describe a network node, G.* files describe routing to be 
used by a gnteway and S.* files are scripts thr servers to execute on initialization. Config tiles contain 

Appendices 17 June 1986 



C·4 InstaDatioa Notes 

information fields of the form "name:value". Several exapmles are included in V/eonf1g. See chapter 19 
for a full description of the keywords and their appropriate values. 

The fields needed for booting are: 

name 

bootftle 

alt-ether-addr 

Name to be used as a user-specified designation of network node. 

Which version ofVl oad to download. Sun-2/SOs must have this field set to VloadSO.d. It 
defaults to VloadlO.d for Suns and Vload.vax for microVaxen. 

Sun-2 workstations that have 3COM ethernet interfaces use the SMI address 
(0800.2001.xxxx) for booting and the JCOM address (0260.8cOO.xxxx) when running the 
V-System. To configure sllch a works~1tion, name the contig file after its 3COM address 
and put the SMI address in the alt-ether-addr field. SMI workstations generally print their 
SMI-assigned ethemet address on the screen during powerup. You can determine your 
workstation's 3COM address by running the following program under SMI Unix: 

#include <sys/file.h> 

main() 
( 

} 

int fd, i; 
unsigned char addr[6]; 

fd - open("/dev/mbmem", O~RDONLYt 0); 
lseek(fd, Ox~0400, 0); 
for (i-a; i<6; i++·) 

read(fd. &addr[i], 1); 
printf("%02x%02x.%02x%02x.%02x~02x\n". 

addr[O]. addr[l]. addr[2], 
addr[3]. addr[4]. addr[6]); 

C.2.2.6. Initiation of V Servers on Unix 

The directory unix/etc contains the Unix server programs needed to boot diskless workstations and serve 
remote sessions. 'Illis directory is symbolically linked to lete/V. 

The Vserver uses the file V/run/Vhosttab to map from hostnames to V logical host ids. Since this tile is 
installation dependent you'll IHlve to generate it by editing the SERVERI-IOSTS vari"ble in (source) 
V /servers/unix/buildfile, run buildmake, then make install. 

The line "sh lete/V/rc" should be added tolete/re. local to fire up these server programs whenever 
the system is booted. (The "rc" file also provides a reasunable description of how to hand SGlrt these servers.) 
Note: the Vserver expects to be run as root. so that it can fork "sessions" that sctuid to the appropriate user .. 

'Iltere must be at least one public Vserver nlOning in any given local network. A Vserver is made pubHc by 
starting it with the -p flag. See the Unix Server section of the manual for further infonnation. 

C.2.3. V Authentication Files 

va.o requires two files for authentication: the Vpa.'isword file. which is used by the Vauthentication server 
to authenticate (log in) users, and the Vusercorrespondence file, which maps V user numbers to Unix user 
names. ror a complete description see chapter 35, Authentication and the Authelltication Server. "[be section 
35.5 explains the usc and needs of the files involved in V authentication. 

Two awk script" are provided to generate the Vuscrcorrcspondence and Vpassword lites from the Unix 
/etc/p~lsswd file. These scripts make each V user's V passwurd the smne as their password under Unix, and 
makes their V home direcotry on the correct Unix host. These scripts are aimed at sites which have only one 

17 .June 1986 



Binary Distribution Tape c·s 

Unix host providing V file service. Section C.2.3.4 explains what to do if you have more than olle such Unix 
host 

. 
C.2'~3.1. Creating the Vpassword File 

Follow the directions in late/V IVpassword. awk. then create a rough password file by executing 
awk -f letc/V/Vpassword.awk < letc/passwd > Itmp/rough 

Edit Itmp/rough to remove password entries for such Unix users as root, uucP. etc. Copy Itmp/rough to 
lusr/V Imisc/Vpassword. 

C.2.3.2. Creating the Vusercorrespondence Fllca 

Follow the directions in latc/V/Vusareorr. awk. ~hen create a rough correspondence file by executing 
awk -f letc/V/Vusarcorr.awk < letc/passwd > Itmp/rough 

Edit Itmp/rough to remove the same extraneous entries deleted from the p~word file. Copy ltmp/rough to 
letc/V IVusercorrcspondencc. 

C.2.3.3. The Unknown User and the V administrator 

A workstation which has nobody logged in is authenticated to a special unknown user. We assume that you 
may want people to be able to run V programs (such as telnet and netwatch) without logging in. To do so, 
crente an account called "Vunknown" on your unix system. make its home Itmp and give it minimal 
privileges. In addition you should create ,"Vadmin" an account for the administration of V system files and 
chown lusr/V Imisc/Vpassword to that user. 

C.2.3.4. V Authentication and Multipl~ Vservers 

If you have more than one machine serving V. you must create a single password file that contains entries 
for the IUsers from all of the machines. To do this first create a Vpassword file on each offsctting the V user 
numbers so that there is no overlap between machines. Then form a rough master password tile by merging 
all of them together on the master password site. Mas..~ge the rough master by editing out duplicate entries. 
keeping the entries that correspond to each users "home" machine. Sorting the rough passYtord file before 
duplicate deletion makes this chore much easier. 

It is a bit more difficult to automatically genemte individual correspondence files when building a merged 
Vpassword file. 'Illis is because there may be little relation between a given user's V user number and the 
user's Unix uids on multiple Unix hosts. We suggest starting with a minimal correspondence ulble on each 
machine and having users run addcorr the first time they log in ,to the V-System. A minimal file sufficient 
to boot and test the system is as follows: 

0' Vadm1n 
1 Vadm1n 
2 Vunknowrt 

C.2.4. The Boot Sequence 

This section explains what happens during the bootstrap proccs.'). Sec chapter 16 ror a detliled description 
of workstation boot commands. The boot process consists of three steps: loading Vload. the V-system 
bootstrap. loading the ker'nel Hnd first team, and initializing the system (which may include downloading 
more programs such as the vgts). 

Vload is downloaded over the network using the diskless booting protocol contc1ined in the workstation's 
proms. There arc many brands of workstc1tions. and even more boot protocols. Once running. Vl oad locates 
and connects to Cl "public" Vserver to load the appropriate kernel and first team. After Vload has been 
loaded. all subsequent network file 1/0 is performed through a V server using V interkemel protocols. 

Appendices 17.June 1986 



C-6 Installation Notes 

C.2.4.1. SUN·1 

Owners of Sun-Is are pretty much on their own. At Stanford we use our own proms which boot using PUP 
EFfP. You may have another protocol, or none at all. We suggest upgrading to a Sun·l. 

C.2.4.2. SUN·2 

Booting SUN-2 workstations with thc NO protocol requires a running ndserver. The actual boot 
sequence is as follows. When an SMI workstation boots, if it contains no disk intcrface, it attempts to boot 
over the Ethernct. This is done using the "NO" boot protocol which asks for the rust 18 S12-byte blocks of a 
virtual disk. (Several of these blocks are thrown away. The boot program must be lcss than OxlEOO bytes of 
text and initialized data). Thc NO servcr "intcrceptstt these requests and rcplies with Vl oad. 

In gencral. the ndscrver is a modest "hack" to allow one to run V on SMI SUN workstations without 
modifying the PROM monitor as it comcs from the manufacturer. If a Sun is to run SMI Unix the field 
"boot:no" should be placed in the workstation's .contig file to prevent the ndserver from downloading 
Vload. 

C.2.4.3. SUN·3 

Sun-3 workstations requirc running rarpd and tftpd scrvers. A Sun-3 boots using IP RARP (reverse 
address resolution protocol) to determine its IP address, then uses TFTP (trivial me transfcr protocol) to 
download a bootstrap program. 

The rarpd uSt.-s a simple database file, rarpdb.<pseudo-net>, to map physical ethemct addresses to IP 
addresses. Edit the example file to includc thc Sun-3s that will be running V6.0. Make surc that thc <pseudo
net> extcnsion matches thc cnct device corresponding to thc 10 mcg intcrface that thc workstations arc on. 
Typically this is "cnet" or "cneta". 

Once thc Sun-) knows its IP address it uses TFfP to download a file namcd by its hcxadecimallP address. 
For instance, if the rarpd responds with "36.8.1.3", thc workstation will attempt to load a file named 
"24080103". This filc should be linked to Vl oad3+1 e • d, thc Sun-3 version ofVl oad. These files (including 
a copy ofVl oad3+1 e. d) should bc placed in your tftp daemon's home directory. The tftpd distributcd in 
4.2BSD was buggy. We've included a patchcd version with V6.0, along with a carp daemon. Rcmember to 
stan thc rarp and tftp daemons from /etc/rc.lrical. 

Note: The Sun-3 boot process doesn't involve a works~1tion's configuration filc until after Vload is 
nanning. su neither the 'bootntc' nor thc 'boot' contig filc fields affects booting. To run Sun Unix prevent the 
tftpd from duwnloading Vl oad by rcmoving the filc linked to Vl oad3+1 e. d. 

C.2.4.4. MicroV·AX 

Hooting MicroVAX works~1ti()ns requires thc mvaxbootserver to be nanning on a Unix host The 
mvaxbootserver services MicroVAX network boot requests just as the ndserver responds to SMI NO 
requests. A "boot:no" entry in the workstation's contig filc will prevent the mvaxbootserver from 
responding to boot rcquests. 

C.2.S. Debugging Suggestions 

If thc systcm fails to boot after following thc abovc sequcnce. it is suggestcd that you try booting a 
"standalonc" program like netwatch to check the initial ponion of boot scquence and also (assuming you 
have multiplc workstations). monitor the network activity when you try a fuJI system boot See the 
"Standalonc" chaptcr of thc refercncc manual (chapter 16) for dctails on how to load and usc standalone 
programs. Section 16.2 gives an overview of how to usc the netwatch family of programs. In general, the 
netwatch fnmiJy of programs are very lIseful for debugging network .problems. Pilley keep a record of 
network packets which can be wriltcn to a log file. Please include such a 'Iog file in bug reports that relatc to 
the network. 

17 June 1986 V-System 6.0 Itderencc M:anual 



Binary Distribution Tape c·, 

If the workstation fails to load a standalone program, check that your ethernet connection is working 
correctly. rll1is is easiest if you have other means of monitoring Ethernet activity., You should also check that 
the ndserver or mvaxbootserver is properly instructed to respond to requests from the workstation's 
host address by having the correct config files present '(be ndserver or mvaxbootserver can be 
executed with the "d" flag to put it into debugging mode. This should give a clear indication as to whether or 
not it is receiving the workstation boot request pack.ets and what it is doing in response to the packets it 
receives. 

Assuming you can load standalone programs, you should be able to load Vload. The error codes 
generated by Vload (e.g. "COlT') can be decoded by looking the the header file 
V/1nclude/m1/Ven.v1ron.h. Besides using netwatch to monitor network activity, one can run the 
Vserver in debug mode. Option "AU gives a verbose account of the Vservecs's activities. See chapter 43 for 
the details of other debugging options. 

C.3. Sou rce Dist ri bution Tape 

The source distribution tape contains the V-System sources. Unless one is modifying the standard software 
or recompiling for some reason, there should be no reason to keep these sources on-line. 

The procedure for extracting the files of the source tape is identical to that used with the binary distribution 
tape. Warning: Do not extract the source tape into the same directory as the binary tape. Some 
subdirectories have identical names. At Stanford. we keep V sources under IV. 

C.3.1. Structure of the V Sources 

The V source directories are structured by function and by machjne dependency. For convenience each 
division is in a separate tar file. The m~jor functional divisions are: . 
cmds Standard command programs. A subdirectory for each command program (with some 

exceptions that we plan to elimimlte). 

kernel V Kernel sources. The mnchine-independent source is under mi, 680XO source under 
m68k. Microvax sou.rce under vax. and configuration-specific fi1es under the other 
subdirectories. For example. sun2+cc configures the kernel for the SUN-2 with a 3COM" 
Ethernet interface. 

libe 

servers 

standalone . 

fonts: 

doc: 

S~1ndard C run-time library fur V. Subdirectories for different functional parrs of the 
library. Machine-specific directories occur at various levels if there arc muchine-specific 
files. 

Server programs. A subdirectory for loach separate server. The two Unix server programs 
ndserver and Vserver are here. though they don't run under V. 

Standalone programs. A subdirectory for each separate program. 

Sources for some of the fonts used in the V-System. 

The V6.0 m,ll1ual in Scribe format. 

C.3.2. Recompiling V Sources 

Many of the V-System mukefiles invoke cc68 to compile and link. Be sure you have the latest version 
(included on the tape) of cCI68, with the -V option. 

Edit the shell script under VInet 1 nstall to perform the appropriate ins~1l1atjon procedure for your 
system. Some possibilities are for it to copy the binaries to olher V hosts 011 your network (thus nutomating 
the installation and cmlsing changes to tnke network-wide effect immediately), copy binaries to hosts in t11e 
local V -domain only t or copy to the local host only (a good choice if you have only 'one host nlllning a Vserver 

Appendices 17 .Iune 1986 



c-s Installatiolll Notes 

or update local hosts with regular rdists). It's important to keep all of the V binary directories synchronized 
within a domain since binaries are often served by the first V$erver to answer a request. 11lis and a few 
other shell scripts are assumed to be .in the search path by the V-System makefiles. These sources arc in 
V Itoo 1 s and should have been installed into some directory in the search path by Vl1 nk before making the 
rest of the system. Each directory contains a file called bu1ldfila which is processed by the build 
program, an enhanced version ofmaka. The sources to buil d are included. 

The following describes the steps (and order) to completely remake the V-System binaries (and libraries). 

Change directory to V/l1bc and do a build install-includes. This should copy the V-System. 
specific include files into lusr/V/include. TheA do a build and then build install under this 
directory. This should resultin 11 bV • a being copicd into Ius r/V 111 b. 

Next, change to the V I stan da 1 on e directory. This directory is for bootstrapping and loading utilities. 

Next, change to IV/karnel. There is a subdirectory corresponding to each of the hardware combinations 
currently supported by the V -System. cd to the directory corresponding to your hardware configur&tion, then 
do a build followed by a build install to compile the kernel and put the binary into 
V/boot/Vkernel. For instance, Vlkernel/sun2+ec and V/kernal/sun1+en correspond to the 
configurations ··sun2 cpu with lCOM ethernef' and "'sunl (old sun, cadlinc etc.) with sun 3meg ethemettt• 

You may have to create a new subdirectory and edit the buildfile to configure the kernel for your VO devices. 

Next change directory to IV/servers, and do a build followed by a build install. 

Next, change directory to IV/cmds and again do a build followed by a build install to compile all 
the commands. This takes a while, and uses the include files, libraries, and servers. 

Do the same for IV/config (after making some config files for your workstations) and 
IV/standalone. . 

C.3.3. Source Distribution Summary 

The source tape provides all the files required to regenerate the binary distribution tape tiles (we bclieve). 
Any omissions were unintentional or forced upon us by lawyers. 

17 June 1986 V·System 6.0 Rdcrcn('e Manunl 



AppcooitH 

1>-1 

- Appendix D -
List of Library Functions defined in libc 

ASSERT 
AcquiJeSpinLock 
AddUser 
AllocFon¢ 
AllocRaster . • . • . • • . . • 
Arb LoadProgram 
Attention 
Authentic:ate 
AwaitKemelPacket 
A waitingReply. • • • . • . .,. 
BlksInFile 
BlockPosition 
BlockSize 
Boundins'oox 
Bu fferEmpty . • . . . . . . . 
BufferModified 
BufferValid 
BytePosition 
OyteSwapLongCopy' 
8yteSwapLonginPlace . . . . . . 
8yteS wapShortCopy 
8yteSwapShortI nPlace 
ChangeDircctory 

mem/mi/malloc.c 
locking/mi/spinlock.c 
auth/mi/adduscr.c 
graphicsl milallocraster.c 
graphics/mi/allocraster.c 
excc/mi/arbloadprog.c 
drivers/m68kl enetSO.c 
auth/mi/authcnticate.c 
drivers/m68kl enet3.c 
ipc/mi/awaitingrepl.c 
io/mi/blksinfile.c 
io/mi/blkposition.c 
io/milblocksize.c . 
graph ics/m i/rasterbbox.c 
io/mi/buffcrcmpty.c 
io/mi/scek.c 
io/mi/fillbuffcr.c 
io/mi/bytcposition.c 
mem/mi/swablongl.c 
mem/mi/swablong2.c 
mem/mi/swabshortc 
mem/mi/swabshortc 
io/mi/chdir.c 
cxcc/mi/changeteampr.c ChallgeTcamPriority . 

ChcckExCC8. • 
ClearEof 

• . . . • exccscrvcr I mil chcckexecs.c 
iol m il c Ica reo f.c 

Close 
ColToRowRastcr 
CompB 

io/mi/closc.c 
graphics/m68k/columnorder.c 
graph ics/vaxl rastcrop.c 

CompfmrnedB. . • • . . • • 
ComplmrnedL 
CompimrncdW 

. graphics/vax/rasterop.c 
graphics/vax/rastcrop.c 
graphics/v3x/rasterop.c 
graphics/vax/rastcrop.c 
graph icsl va xl rasterop.c 

Compl mrncdX 
Complnclr 
CompL • 
Compl.it 
CompLitL 
CompLoad 
CompOp 
CompRcg 
CompW 
Copy Downwards 
Copy Field 
Copy Msg, 

. . . . . graphies/vax/rastcrop.c 
graph icsl VlIX I mstcro p.c 
graph iesl vaxl rastcrop.c 
graphics/v~lx/rasterop.c 
graphics/v3x/rastcrop.c 

• • . • . . . graphics/vax/rasterop.c 
graphicslvax/rastcrop.c 
mcm/mi/bcopy.c 
3uth/m il atoar.c 

Createl)uplexlnstmce . • • . . . 
drivcrs/m68k/cnet3com.c 
io/mi/crtdupinstc 

17 June 1986 



0·2 

17.lune 1986 

CreateExcc 
CreatcGroup 
Create Instance 
CrcatePipe Instance 
DebuLBDL 
DcbuLDeqna 
DcfaultRootMessage 
DcfaultSelcction Rcc 
Dcle te Exec 

Ust of Library Functions defined ia Ubc 

cxecscrvcr/mi/createexcc.c 
ipc/milcreatcgroup.c 
iol mi/crcatcinstc 
io/mi/createpipe.c 

· . . . . . driverslvax/deqna.c 
drivers/vaxl dcqna.c 
exec/mil cxecprogram.c 
exec/mi/ defaultselrec.c 

DclcteUser . . . . . " . . " . 
Destroy AuthRcc 

execservcr/mildclctecxec.c 
auth/mil dcleteuser.c 
auth/mi/dcstroyar.c • 

DiscardDataPacket 
EnetFlushRcceiver 
Enetinterrupt 
EnetPowcrup 
EnetReset 
Eof 
EqString 
ErrorString 

drivers/m68kl enetl.c 
drivcrs/m68kl enetl.c 
driverslm68kl enetSO.c 

. . . . . . . driverslm68k/enctl.c 
drivers/vax! deqna.c 
io/mi/eof.c 
graphicslmi/gctfontc 

ExecProgram . . . . . . . . . 
Exec I 

exceptionslmi/error.c 
exec/mil execprogram.c 
exec/milsystcm.c 

Exccv 
File Exception 
Fileld 

exec/mi/system.c . 
io/mi/filccxceplc 

FilcServer . . . . . ... . . . 
FileType 

io/mi/filcid.c 
io/mi/filcscrver.c . 
io/mi/filetypc.c 

Fill Iluffer 
FindMatch 
FindMatchingProgs 
Aush .... 
AushButTer 
ForceException 
ForceScnd 

io/mi/fillbuffer.c 
exce/mi/lookup.c 
exce/mi/lookup.c 

· . . . . . io/mi/flush.c 
io/mi/flushbutTcr.c 
exceptionsimi/fol'CccXCCplC 
cxceptionslmi/forccscnd.c 
ipc/mi/forwardcr.c Forwarder 

Freeze Host 
Ful1UscrName 
GetFakePid 
GetFont 
GctFontEntry 
GetFormatString 
GetKernelPid 

. . . . . . . . cxceptiolls/mi/frcczehostc 
auth/mi/fulluscmamc.c 
drivers/m68k/enctl.c 
graphicslmiigctfontc 
graphics/l)1i/gctfontc 

GetM oreM allocSpace 
GetNumberOn>arams 
GctN urn berolV,uams 
GetParams . • . . 
GetProccssor'rype 
GetSignedl 
GetSigncd2 

· . . . . . exceptions/m68k/stdcxccptc 
excel m i/kernelpid.c 
mem/mi/mal1ocaux.c 
exceptionsl m68 kl p ri n tstack.c 
except i0l1s/m68 k/stuexcept.c 

· . . . . . exceptions/m6Hk/stuexceplc 
cxceptions/vax/stdexcepte 
iol m i/getbigendian.c 
io/mi/getbigendian.c 
io/mi/getbigendian.c GetSignedJ 

GetSigncd4 
GetStringParams 
GetTeamPriority 
GetU nsigned 1 
GetU nsigned2 

. . . . . . . . io/mi/getbigendian.c 
exceptionsl m68 k/stdcxceplc 
exec/mi/getteampr.c 
io/mi/getiJigcndian.c 
io/mi/getbigendian.c 

V'System 6.0 I~crl'rcnce Manual 



AppendicH 

OctU nsigned3 
OctUnsigned4 
OiveToMalloc 
INCR 

· • . . . • . . . io/mi/getbigcndian.c 
io/milgetbigcndian.c 
mem/mi/mal1oc.c 
graphics/vaxlrasterop.c 
exceptionslm68k1stdcxccpLc InstructionFctch 

Interactive • . 
Intcrrupt80ard 
JoinOroup 
KillProgram 

. . . . . . . • io/mi/interactive.c 
drivers/m68k/enetxln.c 
ipc/mi/joingroup.c 
exccserver Imi/killprogram.c 
ipc/mi/leavegroup.c LeavcGroup 

Listl28 
Listl6 
List2 
List256 

• . . . . . . . . graphicslmilbitreverse.c 
graphics/mi/bitreverse.c 
graphics/ mi/bitreverse.c 
graphicslmi/bitreverse.c 

ListJ2 
List4 . • • 
List64 
ListS 
LoadFileRegion 
LoadOenericFont 
LoadProgram . . • 
LoadTeamFromFile 
LoaciXmiill<:scriptor 
LogOutExccs 
LookupFont 
MASKOP .. 
MapTeamName 
MapUID 
MapUserName 
Modify User 
MoveFrom 
MoveTo 
NewRaster 
Offset 
Open 
Open Duplex 
OpenFilc 
Openlp 
Open P rog File 

graphics/milbitreverse.c 
· . • . . graphics/mi/bitreverse.c 

graphics/mi/bitreverse.c 
graphicslmi/bitrcverse.c 
graphicsl milloadfile.c 
graphicsl mi/loadgfontc 

. • • . . . excc/mi/exccprogram.c 
excc/mi/loadteamfile.c 
drivers/vaxl deqna.c 
excc/mi/logoutexecs.c 
graphicslmi/lookupfont.c 

· . . . . graphics/mi/rasterclear.c 
excc/mi/mapteamnamc.c 
auth/mi/mapuid.c 
auth/mi/mapusernamc.c 
au th/mi/ modi fyuser.c 

. ipc/mi/movefrom.c 
ipc/mi/movcto.c 
graphics/mi/ncwraster.c 
driversl m68k/ enetSO.c 
io/m i/open.c 

• . • . . io/mi/openduplcx.c 
io/ m i/ openfile.c 
io/mi/openip.c 
exec/mi/lookup.c 
io/mi/openstr.c OpenStr 

OpenTcp 
Parse Line 
Password 

. . . . . . . . . . io/mi/opentcp.c 

PalternOp 
Prinll~rror 
PrintFitc • 
PrintStackDlLlmp 
PutSignedl 
PutSigned2. 

exec/mil parsetine.c 
allth/milpas.c;word.c 
graph ics/ vax/ r:.lsterop.c 
exceptions/m i/p .. i nterror.c 

. • . . . . . . io/mi/printtile.c 
exceptions/m68k/printstack.c 
io/mi/plltbigcndian.c 
io/mi/putbigendian.c 
jo/mi/plltbigcndian.c PutSigned3 

PutSigned4 . 
PlitU nsignedl 
PlitU nsigned2 
PulUnsigned3 

• . • . . • . . . io/mi/plltbigcndian.c 
io/ini/putbigcndian.c 
jo/mi/plitbigendian.c 
io/milputbigcndian.c 

17.June 1986 



1>-4 

17.June 1986 

PutUnsigned4 
QueryExec . • • • . • • . . • 
QueryGrolip 
QueryHosts 
Query HostsViaCS 
QueryHostsViaMulticast 
QvssDisable ........• 
QvssEnabte 
Qvsslnit 
QvssRectangle 
REG • 
RasterClear. . • • . . . . . . 
RasterCompileDummyL 
RasterCompileDummyW 
Rasterlnvert 
RasterOp 
RasterOpS • . • • . . • . . • 
RasterPrint 
RasterSet 
Read 
ReadAccess 
ReadDataPacket 
ReadGenericCharacter 
ReadGenericFont 
Receive 
RcceiveSpcciflC 
RcceiveWithSegment 
RcleascFileRegion 
Releasclnstance 
RcleascSpin Lock 
RemotcExccute 
RemoveFile. • 
Reply 
Reply WithSegment 
RcsctRcceive 
RcstrictRaster 
Rcsynch . • . . . . . • . . . 
RowToColRaster 
Search Bit 
Search Path Match 
Scck 
ScckOlock 
SetBitPtr 
SClBreak Process 
Sell nslanccOwner 
SetMode 
SetUpEnvironment • • . . . . . 
ShortString 
SimpleText 
SkipTolloc 
S pecLoad Program 
SpccialClose 
SL1ndard Exception Handler 
TeamOwner 

Ust or Libral1 Functions defined in libe 

io/mi/putbigendian.c 
exccservcr Imil queryexcc.c 
ipcl mil querygroup.c 
exec/mil queryhosts.c 
exec/mil queryhostscs.c 
exec/mil queryhostsm.c 
graphics/vaxl uscqvss.c 
graphics/vax/uscqvss.c 
graphics/vax/qvssiniLc 
graph ics/vaxl qvssrectangle.c 
graphics/vaxl rastcrop.c 
graphics/mVrasterclear.c 
graphicslm68 k/rastcrcompile.c 
graph ics/m68 kl rastcrcompile.c 
graphics/mVrasterinvert.c 
graphicslvax/rasterop.c 
graphics/vax/rastcrop.c 
graphics/mi/rasterprintc 
graph ics/m i/rasterseLc 
io/mi/read.c 
exccptions/m68k/stdexccpLc 
driverslm68k/enet3.c 
graphics/mi/readgfontc 
graphics/rni/rcadgfonlC 
ipc/mi/kernellib.c 
ipc/mi/kemellib.c 
ipc/mi/kemellib.c 
graphics/milloadfile.c 
io/mi/releaseinstc 
locking/mi/spinlock.c 
exec/mil remotccxec.C 
io/mi/removcflle.c 
ipc/mi/kernellib.c 
ipc/mi/kerncllib.c 
drivcrs/m68k/cnct7S.c 
graphics/mi/rcstrictrasLC 
io/mi/rcsynch.c 
graphics/m68k/columnorder.c 
graph ics/mil rasterbbox.c 
exec/mi/lookup.c 
io/mi/scck.c 
io/mi/seek block.c 
grnphics/mi/sctbitptr.c 
io/mi/sctbreak.c 
iu/mi/sctowner.c 
d ri verslm68kl enctxln.c 
exec/mi/sctupenv.c 
exceptionslm il crror.c 
graphics/vaxl drawtextc 

. graphicslmi/readgfont.c 
cxec/mi/specloadprog.c 
io/mi/closc.c 
exceptions/m68k/stdcxceptc 
cxec/mi/teamowncr.c . 

v·Sy~CclII 6.0 Rl'fcrl'ncc M:lIIunl 



Appendices 

TextB80x . graphics/mi/tcxtbbox.c 
TryEnetTransmit .drivcrs/m68k/enct3com.c 
UnaryOp •........ graphics/vax/rasterop.c 
UnaryOpS graphicslvax/rastcrop.c 
U nfreezeHost cxccptionslmi/freczchost.c 
UscQvss graphics/vax/uscqvss.c 
UscrName auth/mi/uscmamc.c 
ValidMagicNum • . . . . excc/milvalidmagicnum.c 
WOROOP graphics/mi/rastcrclear.c 
Wait exec/mi/wait.c 
Write io/mi/write.c • 
W riteG fFont graphics/mi/writcgfont.c 
Write KernelPacket . . . . . . . drivers/m68k/enetJ.c 
WriteText graphics/vaxlgentextc 
Zero mem/mi/zero.c 
_Open io/mil _open.c. 
abort exceptions/m68k1abort.c 
acos .' _. .. . . . . . . . . . . math/milasin.c 
align exec/mi/loadteamftle.c 
alloek mem/mi/malloe.c 
artoa auth/mi/artoa~ . I • 

asin math/mi/asin.c 
asympt . . • . . . math/mi/jO.c 
atan math 1m i/atan.c 
atan2 math 1m i/atan.c 
atoar auth/mi/atoar.c 
bcopy mcm/mi/bcopy.c 
botch . ........• mem/mi/malloe.c 
cabs math/mi/hypot.c 
calloe mem/mi/calloe.c 
ceil math/mi/floor.c 
cfree mcm/mi/calloe.c 
chdir . '. . • . . . . . . . . io/mi/chdir.c 
clear drivcl's/m68k/enctxln.c 
clcarcrr io/mi/clrcrr.c 
coffcc_brc:ak drivcrslvax/dcqna.c 
compilcW graphicslm68k/rastcrcompile.c 
cos . . • . . • . . . . math/mi/sin.c 
cosh math/mi/sinh.c 
dcbug drivcrs/m68k/enetJ.c 
cnctaddress dri vcrsl m68kl cnetxln.c 
cnopen 
cxp 
nIbs 
floor 
free 
gcCAp_Fp 
gCnew_row. 
gCpaint 
hvTcst 
hypot 
if 

drivcrsl m68kl cnctx In.c 
math/mi/cxp.c 
math/mi/filbs.c 
math/mi/floor.c 
mcm/mi/malloe.c 
cxccptions/vax/printstack.c 

. . . . . . . . . graphics/mi/writcgfontc 
graphics/mi/writcgfont.c 
gmphics/mi/tcxtbbox.c 
math/mi/hypot.c 

jO . . . . . . 
graphics!vax/gcntextc 

. . . . . math/mi/jO.c 
math/mi/j l.c jl 

D-S 

17 June 1986 



17 June 1986 

Ust or Library Functions defined iD libc 

jn 
log 
log10 
malloc 
mc68kenread 
mc68kenwrite 
mktemp, 
one_sip 

maili/miljn.c 
maili/millog.c 
math/mi/log.c 

. . · • ~ • . . . mcm/mi/maltoc.c 
drivcrslm68k/enetxln.c 
drivers/m68kl enctxln.c 
io/mi/mktemp.c . ,; -
driv~rslvaxldeqnac 

pack.2 • • . • . . . . . . . 
pack4 
packpair 
packstr 
pow 
print-pc 
rcalloc 
returns .. 
s-8etc 
satan 

',. cxcc/mi/setupenv.c .: , ..... 
excc/mi/setupenv.c 
excc/milsetupenv.c.. 
cxcc/milsetupenv.c . 

.. ~n.,.'ltl1/milpow.c ... 

sin . 
sinh 
sinus 
sizeof 
sqrt 
swab 
swapl 
switch 

. ~xceptions/vax/printstack.c 
mcm/milmalloc.c . 
g~phics/vax/gcntcxtc :' 
io/mi/getbigendian.c :'. 
math/milatan.c 
mriih/milsin.c 
mati1/mi/sinh.c 
math/mi/sin.c 
driverslm68k/cnct3.c 
math/mi/sqrLc 

system 
tan 
tanh 
u-8etc 
ungetc 
unlink 

• . . . . . . . . . mcm/mi/swabshOrLC 
drivcrs/m68k/cnctSO.c 
graphics/vax/gcntextc 
excc/mi/systcm.c 
math/mi/tan.c 
math/mi/tanh.c 
io/mil getbigcndian.c 
io/mi/ungctc.c 

unlockA ndGctSpace 
unlockcdFrcc • . •. 
unlockcdGivcToMalloc 
unlockcdMalloc 
unlockcdRcalloc 
xatan 
yO • • • 
yl 
yn 
AddCList 

io/mi/unlink.c 
mcm~mi/malloc.c 

. . . . . . mcm/mi/malloc.c 
mcm/mi/mal1oc.c 

. . . 

.' mcm/mi/malloc.c 
mcm/mi/malloc.c 
math/mi/atan.c 
math/mi/jO.c 
math/mi/j1.c 
math/mi/jn.c 
packagcslmilclistc 
packagcs/mi/dlistc AddOList 

AddQucuc 
AddSList 

. . . . . . . . . . packagcs/mi/qucuc.c 
packHgcsl mil slistc 
strings/mi/any.c 
sa/mi/ikc.c 
sa/mi/flushfill.c 

. . . . . . . . sa/mi/tlushfill.c 

Any 
AwaitScndRcply 
n~1CkSpace 
lluffcrValid. . 
CrRL 
ClcarLocalNamcs 
ClcarMuditicc.1Pagcs 
Concat 
Convert_num • . .... 

tcmll ib/mi/tgoto.c 
nmninglmi/clcarloca1.c 
pn>ccssl mil clcarpagcs.c 
strings/mi/concatc 
strings/mi/convertnum.c 

V'Syst('QI 6.0 Rdl'rence Monuol 



" n-7 

Cooked salmi/flushfllI.c 
CopyMsg salmi/ikc.c .. 
Copy_str stringslmilcopystr.c 
Create process/mil creatc.c 
CreateHost .. · · .• processl mi/creatchostc 
CrcateProccss process/mi/createproc.c 
CrcatcSelcctionInstance service/mi/selectc 
CreateTeam processl milcreatcteam.c 
Creator processl milcreator.c 
DefineLocalName · . naming/ mil deflocal.c 
DefineTempArca naming/mil dcftemparea.c 
Delay timet mil delay.c 
Destroy process/mil destroy.c 
Destroy Host process/mil destroyhostc 
Destroy Process process/mil destroyproc.c 
Display Fields vgtslmi/fields.c .. 
Echo salmil flushfill.c 
EditField vgtslmi/ficlds.c 
EditLine vgtslmil editline.c 
EditStdFld . · · · · vgtslmilfields.c 
EmptyCList packages/mi/clistc' t: 
EmptyDList packages/mil dlistc 
EmptyQueue packages/mil queue.c 
EmptySList packagcslmi/siistc 
EmptyStack • · . packagcslmi/stack.c 
Equal strings/mi/equal.c 
, ExtractHost process/mi/cxtracthost.c 
FillBuffer . salmi/flushfill.c 
FirstCList packages! mi/clist.c 
FirstDList · · · packages/mil dlistc 
Fi rstS List packages/mi/slistc 
~lushnuffell' sa/mi/flushfill.c 
FonnatFonnat vgts/mi/ficlds.c 
Forward saconsolc/mi/dummyikc.c 
Freeze Host . · · .' . · proccs.vmi/freczehostc 
GctAbsoluteNamc naming/mi/getabsnamc.c 
GetBufferedLine salmil flushfill.c 
GctContcxtld naming/mi/namcscnd.c 
GetContextName nnming/mi/getctxnamc.c 
GetEvent · · · · · vgt')/mi/uscmouse.c 
GctFicld vgts/mi/flclds.c 
GctFilcNarne naming/mi/getfilenamc.c 
GctGraph ksEvcnt vgl')/m il usetnousc.c 
GetG mph i(::iSUltliS vgts/mi/uscl11ollsc.c 
GetllostPid . · · · · nam i ng/ m i/ gethostpid.c 
GetMorcMallocSpacc sal m68 k/ gctmoremalloc.c 
GctM ousc Event vgt')/m i/uscmousc.c 
GetMouscStatus. vgtli/mi/uscmouse.c 
GetObjcct()wncr process/mi/objcctowncr.c 
GctPid · naming/mi/gctpid.c 
GctRemotcTime timc/mi/remotetimc.c 
Get Reply saconsole/mil dummyikc.c 
GetlTY vgt"/l11i/vtty.c 
Ge(l'eamRoot process/mi/gctteamroot.c 

Appendices 17.June 1986 



1>-8 

17 ,June 1986 

GetTeamSize 
GetTimc 
GotAnlnt 
Hex_value 
IgnoreRetry 
InitCUst. . . . . 
InitDList 
InitQueue 
InitSList, , i 
InitStaek' '1 " 

IsCooked " i I. • 

IsEcho 
IterCList , .. ~ 
IterDList ,. 
IterSList ; . 'I 

Ust or Ubrar, FUl1(lioIW defined in Ubc 

process/mil getteamsize.c 
time/mil gettime.c . 
sa/vax/initints.c 
stringslmilhexvalue.c 
naming/mi/ignoreretry.c 
packages/mil clist.c 
packages/mil dlistc 
packages/mil queue.c 
packageslmilslistc -, .. ,~.'
packageslmi/stack.c 

• salmi! flushfill.c !'. 'I,'! , .': 
salmi/flushtill.c i .. ~ .. : " 

packageslmilclistc . ,\ 
packageslmil dlistc 
packageslmilslistc 

K_call .' i. • 

K...setchar .: 
K...setcontig,.! . ':, 
K..,gctcontext . . 
K..,gctmcmsize 
K...setsegmap • • . 
K_mayget·. ';1..'1,1 

K..proctype: . 

. • . . rawio/m68k/sunlrawio.c.." " 
rawio/m68k/sun lrawio.c :. I,': 
rawio/m68k/sunlrawio.c ' ).~ 

K..putchar ' 
K..puts; '., 'I' 

K_setcontext' I. i t~ • 
K_setscgmap : 'I'" ,i\\ 

K_ticks 
K_version 
LastCList 

-: V ',I 

LastD List . • . ;- • . . 
, •. '. ~ I', lastS List 

Lower 
MakcHexDigit 
Meditate 

, I 

ModifyPad • . • • 
NReadOcscriptor . 
NW ritcl)cscriptor 
NamcCacheAdd . 
NamcCacheDcletc 
NamcC1CheLookup • • . . 
NamcSend"\ 
NoEcho 
Null_str 
Open" ndPositionPad 
OpenContigFile: ,I •• , • 

OpcnPad:'~! 

ParscFonnat 
PopStack 
PrimcCache 
PushStack',· • 
PutField: ! 

PutUntilConvcrsion 
Query Kcmcl . . . . , , 

rawio/m68k/sun 1 raw io.c , I,,~' 

rawiol m68k/surilrawio.c 
· rawio/m68k/sunlrawio.c': ", ,I: 

rawio/m68k/Sllnlrawio.c 
rawio/m68k/sunlrawio.c " 
rawio/m68k/sunlrawio.c.' '.~ 
rawiol m68k/sunl rawio.c~· ,:. 
rawio/m68k/sunlrawio.c 
rawio/m68k/sunl rawio.c 
rawio/m68k/sunl rawio.c 
rawiol m68k/sun 1 raw io.c 
packageslmi/clistc 
packages/mil dlistc 
packuges/mi/slistc 
stri ngs/mi/lowcr.c 
sa/mi/makehexdigitc' 
unix-compatlmi/signai.c 
vglS/mi/openpad.c' . 
naming/mi/nrcaddesc.c· 
naming/mi/nwritedesc.c . 
naming/mi/namecache.e 
naming/mi/namecache.c 
nam ing/mil namccache.c 
naming/mi/namescnd.c ' 
sa/mi/flushfill.c 
strings/mi/nultstr.c 
vgt."/mi/opcnpad.c 

· ql1cry/mi/qwconfig.c 
vglS/mi/openpad.c' ~." 
vgtsl mil ficlds.c 
packages/mi/stack.c I· •• ·' .... : 

naming/mi/primccachc.c 
packagcslmi/stack.c '; r . 
vgts/milfields.c 
vgts/mi/ticlds.c, 
process/mil qucrykem.c 

',I 

V·System (t.O Refer~na Manual 



Appendices 

QueryPad 
QueryPadSize 
Query ProccssPriority 
QueryProcessState 
QueryProccssorUsage 
Query WorkstationContig 
Raw •••• 
RawGetchal.' 
ReadDescriptor 
ReadProcessState 
ReadStdFld 
Ready. • • • 
Rea1FillBufler 
RealF1ushBuffer " 
RedrawPad 
RcgisterOb}ect 
RcgisterServer • • • • • . . . .. 
RemoveCList 
RcmoveDList 
RcmoveQueue 
RcmoveSList 
Rename • • • • 
ReplyWithSeg 
ReportNamingStats 
ResetTfY 
ResolvcLocalName 
RetumHostStatus . 
RctumModificdPages 
SameTeam . 
SelcctPad 
Send 
SctObjcctOwncr • . . • • . . . 
SctPid 
SctProccssPriority 
SctTcam Priority 
Sc(l'camS i;~I~ 
Scfllme . . • • • • • • . . . 
SctUscrN umber 
Sct V gt Banner 
Shift_left 
Size 
SpccialSprintf . . • . . • • . . 
StrToFonnat 
Suicidc 
TcamRoot 
TransfcrHost 
UndcfincLocalNamc ..•... 
U n frcczc Host 
U nrcgistcl()bjcct 
UnrcgistcrServcr 
U pdatcHostStatus 
Upper .••••••.... 
User 
ValidPid 

vgts/mi/openpad.c 
vgts/mi/openpad.c 
process/mi/priority.c 
process/mil query p rocess.c 
process/mil queryusage.c 
qucry Imil qwcontig.c 
salmil flushtill.c 
salmil flush fill.c 
naming/milreaddesc.c 
process/mi/readprocess.c " 
vgts/mil fields.c 
process/m68k/ready.c 
salmi! flushfill.c. :.". 
salmi/flushfill.c , .~ 
vgts/mi/usemouse.c. 
service/milregistcr.c 
service/milregistcr.c 
packageslmilclist.c 
packages/mil dlislc 
packagcslmi/qucue.c 
packageslmi/slist.c, 
naming/mi/rcname.c 
saconsole/mil dummyikc.c 
process/milexilc .. ,; ~.I: 
vgts/milvtty.c' '.1.. 

naming/mi/rcsolveloca1.c 
service/mi/hoststatus.c 
proccss/mi/rctumpagcs.c 
prc>cess/mi/samctcam.c 
vgts/mi/openpad.c 
salmi/ikc.c 
process/mi/objectowncr.c 
naming/mi/sctpid.c 
proccss/mi/priority.c 
proces.'t/mi/scttcamprio.c 
proccs.vmi/sctteamsi1.c.c 
timc/mi/scttime.c 
uscr/mi/sctuscrnumber.c 
vgt4)/mi/sctbanner.c 
strings/mi/shiftlcft.c 
strings/mi/sizc.c 
vgts/mi/tields.c 
vgts/mi/ficlds.c . 
pnlCess/m il destroy.c 
pnlCcss/mi/tcamroot.c 
pr<>ccss/mi/transfcrhoslc 
naming/mi/undeflocal.c 
pr<>ccss/mi/unfrcczchostc 
scrvicc/mi/rcgister.c 
scrvicc/mi/register.c 
servicc/mi/hoststatus.c 
strings/mi/upper.c 
uscr/mi/uscr.c 
proccsslmi/validpid.c 

D·9 

17 June 1986 



1)010 

17 June 1986 

Vsasu 
Wakcup 
WatchForllreak. . . . . . . . . 
W riteDcseriptor 
W ri tcProcessS tate 
_Reccive 
_dopmt 
_doscan • • • • • . . . . • . 
..,getccl 
_innum 
_instr 
_start 
_strout . • • , . , . . . . . 
abort 
abs 
align 
asctime 
ator . . . . . . . . . . . . 
atoi 
atol 
chmod 
clearenv 
close , , , . . . • , . 
closedir 
control 
copycnv 
creat 
crypt '. ' • , . . 
ccnumb 
ctime 
cvt 
dcbug 
dccprint , . , , , . , . . . . 
dysize 
ccvt 
encrypt 
exit 
tbmode 
fclose 
fcvt 
feof 
ferror 
mush , , . . . . , . . . . . 
fgctc 
fgets 
fopen 
fprintf 
fputc , . . . • . . . . . . . 
fputs 
frcad 
freopen 
frcxp 
fseanf. . . . . . • . . . . . 
fseek 

Ust or library Functions defined fia libe 

salvax/V sasu.c 
time/mi/wakcup.c 
unix-compatlmVsignal.c 
naming/mi/writedesc.c 
process/mi/writeprocess.c 
saconsole/mil dummyikc.e 
stdio/mil dopmtc 
stdio/mil doscan.e 
stdio/mil doscan.c 
stdio/mil doscan.c 
stdio/mil doscan.c 
salm68k1_start.c 
stdio/milstroutc 
salmil abort.e 
numeric/mVabs.e 
proccss!mVteamrootc 
time/mi/ctime.c 
smngs/ mi/atof.c 
strings/mi/atoi.e 
stringsl mil atol.e 
unix-compatlmi/unix-io.c 
naming/milclcarenv.c 
unix-compatlmi/unix-io.e 
naming/mi/ciosedir .c 
salmilflushfill.c 
naming/milcoRyenv.c 
unix-compatlmi/unix-io.c 
stringslmi/crypte 
timc/mi/ctime.c 
timc/mi/ctimc.c 
stringslmVecvtc 
salmi/ikc.e 
saconsolc/mi/print£c 
timc/mi/ctimc.c 
strings/mi/ccvtc 
stringslmi/cryptc 
proccss/mi/cxitc 
rawio/m68k/sun lrawio.c 
stdio/mil fclosc.c 
stringslmi/ccvtc 
stdio/mil fcrror.c 
stdio/mi/ferror.c 
stdio/mi/mush.c 
sldio/mi/fgctc.c 
stdio/mi/fgcts.c 
stdio/mi/fopen.c 
stdio/mi/fprintf.c 
stdio/m il fputc.e 
stdio/mi/fputs.c 
stdio/mi/rdwr.c 
stdio/mi/frcopen.c 
numcric/vax/frexp.c 
stdio/mi/seanf.c 
stdio/mi/fscck.c . 

V-System 6.0 Reference Manual 



Appendices 

fstat 
ftell 
tOme 
fwrite . 
,gcvt 
getenv 
gets 
,getw 
getwd . . • . . . 
gmtime 
hexprint 
index 
initints 
initstate • . • • . • . . . . . 
linecontrol 
linedata 
lineget 
linereadyrx, 
link ........... . 
loca1time 
lseek 
nevercalled 
octprint 
open • • • 
opendir 
pBreathOfLife 
pRemoteForward 

. . . . . .. 

pRemoteFoward 
pRemoteMoveFromRcq . . . . . 
pRemoteMoveToReq 
pRcmotcRccciveSpecific 
pRemotcRcply 
pRemotcScnd 
printf 
puts 
putw 
qsl 
qsexc 
qsort 
qstexc 
rand 
random 
rcad 
rcaddir 
rename 
rctum_K_ticks 
rewind 
rindex 
sbrk • . . . • . . . . 
scanf 
scckdir 
sctbuf 
sctccho 
sctenv • 

unix-compatlmi/unix-io.c 
stdio/mil ftell.c 
time/mi/ctime.c 
stdio/mi/rdwr.c 
strings/milgcvtc 
naming/mi/gctcnv.c 
saconsole/mi/gets.c 
stdio/mil getw.c 
naming/mi/getwd.c 
time/milctime.c 
saconsole/mi/printf.c 
strings/mi/index.c 
salvax/initints.c 
numeric/milrandom.c 
rawio/m68k/sunlrawio.c 
rawio/m68k/sun lrawio.c 
rawio/m68k/sunlrawio.c 
rawio/m68k/sl1nirawio.c 
unix-compatlmilunix-io.c 
time/milctime.c 
unix-compatlmi/unix-io.c 
salm68k/_start.c 
saconsole/mi/printf.c 
unix-compatlmilunix-io.c 
naming/mi/opendir.c 
sa/mi/ikc.c 
salmi/ikc.c 
sa/mi/ikc.c 
sa/mi/ikc.c 
sa/mi/ikc.c 
salmi/ikc.c 
sa/mi/ikc.c 
sa/mi/ikc.c 
saconsolc/mi/printf.c 
saconsolc/mi/puts.c 
stdio/mi/putw.c 
numcric/milqsori.c 
numcn'c/mi/qsortc 
num.cric/mi/qsortc 
numcric/mi/qsortc 
numeric/mi/cand.c 
numccic/mi/mndom.c 
unix-compatlmi/unix-io.c 
naming/mi/rcaddir.c 
naming! m il rcnamc.c 
sa/vax/initints.c 
stdio/mi/rcwind.c 
strings/mi/rindex.c 
unix-compatlmi/sbrk.c 
stdio/mi/scanf.c 
mlming/mi/scckdir.c 
stdio/mi/sctbuf.c 
rawio/m68k/sun lrawio.c 
naming/mi/sctcnv.c 

1)011 

17 June 1986 



1>-11 

17.Junc 1986 

setkey 
sctstate 
signal 
sleep 
sprintf 
srand 
srandom 
sscanf 
stat 
stdinit • 
stime • 
streat 
streatn 
strcmp 
strempn 
strepy 
strcpyn 
strlen 
strncat 
stmcmp 
strncpy 
strsave 
sunday 
tdecode 
tclldir • 
tgctcnt 
tge t flag 
tgctnum 
tgetstr 

Ust or Ubrary Functions defined in libc 

strings/mi/cryptc 
numcric/mi/random.c 
unix-compatlmilsignal.c 
timc/mi/sleep.c 

· . . . . . . . . . • stdio/mi/sprintf.c 
numeric/mi/rand.c 
numcric/milrandom.c 
stdio/mi/scanf.c 
unix-compatlmi/unix-io.c 

· • . • • • . . . . . unix-compatlmi/unix-io.c 
timc/mi/ctime.c 
strings/mi/strcatc 
stringslmi/strcatn.c 
strings/mi/strcmp.c 

• . • • . . . . • . . strings/mi/strcmpn.c 
stringsimilstrcpy.C 
strings/mi/strcpyn.c 
stringslmi/strlen.c 
stringslmi/stmcatc 

• • . . . • . . . . . stringslmi/strncmp.c 
stringslmi/strncpy.c 
strings/milstrsave.c 
timc/mi/ctime.c 
tcrmlib/mi/tcrmcap.c 

• . . • . . . . . . . naming/mi/tclldir.c 
tcnnlib/mi/tcnncap.c 
tcrmlib/mi/tcnncap.c 
tcnnlib/mi/tcnncap.c 
tcnnlib/mi/termcap.c 

tgoto . . • . . . . . . . tcnnlib/mi/tgoto.C 
timc/mi/ctimc.c 
timc/mi/timclOne.C 
tcnnlib/mi/tcnncap.c 
tenn I i bl m i/lermcap.c 

time 
timc7.onc 
tnamatch 
tnchktc 
tputs • . 
tskip 
umask 
unix_crmo 
vdir_to_stat 
wordchar 
write 

. . . •.. . . . . . tennlib/mi/tplIts.c 
temlJib/mi/tcnncap.c 
unix-compatlmi/unix-io.c 
unix-compatlmi/unix-io.c 
unix-compatlmi/unix-io.c 

. • . . . . . . . . salmi/tlushfill.c 
unix-compatlmi/unix-io.c 

V'System 6.0 Rrrrrcncc Manual 



< = =« 10-6. 10-9 

Cl'RL-a 2-10 
CI'RL-b 2-10 
CI'RL-d 2-10 
CI'RL-e 2-10 
Cl'RL-f 2-10 
Cl'RL-& 2-10 
Cl'RL-h 2-10 
CI1lL-i 2-10 
CI'RL-k 2-10 
CI1lL-t 2-10 
CI1lL-U 2-10 
CI'RL-W 2-10 
Cl'RL-Z 2-11 
ESC-b 2-11 
ESC-d 2-11 
ESC-f 2-11 
ESC-h 2-11 
_Open 22-3 

[bin] 3-1 

Abort 2-6. 27-8 
Abort Command 2-10 
Aborted 32-2 
Abs 26-1 
AcquireA rgumcntSpinLock 23-2 
AcquircGlobalSpinLock 23-2 
AcquircSpinl.ock 2)-1 
AddCaIl 29-9 
Addeorr 43-2 
Addltem 29-9 
AddUser 35-2 
All 29-14 
Alto 10-1 
Amaze 4-1 
ANSI 46-2 
ANSI terminal 2-3 
ANSI virtualtcrminal 2-3.2-6 
Any 3(}2 
AI>llend Only 22-2, 33-1 
Ar 4-1 
Arrowheads 10-1 
Asctimc 30-1 
Atof 30-2 
Atoi 30-2 
Atol 30-2 
Attributes 10-2 
Authenticate 3S-2 
Authcntication 35-1, C-4 
Authentication server 31-5. 35-1 

V·System 6.U I~crercn('c Manual 

Index 

Authserver 35-1 
Autobooting 16-2 
AVT 2-3.2-6 
A VT Escape Sequences 46-1 
Awaiting reply 31-~ 
AwaitingReply 27-9 
Awoken 32-2 

Background 42-1 
Background Processes 31-7 
Backspace 46-1 
Bad Address 32-2 
Bad Args 32-2 
Bad Block No 32-2 
Bad Duffer 32-2 
Bad Byte Count 32-2 
Bad Forward 32-2 
Bad Process Priority 32-2 
Bad Slate 32-2 
Bare kernel mode 27-8 
Beginning of Buffer 4S-1 
Beginning of Une 2-10 
Bell 46-1 
Big-cndian 32-1 
Biopsy 4-1 
Bitcompile 4-1 
Bits 7-1 
Blank lines B-1 
BlkslnFile 22-6 
Blockl)osilion 22-6 
Blocks 33-1 
ntocltSize 22-6 
BIt 24-2 
Boise 4-2 
Ilooting 2-4 
Break-Process 2-10 
BufferEmpty 22-5 
Build 8-1 
Busy 32-2 
Byte order 32-1 
Ryle-swapping 32-1 

C 4-2 
Cadlinc 2-S 
Calloc 24-1 
Cat 4-2 
Cc68 4-2 
Cd 3-2,4-2 
Centcr Window 2-7 
Crrcc 24-1 
Change Context 3-2 
Olange Current Contcxt 25-t 

Index-1 

17 June 19M 



Inde."(-l 

Olange Directory 3-2. 4-2 
OtangeDirectory 25-1 
Otansellcm 29-10 
Olaracter Set 46-3 
Olaracter strinlS 30-2 
Chdir 25-1 
Olcckers 4-2 
Checke.ucs 4-2 
Q 4-3 
Qrcles 1001 
Ocar 4-3,24-2. 46-2 
Oear A VT 46-1 
OcarTo EOL 46-2 
OearTo EOS 46-2 
Ocarcnv 25-6 
OcarEof 22-S 
OcarLocalNames 25-3 
OearModificdPagcs n-l 
Oick 2-6 
Oock 4-3 
Oase 22-4 
Co 4-3 
Command Arguments 3-6 
Command proccssin& 31-7 
Commands 10-2. 10-7 
Compile command 18-1 
Compiling 18-1 
Conat 30-2 
Config Ales 19-1 
Configuration 19-1 
Console 36-3 
Context 4-3,34-2 
Context Directories 34-9 
Context Request 34-6 
Contexts 3-1 
Control 2-10 
Convert_num 30-2 
Cooking 29-2. 46-3 
Copy 24-1 
Copy files 4-3 
Copy _str 30-3 
Copyenv 25-6 
Cp 4-3 
Cpdir 4-3 
CR Input 29-2 
Create n-7 
Create Duplex (nstance 33-4 
Create H'(ccutive 2-7 
Crente Inst:mcc 33-3,46-3 
Crcclte Instance Retry 34-11 
Create View 2-7 
CreatcDuplexln.unce 22-3 
CrealcF.'(cc 46-S 
CrcatcGroup n-s 
Crcalellost 27-6 
CrcalclnSUlncc 22-3 
CrcatcPipctnstancc 22-7 
CrcnteProccss n-1 
CrcatcSDF 29-8 
CreateTeam 27-2 

V-Systt'1II 6.0 Rl'rcrclI('e Manual 

CrcatcVGT 29-11 
Create View 29-2 
CreatOr n-2 
Crypt 30-2 
CSname 34-2 
CSNH server 34-2 
Ctime 30-1 
CTRL-\ 45-1 
CTRL-l 45-1 
CTRL-D 45-1 
CTRL-p 4S-1 
CTRL-q 45-1 
CTRL-y 45-1 
Current object 1003 
Cursor Backward 2-10, 46-2 
Cursor Down 45-1 
Cursor Forward 2-10,46-2 
Cursor Position 46-2 
Cursor Up 45-1,46-2 
Cursor Word Backward 2-11 
Cursor Word Forward 2-11 
ex 4-3 

Dale 4-3,4-9,29-6 
Date 4-3 
DebuS 4-3 
Debugger 9-1, 37-1 
Debugvgts 4-3,46-4,46-5 
Default Conbl'(t 34-4 
DefaultRootMcss8ge 28-2 
DcfaullSclcctionRcc 28-J 
DefaultView 29-1 
Define 4-3 
Define Font 29-11 
DcfineLocalNamc 25-2 
DefincSymbol 29-8 
DcfineTcmpArca 25-3 
DEL 46-2 
Delay 30-1 
Delcorr 43-2 
Deletc Char 46-2 
Delete (baractcr 2-10 
Delete Character Backward 2-10 
Delete Character J:'orward 2-10 
Dele~e Executive 2-7 
Delete Last (baracter 2-10 
Delele Une 2-10,46-2 
nelete to Beginning of l.lne 2-10 
Delete to I ~nd of I.inc 2-10 
Delete to Start of Line; 2-10 
Delete View 2-7 
Delete Word Rackward 2-10 
nelete Word Forward 2-11 
DclcteItcm 29-9 
DcleteSDF 29-8 
DeletcSymbol 29-9 
DcleleUscr 35-2 
DeletcVGT 29-1 
Delcxcc 4-3 
Destroy 4-3,27-7 

17 June 1986 



Dcst.royAuthRcc 35-2 
Destroy Host 27-6 
Destroy Process 27-2 
Device Error 32-2 
Device server 31-3, 36-1 
Device type 36-1 
our 4-3 
DiffercntBytcOrder 3:2-1 
DiffercntlKCByteOrder 32-1 
Discard Reply 32-2 
DiscardOutput 29-2 
Disk 36-2 
OisplayItem 29-11 
Do 4-4 
Domake 4-4 
Dopar 4-4 
Doseq 4-4 
Draw 4-4. 4-9 
Duplicate Name 32-2 

Echo 4-4, 29-3 
Ecvt 30-2 
EditUne 29-5 
Editor 4-9,14-1 
F.ditSymbol 29-8 
Emacs 4-9 

• End of au ffer 45-1 
End of File 2-10, 32-3 
End of Une 2-10 
EndSymbol 29-8 
Environment Variables 3-6 
Eaf 22-5 
Equal 30-3 
ErrorString 27-8. JO-4 
ESC-, 45-1 
FSC-. 45-1 
ESC-HACKSPACB 45-1 
FSC-l)fl. 45-1 
FSC-d 45-1 
ESC-t 45-1 
Escape 2-10 
Fs:apc Sequences 46-·1 
Ethernet 36-1 
Event Request 46-4 
E.~amplc 29-15 
Exception handler 31-7 
Exception h.1ndling 31-7 
E~ceptiofb Request 37-1 
Exception server 31-3 
Exec 3-1.46-5 
Exec Control 2-8. 3-1 
Exec server 31-4 
Exed 28-4 
ExccProgmm 28-2. 4:l-1 
Exccscrvcr 3-1 
Execution 18-2 
Executive 3-1,27-8 
Executivcs 31-4 
Exit 27-8,31-6 
Expansion Depth 2-8 

V-Sysll'nt 6.0 Rderl'nl:e Muntlal 

ExtractHost 27-6 

l-'Append 22-1, 33-2 
FCrcate 22-1, 33-2 
FDircctory 33-3 
Fexccutc 4-4, 33-3 
Fields 21-1 
File Modes 22-1. 33-2 
File Types 22-2. 33-1 
FileExccption 22-6 
FileId 22-8 
FileServer 22-8 
FileType 22-8 
Filled Rectangle 29-6 
FindSelcctedObject 29-13 
First Team 31-5 
FlXed Length 22-2. 33-2 
Hush 22-5 
fo"Modify 22-1. 33-3 
Followup message 34-11 
Font 29-11 
Fonts 10-1.10-2. U-3 
ForceSend 27-9 
Foreground 42-1 
Forward 27-9 
Forwarder 27-10 
Framebuffer 36-3 
FRead 22-1. 33-2 
Free 24-1 . 
Freemem '4-4 
FrcezeHost 27-7 
Ftime 30-1 
FullUserName 35-2 

Gcvt 30-2 
General Une 29-6 
Geneml Text 29-1 
Get Absolute Name 34-1 
Get Contcxt Id 34-7 
Get Contcxl Name 34-8 
Get File Name 34-8 
GetAbsoluteNamc 25-3 
GelContcxtld 25-3 
GctConlcxtName 25-4 
Getenv 25-5 
Get Event 29-12 
Get FileName 25-3 
GetGrnphicsEvcnt 29-12 
GetGraphicsStatus 29-12 
GctMoreMaJlocSIl3cc 24-2 
GetMouscClick 29-13 
GctMouscOrKeyboard 29-13 
GctObjcclOwner 27-2 
GctPid 27-3 
GctRcmoteTime 30-2 
Get Reply 27-10 
GctSigned 22-9 
GetTcamRoot 27-3 
GctTcamSi1.c 21-3 
GClTimc 30-1 

Index-) 

17 .June 1986 



Index-4 

Gc(lTY 29-14 
GClUnsigned 22-9 
Gctwd 25-1 
Gftodvi 4-4 
Gftype 4-4 
GivcToMalloc 24-2 
Global servers 31-4 
Gmtimc 30-1 
Graphics Commands 2-8 
Grep 4-4 
Groups 1~1.1~3.1~5.1~9· 
Guest 42-1 

Has SuBstructure 32-3 
Helper process 31-1 
Helper Processes 31-3 
Heterogeneity 3-7 
Hcx_ value 30-3 
History 3-S 
Hit Detection 29-13 
I lome directory 4-6 
Horizontal Une 29-6 
110st selection 28-3.42-1 
Host status 42-1 

110 22-1 
110 Protocol 33-1 
Ident 4-4 
Ignored 46-2 
IKC_LlTrLE_ENDIAN 32-1 
Illegal Name 32-3 
Illegal Request 32-3 
Index 30-2. 46-2 
Initial process 18-1 
Initial suck 18-1 
Initiali:t.ation lS-3.ll-S 
Inquery program 39-11 
InquireOlil 29-9 
Inquireltcrn 29-9 
Insert OW' 46-2 
Insert Une 46-2 
Insert With Eighth Bit Set 4S-1 
Inslallation Col 
Instances 4-4 
Intcractive 22-2. 22-8. 33-2 
Inlcmal Error 32-3 
Internet Server 4-4. 39-1 
Intcrl)roccss Communication 13-1. 27-1. 27-9 
Interrul,l Prugrnm 2-8 
Invalid Conlext 32-3 
Invalid I'ile Id 32-3 
Invalid Mode 32-3 
Inverse Video 46-2 
10 Break 32-3 
10 Protocol 17-2 
IP (rcp 4-8. 39-1 
Iphost 4-4 
Iplclnet 4-8 
Ilem 29-5.29-6 
Item Type 29-6 

V·Syslrm 6.0 Rererence Mallual 

JoinGroup 27-9 

Kernel mode 18-2 
Kernel server 31-3 
Kcrnel Tameout 32-3 
Kill Break 2-10 
Kill Program 2-8. 46-3 
Kill Word Forward 45-1 
Killprog 4-4 

LeaveGroup 27-9 
Left Button 2-12, 29-4 
Left Mouse Button 14-7 
Left, + Middle Buttons 2-12, 29-4 
Left + Right Buttons 2-12, 2.9-4 
LF Output 29-3 
libV.a 18-1 
line 29-6. 29-8 
line Editing 2-10, 29-3. 29-5. 45-1. 46-4 
lineBuCfer 29-3 
linking 18-1 
Ustdesc 4-4 
Ustdir 4-.4 
Uttle-endian 32-1 
UTILE_ENDfAN 32-1 
llITLE_ENDIAN_HOST 32-1 
Loader 18-2 
Loading 31-$ 
LoadProgram 28-1. 42-1 
Loca1time' 30-1' 
Locking 23-1 
Login 3-2. 4-4 
Logout 3-3 
Longjmp 30-4 
Lower 30-3 

MacDraw 1~1 

Machine-relative servers ll-3 
Mail 4-S 
Make 8-1 
Make Bottom 2-8 
Make Top 2-8' 
Malloc 18-1. 24-1 
MapUID lS-2 
MapUserName 3S~3 

Math 26-1 
Mcm server 4-S, 40-1 
Memory server n-s 
Menu 21-1. 29-14 
Menu. View Man:ager 2-7 
Message Pomlat Conventions 32-1 
Melafont 4-S 
Mf 4-5 
Middle Mouse Button 14-7 
Middle+ Right Iluttons 2-12,29-4 
Migratcprog 4-S 
Migration 3-2. )-3.4-5 
Mode 33-3 
Mode Not SUllportcd 32-3 
Modes 22-1.3)-2 

17 June 1986 



Modify Hie 33-8 
ModifyPad 29-4 
ModifyUser 35-J 
Moo +S 
Monasteries 18-1 

. More Replies 32-3 
Mouse 2-6. 14-7. 36-2 • 
Mouse emulation 20 12 
Move Edges 2-8 
Move Edges + Object 2-8 
Move Viewport 2-8 
MoveFrom 27-10 
MoveTo 27-10 
Multi Block 22-2. 33-2 
Multi-manager 32-3 
Multi-manager context directory 34-11 

Name 4-S 
Name Request )4.S 
NameCachcAdd 2S-4 
NamcCachcDcIctc 25-5 
NamcCacheLookup 2S-S 
Names B-1 
NamcSend 25-3 
Naming Protocol 34-1 
Netwatch 16-4 
New Une 46-1.46-2 
Newtenn 4-5,46-1. 46-4 
Next Une 46-2 
Nibs 10-1. 10-2 
NModify File 33-8 
No Group Desc 32-3 
NoMemory :12-3 
NoPDs 32-3 
No Permission 32-3 
No Process D~:criptors 32-3 
No Server Re:sourccs 32-3 
NolUs 32-J 
No Team l)c:;crilJton 32-3 
NoCurSor 29-3 
Nonexistent Process 32-4 
Noncx istent Session 32-4 
Not a Context 32-4 
Not Awaiting Reply 32-4 
Not Found J2-4 
Not Ilere 32-4 
Not Rcadable 32-4 
Not Writcablc 32-4 
NounN 10-2 
NQuery "ile 33-8 
NRcad Descriptor 34-10 
NRcadDeicriptor 25-2 
NUL 46-1 
Null devices 36-4 
Nultstr 30-3 
Numeric 26-1 
NWrite l)c4;criplor 34-10 
NWritcDescriptor 25-2 

Object I)c4;crilltOrs 34-9 

V-System 6.0 Reference Manual 

OK 32-2 
Opcn 22-2 
OpcnAndPositionPad 29-4 
OpenDuplex 22-3 
OpcnFile 22-3 
Opcnlp 22-7 
Open Pad 29-4. 46-3 
OpcnStr 22-8 
OpcnTcp 22-7 
Outline 29-6 
Ovals 10-1 

Pad 2-3 
PadFindPoint 29-S 
Paged output mode· 2-11 
Pagemode 4-6 
PagcOutput 29-3 
PagcOutputEnable 29-3 
Pascal 4-6 
Password 4-6. 35-3 
Patterns 10-1. 10-2 
Pc68 4-6 
Per-process area 18-5 
Perfonnancc Measurement 13-1 
Personal name 4-6 
Photo 4-9 
Point 29-7 
Polyline 29-7 
Popup 29-14 
Postscript 10-8 
Power Failure 32-4 
Press 10-8. 10-9 
PI'CS!iEdit symbol 10-6. 10-9 
Previous Word 2-11 
PrimcCache 25-5 
Print 10-8. 10-10 
PrintError 30-4 
Printf 22-1 
PrinlAle 22-9 
Process 27-1 
Process Group Opcmtions 27-8 
PROM monilor 27-8 
Protocol 31-1 
Protocol conversion 39-1 
Pseudo-processes 31-1 
Public 43-1 
Public Context 34-4 
PutSigned 22-9 
l\JtUnsigned 22-9 
Pwd 3-2.4-6 
Pwx 4-6 

Q 4-6 
Qsort Jo-4 
Query 4-6 
Query File 33-8 
QueFY Instance 33-4.46-3 
Query Name 34-6 
Queryexcc 4-6 
QueryGroup 27-9 

Indcx-S 

17 .June J986 



Index-6 

Queryllosts 28-3 
QueryKcrnel 27-3 
QueryPad 29-4 
QueryPadSize 29-4 
QueryProccssorUsage n-3 
QueryProccssPriority n-4 
QueryProccssState n-4 
Query Work!itationConf" 19-1 
Quote Character 45-1 
Quoting Alluments 3-6 
QVSS 36-4 

RAM disk 31-S 
Rand 26-1 
Ranlib 4-6 
Ranlib68 4-6 
Raster 29-7 
Raw 29-2 
Res 4-6 
Rc:sdi rr 4-6 
Rcsmerge 4-6 
Rc-Display.lnput 4S-1 
Read U-S 
Read Descriptor 34-10 
Read Instance 33-6,46-3 
Readable 22-2, 33-1 
ReadDcscriptor 15-2 
RcadProcessState n-4 
Ready 27-7 
Realloc 24-1 
RccciveSpccirlC 27-11 
RccciveWilhScgment noll 
Rectangle 29-6 
Rectangles 10-1 
Redraw 2-8 
RedrawPad 29-S 
Reference (jne 29-6 
Register Itandler 37-1 
Release In.\"lance 33-S.46-3 
RcicaseA rgumcntSpinLock 23-2 
RelcascGlobalSpinLock 23-2 
Rele3."C1 nstance U-4 
Relc3.~pinLock 23-1 
Remote execution 42-1 
Remote program execution 3-3, 3-4, 3-6 
RcmoteExccute 28-] 
RemoveFile U-8 
RennnlC 4-6 
RCllnmc 111e 34-9 
Rell:lnlC Object 34-9 
Reply 27-11 
Reply cbde 32-1 
ReplyWithScgment n-ll 
Report Oick 29-3 
Report Transition 29-3 
Request code 32-1 
Request Message Formats 33-3 
Rcqu~t Not Supported 32-4 
Rcsct State 2-8 
RcsctTrV 29-14 

V·Syst ... m 6.0 Rcf~rence Manual 

RcsolvcLocaIName 15-2 
Rcsynch 22-S 
Retry 32-4 
Retry Unicast 32-4 
Return 46-1 
RcturnModificdPages 27-4 
Reverse Index 46-2 
Right Mouse Button 14-1 
Rindex 30-2 
Rlog 4-6 
Rm 4-6 
Root process 18-1 
Round-robin scheduling 42-1 

SameTeam 27-4 
Screen saver 2-1 
Scribe 10-1. 10-6. 10-9 
Scrou Region 46-2 
SDF 29-S 
Seek 22-4 
ScekBlock U-6 
Segment 27-12 
Selected Ilorilontal Reference Une 29-1 
Sclcct.ed Vertical Reference line 29-7 
SeIcct.ionRec 28-] 
SclectPad 29-15, 46-4 
Send 27-11 . 
Serial 4-1 
Serial Hne 36-3 
Server Not RespondinS 32-4 
Services 31-1 
Sessions 43-1 
Set Alternate Exec Size 2-8 
Set Break I~occss 33-1.46-3 
Set Instance Owner 33-7,46-3 
Set Prompt 33-8 
Setllrcakl)roccss 22-9,46-S 
Sctenv 15-S 
Sell n.'itanccOwncr 22-9 
Setjmp 30-4 
SetObjeclOwner 21-S 
SetPid n-s 
SetProccssllriority nos 
SelTcmnllriorily 27-S 
SctTcamSize 27-S 
Sc(rime 30-1 
SelUpEnvironment 18-4 
SctUscrNumbcr 3S-3 
SctVgtl\nnner 29-1S. 46-4. 46-5 
SGVI' 2-3,29-5 
Shell 3-1 
Shift In 46-1 
Shift Out 46-1 
ShiftJcft 30-3 
Show 4-1 

. SIL 10-1 
Siledit 4-9. 12-1 
Silprcss 4-9. 12-3 
Simple Text 29-7 
Size 30-3 

17.Jullle 1986 



Sleep 4-7,30-2 
SMI 2-4 
Sort 4-7 
Special Vcd commands 14-2 
SpecialCtose 22-4 
Spin locks 2l-1 
Spline 29-7 
Splines 10-1 
Srand 26-1 
Stack overflow 18-1 
Stack size 18-1 
StandardE.,ccptionHandler 30-4 
Stan of Une 2-10 
Startc.'(cc 4-7 
Starting up Vcd 14-1 
Stime 30-1 
Storage server 3l-S 
St<;ragcstat:s 4-7 
':.LtCat 30-2 
Stranp 30-2 
Strcpy 30-2 
Stream 22-2. 33-1 
Strings 30-2 
Strlen 30-2 
Stmcat 30-2 
Strncmp 30-2 
Strncpy 30-2 
Strsave 30-3 

'.',' 

Structured display file 29-5 
Structurcd Graphics 10-9 
Structured graphics virtual terminal 
STS 3-1 
STS hardware CI1vironmcnt 45-1 
S1'S line editing 45-1 
Stuflboot 4-7 
Style B-1 
Su 3-3 
Subprograms 18-2 
Suicide 27-8 
Sun1OOY8t~ 46-1 
Sunl20vgLS 46-1 
Swab 24-2 
SwaplKI»aclect 32-1 
Switch Input 46-4 
Symbol 29-S 
System 28-4 
SYb1cmCode 21-8 

Tab 2-10,46-1 
Tail 4-7 
Talle 4-7 
TCP/IP 39-1 
Team environmcnt block 18-3,18-4 
Team Loading 31-5,42-1 
Team oWl1icr.mip 42-1 . 
Team root message 18-3 
Team server 31-3,42-1 
Team Rool 18-2. 18-3 
Tclnct 4-8.45-2 
Tclncl servcr 4-8 

V-System (t.O Ilererence l\bnu:1I 

2-3,29-5 

:, 

Terminal agent 2-1, 3-1 
Tcrminal emulation 29-1 
Terminal Emulator 46·1 
Termination 31-6 
Tcstexccpt 4-8 
Tc.'(t 10-1 
TIme 17-3,30-1 
Tlmeipc 13-1 
limeipc:scrver 13-1 
Tlmekemel 4-9 
Tuneout 32-4 
Tlmezone 30-1 
Toggle Grid 2-9 
Toggle P:lgcd Output Mode 2-9 
Tops-20 3-1 
TransferHost 27·7 
Transition 2·7 
Transpose 2-10 
Transpose Words 4S-1 
Tsolt 4-9 
Type 4-9.22-2 
Types 33-1 

Un-Kill 4S-1 
Undefine 4-9 
UndefinclAxalName 25-2 
UnfreezeHost 27-7 
Unix 3-1.3·3,4-9,17-1 
Unix server 43-1 
Unlink 22·9 
Upper 30-3 
User 35-1 
UscrCorrcspondences 43-1 
UscrName J5· 3 

V server 3-3,43-1 
ValidPid 27-6 
Variable Dlock 22-2. 33-2 
Vax 4-9 
Vcd 4-9.14-1 
Vcd buffcrs 14-6 
Vcd crash recovery 14-U 
Vcd cursor mol ion 14-2 
Vcd editing commands 14-3 
Vcd file access 14-5 
Vcd kill buffer 14-3 
Vcd mart 14-4 
Vcd mouse 14-7 
Ved I,aging 14-) 
Ved rcsioo 14-4 
Vcd replacing 14-5 
Vcd scrolling 14-3 
Vcd searching 14-5 
Vcd special characters 14-3 
Vcd windows 14-6 
Vemacs 4-9 
Vcnviron.h 18-1,32-2 
Verbs lo-2. 10-4 
Vcniral Une 29-8 
Venical Rcrcrence Line 29-8 

Index-' 

17.lune 1986 



Inde,,·S 

V~thcmct.h 36-1 
Vcxccptions.h 37-1 
VGT 2-3 ' 
VGTS 3-1. 9-1. 46-1 
Vgts.h 29-17 
View 2-2 
View Manager 3-1. 46-3 
View Manager Menu 2-7 
Vio.h 33-1 
VioprotocoLh 33-J 
Vinual graphiCS terminal 2-3 
Vinual tcnninal 2-1. 2-3 
Vload 16-1. 18-2 
Vmousc.h 36-2 
Vpao;.<;word 35-4, CoS 
V~inlOC:Lh 23-1 
Vtcams.h 28-3 
Vtemtagenlh 29-17 
VuscrtOrrcspndence CoS 

W 4-9 
Wait 28-2 
Wakeup 30-1 
We 4-9 
Wh 4-9 
Whi 4·9 
Who is logged in 4-5. 4-9 
Workstation agent 3l~3 

Write 22-6 
Write Descriptor 34-10 
Write Instance 33-6.46-3 
Writcable 22-2, 33-l 
WrilcDcscriptor 15·2 
WrilcProccssStatc 27-6 
Writcshort Instance 46-3 

Xerox 10-1 

Yale 4-3 

Zero 24-2. 29-6 
Zoom 2-9 

V·Syslrm (,.u Rcr~rencc :\1:1mlal 17 .June 1986 



Copyright © Leland Stanford Junior University 

This work was supponed by the Defense Advanced Research Projects Agency under contracts MDA903-8o
C-oI02 and NOOO39-83-K-G431, by Digital Equipmen~ Corporation. by the National Science Foundation 
under grant OCR 83-52048, by the National Aeronautics and Space Administration under contract 
NAOW-419. by Bell-Nonhem Research. AIT Information Systems, Philips Research and NCR. and by 
Graduate Fellowships from IBM, the National Science Foundation. Shell. and TRW. 

20 June 1986 


	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	02-00
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	05-01
	05-02
	06-01
	06-02
	07-01
	07-02
	07-03
	07-04
	08-01
	08-02
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	11-01
	11-02
	12-01
	12-02
	12-03
	12-04
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06
	13-07
	13-08
	14-01
	14-02
	14-03
	14-04
	14-05
	14-06
	14-07
	14-08
	14-09
	14-10
	14-11
	14-12
	14-13
	14-14
	15-01
	15-02
	15-03
	15-04
	15-05
	15-06
	15-07
	15-08
	15-09
	15-10
	15-11
	15-12
	15-13
	15-14
	15-15
	15-16
	15-17
	15-18
	15-19
	15-20
	15-21
	15-22
	16-01
	16-02
	16-03
	16-04
	16-05
	16-06
	17-00
	17-01
	17-02
	17-03
	18-01
	18-02
	18-03
	18-04
	18-05
	18-06
	19-01
	19-02
	19-03
	20-01
	20-02
	21-01
	21-02
	21-03
	21-04
	22-01
	22-02
	22-03
	22-04
	22-05
	22-06
	22-07
	22-08
	22-09
	23-01
	23-02
	24-01
	24-02
	24-03
	25-01
	25-02
	25-03
	25-04
	25-05
	25-06
	26-01
	27-01
	27-02
	27-03
	27-04
	27-05
	27-06
	27-07
	27-08
	27-09
	27-10
	27-11
	27-12
	28-01
	28-02
	28-03
	28-04
	29-01
	29-02
	29-03
	29-04
	29-05
	29-06
	29-07
	29-08
	29-09
	29-10
	29-11
	29-12
	29-13
	29-14
	29-15
	29-16
	29-17
	30-01
	30-02
	30-03
	30-04
	31-00
	31-01
	31-02
	31-03
	31-04
	31-05
	31-06
	31-07
	31-08
	32-01
	32-02
	32-03
	32-04
	33-01
	33-02
	33-03
	33-04
	33-05
	33-06
	33-07
	33-08
	33-09
	34-01
	34-02
	34-03
	34-04
	34-05
	34-06
	34-07
	34-08
	34-09
	34-10
	34-11
	34-12
	35-01
	35-02
	35-03
	35-04
	36-01
	36-02
	36-03
	36-04
	37-01
	38-01
	39-01
	39-02
	39-03
	39-04
	39-05
	39-06
	39-07
	39-08
	39-09
	39-10
	39-11
	39-12
	40-01
	41-01
	42-01
	42-02
	42-03
	43-01
	43-02
	43-03
	43-04
	44-01
	45-01
	45-02
	46-01
	46-02
	46-03
	46-04
	46-05
	A-00
	A-01
	A-02
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	D-09
	D-10
	D-11
	D-12
	Index-01
	Index-02
	Index-03
	Index-04
	Index-05
	Index-06
	Index-07
	Index-08
	xBack

