
STANFORD ARTIFICIAL INTELLIGENCE PROJECT
OPERATING NOTE No. 57

SAIL

by

Dan Swinehart
and

Bob Sproull

STANFORD ARTIFICIAL INTELLIGENCE PROJECT
OPERATING NUTE No. 57

SAIL
by

Dan Swinehart
and

Bob S p r .0 u I I

November, 1969

ABSTRACT: SAIL Is a high-level programming system for the
POP-l" computer. It i ne I udes an extended ALGOL comp I 19r
and a companion set of execution-time routInes. The
reAsonab I y standard ALGOL 60 comp II 9r I s extended to
provide facl I Itles for describing manloulatlons of an
associative data structure, This structure contaIns
Information about ITEMS, stored as unordered collections
of Items (sets) or as ordered triples of Items
(associations). The algebraic capabl I Itles of the
language are I Inked to the associative caoabl I Itles by
meAns of the DATUM operator, which can associate wlth any
ITEM an algebraic datum,

The work reported here was supported In part by the Advanced Research
Projects Agency of the Department of Defense under Contract 50-183.

SAILON NO, 57

TABLE OF CONTENTS

CONTENT

SECTION 1--INTRODUCTION

SECTION 2--PROGRAMS, BLOCKS, STATEMENTS
SYNTAX
E.XAMPLES
SEMANTICS

Declarations
Statements
Block Names
Entry Specifications

SECTION 3--DECLARATIONS
SYNTAX
RESTRICTIONS
EXAMPLES
SEMANTICS

Scope of declarations
Tyoe Declarations

Numer1c Declarations
String Declarations
Item Deelaratlons

Items
Item Geresis
Datums

Itemver Declarations
Set Declarations

Array Declarations
Preload Specifications
Procedure Declarations

Formal Parameters
Forward Procedure Declarations
Recursive Procedures
External Procedures
Parametric Procedures
Defaults In Procedure Declarations
Restrl'ctlons on Procedure Declarations

Define Soeelflcatlon
Reoulrements

SECTION 4--ASSIGNMENT STATEMENTS

SAIL

PAR~GRAPH

2- 1
2- 2
2- 3
2- 3
2- 6
2- 9
2-11

3- 1
3- 2
3- 6
3- 8
3- 8
3-11
3-13
3-15
3-18
3-19
3-20
3-21
3-22
3-24
3-25
3 ... 32
3-37
3-38
3-41
3 .. 43
3-46
3-50
3-52
3-53
3 .. 54
3 .. 55

SAlLON NO. 57

SYNTAX
RESTRICTION
SEMANTICS

Datum Assignments
S~ap Assignment

SECTION 5--EXECUTION CONTROL STATEMENTS
SYNTAX
SEMANTICS

Conditional Statem~nts
If Statement
If t •• Else Statement
Ambiguity In Condftlona1 Statements

Go To ~tatements
ror Statements
Wh i Ie sta tement
Do Statement
Case Statements
Return Statement
Done Statement
Next Statement

SECTION 6--PROCEDURE STATEMENTS
SYNTAX
SEMANTICS

Actual Parameter!
Call b~ Value
Ca I I bY Reference
Procedures as Actual Parameters
Fortran Procedures
Implementation Detal Is
Examples:

SECTION 7--LEAP STATEMENTS
SYNTAX
SEMANTICS

LEAP !ntrod~ctJon
General RestrictIons
Construct I on - Retr j'eva I DI st I,n:c'tlo:n
PUT and REMOVE
DELETE
MAKE
ERASE
rOREACH Statement
Restrictions and Caveats

SECTION 8,.-ALGEBRAIC E:XPRESSIONS
SYNTAX
SEMANTICS

SAIL

4- 1
4- 2
4- 3
4- 7
4- 8

5- 1
5· 2
5,.. 2
5- 4
5- 5
5- 6
5- 8
5 .. 11
5-16
5-17
5-18
5-19
5 ... 23
5 .. 25

6- 1
6- 2
6- 4
6- 5
6- 6
6 .. 10
6-12
6 .. 15
6-16

7- 1
7- 2
7",. 2
7- 7
7- 8
7- 9
7-1eJ
7-11
7-13
7-14
7-21

8- 1
8-2

SAILON NO. 57

Condlttonal Expressions
Exa.mole
Assignment Exoresslons
Example
Case EXpressions
Example
S(mple EXpressions

The Boolean Expression Anomaly
Precedence of Algebraic Operators
Algebraic EXpressions
Disjunctive Expressions

Relational EXoresslons
Arithmetic Type Conversions
Strl~g-Arlthmetlc Conversions
Adding Expressions
Terms
Concatenation Operator
Factors
Primaries
Variables and constants
SubstrIngs
Function Designators
Length
Loo
Cvn
Lnot
Abe
Unary ~tnus
Boolean PrimarIes

SECTION 9--SET AND ASSOCIATIVE EXPRESSIONS
SYNTAX
SEMANTICS

Set EXpressions
Set Primaries
It.em Constructs
Item selectors
NEW 1 tems
ANY Construct
CVI
LEAP Boo leans

SECTION 10--8ASIC CONSTRUCTS
SYNTAX
SEMANTICS

Variables
Datums
Identifiers
sel I Reserved Words

SAIL

8- 2
8- 3
8- 4
8- 5
8 .. 6
8- A
8- 9
8-1eJ
8-14
8-16
8-19
8-2~
8-22
8-27
8 .. 29
8-32
8·37
8-38
8-39
8-40
8-41
8-42
8-45
8-46
8-47
8-48
8-49
8-50
8-51

9- 1
9- 2
9- 2
9- 3
9- 4
9- 5
9- 6
9- 7
9- 8
9- 9

10'" 1
10- 2
10'" 2
10- 6
19.1- 7
121-10

SAILON NO. 57

Sal I Predeclared IdentifIers
ArIthmetic Constants
String Constants
Examples
Comments

SECTION l1--EXECUTION TIME ROUTINES
GENERAL

Scope
Notational ConventIons
Example

1/0 ROUTINES
Open
Close,_ Closfn, Closo
Getchan
Release
Lookup, Enter
Rename
8reakset
Setbreak
Stdbrk
Input
Scan
Out
Llnout
Wordln
Arryln
Wordout
Arryout
Mtape
Usetl, Useto
Realln, Intln
Rea I scan, I ntscan
Teletyoe 110 runctlons

STRING MANIPULATION ROUTINES
Length
Eau

TypE CONVERSION RoUTINES
SetforlTlat
Getforrnat
CV5

evos
Cvls
Cvsl
Cve, Cvf, Cvg
Cvstr
Cvxstr
Cvd
Cvo

SAIL

1~-11
10-13
10-16
10-19
10-21

11- 1
11- 1
11- 3
11- 5
11- 6
11- 6
11"'10
11-12
11-14
11-18
11""22
11-23
11-36
11-38
11-41
11-44
11-46
11 47
11-49
11-51
11-54
11'"'56
11-58
11 ... 60
11-62
11-67
11-69
11"'71
11-71
11-73
11-75
11-75
11-78
11-80
11"'82
11",,84
11 ... 86
11'"'88
11""93
11-95
11-97
11-99

SAILQN NO. 57

CVB.se
Cvsix
Cv f t I

ARRAY MANIPULATION ROUTINES
Arrlnfo
Arrblt
Arrtran

LIBERATION.FROM-SAIL ROUTINES
Code
Ca'i
Usererr

SECTION 12--USE OF DEFINE
De fin I.n g Mac r 0 s
String Constants In Macro Bodies
Using Macros
Macro Parameters

Example
Actual Parameter Expans10n

Examples

SECTI"ON 13--COMPILER OPERATION
COMMAND FORMAT

Semant1cs
Rpg Mode
Switches

Debugging modes
ERROR MESSAGES
STORAGE ALLOCATION

SECTION 14--PROGRAM OPERATION
LOADING AND STARTING SAIL PROGRAMS

Loading
Space A II ocat Ion, Norma I Operat I on

ERROR MESSAGES
DEBUGGING

Symbols
Blocks
S a I I" G • n ere. ted S y m b o' I s
Warnings

Hanging Store
Long Names

SECTION 15--PROGRAM STRUCTURE
THE SAIL CORE IMAGE (REQUIRED)

Main Program
Storage Allocation. Basic Uti I ttles
Other Execution-TIme Routines

OPTIONAL ADDITIONS

SAIL

11-101
11-103
11-105
11-107
11-112l7
11-109
11-111
11-113
11-113
11-115
11-117

12- 1
12- 4
12- 5
12- 6
12'" 8
12- 9
12"11

13- 1
13- 2
13-12
13"'13
13-14
13-19
13""22

14'" 1
14- 1
14- 2
14- 4
14- 8
14- 9
14-12
14-13
14-14
14-14
14-15

15" 1
15- 2
15'" 4
15- 6
15" 7

SAILON NO, 57

Separate I y Comp II ad Procedures
Fortran Procedures
Assembly Language Procedures
Others

SECTION 16--IMPLEMENTATION INFORMATION
STORAGE LAYOUT

User Table
Sto rage A I I ocs t Ion Rout I nes
Corget
Correl
Corlne
Canine

STRINGS _
string Descriptors
String Operations

Cat
Substr
Getch
Putch

String Space
Parameters Used by String Operations
Str I ng Garbage Co II ect i on
String-Oriented MachIne Language Routines

ARRAY IMPLEMENTATION
Form
Explanation
Array Allocation

Dynamic Arrays
Built-In Arrays

Array Access Code
PROCEDURE IMPLEMENTATION

Procedure Body
Discussion

Procedure Ca I It ng SeQuenoes
Discussion

SECTION 17· .. APPENDIX -- USEFUL SUMMARIES
ARITHMETIC TYpE-CONVERSION TABLE
SAIL RESERVED WORDS
SAIL PREDECLAR[O IDENTIFIERS
CHARACTER-IDENTIFIER EQUIVALENCES
PARAMETERS TO THE OPEN FUNCTION
8REAKSET MODES
MTAPE COMMANDS
COMMAND SWITCHES
DEBUGGING MODES
VALID RESPONSES TO ERROR MESSAGES

SAIL

15- 7
15-11
15-12
15~13

16- 1
16- 1
16- 5
16- 6
16-10
16-11
16-12
16-14
16-14
16"'19
16 .. 20
16-21
16-25
16-26
16-27
16-29
16-30
16-31
16-33
16·33
16-34
16"'35
16-35
16-38
16-42
16-46
16-47
16-48
16-49
16-50

17- 1
17", 2
17- 3
17- 4
17- 5
17- 6
17- 7
17- 8
17- 9
17-10

SAILON [\JO. 57 SAIL

SECTION 18~-BI8LIOGRAPHY

SAILON NU. 57 SAIL

SECTION 1

INTRODUCTION

1-1. SAIL Is a high-level programming system for the PDP-10
Computer. I t I nc I udes an extended ALGOL comp II er and a compan i on set
of execution-time routines. The reasonably standard ALGOL 60
comelier Is extended to provide facilities for describing
manlpulatlon~ of an associative data structure. Thfs structure
contains Information a.bout ITEMS, stored as unordered collectIons of
It~rrs (sets) or as ordAred triples of Items (associations), The
aloebralc capabl I itles of the language are I Inked to the associative
c a 0 a b I I I tie s' by mea n S 0 f the D A TUM 0" era tor, W h I c h can ass 0 c 'j ate wit h
~nv ITEM an algehralc datum.

1-2. Several forerunners (namely the GOGOl compilers developed at
the Stanford Artificial Intel I Igence Project) have contributed to the
general aopearance of the non-associative portions of the SAIL
I a n 9 u'a 9 e • The asS 0 c I a t i v e d a t a s t rue t u rei s a sit g h t I ';I r e w 0 r ked
version of the LEAP language, which was designed by J. Feldman and
p. Rovner, and Imolemented on Lincoln laboratorY's TX-2, This
language Is described In some detail In an article entltl'ed "An
A I qO I .. Based Assoc I at I ve 'Language" I n the August, 1969 Issue of the
ACM Communications [FeldmanJ. The Implementation Was modified to
tolerate the non-paging environment of the POP-10.

1-3. SAIL In a sens~ has somethIng for everyone. For those who
think In ALGOL, SAIL has ALGOL. For those who want the most from the
PDP-10 and the tlme-sharlnq system, SAIL allows flexible linkIng to
hand-coded machIne language programs. For those who have complex
Inout/outout requirements, the language provides comolete access to
the I/O fael I Ities of the PDP-10 sYstem. For those who aspire to
speed, SAIL generates fairlY good cod~, The user should, however, be
warned that SAIL. falls several man-decades short of the extensive
testtng and optimization e'fforts contaIned In the hIstories of most
commercial compilers.

0, Swinehart
R. Soroull
November, 1969

SAILON NO. 57

SYNTAX

2-1.

<progra",>

<hlock>

<comoound_ ta' I>

<statement>

<comoound_statement>

SAIL

SECTION '2

PROGRAMS, BLOCKS, STATEMENTS

· . -· . -· . -· . -
· , -· . -
· . -· . -· , -· . -· , -· . -
· . -· . -· . -· . -· , -· . -

, . -· . -· . -· . -· . -· . -· . -· . -· . -· . -· . -· . -· . -· . -· . -· . -
: : = · . -· . -· . -· . -· . -· . -..... · . -· , -· . -· . -· . -
: : = · . -· . -· .-· . -· . -, . -
· . -· . -· . -· . -

<block>
<entry.speclflcatlon> <block>

<b lock.head> ; <comoound_ ta 11 >

BEGIN <deolaratlon>
BEGIN <block_name> <declaration>
<block_head> ; <declaration>

<statement> END
<statement> END <block_name>
<statement> ; <compound. ta 1\ >

<block>
<compound.statement>
<as~Ignment>
<conditIonal_statement>
<If.statement>
<90. to_statement>
<for.statement>
<wh I I e.stFttement>
<do.statement>
<case_statement>
<return_statement>
<done.statement>
<next_statement>
<Ieap.statement>
<procedure.statement>
<deflne.speclflcatlon>
<strlng.constant> <statement>
<Iabel.ldentlfler> : <statement>
<empty>

BEG I N <compound_ ta I I>
BEG I N <b lock.name> <comoound_ ta i I>

2-1

SAILON NO. 57

::= <string_constant>

<entr~_speclflcatlon> : : = ENTRY < I d_' 1st>

EXAMPLES

2-2.
Given:

S Is a statement,
Sc Is a Compound Statement,
o is a I).eclaratton,
B Is a Block.

Then:
(S e)

(S e)
(8)
(8)

BEGIN 51 S; S; to, ; 5 END
BEG IN" S 0 R T " S; S ; .., ; SEN 0
BEGIN 0; D; 0; ,., ; S; S; S;
BEG I N "ENTER NEW INFO" D J D;

o , , . . ,

SAIL 2-2

SEND
S ; o. 0 is END

are s~ntactlcallY valid SAIL constructs.

SEMANTICS

Declarations

2-3. SAIL programs are organized In the traditional block
structure of ALGOL-60.

2-4. Declarations serve to define the data types and dimensIons of
simple and subscripted (array) variables (arithmetic varIables,
strings, sets, and Items), They are also used to describe procedures
(subroutines) and name program labels. The DEFINE construct (see
[) EeL A RAT ION S • 3 -1 , USE '0 FOE FIN E , 12 - 0) may a I so a p 6 ear I n
declarations.

2-5. Any Identifier referred to In a program must be descrIbed In
Some declaration. An identifier may only be referenced bY statements
wlthln the scope (see Scope of declarations, 3-8) of Its declaration.

SAl LON I\J 0 4 5 7 SAIL 2-3

Statements

2-6, As In ALGOL, the statement Is the fundamental unit of
operatIon In the SAIL language. Sinee a statement withIn a block or
COmPound statement may Itself be a block or CQmPound statement, the
concept of statement must be understood recursively.

2-7. This definition of a block as a statement has vtrtues other
th~n Its syntactic niceness. In many ways a block behaves as a
~Ingle complex statement; most Importantly. no transfers <Jumps) may
be made from outside a block to any statement wIthin It except the
fir st. T his' ass u res pro per a I I 0 0 a t Ion and I nit I a I I z a t Ion 0 f the d a t a
space for the block.

2-8. The block representing the program Is known as the
uouter block"4 AI I blocks Internal to this one wi I I be referred to
as "Inner blocks".

Block Names

2-9, The block name construct Is used to descrlbe the block
structure of a SAIL program to a Symbol Ie debugging routIne (see
DEBUGGING, 14-8), The neme of the outer block becomes the tltle of
the binary output f lie (not neeesar Ily the f lie name). In addition,
I f a block name I s used fo II ow I ng an END, the comp I I er oompares It
with the block name whIch fol lowed the corresponding BEGIN. A
mismatch Is reported to the user as evIdence of a missing (extra)
REGIN or END someWhere.

2-10. The <string_constant> <statement> construct Is eQUivalent In
action to the <statement> alone: that Is, the string constant serVes
only as a comment.

EntrY SpecificatIons

2-11. See Separate Iy Complied Procedures, 15-7,

SAILON NO, 57

SYi-.JTAX

3-1.

<id list>

<declaration>

<type>

<algebraic_type)

<Ieap ... type>

· . -· . -· . -· . -

t · . -
t • _ · . -· , . -· . -· . -· · · . -· . -· . -· . -

· . -· . -· . -· · · . -· . -· · · ... · -· . -· . -· · . -
· . -· . -· · · . -· . -· . -·
· · . -· · . -

SECTION 3

DECLARATIONS

<Identifier>
< I dent I fie r > , <-1 d ... lis t>

<type_declaration>
<arraY declaration>
<~relo;d_speclflcatlon>
<label_declaration>
<procedure_declaratton>
<define_specification>
<reoulrement>

<algebraic_type>
<leap_type>

SAIL

<algebraic_type> <Iea~_type>
<algebraic_type> ARRAY (Ieap_tyoe>
SET
SET <leap_type>
SET ARRAY <leap_type>
<type_QualIfier> <type>

REAL
INTEGER
BOOLEAN
STRING

ITEM
ITEMVAR

3-1

SAILON NO, 57

<array_oeclaratlon>

<arraY_list>

<array_segment>

<lower_bound>

<uooer_bound>

<preload_specification>

<preload_list)

<preload_element>

· · . -t • _ · . -, . -· . -· . -· . -
: : = · . -· . -· . -· . -

· . -· . -

· . -· . -
· · . -· . -, . -
· . -· . -
· . -· . -· . -· . -
· . -· . -
· . -· . -
· . -· . -
· . -·
, . -· . -· . -· . -
· , -· . -· · . -

, . -· . -
· . -· . -
, . -· . -· , -· . -

SA IL'3-2

EXTERNAL
INTERNAL
SAFE
FORW£\RD
RECURSIVE
FORTRAN
GLOBAL

(type> <ld_llst>

(type> ARRAY <arraY_list>

(array_segment>
<arraY_list> , <array_segment>

< fd_ I 1st) C (bound_pa I r _I f st>]

<bound_pair>
<bound_pa' r _II st> <bound_pa I r>

(algebraic_expression>

(algebralc_exoression>

PRELOAD_WITH <preload_I fst>

<ore load_element)
<pre I oad_' I st) I (pre I oad_e' ement>

(constant>
(constant) <constant>

PROCEOURE (identifier> (prooedure_head)
(prooedure_body)

(type> PROCEDURE <Identifier>
<prooedure_head> (procedure_bodY)

(empty)
(<formal_param_decl>)

SAILON NO, 57

<formal_type>

<define_specification>

<def Inltlon_llst>

<definition>

<define Identifier>

<reoulrement>

<reQuIre_list>

<require_element>

· . -· . -· . -· ...
· . -· . -· . -· . -
· . -· . -
· . -· . -· . -· . -· . -· . -
· . -· . -
I • -· . -, . -· . -

· . -· . -
· .. · . -· . -· ..
· , -· . -
· , -· . -· . -· ..
· . -· . -
· , -· . -
· . -· . -· . -· . -
· . -· . -
,," -· . -, . -· . -
· . -· . -· .. · . -· . -· . -· .. · . -· . -· . -

<empty)
; <statement>

<forma I_parameter _II st>
<forma I_parameter _I' st>

<formal_param_decl>

<formal_tYpe> <ld_llst>

<slmpler_formal.type>

SAIL

REFERENCE <slmpler_formal_type>
VALUE <slmpler_formal_type>

<type)
<type> ARRAY
<type> PROCEDURE

DEFINE <definition_list>

<definition>
<definition> , <definition_list>

<define_Identifier> = <define_body>

<Identifier>
<Identifier> (<ld_llst>

<string_constant>

REQUIRE <require_list>

<reQulre_e/ement>
<reQulre.llst> , <reQulre.element>

PNAMES
<arithmetic_constant> <space_spec>
<str lng_constant> <re I f II a_spec>

STRING_SPACE
SYSTEM_POL
STRING_POL
ARRAY.POL
NEW.ITEMS

SAIl.ON Nn. 57

· . -· . -· . -· . -

RESTRICTIONS

LOAD_MODULE
LIBRARY

SAIL

3-2. For simplicity, the tyoe_Quallflers are listed In only one
syntactic class. AlthouRh their uses are always val Jd when placed
according to the above syntax, mOst of them only have meaning when
apolled to partleular subsets of these productions:

SAFE Is only meaningful In array declarations
INTERNAL/EXTERNAL have no meaning In formal parameter
declarations
FORWAPD, RECURSIVE, and FORTRAN have meaning only in procedure
type speclftcatlons,
ITEM ARRAYS do not e~lst (use ITEMVAR arrays).

3"3. For array declarations In the
<constant> for (algebraic_expression> In
<lower_bound> and <uooer_bouno>.

outer
the

block substitute
productions for

3-4. A label must be declared In the Innermost block In whlch the
statement being labeled appears.

3-5. The sYntax for procedure declarations requires semantic
embel Iishment (see Procedure Declarations, 3"37) In order to make
total sense, In Particular, a procedure body maY be empty only In a
rcstrlctea class of declarations.

SAILON NO, 57 SAil

EXAMPL.ES

3-6. Let I,J,K,L,X,Y, and P be Identifiers, S a statement:

«t~oe_declaratlon» INTEGER I,J,K
EXTERNAL REAL X,Y
ITEM I
SET P
ITEMVAR X
REAL ITEM Y
INTEGER ARRAY ITEM J
INTERNAL STRING K

(array_declaration» INTEGER ARRAY XC0:10,0;10J
REAL ARRAY Y(X:P(L)Ji Comment' I legal

In outer block
STRING ARRAY IC0:IF BIG THEN 30 ELSE 3]
ITEMVAR ARRAY KC0:5,l:LJ
REAL ARRAY ITEMVAR ARRAY PC0;15J

'(label_declaration» LABEL L,X,Y

«orocedure declaration» PROCEDURE PJ S
PROCEDURE P(INTEGER I,J;

REFERENCE REAL Xi REAL Y) i S
INTEGER PROCEDURE P (REAL PROCEDURE lJ

STRING I,J; INTEGER ARRAY K); S
EXTERNAL PROCEDURE P(REAL X)
FORWARD INTEGER PROCEDURE X(INTEGER 1)
FORTRAN REAL PROCEDURE SIN

(define_specification» DEFINE CRLF = "CR&LF",
TTY="l" ,
TYPE(MSG):"OUT(TTY,MSG&CRLF)"

SAILON NO. 57 SAIL

3-7, Note that these sample declarations are al I given without the
se~lcolons which would normally separate them from the surrounding
declarations and ~tatements. Here Is a sample block to bring it al I
to~ether (again, let S be any statement, 0 any declaration, and other
identifiers as above:

[3 E GIN " S ,6 M P L E 8 LaC K "
INTEGER I,J,KJ
REAL X,Yi
STRING A;
I~TEGER PROCEDURE P(REFERENCE REAL X; REAL Y);

REG 1 f\I .
0; D; 0; ••• ;5; ., I ; S

END "P";

REAL ARRAY DIPHTHONGSC0:10,1:100J;

s; s; s; S
END u'S AMP L E 8 L 0 C K"

SEMANTICS

Scope of declarations

3-8. Every block automatJ ca I I y J ntroduces a new I eve I of
nomenclature. Any Identifier declared In a block's head Is said to
be LOCAL to that block. This means that:

a, The entity represented bY this Identlfier Inside the block
has na existence outside the blook.

b. Any entity represented by the same Identifier outSide the
block Is completelY InaccessIble (unless It has been passed
as a 0 a ram e t e r) 'n s I'd e the b I 0 e k •

3-9. An Identifier occurring withIn an Inner block and not
declared within that block will be nonlocal (GLOBAL) to It; that is,
the Identifier wi I I reoresent the same entIty inside the blocK and 1M
th~ block or blocks within whloh It Is nested, up to and Including
the level In which the Identifier Is declared.

SAIlON NO, 57 SAIL

3-10. The Scope of an entity Is the set of blocks In which the
e n tit Y I s rep res e n ted, u sin g the abo V e r u I e s, b y Its Ide 11 t I f 1 e r • A n
entity rray not be referenced by any statement outside Its scope.

Tyne Declarations

3-11. SAIL reserves either one or two 36-blt words for each
Identifier appearing In a type declaration (exception -. no sPace Is
reserved for Items -- see Item Declarations, 3-18), The USe of these
ce I I s fa II s I nto two c I asses Va I ues and descr I ptors -- depend I ng
on the tyP. preceding the Identifier. If an Identifier represents a
REAL or INTEGER (~OOlEAN) variable or an ITEMVAR, Its value is stored
direotly In the reserved cel I. For strings (2 words, see string
Declarations, 3~15) and sets (1 word, see Set DeclaratIons, 3-24)
Internal descriptors are placed In the reserved cells which allow the
running program to access these entities. These differences are not
reflected In the SAIL syntax. The User may treat enttties of both
kindS as if their valup,s were directly accessible In the reserved
locations, For this reason we wi I I henceforth refer synonymously to
a simple Identifier (one declared In a type declaration) and the
simole variable It represents, as a "variable".

3-12. Items dO not entirely conform to the structure described
above, Please suppress any enpuzzlement concerning the roles of
I te m San d I t e m v a r sun t I I aft e r YO u h a v ere ad the par a 9 rap h 0 nIt e m
Declarations, 3~18,

Numeric Declarations

3-13. IdentifIers which appear In type declarations with types
REAL or INTEGER can sUbseQuently be used to refer to numeric
variables. An Integer v~rlable may take on values from -2t35 to
2'35-1, A Real variable may take on positive and negative values
from about 10t-38 to 10t38' with a precision of 27 bits. REAL and
INTEGER variables (and constants) may be used In the same arithmetic
exoresslons; type conversions are carried out automatleallY (see
Arithmetic Type Conversions, 8-22 below) when neoessary,

SAILON NO, 57 SAIL

3-14, The BOOLEAN type Is currently identical to INTEGER. As YoU
w I I I see, BOOLEAN and 31 gebra I 0 express Ions are rea I I y eeul va 1 ent
syntact I ca I I y, The syntact f c oontext 'n wh I ch they appear determ I nes
their meanln~,Alqor'thms for determining the Boolean and algebraic
Inteteroretations of these expressions wi I I be given below. The
declarator BOOLEAN is Included for program clarity.

String Declarations

3-15. A variable defined In a String declaration is a two-word
descriptor containing the Information necessary to represent a SAIL
character string,

3-16. A String may be thought of as a varlable~length,

one-dimensional array of 7~blt ASCII characters. Its descriptor
contains a character count and a byte pointer to the first character
(S89 STRINGS, 16-14), Strings originate as constants at compile time
(String Constants, 10~16), as the result of a String INPUT ooeratlon
frorr, so~e device (see Input, 11-41), or from the concatenation or
decomposition of alreadY existing strings (see Concatenation
Operator, 8-37 and SUbstrings, 8"41>'

3-17. When strings appear In arithmetIc operations or vice-versa,
a somewhat ~rbltrary conversion Is performed to obtain the proper
tyoe (bY arbItrary we do not mean to Imply random See
String-ArithmetIc Conversions, 8-27), For thIs reason arithmetic and
String variables are referred to as "a!gebralc variables" A,nd their
corresponding expressions are called "algebraic Qxpresslons".
(Sugge!tlons for a better term wi I I be given a high priority), No
other direct, or uforced", conversions (eXcept for Integer/Real
conversions) are present in the language.

SAILON NO. 57 SAIL

Item Declarations

PrereQuisite

3-18. Please make no attempt to understand the sections of this
manual descrlblnq the associative capabl I Itles of the SAIL language
until you have read tht:3 artlcle describing Its basic flavor In
[Feldman), If you do not have access to a copy of the CACM, reprints
are avat lable from the Buthors, The !tructure and operatIons of the
assoclat1ve portions of LEAP and SAtL are so nearly Identical that tt
seerr.ed foo I I sh to repeat them como I ete I y here, However, a fu I I
description _of the syntax and a brief discussion of each construct Is
given here,

Iterrs

3-19. rne "Associative memory" of the SAIL system Is constructed
frolT. a universe of Items and a universe of associations among these
ItelT.~. An Item Is an entity which Is represented inside the machine
by Its Internal name and Is otherwise uninterpreted. Items maY be
combined to form "associations" Which expreSs facts (see Trloles,
7-6). They may a I so be cO II eoted I nto unordered sets (Set
Declarations, 3-24),

Iterr Genesis

3-20. The universe of Items Is dIvided Into three classes
differing In the wayan Item enters It:

1) A declared Item results from each declaration of an
Identifier to be of type ITEM, The declaration Causes a
Single Internal name to be created for the Item. Declared
Items do not obey the usual rules In recursive f un ctl6ns.
In particular, Items behave as If they were declared In the
outer block. Although they may referred to by name 6nly
within the scope of their declarations (see Scooe of
deolaratlons, 3~8), they maY be accessed from outside the
scope If they have been Included In (and not removed from)
anY associations or sets, or assigned to Itemvars which are
stl I I accessible, They are not deleted at block-exIt, It
mlqht be helpful to think of declared Items as the
associative analogue of algebraic constants,

SAILON NO, 57 SAIL

) A created Item results from the execution of a NEW eXpreslon
(see NEW Items, 9"6). Any created Item may be deleted from
the universe of Items (see DELETE, 7~10). A~atn, usual
block structure rules do not apply to any Items.

3) An association Item results from the execution of a

Daturrs

bracketed constru~tlon triple (Construction Retrieval
Dlstlnetlon, 7 .. 8). These may also be explicitly, but never
aut 0 til a tic a , I y, del e ted •

3-21. An Item of tyoe 1) or 2) may have an associated value
(08tum) of algebraic or SET ty~e which can be used or altered I Ike
any other variable. This Datum may represent a simple Or arraY
variable of any type except ITEM or ITEMVAR, Datums may be referred
to by use of, the DATUM operator (Datums, 10 6, Datum Assignments,
4-7),

Ite~var Declarations

3-;?2. .~n Itemvar Is a variable whose value is an Item cit Is a
ref ere n c e t 0 a nIt em' • .J u s t a s the s tat e men t s " X ... 3 j A ~ X" and "A ... 3 "
are e Qui val e n t wit h res p ~ c t t 0 A, the s tat e men t S " X ... [0 G E; A .. X " and
"At-EDGE" are equivalent with respect to A, if X and A are itemvars,
EDGE an Item. The use of an Itemvar Is eQuivalent to the Use of the
IterT to which It ref8rs, The dlff·erence Is, of courSe that the
It~rrvars may reference different items at different times,

3-23. Just as algebraic variables may be bound as loop variables
In FOR statements, Itemvars observe a special binding in the FOREACH
statement, This verY Important construct Is described In FOREACH
Statement, 7-14 below.

Set Declarations

3-24, Because the answers to many associative Questfons are
many-valued (al I the sons of Harry, for example), sets of Items are
provided. A SAIL set Is an unordered collection of Items containing
at rrost one oceurre~ce of any single Item, The more common Set
operations are available for convenient manipulation of sets,

SAILON NO. 5'7 SAIL

ArraY Declarations

3-25. In general, any data type which Is applicable to a sImple
variable may be applied In a.n arraY declaration to an arraY of
variables. Note, however, the restrlctfon (see RESTRICTIONS, 3-2)
prohibitIng ITEM ARRAY X as a legal declaration (ITEMS are
"constants"), a I though I TEMVAR ar raYs are a II owed. The ent I ty
reoresented by the name of an array, qualified with SUbscript
exoresslons to locate a particular element (e.9. A(I,JJ) behaves In
everY WaY like a simple variable. Therefore, in the future we shall
refer to both simple variables and sIngle elements of arrays
(subscrloteq variables) as "varlanles". The formal syntax for
<variable> c~n be found In VarIables, 10-2,

3-~6. Each subscr I pt fpr an arraY whl eh I s not Qua! I f I ad bY the
SAFE attr I bute w I II be checked to ensure that I t fa I Is With 1 n the
lower and upper bounds given for the dimension It specifies, An
overflo~ triggers an error message and Job abortion. The SAFE
declaration Inhibits this checking, re!ulttng In faster, smaller, and
bolder code,

3-27. Arrays are stor~d by rows. That Is, If ACI,J:J Is stored In
location 10000, then A[I.J+1J Is stored in location 10001,

3-?8. There Is no lImit to the number of dimensions allowed for an
arraY~ However, the efficiencY of array references tends to~decrease
for large dimensions. Avoid large dimensional ity If It Is not
necessarY.

3-29. The Item Instances stored In an Itemvar
datu~s whlcn are themselves algebraic or set arrays,
good deal of power, since an arraY of algebraic
dynarrlcallY associated with any Item.

arraY may have
This provides a
values oan be

3-30. Arrays declared In the outer blOck must haVe constant
bounds, since no Variable maY yet have been assigned a value, A
certain degree of e~tra efflclenoy Is possible In accessing these
arraYS, since they may be assigned absolute core locations by the
compiler, eliminating some of the address arithmetic. Constant
bounds always add a I Ittls effIciencY, even In Inner blocks,

SAILON NO. 57 SAIL 3-l2

3-31. For more details concerning the Internal structure of arrays
see DEBUGGING, 14 .. 8, SeparatelY Compiled Procedures, 15.,7 and ARRAY
IMPLEMENTATION. 16~33.

Preload SpecifIcatIons

3-32. Any arithmetic or String arraY which Is declared Tn the
out ~ r b I 0 c k maY be!' pre - lOa d e ct " wit h C (J n s tan tin for mat 1 0 n b Y
precedIng Its declaration wIth a <preload __ speoiflcatlon>. This
specl f lcatt6n gives the values which are to be placed In consecutive
core locations within all arrays declared Immediately following the
<preload_specification>, "ImmediatelY", In this cetse, means al I
Identifiers uo to and Including one which Is followed by
bound_pair_list brackets (e,g, In REAL ARRAY X,Y,1!(0:1~1J,WC1:5J;--
oreloads X.y, and 2; not w). It Is the user1s responsibilIty to
gUarantee that the oroper values wi' I be obtained under the SUbscript
maoplng.

3-33. The original values of prewloaded arraYS wi I I not be lost bY
restarting the orogram (most arraYS are cleared When their
declaratIons are processed), bLlt they will not be re'""nitlailled
either, The values can be changed by assignment statements,

3·34. For string arraYS, theorlglna! prewloadea values remain If
not changed by assIgnment statements. In general, however, string
arraY elements whose values have been changed during 6rogram
executions wi I I be set to nul I str!n~s when the prograM Is restarted.

3-35. Algebraic type conVersions wi II be performed at compile-time
to provide values of the proper types to pre-Ioad~d arraYs, The
compiler t"il II !"lot al low YOU to flll an arraY beyond Its meager
eanacity to be filled. You may, however, provide a ntJmber of
elements less than the total size of the array; remaining elements
wi I I be set to Zero or the nul I strIng.

SAILtlN NO, 57

Exarr.ole

3-36.

PRELOAD_WITH (5) 0, 3, 4, (4) 6, 2;
r~TEGER ARRAY TA8L[1%4,1~3JJ

SAIL

The fIrst five elements of TABL will be initial !zed to 0
(PRrentheslzed number is used as a repeat argument). The ne~t two
elen-ents will be 3 anti 4, fo\lo\oJed by four 6'5 and a~. The array
will look I/.ke this:

123

1 000
~ ()J 0 3
3 466
4 662

Procedure Declar~tlons

3-37. If a procedure Is typed, It'may return a value (See Return
Statement, 5-19) of the specl·fled type_ If formal parameters are
specIfied, they must be suppl jed with actual parameters In a one to
one correspondence when theY are cal led (see Function Desfgnators,
8-42 and Procedure state~p,nts, 6~2).

Forrral Parameters

3-38, F~rmal narameters, when specified, provide Informatto~ to
the bOdy (ex~cutable portion) of the procedure about the kInds of
Va lues wh I ch w, I I be prov"ded as actua I parameters I n the Ca II, The
tYre and comolexlty (simple or array) are specified here. In
addition, the formal parameter IndIcates whether the value (VALUE) or
adriress (REFERENCE) of the actual parameter wi II be sUDpl jed, If the
a d rl. res sis SUD P lie d I the v a ria b I e ~'J h 0 s e Ide n t i fer I 5 g , V e n a 5 a n
actuRI oarameter nay he changed by the procedure. ThIs Is not the
case If the value Is glvp.n,

Std LON NO. ,7 SAIL

3-~9. To pa~s a PROCEDURE by value or an ITEM by reference has no
reqdllY determined meaning. ARRAYs passed by value (reQuIring a
corn pie tee 0 p Y 0 P P. rat Ion) h a Vet' 0 t Yet bee n Imp I e men ted , The ref 0 r e
thpse Cases ~r9 noted ~s errors by the comf')ller,

3-40. The proper use of actual parameters is fUrther dls~ussed In
thA oaragraphs on Procedure statements, 6-2 and Function Des19nators,
8-4'-:,

For~ard Procedurp, Declar;:;.ttons

3-~1. A nrocAdure's type and parameters must be described before
th8 orocedure may be cRI ierl, Normally this is accompi ished by
entering the procedure declaratIon In the head of some block
containing the cal I. If, however, It Is necessary to have two
Drncedures, declared in SOMe block head, which are both accessIble to
statements in the comc0und tal I of that block and to each other, the
FOR~ARD construct permits the definition of the oarameter Information
for one of these procsdures In advanee of its declaration, The
nrocedure body must bO empty In a forward procedure declaration.
Wh8n the body of the procedure described In the forward declaration
Is actual Iy declared~ the types of the Drocedur~ and of Its
D3ra~eters rnust be Identical In both declarations, The declarations
must appear at the SRme level (within the same block head),

SAIlON N0. 57 SAIL

Exarrale

3-42.

B E C; IN" NEE 0 FOR W A Ii 0 "
FORWARD INTEGER PROCEOJRE T1(INTEGER I); COMMENT PARAMS DESCRIBED;

· . .

I f\1 T E G E R PRO C E U U R [T 2 (I N T E G E R J):
RETURN CT1(J)+3); COMMENT CALL T1 ;

INTEGER PROCEDURE T1 (INTrGER I); COMMENT ACTUALLY DEFINE T1;
RETURN elF 1=15 THEN I ELSE T2(1-1»; COMMENT CALLS T2;

• • • • • •
E f'J~) "N E ED FOR WAR U " ;

Notice thlt th~ forward declar~tlon Is reQuired only because 80TH
procedures are cal led In the bOdy of the block. If only T1 were
called froM stat~ments ""/thin the block, this example could be
Irr,.,lementer! as:

BEGIN "Nn ~ORWARD"

· ..
• • •

INTEGER PROCEDURE Tl(INTEGER I);
BEGIN

INTEGER PROCEDURE T2(J};
RETURN (Tl(J)+3);

RETURN' IF 1=15 THEN I ELSE T2<1-1»;
END "Tl";

t< .. T1CL);

END "NO FORWARD";

RecursIve Procedures

3-43. If q orocedure is to be entered recursively, the compiler
must be I nstructed to prov I de code for sav i ng I ts I oca I var I ab I as
when the procedure Is called and restor lng them when It returns. Use
thq typA-auallfler RECURSIVE In the declaration of Qny recursive
pr0cedure,

SAIL

3-44. The cornel fer can oroduce much more effIcient code for
non-reeurslva procp,dures than for recursive ones. We feel that this
gain in efficIencY mBrits the ne~esslty for declarIng procedures to
he recursive.

3-45. I f a orocedure wh ieh haS not bean dec lared recursl ve 15
oS.lled recursively, all its loeal variables (and temporary storage
I oeat Ions ass I gned by the comp I I er) w II I behave as I f they ware
globAl to the procedure -. no values wi I I be saved. Otherwise no I I'
etfRcts snould be ooservRd.

External Procedures

3 ... ~ 6 • A f I I a com p I led by S A I L rep r a sen t s e I the r a ., m a In" D r 0 9 ram
or a CO II ect I on of I ndependent procedures to be ca I I ad bY the ma I n
program. The method for preoarlng SUch a collection of procedures Is
descrIber) In Separately C01l1oi led Procedures, 15-7, The EXTERNAL and
r: 0 ~~ T R AN t Y De .. 0 u a I I fie r s a I low des c r Ip t , 0 n 0 f t h I? t Y Des 0 f the s e
~r~cedures and their parameters, An EXTERNAL or FORTRAN procedure
ij eel a ra t lon, I Ike t h (} F () R WARD dec I a rat Ion, doe s not Inc I u d.e a
~rocedure body. Uoth declarations Instead result In reQuests to the
IOAdsr to provide the addresses of these procedures to al I statements
which cal I them, This means that an EXTERNAL Procedure deelaratlon
(or the declaration of any External Identifier) may be placed within
anv blC)ck head, thereoy control J ing the scope of this External
'd~nt'fl~r within this proqram.

3-47. Any SAIL orocedure which Is referenced via theSe external
d~claratlons must be an INTERNAL procedure, That Is, the
tyos-QlJa Iff I er I NTERNAL must appear in the actua I dec I arat, on of the
~rr')c(\dura. Again, see SepAratelY Compiled Procedures, 15 .. 7 t

3"'48. The type-qua I If i e'r FORTRAN I s used to desc r I bf3 the tyee and
'"'ame of ::3.n external procedure which Is to be called using a DEC
Fortran oal ling sequence. AI I parameters to Fortran prQcedures are
by reference, In fact, the procedure head part of the declaration
n e~ d not bel n c I l.~ d e dun I e sst h e t y pes e x p e c ted b y the 0 roc 9 d IJ r e
differ from those provided hY the actual parametars--the nUmber of
" a ra rr e t e r SS u 0 r,J I I 9 d I and . the i r types, a r ep res u m e d correct, Fortran
~rocedures ar~ automaticnl Iy External Procedures, See RestrIction!
on Procedure Declarations, 3-53, Procedure statements, &-2, Functlo~
De~l~nators, 8~42 for more 'nformatlon about Fortran procedures,

SAILON NO~ 57 SAIL

Ex;·urple:

3-49,
FORTRAN PROCEDURE MAX:
Y+-~~AX(X.r.) ;

Para~etrlc Proeedures

3-50, The cal I Ing con~entlons for procedures with procedures as
arqu~ents, and for the exeoutlon of these parametric procedures, are
described Ln Procedure statements, 6"'2 and Function Designators,
8-42, ArY procedure PP whIch Is to be used as a parameter t6 another
procedure CP must not have anY nrocedure or array parameters, or any
parameters cal led by value, In other words, PP maY only have simple
reference Parameters, The number of parameters supplied In a calion
PP within CP, end theIr types, wi I I be presumed correct,

Ex~rr.o'e

3-51.

PROCEDURE CP (INTEGER PROCEDURE FP);
BEGIN INTEGER A,I; REAL Xi

• • •
A+-FP(I,X); COMMENT I AND X PASSED BY REFERENCE,

NO TyPE CONVERSIQN:
END "CP"}

INTEGER PROCEDURE PP (R(FERENCE INTEGER J; REFERENCE REAL V);
BEGIN

• • •

. . .
CP(PP)J

SAtLON NO, 57 SAIL

Defaults In Procedure Declarations

3-52. If no VALUE or REFERENCE Qualification appears Tn the
description, the following QUalifications are assumed:

VALUE Variables -- simple INTEGER, STRING, ITEM, ITEMVAR
declarations,

REFERENCE Arrays and Procedures,

Restrict/ani O~ Procedure Declarations

3-53.

l.) The scope of a formal parameter for a
Inelude statements within any pr~eedure
other words, Q may rAfer only to Its own
~aY, however, refer to variables which
orocedure. Here Is an example:

PROCEDURE Pl(INTEGER r);
BEGIN INTEGER JJ

PROCEDURE P2(INTEGER K);
BEGIN

INTEGER L;
L~IJ COMMENT THIS IS WRONG ~- WON'T WORK;
L~JJ COMMENT THIS IS ALL RIGHT;
L~KJ COMMENT CLEARLY ALL RIGHT;
• • •

procedure p dO~s not
Q declared withIn P, In
formal parameters. It
are local to some global

2) There Is no such thing as an ITEM procedure (use ITMVAR).

3) Fortran procedures 'can
parameterse Nor can a
types as a result,

not handle String, set. or Item
Fortran procedure return any of these

4) Go To statements appearing In a procedure body maY not name
statements outside that procedure body as targets.

5) Labels maY never be passed as arguments to procedures.

SAILON NO, 57 SAIL

Ueflne SoeciflcatJon

3-54. See the section on USE OF DEFINE, 12~0 for a complete
discussion.

Reoulrerrents

3-55, The user may, using the REQUIRE construct, specify to the
co~pl ler conditions which are reQuired to be true of the
ex~cutlon-tlme envlronm9nt of his programs, The requIrements fal I
Into three c.lasslflcatlons, described as follows:

Group 1 PNAiv1ES

3. - 5 6 • 1ft h e s p e c I f I c 3. t Ion " R E (~U IRE P N A M E S ., a p pea r sin apr 0 9 ram,
the COlToiler Is Instructed to save the external representations
(print names) of al I declared Item Identifiers. The functIons CVIS
and CVSI iney be used to convert from Items to Strings representing
thp. names of these Items (a.nd back), This feature Is not available
'.J n I e s s ,. R E Q :j IRE d" • Sea C v I S I 11 - 8 4 and f 0 I low I n g for d e 't a , , s ,

Group 2 -- Space requirements ~- STRING_SPACE, SYSTEM_PDL, etc.

3-57-. The I nc I us I on 0 f the spec I flea t t on "REQU I RE 1000
ST~ING~SPACE" will enSUrg that at I east 1000 words of st()rage will be
available for storing Strings when the proqram is run, Similar
provIsions are made for various push~down stacks used bY the
execut I on-t Ime rout i nes R.nd the comp i I ed code, I f a parameter Is
specified twice, or If separatelY compIled procedures are loaded (see
Senarately Comolled Procedures, 15-7), the sum of all such
specIfications wi I I be used. These parameters could also be typed to
the loaded proqram just before execution (see STORAGF. ALLOCATION,
13-22). but It Is often more convenient to specify dlfferenoes from
the standard sizes In the sOYree program. Use these specifications
only ,f messages from the running program Indicate that the standard
a I I 0 cat Ion s are not s u f fie len t • " R E QUI R E 3 0 NEW _ I T E t1 S" s p e c I fie!
that 30 Is a reasonable ~stlmate of the number of Items which wi I I be
c rea ted dynam I ca I I y uS I nq the NEW const r uct.

SAILON NO, 57 SAIL

Group 3 Other f II as -- LOAD_MODULE, LIBRARY

3~58, The Ineluslon of the' specIficatIon
R E () LJ IRE " PRO C S 1" LOA 0 _ MOD U L E, n HE LIB C 1 , 3 J" LIB R A R Y; w 0 u I din for m the
LOrJ.der that the file PROCS1,REL must be loaded and the lIbrary
HELI8,RELC1,3J searched wheneVAr the program conta1nlng the
specification is loaded. The parameter for both features should be a
string constant of one of the above forms, The deviee OSK, and fl Ie
extensIon ,REL are the onlY values permitted for these entries, and
are therefore assumed, \

3 - 5 9 , LOA'O _ t~ 0 0 U L E S (• R ELf I I est 0 bel 0 a d e d) may the rn s 8 I v e s
contain requests for other LOAD_MODULES and LIBRARYs. LIBRARY! may
only contain requests for other LIBRARYs, Duol tcate s~eoilicatlon!
are I n genera I merged Into sing I e requests (I f a f II e 's reauested
t.wice, it will be loaded only onee).

3-60.' SAIL automaticallY
"LI8SAI(1,3J" In each main
execution-time routines,

places a
program,

reQuest for
This librarY

the library
contaIns the

3-61. You have orobablY noticAd that a great deal of ~rlor
kno~ledge Is reQuired for proper understandIng of this section. For
more Information about PNAMES see Cvls, 11-8 4 and followfng. storage
allocation Is discussed In STORAGE ALLOCATION, 13 ... 22 below. The fOrm
anrj use of .REL files and libraries are described In "The Stanford
A-I Project Monitor Manual" [Moorer) and (WelherJ.

SAILON NO, 57

SYNTAX

4-1.

<asslgnrrent)

<algebralc_asslgnment>

<~et_asslgnment>

<swap_statement>

RESTRICTION

SAIL

SECTION 4

ASSIGNMENT STATEMENTS

· . -· . -· . -· . -
· . -· . -
· . -· . -

· . -· . -
· . -· . -

· . -· . -

<assignment_statement>
(swap_statement>

<alqebralc_varlable> "
<algebralc~express'on>

<Itemvar_varlable> ~
<constructlon_item_expresslon>

<set_variable> ~
<constructlon_set_exnresslon>

<variable> ~ <variable>

4-2. If the operator Is *, the expression (of whatever klnd) on
the right hand side must be a slmole or subscripted variable, or
DATUM«ltem primary», The * operator may not be used In an
assl~nment expression (see Assignment Expressions, 8'"'4). It Is valId
only at statement level.

SAILON f\JO, 57 SAIL 4-2

SEMANTICS

4-3, The assignment statement causes the value represented by an
exoresslon to be assigned to the variable appearing to the left of
the assignment symbol, You wi I t see later (see AssIgnment
EXoresslons, 8-4) that one value may be assigned to two or mOre
variables through the use of two or more assignment symbols, The
o()erat I on of the ass J qnment statement proceeds I n the fo II ow i ng
order:

a) The subscript expressIons of the left part variable (If
any) ,a r e e val u ate d fro m I eft tor I 9 h t •

b) The expression Is evaluated,

c) The value of the exoresslon Is assigned to the left part
varIable, wIth subscrIpt expressions, If any, having values
as determIned In step a.

4-4. This ordering of oneratlons may usually be disregarded.
However Jt becomes Important when expression assignments (Assignment
EXcresslons, 8~4) or function cal Is with reference parameters aopear
anywhere I n the statement. For examo Ie, I n the statements

1 .. 3;
ACIJ"3+(I .. l);

A[3] wi I I receive the value 4 using the above algorithm. If no
sUbscript calcul.atlons were performed until after the expression
evaluatlcn,A[1J would become 4, Be careful.

4-5. As
I terrvar the
exoressfon.

the SYntax Implies, if the left part variable Is of tYpe
value to be asslqned must be a construction Item
SImIlarly for sets,

4-6. However, anY algebraic expression (REAL, INTEGER (BOOLEAN),
or STRING) may be assigned to any variable of algebraic ty6e. The
resultant type wi I I be that of the left oart Variable. The
conversion rUles for assignments Involving mixed types are ml Idly
a~usJn9, TheY are Identical to the conversion rules for combining
mixed types In algebraic expressions (see ArithmetIc TYpe
Conversions, 8-22, String-Arithmetic Conversions, 8-27 below),

SAILON NO, 57 SAIL

Datu~ Assignments

4.7, The alqebrale or Set v&lue associated with an Item Is changed
using an assignment statement In which the left oart is a the WOrd
DATUM ol'eratlng on an Item Pr Imary, This Is valid s;tntactlcally
because the syntax for <variable> (see Variables, 10·2) lncludes this
DATUM construet, The eXpres!lon Is checked for validity and proper
tyoe conversIons are made before this kind of store occurs, One
hazard Is thst there are times when the compiler cannot verify that
an Item assigned to an Itemvar has a datum whose type matches that
exoected bY the Itemvar. Incorrect conversIons might wei I be made In
this case,

Swap Assignment

4-8, The ~ operator causes the value of the variable on the left
hend Ide to be swapoed with the value of the variable on the right
hand S'de, Algebraic type conversIons are made, If neCessary; any
other' type conversions are, as usual, Invalid. Remember, the ..
operator may not be used In aSSignment expressions,

Examples

4-9,

X"I"A+B; Comment If A, 8 and X are Real, I Integer.
the Real value of the sum Is truncated,
converted to an Integer, and stored In It
The truncated Value Is then converted to
a Real number and stored In X.

BEGIN REAL ITEMVAR XI
X"LOP(SET3);
DATUM(X) .. 5; Comment a conversion to 5,0 wI I I be made

before the store 'Is done, but there Is no guarantee
that the ltem Obtained by LOP(SET3) was not declared,
for example, a5 INTEGER ITEM A;

END;

SAILON NO, 57 SAIL 5-1

SECTION 5

EXECUTION CONTROL STATEMENTS

SYNTAX

5-1.

<condltl~nal_statement>

<for_statement>

<for_list>

<for_I I st_e lement>

::= <If_statement>
::= <If_statement> ELSE <statement>

::= Ir <boolean_expression> THEN <statement>

::= GO TO <label_Identifier>
::= GOTO <label_Identifier>
::= GO <label_ldentlfer>

::= <IdentIfier>

::= rOR <algebraIc_varIable> ~ <for_list> DO
<statement>

::= NEEDNEXT <for statement>

::= <for_list_element>
::= <for_list>, <for._llst_element>

::= <algebraic_expression>
::= (algebraic_expression> STEP

<algebraic_expression> UNTIL
<algebraic_expressIon>

::= (algebraic_expression> STEP
<algebraic_expression> WHILE
<boolean_expression>

::= WHILE <boolean expression> DO <statement>
: : = NEEDNEXT <wh I I e statement>

SAILON NO, 57

<dO statement>

<cese statement>

<return statement>

<done_statement>

<next_sta.tement>

SEMAN'T I CS

Conditional Statements

SAIL 5-2

::= DO <statement> UNTIL <boolean_expressIon>
::= NEEDNEXT <do. statement>

:: = <oase_statement_head> <compound_ ta II >

::= CASE <algebraIc_expressIon> Or P-EGIN

•
· . -, . - RETURN · . - RETURN · . - <expression>

· . - DONE · . -
· , - NEXT , . -

5-2. These statements provide a means wherebY the execution of a
statement, or a sar les of statements, Is depe'1dent On the logical
value produced by a Roolean exoresslon,

5-3. A 800 lean expression Is an algebraic expression whose use
Imolles that It Is to be tested as a logical (truth) value. The
rules for determinIng this value are given In Simple Expresslons, 8~9
and following,

If Statement

5-4. The statement foll'owin9 the opeator THEN (the "THEN oart") is
executed If the logical value of the Boolean expression Is TRUE;
otherwise, that statement Is Ignored.

If .t. Else statement

5-5. I f the 600 lean expres I on I s true, the "THEN part" I s executed
and the statement fo II ow I ng the operator ELSE (the "ELSE part") Is
Ignored. If the Boolean expreslon Is rALSE, the "ELSE part" Is
executed and the "THEN part" I s I gnoreo.

SAILON NO. 57 SAIL 5-3

Ambiguity In CondItional statements

5-6, The syntax given hera for conditional statements does not
fullY explain the correscondences between THEN-ELSE pairs when
conditional ~tatement5 are nested. An ELSE wi I I be understood to
~atch the Immediately precedIng unmatched THEN.

Exarr,ple

5-7.

COMMENT DECIDE WHETHER TO GO TO WORK:

IF ~WEEKEND THEN
IF GIANTS~ON_TV THEN BEGIN

PHONE_EXCUSEC"GRANoMOTHER DIED");
ENJOYCGAME);
SUFFERCCONSCIENCE_PANGS)

END
ELSE IF REALLY_SICK THEN BEGIN

PHONE_EXCUSEC"REALLY SICK");
ENJOY(0);
SUFFER(AGONY)

END
ELSE GO_TO_WORK;

SAILON NO, 57 SAIL

Go To Statements

5-8. Each of the three forms of the Go To statement means the same
t h I n g - - a nun con d I t Ion a' t ran s far 1st 0 b e mad e tot he" tar get .,
~tatement labelad by the label Identifier. The follow"lng rules
oertaln to labels:

1) All label Identifiers used In a program must be declared. The
declaration of a labal must be local to the block Immediately
surrounding the statement It Identifies. Note that compound
statements (~EGIN-END paIrs containing no declarations) are
not bloqks. Therefore the block

BE.GIN "B1"
INTEGER I,J; LABEL L1;
•••
I F 8 E 3 THE N BEG I i~ " C 1 "

• • •
• • •

• • •
END "Cl n ;

• • • GO TO L1
END "Bl"

I s I ega I.

2) No Go To statement may specify a transfer from a statement 51
outside a olven block to a target statement S2 Inside that
block. This Is automatic from rule 1, sInce the label
Identifying S2 Is not available to 51. Again the rUle does
not apoly to compound statements, as the above example
demonstrates.

3) No Go To statement maY specify a transfer from a statement
within a procedure to a statement outside that procedUre (YOU

can't Jumo out of procedures).

5-9. Labels wi I I seldom be needed for debugging purposeS, The
block neme feature (see DEBUGGING, 14-8) and the listing feature
which associates with each source line the octal address of Its
correspondln~ object code (see Listing Features, 13-13) should
provide enough Information to find things easily.

SAILON NO. 57 SAIL 5-5

5-10. Many program loops coded with labels can be alternativelY
exoressed as For or While looos, This often results In a souree
program whose organization Is somewhat more transoarent, and an
object program which Is more efficIent.

For statements

5~11. For and Whl Ie statements (see also FQREACH statement,
7-14) provIde methods for formIng loops In a program. The~ allOw
the repetitive execution of a statement zero or more times, These
stBtements ~I I I be described by means of SAIL programs Which are
functionAlly eQuivalent but which demonstrate better the actual
order of prooesslng. Refer to these eQuattons for anY Questlons
YOU might have about what gets evaluated when, and how many tlmes
each part Is evaluateo.

5-12. Let VBl be any algebraic variable, AE1, .t. AE8 any
alqe~rale exoresslons, BE a Boolean expreslon, TEMP a t em60rary
location, S e. statement, Then the following SAIL statements are
equivalent:

Using For Statements

FOR V8L ~ AE1, AE2, AE3 STEP AE4 UNTIL AE5,
AE6 STEP AE7 WHILE BE, AEd DO S;

Equivalent formulation without For Statements --

VBL .. AE1;
SI
V8L"AE2;
sa

SAILON NO, 57

Comment STep-UNT I L 1000;
V8L .. AE3;

LOOP1:
IF V8L- (SIGNCAE4)*AES) S 0 THEN
BEGIN

Si
VBL"V8L+AE4;
GO TO LOOP1

END;

Corrment STEP-WHILE loop;
V8l .. AE6;

LOOP2:
IF BE THEN BEGIN

S;

END;

V8L .. V8L+AE7j
GO TO lOOP2

V8L .. AE8;
s;

SAIL

If AE4 (AE?) Is a varIable, changing lts va1ue within the 1000
wi I I cause the neW value to be used for the next Iteration, If
AE4 (AE7) Is a constant or an exoresslon reQuiring evaluatIon of
some Operator, the value used for the step element will remain
constant throughout the executIon of the For Statement. If AE5 Is
an expressIon, It wj I J be re·evaluated before each Iteration.

5-13. Now consIder the For Statement:

FOR VBl~AEl STEP CONST UNTIL AE2 DO S;

where const Is a positive con,stant, The compllar wi II simolify
this case tot

VBL"AE1;
LOOP3:

IF VBl S AE2 THEN HEGIN
s;
V8l~VBl+CONST;
GO TO LOOP3

END;

SAIlON NO, 57 SAIL

If CONST Is negative, the line at LOOP3 would be:

LOOP3:
IF V8l ~ AE2 THEN REGIN

5-14. The value
te rrr I na ted, whethe r ,t
~xecutlon of a DONE
5-~3.Go To Statements,
u~lnq the algorithm
we I I-def I ned .•

of VBL when execution of the loop Is
be by exnaust I on of the for II st or by

or GO TO statement (see Done statement,
5-8), Is the value last assigned to It
above. This value Is therefore always

5-15. The statement S may contain assignment statements or
orocedure cal Is which change the value of VBl. Such a statement
behaves the Same way It would If Inserted at the corresponding
Dolnt In the eQuivalent loop described above,

Wh II e Statement

5-16. The statement

WHILE BE DO S;

Is eoulvalent to the statements:

LOOP:
IF BE THEN BEGIN

s;
GO TO LOOP

END;

S,~ILON NO. 37 SAIL

Do Statement

5-17. The statement

DO S UNTIL BE;

Is eoulvalent to the sequence:

LOOP:
S;
IF ~8E T~EN GO TO LOOP:

Case Statements

5-18. The statement

CASEAE OF BEGIN
S0; 51; 52; •.• Sn

END

Is functionallY equivalent to the statements:

TEMp .. AE;
IF TEMP = 0 THEN 50

ELSE IF TEMP = 1 THEN 51
ELSE IF TEMP = 2 THEN S2
• • •
ELSE IF TEMP = n THEN Sn

ELSE ERROR;

For aop Ilcations of this tyoe the CASE statement form 'N! II give
slqnlflcantly more efficient code than the eouivalent If
statements, Notice that dummy statements may be Inserted for
those cases which wi I I not· occUr or for which no entries are
necessarY, For example,

CASE AE OF aEGIN
50; ; S3; ; ; 56; END

:')rovldes for no actions when AE Is 1,2,4,5, or 7. When AE Is 0,
3, or 6 the correspondIng statement wi I I be executed.

SAILON NO. 57 SAIL

Return Statement

5-19. This statement Is Invalid If It appears outslde a
orocedure declaration. It provIdes for an early return from a
orocedure execution to the statement cal ling the procedure« It no
return statement Is executed, the procedure wi I I return atter the
last statement representing the oroc-dure body Is executed (see
Procedure Declarations, 3~37)t

5-20. An untyped procedure (see Procedure statements, 6-2) may
not return ~ value. The return statement for this kind of
orocedure consists merely of the word RETURN. If an argument Is
q I v en, It wi II caUse the com p I I e r to Issue an error message,

5 - 21 • A t y 0 e d pro e e d u r e (s e P. Fun c t Ion Des I 9 nat o.r s , 8 .. 4 2) m u s t
return e value as It executes a return statement, If no argument
Is oresent an error message wi I I be given. If the procedure has
an al"gebralc type, any algebraic expression may be returned as Its
value. type conversion will be performed In a manner deSorlbed by
Arithmetic Type ConversIons, 8-22 and String-Arithmetic
ConverSions, 8-21 below, If the procedure Is of type SET Or ITEM,
the araument must be an expression of type SET or ITEM.

5-22e If no RETURN statement 15 executed In a typed procedure,
the value returned Is undefined Cit could be anything p- try It,
It's fun),

Done Statement

5-23. The statement containIng only the word DONE maY be used
to terminate the execution of a FOR. WHILE, or FOREACH loop
exollcltly. Its operation can most easily be seen by means ot an
example, The statement

SAILON ~O. 57

FOR I~l STEP 1 UNTIL n DO BEGIN
s;
• • •
IF BE THEN DONE;
• • •

END

Is eQuivalent to the statement

rOR I~1 STEP 1 UNTIL n DO BEGIN
S ;

END;
EXIT:

• • •
IF BE THEN GO TO EXIT;
• ••

SAIL

In either case the value of I Is wei I-defined after the statement
~as been executed (sae For statements, 5-14).

5-24. The DO~E statement wi I I only cause an escape from the
innermost lopp In which It appears,

i\Jext Statement

5-25. A Next statement I s va II d on I yin a For statement, Wh II e
StBtement, Do statement, or Foreach Statement (see For Statements,
5-11, ete" FOREACH Statement, 7-14), processing of the 1000
statement Is temporar II y suspended. When the NEXT statement
apoears In a For or Foreach loop, the next value (set of ItemS) Is
obtaIned from the ror List (Assoolatlve Context) and assigned to
the eontrol led Variable (bound variables), The termination test
Is then made. If the termination conditIon Is satisfied, control
Is oaSsed to the statement fol lowing the For Statement or Foreach
statement, If not, control is retUrned to the Inner statement
following the f\Jc.XT statement, In While and Do loops, the
ter~lnatlon eondltlon ~s tested, If It Is satisfied, execution of
the loop terminates, Otherwise It resumes at the statement within
the I 00 p f 0 I low I n g th e N EXT 5 tat em en t ,

5-26, The reserved word NEEDNEXT must preceed FOR, WHILE, or DO
In any loop using the NEXT statement.

~AILON NO, 57

~. x~rro Ie

5-27.

NEEDNEXT WHILE ~EOF DO BEGIN
S .. INPUT(1,1)J
NEXT; Comment check EOF and terminate if TRUE;
r"INPUT(1,3)J
PROCESS_INPUT(S,T);

END;

SAIL 5-11

SAtLON hO, 51

SYNTAX

SECTION 6

PROCEOURE STATEMENTS

:IZ (groo.dure.ldentlfler>
::= (grocedur. IdentIfier> (

<actual:oarameter_llst>

<actua '_oarameter.1 1st> :: = <actua I_parameter>
::= <actual_parameter_llst> ,

<aetual_parameter>

<actual_~arameter> ::- (expressIon>
::= <array Identifier>
::= (procedure.ldentlfler>

SEMANTICS

SAIL 6-1

~·2. A ~rocedure statement Is used to Invoke the execution of
anunt~o.d orocedur' (a.e Procedure DeclaratIons, 3-37), It may
also be used to supoty parameters to tne procedure.

6-3, No valu. may be ,..turned fro", a procedure called by a
oroc.dur. statement, since there Is no soeclficatlon in the
statement t.,llng how to USI the value, The compIler determlnes
now 8 Droc.dure may bl used by notIcIng If a type was sPlclfied In
the procedure dlclaratlon_ After '.'cutlon of the crocedure,
cont,.ot returns to the statement ImmedIately following the
procedUre statement.

Actual Parameters

6-4. The actual parameters euopl led to a procedure must In
9'~.~.' match the formal paramet,rs described In the procedure
d.et.~atfon. As USual, the •• cantfon Is algebraic excresslons;
the tra",fer functions described In Arithmetic Type ConversIons,
e-22 and String-Arithmetic ConversIons, 8-27 wI II be acplled to
eonv.rt the tYDI of any algebraIc eXpression Dassed by VALUE to
the .falbralc tYD' reQulr.d by the D,.oeedure.

SAILON NO, 57 SAIL 6-2

Cal' by Value

b 5 , I fan 8 c t U a I 0 ar a me t e r I spa sse d b y V A L U E, 0 n I y the val u e
of the exple~slon Is glven to the procedure, This value may be
c hanged ere)(a ml "e d by the pro c e d u r e , 'Out t his w I I I I n no way
~ffeet any of th~ variables used to evaluate the actual
para~eters. Any alg~bralc expression, any Item or Set ex~resslon
~ay b~ passed by value~ Neither arrays nor procedures may be
~assed by value. See the default declarations for parameters In
Procedure Declarations, 3-37.

Cal I by Reference

6 - 6 • I f a ,n a (; t U a I par a mot e r I s pa 5 sed b y REF ERE: NeE , Its add res s
's p a sse d to the pro oe d u re , A I I a c c e sse s to the Va I u e 0 f the
parameter msde by the orocedure are made IndirectlY through this
address, Therefore any chanqe tne proc~dure makes In a reference
para~eter wJ~ I chanQe the ¥a1ue of the variable whlch waS used as
an act u a I par a fTle t er , T hI 5 Iss 0 met I me 5 use f u I. Howe v e r I fit's
not intended, u~e of this feature can also be somewhat confusing
as wei I AS moderatelY Inefficient. Reference parameters should be
0sed only where needed.

6-7, VarlableR, constAnts, procedures, arraYs, and most
eXnresslons maY be oassed by reference. Neither Items nor String
expressions (or string constants> maY be reference parameters_

6-8. If an expression is passed by reference, its value Is
first placed In a temporary location; a constant paSsed by
ref er e nee Iss to ra d .I n a u ~ 10 ue I 0 cat I on t The add r ISS of t his
location is passed to the procedure~ Therefore, any values
changed by th. proc.dur~ via r.fer~nc. parameters of this form
will b el n a c c e sl b let 0 t h luse r aft e rt he 0 roc e d u re e a I I • If t Me
c a I led or 0 g ram I s an a'ssam bl y lang uag e r 0 uti n I W h I 0 h sa v 8 s the
o a ra rr e t ere d d r e.ss , I t Is dan 9 e r 0 u 5 to p a 55 e Xo reS!5 I on s t 0 It,
sin c e t his • d d r' 5S w I I I b e use ci by t h ·e c 0 mp I I e r for 0 t h • r
temporary purposeS, A warning message wi I I be printed when
e x D res s Ion S are c a I led .b Y re f er e n c e •

SAJLON NO. 57 SAIL 6-3

6-9, The type of each actual parameter passed bY reference must
f)e Identical to that of Its corresponding formal parameter. An
exception Is made for Fortran cal Is (see Fortran Prooedures,
6-12), If an algebraic type mismatch occurs the compi ler will
create a temoorary variable containing the converted value and
oass the address of this temporary as the parameter. A warning
~essage wi I I be printed.

Procedures as Actual Parameters

~-1~. If .an actual oarameter to a procedure PC Is the name of a
nrocedure PR with no arguments, one of three things might happen:

1) If the corresponding formal parameter reQuires a value of a
type match I ng that of PR (I n the loose sense given above In
Actua I Parameters, 6-4), the orocedure I s eva I uated and Its
value Is sent to the procedure PC.

2) If the formal parameter of PC reQuIres a reference
procedure of I dent I ca I type, the address o~ PR is passed to
PC as the actual parameter,

3) If the formal pArampter requires a reference varIable, the
procedure Is evaluated, Its result stored, and Its address
passed (as with exoresslons In the Drevlous oaragraph) as
the parAmeter.

6-11. I f a ~rocedure name fo II owed by actua I oaramete rs aopears
as an actua~ parameter It Is eValuated (see Function Designators,
8-42), Then If the correspondIng formai oarameter requIres a
value, the result of this evaluatIon Is passed as the actual
oarameter. If the formal parameter reQuires a reference to a
value, It Is calleo as a reference expression,

Fortran Procedures

6-12. If the orocedure being called Is a Fortran procedure, all
8ctual parameters must be of type INTEGER (BOOLEAN) or REAL. AI I
such parameters are passed by reference, since Fortran wi' I only
accept that kind of ca II. For conven I ence, any constant or
expressIon used as an actual parameter to a Fortran procedure Is
stored In a temporarY cel I whose address Is given as the reference
actual parameter.

SAILON NO. 57 SAIL 6-4

6~13. It was e xplalned In Procedure Declarations, 3-37 that
for~al param&ters need not be deserlbed for Fortran procedures,
This a I lows a program to cal I a F' 0 r t ran procedure with varying
numbers of arguments 1 a fe~ture which extsts In DEC Fortran. No
ty~e conversion wl1 I be performed for such parameters, 0' c6urse.
If type conversion Is desired, the formal parameter deolaratfons
s h 0 u I d be i n e Iud e d In the For t ran pro c e d u r e dec I a rat I on; SA I L w I I I
USe the~ If theY are present.

A-14. To pass
first element (e.g,

an arraY to FortrAn, mention the address of Its
AC0J, or 8(1,1).

Irnolementation Details

6-15. See the paragraohs concernIng procedures In the section
0" I~plementatlon (PROCEOURE IMPLEMENTATION, 16-46) for
descrlotlons of the cal ling seauences and basic layout of SAIL
orocedures. See also SeparatelY Comol led Procedures, 15-7 for
~ore Information about these useful oonstructs.

Exarroles:

6-16.

8EGIN ,
To ea Ila.n untyperl procedure:

PROC(I+J,A[Q],L); . . .
E ~\ D ;
To cal I a procedure of type Integer with one Integer argument:

I"PROC(PROC(I»;

SAILON Nt), 57

7-1.

<associative_statement>

<Iooo.statement>

<assoclatlve.context>

<elerrent>

<>.. trlOle>

SECTION 7

LEAP STATEMENTS

::= <set_state~ent>
::= <assoclatlve_statemp-nt)
::= <loop_statement>

1:= <set_assignment>

SAIL

::= PUT <construction_Item_expression> IN
<set_variable>

::= REMOVE <retrieval_item_expression> FROM
<set_variable>

::= <Item_assignment>
::= D~LETE <retrleval_ Item_expression)
::= MAKE <construction_triple>
::= ERASE <retrieval_trlpla>

::= FOREACH (binding list>
<associative_context> 00 <statement>

::= NEEDNEXT <loop_statement>

::= (ld_llst> I
::= <ld_llst> SUCH THAT

::= (element)
::: <associative_context> AND <.Iement>
::= <assocIative_context> A <element>

:.:= <retrleval_assoclatlve_expresslon> IN
<retrleval_set_expresslon>

::= <retrieval_triple>
::= (<boolean_exoresslon>)

::= <~_derlved_set> =
<A_assoclatlve_expresslon>

SAILON NO. 57 SAIL

SEMANTICS

LEAP Introduetton

7-2. The bas I c ALGOL fao I II ty I n SA I L hss been extended with
syntactic oanstructs and semantlo Interpretations to refereMce sn
assocIative data store. ThIs extension was developed by J.
Feld~an and P, Rovner and Is described In [Feldman], The LEAP
fa c I I I t f e sin S A I L d' f fer s I i gh t I y fro m tho s e pub I Ish ed' nth e
CACM article, In the dlsc~ssron of the use of the assoclatlve
facl I'tles, reasonably stmole examples are given for each
construct, These examples and associated discussions should
emohaslze t~e differences between the SAIL Implementation and the
constructs pub' (shed In the CACM artIcle.

7-3. The LEAP constructs al I Involve manrpulat~ons of one basic
e n tit y, the 't , m • An' t em' 5 a c 0 nc e p t u a len t f t y w hie h , s
reoresented at execution tJme by a uniQue number, AssocIated with
each "'tern In the universe's a DATUM. The DATUM of an Item may be
an algebraic Quant1ty, an arraY of such Quantities, or a SET. The
OATUM assignment statement (see Datum Assignments, 4-7) Is used to
store the value of an ex~ress'on Into the DATUM of an ftem. The
DATUM of a declared ARRAY ITEM Is loaded automaticallY when the
nlock In which the ARRAY ITEM Is declared Is entered. The DATUM
of an Item maY alSO be referenced durfng evaluation of expresslons
(see Datums, 10-6), Exampfes:

INTEGER ITEM father,Jo9;
INTEGER ARRAY ITEM ages Cl:20J;
INTEGER a,b,c:

DATUM (father) ~ 21 ;
DATUM (ages) (bJ ~ b I 33
e ~ DATUM (Joe) • 12 ;

The DATUM operator Is Intended to I Ink the oow,rful assocIative
orocesslng routines deVeloped for manloulatlon of Items with the
alqebralc facilitIes of ALGOL. Tnl, lInk Is made as efficient as
possible .- only two machIne Instructions are reQuired to access
the DATUM of an Item.

SAILON NO, 57 SAIL

'ln4. Items or Information ~bout Items may be stored 1n a
variety of ways, The simple entity ITEM does not It Itself occupy
storsge. Instead, Instances of ITEMS are stored In ITEMVARS,
SETS, or associations, The simplest of these forms Is the
I T E M V A R : a nit e m may be" s tor e d ,. I nan I T E M V A R • E val u a t Ion 0 f
that ITEMVAR wi I I then yield the Item stored Into It. ITrMVARS
are thus roughly analagous to simple arithmetic variables. SAIL
3 I S oa I low s • r ray s of I T E M V A R s , with the obvious I n t ere ret a t 1 0 n ,
A typical deelaratlon would be "ITEMVAR ARRAY xC1:22,eJ 11J", or
"lr--JTEGER ITEt~VAR ARRAY y(1:20J",

7-5. Instances of Items maY also be stored as unordered
collections, or SETS, Facilities are provided for common set
operations (see Set Expressions, 9-2>. The SAIL system USes one
word of storage for each Item In a set. A set wi I I contain at
most one I nstance of a spec I f I c I tem: I f an I nstanoe of I tem X Is
alreadY In set S. then any subseQuent attempts to put an Instance
of X In S wi I I h~ve no effect. This Is In keeping with the
standard mathematical notion of set,

7-6, The third. and perhaps most Important, form of storage of
'te~ Instances Is the assoelatloM, or triple. Ordered triples of
Ite~ Instances may be ~rltten Into or retrieved from a s6 eclal
store, the associative store. The method of storage of these
trloles Is designed to fact I Itate fast and flexible retrieval.
SAIL USes aoproxlmately two words of storage for each triple In
the associative store. There Is at most one COpy of a trlole In
the store at any time, Once a triple has been stored In the
~ssoclatlve memorY, its component Item Instances maY not be
changed. In the eXamples which follow, a triple Is represented
by:

A • 0 = V

where A, 0, and V are Items or Itemvars. A, 0, and V are
mnemonics for the three eomponents of a triple: attribute, object,
and value, The exact syntactic rules for describing trIples are
discussed In SEMANTICS, 9-2.

SAILON NO, 57 SAIL

General Restrlcttons

7-7. The I~plementatfon of the associative store and other
for rr. S 0 f J t 9 m ! tor age Imp 0 s e s severa I I I m I tat Ion s on the LEAP
caoabl I Ity. The max'mum number of Items (as r&presented by their
unlaue numbers) Is 409~, This ariseS from an overwhelming desire
to store a trIple In one word of storage, and henc~ the
requlre~ent that an Item number be describable In 12 bits,

Construction - Retrieval DIstinction

7-8. The~e are two basic operations which are performed on the
three types of Item stores·- construction of a new element In
that store, and retrieval of some existing element In the store,
For so~e purposes, It Is neOessary to distinguish the operations
helng performed, This dlstlnotlon manages to find Its waY to the
syntax, In the discussion of aSSOciative expressions (Item
Constructs, 9-4), the syntactIc forms <construction_Item_primary>
and <retrlevat_ltem_prlmary> are discussed, The ascent from
prl~ary level to assocIative expressions preserVeS these
distinctions. ThUS, one speaks of a
<construction_Item_expression), or of a
<retrlevel_item.exoresslon>. Often the 8NF productions speak of
<>.. .. 1 tem_express f ons). Th' sis mere I y a shorthand to denote that
tw~ separate sets of productfons exist, one In which A means
"construct ron", and one In wh' eh ~ means "retr I eva' ft,

PUT and REMOVE

7·9. The verbs PUT and REMOVE are provided for east Iy altering
sets, After Initialization, all sets are empty. They may be
altered either by PUTting Item Instances Into them or by ex611clt
set assignment statements, The PUT statement Is executed as
fo I lowe: the construct t on I tem expreSS I on I s eva I uated, and must
yield a slngl. Item. An ,'nstance of this Item Is then recorded In
the s.t specified by the set varIable, REMOVE operates 1n an
analagous fashion, If an Instance of the Item to be REMOVEd does
not occur In the set, an error message Issues forth,

SAILON NO. 57 SAIL

DELETE

7-10. DELETE releases an Item from the universe of current
Ite~s. Some smal I amount of storage Is reclaimed In this Process,
as we II 8S the un I oue number assoc lated wI tt1 the Item DEL.ETEd,
Since there Is an UDoer limit on the number of Items, the DEL-ETE
statement can be used to free Item numbers for other uses, The
DELETE ~tatement In no way alters the Instanoes of the DELETEd
Ite~ which are preseMt In sets or assoelatlons, The user should
bp, sure that there are no Instances of the DELETEd Item occurring
In sets, Itemvars or associations, Attempts to reference a
DELETEd I~em. In any way will result In confusion.

MAKE

7-11. Associations may be added to the associative memory with
the MAKE statement. If the association alreadY exists In the
store, no alterations are made. The argument to the MAKE
statement Is a construction triple: that Is, a trlole composed of
construction ~ssoclatlve expressions, Every oonstruct In these
exnresslons Is Interoreted In a construction sense, The com6onent
associative exoresslons In this triple are eValuated left to
rloht, Some construets In these expressions (e,g, NEW, See NEW
Ite~s, 9-6 or In the c~se of bracketed triples) require that new
unique Item numbers be created. Examples:

MAKE Item1 e Item2 = Item3
MAKE I teml e I temvar1 = NEW
MAKE Iteml e Cltem2 e ltemvarl=)tem3J:ltemvararrayC23J

7-12. The last example Involves the use of a BRACKETED TRIPLE.
The braoketed trlole "cltem2 • ttemvarl : ItemJ" Which Is used as
an aSSociative expression Is Inserted In the associative store, A
new unloue Item number Is generated, which refers to that
a. s soc I at' 0 n • Va rio u s fun c·t Ion 5 (1ST RIP L E , FIR S T , SEC 0 N D , T ~ I R D

see Item Selectors, 9-5) may use an Instance of this new ltem
as the I r ar gUm9nt. Cons I der the fo I low I ng statements:

MAKE number e (part e hand = fingerJ : new (5);
FOREACH x,y SUCH THAT number e x = y AND

(ISTRIPLE (x) AND FIRST (x) = part) DO
count ~ count + DATUM (y) ;

SAILON NO, 57 SAIL

ERASE

7-13. Th& ERASE stat&mant Is orovfded to undo the damage done
by the .MAKE stAtement. The same general class of arguments must
be or~vfd8d. ERASE reoutres a retrieval trIOle as Its arg~ment,
thUS ettmJnatfng such Questionable construets as NEW from said
trloles, However, the eonstruct ANY maY aopear In a trIple
speclffeatlon to ERASE. ThIs allows a whole Slew of appro6rlate
assocIations to be erased In one statement. (Restrlctlon: ERASE
ANY. ANY E ANY Is eonsldered bad form, and Is as a direct result,
forbfdden), Samole ERASE statements are:

ERA~E Item1 - Item2 E Item3
ERASE ftam! • 'temvarl E Item2
ERASE ltemvarl • ANY E Iteml

SAILON NO, 57 SAIL 7-7

F01EACH Statement

7-14, Flexible se~rchlng and retrieval are the main motlvatlons
for using the set and aS$oclativa stores, The FOREACH statement
orovldes this retrieval faol Ilty, The FOREACH stateMent Is
essentiallY a looping ~tatement: the <statement> after the DO Is
executAd for each qroup of Item Instances In the store which
satisfIes the FOREACH soaolfleatlon, If there are no such groups
present In the store, the body of the statement Is never executed.
The <binding_list> soeclfi@s the Itemvars whloh will contain
results of the search,' For Instance, the simple construct
FOREACH x SU~~ THAT x IN setl DO procedure(x) causes the body of
the ~tatement to be executed once for 8ach Item Instance In the
set setl. ~urlng execution of the body of the statement, the
lte~var x evaluates to the Item retrieved from the set set1_
Consider, however, the FOREACH statement

fOREACH x SUCH THAT x IN setl AND x IN set2 DO statement

This spAclflcatlon may aopear ambiguous, and Indeed It Is, unless
we define the conceot of BINDING tne Itemvars In a FOREACH
specIfication, In an associative oontext, an Itemvar which
apoears I n the <b I nd I ng I J ~t> 's sa I d to bo FREE unt I I a search
specification has determined the first reQuirement on the value of
the I temver (I n a I ef t-to-r I ght scan of the
<associative context», After the first reQuirement, It Is said
to be 80UND,- Thus the <element> In the above example whlch reads
"x IN sAt1" soeclfles a search In which x Is free. The fact that
x Is free Implte! the searching operatIon. In the second element,
"x IN set2", x Is bound. Thus no search Is conducted here.
Instead, the Question "noes An Instance of the Item I am
considerIng for x appear In the set set2?" Is evaluated. The
an~wer "ust be TRUE In order that the statement be executed with x
evaluating to that Item. In summarY, then, the FOREACH statement
above specifIes one !earch (x IN set1) and one addItional
reoulre~ent (x IN set2 >,

S_~ILON NO. 57 SAIL

7-1~, An element of a FOREACH specIficatIon may also be a
oarentheslzed boolean expression. It Is of course reQuIsIte that
aJ I Jtemvars appearIng fn the boolean expression must be bound,
r ,e, no searching of the Assoolatlve store will be accompllshod
during the eva~uatton of the boolean expression, Example:

FOREACH x SUCH THAT x IN setl AND (DATUM (x) < 21) DO .,_

On I y members of set1 with DATUMs I ass than 21 w II' be sa I ected by
this specification. In the example above (FOREACH statement,
7-14), the secon~ <el~ment> cnuld also have been written 1n Its
ooolean form: (x IN set2 >.

7-16. The most powerful <element> construct Is a retrieval
triple, Such specifications make searches (for any FREE ItemYars)
Or verificatIons (In the case of comptetely BOUND elements) fn the
store of assocIations, For example:

1. FOREACH x SUCH THAT a • 0 - x DO PUT x IN set:
2, FOREAC~ x SUCH THAT a • 0 _ x AND b 8 g ~ x DO •.•

The aim of statement 1 Is clear -~ a search Is conducted thr6ugh
the ~ S 5 0 c I a. t I v est 0 ref 0 r a I I ass- 0 c I a t Ion s wit hat t rib ute " a " and
Object "0", If k such assocIations are dIscovered, then the body
of the statement Is executed k tImes, with x takIng on successIve
Va I u e s ea c h tim e t T he sec 0 n d e x amp I e Iss I m I I a r, but p I ace san
addltfonal constraint on the values of x whIch should be returned.
Since the seeond element (b • g ~ X) Is completely BOUND, no
search I s conducted, but e test Is made to ver I fy that the
association- beg _ x' Is In the store, where x' is SOme item
retrieved during the search for a 8 0 ~ X,

7~17. In general, an (associatIve context> Is satisfied by some
assignment of Item Instances to the rtemvars In the <binding lIst>
If all of the <element>s a-,.e satIsfied under that -asslg.nment. A
<boolean ex~r&ssJon> Is satIsfIed If It evaluates tn TRUE, A
<retrieval trlole> contaJnfnq no <set expression> Is satIsfied by
an asslgnmant If the assocratlon rt specifies Is In the unIverse
of associations, A <retrieval trlole> containing a (set
exoresslon> (or ANY) Is sat(sffed If there are, In the universe of
associatIons, any of the assocIations formed oy substItuting
elerrents of the set (or arbftrarY Items) In the position occuoled
by the <set exoresslon>.

SA!LON NO, 57 SAIL 7-9

7-18. WIth thIs concept of SATISFIERS, we proceed to the more
gAneral ease wIth more than on8 Itemvar cited In the binding 11st.
Suopose there are ex sueh ltemvars. Then the <statement> Is
executed onoe for each permutation of the universe of Items among
the a Itemvars whIch SATIsrY tne associative context, During the
execut I on of the <statement>, the ex I temvars w II I eVa I uate to the
particular permutation which SATISFIED the associative context,

7-1~. The above description for several Itemvars Is sOUnd but
slightly misleading, The SAIL Implementation makes no effort to
avo I d d up I I.e a tin g 2l part leu I a r per m uta t I on of Va I u e 5 w h I c h
satlsf'e~ the associative context, Thus the (statement> wI I I be
executed one OR MORE times for every permutation which satfsfles
th~ associatIve context. (Se~ Restrictions and Caveats, 7-21>,

SAIL 7 ... 10

7-20 .'£x:amp les o'f FOREACHstatements ·w I th severa I free
It P- fj'IVa '1",$ sO'9,el 'fle'd are:

1, TORE;AGH XI,Y,Z S,UDH THAT fatherex:y AND father.yEz DO ,.,
2.F" ORE AC-H ,x,:Z SLJ CH THAT 'fa the r e '(father • .x):z on '"
~ '. F.o·RE,;,A G HXI :~:S,U-:CHTHATxI N set A NO fat he r. x=y DO. t •

4. F ORE'AOH.x .,y :S,UC!+1 THA Tf·at he r e x: y a nd x IN se tOO •••

As It h ao pens,., land 2 .are -eaur Va lent , The co mp II era c t Ua I I y
reduces 2 to 1 by Inclu.d'lng~:adummy"t:emvar to be ana I·agous to the
Use :o:f "y"I'nthe 'flr'st :exam;pl;e,t Examo le·s 3 and 4 ,are precisely
eqU I val ant" t'hiat Is, thie \:statementwl I Ibe execut,ed with x andy
eValuatln,g t:~o .'al'l ·the or.d,e'l"edoalrs 'of I.tems which satisfy the
(el e,arl YEI'Qulv'alen',t) r·equ·lrements, There "s, however I a
eons Ider able dfff.;ere,n.c al nthe 's xecu t ron e f f I c ienc Y 0 f t h a.s a two
ex a Ito les • EXample3ls mo·r;e~·eff I c Ie n ts I nc e the "sat" Is probably
ou I tesm"a I I,~a n:d .,5 In.c:e thes:ear·ch.o'f theassoc la t I V'e memory with
only on,efreeltemvar Inth,s searoh speclflcatLon i.srather fast,
The :s8cond .e;)tsmp·Le., however, makes a search through the
assocl·a tl·ve me·m,o·'rY fO'f 'al I tt"te(-x, Y) ,pa I r,sand thend I Sea rds those
pair's f o.r whl:chanl n.sta n c,eof x does not occur In the "s e t" t

L,I ste·d b'e low In 'ordero'fdeor,eas In9 ·eff I c I encYare the val" i OUB
basl:cforms of <'element>s that ,are legal., The effect of a
statement ',5 u eh as2abov-e should be ,oa Ie u I a ted bYre due Ing It to
th·e form of 1. In th-e Il:rtb'el.ow, ·x, y, .and,z re,pre·sent frea
,terrvars, wner'e:e,S k, O"an.dV r·eoresent e I thar bound I temvars or
f·1 xed Items,

A •• ,0 - V Ve.'r I.'fl c'at , on tna·t t'he tr·"p I>e
Is I'n the store,

A IN 5 Ver If Icatlon that Item A I,s In set 5.
x IN :s AI I I t·em's x .1 n tn,e set 5"
A • 0 - x On I·Y the va·l·us Is free.
x • .y - V A tt'r .Ib u t·e an,d o.bJect are free.
A '. .X - V D-n.·I.;y th,e ~o'b Jec:t Is free.
)(• 0 - V Onl¥ ·tn.e attrlbut.e Is f I" e.e.
A •)(- :y O~bJ;;ect 'and v:al,u8 are free,
x •• 0 - :y A .tt 'r' LbU te ·and va·lue are fr,ee.
'X • /y - z PROH·LB.ITE.D

SAILON NO, 57 SAIL

Restrictions and Caveats

7-21. The SAIL Implementation differs In fundamental waYs from
the Implementation described by Feldman and Rovner In the CACM
article, Their FOREACH statem.nt builds a record of all the
per~utatlons which satisfy the assoelatlve context, being careful
to Include only one cODY of 'aoh sueh permutatIon. Then the
<statement> Is executed once for each permutation that was stored
durIng the retrIeval operation. The SAIL I~plementatlon USes the
assocIatIve context as a generator of satlsflers, ThUS one groUP
of satlsflers Is found, <statement> 15 executed for those
satlsflers, _ then another found, etc. until all groups of
satlsflers have been four"ld. The Imolloatlons of this methOd are
startllnq:
1. There Is absolutely no way to guarantee that a carticular
grouo of satlsflers Is not repeat~d. There are methods of cOding
around this ~roblem. The user can stuff Itemvar arrays with
results of a FOREACH and avoid duplications. In many search
specifIcations the nature of the searches (e.g. sets, where only
one cop Y 0 fan I t e min s tan c e c 8 n 0 c cur I nth e set·) a v (, Ids
duplicate satlsflers.
2. Operations within <statement> whloh change the assocIative
data store maY affect the subseQuent satIsfier groups retrieved.
Note the difficulty In the following:

F'OREACH x, y I I Ink • x = Y DO MAKE I Ink • x = new II nk

7-22. During and after the execution of a FOREACH statement,
the val~'s of the bound It,mvars are In general well-defined,
They eValuate to the psrmutatlon Which last satisfied the FOREACH
eontext. If a GO TO Is executed within the <statement>, the
Values are correct In that they oorrespond to the group of
satlsflers for which the (statement> was being executed, The onlY
case In which the Itemvars are undefined Is when the search
specifIed has been exhausted and tne associative context contains
a hoolean expression. The- explanation of this restrIction Is
Quite simple -- prior to the evaluation of a boolean expressIon,
thA core locatlons reservea for the Itemvars In the <blnd'"g_llst>
are stuffed with the ourrent satlsflers so that the evaluation of
the boolean expression may reference them.

7-23. Expression ease statements, conditional expressfons, and
orocedure calis are all Valid within an aSSOciative context
speclflc8tlon, provjded that al I ltemvars used In these constructs
are BOUND,

SAILON NO, 57

SVhJT AX

8-1,

<exoresslon)

<conditional_expression)

<asslgn~ent_exores5Ion>

<ex;)reeslon_l/st>

<algebraic_expressIon)

SAIL

SECTION 8

ALGEBRAIC EXPRESSIONS

· , .. · . -
: I =
, , -· . -
• t _ · . -
• t _ · , -
· , .. · . -
, . -· . -
· . -· . -· . -· . -
, , -· . -, · . -· . -· . -, ... · . -: : =

: : =
, , -· . -

t • -

• t -· . -· ...
t • _ · . -: : :

(elmple_expresslon)
(conditional_expression>
<assignment_expression>
<case.expresslon>

It <boolean_expression> THEN <expression>
ELSE (expression>

CASE <algebraIc_expression> Or (
<expression_list>)

<expression>
<expression_lIst> , <expression>

<algebr~lc_expresslon>
(boolean_expression>
<string_expression>
<set_expression>
<assocl~t've_expresslon)

(algebralc.expresslon>

<dlsjuntlve_expresslon>
(algebralc.expresslon> v

<disJunctive_expression)

<relational_expression)
<dlsjunctlve.expresslon> A

<relatlonal.expresslon)

SA 1 LON NO., 57

<leaD_relat'ona~)

<terrr)

<factor>

· , .. · . -· . -· . -
: : =

, . -.,

.- ." -· . -
, := •
: t =
: " .. · -• · •. • .. -
• · -· .-t " ... · · -
· . -· . -

<a~gebr9Jo_relatlonal)
<leap_relational)

<addlng.expressron)
(relatIonal_expressIon)

(reJatfonaf_operator>
(addlng.expresslon>

SAIL

<retrieval_item_expression> f
<retrJeval_set_8xpresslon>

<retrfeval_set_exoressfon>
(relatlona~ operator>
<retrreval_;et_exDresslon>

<retrfeva~_trlple>

<
> --
S
~
~

<term>

8-2

· . -... - (addIng_expression> <add_operator) <term>

: : = ...
: ::. -" . -· . -• .,"1 · . ,..-· . -· . -t" • 1M"

· .' .. t .• -

LAND
LOR
EQy
XOR

(factor>
<term> <muft.operator> <factor)

: : = •
::= I
::': = %
: : = L 51-{
::= ROT
::= MOD
::= UIY
::= &

:. : = < P r f m'a r Y>
::~ (prImarY) t <prrmary)

SAl l 0 I~ N (I ~ 5 7

<actua I_oaramete r ... list>

<actual_parameter>

<alqebralc_varlab!e>

<string_variable>

· .-· . -
: : =
: : = · . -· . -· , .. · . -· . -, . -· . -· . -· . -· . -, . -· . -· · . -· , -· . -
: : = · . -· . -· . -· . -
· . -· . -
: : = · . -, . -

· . -· . -
: : =

· . -· . -
: : =

· ... · . -· '-· . -· . -· . -
: : =

· , -· . -

(algebraic_variable>
- (prlmRry>
.., <primarY>
LNOT <primary>
ABS (primary>

SAIL

<string_variable> C <substring_spec> J
<constant>
<function_designator>
((~Igehralc_express'on>)
LENGTH (<retrleval_set_expresslon>
LENGTH (<string_expression>)
CVN (<Item_primarY>)
LOP (<string_variable>)
ISTRIPLE (<Item_expression)

(algebralc_exoresslon> TO
<algebraic_expression>

<algebraic_expression> TO -
<algebralo_expresslon> FOR

<algebraic_expressIon>

< pro c e d lJ r e _ Ide n t I fie r >
(procedure_identifier> (

<aotua I_parameter _I i st>

<actual_parameter>
<actua.l_parameter _I' st>

<actual_parameter>

<Axpresslon>
(array_Identifier>
<procedure_Identifier>

<variable>

<variable>

SAILON NO, 57 SAIL 8-4

SEMA\JTICS

Conaltlonal Expressions

8-2. A bondltlonal excresslon returns One of two Possfble
valueS depending on the logical truth value of the Boolean
exoresslon. Per the rules on evaluatIon of this truth value see
Sirnple ·Expresslons, R ... 9 and following, If the Boolean expression
(BE) Is true, the value of the conditional expression Is the value
of the expression following the delimiter THEN. If BE Is false,
thA other value Is used. If both expressions are of an algebraic
tyee, the pr~clse tyoe of the entire conditional expression Is
that of the "THEN ·part". Otherwise, both expressions must be of
oree I se I y the same type (Set, I tem, etc,,). Un If ke the nested If
statement problem, there can be no ambiguity for conditional
eXnresslons, since there Is an ELSE Dart In eVery SUch expressIon,

Exarrple

FOURTHDOWN(YAROSTOG01YARDLINE,IF YAROLINE < 70 THEN PUNT
ELSE IF YARDLINE < 90 THEN FIELDGOAL
ELSE RUNFORIT)

Asslqnment Expressions

8 R 4. The somewhat weird syntax for an assignment expression (It
Is equivalent to that for an assignment statement) Is nonetheless
accurate: the two function IdentIcally as far as the new valu'e of
the left part variable Is concerned. The dlff~rence fs that the
value of this left cart variable Is also retaIned as the value of
the entire expression. Assuming that the aSsignment ftself is
leqal (following the rules· given In AssIgnment statements, 4 .. 3
above), the type of the expresston Is that of the left part
Variable, This variable maY now partIcipate In any s~rroundtng
exoresslons as if It had been given Its new Varue In a se6arate
statement on the previous line. OnJy the ~ operator Is va~fd in
asslqnment expressIons, The .. operator Is val td only at statement
level.

SAILON NO. 57 SAIL 8-5

Exan~n Ie

8-5.

IF (I~I+1) < 30 THEN I~0 ELSE I~I+1;

Case EXpressions

8-6. The expression

CASE AE OF (E0, El, E2, •• ~ • En) Is eaulval~nt to

IF AE::0 THEN E0
ELSE IF AE=l THEN Fl
ELSE IF AE=2 THEN F.2 . , .
ELSE IF AE=n THEN En

ELSE ERROR

8-7. The type of the entire expression Is therefore that of E0.
If Any of the expressions E1 .t' En cannot be fit Into this mold
an error meSSage Is I ssued by the comp Iler w

Example

8-8.

OUT(TTY,CASE ERRNO OF("BAD DIRECTORY",
"IMPROPER DATA MODE",
"UNKNOWN 1'/0 ERROR", . , .
"COMPUTER IN BAD MOOD"»;

SAILON NO. 57 SAIL

Simple Expressions

8-9. Simple expressions are simple only In that they are not
conaitlonal, case, or assignment expressions. There are in fact
so~e eXciting complexities to be discussed with respect to simple
exoresslons, set, Item, and AssociatIve expressions are discussed
In the next se~tlon. Before continuing with a description of
alr.tebralc expressions In the following paragraphS, an explanation
of ~hat Is meant by a Boolean expression Is in order,

The doolean .Expression Anomaly

8·10. you wi I I notice that In the SYntax a Boolean expression
Is said to be equivalent to an algebraic expression. This Is
simply e. WaY of expressing syntacticallY that there are
autorratlcallY InVoked rules, 1) for obtainIng a logical truth
value from an expression which does not contain any logtcal
oper~tors or logical connectives, and 2) for obtaining an
a,ge~ralc (Integer) value from one which does, The rules are very
simple:

Inteqer, Real, or String to "Boolean"

8-11. The logical truth value of an expression 'X' which Is of
tYoe Integer, Real, or String Is the same as the truth value of
the expression 'X~0' t A String expression wi I I b~ converted t6 an
Integer one (see Strlng~Arlthmetlc Conversions, 8~27) before the
comparison Is made, This need not be done for a Real expresslon,
of course, since the Integer and Real reoresentatlons for ~ are
the same. This mean~ YOU can write expressions of the form

IF 1+3 THEN E1 ELSE E2
IF 1+3;t0 THEN E1 ELSE E2

wnen yoU rea I I y mean

One a p pi' cat Ion 0 f t his' r u lee a t"I b e f 0 u n din s eve r a I 0 f the
executIon time routines (ENTER. LOOKUP, etc,> where an errOr flag
Is returned which Is zero (FALSE) If the operation WaS successful
and non-zero (TRUE) If an error occurred. This flag may be tested
as a Boolean varIable (IF FLAG THEN fRROR("LOOKLJP FAILED")) Or to
determine exactlY what went wrong by eXamining Its actual Value,

SAIL.:i\J NO, 57 SAIL 8-7

"B"f)lean n to Integer

8-12. The truth value of an expression contalnlno loglcal
Cp~rqtor5 and/or ccnnectlvp.s may be determined by rules gIven
below (see Algebraic EXpressions, 8-16, Disjunctive Exorasslons,
8-19, LogicAl Exnresslons, 8-30), If this value Is needed to
determIne which part to execute In a conditional statement. whl Ie
s tat G men t ,or con d 1 t Ion 9. I e X pre s s Ion no act u a I n u m e rf c a I Va I u e
need be created for the expr~sslon -- the tests which determine
the truth value lead directlY to the correct program branch.
However, If this expression Is combined with other algeralc
exprp.sslons u-:;Ing some numeric operator, or If It Is assIgned to
an algebraic variable, some actuAl value must be r~turned for the
exoresslon. If thp. expression Is false, a zero Is returned. A
non-zero value indicates that the exoresslon Is true. The actual
value returned for true expressions may differ from time to time,
but It Is Quaranteed non~zero,

8-13.

Pr~c~dence of Algebraic Operators

8-14. The binary operators In S·A.IL generally follOW "normal"
preced~nce rules. That Is, exponentiations are perfor~ed before
multiplIcations or divisIons, whIch In turn are performed before
additions and sUbtractlonsl etc, ThA lOgical connectives A and v,
wher, they occur, are performed last (A before v). The exact
crec~dence of operators Is described In the syntax above, The
orGer of oceratlon can be changed by including parentheses at
appropriate points (see Primaries, 8-39).

8-j5. In an eXpression where several operators of th. same
precedenoe occur at the Same level, the operations are performed
fro~ left to right, See Algebraic Expressions, 8-16, Disjunctive
Exor~ssions, 8-19 for soeclal evaluation rules for logIcal
COnril?ct I ves.

S A I L I.J ,\j NOt 5 '7 SAIL

AI~ehralc Expressions

8~16. If an algebraic exoresslon has as its major connective
the logical connective "v H , the expr~sslon has the logical value
TRUE. (ar I thmet I c val ue ~;Of'!'1e non-zero Integer) If either of Its
conjuncts(the expressions surrounding the "vn) Is true; FALSE
(') t t'l e r w I s e •

8-17. Av8 does NOT produce the ~It~wlse Or of A and B if they
are 81gebralc expressions. Truth values combined by numeric
op8r8tors wi I I In generRI be meaningless (use the operators LOR
anri LAND for bit operatlon~).

8-18. The user should be warned that in an expression
contAining logical connertives, only enough of the expressIon Is
evaluated (from left to ri~ht) to uniquely determine Its truth
val~e, Thus In the expression

(J<3 v (K~K+l) > 0),

K i-. I I I no t
exnressjon Is
exnression

be inerementerl
a I ready known

If J Is less than 3 since the entire
to be true, Conversely In the

(X ~0 A SQRT(X»2) (see Disjunctive Expressions, 8-19),

there Is never any danqer of attempting to extract the square root
of a negat f ve X, s i nee the fa II ure of the first test test I f I as to
the falsity of the entire expression -- the SQRT routine Is not
eVAn called In this case,

Disjunctive Expressions

8~19~ If a disjunctive 'expression has as Its ~aJor connective
th8 logIcal connective "A", the expression has the loglca.1 value
TRUE. if both of Its disjuncts are TRUE; FALSE otherwise, Age.in,
If the first diSjunct Is FALSE a logical value of rAl"SE Is
obtRined for the entire expression without further evaluation.

S A I l Ii ~J i~ O. 5 7 SAIL

Rel?tio~al Expressions

8-20. If any of the binary relational operators Is encOUntered,
corle Is nroduced to convert any String arguments to Integer
numb~rs, Then tYPA conversion Is done as It I! for + operatIons
(S0S Arithmetic Type Conversions, A-22). The values thus obtaIned
arp r,o~pared for the Indicated condition. A Boolean value TRUE or
FALS~ Is returned as the value of the expression. Of coUrse, If
thi~ expression Is userl In subseQuent arithmetIc operations, a
conversion to Integer (~ee "Boolean" to Integ,.r, 8-12 above) Is
perfnrmed to obtain an Intager value.

8-~1, Leap relationAl orerators are discussed In depth In a
later section.

Arithmetic TYpe Conversions

8-2~. The binary arIthmetic, logical, and String operatlons
which follow will accept: combinatIons of arguments of any
alq90ralc types, The tyoe of the result of such an operatlon Is
sometimes deoendent on the type of Its arguments and sometlmes
flxe rl , An argument maY be converted to a different algebraic type
before the operation Is oerformed. The following table describes
the results of the arithmetic and logleal oper~tlons given varlous
cOMbinatIons of Real and Integer Inputs, ARG1 and ARG2 represent
the tYpes of the actual arguments, ARG1* and ARG2* represent the
types of the arguments after any necessary conversions haVe been
marie,

SAILni'~ NO, 57

OPE~.A T I ON

+ -

L A ~lD LOR
EQV XDR

LSH ROT

I

MOl) D I V

,6,RGl

INT
REAL
INT
REAL

INT
REAL
INT
REAL

INT
REAL
INT
REAL

INT
PEAL
INT
REAL

INT
RE.~l"
INT
REAL

ARG2

INT
1 N,'
REAL
REAL

INT
INT
REAL
REAL

INT
INT
REAL
REAL

I ~~ T
INT
REAL
REAL

INT
I ~J T
REAL
REAL

ARG1.a. ARG2.a.

INT' INT
REAL REAL
REAL REAL
REAL REAL

INT INT
REAL INT
INT REAL
REAL REAL

INT INT
REf'..L INT
I NT. INT
REAL INT

REAL REAL
REAL REAL
REAL REAL
REAL REAL

INT INT
INT INT
INT Il'-JT
INT 1 [\IT

~ Unless AF!G2. Is <,', for the operator ~

SAIL

"ESULT

INT*
REAL
HEAL
REAL

INT
REkL
INT
REAL

INT
REAL
INT
REAL

REAL
REAL
REAL
REAL..

INT
INT
INT
INT

8 - 2 4 . A n I n t e 9 e r I s con v e r ted to aRea I n u m be r Ins ue haw a yo
t h :1 t 1ft his Rea I n u f'T1 b e r i 5 con v e r ted t:l a c k t 0 a n Int· e g e r, the , am e
Inte0er value wi I I result, This Is true unless the abs~luta value
of the numbAr Is greater than 134217728. Som~ low-order
siqrlftcance wi I I be last for Integers greater than this
mar.lr.ltude.

8-?5. A Real number Is converted to an Integer usl"g the
following formula:

I r tag e r .. S I G N (Rea I).a. { I a r 9 est I n t e g' e r I sue h t hat r S A 9 5 (Rea I)) •

This fUnction will produce I·nvalld results for Real numberS with a
maqn1tude greater than 134217728.

SAILON NO, 57 SAIL 8-11

8-26, If a String 15 ~resented as an argument to any of these
operations, It Is converted to an Integer. If an Integer Or Real
argu~ent Is ores9nted to the concatenation operator C&), It Is
converted to a one-character string, ~ere are the rules:

Strlng·Arlt~metic Conversions

8.27. If a String Is presented as an argument to an arithmetIc
operator, as a (value) parameter to a procedure which expects a
Real or Integer value, or as an expression to be stored bY an
asslqnment _statement Into a Real or Integer variable, an Integer
value Is created for It as follows:

If the string Is the null string (length=0), a 0 Is returned
as Its 'Integer Value', Otherwise a word which haS Its lefthand
29 bIts 0, the rightmost 7 bits, containing the fIrst character of
the String, Is returned Is Its 'Integer value'. For/Instance, the
Strl,.,g "ABCDE" has as Its 'Integer value' '101, the octal
reoresentatlon of the letter \A'. This Integer will then be
conv~rted to a Real number, If necessary,

8.~8, I f an I nteger or Rea I number I s presented where a str I ng
Is exoected. a one character String wi I I be created whose
character consists of bits 29-35 (the rightmost seven bits) of the
numeric value, A Real number Is not converted to an Integer
before the conversion, For Instance, the expression

"STRING"& '15 ~ '12

will result In a Str Inq Which is 8 characters long, The last two
characters are the ASCII codes for carriage return and line feed,
respeotlvely.

Adding ExpressIons

8-29, AI I the o~erators grouped In the semantIc class
(adc_operator) al I operate at the same preoedence level, Th~ user
must so~etlmes provide parentheses In order to make the meaning of
Such exoresslons absolutely unambiguous, The + and - operators
wi I I do Inta~er addition (subtraction) If both arguments are
Inte~ers (or convert~d to Integers from strings); otherwlse,
rour.ded Raal addltloM or subtraction, after necessarY conversions,
Is aone.

SAILnN NO, 57 SAIL 8-12

8-30. LAND, LOR, XOR, and EQV carry out bit-wise And, Or,
ExclusIve Or, end Eoulvalence operations on th~lr arguments, No
type conversIons are done for these functions, The loglcal
connectives ~ and v do not have this effect -. they sfmolY cause
tests and Jumps to be comp II ed, The type of the resu Itt s t~at of
the first operand, Th t! a I lows axoress Ions of the form X L.ANO
'777777777' WhAre x Is Real, If they are really deslred i

8-31. CurrentlY the values
produced bY these operators (and
available to. the user.

Terrrs

of the
those

ArithmetiC Multlotlcatlve Operators

various oVerflow flags
which follow) are not

8-32. The oo8ratlon * (multiplication), like + arid -,
r eo r as e n t sIn t ~ g e r m U I tip I I cat Ion 0 n I y I f both a r gum en t S are
Inteqers; Real otherwIse, Integer multiplication uses the IMUL
machine Instruction .. - no double-length result Is available,

8 .. 33, The / Operator (division) alwaYS does rounded Real
division, after converting any Integer arguments to Real.

8·34. The % operator has the same type table as +, -, and -.
It performs whatever division Is appropriate.

8-35. LSH and ROT provide logical shift operations on their
first arguments, If the Value of the second argument Is posltlve,
a shift or rotation of that many bIte to the left Is Derformed.
If It I, negative, a right-shift or rotate Is done. To obtain an
arithmetic shift (ASH) oberatlon, multlolY or divide br the
aporoPrlate Dower of 2' the compiler will change this operation to
a shift operation,

8-36, DIV and MOD force both arguments to be Integers before
dividing. X MOD Y Is the remainder after X DIV Y Is performed
(X MOD Y = X • (X OIV Y)*Y)S

SAILON NO, 57 SAIL

Concat9natlon Operator

8-37. Thl~ operator produce! & result of tYoe String, It Is
the Strlnq wIth length the sum of the lengths of Its arguments,
eontalnlng al I the characters of the second string concatenated to
the end of al I the characters of the fIrst. The ooerands wI I I
first be converted to strings If necessary as desorlbed In
S t r i n 9 .. Ar I t h met Ice 0 n v e r s Ion s, 8 .. 2 7 above • The nor rn a I use of the
& operator Is to col '£let lines of text, from Several other string
sources, which wi I' sUbseauently be sent to an output device,
NUMbers can be converted to strings representing their external
forrrs (and _ vlce",verse) through explicit calls on execution time
routines I Ike CVS and CVD (see Execution Routines, 11-1 below),

Factors

8-38. A factor Is either a orlmary or a primarY raIsed to a
Dower represented by another primary, As usual, evaluation Is
frorr "left to right, 50 that A,9 ... C Is evaluated as (A,B),C. In the
factor X,Y, a suitable number of multiplications and additions Is
oerformed to produce an "eXact" answer If Y Is a posItive Integer.
OtherwIse a routIne Is called to approximate ANTILOG(Y LOG X).
The result has the type of X In tne former case. It Is alWays of
tYoe Real In the latter,

Prirrari8!

8-39. A ~rlmary reoresents an arithmetic or string value which
alwaYS acts as a unit In any binarY operatIon. It Is either an
eXDresslon surrounded bY oarenthesles which Indicate that al I
Internal operations should be performed before combining It with
other thIngs, or one of mYriad other constructs whlcn wi I I be
considered separatelY.

Variables and Constants

8",40. These are elearlY prImary Objects, TheY are values
contained In soeclfle core locations, or In parameter stackS, or
In the case of some ~umer'c eonstants, they are ImmedIate
ooerands,

SAIL.nN NO, 57 SAIL 8-14

SUbstrings

8-41. A StrIng varIable name which is aual Ifled by a sUbstring
specifIcation reoresents a part of the named string. STeX rOR YJ
feOfAsents the Xth through the (X + Y - 1)th characters 6f the
String ST, STeX TO YJ represents the Xth through yth characters
of ST, ~TrX TO MJ represents the Xth through LENGT~(X)th
eharacters of ST. If at any tIme an attemot Is made to compute a
sUbstrIng with a negatIve length, or with X<1, or with length L
such that X+L"1 > LENGTH(ST), the Job wi I I be term~nat8d with an
error message. STCX FOR 0J Is the nul I String (Ien~th = 0, no
characters) ..

Function DesIgnators

8-42. A functIon designator defInes a single value. This value
Is produced by the execution of a tyoed user procedure or of a
tyoed execution-time routine (ExecutIon Routines, 11-1), ror a
function desIgnator to be an algebraic orlmary, Its prOcedure must
be declared to have an algebraic type. untyped procedures maY
only be oal led from procedure statements (see Procedure
Statements, 6~2)' The value obtained from a user-defined
~rocedure Is that provided bY a Return statement wIthin that
procedUre, If the procedure does not execute a Return statement,
the va I ue m I qht be anyth I nq at a II, A Return Statement rna typed
orocedure must mention a value (see Return statement, 5~19).

8.43. The rules for suoplylng actual oarameters 1n a 'unction
designator are 1dentlcal to those for supplying parameters Tn a
procedure statement (see Procedure statements, 6~2).

8-44, Sev.ral of the bonstructs given here as prImaries ~ave
the form of function destgnators, However, the operatIons
necesSarY to obtain the va'Iues of these oonstructs are generally
e 0 rn p I led d , r e c t I yt n t 0 the program. D e So r , p t Ion so' these
function! foltow:

SAtlON NO. 57 SAIL

Length

8-45. LENGTH Is always an Integer-valued function, If Its
arpu~ent Is a set exoresslon, the result Is the number of Items In
the set. I f the argument I s a str' ng, Its 'ength 's the number of
charqcters In the string, The length of an algebraic expression
Is always 1 (see Strlng~Arlthm.t'c Conversions, 8~27).

Lon

8-46. Th. LOP ooerator apol led to a String variable removes the
first character from the StrIng and returns It In the form glven
In StrIng-Arithmetic Conversions, 8-27 above, The string no
longer conta Ins th I s character. l.OP app II ed to a nu I I str I n9 has
a zero value, If the argument Is a Set expression the result's
an Item. This case ts described below (Item Constructs, 9~4)t

Cvn

8-47. CVN has as Its vAlue the Integer Which Is the Internal
re~resentatlon of Its Item argument, This function Is highly
Imol~mentatlon.dependent, and ehould only be used by oeople who
are wf Illng to fol low the compIler writers around a lot, Its
Inverse function Is eVI, described In Item Constructs, 9-4 below,

Lnot

8.48. The unary o~erator Lnot produces the bitwise oomplement
of Its (algebra Ie) argument, No type conversions (except strlngs
to tnt.gers) are oerformed on the argument. The type of the
result (meaningful or not) Is the tYoe of the argument.

Abs

8-49, The U"arY operator ASS Is valid only for algebraic
QUantftles, It returns the absolute value of Its argument.

UnarY Minus

8-50. -x Is eoulvalent to (0-X), No type conversIons are
perfcrmed.

SA I LON ~,O ..5 7 SAl L. 8-16

800ieanPrlmartes

,8,.51. The unarY Boola,an operator"" apD I jed to an argument BE
has tha 'Va,lu'8 TRUE If BE 1'5 fa,lse,and FALSE If BE's true.
N'otlce that .. A J s :n'otth,eb I twlse eom,pl amant of A, If A is an
a ';1 Qebrale va Ilue • 1f 'us:eds.s ana 19 ebr a I e value, .. A's. s J mp I ~ " If
A~ o (s'e e "Bo 0 'I.e,!! nn to Integer, ,8-12) I some non - ,z e r 0 In t e g 8 r
otherwise,

8'~52. Istr It'le (IE) :ts TRUE :f fIEI s an Item wh leh descrIbes a
br a'c ke ted t rJ pi ,e .1 tlsF' ALsEoth:er ~dse, I fIE Is not an Item
ex 0 res s :f 0 n , t'h e ;Oom.pllar w'l 1100 m pi al n b' t t e r I y ,

ISTRIPLt 1 rA.B~VJ) 1s true,

I STRIPLE <d·, cia re d I tern.)) I s :f.'I!l'ls e •

SAILON NO, 57 SAIL

SECTION 9

sr.r AND ASSOCIATIVE EXPRESSIONS

SYNTAX

9-1.

<)...set~term)

(>.. .. set_factor>

<sAt_variable)

<).. .. I tem_8xpr _I' st>

<assocfatlve_oDarator>

· ... · . -
· . -· . -· ... · . -
· . .. · ...
: : =

· ... · . .. · . -· ...
· , -· . -· . .. · ...
: : :
: : = · ... · . -
· . -· . -
, . -· ... · ... · . -
· ... · . -

(~_set_term>

(A_set_expresslon> U <A_set_term>

(~_set_factor>

(~_set_term> n (A_sat_factor>

(A_set_prlmary>
(A set factor> - (A_set_prlmary)

PHI
(set_variable>
(A_Item_expr_llst)
((A_set_expression>
(A_derived_set>

(variable>

(A_item_expression>
(A_ltem_expr_llst> , (A_item_expresslon>

(~_as50olatlve_expr)

<associative_operator>
(A _ ass 0 c I a t I v e ._ e x p r)

; : = • · . - \ · ... :.: = •

(associatIve_expression> ::= (A_8ssoolatlve_ ex or>

()... assoelatlv,_expr> ::= (A_item_expression>
::= (A_set_expresslon)

SAILON NO, 57 SAIL 9-2

<~ Item_expressIon> ::: <~_ltem_pr'mary>
::= <selector> (<~_Item_pr'mary>)
::= (<A_'tem_prlmary> • <A_item.Drlmary> -

<A_item_prtmary> J

(construction_item_prIm> ::= <Item_prImary)
::= NEW
::= NEW (<algebraic_expression)
::= NEW (<array_name>)

<retrleval_ltem_prlm> ;:: <ftem_prlmary)
::= ANY

<ttem_prlmary> ::: <Item_Identifier>
::= <Itemvar_varlable>
::= CVI (<algebraIc_expression)
::= COP (<set_varIable>)
::= LOP ((set_variable>)

<A_trlole> ::= <A_derived_set> E
<A_assoclatlve_expresslon>

<selector> ::= FIRST
::= SECOND
::= THIRD

<Ite~var_varlable> ::= <variable>

(set_variable> ::= <variable>

<'eao_relatlonal> ::= <retrleval_assoclatlve_expresslon> IN
<retrleval_set_express 1on>

::= <retrl~val_assoclatJve_expresston)
<reiatlonal_operator>
(retr'.va'_ass6clatve_ex~resslon>

::z <retrieval_triple>

SAILON NO, 57 SAIL 9-3

S E ['1 ANT 1 C S

Set EXpressions

9-2. Three rather standard operators are Implemented for use
with sets. These are union Cu), Intersection (n), and subtraction
(-). These operators have tne standard mathematIcal
Interpretations. The only possible confusion pertains to
subtraction: If we perform the set operation set1 - set2, and If
there Is an 1 nstance of an I tem x In set2 but not In setl, the
subtractIon proceeds and no error message Is gIven.

Set Primaries

9-3. In additIon to the <set varIable>, there are three set
prlrrarles: the empty set PHI, a set-composed of a '1st of ltem
ex~resslons, and derived sets. The empty set Is the set with a
LENGTH of 0. Its use Is unrestricted. A set primary which
resu Its f rom a II st of I tem express Ions I s out together as each
Item expression Is evaluated. DerIved sets are res.lly sets of
answers to Questions which search the associative ~emory. The
conventions are:

8 • b
e ' b
e * b

al I X such that a • b _ x
..... a I, x SLlch that a • x _ b

(a • b) u (a ' b)

Exa~ples of set primaries:

PHI
(I tem1 , I tem2 , I temorocedurel)
(Iteml.ltemvar1)

SAILON NO. 57 SAIL

Iterr Construets

9.4, There are several SAIL functions whIch Yield Items when
eValuated, this Is actue.IIY a ra.ther ambiguous statement, slnoe
Ite~s as such have no real existence as entities to oaSs around In
the brep,z~. But, of course, their uniQue IdentIfier numbers may
be passed about freely and Indeed are, since the IdentifIer number
Is sufficIent to specIfy an Item, As explained earlier, an
, t e rr V are val u ate s tot h e I t e m I a s t .. s to,. ed" I nth a tit e m v a r •
There are two functions provided for removing Item Instances from
sets, The fIrst of these's COP, Which evaluates the
<set_expressIon> argument and returns an Instance of the fIrst
Iterr In the set, The "first" Item In a set Is not well defined,
since the sets are unordered. The vaJue of the <set_expressIon>
Is unohanged, The function LOP Is sImilar to COP In that Its
Value Is an Instance of the ffrst Item In the set argument, but
the I t e rr ret u r ned w I I I be rem 0 v ed f r om the set I f LOP I sus e d •
The set ergument to LOP must be a <Variable> for the simple reason
that the set descrlotor must be changed to reflect the removed
Iterr,

Iterr Selectors

9-5. The operators FIRST, SECOND, and THIRD are provided for
d~composlng bracketed trIples (see Braeketed Trioles, 7-12, The
<lte~_pr'marY> argument Is assumed to be an Instance of an ftem
which WaS created for the bracketed association when the MAKE was
eX8cuted, Examples;

FIRST (ta 8 o=vJ) evaluates to a,
SECOND (Caeo:vJ) evaluates to 0,
THIRD ((a.o:vj) evaluates to v.

SATLON NO, 57 SAIL 9-5

N !=.: l·,1 I t errs

9-6. The functIon NEW calls upon the associative store to
refurbIsh a du~ty old DELETEd Item or to generate a new one,
The s e " e wit t! m s b 8 com e a Par t 0 f the un I v e r s e 0 f e x 1st f n g !l tern s ,
and ~ay be aocessed and handled in precisely the same fashion as
declared It~ms. If NEW Is used In an Item expression, that
pXoresslon Is then constrained to be a constructlon ltem
cxoresslon. NEW may also take an argument. In this case, the
datum of the created Item Is pre loaded with the value oassed as
arqu~ent. If thIs argument Is algebraic (real or Integer), then
the d a tum w I ,I' b e 0 f the sa rn e t Y P e • Not y p e con v e r s ion s are don e
w~en passln~ the algebraic arQumant. NEW wi I I also accept an
arraY name as argument. In thIs case, the created Item wi I I be of
the type array. In fact, the array cited as argument wI I I be
cooled Into th~ newly created arraY. The new arraY wi' I have the
same bounds and number of dImensions as the array Cited as
arqument, ThIs arraY wi I I not dIsappear untl I the OUTER block Is
exited.

ANY Construct

9-7. Some associative searches may need only partial
soeclflcatlon ~- particular Dortlons of a foreach specification
may be unimportant, The ANY construct Is used to specify e~aotlY
which parts of the specification are "don't care"'s. EXamples

FOREACH x SUCH THAT father. x = ANY DO PUT x IN SOns

CVI

9-8. The fUMctlon CVI I! provided for those people who lnslst
o n h A V I ,,~ the w 0 rid til t the' r d' s p 0 s a I • The a r gum ant I san 'n t e g' e r
and the resu I tis an I nstal"lce of the I tam wh I ch Uses that Integer
as Its unlt'1ue Identifier', Absolutely no error checking rs done.
CVI Is for daring men,

SAILON NO. 57 SAIL

LEAP Booleans

9-9, Several boolean primaries are Implemented for comoarlng
sets and Items. I n the fo I low I ng d I souss Ion, "I x" means 1 tem
exnresslon, and "59" means set expression. These are:
1 • Set M e m b e r s hlp • The boo I e a. n f, I x INs e ,t e val u ate s the set
eXDresslon, ~nd returns TRUE If the Item value specifIed bY the
Item expr~sslon Is a member of the set,
2. Assoela.tlon Existence, The boolean " Ix • Ix = Ix" returns
TRUE If the assocIation exists In the assocIative store,
Exa!Toles:

IF father ~ x _ Joe THEN ' ••
IF father e Joe ~ ANY THEN ~AKE type. joe = legItimate

3, Relations. The use of the third
restrloted than the sYntax Imolles.
are valid:

kInd of boolean Is more
Only the following relatlons

Ix = Ix obvfol.JS Interpretation
, x 1- I x obvIous Interpretation
sel < se2 true I f se'l Is a proper sUbset of 5e2
sel ~ se2 true If sel Is Identical to se2 or

If sel Is a proper Subset of se2
sel = ge2 obvious Interpretation
sel t. !e2 obvious Interoretatlon
se1 > se2 eQuivalent to se2 < sel
sel ~ se2 equivalent to se2 ~ sel

SAILON NO. 57

SYNTAX

<variable>

<subscrlot_llst>

SEMANTICS

VarIables

SECTION 10

BASIC CONSTRUCTS

::= <Identifier>

SAIL

::= <Identifier> C <subscript_lIst>]
::= DATUM (<Item_IdentifIer>)
::= DATUM (<Item_Identifier>) C

(subscr lot_I 1st> J

::= <algebraic_expression>

10-1

::= <subscrlpt_' 1st> , <algebraIc_expression>

10-2. If a varIable Is simply an Identifier, It represents a
single value of the tYoe Qlven In Its declaration.

10 .. 3. If It 15 an Identifier Qualified bY a sUbscrlot 11st it
reoresents an element from the arraY bearing the name of the
IdentIfier.

SAIL.ON NO. 57 SAIL

10~4. The arraY should contain as many dimensions as there are
elA"ents In the subscript list. A[IJ represents the I+lth eleme~t
of the vector A <If the vector has a lower bound of ~). SCI,JJ Is
the element from the I+lth row and J+lth oolumn of the
two-dimensIonal array B. To explain the Indexing scheme
oreclsely, al I arrays behave as If each dimension had Its 6rlgln
at 0, with (Integral) Indices extending Infinitely far In either
direction, However, cnly the part of an array between (and
Including) the lower and upper bounds given in the declaration are
available for use (and In fact, these are the only parts
allocated), If the array 15 not declared SAFE, each subscrTpt Is
t est e d a 9 a I n-s t the b 0 u n d s for Its dim ens Ion , I fit Iso u t Sid e Its
range, a fatal message Is printed IdentifYing the arraY and
SUbscrIpt position at fault, SAFE arrays are not bounds~checked.
Users ~ust take the conseQuences of the journeys of errant
Subscripts for SAFE arraYS. The bounds checking causes at least
three extra machine instructions (two of Which are always executed
for valid subscr Ipts) to be added for each subscr Ipt In eaoh array
reference, The algebraic expressions for lower and upper bounds
In arraY declarations, and for SUbscripts In subscripted
variables, ~re always converted to Integer values (see ArIthmetic
Tyoe Conversions, 8-22) before use,

10-5. For more Information about the implementation of SAIL
arrays, see ARRAY I~PLEMENTATION, 16-33.

Datums

1~-6. If the Item argument of DATUM has an algebraic datum,
this Value Is retUrned. Otnerwlse the result Is representatIve of
50~e other data tYoe and the value returned wi I I have verY little
meaning 85 an algebraic value; It will prObably be some Internal
poInter or something, This 15 mentioned here becaUSe there are
times when the compiler wi II not be able to tell that such a tyoe
mls~ateh has occurred, Then It wi I I be up to the user to
Interpret the strange results. If a Set Is desired hers, of
course, the result Is a Set primarY and may be u~ed as such,

Id~ntlflers

10.7. You wi I I notice that no syntax was Included for the
~on-ter~tnal symbols <Identifier> or <constant>. It Is far easier
to explain these constructs In an Informal manner,

SAILON NO, 57 SAIL

10 .. 8, A SA IL letter I s any of the UDper or lower ease I etters A
t h r ° ugh r, 0 r the un d e r I , nee h a r act e r (_). lower·o a s e let t e r s are
maoped Into the corres~ondlng upper ease letters for purposes of
symbol table comparisons (SCHLUrr Is the same symbol as Schluff).
A digit Is any of the charaeters 0 through 9, An IdentIfIer 1s a
string of eharacters conslstln~ of a letter followed bY any number
of letters and digits (try us •• most text editors wI I I glve UP
before SAIL wi I I). There must be a character which Is neIther a
let t e r "0 r a dig I t (n 0 r ., t h .,. 0 f t h • 0 h a rae t e r! "." 0 r " $ ") bot h
bAfore and after every Identifier, In other Words, If you can't
determine where one Identifier end! and another begins 1n a
r) r 0 9 ram you .h a v e n eve r see n h e for e, wei I, n e i the rea n S A I L ,

10-9, There Is a set of Identifiers which are used as SAIL
delimiters (In the Alool sense ... - that Is, BEGIN Is treated by
Alqol as If ft were a Single character. Such an approach Is not
practical, so a reserved Identifier Is used). These IdentIfIers
are cal led Reserved Words and may not be used for any purcos e
other' than those glven expl leltly In the syntax, Another set of
ld~ntlflers have preset declaratIons -- these are the execution
time functions, These latter IdentIfiers may be redefIned bY the
user; they behave as If they were declared In a blOck surrounding
th e 0 ute r b I 0 c I< , A I I ! t 0 f res e r "led and pre dec I are did e n t 1 f 1 e r s
follows:

Sal I Reserved Words

ASS AND ANY ARRAY ARRAY_POL BEGIN BOOLEAN CASE COMMENT COMPLEX COP
CVI CVN DATUM DErINE DELETE DO DONE ELSE END ENTRy EQV ERASE
EXTERNAL fALSE fIRST rOR FOREACH rORTRAN FORWARD FROM GLOBAL GO
GOTO IF IN INTEGER INTERNAL ISTRIP~E ITEM ITEMVAR LABEL LAND
LENGTH LIBRARY LOAD MODULE LNOT LOP LOR LSH MAKE MOD NEEDNEXT NEXT
NEW NEW ITEMS NOT NOLL or 'OR OwN PHI PNAMES PRELOAD ~ITH PROCEDURE
PUT REAL RECURSIVE RErERENct REMOVE REQUIRE RETURN ROT SAFE SECOND
SET STEP STRING STRING_POL STRING_SPACE SUCH SYSTEM_POL THAT THEN
THIRD TO TRIPLE TRUE UNTIL VALUE WHILE XOR

SAILON NO. 57 SAIL

Sal I Predeclared IdentIfiers

ARRBLT ARRINfO ARRTRAN ARRYIN ARRYOUT dREAKSET CALL CLOSE CLOSIN
CLOSQUT CLRBUF CODE CVASC CVD CVE CVF CVFIL CVG CVIS evo evos cvs
CVSI CVSIX CVSTR CVXSTR ENTER EQU GETCHAN GETFORMAT INCHRW INCHRL
INCHRS INCHSL INCHWL INSTR INSTRL INSTRS INPUT INTIN LENGTH LINOUT
LOOKUP MTAPE OPEN OUT OUTGHR OUTSTR REALIN RELEASE RENAME SCAN
SET8REAK SETFORMAT STR8RK TTYIN TTYINL TTYINS WORDIN WOROOUT
USERERR USETI USETO

10-12. Some of the reserved words are equivalent t6 certain
special characters. These equivalences are:

CHARACTER RESERVED WORD (s)

A AND

- EQV
~ NOT
v OR

• XOR - INF
f IN
I SUCH THAT

Arithmettb Constants

10-13.
12369 Is en Integer wIth decimal value 12369
'12357 Is an Integer constant with octal value 12357
123, Is a Real constant With floating point value 123.0
0123,0 '5 a Real eon~tant with floating point value 123,0
,524 Is a Real oonstant with floating point value 0,524
5.3~4 Is a Real constant with ftoatlng point value 53~0~.~
5.342~-3 Is a Real constant with value 0,005342

SAILON NO. ~)7 SAIL

10-14, I f a or a @' applars I" a numer I c constant, the type
C1f the constant I s returned as Rea I (even 'f I t has an 'ntegra I
value). Otherwise It Is an Integer. Type conversions are made at
comol Ie time to make the type of a constant commensurate with that
reaulred by a given ooeration, Expressions Involving only
constants are eValuated by the compIler and the resultant values
Bra substituted for the exoresslon,.

10-15, The reserved word TRUE Is eQuivalent to the Integer
(800Iean) constant -11 FALSE I' eQuivalent to the constant 0,

String Constants

10-16, A String constant Is a string of ASCII characters (any
which you can get Into a text file) delimIted at each end QY the
character ". If the" character Is desired In the string, Insert
t \,~ 0 " c h a r act e r S (aft e r the I nit I a I d 8 I I mIt I n g ., c h a rae t e r, 0 f
course),

10-17, A String constant behaves I Ike any other (algebraic)
prirr.ary, It Is originally of type String, but may be converted to
Integer bY extracting tne first character If necessary (see
string-ArIthmetic Conversions, 8-27),

10-18. The reserved word NULL represents a String constant
containing no characters (length=0).

Exarroles

10-19. The I eft hand eo I umn I n the tab I e that fo I lows g' ves the
reoulred Input format to Obtain the strings given in the
rlqht-hand column:

INPUT

" T HIS I 5 A S T R I N G "
"WHAT DOES ""F"ERNDOK"" MEAN?"
"THIS IS HOW YOU TYPE A"""
" ,tt, T HIS I S A QUO TED S T R I N G '''".

" "
i\jUlL

RESULT

THIS IS A STRING
WHAT DOES "F"ERNOOK" MEAN?
THIS IS HOW YOU TYPE A "
"THIS IS A QUOTED STRING"

LENGTH

16
25
24
25
o
~

SAIlON NO. 57 SAIL

10 w 20.
Is being
12-0)1

Com~ents

The scanning algorithm Is altered somewhat If the String
used as a macro body deflnltlon (see USE OF DEFINE,

10-21. 1f the scanner detects the Identlfter COMMENT, al I
characters UP to and Inc1udlng the next semicolon (J) wI I I be
19nOred. A eomment maY a~pear anywhere as leng a5 the word
COMMENT Is properly dellmlted (not In a StrIng constant, of
coursa)J

10 w 22. A st,ing constant appearing Just befora a statement also
has the effect of a eomm~nt.

SAILON NO. 57

GENERAL

Scooe

SECTION 11

EXECUTION TIME ROUTINES

SAIL 11-1

11-1. A large set of tPre .. deelared, bul It-In prt')cedures and
functIons have been comolled Into a library pe'rmanently resident
on the system disk area (LI8SAI.RELC1,3J). The I Ibr~ry also
con t a Ins P. r 0 g ram s for man a gin 9 s tor age a I I 0 cat Ion and
InitIalization, and for eertaln StrIng functions, If a user calls
one of these orocedures a reQuest's automat f ca II y made to the
loader to Inelude the procedure, and any other routines It mlgnt
need, In the core Image. These routInes provIde incut/output
(I/O) fael Iltles, arlthmetlc·Strlng conversion facllftles,
ar ray .. hand II ng orocedures and m I sce I I aneous other I f"lterest I ng
functions,

11-2, The remainder of thIs section describes the cal ling
seouences and function! of these routines.

Notational Conventions

11-3. A short~hand Is used In these descriptions for specifying
the tyoes (If any) of the eXAcutlon~tlme routInes and of theIr
oarameters, Before the descrlotlon of each routine there Is a
Sample cal lof the form

VALUE .. FUNCT I ON (ARG1, ARG2, ••• ARGn)

If VALUE Is omitted, the proeedure Is an untyped one, and may only
be eEl II ed at statement I ev'e I (Procedure Statements, 6-2).

SAILON NO_ 57 SAIL 11-2

11~4t The types of VALUE and the arguments may be determIned
using the following scheme:

1) If" characters surround the sample Identifier (which Is
usually mnemonic In nature) a String argument Is eXpected,
Otherwise the argument Is Integer or Real. If It Is
Imoortant Which of the tYpes Integer or Real must be
t"l res en ted, I t w I I I bema de c I ear I n the des c r I ,., t Ion 0 f the
function, Otherwise the compiler aSsumeS Integer arguments
(for those fUncttons which are predeclared), The USer may
Pass Rea1 arguments to these routInes (WORDOUT, for example)
by re·~ec1arlng them In the blocks In which the Real
arguments are desired,

2) If the @ character
argument wi II be
value parameter.

ExalT':pl e

precedes the sample
ca11ed by reference,

Identifier, the
Otherwise It 1s a

"RESULT" .. SCAN (~"SOURCE", BREAK_TABLE, @BRCHAR)

Is a predeclared procedure with the Imol Jcit declaration:

EXTERNAL STRING PROCEDURE SCAN (REFERENCE STRING SOURCEJ
INTEGER BREAK_TABLE;
REFERENCE INTEGER BRCHAR);

1/0 ROUTINES

QQeo

Forrr.:

11 - 6 • 0 PEN (C H A NNE L , "DE V ICE " , M 0 DE , N UM B E R _ OF _ I N PUT _ B U F F' E R S ,
NUM8fR_OF_OUTPUT_3UFFERS,@COUNT,~8RCHAR,@EOF);

SAILON NO. 57 SAIL 11-3

F"unctlon:

11-7. SAIL Inout/outout operate~ at a ver~ low level Tn the
following sense: the operatlon~ necessary to obtain devices, open and
elose files, etc •• are almost direct translations Into a functional
notet Ion of the system cs I I s used In a5semb I y language. OPEN 1 s used
to assocIate a channel number (0 to '17) wIth a device, to determine
the dat~~ode of the liD to occur on this channel (character mode,
binary ~ode, dump mode, ete,), to soeclfy storage reQulrements for
the data buffers used In the operations, and to provide the system
with Information to bl used for Input operations.

CHANNEL Is a uS9r~orovlded channel number which wi I I be used In
subseauent 1/0 operatIons to ldentlf~ the devIce, CHANNEL
may range from 0 to 15 ('17), Needless to sa~, only one
device may be active on a given channel at one time.

o E V ICE m u s t b e a S t r I n 9 (I. e , " TTY n, I, D A T A ") w h I chi s r e COg n I z a b I e
bY the system as a phys I ca lor log I ca I dev I ce name. The
TTY wi I I be opened only once. The effect of subseQuent
OPENs (on dIfferent channels) Is to eQuate al I channels
mentioned bY the user to that mentioned In the first OPEN
for the TTY, 8e sure to release this first channel last.

MODE Is the data mode for the I/O operation, MODE 0 wi I I always
work for eharacters (!ee Input, 11-41 and out, 11-4 6).
Mod e 58 (' 1 0) and 1 5 (' 1 7) are a p p I I cab I e for binary and
dump-mode ooeratlonl using the functions WORDIN, WOROOUT,
ARRYIN, or ARRYOUT (5ee Wordln, 11- 49 and following), For
other data mod.s, see CMoorer).

NUM8ER_OF(INPUT/OUTPUT)_BUFFERS specIfies the number of buffers to be
reserved for the I/O operations (see CMoorerJ for detal Is).
At I east one buffer must be spec If' ed for I nput I f any
Input Is to be done In modes other than '17; simi lar Iy for
output. If d&ta Is onl~ going one direction, the other
buffer specification should be 0, Two buffers give
reasonable performance for most devices (1 Is sufficient
for ft TTY, more are reQuired for DSK If rapid operetlon Is
desired),

SAILON NO. 57 SAIL 11-4

l1-a. The remaining arguments are applicable only for INPUT
(String Input), They wi I I be Ignored for any other operations
(although their values may bA ohanged by the Open function),

COUNT designates a variable which wI I I contaIn the maximum number
of ,characters to be read from "DEVICE" In a gIven INPUT
c a I I (s eel npu t, 11 "" 41, B re a k sat, 11 2 3) • F e we r c h a rae t e r s
maY> be read I fa break character I s encountered or 'f an
end of file f s detected. The count should be a Var' ab I e or
constant (not an exoressfon), since Its address Is stored,
and the temporary storage for an expressIon may be re-used.

BRCHAR designatas a varlable Into whIch the break character (see
I i~P U T and B RE AK SE T R 9 a I n)W I I I be s t 0 red. T hIs va r , a b I e
can be tested to determIne which of many possIble
characters terminated the read operation.

EOF designates a varlable to be used for two purposes:

1) If EaF Is 0 when OPEN Is called, a SAIL error message
wI II be Invoked If the device Is not available or the
channe I I s a Iready open, The use r w 111 be 9 f Ven the
options of retrying or terminating the opera t1 0n. If
EOF 'S non-zero when OPE~ 's'ca I' ed, f t will be set to 0
I f the OPEN Is successfu I. Othe rW' se 1 t w 11 I not be
changed~ In this case (EOF non-zero on entry) control
w 11.1 be returned to the user. Th I s flag maY then be
tested.

2) E OF \1<1' 1 I be mad e no n'" z e r 0 (T RUE) f fan end 0 f f I I e
condltlcn Is detected during any SAIL Input operatlo n ,
It wI 11 be 0 (FALSE) on return to the user otherwlse.
Subsequent Inputs after an EOF return wi I I return
non-zero va lues >'n EOF and a nu, I Str i ng resu I t for
INPUT. For ARRYIN , a 0 ls returned as the value o~ the
call after e n dO f f1 Ie's detected.

SAILON NO, 57

Ass.~bl~ Lan~U8ge AODroximatlon to OPEN

11-9.
INIT cHANNEL,MODE
SIXBIT /OEVIC£/
XWD OH[Q,IHED
JRST <Mandie error condition>
JUMPE <NUM8ER_Or_OUTPUT_8UFFERS>,GETIN
<allocate buff",. s~ac.)
aUT8Ur CHANNEL,NUMBER_Or_OUTPUT_BUFFERS

GET IN: J U t1 P E < N U M B E R _ 0 F' _ I N PUT _ BUr F" E R S > , 0 ONE
<al Locate buffer spaee>
IN8UF CHANNEL,NUM8ER_Or_INPUT_BUrFERS

DONE: <mark channel ODen -- ,nternal bookkeepIng)
<return>

OHEO:
tHED:

F'orm:

11-10.

3
:3

CLOSE (CHANNEL)
CLOSIN (CHANNEL)
CLOSO (CHANNEL)

Function:

SAIL 11-5

11-10. The Input (CLOSIN) or output (CLOSO) side of the specified
onan,,'I ,. closedl all outDut ,. foroed out (CLOSQ); the current file
name Is forgotten, However the device Is stili actlvel no OPEN need
be done agaIn bafore the next Input/output operation. No INPUT, OUT,
etc. maY be given to a d "r teto rY dev I oe unt I I an ENTER, L.OOKUP, 0 r
RENAME has been Issued for the channel.

11-11. CLOSE is eoulvalent to the execution of both CL.OSIN and
CL.OSO for the channel.

SAILON NO. 57 SAIL 11-6

F'orrr.:

11-12. VAtUE .. GETCHANi

F'unctlon:

11-13 1 The number of some channe! not currently ODen Is returned.
-1 I s ret u r n.e d J s a I I c han ne I s are bUS Y t

F'orm:

11-14. RELEASE (CHANNEL);

F'unctlon:

11-15. If an OPEN has been executed for thIs channel, a CLOSE Is
now executed for It, The device 1s dissociated from the channel and
returned to the resource pool (unless It haS been assigned by the
monItor ASSIGN command), No 110 o~eratlon may refer to thIs channel
u nt" an 0 the 'r 0 PE: N den 0 tin gt t has been executed.

11-16, If YOU have opened more than one channel f~r the devlc'
"TTY", be sure to cerform RELEASE1s for these channels In the Inverse
order from that In whloh they were oo.ned (see ODen, 11-6>.

11-11, Ret.a'e f~ alWaYs valid. If the channe' mentlonld Is not
e u r ra n tl ~ oDe n , t h eeO m,m an d Is sf mo I y Ignored.

SAILON NO. 57 SAIL

F"orm:

11-18.
LOOKUP (CHANNEL, "F'ILE" , filF'LAG);
ENTER (CHANNEL, "rILE" , taF'LAG);

Function:

11~19. Sefore Inout or output ooeratlons may be performed for a
directory device (OECtape or DSK) a ft Ie name must be associated with
the channel on which the device has been opened (see Open, 11-6),
LOOKUP names a f I Ie wh i ch I s to be r sad t ENTER names a f I Ie wh I ch Is
to be created or extended (see (HoorerJ). Both operations are valid
even If no filename Is really necessary. It Is recommended that an
ENTER he performed after every OPEN of an outout devIce so that
outout not normally dIrected to the aSK can be directed there for
later processl~g If desired. The format for a fJ Ie name strIng is

NAME ,
NAME,EXT ,
NAME(P,PNJ ,

or NAME.EXT(P,PNJ (~ee (Moorer] for the meaning of these things
If you do not Immediately understand),

AI I characters are converted to SIXBIT bY subtracting octal '40 from
them. ·Lower case letters ere first converted to upper case, SAIL Is
not 8S choosy about the characters I t a II ows as PIP and other
oro c e s s 0 r s are • A 1"'1 Y c h a rae t e r w hie his not ",", ",", " en, 0 r "J"
wi I I be converted and oassed on, Up to 6 characters from NAME, 3
from EXT. P, or PN wi" be converted •• the rest are Ignored.

11-20.
variable
of FLAG
The right
the cause

1ft h e L 0 0 K UP o· r E N T E R 0 per a t Ion f a I I 5 (s e e C Moo r e r J) the ,.,
FLAG may be examined to determine the cause. The left half

will be set to '777777 (Flag has the logical value TRUE),
half wi I I contain the code returned bY the system giving
of the fai lure.

11-21. If the LOOKUP or ENTER succeeds, FLAG will be set to zero
(FALSE).

SA!LON NO, 57 SAIL 11-8

Blcame

11-22, RENAME (CHANNEL, "F'ILE-SPEC" , PROTECTION, _Fl.AG);

Function:

11-23. The f J Ie ooen on CHANNEL's renamed to F I LE_SF'EC (a NULL
f I I e - n a rr e wJ I Ide let e the f I Ie) w J t h rea d I w r I t e pro tee t 1 0 " a I
specifIed In PROTECTION (nrne bits, descrIbed In the tIme-shari,,;
manua I). FLAG I s set as I n LOOKUP and ENTER t

Forn::

11-23. 8 REA K 5 E T (T A 8 L E , '. 8 REA K _ C H A R S" , MOD E) ;

Function:

11-24, Character Inout/output Is done usIng the String features of
SAIL. In fact, 1/0 is the chief Justification for the existence of
st rings I n the language,

String Input presents a oroblem not present In StrIng output,
The length of an output String can be used to determine the number of
characters wrItten, However It Is often awkward to reQuire a"
absolute count for (nout, Quite often one would I Ike to termlnat.
I n 0 u t ,or " b rea k " , w hen 0 n e 0 f asp e c I fie d set 0 f c h a rae t e r s I.
encountered In the Input stream, In SAIL, this capablilty "
Imolemented by means of the BREAKSET, INPUT, TTYIN, and SCAN
functions.

11-25, The value of TA8LE may range from 1 to 18, Thus UD to 18
different sets of break specifications maY exist at once. whlch s.t
w, I I be used Is dete rm i ned by the TABLE parameter I n an r NPUT 0 r SCAN
function cat I.

SAILON NO. 57 SAIL 11-9

~

11-26, The function of a given 8REAKSET command depends on the
MODE, an Integer which Is interpreted as a right-Justified ASCII
charact~r whose value Is Intended to be vaguely mnemontc, BREAKSET
com~anrls can be oartltlonec Into 3 groups according to mode:

GROUP 1 -- Breek character speelflcatlons

11 ... 27.

MODE FUNCTION

"I" (by Inclusion) The characters In the BREAK_CHARS String
comprise the set of characters which wi I I term'nate an
INPUT (or SCAN),

"X" (by eXclusion) Only those characters (of the possible 128
ASCII characters) which are NOT contained In the String
BREAK_CHARS wi I I terminate an Input when u!Ing this
table,

" 0 ,. (0 mit' The c h a r act e r sin " 8 REA K _ C H A R S " w I I lb. 0 m , t ted
(deleted) from the Input string.

11 .. 28. Any" I" o'r "XU command comp' ete I y spec If' as the break
character set for Its table (I.e., the table Is reset hefore these
charact~rs arp. stored In It), Neither wi I I destro~ the omitted
character set cUrrently specified for this table. AnY "0" command
completelY specifIes the set of omitted characters, without altering
the break characters for the table In Question. If a character Is a
break~character, any role It might playas an oMitted character Is
5aer1f i cp.d.

11-29. The second group of MODEs determines the dlsposltfon of
break characters In the '"put stream. The "BREAK_CHARS" argument Is
Ignored In these commands, and may In fact be NULL:

SAILON NO, 57 SAIL

GROUP < -- Break character dlsoosltlon

11-30,

MODE FUNCTION

" S " (Ski 0 - ... d e f a u I t mod e) Aft ere x e cut Ion 0 fan .. S ,t com man d
the break character wi I I not appear either 1n the
resultant String or In sUbseQuent INPUTs or SCANS-- the
c h_a r 8 c t e r Is" 5 kip p e d" , Its \I a I u e may bed e t e r m , n 8 d
after the INPUT bY eXamination of the break charaoter
variable (see Open, 11-6).

"A" (ADpe~d) The break character (If there Is one ... see
Ooen, 11-6 and Input, 11-41) Is appended, or
concatenated to the end of the Input string. It wi I I
not appear again In subsequent Inputs.

"R" (RetaIn) The break character does not appear In the
resultant INPUT or SCAN String, but wi I I be the flrst
character processed In the next operation referring to
thIs Input source (file or SCAN String).

11.31. For disk and tape fl las using the standard editor format,
I I n e n u rr her s pre sen t asp e c I a I pro b I e m t A I I n e n u m tfe r f saw 0 r d
containing 5 ASCII characters representing the number 1n bIts 0~34,
with a "1" In bit 35. No other words In the file contain 1's 1n bit
35. Since String manipulatIons provide no way for dIstInguishing
I Ine nU~bers from other eharacters, there must be a WaY to warn the
user that line numbers are present, or to allow him to Ignore them
entirely.

11-32, The third group of MODEs determines the dJsposltlon of
these II ne numbers, Aga I n. the "BREAK_CHARS" argument Is' gnored:

SAILON NO, 57 SAIL

Group 3 -- ~Ine number disposition

11-33,

MODE

"p"

HNH

ttL"

"En

... 0 u

FUNCTION

(Pass -- default) Line numbers are treated as an~ other
characters, Their IdentIty Is lostJ they simply appear
In the result string.

(No numbers) No line number (or the TAB Which alwa~s
follows It In standard files) will appear In the result
string, They are sImply discarded.

(Line no, break) The result string wi I I be terml nated
early If a line number Is encountered. The characters
comprising the line number and the associated TAB wi I I
appear as the next 6 characters read or scanned from
this character source, The user's break character
var I ab Ie (see Open, 11-6 and Input, 11-41) w III be set
to ~1 to Indicate a line number break,

(lee Erman'S very own mode) The result string I s
terminated on a. II ne number as wIth "L", but neither the I' ne number nor the TAB following It w I II aPPear In
sUbseQUent Inputs. The II ne number Word, negated, I s
returned In the user's (' nteger) BRCHAR Variable,

(Display) If the TTY Is a Dry, eaoh I ine number from any
Input file will be displayed (along with a page number)
on the rig h t - h a n'd sid e 0 f the s c r e en. T his mod ere a I I y
app II es to a I I i nout operat Ions after the "D" ocerand
appears 'n any Breakset oa II, There I s no way to turn
It off.

11-34, Once a break tab I e I s set uP, ,t maY be referenced I n an
INPUT, TTYIN or SCAN cal I to control the scanning ooeratlon.

SAILON NO. 57 SAIL 11-12

Example:

11-35. To delimit a "word" a program might wish to Input
characters untIl a blank, a TAB, a I 'n e feed, B. comma, or a semicolon
Is encountered, Ignoring I Ina numbers, Assume also that carriage
returns are to be Ignored, and that the break character Is to be
retained In the character source for the next scanning operatl6n'

8 REA K S E r (0 ELI M S ," ,;" & TAB & L F' , ., 1 "); Com men t b rea k 0 nan ~ 0 f the s e J
BREAKSET(DELIMS,'15,"Ott); Comment Ignore cPlrrlage return)
8REAKSETCOElIMS,NUlL,"Ntt)J Comment Ignore line numbersJ
8REAKSETCOElIMS,NULL,"R"); Comment save break char f~r next time)

Ferrr:

11-36,

SET8~EAK

Function:

11-37. SETBREAK is logicallY eQuivalent to the SAIL statement:

BEGIN "SETBREAK"
I NTEGER I;

IF LENGTHCOMIT CHARS) > 0 THEN
8 REA K SET (T A B L E ,OM I T _ C H A R S , "0") ;

FOR I~l STEP 1 UNTIL LENGTH(MODES) 00
8REAKSET(TABLE,8REAK_CHARS,MODESCI FOR 1])

END "SET8REAK"

SAILON NO. 57 SAIL 11 ... 13

Form:

11 .. 38, STD8RK (CHANNEL);

F"unctlon:

11-39. Eighteen breakset tables have been selected as
reoresentat Lve of the more common I nout Scann I ng ooera t Ions. The
function ST08RK Inttlallzes tne breakset tables by opening tne file
BKTBL.8KT(1,3] on CHANNEL and reading In these tables. The user may
then reset those tables which he does not I Ike to somethlng he dOes
11k e •

11-40. The eighteen tables are described here by gfvlng the
SET B Rt A K ~ w h r c h W 0 u I d be r. 0 u Ire d for the use r to I nit I a I I Z e the m :

OELIMS ... '15 &·'12 & '40 & '11 & '14;
COlTrrent carr lage return, line feed, space, tab, form feedJ

LETTS" "ABC •• , iabc ••• z_"J
DIGS ~ "0123456789";
SAILIO ~ LETTS80IGS;

SET8REAK 1, '12, ' 15, "INS") ;
SET8REAK 2, '12, NUL.L, t'I NA") ;
SET8REAK 3, D£LIMS, NULL, "XNR") J

SETBRE.AK 4, SAILID, NULL, "INS") ;
SET8REAK 5, SAILIO, NULL., ttINR") J
SET8REAK 6, LETTS, NUll, 'tXNR") J
SET8REAK 7 , DIGS, NULL, "XNR") ;
SETBR£AK 8. DIGS, NULL, "INS") ;
SET8REAK (9, DIGS, NULL, '''INR'') ;
SETBR£AK (10, DIGS&" (a ... , NULL, "XNR") ;
SETSREAK (11, DIGS&"+-(a,", NUll, "INS") ;
SET8REAK (12, DIGS&"."" , NULL. "INR") ;
SET8PEAK (13-18, NULL, NULL, NULL) J

SAILON NO. 57 SAIL 11-14

Porm:

11-41. ~RESULT" ~ INPUTCCHANNEL, BREAK_TABLE);

Function:

11-42. A string of characters Is obtained for the ffle oDen on
C HAN N E L , a n.d I s ret lJ r n 8 d a s the ,. e suit • The I N PUT 0 0 era t Ion I s
contro~led by BREAK TABLE (see Breakset, 11-23) and the reference
variables ~RCHAR, -Eer, a~d COUN~ which are orovld~d by the user In
the OPEN function for this channel (see Open, 11-6). Input ma~ be
termtnated In a.verat waYs. The exact reason for termlnatton can be
obtained by examining BRCHAR and EOr:

SAILON ~O. 57 SAIL 11-15

EOF BRCHAR

-1 End of f lie occurred while reading, The result Is
a String containing al I non-omitted characters
w h I c h rem a I ned I n the f I lew hen I N PUT was c a I led.

No break characters were encountered, The result
Is a String of length equal to the current COUNT
specifications for the CHANNEL (see Open, 11~6).

<0 A line number was encountered and the break table
soeclfled that someone wanted to know. The result
Str I ng conte I ns a II characters UP to the II ne
n u m b e r ~ I f mod e "L" 14 ass 0 e c I fie din the 0 rea k set
setting up this table, bit 35 Is turned off In the
line number word so that It wi II be Input next
tIm e t -1 I s p I ace d 'n 8 R C H A R • I f mod e " E ,. was
specified, the line number will not appear In the
next Input String, but Its negated value, complete
with low-order line number bit, will be found In
BRCHAR,

>0 A breaK character was encountered. The break
character Is stored In 8RCHAR (an INTEGER reference
variable, see Open. 11-6) as a right-justified
7-blt ASCII value. It may also be tacked on to the
end of the result String or saVed for next time,
depending on the BREAKSET mode (see Breakset,
11-23),

11-43, If break table '0 Is specified. the only crIterIa for
The routine Is terfTIlnatlon are end of file or COuNT exhaustion,

somewhat faster operating In this mode.

Scao

Forrr:

11-44. "RESULT" .. SCAN (@)"SQURCE" , BREAK_TABLE, @l8RCHAR)

SAILON ~O. 57 SAIL

F"unctlon:

11,.45. SCAN functIons Identically to INPUT with the following
exceptions:

1, The source Is not a data fl Ie but the String SOURCE, called
by ref.rence, The StrIng SOURCE '5 truncated from the left
to produce the same effect as one would obtain If SOURCE were
a data fl te, The disposItion of the break characterls the
same as It Is for INPUT,

2. BRCHAR Is directly specified as a parameter. INPUT gets Its
break charaeter varlable from a table set up by ODen, 11-6.

3, LIne number consideratIons are Irrelevant.

QUI

F"orrr,:

11"'46, OUT(CHANNEL,"STRING")

.Functlon;

11-46. STRING I s output to the f II e open on CHANNE:L t r f the
device Is a TTY, the string will be typed ImmedIatelY. Buffered mOde
text outout Is employed for thIs operatIon, The data mode specified
In the OPEN for this channel must be 0 or 1.

Forn',:

11-47. LINOUT (C~ANNEL ~ NUMBER)J

SAILON NO, 57 SAIL 11-17

F'unctlon:

11 1 48. ABS(NUMBER) mod 1~0,000 Is converted to a 5 oharacter ASCII
strl~g, These characters are ~I.ced In a single word In the output
f lie desl~nated by CHANN£L with the low-order bIt (1Ine .. number bit)
turned on, A tab I s I nserted after the I' ne number. Mode IfJ or 1
must have been specifted In t~e OPEN (Open, 11-6) for the results to
be anywhere near satlsfaotory,

~gtdlo

Form:

11-49, VALUE ~ WORDIN (CHANNEL)

•

Function:

11 .. 50. The next word from the f t Ie open on CHANNEL Is returned. A
o Is returned, and END rILE FLAG (see Open, 11-6) set, when end of
file Is encountered. This operation Is performed In buffered mode or
dump mOde, depending on the mode specification In the OPEN.

Att:ilo

F'orm:

ARRYIN (CHANNEL, 'LOC , HOW_MANY)J

F'unctlon:

11-52. HOW_MANY wordS are read from the device and fl Ie open on
CHANNEL, and deposited In memory starting at location LOC.
Buffered-mode Input Is done If MODE (see Open, 11-6) Is '112l or '14.
Dump-mode In~ut Is done If MODE Is '16 or '17. Other modes are
I I I ega I.

11-53. If an end of fill condition occurs before HOw MANy words
are read, the EOF' Var f ab 18 (58e Open, 11 .. 6) I s set to '777777 1 nIts
left half. Its rIght naIf contains the number of words actuallY
read. EOF will be" If the full reQuest Is satisfIed.

SAIL('lN NO. 57 SAIL 11-18

Forrr,:

WORDOUT (CHANNEL, VALUE)J

Function:

11-55. VALUE Is olaced In the output buffer for CHANNEL. An
OUT PUT I S d.o new hen the b u f fer's f u I lor w hen a C LOS E 0 r R E L r A S E I 5
executed for th Is channe I, Dump mode output will be done I f dump
mOde I s spec Iff ed I n the OPEN (see Ooen, 11.-6).

11-56. ARRYOUT (CHANNEL, @LOC , HOW_MANY);

Function:

11-57. HOW_MANY words are written from memory, startTng at
I oca t I on LOC, onto the dey I ce and f I Ie ooen on channa I CHANNEL. The
valid rrodes are again '10, '14, '16, and '17. The EOF varlable Is,
of course, unaffected.

Forn::

11 ... 58. MTAPE (CHANNEL, MODE);

SAILON NO, 57 SAIL 11-19

Function:

11·59. MTAPE Is Ignored unless the device assocIated with CHANNEL
Is a me9netlc tape drive. It performs tape actions as fol IOWSI

Form:

11 .. 60,

MODE

"A"
"8"
"F"
tt R"
"W"
"En
"U"

USET I (CHANNEL , VALUE);
USETO (CHANNEL, VALUE)J

Function:

FUNCTION

Advance past one tape mark (or file)
Backspace past one tape mark

, Advance one record
Backspace one record
Rewind tape
Write tape mark
Rewind and unload

11-61, The eorrespondlng system function Is carried out (See
(MoorerJ).

Forrr:

11-62.
VALUE ~ REALIN (CHANNEL);
VALUE ~ INTIN (CHANNEL)i

SAILON NO, 57 SAIL

Function:

11-63. Number Inout maY be obtained using the functl6ns REALIN or
I N TIN , depend I n g on w h e the r a Rea I number or an I n t e g e r I s r a qui red •
Both functIons use the Same free field scanner, and take as argument
a channa I numbe r.

1l.-64, Free field scanning works as fOllows: characters are
scanned one at a time from the Input channel. NUlls, line
nUmbers,and carriage returns are Ignored. When a digit fs Scanned It
I s ass u me d th a t t his I 5 a n u m b era n d the f 0 I low I n 9 S Y n t a x I sus e d :

<nu",ber>

<real number>

<decimal number>

<Integer>

<exponent>

<sign>

· . -· . -
· . -· . -

: : =

· . -· . -
· . -, . -
, . -· . -
· . -· . -

<slgn><real number>

<decimal number>l<declmal number><exponent>1
<exponent>

<lnteger>I<lnteger>.I<lnteger>.<lnteger>1
.<Integer>

<dlgit>I<lnteger><dlglt>

~<slgn><'nteger>

011121314151 6 1 7 1819

+I-I<empty>

11~65, If the digit Is not part of a number an error meSsage wi I I
be orlnted and the program wi I I halt. TypIng a oarrlage return wi I I
cause the Inout function to return zero, On Input, leadfng zerO! are
Ignored. The ten most signifIcant dIgits are used to form the
number. A check for overflow and underflow Is made and an error
message orlnted If this occurs. When using INTIN .any expon~nt Is
removed by scaling the Integer number, Rounding Is USed Tn this
process, AI I numbers are acourate to one half of the least
slglnlflcant bit.

SAILON NO, 57 SAIL

11-66, After scanning the number the last del 'miter Is reolaced on
the Input string and 15 returned as the breek character for the
channe I. I f no number I s found, a zero I s returned, and the break
variable 15 set to -1J If an end of file Is sensed this Is also
returned In the approplate channel varlable_ The maximum character
count appear tng In the OPEN call Is Ignored.

Form:

11-67.
VALUE .. REALSCAN @l"NUMBER STRING" , (lBRCHAR) J VALUE.. INTSCAN
@)"NUMBER STR I NG" , ~8RCHAR '):

Function:

11-68, These functions are IdentIcal In function to REA~IN and
INTIN. Their Inputs, however, are obtained from their NUMBER_STRING
argu~ents. These routInes replace NUMBER_STRING bY a string
containing 1.1 I character! left over after the number has been removed
from the front.

Forrr.:

11-69,
CHAR" INCHRW:
CHAR" INC HRS ;
"STR n .. INCHWLJ
"STR" .. INCHSL ($FLAG):
" S T R " .. INS T R (8 R C H A R) J
"STR" .. INSTRL (BRCHAR) J
"STR" .. INSTRS (,FLAG, BRCHAR) J
"STRn .. TTYIN (TABLE • ~BRCI-fAR);

"STA" .. TTYINL (TABLE , ~8RCHAR);
"STR" .. TTYINS (TABLE , (ia8RCHAR);
OUTCHR (CHAR);
OUTSTR ("STR");
CLR8UF;

SAILON NO, 57 SAIL 11-22

Function:

11-70. Eaeh of the 1/0, functions uses the TTCALL UUO's to do
direct TTY 1/0,

INCHRW

INCHRS

INCHWl.

INCHSL

INSTR

INSTRL

INSTRS

TTVIN

TTYINL

TTVINS

OUTCHR

OUTSTR

CL.RBUF'

walts for a character to be typed and returns that
charaeter "

returns -1 if no characters have baen typed; otherwise It
1st NCHRW •

waLts for a line, terminated by a carrlage .. return and
line feed (CR-LF) to be typed. It returns as a string
.1 I c h. rae t e r !! UP to (not Inc Iud I n 9) the CR. The L F' , s
tost,

returns ~ULL with F'LAG : ·1 If no lines have been typed.
Otherwise It s.ts FLAG to " ,and performs INCHWL.

returns as a string
Includlng, the fIrst
Ins tan c a I s los t,

a II characters UP to, but not
Instance of BRCHAR. Th$ BRCHAR

walts fo'r a line to be typed, then performs INSTR.

Is INCHSl. If no lines are waiting; INSTRl. otherwise,

uses the break table features described In (BRKS) and
·1 nput, 11-41 to return a str I n9 and break character.
MOd e tf R .. I s I I leg a I; I I n e n u moe r m (\ deS a r 8 I r rei e Van t •
The I n pu t c 0 U n t (see 0 pan, 11 .. 6) i s set at 1 "" •

walts for a I Ine to be typed, then does TTYIN.

sets BRCHAR to -1 and returns NULL If no 1 'nes are
waiting, Otherwise It Is TTXINL.

types tts character argument (right-Justified In an
Integer varIable).

tyoes Its string argument,

flushes the Input buffer.

SAILON NO. 57 SAIL 11-23

STRING MANIP0LATION ROUTINES

Fo,.m:

11-71. VALUE .. LENGTH ("STRING") J

Function:

11-72, The number of 7-blt oharacters In STRING Is returned. ThIs
functIon Is normally compiled Into SAIL. programs. The function is
provIded for other program! If they need It.

11-73. V A L U E .. E Q U (It S T R 1 ", It S T R 2 ");

Function:

11- 74 • The val u e 0 f t his f u" c t Ion 1sT RUE I. f S T R 1 and S T R 2 are
eaual In length and have Identically the same charaoters In them (In
thp. same order). The value of EQU Is FALSE otherwIse.

TYPE CONVERSION ROUTINES

For~:

11 .. 75, SETFORMAT (WIDTH, DIGITS)

SAILON NO. 57 SAIL 11-24

Function:

11-76, Thls functton .1 lowS specification of a minimum wIdth for
st~lngs created by the functions CVS, ev~s, CVE, CVF, and CVG (See
CV5, 11-80 and fol lowing). If this number (WIDTH) fs positIve,
enough blanks will be 'nserted In front of the resultant string to
make the entire result~ at least WIDTH characters long. The sIgn, if
any, wi I t appear after the blanks. If WIDTH Is negative, leading
zeroes wlll be used in place of blanks, The sign, of coUrse, will
apoear before the zeroes, ThIs parameter Is InitialIzed bY the
system to 0.

11-77, In addition, the DIGITS parameter allows one to speclfy the
number of digIts to appear following the decimal point In strings
created by eVE, CVF", and CVG. This number Is Initially 7, See the
wr iteups on the funotlons eve, Cvf, CVg, 11-88 and followIng for
details,

F'orrr:

11 .. 78,

F'unctlor,:

11-79. The WIDTH and DIGIT settings specified In the last
5 E T FOR MAT call a r er et urn e d In the appropriate reference parameters.

ForlTi:

SAILnN NO~ 57 SAIL 11-25

Function:

11~81, The declmel Integer representation of VALUE Is produced as
an ASCII String with leading zeroes omitted (unless WIDTH has been
set bY Setformat, 11-75 to some negative value). " .. " will be
concatenAted to the String representing the decimal absolute value of
VALUE If VALUE Is negative,

Forrr:

11 ... 82, "ASCII_STRING" .. CVOS (VALUE);

Function:

11-83. The octal Integer re~resentatlon of VALUE Is produced as an
ASCII String with leading zeroes omitted (unless WIDTH has been set
to some negatIve value by Setformat, 11~75). No "-" wi I I be Used to
Indicate negative numbers, For Instance, -5 wi I I be represented as
"777777777773".

Form:

11-84. "STRING" .. CVIS (ITEM, @FLAG)

Function:

11-85. The print name af ITEM Is returned as a string, An Item's
print name Is the Identifier used to declare It. Print names are not
orovlded for Itemvar~. FLAG Is set to FALSE (0) If the aporoprlate
,trl"g Is found, Otherwise It Is sat to TRUE (-1), and ¥ou should
~ot olace great faith In the string result.

?AILON NO, 57 $,AIL

ForiT:

ITEM .. CVS I (' "PNAME" ~' I~F'LAG) J

Function:

11~87t The Item whose Idlntlfler Is the same as the string
argument PNAME Is returned and rLAG set to FALSE if such an Item
exists, OtherwIse, something verY random Is returned, and rLAG Is
set to TRUE.

rorrr.:

11-88.
" S T R I N G " .. eVE (V A L U E) J " S T R I N G" .. C V F" (VA L U E) J " S T R I N G 'f .. C V G
V A l UE ') ;

Function:

11-89, Real number output Is facl I Itated by means of one of three
functions CVE,CVG, or CVF, corresponding to the E,G, and F formats of
FORTRAN IV. Each of these functions takes as argument a real number
and returns a string, The format of the string Is controlled by
another funetlon SETFORMAT (WIDTH,DIGITS) (see Setformat, 11·75)
which 15 used to change WIDTH from zero and DIGITS from 7, their
Initial values, WIDTH speelfles the minimum string length, If WIDTH
I S DOS It' vel e a din 9 b I e. nk s w I I I bel n s e r ted and 'f neg at' vel e a din 9

zeros will be Inserted.

SAILON NO. 57 SAIL 11-27

11 ... 90. The following table Indicates the strings returned for some
tyolcal numbers. indloates a space and It Is assumed that WIOTH-10
and DIGITS"'3.

CVF
__ ~ ___ .000
______ .001
______ .010
__ -- __ .100
_____ 1.000
____ 10,000
_ _ ,..1.0 0 • 00 (21

__ 1000.000

_ 10000.000
_1012l000.1Zl00

_1~10000f2J. 000
-10001£'JV10.000

eVE
__ .100~",,3_
__ .1"'0 G11 .. 2_
__ .100Ci-l_
__ .100 ___ _
__ .100~1 __
__ .1r210~2 __
__ .lrtH?JGD3 __
__ .1~0(iD4 __

CVG
__,100@-3 _
__.100c.a-2 _

.100@l .. 1 -- -__ .100 ____ _
__1.00 ___ _
__10.0 __ - _
__100. ____ _
__.100@4 __

11-91, The first character ahead of the number Is elther a blank
or a minus sign. with WIDTH ... ·10 plus and minus 1 would prInt as:

CVF
_ 00001,000
-00001.000

eVE
_ 0.100@1 __
-f'J.1el0@1 __

CVG
_01.00. ___ _
-01.00 ___ _

11~92, AI I numbers are accurate to one unit In the efghth digit.
If DIGITS Is t:Jreater than 8, trailing zeros are IncludedJ If less
than eight, the number 15 rounded.

Form:

l1-Q3. "STRING" .. CVSTR (VALUE)

SAILON NO, 57 SA I L, 11-28

Function:

11-94, VALUE Is treated as a 5-eharacter left-Justified word fUI I
of 'ASCII. the result Is a 5-charaeter long String contaInIng these
characters. The low order bIt of VALUE fs Ignored,

Form:

11-95, "STRING" ~ CVXSTR (VALUE)

Function:

11-96. VALUE Is treated as a 6-character left-Just1fled w6rd fUI I
o f S. I X BIT • T he res u I tis, a 6 ... c h a rae t e rio n g S t r I n 9 con t a I n f n g the s e
characters, converted to ASCII.

Forni:

11-97. V A L U E ~ C V 0 (,. A SCI I _ S T R I N G ");

Function:

11-98, ASCII_STRING should be a StrIng of decimal ASCII characters
perhaps preceded bY plus and/or minus s1gns. Characters wIth ASCII
values ~ SPACE ('40) are Ignored preceding the number, Any character
not a digIt wi I I terminate the conversion (with no errOr IndIcation),
The result Is the Internal' (slgned) 36-blt binarY representatlon of
the number,

Forrr:

v A L U E .. C VO (n A SCI I _ 5 T R I N G ");

SAILON NO, 57 SAIL

F'unctlon:

11~100. This function Is the sama as CVD except that th& Input
characters are deemed to represent Oetal values,

Forrr.:

VALUE" CVASC ("STRING");

F'unctlcn:

11-102, This Is the Inverse function for CVSTR. Up to five ASCII
characters wi I I be fetched from the beginning of STRING and placed
left-Justified In VALUE, .If the String is less than five characters
long,' the rIght characters will be padded with null (0) characters.

Form:

11-103, VALUE .. CVSIX ("STRING")}

Function:

11-104, The Inverse for CVXSTR, this function works the same as
CVASC exolDt that up to six S!XBIT characters are placed In VALUE,
The charact~rs from STRING are oonverted from ASCII to SIXBIT before
deoosltlMg them In VALUE,

Form:

11 .. 105, VALUE .. CVrIL ("FILE_SPEC" , @EXTEN , @PPN)

SAILON NO, 57 SAIL

FunctIon:

11-106, FILE_SPEC has the same form as a f II e name spec I fT cat f on
for' LOOKUP or ENTER, The SIXBIT for the f II e name's retu,.ned 'n
VALUE. SIXBIT values for the extension and proJect-programmer
numbers are returned In the respective reference parameters, Any
unsoeclfled oortlons of the FILE_SPEC wi I I result In zero values,

ARRAY MANIPULATION ROUTINES

6,ttlofa

Forrr.:

VALUE ~ ARRINFO (ARRAY, PARAMETER);

Function:

11-108.

ARRINFO(ARRAY,~l) retur~s the number of dimensions for the arraY,
This number Is negative for String arraYs,

ARRINFO(ARRAy,0) returns the total size of the arraY In wordS,

ARRINFO(ARRAY,1) returns the lower bound for the fIrst
dimension.

ARRINFOCARRAy,2) returns the upper bound for the flrst
dimension.

ARRINFO(ARRAY,3) returns the lower bound for the second
d I mens I'on.

Attbl.t

Form:

11-109, ARRBL T ((iLOC1 , @lLOC2 , NUM);

SAILON NO, 57 SAIL

F"unotlon:

11-110. NUM words are transferred from oonseoutlve looatlons
startl"9 at LOC2 to conseoutlve locations starting at LOCi.

AttitlO

Form:

11-111. ARRTRAN (ARRAY1, ARRAY2);

Function:

11-112. This function
The transfer starts at the
mInimum of the sizes of
transferred.

coptes Information from ARRAY2 to ARRAY1.
first data word of each arraY. The
~RRAY1 and ARRAY2 Is the number of words

LI8ERATION-PRO~-SAIL ROUTINES

For",:

11 ... 113. RESULT ~ CODE (INSTR , ~AODR)

SAlLON NO. 57 SAIL

Function:

11-114. This function Is eQuivalent to the rAIL statements:

EXTERNAL ,SKIP.
SETOM
MOVE·
ADDI
XCT
SETi!M
RE TU.RN

,SKIP,
eJ,INSTR
QJ,@lAODR
o
,SKIP,
(1)

;DECLAREAS SKIP IN SAIL
,ASSUME SKIP- -

JDIDN'T SKIP

In other words, It exeeutes the Instruction formed by adding the
address of the ADDR Variable (passed by reference) to the number
INSTR. Before the operation Is oarrled out, ACl Is loaded from a
special cell (Initially 0), AC1 Is returned as the result, and also
stored back 'nto the spec la I ce II after the I nstruct I on f s executed.
The ·global variable SKIP_ (,SKIP. In DDT or FAIL) Is F"AL.SE (~)
after the call If the executed Instruction did not sklpJ TRUE
(currently -1) if It did, Declare this variable as
EXTERNAL INTEGER .SKIP_ If yoU want to use It,

F"orm:

RESULT ~ CALL (VALUE , "~U~CTION");

Function:

11-116, This function Is eQUIValent to the FAIL statements:

EXTERNAL ,SKIP,
SETOM ,SKIP.
MOVE 1,VALUE
CALL 1,CSIX8IT IFUNCTION/J
SET~M .SKIP, .DID NOT SKIP
RETURN (REGISTER 1)

The .SKIP, varfable (_SKIP_ In SAIL) Is set as descrlb~d Tn the
orevlous paragraph (CODE).

SAILON NO, 57 SAIL

U~I.tDr.r

11 .. 117. USE R ERR (V A L U E , COD E , ,. M S G ");

Function

11~118. MSG Is prInted on the teletype, If CODE = 2, VALUE Is
printed In d.eclmal 0,", the same line, Then on the next line the
"LAST SAIL CALL" message Is typed which Indicates where In the user
pro 9 ram the err 0 roc cur red • A" ?" 0 r " .. " c h a rae t e r 1st y p e dan d the
user maY type a standard reply (see ERROR MESSAGES, 13~19), If CODE
Is 1 or 2, a n .. " will be typed and executIon 'wlll be allowed to
con tin u e • 1ft t 'S 0, a ., ? " 1st y p ed, and n 0 con t t n u a t Ion w I I I b e
permItted.

S A I L 0 ,~ NO, 5 7 SAIL 12-1

SECTION 12

USE OF' DEFINE

The SAIL DEFINE feature provides a I fmited macro capabl I ity with
para~eter substitution. The formal syntax for DEFINE deelaratfons Is
given In DECLARATIONS, 3-1. Use of these macros Is described below,

Defining Macros

12-1. When a macro of the form

D E F I. N E MAC (X , Y) :: " FOR Y "1 S T E P 1 U N TIL X 0 0 "

Is seen bY the compi lar (either at declaration level or stat.ment
I eve I) , I t fir 5 t aSs 0 c I ate S \III I t h the "f 0 r m a I p a. ram e t e r s ,t seQ u e n t I a I
Indlees (X=l, Y=2), Then It reads the StrIng constant rOpresentlng
the ~acro body Into String spaee, sUbstItuting for each occurrence of
a formal parameter tne 'oharaoter '177 followed by the oharacter
reoressntlng the Index ,of this formal parameter. These special
characters wi I I be used to locate the actual oarameters when the
macro Is expanded, The modified macro body Is stored under the name
of the macro, where it lIes dormant until someone mentions It again,

12-2. In what follows, the character ~ wIll reoresent the
character ('177) used to Identify parameter locations. The number
following It will alwaYS be the parameter Index. The above macro Is
stored as:

FOR ~2"1 STEP 1 UNTIL ~1 DO

12-3. A macro m~y be re-deflned (at statement level) as many times
as desired. The new macro body replaces the old one. Macro names
fol low block structure, so for a macro with the same name as some
other macro to be a redefl'nltlon, It must appear at the same black
level as that ~ther defInition.

String Constants In Macro Bodies

12-4. String constants maY be represented In ~acro bodies, but two
Quote characters (tt) must be Inserted for each one which would be
neCessary If the String constant appeared outside the macro body
(which after al I Is Itself a StrIng constant, hence the orOblem).

SAILON NO, 57 SAIL 12-2

Usinq Macros

12-5. When a macro name (ignore for the moment the posslblilty of
oars'meters) Is detected In a f, Ie, the bOdY of that macro Is
retrIeved and beoomes the Input to the SAIL Scanner untJ I the String 'S exhausted; the scanner then returns to the sourr.e f II e for Its
fnout, The macro name Itself never makes It out of the scanner, If,
whi Ie a macro bOdy Is provIding Inout, another macro name Is
encountered, the or Iglnal macro body Is put aside untf I tnls new
macro I s exhausted. Nest I ng may occur to any I eve I; however, 1 t w I II
be necessary to Increase the size of the comp' ler's DEFINE push down
stack If n~sttng gets extremely deeo (see the 0 swItch In swltches,
13 ... 13).

Macro Parameters

12-6. If a macro body has been defined wIth formal parameters, the
como II er w I I I look for actua I parameters to sat' sfy them when a macro
I s expanded. Act u a I parameters f 0 I I ow the macro name , are sur rounded
by parentheses and separated by commas,

12-7. A macro parameter Is scanned as a String constant. However,
for convenience, the follo;-Jlng special rules apply to the Scanning of
a macro actual parameter:

1) AI I blank characters after the left parenthesis are Ig"ored,

2) -- If the f' r s tn 0 n .. b I a n k character Is not the " character, the
parameter String wi I I be terminated by a comma or a rIght
parenthesis, which wi I I not appear In the parameter. If the
tt character I s found after the first one, 't I s treated as
any other text character.

3) If the first non-blank character Is the"
parameter Is Scanned usIng the normal
constants,

charaote r, the
rules for String

SAILON NO, 57

Exarrole

12 .. 8.

MAC("Itt,"JU) Is eQuivalent to MAC(I,J)J
MAC(ttJ+3" , "X&""A STRING""")

Is eoulvalent to MAC(J+3,X8"A STRING");

but MAC ('''''' A. 5 T R I N G " , "p ROC (I , J) ")

SAIL 12-3

maY not be abbrevIated, beeause the meaning of the" character would
otherwise ~e ambiguous In the first argument, and the c6mmae and
oarenthlees ne.d prot'etlor. In the second.

Actual ParRmeter EXpsnslon

12-9. The aetual Dar.meter strings are stored In an ordered list
Just before the In~ut strlam 'I switched to the macro bod~. When one 0' the ~number pairs aDPlars, the Input stream Is swltohed to the
(number)th actual Darameter, Other macros (with or without
cararretafl) maY appear In these actual parameters without confusing
the scann.r (sic),

12-10, tor an aotual caramlter to be recogn I zed eventua II '¥ as a
st,,1 ng constant, enough" characters must sur round I t to a' low one to
survive on each end when It calses through the seanner fOr the last
time. To be sure, the Implementation of thIs feature Is so wondrous
that even the authors must rlsort to trial and error methOdS when
compl leatedthlngs are done\enod\attempted,

SAILON NO, 57

ExalTole.

12-1a.

o £ F" I NET T y. "1 ", ,S R C: .. 2", 8 R K _ 0 N _ L F D :: " 2" J
Comment for constant parameters for which
It' s de sl r a b fe to 'n c Iud e s Y m b 0 I Ie names,
this Is more efficient than assigning the
parameter values to variables,

DEFINE TYPEtMSG)= "OUT(TTY,MSG)"J
Comment note Inclusion of TTY macro in the

body of the TyPE macro;

DE r 1 NET V PE C (M S G) : "0 U T (l T Y , "" M S G"") " J
Comm.nt argument always to be made Into

a String constant;

DEFINE DEBUGGING = "TRUE", INP1(VBL,WHERE)=
"BEGIN

VBL~INPUT(SRC,8REAK_ON_LFD);
IF" DEBUGGING THEN

TVPEC""""""INF»UT TO V8L. ATWHE~E IS""""&VBL"tf);
END"} Comment (probablY);

Using these deffnltlons,

INP1CSTR,INITIAL READ) expands to:

BEGIN
STR .. INPUTC2, 2);
IF TRUE THEN

SAIL

au T (1 , " I N P UT TO S T RAT I NIT I A L REA 0 IS" & S T R) J
E:NO:

SAIlCI'J NO. 57

COMMAND FORMAT

Syntax

13-1.

<con:rrand I Ina>

<source 11 st>

< f i I e .. name>

<f.i Ie_ext>

<switches>

<un! I ashed.s w I ten. I I st>

SECTION 13

COMPILER OPERATION

SAIL

::= <binary_name> <listing_name>"
<sourc8_1 1st>

::= <1 118_so,c> ti
::= <f Ile_spee> EXC

: : . <f, I e_spee>
: : c <.mpty>

:.1 • , <f I I e_sose>
; : = (.mpty>

· . -· ... (f Ile_speo>
: : I: <souree_' 1st> , <f lie_spec>

:: = <f I Ie_name> <f II e_ext> <proJ_orog>

13-1

: : = <dev Ice_name> < f I Ie_spec> <sw' tches>
::= (device_name> <switches>

::= • <·legal_slxblt_Jd>
::: <empty>

::- C <Iegal_sfxblt_'d) , <legal_slxblt_ld> J
::= <empty>

: : = (<uns I ashed_sw Itch_II st>
: ::1 <s I ashed_sw' tch_11 st>
:l-<.mpty>

· . -· ... <swltch_soec>
: : It (un! I ashed_sw I tch _II st> <sw f tCh_St)8C>

'SI: I <switch_spec>
1:- (slash.d_swJtch_1 1st> I <swltoh spec>

SAILON ~O. 57 SAIL

" ::- <valld_!wltch_name)
::- <signed_Integer> <val Id_swltcM_name)

I : • 0
: : . L
: : II M
: I • P
: : a Q
I I • R .. -t • .. S

Semantic!

13 .. 2. All this Is by Way of saying that SAIL acoepts command. In
esslntlally the Same format accepted Oy DEC proClssors such as MACRO
and FORTRAN, The bfnary fl Ie name Is the name of the output device
and f II e on wh I cn the ready to load obJeot program w III be wr I ttln.
The "s tin q f I Ie, 'f Inc Iud ed, wi' leo n t a , n a e-o P Y 0 f t h • sou,. 0 •
f , I e s' wit h a h a 8 de rat the to D 0 f e a C n P age and an 0 C t a I D r 0 g ram
counter entry at the head of each line (see ListIng ~eatur.s, 13-13).
The listIng file .name Is often omItted (no lIsting craated). The
SOU r c e f' I e Irs t s pee , fie s a set of u S 8 r .. pre par e d f r Ie! w hie h , w han
concatenated, form a valId SAIL program (one outer block).

13.3, legal:sfxblt_ldentlfler Is a name which Is accectable to the
time sharing system as a valid file name, device nama, extension,
etc. ~hen Its first six (device, fl Ie) or three (extension,
oroglct.r.rogrammer number) are converted from ASCII to SIXBIT. ~or
more Information about fl Ie and devlee names, see CMoorerJ.

13-4. If flll.ext I. omitted from the binarY name, the extension
fO,. the outDut " I. w III be .REt.. The de'au I t - extens f on '01" the
IIst'n~ file Is .L.ST. SAIL wIll ffrst try to find sourc. fflll under
the ".mes gIven, If tMts 'falls, and tne extensIon Is omItted, the
same f lie with a .SAI extension wi II be tr led.

13-5. If dlvlcl_name fs omitted, DSKI I. assumed, If proJ.DrOg Is
omitted, the proJect-programmar numb.r for the job Is assumed,

SAILON NO. 57 SAIL 13-3

13-6. Switches are oarameters which affect the operation of the
corn 0 I I e r • A lIs t 0 f s wit c h e sma yap pea r aft era n y f, len a m 8 , The
oara~eters specified are changed Immediately after the fi Ie name
assocIated with them Is orooessed, The meanIngs of the switches are
given below,

13-7. The bInary, Ilstlno and (first) source file names are
orocessed before compl latlon -~ sUbseQuent source names (and their
switches) are processed whenever an ehd-of-fl Ie condition Is detected
In the current !OUrce fIle, Source files which aopear after the one
con t a I n 1 n g t. h e 0 ute r b lac k' sEN 0 del I mit era rei ~ nOr ed,

13-8. Each new I I ne I n the command f I Ie (0 rente red from the
teletype) specIfIes a separate program campi latlon. Any number of
programs can be comolled by the same SAIL oore Image,

1 3 ... 9 • The f' Ie .. s pee t«) com man d c a use s the com P I I e r too pen the
spec I fled f I I e as the command f I Ie. SubseQuent commands w I I I come
from this file. If any of these commands Is flle_spec@, another
switch wi I I occur,

13-10. The f I Ie_spec! command w, I I cause the spec I fled f i I e to be
run as the next orocessor, Th's program will be started In "RPG
rnode". That Is, ,t w III look Ol"l the disk for Its commmands I fits
standard command file's there .. ~ otherwise, oommand control will
revert to the TTY. The def&ult ootlon for this fJ Ie name Is ,DMP.
The def&ult project-programmer number Is (1,3J. The default device.
of course, Is aSK,

13-11. For Information about logging In, runnIng JObs, and so on,
see CMoorerJ.

SAILON NO, 57 SAIL

Rpg Mode

13-12. The COMPILE, DEBUG, LOAD, and EXECUTE set of system
Comma"nds maY be used to compile and run SAIL programS. See CMoorerJ
for detaIls, A typical command StrIng to the system (Wh'c~ wi I I
nrepare commands of the form described above and pass them to SAIL
(after startIng tt) might be:

DEBUG ISAIL RECOGC-2L5MRR):8EG+PROCS+RECQG/LIST,CMDSCNC1,OCSJ

Th"is corrmand wI II cause the following commands to be placed In a file
on your area. by the name of QQSAIL. RPG:

RECOG,REL,RECOGtLSTC-2L5MRR)~8EG,PROCS,RECOG
CMDSCN.REL~CMDSCNC1.DCSJ
LOADER:

T h a I S A I LAn try ma y b.. 0 mit ted I f a I I f I I e s h a ve a • S A I ext ens lon,
The loader will lOad the files with DDT or RAID a-nd than start the
specified debugging program.

SAILON NO, 57 SAIL

Switches

13·13. The fol lowing table descrIbes the SAIL parameter swItches.
If tne switch letter Is preceded In the table by the 0 character, a
deelmal number Is exo.cted as an argument. 0 Is the default value.
The charftcter 0 Indicates that an octal number Is exoected for this
switch, otherwise t~8 argument Is Ignored.

ARG SWITCH rUNCTION

o

o

o ror everY occurrence of this switch In the command

L

M

Iln8, the amount of spaoe for the push down'stack used
In Ixoandlng macros (see USE OF DEFINE, 12-0) Is
doubled. Us, this swltoh If the compiler Indfcates to
YOU that tht. stack has overflowed. Thts shouldn't
~appen unl.ss YOU nest DEfINE calls extremelY deaply.

In comoiling a SAIL program, an Internal variable
e a I led peN T (for pro g ram c 0 u n t e r-) lsi ncr e men ted (b Y
one) for each word of code generated. This value,
InitiallY 0, reoresents the address of a wOrd of cOde
in the running program, relative to the load point for
this program, The current octal value of peNT plus the
value of another Internal variable called LSTOF'FSET, Is
printed at the beginning of each outout line In a
Ilstina ft Ie, For the first program eompl led by ft

9 I ve n S A I L cor e I ma 9 a, t his val u e 'S I nit I a I I y 0. I f
the L switch occurs In the command and the value 0 Is
non-negative, 0 replaces the current value of
LSTOr;SET. If 0 Is -1, the current size of DDT 1s put
I~to LSTOrrSET. If 0 Is ~2, the current size of RAID
I $ Use d • In" R P G mod e " the fin a I val u eo' peN Tis
add. d t 0 L S T 0 F" F" SET aft ere a c h com p I I a t Ion • T h usb y
det.ting all .REL f lies produced bY SAIL, and by
compiling all SAIL programs which are to be loaded
tOg.ther with one RPG command which Includes the L
s wit e h , you' can 0 b t a I n I 1st I n g f I I e 5 sue h t hat e a c h 0 f
these octal numbers reoresents tha actual starting cOre
address of the code oroduced by the I Ina It precedes,
At the time of this writing, RPG would not accept minus
signs In swltche! to be sent to proces~ors. Keep
trYing,

o Is a number from 1 to 6, This parameter puts the
compiler In one of several debugging mOdes, This
switch Is most useful to compiler fixers, but some of
the modes are of g,neral Interest. The functions

S.1\ I LON NO. 57 SAIL

o

represented by each of these modes are described In
Debugging modes, 13-14 below,

P Each occurrence of this switch doubles the size of the

Q

system push down list. It has never been known to
overflow,

Each occurrence doubles the size of
down II st. No troub I e has been
either,

the strIng pUsh
encountered here,

R Each occurrence dOUbles the sIze of the compiler's
oarslng and semantIc stacks, A long condltlonal
statement of the form (IF. 't THEN •• , ELSE IF • ,.
THEN f.' ELsE IF ' ••) has been known to eause these
stacks to overf low their normally allocated Sizes,

s The slzl of String space Is Set to 0 words. String
space usage Is a function of the number of IdentIfIers,
espeCially macros, declared by the user, In the rare
case of String soace exhaustion, 5000 Is a good first
number to try,

Debugging ",odes

13~14. CertaIn versions of the SAIL compiler have a debugging
facll It)' built Into the lnner loop of the Parser. It Is wIlling to
displaY InformatIon about the current state of the compllatfon at
strategic tImes, ThIs routine can be In one of several modes. A
debugglng mode Is InitIallY specified using the M switch described
above. It can be changed by the user as the compilation progresses.
The modes and the I r funct Ions are as fo I' ows:

1) Just before each code-generator Is cal lad, fts name Is
dIsplayed on the TTY along with the too few elements of the
parse and s.mantlc stack!, If the TTY Is a DPV, one alSQ gets
the current Input line with an arrow underneath IndicatIng the
next etement to be Seanned. If You dO not know what to look
for I n the I t a c k , do r'I , t use t his mode • Como I I at j on may be
contlnu.d bY typing the character "P",

2) No InformatIon Is displaYed In tnls mode. However 'fne breaks
and asynchronous breaks (see below) can at' I I occur,

3) Just before each parse production Is compared to the parse
stack, the name of the production and the other In'ormatlon
mentioned above Is presented. Proceed bY typIng "p".
Com p I I a t Ion t. k • s for eve r I nth I! mo de,

SAILON NO, 51 SAIL 13 .. 7

4) This mode does not eancel any of modes 1, 2,or 3. However. It
~uts the debuggIng routInes In a mode wherein they wl I I not
Walt for a USer go-ahead before oroceedlng from the dlsolays
described for these modes, LIne and aSynchronous breaks are
st III "nab led J n t'" I s mode, and maY be used to rega' n oontro I
of things.

5) ThIs mode has no very useful a"pllcatlon If the TTY Is really &

TTY, However tf It Is secretlY a DPY, the current Input line
's continuously oresented along with an arrow showing the
compiler's progress through It. No user go-ahead Is neoessary
after eaoh prteentatlo", All other modes are cancelled, Line
and a~ynehronous breaks are enabled,

6) This Is the default ~od •• No Information Is dlsolayed. The
d'bUgglng routines are comoletelY detached from the oompllatlon
loop, Line and .synehronous breaks are disabled. The only wfty
to get any of tne Information described above Is to start over.

13 -is' • I f YOU have the ' como I I e r I nap 0 sit I on where f tis w I I I I n 9

t 0 I 1st e n t 0 a " P " toe 0 n tIn u e , you maY a Iso t y pes 0 me 0 the r t h I n g s ,
The !fost Interesting OMe Is the "L" command, TypIng "L", followed by
a salce, fo II owed by a cage number (dec I ma I), fo II owed by a. SDace,
fo I lowed by a 5 character II ne number. fo II owed by yet another space,
causes the como liar to remember th I s page and If ne number, and to
stop with a LIne qraak message and the Information described above
Just after the specIfied line has been read. At this point you maY
ohange ~odes (see below) or not, as YOU prefer, and ty6e "p" to
cont I nUl, Th Is oommand I s rea II y not too usefu I un I ess YOU are a
eomoller ffxlr.

13-16. To ohange modes wh II e comp' II ng, type any number 0'
Car a ~ • t. ,. • M "a f r! tot had e bug CI I n g I" t e r D ret e r b e for e t Y 0 I ,., g " P " t 0

90 on,

13-17, To get the comDlllr's attention when It Is operating In
one of tn. modes 2, 4, or 5, simplY type a carriage return. Very
shortlY the compJ Ie,. wi I f dlsolay an Asynchronous Break message, the
orlnt """ and some stack elaments, Then you may change modes, set
• Ifna br.ak, or Ilmt'ty crooeed, This Is often useful simply to
conv i ne. ~our •• l f tnat your program Is st III be I ng comp 11 ed 1 f YOU
are runnIng In mod, 2, If you are op.ratlng In mode 6, the com~ller
w II I not 11 stln to your" I ea. start the comp II er I n mode 2 'f YOU
want t~ls feature, but be warned that things wi I I slow down
co"sld.r.bl~ (1~~?).

SA I LON NO. 57 SAIL 13-8

13 -18 • He reJ sane x a'" pie 0 f a 00 m p 1 I est r I n 9 which a user who
Just has to try everY be I I and whl s t I. a val lab Ie to him might type to
compile a file named NULL:

COMPILE ILIST ISAll NUlLCRR·2L1M4M500~S)

The swItch Information eontatn$d In parentheses wi I I be sent
unchanged to SAIL, Note the eonventlon whIch al lows one set of
oarentheses enclosing a myriad of swlteh~s to reolace a "I" character
Inserted before e a c ho n8 • ThIs s t r , n 9 tel Is the 0 0 m pi I e r to com 0 i Ie
NULL using par5e and semanttc stacks four times larger than usua1
(R R) • A I 1st J n 9 f' I e J s to be mad e w h 1 c has sum est hat R A lOw I lib e
loaaed and NULL wi I I be loaded right after RAID (-2L), The uSer
wants to see the stack and tnput lIne Just before everY cOde
g e n er a tin 9 rout In e j sea I led (1M) , but he does not want the com P I I e r
to s t 0 'p aft er e ae h dis p Ia. y (4M), H 1 s pro 9 ram t s b t 9 e n 0 U 9 h to need
5000 words of str'ng soace (50005),

ERROR MESSAGES

1 3 "1 9 • 1ft h e com 01 I e rde t • e t s as Y n t a x 0 r semantic error while
compiling a program It wI II provide the USer wIth the following
InformatIon:

1) The err 0,. me s sa 9 8 • The sea r e Eng I Ish ph r a s e s 0 r sen ten c e s
which attempt to dIagnose the problem. If a message Is
vague It Is because no speelfle test for the error has been
made and a catehal I routine detected It. If the message
begins wIth the w~rd ffDRYROTfl It means that there Is a bug
In the compiler whIch sorne strangeness In your program was
able to tlokle. See a system programmer about this.

2) The cur r e n t I no uti I ne • P age a 11 d ~ I n e numb e r , a Ion 9 wit h
the t~xt of the Itne beln~ scanned, ars typed. If the
eo n sol e d e \I , C e 'S a 'TT y, a I' n e f. ad w f I '10 C e u rat the po' n t
In the line Just following the last program element scanned.
If the device's a 0 P y, t n e I tne w II I be d f s P I aye d wf t h a
vertlcal arrow betow the scan posltlon. The absence of a
positIon Jndicator means that a macro (DEFINE) body ts being
exoanded.

3) tt CAL LE 0 FROM x xx)(x ", T hi s I sa. m 8 5 sag e of va I u e to com p II e r
debuggersonly.

4) A ouestlon mark or rIght-arrow (~).

SAILON NO, 57 SAIL 13-9

13"20, Reapond to the Quest' on mark I n any of the fo II ow I ng ways:

CR Try to cont 1 nue eomp llet' on, A message w' I I be pr I nted and
'the seauence reentered If recovery Is lmoosslble (If a "1"
was tYoed Instead of a ,,~").

LF Co~tlnue and don't stop from now on. The orogra m wi I I not
stop 11 It can he 10 It. Messages wi J I fly bY Cat an
u'''·eadable rate on OPYs) untt I the compilation is complete
or an error ocours from which no recovery Is possible, In
the latter case the ouestlon seauence Is reentered.

S Restart, Sometimes useful If YOU are debugging the complier
(01' If you w!re compIling the wrong file), The orogram Is
restarted, aeceptlng compilation commands from the TTY,

x Exit. All files are closed in their current state, The
orogram eXits to the system.

L Look at stack, This -enters a part of the debugging routine
(5" nebugglnQ modf's, 13-14 above) to allow examInation of
the par se and semant I c stacks, The comp I Ie r w II I I ead you
by the hand through these proc~dures.

E Edit, This command must be followed by a carriage return,
or a !Daee, a f, I.name (In standard format, assumes nSK) and
a oarrtaga return, If the \ filename Is missing, the 50S
edItor (see CSavltzkYJ' Is started, glve~ Instructions to
edit the current sourCe fl Ie and to move the editing pointer
to the current C)age and line nUmber, If a file name Is
oresent, that file Is edIted starting at the beginning,

D Enter DDT or RAID I f one I s loaded.
DDT" and r.-Questlon.

13 - 21 • Any 0 the r e h. r' act, r w I I I c a usa the err 0 r r 0 uti n est 0 5 pew
forth a SUmmary of this table and re-enter the Question 5eQuenc 8 •

SAILON NO, 57 SAtL.

STORAGE ALLOCATION

13-22. The compIler dynamIcally allocates workIng stora;, for Its
o u s h down I I ! t S , S y m b 0 I tab I e s , s t r I n g s " ace s i etc. It" or m. I I y run s
with a s t 8 n dar d a I I 0 eat Ion ad 8 Qua t e for m 0 s tp ro gram s • S w , t c "
sett Il"\qs given above maY be used to change these a II ocat 1 ons. If
desired, these a I I 0 c e t Ion sma ya , s 0 be changed by t y" I n g t C, f 0 I low. d
by R EE (r e e n t e r) • The e 0 m p I I e r w J I I ask YOU I f you wan t to a I I 0 cat ••
Type Y to allocate, N to use the standardal location, and anY oth.r
cha~acter to use the standard al loeatlrins and print out what they
are, AI I entrIes wi I I be ~rompted. Numbers should be dec1mal,
TYD I I"Ig 81 t .. mode I nstead of CR w II I cause standard a I I oeat I OM to be
use d for t h' ere m a I n I n 9 val u e s • The com p I I e r w I I I the n s tar t ,
awaiting command Input from the teletyoe.

SAILON NO, 57

SECTION 14

PROGRAM OPERATION

LOADING AND STARTING SAIL PROGRAMS

Loading

SAIL 14-1

14-1. Load the ma I n program, any separate I y comp II ed procedUi-e
f I I e s (! e e S epa rat ely Com p I I. d Pro c. d u res, 15 ... 7) , a n ~ ass e m b I y
language (5ee PROCEDURE IMPLEMENTATION, 16-46) or Fortran procedures,
and 0 D Tor RA I D I f des Ire d t T hi! I s a I I aut 0 mat I c 1 f you use the
LOAD or DEBUG or EXECUTE syst.m command! (see (MoorerJ), AnY of the
SAIL execution time routines reQuested bY your program wi I I be
searched out and loaded automaticallY from LISSAI,RELC1,3J.

Space AI location, Normal Operation

14 - 2 • I f ':I 0 U e a n run w I· t h ! tan dar d s " a 0 e a I I 0 cat , 0 n , s I mol ':I 5 tar t
your program, First the SAIL storage areas will be initIalized. All
strings (except constants) will be cleared to NULL. All complled"'ln
arraYS wi I I be cleared. Then execution wi I I begin wltn tne first
statement In the out.~ block of your matn program. As eaoh block 15
entered, Its arraYs will be oleared as they are al located. Variables
are not cleared. The orogram wI I I exit when It leaves this outer
block.

14·3. If more push down stack Spaoe (string, system, arraY) or
st ring SDaoe Is ",eeded, type REE to the mon' to rand answe r a 1 I oca t I on
~uestlo~s as described In STORAGE ALLOCATION, 13-22. You ean find
out what the standard II IOeatlons are by typing a spacs ~fter the
system types A~~OC? at ~ou. Arrays, Leap spaces and 1/0 buffers are
al located dyneamtcally, obtaining mOre storage from the operating
system If necessary. S •• Storage Al location Routines, 16-5 and
followlnq for ways of c~op8rat(ng with SAIL with respect to storage
allocation If you write machine languaOe SUbroutines.

SAIL.ON NO. 51 SAIL.

ERROR MESSAGES

14-4{ Error messages have nearly the same format as thosl fromt~.
comelier <ERROR MESSAGES, 13-19). They Indicate that

1) an array subscrlot has overflowedJ

2) a ease· Index I s out of range'

3) a stack has overflowed while allocatIng space fo~ a
recursIve procedureJ or

4) one of the execution time routInes has detected an error,

14-5. The "CALLED rROM" address rdent'f~es, In the first 3 caslS,
the location I~ the USer program Where the error occurred J the "LAST
SAIL CALL AT" Addres, gives the location of the faUlty cal I 6n the
SAIL routIne for tYoe 4 messages.

14-6. A II the rep II ItS to error messages descr I bed In ERROR
MESSAGES, 13-19 are valid exceot the ttL" option. If no f lie name Is
tyoan w' th the "E" oot' on, the ed I tor re-opens the last f II e
mentioned In the EDIT system-command.

14-7, The functIon USERERR may be used to actIvate the SAI~ error
message mechanism, See Usererr, 11-117 for details,

DEBUGGING

14-8. The codl outDut for SAIL Drograms Is designed to b' fairly
easy to understand when .xamlned using the DDT debugging lan;uag. or
Stanford'S dllolay oriented RAID program, A knowl.dge ~f the
debugger you have chosen I~ reQuired before this sictlon wl~1 b'
comprehensible,

5 A I L :] I\~ NO. 5 7 SAIL

Symbols

14·9. Only those symbols whloh have been declared INTERNAL (see
SeoaratelY Comol led Procedures, 15-7) and those declared Tn the
ourrently open "program" are available at a given time, The name of
a SAIL Drogram as far as DDT or RAID (henceforth DDRAID) Is concerned
Is the name of the outer block of that program, If no name Is giVen
for t t, I s b I 0 e k, the n a m eM. w' I I bet h e d e f a u It,

14-10. Only the first sIx non-blank characters of a block name or
Identifier wi I I be used In forming a DDRAID symbol. If two
Identifiers -'n the same block have the same first six characters the
orogra m using them wi I I not get confused, but the user might when
trYing to locate these Identifiers.

14~11. To obtaIn symbols for the execution time routines, lOad
RUN TIM • R E L (1 , 3 J wit h you rot h 8 r f I I e s • The r out-I n e s w I I I bel 0 a d e d
frorr this file, which Includes symbols, Instead of from the LISSAI
librAry, which does not, vour program will be several thousand words
I onge r when th I s f I I e I s used.

Blncks

14"12 8 AI I block names and Identifiers used as varIables,
procedures or labels In a given (main or separate procedure) program
ara aval labia for tyoout when that program Is "open" (NAME$I has been
tyoed), To refer to R symbol, type B~OCK_NAME&SYMBOL/ (; for RAID).
The block name maY be omitted If YOU have "opened" the block with
BLOCK_NAME$&. The symbol table Is block~structured only to the
extent that blnck names have aopeared In the source prOgram. For
Instance, In the program

8EGI~~ "NAME1"
I j\i T E G E R I, J ;
I , •

BEGIN
INTEGER I,K)
• • •

E~D;

• • •
END "NAME1"

SAILON NO, 57 SAIL

the symbols J, K, and both symbols I are eonsl'd8red'bY OORAJD to
belong In the same blocK. Therefore confusion can r.sult with
~espect to I. This approach Was taken to avoid the neces.lty of
generating mearifngless block names for ODRAID when none were gIven In
the source program. A compound statement wi II be consIdered by
DDRAID to be a block If It has a name.

Sa I I-Gene ra ted Symbo I s

14-13, Some extra symbols a~e generated by SAIL and wf' I show up
When you are using DDRAID, They are:

ACS The .Ilccumu I a to r s P (system push
(strIng push down pOinter),
temporarY) are given symbo I' c
SP='16, TEMP='14.

down list pointer), SP
and TEMP (commonly used
names, CurrentlY P='1?,

OPS The op codes for the UUOs ERR" ERROR" FIX, FLOAT, POLOV,
and ARERR (subscript overflOW UUO) are Included to make
these easY to detect In the code,

ARRAYS For eacharrfiY declared In the outer block (bullt-In
arraYS), the fixed address of Its first element Is gIven a
eymbo I 10 name. Th' s name I s constructed f rOm the
characters of the array name (up to the fIrst 5) followed
by a period, For Instance, the first element of arraY CHT
Is CHT,J tne first element of POQARR Is PQQAR.J The lalt
eemloolon WaS really a perIod. This dotted symbol Dolnts
to the second wor~ of the ffrst descriptor for String
Arrays (see STRINGS, 16-14, ARRAY IMPLEMENTATION, 16-33),

BLOCKS The first word of the fIrst executable statement of every
block or compound statement Which has baen given a na m, fs
given a label created In the same waY as those for .rraYS
above. This t.bel cannot be gone to In the sourol
program, It causes no program Inefficiency. Tnls labe,
points at the first word of the oompound tal I -- not tne
first word of cod. generated for the blook (Sktps aMy
procedure or arraY declaration code),

START The first word of code gen9rated for any given proOram Is
gIven the name "5.".

SAILON NO, 57 SAIL

Warnings

Hangir"1c;:l Store

14-1 4 , Quite often an asSignment statement results only In the
lOading of a PDP-10 acoumulator, This AC wi I I not be stored Into the
core location IdentifIed with the name of the variable until It Is
necessarY, Confusion can result If YOU set a breakpoint somewhere,
then examine the eore'varlables of Interest without checklng the
'm~edlatel·Y surrounding oode to be sure none of the Interesting
varl8.bles are stili in ACs.

14-15~ Since only the first 6 characters of an Identlfler are
av~llable, It Is wise to declare symbols which will be examined bY
DORAIO In suoh a way that these six characters wi I I uniquely IdentIfy
therr..

SAILOi~ NO. 57

SECTION 15

PROGRAM STRUCTURE

THE SAIL CORE IMAGE (REQUIRED)

SAIL 15-1

15-1. The fo II oW I ng th I ngs must be "resent 1 n a core I mage
cont81nlng SAIL-oomot led f Ilesl

Main Program

15-2. A SAIL "main Drogram", or an assembly language 6rogram which
looks an awful lot I Ike 8 SAIL main program, must be present 1f any
SAIL-comolled files are, A SAIL source orogram which has no
entry-specification as Its first element satisfies this reQuirement.
The first stateme~t '~8euted after storage al location Is comolete
will be Its first statement, Tnere Should be nO more than one main
~rogram Der CO~8 Imagl,

15-3. The salient characterfstlcs of a main program are;

1) Its ,REL f lie has a starting address blOck (the loader will
tel I the time sharing system to start the program at this
address) •

2) Its first task Is to determIne whether the program was
started In RPG mode. If so. the global variable RPGSW Is
set to TRUE; otherwIse FALSE.

3) Its next task Is to call the storage allocator with
JSR SAILOR,

4) It should then proceed wIth the main control of the program,

4) It should execute a POPJ 17,0 when It Is al I done,

5) It may not execute any UUOs e~c.pt SAIL
Dermanently the UUO locations 4~ and
caution,

UUOs (nor alter
41) without great

SAILON NO. 57 SAIL.

Storage Allocation, Basic utilItIes

15-4~ There Is a !et of routines whIch must always bt loaded to
'stabl Ish the OperatIng environment for SAIL. programs. These
routInes allocate storage, set up push down pointers, and Initialize
some of SAIL's Internal tables, Other routines Included Tn this
package are 8 str Ing garbage collector (see STRINGS, 16-14) and
several baste routines which many others cal I upon.

15-5. These orograms will be loaded automatIcally from L.IBSAI.REI.
If the JSR SAILOR InstructIon, where SAILOR Is an external reQuest,
Is oresent In the main program (this Is automatic for SAIL-comDI led
maIn programs),

Othp,r Execution-Time Routln~s

15 - 6 • 'A I I I 10, S t r I n g • han d I I n g, etc. i s don e b y r 0 uti n e s w h f c h
Understand about sAIL. Programs reQUiring these services shoUld
prObably use these routines. SAIL-compiled files automaticallY
reauest these bleSsed routines from LIBSAI.REL.

OPTIONAL ADDITIONS

SeoaratelY Compiled Procedures

15-7. When a program becomes extremely large It" beoomes useful to
break the program UP Into several files whloh can be comoJled
seoarately, Thts can be done In SAIL by preparing one fIle as a main
program, and one or more other f lies as programs each of whlcn
contains one or more procedures to be cal led by the matn program.
Such a file must have the following characteristIcs:

1) An entry specification (lee EntrY Specifications, 2-1) mUlt
be the first Item 'In the program (Drecedlng Iven the BEGIN
for Its outer block), The list of Identifiers will be us.d
to form an Entry Bloek for the loader, Therefor. the '1 'e
may be placed In a user I IbrarY 'f deslrld. The format of
libraries's descrlDed In eWllherJ. Th4 Id.~t'ffer(s)
apDearlnQ In the entry list may be any valId Idlntlflers,
but UsUa I t y they wIt I be the names of the C ,.ocldurlS
eontalned In the file. No startIng address wltl be (slued
for a program contaIning an Entry SDlclflcatlon. No
checking Is done to see If entry Identifiers are evar reilly
declared In the body of the Drogram.

SAYLON NO. 57 SAIL

2) Since no startIng address Is present for this file, entry to
code within It may onlY be to the procedures It contalns;
the statements In the outer block, If any, can never be
executed. A II p rooedures to be oa II ad f rom the rna 1 n program
(or procedures In other'J les) must be Qualified with the
INTERNAL attrIbute when they are declared. External
procedure declarations with headings Identical to those of
the actual declarations must aDpear In al I those programs
which cal I these procedures,

3) These Internal procedures must be unIQuely Identifiable by
the first six charaoters of their Identifiers, In general,
any tw~ Internal procedure names (or any other Internal
variables In the same core Image) with the same first six
characters wi II cause Inoorrect I Inkeges when the Programs
are loaded,

4) Any variables (simple or array) which appear In the outer
b lor.k of a Seoarate I y Comp II ed Procedure program w'} II be
global to the orocedures In this program, but not aVailable
to the main program (unless they are connected by
Inter~al/External deolaratlons·- see below), Arithmetic
arraYs fn these outer blocks wi I, alWaYs be zero When the
program Is first loaded, but wi I I never be cleared as others
are (see Spaee Allocation, Normal Operation, 14 ... 2) _. String
arrays are always cleared.

5) Any variable, procedure or label may contain the attribute
INTERNAL or EXTERNAL In Its declaration (ITEMS may not),

15-8. The INTERNAL attribute does not affect the storage
assignment of the entity It re~resents' nOr does It have. any effect
on the behav lor of the ant I ty (or the scope of I ts I dent 1 f I er) I n the
file wherein It appear!, However, Its address and (the first six
characters of) I ts name are made ava' I ab I e to the loader for
satisfYing External reQuests.

15"" 9 • No! pac e I s eve r a I I 0 cat e d for an Ex t"e rna Ide c I a rat Ion.
Instead, a list of references to eaeh External Identifier Is made bY
the compiler, This list Is oassed to the loader along wIth the first
six characters of the Identifier name. When an Internal name
matching It Is found during loadIng, Its associated address Is placed
I n each of the I nstruc t Ions ment loned 'on the I' st. No orogram
, n e f f I c len c y at a I Ire sui t s f r om Ext ern a II In t ern a I I f n k age s (be I a y
that -- references to External arrays are sometimes mOre
Inefficient),

SAILON NO, 57 SAIL 15-4

15"1(1, The entity finally represented byan External Identifier II
only accessIble wlth)n the sco~e of the External decla~atlon.
Transfer!! to e)(ternal labels are always allowed, but if things work
correctlY when this Is done It Is only bY sheer luck that theY do.

rortran Procedures

15"11. For a program written In DEC F~RTRAN IV to run In the SAIL
environment, the following restrictions must be observed:

1) It mus_t be a SU8ROUTli~E or FUNCTION, not a main program,

2) It must not execute any FORTRAN 1/0 calls. The UUO
structures of the two langUages are not oompatable.

3> It must be declared as a Fortran Procedure (see Fortran
Procedures, 6-12) In the SAIL orogram which calls ft,

The "type bits required In the argument addresses for rortran
argurrents are passed correctly to these routines.

The SAIL c 0 Tn P i I e r wi I I not produce a procedure to be called from
FORTRAN.

Asserrbly Language Procedures

15-12. The I mp I ernenta t I on sect I on conta' ns the fo I low I ng
oaraqraphs to aId In writing assembly language procedures' User
Table, 16-1, STRINGS, 16~14, ARRAY IMPLEMENTATION, 16-33, Storage
AII·ocatlon Routines, 16 .. 5, and PROCEDURE IMPLEMENTATION, 16-46. In
addition, the following rules should be obserVed:

1) The ENTRY, INTERNAL, and EXTERNAL pseudo-oDS should be used
to obtain linkages for procedure names and "global"
Identifiers (remembe"r that only six characters are uSed for
these linkage names,

2) Aceumulators P (currently '17) and SP ('16) should be
preserved over function ealls, P may be used as a Push-down
pointer for arithmetic values and return addresses. SP ts
the string stack pOinter. String results are returned on
this stack. ArithmetIc results are returned In AC 1 (se8
PROCEDURE IMPLEMENTATION, 16-46),

3) The UUO locations 4~ and 41 should be preserved.

S A I L C :'~ NO. 5 7 SAIL 15-5

4) JQBFF must be set by the user to some free buffer area
before aUTBUF or INBUF UUOs are executed. JOBFF Is
periodically set by SAIL to an Invalid address.

5) The CORE UUO may be used to Increase memory size, but never
to deerease It. Never attempt to use directlY any of the
memory soace currently assigned to the JOb (except that
explicItly provided In the routine). Release all memory
obtained In t~ls way before returning to SAIL routlnes. See
Storage A II ocat I on Rout' nes, 16-5 for I nstruc t Ions on
Obtaining core from the SAIL memory allocators (a much
Safer, and sometimes faster waY).

Others

15-13, There are no other known processors whloh wi I I produoe
SAIL-co~patlble programs. In oartloular, the LISP 1.6 system, by Its
very nature, contains storage allocation eonfl iets which are
difficult to resolve. If A great need for this kind of compatlbl Iity
develops It can be orovlded~

SAILON NO, 57

STORAGE LAYOUT

User Table

SECTION 16

IMPLEMENTATION INFORMATION

SAIL 16-1

16-1. AI I working storage areas for a SAIL-generated program and
Its execution-time routines are dynamically allocated -- some just
once when thA program Is flr~t started, some as more space Is needed.

16 ... 2 • The fir star e a a I I 0 cat e dis a seve r a I hun d red war d tab I e
Which contains Information about the remaining storage areas and
global variables for the executlon.tlme routines, A single Internal
variable, GOGTAB. wi I I always contain a poInter to this table. The
executlon.tlme routines make al I accesses to storage through this
table Or through User-suDpl led addresses. They would therefore be
tota r I Y re .. entrant I f the- GOGTAB var I ab I e were a II owed to vary oVer
several users,

16 .. 3.' A F A I L sou r c e f I lee 0 n t a I n I n g s y m b 0 I. i c I n d Ice s for the use r
tab Ie, as we 1\ as some usefu I MACROs, OPDEFs, and accumu I ator
definitions Is avaIlable to provide accesSablllty to this table for
asserrb I y language r out I nes. Th Is f I I e may be conca tena ted to a F A I L
program before assembly.

16-4. Most executlon.tlme routines load the address contained In
GOGTAB Into the accumulator USER (currently '15) In order to Index
the user taole, Thus In what follows, symbolic Index XX Into this
table will be listed as XX(USER),

Storage Allocation Routines

16~5. SAIL makes al I reQuests for storage through the routines
CORGET. CORREL. CORINC, and CANINC, These routInes are deScribed In
the following paragraphs. The AC's THIS and SIi are curren.tly set to
2 and 3, respeetlvelY, All core routines are oalled with PUSH,)
17,routlne,

S A I L !J ;~ NO. 5 7 SAIL 16 .. 2

Corget

16-6. Corqet Is called with the desired size of a block of storage
In regIster SIr, It returns the address of the new block 1n THIS.
No ether accumulators are altered. Normally the function skips on
return, It does not skiD If Insufficient core Is available to grant
the reouest. The address returned Is that of the first free data
Word (DATA below).

16-7.

HEAD:

DATA:

END:

A SAIL core block has the following form:

"LAST,."NEXT
SItE
BLOCK S12E ... 3

USEBIT" .. HEAD

;when not in use (free '1st links)
JENO-HEAD+1J negated when block Is In use
Javai lable to user .- sometimes a few more

words than reQuested wi I I be contatned
J In the block
:USEBIT Is 400000 if block-is In useJ else 0

The first time CORGET Is called, GOGTA8 Is 0.
and performs the fOllowing specIal actions:

CORGET notrees thIs

1) Prepares to allocate storage Just past the program and
symbols (left half of JOBSA contains the relevant address),

2) Allocates the usar tableJ puts pointer In GQGrAB.

3) Forms remaining free storage from the end of the user table
to contents CJOSREL) CC(JOBREL)J Into a single free SAIL
blocki Puts ~HEAO in lO(USER), FRE(USER). Puts C(JOBREL)+l
In TOP(USER).

4) Performs the reQuested CORGET operation.

16 .. 8.
Blocks
releases
satisfy
the time

FRE(USER) Is the 'hea.der of a I Inked free storage list,
are obtained from this list and the list Is updated. CORREL

blocks onto this lIst. If no currently free block wi I'
a CORGEr reQuest. the CORE UUO Is executed to get more from
sharing sYstem.

16-9. Users are free to use the CORGET funct I on If the¥ w111 be
careful of the two header words and the single trailer word
associated with each block, Release these blocks as soon as possible
to orevent undue checker-boardIng of free storage.

SAILON NO. 57 SAIL

Correl

16 .. 1'~' Cor re I Is ea I led with the address obta t ned 1 n the
corresponding Corget cal I (the DATA address) In register THIS, The
block Is returned to the free storage list, If either of the two
neIghboring blocks Is already free, tne adjacent free blocks are
merged with the one being released to form a bigger one, If the
block being released Is uppermost In core, and If it occupIes mOre
than about 2K. the c~re size of the program Is contracted ustng the
CORE ULJO. About 2K of free storage Is left in this case, No ACs are
altered by CORREL.

Cor Inc

16-11. Corlne Is called with the DATA address of a SAIL block In
THIS and a desired Increment In st~. If there Is a free block
directly above the T~IS hlock with at least SIr free words, or If the
THIS block occupies the highest addresses of anY brock 1n use, the
reauest Is granted, the "block Is extended by SI~ words and the
function executes a !kfo-return. Otherwise no skip occurs and no
action Is taken, No ACs will be altered.

Canine

16-12. Canine oerforms the Same tests as Cor Inc and SkIps under
thq same condItions. It also uses the same cal I tng seQuence, If It
does not skip, It returns with SI~ altered to show the number of
WordS ~y whIch the DATA block can be Increased. It Is 0 If no
Increase Is possible. This function never affects current cOre
allocation.

16-13. These functions are not avaIlable to SAIL programs since
core can be Obtained bY arraY declarations (which In turn use these
functions).

SAILO:'~ NO. 57 SAIL

STRINGS

String DescrIptors

16-14. A SAIL String has two distInct parts: the descrlctor and
the text. The dascrlotor Is unIque and has the following formatl

WORD1: STRINGNO"LENGTH
WORD2: BYTP

1) STRINGNO, This entry Is 0 If the String Is a constant (the
descriptor wi I I not be altered, and the String text is not
In String Space, Is therefore not sUbject to garbage
collection). Every time a String Is created via the
concatenation operator, or Input function, or an
Integer-String type conversion, It receives a new STRINGNO,
Each new String receives a number one greater than the last,
starting at 1 when tne program Is Initialized. All strIngs
formed as SUbstrings of a given String have the string of
the original (major) strIng, These numbers aid In
Increasing String garbage 001 lectlon efficiencY.

2) LENGTH. This number is Zero for any nul I String; otherwise
It Is the number of text characters,

3) BYTP. If oount Is 0, this byte pointer is never checked <It
need not eVen be a valid byte pointer, Otherwise, an ILDB
machine Instruction pointed at tne BYTP word wI I I retrleve
the flr~t text character of the String, The text for a
String may begin at any point In a word, The characters are
stored as LENGTH contiguous characters.

16-15, A SAIL String variable contains the two word dascrlptor for
t hat v ar , a b Ie, The' den t I -f I ern a min g I t pol n t s tow OR 0 1 0 f t nat
descriptor, If a String Is declared INTERNAL, a symbol Is formed to
reference WORD2 bY taking al I oharacters from the orIginal name (up
to 5) and coneatenatl"g a "." (O~TSTRING's second word would be
labeled DUrST.).

16~16. When a String Is passed by reference to a procedur., the
address of WORD2 Is placed In the P-staek (see PROCEDURE
IMPLEMENTATION, 16-46), For VALUE Strings both descriptor words are
OUSh9d onto the SP staok.

SAIL:li\J NO, 57 SAIL 16-5

16-17. A Strlnq array is a oloc~ of 2-word String descrlptors.
The 8rray descrlotor (see ARRAY IMPLEMENTATION, 16-33) points at the
se~ord word of the first descriptor In the array.

16-18, Information Is generated by the compiler to allow the
locations of al I no~-constant strings to be found for pUrooses of
gar b H 9 e ... e 0 I I e'c t Ion and I nit I a liz a t Ion (s e e PRO C E D U REI M P L E MEN TAT ION,
16·46). AI I String variables and arrays are cleared to NULL wheneVer
a SAIL program Is started.

Strlr.g Operations

16-19, The four basIc String operations are concatenation (CAT),
sUhstrlngs <SUBSTR), String-Integer (GETCH), and Integer-string
(PUT~H). Other functIons produolng or operating uPon strings are
deScribed In Execution Routines, 11-1.

Ca t

16-20, CAT forms a new String from two other strings (constants or
otherwise), The calling seQuenCe Is:

PUSH
PUSH
PUSH
PUSH
PUSHJ

SP.WORD11
SP,WORD12
SP,WORD21
SP,wORD22
P,CAT

:WOR01, FIRST ARGUMENT
;WORD2, FIRST ARGUMENT
JETC.

The result Is found as a new two·word descriptor on top of tne SP
(currently AC '16) staok. If either argument Is the nul I String, the
result Is the other argument. If the first argument occupIes the
Space directly preceding the first free character In string SOace,
only the second argument Is copied. Otherwise, both arguments are
oooled (In order) Into free space to form the result, A new String
number Is created for this re5ult. The LENGTH field Is the sum of
the LENGTHs of the two arguments,

SAILON NO, 57 SAIL 16··6

Substr

16-21. SUBSTR returns a descrIptor represe~t'ng a ~art 6f Its
, no uta r gUm en t • SUB S T R I s rea I I y t h r e e r 0 uti n e s , c a·1 led as f 0 I lOw s :

SU8ST
PUSH P,LASDX
PUSH P,FIRSQX

PUSH SP,WORD1
PUSH SP,WORD2

SUBSR
PUSH P,NUMCHR
PUSH P,F'IRSOX

PUSHJ P,SU8S(T/R/I}

SUBSI
PUSH P,FIRSDX

LASOX I! the number of the last character to be Included (starting
with 1), FIRSOX Is the number of the first character to be lnelUded,
NUMCHR Is the number of characters to be Included,

16·22, The result Is always a two-word descriptor In the SP stack
describing the substring,

SURST Is used for the construct STrX for YJ.
SURSR Is used for STeX to YJ.
SUBSI I s used for Sr(X to .. J.

16"23, An error message Is prInted If the
satisfied, This wi I I result In Job abOrtion,

reauest can not be

16.24, The String number of the output Is the same as the String
number of the Input.

Getch

16-25, Call with

PUSH
PUSH
PUSHJ

SP,WORD1
SP,WORD2
P,GETCH

SAILON NO. 57 SAIL 16-7

The first character If the String Is returned In AC 1 Unless the
String Is NULL; zero Is returned In this case, The Sp stack ts
adjusted to remove the parameter. An error meSSage will be prInted
If some oart of the requested substring does not exist,

Putch

Call with

PUSH
PUSHJ

P,VALUE
P,PUTCH

The result Is a String descriptor with oount of 1 on top of the SP
stack, The P stack Is adjusted to remove the parameter and return
addreSS, The String number IS neW 4 The low order 7 bits of VALUE
form the single character In the string,

String Space

16-27, The normal or user·speclfled (see STORAGE ALLOCATION,
13-22) number of words reQuIred for strings Is used to obtain a
sin g I e S A I L b I 0 c k (s e eSt 0 rag e A I I 0 cat Ion R 0 uti n e s , 16 "" 5) \~ hen the
program Is started. The limits of this area are placed In ST(USER)
and STTOP(USER), Other parameters are set UP as described below,

16-28, String text characters are placed contiguously in thes area
as strings are created, When not enough storage remains for a
contemolated String, the parbage col lector (see String Garbage
Collection, 16-30) Is called to Obtain more (by comoacting the
current space, If possible), If this falls, the program will restart
and request more reasonab Ie 11' I ocat I on.

SAILON NO, 57 SAIL 16-8

Para~eters Used bY String Operations

16-29,

ST(USER)

STTOP(USER)

Bottom (low address) of Str I ng space

(Too+l) of String soace

TOPBYTECUSER) ~yt8 pointer such that IDPB TOPBYTECUSER) wi I I
store Into next character

REMCHR (USER >.

TOPSTR(U5ER)

Negated number of free characters remaining

WORD1 for last created
sUbstring operations),
decide whether Its first
moved (see Ca t, 16 .. ?0),

Str Ing Garbage Co Ilection

String (doesn't Include
CAT uses thfs word to
argument needs to be

1 6 - 3 (3 • The S t r i n g gar bag a c a I lee tor (S T R N G C) I s c a I I a d 'w han e v a r
the (estimated or actual) size of a soon-to-be-created strlng Is
larger than -REMCHR(USER). BY various devious means It finds al I
active (non-constant) String descriptors, sorting them In asoendlng
address sequenCe bY using the byte pointers. assoclatl~g al I
SUbstrings of a qlven active Strlnq (major String) .,.ouch, Then It
compacts String Soace bY moving the text for al I major strIngs to
lower memory locations occupied by t~xt no longer reachable from any
descriptor, Finally It updates all String descriptors and the
pararreters described above. If there Is stl I I not enough room, It
orlnts a frustrated messaqe and restarts the Drogra~ wlth the
a I I ocat I on sequence norma II Y obta I ned by typ I ng the REEnter system
com~and (sae STORAGE ALLOCATION, 13-22),

StrlnQ-Oriented Machine La'nguage Routines

16-31, If yOU must write a routine which operates on strings,
o I ease observe the fo II OI,,oJ llig convent Ions:

1) See PROCEDURE IMPLEMENTATION, 16-46 for conventlons
conoernlng Input oarameters and value returning.

2) If YOU merely need to read a String, no particular Care Is
required (don't change the descrIptor of a reference string
parameter by performing careless ILOBs),

SAILON NO, 51 SAIL 16-9

16-32. If you need to create a new String, these are also
applicable:

4) E5tlmate the number of characters if it Is not known
exactlY, This estimate must be an upper bOUnd; an
unrealisticallY large estImate wi II cause the garbage
collector to work more often than necessary. Place the
e!tlma~e In register A (i),

4) Execute the followIng cOde before dolng any
StrIng-munching:

MOVE
AODM
SKIPLE:
PUSHJ

USER,GOGTAB
A,REMCHR(USER)
REMCHR(USER)
P,STRNGC

;ESTABLISH ADDRESSABILITY
;UPDATE REMAINING COUNT
;TE5T IMPENDING OVERFLOW
;COLLECT, WILL NOT RETURN IF

NEW ·REMCHR+C(A»~.

5) TOPBYTECUSER) should be your WOR02 result. Save It now,

6) Do re~eated IOPSs to TOPBYTE(USER) to store your string,
This keeos TOP8YTE accurate. Count characters If your
estimate was only an estimate.

7) Create WORD1 of your result, The left half Is the left
half of TOPSTR(USER) Incremented by one. The right half Is
the length of your new string, This word Is not only WORD1
of your result, but also should be placed In TOPSTR(USER).

8) Subtract (estimate - actual length) from REMCHR(USER) to
keep It honest, This should make REMCHR If anything more
negative,

9) Return String results on the top of the SP stack, If a
result Is to go In a reference parameter (see PROCEDURE
IMPLEMENTATION, 16-46) remember that the address yoU have
Is th~t of the WORD2 (byte pointer) word of the desoriptor,

SAILON NO, 57 SAIL 16-10

ARRAY IMPLEMENTATION

F"orrr:

16-33, Let STRINGAR be 1 (TRUE) If the arra~ In Question Is a
String array, 0 CFALSE) otherwlse t Then a SAIL arra~ of n dImensions
has the followlnq format:

HEAD: ... DATAWD
HEAD-END-l

;... MEA N S " POI N T SAT"

ARRHED: BASE_WORD
LOWER_BOCn)
UPPER_SDCn)
MULT(n)

;SEE BELOW

. , .
LOWER_BD(1)
UPPER_BO(l)
MULT(l)
NUM_DIMS"TOTAL_SltE

DATAWD: BLOCK TOTAL_SItE
(sometImeS a few extra words>

END: 400000., ... HEAD

Explanation

16-34,

HEAD

ARRHED

TOTAL_SI~E

The first two words of eaoh array, and the last, are
control words for the storage Allocation Routlnes,
16-5_ These word$ are alwaYs present for an array.
The array access code does not refer to them,

Each array is preceeded bY a block of 3*n+2 control
words, The S'ASE_WORD entry Is exolalned later,

This 1st h e dim ens Ion a I I t y 0 ft he a r ray • I f S T R I N GAR ,
this Value Is negated before storage In the left half.

The totat number of accessIble elements (double If
STRINGAR) In the array.

SAIl-ON NO, 57 SAIL. 16-11

BOUNDS

MULT

Tne lower bound and upper bound for each dlmenslon are
stored In this table, the left-hand Index values
oecupYlng the higher addresses (closest to the arraY
data). I f they are con!;tants, the camp' I er will
remember them too and try for better code (I.e.
Immediate oDerands).

Thfs number, for dimension m, Is the product of the
total number of elements of dimensions m+1 through n.
MULT for the last dimension Is alwa~s 1.

Tn's 's
DATAWD • the sum of (STRINGAR+l)*LOWER_BD(m)*MULT(m)

for all m from 1 to n. The formula for calculating
the addr.ss of A[I,J,KJ lSI

address(ACI,J,KJ) :
address(DATA~D)+

<I-LOWER_BD(l»*MULT(l) +
(J-LOWER_8D(2»*MULT<2) +
CK .. L.,OWER_BD(3»

This expands to

addressCACI,J,KJ) s
addreSs(DATAWD) +

I*MULT(1) + J*MULT(2) + K
-CL.,OWER_BO(1)*MULT(1) + LOWER_BD(2)*MULTC2) + LOWER_BO(3)

whIch Is

BY, pre-calculating the effects of the lower bounds,
several instruotlons are saved for each arraY
reference.

SAILON NO, 57 SAIL 16-12

Array Allocation

Dynamlo Arrays

16-35, When an arraY Is declared In any block other than the oute~
one, the compiler generates code to call the function ARMAK with
oararreters describing the array. This routIne calls CORGET (see
Storage A Ilocation Routines, 16-5) to obtaIn enough storage, then
sets Up the control table and clears the data area to zeroes. The
ARRHED address is saved In an array push-down lIst whose polnter Is
ARRPDP(USER). The addrss of DATAWD+l Is returned for string arraYs,
the add res s ,0 fDA TAW 0 I s ret urn e d for a I lot h a r s • The com D I I e r
generates code to store this address In the core cell bearln; the
name of the array variable.

16-36, When al I declarations for a block contaInIng array
dec I a rat Ion 5 h a v e bee n pro c e sse d , the com pf I e r· I s sue sac a I I to ARM R K
which marks the arraY oush~down stack (with a ~1, 'as a matter of
fact)G On block exit (or when a GO TO transfers out of the block),
the rout f ne ARREL Is ca II ad to remove th I s mark and return a II ar rays
back to the previous mark to the SAIL free storage lIst,

16-37, The string garbage col lector uses the array push-down stack
to find dynamic string arraYS which need attention,

Built-In Arrays

16-38, Outer-block arraYS have constant bounds, The como,ler
slmoly emits a Jrst Instruction, then compiles the control table Into
the block head of the object program. It leaves room for the array,
then Issues the END word. The Jrst Instruction then fInds Its home
In some code to clear the arraY to zeroes.

16-39, The core location bearing the name of the arra~ has the
address of DATAWO (OATAWD+1 If STRINGAR) compiled Into It. ThIs
address Is gIven the dotted name described In DEBuGGING, 14-8,

16-40, For built-In String arrays, a String link block (see
PROCEDURE I MPLEMENTAT I ON, 16-46) I s Issued f 0 I low I ng the space
allocated for the arraY, The String garbage collector (sel String
Garbage Collection, 16-30) gains access to this array through this
static link,

SAILON NO, 57 SAIL

16-41. It can be seen from all thIs that all dynamic a.nd built-In
arraYS are cleared when the blocks In which they are declared are
entered, Since the outer block of a s.~arateIY eompl led procedure
f I 'e (se. S'".rate I 'Y Com~ II ad Procedures, 15-7) 'S never entered, Its
built-I" arrays, although svallable for use, are never cleared, The
loader clears them once as It loads,

ArraY Access Code

16-42, In the worst ease (no fixed bounds, bounds checking, not
b u i It .. I "') t h.8 S tat e men t K .. A r I , J J w I I I be com p I led as:

MOVE
MOVE
CAML
CAMLE
ARERR
IMUL
MOVE
CAML
CAMLE
4RERR
ADD
ADD
MOVE
MOVEM

1,A
2, I
2,-4(1)
2,-3(1)
1,(ASCI~ IA/J
2, 2(1)
3,J
3,-1(1)
3,-6(1)
2,CASCIl IA/)
3,2
3,-10(1)
4, (3)
4,K

:~FIRST DATA WORD
JF'IRST SUBSCRIPT
JIF <LOWER BOUND OR
:)UPPER SaUNa THEN
; ERROR IN INDEX 1"
;I*MULT(l)
,CHECK DIMENSION 2

;NO MU~T FOR LAST, COLLECT OfFSET
; + BASE_WORD
;DATA FROM ACI,JJ

16-43. If A Is, however. declared In the outer block at'! SAFE
INTEGER ARRAY A(111~,1:5J, the code for ACI,JJ Is

MOVE
IMULI
ADO
MOVE
MOVEM

1. I
1,5
1,J
2,A.-5(1)
~,K

JI*MULT(l)
:COLLECT OF'F"SET
;CONSTANT PART or ADDRESS COMPILED IN

SAltON NO, 57 SAIL

16-44. ACI,3J would be comp! led as

MOVE 1, I
IMULI 1,5
MOVe: 2,A,-2(1)
MOVEM 2,K

and J"At2,3J would be

MOVe: 3,A.+7 .. ,
MOVEM 3,J

16-45, Varl~us configurations of array declarations and accesses
result In code which ranges between these degrees of efffclency,

PROCEDURE IMPLEMENTATION

16-46,

Procedure Body

16-47, To descrIbe the main charaeterlstlcs of SAIL procedures, a
set of sample procedureS are displaYed here along wIth the cOde theY
proQuce, Some of the entries are discussed In more dataf I below,
The notation enJ Is placed In the comment field of the assembly
Instruotlonto re(er to these dlscussl~ns'

INTEGER PROCEDURE Pl(lNTEGER I,JJ STRING A);
Pi: AOS P1PAC ;(lJ INCREMENT PROC ACTIVE COUNTER

BEGIN
INTEGER Q; STRING A,B;
INTEGER ARRAY X(0)5];

PUSH
PUSH
PUSH
PUSHJ
MOVEM
PUSHJ

P,(0J
p,e5]
P,[lJ
P,ARMAK
1,X
P,ARMRK

'ALLOCATE AND CLEAR
:STORE POINTER
~END Of ARRAYS FOR SLOCK

S A I l 0 N NO. 5.7

<code for procedure)

RETURN(Q);
MOVE
PUSHJ
JRST

SAIL

1,Q JC2J RESULT IN 1
P,ARREL J(3J RELEASE ARRAYS FOR BLOCK
P1EXIT JEXIT PROCEDURE

<more code for orocedure)

Et\iD "Pi"

16-15

PUSHJ
50S
SUB
SUB
JRST
o

P,ARREL .IF FALLS THROUGH, RELEASE ARRAYS
P1EXIT:

QI

X I
TEMPe?:
A&
B:
P1PAC:

LNKWD:

o
o
BLOCK
BL.OCK
o
XWD
o
L.INK

P1 PAC JONE TIME LESS ACTIVE
SP,tXWD 2,2) ;REMOVE STRING PARAMETER
P,(XWD 3,3) ;(4J NON-STRINGS, RETURN ADOR
'3(P) JRETURN

JROOM FOR VARIABLE
;ARRAY POINTER
ItSJ TEMPORARY STORAGE

2 .TWO WORDS FOR" EACH STRING
2

:(6J PROCEDURE-ACTIVE COUNT
2,A JSTRING COUNT,~FIRST

J(7J LINK PASSES THROUGH HERE
1,LNKWD ;t7J CAUSES LOADER LINKAGE

PROCEDURE P2(INTEGER I,JJ STRING A);
BEGIN'

INTEGER ARRAY X(011~J;

• t •

BEGIN
INTEGER ARRAV V[0:10)i
t • ,

RETURN;

t ••

ENDJ
ENO"P2"J

PUSHJ
PUSHJ
JRST

P,ARREL.
P ,"ARREL
P2EXIT

STRING PROCEDURE P3(STRING A,B)J
BEGIN STRING CJ

;RELEASE ARRAYS r OR ALL
; BLOCKS IN PROCEDURE

SAILON NO. 57

• ••
RETURN(C);

RETURN(B);

SUB
PUSH

'PUSH
JRST

SUB
PUSH
PUSH
JRST

SP,[XWD 4,4J
SP,C
SP,C+1
P3EXIT

SP,CXWD 4,4J
SP,3(SP)
SP,3(SP)
P3EXIT

SAIL

;REMOVE PARAMS

;RETURN STRING RESULT

;F'IRST WORD OF' 8
;SECOND WORD OF 8
:GO RETURN

RETURN(C&"STR"); COMMENT ASSUME CAT A~READY DONE;

16-16

SUB SP,[XWD 6,6J ;REMOVE PARAMS, TEMp R~S~T
PUSH SP,5(SP) ;TEMP RESLT
PUSH SP,5(SP) ;20 WORD
JRST P3EXIT

• ••
END "P3" J

P3EXIT: SOS
SUB
PUSH
PUSH

P3PAC
SP,(XWD 4,4J ,NOT THIS TIME, BUT WOU~D
SP,C0J JBE INCLUDED IF' NO RETURNS
SP,C0J ;DONE ABOVE (RETURN NULL STRING)

RECURSIVE INTEGER PROCEDURE P4(STRING A,B; INTEGER I,J)J
P4TEXT: AOS P4PAC

BEGIN
STRING C,DJ INTEGER K,L;
• ••

END "P4"J
P4EXIT: SOS P4PAC

SUB SP,(XWD =8,=8J JC8JTAKE OFF LOCA~S,PARAMS
HRRI TEMP,e ;(8J
HRLI TEMP,5(SP) ;(8J
SLT TE'MP, D+1 :(8J RESTORE LOCAL STRINGS

SUB P,(XWD 6,6) ;(8J SAME FOR P-SIDE
HRRI TEMP,K . (ALSO RETURN AODR REMOVED) ,
HRLI TEMP,4CP)
8L.T TEMP,TEMP03 ;MUST EVEN SAVE TEMPS
JRST @3CP) ,RETURN

P4: ADO P,cxwD 3,3J ;LEAVE ROOM FOR LOCALS
SKIPL P ;CHECK PUSH-DOWN OVERFLOW
POLQV P, ;(9JUUO TO SIMULATE PDL OV

SAtLON NO, 57

HRRI TEMP,~2(P) ;C9JSAVE LOCALS
HRLI TEMP,TEMP03 ; AND TEMPS
SLT TEt1P,(P)
<stmllarly for SP (string stack»
JRST P4TEXT ;GO DO PROCEDURE
(variables and such)

RECURSIVE STRING PROCEDURE P5(STRING A,8);
BEGIN

STRING C,D;
, . .
RETURN(e), _

SAIL 16-17

PUSHJ
PUSH
PUSH
PUSHJ
JRST

P,P5POP J(10JREMOVE STRING LOCALS,?ARAMS

RETURN(8);
PUSHJ
PUSH
PUSH
JRST

RET URN (A & " S T R ") :

••• END uP5'"

POP
POP
PUSHJ
PUSH
PUSH
JRST

P5EXIT: SUB . , .
JRST

SP,C .STRING RESULT
SP,C+l
P,ARREL ,ENOUGH TIMES If ANY ARRAYS
P5EXIT

P,P5POP
SP,3(SP)
SP,3(SP) ;RETlJRN PARAMETER
P5EXIT

SP,l ,Cl1JASSUME CAT ALREADY DONE
SP,0
P,P5POP
SP,0 J(11JRETURN VALUE
SP,l
P5EX I'T

P,CXWD 2,2) JOR WHATEVER, SEE ABOVE
,RESTORE LOCALS, ADJUST

@3(P) 'RETURN

P5: (as above> . , .
P5POP: SUB SP,(XWO =8,=8J ;(10) REMOVE STRING LOCALS,PARAMS

HRRt TEMP,e
HRLI TEMP,5(SP)
SLT TEMP,Q+l
POPJ P, ;RETURN

SAILON NO. 57 SAIL.

The rratn program has the fol lowing format:

S ,: SKIPA
SETOM
JSR

;NOT STARTEO IN RPG MODE
RPGSW JSTARTED IN RPG MODE -. RPGSW A GL.OBAL.
SAIL.OR JINIT -. RETURNS BY PUSHJ P,_SAILOR

16-18

Comment • The main program looks I Ike a non-recursive Drocldure
frorr here on, except for built-in arrays •

POPJ P, ,RETURN TO INIT, WHO EXITS
(gl.obal variables, linkages>
(non-String constants>
X WD _ 0 , , • 8 ; T Y PIC A L. S T R I N G CON S TAN T
POINT 7,,+1
ASCII /CONSTANTI
<more StrIng constants>

END S. JSTARlING ADDRESS ~OR MAIN PROGRAM

SAlLON NO, 57 SAIL

DIscussion

(1] Thera Is for each ~rocedure a word (PAC for Procedure Active
Count) whIch ts Incremented on procedure entrY and decremented
On Ixlt, At one tIme, the String garbage collector used this
word,It maY again some time In the future, At present the
counter Is us,ful for determining the depth of recurston (from
DO T) •

C2J Non-st_r I ng procedures
~eturn! thIngs In 0;
!1tac k •

return
StrIng

their results In 1. rortran
results are returned on the SP

(3) An ARREL call Is Issued for each block (oontalnlng arraYs)
which must be laft In order to exit, All arraYs for these
blocKS are released at this time. The Same sort of thing
haDPens when a Go To statement leaves one or More blocks,

C4J Since the return address Is on the top of the P-stack, with
~.rameters burled beneath, a subtract and an Indirect jum~
reo lac, the PQPJ. Prooedures alwaYs adjust the stack befOre
returnIng,

(5) strln9 temporaries are kept In the SP stack. Others
oceasslonally occUpy core locatIons. These are grouped with
the nOM-String variables to make savIng and restorIng easy In
recursive procedures,

C6J This 'e th8 Procedure Active Count word (see Cl~), It Is
oleced In a fixed location with reSDect to the String-lInk
block (below). The String garbage collector could, If It
wished, .e, thts count.

C7J A II"kad lilt, with It5 head In a reserved eel I In the usef
t • b I. (s e • Use r Tab I "e ,16 -1) 9 I v est h 8 S t r I n 9 gar bag e col I e c tor
aco"1 to al I String variables declared for each procedure. and
to a I I bu II t-, n Str I ng ar rays, tach entrY on the II st centa I ns
thr •• wordsl a PAC counter (ourrently Ignored), a wOrd giving
the locatIon and extent of the String descrlptors being
d'lcrJb,d, and the pointer (LNKWD) to the next entry, A ~
.~try ends the list. The LINK pseudo-op (or the eQuIvalent
code Issued by SAIL) Instructs the loader to create thIs list.
Th. LINKEND cseudo-o~ is Issued In the SAILOR routine to
co, I ect the address of the first II st e I emant. Th I 5 J s then
transferred to the user table, See CWelherJ for detal Is

SAILON NO. 51 SAIL

oone8rMI~t the ~lNK blook t~o ••

(8) W h • n a rIc uri i v 10 I' 0 C • d u ,. I II cal ,ed, a I I val u 8 s for V.a r I • b I • s
d.clar.~ in blocks Int,rna', to this prooedur. are saved In the
.ocroDrlat~ .tack• The~1 arl added "on too of" the oarameters
and rlturn addr ••• · fo, thl crocedur e • At procedure exit the
stack ~o'nt.r Is adJulted to polnt below the 'frst parameter.
Then tne p·r~o~D"rB~T word Is set up to rastore a I I these locals
fro m ,t hI:, tlc'k • Af t e r th. a ~ TIs 8)(e cut. d , t hat s tao k I s r ea d Y
for procedure exIt.. '

[9 J Sin c e· SA I L Is • on I -1) as se 0 m p I I 8 r, , t does not know how many
locals ..0 I' 0 CI d u r In a • un t' I a' I b I 00 k s for that procedure have
been Dr~c,ssid. Therlfor. the Intr~ code 'or recursive
~ro~edur.$,. addld last, fol lowed bY a Jump to the ~r6cedure
tlxt,

[101 When a strtno ~roc.durl returns a va1ue, the String parameters
and locals must bl r.~oved from th. stack before the value
(r.sult) can bl gushed 0". SInc' the total number 0' String
looals is. not ~It kn~wn, a routine like P5POP Is called to
rlmove the unwanted values first, Recursive StrIng procedures
must contain Return stat.mlnts (see Return statement, 5-19).
o t h I r ,W , s. 1m pr 001 I' 00 d I w, I I r , sui t •

(11l DMce PSPOP or its .Qulvalent has been e~8cuted, the previous
top of stack locatIon I. not known; the temp value Is therefore
r • move d first and r IS to r , d aft e r t h 8 C a I I •

Proc.dure Call1ngSlau.ncls

16-49. AgaIn a c ••• studr 'S prese~ted. A Drocedure wIth several
lntern., p~oc.dur.s tl prlslntld to demonstrate the ridIculous number
of possfbl I It,s,OnlY the r.'lvant code Is described. Acoumulator
n~mblrs 'n the codl b.low al'l only examoles -- other values are
poss~bl •• This ".t 'I not compt.te, to describe al I cases here
would t.ke more 10acI than a cOpy of the oOde In SAIL whtch handles
them. Item .n~ set D.~.met.rs behave "ke Integer and Real
par.mlt.rs as far .8 a~~ument PIssing Is concerned:

SAILON NO. 57

PROCEDURE SUPER(REFERENCE STRING RPSTR;

BEGIN

INTEGER PINT; REFERENCE INTEGER RPINT;
REAL PROCEDURE PPARj
STRING PSTR1,PSTR2);

INTEGER INT1,INT2; STRING STR1,STR2; REAL REL;

SAIL

SAFE INTEGER ARRAY ARR[2:10JJ SAFE STRING ARRAY SARR[2:10JJ
I NTEGER PROCEDuRE I NTP (I NTEGER I, J) ; , • , ;

PROCEDURE RINTP(REFERENCE INTEGER I); , •• ;
PROCEDURE STRP(STRING A,3); •• ,;
PROCEDURE RSTRP(REFERENCE STRING A)J •• ,;
PROCEDURE ~ROCP(PROCEDURE PARAM);, •• ;
PROCEDURE ARRP(STRING ARRAY X); •• ,;

INT1"PINT t 2 + RPINTt2 II> 3;
MOVE 1,-3(P) ;RELATIVE LOC OF PINT
IMUL 1,1

16-21

MOVE 2,(aI-2(P) ;RPINT's ADD~ESS IS IN STACK
IMUL 2,2
ADD 2,1
SUBI 2,3

REL~INTP(INT1,PINT)J
PUSH P,2
PUSH P, .. 4(P)
MOVEM 2,INT2
PUSHJ P,INTP
FLOAT 1,1

RINTP(INT1);
PUSH P,[INT1J
MOVEM 1,REL
PUSHJ P,RINTP

RINTP(PINT);
MOVE! 3, ... 3(P)
PUSH P,3
PUSHJ P,RINTP

RINTP(RPINT)J
PUSH P,-2(P)
PUSHJ P,RINTP

INT2~INTP(INT1,ARRCPINTJ);
PUSH P,INTl
MOVE 4, ... 4(P)

;SUM
iRESULT LEFT IN 2

;INTl STILL IN 2
;C1JADJUST FOR PREV PUSH
iC2JSTORE CURRENT ACS BEFORE CALL
;CALL PROCEDURE
;CONVERT TO REAL -~ REL IS IN 1

iADDRESS OF INT1
;PREVIOUS RESULT

;ADORESS OF PINT

;PASS ON ADOR OF RPINT

;PINT

S.ILON NO! 57

MOVE
ADO
PUSH
PUSHJ

RINTP(ARRCPINTl)J
MOVE
MOVE
ADO
PUSH
MOVEM
PUSHJ

STRP(STR1&"C~N",PSTR1)J
PUSH
PUSH
PUSH
PUSH
PUSHJ
PUSH
PUSH
PUSHJ

RS TRP (. STRi) J

5,ARR
4,-4(5)
P, (4)
P,INTP

6,PINT
7,ARR
6,-4(7)
P,6
1,INT2
P,RINTP

SP,STR1
SP,STRi+1
SP,CONAO
SP,CONAO+1
P,CAT
SP,-4(SP)
SP,-4(SP)
P,STRP

PUSH P,tSTR1+1J

RSTRP(RPSTR) ;

RSTRP(PSTR2)J

PROCP(RINTP),

ARRP(SARR)J

PUSHJ P,RSTRP

PUSH P,-4(P)
PUSHJ P,RSTRP

HRROI
PUSH
PUSHJ

10,(SP)
P,10
P,RSTRP

PUSH P,[RINTPJ
PUSHJ P ,'PROCP

PUSH P,SARR
PUSHJ P,ARRP

SAIL

lBASE ADDR OF ARR

JRESULT IN 1

;ADDRESS

;ADDRESS OF DSCRPTR rOR "CON"

iLEAVE CONCATENATE IN STACK
iPUT STRi ON TOP

JALL REF PARAMS TO P·STACK

;PASS REFERENCE ALONG;

;[3JRH~2D WORD OF PSTR2

;PARAMETRIC PROCEDURE

;THIS IS EFFECTIVE~Y A REFERENI

SAILON NO, 57 SAIL 16 .. 23

Discussion

16",50.
Counts are maintained of the current number of actual
~8rameters (during a procedure cal I) on each stack. These
eounts must be added to the parameter Indices to access
parameters of the procedure doing the cal I lng,

(21 Whenever a SAIL Dr()cedure Is called, all accumulators exoept
sP ('16) and P ('17) are aVailable for Its use.

C3J Some .Strlng operations reQuire that the left half of
pointers to descriptors be negatIve, Therefore any
operation which ObtaIns a String descriptor address does a
HRRO or HRROI to accompl Ish this, In this case It is not
necessarY, but It won't hurt anything. String reference
Darameters alwaYS point to the second word of the strfng In
QuestIon,

SAILON NO, 57

SECTION 17

APPENDIX •• USEFUL SUMMARIES

ARITHMETIC TYPE-CONVERSION TABLE

17-1.

OPERATION ARGl ARG2 ARG1*

+ ... INT INT INT
* t % REAL INT REAL

INT REAL REAL
REAL REAL REAL

LANO LOR INT INT INT
EQV XOR REAL. INT REAL

lNT REAL -I NT
REAL REAL REAL

LSH ROT INT INT INT
REAL INT REAL
INT REAL INT
REAL. REAL REAL

I INT INT REAL
REAL INT REAL
INT REAL REAL
REAL REAL REAL

MOD OIV INT INT INT
REAl. INT INT
INT REAL INT
REAL. REAL INT

ARG2*

INT
REAL
REAL.
REAL

INT
INT
REAL.
REAl.

INT
INT
INT
INT

REAL
REAL
REAL
REAL

INT
INT
INT
INT

* Unless ARG2 Is <0 for the operator t

RESULT

INT*
REAL
REAL
REAL

INT
REAL
tNT
REAL

INT
REAL
INT
REAL

REAL
REAL
REAL
REAL

INT
INT
INT
INT

SAIL

SAILON NO. 57 SAIL 17-2

SAIL RESERVED WORDS

17 .. 2.

A8S ANO ANY ARRAY ARRAY_POL BEGIN BOOLEAN CASE COMMENT COMP~EX COP
CVI CVN DATUM DErlNE DELETE DO DONE ELSE END ENTRY EaV ERASE EXTERNAL
rALSE FIRST FOR FOREACH FORTRAN FORWARD FROM GLOBAL GO GOTO IF IN
INTEGER INT£RNAL ISTRIPLE ITEM ITEMVAR LABEL LAND LENGTH LIBRARY
LOAD_MODULE LNOT LOP LOR LSH MAKE MOD NEEDNEXT NEXT NEW NEW_ITEMS NOT
NULL OF . OR 0 W N PH I P N A ME S PRE LOA 0 _ WIT H PRO CEO U R e: PUT REA L. R E CUR S I V E
REFERENCE REMOVE REQUIRE RETURN ROT SAFE SECOND SET STEP STRING
STRING~POL .STRiNG~SPACE SUCH SYSTEM~PDL THAT THEN THIRD TO TRIPLE
TRUE UNTIL V.LUE WHILE XOR

SAIL PREDECLARED IDENTIFIERS

ARRB~T ARRINFO ARRTRAN ARRYIN ARRYOUT BREAKSET CALL CLOSE CLOSIN
CLOSOUT CLRBUF CODE CVASC CVD eVE cvr CVFIL CVG CVIS evo evos cvs
CVSI CVSIX CVSTR CVXSTR ENTER Eau GETCHAN GETFORMAT INCHRW INCHRL
INCHRS INCHSL INCHWL INSTR INSTRL INSTRS INPUT INTIN INTSCAN LENGTH
LINOUT LOOKUP MTAPE OPEN OUT OUTCHR OUTSTR REALIN REALSCAN RELEASE
RENAME SCAN SETBREAK SETFORMAT STRBRK TTYIN TTvINL TTYINS WORDIN
WORDOUT USER£RR USETI USETO

CHARACTER-IDENTIFIER EQUIVALENCES

17-4.

CHARACTER RESERVED WORD

~ AND
- EQV
~ NOT
v OR
• XOR
• INF

• IN
t SUCH THAT

SAILON NO, 57

PARAMETERS TO THE OPEN rUNCTION

17·5.

CHANNEL

DEVICE

MODE

INBUF'S

OUT8UrS

COUNT

BRCHAR

EOF

System Oat. Channel, a-'i7

strl"; glvfna d.vle. name

data mode

" u.m b , r 0 fin", u t b u f f • r e

"umber of output buffers

ta~t Input count (r,f,renee)

br.ak char variable (reference)

end-of.flte flag (r,f,r,nc8)

SAIL

SAILON NO, 57 SAIL

BREAKSET MODES

x
o

s

R

p

N

L

.E

D

(I~alus'on) string Is set of break chars

(eXclusion) strIng of al I non-break chars

(Omit) string of charaeters to be omitted from result

(~kID) break char apDears only In BRCHAR varIable

(ADDend) break char Is last char of result strlng

(Retarn) break char Is fIrst char of next string

(Pass) line numbers appear In Input wIthout warn'ng

(No numbers) line numbers and the tabS that follow them
are ramoved.

(LIne nO break) I Ina numbers cause Input break, BRCHAR
Is negatIve, Ne~t Input gets I Ina no oharacters.

(Erman) I I n a numbers causa f n put break. Neg a t fit d I 1 n e no
returned 1n BRCHAR. Line no removed from Input.

(0 r I I)' I a)') aft e r t his a P pea r s. e a chi , n e no' s I 1st e don
t~. dIsplay (If TTY Is a DPY) as It Is dealt wlth,

SAILON NO, 57

MTAPE COMMANDS

MODE FUNCTION

" A " A d \I a n c epa s ton e t 9. P e mar k (0 r f I Ie)

" B " 8 a_c k spa c epa s ton eta p e mar k

"F" Advance one record

"R" Backspace one record

"W" Rew I nd tape

"E" Write tape mark

"un Rewind and unload

c 0 t1 MAN 0 S WIT C H E S

17-8,

o double size of define pushdown stack

SAIL 17-5

numL list I ng cont r 0 I -- num>0 becomes I I st I ng star t I ng add r.
num=-l starts lIsting after current DDT size, num=w2
starts listing after current RAID size.

nurnM Initial debuqglng mode set to num

p double size of system pushdown list

Q double size of string pushdown list

R double size of parse pushdown list

MumS set size of string space to num

SAILON NO, 57 SAIL 17-6

OE8UGGINGMODES

17 ... 9.

1

2

3

4

5

6

display before executing each code generatIon routIne

don't dIsplaY, but remain enabled for asynchronous and
I inebreaks

display before each production Is compared

co.nt I nue f rom type 1 and 3 modes automat I ca II y

Just alsplay Input file as It goes past

disable debugging mechanIsm (started In this mode unless
an M switch appears).

VALID" RESPONSES TO ERROR MESSAGES

17-10.

CR

LF

s

x

L

E

o

(carriage return) trY to continue

(line feed) contInue automaticallY -- don't stop for
user go-ahead after eaoh message

restart

exit close all files, return to monitor

look at stacks -- of Interest only to oompller fixers

edit, Follow by CR to get file the complier Is
on (or last thing edited, for runtime routines),
wIth <name> CR to edit <name>,

gO to DDT or RAID

working
Fo II ow

SAILON NO. 57

18 1.

REFERENCE

Feldman

Moorer

SavltZk~

SECTION 18

BIBLIOGRAPHY

DESCRIPTION

Feldman, J.Ao and Rovner, P.D.
AssocIative Language, Comm.
1969), 439"449.

Moorer, J.A. Stanford A-I
Manual, Sal Ions 54 and 55 (Sep,

SAIL 18-1

An Algol-Based
ACM 12, a (Aug.

ProJect
1969),

Monitor

WeIher, ·W.F. Loader Input Format, Sallon 46
(Oct. 1968).

Savltzky, S.R. Son of Stopgap, Sal Ion 50.1.
(SeD. 1969), a revision of Stopgap, Sallon 50.
by W.Ft WeIher,

SAILON NO. 57

INDEX

9- 1
9~ 1
9- 1
9- 1
9.. 1
9· 1
9- 1
9- 1
1- 1
9. 1
8 ... 49
6- 1
6- 1
8- 1
8 .. 1

12- 9
6. 4
8- 1
8- 1
a .. 2 ci
4- 1
8- 1
8- 1
J. 1
8- 1
8
8-16
5 ... 6
9 .. 7

11
121-13

8-22
3 ... 1
3- 1
3- 1

16-35
3-25

16-33
11-107
11-109
11-1211
11-111
11 .. 51
11-56
15-12
4· 1
8- 1

<~_assoclatlve_expr)
(~_derlved_set>
<~~lt.m_.xpr_llst>
<~_ttem_expresslon)
<~_s.t~expresslon)
<~_set_factor>
(~_s.t,"prlmary>
<~_slt~term)

<~_trlp'e>
<~_trlole>
Aba
<act~al_paramet.r>
<actual_parameter_' 1st>
<aetual_parameter_' 1st)
<actual_oaremeter>
Actual Parameter Expansion
Actua' Parameters
<adding_expression)
<adding_operator>
Adding Expressions
(algebraic_assignment)
<algebraic_expression)
<algebraic_relational)
<algebraic_type>
<algebraic_variable)
ALGEBRAIC EXPRESSIONS
Algebraic Expressions
Ambiguity In Conditional Statements
ANY Construct
APPENDIX _ .. USEFUL SUMMARIES
Arithmetic Constants
ArithmetIc Type Conversions
<arraY_declaration>
(a,.r.y~118t>
<array_segment>
Array Allocation
Array Declarations'
ARRAY IMPLEMENTATION
ARRAY MANIPULATION ROUTINES
Arrblt
Arrlnfo
Arrtran
Arryln
Arryout
Assembly ~8ngUage Procedures
<assignment>
<a.lignment_expresslon>

SAIL 18-2

SAILON NO, 57

8- ..
4
7- 1
9- 1
9- 1
7· 1

10
18
13- 1

7- 1
2- 1
2-1
2- 1
2- 9
8- 1
8-51
3- 1
3- 1

11-23
11-115

6- 6
6- 5

16-12
8. 1
5- 1
5- 1
8 .. 6
5-18

11-10·
11-113
13- 1
13.. 1
18-21
13
2-1
2- 1
1-37
8- 1
5- 1
8- 2
5- 2
9. l'
7- 8

16- 6
16-11
16-1fJ
11-111
11-97
11-S8

Assignment Expressions
ASSIGNMENT STATEMENTS
<a,loct.tlv8_context>
<&slocJatlve expressIon>
<Is_ocfatlve:ooerator)
(.s~cclatlve_stat8ment)
8ASICCONSTRUCTS
BtBL.IOGRAPHy
(bln.r~_name>
(b·lndlnQ_'lst>
<block)
(block~h.ad>
(block_name>
B lo.ck Name s
(boofean_expresslon>
Boole,n Primaries
(bou"d~pa'r>
(bound.palr_llst)
Breakslt
Cat I
Cal' by Reference
Call by Value
Canine
<case_I.Dresllon>
<ca statem.nt>
(cale_statement_head)
Cas. Expressions C." statements
cto.e, Clostn, Closo
Code
<command_line>
COMHANOF'ORMAT
Comments
COMPILER OPERATION
(comoound.stat'ment>
<comtJound.tai I>
Concatenation Operator
<condltfonal_expression>
(condItional_statement>
Condltlona' EXDresslons
Condltlona' Statements
<con.tructl~n.lt.m_prlm>
Construction • Retrieval DistinctIon
CO'Qlt
Corlnc
Corr.'
CV'IC
Cvd
eVI, Cvf, Cv;

SAIL 18-3

SAIl.ON NO. 57

11-105
9 ... 8

11-84
8-47

11 ... 99
ii-52
11-80
11-86
11·103
11-93
11-95
4-7

10- 6
14 .. 8
13-14

3- 1
2- 3
3
3- 1
3- 1
3- 1
3-54

12- 1
3- 1
3- 1
7-10

13- 1
8- 1
8l1li 19
5... 1
5-17
5- 1
5-23
7- 1
2.. 1
2 .. 11

11-13
7-13

13-19
5

11
8- 1
8- 1
3-46
5.. 1
8-38

13- 1
13- 1
13 .. 1

Cvf I I
CVI
evls
Cvn
Cvo
Cvos
eva
Cvsl
Cvsl)(
Cvstr
Cv)(str
Datum Assignments
Datums
DEBU.GG I NG
Oebugglng mode.
<declaration>
Declarations
OECL.ARATIONS
<deflne.body)
<deflne.identlfler>
<deflne_sp ecl f lcatlon>
Defln. S~.clflcatloh
Daflnlng Macros
<definition>
<definition_list>
DELETE
<device_name>
<dlsJunctlve_exprlsslon>
Ol'Juncttve EXDrlsslons
<do_stat.ment>
Do Statemlnt
<done_statement>
Doni Statem.nt
<elem.nt>
<antry:speclfleatlon)
Entry Specifications
EQU
ERASE
ERROR MESSAGES
EXECUTION CONTROL STATEMENTS
EXECUTION TIME ROUTINES
<exprlssion>
<Ixprelston I,.t>
External Procedures
(factor>
ractors
< f , I'_f)xt>
<fl I._name>
<fl '._IP'C>

SAIL. 18-4

SAILON NO. 57

5- 1
5- 1
5- 1
5-11
7-14
3.. 1
3- 1
3- 1
3-38
6-12

15-11
3-41
8- 1
8-42

. 11-12
11-18

5- 1
5-. 8

11. 6
3- 1

11lJ- 7
5- 1
5- 5
5 ... 4

16
11-41

1
4 ... 1
4- 1
9- 1
9- 4
3-18
9- 5
3-19
9- 1
3-22
5- 1
8- 1
9- 1
7- 1
3- 1
9- 9-
7",. 2
7
8-45

11-11
11-113
11-47
13- 1

<for_llst>
<for.lllt.element>
(for_statement>
tor Statements
rOREACH Statement
<formal_Daram_deel>
<formal_Darameter_llst>
<formal_type>
Formal Parameters
tortran Procedures
rortran Procedures
torward Procedure D.claratro~s
(funot1on.dellonator>
Fune~lon Designators
eetenan
Cltformat
(gO_to:statemant>
Go To Statements
1/0 ROUTINES
(Id_lfst>
Identifiers
(If statement>
If .t, Else Statement
If Statement
IMPLEMENTATION INFORMATION
Input
INTRODUCTION
<Itlm_asslgnment>
<Itlm assignment>
<ltam:primarY>
Item Constructs
Itlm olclaratlons
Item Setectors
Items
<It.mv.r variable>
It'mva,. O.elaratlons
<tabel_ldentlfler>
<Ie.~_r.tat'onal>
<I.ap_relational>
<1.aD_statement>
<1.aD_tYDe>
LEAP Bool.ens
LEAP Introductton
L.EAP STATEMENTS
L.ngth
Length
LlBERATION-FROM.SAIL ROUTINES
Llnout
(I'stlng_name>

SAIl.. 18-5

SAILON NO. 57

8-48
14000 j.

11-18
7- 1
8-46
3- 1

12- 6
15 ... 2

'7-11
11-58

8- 1
9- 6
5- 1
5-25
3 ... 13

11- 6
11-46

3-50
8-14
3... 1
3~ 1
3 ... 1
3 ... 32
8 .. 39
8- 1
3.. 1
3 .. 1
3- 1
6 ... 1

16",,49
3 ... 37

16 .. 46
6
6-10
2 .. 1

14
15

2
13- 1

7". 9
11 ... 62
11 ... 67

3-43
8 ... 1
8- 1
8-20

11-14
3 ... 1

11-22

Lnot
LOADING AND STARTING SAI~ PROGRAMS
Lookup, Enter
<Iooo_statement>
Lop
<Iower:bound>
Macro Parameters
Main Program
MAKE
Mtape
<mult_operator>
NEW Items
<next_statement>
Next. Statement
Numeric Declarations
Open
Out
Parametric Proeedur.s
Precedence of Algebraic Operators
<preload_element>
,<pre load_I 1st>
<preload_spec,floatlon>
Preload Speclffcatlons
Primaries '
<primary>
<procedure_body>
<procedure_declaration>
(procedure_head>
(proeedure_statement>
Procedure Ca I' r n9 SeQuences
Procedure Declarations
PROCEDURE IMP~EMENTATION
PROCEDURE STATEMENTS
Procedures as Actual Parameters
<program>
PROGRAM OPERATION
PROGRAM STRUCTURE
PROGRAMS, BLOCKS, STATEMENTS
<proJ_prog>
PUT and REMOVE
Real In, Intln
Rea I scan, I ntscan
Recursive Procedures
<relational_expression>
<relational_operator>
Relational Expressions
Release
<relff Ie_spec>
Rename

SAIL

SAIL.ON NO. 57

3- 1
3- 1
3- 1
3-55
9-1· '..1
5-19.

13""12
18-11
10-19
11·~4
3- 8
9- 1

15- 1
, 4- 1

9- 1
,. 1
9- 1
9.. 1
9
3 .. 204
9- 2"
9- 3

11-36
11-7,
·8 .. 1

8;" ·9
3- 1

13.. 1
13- 1
3- 1

14- 2·
2- 1
2- 6

11-38
13-22
16. 5
16- 1
8·27
e· 1

16.31
8- l'
1~.16
3-15

16-14
16-30
11-71
16-19
16-27

(r.Qulte_element>
(reQuire_list>
<reaulrement>
ReQuirements
(.retrJeval ... ltem.prlm>
<return.statement>
Return Statement
~pg Mode
Satl Predeclared Identifiers
Sa' I Reserved Words
Scan
SCOPI of declarations
(sel.ctor)
Sepa.rate I y Comp I I ad Prooedures
<set.assignment>
< •• t xpresslon>
(set ... statement>
<set_variable>
<set v.rlabl.>
SET AND ASSOCIATIVE EXPRESSIONS
Set Declarations
Set Exoresslons
Set Primaries
S.tbreak
Setformat
<,tmple.expresslon>
Simpl' ExpressIons
<sfmpler_forma,_type)
<slashed_swltch_llst>
(sour c , 'st>
(IPaol:50ee>
SDaCI AI location, Normal Ooeratlon
(statement>
Stat.ments
S'tdbrk
STORAGE ALLOCATION
Storage At locatIon Routines
STORAGE l.AYOUT
strfng-Arlthmetlo Conversions
(string exoresslon>
Strlng~5rtentld Machine Languag. Routines
(strlng_varlabl.>
Strlng Constants
StrIng Oeclaratlons
Strlng Oescrlptors
S tr 1 " g Gar bag. Co I lee t I on
STRING MANIPU~ATION ROUTINES
String Operations
String S.,aci

SAIL

SAILON NO, 57

16-14
10- 1

8 .. 1
,8 .. 41

4 ... 1
4- 8

13- 1
13"" 1
13-13
14- 9
11-69

8- 1
8·32
8-10

'15- 1
3"" 1
3- 1
3" 1

11 ... 75
3-11
8-50

13- 1
3- 1

12
16- 1
11-117
11-60
12- 5
13 ... 1
1~- 1
1~"" t?
5- 1
5-16

11-49
11-54

STRINGS
(subscr J:ot.1 i It)
<substring_sOle>
Substrings
<swao_statement>
Swap Ass·' gnme·nt'
< sw r ten_ sP.8e)
<swrtc~.s)
Swltohes,
Symbo Is'
Ta I atyee 1/0 F'unot Ions,'
<term)
Terms
The Boolean EXDresslon Anomaly
THE SA 11. CORE I MAGE (R,[QUI R£D)
<type)
<type_declaration>
<type_Quallfilr>
TYPE CONVERSION ROUTINES
Type O.c'aratt~ns
Unary MInus
<unsl.sh.d_swltch~1 1st>
<upper_bound>
USE Of" DEfINE
User Table
Usererr
Usetl, USlto
Using Macrol
<val Id'swftoh name>
<varlabl.> -
Varlabll.
<whl 18~st.tament)
Whf fe Statement
Word'n
Wordout

SAIL 18-8

THE COMPUTER MUSEUM HISTORY CENTER

1 11111111111 11111 IUI]II IIIUllIIIII 11111 1111 1111

