
STANFORD ARTICIFICTAL INTELLIGENCE PROJECT
OPERATING NOTE No. 57

SAT L

by
Dan Swinehart

and

Boh Sproull

November 1969

ABSTRACT: SAIL is a high-level programming system for the PDP-10
computer. It includes an extended ALGOL compiler and a
companion set of execution-time routines. A non-standard
ALGOL 60 compiler is extended to provide facilities for
describing manipulations of an associative data structure.
This structure contains information about ITEMS, stbred as
unordered collections of items (sets) or as ordered triples
of items (associations)~ The algebraic capabilities of the
lanquaqe are linked to the associative capabilities by
means of the DATUM operator, which can associate with any
ITEM an algebraic datum. .

The work report~d here was supported in part bythc Advanced Research
Proiects Agency of the Department of Defense under Contract SD-183

Carneqie-Mellon University Version - May, 1970

TABLE OF CONTENTS

CONTENT

SECTION 1--INTRODUCTION

SECTION 2--PHOGR!U1S, BLOCKS, STATEM.EN'TS
SYNTAX
EXA MPLES
S EM AN'rICS

De c 1 ar at ion s
statements
D10ck Na roes
Entry specifications

SECTION 3--DECLAPATIONS
SYNTA X
RESTR ICTTONS
EXAMP.LJ~S

SEMANTIC S
Scope of declarations
Type Declarations

Numeric teclarations
string Declarations
Item Oeclarations

Items
It.em Genesis
Datums

Itemvar Declarations
Set Declarations

Array Declarations
Preload Specifications
'Proced tlr€ Declara t ions

Formal Parameters
Forward Proced'ure Declara tions
Recursive Procedures
External Procedurps
Parametric Procedures
Defaults in Procedure Declarations
RestEictions on Procedure Declarations

Define Specification
Requirements

SECTION 4--ASSIGNMENT STATEMENTS

SYNTA X
RESTRICTTON
SRM ANTICS

Datum hssignments
Swap Assignment
By te s ta tements

1

PAR AGRAPH

2- 1
2- 2
2- 3
2-]
2- 6
2- 9
2-11

3- 1
3- 2
3- 6
3- B
3- 8
3~11

3-13
3-15
3-18
3-19
3-20
3-21
3-22
3-24
3-25
3-32
3-37
3-38
3-41
3-43
3-46
3-50
3-52
3-53
3-54
3-55

4- 1
4- 2
4- 3
4- 7
4- 8
4-10

SECTION 5--EXECUTION CONTROL STATEMENTS
SYNTA X
SEM.ANTICS

Conditional statements
If sta·tement
If ••• Else Statement
Ambiguity in Conditional statements

Go To stat,-~ments

For S·ta tamen ts
Whi.le statement
Do sta tement
Case statements
Return statement
Done statement
Ne xt Statement

SECTION 6-~PROCEDUBE STATEMENTS
SYNTA X
SEM AN TICS

Actual Parameters
Call by Value
Call by Reference
Procedures as Actual Parameters
Fortran Procedures
Implementation Details
Examples:

SECTION 7--LEAP STATEMENTS
SYNTAX
SEM ANTICS

LEAP Introduction
General Restrictions
Construction - Retrieval Distinction
PUT and 'RE.MOVE
DEI,ETE
MA KE
.ERAS E
FOREACH Statement
Restrictions and Caveats

SECTION 8--ASSEMBLY 'LANGUAGE STATEMENTS
SYNTA X

SEMANTICS
Distinctions Between START_CODE and QUICK_CODE

SECTION 9--ALGEBBAIC EXPRESSIONS
SYNTAX
SEMANTICS

Conditional Expressions
Example
Assignment Expressions
Example
Case Expressions
Example
Simple EXFressions

2 SAIL MANU.AL

5- 1
5- 2
5- 2
5- 4
5- 5
5- 6
5- 8
5-11
5-16
5-17
5-18
5-19
5-2]
5-25

6-1
6- 2
6- 4
6- .5
6- 6
6-10
6-12
6-15
6-16

7- 1
7- 2
7- 2
7- 1
7- 8
7- 9
7-10
7-11
7-13
7-14
7-21

8- 1

8- 2
8- 6

9- 1
9- 2
9- 2
9- 3
9- 4
9- 5
9- 6
9- 8
9- 9

The Boolean Expression Anomaly
Precedence of Algebraic Operators

Expression Evaluation Rules
Alqebraic Expressions

Disjunctive Expressions
Re la ti ena 1. Expressions
Arithmetic Type Conversions
strinq-hrithmetic Conversions
Adding Expressions
Terms
Concatenation Operator
Fact.ots
Primaries

Variables and constants
Sllbstrinqs

Special Length Operator (INP)
Function Designators
Leng th
Lop
Cvn
Lno-t
Abs
Unary rtinus
Boolean Primaries

ISI.fRI PLE
LDR and I.LDB

SECTION 10~-SET AND ASSOCIATIVE EXPRESSIONS
SYNTA X
SEMANTICS

Se t Ex pr.ession s
St?t Primaries
It~)m Constructs
It.em Sf;lectors
NEW Items

NEW_ITEM Declaration

ANY Construct
CVI
LEAP Booleans

SECTION 11--BASIC CONSTRUCTS
SYNTA X
SEM AN TICS

Variables
Datums
Id en t ifier.s
Sail Reserved Words
Sail Predeclared Identifiers
Arithmetic Constants
st. ri ng constan t.S
Ex a. m pIe s
Comments

3 SAIL MANUAL

9-10
9-13
9-14
9-15
9-18
9-19
9-21
9-26
9-28
9-31
9-36
9-37
9-38
9-J9
9-40
9-41
9-43
9-46
9-47
9-48
9-49
9-50
9-51
9-52
9-53
9-54

10-
10-
10-
10-
10-
10-
10-
10-

10-
10-
lO-

1
2
2
3
4
i5
6
6

7
8
g

11- 1
11- 2
11- 2
11- 6
11- 7
11-10
11-11
11-13
11-17
11- 20
11- 22

SECTION 12--EXECUTION TluE ROUTINES
GENER AL

Scope
Notational conventi6ns
Example

I/O ROUT INES
Open
Close, Closin, Closo
Getchan
Release
Loo.k up, En ter
Rename .
Breakset
Setbreak
Stdbrk
Input .'
Scan '
Out
Linout
Wordin
Arryin
Wordout
Arryou t
Mtape
Uset i, Use·to
Realin.~ Intin
Realscan, Intscan
Teletype 1/0 Functions
Pseudo-teletype functions

STRING MANIPULATION ROUTINES
Lengt.h
Egu

TYPE CONVERSION ROUTINES
Setformat
Ge tforma t
cvs
Cvos
Cvis
Cvsi
Cve I Cv.f" Cvg
cvstr
cv xstr
Cvd
evo
Cvasc
Cvsix
Cvfil

ARRAY MAN IPULATIONROUTIN'ES
Arrinfo
Arrbl t
Arrtran

LIBEBATION-FROM-SAIL ROUTINES
Code
Call
Usererr
Point

4 SAIL MANUAL

12- 1
12- 1
12- 3
12- 5
12- 6
12- 6
12-10
12-12
12-14
12-17
12-21
12-22
12-35
12-37
12-40
12-43
12-45
12-46
12-48
12!""50
12-53
12-55
12-57
12-59
12~61
12-66
12-68
12-70
12-71
12-11
12-13

12-15
12-1.5
12-78
12-80
12-82
12-84
12-86
12·-88
12-93
12-95
12-97
12-99
12-101
12-103
12-105
12-107
12-101
12-109
12-111
12-113
12- 11.3
12-115
12-117
12-119

SECTION 13--USE OF DEFINE
Defin.inq Macros
string ~onstants in Macro Rodles
Using Macros .
Macro Parameters

,E xample
Actual Parameter Expansion
Examples

SECTION 14--COMPILER OPEBATION
COMMAND FORMAT

Seman tics
R pg Mode
switches

Debugging modes
ERRORMES SAGES
STORAGE ALLOCATION

SECTION 15--PROGRAM OPERATION
LOADING AND STARTING SAIL PROGRAMS

Loading
starting the Program -- Normal Operation
starting the Program in 'RPG- Mode

13- 1
13- 4

'13- 5,
13- '6
13- 8
13- 9
13-11

14- 1
14- 2
14-12
14-13
14-14
14-19
14-22

starting the Program with Allocation Modifications

15- 1
15- 1
15- 2
15- 3
15- 4

E RR OR ME S S 1\ G E S
DEBUGGING

S1 mbols
Blocks
Sail-Generated Symbols
Warninqs

H angi n9 store
Long Names

SECTION 16--PROGBAM STRUCTURE
THE SAIL COBE IMAGE (REQUIRED)

Ma in Progra m
storage Allocation, Basic utilities
other Execution-Ti~e Routines

OPTIONAL ADDITIONS
Separately Cbmpiled Procedures
Fortran Procedures
Assembly Language Procedures
ot hers

SECTION t7--IMPLEMENTATICN INFORMATION
STORA GE LAYOUT

User Table
Storage Allocation Routines
C·orget
Correl
Carine
canine

5 SAIL MANUAL

15- 5
15- 9
15-10
15-13
15-14
15-15
15-15
15-16

16- 1
16-' 2
16- 4
16- '6
16- 1
16- 7
16-11
16-12
16-13

17- 1
17- 1
17- 5
17- 6
17-10
17-11
17-12

STRINGS
String Descriptors
string operations
Cat
Substr
Getch
Putch

string Space
Parameters Used by string operations
String Garbage Collection
string-Oriented Machine Language Routines

ARRAY IMPLEMENTATION
Form
Ex planation
Array Allocation.

.0 ynam icArrays
Built-In Arrays

Ar ray Access Code
PROCEDURE I~PLEMENTATION

Procedure Body
Discussion

Procedure Calling Sequences
Discuss.ion

SECTION 18--APPENDII --USEFUL SU~MARIES
A.RITH t1ETIC TYPE-CONVE.BSION T A..BLE
SAIL RESERVED WORDS
SAIL PREDECLARED IDENTIFIERS
CHARA CT.ER-tDENTIFIER EQUIVALENCES
PARAMETERS TO THE OPEN FUNCTION
BREAKSET .MODES
MTAPE COMMANDS
COPIMAND SWITCHES
DEBUGGI NG MODES
VALID RESPONSES TO ERROR ~ESSAGES

SECTION 19--BIBLIOGRAPHY

6 SAIL MANUAL

17-14
17-1 q
17-19
17- 20
17-21
17-25
17-26
17-27
17-29
17-.30
17~ .31
17-33
17- .3.3
17-34
17-35
17-35
17-38
17-42
17-46
17-47
17-48

17-49
11-50

18- 1
18- 2
18- 3
18- 4
18- 5
18- 6
18- 1
18- 8
18- 9
18-10

SECTION 1

INTRODUCTION

1-1. SAIL is a high-level programming system for the PDP-10
computer. It includes an extended ALGOL compiler and a companion set
of execution-time routines. A non-standard ALGOL 60 compiler is
extended to provide facilities for describing manipulations of an
associative data structure. This structure contains information
about ITEMS, stored as unorde~ed collections of items (sets) or as
ordered triples of items (associations). The algebraic capabilities
of the language are linked to the associative capabilities by means
of the DATUM operator, which can associate with any ITEM an algebraic
datum.

1-2. Several forerunners (namely th~ GOGOL compilers developed at
the Stanford Artificial Intelligence Project) have contributed to the
general ~ppearance of the non-associative portions of the SAIL
language. The associative data structure is a slightly reworked
version of the LEAP language, which was desigried by J. Feldman and
P. Rovner* and implemented on Lincoln Laboratory~s TX-2. This
language is described in some dptail in an article entitled ~An
Algol-Based Associative Language- in the August~ 1969 issue of the
ACM Communications {Feldman&Rovner]. The implementation wa~ modified
to tolerate the non-paging environment of the PtiP-10.

1-3. SAIL in a sense has something for everyone. For those who
think in ALGOL, SAIL has ALGOL. For those who want the most from the
POP-10 ahd the time-sharing system, SAIL allows flexible linking to
hand-coded machine language programs. For those who have complex
input/output requirements, the language provides complete access to
the I/O facilities of the pnp-10 system. For those who aspire to
speed, SAIL generates fairly qood code. The user should# however, be
wirned that SAIL falls several man-decades sh6rt of the extensive
testing and optimization efforts contained in the histories of most
commercial compiler~.

7

D. swinehart
R. Sproull
November. 1969

SAIL MANUAL

SYNTAX

2-1.

'<program>

<hlock>

<compound_tail>

<sta t.ement.>

<compound_statement>

<~ntry_specification>

S ReT ION 2

PROGRAMS, BLOCRS, STATEMENTS

::= <block>
::= <entry_specification> <block>

::= BEGIN <declaration>
::= BBGIN <block_name> <declaration>
::= <block_hea~> : <declaration>

::= <statement> END
::= <statoment> PND <block_name>
::~ <statement> ; <compound_tail>

::= <block>
:: =
:: =
: :=
:: .=
: :=
: :=
.:: =
: ;= .. -.. -
:: =
:: =
: :=
: :=
:: .= .. -.. -... -.. -
: :=
:: =
:: =

<compound_state~ent>

<assiqnment>
<bVtf:,,-_stat.em cnt>
<cond i t.iona 1_ Et.,a t.ement>
<i.f_st.a ternen t>
<go_to_statement>
<for_sta temf~nt>
<while_statement>
<do_stat.ement>
<case_statement>
<return_statement>
<done_statement>
<next_statement>
<leap_statement>
<procedure_statement>
<code_.b 1 oc k>
<define_specification>
<string_constant> <statement>
<label_identifier> : <statement>
<empty>

::= BEGIN <compound_tail>
::= BEGIN <block_name> <compound_tail>

::= <string_constant>

::= ENTRY <id_list>

8 SAIL MANUAL

EXAMPLES

2-2.
Gi ven:

S is a statpment,
Sc is a Compound statement,
D is a Declaration,
B is a Block.

Then:
(Sc)
(Sc)
(B)
(8)

BEGIN S; 5; S: ••• is END
BEGIN 1.\SORT- S; S; ••• ; SEND
BEGIN D: Oi D; ••• ; S; S; S;
BEGIN -ENTER NEW INFO· D; 0-,

... ; SEND
; S; ." •• ; S .END

are syntactically valid SAIL constructs.

SE MANTIC S

neclarat ions

2-3. SAIL programs are organized in the traditional block
structure of ALGOL-60.

2-4. Declarations serve to define the data types and dimensions of
simple and subscripted (array) variables (a~ithmetic variables,
strings, sets, and items). They are also used to describe procedures
(subroutines) and name program labels. The DEFINE construct (see
DECLARATIONS, 3-1, USE OF DEFINE, 13-0) may also appear in
decla ra tions.

2-5. Any identifier referred to in a program must be described in
soree declaration. An identifier may only be re·ferenced by statements
within the scope (see Scope of declarations, T-8) of i·ts declaration.

statements

2-6.· As in ALGOL, the statement is the fundamental uni t of
operation in the SAIL language. Since a statement within, a block or
compound statement may itself be a block or compound statement, the
concept of statement must be understood recursively.

2-7. This definition of a block as a statement has virtues other
than its syntactic niceness. In ma ny wa y5 a block behaves as a
single complex statement; most importantlYr no transfers (jumps) may
be made from outside a block to any statement within it except the
first (There are exceptions, see (LABGO]). This assures proper
allocation and initialization of the data space for the block.

9 SAI.L MANUAL

2-8. The block rHpresenting the program is known as the
·outer block'. All blocks internal to this one vill be referre~ to
as -inner blocks·.

Block Na mes

2-9. The bloc·k name construct is used to descr~ibe the bloc.k
structure of a SAIL ~rogram to a symbolic debugging routine (see
DEBUGGING, 15-9). The name of the outer block becomes the title o.f
the binary output. file (not necesarily the file name). In addition,
if a block· name is used following an END, the compile~ compares it
with the block name which followed the corresponding BEGIN. A
mismatch is reported to the user as evidence of a missing (extra)
BEGIN or END somewhere.

2-10. The <string_constant> <statement> construct is equ.i valent in
action to the <statem~nt> alone: that is, the string constant serves
only as a com~ent.

Entry Specifications

2-11. See Separately Compiled Procedures, 16-7.

10 SAIL MANUAI~

SAltON NO. 57

SYNTAX

3-1.

<declaration>

<type>

·<algebra ic_ type>

<lea p_ type>

<type_qualifier>

<typ e_declaration>

:: = .. -.. -

:: = · ... -... -... -... -.. -
:: =
: :=
.... -.. -

... -... -
: :=
:: :=
:: .= ... -.. -.. -... -· .. -.. -
:: =

: :'=
:: =
:: .=
:: =

:: = -.. -

: :=
: :=
: := .. -... --... -· .-
: :=
:: =

· .-· .-

S.ECTION 3

DECLARATIONS

<idf~n t i.fier>
<identifier> , <id_Iist>

<type_declaration>
<array_declaration>
<preload._specification>
<label_declaration>
<procedure_declaration>
<define_specification>
<requirement>

<algebraic_type>
<leap_ type>

SAIL

<algebraic_type> <lpap_type>
<algebraic_type> ARRAY <leap_type>
SET
SET <leap_type>
SET ARRAY <leap_type>
<type_qualifier> <type>

REl\.L
INTEG'ER
BOOLEAN
STRING

ITEM
ITEMV.AR

EXTERNAL
INTERN'AI.
SA'FE
FOR~l ARD
RECURSIV.E
FORTRAN
GLOBA.L

<type> <id_list>

11 SAIL MANUAL

3-1

<array_declaration>

<array_list>

<array_segment>

<lower _ b 0 un d>

<upper_bound>

<preload_specification>

<preload_element>

<label_declaration>

<procedure_declaration>

<procedure_head>

<procedure_b od y>

<formal_ parameter_.lis·t:>

<f ormal_ type>

.. -· .-
: :.=
:: =

· ... -
: :=
:: =

: :=

.. -.. -
: :.:

.. -.. -
: :=
:: :=

:: =
:: =

.. -.. -

: :.:

: :=

,.. -.. -
• e:=" · ...
: :=
: :.:

· .-· .-
: :=

.. -... -

.. -.. -
:: =
: :=

.. -.. -· ... -
: :=

<type> ARRAY <array_list>

<array_segment>
<array_list> , <array_segment>

<hound_pair>
<bound_pair_list> , <bound_pair>

<algebraic_expression>

<algebraic_expression>

<preload_element>
<preload._list> , <preload_element>

«~X pre 5S ion>
{expression] <expression>

L:I\BEL <ld_list>

PROCEDURE <identifier> <procedure_head>
<procedure_body>

<type> PROCEDURE <identifier>
<procedur-e_head> <procedure_body>

<empt.y>
(<forma1._param._dccl>)

<empty>
; <sta temen t>

<formal_parameter_list>
<formal_para meter_list> ;

<formal_param_decl>

<simple,r_formal_t ype>
REFERENCE <simpler_-formal_type>
VALUE <simpler_ forma 1_ type>

<type>
<type> ARRAY
<type:> P'ROC.EDU"RE

12 SA1.L MANU A.L

<define_specification>

<definition_list>

<definition>

<define_identifier>

<rl ef ine_ bod y>

<requirement>

< r e qui re _1 is t>

<require_element>

RESTRICTIONS

: :=

: :=
:: =

: :'=

.. -· .-
: :=

.. -· .-
: := · .-· .-
: :=
: :=
: :=

.. -.. -
:: ': .. -· .-
: :":
:: =

· ... -.. -· .-

DEFINE <definition_list>

<definition>
<definition> , <definition_list>

<define_identifier> = <define_body>

<i (len t i fier:>
<identifier> (<id_list>)

<string_constant>

REQUIRE <require_list>

<require_element>
<require_list> , <require_element>

PNAMES
<arithmetic_constant> <space_spec>
<string_constant> <relfile_spec>

STRING_SPACE
SYSTEM_ PO'L
STRING_PDL
ARRAY_POL
NEW_ITEMSr

LOA D_MODULE
LIBRARY

3-2. .For simplicity, the type_qualifiers are lis,ted in only on\~
syntactic class. Although their uses are always valid when ~lacea
accord in 9 to t he above syntax, most of the m only ha ve meaning ,when
applied to particular subsets of these product ions:

SAFE is only meabingful in array declarations
INTERNAL/EXTERNAL have no meaning in formal parameter
decla ca t ions
'FORWARD, RECOnSIVE, and FORTRAN have meaning only in procedure
type specifications.
ITEM ARRAYS do not exist (use ITEMVAR arrays).

3-3. For array declarations in the
<constant>, for <algebraic_expression> in
<lower_bound> and <upper_hound>.

outer 'block sUbstitute
the productions for

3-4. A label must be declared in the innermost block in which the
statement being labeled appears.

1.3 SAIL MANUAL

~- 5. The syntax for procedure decla ra tions .requires semantic
embellishment (see Procedure Declarations, 3-37) in order to make
total sense. In particular, a procedure body may be empty only in a
restricted class of declarations.

EXAl!PLES

3-6. Let I,J,K,L,X,Y, and P be identifiers, S a statement:

«type_declaration» INTEG.ER .I, J, K
EXTERNAL REAL X,!
ITEM I
SET P
ITEI1VAR X
REAL ITEM Y
INTEGER .ARRAY ITEM J[X:Y]
INTERNAL STRING K

«array_declaration» INTEGER ARRAY X(O:10,O;101
REAL ARRAY Y(X:P(L)]; Comment illegal

in outer block
STRING ARRAY IIO:IF BIG THEN 30 ELSE 3]
ITEMVAR ARRAY K(O:5,1:Ll
REAL ARRAY ITEMVAR ARRAY P(O:1S1

«label_declaration» LABEL L,X,Y

«procedure declaration» PROCEDURE P: S
PROCEDURE P(INTEGER I,J;

REFERENCE REAL X; REAL Y) ; 5
INTEGER PROCEDURE P (REAL PROCEDURE L:

STRING I,J; INTEGEQ ARRAY K)~ S
EXTERNAL PROCEDURE PCREAL X)
FOR\f IRD INTEGER .PROCE.D(fRE X (INT.EGER I)
FORTRAN REAL PROCEDURE SIN

«define_specification» DEFINE CRLF = ~CR'LF-,
TTY'=-1'~
TYPE (MSG):-OUT(TTY.MSG&CBLP)'

3-7. . Note that these sample declarations are all given without the
semicolons which would normally separate them from th~ surrounding
declarations and statements. Here is a sample block to bring it all
together (again, let S be any statement, D any declaration, and other
identifiers as above:

14 SAlt MANUAL

BEGIN ·SAMPLE BLOCK'
I Nrf EG ER I, J , K ;
R.EA.L .X, Yi
ST'R ING A;
IN'rEGER PROCP.DHHE P (HEFEHENCE RBAI. X; REAL Y);

BEGIN
D; D; 0: ••• :5; ••• : S

END ~P";

REAL ARRAY DIPHTHONGS[O:10,1:100J;

s: S; S:S
END ·SAMPL~ BLOCK~

SE M.~ NTIC~.:.

Scope of declarations

3-8. Everv block automatically introduces a new level of
nomenclature. Any identifier declared in a block's head is said to
be LOCAL to that block. This means that:

a. The entity represented by this identifier inside the block
has no existence outside the block.

b. Any entity represented by the same identifier out~ide the
block is completely inaccessible (unless it has been passed
as a parameter) inside the block.

3-9. An identifier occurring within an inner
declared within that block will be nonlocal (global)
the identifier will represent the same entity inside
the block or blocks within which it is nested, up to
the level in which the identifier is declared.

block and not
to it: that is,
the block and in

and· including

3-10. The Scope' of an entity is the set of blocks in which the
entity is represented, usinq the above rules, by its identifier. An
entity may not be referenced by any statement outside its scope.

Type Decla~ations

3-11. SAIL. r·eserves ei.ther one or two 36-bit. words for each
identifier appearirig in a typ~ declaration (exception -- no space is
reserved\ for items -- see Item Declarations, 3-18). The use of these
cells falls into two classes -- values and descriptors dependinq
on the type preceding the id,entifier. If an identifier represents a.
REAL or INTEGER (BOOLEAN) variable or an ITEMVAR~ its value is stored
directly in the reservea cell. For strings (2 words, see Strinq
Declarations, 3-15) and sets (1 word, see Set Declarations, 3-24)
internal descriptors ~re placed in the reserved cells which allow the
running program to access these entities. These differences are not

15 S.AIL MANUAL

reflected in the SAIL syntax.· The u~er may treat entities of both
kinds as if their values were directly accessible in the reserved
locations. Por this reason we will henceforth refer synonymously to
a simple identifier (one declared in a type declara.tion) and .the
simple variable it represents, as ~ ~variabl~'.

3-12. Items do not entirely conform to the structure describe~
above. Please suppress any enpuzzlernent concerning the roles of
items and itemvars until after you have read the paragraph on Item
Declarations, 3-1A.

Numeric Declarations

3-13. Identifiers which appear in type declarations with types
REAL or INTEGER can subsequently be used to refer to numeric
var.iables. .\n Inteqer variable may t.ake on values from -2':35 to
2t35-1. A R~al variable may take on positive and negative values
from about 10t-38 to 10'38 with a precision of 27 bits. REAL and
INTEGER variables (and constants) may be used in the same arithmetic
expressions: type conversions are carried out automatically (s~e
Arithmetic Type Conversions, q-21 below) when necessary.

3-14. The BOOLEl\N type is current.Iy id~~ntical to INTEGHH. 1\s you
will see~ BOOLEAN and algebraic expressions are really equivalent
syntactically. The syntactic context in which tbey appear determines
their meaning. Algorithms for determining the Boolean and algebraic
inteterpretations of these ~xpressions will be given below. The
declarator BOOLEAN is included for program clarity.

string Declarations

3-15. ~ variable defined in a strinq declaration is a twd-word
descriptor containing the information necessary to represent a SAIL
character string.

3-16. A Strinq may be thought of as a variable-length,
one-dimensional ar-ray of 7-bit ASCTI charact.ers. Its d(~scriptor:
contains a character count and a byte pointer to the first character
(see STRINGS, 17-14). strings originate as constants at compile time'
(string Constants, 11-17), as the result of a String INPUT operation
from some device (seo Input, 12-40), or from the concatenation or
decomposition ,of already existing strings (see concatenation
Operator, 9-36 and Substrings, 9-40).

3-17. When strings app~ar in arithmetic operations or vice-versa,
a somewhat arbitrary conversion is performed to obtain the proper
type (by arbitrary we do not mean to imply random se~
string-Arithmetic Conversions, 9-26). For this reason arithmetic and
string variables are referred to as ·algebraic variables~ and their
corresponding expressions are called ~algebraic expressicns·.

16 SAIL l'lANU A L

(Suqqestions fo~ a better term will be given a high priority). No
other direct, or -forced-, conversions (except for Integer/Real
conversions? are present in the language.

Item Declarations

p'rereguisite

3-18. Please make no attempt to understand the sections of this
manual describing the associative capabilities of the SAIL language
until you have read the article describing its basic flavor in
(Feldman]. If you do not have access to a copy of the CACM, r~prints
are available from the authors. The structure and operations of the
associ~tive portions of LEAP and SAIL are so nearly identical that it
seemed fodlish to repeat them completely here. However, a full
description of the syntax and a brief discussio~ of each construct is
qi ven he Le •

Items

3-19. The ·Associative memory· of the SAIL system is constructed
from a universe of items and a universe ·of associations among these
items. An Item is an entity which is represented inside the machine
by its internal name and is otherwise uninterpreted. Items may be
combined to form uassociations' which express facts (se~ Triples,
7-6) • They may also be collected into unbrdered sets (Set
Declarations, 3-24).

Item Genesis

3-20. The universe of items is divided into three classes
differing in the wayan Item enters it:

1) A declared Item results from each declaration of an
identifier to be of type ITEM. Th~ decl~ration causes a
single internal name to be created for the item. Declared
items do not' obey the usual rules in recursive functions.
In particular, items behave as if they were declared in the
outer block. Although they may referred to by name only
within the scope of their declarations (see Scope of
declarations, 3-8), they may be accessed from outside the
scope, if they have been included in (and not removed from)
any associations or sets, or assigned to i temvars which are
still accessible. They are not deleted at block-exit. It
might be helpful to think of declared items as the
associative analogue of algebraic constants.

2) A ~reated Item results from the execution of a NEW
expression (see NEW Items, 10-6). Any created Item may be
deleted from the universe of items (see DELETE, 7-10).
Again, usual block structure rules do not apply to any
it ems.

17 SAI'L MANUAL

3) An association Item results from the execution of a
bracketed construction triple (Construction Retrieval
Distinction, 7-8). These may also be explicitly, but never
automatically, deleted.

Da turns

3-21. An Item of type 1) or 2) may have an associated value
(Datum) of algebraic or SET type which can be used or altered like
any other variable. This Datum may represent a simple or array
variable of any type except ITEM or ITEMVAR. Datums may be referred
to by use of the DATUM operator (Datums, 11-6, Datum Assignments,
4-7) •

Itemvar Declarations

3- 22 • AnT t e m va r .i s a va ria b lew hose val u e is anI te m (it is a
reference to an Item). Just as the statements ·X-3; A-X· and ~A-3·
are equivalent with respect to A, the statements ·X-EDGE; A-X· and
'A-EDGE~ are equivalent with respect to I, if X and A are itemvars,
EDGE an item. The use of an Itemvar is equivalent to the use of the
Item to which it refers. The difference is, of course that the
itemvars may reference different items at different times.

3-23. Just as algebraic variables may be bOQnd as loop variables
in FOR statement.s, itemvars observe a special 'binding in the FOREACH
sta temen t. 'rhis ve.r:y im{:ortant const.r:uct is described in FOREACH
statement, 7-14 below.

Set Decla ra t ions

3-24. Because the answers to many associative questions are
many-valued (all the sons of Harry, for example), sets of items are
provided. A SAIL set is an unordered collection of items containing
at most one occurrence of any single item. The more common Set
operations are ,available for convenient manipulation of sets.

Array Declarations

3-25. In general, any data type which is applicable to a simple
variable may be applied in an array declaration to an array of
variables. Note, however:, the restriction ·(see RESTRICTIONS. 3-2)
prohibiting ITEM lORny X as a legal declaration (ITEMS are
·constants·), although ITEMVAR arrays are allowed. The entity
represented by the name of an array, qualified with subscript
expressions to locate a particular element (e.g. A{I,J) behaves in
every way like a simple variable. Therefore, in the future we shall
refer to both simple variables and single elements of arrays
(subscripted variables) as ·variahles~. The formal syntax for
<var:iable> can be found in Variables, 11-2.

18 S.AIL MANUAL

3-26. Each subscript for an array which is not qualified by the
SAFE attribute will be checked to ensure that it falls within the
lower and upper bounds given for the dimension it specifies. An
overflow triqgers an error message and job abortion. The ~AFE
declaration inhibits this checking, resulting in faster, smaller, and
bolder cocle.

3-27. Arrays are stored by rows. That is, if AII,Jl is stored in
Ioea tion 100 DO, then .A [I ,J+ 1] is sto.red in Ioea tion 10001.

3-28. There is no limit to the number of dimensions allowed for an
array. However, the efficiency of a.cray refereneestends to d·ecrease
for large dimensions. Avoid large dimensionality if it is not
necessary_

3-29. The item instances stored in an Itemvar
datums which are themselves algebraic or set arrays.
qood deal of power, since an array of algebraic
dynamically associated with any item.

array may have
This provides a
values can be

3-30. Arrays declared in the outer block must ·have constant
bounds, since no variable may yet have been assigned a value. A
certain degree of extra efficiency is possible in accessing these
arrays, since they may be assigned absolute core locatio~s by the
compiler, eliminating some of the address ·arithmetic. Constant
bounds always add a little efficiency, even in inner bloc.ks.

3-31. For more details concer~ing the internal structure of arrays
see DEBUGGING, 15-9, separately Compiled Procedures, 16-7 and ARRAY
I MPL EM ENTATION, 17-33.

Preload Specifications

3-32. Any arithm~tic or string array which is declared in the
outer block may be ~pre-loaded~ with constant information by
precedinq its declaration with a <preload_specification>. This
specification gives the values which are. to be placed in consecutive
core·locations within all arrays declared immediately following the
<pr~load_specification>. ~Tmrnediately', in this case, means all
identifiers up to and including one which is followed by
bound_paiL_list brackets (e.g. in HEAL ARRAY X,Y,ZrO:101,W[1:51:-
preloads X,y, and Z; not W). It is the user's responsibility to
guarantee· that t.he proper values will be obtained under the subscript
rna pping.

3-33. The oriqinal values of pre-loaded arrays will not be lost by
restarting the program (most arrays are cleared when their
declarations are processed), but they will not be re-initialized
either. The values can te changed by assignment statements.

19 SAIL MANU AL

3-34. For string arrays, the original pre-loaded values remain if
not changed by assignment statements. In general, however, String
array elements whose values have been chanqed during program
executions will be set to null strings when the program is restarted.

3-35. Algebraic type conversions will be performed at compile-time
to provide values of the proper types to pre~loadea arrays~ All
expressions in these specifications must be constant expressions
that is, they must contain only constants and algebraic operators.
The compiler will not allow you to fill an array beyond its meager
capacity to be" filled. You may, however, provide a number of
elements less than the total size of the array; remaining elements
will be set to zero or the null string.

Example

3- 36.

PRELOAD_WITH (5] 0, .3, 4, 14J 6, 2;
INTEGER ARRAY TAULf1:4,1:3J;

The first five elements of TABL will be initialized to 0
(paren thesi2ed nu mber is used as a re"pea t argument). The next two
elements will be 3 and 4, followed by four 6's and a 2. The array
will look like this:

123

100 0
200 3
34 6 6
I" 6 6 2

Procedure neclar-at.ions

3-37. If a procedure is typed, it may return a value (see Return
statement, 5-19) of the specified type. If formal parameters are
sp~cified, they must be supplied with actual parameters in a one to
one correspondence when they are called (see Function Designators,
9-43 and Procedure statements, 6-2).

Formal Parameters

3-38. pormal parameters, when specified, provide information to
the body <executable portion) of the procedure about the kinds of
values which will be provided as actual parameters in the call. The
type and complexity (simple or ariay> are specified here. In
addition, the formal parameter indicates whether the value (VALOE) or
address (REFERENCE) of the actual parameter will be supplied. If the

20 SAIL MANUAL

address is supplied, the v'ariable whose identifer is given as an
actual parameter may he changed by the procedure. This is not the
case if the value is given.

3-39. To pass a PROCEDURE by value or an ITEM by reference has no
readily determined meaning. ARR~Ys pa~sed by value (requiring a
complete copy operation) have not yet been implemented. Therefore
these cases are noted as errors by the compiler.

3-40. The proper use of actual parame-ters is further discussed in
the paragraphs on Procedure statements, 6-2 and Function Designators,
9-43.

Forward Procedure Declarations

3-41. A procedure's type and parameters must be described before
the procedure may be called. Normally this is accomplished by
entering th~ procedure declaration in the head of some block
containing the call. If, however, it is necessary to have two
procedur~s, declared in some block head, which are both accessible to
statements in the compound tail of that block and to each other, the
FORWARD construct permits the definition of the parameter information
for one of these procedures in advance of its declaration. The
procedure body must be empty in a forward procedure declaration.
When the body of the procedure described in the- forward declaration
is actually declared, the types of the procedure and of its
parameters must be identical in both declarations. The declarations
must appear a.tthe same level (within the same block head).

Example

3- 42.

BEGIN ~NEED FORWARD'
FORWARD INTEGER PROCEDURE T1(INTEGER I); COM!ENT PARAMS DESCRIEED;

•••

INTEGER PROCEDURE T2(INTEGER J)_;
RETURN (T1(J)+3): COMMENT CALL T1 :

INTEGE'R, PROCEDURE T1 (INTgGER I); COMMENT ACTUAL-LY DEF'INE T1;
RETURN (IF I=15 THEN I ELSE T2(I-1»~ COMMENT CALLS T2;

K--T1(L): ...

Notice that the forward declaration is required only because
procedures are called in the body of the block. If only ,T1

21 SAIL MANUAL

BOTH
were

c~lled from statements within the block, this example could be
implemented as:

BEGIN 'NO FOBWARD·
INTEGER PROC!DUBE T1(INTEGRR I):
BEGIN

INTEGER PROCEDURE T2(J):
RETUUN (T1(J)+3);

RBTURN(IF 1=15 THEN I ELSE T2(I-1»:
END 'T1':

...

. . .
END 'NO FORWARD';

Recursive Procedures

3-43. If a procedure is to be entered recursively, the compiler
must be instructed to provide code for saving its local variables
when the procedure is called and restoring them when it returns. Use
the type-qualifier RECURSIVE in the declaration of any recursive
procedur e.

3-44. The compiler can produce much more efficient code for
non-recursive procedures than for recursive ones. We feel that this
g~in in efficie~cy merits the necessity for declaririg procedures to
be recur siva.

)-45. If a procedure which has not been declared recursive is
c~lled recursively, all its local variables (and temporary storage
locations assigned by the compiler) will behave as if they were
qlobal to the procedure -- no values will be saved. Otherwise no ill
effects should be observed.

External Procedures

3-46. A file compiled by SAIL represents either a ~main· program
or a collection of independent procedures to be called by the main
proqram. The method for prepa.ring such a col.lection of proced~lLes is
described in ,Separately Compiled Procedures, 16-7. The -EXTEHNA.L ano
FORTRAN type-qualifiers allow description of the types of these
procedures and their parameters. An EXTERNAL or FORTRAN procedure
declaration, like the FORWARD declarat.ion,· does not include a
procedure body. Bo~h declarations instead result in requests to the
loader to provide theaddcesses of these procedures to all statements
which call them. This means that an EXTERNAL Procedure declaration
(or the declaration of any External identifier) may be placed within
any block head, thereby controlling the scope of this External
identifier within this program.

22 SAIL .MANUAL

3-47. Any SAIL procedure ,which is referenced via these external
declarations must be an INTERNAL procedure. That is, the
type-qu)lifier INTERNAL must appear in the actual declaration of the
procedure. Again, see Separately Compiled Procedures, 16-7.

3-48. The type-qualifier FORTRAN is used to describe the type and
name of an ext~rnal procedure which is to be called using a DEC
Fortran calling sequence. All parameters to Fortran procedures are
by reference. In fact, the procedure head part of the declaration
need not be included unless the types expected by the procedure
differ from those provided by the actual parameters--the number of
paramet~rs supplied, and their types, are presumed correct. Fortran
procedures are automatically External Procedures. See Restrictions
on Procedure Declarations, 3-53, Procedure statements, 6-2, Function
Designators, 9-43 for more information about Fortran procedures.

Example:

3-49.
FORTRAN PROCEDURE MAX;
Y"'MAX{X,Z) ;

Parametric Procedures

3-50. The calling conventions for procedures with procedures as
arguments, and for the execution of these parametric procedures, are
dpscribed in Procedure statements, 6-2 ana Function Designators,
9-43. Any procedure PP which is to he used as a parameter to another
procedure CP must not have any procedure or array parameters, or any
parameters called by value. In other words, PP may only have simple
reference parameters. The number of parameters supplied in a call on
PP within CP, and their types, will be presumed correct.

Example

3-51 •

PROCEDURE CP (INTEGER PROCEDURE FP);
BEGIN INTEGER A,I; REAL X; ...
A+FP(I,X); COMMENT I AND X PASSED BY REFERENCE,

NO TYPE CONVERSION;
END "'CP"':

INTEGER PROCEDURE PP (REFERENCE INTEGER J~ REFERENCE REALY);
BEGIN ...
END 'PP': '

...
CP(PP):

23 SAIL MANUAL

Defaults in Procedure Declarations

3-52. If no VALUE or REFERENCE qualification appears in· the
description, the following qualifications are assumed:

VALUE variables -- simple INTEGER, STRING, ITEM, ITEMVAR
rleclarations.

REFERENCE Arrays and Procedures.

Restrictions on Procedure Dec~arations

3-53.

1) The sc6pe of a formal parameter for a
include statements within any .procedure
other words, Q may refer only to' its own
may, however, refer to vaTiables which
procedure. Here is an example:

PROCEDURE P1(INTEGER I);
BF,GIN INTEGER J;

PROCEDURE P2(INTEGER K);
BEGIN

I N'r.EGF, H L;
L~I: COMMENT THIS IS WRONG -- WON'T WORK;
L~J; COMMENT THTS IS ALL RIGHT;
L+K; COMME~T CLEARLY ALL RIGHT;
•••

procedure P does not
Q declared within P. In
formal parameters. It
are local to some g10bal

2) There is no such thing as an ITEM procedure (use ITMVAR).

3) Fortran procedures can
parameters. Nor can a
tYPAS as a result.

not handle string, Set, or Item
Fortran procedure return any of these

4) Go To Statements· appearing in a procedure body may not name
statements outside that procedure body as targets.

5) Labels may never be passed as arguments to procedures.

Define Specification

3-54. See the section on USE OF DEFINE, 13-0 for a complete
di scussi on.

Requirements

3- 55.
compiler

The user may, using the REQUIRE construct, specify to the
conditions which are required to be true of thp

24 SArL MANUAL

execution-time environment of h'is programs. The requirements 'fall
into three classifications, described as follows:

Group 1 PNAMES

)-56. If the specification ·RBQUIRE PNAMES' appears in a program,
the compiler is instructed to save the external representations
(print names) of all declared Item identifiers. The functions eVIS
and CVSI may be used to convert from Items to strings representing
the names of these Ite~s (and back). This feature is not available
unless ·REQUTREd·. See Cvis, 12-84 and following for details.

Group 2 -- Space requirements -- STRING_SPACE, SYSTEM_PDL, etc.

3-57. The' inclusion of the specification ~BEQUIRE 1000
STRING_SPACE~ will ensure that at least 1000 words of storage will be
available for storing Strings when the program is run. Similar
provisions are made for various push-down stacks used by the
execution-time routines and the compiled code. If a parameter is
specified twice, or if separately compiled procedures are loaded (see
S~parately Compiled Procedures, 16-7), the sum of all such
specifications will be used. These parameters could also be typed to
the loaded program just before execution (see STORAGE"ALLOCATION,
14-22), but it is often more convenient to specify differences from
the standard sizes in the source program. Use these specifications
only if messages from the running program indicate that the ~tandard
allocations are not sufficient. -REQUIRE 30 MEW_ITEMS· specifies
that 30 is a reasonable estimate of the number of items which will be
created dynamically using the NEW construct.

Group 3 other files -- LOAD_MODULE, LIBRARY

3-58. The inclusion of the specification
REQU1RE ~PROCS1~ LOAD_MODULE, 'HELIB[1,3]~ LIBRARY; would inform the
Loader' that the file PROCS1.REL must be load~d and the library
HELIB.REL[1,)] searched whenever the program containing the
specification is loade~. The parameter for both featureS should be a
string constant of one of the above forms. The device DSK, and file
extension .REL are the only values permitted for these entries, and
are therefore assumed.

3-59. LOAD_MODULES (.REL files to be loaded) may themselves
contain requests for other LOAD_MODULES and LIBRARYs. LIBRARYs may
only contain requests for other LIBRARYs. Duplicate specifications
are in general merqed into single requests (if a file is requested
twice, it will be loaded only once).

3-60. SAIL automatically
-SYS:LIBSAI~ in each main
execution-time routines.

places a
program.

25

request for
This library

the library
contains the

SAIL MANUAL

3-61.. You have probably noticed that a great deal of prior
knowledge is required fer proper understanding of this section. For
more info~ma~on about PNAMES see cvis, 12-B4 and following. Stora9~
allocation is discussed in STORAnE ALLOCATION, 14-22 below. The form
and use of .REL files and libraries are described in [Decref1 and
[weiher]

26 SAIL MANUAL

SYNT.A.X

4-1.

<assignment>

<assignment_statement>

<algebraic_assiqnment>

<item_assignment>

<set_ass ignment>

<swap_statement>

<byte_st a temen t>

RESTRICTION

SECTION 4

ASSIGNMENT STATEMENTS

: :=
: :=

• .0:::: · .
: :=
: :=

.. -· .-

:.: =

: :=

: :=

<assignment_statement>
<swap_statement>

<algebraic_assignment>
<item_~ssignment>
<set_assignment>

<algebraic_variable> -
<algebraic_expression>

<itemvar_variable> -
<co DS truc t 10 n_ i te m_ {~.X pre sst on>

<set_variable> -
<construction_set_expression>

<variable> ~ <var iabl(~>

::=. DPB «algebraic_expression> ,

:: =

: :=

<algebraic_expression>)
IDPO «algebraic_expression> ,

<algebraic_variable> .)
IBP «algebraic_variable»

4-2. If the operator is the SWAP operator, the expr~~ssion (of
whatev.er kind) on the right. hand side must be a simple or subscripted
variable, or DATUM«item_primary>l. The SWAP operator may not be
used in an assignment expression (see Assignment Express.ions, 9-4).
It is valid only at statement level.

SEMANTICS'

4-3. The assignment statement causes the value represented by an
expression to he assigned to the variable appearing to the left of
the assignment symbol. You will see later (see Assignment
Expressions, 9-4) that one value may be assigned to two or more
variables through the use of two or more assignment symbols. The

27 SAIL MANUAL

operation of the assignment, statement proceeds in the following
order:

a) The subscript expressions of the
any) are evaluated from left
Ev~luation Rules, 9-14).

b)' The expression is evaluated.

left part variable (if
to right (see Rxpression

c) The value of the expression is assigned to the left part
variable, with sbbscript expressions, if any, having values
as deter~ined in step a.

4-4. This ordering of operations may usually be disreg~~ded.
However it becomes important when expression assignments (Assignment
Expressions~ 9-4) or function calls with reference parameters appear
anywhere in the statement. For example, in the ,statements

I ... 3~
A(I] "'3+ (T-1);

A[3] will receive the value 4 using the above algorithm. If no
subscript calculations were performed until after the expression
evaluation, 1[1] would become 4. Be careful.

4-5. As
rtemvar the
expression.

the syntax implies, if the left part variable is of type
value to be assigned must be a' construction Item
Similarly for sets.

4-6. However, any algebraic expression CREAL, INTEGER CBOOLEAN),
or STRING) may be assigned to any ,variable of algebraic type. The
resultant type will be that of the left 'part variable. The
conversion rules for assignm~nts involving mixed types are mildly
amusing. They are identical to the conversion rules for combining
mixed types in algebraic expressions (see Arithmetic. Type
Conversions, 9-21, string-Arithmetic Conve.rsions, 9-26 be.low>.

Datum Assignments

4-7. The algebraic or Set value associated with an Item is changed
using an assignment statement in which the left part is a the word
DATOM operating on an Item primary. This is valid syntactically
because the syntax for <variable> (see Variables, 11-2) includes this
DATUM cpnstruct. The expression is checked for validity and proper
type con'versions are made before this .kind of store occurs. One
h3zard is' that there are times when the compiler cannot verify that
an Item assiqned to an Itemvar has a datum whose type matches that
expected by the itemvar. Incorrect conversions might well be made in
this case.

28 SA'lL MANUAL

Swap Assiqnment

4-A. The SWAP operator causes the value of the variable on the
left hand side to be swa~ped with the value of the variable on the
right hand side. Algebraic type conversions are made, if necessary;
any other type conversions aLe, as usual, invalid. Remember, the
SWAP operator may not be used in assiqnment expressions.

Examples

4-9.

X-I·A+R; comment if A, B and X are Real, I Integer,
the Feal value of th~ sum is truncated,
converted to an Inteqer, and stored in I.
~he truncated value is then converted to
a Real number and stored in X.

BEGIN REAL ITEMVAR X;
X ·1,0 P (SET 3) ;
nATOM(X) - 5: Comment a conversion to 5.0 will be made

before the store is done, hut there is no guarantee
that the Item obtained by LOP(SET3) was not declared,
for example, as INTEGER ITEM A;

END:

Byte s·ta tements

4-10.

4-10. The statements UPB, lDPB and IBP are provided for
manipulating bytes of information. These operations correspond
exactly to the PDP-1C machine instructions for manipulating bytes.
The formats are as follows:

1) OPB (byte, byte._pointer)
The ~byte" is deposited according to the byte_pointer. The
POINT procedure may be used for generating byte pointers
(see Point, 1 2 - 11 q) •

2) lOBP (byte, byte_pointer)
The -byte~ is deposited, and the bype_pointer incremented.
For this reason, the byte_pointer may n6t be an expression*
but must be a variable.

3) IBP (byte_pointer)
The byte_pointer is incremented. The same rules apply as
in IDP.B.

29 SAl.L MANUAL

SECTION 5

EXECUTION CONTROL STATEMENTS

SYNTA.X

5-1.

<conditional_statement>

<label_identifier>

<f or_sta temen t>

<while_statement>

<case_statement>

.. -.. -
: :=

: :=

: :=
:: =
: :=

::=

.. -... -
· ... -
: :"= · .-·
.. -· .-
: :=

.. -.. -

: :=
: :=

.. -· .-· .-· .-

: :=

· ... -

\

<if_statement>
<if_statement> ELSE <statement>

IF <boolean_expression> THEN <statement>

GO TO <label_identifier>
GOTO <label_identifier>
GO <label_identifer>

<identifier>

FOR <algebraic_variable> - <fo~_list> DO
<statement>

NE"EDNEXT <for_statement>

<for_list_element>
<for_list> , <for_list_element>

<algebraic_expression>
<algebraic_expression> STEP

<algebraic_expression> UNTIL
<algebraic_expression>

<alq~bra ic_e.xpression> STEP
<algebraic_expression> WHILE
<boolean_expression>

WHILE <boolean_expression> DO <statement>
NEEDNEXT <while_statement>

DO <statement> UNTIL <boolean_expression>
NEEDNEXT <do_statement>

CASE <algebraic_expression> OF BEGIN

30 SAIL M.ANUAL

<r e t u r n_ s tat em e n t> : := RETURN .. -.. - RETURN (<expression>)

<d one_ st a te m'en t> :: = DONE

<next_statement> : := NEXT

SEMANTICS

Conditional Statements

5-2. These statements provide a means whereby tha execution of a
statement, or a series of statements, is dependent on the logical
value produced by a Boolean expression.

5-3. A Boolean expression is an algebraic expression whose use
implies that it is to be tested as a logical (truth) value. The
rules for determining this value are given in Simple Expressions, 9-9
and following.

If sta tement

5-4. The statement following the opeator THEN (the 'THEN part·) is
executed if the logical value of the Boolean expression ~s TRUE1
otherwise, that statement is ignored.

If ••• El se Statement

5-5. If the Boolean expresion i~ true, the ·THEN part' is executed
and the statement following the operator ELSE (the 'ELSE part·) is
iqnored. If the Boolean expresion is FALSE, the -ELSE part- is
executed and the ·THEN part' is ignored.

Ambiguity in Conditional statements

5-6. The syntax ~iven here for conditional statem~nts does not
fully explain the correspondences betveen THEN-ELSE~ pairs when
conditional statements are nested. An ELSE will be understood to
match the immediately preceding unmatched THEN.

31 SAIL MANUAL

Example

5-1.

COMMENT DECIDE WHETHER TO GO TO WORK;

IF NOT WEEKEND THEN
IF GIANTS_ON_TV THEN BEGIN

PHONE_EXCUSE('GRANDMOTHER DIED') 1
ENJOY (GAME) 1
SUFFER (CONSCJENCF_PANGS)

EN 0
ELSE IF P~ALLY_SICK THEN BEGIN

PHONE_EXCUSE('REALLY SICK');
ENJOY(O);
SUFFE.R (AGONY)

END
FoLSE GO TO WORK;

Go 'ro st atements
I

5-8. Each of the three forms of the Go To stat~ment means the same
thing an unconditional transfer is to be made to the 'target~
statement labeled by the label identifier. The following rules
pertain to labels:

1) Ail1 label identi.fiers used in a program mus't be declared. The
declaration of a label must b~ local to tbe block immediately
~urroundinq the statement it identifies. Note that compound
statements (BEGIN-END pairs containing no declarations> are
not blocks. Therefore the block

!rEG I N ".0 l'
INTEGER I,J: LABEL 11;
• • •
IF BE3 THEN BEGIN ·C1· . . .

L 1: ...
. . .
GO TO L1

.END -B1·

is legal.

2) No Go To statement may specify a transfer from a'statement 51
outside a given block to a target statement 52 inside that
block. Tbis is automatic from rule 1, since the label
identifying 52 is no~ available to 51. Again the rule does
not apply to compound statements, as the above example
demonstrates.

32 SAIL MANUAL

3) No Go To statement may specify a transfer from a statement
within a procedure to a statement outside that procedure (you
can't jump out of procedti~es).

4) No Go To statement may specify a transfer into a FOREACH
statement, a block with array declarations, or complicated Por
loops (those with For Lists or which contain a NEXT
statemen t).

5-9. Labels will seldom be needed for debugging purposes. The
r block name fe~ture (see DEBUGGING, 15-9) and the listinq feature

which a ssocia tes with each source line the octal add,ress o.f its
corresponding object code (see listing Features, 14-13) should
provide enough information to ftnd things easily.

5-10. Many program loops coded with labels can he alternatively
expressed as For or ~hile loops. This often results in a source
program whose o'rqanlza tion ~s somewha t more transparent, and an
object prog'ram which is moreef''ficient.

,For statements

5-11. For and While statements (see also FOREACH statement~ 7-14)
provide methods for forming loops in a program. They allow the
repetitive execution of a statement zero or, more times. These
statements will be described by means of SAiL programs which are
functionally equivalent but which demonstrate better the actual orderc

of processing. Refer to these equations for any questions you might
have about what gets evaluated when, and, how many times each part is
evaluated.

5-12. Let VEL be any algebraic variable, A'El".. .,AE8 any
algebraic expressions, BE a Boolean expresion, TEMP a 'temporary
location, S a statement. Then the following SAIL statements are
equi va lent:

Using For statements

FOR VBL - AE1, AE2, AE3 STEP.AE4 UNTIL IES,
AE6 STEP AE1 WHILE BE, AE8 DO S:

Equivalent formulation without For statements

VBL-AE'1 ;
S;
VBL AE2;
s:

33 SAIl. MANUAL

Comment STEP-UNTIL loop:
VBI ... i\E3;

LOOP1 :
·IF (VBL-~E5) • SIGN(AE4) S 0 THEN
BEGIN

END;

s:
VBt .. VBt+AE4;
GO TO LOOP1

Commen t STEP-WRIL.E loop:
VBL .. 1\ Eo;

LOOP2 :
IF BE THEN BEGIN

.EN 0;

s:
VBL~VBIA+1\E7 ;
GO TO LOOP2

VBL--AE8;
S:

If ~E4 (hE7) is a variable, changing its value within the l~op will
cause the new value to he u~ed for the next iteration. If AE4 fAE7)
is a constant or an expression r~quiring evaluation of some operator,
t.he value used for the step element will remai.n constant th.roughout
the execution of the For statement. If ARS is an expression, it will
be re-evaluated before each iteratlon.

.5- 13 • Now consider the For statement:

FOR VBL-AE1 STEP CONST UNTIL tE2 DO S:

where const is a positive ~onstant. The compiler will simplify this
case to:

VBL ... T\E1;
LOOP]:

IF VBL ~ AE2 THEN BEGIN
S;

END;

VBL V"BL+CONST;
GO TO LOOP]

If CONST is negative, the line at LOOP3 would be:

LOOP) :
IF VBL ~ AE2 THEN BEGIN

34 SAIL MANUAL

5-14. The value of VBL when execution of the loop is terminated,
whether it be by exhaustion of the for list or by execution of a DONE
or GO TO statement (see Done statement, 5-23,Go To statements. 5-8),
is the value last assign~d to it using the algorithm above. This
value is therefore always well-defined.

5-15. The statement 5 may contain assignment statements or
procedure calls which change the value of VBL. Such a statement
behaves the ~ame way it would if inserted at the correspo~ding point
in the equivalent loop described above.

While Statemflnt

5-16. The statement

WHILE BE DO S;

is equivalent to the statements!

LOOP:
IF BE THEN BEGIN

s;
GO TO LOOP'

END;

Do Statement

5-17. Thp statement

DO S UNTIL B'E~

is equivalent to the sequence:

LOOP:
5;
IF NOT BE THEN GO TO LOOP;

Case Sta tements

5-18. The statement

CASE AE OF BEGIN
SO: S 1; S2:.... Sn

END

'. is functionally equivalent to the statements:

35 SA.IL M ANUAI.

T:EI1P-.A E:
IF TEMP = 0 THEN SO

ELSE IF TEM'P :: 1 THEN S1
.ELSE IF TEMP = 2 THEN S2 ...
:ELSE IF TEMP - n THEN Sn

ELSE BRROR:

For applications of this type the CASE statement form will give
significantly more, efficient code than the equivalent If statements.
Notice that dummy statements may be inserted for' those cases which
will not occur or for which no entries are necessary. For example~

CASE AE OF BEGIN
SO: ; : :'3; ; : 56; END

provides for no actions when AE is 1,2,4,5, or 7. When AE is 0, 3,
or 6 the corresponding statement will be executed.

Return statement

5-19. This statemen·t i~; invalid if it appears outside a
declaration. It provides for an early return from a
execution to the statement calling the procedure. If
statement is executed, the procedure will return after
statement representing the procedure body is executed. (see
Declarations~ 3-37).

procedure
procedure
no return
the last
Procedure

5-20. An untyped procedure (see Procedure statements, 6-2) may not
return a value. The return statement for this kind of procedure
consists merely of the word RETURN. If an argument is given, it will
cause the compiler to issue an ~rror message.

5-21. A typed procedure (see Function Designators, 9-43) must
return a value as it executes a return statement. 'If no argument is
present an error message will be given. If the procedure has an
alqebraic type, any ~lgebraic expression may he returned as its
value; type conversion will be performed in a manner described by
Arithmetic Type Conve.rsions, 9~21 and String-Arithmetic Conversions.,
9-26 below. If the procedure is of type SET or ITEM, the argument
must be an expression of type SET or ITEM.

5-22.
value
fun).

If no RETURN statement is executed in a typed procedure* the
returned is undefined (it could be anything -- try it, it's

Done statement

5-23. The s,tatement containing only the word DONE may "t,e used to
terminate the execution of a FOR, WHILE, or FOREACH loop explicitly.

,.36 S.AIL MANUAL

Its operation can most easily be 'seen by means of an example. The
statement

FOR I-1 STEP 1 UNTIL n DO BEGIN
S; · . .
IF BE THEN DONEi
· . .

END

is equivalent to the statement'

Fon 1-1 STEP 1 UNTIL n DO BEGIN
S;

END;
EXIT:

• ••
IF BR THEN GO TO EXJT1 · . .

In either case the value of I is well-defined after the statement ha$
b~en executed (see For Statements, 5-14).

5-24. The DONE statement will only cause an escape from the'
in nermost loop in which it appears.

Next statement

5-25. A Next statement is" valid only in a For statement, While
statement, Do Statement, or Foreach statement (see For statements,
5-11, etc., FOREACH statement,. 7-14). Processing of the loop
statement is temporarily suspended. When the NEXT statement appears
in a For or Foreach loop, the next value (set of items) is obtained
from the For List (Associative context) and assigned to the
controlled variable (bound variables). The termination test is then
made.' If the termination condition is sa tisfied., control is passed
to the statement following the For statement or Foreach statement.
If not, control is returned to the inner statement follciwing the NEXT
statement. Tn While and Do loops, the termination condition is
tested. If it is satisfied, execution of the loop terminates.
ot herw ise it :resumes at the sta temen t within the .loop following the
NEXT sta tement.

5-26. The reserved word NEEDNEXT must preceed FOREACH, FOR, WHILE,
or DO in any loop using the NEXT statement.

37 S.AIL M.A NU A.L

Example

5-27.

NEEDNEXT WHILE NOT EOF DO BEGIN
S INPUT(1,1):

END;

NEXT: Comment check EOP and terminate if TRUE;
T INl~UT(1,3) ;
PROCESS_INPUT($,T):

38 SAIL MANUAL

SYNTAX

6-1.

<procedure_statement>

<actual_parameter>

SEMANTICS

S.ECTION 6

PROCEDURE STATEMENTS

: :=
: :=

.. -.. -
: :=

.. -.. -.. -.. -
: :.=

<procedure_identifier>
<procedure_identifier> (

<actual_parameter_list>)

<actual_parameter>
<actual_para meter_list> #

<actual_parameter>

<expression>
<array_identifier>
<procedure_identifier>

6-2. A procedure statement is used to invoke the execution of an
untyped procedure (see Procedure Declarations, 3-]7). It may also be
used to supply parameters to the procedure.

6-3. No value may be returned from a procedure called by a
procedure statement, since there is no specification in the statement
telliriq how to use the value. The compiler determines how a
procedure may be used by noticing if a type was specified in the
procedure declaration. After execution of the procedure, control
returns to the statement immediately following the procedure
statement. However, SAIL aoes allow you to use typed procedures as
procedure statements. The value returned from' the procedure is
simply discarded.

Actual Parameters

6-4. The actual parameters supplied to a procedure must in general
match the formal parameters described in the procedure declaration.
As usual, the exception is algebraic expressions; the transfer
function s described in 1\ri thmetic Type Conversions, 9-21 and
string-Arithmetic Conversions, 9-26 will be applied to convert the
type of any algebraic expression passed by VALUE to the algebraic
type required by the procedure.

Call by Value

6-5. If an actual parameter is passed by VALUE, only the value of
the expression is given to the proced ure. This value may be changed

39 SAIL MANUAL

or examined by the procedure, but this will in no way affect any of
the variables used to evaluate the actual parameters. Any algebraic
expression, any Item or Set expression may be passed by value.
Neither arrays nor procedures may be passed by value. See the
default declarations for parameters in {PRCD1}.

Call by Reference

6-6. If an actual parameter is passed by REFERENCE, its address is
plssed to the procedure. All accesses to the value of the parameter
made by the procedure are made indirectly through ~his address.
Therefore any change the procedur~ makes in a reference parameter
will cha:nge the value of the varia'ble which was used as an actual
parameter. This is sometimes useful. However if it is not intended,
use of this feature can also be somewhat confusing as well as
modera tel y inefficient. Reference parameters should be used onl y
where needed.

6-7. Variables, constants, procedures, arrays, and
expressions may he passed by reference. Neither Items nor
expressions (or string constants) may be reference parameters.

most.
S·trinq

6-8. If an expression is passed by reference, its value is first
placed in a temporary location; a constant passed by' reference is
stored in ~ unique location. The address of this location ~s passed
tQ the procedure. Therefore, any values changed 'by the procedure via
reference parameters of this form will be inaccesible to the user
after the prqcedure call. If the called program 1S an assembly
languaqe routine which saves the parameter address, it is dangerous
to pass. expressions to it, since this address will be used by the
compiler for other temporary purposes. A warning message will be
printed when eXFressions are called by reference.

6-9. The type of each actual parameter passed by referencemQst be
identical to that of its corresponding formal parameter. An
exception is made for Fortran calls (see Fortran Procedures, 6-12).
If an alqebraic type mismatch occurs th'e compiler will create a
temporary variable containing the converted value and pass the
address of this temporary as the parameter. I warning message will
be printed.

I,

Procedures as Actual Parameters

6-10. If an actual parameter to a procedure PC is· the name of a
procedure'PR with no arguments, one of thtee thinqs might happen:

1) If the corresponding formal parameter requires a value of a
type matching that of p~ (in the loose sense givena~ove in
Actual Parameters, 6-4), the procedure is evaluated and its
value is sent to the procedure pc.

40 SAIL MANU.AL

2) If the formal parameter of PC requires a reference
procedure of identical type, the address of PR is passed to
PC as the actual parameter.

3~ Tf the formal parameter requires a ~eference variable, the
procedure is evaluated, its result stored, and its address
passed (as with eXFressions in the previous paragraph) as
the parameter.

6-11. If a procedure name followed by actual parameters appears as
an actual par~meter it is evaluated (see Function Designators, 9-43).
Then if the corresponding formal parameter requires a value, the
result of this evaluation is passed as the actual parameter. If the
formal parameter requires a reference to a value, it is called as a
reference expression.

Fortr.an Procedures

6-12. If the procedure being called is a Fortran procedure, all
actual parameters must be of type INTEGER (BOOLEAN) or REAL. All
such param(~ters are passed by reference, since Fortran will on.ly
accept that kind of call. For convenience, any constant or
expression used as an actual parameter to a Fortran procedure is
stored in a temporary cell whose address is given as the reference
actual parameter.

6-13. It was explained in Procedure Declarations, 3-37 that formal
parameters need not be described for Fortran procedures., This allows
a progra m to call a Fortran procedure with varying numbers of
arguments, a feature which exists in DEC Fortran. No type conversion
will he performed for such parameters, of course. If type coiversion
is desired, the formal parameter declarations should be included in
the Fortran procedure declaration; SAIL will use them if they are
present.

6-14. To pass an array to Fortran, mention the address of its
first element (e.g. A[Ol, or B{1,lJ).

Implementation Details

6-15. See the paragraphs concerning procedures in the section on
implementation (PFOCEDUBE IMPLEMENT~TION, 17-46) for descriptions of
the calling sequences and basic layout of SAIL procedures. See also
Separately Compiled Procedures, 16-7 for more information about these
useful constructs.

41 SAIL MANU.AL

Exa mples:

6-16.

BEGIN ,

To call an untyped procedure:

P FO C (I + J , A (Q] , L l : ...
END;

To call a procedure of type Integer with one Integer argument:

I-FRoe (PHOC(I);

42 SAIL MANU A"L

SYNTAX

7-1.

<lea p_sta tement>

<set_ sta tement.>

<associative_statement>

<loop_statement>

<bindi n9_lis-t>

<associative_context>

<element>

SE MA NTIC S

LEAP Introduction

SECTION 7

LEAP STATF.M.ENTS

.. -... -· .'.. -· ... -
<set_statement>
<associative_statement>
<loop_statement>

::= <set_assignment>
::= POT <construction_item_expression> IN

<set_variable>
::= REMOVE <retrieval_item_expression> PROM

<set_variahle>

: := · .-· .-
: := · .-· .-

: :=

: :=

· ... -.. -.. -
· .-· .-... -.... -
: :=

: := · .-· .-
: : .::

<1 tern_assignment:> "
DELE'rE (<ret.rieval_item_expression>)
MAKE <construction_triple>
ERASE <retrieval_triple>

FoaEACH <binding_list>
<associative_context> DO <statement>

NEEDNEXT <loop_statement>

<ld_list> 1
<id_list> SOCH THAT

<element>,
<associative_context> AND <element>

<retrieval_associative_expression> IN
<retrieval_set_expression>

<retrieval_triple>
(<boolean_expression>)

<o_derived_set> EQV
<o_associative_expression>

7-2. The basic ALGOL facility in SAIL has been extended with
syntactic constructs and semantic interpretations to reference an
associative data store. This extension was developed by J. Feldman
and P. Rovner and is described in [Feldmanl. The LEAP facilities in
SAIL differ slightly from -those published in the CACM article. In
the discussion of the use of the associat.ive facilities, reasonably

43 SAIL MANUAL

simple examples are given for each construct. These examples and
associated discussions should emphasize the differences between thA
SAIL implementation and the constructs published in the CACM article.

7-3. The LEAP constructs all involve manipulations of one basic
entity, the item. An item is a conceptual· entity which is
reprpsented at execution time by a unique number. Associated with
each item in the universe,is a DATUM. The DATUM of an item may be an
algebraic quantity, an array of such quantities, or a SET. The DATUM
assiqnm~nt statement (see Datum Assiqnment~, 4-7) is used to store
the value of an exp.r:ession into the. DA'rUl'"1 of an item. Th(~ DATUM of a
declared ARRAY ITEM is loaded automatically when the block in which
the ARRAY ITEM is declared is entered. The DATUM of an item may also
be referenced during evaluation of expressions (see Datums, 11-6).
Examples:

INTEGER I~~M father,joe;
TNTEGER ARRAY ITEM ages {1:20J;
IN T E G E a a" b, c;

DATUM (fath'er) -- 21 :
DA'.rUM (aqes) [h] - b / 33 ;
c ~ DATUM (joe) - 12 ;

The DATUM operator is intended to link the powerful associative
processing routines developed for manipulation of items with the
algebraic facilities of ALGOL. This link is made as effidient as
possible only two machine instructions are required to access the
DATUM of. an item.

7-4. Items or information about items may be stored in a variety
of ways. The simple'entity ITEM does not itself occupy storage.
Instead, instances of ITEMS are stored in IJRMVARS, SETS, or
associations. The simplest of these forms is the ITEMVAR: an item
may be ~stored~ in an ITEMVAR. Evaluation of that ITEMVAR will then
yield the item stored into it. ITEMVARS are thus roughly analagous
to simple arithmetic variables. SAIL also allows arrays of ITEMVARs,
wi t.h the ob vious in·terpreta tion. ' A typical declara tion wou ld be
~ITEMVAR ARRAY x[1:22,O:1J', or ~INTEGER ITEMVAR ARRAY y{1:20]~.

7-5. Instances of items may also be stored as unordered
collections* or SETS. Facilities are provided for common set
operations (see Set Expressions, 10-2). ThA SAIL system uses one
word of storage for each item in a set. A set will contain at most
one instance of a specific item: if an instance of item X is already
in set S, then any subsequent attempts to put an instance of X in S
will, I h ave no e.ffect. This is in keeping with. the standaI:d
mathematical notion of set.

7-6. The third, and perhaps most important, form of storage of
item instances is the association, or tI:iple. Ordered triples of
item instances may be written into or retrieved from a special store,
the associative store. The method of storage of these triples is
designed to facilitate fast and flexible retrieval. SAIL uses

44 SAIL MANUAl,

approximately two words of storRq~ for Rach triple in the associative
store. TherA is at most one copy of a triple in the store at any
time. Once a triple has boen stored in the associative memory, its
comron(~nt. it':'ID instances may not tH~ changed .. Tn the examt>les which
follow, a triple is repr0sent0rl hy:

Axon 0 EQV V

where A, 0, and V are items or itemvars. A, 0, and V ar0 mnemonics
for the thrcp components of a triple: attribute, object, dnd value.
T~0 exact syntactic rules for describinqtriples are discussed in
S E 11 ANT Ie S , 1 ;J - 2 •

G0neral ~0strjctions

7-7. Thp implement.ation of tho associative storp a.nd other forms
of item stor~qe imposes sevec~l limitations on the LEAP capability.
The maximum numb0.r.of it.ems (as r.E~pr.pspnted by t.heir. uniqu(~ 11umbers)
1S 4090. This arises from an overwhelminq dGsire to store a triple
in one wor~ of storage, and hence the requirement that an item number
bp, dpscribable in 12 bits.

construction - Rctri0val Distinction

7-8. Ther{:"\ are t.wo basic op~~ra.tions which are perform<3cl on the
thre~ types of item stores -- construction of a new element in that
store, and retrieval of some existing e10ment in the store. For some
purposes, it is necessary to distinguish the operations beinq
p~:rformpd. This distinction manilg(~;: to find its way to the syntax.
Tn the discussion of associative expressions (Item Constructs, 10-4),
th0 syntact.ic forms <construction_item_prim.ary> and
<retrieval_item_prim~ry> are discussed. The ascent from primary
18v~1 to associative ~xpressions preserves th0se distinctions. Thus,
on8 speaks of a <constructiOD_item_8xpression>, or of a
<retrieval_Item_expression>. Often t.he UNF productions speak of
<o_item_('xpr·::~ssions>. This is merely a shortha.nd to denote that' two
separate S0tS of. productions exist, one in which 0 means
~construction~, and one in which 0 means ~retrieval'.

PHT and HF.tlOVE

7-9. The verbs PUT and REMOVE are provided for easily altering
sets. After initialization, all sets are empty. They may be altered
either by PUTting item instances into them or by explicit set
assignment statements. The PUT statement is executed as follows: the
construction item expression is evaluated, and must yield a single
item. An instance of this item is then recorded in the set specified
hy t.he set· variatle. Uf.f.'10VF operates in an analaqons fa5hion. If an
instarice of the item to he REMOVEd does not occur in the set, an
error message issues forth.

l~5 SAIL r-1ANUAL

DF.l.ETF.

7-10. DELETE releases an item from the universe of current items.
Some small amount of storage is reclaimed in this process, as well as
the unique num.ber associated with the it~m DEL·ET.Ed. Since there is
an upper limit on the number of items, the DELETE statement can be
used to free item numbers for other uses. The DELETE statement in no
way alters the instancES of the DELETEd item which are present in
sets or associations. The user should be sure that there are no
instances of the DELETEd item occurring in sets, itemvars or
associations. Attempts to ~eference a DELETEd item in any way will
r~sult in confusion.

7-11. Associations may be added to the associative memory with the
MAKE statement. If t.he association alrea.dy exists ,in the stoce, no
alterations are made. The argumHnt to the MAKE statement is a
construction triple; that is, a triple composed of construction
associative expressions. Every construct in these expressions is
interpreted in a construction sense. The component associative
expcessions in this triple are evaluated left to riqht. Some
constructs in these expressions (e.g. see NEW Items, 10-6 or in the
case of hracketert triples) require that new unique item numbers be
cr eat e d • Ex amp 1 t'"! S :

MAKE item1 XOR item2 EQV item3
MAKE item1 YOH iternvar1 EQV NEW
MAKE it.em1 'KO"R [item2 XOR itemv{lrl .EQV item3] EQV itemvar_array{231

1-12.· The last example involves the use of a BRACKETED TRIPLE.
~he hracketed triple '{item2 XOR itemvarl EQV item]~ which is used as
an associative expression is inserted in the associative store. A
new unique item number is generated, which refers to that
association. Various functions (ISTRIPLE, FIRST, SECOND, THIRD
see Item Selectors, 10-5) may use an instance of this new item as
their'argument. Consider the following statements~

ERASE

MAKR number XOR {part XOR hand EQV finge~] EQV new (5);
FOREACH x,y SUCH THAT number XOR x EQV Y AND

(ISTRIPLE (x) AND FIRST (x) = part) DO
count - count + DATUM (y) ;

7-13. The ERASE statement is provided to undo the damage done by
the MAKE statement. The same g~neral class of arguments must be
provided. ERASE requires a retrieval triple as its argument, thus
eliminating such questionable constructs as NEW f~om said triples.
However, the construct ANY may appear in a triple specification to
ERASE. This allows a whole slew of appropriate associations to be
erased in one statement. (Restriction: ERASE ANY XOR ANY EQV ANY is
considered bad form, and is as a direct result, forbidden). Sample
ERASE statements are:

46. SAIL MANUAL

ERASE item1 XOR item2 EOV item3
ERASB iteml XOR itemvar1 EOV item2
ERASE itemvarl XOR ANY EQV item1

RESTRICTION' -- MAKE and FRASE will take only item expressions .as
arguments, and will not take set expressions.

FOR EACH statement

7-14. Flexible searching and retrieval are the main motivations
for using the set and associative stores. The FOREACH statement
provides this retrieval facility. The FOREACH statement is
essentially a looping statement: the <statement> after the no is
executed for each group of item instances in the store which
satisfies the FOREACH specification. If there are no such groups
present in the store, the body of the statement is never executed.
The <bindin~_list> ~pecifies the itemvars wh~ch will contain results
of the search. For instance, the simple construct
FORRACH x SUCH THAT x IN setl DO procedure(x) causes the body of the
statemen t to be executed once for f~ach item instance in the s'et set 1 •
During execution of the boay of the statement, the itemvar x
evaluates to the item retrieved from the set set1. Consider,
however, the FOREACH Statement

FOR EACH x SUCH THAT x IN set1 AND x IN set2 DO statement

This specification may appear ambiguous, and indeed it is, unless we
define the concept of BINDING the itemvars in a POBEleH
specification. In an associative context, an it~mvar which appears
in the <binding_list> is said to be F~EE until a search specification
has dC~termined the first requirement on the value o.f'the itemvar (in
a,' left-to-right scan of th~ <associative_co'nt.ext». After the firs·t
requirement, it is said ,to be BOUND. Thus the <element> in the above
example which' reads "x IN set 1'" specifies a search in lwhich x is
free. The fact that x is free implies the searching opecation. In
the second element, "'x IN set2", x is boun~. Thus no search is
condu~ted here. Instead, the question "'Does an instance of~he "item
I am considering for x appear in the set set2?" is evaluated. The
answer must be TRUE in order that the statement be' executed with x
evaluating to that it~m. In summary, then, the FOREACH statement
above specifies one' search (x IN set1) and one additional
requirement (x IN set2).

7-15. An element of a FOREACH specification may also be a
parenthesized boolean expression. It is of course requisit~ that all
itemvars appearing,in the boolean expression must be bound, i.e. no
searchinq of the associative store wtll be accomplished during the
evaluation of the boolean expression. Example:

FOR ,F: A C H x SiTCH TrIA T x INs e t 1 AND (D A TUM (x) < 2 1) DO •••

Only members of set1 with DATUMs less than 21 will be selected by
this specification. In the example above (FOREACH statement, 7-14),
the second <element> could also have been written in its boolean
form: (x IN set2).

41 SAIL MANUAL

7-16. The most powerful <element> construct is a retrieval triple.
Such specifications make searches (for any FREE itemvars) or
verifications (in the case of completely BOUND elements) in the store
of associations. For example:

1. FOREftCH x SUCH THAT a XOR 0 EQV x D~ POT x IN people_set;
2. FOREACH x SUCH THAT a XORlo EQV x AND b XOR g EQV x DO •••

The aim of statement 1 is clear -- a search is conducted through the
associative store for all associations with attribute 'a' arid object
'o~. If k such associations 'are discover~d, then the body of the
statement is executed k times, with x taking _ on successive values
each time. The second e*ample is similar, but places an additional
constraint on the values ofx which should be returned. Since the
second element (b XOR q EQV x) is completely BOUND, no search is
conducted, but a test is made to verify that the

r
association h XOE

EOV i' is in the store, where x, is some item ~etrieved during the
search for a XOR 0 EQV x.

1-11. In general, an <associative context> is satisfied by some
assignment of item instances to the itemvars in th~ <binding list> if
all of the <element~s are satisfied under th~t assignment. A
<boolean express1on> is sa tisfied if it eval'uates to TRUE. A
<retrieval triple> containing no <set expression> is satisfied by an
assignment if the association it specifies is in the universe of
associat,ions. .A <retrieval triple> containing a <set expression) (or
ANY) is satisfie(1 if there are, in ·the universe. of associations, any
of the associations formed by substitutinq elements of, the set (or
arbitrary items) in the Fosition occupied by the <set expressio~>.

1-18. with this concept of 'SATISFIERS, we proceed to the more
,general case with more t.han one it;emvar cited in the binding list.
Suppo~e there are n such itemvars. Then the <statement> is executed
once for each permutation of the universe of items among the n
itemvars which SATISFY the associative context. During the execution
of the <statement>, the n itemvars will evaluate to the particular
permutation ~hich SATISPIED the associative context.

7-19. The above description for several itemvars is sound but
sl-iqhtly misleaoing. The SAIL implementation makes no effort tQ
avoid duplicating a particular permutation of values which satisfies
the associative context. Thus the <statement> will be executed one
OR MORE times for every permutation which satisfies the associative
context. (See Restrictions and Caveats, 7-21).

7-20. Examples of FORHAeR stabements with several free itemvars
specified are:

1 • FORP.ACH .x,y,z SUCH THAT fat her XCR x EQV y AND
father lOR y EQV z DC ...

2. FORE~CH x,z SUCH THAT father XOR (father XOR x) RQV z DO · . .
3. .FORE1\CH x,y SUCH THAT .X IN set 'l\ND father XOR x EQV y no · . .
4. FOR EACH x,y SUCH THAT father XOB x BQV y AND x IN set .DO · ...

48 SAIL MANUAL

As it happens, 1 and 2 are equivalent. The coropiler actually reduces
2 to 1 by inclu1ing a dummy itemvar to be analagous to the use of 'y~
in the first example. Examples 3 and 4 are precisely equivalent,
that is, the statement will be executed with x and y cvaluatinq to
all the ordered pairs of items which satisfy the (clearly equivalent)
requirements. There is, however, a considerable difference in the
execution efficiency of th\?se two examples. 'Example 3 is more
efficient since the ~set~ is probably guite small, and since the
search of the associative memory with only one free itemvar in the
search specification is rather fast. The second example, however,
makes a search through the associative memory for all the (x,y> pairs
and then disc~rds those Fairs for which an instance of .x does not
occur in the ·set-. Listed below in order of decreasing efficiency
are the various basicforros of <elemen t>s· that are leqa.l. The effect
of a statement such as- 2 above should be calculated by reducing it to
the form of 1. Tn the list below, x, y, and z represent free
itemvars, whereas A, 0, and V represent either bound itemvars or
fixed items.

1\ xon 0 EQV V

A IN S
x IN S
l\ XOR 0 EQV x
x xon y EOV V
A XOR 'X EQV V
x XOR 0 ~QV V
}\ xoq x EQV y
x xon 0 EQV Y
x XOH y EQV z

restrictions and Caveats

verification that the triple
is in the store.

Verification that item A is in set s.
All items x in the set s.
Only the value is free.
Attribute and obiect are free.
Only the object is free.
Cnly the attribute is free.
Object and value are free.
Attribute and value are ftee.
FROHIBITED

7-21. i. The SAIL implementation differs in fundamental ways from
the implementation described by Feldman and Rovner in the CACM
article. Their FOREACH statement huilds' a record of a11 the
permutations which satisfy the associative context, being careful to
include only one copy of each such permutation. Then the <statement>
is executed once fO.L each permuta tion that was stored durinq the
retrieval op{~ration. ''l'h-e SAIL implementation uses the associative

. context as a generator of satisfiers. Thus one group ,of satis'fie.rs
is foun1, <statement> is executed for those satisfiers, then another
found, etc. until all groups of satisfiers have been found. The
implications of t.his method are startling:

1. There is absolutely no way to guarantee that a particular group
of satisfiers is not repeated. There are methods of coding around
~his problem. The user can stuff itemvar arrays with results of a
FOR EACH and avoid duplications. In many search specifications tbe
nature of the searches (e.g. sets, where only one copy of an item
instance can occur in the set) avoids duplicate satisfiers.
2. Operations within <statement> which change the associative data
store may affect the subsequent satisfier groups retrieved. Note the
difficulty in the following: .

FOREhCH x,y I link XOR x EQV y DO MAKE link XOR x EQV newlink

49 SAIL MANUAL

There is' another difficulty with ERASE or REMOVE operations inside a
FOR~ACH 'statement. The SAIL implementation saves pointers into the
data structure during the execution of the <statement>. If
operations within thai statement cause these pointers to become
inv~lid, wild effects will occur. Care has ~een taken, however, to
make sure that some simple things work correctly:

FOREAcn x
link XOR x EQV node DO ERASE link lOR x EQV NODE 1

FORE ACHx
x IN set1 AND x IN set1 DO REMOVE x FROa set1 ;

••••• and many more.

7-22. During and after the execution of a FOREACH statement, the
values of' the .bound itemvars are in gen.eral well-defined. They
evaluate to th.e permutation which last 'satisfie(l the FOREACH c'o·ntex·t.
If a GO TO is @xecuted within the <statement>, the values are correct
in that they correspond to the group of satisfiers for which the
<statement> was being executed. Jhe' only case in which the itemvars
are undefined is when the search specified has be~n exhausted and the
!associative context contains a boolean expressi6n. The explanation
of thi s restriction is qui te s1 mple -- prior to the evalua tion of a
boolean expr.ession, the core locations reserved .for the itemvars in
the <binding_list> are stuffed with the current satisfiers so that
tbe evaluation of the boolean expression may reference them.

7-23. Expression case statements, conditional expressions~ and
procedure calls are all valid within an associative context
specification, provided that all itemv~rs used in these constructs
are BOUND.

50 SAIL ~ANU AL

SYNTAX

8-1.

<code_ ta 11>

<i nstruc t.ion>

<a driresses>

<ac_field>

<add'ress>

<indexed_address>

<simple_address>

<Ii teral >

<index_ fie,ld>

<opcode>

S'EH 1\ NT Ie s

8-2. within a
processed by a

SECTION 8

ASSEMBLY LANGUAGE STATEMENTS

:: =

... -.. -
: :=
: !.=

:: =
: :=

:: =
:: =
: :=

:~ : =
1': .=
: :=

:: =
:: =
: :=

:: '=

<code_hegin>
<code_ bf"'qin> <bloc.K._name>
<code_head> ; <declaration>

ST1\.RT_CODE
QUICK_CODE

<instruction> END
<instruction> END <block_name>
<instructio~> ; <code_tail>

<addresses>
<opcode>
<opcode> <addresses>

<address>
<ac_field> ,
<ac_field> , <address>

<constant_expression>

::= <in~exea_address>
::=@ <indexed_address>

::= <simple_address>
::= <simple_address> (<index_field»

::= <identi.fi.er>
:: = <constan t_exp'ression>
: ::: < .l.i t er a.1 >

::= I <constant_expression>]

::= <constant_expression>

::= <constant_expression>
::= <PDP-10_opcode>

START_CODE
small and

(QUICK_CODE) block, statements are
weak, but hopefully adequate, assembly

51 SAIL MANUAL

languaqe translator. Each ~instruction~ places one instruction word
into the out~ut file.

8-3. If the <address> in an instruction is a constan't, it is
assumed to be an immediate or data operand, and is not relocated. If
the <address> ~s an identifier, the machine address <relative to'the
start of the compilation) is used, and will be relocated to the
proper value by the Loader. If a literal is used, the address of the
co.piled constant will be placed in the instruction. Any reference
to ~trinqs' ~ill result in the address of the second descriptor vora
<byte· pointer) ,to be placed in the instruction.

8-4. The indirect, index, and AC fields have the same syntax and
perform the same fun~tions as they do in the FAIL or MACRO languages.

8-5. The Opcode may bea constant provided by the user, or one of
the standard (non 110) PDP-10 operation codes, expressed
symbolically. r'f a const:ant, it s'hou.ld take the form ofa complete
PDP-10 instruction, expressed in octal radix (e.g. DEFINE TTYUUO =
"51000000000~;). Any bits appearing in fields other than the
opcode field (first 9 bits) will be OR'ed with the bits supplied by
other fields of instructions in which this opcode appears.

Dist inct ions Between STAJ~T_CODE and QUICK_CODE

8-6. Before you~ instructions are' parsed in a block starting with
START_'CODE, instructions are executed to leave all accumulators from
o through '15 available for your use. In this case, you may use a
JRST to transfer control out of the code_block, as long as you do not
leave a procedure, a block with a~ray declarations, a Foreach loop, a
loop with a For list, or a loop which uses the NEXT construct. In a
QUICK_CODE block, no accumulator-saving instructions' are issued.
Ac's '13 through '15 only are free. In addition, some recently used
variables may be given the wrong values if used as address'
identifiers (their current values are contained iti le's O-'12)~· and
control shonl,d not leave the code_hloc,k except by -falling through'.

8-7. All integer constants will be expressed ~n decimal radix
unless the octal representation is explicitly used.

52 SAIL MANUAL

SY NT AX

9-1.

<ex press ion>

<conditional_expression>

<assiqnment_expression>

<case_expression>

<ex pre ssion_li st>

<simple_expression>

<boolean_expression>

<string_expression>

<disiunctive_expcession>

<negated_expression>

<relational_expression>

SECTION 9

ALGRBRAIC RXPBESSIONS

: :=

· .-· .-.. -.. -

: :=

.. -.. -
: :.=

.. -... -· .-· .-
:: =
: :=
: :.=
· ... -
:: .=

: .:=

:: =

: :=
:: =

: ::= .. -.. -

<simple_expression>
<conditicnal_expression>
<assignment_expression>
<case_expcession>

IF <boolean_expression> THEN <expression)
ELSE <expression>

<assignment_statement>

CASR <alqebraic_~xpression> OF (
<expression_list>)

<expression>
<expression_list> , <expression>

<alqeb.ra ic_e x pression>
<boolean_expression>
<string_expression>
<set_expression>
<associative_expression>

<algebraic_expression>

<disjuntive_expression>
<algebraic_expression> OR

<disjunctive_expression>

<negated_Expression>
<disju nctive_ expression> .AND

<negated_expression>

::= Nctr<relaticnal_expression>
::= <relaticnal_expression>

: := ... -· .-
<algebraic_relational>
<leap_relational>

53 SAIL MANUAL

<algebra ic_rela tiona 1>

<leap_relational>

<relational_operator>

<adding_expression>

<adding_operator>

<term,>

<mult_operator>

·<factor>

<J;lrima ry>

: :.= .. -.. -

.. -.. -
: :=

: :=

.. -.. -
: .-.-.. := · · .-· .-· .. -· .-.. . -· . -: :=

<adding_expression>
<relaticnal_expression>

<relational_operator>
<adding_expression>

<retrieval_Item_expression> IN
<retrieval_set_expression>

<retrieval_item_expression>
<relational_operator>
<retrieval_item_expression>

<retrieval_set_expression>
<relational_operator>
<retrieval_set_expression>

<retrieval_ triple>

<
>
=
:$

~
:1;

::= <term>
::= <adding_expression> <add_operator> <term>

::= +
: :.= -.. -... - LAND
: := J .. OR · .-· .- EQV
:: '= XOH

:: -= <factor>
::= <term>. <mult_opera tor> <"factor>

:: = * :: = /
: :.= ~
: := .LS1I
:: = ROT
:: .= MOD .. -· .''''' DIV · .-· .- f,

:: = <pri roa ry>
::-= <primary> t <primary>

::= <algebraic_variable>
: : = - <pri mary>
::= LNOT <primary>
::= ABS <primary>
::= <algebraic_expression> [<substring_spec>

.1
::= IN'P
:.,:= ·<constant.>
::= <function_designator>
::= (<algebraic_expression>)

54 SAIL MANU A.L

<substring_spec>

<function_designator>

::= LENGTH (<retrieval_set_expression>)
::= LENGTH (<string_expre~sion>)
: : = C VN (< i t e m_ p rim a r y>)
::: LOP (<string_variable>)
::= LDB (<arithmetic_expression>)
::= ILDB (<arithmetic_variable>)
::= ISTRIP-Lt (<item:-expression>)

... -.. -
:: =

:: .=
: :'=

<alqehraic_expression> TO
<algebraic_expression>

<algebra ie_expression> FOR
<algebraic_expression>

<procedure_identifier>
<procedure_iRentifier>

<actual_parameter_list>)

<actual_pararneter_list> ::= <actual_parameter>
::='<actual_parameter_list> ,

<actual_parameter>

<actual_paremeter> ::= <expression>
::= <array_identifier>
::= <procednre_identifier>

<algebraic_variable> :::= <variable>

<string_variable> ::= <varia hie>

SF.MANTICS

Conditional Expressions

q-2. l conditional eXFression returns one of two possible values
dep~naing on the logical truth value of the Boolean expression~ For
the rules on evaluation of this truth value see Simple Expressions,
9-9 and followinq. If the Boolean expression (BE) is true, the value
of the conJitional expression is the value of the expression
following the delimiter THEN. If BE is false, the other value is
used. If both exrressions are of an algebraic type, the precise type
of the entire conditicnal expression is that of the ·THENpart~.
Otherwise, both f~xpressions must he of pr~~cisely the same type (Set,
Item, etc.). Unlike the nested If statement problem, there can be no
ambiguity £or conditional exprpssions, since there is an ELSE part in
every such expression.

Example

9- 3.

FOURTHDOWN(YABnSTOGO,YARDLINE,lF YAHDLINE < 70 THEN PUNT
ELSE IF YARDLINE < 90 THRN FIELDGOAL
ELSE HUUFORIT)

55 Sl I L M 1\ .N U .A'L

Assignment Expressions

9-4. The somewhat weird syntax for an assignment expression (it is
equivalent to that for an assignment statement) is nonetheless
accurate: the two function identically as far as the new value of the
left. part variable is conce~t:ned. ~'he difference is that the va lue of
this left part variable is also retained as the 'value of the entire
expression. Assuminq that the assignment it~elf is legal (following
the rules given in Assignment statements, 4-3 above), the type of the
expression is that of the left part variable. This variable may now
participate in any surrounding expressions as if it had been qiven
its new valu~ in a separate statement on the pr~vious line. Only the
- operator is valid in assignment pxpressions. The SWAP operator is
valid only at statement level.

Example

9- 5.

IF (1-1+1) < 30 THEN 1+0 ELSE r+I+1;

Case Expressions

9-6. The expression

CASE AE OF (EO, El, F2, ••• , En) is equivalent to

IF .A F,:O THEN EO
ELSE IF' AE=1 THEN El
ELSE IF AE=2 THEN E2
•••
ELSE IF AF.=n THEN En

ELSE ERROR

9-7. The type of the entire expression is therefore' that of EO.
If any of the expressions El ••• En cannot be fit into this mold an
error message is issued by the compiler.

Example

9-8.

QUT(TTY,CASE ERRNO OF(~BAD D1RECTORY~,
~IMPROPEn DATA MODE',
·UNKNOWN I/O F.RFOR',

56 S1\IL MANU AI.

Simple Expressions

9-9. Simple expressions are simple only in that they are not
conditional, case, or assignment expressions. There are in fact some
exciting complexities to be discussed with respect to simple
expressions. Set, Item, and Associative expressions are discu~sed in
the next section. Before continuing with a description of algebraic
expr~ssions in the following paragraphs, an explanation of what is
meant by a Boole~n expression is in order.

The Boolean Expression Anomaly

9-10. You will notice that in the syntax a Boolean expressi6n is
said to be equivalent to an expression. In actuality, the expression
may NOT be an associative one. This is simply a way of expressinq
syntactically that there are automatically invoked rules, 1) for
obtaining a loqical truth value from an expression which doe~ not
contain any logical operators or logical connectives, and 2) for
obtaining an algebraic (Inteqer) value from one which does. The
rules are very simple:

Integer, Real, or string to ~noolean~

q-11. The logical truth value of an expression 'x' which is of
type Integer, Real, or string is the same as the truth value of the
expression 'X~O'. A string expression will be converted to an
Integer one (see string-Arithmetic Conversions,' 9-26) before the
comparison is made. This need not be done for a Real expression, of
course, since the Integer and Real representations for 0 are the
same. This means you can write expressions of the form

IF I+3 THEN E1 ELSE E2
IF I+1*O THEN E1 ELSE E2

when you really mean

One application of this rule can be found in several of the execution
time routines (RNTRR, LOOKUP, etc.) where an error flag is returned
which is zero (FALSE) if the operation was succ~ssful and non-zero
(TRUE) if an error occurred. This flag may be tested as a Boolean
variable (IF FLAG THEN ERROR (-LOOKUP FAILED')) or to determine
exactly what went wrong by examining its actual value.

-noolean' to Integer

9-12. The truth value of an expression containing logical
9perators and/or connectives may be determined by rules given below
(see Algebraic Expressions, 9-15, InSJCTJ, Logical Expressions,
9-29). If,this value is needed to determine which part to execute in
a conditional statement, while statement, or conditional expression
no actual numerical value need be created for the expression -- the
tests which determine the truth value lead directly to the correct
program branch. However, if this expression is combined with other
algebraic expressions using some numeric operator, or if it is
assigned to an algebraic variable, some actual value must be returned
for the expression. If the expression is false, a zero is returned.

51 SAIL MANUAL

A non-zero value indicates that the expression is true. The actual
value returned for true expressions may differ from time to time, but
it is guaronteed non-zero.

Precedence of Algebraic Operators

9-13. The binary operators in SAIL generally follow -normal'
precedence rules. That is, exponentiations are performed before
multiplications or divisions# which in turn are performed before
additions and subtractions, etc. The logical connectives A and v,
when they occur, are performed last (A before v). The exact
precedence ot operators is described in th~ syntax abov'e. Th~ orde·c
of operation can .be changed by includl ng parentheses at appropriate
points (see Primaries, 9-38).

9-14. In an expression where several Dperators of the same
precedence occur at the same level, the oper~tions are performed from
left to right. See Algebraic Expressions, 9-15, (DSJNCT] for special
evaluation rules for logical connectives.

Ex pressi on Eval uation Rules

9-14. SAIL does not evaluate expressions in a strictly
left-to-right fashion. If we are not constrained to a left-to-right
evaluation, (as is ALGOL 60), we can in. some cases produce
considerably better code than a strict left-to-right scheme could
achieve. Intuitively, the essential features (and pitfalls) of this
evaluation rule can be illustrated by a simple example:

REAL PROCEDURE halve (REFERENCE REAL whole);
RETURN (whole-whple/2);

b ... 2.6 :
c - b + halve (b) ;

The last assignment statement is evaluated as follows: first call
halve, with a reference to b as its argument; upon return, add b to
the procedure call r~sult; then store the result (which is 2.6) in c.
If we were doing a strict left-to-right evaluation, the value of b
would have to he saved before the procedure halve was called. Tbe
evaluation scheme can be stated quite simply: no code is generated
for the operation represented by a BNF production until the reduction
of tha t BNP prod uetion takes p.1ace. The e valua tion rules can also be
stated a little more elegantly, by defining. a function EVIL whose
value is a REFERENCE to some computed value.· EVAL <variable) is a
reference to that variable. EVAL (thing1 operation thing2) is
nO-OPER1\TI'ON (operation, EVA.L (thinq1), .EVAI. (thing2», where
DO-OPERATION returns a reference to the resulting value. Here
thing1, operation, and thing2 are abstract entities, merely intended
to suggest the various concrete syntactic constructs.

58 SAIL MANUAL

Algebraic Expressions

9-15. If an algebraic expression has as its major connective the
logical connective OR, the expression has the logical value TRUE
(arithm~tic value some non-zero integer) if either of its conjuncts
(the expressions surrounding the OR> is true; FALSE otherwise.

9-16. A OR D does NOT produce the bit-wise Or of A and B if they
are algebraic expressions. Truth values combined by numeric
operators will in general be meaningless (use the operators LOR and
LAND for bit operations).

9-11. The user should be warned that. in an expression containing
logical conn~ctives, only enough of the ex~ression is evaluated (from
left to ri~ht) to uniquely determine its truth value. Thus in the
ex {,ressi on

(J<3 OR (K+K+1) > 0),

K will not be incremented if J is less than 3 since the" entire
expression is already known to be true. Conversely in the expression

(X >-0 AND SQRT(X»2) (see rnSJNCT]),

there is never any danger of attempting to extract the square root of
a negative X, since the failure of the first test testifies to the
falsity of the entire expression -- the SQRT routine is not even
called in this case.

Disiunctive Expressions

9-18. If a disjunctive expression has as its major connective the
logical connective AND, the expression has the logical value TRUE if
both of its disjuncts are TRUE; FALSE otherwise. Again, if the first
disjunct is FALSE a logical value of FALSE ~s obtained for the entire
expression without further evaluation.

Relational Expressions

9-19. If any of the binary relational operators is encountereA,
code is produced to convert any String arguments to Integer numbers.
Then type' conversion is done as it is for + operations (see
Arithmetic Type Conversions, 9~21). The values thus obtained are
compared for the indicated condition. A Boolean value TRUE or FALSE
is returned as the value of the expression. Of course, if this
expression is used in subsequent arithmetic operations, a conversion
to integer (see ~Boolean' to Integer, 9-12 above) is performed to
obtain an Int~ger value.

9- 20.
section.

Leap relational operators are discussed in depth in a later

59 SAI"L MANUAL

Ar~thmetic Type Conversions

9-21. The binary arithmetic, loqical, and string operations which
follow will accept combinations of arquments of any algebraic types.
The type of the result of such an operation is ~ometimes dependgnt on
the type of its arguments and sometimes fixed. An argument may be
converted to a different alqebraic type before' the operation is
performed. The following table de~cribe~ the results of th~
arithmetic and logical operations given various combinations of Real
and Inteqer inputs. ARG1 and ARG2 represent the types of the actual
arguments. A.F.G1. and ARG2* represent the types of the arguments
after any necessary conversions have been ~ade.

9-22.

OPERATION

+ -
* t 0/0

.LA ND LOR
EQV XOR

I .. SHROT

MOD nIV

ARG1

INT
REAL
INT
REAL

INT
'REAL
INT
REAl.

INT
BEAT~

TNT
REAL

INT
REAL
INT
'REAL

TNT
RR A.L
TNT
RE.AI.

.A R. G2

INT
INT
l1EAL
.R EA L

TNT
INT
REAL
REAL

TNT
TNT
REAL
H.EAL

TNT
TNT
REAl.
REAL

INT
INT
REAL
R E 1\.L

ARG1* ARG2*

IN'l' INT
l1E1\L REAL
BE 1\.L REAL
REAL REAL

TNT INT
REAL INT
TNT R.81\L
REAL REAT~

TNT TNT
REAL INT
INT INT
REAL INT

REA..L R B AI,
RE.A.L RfAL
REAL RFA.L
REAL RE.AL

'I"NT INT
INT INT
INT INT
INT INT

* Unless AFG2 is <0 for the operator t

RESULT

IN'T*
REAL
RRAL
REAL

TNT
REA.L
INT
REAL

INT
REA'L
INT
RBAl.

R E1\,L
REAL
REAL
REAL

11'11'
INT
TNT
INT

9-23. An Integer is converted to a Real number in such a way that
if this Real number is converted back to an Integer, the same Inteqer
value will result. This is t.r118 unless the absolute value of t.he
number is greater than 134217728. Seme low-order significance will
be lost for inteqers greater than this magnitude.

9- 24.
for mula:

A Real number is converted to an Integer using the following

Integer - STGN(Real).llarqest integer I such that I~ABS(Real)].

60 SAIL MA.NU AL

This function will produce invalid results for Real numbers with a
magnitude greater than 134217728.

9-25. If a string is presented as an argument to any of these
operations, it is converted to an Integer. If an Integer or Real
argument is presented to the concatenation operator (&), it is
converted to.a one-character string. Here are the rules:

string-Arithmetic Conversions

9-26. If a string is presented as an argument to an arithmetic
operator, as a (value) parameter to a procedure which expects a Real
or Integer value, or as an·expression to be stored by an assignment
statement into a Real or Integer variable, an Integer value is
cr ea ted for 'i t as follow s:

If the string is the null strinq (length=Oj, a 0 is returned as
its 'Integer value'. Otherwise a word which has its lefthand 29 bits
0, the rightmost 7 bits containing the first character of the string,
is returned as its 'Inteqer value'. For instance, .the string "'ABCDE"
has as its 'Integer value' '101, the octal representation of the
letter 'A'. This I~teger will then be converted to a Real number, if
necessary.

q-27. If an Integer or Rea 1 number is presen·ted whaLe a String is
expected, a one character Strinq will be created' whose character
consists of bits 29-35 (the- rightmost seven bits) of the numeric
value. A Real number is not converted to an Intege~ before the
conversion. For instance, the expression .

·STRING'& '15 r, '12

will result in a String which is 8 characters long.
characters are the ASCII codes for carriage return and
respectively.

Adding Expressions

The last two
line feed,

9-28. All the operators qrouped in the semantic clas~
<add_operator> all operate at the same precedence level. T'he user
must sometimes provide parentheses in order to make the meaning of
such expressions absolutely unambiguous. The + and - operators will
do integer addition (subtraction) if both arguments are integers (or
converted to integers from strings); otherwise, rounded Real addition
~r subtraction~ after necessary conversions, is done.

9-29. LAND, LOR, XOR, ahd EQV carry out bit-wise And, Or,
Exclusive Or, and Equivalence operations on their arguments. Ro type
conversions are done for these functions. The logical connectives AND
and OR do not have this effect--they simply cause tests and jumps to
he compiled. The type of the result is that of the first operand.

61 SA 1.LHA Nfl AL

This allows expressions cf the form X LAND '777777717, where 1 is
Real, if they are really desired.

9-30. Currently the values of th~ various overflow flags produced
by these operators (and those which follow) are not available to the
user •

. Terms

Arithmetic Multiplicative Operators

9-31. The operation * (multiplication), like + and -, repr~sents
Integer multiplication only if both arguments are integers; Real
otherwise. Integer multiplication uses the IMUL machine instruction
-- no double-lengih result is available.

9-32. The / operator (division) always does rounded Real division,
after: converting any Integer arguments to Real.

9-.33. The % operato.r ha.s the same type table as +, -, and * .. It
perfo~ms whatever division is appropriate.

9-34. LSH and ROT provide logical shift operations on their 'first
arguments. If the value of the second argument is positive, a shift
or rotation of that many bits to the left is performed. If it is
negative, a right-shift or rotate is done. To obtain an arithmetic
shift (ASH) operation, multiply oi divide by the appropriate power of
2: the compiler will change this operation to a shift operation.

q-35. DIV and MOD force both arguments
dividing. X MOD Y is the remainder after X
(X MOD Y = X - ex DIV Y)*Y);

concatenation Operatot

to be integers before
DJV Y is performed

9-3~. This operator produces a result of type String. It is the
Strinq wi~h length the sum of the lenqths of its arguments,
containinq all ihe characters of the second string concatenated to
the end of ~ll the characters of the first. The operands will first
be converted to stririgs if necessary as described in
string-Arithmetic Conversions, 9-26 above. The normal use of the &
bperaior is to collect lines of text, from several other string
sources, w.hich will subsequently be sent to, an output device.'
Numbers can be converted to strings representing their external forms
(and vice-versa) through explicit calls on execution time routines
like CVS and CVD (see Execution Routines, 12-1 below>.

62

Factors

9-37. A . factor is either a primary or a primary raised to a power
represented by another primary. As usual, evaluation is from left to
ri.qht, so that. A'BtC is ~v()luated as (1\tR> te. In the factor XtY, a
suitable numher of multiplications ~nd additions is performed to
produce an ~exact~ answer if y is a positive integer. otherwise a
routine is called to approximat~ ANTILOG(Y LOG X). The result has
the type of X in the former case. It is always of type Real in the
latter.

Primaries

q-3R. A primary represents an arithmetic or string value which
always acts as a unit in any binary operation. It is either an
expression surrounded by parenthesies which indicate that all
internal operations should be performed before combining it with
ot,het:' things, ot:' one of myriad other const·ructs which will be
considered separately.

Variables and Constants

9-39. These are clearly primary objects. They are values
contained in specific core locations, or in parameter stacks, or in
tbe case of some numeric constants, they are immediate operands.

substrinqs

Q-40. A string variable name which is qualified by a substring
specificat.ion r€preSf~nts a part of thl? named string. STfX ·FOR yJ
represents the Xth through the (X.+ Y - 1)th characters of the String
ST. ST[X TO y] represents the Xth through yth characters of ST. If
at any time an attempt is madi:) to compute a substring with a negative
length, or with X<1, or with length L such that X+L-1> LENGTH(ST),
the iob will be terminated with an error message. ST[X FOR OJ is the
null string (lenqth = 0, no characters).

special Length Operator (INF)

9-41. This special primary construct· is valid only within
substring brackets. It is an algebraic value representing the length
of the most-immediate string under consideration •

. Exam pIe:

9- 42.

A[4 to INF] throws out the first 3 characters of A.
A[) for B{INF-1 for 1]] uses the next to the last character

of strinq B as the number of characters
for the A substring operation.

63 SAIL MANUAL

Function Designators

9-43. A function designator defines a_single value. This value is
pro(luced by the execu tioD of a typed 'user procedure or of a typed
execution-time routine (Execution Routines, 12~1). For a function
designatot to be an algebraic primary, its procedure must be declared
to have an algebraic type. Untyped procedures may' only be' called
from procedure statements (see Procedure Statements, 6-2). The value
obtained from a user-defined proced~re is that provided by a Return
Statement within that procedure. If the proced.u,re does not execute a
Return·statement, the value miqht be anything at all. A Return
statement in a typed procedure must mention a value (see Return
statement, 5-19).

9-44. The rules for supplying actual parameters in a function
desiqnator are identical to those for supplying parameters in a
procedure statement (see Procedure statements, 6-2).

9-45. Several of the constructs given here as primaries have the
form of function designators. However, the operations necessary to
ohtain the values of these constructs are generally compiled dir~ctly
into the program. Descriptions of these ,functions follow:

'Length

9-46. LENGTH is always an integer-valued fUnction. If its
argument is a set expression, the result is the number of Items in
th e set. If the argu men t is a string, its length is the nu m'ber of
characters in the string. The length of an algebraic expression is
always 1 (see string-Arithmetic Conversions, 9-26).

Lop

9-47. The LOP operator applied to a String variable removes the
first character from the string and returns it in the form given in
st,ring-Arithmetic Conversions, q-26 above. The strinq no longer
cobtains this charactet. LOP applied to a null string has a zero
value. If the argument is a S"et expression the result,'" is an item.
This case is described below (Item Constructs, 10-4).

Cvn

9-48. CVN has,as its value the Integer which is the internal
r~presentation of its Item argument. This function is highly
implementation-dependent, and should only be used by people who are
willing to follow the compile~ writers around a lot. Its inverse
function is eVI, described in Item Constructs, 10~4 below.

64 SAIL MANUAL

I.not

q-49. The unary operator Lnot produces the bitwise complement of
its (algebr,~ic) argument. No type conversions (except strinqs .to
integers) are performed cn the argument. The type of the result
(meaningful or not) is the type of the argument.

Abs

9-50. The
quantities.

Una ry Mi nus

unary operator AES is valid only for
It returns the absolute value of its argument.

algebraic

9-51. -x is equ'ivalent to (O-X). No type conversions are
performed.

Boolean Primaries

9-52. The unary Boolean operator NOT a pplied to an argument BE has
the value TRUE if BE is false, and FALSE if BE is true. Notice that
NOT A is not th~ bitwise complement of A, if A is an algebraic value.
If used as an algebraic value, NOT A is simply 0 if A-O (see
~noolean~ to Integer, 9-12), some non-zero Integer otherwise.

ISTR IPLE

9- 53.

9-53. Istriple (IE) is TRUE. if .IE is an Item which describes a
bracketed triple. It is FALSE otherwis~. If IE is not an Item
expression, thp. compiler will complain bitterly.

rSTRIPLE ([I lOR B EQV V]) is true.

ISTRIPLE (<declared item>) is false.

LDB and ILDB

9-54. LD8 and ILDB are SAIL constructs used to invoke the PDP-10
byte loa dinq instruct.ions.The arguments to these functions are
~xpressions which are interpreted as byte pointers. In the case of
ILDS, you are required to use an algebraic variable as argument, so
that the ·byte pointer (i.e. that algebraic variable) may be
ill'cremen ted.

65 , SAIL MANUAl,

SECTION 10

SET AND ASSOCIATIVE EXPRESSIONS

SYNTAX

10-1 •

<5 et _ e Xp re s s ion>

<assoc iative_ope ra tor>

::= <a_set_term>
::= <o_set_expression> V <n-.:set_ term.>

::= <o_set_factor>
:: = <o_set_ term> (l <a_set_ factor>

::= <o_set_primary>
::= <a_set_factor> - <a_Bet_primary>

::.= Pfl.'I
::= <set_variable>
::= {a_item_expr_listl
::= (<o_set_expression>)
::= <o_derived_set>

::= <a_Item_expression>
:: = <o_i,tem_expr_,list?' • "<o_,i tem (~xp'ress.ion)

::= <o_associative_expr>
<associative_operator>
<o_associative_expr>

:: = XOR
::= ,
::= *

<associative_expression> ::=<a_associative_expr>

<a_associative_expr> ::= <a_Item_expression>
::= <o_set_expression>

<a_Item_expression> ::= <a_Item_primary>
::= <select.or> (<o_i tem_primary>)
::= { <a_itern_primary> XOR <D_item_primary>

EQV <o_item_primary>']

<construction_Item_prim> ;:= <item_primary>
::= NElf
::= NEW (<algebraic_expression>)
::= NEW (<array_name>)

::= <item_primary>
::= ANY

66 SAl.L M.ANU A1

<1 te m ... primary>

<selector>

<itemvar_variable>

<leap_ralationa1>

SEMANTICS

Se t :Expressions

.. -· . -
: :=
: := .. -.. -.. -.. -
:: ::

: .:=
:: =
:: =

· .-· .-
:: =

· ... -
: :=

:: .=

<item_identifier>
<itemvar_variable>
CVI (<algebraic_expres~ion>)
COP (<set_variable>)
LOP (<set_variable>)

<o_derived_set> EOV
<o_associative_expression>

FTRST
SECOND
THIFD

<variable>

<variable>

<retrieval_associative_expression> IN
<retrieval_set_expression>

<retrieval_associative_expression>
<relational_operator>
<retrieval_associatve_expression>

<retrieval_triple>

10-2. Three rather standard operators are implemented for use
with sets. These are union W), intersection (0), and subtraction
(-). These operators have the standard mathematical interpretations.
The only possible confusion pe~tains to subtraction: if we perform
the set operation set1 - set2, and if there is an instance of an item
x in set2 but not in set1, the subtraction proceeds and no error
message is given.

Set Pc im ar ies

10-3. In addition to the <set_variable>, there aDe three set
primaries: the empty set PHI, a set composed of a list of ite.m
expressions, and derived sets. The empty set is the set with a
LENGTH of Q. Its use is unrestricted. A set primary which results
from a list- of item expressions is put together as each item
expression is evaluated. Derived sets are really sets of answers to
,quest.ions which. search the associative memory. The conventions are:

a }COR b
a ' b
a * h

all x such that a XOR b EQV x
all x such that a XOR x EQV b
(a XOR b) V (a' b)

67 SAI.L MA NU A L

Examples of set primaries:

PHI
{ item1 , item2 , itemprocedure1 }
(item1 XOR itemvar1)

Item Constructs

10-4. There are several SAIL functions which yield items when
evaluated. This is actually a rather ambiguous statement, since
items as such have no real existence as entities to pass around in
the breeze. But, of course, their unique identifier number~ may he
passed about freely and indeed are, since the identifier number is
sufficient to specify an item. As explained earlier. an iterovar
evaluates to the item last ~stored~ in that itemvar. There are two
functions provided for removing item instances from sets. The first
of these is COp. which evaluates the <set_expression> argument and
returns an instance of the first item in the set. The ~first~ item
in a set is not well defined, since the sets are unordered. The
value of the <set_expression> is unchanged. The function LOP is
similar to COP in that its value is an instance of the first item in
the set argument, hut the item returned will be removed from the set
if LOP is used. The set argument to LOP must be a <variable> for the
simple reason that the set descriptor must be chanqed to reflect the
rewoved item.

Item Selectors

10-5. The operators FIRST, SECOND, and THIRD are provided for
decomposing bracketed triples (see Bracketed Triples, 7-12. The
<item_primary> argument is assu~ed to be an instance of an item which
was created for the bracketed as~ociation when the MAKE was executed.
Examples:

FIRST ((a XOR 0 EQV v]) evaluates to a.
SECOND (la lOR 0 EQV v]) evaluates to o.
THIRD ((a XOR 0 EQV vJ) evaluates to v~

NEW Items

10-6. The function NEW calls upon the associative store to'
refurbish a dusty old DELETEd item or to generate a new one. These
new items-become a part of the universe of existing items, and may be
accessed and handled in precisely the same fashion as declared items.
If MER is used in an item expression, that expression is then
constrained to be a construction item expression. NEW may also take
an argument. In this case, the aatum of the created item is
preloaded with the value passed as argument. If this argument is
alqebraic (real or inteqer), then the datum will be of the same type •.
No type conversions are done when passing the algebraic argument.
NEW will also accept an array name as argument. In this case, the
created item will be of the type array. In fact, the array cited as
argument will be copied into the newly created array. The new array
will have the same bounds and number of dimensions as the array cited

68 SAIL MANUAL

a s a.r gu men t •
is exited.

Thi$ array will not disappear even if the outer block

NEW_ITEM Declaration

10-6. ~he SAIL runtime routines allocate several tables based on
the number of items in the world. The maximum size of these tables
is 4096. In order to conserve storage, the size of these tables may
he specified by the user. The compiler accounts for all the declared
items -- it remains the user's responsibility to estimate how many
qenerated (NEW) items he will require. This specification is made
with the REQUIRE verb:

REQUIRE 2000 NEW_ITEMS;

AN Y Cons truc~

10-7. Some associative search~s may need only partial
specification particular portions of a foreach specification may
be unimportant. The ANY construct is used to specify exactly which
parts of the spocificat.icn are "don't car.~"'s. Examples are:

FOREACH x SUCH THAT father XOR x EQV ANY DO PUT x IN sons;
.fatht~rs - (fat.her XOR ANY) ;

ANY is NOT an item. It is merely a syntactic arrangement to specify
the ~don't care~ condition. Thus foo - ANY is illegal

CVI

10-8. The function CVI is provided for those people who insist on
having the world at their disposal. The argument is an integer and
the result is ·an instance of the.item which uses that integer as its
unique identifier. Absolutelv no error checking is done. CVI is for
da ring men.

LEA P . Boo 1 e an s

10-9. Several boolean Frimaries are implemented for comparing sets
and items. In the followinq discussion, ·ix- means item expression,
and ~se" means set expression. These are:
1. Set Memhership. The boolean -Ix IN se~ evaluates the set
expression, and returns TRUE if the item value specified by the item
expression-is a member of the set.
2. Association Existence. The boolean ~ ix XOR ix RQV ix· returns

. TRUE if the association exists in thp associative store. Examples:

IF father lOR x EOV joe THEN •••
IF fath~r XOR joe EQV ANY THEN MAKE type XOR joe EQV legitimate

3. ReI a t ion s • The use 0 f the
restricted than the syntax implies.
valid:

6q

third kind of boolean is more
Only the· ,following relations are

SAIL MANUAL

ix =
ix *-
sel -<
se1 ~

sel =
sel :I:

se 1 >
sel .?-

ix
ix
se2
se2

se2
se2
se2
se2

obvious interpretation
obvious interpretation
true if sel is a proper subset of se2
true if sel is identical to se2 or
if sel is a proper subset of se2

obvious interpretation
ohvious interpretation
equi~alent to se2 < sel
equivalent to se2 S sa1

70 SAIL MANUAL

SYNTAX

11-1.

<va.riable>

SECTION 11

DASIC CONSTRUCTS

: :=
: :=
:: =
:: =

<identifier>
<identifier> [<subscript_list>]
DATUM (<item_identifier>)
DATUM (<item_identifier>) {

<subscript_list>·]

<subscri pt"':list> :: = <algebraic_expression>

SF~U\'NTICS

Va riables

.... -.. - <subscript_list> , <algebraic_expr~ssion>

11-2. If a variable is simply an identifier, it represents a
single value of the type given in its declaration.

11-3. If
'rppresen ts an
identifier.

it is an identifier qu~lified by a subscript list it
element from the array bearing the name of the

11-4. The array should contain as many dimensions as there are
elements in the suhscript list. AfI1 represents the I+1th element of
the vector A (if the vector has a lower bound of 0). BfI,J] i~ the
element from the I+1th row and J+1th column of the two-dimensional
array' B. To explain the indexing scheme precisely·, all arrays behave
as if each dimension had its oriqin at 0, with (integral) indices
extending infinitely'far in either direction. However, ·only the part
of an array between <and including) the lower and upper' bounds given
in the ~eclaration are available for use (and in fact, these are the
only parts allocated). If the array is not declared SAFE, each
subscript is tested against the bounds for its dimension. If it is
outside its range, a fatal message is printed identifying the artay
and subscript position at fault. SAFE arrays ara not bounds-checked.
Users must take the consequences of the journeys of errant subscripts
for SAFE arrays. The bounds checking causes at least three extra
machine instructions (two of which are always executed for valid
subscripts) to be added for each subscript in each array reference.
The algebraic expressions for lower and upper bounds in array
declarat ions, a nd for subscri pts in subset'ipted varia bles, are always
converted to Integer values (see Arithmetic Type Conversions, 9-21)

.. before use.

11 SAIL MANUAL

11-5. For more information 'about the implementation of SAlt
arrays, sec ARRAY IMPLEMENTATION, 17-33.

Datums

11-6. If the Item argument of DATUM has an algebraic datum, this
value is returned. Otherwise the result is representative of som~
other data type and the valuQ returned will have very little meaning
as an algebraic value; it will probably be some internal pointer or
something. This is mentioned here because there are times when the

,compiler will not be able to t~ll that such a type mismatch has
occurred. Then it will be up to the user to interpret. the st'range
result.s. If a set is desiren here, of course, ~h€~ result is a set
primary and may be used as such.

Identi fi~~rs

11-7. You will notice that no syntax was included for the
It is far easi~r to non-terminal symbols <identifier> or <constant>.

explain thes0 constructs in an informal manner.

11-8. A ShIL letter is any of the upper or lower case letters A
through Z, or the underline character (_). Lewer case letters are
ma pped into the corres po ndinq 11 pper case l(?t tt~rs for purposes of
symbol t.able comparisons' <sCrII .. U.FF is the same symbol as Schluff). r1
diqit is any of the characters 0 tbrough 9. An' identifier is a
string of characters consistinq of a letter followed by any number of
letters and diqits (t.t:y ns -- most text editors will give up b~fore
SAIL will). There must be a character which is n~ither a letter nor
a digit (nor either of the characters "." or "$") both hefore and
aftp.r. every idpntifier. In other. words, if YOU can~t det.erminf~ t~here
onp idE'n tificr ends and anotht~r begins in a prog.ram you have never.
seen before, well, neither can SAIL.

11-9. Thet:e is a set of identifiers which are used as SAIL
delimiters (in the Alqol sense -- that is, BEGTN is treated by Algol
as if it were a si ngle character. Such an a pp roach is not practical,
so a reserved identifier is used). Thesn identifiers are called
Reserved Words and may not be used for any purpose other than those
given explicitly in the syntax. Another set of identifiers have
preset declarations -- these are the execution time functions. These
l~tter iderrtifiers may be redefined by the user; they behave as if
they were declared in a block surrounding the outer block. A list of
reserved and predeclared identifiers follows:

72 SAI.L MANUAL

Sail Reserved Words

11-10.

ABS AND ANY ARRAY ARRAY_PDL BEGIN BOOLEAN CASE COMMENT COMPLEX COP
CVI CVN DATUM DEFINE DELETE DO DONE ELSE END ENTRY EQV E.ASE EXTERNAL
FALSE FIRST 'OR FOREACH FORTRAN FORWAED FROM GLOBAL GO GOTO IF' IN
INTEGER INTERNAL ISTRIPLE ITEM ITEMVAR LABEL 'LAND LENGTH LIBRARY
LOAD_MODULE LNOT lOP LOB LSH MAKE MOD NEEDNEXT NEXT NEW NEW_ITEMS NOT
NULL OF OR OVN PHI PNAMES PRELOAD_WITH PROCEDURE PUT BEAt RECURStV~
REFERENCE REMOVE BEQUIRE RETURN ROT SAFB SECOND SEt STEP STRING
STRING_POL STRING_SPACE SUCH SYSTEfIJ_PDL TH AT THEN TBI.RD TO TRIPLE
TRUE UNTIL VALUE WHILE XOR

Sail Predeclared Identifiers

11-11.

ARRBtT ARRINPO ARRTRAN lRRYIN ARRYOUT BREAKSET CALL CLOSE CLOSIN
CLOSODT CLRBUF CODE CVASe CVD eVE CVF evrIL CVO' eVIS eva cvos CVS
CVSI CVSIX CVSTR CVXSTR ENTER EQO GETCHAN GETFORMAT INCHRW INC~RL

INCHRS INCRSL INCHWL INSTR INSTRL INSTRS INPUT INTIN LENGTH LINOUT
LOOKUP MTAPE OPEN OUT aUTCHR OUTSTn HEALTN RELEASE RENAME SCAN
SETBREAK SETFORMAT STRBRK"TTYIN TTYINL TTYINS WORDIN WORDOUT USERERR
USETI USETO

11-12. Some of the reserved words are eqtiivalent to certain
special characters. These equivalences are:

CHARACTER RESERVED WORD (s)

.A AND
.,- EQV ., NOT
v OR
~ (circle-cross) XOR
00 (infinit y) INF
E (epsilon) IN
I (vertical bar) SUCH THAT

Arithmetic Constan ts

11-13.
12369 is an Integer with decimal value 12369
'12357 is an Integer co~stant with octal value 12357
123. is a Real constant with floating point value 123.0
0123.0 is a Real constant with floating point value 123.0
.524 is a Real constant with floating point value 0.524
5.3@4 is a Real constant with floating point value 53000.0
5.342@-] is a Real constant with value 0.005342

13 SAIL MANUAL

11-14. The character ' (right quote) precedes a string of digits
to be converted into an OCTAL'numbe~.

11-15. If a. or a @ appears in a numeric constant, the type of
the constant is returned as Real (even, If it bas an integral value).
otherwise it is an integer. Type conversions are 'made at compile
time ~o make the type of a constant commensurate with that required
,hy a given operation. 'E'xpressions involving only constants are
evaluated by the compiler an~ the resultant values are substituted
for the expressions.

11-16. The reserved word TRUE is equivalent to the lriteger
(Boolean) constan't -1,~ FALSE is equivalent to ,the constant O.

string constants

11-11. A String eonstant ,is a string of ASCII characters (any
which you can get into a text file) delimited at each end, by the
character'. If the' character is desired in the string, insert tvo
, characters (after the lnit.ial delimiting' character, of course).

11-18. A string constant behaves like any other (algebraic)
priinary. It is or,iginally of t,ype Str.ing, but may be converted to
Integer by extracting the .first character if necessary (see
string-Arithmetic conversions, 9-26).

11-19. The reserved word NULL represents a string constant
containing no characte~s (length=O).

Examples

11- 20.
required
column:

The left hand column in the table that follows gives 'the
input format to obtain the strings given in the right-hand

INPUT

'THIS IS;I STRING~
'WHAT DOES "PER,NDOK" HlAN?
'THIS IS HOW YOU TYPE A'"
• .. ·THIS IS A QUOTED STRING'"
NOLL

RESULT

THIS IS A STRING
WHAT DOES "FERNDOK' PlEIN?
THIS IS HOW YOU TYPE A ..
'THIS IS A QUOT~D STRING'

LENGTH

16
25
2'1
25
o
0,

11":'21. The scannlnq algo,rithm ,is altered somewhat if. the string is
being used as a macro body definition (see USE OF DE,PINE, 13-0).

74 SAIL PlANOAL

comments

11-22. If the scanne-r detects the identifier COMMENT, all
characters up to and including the next semicolon (,) will be
ignored. A comment may appear anywhere as long as the word COMMENT
is properly delimited (not in a String constant, of course),

11-23. A string constant appearing just before a statement also
has the effect cf a comment.

75 SAIL MANUAL

SECTION 12

EXECUTION TIME ROUTINES

GE N.ERAL

Scope

12-1. A large set of pre-declared, built-in procedures and
functions have been compiled into a library permanently resident on
the system disk area (SYS:LIBSAI. REL). The libra.ry also contains
programs for managing storage allocation and initialization, and for
certain str lng function~. If a user calls one of these pr.ocedures a
request is.automatically ~ade to the loader to include the procedure,
and any other routines it might need, in the core image. These
routines provide inputloutput ·(I/n) facilities, Arithmetic-~tring
conversion facilities, array-handling procedures and miscellaneous
other interesting f~nctions.

12-2. The remainder of this section describes the calling
sequences and functions of these routines.

Notational Conventions

12-3. ,A shorl-hand 1s used in these descript'ions· for specifying
the typgs (if any) of the execution-time routiJne·s and of their
parameters. Before the description of each routine there is a sample
call of the form

VALUE' - FUNCTION (ARG1, ARG2, ••• ARGn)

If VALUE is omitted, the procedure is an untyped one, and may only be
. called at' statement level (Procedure sotatements, 6-2).

12-4~ The types of VALUE and the argu~ents may be determined using
the follo~ing scheme:

(1) If' cha.racters'surround the sample, identifier ,(which is
usu~lly mnemonic in nature) a string argument is expected.
Otherwise the argument is Integer or .Real. If it is

2)

iimportant which of bhe types Integer or Real must be
presented, it. will be made clear in the description of the
function. Otherwise the compiler assumes Integer arguments
(for those funct.ions which 'are predeclared). The user may
pass Real arguments to these routines (WORDOUT, for example)
by re-declaring them in the blocks in which the Real
arguments are ~esired.

If the @ character
argument will be
value parameter.

precedes the sample
called by reference.

16

identifier, the
Otherwise it is a

SAIL PIANUA.L

Example

12-5.

·RESUI~T· ... SC,AN (@ ·SOURCE'·, BREAK_TABLE, @BRCHAR)

is a predeclared procedure with the implicit declaration:

EXTERNAL STRING PROCEDURE SCAN (REFERENCE STRING SOURCE;
INTEGER BREAK_TABLE;
REPERENCE INTEGER BHeHAR);

I/O ROUT INES

Open

Form:

12-6. OPEN(CHANNEL,-DEVICE',MODE,NUMBER_OP_INPUT_BOFPERS,
NTJ MB ER_ 0 F _ 0 UTPUT_ BIT ,FFE~ s,@ COUNT ,@llRCH AR,@ EO F) :

Function:

12-7. SAIL input/output operates at a very low level {n the
following sense: the operations necessary to obtain devices, open and
close files, etc., are almost directly analogous to the system calls
used in assembly language. OPEN is used to associate a channel
number (0 to '17) with a device, to determine the data mode of the
I/O to occur on this channel <character mode, binary mode, dump mode,
etc.), to specify storage requirements for the data buffers used in
the operations, and to provide the system with information to be used
for input operations.

CHANNEL is a user-provided channel number which will' be used in
subsequent I/O operations to identify the device. CHANNEL
may range from 0 to 15 (' 17), If some file is already open
on thi~ channel, a RELEASE will be performed for that
channel before the OPEN is executed.

DEVICE must be a String (i.e. ~TTY', 'DATA~) which is recogni~able
by the system ~s a physical or logical device name. '

MODE is the data mode for the I/O operation. MODE 0 viII always
work for characters (see,Input, 12-40 an~ Out, 12-45).
Modes 8 ('10) and 15 ('17) are applicable for binary and
dump-mode operations using the functions HORDIN, HORDOUT,
ARRYIN, ,or ARRYOUT (see Hordin, 12-48 and following). For
other data modes, see [DECREF].

77 SA IL Ii! NO At

NUMBER_OF{INPUT/OUTPUT}_EUFPERS specifies the number of buffers to be
reserv€d. for the I/O operations (see (DECREF1 for details>.
At least one buffer must be specified for input if any
input is to be done in modes other thA~ '17; similarly for
output. If' data is only go.1ng one direction, th e other
buffer specification should be O. Two buffers give
reasonable performance for most devices (1 is sufficient
for a TTY, more are required for DSK if rapid operation is
desired).

12-8. The remaining arguments are applicable only for INPUT
(string input). They will be ignored for any other operations
(although their values may be changed by the Open function).

COUNT

BSCHAR

designates a variabl~ which will contain the maximum number
of characters to be read from 'DEVICE· in a giveri INPUT
call (see ~nput, 12-40, Breakset, 12~22). Pewer chara~ters
may be, read if a break character is encountered or if an
end of file is detected. The couht should be a variable or
constant (not an expression), since its 'address is stored,
and the temporary ~torage for an expres~ion may be re-used.

!

designates a variable into which ·the break chara_cter (see
·INPUT and B.REAKSET again) will be st9red. This variable
can be tested to dete rllline which 0'£· many possi·ble
characters terminated the read ope.ration.

Eor designates a variable to be used for two purposes:

1) If EOP is 0 wben OPEN i~ called, a SAIL error message
will he lnvoked if the device is not available or. the
channel is already open. The user will be given the
options of retrying or terminating the operation. If
EOF is non-zero when OPEN is called, it will be set to 0
if the OPEN is successful. Otherwis'e it will not be
changed. In this case (EOF non-zero on entry) control
will be teturned to the user. This flag may then be
tested.

2) EOF will be made non-zero (TRUE) if an end of file
condltion is; de·tected during any S.AI.L input operation.
rt will be 0 (FALSE) on return to the user otherwise.
Suhsequent- inputs after an EOF return will return
non-zero values in EOF and a null string result for
INPUT. ·For ·ARRYIN ,. a 0 is returned as the value of the
·call after end of file .ls detected.

78 SA.ILMANU A·L

Assembly .Lanquage Approximation to OPEN

12-9.
INIT CHANNEL,MODE
SIXBIT IDEVICE/
XWD OHED,IHED
J/RST <handle er.ror condl tion>
JUMPE <NOMBER_OF_OOTPOT_BUFFERS>,GETIN
<allocate buffer space>
OUTBUF CHANNEL, NUMBEB_OF_OUTPUT_BUFFERS

GETIN: JUMPE <NUMBER_OF_INPUT_BUPPFRS>,DONE
<allocate buffer space>
INBUF CHANNEL,NUMBER_OF_INPUT_BOPPERS

DO.NE: <mark channel open -- internal bookkeeping>
<return>

OBED:
IHF.D:

Form:

12-10.

BLOCK
BI.OCK

3
'3

CLOSE (CHANNEL)
CLOSIN (CHANNEL)
CLOSO (CHANNEL)

Function:

Close, Closin, Closo

12-10. The input (CLOSIN) or output (CLOSO> side of the specified
channel is closed: all output is forced out (CLOSO); the current file
name is forgotten. However the device is still active: no OPEN need
be done again before the next input/output operation No INPUT, OUT,
et.c. may be given to a directory device until an ENTER, LOOKU'P, or
RENAME has been issued for the channel.

12-11. CLOSE is equivalent to the execution of b6th CLOSIN and
CLOSO for the channel.

Getchan

Form:

12-12. VALUE GETCHAN;

Function:

12-13. The number of some channel not currently. open is returned.
-1 is returned .i~f all channels are busy.

79 SAIL MANUAL

Release

Form:

12-14. , RtLEASE (CHANNEL);

Function:

12-15. If an OPEN bas been executed for this chann~l, a CLOSE is
now executed for it. The device is dissociated from the channel and
returned to the resource pool (unless it has been assigned by the
monitor ASSIGN command). No I/O operation may refer 'tc.) this c"hannel
until another OPEN denoting it bas been executed.

12-16. Release is always valid. If the channel mentioned is not
currently open, the command is simply ignored •

. Lookup, 'Enter

Form:

12-17.
LOOKUP (CR A NNEL ,"'FIT, E· , @FLAG);
ENTER (CHANN.EI. , -FILE--,@P'LAG);

Function:

12-18. Before input or output·9perations may be performed for a
directory device (DECtape or DSK) a file name must be associated with
the channel on which the device bas been opened (see Open, 12-6).
LOOKUP names a file which is to be read. ENTER names a file which is
to be created or extended (see [DECREP]). Both operations are valid
even 'if no filena~e is really necessary. It is tecommended that an
'ENTER be performed after every OPEN of an out put device so tha t
output not normally directed to the DSKcan be directed there for
later processing if desired. The format for a file nam~ string is

NAME,
NAM,E.EXT ,
NAM;E (P ,PNl ,

or .NAME.EXT[PgPNl (see [DECREF] for the meaning of these thi'nqs
if you do not immediately understand).

All charac~ers a~e converted to SIXBIT by moving the '100 bit to the
g40 bit. SAIl. is not as Choosy about the characters it alfows as PIP
and other processors are. Any ,character which is not -.', .. , .. , ,[... ,
or '] - will be conver'ted and passed, on. Up to 6 characters from
NAME, 3 from EXT, P, or PH will be converted -- the rest are ignored~

80

12-19. If the LOOKUP or ENTER operation fails (see (DEeREF]) then
variable FLAG may be examined to determine the cause. The left half
of FLAG will be set to '171177 (Flag has the logical value TRUE).
The right half will contain the code returned by the system giving
the cause of the failure.

12-20. If the LOOKUP or ENTER succeeds, FLAG will be set to zero
(y ALSE) •

Form:

1.2-21.

'Function:

12-22.
file-name
specified
manual).

Form:

12-22.

Fu nction:

Rename

R'ENAME (CHANNE"L , -.FILE-SPEC·, PROTECTION v@ .F.LAG);

The file open on CHANNEL ,is renamed ~o FILE_SPEC (a NULL
will delete the file) with read/write protection as
in PROTECTION (nine bits, described in the time-sharing

FLAG is set as in LOOKUP and ENTER.

Breakset

BREAKSET(TABLE, 'BREAK_CH~RS- , MODE);

12-23. Character input/output is done using the string features of
SAIL.' In .fact, I/O is the chief justi.ficationf·or the existence of
strings in the language.

string input pre~ents a problem not present in string output.
The length of an output String can be used to determine:the number of
characters written. However it is often 'awkward to require an
absolute count for input. Quite often one would like to terminate
input, or 'break-, when one of a specified -set ofcha~acters is
encountare~ in the input stream. In SAIL, this c~pability is
implemented by means of the BREAKSET, INPUT, TTYIN, and SCAN
functions.

12-24. The value of TABLE may range from 1 to 18. Thus up to 18
different sets of break specifications may exist at once. Which set
will be used is determined by the TABLE parameter' in an INPUT or SCAN
function call.

81 SAIL MANUAL

12-25. "h~.'! function of a given BREAKSET command depends on th(~
MODE, an integer which is interpreted as a right-justified ASCII
character whose value is intended to be vaguely mnemonic. BREAKSET
commands can be partitioned into 3 groups according to mode: .

G~OUP 1 -~ Break character specifications

12-26.

MODE

'I-

FUNCTION

-(by Inclusion) The characters in the BREAK_CHARS String
comprise the set of characters which will terminate an
INPUT (or SCAN).

(by eXclusion) Only those characters (of the possible 128
ASCII characters) which are NOT contained in the String
BREAK_CHARS will terminate an input when using this
table.

~O' (Omit) The characters in 'BREAK_CHARS' will be omitted
(deleted) from the input string.

12-21. Any '1' or ·X" command completely specifies the break
character set for its table <i.e., the table is reset before these
characters are stored in it). Neither will destroy the omitted
character set currently specified for this table. Any "0' command
completely specifies the set of omitted characters, without altering
the break characters for the table in q~estion. If a cha~acter is a
break-character, any role. it might playas an omitted character is
sacrificed.

12-28. The second group of MODEs determines the disposition of
break characters in 'the input stream. The ·BREAK_CHARS' argument is
ignored in these commands, and may in fact be NULL:

GROUP 2 -- Break character disposition

12-29.

MODE FUNCTION

(Skip -- default mode) After execution of an 'S' command
the break character will/ not appear either in the
resultant string orin subsequ~nt INPUTs or SCANs-- the
character is 'skipped'. Its value may be determined

82 SAIL MANU A.L

after the INP~T by examination of . the break character
variable (see Operi, 12-6).

·A- (Append) The break character (if there is one see
open, 12-6 and Input, 12-40) is appended, or
concatenated to the end of the input string. It will
not appear again in subsequent inputs.

·R· (Retain) The break character does not appear in the
rest!1 tant IN PUT or SeA N String, but will b/a the first
character processed in the next operation referring to
this input source (file or SCAN string).

12-30. tor disk and tape files using the standard editor format,
line numbers present a special problem. A line number is a" word
containing 5 ASCII characters representing the number in bits 0-34,
with a .,. in bit 35. No other words in the file contain 1's in bit
35. Since String manipulations pr6vide no way for distinguishing
line numbers from other characters, there must be a way to warn the
user that line numbers are present, or to allow him to ignore them
en tirely.

12-31. The third group of MODEs determines the disposition of
these line numbers. Again, the "'BREAK_CHARS" ar,gument. is ignored:

Group 3 -- Line number disposition

12-32.

MODE FUNCTION

(Pass -- default) Line numbers are treated as any other
characters. Their identity is lost; they ~imply appear
in the restilt string.

(No numbers) No line number (or, the TAB which always
follows it in standard files) will appear in the result
string. They are simply discarded.

(Line no. break) The result string will be terminated
early if a line number is encountered. The characters
comprising the line number and the associated TAB will
appear as the next 6 characters read or scanned from
this character source~ ~he user'~ "break character
variable (see Open, 12-6 and Input, 12-40) will be-set
to -1 to indicate a .1ine number break.

83 SAI·.L 11A NU AL

"E- (Lee Erman's very own mode> The result string is
terminated on a' line number as with '.t"", but neither the
line numbe.r nor the TAB following it will appea.r in
subsequent .i n puts. The line num.her word, negated, .is
returned in the user's (intege.r) BRCHAR varia.hle.

"0- (Display) If the TTY is a OPY, each line number from any
iriput file will be displayed (along with a page number)
on the right-hand side o.f the screen. This mode really
applies to all input operations after the "D"" operand

;appears in any Breakset call. There is no way to turn
it off.

12-33. Once a break table is set up, it may be referenced in an
INPUT,TTY!N or SCAN call to control the scanninq operation.

Example:

12-34. To delimit a "'word"", a program mig~t wish to input
characters until a blank, a TAB, a line feed, a comma, or a semicolon
is encount~red, ignoring line numbers. Assume' also that carriage
returns are to be ignored, and that the break characte.r is to be
retained in the character source for the next scanning operation:

BREAKSET(DELIMS,' ,;'&TAB&LF,"I"); comment br~ak on any of these;
BREA KSET (DEL IMS,' 15, "0") ; .3:omme nt ignore carriage retur.n:
BREAKSET(DELrMS,NULL,-N")~ Comment igmore line numbers;
BREAKSET(DELIMS,NULL,"R'); Comment save break char for next time;

Setbreak

Form :'

12-.35.

Function:

12- 3 6. SETBREAK is logically equivalent to the SAIL statement:

BEGIN 'SETBREAK'"
INTEGER I;
IF LENGTH(OMIT_CHARS) > 0 THEN

BREAKSET(TABLE,OMIT_CHARS,"O');
FOR 1-1 STEP 1 UNTIL LENGTH{MODES) DO .

BREAKSETCTABLE,BREAK_CHARS,MODES{I FOR 11)
END "SETBREA K'

84 SAIL MANUAL

S'td brk

Form:

12-31. STDBRK (CHANNEL);

Fu nction:

12-38. Eighteen breakset tables have been selected as
representa ti ve of the more common input scanning .ope.rations. The
function STDBRK initializes the breakset tables by opening the file
SYS:BKTBL.BKT on CHANNEL and reading in these tables. The user may
then· reset those tables which he does not like to something he does
like.

12-39. The eighteen tables are described here by giving the
SETBREAKs whi~h would be required for the user to initialize them:

DELIMS ~ '15 & '12 & '40 & '11 & '14;
Comment carriage return, line feed, space, tab, form feed;

LETTS ~ ~ABC ••• Zabc ••• z~·;
DIGS - -0123456789~;
SAILID ~ LETTS&DIGS;

SETBREAK (1 , '12,. '15, "INS") ;
SETBRE AK (2,. '12, NULL, "INA') ;
SET BREAK (3, DELIMS, NULL, "XNR") ;
SETBHEAK (4, SArLI.D, NULL, "I NS") :
SETBREAK (5, SAILID, NUl,L. 'laINR") ;
SETBR F.AK (6, I.E'ITS, NULL, 'XNR");
S.ETBREAK (7, DIGS, NULL, 'XNR"" >;
SETBREAK (8, DIGS, NULL, 'INS") ;
SET.BR EAK (9, DIGS, NULL, "INR") ;
SETBRE.AK (10, DIGSS" +-@. ", NULL, "X NR") ;
SETBRF.AK (11, DIGS&"+-@.", NULL, "INS") :
SETBREAK (12, DIGS&'+-@.", NU'LL, ·INR") ;
SET BREAK (13-18, NUt.L, NULL, NULL) ;

Input

Form:

12-40.

Function:

12-41. A string of characters is obtained for the file open on
CHANNEL, and is returned as the result. The INPUT operation is
controlled by BREAK_TABLE (see Breakset, 12-22) and the reference
variables BHeHAR, EOF, and COUNT which are provided by the user in

85 SAI.L M.ANUAL

the OPEN function for tnis channel (see Open, 12-61. Input may be
terminated in several ways. The exact reason for termination can be
obtained by examining BReHAR and EOF:

EOF B ReHAR

-1 o

o o

o (0

o >0

End of file occurred while reading. The result is
a String containing all non-omitted characters
which remained in the file when INPUT was called.

No break characters were encountered.' The result
is a st~ring of length equal to the current COUNT
specifications for the CHANNEL (see Open, 12-6).

A line number was encountered and the break table
specified that someone wanted to know. The result
~tring contains all characters up to the line
number. If mode 'L~ was specified in the Breakset
setting up this table, bit 35 is turned off in the
line number word so· that it will be input next
time. -1 is placed in BRCHAR. If mode 'E~ was
specified, the line number will not appear in the
next input string, but its negated ASCII value,
complete with low-order line number bit, will be
found in B.RCH A.R.

A break character was encountered. The break
character is stored in BRCHAR (an INTEGER reference
variable, see Open, 12-6) as a right-justified
7-bit ASCII value. It may also be tacked on to the
end of the result String or saved for next time,
depending on the BBEAKSET mode (see Breakset,
12- 22) •

12-42. If break table 0 is specified, the only cri tar ia for
The ,ron tine is termination are end of file or COUNT exhaustion.

somewhat faster operating in this mode.

Scan

Form:

12-43 •. 'RESULT~ ... seA N (@ "SOURCE- I BRE.AK_TABLE , @ BRCHA.R)

Function:

12-44. SCAN functions identically to INPUT with the following
~xceptions:

86 , SAIL MANU AL

1. The source is not a data file but the_String SOURCE, called
by reference. The String SOURCE is truncated from the left
to produce the same effect as one would obtain if SOURCE were
a data file. The disposition of the break character is the
same as it is for INPUT.

2. BRCHAR is directly specified as a parameter. INPUT gets its
break character variable from a table set up by Open, 12-6.

3. Line number considerations are irrelevant.

out

Form:

12- 45. OUT(CHANNEL#'STRING~}

Function:

12-45. STRING is output to the file open on CHANNEL. If the
device is a TTY, the string will be typed immediately. Buffered mode
text output is employed for this operation. The data mode specified
in the O~EN for this channel must be 0 or 1.

Linout

·Porm:

12-46. LINOUT (CHANNEL, NUMBER);

Function:

12-47. ABS(NUMBER) mod 100,000 is converted to a 5 character ASCII
string. These characters are placed in a single word in the output
file designated by CHANNEL wi·th the low-o.rder bit (line-number bit)
turned on. A tab is inserted after the line number. Mode 0 or 1
must have been specified in the OPEN (Open, 12-6) for the results to
be anywhere near satisfactory.

Wordin

Form:

12-48. VALUE - WORDIN (CHANNEL)

87 SAIL MANUAL

Func tioD:

12-4q. The next word from the file open on CHANNRL is returned. A
o is returned, and END_FILE_FLAG (see Open, 12-6) set, when end of
fila is encountered. This operation is performed in buffered mode or
dump mode, depending on the mode specification in the OPEN.

A.rryl.n

Form:

1.2-50. ARRYIN (CHANNE·L ,@ Loe , HOW __ MANY);.

Function:

12-51. HOW_MANY words are read from the device and file open on
CHANNEL, and deposited in memory starting at location toC.
Buffered-mode input is done if MODE (see Open, 12-6) is '10 or '14.
Dump-mooe input.is done if MODE is '16 or'17. Other modes are
illegal.

12-52. If an end of file condition occurs before HOW_MANY words
are read, the EOF variable (see Open, 12-6) is set to '777777 in its
left hatf. Its right half contains the number of words actually
read. EOF will be 0 if the full request is satisfied.

Word out

Form:

12-53. WORDOUT (CHANNEL, VALUE);

.Function:

12-54. VA.L UP. is placed in the outpu t buffer for, CHANNEL. An
OUTPUT is done when the buffer is full or when a CLOSE or RELEASE is
executed for this channel. Dump mode output viII be done if dump
mode is specified in the OPEN (see Open, 12-6).

Arryout

Form:

12-55. J\RRYOUT (CHANNEL I@ LOC , HOW_l1ANY);

88 SAIL MANUAL

Function:

12-56. HOW_MANY words are written from memory, starting at
location LOC, onto the device and 'file open on channel CHANNEL. Th~
valid modes are again '10, '14, '16, and '17. The EOF variable is,
of course, unaffected.

Mtape

Form:

12-.57. MTAPE (CHANNEL, MODE)~

"Function:

12-58. MT~PE is ignored unless the device associated with CHANNEL
is a magnetic tape drive. It performs tape actions as follows:

Form:

12-59.

MODE

'A'
'B''''
'E"
"p'
'R'
's'"
"T"
"u"
"W'

USETI (CHANNEL, VALUE);
USETO (CHANNEL, VALUE):

Function:

'FUNCTION

Advance past one tape mark (or file)
Backspace past one tape mark
Write tape ma.rk
Advance one record
Backspace one record
Write 3 inches of blank tape
Advance to logical end of tape
Rewind and unload
,Rewind tape

Useti, useto

12-60. The corresponding system function is carried out (see
[DECREP] ,).

89 SAIL MANU AL

Realln, Intin

Form:

12- 61 •
VALUE - REALIN (CHANNEL):
VALUE - INTIN (CHANNEL >:

Function:

12-62. Number input may be obtained using the functions REALIN or
INTIN, depending on whether a Real number or an Integer is requi.red.
Both functions use the same free field scanner, and .take as argum9nt
a channel number.

12-63. Free field scanning works as follows: characters are
scanned one at a time from the input channel. Nulls, line
numhers,and carriage returns are ignored. When a digit is scanned it
is assumed that this is a number and the following syntax is used:

<number>

<real number>

<decimal number>

<integer>

<exponen t>

<digit>

<sign>

: :=

: .:=

::=

.. -.. -

.. -.. -

.: :=

::=

<sign><real number>

<decimal number>l<decimal number><exponent>t
<exponent>

<integer>f<lnteger>·I<integer>.<integer>1
.<integer>

<digit>l<integer><digit>

@<sign><.integer>

0)112J3141516171819

+ 1- J<em pt.y>

12-64. If the digit is not part of a number an error message will
be print~d and the program will halt. Typing a carriage return will
cause the input function to return ze~o. On input, leading zeros are
ignored. The ten most significant. digits are used to form the
number. A check for overflow and unde~flow is made and an error
message pFinted if this occurs. When using INTIN any exponent is
removed by scaling the Integer number. Rounding is used in this
process. All numbers are accurate to one half of the least
siginificant bit.

12-65. After scanning the number the last delimiter is replaced on
the input string and is returned as the break character for the

90 S.AI.L MANUAL

channel. If no number is found, a zero is returned, and the break
variable is set to -1: If an end of file is sensed this is also
returned in the appropiate channel variable. The maximum character
count appearing in the OPEN call is ignored.

Realscan, Tntscan

Form:

12-66.
VA.LHE .. BE ALSCAN (@ "'NUMBER_STRING" , @ BReHAR) ; VA.LUE" INTSC1\N
@"NUMBER_STHING" , @BHCH1\R):

Function:

12-67. These functions are identical in function to REALIN and
INTIN. Their inputs, however, are obtained from their NUMBER_STRING
arguments. These routines replace NUMBER_STRING by a· string
containing all characters left ove:r after the number has been remove.cl
from the front.

Form:

'12-68.
CHAR .. INCHHH;
CHAR .. fNCHPS;
.. S f1' R" .. INC H HL ;

Teletype I/O Functions

"S':PH" INCHSL (@F.LAG);
"5TH" .. INSTR (BRCHAR);
~STR~ .. INSTRL (BRCHAR);
"STR" .. tNSTRS (@ FLAG , BRCHAR);
"STR~ - TTYIN (TABLE , @BRCHAR):
"STH" .. TTYINL (TABLE ,@BRCHAR >:
"s T P" ... TTY INS (TA B.L E , @ B R C II A R);
OUTCHR (CHAR);
OUTSTR ("5TH");
CLRBUFi
BACKUP;
LODED ("5TR'): (Only available at Stanford)

Function:

12-69. Each of .the I/O functions uses the TTCALL UUO's to do
direct TTY I/O.

INCHHW waits for a character to be typed and returns that
character.

91 SAIL MANUAL

INCHRS

INC.HWL

INCHSL

INSTR

IN STRL

IN STPS

TTYIN

TTYI NL

TTYINS

OUTCHR

returns -1 if no characters have been typed; otherwise it
is If-JCR.RW.

waits for a line, terminated by a carriage-return and
Ilnefeed (CR-LF) to be typed. It returns as a strinq
all characters up to (not including) the CR. The LF is
lost.

returns NULL wi,th FLAG = -'1 if no li.nes have bf~en typed.
otherwise it sets FLAG to 0 and performs INCHWL.

returns as a string
includinq, the first
instance is lost.

all characters up to# but not
instance of BRCHAR. The BRCHAR

waits for a line to be typed. then performs INSTR.

is INCHSL if no lines are waiting; INSTRL otherwise.

uses the break table features described in {BRKS} and
Input, 12-40 to return a string and break character.
Mode -R- is illegal; line number modes are irrelevant.
The input count (see Open, 12-6) is set at 100.

waits for a line to be typed, then does TTYIN.

sets BnCHAR to -1 and returns NOLL if no lines are
waiting. otherwise it is TTYINL.

types its character argument (right-justified in an
integer variable).

OUTSTR types its string argument.

CLRBUF flushes the input buffer.

BACKUP backs up the scan (when started by a system command).

LODED loads the line editor with the string argument.
(This feature is only available at stanford)

Pseudo-teletype functions
(These only exist at Stanford)

Form:

12-10.
line 4- PTYGET ;
PTYREL (line):

12-70.

characteristics 4- PTGETL (line):
PTSETL (line , characteristics >;
number • PTIFRE (line)i
number 4- PTOCNT (line);

92 SAIL MANUAL

char .. PTCHRW (line) ;
char .. PTCHRS (line) ;
PTOCHS (line , char) ;
·PTOCHW (line , char) ;
PTOSTR (line , ·str'") ;
string ... PTYAL.L (line) ;
string ... PTYSTR (line , brchar) ;
string .. PTYIN (line, .b k tbl , @brchar) :

Function:

12-10.

PTYGRT

PTYREL

PTGETL

PTSETL

PTIFRE

PTOCNT

PTCHRW

PTCHRS

gets a new pseudo-teletype line number and returns it.
The global variable .SKIP. is -1 if the attempt to get a
'PTY was successfu 1, and 0 otherwise.

releases PTY identified by 'line'.

returns line characteristics for the PTY~

sets line characteristics for thm PTY specified .by
-line· •

returns the number of free characters in the PTY input
buffer.

returns the number of free characters in the PTY output
buf·Eer.

waits for a character from the PTY and returns it.

reads a character from the PTY if there is one, returns
-1 if none.

PTOCHS tries to send a character to a PTY. If the attempt was
successful, the global variable .SKIP. is -1, oth~rwise
o.

PTOCHW. sends a character to a PTY, waiting if necessary.

PTOSTR sends the string to the PTY, waitirig if necessary_

PTYALL

1?TYSTR
'I"

PTYIN

returns whatever is in the PTY's output buffer.
wa i ting is done.

No

reads characters from the PTY, waiting if necessary,
until a character equal t.o ·char'" is seen. All but the
break character is returned as the string. If the break
character was '15 (carriage return), the following
line-feed is snarfed.

reads from the PTY (waiting if necessary) according to
break table conventions. The break character is stored
in ~brc"har·.

93 SAIL MANUAL

STRING MANIPULATION ROUTINES

Length

Form:

12-71. VALUE - LENGTH ('STRING');

Function:

12-12. The number of 7-bit characters in STRING is returned. This
function is normal] y compiled int.o SAIL programs. The function is
provided for other programs if they need it.

Egu

Form:

12-73. VALUE + EQU (·STH1', ·STRZ-);

Function:

12-7Q. The value of this function is TRUE if STRl and STD2 are
equal in length and have identically the same characters in them (in
the same order). The value of Eon is FALSE otherwise.

TYPE CONVERSION ROUTINES

Setformat

Form:

12-75. SETFORMAT (WIDTH , DIGITS) :

Function:

12-16. 'rhis .function allows specification of a m1n1mum width for
strings created by the functions CVS, ev~s, eVE, CVF, and CVG (see
Cvs, 12-'80 and following). If this number (WIDTH) is positive,
enouqh blanks will be inserted in front of the resultant string to
make the entire results at least WIDTH characters long. The sign, if
any, will appear afte.r the blan·ks. If WIDTH is negative, leading
zeroes will he used in place of blanks, The sign, of course, will
appear before the zeroes. This parameter is initialized by the
system to O.

94 SAIL MANU.AL

12-77. In addition, the DIGITS parameter allows one to specify the
number of digits to appear following the decimal point in strings
created by eVE, eVF, and CVG. This number is initially 1. See the
writeups on the functions Cve, evf, Cvg, 12-88 and following for
details.

Getformat

Form:

12-78. GETFORMA~r (@ WIDTH, @DIGITS) ;

Function ~

12-79. The WIDTH and DIGIT settings specified in the last
SETFORMAT call are returned in the appropriate reference parameters.

Cvs

Form:

12-90. 'ASCII_STRING' - CVS (VALUE);

Function:

12-81. The decimal Integer representation 6f VALOE is produced as
an ASCII String with leading ze.roes omitted (unless WIDTH has been
set by Setformat, 12-75 to some negative value). '-' will be
concatenated to 'the strinq representing the decimal absolute value of
VALUE if VALUE is negative.

evos

Form:

12-82. ~ASCIT_STRING- - evos (VALUE);

Function:

12-83. The octal Integer representation of VALUE is produced as an
ASCII string with leading zeroes omitted (unless WIDTH has been set
to some negative value by Setformat, 12-75). No --' will be used to
indicate negative numbers. For instance, -5 will be represented as
---777777777713-.

95 SAIL MANUAL

Cvis

Form:

12- 84 • 'STRING' ... CVIS (.ITEM , e FLAG) :

Function:

12-85. The print name of ITEM is returned as a string. An Item's
print name is the identifier used to declare it. Print names are not
provided for Itemvars. FLAG is set to FALSE (0) if the appropriate
string is found. otherwise it is set to TRUE (-1>, and you should
not place great faith in the string result. PNAMES have to be
REQUIREd. (s('e]-56)

Cvsi

Form:

12-86. ITEM 4- CYST ("PNAME- , e FlAG) ;

Function:

12-87. The Item whose identifier is the same as the string
argument PNAME is returned and FLAG set to PALSE if such an Item
exists.. Otherwise, something very random is returned, and FLAG is
set to TRUE. PN.AMES ha ve to be REQU IHEd. (see 3-56)

eve .. Cvf, evq

Form:

12-88.
'STRING" • eVE (VALOE); 'STRING- ... CVF (VALUE); 'STRING- ... CVG (
VALUE);

'Function!

12~89. Real numbe.r output is facilitat'ed by means of one of 'thr·ee
functions CVE,CVG, or CVF, corresponding to the B,G, and F formats of
FORTRAN IV. Each of these functions takes as argument a real number
and returns.a string. The format of the strinq is controlled by
another function SETFORMAT (WIDTH,DIGITS) (see Setformat, 12-75)
which is used to change WIDTH from zero and DIGITS from 1, their
initial values. WIDTH specifies the minimum strinq length. If WIDTH
is positive leading blanks will be inserted and if negati~e leading
zeros will be inserted.

96 SAIL MANUAL

12-90. Th~ following table indicates the strings returned for some
typical numbers. _ indicates a space and.it is assumed that WIDTH-10
and DIGITS--3.

eV.F
______ -000
______ .001
______ .010
______ .100
_____ 1.000
____ 10.000
___ 100.000
__ 1000.000

_ 10000.000
_ 100000.000

_ , 000000 .000
-1000000.000

eVE
__ • 100@-3 _
__ .100@-2 _
__ .100@-1_
__ .10o ___ _
__ • 100@ 1 __
__ .100@2 __
__ • 100@ 3 __
__ • 1 OO@ 4 __

__ .100~5 __
__ .100@6 __
__ • 100@7 __
_ -.100@1 __

CVG
___ 100@-3 _
__ .100@-2 _
__ .100@-1 _
_ __ 100 ___ _
__ 1.0o ___ _
__ 1Q.O ___ _
__100 ____ _
__ .100@4 _

_ __ 100@5 __
__ .100€6 __
__.100€7 __
_ -.100€7 __

12-91. ThA first character ahead of the number is either a blank
or a minus sign. With WIDTH--10 plus and minus 1 would print as:

eVF
_00001.000
-00001.000

CV:E
_ 0 • '10 O@ '1 __
-0. 100@ 1 __

CVG
_01.00 ___ _
-01.0o ___ _

12-92. All numbers are accurate to one unit in the eighth digit.
If pIGITS is qreater than 8, trailing zeros are included; if less
than eight, the number is rounded.

Cvstr

Form:

12-9.3. ·STRING- - CVSTR (VALUE) ;

Function:

12-94. VALUE is treated as a 5-character left-justified word full
of ASCII. the result is a 5-character long string containing these
characters. The low order bit of VALUE is ignored~

Cvxs·tr

Form:

12-95. ·STRING· -- CVXSTR (VALUE) ;

97 SAIL MANUAL

Fu nction:

12-96. VALUE is treated as a 6-character left-justified word full
of SIXBIT. The result is a 6-character long string containing these
characters, converted to ASCII.

evd

Form:

12-97.

Function:

12-98. ASCII_STRING should be a string of decimal ASCII characters
perhaps preceded by plus and/or minus signs. Characters with ASCII
valuAs ~ SPACE ('40) are ignored preceding the number. Any character
not a digit will terminate the conversion (with no error indication).
The result· is the internal (signed) 36-bit binary representation of
the number.

evo

Form:

12-99. VALUE • eva ('ASCII_STRING·);

Function:

12-100. This function is the same as CVD except that the input
characters are deemed to represent Octal values.

Cvasc

.Form:

12-101. VALUE - CVASC ('STRING');

Funct.,ion:

12-102. This is the inverse function for CVSTR. Up to five ASCII
characters will be fetched from the beginning of STRING and placed
left-justified in VALUE. If the string is less than five characters
long, the right characters will be padded with null (0) characters.

98 SAIL MANUAL

cvsi'x

Form:

12-103. VALUE - CVSTX ('STRING');

Fu nction:

12-104. The inverse for CVXSTR, this function works the same as
CVASC except that up to six SIXBIT cha.ractersare placed in V.ALU E.
The characters from STRING are converted from ASCII to SIXBIT before
depositing them in VALUE.

Cvfll

Form:

12-105. VALUE" CVPI.L ('FILE_SPEC" , @E.XTEN , @ PPN) ;

Function:

12-106. FILE_SPEC has the same form as a'file name specification
for LOOKUP or ENTER. The SIIBIT for the file name is returned in
VALUE. The SIXBIT value for the extension is returned in EXTEN.
The value of the PPN (CMU or DEC, at CMU) is returned in PPN. Any
unspecified portions of the FILE_SPEC will result in zero values.

ARRAY MANIPULATION ROUTINES

Arrinfo

Form:

12-101. VALUE" ARRINFO (ARRAY , PARAMETE B);

Function:

12-108.

ARRIN~FO(IARR A Y ,-1) returns the number of dimensions for the array_
This number is negative for String arrays.

ARRINFO(ARRAY,O) returns the total size of the array in words.

A R .RI N F 0 (A RR ,A Y , 1) returns the lower bound
dimension.

99

for the first

SAIL MANUAL

A R R I N F 0 (A RR A Y , 2) returns the upper bound .for the first
dimension.

ARRINFOCARRAY,3) returns the lower bound for the second
dimension.

AR.RINFO(.. ,.) etc.

Arrblt

Form:

12-109 • ARRBLT C(? DESTINATION, @SOtJRCE , NOM);

. Function:

12-110. NOM words are transferred from ,consecutive locations
starting at SOURCE to consecutive locations st~rting at DESTINATION.
No bounds checking is performed.

Arrtran

Form:

12-111 • ARRTRAN (DESTINATION-ARRAY, SOURCE-ARRAY);

Function:

12-112. This function copies information from SOURCE-ARRAY to
DESTINATION-ARRAY. The transfer starts at the first data word of. each
array. The m1n1mum of the sizes of DESTINATION-ARRAY and
sonRCE-ARRAY is the number of words transferred.

LIBERATION-PROM-SAIL ROUTINES

Code

Form:

12- 11.3. .RESULT ... CODE (INSTR , @ADDR)

Function:

12-114. This function is equivalent to the FAIL statements:

100 S.AIL MANUAL

EXTERNAL .SKIP.
SETOM • SKIP.
MOVE O,INSTR
ADDI O,@ ADDR
XCT 0
SETZ M • SKIP.
RETURN (1)

;DECLARE AS _SKIP_ IN SAIL
.: AS SO ME 5 KI'P

;DIDN'T SKIP

In other words, it e:xecutes the instruction formed .oy adding the
address of the ADOR variable (passed by reference) to' the number
I.NSTR. Be'fote the operation is carried out, AC1 is loaded 'f,rom a
special cell (initially 0). IC1 is returned as the result, and also
stored back into the special cell after the instruc·ti()n is executed.
The global variab.le _SKI.P_ (•. SKIP. in DDT or FArL) is FALS'E (0)
aft~r the call if the executed instruction did not skip; TRUE
(currently' -1) if it did. Declare this variable as
EXTERNAL INTEGER _SKIP_ if you want to use it.

Call

Form:

12-115. RESULT - CALL (VALUE I ·PUNCTION');

Function:

12-116. This function is equivalent to the FAIl .. statements:

EXTERNAL .SKIP.
SETOM • SKIP.
MOVE 1,VALtJE
CALL 1,(SIXBIT /.FUNCT IONI]
S ET Z M • SKI P • ; DID NOT SKI'P
RETURN (REGISTER 1)

The .SKIP. variable (_SKIP_ in SilL) is set as described in the
previous paragraph <CODE).

Form:

12-111.

Function

12-118.
pr inted

Usererr

USERERR (VALUE, CODE • ~MSG-);

MSG is printed on the teletype.
in decimal on the same line.

101

If CODE = 2, VALUE is
Then on the next line the

SAIL MANUAL

~LAST SAIL CALL~ message is typed which indicates where in the user
program the error occurred. A --1-- or 'A ' character is typed and thp.
user may type a standard reply (see ERROR MESSAGES, 14-19). If CODE
is 1 or 2, a "~'A will be typed and execution will be allowed to
continue. If it is 0, a '1- is typed, and no continuation will be
permitted.

Form:

12-119.
NUMl3ER)

Function:

Point

VALUE "POINT (BYT.E SIZ.E , @ EFF.ECT,IVEADDRESS , LAST BIT

12-120. POINT returns a byte pointer. (hence it is of type
integer). The three arguments are enough to specify the three fields
of a PDP-l0. If the LAST BIT NU~BER is -1, POINT creates a byte
pointer which, when used with an ILDB, will pic~ up the first byte
from the word at EFFECTIVE ADDRESS. Otherwise, the three arguments
to POINT are exactly analagous to the three arquments to POINT in
FAIL.

102 SAIL MANUA'L

SECTION 13

USE OF DEFIN E

The SAIL DEFINE feature provides a limited macro capability with
parameter substitution. The formal syntax for DEFINE declarations is
given in DECLARATIONS, 3-1. Use of these macros is described below.

Defining Macros

13-1. When a macro of the form

DEFINE MACeX,Y) = ~FOR Y·1 STEP 1 UNTIL X DO'

is seen by the compiler (either at declaration level or statement
level), . it first associates with the 'formal parameters· sequential
indices (X=1, Y=2). Then it reads the String constant representing
the macro body into String space, substituting for each occurrence of
a formal parameter the character '177 followed by th~ character
representing the index of this formal parameter. These special
characters will be used to locate the actual parameters when the
macro is expanded. The modified macro body is stored under the name
of the macro, where it lies dormant until someone mentions it again.

13-2. In what follows, the character will represent the
character ('177) used to identify parameter locations. The number
followinq it will always be the parameter index. The above macro is
stored as:

FOB !2-1 STEP 1 UNTIL !1 DO

13-3. A macro may be re-defined (at statement level) as many times
as desired. The new macro bod yreplaces the old one. Macro names
follow block structure, so .fo.r a mac.co with the same name as some
other macro to be a redefinitl.on, it must appear at the same block
level as that other definition.

string constants in Macro Bodies

13-4. String constants may be represented in macro bodies, but two
quote characters (') must be inserted for each one which would be
necessary if the string constant appeared outside the macro body
(which after all is itself a String constant, hence the problem).

Using Ma eros

13-5. When a macro name (ignore for the moment the possibility of
parameters) is detected in a file, the body of that macro is
retrieved and becomes the input to the SAIL scanner until the string
is exhausted: t.he scanner then returns to the source 'file fO.r its
input. The macro name itself never makes it out of the scanner. If,

103 SAIL MANUAL

while a macro body is providing input, another macro name is
encountered, the original macro body is ptit aside until this new
macro is exhausted. Nesting may occur to any level; however, it will
be necessary tri increase the size of the compiler's DEFINE ptish down
stack if nesting gets extremely deep (see the D switch in switches,
14-1.3).

Macro Parameters

13-6. If a macro body has been defined with formal parameters, the
compiler will look for actual parameters to· satisfy them when a macro
is expanded. Actual parameters follow .the macro nam~, are surrounded
by parentheses and separated by commas.

13-7. A macro parameter is scanned as a String constant. However,
for convenience, the following special rules apply to the scanning of
a macro actual parameter:

1) All blank characters after the left parenthesis are ignored.

2) If the first non-blank character is not the "" character, the
parameter string will be terminated by a comma or a right
parenthesis, which will net appear in the parameter. If the
"" cha:racter is found after t.he first one, it is treated as
any other text character.

3) If the first non-blank character is
parameter is scanned using the
constants.

the
normal

Example

13,- 8.

MAC(-I·,·J~) is equivalent to MAC(I,J),
MACC·J+3- , ""X&""·A STRING"""}

character, the
rules for string

is equivalent to MAC(J+3,XS-A STRING"");

but MACC''''''A STRING""··,-PROCCI,J)-}

may not be abbreviated, because the meaning of the 'character would
otherwise be ambiguous in the first argument, and the commas and
pa renthe ses need protection in t.he sHcond.

Actual Parameter Expansion

13-9. The actual parameter strings are stored in an ordered list
just before the input stream is switched to the macro body. When one
of the !number pairs appears, the input stream is switched to the
(number)th actual parameter. Other macros (with or without
parameters) may appear in these actual parameters without confusinq
the scanner (sic).

104 SAIL MANUAL

13-10. For an actual parameter to be recognized eventually as a
strinq constant, enough • characters must surround it to allow one to
survive on each end when it passes through the scanner for the last
time. To be sure, the implementation of this feature is so wondrous
that even the authors must resort to trial and error methods when
complicated thihqs are done'enod'at~empted.

Examples

13-11.

DEFINE TTY=-1-, SRC=~2', BRK_ON_LFD=~2~:

Comment for constant parameters for which
it is desirable to include symbolic names,
this is more efficient than assigning the
parameter values to variables;

DEFINE TYPE(MSG)= -OUT(TTY,MSG)~;
Comment note inclusion of TTY macro in the

body of the TYPE macro;

DEFINE TYPEC{MSG)=~OUT(TTY,-~MSG·-)-:
Comment argument always to be made into

a string constant:

DEFINE DEBUGGING = -TRUE·, INP1(VBL,WHERE)=
~BEGIN

VBL-INPUT(SRC,BREAK_ON_LFD);
IF DEBUGGJNG THEN

TYPEl~-~~-~INPUT TO VBL AT WHEDE I5--·-&V8L-');
END~: Comment (probably);

Using these definitions,

INP1(STR,INITIAL READ) expands to:

BEGIN
STR-INPnT{2,2);
IF TRUE THEN

OUT(1,-INPUT TO 5TR AT INITIAL READ IS 'S5TH);
END:

105 SAIL MANUAL

CO M MAN OFO R M 11 T

syntax

14-1.

<c om mand _1i n e>

<binary_ name>

<listing.-name>

<source_list>

<f i Ie_spec>

<file_name>

<proj_ prog>

<device_name>

<switches>

SECT·ION 14

COMPILER OPERATION

: :=

· .-· .-
: :=

:: = · ... -
· ... -
: :=

: := ... -.. -
: :=
: := · -
· ... -
: := .. -.. -

<binary_name> <listing_name> -
<source_list>

<file_spec> @
<file_spec> EXC

<file_spec>
<empty>

, <file_spec>
<empty>

<file_spec>
<source_list> , <file_spec>

<file_name> <file_ext> <proj_prog>
<device_name> <file_spec> <switches>
<device_name> <switches>

• <legal_sixhit_id>
<empty>

::= [<legal_octal_id> , <leqal_octal_id>]
::= [<legal_eMU_in>]
::= <empty>

: :=

· .-· .-
: := ... -... -
· .-· .-
:: =

· ... -· .-· .-
· ... -
: :=

(<unslashed_switch_list>),
<slashed_switch_list>
<empty>

<switch_spec>
<unsl~shed_switch~list> <switch_spec>

/ <switch_spec>
<slashed_switch_list> I <switch_spec>

<valid_switch_name>
<si9ned~integer> <valid_switch_name>

106 SAIL MA.NOAL

: := C
: := D
:: = F
:: = L
: := M
: := P
.... -.... - Q
:: = R
: := S

Semantics

14-2. All this is by way of saying that SAIL accepts commands in
essentially the same format accepted by DEC processors such as MACRO
and FORTRAN. The binary fi19 name is the name of the output device
and file on which the ready to load object program will be written.
The listing file, if included, will contain ~ copy of the source
files with a header at the top of each page and an octal program
counter entry at the head of each line (see Listing F~atures, 14-13).
The listing file name is often omitted (no listing created). The
source file list specifies a set of user-prepared files Which, when
concatenated, form a valid SAIL program (one outer block).

14-3. legal_sixhit_identifier is a name which is acceptable to the
time sharing system as a valid £i1e name, device name, extension,
etc. when its first six (device, file) or three (extension,
proqect-proqrammer number) are converted from ASCII to SrXBIT. For
more information about file and device names, see [DECREP].

14-4. If file~ext is omitted from the binary_name, the extension
for the output file will be .REL. The default extension for the
listing file is .1ST. SAIL will first try to find source files under
the names given. If this fails, and the extension is omitted, the
same file with a .SA! extension will he tried.

14-5. If device_name is omitted, DSK: is assumed. If proj_prog is
omitted, the project-programmer number for the job is ~ssumed.

14-6. Switches are parameters which affect the operation of the
compiler. A list of switches may appear after any file name. The
parameters specified are changed immediately after the file name
associated with them is processed. The meanings of the switches are
given below.

14-7. The binary, listing and (first) source file names are
processed before compilation subsequent source names (and their
switches) are processed whenever an end-ai-file condition is detected
in the curren t source file. Source files which appear a.fter the one
containing the outer block's END delimiter a'r~ ignored.

107 SAILM.ANU AL

14-9. Each new line in the command file (or entered from the
teletype) specifies a separate program compilation. Any number of
proqrams can be compiled by the same SAIL core image.

14-9. The file_spec@ command causes the compiler to 'open the
specified file as the command file. Subsequent commands will come
from this file. If any of these commands is file_spece, another
switch will occur.

14-10. The file_spec! command will cause thespeci£ied file to be
run as the next processor. This program will be started in -RPG
(CCL?) mode~. That is, it will look on the disk for 'its commmands
if its standard command file is there-- otherwise, command control
will revert to the TTY. The default option for this extension is
.5AV. The default device is SYS:.

14-11. For information about logging in, running jobs, and so on,
see (DEC REP).

Rpg Mode

14-12. The COMPILE, DEBUG, LOAD, and EXECUTE set of system
commands may be used to compile and run SAIL programs •. ' See {DECREF]
for det~ lIs. A typical comma,nd string to the system (which will
prepare commands of the form described above and pass them to SAIL
(after starting it) might be:

DEBUG /SAIL BECOG(-2L5MRR)=BEG+PROCS+RE~OG/LIST,CMDSCN[1234,456]

This command will cause the following commands to be placed in a file
on jour area by the name of QQSAIL.RPG:

RECOG.REL,RECOG.LST(-2L5MRR)-BEG,PROCS,RECOG
CMD5CN. REL-CMDSCN [1234,456]
LOADER! (at CMU: AILOAD!)

The /SAIL entry may be omitted if all files have a .51I extension.
The loader will load the files with DDT or RAID and then: sta.rt the
specified debugging program.

switches

14-13. The following table describes the SAIL parameter switches.
If the s'witch letter is preceded in the table by the D character, a
decimal number is expected as an argument. 0 is the default value.
The character 0 indicates that an octal number is expected for this
switch. otherwise the argument is ignored.

108 SAIL MANUAL

ARG SWITCH FUNCTION

D

o

D

c Create a crcss-,refere nce file (CREF). (See (D EC REF])

o For every occurrence of this switch in the command
line, the amount of space for the push down stack used
in expanding macros (see USE OF DEFINE, 13-0) is
doubled. Use this switch if the compiler indicates to
you that this stack has overflowed. This shouldn't
happen unless you nest DEFINE calls extremely deeply_

F

L

M

p

D ia an integer contaning mode bits for listinq control.
1 Program counter is printed on the listing.
2 Line numbers are printed on the listing.
4 Macro names and parameters appear where they are

called.
'10 Macro expansions are listed.
'20 Macro ex~ansions are listed, surrounded by -< and :>

In compiling a SAIL program, an internal variable
called peNT (for program counter) is incremented (by
one) for each word of code generated. This value,
initially 0, represents the address of a word of code
in the running program, relative to the load point for
this program. The current octal value of peNT plus the
value of another internal variable called LSTOFFSET, is
printed at the beginning of each output line in a
listing file. For the first program compiled by a
given SAIL core image, this value is initially o. If
the L switch occurs in the ccmmand and the value 0 is
non-negative, 0 replaces the current value of
LSTOFFSET. If 0 is -1, the current size of DDT is put
into LSTOP'FSET. If 0 is -2, the cur.rent size of RAID
is used. In ~RPG mode- the final value of peNT is
added to LSTOFFSET after each compilation. Thus by
deleting all .REL files produced by SAIL, and by
compiling all SAIL programs which are to be loaded
toqether with one RPG command which includes the L
switch, you can obtain listing files such that ~ach of
these octal numbE:~rs represents the actual starting core
address of the code produced by the line it precedes.
At the time of this writing, RPG would not accept minus
signs in switches to be sent to processors. Keep
trying.

D is a number from 1 to 6. This parameter puts the
compiler in one of several debugging modes. This
switch is most useful to compiler fixers, hut some of
the modes are of general interest. The functions
represented by each of these modes are described in
Debugging modes, 14-14 below.

Each occurrence of this switch doubles the size of the
system push down list. It has never been known to
overflow.

109 SAIL MANUAL

Q

R

D S

Each occurrence doubles the size
down list. No trouhle has
either.

of
been

the string push
encountered here,

Each occurrence doubles the size of the compiler's
parsing and sAmantic stacks. A long conditional
statement of the form (IF ••• THEN ••• ELSE IF •••
THEN ••• ELSE IF •••) has been known to cause these
stacks to overflow their normally allocated sizes.

The size of String space is Set to D words. string
space usage is a function of the Dumber of identifiers,
especially macros, declared by the user. In the rare
case of String space exhaustion, 50001s a good first
number to try.

Dpbugginq modes

14-14. certain versions of the SAIL compiler have a debugging
facility built into the inner loop of the parser. It is willing to
display information about the current state of the compilation at
strategic times. This routine can be in one of several modes. A
dpbugginq mode is initially specified using the M switch describ~d
above. It can be changed by the user as the compilation progresses.
The modes and their functions are as follows:

1) Just before each code-qenerator is called, its name is
displayed on the TTY along with the top few elements of the
parse and semantic stacks. If the TTY is a DPY, one also gets
the current input line with an arrow underneath indicating the
next element to be scanned. If you do not know what to look
for in the stack, don't use this mode. Compilation may be
continued by typing the character' 'P'.

2) No information is displayed in this mode. However line breaks
and asynchronous breaks (see below) can still occur.

3) Just before each parse production is compared to the parse
stack, the name of the production and the other information
mentioned above is presented. Proceed by typing 'P~.
Compilation takes forever in this mode.

4) This mode does not cancel any of modes 1, 2,or 3. However, it
puts the debugging routines in a mode wherein they will not
wait for a user go-ahead before proceeding from the displays
described for these modes. Line and asynchronous breaks are
still enabled in this mode, and may be used to regain control
of things.

5) This mode has no very useful application if the TTY is really a
TTY. However if it is secretly a DPY, the current input line
is continuously presen'ted along with an arrow showing the
compiler's progress through it. No user go-ahead is necessary
after each presentation. All other modes are cancelled. Line
and asynchronous breaks are enabled.

110 SAIL MANUAL

6) This is the default mode. No information is displayed. The
debugging routines are completely detached from the compilation
loop. Line and asynchronous breaks are disabled. The only way
to qet any of the information described above is to start over.

14-15. If you have the compiler in a position where it is willing
to listen to a .p~ to continue, you may also'type some other thinqs.
The most interesting one is the ~L~ command. Typing -L~, followed by
a space, followed by a page number (decimal), followed by a space,
followed by a 5 character line number, followed by yet another space,
causes the compiler to remember this page and line number, and to
stop with a Line Break message and the information described above
just after the specified line has been read. At this point you may
change modes (see below) or not, as you prefer, and type 'P' to
continue. This command is really not too useful unlesS you are a
compiler fixer.

14-16. To change modes while compiling, type any number of
pa.rameter-M pairs to the debugging interprett~,r before typing "p- t.o
go on.

14-17. To get the compiler's attention when it is operating in
one of the modes 2, 4 .. or 5, simplyt.ype a carriage return. Very
shortly the compiler will display an Asynchronous Break message, the
print line, and some stack elements. Then you may change modes, set
a line break, or simply proceed. This is often useful simply to
convince yourself that your program is still being compiled if you
are running in mode 2. If you are operating in mode 6, the compiler
will not listen to your plea. Start the compiler in mode 2 if you
want this feature, but be warned that things will slow down
considerably (10 per-cent 1).

14-18. Here is an example of a compile string which a user Wh(1

just has to try every bell and whistle available to him might type tc
compile a file named NULL:

COMPILE ILIST /5AIL NULL(RR-2L1M4M5000S)

The switch information contained in parentheses will be sent
unchanged to SAIL. Note the convention which allows one set of
parentheses enclosing a myriad of switches to replace a u/~ character
inserted before each one. This string tells the compiler to compile
NULL using parse and semantic stacks four times larger than usual
(RR). A listing file is to be made which assumes that RAID will be
loaded and NOLL will be loaded right after RAID (-2L). The user
wants to see the stack and input line just before every code
generating rout.ine is called (1M), but he does not want the compile,r
to stop after each display (4M). His program is big enough to need
5000 words of String space (50005).

111 SAIL MANUAL

ERROR MESSAGES

14-1q. If the compiler detects a syntax or semantic error while
compiling a program it will provide the user with the following
inform at ion:

1) The error message. These are Enq1ish phrases or sentences
which attempt to diagnose the problem. If a message is
vague it is because no specific test for the error has been
made and a catchall routine detected it. If the message
begins with the word ~DRYROT'it means that there is a bug
in the compiler which some strangeness in Jour program was
able to tickle. See a system programmer about this.

2) The current input line. Page and line number, along with
the text of the line being scanned, are typed. If the
consolf~ device is a TTY, a line feed will occur a·t the point
in the line just following the last program element scanned.
If the device is a DPY, the line will he displayed with a
vertical arrow below the scan position. The absence of a
position indicator means that a macro (DEFINE) body is being
expanded.

]) 'C~LLED FROM xxxxx'. This is a message of value to compiler
de buggers only.

q) A question mark or right-arrow (-).

14-20. Respond to the question mark in any of the following way.:

CR Try to continue cOIll'pilation. A message will be printed and
the sequence reentered if recovery is impossible (if a '1'
was typed instead of a --~).

LF continue and don't stop from now on. The program will not
stop if it can help it. ~essaqes will fly by (at an
unreadable rate on DPYs) until the compilation is complete
or an error occurs from which no recovery is possible. In
the latter case the question sequence is reentered.

S Restart. Sometimes useful if you are debugging the compiler
(or if you were compiling the wrong file). The program is
restarted, accepting compilation commands from the TTY.

x Exit. All files ·are closed in their current state.
program exits to the system.

The

L Look at stack. This enters a part of the debugging routine
(see- Debugging modes, 14-14 above) to allow examination of
the parse and sema otic stacks. 'The compiler will lead you
by the hand through these procedures.

E ~dit. This command must be followed by a carriage return,
or a space, a filename (in standard format, assumes DSK) and
a carriage return. If the filename is missing, the SOS

112 SAIL MANUA.L

D

editor (see (Savitzky]) is started, given instructions to
edit the current source file and to move the editing pointer
to th~ current page and line number. If a file name is
present, that file is edited starting at the beginning.

Enter DDT or RAID if one is loaded.
DDT' and re-question.

Otherwise, type -NO

14-21. Any other character will cause the error routines to spew
forth a summary of this table and re-enter the question sequence.

STORAGE ALLOCATION

14-22. ThH compiler dynamically allocates wo'cking storage for its
push down lists, symbol tables, string spaces, etc. It normally runs
with a standard allocation adequate for most programs. Switch
settings given above may be used to change these allocations. If
desired, these allocations may also be changed by typing te, followed
hy REE (reenter). The compiler will ask you if you want to allocate.
Type Y to allocate, N to use the standard allocation, and any other
character to use the standard allocaticns and print out what they
are. All entries will he prompted. Numbers should be decimal.
Typing alt-mode instead of CR will cause standard allocation to be
used for the rema1n1nq values. The compiler will then start,
awaitinq command input from the teletype.

113 SAIL MANUAL

SECTION 15

PROGRAM OPERATION

LOADING AND STARTING SAIL PROGRAMS

Loading·

15-1. Load the main program, any separately compiled procedure
files (see Separately Compiled Pr.ocedures, 16-7), any assembly
language (see PROCEDURE IMPLEMENTATION, 17-46) or Fortran procedures,
and DDT or RAID if desired. This is all automatic if you use the
LOAD or DEBUG or EXECUTE system commands (see [DECREF]). Any of the
SAIL execution time routines requested by your program will be
searched out and loaded automatically from SYS:LIBSAI.REL.

At CMU, the correct loader to use is
automatically use that loader if any of the
FAI) extensions or if /SAIL is specified.
is SYS:AIDDT.REL. (AILOAD automatically
qiven a ID or. IT switch.)

starting the Program -- Normal Operation

SYS:AILOAD.SAV. ceL will
source files have SAl (or

·The correct DDT to use
gets that DDT when it is

15-2. For most applications, SAIL programs can by started using
the START, RUN, or EXECUTE system commands., or by using the $G
command of DDT (RAID). The SAIL storaqe areas will be initialized.
This means that all knowledge of I/O activity, associative data
structures, strings, ~tc. from any previous activation of the
program will be lost. All strings (except constants) will be
cleared to NULL. All compiled-in arrays which were not PRELOADed
will be cleared to 0, NULL, or PHI, whichever is appropriate. Then
execution will begin with the first statement in the outer· block of
your main program. As each block is entered, its arrays will he
cleared as they are allocated. Variables are not rileared. The
program will exit when it leaves this outer block.

starting the Program in 'RPG (CCL)~ Mode

15-3. SAIL programs may be started at one of two consecutive
locations: at the address contained in the cell JOBSA in the job data
area, or at the address just following that one. The global variable
RPGSW is set to 0 in the former case, -1 in the latter. Aside from
this, there is no difference between the two methods. This cell may
be examined by declaring RPGSW as an EXTERNAL INTEGER.

starting the Program with Allocation Modifications

15-4. If the default (or REQUIREd) storage allocations for such
things as the push down stacks or string space are insufficient, the
program may be started using the REENTER system command. You may
then answer questions as described in STORAGE ALLOCATION, 14-22. You
can find out what the standard allocations are by typing a space

11 4 SAIL MANUAL

after the system types ALLOC1 at you. Arrays, Leap spaces and 1/0
buffers are allocated dyncamically, obtaining more storage from ~~~
operating system if necessary. See storage Allocation Routines, 11~~
and following for ways of cooperating with SAIL with respect to
storaqe allocation if you write machine language subroutines.

ERROR MESSAGES

15-5. Error messages have nearly the same format as those from the
compiler (ERROR MESSAGES, 14-19). They indicate that

1) an array subscript has overflowed;

2) a case index is out of range:

3) a stack has overflowed while allocati~q space for a
recursive procedure; or

4) one of the execu t ion ti me rOll tines has detected an error.

15-6. The ~CALLED FROM~ address identifies, in the first 3 cases,
the location in the user program where the error occurred ; the 'LAST
SAIL CALL AT~ address gives the location of the faulty calIon the
SAIL routine for type 4 messages.

15-7. All the replies to error messages described in EBRon
MESSAGES, 14-19 are valid except the -L~ option. If no file name is
typed with the ~E~ option, the editor re-opens the last file
mentioned in the EDIT system command.

15-8. The function aSERERR may be used to activate the SAIL error
message mechanism. See Usererr, 12-117 for details.

D.EBOGGING

15-9. The code output for SAIL programs is designed to be fairly
easy to understand when examined using the DDT debugging langua~e or
Stanford's display oriented RAID program. A knowledge of the
debugqer you have chosen is required before this section will be
comprehensi bIe.

Symbols

15-10. -Only those symbols which have been declared INTERNAL (see
Separately Compiled Procedures, 16-7) and those declared in the
currently open ·program~ are available at a given time. The name of
a SAIL program as far as DDT or RAID (henceforth DDRAID) is concerned
is the name of the outer block of tbat program. If no name is given
for this block, the name M. will be the default.

115 SAIL MA NU.A t

15-11. Only the first six non-blank characters of a block name
identifier will be used in forming a DDRAID symbol. If
identifiers in the same block have the same first six characters
program using them will not qet confused, but the user might
trying to locate these identifiers.

or
two
the

when

15-12. To obtain symbols for the execution 'time routines, load
SYS:RUNTIM.R.E.L with your other files. The routines will be loaded
from this file, which includes symbols, instead of from the LIBSAI
library, which does not. Your program will be several thousand words
longer when this file is used.

Blocks

15-13. All block names and identifiers used as variables,
procedures or labels in a given (main or separa.te procedure) program
are available for tYPQut when that pcoqram is ~open~ (NAMES: has been
typed). To refer to a symbol, type BLOCK_NAME&SYMBOLI (: for RAID).
The bloc,K name may be omitted if you have 'opened' the block with
BLOCK_NAME$&. The symbol tabl~ is block-structured only to the
extent that block names have appeared in the source program. For
instance, in the program

BEGIN -N AM E 1"
INTEGE R I, ~J; ...
BEGIN

IN TE GER. I, K; ...
ENn: ...

END "NAME1"

the symbols J, X, and both symbols I are considered by DDRAID to
belong in the same block. Therefore confusion can .resul t wit.h
respect to I. This approach was taken to avoid the necessity of
generating meaningless block names for DDRAID when none were given in
the source program. A compound statement will be considered by
DORAID to be a block if it has a name.

Sail-Generated Symbols

15-14. Some extra symbols are generated by SAIL and will show up
when you are using DDRAID. They are:

ACS The accumulators P (system push
(string push dcwn pointer),
temporary) are given symbolic
SP='16, TEMP='14.

down list pointer), SP
and TEMP {commonly used
names. Currently P='17,

OPS The op codes for the DUOs ERR., ERROR., FIX, FLOAT, PDLOV,
and ARERR (subscript overflow UUO) are included to make
these easy to detect in the code.

116 SAIL MANUAL

ARRAYS For each array declared in the outer block (built-in
arrays), the fixed address of its first element is given a
symbolic name. This name is constructed from the
characters of the array name (up to the first 5) followed
by a period. For instance, the first element of array CAT
is CHT.; the first element of PDQARR is PDQAR.: The last
semicolon was really a period. This dotted symbol points
to the second word of the first"descriptor for string
Arrays (see STRINGS, 17-14, ARRAY IMPLEMENTATION, 17-33).

BLOCKS The first word of th~ first executable statement of every
block or compound statement which has been given a name is
given a label created in the same way as those for arrays
above. This label cannot be gone to in the source
proqram. It causes no proqram inefficiency. This label
points at the first word of the compound tail -- not the
first word of code generated for the block (skips any
procedure or array declaration code).

START

Warnings

The first word of code generated for any given program is
given the name ~s.~.

Hanging Store

15-15. Quite often an assignment statement results only in the
loading of a PDP-10 accumulator. This Ae will not be stored into the
core location identified with the name of the variable until it is
necessary. Confusion can result if you set a breakpoint somewhere,
then examine the core variables of interest without checking the
immediately surrounding code to be sure none of the interesting
variables are still in ACs.

Long Names

15-16. Since only the first 6 characters of an identifier are
available, it is wise to declare symbols which will be examined by
DDRAID in such a way that these six characters will uniquely identify
them.

117 SAIL MANUAL

SECTION 16

PROGRAM STRUCTURE

THE 'SAIL CORE IMAGE (REQUIRED)

16-1. The following thinqs must be present in a core image
containinq SAIL-compiled files:

Ma in Pro qra m

16-2. A SAIL -main program', or an assembly language program which
looks an awful lot like a SAIL main program, must be present if any
SAIL-compil~d files are. A SAIL source program which has no
entry-specification as its first element satisfies this requirement.
The first statement executed after storage allocation is complete
will be its first statement. There should be no more than one main
program per core image.

16-3. The salient characteristics of a main program are:

1) Its .BEL file has a starting address block (the loader will
tell the time sharing system to start the program at this
address) •

2} Its first task is to determine whether the program was
started in RPG mode. If so, the global variable RPGSW is
se t toT R U.E ; 0 the 1:' W is e F 1\.L S E •

3) Its next task is to call the storage allocator with
JS.R S.AILOR.

4) It should then proceed with the main control of the program.

4) It should execute a POPJ 17~O when it is all done.

5) It may not execute any UUOs except SAIL
permanently the DUO locations 40 and
ca ution.

storage Allocation, Basic utilities

UUOs (nor alter
41) without great

16-4. There is a set of routines which must always be loaded to
establish the operating environment for SAIL programs. These
routines al'loea te storage, set up push down pointers, and initialize
some of SAIL'S internal tables. Other routines included in this
packaqe are a String garbag~ collector (see STRINGS, 17-14)" and
several basic routines which many others call upon.

118 SAIL MANUAL

16-5. These programs will be loaded automatically from LIBSAT.REL
if the JSR SAILOR instruction, where SAILOR is an external request,
is present in the main ~rograrn (this'is automatic for SAIL-compiled
rna in pro g ram s) •

other Execution-Time Routines

16-6. All liD, String-handling, etc. is done by routines which
understand about SAIL. Programs requirinq these services should
probably use these routines. SAIL~compile~ files automatically
request these blessed routines from LIBSAI~REL.

OPTIONAL ADDITIONS

separately Compiled ProcEdures

16-7. When a program becomes extremely .la.rge it becomes tlseful to
break the program up into several files which can be compiled
separately. This can be done in SAIL by preparing one file as a main
program, and onp or more other files as programs each of which
contains one or more procedures to be called by the main program.
such a file must have the following characteristics:

1) An entry specification (see Entry specifications, 2·-1) must
be the first item in the program (preceding even the BEGIN
for its outer block). The list of identifiers wil~ be used
to form an Entry Block for the loader. Therefore the file
may be placed in a user library if desired. The format of
libraries is described in [Weiher]. The identifier(s)
appearing in the entry list may be any valid identifiers,
but usually they will be the names of the procedures
contained in the file. No starting address will be issued
for a program containing an Entry Specification. No
checking is done to see if entry identifiers are ever really
declared in the body of the proqram.

2) Since no starting address is present for this file, entry to
code within it may only be to the procedures it contains;
the statAments in the outer block, if any, can never be
executed. III procedures to be called from the, main program
(or procedures in other files) must he qualified with the
INTERNAL attribute when they are declared. External
procedure declarations with headings identical to those of
the actual declarations must appear in all those programs
which call these procedures.

3) Th~se internal procedures must be uniquely identifiable by
the first six characters of their identifiers. In general,
any two internal procedure names (or any other Internal
variables in the same core image) with the same first six
characters will cause incorrect linkages when the programs
are loaded.

4) Any variables (simple or array) which appear in the outer
block of a Separately Compiled Procedure program will be

119 SAIL MANUAL

global to the procedures in this program, but not available
to the main program (unless they are' connected by
Internal/External declarations -- see below). Arithmetic
arrays in these outer blocks will alvays be zero when the
program is first loaded, bnt~ will never be cleared as others
are (see starting the Program -- Normal Operation, 15-2) -
String arrays are always cleared.

5) Any variable, procedure or label may contain the attribute
INTERNAL or EXTERNAL in its declaration (ITE~S may not).

16-8. The INTERNAL attribute does not affect the storage
assignment of the entity it represents, nor does it have any effect
on the behav ior of the entity (or the scope of its identifier) in the
file wherein it appears. However, its address and (the first six
characters 'of) its name are made available to the loader .for
satis'fying External requests.

16-9. No space is ever allocated for an External declaration.
Instead, a list of referenc.es to each ,External identifier 1s made by
the compiler. This list is passed to the loader along with th~ firsi
six characters of the identifier name. When an Internal name
matching it is found during loading, its associated addre~s is placed
in each of the instructions ment.ioned on the list. No program
.inefficiency at all results from I~xternal/lnternal linkages (belay
that references to External arrays .are sometimes more
inefficient).

16-10. The entity .final.lyrepresented by an External identifJier is
only accessible within the scope of the External declaration.
Transfers to external labels are always allowed, but if things work
cor.rectly when this is d~ne it is only by sheer luck that they do.

Fortran Procedures

16-11. 'Fo r a program w.r itten in DEC FORTRAN IV to run· in the SAIL
environment, the following restrictions must be observed~

1) It must be a SUBROUTINE or FUNCTION, not a main program.

2) It must not execute any FORTRAN 1/0 calls.. The UUO
structures of the two languages ar~ notcompatab1e.

3) It must be declared as a Fortran.Procedure (see Fortran
Procedures, 6-12) in the SAIL program which calls it.

The type bits required in the a'rgument addresses for Fortran
arguments a re passed correctly to these ,routines.

The SAIL compiler will not produce a proced~re to be called from
FO'RTRAN.

120 SAIL MANUAL

Assembly Languaqe Procedures

16-12. The implementation section contains the following
paragraphs to aid in writing assembly. language procedures: User
Table, 17-1, STRINGS, 17-14, ARRAY IMPLEMENTATION, 17-33, storage
Allocation Routines, 17-5, and PROCEDURE I~PLEMENTATION, 17-46. In
addition, the following rules should be observed:

1) The ENTRY, INTERNAL, and EXTERNAL pseudo-ops should be used
to obtain linkages for procedure names and 'global~
identifiers (remember that only six characters are used for
these linkage names.

2) Accumulators P (currently '17) and SF ('16) should be
p:reserved over fu nc·tion calls. P may be used as a push-down
pointer for arithmetic values and return addresses. SP is
th~ strinq stack pointer. string results are returned on
this stack. Arithmetic results are returned in AC 1 (see
PROCEDUR·E . .r ~PLEMENTATION, 17-46).

3) The UUO locations 40 and 41 should be preserved.

4) JOBPF must be set by the user to some free buffer ~rea
before aUTBUF or INBUF UUOs are executed. JOBPF is
periodically set by SAIL to an invalid address.

5) The CORE UUO may be used to increase memory size, but never
to decrease it. Never attempt to use directly any of the
memory space currently assiqned to the job (except that
explicitly provided in the routine). Felease all memory
obtained in this way before returning to SAIL routines. See
storage Allocation Routines, 17-5 for instructions on
obtaining Gore from the SAIL memory allocators (a much
safer, and~sometimes faster way).

others

16-13. There are no other known processors which will produce
SAIL-compatible programs. In particular, the LISP 1.6 system, by its
very nature, contains storage allocation conflicts which are
difficult to resolve. If a gre~t need for this kind 6f compatibility
develops it can be provided.

121 SA.ILMANUAL

SECTION 11

I~PLEMRNTATION INFORMATION

STORAGE LAYOUT

User Table

17-1. All working storage areas for a SAIL-generated program and
its execution-time routines are dynamically allocated some just
oncp wh~n th0 program is first started, some as more space is needed.

17-2. The first area allocated is a several hundred word table
which contains information about the rema1n1ng storage areas and
qlohal variables for the execution-time routines. A single internal
variable, GOGTAB, will always contain a pointer to this table. The
expcution-time routines make all accesses to storage through this
table or through user-suppli~d addresses. They would therefore he
totally re-antrant if the GOGT~B variable were allowed to vary over
several llsers.

17-3. A FnIL source file containing symholic indices for the user
tahl~, as well as some useful MACROs, OPDEPs, and accumulator
dpfinitions is availahle to provide accessability to this table for
assembly language routines. Thisfilp may be concatenated to a FAIL
proqram before ass~mbly.

17-4. Most execution-time routines load the address contained in
GOGTAB into the accumulator USER (currently '15) in order to index
the user table. Thus in what follows, symbolic index XX into this
table will be listed as XX(USEF).

storage Allocation Routines

17-5. SAIL makes all requests for storage through the routines
CORGET, COR1L8L, cOnINC, and CANINC. These routines are,described in
the following paraqraphs. The AC's THTS and SIZ are currently set to
2 and 3, respectively. All core routines are called with POSHJ
17"routine.

Corget

17-6. Corget is called with the desired size of a block of storage
in register SIZe It returns the address of the new block in THIS.
No other accumulators are altered. Normally the function skips on
return. It does not skip if insufficient core is available to grant
the request. The address returned is that of the first free data
word (DATA below).

122 SAI"L .MANU AL

17-7.

HEAD:

DAT.A:

END:

A SAIL core blocK has th~ following form:

---LAST,,--NEXT
SIZE
BLOCK SIZE-j

USEBIT, ,--HEAD

;when not in use (free list links)
;END-HEAD+1, negated when block is in use
~available to user -- sometimes a few more
; words than requested will be contained
; in the block
:USEBIT is 400000 if block is in usef else 0

The first time CORGET is called, GOGTAB is o.
an~ performs the following special actions:

CORGET notices this

1) Prepares to allocate storage just past the' program and
symbols (left half of JOnSA contains the relevant address).

2) Allo~ates the user table; puts pointer in GOGTAB.

3) Forms remaining free storage from the end of the user table
to cont.ents (JOBREL) [C(JOBRE.L)] int.o a single free SAIL
block. Puts ~HEAD in LOCUSER), FRE(USER). Puts C(JOBREL)+1
in TOP(USER).

4) Performs the requested CORGET operation.

17-8. FRE(USER) is the header of a linked free storage list,
Blocks are obtained from this list and the list is updated. CORREL
releases blocks onto this list. If no currently free block will
satisfy a CORGET request, the CORE UUo is executed to get more from
the time sharing system.

17-9. Users are free to use the CORGET function if they will be
careful of the two header words and the single trailer word
associated with each block. Release. these blocks as soon as possible
to prevent undue checker-boarding of free storage.

Correl

17-10. Correl is called with the address obtained in the
corresponding Corget call (the DATA address) in register THIS. The
block is returned to the free storage list. If either of the two
neighboring blocks is already free, the adjacent free blocks are
merged with the one being released to form a bigger one. If the
block being released is uppermost in core, and if it ,occupies more
than about 2K~ the core size of the program is contracted using the
CORE 000. About 2K of free storage is left in this case. No ACs are
altered by CORREL.

corine

17-11. Corine is called with the DATA address of a SAIL block in
THIS and a desired increment in SIZ. If there is a free b10ck
directly above the THIS block with at least SIZ free words., or if the

123 SA.IL MANUAL

THIS block occupies the highest addresses of any block in use, the
request is granted, the b10ck is extended by SIZ words and the
function executes a ski'p-return. Otherwise no sk.ip occurs and no
action is taken. No ACs will be altered.

canine

17-12. Canine pecforms the same tests as Corinc and skips under
the same con~itions. It also uses the same calling sequence. If it
does not skip, it returns with SIZ altered to show the number of
words by which the DATA block can be increased. It is 0 if no
increase is possible. This function never affects current core
allocation.

17-13. These functions are n6t available to SAIL programs since
core can be obtained by array declarations (which in turn use these
fn net ions) •

STRINGS

string Descriptors

17-14. A SAIL String has two distinct parts: the descriptor and
the text. The descriptor is unique a·nd has the following format:

WORD1: STRINGNO"LENGTH
WORD2:BYTP

1) STRINGNO. This entry is 0 if the string is a constant (the
descriptor will not be altered, and the string text is not
1n string space, is therefore not subject to garbage
collection). Every ti me a String is. created via the
concatenation operator, or Input function, or an
Integer-string type conversion, it receives a new STRINGNO.
Each new String receives a number one greater than the last,
starting at 1 when the program is initialized. All strings
formed as substrings of a given string have the string
number of the original (major) string. These numbers aid in
increasing String garbage collection efficiency.

2) LENGTH. This number is zero for any null string; otherwise
it is the number of text characters.

3) BYTP. If count is Of' this bytepointe.r is never· checked, (it
need not even be a valid byte pointer). Otherwise, an ILDB
machine instruction pointed at the BYTP word· will retrieve
the first text character, of the string. The text for a
String may begin at 'any point in a word. The characters are
stored as LENGTH contiguous characters.

124 SAI.L l1ANU.A.L

17-15. A SAIL String variable contains the two word descriptor for
that variable. The identifier naming it points to WORD1 of that
descriptor. If a string is decla red INTERNAL, a symbol is formed. to
reference WbRD2 by taking all characters from the original name (up
to 5) and concatenating a·.· (OnTSTRING's second word would be
la beled OUTS T.) •

11-16. When a string is passed by reference to a procedure, the
address of WORD2 is placed in the P-stack (see PROCEDURE
IMPLEMENTATION, 11-46). For VALUE strings both descriptor words are
pushed onto the SP stack.

17-17. A string array is a block of 2-word String descriptors.
The array descriptor (see ARRAY IMPLEMENTATION, 11-33) points at the
secon'd word of the -first descriptor in the ar.ray.

17-18. Information is generated by the compiler to allow the
locations of all non-constant strings to be found for purposes of
qarbage- collection and in! tia liza t ion (see PROCEDURE IMP LElfENTATION;
17-46). All string variables and arrays are cleared to NULL whenever
a SAIL program is started. '

String Operations

17-19. The four basic string operations are concatenation (CAT),
substrings (SUBSTR), String-integer (GETCH), and Integer-string
(PUTCn). Other functions producing or operating upon strings are
described in Execution Routines, 12-1.

Cat

17-20. CAT forms a new String from two other strings (constants or
otherwise). The calling sequence is:

PTJSH
PUSH
PUSH
"PUSH
PUSH\l

SP,WORD11
SP,WORD12
SP, WORD21
SP,WORD22
p,eAT

;WORD1, FIRST ARGUMENT
;WOBD2, FIRST ARGUMENT
;ETC.

The result is found as a new two-word descriptor on top of the SF
(currently Ie '16) stack. If either argument is the null String, the
result is the other argument. If the first argument occupies the
space diredtly preceding the first free character in String space,
only the second argument is copied. Otherwise, both a"rguments are
copied (in order) into free space to form the result. A new Strinq
number is created for this result. The LENGTH field is the sum of
the LENGTHs of the two arguments.

125 SAIL MANUAL

Substr

17-21. SUBSTB returns a descriptor representing a part of its
input argument. SUBSTR is really three routines, called as follows:

SUBST

PUSH SP"WORD1
PUSH S P ,WORD2'

SUBSR SUBS!
PUSH P,LASDX
PUSH P ,FIRSDX'

PUSA P ,~IUMCHR FUSH P, FI.RSDX
PUSH P ,FIRS DX

PUSHJ P,SUBS(T/R/I}

LASDX is ,the number o.f the last character t'o be included (startin'g
with 1). F~RSDX is the number of the first character to be included.
NUMCHB is the number of characters to be included.

17-22. The result is always a two-word descriptor in the SP stack
descrlbi ng t he substring.

SURST is used for the construct ST[X for Yl.
SOBSR is used for ST(X to Yl.
SUBSI is used for ST[X to INP].

17-23. An error message is printed if the request can not be
satisfied. This will result in job abortion.

17-24. The string number of the output is the same as the string
number of the input.

Gatch

17-25. Call with

PUSH SP,WORD1
PUSH SP,WORD2
PUSHJ ~P, GETeR

The first character if the String is returned in AC1 unless the
String is NULL; zero is returned in this case~ The SP stack is
adjusted. ,to remove the parameter. An error message will be printed
if some part of the requested substring does not exist.

Putch

17-26. Call with

PUSH
PUSH,)

P, VALUE
P,PrJTCH

126 . SAIL ftANtTA.L

The result is a String descriptor with count of 1 on top of the SP
stack. The P stack is adiusted to remove the parameter. and return
address. The string n~mber is new. The low order 7 bits of VALUE
form the single character in the string.

string Space

17-27. The normal or user-specified (see STORAGE ALLOCATION,
14-22) numbar of words required for strings is used to obtain a
single SAIL block (see storage Allocation Routi~es, 17-5) when the
program is started. The limits of this area are placed in ST(USER)
and STTOP(USER). Other parameters are set up as described below.

17-28. String text characters are placed contiguously in this area
as strings are created. When not enough storage remains for a
contemplated Strinq, the garbage collector (see string Garbage
Collection, 17-30) is called to obtain more (by compacting the
current space, if possible). If this fails, the program will restart
and request more reasonable allocation.

Parameters Used hy String operations

17-29.

ST (USER)

STTOP (USER)

TO P B Y T E (tJ S E R)

RE McnR (U SER)

TO ps'rn (TJSER)

Bottom (low address) of String space

(Top+1) of String space

Byte pointer such that IDPR TOPBYTE(USER) will
store into next character

Negated number of free characters remaining

WORD1 for last created
substrinq operations).
decide whether its first
moved (s~e cat, 17-20).

string (doesn't include
CAT uses this word to
argument needs to be

string Garbage Collection

17-30. The string garbage collector <STRNGC) is called whenever
the (estimatHd or actual) size of a soon-to-be-created String is
larger than -REMCHR(USER). By various devious means it finds all
active (non-constant) string descriptors, sorting them in ascending
address sequence by using the byte pointers,' associating all
substrings of a given active string (major string) ••• ouch. Then it
compacts string space by moving the text for all major strings to
lower memory locations occupied by text no longer reachable from any
descriptor. Finally it updates all String descriptors and the
parameters described above. If there is still not enough room, it
prints a frustrated message and restarts the program with the
alloca ti on sequence norma 11y obtained by typing the REEnter system.
command (see STORAGE ALLOCATION, 14-22).

127 SAIL MANUAL

string-oriented Machine Language Routines

17-31. If you must write a routine which operates on strings,
please observe the following conventions:

1) See PROCEDURE IMPLEMENTATION, 17-46 for conventions
concerning input parameters and value returning.

2) If you merely need to read a string, no particular care is
required (don't change the descriptor of a reference String
parameter by performing careless ILDBs).

11-32. If you need to create a new string, these are also
ap pl ieah Ie:

4) Estim~te the number of characters if it is not known
pXRctly. This ~stimate must be an upper bound; an
unrealistically larq~ estimat~ will cause the garbage
collector to work more often than nec~ssary. Place th€
0stim~t@ in rpqister A (1).

Expcut~ the following code hefore doing any
5 trinq-munchinq:

MOVE
]\ n.oM
S-KIPL E
PUSH .. 1

USER,GOGT7\B
A , R EM. C H.R (U SEH)
REMCHH(USER)
P,S'T'RNGC

;ESTARLISH ADDRESS ABILITY
;UPDATE REMAINING COUNT
iT EST IMPENDING OVERFLOW
;COl .. LEC'r, WI.LL .NOT RETURN.IF
~ NEW REMCHR+C{A»O.

5) TOPBYTE(USER} should be your WORD2 result. Save it now.

6) Do repeated IDPBs to TOPBYTR{USER) to store your string.
This keeps TOPBYTE accurate. count characters if your
estimate was only an estimate.

7) Crea te WORn 1 of your result. The left ha 1f is the le-ft
half of TOPSTR(USER) incremented by one. The right-half is
the length of your new string. This word is not only WORD1
of your result, but also should be placed in TOPSTR(USER).

8) Subtract (estimate - actual length) from REMCHR(USER) to
keep it honest. This should make REMCHB if anything more
negative.

9) Retu~n string results on the top of the SP stack. If a
resulb is to go in a reference parameter (see PROCEDURE
IMPLEMEN~~TION. 17-46) remember that the address you have
is that of the WOBD2 (byte pointer) word of the descriptor.

128 SAIL ·MANU AL

ARRAY IMPLEMENTATION

Form

17-33. Let STRINGAR be 1 (TRUE) if the array in question is a
string array, 0 (FALSE) otherwise. Then a SAIL array of n dimensions
has the following format:

HEAD: ~DATAWD

HEAD-END-1
ARRRED: BASE_WORD

LOWER_BD(n)
UPPER_BD(n)
MULT(n)

;SEE BELOW

., ..
LOWER_BD(1)
UPPER_SD(l)
MULT(1)
NUM_DIMS"TOTAL_SIZE

DATAWD: BLOCK TOTAL_SIZE
<sometimes a few extra words>

END: 400000,,-HEAD

Explanation

17-34.

HEAD

ARRRED

BOUNDS

MULT

The first two words of each array, and the last, are
control words for the Storage Allocation Routines,
17-5. These words are always present for an array.
The array access code does not refer to them.

Each array is preceded by a block of 3*n+2 control
words. The BASE_WORD entry is explained later.

This is the dimensionality of the array_ If STRINGAR,
this value is negated before storage in the left half.

The total numbet of accessible elements (double if
STRINGAR) in the array.

The lower bound and upper bound for each dimension are
stored in this table, the left-hand index values
occupying the higher addresses <closest to the array
data). If th~y are constants, the compiler will
remember them too and try for hetter code (i.e.
immediate operands).

This number, for dimension m, is the product of the
total number of elements of dimensions m+1 througb n.
MULT for the last dimension is always 1.

129 SAIL MANUAL

This is

DATAWD - the sum of (STRINGAR+1l*LOWER_BD(m)*MOLT(m)

for all m from 1 to n. The formula for calculating
the address of A[I,J,Kl is:

address(AII,J,K]) =
address(DATAWD) +

(I-LOWER_BD(1».MULT(1) +
(J-LOWER_BD(2»*MULT(2) +
(K-I.OW.E.R._BD (3))

This expands to

address(AII,J,K) :
address(DATA~D) +

I*MU1T(1) + J*MULT(2) + K
-(LOWER_BD(1)*MULT(l) + LOWER_BD(2)*MULT(2)

+ LOWER_BD())
which is

By pre-calculating the effects of the lower bounds,
several instructions are saved for each array
reference.

Array Allocation

Dy namic A.crays

11-35. When an array is declared in any block other than the outer
one, the compiler generates code tocal1 the frinction ARMAK with
parameters describing the actay. This routine calls CORGET (see
storage Allocation Routines, 11-5) to obtain enough storage, then
sets up the control table and clears the data area to zeroes. The
ARRHED address is saved in an array push-down list whose ,'pointer is
ARRPDP(USER). The address of DATAWD+1 is returned for string ~rrays~
the address of DATAWD is returned for all others. The compiler
generat.es code to store this address in the core cell bearing the
name of the array variable.

17-36. When all declarations for a block containing array
declarations have been processed, the compiler issues a call to ARMRK
which marks the array push-down stack (with a -1, as a matter of
fact). On block exit (or when a GO TO transfers out of the block),
the routine ARREt is called to remove this mark and return ali arrays
back to the previous mark to the SAIL free storage list.

17-37. The string garbage collector uses the array push-down stack
to find dynamic string arrays which need attention.

130 SAIL MANUA.L

Built-In Arrays

17-38. Outer-block arrays have constant bounds. The compiler
simply emits a Jrst instruction, then compiles the control table lnto
the block head of the object program. It leaves room for the array,
then issues the END word. The J~st instruction then finds its home
in some code to clear the array to zeroes.

17-39. Th~ core location bearing the name of the array has
address of DATAWD (DA'l'AWD+ 1 i.f STRING AR) complIed into it.
address is given the dotted name described in DEBUGGING, 15-9.

the
This

17-40. For built-in string arrays, a String link block (see
PROCEDURE I ~PLEMENTATION, 17-46) is issued following the space
allocated for the array. The string garbage collector (see String
Garbage Collection, 17-30) gains access to this array througb this
st at ie 1 ink.

11-41. It can he seen from all this that all dynamic and built-in
arrays are cleared when the blocks in which they are declared a~e
entered. Since the outer block of a separately compiled procedure
file (see Separately Compiled procedures, 16-7) is never entered, its
built-in arrays, although available' for use, a.re never cleared. The
loader clears them once as it loads.

Array Access Code

17-42. In the worst case (no fixed bounds, bounds checking, not
built.-in) the statement K A [I,J] will be compiled as:

MOVE
MOVE
CAML
CAMLE
AFERH
IMUL
MOVE
CAML
CAM.L F
ARERR
ADD
ADD
MOVE
.MOVEM

1,A
2,T
2,-4(1)
2,-3(1)
1,[ASCIZ /1\/]
2,-2(1)
3,J
3,-7(1)
.'3,·-6(1)
2, {hSCIZ /1\/]
3,2
3,-10(1)
4, (3)
4,K

;~PIRST DATA WORD
;FIRST SUBSCRIPT
~IF <LOWER BOUND OR
;>UPPF.R BOUND THEN
; ERROR IN INDEX 1
;I*MlJLT(l)
;CHECK DIMENSION 2

;NO MULT FOR LAST, COLLECT OFFSET
; + EASE_WORD
;D~TA FROM A(I,Jl

131 SAIL MANUAL

17-43. If A is, however, declared in the outer block as SAF!
INTEG~R ARRAY A(1:10,1:51, the code for AII,J1 is

MOV.E
IMULI
ADD
MOVE
MOVEM

1,I
1,5
1, J
2,1\.-5(1)
2,K

: r+ M ULT (1)
;COLt FCT OFFSET
:CONSTANT PART OF ADDRESS COftPILED IN

17-44. Alr,3] would be compiled as

MOVE 1,I
.IMur.I 1,5
MOVE 2,1\.-2(1)
MOVEM 2,K

and J A[2,3J would be

MOVE .3,A.+1
• • •
MOVEM 3,J

17-45. Various configurations of array declarations and accesses
result in code ~hich ranges between these degrees of efficiency.

PROCEDURE IMPLEMENTATION

17-46.

Proced ure Body

17-41. To describe the main characteristics of SAIL procedures, a
set of sample procedures are displayed here along with the code they
produce. Some of the entries are discussed in more detail below.
The notation In] is placed in the comment field of the assembly
instruction to refer to these discussions:

INTEGER PROCEDURE P1(INTEGER I,J; STRING A);
Pl: AOS P1PAC ;[1] INCREMENT PROC ACTIVE COUNTER

BEGIN
INT EGER
INTEGER

Q; STRING ,A,B;
AR R .A Y X [0 : 5] ;

PUSH
PUSH
'PUSH
PUSHJ
I10VEM
PUSHJ

<cod~ for procedure>

P,IO]
P,tS]
P,ll]
P,ARMAK
1,X
P,A'RMRK

;ALLOCATE AND .CLEAR
; STORE POI·NTER
;END OF ARRAYS FOR BLOCK

132 SAI.L MANUAL

RETUHN(Q) :
MOVE
PUSHJ
JRST

1,Q ;[2] RESULT IN 1
P,ARREL 1[3] RELEASE ARBAYS FOR BLOCK
P1EXIT ;EXITPROCEDURE

<more code for procedure>

PUSHJ
P1EX IT: 50S

SUB
SUB
JRST

Q: 0
X: 0
TEMP07: 0
A: flLOCK
B: BLOCK
P1PAC: 0

XWD
I.NKW 0: 0

.LINK

P,ARREL ;IF FALLS THROUGH, RELEASE ARRAYS
P1PAC :ONE TIME LESS ACTIVE
S~,[XWD 2,2] ;REMOVE STRING PARAMETER
P,{XWD 3,3] ;[4] NON-STRINGS, RETURN !DDR
@3(P) ; .RETUR N

:ROOM FOR VARIABLE
:ARBAY POINTER
;[5] TEMPORARY STORAGE

2 ; TWO WORDS FOR EACH STRING
2

:[6] PROCEDURE-ACTIVE COUNT
2,A ;STRING COUNT, ... FIRST

;[7] LINK PASSES THROUGH HERE
1,LNKWD ;[7] CAUSES LOADER LINKAGE

PROCEDURE P2(INTEGER I,J: STRING A);
BEGIN

INTEGER ARRAY X[0:10]; . ..
BEGIN

INTEGER AR~AY Y[0:10];

RETUR N;

. . .
END;

END'P2-;

PUSHJ
PUSHJ
JRST

P,ARREL
P, ARREL
P2EXIT

STRING PROCEDURE P3(STRING A,B);
BEGIN STRING C. . . .

RETURN(C) ;
SUB
PUSH
PUSH
JRST

SP,[XWD 4,4]
SP,C
SP,C+1
.P3EXIT

133

;RELEASE ARRAYS FOR ALL
; BLOCKS IN PROCEDURE

; RE110V.E PARA.liS

;RETURN STRING RESULT

SAIL I1ANUA.L

RETURN (B);
SUB
PUSH
PUSH
\lRST

SP,[xwn 4,4]
S P, 3 (s P)
SP,3(SP)
"P 3.'EXTT

;FIRST WORD OF .B
;SECOND WORD OF B
; GO RETURN

RETURN(C&·STR~); COMMENT ASSUME CAT ALREADY DONE:
SUB SP,[XWD 6,6] ;REMOV! PARAMS, TEMP RESLT
PUSH SP,5(SP) ;TEMP RESLT
PUSH SP,S(SP) ;2D woan
aRST P3EXIT

· ..
END 'P.3~;

P3EX IT: S'OS
SUB
POSH
.PUSH

P3PAC
SP,(XW~ 4,4] ;NOT THIS TIME, BUT WOULD
sP,tO] ;BE INCLUDED IF NO RETURNS
SP,ro] :DONE ABOVE (RETURN NULL STRING)

RECURSIVE INTEGER PROCEDURE P4(STRING A,B; INTEGER I,J);
P4TEXT: AOS P4PAC

BEGIN
STRING C,D; INTEGER K,L: · ..

END 'P4';
P4EXIT: SOS

SUB
HRRI
HRI .. I
)BLT

=8,=8] :[81TAKE OFF LOCALS,PARAMS
P4PAC
SP,rXWD
TEMP, c
TEMP,5(SP)
TEMP,D+1

SUB
H.RRI
HRLI
BI.T
J.RST

P,[XWD 6,6.1
TEMP,K
'IEMP,4(P)
TEM P, T.E MPO]

@.3 (P)

; [8]
: [8]

i[81 RESTORE LOCAL STRINGS

;[8] SAMB FOR P-SIDE
; (ALSO RETURN ADDR REMOVED)

;MUST EVEN SAVE TE~PS
; RETURN

pq: ADD P,[XWD 3,3] ;LEAVE BOOM FOR LOCALS
SKIPL P ;CRECK PUSH-DOWN' OVERFLOW
PDLOV P, ;[9JUUO TO SIMULATE PDL OV
BRBI TEMP,-2{P) ;[9JSAVE LOCALS
HRLI lEMP,TEMP03 ; AND TEMPS
,J~LT TEMP, CP)
<similarly for SP (string stack»
JRST P4TEXT :GO DO PFOCEDURE
<variables and such>

RECURSIVE STRING PROCEDURE PS(STRING A,B);
BEGIN

STRlt-lG c,O; · . .
RETURN(e);

134 SAIL MANUAL

PUSHJ
PUSH
PUSH
PUSHJ
~JRST

P,P5POP
SP,C
SP,C+1
P,ARRF.L
P5EXIT

;(10]REMOVE STRING LOCALS,PARAMS
;STRING .RESULT

:ENOUGH TIMES IF ANY ARRAYS

RETURN (B);
PUSHJ
PUSH
PUSH
Jt~ST

P,P5POP
SP,3(SP)
SP,3(SP) ;RETURN PARAMETER
P5EXIT

RETURN(A&·STR·);

...

.POP
POP
PUSH~l'

PUSH
PUSH
JRST

SP,1 :(111ASSUME CAT ALREADY DONE
SP,O
P,P5POP
SP,O ;[11JRETURN VALUE
SP,1
P5EXIT

E~D ·P5"';
P5EX IT ': SUB

.JRST

Pp[XWD 2,2] ;OR WHATEVER. SEE ABOVE
;BESTORE LOCALS, ADJUST

@1(P) : RE'fURN

P5: <as above>

P5POP:SUB SP, {XWD =8,=8J ; [10] REMOVE STR.ING LOCALS,PARAMS
HRPI TEMP,e
ARtI TFMP,S(SP)
BIT TEMP,D+'
POPJ P, : RETURN

The main proqram has the following format:

s. : SKIP1\
SETOM
JSR

;NOT STARTED IN RPG MOUE
RPGSW ;STARTED IN RPG MODE -- RPGSW A GLOBAL
SAILOR :INIT -- RETURNS BY PUSHJ P.@SAILOR

Commen t ~ Th e rna in pro gra m looks like a non-recursi ve pr oced u re
from here on, except for built-in arrays _

POPJ P, ;BRTUBN TO INIT, WHO EXITS
<global variables, linkages>
<non-Strinq constants>
rWD 0,,=8 ;TYPICAL STRING CONSTANT
.POI NT 7 , • + 1
ASCII /CONSTANT/
<more String constants>

END s. ;STARTING ADDRESS FOR MAIN PROGRAM

135 SAIL MANUAL

Di. scussion

11-48.

[1J There is for each procAdure a word (PAC for Procedure Activ£
Count) which is incremented on procedure entry and decremented
on ~xit. At one time, th~ String garbage collector used this
wor~. It may again somA time in the future. At present the
counter is useful for determining the depth of recursion (from
DDT).

(2J Non-Strinq procedures return
returns things in 0; string
st ack.

their results in 1; Fortran
results are returned on the SP

[31 An ARRFL call is issued for each block (containing arrays)
which must be left in order to exit. All arrays for these
blocks are released at this time. The same sort of thinq
happens when a Go To statement leaves one or more blocks.

[4] Since the return address is on the top of the P-stack, with
parameters buried h~neath, a subtract and an indirect jump
replacp the PO"J. Procedures always adjust the sta~k before
return tng.

[5] String temporaries are kept in the SP stack. others
occassionally occupy core locations. These are grouped with
the non-String variables to make saving and r~storing easy in
recursive procedures.

£6] This is the Procedure Active Ccunt wo·rd (see [1]). It is
placed in a fixed location with respect to the string-link
block (below). The String garbage collector could, if it
wished, see this count.

(7J A linked list, with its head in a reserved cell in the user
table (see User Table, 17-1) gives the String garbage collector
access to all Strinq variables declared for each procedure: and
to all built-in String arrays. Each entry on th~ list contains
three words: a PAC counter (currently ignored), a word giving
the location and extent of the String descriptors being
described, and the pointer (T .. NKWD) to the next ,entry. A C
entry enRs the ·list. The LINK pseudo-op (or the equivalent
code issued by SAIL) instructs the loader to create this list.
The LINKEND pseudo-op is issued in the SAILOR routine to
collect the address of the first list element. This is then
transferred to the user table. See (Weiher] for details
concerning the LINK block type.

[8] When·a recarsive procedure is called, all values for variables
declared in blocks internal to this procedure are saved in the
appropriate stack. These are added ·on top'of- the parameters
and return address for the procedure. At procedure exit the
stack pointer is adjusted to point below the first parameter.
Then the proper BLT word is S(~t up to restore all these locals
from the stack. After the BLT is executed, that stack ~s ready
for procedur~ exit.

136 S A'! T .. MANUAL

(9] Since SAIL is a one-pass compiler, it does not know how many
locals a Frocedure has until all blocks for that procedure have
been processed. Therefore the entry code for recursive
procedures is added last, followed by a jump to the procedure
text.

(10] When a String procedure returns a value, the String parameters
and locals must be removed from the stack before the value
(result) can be pushed on. Since the total number of Strinq
locals is not ~yet known, a routine like PSPOP is called to
remove the unwanted values first. Recursive string procedures
must contain Return statements (see Return statement, 5-19);
otherwise improper code will result.

(11] Once P5POP or its equivalent has been execut~d, the previous
top of stack location is not known; the temp value is therefore
removed first and restored after the call.

Proc~dure Calling Sequences

17-49. Again a case study is presented. A procedure with several
internal procedures is presented to demonstrate the ridiculous number
of possibilites. Only the relevant corle is described. Accumulator
numbers in the code below are only examples -- other values are
possible. T his list is not complete; to describe all cases here
would take more space than a copy of the code in SAIL which handles
them. Item and Set parameters behave like Integer and Real
parameters as far as argument passing is concerned:

PROCEDURE SUPER(TIEFERENCE STRING RPSTR;
INTEGER PINT; TIEFERENCE INTEGER RPINT:

BEGIN

REAL PROCEDURE PPAR;
STRING PSTR1,PSTR2);

INTEGER INT1,INT2; STRING STR1,STR2; REAL BEL;
SAFE INTEGER ARRAY ARR[2:10]; SAFE STRING ARRAY SARR[2:101;
INTEGER PROCEDURE INTP(INTEGER I,J); ••• ;
PROC~DURE RINTP(REPERENCE INTEGER I); ••• ;
PROCEDURE STRP(STRING A,8); ••• ;
PROCEDURE RSTRP(REFERENCE STRING A)~ ••• :
PROCEDURE PROCP(PROCEDURE PARAM); ••• ;
PROCEDURE A~RP(STRING ARRAY X); ••• ;

TNT 1-PI NT t 2 .. .RPINTt 2
MOVE
IMUL
MOVE
TMUL
ADD
SUBI

- 3;
1,-3(P)
1 , 1
2 ,@-2 (P)
2,2
2,1
2,3

137

;RELATIVE LOC OF PINT

:RPINT's ADDRESS IS IN STACK

: S-UM
;RRSULT LEFT IN 2

SA IL MA NU A.L

REL-INTP(INT1,PINT);
PUSH
.PUSH
MOVEM
PUSHJ
FLOAT

RINTPCINT1) ;

RINTP(PI NT) ;

HINTP(RPINT) ;

PUSH
MOVE.M
PUSHJ

MOVEI
PUSH
,PUSHJ

PUSH
PUSIIJ

P,2
P ,-4 (P)
2,INT2
P,INTP
1,1

'f,£INT11
1, REL
P,RINTP

3,-3(P)
P,3
P,RINTP

P,-2(P)
P,RINTP

INT2-INTP(INT1,ARR(PINT]);
PUSH P,INTl
MOVE 1.J,-4(P)
MOVE 5,AlHl
ADD 4,-4 (5)
PUSH P,(4)
PTJSHJ 'F,INT.!?

RINTP(ARR[PINT):
MOVE
MOVE
AnD
PUSH
MOVEM
PUSHJ

STRP(STR1&'CON',PSTR1);
PUSH
PUSH
PUSH
PUSH
PUSHJ
PUSH
PUSH
.PUSHJ

R S T R P (ST R 1) ;

RSTRP(RP STR) ;

PUSH
PUSHJ

PUSH
PUSHJ

6,.PINT
7,ARR
6,,-4(7)
F,6
1 ,I NT2
P,RINTP

SF, STH 1.
SP,STR1+1
SP,CON1'\D
SP,CONAD+1
P,CAT
SP,-4CSP)
SP,-4CSP)
P,STRP

p,rs'rR1+11
P ,RSTRP

P ,-4 (P)
P,RSTRP

138

:INT1 STILL IN 2
; [11ADJOST FOR PREY PUSH
: r 2] ST01~E CURRENT ACS BEFOR.E CAL L
;CALL PROCEDURE
:CONVERT TO REAL -- BEL IS IN 1

i ADD RES S OF I NT 1
~PREVIOUS RESULT

;ADDRESS OF PINT

;PASS ON ADDR OF RPINT

; PINT

;5ISE ADDR OF ARB

; RESULII IN 1

; ADDRESS

;ADDRESS OF DSCRPTR FOR 'CON-

;LEAVE CONCATENATE IN STACK
;PUT 5TH1 ON TOP

;ALL REF PARAMS TO P-STACK

;PASS REFERENCE ALONG;

SAIL MANUAL

RSTRP(PSTR2) ;
HRROI
·PUSH
PUSRJ

10, (5P)
P, 10
P,RSTHP

;[3JRH·2D WORD OF PSTR2

PROCP(RINTP) ;
PUSH
PUSHJ

P., f"HINTP]
P,PROCP

;PARAMETRIC PROCEDURE

i\ R RP (SA R R) ;
PUSH
PUSH\.l

P,SA..RR
F" ARRP

;THIS IS EFFECTIVELY A REFERENCE CALL

Discussion

17-50.
[1] Counts are maintained of the current number of actual

parameters (during a procedure call) on ~ach stack. These
counts wust be added to the parameter indices to access
parameters of the procedure doinq the calling.

(2]

[)]

Whenever a SAIL procedure is called, all accumulators except
SP ('16) and P ('17) are available for its use.

Some String operations require that the left half of
pointers to descriptors be negative. Therefore any
operation which obtains a String descriptor address does a
HTIRO or HRBor to accomplish this. In this case it is not
necessary, but it won't hurt anything. string reference
parameters always point to the spcond word of the string in
question.

1.39 SAIL MANUAL

SECTION 18

APPENDIX -- USEfUL SUMMARIES

ARITHMETIC TYPE-CONVERSION TABLE

18-1.

OPERATION

+ -* • 0/0

LA NO .LOR
EQV lOR

LSH ROT

MOD DIV

ARG1

INT
R. E AI ..
INT
HEAL

INT
REA.L
I.NT
REAL

IN1f
REl\L
INT
REAL

TNT
REAL
TNT
REAL

IWr
R.E1\L
TNT
REAL

ARG2 AHG1*

INT TNT
INT REAL
REAl .. REAL
REI'L REAL

INT INT
INT .R E.AI ..
HE 1\L· TNT
HEAL REAL

INT INT
INT R'EAL
REAT. IN'r
REA.L REAt.

INT REAL
INT REAL
REAL REAL
REAL REAL

TNT INT
INT INT
REAL TNT
REAL INT

AT1G2*

TNT
REA.L
n EA.L
'HEAL

INT
INT
R'.E.AL
RElfL

INT
INT
.INT
INT

REAL
REAL
REAL
REAL

INT
IN'!
INT
TNT

* Unless ARG2 is <0 for the operator t

SAIL RESERVED WORDS

1 A-.2.

RESULT

I"Wr*
REAL
REAL
REAL

TNT
REAL
INT
REA.L

INT
REAL
INT
REAL

REAL
REA'L
REAL
REAL

INT
INT
.INT
INT

AOS AND ANY ARRAY ARRAY_PDL BEGIN BOOLEAN CASE COMMENT COMPLEX COP
CVI CVN DATUM DEFINE DELETE DO DONE ELSE END ENTRY EQV ERASE EXTERNAL
FALSE FIRST FOR FOREACH FORTRAN FORWARD FROM GLOBAL GO GOTO IF IN
INTEGER INTERNAL ISTRIPLE ITEM ITEMVAR LABEL LAND LENGTH LIBRARY
LOAD_MODULE LNOT LOP LOR LSH MAKE MOD NEEDNEXT NEXT NEW NEW_ITEMS NOT
NULL OF OR OWN PHI PNA r1ES PRELOAD_ WITH PROCEDURE PUT REAL RECURSIVE
REFERENCE REMOVE RlQUIRE RETURN ROT SAPE SECOND SET STEP STRING
STRING_POL STRING_SPACE SUCH SYSTE~_PDL THAT THEN THIRD TO TRIPLE
TRUE UNTIL V~LUE WHILE XOR

1 '.,.0 SAIL MANUAL

SAIL PREDECL~REn IDENTIFIERS

18-3.

ARRBLT ARRINFO ARRTRAN ftRRYIN ARRYOUT BREAKSET CALL CLOSE CLCSIN
CLOSOUT CLREUF CODE CV~SC eVil eVE CVF CVFIL CVG CVIS eva evos CVS
CVSI CVSIX eVSTR CVXSTR ENTRR RQO GETCHAN GETFORMAT INCHRW rNCHRL
INCHRS INCHSL INCHWL INSTR INSTRL INSTRS INPUT INTIN INTSCAN LENGTH
LINOUT LOOKUP ~ThPE OPEN OUT OUTCHR OUTSTR HEALIN REALSCAN RELEASE
RENAME SCAN SETBREAK SETFORMAT STRBRK TTYIN TTYINL TTYINS iOBOIN
WORDonT USERBRR USETI USETO

CHARACTER-IDENTIFIER EQUIVALENCES

18-4.

CHARACTER

1\

.,
v

(ciI: cle- cross)
(infinity>
(epsilon)
(vertica 1 bar>

RES.ERVEO WORn

AND
EQV
NOT
OR
XOR
INF
IN
SUCH THAT

PARAMETERS TO THF OPEN FUNCTION

18-5.

eH 1\ NNEI.

DEVICE

MODE

INBWFS

OUtrBTrFS

COUNT

BRCH AR

EOP

system Data Ch~nnel, O~117

string giving device name

data mode

number of input buffers

number of output buffers

text input count (reference)

break char variable (reference)

end-o£-file flag (reference)

141 S ArL Ii.A NU At

BR EAKSET MODES

18-6.

I

x

o

s

A

R

N

L

E

D

(Inclusion) string is set of break chars

(eXclusion) string of all non-break chars

(Omit) string of characters to be omitted from result

(skip) break char appears only in BnCHAR variable

(Append) break char is last char of result string

(Retain) break char is first char of next string

(pass) line numbers appear in input without warning

(No numbers) line numbers and the tabs that follow them
ar~remov'ed.

(Line no break) line numbers cause input break. BRCHAR
is neqative. Next input gets line no characters.

(Erman) line numbers cause input h~eak. Negated line no
returned in BRCHAR. Line no removed from input.

(nisplay) after this appears, each line no is listed on
th@ display (if TTY is a oPt) as it is dealt with.

1'1 T .A P E CO M MAN D S

18·-7.

MODE FUNCTION

Advance past one tape mark (or file)

Backspace past one tape mark

Advance one record

Backspace one record

Rewind tape

write tape mar.k

Rewind and unload

142 SAIL MANUAL

COMMAND SWITCHES

18-8.

C
D
numP

numL

numM
p
Q

R
numS

cr~ate a cross-reference (eREP). (see (OECREP])
double size of define pushdown stack
listinq control mode hits -- 1 prints program counter.
2 prints line numbers. 4 macro names and parameters.
'10 macro expansions. '20 macro expansions enclosed in <>.
listing control -- num>O becomes listing starting addr.
num=-1 starts listing after current DDT size. num=-2
starts listing after current RAID size.
initial debugging mode set to num
double size of system pushdown list
double size of string pushdown list
double size of parse pushdown list
set size of string space to num

DEBUGGING MODES

18-9.

1

2

4

5

6

display before executinq each code generation routine

don't display, but remain enabled for asynchronous and
line breaks

display before each production is compared

continue from type 1 and 3 modes automatically

just display input file as it goes past

disable debugging mechanism (started in this mode unless
an M switch appears).

VALID RESPONSES TO ERROR MESSAGES

18-10.

en

LF

s

x

.L

E

D

(carriage return) try ·to ,continue

(line feed) continue automatically
user go-ahead after each message

don't stop fo,[,

resta rt.

exit close all files, return to monitor

. look at stacks -- of interest only to compiler fixers

edit. Follow by CR to get file the compiler is
on (or last thing edited, for r~ntime routines).
with <name> CR to edit <name>.
go to DDT or RAID

143 SAIL MANUAL

working
Follow

19-1.

REFER.ENe E

Decref

Feldman

Moor-c.r

Wei.her

Sa vitzky

SECTION 19

BIBL.IOGRAPHY

DESCRIPT.ION

Digital ~quipment corporation, PDP-10 Reference
Han(lhook, Maynard, Mass. (1969)

Feldman, J.A. and Rovner, P.D.
Associative Language, Comm.
196Q), 439-449.

Moorer,
Manual~

J. A • Stanford .1\-1
Sallons 54 and 55 (Sep.

An Alqol-Basefi
ACM 12, 8 (Aug.

project
1 969) •

Monitor

Weihpr, W.F. Loader Input Format, Sailon 46
(Oct. 19(8).

Savitzky, S.R. Son of stopgap, Sailon 50.1,
(Sep. 1969), a revision of stopgap, Sailon 50,
by 1i1.F. i>leiher.

144 SAI"LMANUAL

INDEX

10- 1
10- 1
10- 1
10- 1
10- 1
10- 1
10 - 1
10 - 1
7- 1

10- 1
9-50
8- 1
6- 1
6- 1
q- 1
<3- 1

13- 9
6- 4
9- 1
9- 1
9-28
8- 1
8- 1
4- 1
9- 1
9- 1
9- 1
<)

q-15
3- 1

10- 7
18
11-13
9-21
3- 1
3- 1
3- 1

17-35
3-25

17-33
12-107
3-] 0
3-26
3-27

12-109
12-107
12-111
12-50
12-55
16-12

8
4- 1
9- 1
4- 1
9- 4

<o_associativc_expr>
<o_derived_set>
<D_item_expr_list>
<D_item_expression>
<o_set_expression>
<D_set_fact.or>
<D_set_primaI."Y>
<o_set_term>
<o_triple>
<D_triple>
Abs
<ac_field.>
<actual_parameter>
<actual_parameter~list>
<actual_parameter_list>
<act ual_paremete_t:>
Actual Parameter Expansion
Actual PaI."ameters
<adding_expression>
<adding_operator>
Adding Expressions
<address>
<adaresses>
<algebraic_assignment>
<algebraic_expression>
<alqebraic_relational>
<algebraic_variable>
ALGEnRAIC EXPRESSIONS
Algebraic Expressions
<ALGFBRAIC_TYPE>
ANY Construct
APPE'DIX -- USEPUL SUMMARIES
Arithmetic Constants
Arithmetic Type Conversions
<array_declaration>
<array _lis·t>
<array _s\:~gment>
Array Allocation
Array Declarations
ARRAY IMPLEMENTATION
ARRAY MANIPULATION ROUTINES
Arrays, outer block
Arrays, SAFR declaration
Arrays, storage convention
Arrblt
Arrinfo
Arrtran
Ar:ryin
Arryout
Assembly Lanquage Procedure~
ASSEMBLY LANGUAGE STATEMENTS
<assignment>
<assignment_expression>
<assignment_statement>
Assignment Expressions

145 SAI.L MANU AL

4- 7
4- .'3
4- 8
4
7- 1

1C- 1
10- 1
7- 1
1-17

11
19
14- 1
7- 1
2- 1
2- 1
2- 1
2- 9
3-20
3-14
9- 1

10- q
9-10
7-15
9-52
3- 1
3- 1
7-11
9-53

10- 5
12-22
4- 1

12-120
4-10

12-115
17..,..12
9- 1
5- 1
5- 1
9- 6
5-18

12-10
12-113
8- 1
0- 1
8- 1
8- 1

14- 1
14- 1
2-10

11-22
14
2- 1
2- 1
9-36
9- 1
5- 1
9- 2

Assiqnment statement, DATUM
Assiqnment statement, semantics
Assignment statement. Swap
ASSIGNMENT STATEMENTS
<associative_context>
<associative_expression>
<associative_operator>
<associative~statement>
1\ssoci'ative cont.ext, satisfaction
BASIC CONSTRUCTS
BIDI.TO GHAPHY
<binary_name>
<bindin9_list>
<block>
<11lock_hcad>
<block_name>
Block Names
Block struc-ture,for items
Boolean, declaration
<boolean_expression>
Roolean constructs, for LEAP
Rool~an Expression, anomaly
Boolean expressions, if FOREACH specifications
Boolean Primaries
<bound_paLe>
<bound_pair_list>
Bracketed Triples
Bracketed triples, ISTRIPLE
Bracketed triples, selectors
Breakset
<byte_statement>
Byte pointers, creation
Byte st.at.ernents
Call
Caninc
<case_expression>
<casG_statement>
<case_statement_head>
Case Expressions
Case stat.ements
Close, Closin, Closo
Code
<code_begin>
<codf.~_ block>
<code_head>
<code_ tail>
<command_line>
COMMAND ·FO.RMAT
Comment
Comments
COMPILER OPERATION
<compound_statement>
<compound_tail>
Concatenation Operator
<conditional_expression>
<condi'tional_sta tement>
Conditicnal Expressions

146 SAIL M.ANU At

5- 2
5- 6

11-13
11-14
11-15
11-17
7- 8

10- 1
4- 6
9-21
9-12
3-35
3-17
9-26
9-11

10- 4
17- 6
17-11
17-10
12-101
12-97
12-88
12-105
10- 8
12- 84
9-48

12-99
12- 82
12- 80
12-86
12-103
12-93
12-95
7- .3
u- 7

11- 6
15- q
14-14
]- 1
2- 3
3
3- 1
3- 1
3- 1
3-54

13- 1
3- 1
3- 1
7-10

14- 1
9- 1
9-18
8- 6
5-1
5-17
5- 1
5-2.3

Conditional statements
Conditional statements, ambiguity
Constants, arithmetic
Constants, octal
Constants, real
Constants, string
Construction, definition
<construction_item_prim>
Conversions, algebraic
Conversions, algebraic
Conversions, Boolean to Integer
Conversions, for preloaded arrays
ConvArsions, strinq
Conversions, strinqs
Conversions, to BOOLEAN
COP, of set
Corg(~t

Carine
Cor.r e 1
Cvasc
evil
eve, Cv.f, Cvg
CviiI
CVI
cvis
Cvn
evo
evos
Cvs
cvsi
cvsix:
Cvst.r
Cvxstr
D.l\TU M, use 0 f
Datum" Assiqnments
Da t U IDS

DEBUGGING
Debugging modes
<declaration>
Declarations
DECL ARATTONS
<define_body>
<define_identifier>
<define_specification>
Define Specification
Defining Mac.ros
<definition>
<definition_list>
nF.LBTE

'<d ev ice_na me>
<disiunctive_expression>
Disjunctive Exp~essions
Distinctions Between ST~RT_CODE and QUICK_CODE
<\.~o_sta temen t>
Do statement
<done_statement>
Done Statement

147 SA II. MANU AL

4-10
7- 1
2- 1
2-11

12-73
7-13
7-13

14-19
5

12
9- 1
9- 1
q-14
3- 2
3-46
9- 1
q-37

11-16
14- 1
14- 1
14- 1
, C - tj

5,- 1
5- 1
5- 1
5-11
7-18
7-14
7-20
7-19
7-21
3- 1
]- 1
3- 1
3-38
3-53
3-48
6-12

16-11
3- 2
3-41
9- 1
9-43

11-11
12-12
12-78
5- 1
3-53
5- 8
5- 8

12- 6
4-10
3- 1

11- 7
4-10
5- 1
5- 5

DPB
<element>
<entry_specification>
Entry Specifications

',' Equ
"ERAS E
ERASE, restriction
ERROR MESSAGES
EXECUTION CONTROL STATEMENTS
EXECUTION TIME ROUTINES
<exp,ression>
<expression_list>
Expression Evaluation Rules
EXTERNAL declaration
External Procedures
<factor>
·,Fact.ors
FALSE, definition
<file_ext>
<fil~_name>
<file_spec>
FIRST, of bracketed triple
<for_li.st.>
<for_list_element>
<f or _5 ta t (~men t>
FOr\~ sta tements
FORmACH specification, evaluation
FOREACH statement
FORE'ACH statement, efficiency considerations
FOREACH statement, harsh warning
FOREACH statement, restrictions and warnings
<formal_param_decl>
<formal_parameter_list>
<formal_type>
Formal Parameters
FORTRAN, actual parameters
FORTRAN, declaration
Fortran Procedures
Fortran Procedures
FORWARD declaration
Forward procedure Declarations
<function_~esignator>
Function Desiqnators
Functioris, predeclared
Get.chan'
Getformat
<go_to_statement>
Go To. restriction
Go To statements
Go To Statements, restrictions
I/O ROUTINES
IBP
<.id_list>
Iden tifiers
IDPB
<1 f_ sta tement>
If ••• Else statemerit

148 S,AIL MANUAL

5- 4
9-54

17
8- 1
8- 1
2- 8

12-40
8- 1
)-13
3- 2
3-U7

10- 2
1
q-53
3-53
4- 1

10 - 1
3- 2

10- 4
3-18
3-20

10- I)

3-19
10- 6
7- 4

10- 1
3-22
3-23
7-16
7-14
7-22
7- 4
3- 1
5- 1
3- 4
3-53
9-54
7- .2
7- 7
9·- 1

10- 1
7- 1
3- 1

10- 9
7
9-46

12-71
12-113
12-1
12-4 n
14- 1
8- 1
9-49

15- 1
9-28

12-17
7- 1

If sta teme nt
ILDH
IMPLEMENTATION INFORMATION
<ind~x_field>
<indexed_address>
Inner block
In pu t
<i nfi·truct ion>
Inteqers, range
INTERNAl declaration
Internal procedures
Intersection, sets
TN'fH aDU C1f ION
ISTHTPL.E
ITEM, procedure
<item_assignment>
<item_primary>
ITEM ARBAYS~ nonexistence
Item Constructs
Item Declarations
It.em Genesis
Item SelQctor.s
Items
Items, dynamic NEW
ITEMS, storage of' instances
<itemvar_variable>
Itemvar neclarations
Itemvars, binding in FOREACH
TTRMVARS, hindin~ in FOREACH specifications
ITEMVARS, binding in FOREACH statements
ITEMVARS, in FORFACH statement
ITEMVAHS, use
<lahel_declaration>
<label~identifier>
Label use
Labels, as actual parameters
LDB and 1LD8
LEAP, introduction
LEAP r restrictions
<leap_relational>
<leap_relatidnal>
<leap_statement>
<lea p_ type>
L"EAP Booleans
LEAP STATEMENTS
Length
Length
LIBERATION-PROM-SAIL ROUTINES
Library, runtime
I.inout
<list.inq_name>
<literal>
Lnot
LOADING AND STARTING SAIL PROGRAMS
Logical Expressions
Lookup, Enter
<loop_statement>

149 SAILM ANUA.L

9-47
10- 4
)- 1

13- 6
16- 2
7-11
7-13

12-57
9- 1
9- 1

10- ()
10 - 6
5- 1
5-25

11-19
3-1]
8- 1

12- 6
12-45
2- 8
]-5D

10- .3
12-11q
9-13
)- 1
3- 1
]- 1
]-32
9-38
9- 1
3- 1
]- 1
3- 1
6- 1
3- 5

17-49
6- 4
6- 2
3-37

17-46
6
6-10
3-52
3-50
3-53
2- 1
2- 9

15
16

2
14- 1
12-70
7- 9

12-61
3-13

12-66
3- 2

LOp
LOP, of set
<lowet'_ bound>
Macro Parameters
Main Proqrfim
MAKE
MAKE, restriction
Mta,p e
<m ul t._op~ra tor>
<negated_ex~ression>
NEW_ITEM Declaration
NEW It (~ms
<next_statement>
Next Statement
NULL, definition
Numeric Declarations
<opcode>
Open
Out
outer block
Parametric Procedures
PHI, the empty set
Point
Precedenc~ of Alqebraic Operators
<pre]oad_elpment>
<p re load._.lis t>
<preload_specification>
Preload Specifications
Pr imarif,~s
'<prima ry>
<procedure_hody>
<procpdure_declaration>
<procedure_head>
<procedure_statement>
Procedure boay~ emptiness
Procedure calling Sequences
Procedure Calls, actual param~ters
Procedure Calls, semantics
Procedure Declarations
PROCEDURE IMPLEMENTATION
PROCBDURE STATEMENTS
Procedures, as actual parameters
Procedures, defaults in rleclarations
Procedures, parametric
Procedures, restrictions
<program>
Program name, for DDT
PROGRAM OPFRhTION
PROGRAM STRUCTURE
PROGRAMS, BLOCKS, STATEMENTS
<pro;_prog>
Pseudo-teletype functions
PUT, use
Realin, lntin
Heals, range
Realscan, Intscan
R~CU8SIVE declaration

150 SAIL MANUAL

]-4]

3-]A
]-52
6- 6
9- 1
g- 1
q-19

12-14
3- 1
7- q

12-21
10- 6

3·- 1
3- 1
.3-?5
3- 1
3-55

11-10
7- 8

10- 1
9-43
5- 1
5-1q

1 f~- 1 2
11·-11
3- 2
7-17
7-18

12-l~ 3
]- A

10- 5
10- 1
16 - 7
4- 1

10- 1
7- 1

10 - 1
10

3-24
10- 2
10- 3
12-35
12-75
10- .3
7-14
7- 5
B- 1
q- 1
9- 9
3- 1

14- 1
14- 1
)- 1
9-41

15- 2
15- 3
15- 4

Recursive Procedures
HF.PE"RENCE
HEFF..RENC'P.
REFERENCE, actual parameters
<relational_expression>
<relational_operator>
Relational Expressions
Release
<r.elfile_spec>
REMOVE, llse
HBnarne
REQUIRE, new_items
<reqllire_element>
<require_list>
REQUIRE declaration
<requirement>
Requ ireme nts
Reserved words, list of
Retrieval, definition
<retrieval_item_prim>
RETURN, value of function
<return_statement>
Retuen St.atement
Rpq Modp
Runtime routines, list of
SAPE declaration
Satisfiers, of associative context
Satisfiers, of associative context
Scan
Scope of declarations
SECOND, of bracketed triple
<selnctor>
Separately Compiled Procedures
<set_assignm~nt>
<set_exFression>
<set_sta temE~ nt>
<set_variable>
SBT AND ASSOCIATIVE EXPRESSIONS
Set. Declarat ions
Set Bxpressions
Set. Primaries
Set.break
Setformat
sets, derived from associations
SETS, in FOREACH specifications
SBTS, usc
<simple_address>
<simple_expression>
Simple Expressions
<simpler_formal_type>
<slashed_switch_list>
<source_list>
<space_spec>
SpecialT.ength 0Ferator (INF)
Starting the Program -- Normal Operation
Starting the Program in ~RPG~ Mode
Starting the Program with Allocation Modifications

151 SAIL MANUAl ..

2- 1
2- 6

12-37
14-22
17- 5
17- 1
9-26
9- 1

11-31
,9- 1
2-10

11-17
3-15

17-14
17-30
12-71
17-19
17-27
17-14
11- 1
9- 1
9-40

'10- 2
4- 1
4·- f3
4- 2

14-1
14- 1
14-13
15-10
12-68
9- 1
9-31

16- 1
10- 5
7-12
7-16

11-16
3- 1
3- 1
3- 1

12-75
3-11
9-51

10- 2
14·- 1
3- 1

13
17- 1
12-117
12-59
13- 5
14- 1
3-38
3-52
6- 5

11- 1

<statement>
Sta t~~men ts
Stdbrk
STORAGE ALLOC!TION
storage Allocation Routines
S TO R ~\ G Et A YO UT
String-Arithmetic Conversions
<string_expression>
String-Oriented Machine Language Routines
<string_variable>
string constant, as comment.
st.rl ng constants
String Declarations
string Descriptors
String Garbage Collection
STRING MANIPULATION ROUTINES
String OFcrations
String Space
STRINGS
<subscript_list>
<substring_spec>
Substrings
Subtraction, s@ts
<swa p_stAtp.ment>
Swap Assignment
Swap ope~ator, restriction
<switch_spec>
<switches>
Switches
Symbols
Teletype I/O Functions
<term>
Terms
THE SAIL CORE IMAGE (REQUIRED>
THIRD, of bracketed triple
Triples, bracketed
Triples, in FOREACH specifications
TRUE, definition
<type>
<type_declaration>
<type_qualifier>
TYPE CONVERSION FOUTINES
Type Declarations
Unary Minus
Union, S{~ts
<unslashed_switch_list>
<upper_bound.>
USE OF D'EFTNE
User Table
User(~rr

Uset.i, Useto
Using Macros
<valid_switch_name>
V A.ttl E
VALUE
VALUE, actual parameters
<vaL iablf~>

157. SAIL MANUAL

3-11
11- 2
5- 1
5-16

12-48
12-53

Variables
Variables
<while_statement>
While sta.temen t
Word .in
Wordout

153 SAIL MANUAL

SAIL MANUAL UPDATE

June 30, 1970CA) (supercede. update of June 19):
The followln. reserved words have be.n added to correspond to

characters whIch do not appear In the standard 64 character ASCII.

SETO

LEQ.
NEQ
UNION
SWAP

left curl, bracket
(read these two ••
1 ••• than-equals
not eqUAlls
let unlon(cup)
doubl.·~e.d.d .rrow

SETe rite curly bracket
·set op.n~ and· "set close")

GEQ ".ater-equats
ASSOC left slnale Quote
INTER set Interlectlon(hat)

Th •• e additions should be 'noted In sectIons 11-10, 11-12,
11-2, and 11-4 of the manual.

In. addItion, the cheracter "I" (exclamation point) Is now
translated Into the unclerllne character (which also does· not oceur In
standard (lImIted) ASCII). Thus, PRELOAD!WITH Is now equivalent to
the r,served word which Is un-typable. <ThIs translation doe. not
.ffect str'n,., e.,. for output.)

June '0# 197Q.(8)
The operator "18P" currently requires ~ operands, the first

ofwhtch should be·any simple varIable, which Is then tlnored! The
sImplest way to live with this heck Is.to Just use the byte poInter
twIce; I.e. If you \!fant to say "IBP(PTR)", Just say tt'8P(PTR,PTRllt • .

Jufte30, 1910(C):
".rnlnc: Do not ute assllnments to datums Imbedded In other

stat...,ts; there Is currently abul. <If you don't know what a
datum Is, then tf:lls bu. probably won't bite you.)

June 30, 1970CO)i
QUICKICOOE Is not vet Implemented <and may never be).

STARTICODE 's Implemented.

	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	A-01

