
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- .-

Stanford Artificial Intelligence L aboratory NoVember 1977
Memo AIM-308

Computer Science Department ’
Report No. STAN-CS-77-641

AUTOMATIC CONSTRUCTION OF ALGORITHMS AND DATA STRUCTURES

USING A KNOWLEDGE BASE OF PROGRAMMING RULES

by

David R. Barstow

COMPUTER SCIENCE DEi~~RTMENT
Stanford University

I- — -
~~~~~~~~~~~~~~~~~~~~~~-— ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

SECURITY  CLASSIFICATION OF TM~~S PAGE (Wh.n Oat. E,sI.r.~~ _________________________________

b~~Dr~o-r FIArII&t~~~~IJ rAT IAk I  DAr~~ 
READ INSTRUCTIONS

r~~~ i ~~~~ S ~~~~~~~~~~~~~~ i # t I i I -’JT I ‘WI... BEFORE COMPLETING FORM
i. A EPORT NUMBER - 2.

1
GOVT ACCESSION NO 3. RECIPIENrS CATALOG NUMBER

STAN-CS-77-6~ l, AIM~ 3O~J -

I-a. 
~~~~ 

3uDU U.1 S. TYPE OF REPORT 6 PERIOD COVERED(~~~~ utomatic Construction of Algorithus and flata
~~~~~~~~~~~~~~~~~~~~~~~L. /1 Structures Using a Kn~~i1.edge Base of Prog~ammin~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

______________________________________________ S. PERFORMI G ONG. REPORT NUMBER

• 
A1M-~~ 8

• AuTHOR(.) . L CONTRACT OR GRANT NUMBER(S)

(
,j  

David R./Barstow / - MD&
~~3-7~

-C.
~m~~ I
C r-

9. PERFORMING ORGANIZATION NAME AND ADDRESS I3. PROGRAM ELEMENT. PROJECT. TASIC

Artificial Intelligence Laboratory 
AREA 6 WORI( UNIT NUMNERS

Stanford University . Arpa Order 21i.911.
Stanford, C~ 9~i.3O5 

___________________________

II.  CONTROLLING OFFICE NAME AND ADDRESS 4 f R~ BU*T BMTU—~
Euguene Stubbs ~~~~~~~~~~~~~~~~~~~
ARPA/ FM 

- 

_
~~~~~~~~~,

1~ OO Wilson Blvd., Arlington, VA 22209
220 ~~ 2~2.~? ,

14. MONITORING AGENCY NAME 6 AOORESS(SfdUI.r.øt leant ConSroUSn4 DiSc.) 15. SECURITY CL . ~~~ p

Philip Surra , ONR Representative -

~.

-

Durand Aeronautics Building, Rm 165 ___________________________
Stanford University is.. DECLASSIFICATION/DOWNGRADING

Stanford, C& 9~i.3O5 SCHEDULE

16. DISTRIBUTION STATEMENT (of hi. R.poe*~

Releasable without limitation on dissemination

17. D ISTRIBUTION STATEMENT (of 5k. abstra ct .nt.ntd ln Block 20. II dUS.,.ed Ira., R.po .t)

lb. SUPPLEMENTARY NOTES

19. KEY W OR DS (Contlnia. on c.r.c.. aid. Stn.c.a i.’y wd ld.ntlly by block ntanb.v)

20. A B S T R A C (ConSIn~. on rover.. aid. I? n,c....ry and id.nSIly by block number)

See back

DD 1
~~~~~ M

73 ~~~~~~~~ 
EDITION OF I NOV 6S IS OBSOLET E
S/N 0102 LF 014 G601 UN CLA~ STFTPI’I

SECURITY CLASS IF ICATION OF THIS PAGE (W7..n Oat. Entered)

-
.—-— ,/ __-I’ ..- ,.- Id

t~ / - -/ “S- LI 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


-
-

BIock. 10. -

Despite the wealth of programming knowledge avaU~ble III the form of textbooks and
articles, comparatively little effort has been applied to the codification of this
knowledge into machine-usable form. The research reported here has Involved the
explication of certain kinds of programming knowledge to a sufficient level of detail
that it can be used effectively by a machine in the task of constructing concrete
implementations of abstract algorithms in the domain of symbolic programming.

Knowledge about several aspects of symbolic programming has been expressed as a
collection of four hundred refinement rules. The rules deal primarily with collections
and mappings and ways of manipulating such structures, including several
ent.meration, sorting and searching techniques. The principle representation
techniques covered include the representation of sets as linked lists and arrays
(both ordered and unordered), and the representation of mappings as tables, sets of
pairs . Property list markings, and inverted mappings (indexed by range element). In
addition to these general constructs, many low-level programming details are
covered (such as the use of variables to store values). -

has been designed and implemented. Algorithms are specified to PECOS in a
hi~h-level languaqe for symbolic programming. By repeatedly applying rules from Its
know;edqe base, PECOS gradually refines the abstract specification m t 9 a concrete -

•r~,
)I,

~mentation in the target language. When several rules are applicable in the
sa~ne situation, a refinement sequence can be split. Thus, PECOS can actually

To test the correctness and utility of these rules, a computer system (called -PECOS)

co;~~truct a variety of different implementations for the same abstract algorithm.

~ECQS has successfully implemented algorithms in several application domains, -

including sorting and concept formation, as well as algorithms for solving thereachability problem In graph theory and for generating prime numbers. PECOS’sability to construct programs from such varied domains suggests both the generalityof the rules in Its knowledge base and the viability of the knowledge-based approachto automatic programming.

This thesis was submitted to the Department of Computer Science and the Committeeon Graduate Studies of Stanford University In partial fulfillment of the requirementsfor the degree of Doctor of Philosophy.

This research was Support eu by the Advanced Research Projects Agency of theDepartment of Defense under ARPA Order No. 2494, Contract MDA903-76-c-0206The Views and conclusions contained In this document are those of (he author(s) andshould not be interpreted as necessarily representing the official policies, eitherexpressed or Implied, of Stanford University or any agency of the U. S. Government.

~~~~~- — • - -



I

Stanford Artificial Intelligence Laboratory November 1977
Memo AIM-308

Computer Science Department
Report No. STAN-CS-77-641

AUTOMATIC CONSTRUCTION OF ALGORITHMS AND DATA STRUCTURES

USING A KNOWLEDGE BASE OF PROGRAMMI NG RULES

by

David R. Barstow

— 
ABSTRACT

Despite the wealth of programming knowledge available in the form of textbooks and
articles, comparatively little effort has been applied to the codification of this
knowledge into machine-usable form. The research reported here has involved the
explication of certain kinds of programming knowledge to a sufficient level of detail
t h a t  It can be used effectively by a machine in the task of constructing concrete
implementations of abstract algorithms in the domain of symbolic programming.

Knowledge about several aspects of symbolic programming has been expressed as a
collection of four hundred refinement rules. The rules deal primarily with collections
and mappings and ways of manipulating such structures , including several
enumeration, sorting and searching techniques. The principle representation
techniques covered include the representation of sets as linked lists and arrays
(both ordered and unordered), and the representation of mappings as tables , sets of
pairs, property list markings , and Inverted mappings’ (indexed by range element). In
addition to these general constructs , many low-level programming details are
covered (such as the use of variables to store values).

To test the correctness and utility of these rules, a computer system (called PECOS)
has been designed and implemented. Algorithms are specified to PECOS in a
high-level l anguage  for symbolic programming. By repeatedly applying rules from its
knowledge base , PECOS gradually refines the abstract specification into a concrete
implementation in the target language. When several rules are applicable in the
same situation, a ref inement  sequence can be split. Thus , PECOS can actually
construct a variety of different implementations for the same abstract algorithm.

PECOS h as successf ully im plemen ted algori th ms in several a pplication doma~~is,

— 

~T~~~~~ ’-



~~~~~~
-

including sorting and concept formation, as well as algorithms for solving the
reachabilIty problem in graph theory and for generating prime numbers. PECOS’s
ability to construct programs from such varied domains suggests both the gener alIty
of the rules in Its knowledge base and the viability of the knowledge-based approach
to automatic programming.

This thesis was submitted to-the Department of Computer Science and the Committee
on Graduate Studies of Stanford University In partial fulfillment of the requirements
f or the degree of Doctor of Philosophy.

This research was supported by the Advanced Research Projects Agency of the
Department of Defense under ARPA Order No. 2494, Contract M0A903-76-C-0206.
The views and conclusions contained in (his document are those of the author (s) and
should not be interpreted as necessarily representing the official policies, either
expressed or implied , of Stanford University or any agency of the U. S. Government.

t

@ Copyright 1978

by

David Robbins Barstow

ii

_ _ _ _

~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

ACKNOWLEDGEMENTS

My adviser , Cordell Green , has been a constant source of motivation and direction for
this research. I especially appreciate his wil lingness to listen to half-baked ideas
an(l his ability to focus on the central issues in our discussions. The other members
of my reading committee , Bruce Buchanan, Don Knuth , and Terry Winograd , have all
provided valued help and advice , not only while I was writing this thesis , but
throughout my education at Stanford. I would also like to thank Randy Davis, Cathy
De Young, Drew McDermott , Nils Nilsson , and Steve Wood for reading and discussing
earlier drafts.

This research has benefited greatly from my interaction with the other members of
the PSI project: Dick Gabriel , Jerry Ginsparg, Elaine Kant , Juan Ludlow , Brian McCune,
Jorge Phillips , Lou Steinberg, and Ronny van den Heuvel. I would especially like to
thank Brian for his help in designing the program model language , Juan for helping me
to see the inadequacies of many of the rules before it was too late , and Elaine for
tile pleasure of working together on PSI’ s synthesis phase. I would also like to thank
Bob BoDes , whose friendship made my life at Stanford considerably more enjoyable.

The Stanford A. I. Lab has provided the computer support and intellectual atmosphere
which facilitated this work. ARPA and IBM have provided financial support.

Final ly , I would like to thank my wife , Linda , for providing support and encouragement
throughout this project , for doing far more than her share of keeping our house and
home together , and for not letting me forget that there is more to life than is found in
a computer lab.

iii

- ---
~~~~~

-- —-——

~~~~~~~~~~~~~~~~~ 

~~~~~~~~
---

~~~~~~ - .~~~~~~~~~—-—-~~~~~~~~~~


H

I iv

~ - ~~~~~~~~~~~~~~~~~~~~~~~ -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ --~~~~~~~~~

Table of Contents

Section Page

1. Introduction 1
1.1. Guide to the reader 2
1 .2. Knowledge-based computer systems 3
1 .3. Knowledge-based automatic programming 4
1 .4. Program construction through gradual refinement 5
1 .5. Approaches to automatic programming - 6

1.5.1. Codification of programming knowledge - 6
1 .5.2. High-level languages 6
1 .5.3. Problem-solving and theorem-proving approaches 7
1 .5.4. Program specification 7

2. A Detailed Example 8
2.1. The Reachability Problem 8
2.2. SUCCESSORS 10

2.2.1. Representation of SUCCESSORS 10
2.2.2. SUCCESSORS [XJ 12
2.2.3. Converting between Representations of SUCCESSORS 1 3

2.3. MARKS 1 7
2.3.1. Representation of MARKS 1 7
2.3.2. MARKS 1[”BOUNDARY”] 19
2.3.3. Change MARKS [XJ from “BOUNDARY” to “EXPLORED” 20

2.4, BOUNDARY 21
2.4.1. Representation of BOUNDARY 21
2.4.2. Any Element of MARKS 1[”BOUNDARY”] 23
2.4.3. Remove X from MARKS~v[”BOUNDARY”] 25

2.5. UNEXPLORED 26
2.5.1. Representation of UNEXPLORED 26
2.5.2. Remove V from MARKSinv [”UNEXPLORED”] 28

2.6. Final program 29

3. A Refinement Model of Program Synthesis 33
3.1. Refinement sequences - 33
3.2. Refinement trees 34
3.3. Program descriptions 36
3.4. Refinement steps 39

4. Rule Representation 40
4.1. Rule types 40
4.2. The pattern matcher 41

4.2.1. Pattern types in rule conditions 41
4.2.2. The matching process 48
4.2.3. Patterns not expressible 49

4.3. Idiosyncrasies of the rule formalism 50

5. PECOS’ s Control Structure 52

V

-~~~~-- _ --- ~~ _ -~ --~~ -.- - _ -- - —— _ -~~~~---~~~~ _ _ _ _ - _ _ - - _~~~~~~~ - - ~~~~~~~~~~~ - _ _ _

- —.-~- ~ - - -~~ - — ~~ ~~~~~~~~~~~~~~~~~ -V . -? ~~~~~~~~~~ ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ .‘—.r~~~~~ — - -
-

Table of Contents

5.1. An agenda of tasks 52
5.2. A tree of program descriptions 54
5.3. Task achievement through rule application 55

5.3.1. Rule retrieval 55
5.3.2. Matching rules to tasks 56
5.3.3. Separation of applicability and binding 56

5.4. Task ordering 57
5.5. Automatic derivation of rule parts 61

5.5.1. Derivation of relevant task patterns 61
5.5.2. Derivation of applicability and binding patterns 61
5.5.3. Multiple-valued matches 63

6. A knowledge base of programming rules 64
6.1. Collections 65

6.1 .1. Overview of collection representations 66
6.1.2. Rules about collections 68

6.1.2.1. Summary for sequential collections 80
6.1,3. Rules about linked lists 81

6.1.3.1. Summary fo- .nked free cells 87
6.1.4. Rules about contiguous regions of arrays 89

6.1.4.1. Summary for array subregions as association tables 96
6.1 .5. Rules about other collection operations 98

6.2. Enumerations over collections 1 00
6.2.1. Enumerating the items in a collection 102
6.2.2. Enumeration order 105
6.2.3. Enumeration state 1 06

6.2.3.1. Linear enumeration states 107
6.2.3.2. Operations applied to locations in collections 111
6.2.3.3. Nonlinear enumeration states 11 4

6.2.4. Other enumeration operations 11 7
6.3. The transfer paradigm for sorting 1 20
6.4. Mappings 123

6.4.1. Overview of mapping representations 124
6.4.2. Rules about mappings 125
6.4.3. Other mapping operations 134

6.5. Input , output , and representation conversion 1 35
6.6. Control structures 137

6.6.1. Local memory 138
6.6.2. Loop exits 1 39

6.7. LISP as a target language 141
6.8. Index of rule topics 1 55

7. Sample Programs 157
7.1. Membership test 157
7.2. A simple classification program 1 58
7.3. A simple concept formation program 1 59
7.4. Sorting 160

vi

-- - — -~~~~- --— --- - - -— - V ~~~~~~~~ V -

- - _ -—~~~ -- —. --- _ — r - - - - - - -

Table of Contents

7.5. Reachability 1 60
7.6. Primes 1 60

8. Rule generality 1 64
8.1. A sample set of target programs 164 —

8.2. A sequence of target programs 1 65
8.3. Toward the development of a useful core of knowledge 1 67
8.4. The role of the target language rules 1 68

9. A search space of correct programs 1 69
‘1 1. Refinement sequences 1 69

V U.2. Techniques for reducing the space 1 70
9.2.1. Postponing choice points 1 70
9.2.2. Independent choices 1 72
9.2.3. Dependent choices 1 72

9.3. Choice making 1 73
9.3.1. Heuristics for avoiding paths that fail 1 73
9.3.2. Local heuristics 1 74
9.3.3. Global heuristics 1 74

10. Interface with the PSI 1 75
10.1. interface with the Model Builder 176
10.2. Interface with the Efficiency Expert - 1 76

1 1. Experience with building a rule-based system 1 79
11.1. On developing a rule base 1 79
11.2. Representation and organization of a rule base 181
11 .3. Problems and pitfalls 1 82

12. Future directions 1 84
V 12.1. Extensions 184

1 2.2. Improvements and modifications 1 85
1 2.3. Codification of programming knowledge 1 87
1 2.4. Applications of programming knowledge 1 88

13. Conclusions 189

References 191

Appendices

1. Conditions and actions expressible in rules 197
• 1.1. Pattern types in conditions 197

1.1.1. Conditions on nodes 197
1,1.2. Conditions on node properties 1 98

vii

-
.-
~~ - V - V ~~

-—

Table of Contents

V

1.1.3. Queries 200
1 .1 .4. Conditions on various structures 200
1.1.5. Conditions on lists 201
1 .1 .6. Patterns on segments of lists 203
1.1.7. Patterns that simply provide bindings 203
1.1.8. Other pattern types 204

1 .2. Pattern types that appear in rule actions 205
1.2.1. Patterns that return pointers to nodes 205
1 .2.2. Patterns that attach properties to nodes 205
1.2.3. Patterns that perform other kinds of computations 206
1.2.4. Patterns that perform refinements 207

1.3. Esoteric patterns 207
1 .3.1. Patterns involving pairs of values 207

• V 1.3,2. Global associations 209
V 1.3.3. Pattern for the use of the efficiency expert 210

1.3.4. Patterns for use by other aspects of the system 21 0

viii

- •~~~~ ~~ ~~~~~~~~~ • - : : - -
~~~~~~~~~~

--



—--~~~~~ - _ - - --V --V -•-

V V ~~~~~~~~~~~~ ~~~~~~ 
V V~~~~ V — ~~~~~~~~~~~~ --~~~ - 

V-

Page 1

-

\ 

1. INTRODUCTION

I - Although large amounts of programming knowledge are available to human
programmers in the form of books and articles , very little of this knowledge is
available in a form suitable for use by a machine in performing programming tasks
automatically. The principal goal of the research reported here is the explication of
procjramrnincj knowledge to a sufficient level of detail that it Can l)e used effectively
by a machine. The programming task considered in this experiment is that of
constructing concrete implementations of abstract algorithms ill the domain of
symbolic programming. Knowledge about several aspects of symbolic programming
has been expressed as a collection of four hundred refinement rules. Tile rules deal
primarily with collections and mappings and ways of manipulating such structures ,
including severa l enumeration, sorting and searching techniques. The principal
representation techniques covered include the representation of sets as linked lists
and arrays (both ordered and unordered) , and t he representation of mappings as
tables, sets of pairs , property list markings , and inverted mappings (indexed by
ranqe element). In addition to these general constructs , many low-level programming
details are covered (such as the use of variables to store values).

To test the correctness and utility of these rules , a computer system (called PECOS)
has been designed and implemented. Algorithms are specified to PECOS in a
high-level language for symbolic programming. By repeatedly applying rules from its
knowledge base , PECOS gradually refines the abstract specification into a concrete
implementation in tile target language. Currently , the target language is LISP (in

V particular , a subset of INTERLISP [Teitelman 1975]). Preliminary experinients
indicate that PECOS can be fairly easily extended to deal with SAIL (an ALGOL-like
language) [Ludlow 1977]. PECOS has successful ly implemented algorithms in
several application domains , including sorting and concept formation , as well as
al gorithms for solving tile reachability problem in graph theory and for generating
prime numbers.

Since tile rules embody programming knowledge about several different techniques
for implementing abstract constructs , PECOS can actually produce a variety of
implementations for a single abstract algorithm. The primary value of such variability
is that different implementations are appropriate under different circumstances.
Efficiency considerations (such as expected set sizes or even tile cost function
itself) play a major role in the relative utility of different implementations.

V Constraints on the representation of the input and output also influence the
suitability of a given implementation in a particular situation.

PECOS can be used under two different operational paradi gms. In an interactive
mode , when more than one rule is applicable , the user is allowed to select which
should be applied (and , hence, which implementation will be constructed). For the
convenience of tile user , about a dozen choice-making heuristics have been üdded
to PECOS. Experience indicates that these can handle about two-thirds of the
ciloices that typically arise. If a user is uncertain about which rule is “best” for his
or her purposes , PECOS can apply each in parallel , constructing a separate
implementation for eacil rule that is applied.

L 

V • V ~~V V~~~V~~~~~~~ • V V  -—~~~~~mal ~.‘ lii r~~ ~Sai I ~rnr i*p~~~~~j~j  - — -~V —. - VV & ~~~~~~~ 
-- — —-V -- 

~~ 
- V -



-

~~~~~~

Page 2 Section 1

PECOS also operates as the Coding Expert of the PSI program synthesis system
(Green 1976]. In this role , choices between rules are made by an automated
Efficiency Expert (known as LIBRA) that incorporates more SOl)histicated techniques
than tile simple heuristics mentiolled above (Kant 1977]. The capability of
developing different implementations in parallel is used extensively in the interact ion
between PECOS and LIBRA.

Altilough PECOS has been fair ly suc cessful , the long-term benefits of ti liS research
lie not In tllis particular implementation , but more in tile rules tilemselves , for the y
help to formalize programming knowledge that has previously been available only
informally. Tile variability of tile domains in which the rules have been successfully
applied indicates a fairly high degree of generality in the rules.

V 1.1. Guide to the ‘eader

The rest of section 1 provides a general introduction to knowledgn-based automatic
programming. Section 2 is a concrete example of PECOS in oper ation. These
sections set much of the stage for tile rest of this thesis.

Sections 3, 4, and 5 provide more detailed discussions of PECOS’ s
refinement paradi gm , rule representation , and control structure. While such details
are central to the operation of any rule-based system , these three sections can be
skimmed without loss of continuity. In particular , later sections do not depend on
learning the conventions of tile rule representation.

Section 6 presents a detailed discussion of tile heart of tile PECOS experimeilt :
a knowledge base of programming rules. Taken togetller , these rules constitute a
detailed codificatio,l of knowledge about several different aspects of symbolic

V programming, While the entire rule set may exceed tile casual reader ’s in te res t , it is
hoped that illdiVi(itIal subsections wi ll be useful to those concerned about particular
programming topics. Most of the rules are independent of the fact that PECOS’ s
target language is LISP and can be understood without knowing LISP to any great
detail. Programming experience in some language, however , certainly contributes to
an understanding of the details included in the rules.

The next few sections are intended to characterize the rules and the kinds of
programs they can successfully deal with. Section 7 presents a representative
sample of the programs that PECOS can handle. Section 8 presents tile results
of several experiments designed to show how PECOS’ s capabilities changed as the
knowledge base was increased. These sections are relatively important for
underst anding what part of programming has been codified and what part has not.
Section 9 presents a short discussion of the nature of tile refinement trees
generated by PECOS’ s rules.

PECOS was developed as one of the modules of the PSI program synthesis system ,
and section 10 contains a discussion of the interaction between PECOS and PSI.

-~~~~ -~~ - - - V ----- V- — V --

Introduction Page 3

The last three sections summarize the results of this experiment. Section 11 is
a retrospective discussion of my experiences in buiiding a rule-based system for
automatic programming. Hopefully these lessons will be of value to those readers
interested in building their own rule-based systems for other tasks. Section 12
d iscusses some directions for furtiler research suggested by tIliS work. Finally,
section 1 3 summarizes the conclusions that can be drawn f rom tile PECOS
experiment.

The appendix contains a complete list of all of the constructs available in PECOS’ s
pattern matching facility.

1.2. Knowledge-based computer systems

The role of task-specific knowledge has become increasingly important in recent
artificial intelligence work. MACSYMA, for example , emhodies very large amounts of
knowledge about matilematics and symbol manipulation (Macsyma 1974]. DENDRAL
and MYCIN both depend on large collections of rules characterizing aspects of
chemistry and infectious disease [Buchanan and Lederberg 1971, Shortliffe
1974]. AM uses several hundred specific heuristics to expand on its core of

V knowledge about elementary mathematics [Lenat 1976]. The central feature of all
of these systems is that their performance is based not on their application of a few
general principles, but on their access to u rge amounts of task-specific knowledge.

The basic methodology involved in developing such systems is to express knowledge
about tile system ’s task in a machine-usable form. One form that has been used with
some success is the separation of the knowledge into relatively small , identifiable
chunks 1, One of the primary benefits of using such a form is the relative eace with
which the knowledge base can be changed: new chunks can be added and old
chunks changed2. Another benefit is the possibility of using the same knowledge for
several different purposes (e.g., both forward- and backward-chaining). A tilird
benefit comes from tile potential for the system to explain its own actions so that
human users need not take its conclusions Oil blind faith [Davis 19763. Finally, tile
existence of identifiable chunks of knowledge about a particular domain can be of
value to human experts in the domain by suggesting ways of stating and organizing
knowledge that has often only been available informally. For example , geologists
have exeressed a great deal of interest in PROSPECTOR’ s knowledge base (Duda et
al 1977]. Perhaps tile central issue here is one of accessibility -- expressing
domain-specific knowledge as small chunks makes it accessible for a variety of
purposes.

1 A separa te issue concerns the way that such chunks are organized in tile
knowledge base.

2 While this oversimplifies the situation somewhat , experience with such systems has
been relatively successful in this regard (e.g., MYCIN (Davis , Buchanan and
Shortliffe 1977]).

V ..

~~~~~
- -- - V ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

V V V



_ _ _  -

Page 4 Section 1

1 .3. Knowledge-based automatic programming

The PECOS experiment has been an application of this knowledge-based approach to
the development of an automatic programming system. The primary kind of
knowledge involved is knowledge about the process of designing data structures and
algorithlrns. Tile principal method used to identify this knowledge has been to
examine particular algoritilms, programs , and representation techniques and to try to
identify the individual reasoning steps involved in their design. The knowledge
involved in making such steps is then the knowledge to be codified into
machine-useable form: each step is reflected by a single rule. A representative
sample of these rules is presented below (in English, for the sake of clarity):

/1 sequential collection may be represented as a linked list.

If a linked list is represented as a LISP list without a special header
ce/I, t/~en a retrieval of the first element in the list may be
implemented as a call to the function CAR.

If a linked list is represented as a LISP list without a special header
cell, then a test of whether an Item is stored in an element cell of the
list may be refined Into a call to the LISP function MEMBER.

If the enumeration order is the same as the stored order of a
collection, then the state of the enumeration may be saved as a
location in the collection.

Il collection may be represented as a mapping from items to Boolean
values.

If an clement X was determined by retrieving the element at location L
of a sequential collection C, then L is the location of X in C.

Note that tile rules deal withl specific , detailed aspects of symbolic programming.
Note also that tile rules are defined using specific programming concepts rather ti,an
In terms of goals or transformations on world models. The LISP function MEMBER Is
described explicitly as a way of testing whether an Item is stored in an element cell
of a linked list , rather tha n in terms of an output predicate defined over objects
satisfying an Input predicate. Another feat ure of the rules is that they explicitly
mention decisions that are often only implicit in the final implementation. For
example , “enumeratioll order ” refers to the order in which elements of a stored
collection are enumerated. An implicit part of a decision to trace down successive
links in a list is a decision that the stored order of the list is the desired enumeration
order.

Perhaps the greatest single benefit of the use of HsmalI~
I rules is that the knowledge

embedded in such rules can be applied in a variety of situat~ na. As a simple
example , consider the derivations of an enumerator over an array and an enumerator
over a linked list. Many of the reasoning steps are shared by th. two derivations.
By breaking tile derivation down into simple steps (as opposed to having two large 

-VV~_~ _~ V~~~ V VV ~~~ ~ -V- V_ 
VV V~V~~V V- V__ V V - —. — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ~~~~~~~~~~~~~~ 

V_V ~~~ ~~~~~~~~~~~~~~~~ VV 
~~~~~~ VVV VVV V__ .VVV. _ __VV.V.._.__,V_~.__.V ,VV.VV._VVV.VV.~~~dl4


-V ~V

Introduction Page 5

ru les , one for each derivation) , the knowledge relevant to both derivations need not
V be repeated. This breakdown has been achieved primarily through the use of

intermediate-level abstractions. For example , a “sequential collection” is more
concrete than a collection and more abstract than a linked list or array. Most of the
enumeration rules operate at the level of sequential collections.

Such a use of abstractions has recently been applied in several other areas.
Verification systems , for example , have recently begun to incorporate t u e use of
abstractions [von ilenke and Luckham 1974, Robinson and Levitt 1977].
Ab s t r ac t ion is a key e lement in su ch la ngu ages as ALPHA R D and CLU [Wulf , London
and Shaw 1976, Liskov et al 1977]. The major reason for the use of abstractions

V is that tiley help to reduce the complexity of large programs. Abstractions enable
systems (or people) to concentrate on important aspects while ignoring minor details.
Tile USO of abstractions in PECOS shares this motivation.

1 .4. Program construction through gradual refinement

As noted earlier , through the successive application of its rules , PECOS gradually
refines the original abstract specification into a concrete LISP implementation. The
process may be viewed as the construction of a sequence of program descriptions.
The first description in the sequence represents the abstract specification and tile
final description represents the concrete implementation. Each rule application
prod uces the next description by adding a small amount of detail. While constructing

V such a sequence , there will be many situations in Whicil more than one rule is
applicable. Under such circumstances , PECOS can apply each rule separately,
causinq the refinement sequence to split into several sequences. 111115, PECOS can
actually construct a refinement tree in which each path from tile root to a leaf is a
refinement sequence. Each leaf represents a different concrete implementation of
the abs t r ac t al gorithm represented by the root3 .

— Similar notions of refinement have recently gained importance in the a rea of
programming methodology. “Structured progr amming ” and “stepwise refinement” , for
example, are programming techniques based on tile gradual refinement of program
statements until constructs available in the target language have been reached
[Dahl, Dijkstra and Hoare 1972, Wirth 1971]. Despite its success in human

— programming efforts , relatively little work has been applied to its use in automatic
programming systems.

-V.

~ This space of alternative Implementations is precisely the space explored by PSI’ s
efficiency expert.

—

~

-
V

-
-~~~~~~. V

Page 6 Sectio n 1

1.5. Approaches to automatic programming

The ter m “automatic proc1 amming ” has a long history. It was used as early as 1 954
to re fer to the development of programming languages [MCAP 1964]. More
generally , tile term is used to describe attempts to automate various parts of the
programming process. Several approaches have been (and continue to be) used in
solving tile problem.

1.5.1. Cod if icat ion of pr og r a m m i n g knowledge

Although large amounts of programming knowledge are available to people in the form
of books and articles , comparatively little work has been done on the codification of
this kiiowlecige Into niachille-usable form. The one notable exception is the
identification and collection of optimizing transformations. Standish, for example , has

F a Collectioll of several hundred [Standish •t al 1976). Low ’s system , with its
knowledge of seven different representations, is one form of codified knowledge
about sets [Low 1974]. in related work , Rovner has identified several techniques
for representing associative triples [Rovner 1976). Ruth todified some of the
aspects of simple sorting for the ~ j rpose of automating tile analysis of student
programs [Ruth 1976). The work presented here is, in part , a continuation of
previous attempts to codify knowledge about sorting [Green and Barstow 1975,
1977a , 1977b).

In their work on the development of a program analysis system as part of a
programmer ’s apprentice , Rich and Shrobe have codified some of tile knowledge
involved in ilash table programs , but their work has concentrated on representational
issues [Rich and Shrobe 1976]. They discuss similar notions of refinement and
knowledge base organization, although few details are given.

1.5.2. High-level languages

Another trend in programming methodology has been the development of iligh-level
languages incorporating increasingly abstract constructs. SElL , for example ,
includes various sot operations (Schwartz 1976). As such constructs have become
further abstracted from constructs available at the machine level, different
techniques for cieterniining data structure representations and operation
implementations have been developed. Low’s system, for example , use d a
partitioning and hill-climbing technique to select tile representation likely to be the
most efficient in a particular situation (Low 1974]. The most significant point for
Comparison between Low ’s system and PECOS revolves around PECOS’ s use of
intermediate-level abstractions. While Low’s system refines an abstract data
structure into a particular machine representation in a single step, PECOS’ s rules
might involve four or five steps , each corresponding to a se parate abstraction level.
This use of abstractions helps to avoid one of the restrictions that Low’s system was
forced to make: under certain circumstances the arguments to various set

- - ~~~ ~~~ ~~ - ~~~~~~~~~ ~~~

Introduction Page 7

operations were forced to have the same repre sentation so tllat the number of
conversion tables could be kept manageably small. In ef fect , the intermediate level
abstractions enable PECOS to write the table entries as they are needed , rather
than to keep tilem all stored.

1.5.3. Problem-solving and theorem-proving approaches

Much work in automatic programming has involved tile use of general purpose
theorem-provers and problem-solvers. Programs are usually specified in terms of
i’ lput—output relations. For theorem—provers these are normally in the form of
predicates over the input and output variables. Problem-solvers normally accept
specifications in terms of initial and final (or goal) states expressed as assertions.
in botll cases , the primitive operations available are described in similar terms. The
earliest work in problem-solving Involved determining a single sequence of operations
satisfying tile input-output relation (Green 1969 , Fikes and Nilsson 19713. This has
led to various ways of planning through the u~e of intermediate sub goals (e.g., NOAH
(Sacerdoti 1975)) or programs that “almost” work (e.g., HACK ER [Sussman 1975]).
As these systems ilave become more sophisticated , the general progression has
been away from general purpose inference systems and toward systems desigiled

— specifically for program manipulation [Manna and Waldinger 1977 , Dar l ington and
BurstaU 19763. Despite this trend, most of this work has been aimed at identifying
general programming principles that are relatively domain-independent.

Ill a sense, PECOS and such problem-solving systems are aimed at different tasks.
PECOS assumes that the basic algorithm has already been determined , while the
problem-solving approach is aimed at determining an algorithm when such an algorithm
is not known. One could, in f ac t , imagine using such a problem-solver as a front end
for an implementation system like PECOS: the target language of tile problem-solver
would be the specification language of the implementation system.

1.5.4. Program specification

A more central issue is tilat of program specification: what are the best ways for
human users to specify programs for an automatic programming system to write?
Experience suggests tilat different specification methods (e.g., input— output
specifications , hi gh-level languages , examples and traces , natural language ,
dialogue) are appropriate for different domains and even for different users [Green
et al 1974]. Various research projects are developing techniques for handling such
specifications. PSI’s acquisition phase (see section 10) is aimed at allowing
either dialogue or traces. The SAFE system is aimed at using informal English
specifications (Balzer , Goldman and Wile 1977).

- - V ~~~~~ V-~~~~~~~~ V_ V V~~~~~~~~~~~~~~~ V-V_ V _ V _VV_V - _V~~~~~~~~~~~ V- V -V- V V V ~~~~~ V ~~~

_________________________ ~~~~~~~~ V_ ~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ _ -VV.__ V - V_- V-V __V___V~V V V ZT1T - -

Page 8

2. A DETAILED EXAMPLE

In this section t u e use of programming rules to construct a particular program will be
illustrated. In order to focus on the nature of the rules and the refinement process ,
the example will be presented entirely in English. The details of PECOS’ s internal
representations will be covered in sections 3, 4 and 5.

After a description of the abstract algorithm to be implemented , several specific
aspects will be discussed in detail. For each of these aspects , the abstract
description of that part of the algorithm specification will be presented. Then a
sequence of rules will be given, together with the refinements they produce in the
original description. The result of this sequence of rule applications will be a
concrete LISP implementation of the original abstract description.

One principal characteristic of these refinement sequences is the fairly small step
size: each step produces a descri pti on that is only slightly more specific than the
previous descri ption . This is ch aracteristic of the rules as well: each embodies a
rather small , detailed “ piec e ” of programming knowledge. As suggested in the
introduction, one effect of tilis small rule size is that the knowledge embedded in the
rule can be applied in a variety of situations. This will be seen in the examples in
this section, as ti le same rules will be applied in several d ifferent situations.

2.1. The Reachability Problem

The example is based on a variant of tile Reachability Problem [Thorelli 1972]:

Given a directed graph, G, and an initial vertex , v, f ind the vertices
reachable from v by following zero or more arcs.

The problem can be solved with the following algorithm:

Mark v as a boundary vertex and mark the rest of the vertices of G as
unexplored. If there are any vertices marked as boundary vertices ,
select one, mark it as explored, and mark each of its unexplored
successors as a boundary vertex. Repeat until there are no more
bo~mdary vert ices. The set of vertices marked as explored is the
desired set of reachable vertices.

Note tilat the algorithm’s major actions involve manipulating a mapping of vertices to
markings. Based on this observation, the algorithm can be expressed at the level of
PECOS’ s specification language. The following Is an English paraphrase of the
spe cification given to PECOS when this example was run. (As a notational
convenience, X[Y] will be used to denote the image of V under the mapping X and
X 1 [Z] will be used to denote the inverse image of Z under X . Note that the inverse
image is a collection of domain elements, while the image is a single range element.)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



A Detailed Example Page 9

DATA STRUCTURES
VERTICES a collection of integers
SUCCE SSORS a mapping of integers to collections of integers
START an integer
MARKS a mapping of Integers to

(“EXPLORED” , “BOUNDARY” , “UNEXPLORED” )

ALGORITHM
VERTICES input a list of integers;
SUCCESSORS — input an association list of (integer , list of integers> pairs;
START — input an integer;
for all X in VERTICES:

MARKS [X] “UNEXPLORED” ;
MARKS [START3 “BOUNDARY” ;
repeat until MARKS 1[”BOUNDARY”) is empty:

X — ai~y element of MARKS 1[”BOUNDARY”);
MARKS [XJ “EXPLORED” ;
for all Y in SUCCESSORS [X]:

if MARKS[Y] : “UNEXPLORED” then MARKS[Y] “BOUNDARY” ;
output MAR KS 1[”EXPLORED”) as a list of integers.

The specification is abstract enough that several significantly different
implementations ace possible. For example, MARKS could be represented as an
association list of (integer , mark) pairs or as an array whose entries are t h e  marks.
The relative efficiency of these impleme~itations varies considerably with several
factors. For example , if the set of vertices (integers) is relatively sparse in a large
range of possible values , then implementing MARKS as an array with a separate
index for each possible value would probably require too much space , and an
association list would be preferable. Oil the other hand, if the set of vertices is
dense or tile range small , 811 array might allow much faster algorithms because of tile
random-access capabilities of arrays. For the remainder of this discussion, it will be
assumed that the range of possible values for the vertices is small enougil tilat array

V representations are feasible. (When the example was run, a range of 1 to 1 00 was
specified.) Note also that concrete input representations are specified for VERTIC ES

V (a linked list) , SUCCESSORS (an association list), and START (an integer) , and that an
output represontatioil is specified for MARKS 1[”EXPLORED”] (a linked list). These
constrain the inp ut and output but not the internal representation. Tiley are intended

V to reflect the desires of some hypothetical user and PECOS could handle other input
and output representations equally well.

When PECOS was run on the Reachability Algorithm, there were several dozen
situations in which more than one rule was applicable. In most of these cases ,
selecting different rules would result in the successful construction of different
implementations. As mentioned in the introduction, PECOS has a set of about a dozen
heuristics for selecting one rule over another. These heuristics were sufficient to
select a rule in about two-thirds of the choice points. In the remaining third, a rule
was selected interactively in order to construct the particular implementation.

— -



V V V VV_~~~~~~~~~~~~ 
V~ - 

Page 10 Section 2

2.2. SUCCESSORS

One of tile major data structures in the Reachability Algorithm is the SUCCESSORS
mapping. Under this mapping, the image of a vertex is the set of immediate
successors of tile vertex:

SUCCESSORS[v) = { x v. ’x in G)

SUCC ESSORS is co;~strained to be an association list when it is input, but such a
representation may require significant amounts of searching to compute
SUCCESSORS [X]. Since tills would be done in the inner loop, a significantly faster
algorithm can be achieved by using an arra y representation with the entry at index l~being the set of successors of vertex k. In the rest of this section, the derivation of
this array representation will be considered in detail.

2.2.1. Representation of SUCCESSORS

SUCCESSORS is a mapping of integers to collections of integers. This abstract
description may be summarized as shown below (an English paraphrase of PECOS’s
internal representation):

SUCCESSORS:
MAPPING (integers .’ collections of integers)

The first representation decision for many abstract data structures is whether to
represent tile structure explicitly or Implicitly. An explicit representation for a
mapping involves indicating every (domain, range> pair explicitly. An implicit
representation is one in which, for example , the image of a domain element is
computed by some function. In this case , we will represent SUCCESSORS explicitly.
So we apply tile following rule (again, all English paraphrase of PECOS’s internal
representation):

,4 mapping may be represented explicitly .

The result of applying this rule is shown below:

SUCCESSORS:
EXPLICIT MAPPING (integers • collections of Integers)

The second decision is whether to store the pairs in a single structure or to keep
them distributed In several structures (e.g., property list markings). Here we will use
a single structure , applying the following rule:

—-



~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~ ~ _ •__ ~~V V  ~~~~~~ .~_.V V V.V V~~V V — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

A Detailed Example Page 11

An explicit mapping may be stored in a single structure.

with the following result: V

SUCCESSORS:
STORED MAPPING (integers collections of integers)

Tile next step involves selecting the type of structure to be used. There are many
possibilities here , including tabular structures , discr iminat ion nets, and sets of
<domain, range> pairs. Applying the following rule: V

A stored mapping with typical domain element X and typical V

range element V may be represented with an association table
whose typical key is X and whose typ ical value is V.

gives us a tabular representation for SUCCESSORS in the inner loop4. The following
description results 5:

SUCCESSORStabI.:
ASSOCIATiON TABLE (integers , collections of integers)

Tile possibilities for tabular representations are dependent on the keys of the table. —

In tile case of SUCCESSORS IabJe , each key is an integer from a fixed range, so an
array representation can be used. The following rule is applied:

An association table whose typical key is an integer from a
fixed range and whose typical value is V may be represented as
an array with typical entry V.

and the following description results:

SUCCESSORS array:
ARRAY (collection of integers)

4 This is one of tile situations in whicll a rule was cllosen interactively. The other
applicable rule Is: Il stored mapping with typical domain element X and typical
range element V may be represented as a stored collection whose typical element
is a pair with DOMAIN part X and RANGE part V. Had this other rule been applied,
one coulci have derived, for example , an association list representation.

~ Subscripts (as in SUCCESSORSIabI.) will be used to distinguish between
representations at different refinement levels.

~

- ~~~~~~~~~~~~ - - —~~~~~~~~

-~ - - V V V -~~~ -
- .-y , ~~~~~~~~~~~~~~~~~~~~~~~~~~

-- -

Page 12 Section 2

The final step in tIle representation Involves the selection of a particular data
structure in the target language. The following rule allows us to use the array
representation available in the LISP dialect being used (INTERLISP):

An array may be represented directly as a LISP array.

Thus , through the a~phication of five rules, SUCCESSORS has been refined from the
abstract notion of a mapping into a particular concrete LISP representation:

SUCCESSORSi,sp:
LISP ARRA Y (collection of integers)

The next step is the representation of the objects to be stored in the array.
Througll a sequence of about six rule app lications, a LISP LIST representation is
developed. The sequence of rules is similar to that of the BOUNDARY set (see
section 2.4) anci will be omitted here. Their result is the final description of
SUCCESSORS:

SUCCESSORSi13p:
LISP ARRAY (LISP LIST (intege r))

2.2.2. SUCCESSORS[X]

Determining the set of successor vertices foi a given vertex involves computing the
image of that vertex under the SUCCESSORS mapping. The abstract specification of
this operation is:

compute the image of X under SUCCESSORS
I

The construction of the program for computing SUCCESSORS [XJ follows a line parallel
to the determination of tile representation of SUCCESSORS. The first rule is
dependent on the fact that SUCCESSORS[X) is represented as an association table:

If a mapping Is stored as an association table, the image of a
domain element X may be computed by retrieving th. table
entry associated with th. key X.

Applying this rule produces the following description:

L ~~ ~~~~~~~~~~~~~~~~~~~~~~~~~

- ~~~~~~~~~~~~~~~~
V~~~~~~ _ V -

-

A Detailed Example Page 13

retrieve the entry in SUCCESSORSIabI0 for the key X V

Similarly, the next rule depends on the representation of SUCCESSORStab~. as an
array:

If an association table is represented by an array, the entry for V

a key X may be retrieved by retrieving the array entry whose
Index Is X.

When this rule is applied, the following description results:

retrieve the entry in SUCCESSORSarray for the index X

Finally, a LISP-specific rule is applied:

If an array is represented as a LISP array, the entry for an
index X may be retrieved by applying the function ELT.

yielding tile LISP code for this part of the program:

(ELT SUCCESSORSi15,, X)

2.2.3. Converting between Representations of SUCCESSORS

Recall that t ue input representation for SUCCESSORS is constrained to be an
association list of <integer , list of Integer s) pairs, The description correspondIng to
this representation is t ue following:

SUCCESSORS1npu,:
LISP LIST (CONS CELL (DOMA IN . RANGE))

I DOMAIN: illteger
RANGE: LISP LIST (integer)

Since the input and internal representations differ , a representation conversion must
be performed. This occurs when the association list representation is input. The
original program description for the Input operation Is the following:

- - ~~~~~~~~~~~~~ _~~~~ V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ~ - -
~~ - -

~~~~~~~~~~~~~~~~ --~~- - ~~~~ 
~~~~~ - - _ _

Page 14 Section 2

I
SUCC ESSORS input a mapping (as an association list);

1

The following rule introduces the representation conversion:

If a mapping is input , its representation may be converted Into
any other representation before further processing.

When this rule is applied, the following description is produced:

r SUCCESSORSinput — input a mapping (as an association list);
SUCC ESSORS Convert SUCCESSORSinput

The construction of a program for performing a conversion is generally dependent on
both tile initial and tile final representations. In the case of the SUCCESSORS
mapping, the first rule shows tilis dependence Ofl tile initial representation:

If a mapping is represented as a stored collection of pairs , if
may be converted by considering all pairs in the collection and
setting the image (under the new mapping) of the domain field
of the pair to be the range field.

When the rule is applied to tile convert operation, we have the following description:

V

For all X in SUCCESSORStnput:
set SUCCESSORS [X:DOMAIN] to X:RANGE

where X:DOMAIN and X :RANGE signify the retrieval of the DOMAIN and RANGE parts ol
tile pairs.

Since the pairs in SUCCESSORSnput are represented as CONS cells , the X:DOMAIN ai.
X:RANGE operations may be implemented easily through the application of one rule in
each case.

If a pair is represented as a CONS cell and field X is stored in
the CAR part of the cell , the value of field X may be retrieved
by applying the function CAR.

(CAR X)

If a pair is represented as a CONS cell and field X Is stored in

_ _ _ _ ~~~ ~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - 44


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

A Detailed Example Page 15

the CDI? part of the cell , the value of field X may be retrieved
by applying the function COR.

(CDR X)

When these pieces of code are substituted into the previous description we have
the following:

For all X in SUCCESSORSinput:
set SUCCESSORS [(CAR X)] to (COR X)

• Tile implementation of tile “set SUCCESSORS~(C A R X)~” operation is constructed by
applying a sequence of rules similar to those used for implementing SUCCESSORS[X]
in tile previous section. Tile result of applying these rules is the following LISP code:

(SETA SUCCESSORSi 8~ (CAR X) (CDR X))

Substituting this into the “For all” construct , we have the following:

[ For all X in SUCCESSORSinput:
(SETA SUCCESSORSi1~ (CAR X) (CDFi X))

We can now consider tile derivation of the program for the “For all” construct. Tile
V 

firs•t rule to be applied is tile following:

Mn operation of performing some action for all elements of a
stored collection may be implemented by a total enumeration of
the elements, applying the action to each element as it is
enumerated.

This rule effectively states that tile action will be performed to one element at a
time (as opposed to some kind of parallel control structure). It results in the
following description:

Enumerate X in SUCCESSORS1npuI:
(SETA SUCCESSORSi15p (CAR X) (CDR X))



_ _ _ _

Page 16 Section 2

T ue development of a structure for enumerating t he  elements of a stored collection
involves several considerations. The first decision is the determination of tile order
in which tile elements are to be enumerated. in many applications (such as sorting),
this order may be constrained to be relative to some particular ordering relation. In
this case , however , there is no such constraint , and the following rule may be
applied:

If the enumeration order is unconstra ined , the elements of a
stored collec ti on may be enumerated in tile order In which they
are stored6.

The next consideration involves selecting some scheme by which tile state of the
enumeration can be saved on each iteration. The following rule can be applied here:

If a stored collection is represented as a linked list and the
enumeration order is the stored order, the state of the
enumeration may be saved as a pointer to the list cell of the
next element7.

Tile derivation path now proceeds through several steps based on the particular
state-saving scheme chosen, including tile determination of the initial state (a
pointer to tile first cell) , a termination test (the LISP function NULL), and an
incrementation step (tile LISP function CDR). The end result is a loop approximated
by the following description:

STATE . SUCCESSORSinput;
loop:

if (NULL STATE) tilen exit;
X .- (CAR STATE)
(SETA SUCCESSORSi~5~ (CAR X) (CDR X))
STATE - (CDR STATE) ;
repeat;

The complete LISP code for this part is included in the listing of the final Reachability
Program in section 2.6.

~ This is actually a slight simplification; the complete rule also reflects a dependence
on viewing the collection as a “sequential collection”. Sequential collections will be
introduced in the discussion of the BOUNDARY set in section 2.4.

7 This is also a simplification of a more general rule for sequential collections.

-- -~~— —--~~ ~~~~~~~~~~~~ _ V ~~~~~~~~~~~~~~~~~~~ V JJ~~~~~~ :V —



_____________________________

A Detailed Example Page 17

2.3. MARKS

MARKS is ~~~~~~ principal data structure involved in the Reachability Algorithm. At each
iteration tiirough the loop it represents what is currently known about the
reachability of each of tile vertices in tile graph:

MARKS [X] “EXPLORED”
~ X is reachable and Its successors have been noted as reacllable

MARKS [XJ “BOUNDARY”
-- X is reacllable and its successors have not been examined

MARKS [X] “UNEXPLORED”
~~
. no path to X has yet been found

in the rest of this section , E, B, and U will denote “EXPLORED” , “BOUNDARY” , and
“UNEXPLORED” respectively.

Note that the computation of tile inverse image of some range element is a common
operation on MARKS. In such situations , it is often convenient to use an inverted
representation. That is , rather than associating range elements with domain
elements , sets of domain elements can be associated with range elements. in this
section, we will consider tile derivation of such a representation for MARKS.

2.3.1. Representation of MARKS

MARKS is a mapping of integers to a collection of three elements , E, B, and U. The
abstract description for MARKS is as follows:

MARKS:
MAPPING (integers .’ {E.B,U))

The “inverted” option for mappings is available through the use of the following rule:

/1 mapping with typical domain element X and typical range
element V may be represented as a mapping with typical domain
element V and typical range element a collection with typical
element X .

Applying this rule gives the following description:

MARKS,nv:
MAPPING ((E,B,U}.. collections of integers)



_ _ _ _ _ _ _ _ _ _  ~~~~~~~~~~~ ~~~~~~~~~~~~~~

Page 18 Section 2

At this point , tile same two rules that were applied to SUCCESSORS can be applied to
MARKS,nv :

~4 mapping may be represented explicitly.

MARKS,nv:
EXPLICIT MAPP iNG ( { E ,B,U) .‘ collections of integers)

Mn explicit mapping may be stored in a single structure.

MARKS10v:
STORED MAPPING ( { E ,B,U)  .‘ collections of integers)

Again we are faced witil the selection of the structure in which tile mapping is
stored. In tills case , we may take advantage of the fact that tile domain is a fixed
set of known alternatives (E, B, and U) and apply the followintj rule:

A stored mapping whose domain is a fixed set of alternatives
and whose typical range element is V may be represented as a
plex with one field for each alternative and with each field
being V.

A plex is au abstract kind of record structure , consisting of a fixed set of named
field s, each with an associated substructure , but without any particular commitment
to the way the fields are stored in tile plex. The description of MARKSptex is then as
follows:

MA RKS piex:
PLEX (UNEXPLORED , BOUNDARY , EXPLORED)

EXPLORED: collection of integers
BOUNDARY: collection of in tegers
UNEXPLORED: collection of integers

Of cour se, the rules for manipulating mappings represented in this way must insure
that the tilree collections are mutually disjoint.

In LISP , the obvious way to represent such a structure is witil CONS cells. The
application of several rules dealing with such cells yields the foliowing S-expression
representation for MARKSpiex:

L



_ _ _  -~~~ ~~~~—-~~~~-

A Detai led Exam ple Page 19

MARKSi,sp:
CONS CELLS (UNEXPLOREG BOUNDARY . EXPLORED)

EXPLORED: collection of integers
BOUNDARY: collection of integers
UNEXPLORED: collection of integers

Notice that we are now concerned with three separate collections which need not be
repres ented the same way. In fact , since they are used for different purposes , it
may well be advantageous to represent them different ly. The representations of
BOUNDARY and UNEXPLORED will be considered in sections 2.4 and 2.5. First ,
however , we will look at some of tile operations applied to MARKS.

2.3.2. MARKS 1[”BOUNDARY”]

Tile first operation we will consider is the computation of the inverse image of B

under the MARKS mapping. The abstract description of tills operation is as follows:

[ compute tIle inverse image of B under MARKS

Witil most representations for mappings , the computation of an inverse imaqe can be
relatively complex , possibly including an enumeration of all domain elements. In the
case of MARKS , however, the mapping was inverted and the computation of the
inverse is quite simple8. Tile following rule allows us to take advantage of this
property:

If a mapping is represented as an inverted mapping, the inverse
Image of a range element X may be computed by computing the
image of X under the inverted correspondence.

Applying this rule yields tile following des cription:

compute the image of B under MARKS~V

The next refinement Step for MARKSinv was the decision to use a plex to represent
tile mapping. Tllis is particularly useful if the domain element is known when tile
program is being constructed , as is the case here. (The domain element is B.) The
following rule can then be applied:

8 This is, presumably, the reason for inverting the mapping. 

-.--- ~~~~~~~~~~~~ - - -— — — • -.— -~~~~~~ - —•—----- -——-. -—~~~~ -



Page 20 Section 2

If a mapping is represented as a plex, the Image of a known
domain element X may be computed by retrieving the X field of
the plex.

This yields tIle following description:

retrieve the BOUNDARY field of MARKS pIex 
I

The next two steps involve retrieving the field from the CONS cells used to
represent MARKSpi.~. The result is tIle following LISP code:

(CA R (CDR MARKSi1~ ))

2.3.3. Change MARK S [X] from “BOUNDARY” to “EXPLORED”

One of the operations applied frequently to the MARKS mapping Is to change the
image of a particular element. For example, a f t e r  X (an element of
MA RKS-1[”BOUNDARY”]) llas been chosen, one of tile operations applied to X is the
following:

change MARKS[X] from B to E

The refinement rule of this operation is dependent on the representation of MARKS
as an inverted mapping.

If a mapping is represented as an inverted mapping, the
operation of changing the image of a domain element X from V
to Z may be implemented by removing X from the image of V
and adding X to the image of Z under the inverted mapping.

When this rule is applied t ue following description results:

remove X from MARKS nv [B];
add X to MARKS,nv [E)

The removal operation will be considered in more detail after determining a
representation for the BOUNDARY collection. 

-



_  _ _

A Detailed Example Page 21

2.4. BOUNDARY

BOUNDARY i s th e ~et of all vertices that map to B under MARKS. Since MARKS is
inverted , tills collection exists explicitly and a representation for it must be
selected. The operations that are applied to BOUNDARY include the addition and
deletion of elements and the selection of some element from the collection. For such
operations , a linked list structure is often convenient. In this sectior we will
consider the derivation of such a representation.

2.4.1. Representation of BOUNDARY

PECOS’s internal representation for t h e  description of BOUNDARY may be
paraphrased as follows:

BOUNDARY:
COLLECTION ( in teger)

As with mappings , the first decision is whether to use an explicit or an implicit
representation. In the case of collections, an explicit representation is one in which
eacil element is indicated explicitly. An implicit representation is one in which not all
elements have such an explicit ind ication. For example , upper and lower bounds on a
set of integers is an implicit representation. In the case of BOUNDARY , the following
rule will be applied:

A collection may be represented explicitly.

yielding the following description:

BOUNDARY:
EXPLICIT COLLECTION ( in teger )

Here again, the next decision is whether to keep all of the elements in a single
structure or to use some kind of distributed representation. Applying the following
rule:

Mn explicit collection may be stored In a single structure.

indicates a decision to store all of the elements together:

I
STORED COLLECTION ( integer)



Page 22 Section 2

The next step is the selection of a particular structure , One common type of
str ucture involves the use of some sequential arrangement of locations. Each
location Contaills one element ~fl tile collection. (Another common type is to a tree
structure.) Tile following rule can be applied:

A stored collection with typical element X may be represented
as a sequential arrangement of locations in which instances of
X are stored.

producing the following description:

BOUNDARYSeQ:
SEQUENTIAL COLLECTION ( integer)

Note that there is no commitment to any particular way of achieving the sequential
arrangement. Both arrays and linked lists are reasonable alternativ es here. Applying
tile following rule:

A sequential arrangement of locations may be represented as a
linked list.

commits us to the use of some kind of linked list:

[~~~UND AR Y~St :
LINKED LIST (integer)

A gain , there are still several possibilities. Under some circumsta nces , parallel arrays
may  be used , with one array containing the elements and one containing the links.
The following rule takcs the alternative of using coils allocated from free storage:

A linked list may be represented using linked free cells.

The resulting description is as follows:

BOUNDARYceii5 :
LINKED FREE CELLS (integer)

It is often convenient to use a special heade r cell with such lists, so that the empty
list need not be considered as a special case. Applying the following rule:

A special header cell may be used with linked fre. cells.

enables us to make use of this technique:

k _ _ _ _ _ _ _ _  _ _ _



- 

-

A Detailed Example Page 23

BOUNDARYc&is:
LINKED FREE CELLS ( in teger)  with special header cell

Any use of cells allocated from free storage requires allocation and garbage
collection mecllanisms. in LISP, both are available with tile use of CONS cells , so we
can apply the following rule:

Linked free cells may be represented using a LISP list of CONS
cells.

Thus , the concrete data structure selected for representing the BOUNDARY collection
IS tile following:

BOUNDARYi,
~
p:

[ LISP LIST ( integer ) with special header cell

2.4.2. Any Element of MARKS’1[~BOUNDARY”)

Tile main loop of tile algorithm is repeated until MARKS I[”BOI.JNDARY” ] (i.e., the
BOUNDARY collection) is empty. The action at each iteration involves selecting some
element from this collection. PECOS’ s representation of tills operation may be
paraphrased as:

retrieve any element of BOUNDARY 
1

Recall that one of tIle intermediate steps in tile BOUNDARY derivation involved the
use of a sequential collection. Tile first refinement step for the “any ” operation is
dependent on that step having been made. The relevant rule is:

If a collection is represented as a sequential collection, the
retrieval of any element in the collection may be Implem ented
as the retrieval of the element at any location In the collection.

Applying tills rule yields:

[ retrieve the element at location I of BOUNDARY3eq
L Is any location 

—- -—-— - ---~~~~~~~ - - -= -~~~~- —~- - — - -  - ------ - --- --- --- - ------



- — . -~~~~~~
- . .

~~~ - -—
~~~~~~~~~ 

Page 24 Section 2

Tile next step is then to select the location to be used. There are several
possibilities for sequential collections , of which the two most useful are the front and
tile back. Of these , the front Is generally best for linked lists; although the back can
also be used, it is usually less efficient9. The decision to use the front can be taken
by applying tile following rule:

If a location in a sequential collection is unconstrained , the
front may be used.

which produces the following description:

L retrieve the element at the front of BOUNDARYi st

The next step is dependent on the representation of BOUNDARY as linked free cells
with a special headier cell. The appropriate rule here is:

If a linked list is repre sented using linked free cells with a
special header cell , the front location may be computed by
retrieving the link from the f irst cell.

When this rule is applied, we have:

retrieve t u e  element from the cell indicated
by the link from tile first cell of BOUNDARYceus

The computation of the link can be implemented by applying the following
LISP-specific rule:

If linked free cells are implemented as a LiSP list , the link from
the first cell may be computed by using the function CDR.

Once the cell has been determined , the computation of the element can be
implemented by applying the following rule:

If linked free cells are implemented as a LISP list, the element
at a cell may be computed by using the function CAR.

Tile result of tileSe two rule applications , when combined with the code for computing
MARKS1av[R], IS the following LISP code for computing “any element of
MARKS - 1[”BOUNDA RY” J ” :

~ Tile selection of tile “front” rule over the “back” rule for linked lists is one of the
choices made by PECOS’ s heuristics. 

-~~~- . -- . ~~~~ -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
--

~~~~ - -—-~~~~ --


_ _

- - - -- - -- -

~~~~~~~~ 

A Detailed Example Page 25

(CAR (CDR (CAR (CDR MAR KSi~~))))

2.4.3. Remove X from MARKS r~v[”5OUNDARY”]

Recall tilat one of tile operations involved in changing the image of X from B to E is
the removal of X from MARKS10v [B):

remove X from BOUNDARY

Tile first step in refining t il ls removal operation is similar to that of the “any element”
operation:

If a collection is represented as a sequential collection , an
element may be removed by removing the item at the location of
the element in the collection.

When this rule is applied, the following description results:

remove the item at location L of BOUNDARY

L L is the location of X

Normally, determining tile location of an element in a sequential collection involves
some kind of search for that location. In till s case , however , the location is already
known , since X was determined by taking tile element at tile front of BOUNDARY. The
following rule enables us to take advantage of this predetermined knowledge:

lf an element X was determined by retrieving the element at
location L of a sequential collection C, then L is the location of
Xin C.

Testing the condition of this rule involves tracing back over the steps that produce
the particular element X and determining tllat, Inde ed, tile location of X in BOUNDARY
is tile front. W hen tills is done, the rule can be applied1 and we have tile following
description:

remove the item at the front of BOUNDARY

From tills point Oil, the program construction process is relatively straightforward, and
similar to the “any element” derivation. The end result is the following LISP code:



Page 26 Section 2

(RPLACD (CAR (CDR MARKSi15p))
(COR (CDR (CAR (CDR MARKSIi5p))))))

2.5. UNEXPLORED

Tile UNEXPLORED collection contains all of those vertices to which no path has yet
been found. Tile only operations applied to this collection are membership testing
and addition and deletion of elements. Note that each of these operations is applied
to some particular element in the collection. (By contrast , tile selection of “any ”
element of a collection does not have this property.) For such operations , it is often
convenient to use a cliff erent representation than simply storing the elements in a
common structure (as was done with the BOUNDARY collection). In particular ,
UNEXPLORED will be represented as an array of Boolean values , where the entry for
index k is TRUE if and only if vertex A is in the UNEXPLORED collection.

2.5.1. Representation of UNEXPLORED

The initial description of UNEXPLORED is the same as that of BOUNDARY:

UNEXPLORED:

L COLLECTION ( in teger)

One view or collections is simply as a mapping of items to Boo iean values. An item
maps to TRUE if and only if It Is In tile collection. This possibility Is avai lable  through
the use of t u e  following rule:

A collection may be represented as a Boolean mapping.

The following description results from applying the rule:

UNEXPLOREDmap:
MAPPING (integer -. {TRUE ,FALSE })

Having decid ed to use a Boolean mapping, all of the rules available for use with
general mappin S are applicable here. In particular , the same sequence of rules that
was applied to derive tile representation of SUCCESSORS can be applied here:

A mapping may be r.pr.sent.d explicitly. 

-~~~~~~~~~~ -- ~ —~--~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ - -~~~~~ 
- -- S. S -~S~~~~~~~ .~~~~~



A DetaIled Example Page 27

UNEXPLOREDmap:
EXPLICIT MAPPING (Integ ers ~ {TRUE ,FALSE))

An explicit mapping may be stored in a single structure.

UNEXPLOREDmap:
STORED MAPPING (integers .. {TRUE,FALS E} )

A stored m apping with typical domain element X and typical
range element V may be represented with an association table
whose typical key is X and whose typical value is V.

UNEXPLOREDt5bIe:
ASSOCIATION TABLE (integers .. {TRUE ,FALSE ))

An association table whose typical key is an integer from a
fixed range and whose typical value is V may be represented
with an array with typical entry V.

UNEXPLOREDarray :
ARRAY ({TRUE ,FALSE))

An array may be represented directly as a LISP array .

UNEXPLOREDi15p:
LISP ARRA Y ({TRUE ,FALSE))

Thus , the final LISP representation of tile UNEXPLORED collection Is an array of
Boolean values , with the value being TRUE if the index is in the UNEXPLORED
collection and FALSE otherwise. 

S~ - - - - - - - -~~~~ - ---- -- --~~~~ - -~~~~~ -~~~~~~~~~-~~~~~ --~~~~ - - - - -
~~~~~~~~


Page 28
-

Section 2

2.5.2. Remove V from MARKSin~[”UNEXPLORED”]

Tile implementation of the “change MARKS [YJ from U to B” operation involves
removing V from the UNEXPLORED collection. Recall that removing an element from
tIle BOUNDARY set involved modifying one of the links in the list structure
represelltatioil. As UNEXPLORED is represented differently , removing an element will
require a different implementation. The abstract description is the same as in the
case of removing X from BOUNDARY.

remove V from UNEXPLORED

Tile first refinement rule for t ilis removal operation is based on tile representation of
UNEXPLORED as a Boolean mapping.

if a collection is represented as a Boolean mapping, the
operation of removing an element X from the collection may be
implemented as the operation of changing the image of X from
TRUE to FALSE under the mapping.

When this rule is api)l,ed, the following description results:

change UNEXPLOREDmap~Y] from TRUE to FALSE

The next refinement rule is dependent on the tabular representation of UNEXPLORED:

If a mapping is stored as an association table , the image of a
domain element X may be changed from V to Z by storing Z as
the table ent ry for X.

(Note tllat this rule does not use t ile fact that the old image of X is V; in tabular
representations, storinci a value simply over writes tile old value.) When tills rule is
applied, we have tile following description~

store FALSE in UNEXPLOREDIabIe as the entry for tile key V

The next rule depends of tile representation of UNEXPLORED as an array:

If an association table Is represented as an array, a value may
be stored as the entry for a key K by storing It in the array
under the index X.

Applying this rule, we have:

_ _ _ _ _ _ _ _ - - -.- -

_ _ _ -
~~~~~_~~_ — -“5- - - -

A Detailed Example Page 29

s tore FALSE in UNEXPLOREDIaDIe as tile entry for tile index

The last rule to apply here is a LISP-specif ic rule:

If an array is represented as a LISP array, a value may be
stored under an index X by applying the function SETA .

W iien t il is rule is applied, and the LISP representation of FALSE as NIL is used , we
have the final LISP code for removing V from UNEXPLORED:

(SETA UNEXPLOREDi,~ X NIL )

2.6. Final program

The other aspects of the implementation of the Reachability Algorithm are similar to
tilose we have seen. TIle following is a paraphrase of the final program. (Here , X[V]
denotes t ile Yth eiltry in the array X and X:Y denotes the V field of the plex X.)



Page 30 Section 2

Reac hability Program
VERTICES — input a list of integers;
SUCCESSORS~~ 1 .. input an association list of <integer , list of integers> pairs;
SUCCESSO RS .. create an array of sIze 100;
for all X ill the list SUCCESSORS1nput:

SUCCESSORS [X:DOMA1N] X:RANGE;
START input an integer;
MARKS:EXPLO RED — create an empty list with header cell;
MARKS:BOUNDARY create an empty list with header cell;
MARKS:UNEXPLORED create an array of size 100;
for all X in the list VERTICES:

MAR KS:UNEXPLORED~X } TRUE;
UNEXPIORED [START] FALSE;
insert START at front of MARKS:BOUNDARY;
loop:

if MARKS:BOIJNDARY is the empty list then exit;
X front element of MARKS:BOUNDARY;
remove front element of MARKS:BOUNDA RY;
insert X at front of MARKS:EXPLORED;
for all V in tile list SUCCESSORS [X] :

if MARKS:UNEX PLOREQ [Y] then
MARKS:UNEXPLORED [YJ - FALSE;
insert V at front of MARKS:BOUNDARY;

repeat;
output MARKS:EXPLORED . 

~~- -~~ - -~~~~~~~ —- ----~~~~~~~ - -—-.5 ---.-—-------- - - - - S ~~~~~ ~~~~-



A Detailed Exampl e Page 31

Below is given tile final LISP code for the program , exactly as it was produced by
PECOS:

(REACH
(LAMBDA Nil

(PROG (V0030 V0031 V0032 V0033)
(PROGN (SETQ V00~0 (PROGN (PRINI ‘Paint,~’)(READ)))

(SETQ V003 1 (PROC (V0077 V0075 V0074 V0071 V0070)
(PROGN (PROGN (SETQ V0074 (PROGN (PRINI Links -~(READ)) )

(SETQ V0070 (ARRAY 100)))
(SETQ V0077 V0074))

00079
(PROGN (SETQ V0075 V0077)

(COND
((NULL V0077)

(GO 10078)))
(PROGN (PROGN (SETQ V007 I (CAR V0075))

(SETA V0070 (CAR V0071)
(CDR V0071)))

(SETO V0077 (COP V00773
(GO 60079)

10078
(RETURN VOO70)))

(SETQ V0032 (PROGN (PPINI Starting pcint ”)
(REA D)))

(SETQ V0033 (CONS (ARRAY 100)
(CONS (CONS (QUOTE “HEAD”)

(QUOTE NIL))
(CONS (QUOTE “ HEAD” )

(QUOTE NIL]
(PROS (VOO4O VO038 V0O37 V0034 )

(PROGN (SETQ VO037 V0030)
(SETQ VOO4O V0O37))

00042
[PROGN (SETQ V0O38 V0040)

(CONO
((NULL VOO4O)

(GO 10041)>)
(PROGN (PROGN (SETQ V0034 (CAR V0038))— (SETA (CAR V0033)

VO034 T) )
(SETQ VOO4O (COP V0040)

(GO 60042)
L004 I

(RETURN))
(PROGN (PROC (V0O44)

(SETQ V0O44 (CAR (CDR VO0~ 3)))
(RPLACD V0O44 (CONS V0032 (COP V0044J

(SETA (CAR VO033)
V0032 NIL)))



-
~

Page 32 Section 2

L 60066
(PROC (V0054 V0O46

(SETQ voos4 (CAR (COP V0033)))
(CONO
((NULL (COP V0O54))
(GO 10045))

(1 (PROGN (SETQ v0046 (CAR (CDR V0O54)))
(PROGN [PROGN [PROC (VO04&~F; (SETQ V0O48 (COP (COP V0033)))

(PPIA CD V0048 (CONS V0046 (COP V0048]
(PROS WOOS I V0052)

(SETO VOOSI (CAR (COP VC~O33)))
(SETQ V0052 V0046)
(PPLACD VOO5 I (COP (COP V0051]

(PROS (V0063 V0061 V0060 V0055)
(PROGN (SETQ VOO6O (ELI VOO3I V0046))

(SETQ V0063 V0060))
G0065

[PROGN (SETQ V006I V0063)
(CONO
((NULl V0063)
(GO 10064)))

(PROGN (PROGN (SETO V0055 (CAR V0061))
(COND
((ELI (CAP V0033)

V0055)
(PROGN (PROC (VO0~7)

(SETQ V0057 (CAP (COP V0033)))
(RPIACD V0057 (CONS V0055 (COP V0057)

(SEIA (CAP V0033)
VO055 NIL]

(SETQ V0063 <COP V0063]
(GO 00065)

10064
(RETURN]

(GO 60066)
10045

(PR INT (COP (COP (COP V0033]
(RETURN))

L .



______  
_____ - -

Page 33

3. A REFINEMENT MODEL OF PROGRAM SYNTHESIS

3.1. Refinement sequences

— PECOS’ s organization and rule representation are based on a model of program
synthesis as gradual refinement. TIle process may be simply illustrated as a
sequence of program descriptions:

~~~riginaI~~ partially~ concret
~1abs t rac t ~~ refilled ‘ • • description

(~~~sCriP tion description (program)

Each description in the sequence is slightly more refined (concrete) than tile
previous description. Tile first is the program description ill the specification
language and tile last is tile fully implemented program in t h e target language. Such
sequences wi ll be referred to as refinemen t seqUences and the individual
descriptions will be referred to as program descriptio ns. Tile modification involved in
deriving one description from the previous one will lie referred to as a ref inemoni
step 1O .

Note that tile refinements at each step involve only very small changes to a
particular part of the program description. Although such small steps are not required
by the formalism , this is one ramification of tile at te~ipt to identify and isolate
individ ual proçiranlming decisions. To take a simple example , when PECOS implements
a mambersilip test using tile LISP function MEMBER , there are about a dozen
refinement steps , divided about equally between data structure refinements and
operation refinements. One could imagine producing such a simple function call in a
siucj le Stop. Indeed, this may be oppropriate for some uses. However , in so doiriq
IlU~~O (OLl5 decisions are collapsed into a single step, thereby leaving many of them
only implicit in the fact that a particular implementation has been chosen. When one
decides to represent a collection using “th e stai ldard LISP list representation ,” one
IS, ill fact , implicitly making several interrelated decisions at once: that the collection
will be represented explicitly, that it will be stored in a sinqle structure , that a
sequential arranqement of positions will be used to 1101(1 the elements , that links will
be used to connect positions , that cells from free storage will be used for tile
positions , and finally that CONS cells will be used.

Another characteristic of PECOS’ s refinement sequences is that , in many cases , tile
order in wllich particular refinement steps occur is Uniniportallt. All that is necessary
is that eacIl part of the original description eventually be refined to the most

10 Section 2 presented several steps in tile refinement sequence for the
Reachability Program. The entire sequence took almost a thousand steps.

~~~~~~~~~~~~~~~~~~~~~ -~~~ -- --- - 



Pag e 34 5ection 3

concrete level , tile level of tile target lollçluaçie. Frequently, se l)aratc pa rts are
independent enougil that either may be refined before the other. However , tilere
may 1)0 a partia l ordering Oil t h e  steps. Typically, data structure refinements
prec ede tile refinement of operations on them. Despite such partial orderings , tile
refinements of particular data structures and operations on them occur as separate
steps. This is one of the features tilat distinguishes PECOS and its knowledge base
from most other refinement formalisms. For example , eacll ALPHARD form consists of
a data structure r ef i n e m ent and refinements for each operation On that data
structure [Wu If , London and Shaw 1976). By de-coupling tile refinements of data
structures and algorithms , greater variability in target programs can be achieved.

3.2. Refinement trees

In a typical refinement sequence , there are several steps where alternative
refinements can be made. Thus , the notion of a refinement sequence may be
generalized into that of a refinement tree , as illustrated below:

- - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



-~~~~~~~~ -~~~~~~~~~ -

A Refinement Model of Program Synthesis Page 35

I~~
original

abs t rac t
description

~~rt ia~hy
refined

description

_
/ \

_

partiall y rpartiaiiy
ref m ed refined

description 
j~

escriPtioil

• a

. S S S

S S S S

concrete concrete concrete [concrete concrete
~1de5CriptiOIl~ description jdescription description Jdescription

(Proc~ra~~ j  
(program) 

[~~ o9ram) (program) 
[~~ ogram)

Tile root of such a tree is the original specification, tile leaves are alternative
implementations , and each path is a refinement sequence.

An important feature of Sucil trees is that all the nodes (program descriptions) all
represent “correct” programs 11. Eacll node represents a step in a path from the
abstract specification to some concrete implementation of it. When paths cannot be
completed (as happens occasionally), tile cause is generally the absence of rules for
dealing with a particular program description, rather than any inherent problem with
tile description itself. The fact tilat each path is correct greatly facilitates tile use
of refinement trees as a space to be explored in search of the “best”
Implementation. This topic is pursued further in section 9.

11 Assuming correctness of the rules, of cou rse. 

~~~~~~~~~~ 
. - -~~~~~ - ~~

_ _ _ _ _ _ _ _ __________-

Page 36 Section 3

3.3. Program descriptions

Ea ch program description in a refinement sc~iuence is represented withl a semantic
network formalism. Eac ll part of the program is reprøsented as a node, l abeled with
a particular programming concept , and a set of properties. For example , the following
repr esents a collection of integers :

COLLECTION

e l e m e n t
INTEG~~J

With a few exceptions, the semantics of tile property names depend solely on the
concept with which the node is labeled. For COLLECTION nodes, the element
property is a generic description of the elements of the collection.

A membership test operat ion is represented by an IS-ELEMENT node:

IS-ELEMENT j
I result -dat a-structure

element

collection

Tile element audI collection properties indicate tile operands of this particular
operation. That is , the element property is tile node for tile operation whose result
is tile iteni to be tested. Similarly, tile collection property is the operation whose
result is tIle collection to be tested. The result-data-structure property indicates
the data structure which is tile result of the IS-ELEMENT operation. In this case , it
would be a BOOLEAN node.

Result—data—structure properties play an important role in PECOS’ s proqram
descriptions: tIle node for any operation that produces some result must ilave such
a rcsult-data-structure property. The result-data-structure property of an
operand specifies tile data structure that is passed from that operand to the
operation. For example , tile result-data-structure of the collection property of an
IS—ELEMENT node is tile node of tile collection data structure (as opposed to the
operation that produces tile collection).

Tilis may be clarified by considering the expression IS—ELEMENT(X ,INV ERSE(Y ,Z))12.

12 “Is X all element of tile Inverse Image of V under the mappIng Z?” ; in this exam ple ,
all primitives involved will be integers.

—~~~- - - ~ - -—-- -~~~ - ~~~ ~~~---- - —~~~ --~~~- -- - --~

-~~

A Refinement Model of Program Synthesis Page 37

Part of the node representation for this expression is given below:

IS—ELEMENT

result -data —s tructure

1 ~~~~~~~
2

element

~ L~~
1EMBEREO-VALUE 1 3

I result -data—st ructure
INT EGER 1

c o l l e c t i o n

• INVERSE 5

I result —data—structure -
‘ LEOLLECTION 1 6

e I emen t

JNTEGE R J 7

range-element
~
—

~ I
REMEMBERED—VALUE 8

r esu l t — d ata—st ruc ture
INTEGER 9

mapp i ng
a REMEMBEREO_VAL U~] 10

r e s u l t — d a t a — s t r u c t u r e —l
LM~~~~~ 1 11

Node 5 is the collection operand of tile IS-ELEMENT operation represented by node
1; that is , nod e 5 represents tile expression whose value is tile collection to be
tested. Node 6, the result—data —structure property of nod e 5, is tile data structure
i tself , in this case a COLLECTION of INTEGERs. Node 6 thus represents t u e data
structure passed from the INVERSE operation to the IS-ELEMENT operation. As will
be seen more clearly later , the fact that a sing e, particular node re; ruscnts the
data structure passed from one operation to another helps to coordinate tile final
implementations of the operations so that both are based on tile same data structure
representation.

~

- ~~---~-~~- - —- --— -- ——~~~ — - —-~~~~~~——— - — - - - --, —
~~~~~~~~

--
~~~—-~~~~~ ---- -- ~~ -


Page 38 Section 3

Node 3 illustrates another way that data structures may be passed from one
operatioll to another. A REMEMBERED-VALUE node signifies that the data structure
to be used is computed elsewhere. Although such a data structure is frequently
passed as the value of a variable (as suggested by the presence of X in tile English
expression) , that need not necessarily be the case. For example , a value whose
computation is relatively easy and has no side effects may be recomputed rather
than stored.

Note that the cnllection represented by node 6 is not mentioned explicitly in tile
original expression. Rather it is only implicit in the fact that an IS—ELEMENT
operation takes a collection as an argument and tile fact tilat an INVERSE operation
produces one. Tile use of result—data—s tructure properties enables such ifllpliCit
data structures to be referenced explicitly in program descriptions.

In all of the above examples , property values have been otller nodes. Although tilis
is frequently tile case , property values may be arbitrary structures. For example , in
tile description below (taken from tile final description in a sequence), tile value of
the arguments property is a list of nodes:

[~ITSP_FUNCT ION-CALL

-
~ func t ion-name

a MEMBER
arguments

LISP-FUNCTION-CALL

function -name
-, REA D

ar cju men t s
-

~ NIL

LISP-VARIABLE-NAME 1
I variable-name
L

~ vea17

This description corresponds to tile LISP expression:

(MEMBER (READ) V0017)

Note that the program descriptions are oriented somewhat toward operations as
opposed to data structures. This is no doubt one of many subtle (and often
uplconscious) effects of using LISP as the target language. One could imagine a
data-oriented style in which, for example , data paths could be more easily described
tllan is possible with tile program descriptions PECOS uses.

~~~~~~~~~~~~~ - -- ~~~~~~~~~~~~~~~—~~~~ ~~~~ - - -- ~~~~~-- - — —-
~~

-- -~~~~~ 
-= -

~ 
-
- - - ---

~~~
- . - -~~~~~~-~~~~

A Refinement Model of Program Synthesis Page 39

3.4. Refinement steps

In a refinement step, there are two ways that detail can be added to a program
des cription: a property may be added to an existing node, or one node may be
id entified as a refinement of another. This second type may also involve tile
in t roduct ion of new nodes 13. Of these two types of changes , tile identific ation of
one node as a refinement of allOtiler is the most significant. The result of making
such a challcle is illustrated below:

~~~ -ELEMENTJ

I resu l t—data—st ruc tu re

element

c o l l e c t i o n
INV ERSE

resul t -data-s t ructure I

[COLLECTION

element
ref inement ink ~— a •

V

EXPL IC ! T-COLLECT I ON

element 
~~~~ 1

~ INTEGER

r ange-ele ment
3 5 S S

mapl) IOQ

I • S I

lii this ref inement step , tile COLLECTION node has h~ en refilled into an
EXPLICIT—COLLECTION node. In essence . it has been decided to implement the
collection explicitly. Note that the element property of t he EXPLICIT—COLLECTION
node is the same node as tile clement property of the oriqinal COLLECTION node.
Such links between nodes will be referred to as ref inement l in lcs. A sequence of
nodes connected by such refinement links will be referred to as a refinement chain.
Conceptually, such a link may be viewed as a simple replacement of t h e abstract
node by t u e concrete node.

13 Aithouqil oi~e could imaqine otller types of changes (e q.. modifyinq a property on a
node), no need for them has yet been encountered.

- - _ _ _ _ _ _ _ _ _ _

- -
~~~~

-- -- -—---- — - -



Page 40

4. RULE REPRESENTATION

4 .1. Rule types

As discussed in tile previous section , eacil step in a refinement sequence consists of
a snlail chailge that transforms one program (IOSCriptiOIl into the IlOXt. PECOS makes
these transforn lations by applying rules from its knowledge base , ea ch r e f i n ement
step being performed by one rule. Corresponding to the two ways of adding detail in
such steps (as moilt iollod in section 3.4), there are two typos of rules;

Refinement rules establish refinement links between nodes. Typically,
the refinement node is created at tile time tile rule is applied.
Re f i n e m e n t  rules are by far the most common type of rule in PECOS’ s
knowledge base. Tile application of sucil a rule dJellerally corresponds to
a decision to use a particular , more concrete , implementation for either a
data structure or some abstract operation.

Prope, ty rul es cause a particular property to be attached to some
already existing node. Property rules are less common than refinement
rules , but play a wider variety of roles. Several examples of property
rules in some of these roles will be given later.

The rule types correspond to part icular actions - refilling a node or adding a property
to a node. in add it ion , eacll rule has an applicability condition consisting of a pattern
of nodes and properties. In tile next section, tile types of patterns that may occur
in these conditions are discussed.

Refinenlent andi property rules are used to construct refinement sequences. In
addition to these types of rules, a tilird type has been found to be qui te  use fu l ,
especially in ~~~ ting rule conditions:

Query rul - .c C - I l  be used to determine the answers to questions tilat have
been poses. iaoout program descriptions. Since applying such a rule does
not cilange tile program description in any way, query rules do not
correspond to refinement steps ,

For example , there are about five query rules that determine whether or not two
data structures have matching representations. In many situations , it would have
been equally possible to embed tile query rules directly into the rule conditions that
pose the queries. Since there are often several rules for tile same query, a fac i l i t y
for “or ” conchtions would have to be added to the pattern matcher in order to
accomplish this. However , query rules do not just simplify tile pattern matcher; they
also greatly increase the modularity of the individual rules. If a new way of
answering a query is discovered , it can simply be added as a new query rule.
Otherwise , tile conditions of all of the rules that pose tile query would have to be
modified.

- - - —  - -—_ - .i- ----— —_-_— - a- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ___.___ _ --—- - ----- - --- - - - -



Rule Representation Page 41

PECOS’ s representation for these three rule types is shown below:

(REF.- <node pattern> <refinement specification>)

(PROP— <property name> <node pattern> <property value>)

(Q UERY— <query pattern> <query answer>)

(where REF.-, PROP— , and QUERY— are tags indicating tile rule type l4). A REF.- ru le
specifies that if a node m a t c h e s <node pattern> , then it may be ref i ned into
<refinement specification>. A PROP.- rule specif ies that if a node matclles
<node pattern> , then <prope rty value> may be a t tached  to tha t  node 85 the value
of the <property name> property. A QUERY— rule specifies that if a query matches
<query pattern> , then tile answer to tile query is <query answer>. Ill tile rest of
t h i s  sec t ion , the matching of (node pattern>s against nodes in proqram descriptions
will be discussed , Tile action parts of t Ile rules will be discussed in connection witil
PECOS’ s control structure.

4.2. The pattern matcher

In many respects , PECOS’ s pattern match er is similar to most other pattern matchers
(e.g., QLISP [Wi lber 1976], PLANNER [Hewitt 1972]). There are facilit ies for
following various links through the substructures ci the pattern and object being
matchedi , for testing conditions on t he s t r u c t u r es, all(l for binding variables. In this
ca se, tile sLil)structure links are primarily the node properties and refinement links.
But s ince  the pattern matcher has been designed with a particular purpose in m i nd —

tile cod if icat ion of programming rules based on tile refinement model of program
SylltileSiS - ti lere are many idiosyncratic constructs. One of these constructs
represents a major departure from most other pattern matchers: in addition to
returning with success or failure , a match attempt may also result in an incomplete
match. Tile determination of incomplete matches w l i  be discussedi further in section
4.2.2.

4.2.1. Pattern types in rule conditions

A <node pattern> consists of a concept name and a list of subi)atterns. A <node
pattern> matches a IlOde in a program descri pt io n if (1) the concept of the <node
pattern> is t h e  same as tile concept of the node and (2) tIle subpatterns all match.
There is a -itiriety of different types of subpatterns. For ease in implementation ,
tilese arc generally indicated by tile first element of tile pattern. Appendix 1
gives a coiiiphete list of these types. Some of the more common types will be
illustrated by considering several rules in full detail.

14 Tile — ‘ S are ilistorical artifacts with no relationship to assignment. 

-—-—- _~~~~~~—-—-— _ .-- --*~~-- ~~~--~_ -- --.--_ - - _— —--- --_ --_--- . - _  — - --



- -- , 
-~ -~~ -_ _ -. - - -

Page 42 Section 4

Rule :

~ sequential collection with typical element X may be refined into a
linked l ist with typical element X .

Re p resenta t i on:
(REF .- (SEQUENTIAL-COLLECTION

(#P  E L E M E N T  ( -— X )) )
(1/NEW LINKED-LIST

(—#P ELEMENT X)))

This rule can be used to refine an ai)StraCt data structure (a sequential collection)
into a more concrete data structure (a linked list); that is, a refinem ent link is set up
between t h e  abstract  node 011(1 tile concrete node. REF.- denotes a refinement rule.
Tile first part of the <node pattern> , SEQUENTIAL-COLLECTION specifies the
cOilcept of t h e  uncle to be refilled. lIP indicates that a pa rticular property should he
matched against a subpattern. In tills case , tile property is the ELEMENT property
and t Ile subpattcrn is ( — —  X), w hi c h sp ecif ies t h a t  the prop e r ty ’s va lue  is to be
bound to tile variable X for use in executing tile rule ’s action. #NEW in the
<refinement specification> specifies that a new node is to be created.
LINKED—LIST specifies tile concept of tile ne~ node. —#P specifies that a property
is to be attache d to tills node. In this case, the property is the ELEMENT property
and the value is tile value of tile variable X (which had been bound to tile ELEMENT
property of tile SEQUENTIAL-COLLECTION nod e while evaluating tile condition of tile
rule ) .

T hus , applying this rule would produce tile refinement link indicated in tile diagram
below:

SEQUENT ! AL-COLLECTION

elem ent
I Jref  nement

V

LIN KED-LIST

e lement

Note that ther e are no conditions on the node that represents the elements of the
seq uen t ia l  collection , and that  th e sam e nod e Is us ed to represent th e e lem ent s of
tile linked list (accomplisiled using tile .-.- mecilanism for binding the variable X).



--- - -.—--~~~~~~~~~. - .---~~~~~
- -

~
--- ,

Rule Representation Page 43 -

Rule:
If a l inked list is represented as a LISP list and the representation of
ats item is the same as (he representation of the elements of the LISP
list , a test of whether the item is stored in a l ist cell of the l ist may be
ref/ n ed into a call to the LiSP function MEMBER , with the item and the -

list as its arguments.

Rciar sentation:
(REF.- (IS-STORED-IN-SOME-LIST-CELL

(// P LIST ( . .  L)
(#RD S

(#REF LISP-LIST
(#P E L E M E N T  (.-.. E X ) ) ) ) )

(#P ELEME NT (.-.. E)
(u RDS

(?QUERY REPRESENTATIO N-MATCH // EX))))
(#NEW LISP-FUNCTION-CALL

(.-#P FUNCTION-NAME (QUOTE MEMBER))
(..~sP ARGUMENTS (LIST E L))))

This ru le COIl be used to refine an abstract operation into a call to a particular LISP
funct ion. ihore are several new pattern types in this rule. A #ROS pattern
specifies that tile RESULT-DATA-STRUCTURE property of the current node should
be matched against tIle subpattern. in the first , tile subpattcrn is a # R E F  pattern.
Such patterns play a crucial role in PECOS ’s rules , spec if y ing that the chain of
re finement hulks from tile current node should he searched for one that matches the
subpattern. In effect , sucil pattern s are used to ask whet iler particular
implen)entat i oll decisions have been made. In tills case , it is used to insure that the
data structure under considerat ion is really a LISP list (LISP—LIST specifies tile
concept of tile node pattern); it it were not , then the rule would clearly be
inapplicable. in tile second #RDS case , tile subpattern is a query,
(?OUERY REPRESENTATION-MATCH # EX). TIle # in tile query refers to the
cu r r en t  uncl e, in tills case tile node representing the element being tested. Thus , the
dluery checks wilotiler the element being tested is represented in tile same way as
tile elements of tile list. This rule would matcil tile node pattern illustrated below ( i f
nodes 6 and 8 have matci ling representations):

- - - - 
________  



Page 44 Section 4

I IS-STOREO-IN-SOIIE-LIST-CELL J 1

I result—data — structure
2

l i s t ILl
resu l t—data -s t ruc tu re

4

refinement chain

I LI SP~LI~~~ 6

e l em en t
_ _  6

e I emen t

I result—data —st ructure

ILl 8

Note that there are 110 conditions on nodes 3 and 7, the operations that produce the
argument data structures. The way in which the LISP list is produced has 110

relevance for this rule. All that nlatterS is th a t tile data structure (node 4) be a LISP
list and that tile two element nodes (6 and 8) have matching representations. It
should also be pointed out that refinement rules automaticall y cause
RESULT-DATA-STRUCTURE properties to be inheritec. Applying this rule would
create a LISP-FUNCTION-CALL node with arguments as s~ ecifiad above, in addition,
tile RESULT-DATA-STRUCTURE property of this node would be node 2 above. 

~~~ --~~~~--~~~~~~~ --- ~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


_ _ _ - -w--—--___

aule Representation Page 45

Rule :
If the memory scheme of a local memory unit is to bind a variable to
the value , a retrieval of the value may be refined into a retrieval of
the value of the vari able.

Representation:
(REF.- (REMEMBERED-VALUE

(#P LABEL
(#GLOBAL

(#P SCHEME (?#: VA LUE-OF-VARIABLE))
(1/P VARIABLE (.

~.- X)))))
(// NEW GET-ASSIGNE D-VALUE-OF-VARIA BLE

(—// P VARIABLE X)))

This rule can be used to refine the abstract operation of retrieving some previously
computed vaiue into tile operation of retrieving tile value of a variable. A global
association list is used to relate labels to their LOCAL-MEMORY—UNIT nodes. The
#GLOBAL patter il finds tile node associated with this label. Tile ?#~ p a t t e r n is
used to test wilether the node ’s SCHEME property is exactly equal to
VALUE-OF-VARIA BLE,

Rule:
Il memory scheme for a local memory unit is to bind a variable to the
computed value.

ft ej e n to t ion
(PR OP.- SCHEME

(LOCAL-MEMORY-UNIT)
(QUOTE VALUE-OF -VARIABLE))

This rule , which can be used to attach tile SCHEME property to a
LOCAL—MEMORY-UNIT node , is an ex ample of a property rule used to focus a
particular deci sion. Tile SCHEME property specifies t u e technique that will be used
to store and retrieve tile particular value. Each REMEMBER or REMEMBERED-VALUE
operation is dependellt øn this scilenle (as illustrated by the previous rule). Thus,
tile scheme guarantees that all of these operations will be refilled in coordination.
All alternative way for the rules to deal with such situations could have been to allow
0ll~ OFIe of t h e Operations to be re fln ed fir s t , and then to force each of th e ot he r s to
be coordinated with tile first. There are two primary motivations for tile scheme
used in PECOS. Tile first is practical: there is no need to keep extra property links
for each operation to refer to the other operations. liie second is philosophical : by
forcing tile operations all to be coordinated through a single property Ofl a single
node , a more global view can be taken when selecting one sucil property rule over
another. Tile use of tile scheme property focuses tile decision into a single , easily
identifiable place. Tile import of such rules is that a particular programming decision
has been identified and isolated.

L ~~
- - -

~~~~~~~~~



_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
___

Page 46 Section 4

Rule :
One way to get a variable name is to invent a new one.

Representation:
(PROP.- VARIABLE

(LOCAL-MEMORY-UNIT
(#P SCHEME (?#: VALUE-OF-VARIABLE)))

(G ENSYM (QUOTE V)))

This rule is used to attach the VARIABLE property to a LOCAL-MEMORY-UNIT node.
It illustrates tile use of property rules to gather further information: a variable name
is required , so one is selected. Tills I5, in fact , the only rule that PECOS has for
seiectillg variable names 15. One could argue that the selection of a particular
variable name is also an identifiable programming decision , rather than simply an
information gatllering task. In fact , when one is concerned about the use of
mnemonic variable names , tile choice can be important. This has not been a concern
witIl the PECOS implementation.

A (lie:
If there is an order ing relation for the elements of a collection, the
elements may be stored in the collection according to that relation.

Rep reseti to tion:
(PROP.- ORDERING

(SEQUENTIAL-COLLECTION
(#P ELEMENT

(..... REL #ANSW ER
(?OUERY ORDERING-RELATION #))))

(LIST (QUOTE ORDERED) REL))

Tills rule may i)e used to determine tile order in which elements in a collection are to
be stored. (The //ANSWER ill tile —— pattern denotes the answer of the query about
wllether there is Oil ordering relation on tile elements of the sequential collection.)
This rule illustrates the use of a property rule to further specify a particular data
structure witilout making a refinement. Thus, all of the rules for refining sequential
collections (into linked lists and arrays) are applicable whether or not this rule has
been applied. It would Ilave been quite possible to have this be a refinement rule ,
but then duplication of some of the knowledge in the refinement rules for
11011-ordered sequential coII~ctions would have been required. There are several
other places where there seemed to be the possibility of using either a refinement
rule or a property rule, and the decision has generally been made on the basis of
“what seems right at tile time.” No better justification has been found.

15 This is one of tile reasons that PECOS’ s programs often seem unreadable!

_ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ --~~~~~~
,--

~~~~~~~~~~~ 
-.- - - -.~~~~--- .--~~~~

Rule Representation .

Page 47

Rule:
If the elements of a collection are to be enumerated In the same order
as that in which they are stored, then the enumeration order is the
same as the stored order.

Representation:
(QUERY.- (STORED-ENUMERAT ION-ORDER

-
(#- #

(#P ENUMERATION-ORDER (.- .- EO))
(#P COLLECTION

(# RDS
(#REF SEQUENTIAL-COLLECTION

(#P ORDERING (?#= * EO)))))))
T)

This rather trivial rule can be used as one way of answering a query of the form
(?QUERY STORED-ENUMERATION-ORDER n) when the enumeration order is specified
to be based on some ordering relation. (Another rule that answers the same query is
applicable when tile enumeration order is specified to be the stored order,
regardless of any ordering relation on the elements.) The #.- # in tile pattern simply
allows multiple patterns to be specified, in this case two #P patterns. The ?#= *
pattern tests whether the property ’s value is the same as the result of evaluating
the expression; in this case, tile variable EO has been bound previously to the
enumeration order of the enumeration node.

Rifie:
if a node has been refined into a LISP syntactic entry, the code for the
node may be determined by examining the LISP-CODE property of the
node, unless the attempt to determine the LISP-CODE property failed.

Representation:
(QUERY.- (CODE

(#REF (?CONCEPT-CLASS LISP-SYNTACTIC-ENTRY)
(#P LISP-CODE (i- i- C))))

C)

This is the rule that guides the entire process of determining the actual code of the
program after all of the parts have been refined into specific LISP objects (see
section 5.1). Many concepts have a “class ” associated with them. (One of
these is known as the LISP-SYNTACT IC-ENT RY class.) A ?CONCEPT-CLASS pattern
simply tests the class of the node’s concept. Currently, few other uses are made of
the concept classes.

Page 48 Section 4

4.2.2. The matching process

A relatively standard type of pattern matcher is used to match the <node patterns>
in the rules agains t nodes in program descriptions. The most interesting aspect of
the matcher is tha L .,~ addition to identifying success and failure , it may also identify
an incomplete matcil 16. This occurs In situations where parts of the pattern succeed ,
but for other parts too little information is available to make a definite answer. Such
situations can occur in three ways.

#REF patterns

If a particular node has not been refilled far enough to give a definitive answer to a
#REF pattern , ti liS COil result in an incomplete matcil. Tile matcher considers all
nodes in the refinement chain leading from the node being matched’7 . if any of
these match tile <node pattern> , tile matcller succeeds. Otherwise , the matcher
performs a quick check to try to eliminate the possibility of extending the refinement
chain to a node tilat matches tile <node pattern>. If it can eliminate the possibility,
the match fails. If the possibility cannot be eliminated, the matcher signifies an
incomplete match and indicates tllat tile refinement chain must be refined furtiler.
The quick check is performed by considering only the concept of the most refined
node In tile chain (call it concepti) and the concept of the (node pattern> (call it
concept2). Tile matcller considers all refinement rules for concepti and the concepts
of tile nodes they would produce if applied. Refinement rules for each of these
concepts are then considered, and so on. If there is any chain of refinement rules
t iiat leads from concepti to concept2, tllen tile matcher signifies an incomplete match
and indicates that tile refinement chain must be extended.

For example , tile rule tilat refines GET-ASSOCIATED-VALUE into
GET-VALUE-AT-ARRAY-INDEX is depend ent on the fac t that the TABLE a r g u m e n t
has been refilled into an ARRAY. If this data structure has only been refined as far
as an ASSOCIATION-TABLE, attempting to match this rule results in the examination
of a concept cilain as described above. In this case , concept i is
ASSOCIATiON-TABLE and concept2 is ARRAY (tile <node pattern> is
(# R E F ARRAY ...)). There are two rules for refining an ASSOCIATION-TAB LE , one
producing au ARRAY (only applicable if tile keys are integers in a fixed range) and
one producing a HASH-TABLE. Since concept2 can be reached from concep (i, the
original match attempt yields an incomplete match.

Note that the matcher is relatively conservative in how it determines incomplete
niatciles in this situation. By considering the conditions on the rules , in addition to
the concepts involved, it might be possible to determine that a particular rule chain is
not possible. Or It might be possible to determine that tu e node produced by such a

16 The use of incomplete matches in PECOS’ s control structure (discussed in section
5) is similar to tile use of state differences in GPS [Ernst and Newell 1969].

17 Tilis is tile main reason tilat tile ref nement links are retained instead of simply
replacing the abstract node by the refined node.

- - - - ~ - -~~ -- ~~-~~~~~~~~ - - - -

______ -

Rule Representation Page 49

rule chain would not match the rest of the #REF pattern. In the above case , for
example, if tile keys of the association table are not int egers , tile array rule would
be Inapplicable. To check for such condItIons, however, would require considerably
more computation than the simple concept chain involves. (In fact , the rule base is
organized around such concepts , so that very little computation is required to
determine tile existence of concept chains.) Note that this technique allows
“misj udgements” of only one kind: it is never the case that a match attempt is
considered to have failed when there is still a possibility that the given refinement
chain can be extended to match the pattern.

#P patterns

Matching a #P pattern always involves considering a particular property of a
particular node. It that property is missing, then the match is considered to be
incomplete , and tile mat cher specifies that the property must be determined. As with
#REF matches , the matcher is again conservative in determining when such a match
SlloUld fail. It makes no checks at all to determine whether there are any rules that
could produce a value for tile property that would match the pattern. Here , too , the
only misjudgements are in being too conservative, i.e., not rejecting matches that
could theoretically be rejected immediately.

?OUERY patterns

When a ?QUERY pattern is encountered, the matcher checks to see whether the
query ilaS already been answered. If not, an incomplete match is specified , with a
request that tile particular query be answered. AgaIn , no special checks are made
to determine whether there is some way that the query could be answered in such a
way tilat tile rest of the pattern would succeed.

4.2.3. Patterns not ex pressible

There are several types of conditions that are not easily expressed using the
pattern types currently available. One example was mentioned earlier: there are no
fac i l i t ies for “or ” conditions. Tilere are also no ,acilities for loops in tile actions
except for a few ways to map down lists. Since the pattern matcher is implemented
using LISP’ s EVAL, it is not hard to include sucil tilings in the rules. But the actual
inclusion of arbitrary INTERLISP code is contrary to the Intent of the rules , and has
been avoided for two reasons. The first is a practical one based on the
implementation: the ability to identify every form that occurs in a pattern simplifies
the separation of the rules into their various parts and tileir analysis for free variable
usage (see section 5.5). The second Is philosophical , going back to the original
purpose of this research: the explication of programmIng knowledge. In discussIons
of such knowledge, a consistent set of conceptual primitives should be used, and the
use of “arbitrary LISP expressions ” tends to bypass such primitives. After
identifying the conceptual primitive behind the LISP expression , a pattern type for It

- -

~

-- —

~

--

~

- -—— -~~—-—.-~~~~~~~ -~~~~ -~~~ - - - -~~~~ —--~~- - -—- — - — —- -—---

‘l

Page 50 Section 4

could be acicled to the matcher. If the concepts behind tile code cannot be
Identified, tilen tile content of the rule is not sufficiently understood by the rule
writer , and tile rule should probably be reconsidered informally before trying to
express it forma lly.

Another type of pattern that is not conveniently expressible involves the flow of
data between operations. Consider , for example , the refinement of an operation for
modifying a linked list by deleting tile cell before a cell computed by a complex
expression. At the abstract level, the operation looks about like:
(DELETE-CELL-BEFORE-CELL <expres sion)). But a straightforward refinement of
such a structure into a call to tile LISP function RPLACD yields (RPLACD (expression>
(CDR <expression>)), wilich might involve recomputing tile expression. Tile problem
is that the DELETE-CELL-BEFORE-CELL operation implicitly performs a kind of
X-b inding, after computing its argument. In order to reflect ti liS , the rule for refilling
DELETE-CELL-BEFORE-CELL actually produces a COMPOSITE node with a
LOCAL-MEMORY-UNIT in which to store the argument. While this rule correctly
reflects tIle semantics of what is involved, it seems overly ponderous to try to
express it. A better facility for dealing with patterns of data flow would be a useful
e x tellS iOll .

4.3. Idiosyncrasies of the rule formalism

By way of clarification , a f ew of the rule formalism ’s Idio syncrasi es should be
discussed before they appear in the rule s given in section 6. One of these
involves tile refinement of Ol)eratlofls WiliCil are applied to data structures that have
already been refined. As a typical case , consider a membership test applied to a
collection, X. Tile complete refinement of X into a LISP list involves six rule
applications , each further specifying tile representation of X. While this is
straigiltforward , tllere is more difficulty with tile membership operation: how fl lOll~~
refinement steps should be involved? With a single step (say, into tile LISP function
MEMBER) many otiler alternatives are missed. For example , if the list is ordered ,
some efficiency con be gained by abandoning tile search for the element when some
larger element is found. Tile knowledge that leads to this more efficient algonitilm
also applies if tile collection is represented as an ordered array. This suggests that
there may be some intermediate concept between “membership test” and “MEMBER
func t ion ”, perhaps “membership test for sequential collection ”. In PECOS’ s rules ,
th is a r g u m e n t has been carried to an extreme , and there is a separate named
concept for “membership test” corresponding to each data structure refinement
level. Tllus, membership test operations typically go through a sequence of
refinements that paralini those of the data structure to which the test is applied. In
retrospect , it is not at all clear that such a complete set of intermediate concepts is
appropriate: is there really any content to a concept like “membership test in an
explicit collection”? in the rule descriptions in section 6, many of these
intermediate-level operations will be omitted.

A related issue concerns tile way that the data structure and operation refinement
rules are related to each other. in most refinement formalisms , operation refinement

_ _ _ _

- —- ~----— - --- -- -- - -- -
~~

Rule Representation Page 51

rules are attached directly to the data structure refinement rules (e.g., forms in
A L PIIARI) [Wu lf , London and Shaw 1976]). In PFCOS , they have been totally
separated. One ConsequenCe of this is that t u e rules for refining au operation
typically have conditions testinq tile refinement chains of its operands. These
operand checks are performed by #REF patterns. As discussed ill section 4.2, a
1/REF pattern specifies tilat tile refinement chain from tile current node be searched
for a node tilat satisfies tile rest of the pattern. As certain concepts may be linked
tilrougll different refinement cilaillS, it is often necessary to complicate #REF
patterns to distinguish the refinement chains from each otiler. For example ,
COLLECTION may be refilled into STORED-COLLECTION in two different Ways:

COLLECTION ~ EXPLICIT-COLLECTION ~ STORED-COLLECTION
element: X element: X element: X

COLLECTION ~~~ C O R R E S P O N D E N C E ~ STORED-COLLECTION
element: X domain: X element: (X , value>

range: booleon values

Note that (# REF STORED~COLLECTlON) would match both Chains. The primary
tecilnique for dealing with such multiple refinement chains is the US~ of
“rE’prespnta%ion match” queries. Thus , since tile element i roperties of the two
STORED—COLLECTION nodes would be different , a pattern like

(#REF STORED-COLLECTION
(#P ELEMENT

(?QUERY REPRESENTATION-MATCH # X)))

would only succeed when the element property matclled X , effectively distinguishing
tile two cases. Such representation match patterns play a very important role ,
although their necessity only became apparent after enougll rules 110(1 been added to
make sucil multip le ref inement cilains possible18.

in i)art, tile inclusioll of such details in the rule conditions is a consequence of the
decision to separate the programming knowledge illto “independent” cillinks. Such
conditions often merely test whether a particular rule Ilas been applied i)y testing
whether the situation matches what would have resulted ilad tile rule been applied.
A more eff ic ient codification of the knowledge migilt be to link tile rules together
more directly, ei ther by combining several rules into a single unit or by allowing rules
to ref erence other rules by name.

— 18 Ill fa ct, tile omission of such conditions was a major source of bugs In the earlier
rules.

- - - - --- - - - ---~ ——~~~~~~ -- - , --- ~~~~~~~
-- - - -- .-- --- - -

Page 52

5. PECOS’S CONTROL STRUCTURE

5.1. An agenda of tasks

As noted above , PECOS derives refinement sequences by successively retrieving
and applying rules from its knowledge base. This process is guided by an agenda of
tasks19. Each task specifies some action that must be performed before the
refinement sequence C811 be completed. Achievement of a task yields a new
clescriptioll in a refinement sequence.

A task is achieved by applying a rule (i.e., evaluating tile rule ’s action) that fits tile
task. (“F it” will be defined shortly.) At each stage a task is selected and a rule for
that task is retrieved and applied. While retrieving a rule for a task , subtasks may
be generated. These are added to the agenda and considered before tile origii~ai
task is reconsidered20 .

There are three types of tasks :

(REFINE n) specifies that node n is to be refined.

(PROPERTY p n) specifies that property p of node n is to be
determined.

(QUERY rd argi arg2 ,.,) specifies that th~ query (rd argi arg2 ,..)
must be answered .

TIle first two correspond to tile ways that deta i l may be added in a single refinemellt
step, as discussed in section 3.4. The third amounts to a facility for allowing rules to
be used to answer questions about program d escriptions. For example ,
(QUERY STORED-ENUMERATION-ORDER n) is used to determine whether tile order
of enumerating tile elements of a collection is the same as tile order in which they
are stored. QUERY tasks are typically set up while testing the applicability of a rule
to some other task.

Tllere is llotlling particularly unusual about PECOS’ s use of an agenda for its control
structure; several otIlor current Al systems use similar techniques [Lenat 1976 ,

Bobrow and Winograd 1977]. There are , however , a few interesting aspects which
merit further discussion.

Before adding a subtask to the agenda, PECOS checks whether it can be achieved

19 Much of tile agenda control structure was developed jointly with Elaine Kant ill

connection willl Iler work on LIBRA, PSI’ s efficiency expert.

20 As will be clarified In section 5.4, the order In which tasks are considered is
approximately depth-first.

- --~~~~ - - --— ~~~~~ - m -
~~~~~~~ --~~~~~~~~- ~~~~~~-~~~~~~~~~~-- - -—-- -- --- - -~~~~- - - --.—- ~~~~- --- --



PECOS’ s Control Structure Page 53

easily. Current ly, an “easy ” subtask is defined to be a QUERY or PROPERTY task
that has a single applicable rule with no subtasks. In suCIl cases tile rule is applied
immediately without modifying the agenda at all21.

Allot luer feature is the m e thod of determining when to add a task to the agenda . Two
different schemes have been tried. Tu e first involves adding a task only when it is
identified as a subtask of another task Ofl thu agenda 22 . In esseilce , tasks are
added to tuie aclCIl(ia Oiliy “on demand” . Initially, tile agenda consists of a single
task: (QUERY CODE 1 )23 . Since node 1 IS the top node , tile task amounts to a
request to determine the code for the entire program. As no rule can answer the
query iniuied iate j, subtosks are set up and added to the agenda. After these
subtasks are considered , tile original task is reconsidered , and again subtasks are
ad ded to tile acleildla. Most subtasks thus generated are ref inement tasks: tile
parts of tile program must be refilled to suff icient detail that code for them can be
deterrnilled with a s ingle  rule application. Generally, tIlis means tllat they must be
refilled into any of various kinds of LISP constructs , such as function calls or
constants .

The second scheme takes advantage of the fact that PECOS’ s basic purpose is to
re Inle abs tract collcepts into specific implementations: W IlelloVer a node is created ,
a refinement task for that node is added to the agenda , regardless of Wiletller or not
it is known to be a subtask of some otiler task. Since most (usually all) parts of tile
pro ram nitist eveiltually be refined into LISP constructs , tilo-S O tasks COIl be set up
as $0011 as po~s ble. T h is technique of fe rs  the opportunity for greater flexibility in
SelOct illO tile tasks to cons ide r next , sinCe the agenda has a mo re “com pl ete ” li st of
things to do. Ill tile second case , tile initial agenda also has a single task:
(REFINE 1). Just as in t h e  first scheme , working  on a task may still require th at
other tasks be set up (property and query tasks). Tile second scheme permits a
siiiipie two— pass process to be used to determine tile LISP code of tile final
iIflplE ,melltfltioll: when no further tasks remain , a (QUERY CODE 1) task is set up
alld worked on. Since each node has been ref illed into a LISP construct , tile code
COIl be determined witi loUt gelleratitlq any further subtasks. The switch from the
first scileme to the secoild was quite simple (less than one h our ’s work), la rge ly
bec ause of tile convenience of using 811 agenda mechanism.

21 Strict ly speaking, this is a feature of tile pattern matcher , not the control
st ru c lure.

22 Subtask identification is considered further in section 5.3.

23 (QUERY CODE n) specifies that the code for the subpart of tile program headed
by node n must be determined. 



_ _ _ _ _ _ _ _ _ _ _ _  ~~~ - -—.- ~~~~~~ - 
~1~~

Page 54 Section 5

5.2. A tree of program descriptions

Reca~i t ha t  the oniy chan ges  involved in the refinement steps are the identification
of one node as a refinement of another and the addition of properties to existing
nodes. Each ru le application for a REFINE or PROPERTY task corresponds to such a
step. Thus , tile task agend a gulches the constructioll of such refinement sequellces.

Whe n more than 0110 rule is applicable , separate program descriptions can be
generated for use with each rule. Tile result is a refinement tree sucil as those
discussed in section 3.2. PECOS uses a simple context mecilanisnl to deal with
these trees , thereby avoid ing the necessity of col)yillg the entire descriptions at
each split. Ti le process of finding a particular node or property is then a simple
searcil from tile current description through its chain of ancestors. Since agendas
are also mainta ined “relative ” to a context , several l)rallclles in a refinement tree
m a y  be explored in parallel without interfering with each other.

This is perhaps best clarif ied by an example. A COLLECTION node Ilas an element
property to describe the  data structure of the elements of tile collection. Wh en a
COLLECTION node has been refilled into an EXPLICIT-COLLECTION node , t ile refined
node also has an elcment property (and , in th i s case, tile two properties would have
tile SOlIlO value). The property must be attached explicitly to each of the nod es.
Tllat is, in fact, precisely what tile particular refinement rule does. In effect , the
rules specify which properties are to be inileriteci , 811(1 tile execution of tile rule
action forces those inherited properties to be attached explicitly to the new node.
Later in tile synthesis process , after several descendant contexts have been
created , an attempt to access the element property of the EXPLICIT—CO LLECTION
node would r esu h t in a back w ard sca~ tllroucJh tile contexts until one was found in
which tile EXPLICIT-COLLECTION node had that property.

For purposes of eff ic iency, sepa rate program descriptions are actually set up only at
choice points (wilen more than one rule is to be applied to tile Same task) . When
only oiie rule is to 1)0 al)phic(l , the same context is uscd. This saves a considerable
amount of overilead that would otherwise be used for establishing collteXts alld
searching context trees. Thus , the ref inement  trees th at PECOS const ruc ts  are
actually collapsed trees in which each description is either a leaf or has more t h a n
one successor.

When n~ rules are applicable to a tas k , the task is considered to have failed.
However , the  refinement process may still continue. For example , failure of a
(QUERY ORDERING—RELAT ION ni) task simply indicates that no orderin g relation
could be foliildl for the data structure represented by node ni. Tile ef fect  of this
failure would be that certain rules for enumerating collections of such structures
would be illapplicable to some other task (usually a REFINE task , say for node n2).
Node fl2 might still 1)0 refilled by some rule that is not dependent on tile existence of
sucil an or derillg relation. In otiler situations , however , tas k f a i lure may i mply th e
failure of tile entire sequence that is currently being followed. PECOS is relatively
conservative in deciding to abandon a path: a path is considered to have failed only
if a refinement task fails. Under some circumstances , this may require more work to —

recognize failure tilan is strictly necessary , but this has not yet been a s ign i f i can t
problem. 

-- ~~ ——- - - -~ -—~~—— ___ _ _ _ _  _ _ t _ ___  ----— - -—--fl--— — - -—— --- - - -



PECOS’ s Control Structure Page 55

5.3. Task achievement through rule application

Tasks are achieved by applying a rule that fits tile task , wilere “fit” is defined as
follows:

A (REF.- <node pattern) (refinement specification>) rule fits a
(REFINE n) task if tile <node pattern> matciles node i i .

A (PROP.- (property name> (node pattern> (property value>) rule
fits a (PROPERTY p n) task if tile <property name> is p and the
<node pattern> matches node n.

A (QUERY.- <relation name> (patterni> <pattern2> ...) ru le  f its a
(QUERY rel argi arg2 ...) task if tIle <relation name) is rel and each
<pattern ) matches t ile corresponding arg1.

Matching of a <node pattern> to a node was def ined in section 4.2.

Wh i le I t  is relatively simple to implement tills scheme , searching and testing every
rule for evety task would be computationally proilil)itive. TIle organization of PECOS’ s
knowledge base is designed to eliminate tile need for most of this search.

5.3.1. Rule retrieval

Rec all that a necessary condition for a (node pattern> to match a node is that tile
two concepts be t he  same. A simple discrimination net is used to filter out those
rules t ilat foil tills part of tile test. Associated with each rule is a set of task
pattern s. These are of three forms , related to t ile types of tasks:
(REFINE (concept)), (PROPERTY <property name) <concept>), and
(QUERY <relation name>). Associated Witil each concept is a list of all rules
specifying that concept Ill one of tile associated task patterns 24 . This list is
partitioned into refinement and property rules. The property rules are further
l)art iti olled according to the property name. A similar scheme is used for query
patterns. Given a task (and tile concept of tile node or query relation illVOlved), tile
associated list of “relevant” rules call easily I)e retrieved. Using this scheme , tile
number of rules whicll must be tested for applicability to ai~y given task is generally
quite small (sometimes only one, rarely more than three or four).

24 There are also separate lists for use witil (concept class> expressions.

~lb. 
- 

--- -- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —.-— --- -.-- ~ - -~~~~~



Page 56 Section 5

5.3.2. Matching rules to tasks

Once tills prelinlillary fi ltering is (lone, the subpatterns of tile rule ’s <node pattern>
are matched against tile properties of the node specifie d in tile task. As described
in section 4.2 , t ue result may be success, failure , or OIl incomple te  fl latCil. With
incomplete matches , (lie match procedure indicates which ports of tIle program are
to be considered furthe r by specifying a set of tasks. These tasks are added to the
ag enda all(i llOte(h to be subtasks of the original task. After considering tile
subtas ks , the original nlatc ll is reconsIdered , and suhtasks may again 1)0 specified.
Tile cycle repeats until the match succeeds or fails. Suppose, for example , that tile
task is to refine all IS— E LEMENT node. If tile collection data structure has been
refilled into a Boolean nlappindj , the rule for refillillg all IS—ELEM ENT node into a
GET— IMAGE node is app licable. If the collection has been refilled into something
other th an a Boolea,l ~ RI)PIll~ , tile rule is illapphicable. However, if it has not been
refined at all, there is ollly all incomplete match , with a subtask of refining tIle
collection node. Once the collection node has been refined , tile attempt to match
the rule to tile task is repeated.

Note tilat tIle achievemellt of tile subtask does not imply that tile original rule will
matcil tile original task , l)ut ollIy that tIle matclling process can proceed. in effect , a
kind of “generalized subtas k” is used: it specifies that a certain part of tile program

must  be considered furtller , but (hoes not include constraints ~n what tile result must
be25. in fact , it is frequently the case tllat tIle same subtas k is specified for several
relevant rules alld t u e subtask’s achievement eliminates most of tile rules. In effect ,
such subtasks of ten perf orm a k i nd of f i l ter ing on tile list of relevant rules.

5,3.3. Separation of applicability and binding

As in most pattern-directed inference systems , tIle matclling process performs a dual
purpcse: the (leterlllin ation of success or fa ilure , and t h e  determination of various
bindings to be used when the rule ’s action part Is executed. in PECOS , these two
aspects have been separated 111(0 distinct stages , termed the appl icabi l i ty  stage
and tile binding sta ge. Ill tile applicability stage, Only tIlOSO parts of the pattern
that may load to failure of the entire match are attempted. The I)illdifldJ stage is Ilot
at t eniptecl until (lie matcil has completed the applicability stage successfully without
generating any furtller subtasks. In the binding stage , only those parts of tile
patter ll tilat return bindings for use in the rule action are considered. Subtasks may
be gellerate(l in each of these stages.

As OIl ihlustratioll , consider tile following rule:

if a value is remembered by storin g it as the value of a variable
whose name is X , a retrieval of the remembered value may be refined
into a retrieval of the value of the variable X.

25 MYCIN uses a similar kind of generalized subgoal, but for different purposes[Davis ,
Buchanan and Shortliffe 1977]. 

-~~~~~~~~~ - - - — - - - - -



- . 
~~~~~~~~~~~~~-—- -

~~~~~~
-
~~~~~
-

~~~~ 
-
~~~

PECOS’ s Control S t r u c t u r e Page 5!

whose internal form is as follows:

(REF.- (REMEMBERED-VALUE
(#P LABEL

(#GLOBAL
(f tP SC~IrME (?#~ VALUE-OF-VARIABLE))
(ftP VARIABLE (.- ‘- X)))))

(#NEW GET-ASSIGNED-VALUE-OF-VARIABLE
(.-#P VARIABLE X)))

Since there is a COIlditeOfl Oil the SCHEME property (namely, that the property be
VALUE—OF—VARIABLE), tilat subpattern appears ill tile applicability part:

(#P LABEL
(#GLOBAL

(#P SCHEME (?# : VALUE-OF-VARIABLE))))

A (PROPERTY SCHEME n) subtask would be generated during the applicability
stage. By contrast, there are no condit ions Oil the VARIABLE-NAME property and it
would appear as a subtask during tile binding stage. TIle binding part is:

(#P LABEL
(ft 6 LOB AL

(ftP VARIABLE (..,. X))))

in retrospect , the distinction between the “applicability ” and “binding ” parts of a
pattern has some merit in preventing certain kinds of unnecessary work and in
delaying commitment to a particular rule for as long as possible. But the overhead
incurred by the total separation employed by PECOS is relatively high. A mo re
effic ient technique Illigli t involve only a single condition—testing phase in which
proposed subtasks are tagged by type (i.e., either “applicability” or “binding”).

5.4. Task ordering

There is only one absolute constraint Oil the order ill Whicil tasks must he achieved:
a rule may not be applied until it has passed its api)hicab ility test and its billdillgs
have been gathered. Tills ordering is determined through the use of subtasks
generate(I d u r i n g tile applicability and binding processes. Note that this ordering is
only partial: either of two unordered parts may be refined before tile otiler in a
refinement sequence 26. Finally, not e t ha t t here is n o t h i n g ill the forma lism tha t
pre vents two tasks from being subtasks of one another. In f a c t , such cases have
occurred willIe tile rules were being debugged (PECOS did not recognize tile problem
and entered a loop without all exit !).

26 From al-lotiler perspective, two parts of a program may oft en be refined
in(lepelldelltly from each other without interfering with the correctness of the final
program. Of course , tile determination of tile best way to refine a particular part may
involve looking at many other parts.

IL - - . -~~ _ _ _ _ _ _ _ _ _

_ _ _ _ _ _ _ ~~~~~~~~~~~~~~~~
-
~~

-
~~~~~~~~~~~~~~

—-
~~ 

- -

Page 58 Section 5

Howcver , task orderilig call have a significant effect on thc size of tile refinement
tree constructed , as wt~ll as on ti le overall ef f ic iency of the program. For th is
reasoll , various -strat eg i’~s have been used in an effort to reduce tree sizes and
increase eff ic iency. These strategies are based on tile fact that tile process of
ach iev ing  a t a sk  qees through several separable stages:

(a) retrie ve rules relevant to the task
(b) test eac h of these for applicability
(c) select one of these for appli cation

(or establish separate conte xts for each rule application)
(ci ) determine the bindings required by the  ru le  act ion
(e) execute the rule action

Stage (a) needs to be done only once and c~n be accomplished relatively quickly
using tile discrimination net described earlier. Stage (b) is relatively complex and
may need to be repeated se veral times until all matches either fa il or succeed (and
no subtasks remain)27 . Stage (c) is relatively simple except that extra overhead is
invol ved when separate contexts must be established. Stage (ci ) is generally simple ,
although occasionally subtasks are generated. Stage (e) is executed only ollce.

In addition, tasks in se veral of tile stages can ~e furtiler categorized. Tasks in
stage (a) can be distinguisiled on t ile basis of whether or not tiley are known to be
subtasks of other tasks. (Recall that refinement tasks are set up as soon as new
nodes arc created.) Tasks in stages (b) and (d) can be distinguished oIl tile basis of
whetller or not the stage has already been atte mpted and subtasks identif ied.
Tasks in stage (c) call he distinguished on tile basis of whether or not more than one
rule is applicable to tile task. In addition, a task may be eitller active or suspended
depend ing on whether any of its outstanding subtasks have been achieved. Only
active tasks need to be worked on, since cons i der ing a suspended task would only
yield the same set of subtasks.

Based on these stages and categories , a task can be identified as being in one of
tile foilowiiig eiqilt states:

stat e name diescript ioll

new ask stage (a), not known to be a subtask of some other task
get rules stage (a), known to be a subtask  of some other task
test rules stage (b), not yet attempted
more suotasks stage (b), subtasks identified
pick rule stage (c), applicable rules identified
choice point s tage (c) , several rules applicable , choice not yet made
gather bindings stage (d)
apply rule s tage (e)

There is no necessity that a single task be carried through all of these states before

27 PECOS has a facility for splitting a refinement path as soon as one rule ’s match
has succeeded , but this is currently not being used. 

—--~~~~~~~~
- -

~~~~~~ --—~~~~~~~~~~ —~~~~~ ~~-- - --


PECOS ’ s Control Structure Pag e 59

COP’~idCrill(i 8ll~ other tasks. The process of working OIl a task is easily interruptible
in each of these states. That is, one task can be carried througil some number of
these states and then be interrupted for an extended period of time dlurillg which
many other tasks may be initiated or completed. This observation allows certain
gains in efficiency by carefully picking which task to work on next. This selection is
based on a priority ranking of these states. During eacil cycle, PECOS works OIl one
of the tas ks in tile IligheSt priority state for which there are any active tasks 28.

The progression of a task through its states and the priority rating of eacil of these
states are illustrated below:

state priority

s tar t —~~ new task (7)

Jr
s ta r t —. get rules (5)

Jr
_ _test rules c ‘4)

more subtaslcs (6)

pi e/c rule (3)

L C170/ce point (8)

1.
gather bindings (2)

j L ~~~
finisil 4— - apply rule (1)

Tile priority ordering SiloWn above incorporates several different strategies, includ ing
the following:

Put of I making decisions I or as long as possible, in the hope that they will
be easier to make. Choice points are delayed as long as possible. This
allows much of the program to be developed before considering choice
points, making more information available when tile decision must be
nlade , and saving considerable effort which might otherwise be duplicated
in separate refinement sequences if a decision cannot be made and the
refinemellt path must be split. This is the most important strategy, nnd
tile reason that the choice point state has tile lowest priority.

28 In fact , PECOS picks the task that entered that state most recently, but thIs is an
accident of the implementation due to the use of task lists for each state, with tasks
being added and removed at the fron t of the list.


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~—--,-- - - - - - 

Page 60 Section 5

If a task can be completed easily, do it and get it over with. Tasks in
advanced stages are considered before tasks in early stages. Hence ,
the relatively high priorities of tile apply rule and gather bindings states.

If a subtask can be done easily, do it on the assumption that the result may
help eliminate some possibi l i t ies for (he original task. Some consideration
is given to all of a task ’ s subtasks before recons~dering the task. So tile
get rules state has a hiçjiler priority than more subtasks.

F i rs t  work on things that you know you have to do. Tasks known to be
subtasks of other tasks are considered before tasks projected to be
necessary in t he fu tu re  (such as refinement tasks set up WIleil nodes are
created) . Hence , tile new task state has a low priority.

Wait until you ai-e actually committed to a particular choice before
cleaning up the details. Bindings are postponed Ulltil a rule has passed its
applicability test. This is tIle motivation for the separation of the
applicability and binding parts of the condition testing.

One of tile interesting effects of tllis particular combination of strategies is that a
mixed approacil is taken with respect to tile quostioll of when a task witil subtasks
should be reconsidered. All of tile subtasks are considered to see if any can be
done easily~ if ally is achieved the task is reconsidered before working on any
sui)tasks t i lat involve choices. Tllis has tIle advantage that necessary subtasks may
be id entified relatively early in the process (since each at tem p t at matching a rule to
a task may ill(iiCate new subtasks).

Another interesting aspect iS tile separation of tile cOll(iitioll into tile applicability and
binding parts , as ciescrii)ed in tile previous section. This prevents wasting effort in
trying to achieve a task before it is known that it will be necessary. For example , if
tile VALUE-OF-VARIABLE scheme is not used (and the associated refinement rules
are Ilot applied), there is 110 need to achieve the (PROPERTY VARIABLE-NAME n)
task. This can be especially critical if there are several rules for achieving such a
subtask. Tllere is, however , a certain anioullt of overhead involved in using tile
separation. It is not clear yet how much efficiency is really gained (or lost) by the
t e C 11111 (1 tie.

The particular ordering and strategies used in PECOS have been developed
empirically , based Ofl observations of PECOS’ s behavior. Tile value of many of these
strategies is probably derived from characteristics of t h e  types of rules In the
knowled ge base and Oil tile particular implementation. For example , two of tu e
s t ra teg ies  seen~ sornew ilat contradictory at tile abstract level. The separation of
applicability andi binding is based on the assumption that tasks whose necessity is
not known should be delayed for as long as possible. Tile establishment of
refinement tasks for every node as it is created is based on the assumption that
sucil tasks silould be attem pted even before their absolute necessity is known. Tile
utility of tilese strategies is based on a characteristic of the knowledge base and
the tasks involved: refinement tasks are almost always necessary, Willie other
types of tasks frequently are not. Thus, it would be premature to make any
generalized claims about tile utility of these strategies for other domaIns.

- _ _



PECOS ’s Control Structure Page 61

6.5. Automatic derivation of rule parts

As indicatedl in tile previous section , each rule is used in several different ways in
tile process of applyiildJ it to a particular t~~ k. For tile sake of efficiency, PECOS
maintains separate representations of the rule for each of these uses. These are
derived autonlatically by PECOS and are illVisil)le to tile user (aildi to tile rule writer) .
T h a t  is , rules  are always dealt with externally in terms of condition-action pairs , as
described in section 4. Internally, PE COS m a in t a i n s  a list of relevant task patterns ,
tile applicability subpotterns of tile collditiOll, tile bindhing subpatterns of tile
condition, and a specification of tile action to be executed29. The derivation of each
of these parts is relatively straightforward.

5.5.1. Derivation of relevant task patterns

Relevant task paUerns  are d erived iii a simple fllallller, based Oil tile type of tile
particular rule. A REF.- rule llas a relevant task pattern of the form
(REFINE <concept>). A PROP.- rule has a relevant task pat te rn  of tile form
(PROPEHTY (property name) (concept )). A QUERY.- rule l b s  a relevant task
pattern of tIle form (QUERY <relation name>). Currently, each rule has exactly one
such pattern.

5.5.2. Der ivation of applicability and bindi ng patterns

Tile most inloresting aspect of tile derivation of rule parts relates to tile separation
of a nile ’s Ilode I)att erll illto ai)plicaI)ility audi billdillg I)artS. Tile process is driven by
a table of pat tern types. Each type has tags indicating wllet iler it performs a test
(e q., (i/REF MAPPING) tests whet her a node Ilas been refined into a MAPPING) and
whether it performs any bindings (e.g., (.-.- X) binds tile variable X). A pattern is
tilen includied in the applicability part if it or any sui)i)attern performs a test .
Similarly, a pattern is included in the binding part if it or a sub pa t t e rn  perform s a
i)indillg.

Tile process is complicated somewhat by the  fact tilat some of tile patterns use
variables freely, so that subpatterns that bind these parts must also be included. In
order to deal with tills, tile pattern tables also indicate wiliCil sub parts  are
evaluated , so t h a t  these may be checked for the i r  use of free variables. Tile
process tilat uses tilese tables examines subpatterns in the opposite order from that
in wilicil tiley will be evaluated at run time in order to maintain an accurate list of all
free variables used freely in later subpatterns. Any subpattern that binds a variable
on this list must be included. Tile relevant table entries for eacll of tile pattern
types are included ill appendix 1.

29 EacIl of tilese last three is stored as the compiled definition of a LISP function , so
that rules call be matched and executed qui ckly by evaluating simple LISP
expressions.



Page 62 Section 5

As an example of tilis derivation process , consider the following rule:

(REF.- (IS-STORED-IN-SOME-LIST-CELL
( 1/P LIST ( ..... L)

(#RDS
(#REF LISP-LIST

(#P ELEMENT (.- .- EX)))))
(/ / P ELEMENT (.-.. E)

(#RDS
(?QUERY REPRESENTATION-MATCH # EX))))

(# NEw LISP-FUNCTION-CALL
(.- /IP FUNCTiON-NAME (QUOTE MEMBER))
(.~~P ARGUMENTS (LIST E L))))

Analysis of tIle action determines that E and L are used freely. Those parts of the
condition that bind either of these variables are included in the binding part:

(#P LiST (.-.. L))
(#P ELEMENT ( ...... E))

Now tile applicability part of tile condition is constructed. Each of the subpatterns is
considered to determine wlletller it cou ld r esult  in failure or whether it binds any
variable usedi freely in later expressions that are part of the applicability check.
The two subpatterns are considered in reverse order:

(/ / P E L E M E N T  (.... E)
(#RDS

(?QUERY REPRESENTATION-MATCH # EX))))

(/ / P LIST (,- .- L)
(#RDS

(#REF LISP-LIST
(#P ELEMENT (.- .- EX)))))

Wilile considering tile first of tilese subpatterns , tile process is called recursively.
This inner call determines that (?QUERY REPRESENTATION-MATCH # EX) could
result ill failure so it must be included. The fact that EX is used freely is noted.
Since a subpattern of tIle #RDS pattern is included, it must also be included, and so
on. The (.... E) need not be included since it cannot result in failure and does not
bind a variable used freely in the applicability test. Thus , it is determined that t ile
followlllfi nlust be included In tile applicability part:

(OP ELEMENT
(I/ A DS

(?QUERY REPRESENTATION-MATCH # EX)))

When tile secondi of tile subpatterns is considered , the (.-.- EX) is included since it
binds EX, and the #REF is included since it could result in match failure. Thus, the
following must also be included in the applicability check:

~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~


PECOS’s Control Structure Page 63

(#P LIST
(#RDS

(#REF LISP-LIST
(#P ELEMENT (..... E X)))))

and the full applicability pattern is then the following:

(OP LIST
(#RD S

(#REF LISP-LIST
(#P ELEMENT (i. .- EX)))))

(#P ELEMENT
(#RDS

(?QUERy REPRESENTATION-MATCH # EX)))

5.5.3. Multiple-valued matches

Several of tile pattern types may succeed in several ways. Th at is, several
dillerelli sets of bindings may satisfy a pattern. In such cases , every sot of values
is cc)nsidlerod to be a separate relevant rule. Those variables that can have nluitipie
~~cIings are considered to be parameters for tile rule. The process of retrieving
r.~IevaIlt rules is thus somewilat more complicated than indicated ill tile previous
SeCtiOll: after the l ist of relevant rules has been found, each rule on the list is
checked for pa rameters and all possible values for these parameters are tilen
de t e rmined . Ver y fe w of the rules in PECOS’s current knowledge base are
pararneterizedi in this fashion. Those pattern types that yield such parameters are
indicated in appendix 1.

Pag e 64

6, A KNOWLEDG E BASE OF PROGRAMMING RULES

One of tile most important aspects of PECOS’ s development has been the detailed
codification of knowledge about symbolic programming in tile form of explicit rules. A
fornlaiisnl for expressing such rules (discussed in section 4) has enabled tile
statem ent of tile rules in nachine-useable form and the development of a system for
applying them. However , most of tile knowledge embodied in tile rules is independent
of tile particular formalism used to express them. In order to separate the content
of tIle rules from tile idiosyncrasies of the formalism tile rules discussed ill this
section will be expressed in English. The translations from internal form are
relatively loose. Tile same internal representation may be stated in several different
ways and some details are omitted on tile assumption that they are “obvious.”
Hopefully, this will make them somewhat easier to read and understand, without any
sicunificant loss of content. Ally implementation of such rules , of course, requires that
a great deal of atte lltion be paid to just such details. To indicate tile de ta i l required ,
as well as the way tile formalism can be used to express the rules , several rules will
also be given in their conlplete , machine-readable form.

The rules diivide naturally into categories based on the particular concepts involved.
The rules for three of these categories will be discussed in detail, as summarized
below:

Representations of collections
Boolean mapping
linked list
array

Enumeration and sorting of stored collections

Representations of mappings
collection of pairs
hash table
array
property list entry
inverted mapping

In addi t ion , aspects of several other rule groups will be discussed.

On tile assumption that most readers wIll not be interested in examining all of the
rules in full detail, a brief index of the rule groups is presented at the end of this
section.

~ --~~~~~~~~ ~~~~ ~~~~~- - - -- _ _ - ----~ -- -~~~ -_

-
~

-- -~~~~~~~
--—--- - -- - --

A knowledge base of programming rules Page 65

6.1. Collections

A collection may be thought of as a structure consisting of any number of
substructures , each all instance of the same generic descrIption30. There are six
basic operatiolls for dealing with collections, as given below (with names used in
PECOS’ s specification language):

NEW-COLLECTION
Creates a new collection and returns it as the operation ’s value. A list of
elements to be contained in the collection initially may also be specified.

ADD-ELEMENT
Adds a given element to a given collection.

REMOVE-ELEMENT
Removes a given element from a given collection. it is assumed that the
element is in tile collection before tile operation is executed.

IS -ELEMENT
Tests whether a given element is in a given collection.

IS-EMPTY
Tests whether a given collection has no elements in it.

ANY-ELEMENT
Given a collection, returns some unspecified element.

Typically, a program uses only a subset of these operations. The particular
operations used in a given program strongly influence tile utility of certain
repreSelltations. For some representations , certain operations are impossible (e.g.,
ANY—ELEMENT when tile collection is represented using property list markings). In
otiler cases , tile efficiency of an operation can differ significantly f or dif fer ent
operations (e.g. , IS-ELEMENT for hash table entries and lInked lists). Two
cllaracteristics of the operations are of primary importance. The first characteristic
may be termed destructive : tile collection operand Is physically modified by the
operation. ADD-ELEMENT and REMOVE-ELEMENT are both destructive operations.
The second cllaracteristic may be termed element-oriented: any required elements
are known at tile time tile operation is performed. ADD—ELEMENT ,
REMOVE-ELEMENT , and IS-ELEMENT are element-oriented; ANY-ELEMENT is not.
These considerations will be discussed further in the context of particular rules.

In addition to tile basic operations discussed above, there are six operations that
deal with several collections simultaneously:

DUPLICATED- COLLECTION
Creates a new collection whose elements are all elements of another
collection.

30 Currently PECOS does not differentiate between multisets and sets.

Page 66 Section 6

SU B SET
Creates a new collection whose elements are all elements of another
collection that satisfy a given predicate.

UNION
Creates a new collection whose elements are all objects that are
elements of any collection In an explicit list of collections.

INTERSECTION
Creates a new collection whose elements are all objects that are
elements of every collection in an explicit list of collections.

D I F F E R E N C E
Creates a new collection whose elements are all elements of one
collection that are not elements of another.

IS-SUBSET
Tests wllether every element of one collection is also an element of
S Plot he r.

Fina l ly , tilere are four control structures that potentially involve considering all
elements of a collection:

FOR-ALL-DO
Performs a given action for every member of a given collection. If a
predicate is specified , the action is performed only for the elements
satisfying tile predicate.

FOR-ANY-DO
Performs a given action for some member of a given collection. The
member may be required to satisfy a given predicate. An action to be
performed if there is no such element may also be specified.

FOR-ALL-TRUE
Tests wilether every element of a given collection satisfies a given
predicate.

FOR-ANY-TRUE
Tests whether any element of a given collection satisfies a given
predicate.

6.1,1. Overview of collection representations

The foll ow ing d iagr a m summar i zes th e repr esentati on techniqu es tha t PECOS
cu r r e n t l y empl oys f or co lle c tion s, as well as several (Indicated by dashed lines) that
it does not. Each branch represents a refinement relationship. The terms will be
defined in the sections dealing with tile rules for that represeiltatioll.

-~~~~~~~~~ .— ~~~~ -

_ _
- -

A knowledge base of programming rules Page 67

COLLECT ION

1BOOLEAN—IIAPPING EXPLICI T_COLLECTIO~T1 IMPLICI 1-COLLECTION
________________ I

~..
(s ee MAPPING rules)

I. 1STORED-COLL ECTION OISTR IBUTEO-COLLECT ION
I.

\
\

~
-1 I 1SEQUENT! AL-COLLECTION TREE-STRUCTUFIED--COLLECT ION

ordered or unordered ~. J

/ _
LINKED-LIST [ARRAY-SUBREG iON I

I— 1hI~NKED-FREE-CELLS PARALLEL-ARRAYS ASSOC I AT ! ON-TABLE
w i th or w i t h o u t ~ integers to i tems
header c e l l s

[see MAPPING rules)

- - --- -~~~~ -- _


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Page 68 Section 6

6.1,2, Rules about collections

Collections as Boolean mappIngs (BOOLMAP)

One way to represent a collection is as a n~appincu of items to Boolean values , where
an item is considered to be in tile collection if and only if Its image is “True ” under
the mapping. II flO value has been explicitly associated with an item, then it is
assumed to map to “False ”, This view of collections is especially Important if most of
tile operations being performed on the collection are “element-oriented” , since
addi t ion , removal , and menlbership testing can generally be done in time independent
of the size of tile set. Tile following rule can be applied to use such a
representation:

Rule BOOLMAP .1:
A collection may be represented as a mapping of elements to Boolean
values , with the default image being “False ”.

The machine-usable form of this rule, using the patterns described in section 4, is
given below:

[REF.- (COLLECTIOII
(I/P ELEMENT (.- .- X)))

(I/NEW MAPPING
(.- l/P DOMAIN-ELEMENT X)
[i-I/P RANGE-ELEMENT

(#NEW PR IMIT IVE
(.-#P SPECIFIER (QUOTE BOOLEAN]

(.-#p DEFAULT-IMAGE
(#NEW PRIMITIVE

(.- // P SPECIFIER (QUOTE BOOLEAN))
(i-I/P VALUE (QUOTE FALSE]

The rule performs a refinement as illustrated below:

_ - - 



_______________________________

A knowledge base of programming rules Page 69

COLLECTION

e l e m e n t
— 4 X

III
V

I IIAPPING J
I domain—elementI I

I Lr~~~
e _e 1 enient

I I P R I M I T I ~~~]
I I s pec i f ie r

BOOLEAN
[~~~ au I t—i mage

PRIrII T IVE1
I s pec i f i e r

—
~ BODLEA N

va lue
FALSE

Note that the domain-element property of the MAPPING node ~5 tile same as tile
element property of the COLLECTION node.

The nex t  rule can be used to implement the operation for creating a collection when
tile collection is represented as Boolean mapping:

Rule BOOLMAP,2:
~l collection represented by a Boolean mapping may be created by
creating a mapping; for each initial element ( X )  of the collection ,
there is an initial pair (X , “True ”)  for the mapping.

The full form of tile rule is as shown below 31
~

31 The (I/COLLECT ...) pattern applies a function to every item in a list (in this case
the list of initial elements) and returns a list of the results.

L. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~----~ -~~ -~~--~~~~~~~~~~~~~~ —--~~~~~~~~ —- -



Page 70 Section 6

[REf.- (NEW-COLLECTION
[#RDS (I/REF MAPPING

(I/P DOMAIN-ELEMENT)
(I/P RANGE- ELEMENT

(I/REF PRIMITIVE (?# BOOLEAN)
(I/ P ELEMENTS (i - i -  ELS)))

(I/NEW NEW-MAPPING
(.-#P PAIRS

(I/COLLECT X ELS
(LIST X

(#NEW NEW-PRIMITIVE
(‘-I/ADS (I/NEW PRIMITIVE

(i-I/p SPECIFIER (QUOTE BOOLEAN))
(..#p VALUE (OUOTE TRUE]

Note tile condition on tile data structure that is tile value of the operation (the
result-data—structure property, as indicated by tile #RDS): it must be represented
as a Booleari m apping. Tile complexity of the (//REF MAPPING ...) condition on the
result—data—structure property is related to the idiosyncrasies of tile rule formalism;
tile condition insures that t u e  proper kind of Correspondence is being dealt with. An
alternative way to handle this would have been to use some construct like (?QUERY
BOOLEAN-CORRESPONDENCE #), with the detailed conditions appearing in a rule for
dea ling w i th  such queries 32.

The rule performs tile following refinement:

[ NEI.4-COLLECT ION J
resu l t—c lata--structure -, MAPPING7

elements

III
V

N E l l — M A P P I N G

resu l t—data —st ruc ture
[~~PPING Ipairs

This rule also illustrates another feature of tile rule interpreter: the
result-data—structure property of a node is automatically inilerited by all
ref inements of tile node. No other properties are inherited automatically.

The next rule describes how to refine a test on whether a collection is empty:

32 In fact, if I were to write the rules again, I would use such a technique, since it
would consIderably simplify many of the conditions. See section 11. 

- - - -~~---- -~~~- - - - -- - - -~~-_ - --~~~~~~~~~ - --



- -

A knowledge base of programming rules Page 71

Rule BOOLMAP.3:
If a collection is represented as a Boolean mapping , a test of whether
the collection is empty may be implemented by a test on whether the
inverse Image of “True” under the mapping is empty.

Tile rule ’s full form is:

[REF.- [IS-EMPTY
(I/P COLLECTION (.-.- C)

(I/ADS (I/REF CORRESPONDENCE
(I/P RAN GE-ELEMENT

( I / R E F  P R I M I T I V E
(I/P SPECIFIER (?#= BOOLEAN]

(I/NEW HAS-EMPTY-INVERSE
(i-I/P CORRESPONDENCE C)
(i-I/P RAN GE-ELEMENT

(I/NEW NEW-PRIMITIVE
(- I/ADS (#NEW PRIMITIVE

(-#1’ SPECIFIER (QUOTE BOOLEAN))
(‘-I/P VALUE (QUOTE TRUE]

Note that tile rule conditions are on the result—data-structure of tile argument
operatioll ilOdes. As discussed in section 4 , the result—data—structure Property
represents the data structure passed fr om one operation to another , in this case
from the operation that produces the collection to the IS—EMPTY operation. Most of
tile rules have such cond itions attached to the result-data—structures of their
01) era n ds.

Tile fllofllbersilip rule for this representation is similar:

Rule BOOLMItP.4;
If a collection is represente d as a Boolean mapping, a test of whether
an item is in the collection may be implemented as a retrieval of the
image of the item under the mapping.

Tile next rule considers 110w to add elements to such collections:

Ru~~ BOOLMAF~5:
If a collection is represented as a Boolean mapping, an item may be
added to the collection by changing the image of the item from
“False ” to “True”.

Such a “change image ” operation may ta ke different forms , depending on whether
the itenl maps explicitly to “False” or whether it maps to “False” because “False ” is
t ile default image. Tile rules for dealing with such operations will be discussed with

F the mapping rules in section 6.4. The rule about removing elements also involves
changing the image of the item: 

.—-~~~- - ~~~~- -~~~-



-~~~~~~~~ 
_
~~~~~~~~

Page 72
Section 6

Rule BOOLMAP .6:
If a collection is represented as a Boolean mapping, an item may beremoved from the collection by changing the image of the item from“True ” to “False ”.

The implementatioll of an ANY—ELEMENT operation involves retrieving some elementin tile inverse image of “True ”: - ,

Rule BOOLMAP.7:
The retrieval of some unspecified element of a collection representedas a Boolean mapping may be implemented by a retrieval of someunspecified element of (lie inverse image of “True ” under themapping.

For some represeiltat io~ls of mappings (e.g., property list markings), this operationmay not be effect ively computable.

A E3oolean ma pp snq is a special case of ~ieneral mappings. The rules for dealing withnmapp imiqs will be discussed irs section 6.4.

Explicit collections (EXPCQL)

Tile elements of a collection may be represented either explicitly or implicitly. Forexample , a list of elements is an explicit representation , while upper and lowerbounds on a set of inteqers is an implicit representation. PECOS’ s rules deal onlyw i t h expl icit representations:

Aisle EXPCOL.1:
/l collect/on may be represented expl ici t ly.

1 he full form of t h e rule is as follows:

(RE F.- (COLLECTION -

(// P ELEMENT (i - i- X)))
(I/NEW EXPLICIT-COLLECTION

(i-I/P ELEMENT X)))

It perform s a refinement as illustrated below:

_

- - ‘1

A knowledge base of programming rules Page 73

[cOLLECTION

element

in
V

L~~
PLIC IT_ COLLECT ION I

I e lera ent

Note that t h e element propertIes of thc two nodes are the same.

There are two rules dealing with the creation of instances of a collection (the
NEW-COLLECTION operation), differing on whether or not any elements are specified
to be in tile collection initially. Typically, collections are created Witil no elements.
The followislch rule is intended primarily for this case, but is applicable regardless of
the initial elements of the collection:

Rule EX PCOI .2:
lf a collection Is represented explicit ly, a new collection with initial
elements Z may be created by creating a new explicit collection with
initial elements Z.

This rule is similar to tile rule for tile case in whicil the collection is represented as a
Booleasl mapping. Tile rule in its full form is as follows:

(REF.- (NEW-COLLECTION
(II ADS (I/REF EXPLICIT-COLLECTION))
(lI P E LEME NTS (.-.- Z)))

(I/NEW NEW-EXPLICIT-COLLECTION
(i- I/P ELEMENTS Z)))

Tile condition Oil t ile result—data—structure property prevents this rule from being
applied when the collection is represented as a mapping. Tile refinement performed
by this ru le is iilustrated below (with tile refinement chain for the data structure
explicitly illdiCated):

-

- -

Page 74 Section 6

I NEL4-CO LLECTIO]~~
resu l t -da ta — st ruc tu re

~~~~~~~~ I
[GCOLLECT ION. 1.0]

I EXPLIC ! 1-COLLECTION
o I emen t s

‘ ( ... )

Iii
V

[NEW- EX F ’LIC IT -COLLECT ION I
result -data-structure

- ~ j~~OLLE CT 1ON

V

EXPLICIT-COLL ECTION I
elements

‘ 
( ... I

Note that tile elements property of the NEW-COLLECTION node specifies the initial
set of elements. The following rule is applicable only if tllis set is 11011-empty:

Rule EXPCOL.3:
/1 collection with a non-empty list of initial elements may be created
by creating a collection with no initial elements and adding each one
of the initial elements to this collection.

One must be careful to distinguisil between tile case where tile list of elements is
known at “compile time ” and whore tile list Is known at “ru n t ime ”. in PECOS’ s

• specification lailguaqe , the description of tile initial elements is an explicit list of
operations whose values at run time will be t ue  initial elements , and EXPCOL.3
reflects tills. If one wanted to specify a variable list of initial elements , one would
have to specify a collection whose elements are to be in tile new collection initially.

EXPCOL.3 is actually applicable regardless of tile representation of the collection. it
is inc luded  in tile discussion here to illustrate that different refinement rules for the
same concept may be applicable in different situations.

As mentioned in section 4.3, for many data structure refinement rules there are
corresponding oi eration refin ement rules that are applicable only if the data
structure refinement has been made. Rule EXPCOL.2 above is such a rule. In

-~~ -.-—~~~~~~- - ~~•~~-~~~~~~ -~~- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



A knowledge base of programming rules Page 75

addition, there are similar rules for tile AD D-ELEMENT , REMOVE—ELEMENT ,
IS-ELEMENT , IS-EMPTY , 511(1 ANY-ELEMENT operations. In order to focus on the
more central issues , such rules will be omitted from tilis and further discussions.

There are two ways to indicate tile elements of a collection explicitly: tlley can
either he stored in a single structure or they can be kept in severa l st ru c tu res
(“ dis tributed”). For example , using property list markings is one kind of distributed
representation. PECOS can currently deal Wit ll distributed collections only tilrough
the use of distributed mappings; see section 6.4.

The rule for stored collections is the following:

Rule_EXPCOL.4:
An explicit collection may be stored in a single structure.

Iii addition to tile above rule , there are six rules for performing tile parallel
refinements on operations. They will be omitted here .

There are two rnles for refining a membership test that are independent of tile way
tilat tile stored collection is represented:

Rule EXPCOL.5:
A membership test on a stored collection may be refined into test on
whether any item in (he collection is equal ~o the item being tested.

The refillenleilt produced by this rule is a FOR—ANY—TRUE test. Tile rules for dealing
witll such tests will be discussed in section 6.2.

Notice that there is no requirement that the FOR—ANY—TRUE operation be performed
by enume,atinq tile items of tile collection , althougil that is frequently tIle technique
usedi. Tile followillg rule, on tile other hand, requires that the elements be
enunlerated according to a particular orderinci relation.

Rule EXPCOL.6:
If there is an ordering relation for the elements of a stored collection ,
a membership test may be implemented as a total enumeration of the
elements of the collection according to the ordering relation; if an
element is found that is equal to the item being tested , return “True ”
as the answer; if an element is found that follows the item being
tested, abandon the enumeration; If the enumeration terminates , either
through abandonment or through exhaustion of the elements , return
“False ”.

The CollStraint Oil tile enumeration order is e f fected by attaching an
enumeration-order property to tile ENUMERATE-ITEMS node, as illustrated by part
of the complete form of EXPCOL.6: 

—fl- - - ~~~~~~~~~~~~~-.-~~~- ~~~—-~~~~ -



- ~~---- —— - .——- ~~ ..-~~~— — —--~~~

Page 76 Section 6

[REF.- [IS-STORED- IN-COLLECTION
[I/P COLLECTION (.- .- Y)

(I/ADS (#REF STORED-COLLECTION
(#P ELEMENT (.~

. XX )
(.- .- OR I /ANS WE R

(?QUERY ORDERING-RE LATION #)
(I/P ELEMENT (~~~ X)

(#RDs (?QUERY REPRESENTATION-MATCH # XX]
(I/NEW ENUMERATE-ITEMS

(..#P ENUMERATION-ORDER (LIST (QUOTE ORDERED) OR))
. . . ]

Tile role of the enumeration-order property will be discussed in connection with the
rules for enumeration structures in section 6.2.

Collections qrouped in sequential structures (SEQCOL)

Several types of structures can be used for storing tile elements of a collection.
PECOS’ s rules only cover 0110 technique : the use of a sequential collection.

Rule SEQCOL.1:
A stored collection may be represented using a sequential collection.

A sequential collection may be thought of as a linear arrangement of locations, where
each location contains a single element of the collection.

The rules for dealing with the “any element” operation illustrate tile relationship
between locations in sequential collections and the elements that are stored in the
locations:

Rule SEQCOL.2:
The retrieval of any unspecified element from a collection
represented as a sequential collection may be Implement .d by the
retrieval of the element at any unspeclf led location.

The full form of tilis rule is given below:

(REF.- [ANY-STORED-ELEMENT
( I/ADS (.... X))
(I/P COLLECTION (.. .- C)

(I/ADS (I/REF SEQUENTIAL-COLLECTION
(I/P ELEMENT

(?QUERY REPRESENTATION-MATCH # X3
(I/NEW ELEMENT-AT-LO CATION

(i-I/P COLLECTION C)))

~ 

~~- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



~~

--

~~~~~

--

~~~~

- 

~~~~

__ •__

~~~~~

_

~~~~~

__

~
_ii _•_ -

i

A knowledge base of programming rules Page 77

An ELEMENT-AT-LOCATION node normally has botll a collection and a location
property. Note that SEQCOL.2 specifies only tile collection property. Tile fact that
110 location property is specified reflects tile “ 5ll~~ unspecified location ” of tile
English version.

The retrieval of an element at a location ill a collection can ’t 1)0 implemented u n t i l t he
location is (ictermilled. In some situations this may involve searching through tile
collection. In this particular case , ally ~ocat iori at all may be used. PECOS currently
has only one rule for determining an unspecified location for an
ELEMENT-AT-LOCATION operation:

Rule SEQCOL.3:
The retrieval of the element at any unspecified location may be
specified to retr Ieve the element at the front.

This rule simply specilies one of tile many possible locations that could be used. For
sequeiit ial collections , tile front and the l)ack are of ten convenient, SillCC these are
generally more easi ly isolated than , for example , tile “middle ” location. In fact , tile
front 011(1 back di FFer in tlleir utility for different implementations of sequential
collections. in particular , for arr ays front and back are generally equally convenient
Since tile tipper and lower bounds of the array are known (but see tile discussion on
growing. shrinkinq, and fixed boundaries in se ction 6.1.4). For linked lists ,
t ile front is generally more accessible than tile back.

The full form of t h e rule illustrates tile (ISO of property rules:

(PROP.- LOCATION
(ELEMENT-AT-LOCATION)
(QUOTE FRONT))

Wilen appliodl , tllis rule adds the location property to an ELEMENT—AT—LOCATI ON
• node , as illustrated below:

[ELEMENT-AT-LOCATION I
e ler ient

I c o l l e c t i o n

locat ion
FRONT

• T ilus , tile rule further specifies a previously unspecified aspect of a node. Property
rules are used quite frequently for such purposes.

Remov ing an element from a sequential collection is sliqiltly more compl icated , as
silown by tile following rule:

-~~~~~~~~~~~ - -— —~~~~~~-•~~-• ~~~~~~ --

Page 78 Section 6

Rule SEOCOL.4:
If a stored collection is represented as a sequential collection , an
element may be rem oved from the collection by finding the location of
the element and rem oving f he item at that location.

Tile addition of an element to a collection involves the notion of a position in such a
coliectioll. A POSITION may be thougilt of as the space “between ” two locations.
Note that a collection with n elements has n locations , but nfl positions (including
tile positions before the first element and after the last). The following rule makes
use of s&ic ii a ilotiOll :

Rule SEOCOL.5:
If a stored collection is represented as a sequential collection , an

• clement may be added to the collection by adding It at an unspecified
position.

The pOSitiOll is unspecified and must be det ermined. Tile determination of tile
position is complicated by tile fact that tile elements of a sequential collection may
be stored according to some ordering relation. When tile collection is unordered,
elements may be added at ai~y convenient position; when tile collection is ordered,
tile precise position must usua lly be found by searching for it. in the unordered
case , tile two possibilities are given by the following rules:

R u l e SEQCOL. 6:
If the elements of a sequential collection are not stored according to
any ordem ing relation , the position at which an element is added may
be specified to be the front position.

Rule SEQCOL.7:
If the elements of a sequential collection are not stored according to
any ordering relation , the position at which an element is added may
be specified to be the back position.

The ordered case is somewhat more complicated:

R u l e SEOCOL .8:
If (lie elements of a sequential collection are stored according to some
ordering relation , the position at which an element is added may be
specif ied to be th e result of an operation of finding the position of the
element in the collection.

lllere are several ways tilat sucll positiollS may be represented. Among the more
common are pairs of location indicators (giving tile two locations between wilich the
positioll occurs) 611(1 a single indicator giving either the preceding location or tile
following location. PECOS’ s rules deal only with the last of these:

- —— - — ——-----— - — -- —- —-~~--- .•—.—- ---—--—-- -- - •~~~. -~~~~. - -

• ~~~~~~~~~~~~~~ •- -~~----~~~~-

~~~~~~~~~~~~~~~~~~~~~~~~~

_

•

_ 

~~~

- • - . -

~~~~~~~~~~ 

- -

~~~~~

--—-•

A knowledge base of programming rules Page 79

Rule SEQCOL.9:
A position for Inserting an element In a sequential collection may be
represented as the location which Immediately follows the position.

Once this method of representing a position between two locations has been
sele c ted , tile following rule can be applied to in , lement the actual addition
operation:

— Rule SEOCOL.1O:
If an insertion position is represented as the location that follows the
position of the new element, the element may be added by Inserting it
be fore the location.

Tile rules for inserting an element before a location depend on the representation of
tile SE!(iLIelItial collection and will be covered later.

Page 80 Section 6

6.1.2.1. Summary for sequential collections

Before considering techniques for implementing sequential collections, it may be
helpful to summarize the data structures and operations at this refinement level.
There a re two principal data structures:

SEQUENTIAL-COLLECTION
A linearly related set of locations that contain the elements of tile
coliection.

LOC ATION-IN-COLLECTION
A way of referring to locations iii a sequential collection.

1 here are seven operat ions:

NEW-SEQUENTIAL-COLLECTION
Creates a ne w sequent ial collection.

TEST-EMPTY-SEQUENTIAL-COLLECTION
Tests whether a sequential collect ion is empty.

IS-STORED-IN-SOME-LOCATION
-l ests whether an item is stored in ai~y location of a sequential collection.

ELEMENT-AT-LOCATION
Retu rns the eleilleilt at a particular location in a sequential collection.

INSERT-ELEMENT-AT-POSITION
Inserts an ek’ment at a position in a sequential collection when tile
position is specified as FRONT or BACK.

INSERT-BEFORE-LOCATION
inserts all item before a tocaUoll in a sequential collection when tile
location is specif ied as a LOCATION-IN-COLLECTION.

REMOVE-ELEMENT-AT-LOCATION
Removes the e lement a~ a location ill a sequential collection when tile
locat ion is specif ied as a LOCATION-IN-COLLECTION.

IL - —-- -—— ~~~
-- —-•-——--

A kno wledge base of programming rules Page 81

6.1.3. Rules about linked lists

One way to inlplement a sequential collection is to use a linked list: each location
contains one elemeilt aild a link illdicatiilcj tile next location ill tile sequence 33. Tile
principal features of linked lists are that insertions, deletions , and rearrangem ents
are relatively easy: the links can be manipulated without changing tile items stored
in tile locations. Tile price paid for this flexibility is that a list can be accessed in
only One directioil , f rom tIle first element to tile last element. One consequence is
that the time savings that often result from keeping a sequential collection ordered
are Ilot as significant with lists. For example , binary searching methods do not apply
to linked lists.

Sequential collections as linked lists (LlSj~

Tile data structure refinement rule is similar to those already considered:

Rule LIST.1:
A sequential collection may be represented as a l inked l is t .

There are many ways that linked lists can be implemented. For example , wilen tile
data are record structures , there can be a field in tile structure that contains an
indicator of the next datum. Parallel arrays can also be used: one array contains
tile items and one array contains tile links (indices). A third way involves tile
allocation of cells from free storage. Necessary ingredients for sucil an
implementation include some way of allocating such cells and some way of retrieving
cells iio iollqor ill use (garbage collection). EacIl cell is considered to have two
parts, all item (the element stored in the cell) and a link (a poillter to tile next cell).
A spt~ciaI fl,ni generally used as OIl indication of Oil empty list or as the list
terminator (tile link of tile last ce ll). Typically, the same f laq will he used for both
purposes . sil lee it simplifies molly algorithms (especially recursive alfj Oriti lnls that
trace ‘lOWll t h e ink s of a list).

PICOS’ s rules deal with some aspects of tile use of free cells to implement linked
l ists. T h ey assunie that allocation 611(1 garbage collection are ilandledl automatically
(111(1 that tile SOiHO flag is used both to terminate lists and to indicate the empty list.

The first rule is the data structure refinement rule:

Rule LIST.2:
A linked l ist may be represented using linked free cells.

When dealing with linked free cells , i t is often helpful to use a special cell at the
head of such a list . In su ch cases, tile list is always a pointer to a particular cell.

33 Multiply-linked lists are a variation not covered by tile rules.

• • ~~ - ~~~~~~~ ~~~~~~~~~~~~~~~~ —
•-——-—. - -.

~
--

~
-

—

Page 82 Section 6

Without such a header cell , a list ma y bo a pointer to a cell or it m a y be tIle empty
list flag (e.g., either a CONS cell or NIL in LISP). Using a header cell fac ilitates
addition and removal of elements , since the special case of the empty list cai~ easily
i)e igllorecl. PECOS 110$ rules for lists with and without such special header cells.
The following two rules are used to select one of these possibilities:

Rule LIST.3:
Linked free cells may be used without a special header cell.

Rule LIST.4:
Linked free cells may be used with a special header cell which is a
primit ive with value “HE/ID ”34 .

These rules are botil implemented using pr oper ty rules. For example , the inte rna l

form of LIST.3 is given below:

(PR OP~ SPECIAL-HEADER-CELL (LINKED-FREE-CELLS)
NIL)

Property rules such as these are often used to deal with minor variations of a basic
ilotioil.

T h e implementations of operations on liilked free cells generally differ only slightly in
the two cases. The two rules for creating a new instance of a linked list ar e as
follows:

Rule LIST. 5:
If a linked list is represented as linked free cells without a special
header cell , a new list may be created by creating a new instance of
the empty link flag.

(Recall that tile same f lag is used for both the empty list and for the list terminator.)

Rule LIST.6:
If a linked list is represented as linked free cells with a special
header cell, a new list may be created by allocating a new cell whose
item pai-t is a new instance of the special header and whose link part
is a new instance of the empty link flag.

Testing wilether a list is empty is also d i f fe re nt in the two cases:

~ Tile “HEAD” is sim p ly a ta g denoting the header cell. There is, of course , 110

llOCCSSity that any particular value be used. in fact , having t h e value be a iink to
some dlistincflhis$ledl cell in tile list may facilitate other operations. For example , if th e
header contains a pointer to the last cell In the list, tile insertion of elements at tile
back of the list is relatively easy. PECOS currently has no rules for such special
purpose cells.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

- -

A knowledge base of programming rules Page 83

Rule LIST .7:
if a linked list is represented with linked free cells without a special
header cell , a test of whether the list is empty may be implemented by
a test of whether the list is the empty link flag.

Rule LIST .8:
If a linked list is represented with linked free cells with a special
header cell , a test of whether the list is empty may be implemented by
a test of whet her the link of the f i rs t cell of the l ist is the empty link
f /ag.

Tile only differenc e between the two is that with a special header cell , the link from
the first cell must be taken before the test con be applied. Tile same iloldS true for
a membership test:

Rule LI ST .9:
if a linked list is represen ted with linked free ce/ /s without a special
header cell , a test of whether an item is in the list may be
implemented by a test of whether the item is in one of the cells of the
l ist.

Rule LIST. 1O:
if a linked list is represented with linked free ce/Is wit/ i a special
header cell , a test of whether an item is in the list may be
i,npleinented by a test of whether the item is in one of the ce/ls of the
list pointed to by the link of the f i rst cell.

Fiilally. tile retrieval of tile element at tile front of a list is dependent on whether or
1101 tilero is a header cell:

Rule LIST.11:
I(a linked list is represented as linked free ce/Is without a special
header cell , the retrieval of the element at the front position of the list
may be implemented by a retrieval of the item part of the f i rs t cell of
the list.

Rule LIST .12:
If a linked list is represented as linked free cells with a special
header cell , the retrieval of the element at the front posi tion of the list
may be imple mented by a ret rieval of the item part of the cell pointed
to by the link of the f irst cell In the l ist.

With destructive operations applied to linked free cells without a header , tile

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~— - - -~



-- —w ‘—..-- ~~~~~~~~~~~~~~~~~~~~ -.__---- -V .--.  — ~~~~ 
- 

- _—_-.—----— --.-- -

Page 84 Section 6

situation is complicated by the fact that the empty list must be dealt w ith as a
special case. When adldimlg an element to an em pty list , the  l is t  is chamigeci from Oil
empty list flag to a free cell. Usually, this CaililOt be done by simply manipulating
pointers . it is necessary to determine the original “sour ce” of the structure (e.g.,
the variable whose value is tile collection), so that this source may be modified to
have a cell as its value. Likewise , when removing tile ollly element of a list with no
header , tIle result is tile empty l ink  flag. Again , this cannot be achieved by simply
nlani pul atimlg pointers, and the source of tile collection must be known. In general ,
determining the source of a structure can be ratller difficult , especially in languages
whose Var ial) ieS niay aSSunle pointer values (sucil as LISP), and PECOS has no ru les
for dealing with this case. The effect is that PECOS cannot implenleilt ally
destruct ive operat ions Oil linked lists without header cells. Tile rules for destructive
operations on lists with Ileader cells will be considered after a brief discussion of tile
mlotion of a location in a linked list.

Locations in linked lists (LISTL.Q~~

A location ill a limlked list is some indication of a particular cell of tIle list. There are
several ways to imldi icate cells in limlked lists. PECOS’ s rules deal witil two of them 35:

Rule LISTLOC.1:
If a linked list is represented as linked free cells , a location may be

• represented as a link to the cell of the location.

Rule LISTLOC.2:
If a linked list is represented as linked free cells with a special
header ce// , a location may be represented as a link to the cell
preceding the location.

An illustration may help to clarify tile difference between these two location
representations:

location

LII~~
-

~ ~~~~~~~~~~~~ ~~~~~~~~~
-

1’
PREDECESSOR-LINK ITEM-L INK

The retrieval of tile item at a location in a linked list is dependent on the location
representation , as seen in tile following two rules:

35 A ithouçj L tile rules are stated in terms of linked free cells, tile notions involved
also apply to other representations for linked lists.



_ ______

A knowledge base of programming rules Page 85

Rule LISTLOC.3:
if a location is represented as a link to the cell of the location, a
ret rieval of the item at the position may be implemented by retrieving
the item part of the cell indicated by the location representation.

Rule LISTLOC.4:
lf a location is represented as a link to the cell preceding the cell of
the location , a retrieval of the item at the location may be implemented
by retrieving the item part of the cell pointed to by the link of the cell
indicated by the location representation.

Destructive_operations or~ linked free cells with headers (LISTOEST)

PECOS’ s rules for destructive operations on linked lists deal only with linked free
cells with headers. For inserting an element , tile simplest case is when tile position
is specified to be the front of the list:

Rule LISTDEST. 1:
V If a linked list is represented as linked free cells with a special

header cell the insertion of an element at the front position may be
Implemented as an insertion of the element after the f irst cell of the

• l ist.

The “insertion ” operation can be implemented by applying tile following rule:

Rule L1STDEST .2:
f.m insertion of an item after a cell in a linked list may be imp/emented
by replacing the link of the cell by a pointer to a new cell whose item
part is the new item and whose link part is the l ink  part of the original
ce/l.

An illustration may clarify tills operation:



~~~7 — — -~~-~—r~ ~~~~~~~~~~~~~~

Page 86 Section 6

cell

BEFORE

~ J~ 3— ~~~~
AFTER

~

L~ItL~J
J.
~

E IEEEI—~

The other insertion operation for sequential collections involves inserting an element
before a given location PECOS can only deal with the case where the location is
represented as a predecessor link. The difficulties of dealing with item links are
similar to those of dealing with lists without header cells.

Rule LISTDEST.3:
If a location is represented as a link to the cell preceding the location,
an insertion ot an element before the location may be implemented as
an insertion of the element after the cell Indicated by the location

F representation.

Since the cell indicated by the location is the cell after which the element is to be
inserted , the cell whose link must be modified is accessible. This is the primary
virtue of using header cells and predecessor links to represent locations. Once the
above rule has been applied, the previously given rule (LISTDEST.2) for inserting an
item after a cell may be used.

The rules for removing an element at a location in a linked list are similar to those for
inserting an element. The simplest case is again where the location is at the front:

Rule LISTDEST.4:
If a linked list is represented as li nked free ce/ls with a special
header cell the removal of an element at the front location may be
Implemented as a removal of the cell after the f irst cell of the list.

Rule LISTDEST.5:
A removal of the cell after a cell in a linked list may be implemented
by replacing the link of the cell by the link part of the cell pointed to
by the link part of the original cell.

An illustration may also be helpful here:

..__ ~~~~~~~..
_ _

~~~~~~~~~~~~



-
~~ ~~~~~~~~~~ 

—.- ---.
~—---— 

~
IIII !

A knowledge base of programming rules Page 87

cell
4,

BEFORE 

~~~~ LI:i::I~1.—~ ~~~~~~

AFTER LIIIIIIIEEJ—1 LIILII~1— LIII~fIII~1—
The removal of an element at a location can also only be done if the location is
represented as a predecessor link:

Rule LISTDEST.6:
If a location is represented as a link to the cell preceding the location,
the removal of the element at the location may be implemented the
removal of the cell after the cell indicated by the location
representation.

6.1.3.1. Summary for linked free cells

The following data structures and operations constitute those required at this level
of refinement:

LINKED-FREE-CELLS
Each cell contains an item and a link.

ITEM-LINK
A link to the cell of a particular item (or the list terminator flag).

PREDECESSOR-LINK
A link to the cell preceding that of a particular Item.

NEW-EMPTY-FREE-LINK
Creates a new instance of the empty list flag.

TEST-EMPTY-FREE-LINK
Tests whether a link is the empty list flag.

IS-STORED-IN-SOME-LINKED-FREE-CELL
Tests whether an element is stored in any free cell in a linked list.

- ~~~~~~~~~~~ ~~~ ~~~~~~~ -

__ - —

~~~~~~~~~ ~~~~~~~~~~~~ 

. -

Page 88 Section 6

LINK-TO-NEW-CELL
Creates a new cell with the specified item and link and returna a pointer
to that cell.

ITEM-OF-CELL

F Returns the item stored in a cell.

LINK-OF-CELL
Returns the link part from a cell.

REPLACE-LINK-OF-CELL
Replaces the link of a cell with another link.

I 

:ii~ _ .~



A knowledge base of programming rules Page 89

6.1.4. Rules about contiguous regions of arrays

Another standard te chnique for representing a sequential-collection is to use a
contiguous subregion of an array, where the linear relationship between locations is
that defined by the indices of the array. Every location in the contiguous subregion
contains one of the elements of the collection. Such a representation will be termed
an “array subregion”. Conceptually , such structures actually consist of three parts:
a lower bound, an upper bound, and an allocation of consecutive cells from storage.
Typically , the bounds are changed dynamically as elements are added and removed,
while the allocation remains fixed. The lower bound will be considered to be the
index of the first element (the front) and the upper bound will be considered to be
the index of the last element (the back). There are two principal virtues of array
subregions as collection representations. The primary advantage comes with the use
of ordered collections: searching for a position or element can be done fairly quickly
using binary search techniques. On the other hand, insertions and deletions on such
ordered collections can be relatively expensive since shifts are required. A less
significant advantage is that less space is required than for linked lists , since no
memory is needed to store the links to each location’s successor. In addition, no
facilities for free storage allocation or garbage collection are required.

Although the discussion of array subregions will use such terms as array and index ,
the notion is actually somewhat more general than that. All that is required of the
“indices ” is that there be some way of incrementing and decrementincj them. All that
is required of the “storage allocation ” is that there be some way of determining the
element that corresponds to a particular “index ”. Any way of representing this
mapping of integers to elements would suffice. For example , a list of <integer ,
element> pairs could be used. For the sake of clarity, the intermediate step
between sequential collections and the standard array representation will be ignored
in the following discussion.

Sequential colIecti~ns as array subregions (ARRAY )

The data structure refinement rule is similar to that for linked lists:

Rule ARRAY.1:
A sequential collection may be represented as an array subregion with
an allocation, a lower bound , and an upper bound.

When adding an element to an array subregions , it Is necessary to expand the region
so that a location may be made available for the new element. Similarly , when
reniovinci an element the region must be shrunk so there will be no locations that do
not contain elements. PECOS’ s rules deal only with the case ii~ which a specific
boundary is identif led as being the “growing” boundary, and a specific boundary is
identified as the ‘ shrinking” boundary. The case In which the growing boundary and
shrinking boundary are selected dynamically is not covered. In fact , the current set
of rules only deals with the case in which the growing and shrinking boundaries are



-
~~~~~~~~~~

Page 90 Sect ion 6

the same aiid in which a particular boundary is identified as a “fixed” boundary. The
following rules permit the selection of particular boundaries for these purposes.

In some situations PECOS is free to select the boundary to be used as the fixed
boundary. The first rule allows this selection be made:

Rule ARRAY.2:
if thc fixed boundary of an array subregion is unspecified , the lower
bound may be used.

There is no particular reason that the lower bound should be preferred over the
upper bound . In fact, many Interesting cases arise when the same allocation is
shared by two separate array subregions, with the two growing In opposite
directions. For example , many iterative sorting programs fit this paradigm [Green
and Barstow 1977b]. The remaining four rules permit PECOS to deal with array
subregions in which either boundary is specified to be the fixed boundary:

Rule ARRAY .3:
lf the fixed boundary of an array subregion is specified to be the
lower bound, the growing boundary may be specified to be the upper
bound.

Rule ARRAY.4:
If the fixed boundary of an array subregion is specified to be the
lower bound , the shrinking boundary may be specified to be the upper
bound.

Rule ARRAY .5:
If the fixed boundary of an array subregion is specified to be the
upper bound , the gro wing boundary may be specified to be the lower
bound.

Rule ARRAY ,6:
If the fixed boundary of an array subregion is specified to be the
upper bound, the shrinking boundary may be specified to be the lower
bound.

Many of the rules for dealing with array subregions must differentiate between the
two cases. There are two rules for creating a new array subregion:

L

A knowledge base of programming rules Page 91

Rule A RRAY.7:
A sequential collection represented as an array subregion with f ixed
lower bound may be created by creating a new allocation, a new .lower
bound which is the minimum value of the index and an up per bound
which is one less than the minimum value of the index.

Rule ARRAY.8:
A sequential collection represented as an array subregion with fixed
up per bound may be created by creating a new allocation, a new
lower bound which Is one less than the maximum value of the index
and an upper bound which is the maxi mum value of the index.

Note the dependence of the index values on the range of possible values for the
index. Generally it is necessary to determine both the size of the array and the
range of index values. These depend on such parameters as the expected and
maximum size of the collection under consideration. Note also that the initial values
of the upper and lower bound s depend on which boundary is fixed. The rule for
testing whether an array subregion is empty , however , applies in both cases:

Rule ARRAY .9:
A lest of whether a sequential collection represented as an array
subregion is empty may be implemented by a test of whether the lower
bound is greater than the upper bound.

Regardless of which boundary is fixed , if the lower bound is greater than the upper
bound, the subregion is empty.

PECOS has no rules for refining membership tests at the level of array subregions.
Membership tests for such collections are constructed through the application of
either rule EXPCOL.5 or rule EXPCOL.6, discussed in section 6.1.2 earlier.

The retrieval of the element at either the front or back Is straightforward:

Rule ARRAY .10:
If a sequential collection Is represented as an array subregion , the
retrieval of the element at the front location may be implemented by
retrieving from the allocation the Item stored at the lower bound.

Rule ARRAY. 11:
If a sequential collection is represented as an array subregion , the
retrieval of the element at the back location may be Implemented by
retrieving from the allocation the item stored at the upper bound.

L

-
- —

~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~ L ~~~~~~~~~~~~~~~~~ —~~~~~——

Page 92 Section 6

Locations in array subregions ~ARRAYLOC )

There are many ways to indicate locations in array subregions. The most natural is to
simply use the index of the location, but the index of the preceding or following
location is also possible. PECOS’s rules only deal with the use of the index of the
location:

Rule ARRAYLOC .1:
If a sequential collection is represented as an array subregion, a
location may be represented as an index.

The corresponding rule for an ELEMENT-AT-LOCATION operation is:

Rule ARRAYLOC .2:
If a sequential collection is represented as an array subregion , the
retrieval of the element at a location indicated by an index may be
implemented by retrieving from the allocation the item stored at that
index.

!p~~~~~gji_n element to an array subregion (A RRAYI NS)

hi general , adding an element will require that the subregion be expanded , and that
the old elements be shifted to make room for the new one36. Two of the rules for
inserting an element at a particular position avoid the shift by taking advantage of
the fact thc~t the element is being inserted at the growing boundary:

Rule ARRAYINS.1:
If the growing boundary of an array subregion is the upper bound , the
insertion of an element at the back may be implemented by expanding
the array subregion by 1 location and depositing the element at the
location indicated by the new upper bound.

Rule ARRAY INS.2:
If the growing boundary of an array subregion is the lower bound , the
insertion of an element at the front may be implemented by expanding
the array subregion by 1 location and depositing the element at the
location indicated by the new lower bound.

Inserting an element at an end which is not the growing boundary is somewhat more
complicated:

36 In addition, the expanded bounds must be checked to insure that they are not
outside the limits of the allocation. PECOS’ s rules do not include this aspect of array
manipulation. 

~~~~~~~~~ --- -— -~~~~—-“- .—~~~~~~~~~


A knowledge base of programming rules Page 93

Rule ARRAYINS.3:
If the growing boundary of an array subregion is the lower bound , the
insertion of an element at the back may be implemented by expanding
the array allocation by 1, shift ing all of the elements down by 1, and
depositing the new element in the location indicated by the upper
bound.

Rule ARRAYINS.4:
If the growing boundary of an array subregion is the upper bound , the
insertion of an element at the front may be implemented by expanding
the array allocation by 1, shifting all of the elements up by 1, and
depositing the new element in the location indicated by the lower
bound.

The “expansion ” referred to in the above rules merely expands the bounds without
doing any shifting, addition, or removal or any elements. Such an operation can be
implemented through the use of the following two rules.

Rule ARRAYINS.5:
If the growing boundary of an array subregion is the upper bound , the
array may be expanded by Incrementing the upper bound by 1.

Rule ARRAYINS.6:
If the growing boundary of an array subregion is the lower bound , the
array may be expanded by decrementing the lower bound by 1.

Finally, the general case of inserting an element before an arbitrary location also
involves some shifting.

Rule ARRAYINS.7:
If a sequential collection is represented as an array subregion, an
clement may be insert ed before a location by expanding the allocation
by 1, by vacating the position before the location, and by inserting the
element into the vacated position.

The operation of vacating the position before a Ibcation will insure that the position is
not occupied, so that the element can be deposited without overwriting any other
elements. Although this ARRAYINS.? is applicable for both growth directions , vacating
the position before the location differs for the two cases. Before presenting the

t rules , it may be helpful to illustrate the operation. The figure below shows the
situation before vacating the position before the “4” (so that , say, “3” could be
inserted between “2” end “4”). Also shown are the situations after the “vacate ”
has been performed in the upward and downward directions.

Page 94 Section 6

- S

5 4 5

-. 4 .
~

.
~ 4

2 2

1 1 2

1

item index after vacating upward after vacating downward

Note that in the “upward” case the index specifies the physical location that was
vacate d , while in the “downward” case it specifies the physical location after that
vacated.

Rule ARRAY INS.8:
If the growing boundary of an array subregion is the upper bound , the
position before a location indicated by an index may be vacated by
shift ing the elements from the index through the upper bound up by 1.

Rule ARRAYINS.9:
if the growing boundary of an arr ay subregion is the lower bound , the
position before a location indicated by an index may be vacated by
shif t ing the elements from the lower bound through the 1 less than the
index down by 1.

The two rules for storing an item before a subregion position display the same
o sy mm e try:

Rule ARRAY INS.1O:
If the growing boundary of an array subregion Is the upper bound , an
element may be stored before a vacated position (indicated by an
index) by depositing the element in the allocation at the index.

Rule ARRAYINS.1 1:
If the growing boundary of an array subregion is the lower bound , an
element may be stored before a vacated position (indicated by an
Index) by depositing the element in the allocation of 1 less than the
index.

---~- - - -~~~~~~~~~_~~~~~- - - - -

F—- -

~~~

--— — --‘-- .~-~ -- _v —~~~--- ‘ ---~--~~
-- — --,—-— - -—

A knowledge base of programming rules Page 95

Removing an element from an array subregion (ARRAYREM)

The considerations involved in removing an element at a location in an array
subregion are similar to those for inserting an element , except that the appropriate
part of the subregion must be shrunk rather than expanded:

Rule ARRAYREM.1:
If the shrinking boundary of an array subregion is the upper bound , an
item may be removed from a location by shifting the elements from the
index after the location through the upper bound down by ‘ and
shrinking the array subregion.

Rule ARRAYREM .2:
If the shrinking boundary of an array subregion is the lower bound , an
item may be removed from a location by shifting the elements from
lower bound through the index before the location up by 1 and
shrinking the array subregion.

Shrinking an array is quite similar to expanding an array: only the bounds are
affected explicitly.

Rule ARRAYREM .3:
if the shrinking boundary of an array subregion is the up per bound ,
the array may be shrunk by decrementing the upper bound by 1.

Rule ARRAYREM .4:
It the shrinking boundary of an array subregion is the lower bound ,
the array may be shrunk by incrementing the lower bound by 1.

Shifting an array subregion (ARRAYSH IFT)

Several of the rules for vacating positions and removing elements involved shifting a
port of the array subregion. Such an operation may be viewed in many ways ,
including the enumeration of positions , a transfer between two collections , and a
sequence of operations changing the correspondent of successive indices [Green
and Barstow 1977b]. Critical to all of these is an understanding that the shift must
be performed in such a way that no elements are overwritten and lost. PECOS has
two rules for shifting, one for each direction, but they are probably short-cut rules in
that some of the rea soning process is hidden.

- ~~~~~~~~~~~~~~~~~~~~ — ~~~~~~ - - ~-~



-~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Page 96 Section 6

Rule ARRAYSI-IIFT.1:
A part of an array subregion may be shifted down by enumerating the
locations between the lower and “p per bound in the stored order; for
each location, the item at that location is deposited into the location
whose index is the location minus the amount of the shift.

Rule ARRAYSH IFT.2:
A part of an array subregion may be shifted up by enumerating the -

locations between the upper and lower bound in the reverse of the
stored order; for each location, the item at that location is deposited
into the location whose index is the location pius the amount of the
shift .

6.1,4,1. Summary for array subregions as association tables

The following data structures and operat ions constitute those required at this level
of refinement:

ARRAY
Some way of associating a distinct item with every index (integer) in a
given range.

INDEX
For our purposes , always an integer in a given range.

PLEX
Since an array subregion consists of three parts (allocation, lower bound,
upper bound), a facility for dealing with structures with multiple parts is
needed. The techniques uses often de~5end on the target ‘anguage , and
whether or not that language has facilities for dealing with record
structures or array pointers.

NEW-ARRAY
A way to allocate a new block of storage for an array. The techniques
for handling this operation also depend on the target language. In
particular , in some languages arrays can be allocated only at compile time
or at certain specified times durIng execution. In INTERLISP , array
pointers can be passed as variable values.

DEPOSIT-IN-ARRAY
A way to deposit an item with a given index in a given array.

RETRIEVE-FROM-ARRAY
A way to retrieve the item associated with a given index in a given array.

__

~

•_ ___
~ ~ ________________________ I,--__ -— - — - ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~ - •



A knowledge base of programming rules Page 97

In addition, techniques for enumerating, Incrementing , and decrementing indices are
needed.

_ _ _ _ _ _  -—



F~~T~ 
- - - -- - -- - - - - -

~~~~~~~~~

Page 98 Section 6

6.1.5. Rules about other collection operations

Of the top-level collection operations mentioned earlier , six deal with several
collections simultaneously:

DUPLICATED-COLLECTION
Creates a new collection whose elements are all elements of another
collection.

SUBSET
Creates a new collection whose elements are all elements of another
collection that satisfy a given predicate.

UNION
Creates a new collection whose elements are all objects that are
elements of any collection in an explicit list of collections.

INTER SE C lION
Creates a new collection whose elements are all objects that are
elements of every collection in an explicit list of collections.

DIFFERENC E
Creates a new collection whose elements are all elements of one
coIle~ tion that are not elements of another.

IS-SUBSET
-

Tests whether every element of one collection is also an element of
a iioth e r.

PECOS can currently deal with only three of these (DUPLICATED-COLLECTION ,
SUBSET, IS-SUBSET). The knowledge needed for the other three remains to be
codified.

Other collection operations (COLMISC)

The idea of duplicating a collection is that , given a collection with certain elements ,
another collection with the same elements should be created. At the abstract level
of “collectioti ” the two data structures involved are of the same type; hence , the
term “duplicated” . h owever , at more refined levets , it is perfectly possible for the
two collections to I)e represented differently. In fact , a frequent use of this
operation is to convert from one representation to another. The rule for duplicating
collections is as follows:

~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~ - - -


——--. -~~~~~
- -.- -—--

A knowledge base of programming rules Page 99

Rule COLM$SC.1:
A collection may be duplicated by a sequence of two actions: f irst ,
initialize tile flCW collection with no elements; then, for each element
of the orig inal collection, add the element to the new collection.

Note that there must be some way to perform an action for all elements of the
original collection. For certain representat ions , this may not b3 feasible. For
example , if a collection is represented using LISP property list mark ings , every
atom ’s property list would have to be examined, a very time consuming task. Of
course , this problem only arises in connection with the original collection, and not with
the duplicated one. For example , it is quite simple to start with a linked list and
produce a property list marking.

The rules for computing and testing subsets are also fairly simple:

Rule COLMISC.2:
The subset S of a collection C, such that every element of S satisf ies a
predicate P, may be computed by a sequence of two actions: first ,
init’ialize S with no elements; then, for each element of C, if the
element satisfies P add it to S.

Rule COLMISC,3:
A test of whether a collection Ci is a subset of a collection C2 may be
implemented as a test of whether all elements of Ci are members of
C2.

PECOS can deal with the union operation in one specific case:

Rule COLMISC.4:
If the “collection ” operand of a membership test is computed by
computing the union of several collections , the test may be
implemented as an “or” of membership tests on each of the
collections.

This is one of the few rules whose conditions apply to the operation that produces
one of the operands , rather than to the data structure produced by that operation.
Such operation simplifications are fairly common in optimizing transformations
[Standish et al 1976].

— ---

~

- - - - —

~

- -

Page 100 Section 0

6.2. Enumerations over collections

As mentioned earlier , there are four control structures that may involve considering
each of the elements of a collection:

FOR-ALL-DO
Performs a given action for every member of a given collection. If a
predicate is specified, the action is performed only for the elements
satisfying the predicate.

FOR-ANY-DO
Performs a given action for some member of a given collection. The
menther may be required to satisfy a given predicate. An action to be
performed if there is no such element may also be specified.

FOR-ALL-TRUE
Tests whether every element of a given collection satisfies a given
predicate.

FOR-ANY-TRUE
Tests whether any element of a given collection satisfies a given
predicate.

High-level enumeration operations (FQfl)

In a FOR—ALL—DO construct , there is no neces sity that the elements be considered
sequentially (i.e., oiie after another). For example , with languages or machines that
support parallel processes , a separate process could be started for each element of
the collection. However , PECOS’ s rules deal only with the sequential case:

Rule FOR. 1:
The process of performing an action A for all elements of a collection
may be implemented by a total enumeration of the elements; if a
pr edicate is spcci f led, file action f or each element consists of testing
the predicate and performing A if the test succeeds; if no predicate is
specified, the action for each element Is A37.

The notion of enumerating the items in a collection is central to most of the rules in
this section, and will be elaborated in more detail after discussions of the rest of the
top-level constructs.

With FOR-ANY-DO constructs , it is often necessary to distinguish b&ween two

L

37 PECOS’ s rule actually includes somewhat more detail, in that initial and final
actions (for the FOR-ALL-DO) may also be specified , and these are passed on to the
ENUMERATE-ITEMS construct created by an application of FOR.1.

- - - -~~~~~~~
- -

~~~~~~~~~~~



A knowledge base of programming rules Page 101

cases: (a) the collection is empty (or no elements satisfy the predicate); (b) there
is an element that satisfies the predicate. For this reason , FOR—ANY —DO constructs —

may also specify an action to be performed if no sat isfactory elem ent is found. In
the discussions below, this action will be referred to as the “not-f ound” action.

There are two rules dealing with FOR—ANY—DO construct s. The first is for tile case
in which no predicate is specified , so there is no need to Perform any kind of
enumeration to try to find an element satisfying the predicate:

Rule FOR .2:
if no predicate is specified , the process of performing an action A f or
any element of a collection may be implemented as a test of whether
the collection is eHpty; if the test succeeds, the “not-found ” action is
executed ; if the test falls , A is perform ed on the result of retrieving
any element of the collection38.

If a predicate is specified , then some element satisfying that predicate must be
found. The next rule enables this to be done by searching for such an element39.

Rule FOR.3:
Thu proc ess of performing an action A for any element of a collection
such that the element satisfies a predi cate P may be implemented as a
search in the collection for an item satisfying P; if found , A is
performed ; if not , the “not-found” action is performed .

There are many ways that such a search can be implemented. If the results of
testing tile predicate on one element can be used to guide the process , relatively

• complex search strategies can be developed. The only case covered by PECOS’ s
rules , however , is simply to enumerate the items , one after another , testing each in
turn:

Rule FOR .4:
A search in a collection f or an element sat isfying a predicate P may
be implemented as a total enumeration of the items in the collection;
the action for each item Is a test of whether the item satisf ies P; if so ,
the enumeration halts and the “found” action is performed; if all
elements are enumerated (and none satisf ies P), the “not found”
action is performed.

Note that the FOR-ALL-DO and FOR-ANY-DO constructs have both been refined into
ENUMERATE-ITEMS constructs. The same is true for the two predicates ,

38 The “retrieve any element” refers to tile ANY-ELEMENT operation discussed with
the collection rules in section 6.1.

~ Again, PECOS’ s rules do not cover any non-sequential ways of finding the element.

I



Page 102 Section 6

FOR-ANY-TRUE and FOR-ALL-TRUE. The FOR-ANY-TRUE is first refilled into a
search:

Rule FOR.5:
A tost of whether any element In a collection satisfies a pred icate P
may be implemented as a search in the collection for an element
satisfying P; if such an item is found , return “True”; if not , return
“False ”.

The search rule given earlier (FOR.4) may now be used to refine this into a total
enumeration.

The most common way of testing whether every element in a collection satisfies a
predicate is to determine whether any element fails to satisfy the predicate. This
technique is embodied in the following rule:

Rule FOR.6:
A test of whc:hcr all elements of a collection satisfy a predicate P
may be implemented as the negation of a test of whether any element
of the collection satisf ies the negation of P.

At this point , the previously given rule can be applied, and eventually a total
enumeration over the collection is reached. Thus, all four of the top-level constructs
are ref ined i nto a single notion, that of enumerating tile items in a collection. The
ref inement relationships between these constructs are summarized below:

FOR-ALL-TRUE

/
FOR-ANY-DO FOR-ANY-TRUE

\ /
VflR ALL-DO SEARCH-FOR-I TEll

/
ENUMERATE-I TEllS

6.2.1. Enumerating the items in a collection

In Its most general form , enumerating the items in a collection can be viewed as an
independent process or coroutine. Each call produces one item from the cOllection.
The process must guarantee that every item will be produced on some call and that
each will be produced only once. In addition, there must be some way to indicate
that all of the Item s have been produced, as well as some way to start up the 

-~~~~~ - - -~~~~~~--,—~~ - - - -— - •-— - - -—- -- - •—- -—



A knowledge base of programming rules Page 103

process initially. It may also be useful to constrain the process to produce tile items
in a particular order. For example , EXPCOL.6 , a membership test rule given earlier ,
requires th at the items be enumerated according to an ordering relation. This
“process” view of an enumerator includes a wide range of constructs. Among the
simplest are a counter for enumerating the positive integers in a given range and a
pointer tracing clown a l inked list. Examples of more complex enumerators include
processes for producing all possible propositional logic expressions or for producing
the elements (of an unordered collection of integers) in increasing order. Note that
some of these involve implicit (and even infinite) collections as well as explIcit ones.
PECOS’ s rules deal primarily with explicit collections.

EnumeratingJ~~ms in sequential collections (ENUMSEO)

The principal ENUMERATE—ITEMS rule deals with enumerating tile items in a
sequential collection:

Rule ENUMSEO.i:
The items of a sequential collection may be enumerated by
enumerating the locations in the collection and retrieving the items
stored in each location40.

The internal representation of ENUMSEQ. 1 is more complicated than the En ,lisii form
indicates, primarily because of a variety of optional property links , including “early
exits ” and an initial action ”. These are omitted here in the interest of clarity.

As noted above , an enumerator can be seen as a coroutine that supplies items from
the collection as they are needed. There are , of course, many ways to implement
such a coroutine arrangement. PECOS’ s rules deal with only one of these , a
generate audi process structure. In such a structure , the actions to be performed
between “cal ls ” to the enumerator are embedded within the enumerator itself.

The following rule refines a location enumerator into a generate and process
structure:

Rule ENUMSEQ .2:
An enumeration of the locations in a sequential collection , with an
action /1 to be performed for each location , may be implemented as a
generate and process structure; the generator Initialization is an
initialization of the enumeration state; the generator incrementation is
an incrementation of the enumeration state; the termination test is a
lest of whether the enumeration state is in its final state; the process
consists of determining the next location from the enumeration state
and performing the action A.

40 The retrieval of the items in the location is the ELEMENT-AT-LOCATION operation
discussed in t h e  section on sequelltial collections.

_ _ _ _ _ _



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Page 104 Section 6

This rule includes two other parts that are most properly classified as temporary
solutions (“kluges ”) to problems involving certa in special cases:

Positions vs. locations: Recall tilat a distinction is made between locations (in which
tile elements are stored in a sequential collection) and positions (which occur
“between” locations). ENUMSEQ.2 , the enumeration rule for locations , is also used
for enumerating positions (as needled for inserting elements into ordered sequent ial
collections). A problem arises , however , since a collection with n locations has n# 1
positions , including those before the first location and after tile last location. An
enumeration of the locations would normally go through only n iterations before
exiting. To allow for the n# l St pos ition to i)e considered , the “process” is actually
separated into two parts , and the determination of the nex t “ location ” from the
enumeration state is clone before the terminat ion test. When the termfl illation action
is execute d, the n+ 1 $t position is available if necessary. While this solution works in
the situations in which it has been tested , it is clearly unsatisfactory: the
relationship between enumerations of locations and positions would benefit from
further analysis and clarification.

Special action for the f irst location: Many enumerations require that some special
action be performed for t Ile first location ill tile collection. For example , if the
enumeration is part of a search for tile location of the smallest element ill the
collection, the standard technique involves Saving the location of the smallest
element found so far. This must be initial ized to the first location produced by the
enumerator. if such a special action is specified , the process (in the
GENERATE—AND—PROCESS) is initialized by determining the locaton from tile initial
state, performing the special action , and incrementing the state. Wh ile this solution
seems adequate , it is not very satisfying. More flexible rules for coroutines would
be helpful.

Tile next rule can now be used to refine the generate and process structure into a
simple kind of loop:

Rule ENUMSEO.3:
A generate and pe ocess structure can be Implemented as a loop with
an exit test before the loop body; the loop initialization consists of the
initial actions for the generator and the process; the body consists of
the process followed by the generator Incremental ion; the exit test is
the termination test of the generator.

The rules for dealing with such loops will be covered in section 6.6. The
dilferont parts of an enumerator (initialization, incrementation , and termination test)
are closely related , althoughl they ma y be physically separated in tile actual code.
There are two fundamental decisions involved in constructing t u e ports: d etermining
the order in wllich the items are to be produced and selecting a scheme for saving
the state between calls to the enumerator. In the constructed code for the
enumerator , there is nothing exl)licit ly corresponding to these decisions. Rather tiley
are implicit in the way the ellumerator parts are coordinated so that they function
properly together. The identification of these two decisions is ~‘ good example of the
explication of “hidden” decisions involved in the programming process.

- -.•--~~~• . —,----.- --—— ___•• _~__ •._ • •_ . :~~~~~~
-

_ __
~~ — -••——•.

A knowledge base of programming rules Page 105

6.2.2. Enumeration order

As noted above, the enumeration order may be specified to be based on some
ordering relation. If no enumeration order is specified , one must nonetheless be
selected: an enumerator cannot be im plemented without knowing the order in which
the elements are to be enumerated. There are several possible orders in addition to
those based on ordering relations on the elements. One very useful order is based
on the fact that most structures have some “natural” order. With sequential
collections, this natural order Is the fir st—to—last order; either from the first cell to
the last cell (for linked lists) or in order of increasing index (for array subregions).
The order will be referred to as the “stored order ” of a sequential collection.

Enumeration order (ENUMORDER)

In the absence of any reason to select otherwise , the stored order is usually a
reasonable one to choose, and PECOS does tills by applying the following rule:

Rule ENUMORDER.1:
The locations in a sequential collection may be enumerated in the
order in which they are stored.

There is actually another way to have an enumeration order that is tile same as the
stored order:

Rule ENUMORDER,2:
If the enumeration order is based on an ordering relation and the
elements of a sequential collection are stored according to the same
relatio n, the enumeration order is the same as the stored order.

Tilis rule is especially useful when EXPCOL.6, the membership rule involving an
orderinq relation , is used. In fact , a useful heuristic is that EXPCOL.6 should only be
applied if the collection is kept ordered4 1.

The stored order has an important property that may be described as “linearity”: the
enumeration order bears a simple relationship to the structure and is independent of
the items that are actually stored in tile locations. The following rule is used to
answer queries about the linearity of tile enumeration order:

Rule ENUMORDER.3:
If the enumeration order Is the same as the stored order , it is linear.

The only other linear order Is the reverse of tile stored order (e.g., by decreasing
index in an array subregion):

41 Otherwise a membership test with order n2 running time would be implemented!

Page 106 Section 6

Rule ENUMORDER.4:
If the enumeration order is the reverse of the stored order , it is
linear.

Typically, nonlinear enum eration orders are based on ordering relations defined for
the elements of the collection. For almost any type of element , an ordering relation
could be defined. However , PECOS’s rules currently deal with only one particular
ordering relation:

R u le ENU MORDER . 5:
An ordering relation for integers is “greater than”.

For any orderincj relation to be useful, it must be possible to compare two objects to
see if one follows the other under the relation:

Rule ENUMORDER .6:
A test of whether an item X follows an item Y under the relation
“greater than” may be impl.ment.d as a test of wh•th•r X Is greater
than V.

In a few situations, PECOS also needs to be able to deal with tile opposite relation,
“less than”. in particular , comparisons must occasionally be made:

Rule ENUMORDER .7:
A test of whether an item X follows an item V under the relation “less
than” may be implemented as a test of whether V is greater than X.

• PECOS’S rules do not make any special provisions for the case in which the two
items may be the same (e.g., if a collection has repeated elements).

6.2.3. Enumeration state

One of the principal features of enumerators is that they produce each element of
the collection exactly once 42 . This implies that there must be some way for the
enumerator to “remember ” which elements have been produced and which have not.
That is, the state of the computation must somehow be saved. There are a variety
of ways that such states can be saved. In the coroutlne model, the stat e is saved
within the control structure. in the generate and process model, there must be some
data structure that represents the “stat e”.

There are four operations that can be performed on such data structures:

42 Unless , of course , the collection itself has repeated elements.

A knowledge base of progra mming rules Page 107

INITIAL-ENUMERATION-STATE
Returns a data structure representing the initial state of the enumeration;
intuitively, the initial state means that “no locations have been
produced.”

TEST-FINAL-ENUMERATIO N-STATE
Returns “True ” if the enumeration state is in its final state and “False” ifit is not; intuitively, the final state means that “all locations have been
produce ci.”

INCREMENT-ENUMERATIO N-STATE
Modifies the enumeration state to ref lect the fact that a particular
location (one of the arguments to this operation) has been produced.

FIND-ENUMERATED-LOCATION
Given an enumeration state , returns the next location to be enumerated;
the implementation of such an operation will depend on the enumeration
order.

6.2.3.1. Linear enumeration states

Whenever tile enumeration order is “linear ” (as described above), it is fairly easy to
save the state of tile enumeration. All that is needed is to remember the current
location in the sequential collection (either tile current cell or the current index).
Although other possibilities exist , PECOS’ s rules assume that the current location is
the next location to be produced. Thus , all of the locations before the current
location (or after it , in the case of the reverse stored order) have already been
prod uced , and the current location and all of tile locations after it (or before , in the
reverse case) have not yet been produced. The diagram below illustrates this for
the case of a “stored order ” enumeration of a linked list:

enumeration order stored order
.0

most recently next location
produced location to be produced

1’
enumerat ion state = current location

- - - ~~ - - • ~ - a - ~~~~~~~~-— - —•~~~~ •-~~~—-~-

Page 108 Section 6

~.Lnear enumeration states (ENUMLINEAR)

The first rule is used to refine an enumeration st ate data structure into a location
indicator:

Rule ENUMLINEAR.1:
If the enumeration order is linear with respect to the stored order , the
state of an enumeration may be represented as a location in the
sequential collection.

The first rule for initializing such states (tile INITIAL—ENUMERATION-STATE
operation) depends on the enumeration being “total” (i.e., a ll locations in the
collection are to be produced):

Rule ENUMLINEAR.2:
If an enumeration is total , the Initial enumeration state must specify
that no elements have been produced.

Partial enumerations will be discussed later.

The next two rules de al with representing the fact that no elements have been
produced in tile two linear cases:

Rule ENUML1NEAR.3:
if the enumeration order is the same as the stored order and the
enumeration state is represented as a location in the collection , the
fact that no locations have been produced may be specified by the
location of the f irst element in the collection.

Rule ENUMLINEAR.4:
If the enumeration order is the reverse of the stored order and the
enumeration state is represented as a location in (he collection , the
fact that no location s have been produced may be specified by the
location of the last element In the collection.

The rules for testing the final state of the enumeration are similar to those for
illitializing it:

Rule ENUMLINEAR.5:
If an enumeration is total , a test of whether the enumeration state is in
the final state may be implemented as a test of whether the state
specifies that all of the locations have been produced.

_ _ _ _ _ _ _ _ _ _ ~~~

- - •

A knowledge base of programming rules Page 109

Ru l e ENUML l F~iEAR.6 :
if the enumeration order is the s ame as the stored order and the
enumeration state is represented as a location in the collection , a test
of whether all of the locations have been produced may be
implemented as a test of whether the location is the / ocati~,n after the
last element of the collection.

Rule ENUMLINEAR.7:
If the enumeration order is the reverse of the stored order and the
enumeration state is represented as a location in the collection , a test
of whether all of the locations have been produced may be
im plemented as a test of whether the location is the location before
the f irst element of the collection.

The rules for Incrementing linear enumeration states also depend on whether the
enumeration order is the stored order or tile reverse stored order:

Rule ENUMLINEAR .8:
If the enumeration state is represented as a location in the collection ,
thc state may be incremented by using the location of the next element
to be produced.

Rule ENt) FtILINEAR ,9:
If the enumeration order is the same as the stored order and the
enumeration is total , the location of the next element to be produced
is (l ie location after the current locat ion.

Rule ENUMLINEA R.j O:
If the enumeration order is the reverse of the stored order and the
enumeration is total , the location of the next element to be produced
is the location before the current location.

F ina l l y, the location must be produced from tile current state. As shown in the
diaqram above , the current location is exactly the location to be produced , and the
followinq rule refiects that:

Rule ENUMLINEAR. 11:
If the enumeration state is represented as a location in the collection ,
the location to be produced may be implemented by simply returning
the state indicator i tself .

(Note that this rule is independent of whether the enumeration order is the stored
order or its reverse.)

— _~~~~~~~~~
._

~__, -~~~~~~~~~~~~~~ —-~~~- —

F- ~~~~

.

Page 110 Section 6

Partial enumerations (ENUMPART)

The rules given above deal with total enumerations: all of the elements (or locations)
of the sequential collection are to be enumerated . For many purposes , partiai
enumerations are required. In the array shifting rules , for example , only the indices
within a certa In range are to be enumerated. Tile following rules deal with
enumeration states for partial enumerations over array subregions 43:

Rule ENUMPART,1:
If the enumeration order is the stored order , the enumeration state is
represented as an array index , and the range is determined by lower
and upper bounds, the initial enumeration state is the lower bound.

Rule ENUMPART.2:
If the enumeration order is the reverse of the the stored order , the
enumeration state Is represented as an array index , and the range is
determined by lower and upper bounds , the initial enumeration state is
the upper bound.

Rule ENUMPART,3:
If the enumeration order is the stored order , the enumeration state is
represented as an array index , and the range is determined by lower
and upper bounds , a test of whether the state is in its final state may
be imp lemented as a test of whether the state is greater than the
upper bound.

Rule ENUMPART.4:
If the enumeration order is the reverse of the the stored order , the
enumeration state is represented as an array index , and the range is
determined by lower and upper bounds , a test of whether the state is
in its final state may be Implemented as a test of whether the state is
less than the lower bound.

W hen increment ing t he enumerat ion st ate , tile rule given c ’~ove for linear
enumeration states (rule ENUML1NEAR.8) would be applied, followed by one of the
next two rules:

Rule ENUMPART.5:
If (lie enumeration order is the stored order , the enumeration state is
represented as an array index , and the range is determined by lower
and upper bounds, the location of the next enumerated item is the
location after the current location.

43 PECOS has no rules dealing with partial enumerations over linked lists.

—~ -~~~~ ~-— ~~~.--~~- — -~~~---~~ - — - -~~~~~ -—~-- —S—-

-~~~~~~~~~~~~
— ~~~~.— --. - - ,

A knowledge base of programming rules Page 111

Rule ENUMPART.6:
If the enumeratio n order is the reverse of the the stored order , the
enumeration state is represented as an array index , and the range Is
determined by lower and upper bounds , the location of the next
enumerated item is the location before the current location.

Note that tile rule for retrieving tile location from the current state (rule
ENUMLINEAR.1 1 given earlier) is applicable for partial enumerations as well as for
total enumerations. No special case rule is needed.

6.2.3.2. Operations applied to locations in collections

The linear enumeration state rules have introduced several location operations other
than the ELEMENT-AT-LOCATION operation discussed earlier. The operations
needed for “stored order ” enumerations are as follows:

LOCATION-OF-FlR~ T-ELEMENT
Returns the location of the first element in tile collection.

TEST-LOCATION-AFTER-L AST- ELEMENT
Tests whether a location is the location after the last element in tile
collection.

LOCATION-AFTER-LOCATION
Returns tIle location after a given location.

Tile following are needed for “reverse stored order ” enumerations:

LOCATION-OF-LAST-ELEMENT
Returns the location of the last element in tile coilection.

TEST-LOCATION-BEFORE -FIRST-ELEMENT
Tests whether a location is the location before the last eiement In the
collection.

LOCATION-BEFORE-LOCATIO N
Returns the location before a given location.

Location operations (LOCOP)

For locations in linked lists , only the “stored order ” operations are relevant. There Is
no sinipic way to enumerate the cells of a singly linked list in tile reverse order.
Since there are two ways to represent linked lists (with or without special header
cells) and two ways to represent locations in linked lists (a link to tIle cell of the

—-— .—.- ---~~~- -a- -~- ----- -- - .— - —---- —---—-
~~~ ~-- —~~~~~~~-- —--

~
-

~~ 
-— -—--

~~~~~
--- — ---- - -—~~.- -—

Page 112 Section 6

locat ion or a link to the cell preceding the location), the rules for dealing with these

location operations must deal with a variety of cases . In the interest of clarity,

slightly simplified versiolls of the rules are presented here. There are three rules

dealing with the location of the first item:

Rule LOCQ~~i:If a linked list is represented as linked free cells without a header
cell , and if a location is represented as a link to the cell of the
location , the location of the first item may be returned by returning a
link to the f i rs t cell in the l ist.

Rule LOCOP.2:
If a linked list is repr esented as linked free cells with a header cell ,

and if a location is represented as a link to the cell of the location , the

location of the f i rs t item may be ret urned by returning the Sink part of
the f i rs t cell in tile l ist.

Rule LOCOP.3:
If a linked list is represented as linked f ree cells with a header cell ,
and if a location is represented as a link to the cell preced ing the cell
of the location , the location of the f i rs t Item may be returned by
returning a link to the fi rst cell in the list.

Note that there is no rule for the case of a location represented by a predecessor

link when tile list does not have a special header cell. The problem, of course , is

that there is (10 cell before the cell of the first element.

Testing whether the location is the location after the last item differs only witil

respect to tile location representation , but not Witil respect to the existence of a

header cell :

Rule LOCO:~~~if a location is represented as a link to the cell of the location, a lest

of whether the location indicates the location efter the last item may
be implemented by a test of whether the location indicates the empty
list flag44 .

Rule LOCOP.5:
If a location is represen ted as a link to the cell preced ing the cell of
the location, a test of whether the location Indicates the location after
the last item may be Implemented by a test of whether the link par t of
the cell indicated by the location Is the empty list flag.

~ The TEST-EMPTY-FREE LINK operation discussed earlier.

L -- - -—-~~~~~~~~~~~~ -~~~~~~~~~~ -
-— - -—- -

~~~~
-
~~~~~

-, _ _

_ _ _ _ _ _ _ _ _ _ _ _
- - -- .- -.-- — --—~~~~

-- --~~~
.-—- ‘-

~~~~~~~~
- --

~~
- -

_ _-

A knowledge base of programming rules Page 113

The process of determining the location after a given location is the same for both
location representations:

Rule LOCOP.6:
If a location is represented as a link to the cell of the location , the
location after a given location may be returned by retrieving the link
part of the cell indicated by the location45 .

Rule LOCOP.7:
If a location is represented as a link to the cell preceding the cell of
the location , the location after a given location may be returned by
retrieving the link part of the cell indicated by the location.

For array subregions , is is quite feasible to enumerate the iocations in either the
stored order (increasing index) or the reverse stored order (decreasing index) , and
PECOS’ s rules deal with both cases:

Rule LOCOP,8:
If a location is represented as an index in an array subregion , the
location of the f i rst  item may be returned by returning the index of
the lower bound of the subregion.

Ruie LOCOP.9:
if a location is represented as an index in an array subregion , the
location of the last item may be returned by returning the index of the
upper bound of the subregion.

Rule LOCOP.1O:
If a location is represented as an index in an array subregion , a test
of whether the location indicates the location after the last item in the
subregion may be implemented as a test of whether the location index
is greater than the Index of the upper bound.

Rule LOCOP.11:
If a location is represented as an index in an array subregion , a test
of whethe r the location indicates the location before the f i rst  item in
the subregion may be Implemented as a test of whether the Index of
the lower bound is greater than the location index.

45 ihe LINK-OF-CELL operation discussed earlier. 

~~~~~~~~~~ -- ----~~~~~~~-- - -- --- -- .-~~~~~~~ 
_ _

--
~

—-
~

- -
~~

~~~-—- — - -~~-~~ - - ~~~~~~
. - - - - --- -

~~~~~~
-

~~
- -
~~~
- -

Page 114 Section 6

Rule LOCOP.12:
If a location is represented as an index in an array subregion , the
location after a given location may be returned by returning the sum
of the locati on index and the integer 1.

Rule LOCOP.13:
If a location is represented as an index in an array subregion , the
location before a given location may be returned by returning the
difference between the location index and the integer 1.

6.2.3.3. Nonlinear enumeration states

Ui~Iess the elements are stored iii order , an enumeration order based on all orderinq
relation is nonlinear: tile temporal order in wilicil the eiements are produced does not
bear any simple relationship to the physical order in which they are storerl . Nonlinear
orderings generally lead to more complex enumerators , since both findinq tile lleXt
element (location) to be produced and saving the state are not as simple as with
linear orders. Finding tile next element to produce typically involves searching

— through tile elltire collection to f ind tile eiemeilt tilat comes next according to tile
ordering relation. In tile process , tile state must be interrogated to determine
whether an element Ilas already been produc ed , so that it will not be produced again.
There are basically two types of techniques that can be used to save the
enumeration state for nonlinear enumerations : destructive and nondestructive. With
destructive schemes , each element is somehow removed from the collection after it
is enumerated. Tile two obvious teclliliques for performing tile removal are to remove
tile location in which the element is stored aild to overwrite the element with some
special marker. In the first case , all locations in the collection contain elements that
have not yet been produced , SO tile “interrogation ” part of the search is actually
unnecessary. In the second case , tile interrogation of tile state is performed by
testing whether the item in the location is tile special marker. There are several
nondestructive schemes. Abstractly, all that is necessary is to maintain some kind of
niappiiicj l)etween elements (or locations) and illdicatorS of whether or not the
element (or location) has already been produced. Tile search process can then
interrogate tile state by retrieViilg tile image of tile element under the mapping.
Under this view, all of the knowledge relevant to mappings could be applied here.
For example , a hash table of locations could be maintained , or tile mapping could be
inverted so that , in effect , tile set of enumerated elements would be stored.
Unfortunately time restrictions prevented this topic from being explored to any great
detail, and PECOS’ s rules do not cover any nondestructive enumeration state
techniques. In fact , tile only nonlinear technique covered by PECOS’ s rules is tile
deletion of the enumerated locations from the collection.



-H ~~~~~~~~~~~~~~~~~~~~~~~~ -~~~-— -
~~~~~~~~~~~ -- -~~~ - . - .  - --

~~
- -------

~~~~ 

-

,

A knowledge base of programming rules Page 1 iS

Enumeration state-saving through deletion (ENUMDEJ~

The first rule for deletion involves a test of whether tile collection can be destroyed:

Rule ENUMDEL.1:
if a collection is destructible , the enumeration state may be saved by
deleting locations from the collection.

The question, of course , is how to determine whether a collection can be destroyed.
PECOS ’s rules are relatively conservative ill that respect. There is only one rule for
determining destructibility:

Rule ENUMDEL.2:
A colluction is destructible if it has at some point been explicitly
noted as being destructible.

And there is only one rule that makes such an explicit note:

Rule ENUMDEL.3:
The items of a collection may be enumerated by duplicating the
collection and enumerating the items of the new collection; the new
collection is destructible 46.

ENUMDEL.3 is another rule for ref ining ENUMERATE-ITEMS constructs. Note tilat
ENUMDEL.3 is applicable wilether or not tile enumeration order is nonlinear. It would
be correct to use a destructive scheme even in the linear case. One o PECOS’ s
choice-makinq heuristics , however , suggests choosing ENUMDEL.3 only if the
enumeration order is known to be nonlinear.

Tile rules for manipuiating the enumeration state are relatively simple.

Rule ENUMDEL.4:
If the enumeration state is saved by deleting locations from the
collection , the fact that no locations have been produced may be
specif ied by using the original collection.

Rule ENUMOEL,5:
If the enumeration state is saved by deleting locations from the
collection , a test of whether the state specl fie3 that all of the
locations have been produced may be implemented as a test of
whether the collection is empty.

46 Techniques for duplicating collections were discussed earlier (section 6.1 .5).

~

— -—

~

-— — - - --

~

-- — - — — -~~~~~- - -—~~~~~~~~~~ — - —~~~ - - - --



~

Page 1-1 6 SectIon 6

Rule ENUMDEL.6:
If the enumeration state Is saved by deleung locations from the
collection, the state may be incremented by removing the Item at the
location that has most recently been produced.

The most complicated aspect of nonlinear enumerations through deletion is the
operation of finding tile next location to produce. As noted above , tile next location
to produce is that of tile least element according to the ordering relation:

Rule ENUMDEL.7:
If the enumeration state is saved by deleting locations from the
collection , and the enumeration order is ordered by a relation A, the
next location to be produced may be determined by finding the
location of the least element according to A.

Tile process of finding this location is normally done by considering all of the
locations to determine tile location which contains least element. Tile standard
technique involves saving a pointer to tile “least so far ”, whicil must 1)0 init iaiized to
tile first location that is considered. After this initialization, tile elements at the rest
of tile locations are compared with the “least so far ” replacing it if the new element
is found to be smaller. The reasoning process tllat leads to this technique is fairly
complex [Green and Barstow 1977b]. In PECOS’ s rule base , all of this complexity
is encoded in a single rule. A more detailed set of rules for this situation would be a
valuable extension.

Rule ENUMDEL,8:
The location of the least element (according to a relation A) may be
found by enumerating the locations of the collection; for the f i rst
location , remember the location as BEST; for the other locations , the
action to be performed is a test of whether the element at BEST
follows the element at the location according to F?; if it does,
remember (lie new location as BEST; after all locations have been
considered, return BEST as the result.

Note that ENUMDEL.8 specifies a special action to be performed for the first location.
The relationship of tills case to the basic ellufl leratioll structure was discussed
earlier (as one of the “kluges ” in the enumeration rule). From this point on, the rules
for enumerating locations can be applied, and tile entire nonlinear enumeration is
implemented as an enumeration within an enumeration.

_ _  ~~~~—-~~~~~



~TJTT 

A knowledge base of programming rules Page 117

6.2.4. Other enumeration operations

There arc several other operations involving enumerations over stored collections.
As they do not fit conveniently Into any of the categories previously discussed , they
are included here.

Other enumeration~~perations (ENUMMISç~

Recall that the process of adding all element to an ordered sequential collection —

involves finding tile particular position (i.e., tile space l)etWeen two locations) in
wllich tile neW element belongs. There are several ways that tills may be done. For
array subregions , for example , some variant of binary search might be faster than a
linear scan47. PECOS’ s rules , however , deal only with a simple linear enumeration:

Rule ENUMMISC.1:
The opcrd tion of finding the appropriate pos iUon for an elensent in an
ordered sequential collection may be implemented by enumerating the
the locations of the collection; the action per formed for each location
is to test whether the item at the location follows the new element
according to the ordering relation; if so , halt the enumeration and
return that location; if the enumeration runs to completion , then the
appropriate position is the last position in the collection.

(Tills rule USeS tile “kiuge ’ for relating position and location enumerations , as
discussed earlier. A cleaner set of rules for dealing with this situation would be a
worthwhile extension.)

Tile operation of removing an element from a sequential collection required finding
the location of the element. Tile following rule may be used to implement tile search
for that location:

Rule ENUMMISC.2:
The operation of finding the location of an item in a sequen ’ial
collection may be imp lemented by enumerating the locations of the
collection; for each location , if the item at the location Is the desired
item, halt the enumeration and return the location found.

(Since t u e  removal operation assumes that tile element Is lfl t u e  collection originally,
there is no need to deal with tile case in which no location satisf ies tile test.)

Under some circumstances , tile position of an element in a collection can be deduced
Willie tile program is being constructed. One such case is that in which tile element
was originally determined by retrieving the item at some location:

47 But since the insertion of the new element still requires a scan for the shift , the
find plus insertion still runs in linear time.

-—- - --~~~~~~~~~~~~~~ ..~~~~~~~~~ -- -—-~~~~~~~~~~~~ -——~~~~~~~~ -~~~~~~~~~~~~~~~ -- -~~~~~~~~



Page i-i a Section 6

Rule ENUMMISC.3:
If an element X was determined by retrieving the item at a location L
of a sequential collection C the location of X in C is L.

If the locatiOll can be deduced , there is no need for a search:

Rule ENUMMISC.4:
if the location of an item X in a sequential collection C is known to be
L, an operation of finding the location of X in C can be Implemented by
simply using L.

These two rules illustrate a style different from most of tile other rules: they deal
with tile USC of state information to simplify or avoid a computation. Tilese rules
were not particularly easy to express in PECOS’ s rule formalism. In fact , five
separate rules were needed Ill order to trace certain kinds of pointers to try to
deduce tile necessary information. The development of better techniques for using
state information could be a valuable extension. Perhaps what is needed is a more
general mechallisni that tries to deduce tile result of any part of tile program before
writing code to compute the result.

Th o final kind of enumeratioll that PECOS can construct involves enumerating the
• elements ill a collection represent ed as a Boolean mapping:

Rule ENUMM1SC,5:
The items in a collection represented as a Boolean mapping may be
enumerated by enumerating the inverse image of “True ” under the
mapping.

The next rule applies to any attempt to enumerate tile items in an inverse image of

~ssoci~ tion table mappings , and is not restricted to Boolean mappings:

Rule ENUMMISC.6:
If a mapping is represented as an association table , the inverse image
of a range element F? may be enumerated by enumerating the keys of
the table and considering only those keys whose associated value is
A.

Rule ENUMMISC.7:
The keys of an association tables represented as an array may be
enumerated by enumerating the integers between the lower and upper
bound s.

The final rule in this chain is also applicable whether or not the range elements are
Booiean values:

- --.- -~~~ -~~~ -•~~~ -- —~ 



.- -~~~~~~--~~ ~~~~~~~~~~~~~~

A knowledge base of programming rules Page 11 9

Rule ENUMMISC,8:
Mn enumeration of the integers between a minimum value X and a
nia~ imurn value V In the order of Increasing value may be implemented
as a generate and process structure; the generator initialization sets
the state to X;  the generato r increment ation Increments the state by 1;
the termination test is a test of whether the state is greater than V.

Note that tIlls rule simply constructs a generate and i)rocess for an implicit
collection , rat ller than for an explicit collection as we ilave seen earlier. The
“enumeration order ” is ill terms of increasing value, and tile enunleration state is an
integer. With further analysis , it may be possible to incorporate knowledge about
enumerating implicit collections with the knowledge about explicit collections.

L - • • ~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ 

- • 

~~~~~~~~~~~~~~~~~~~~~~~ 


-

~~~~~~~~~~~~~ -:
-i:=: —

Page 120 Section 6

6.3. The transfer paradigm for sorting

The rules given up to this point provide much of the programming knowledge needed
for some simple sorting algorithms. One class of sorting algorithms may be described
as transfer sorts. Algorithms in this class take a collection as input and produce
another collection as tile output. Both collections are represented as sequential
collections, and tile elements of the output are required to be stored according to
some ordering relation. At each stage in a transfer algorithm , one element is
selected from tile input and added to the output 48. The process is illustrated below:

I I
INPUT 

[ 

OUTPUT

Transfer Paradigm

Algorithms in this class divide naturally into two categories , selection sorts and
insertion sorts. In selection sorts , tile elements are selected from tile input ill tile
same order as they are to be stored in the final Output (i.e., according to the same
ordering relation). Tile part of t ile program that performs the selection is relatively
complicated. Since the elements arrive in tile same order in which they are to be
stored, tile part that adds tilem to tile output set is relatively simple , usually an
addition at either tile fr ont or the back. With insertion sorts , tIle elements are
selected from tIle input in 8llY convenient order (normally the stored order) and
added to t u e  output ill SLJC il a way tilat tile output at each Stage is in tile Correct
order. Thus , tile part that acids tile element to tile output is relatively complicated ,
involving a search for the correct position to add the element. The part that does
t ile selecting, Oil tile other lland, is reiat ive ly simple. The essential difference
between tilese two categories involves the order in which the elements are
transferred from t ile input to tile output. Tills order will be referred to as the
transfer order and is illustrated below:

~~ ~~~~~~~~

‘

~~~~~s.

’

:

Order

INPLIT OUTPUT

In a selection sort , t he transfer order bears a simple linear relationship to tile desired
order for the output collection (tile sorted order). In an insertion sort , the transfer
order is linearly related to the stored order of the input.

48 Note that t ile running time of these algorithms is 0(n2).

-• — — -
--

s114

A knowledge base of programming rules Page 121

With a few modifications , the transfer sorting algorithms discussed here can be
adapted to perform certain kinds of “ in—place ” sorts , algorithms in which tile input
and output collections are stored in tile same structure. For example , an array to be
sorted m a y d ivid ed (conceptually) into two regions , all “input” wilicil is tile unsorted
part and Oil “output” w hich is the sorted part. Under this view , an insertion sort
becomes tile classical bubble sort and a selection sort becomes a sinking sort
(Knuth 1973]. The reader is referred elsewhere for a more detailed discussion of
these issues , as well as some aspects of more sophist icated sorting programs such
as quicksort and mergesort (Green and Barstow 197Th].

Transferring elements in scguent ial collections (TRANSFER)

The importance of tile transfer order can be seen in the first two rules, each
providing OflC way to choose tile transfer order 49 :

Rule TRANSFER .1:
M transfer order for a transfer operation is the stored order of the
input collection.

Rule TRANSFER.2:
M transfer order for a transfer operation is the stored order of the
out put collection.

The first of these two rules leads to an insertion sort and the second leads to a
selection sort. Once tile transfer order has been cllosen, tile actual transfer
operation Can be refined:

Rule TRANSFER .3:
M transfer of the elements from one sequential collection to another
may be implemented by a total enumeration of the items in the input
collection, where the enumeration order is the transfer order; the
action for each item is to add it to the out put.

When tIle transfer order is the stored order of the input , then the acidition operation
will require searching for the right position and adding it tllere. The rules for adding
elements to ord ered collections were given earlier. W hen tile transfer order is the
same as tile sorted order , however , this information is not used very effectively,
since tile addition operation is considered essential ly in isolation. Tile following rule
can be used to take fuller advantage of the transfer order:

~ Note that these rules, as well the other rules in this section , are expressed in
terms of sequential collections: they are equally applicable for linked lists and for
array subrogions.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



-~ -- -~~-~~-- -~~~~~~~~~~~~~ -r.;--_ - -

Page 122 Section 6

Rule TRANSFER.4:
if the transfer order Is the same as the stored order of the output , a
transfer of the elements from one sequential collection to another may
be implemented by a tot al enumeration of the items in the Input
collection, where the enumeration order Is the transfer order; the
action for each Item Is to add It to th. back of the output50.

The use of two separate rules for refining the transfer operation is aesthetically
unsatisfying, but thley are probably both necessary until better methods for
representing temporal constraints (as well as coroutine structures) have been
incorporated into PECOS’ s program description formalism. In this particular case , the
obvious way to merge the two rules is to describe the action (addition of the element
to the output) as a process similar to en enumerator , and to specify that tile
elements will arrive in the transfer order. Various methods for describing such
constructs have been considered, but PECOS currently does not use any of them
[Green and Barstow 1975].

60 It is interesting to note that this rule also correctly handles the case in which the
illput collection is already sorted. Tile enumeration rules determine tile “linearity” of
an enumeration order by comparing it to the order in which the elements are stored.
If tile input is already sorted, tile enumeration order is tile same as the stored order ,
so a simple scan of the input will be constructed.



— ~~— — -
~~~~~

--
~~~~~~~~ 

- - - -—

- ~~~~~~~~~~~ 
- 

- -- ----— —-----~.-- - .~ -

A knowledge base of programming rules Page 123

6.4. Mappings

A mapping is a way of associating objects in one set (range elements) with objects
ill another set (domain elements). In PECOS’ s rules, tile domain and range sets are
OIlly implicit , with generic descriptors of domain elements and range elements being
stored as part of the mapping descriptor. In addition, PECOS only deals with
many-to- one mappings and not with more general correspondences or relations. The
range eienient to which a given domain clement maps will ho referred to as tIle image
of tile dOnlaill element. The set of domain elements that map to a given range
element will be ref err ed to as the inverse image of the range element. A mapping
may (optiona lly) have a default Image: if there is no storedl image for a l)artlcular
domain element , a request to determine its image can return the default image. For
example , wllen a Boolean mapping is used to represent a collection, the default
image is “False. ”

There are seven basic operations for dealing with mappings:

NEW-MAPPING
Creates a new mapping and returns it as tlle operation ’s value. A list of
(domain eleme nt, range element> pairs to be contained in tile mapping
initially may also be specified ,

S TORE-IMAGE
Sets tile image of a given domain element under a given mapping to a
given range element.

CHANGE-IMAGE
Changes the image of a given domain element under a given mapping from
one given range element to another given range element.

IS-IMAGE
Tests whetiler a given range element is the image of a given domain
element under a given mapping.

GET-IMAGE
Retrieves tile range element that is tIle image of a given domain element
under a given mapping.

GET-INVERSE-IMAGE
Returns a collection whose elements are all the domain elements whose
image is a given range element under a given mapping.

DOMAIN-OF-MAPPiNG
Returns a collection whose elements are all the domain elements for
which any image exists.

- 
_ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


I

Page 124 Section 6

6.4.1. Overview of mapping representations

The following diagram summarizes repre sentation techniques for mappings.

MAPPING

1
~~~ ERTED-MAPPING LEX PLICIT_ MAPPING IMPLICIT-MAPPING
_ _ _  

___ J

STOREO-IIAPPING 
I 

[DISTRIBUTED_MAPPING
J

_ _ _//  \ ~~~~~~~~~~~~~~~~~~~~~~~

ASSOCIATION -TABLE ] PLEX J COLLECTION DISCRIMINATION—NE T
I 

~~ (of pairs) I. J

/ \
LARRAY I I HASH-TABLE

L _ _  _ _ _ _ ___________ _&__~~~~~~~ ~~~A___ 
— 

—-.- 
~~

— --—-~~ —-- - ---~-— — --~~~~ 
—



A knowledge base of programming rules Page 125

6.4.2. Rules about mappings

Explicit Mappings (EXPMA P)

Just as with Colloctiolls , a mapi)ing may be represented Gitller explicitly or implicitly.
An explicit mapping is one in which every pair is somehow given explicitly. In an
implicit mapping the pairs are computed as needed. For instance , a function that
computes X+ 1 giVen X is an implicit mapping. In addition to the pure cases , there is
also tile possil)ility of a llybrid representation. For example , since “False ” is tIle
default image for a Booiean mapping, it is an implicit representation for any domain
element tilat does not have an explicitly stored image. An interestinq variant of the
Reachability Program involves representing tile MARKS mapping witll two explicit
range elements (“EXPANDED” and “BOUNDARY”) and one implicit range element
(“UNEXPLORED”). if such a representation is used , the initialization of the mapping
with all vertices m apped to “UNEXPLORED” is unnecessary , and tile test of whether a
vertex is “UNEXPLORED” must be implemented as a test of wiletiler the image is
neither “BOUNDARY” nor “EXPANDED” .

PECOS’ s rules currently deal only with explicit mappings:

Rule EXPMAP. 1:

/1 mapping may be represented explicit ly.

As witil collections , there are two rules deaiing witil tile creation of instances of a
mappinq. Typically , a new instance of a mapping is created without specif ying any
initial pairs , and tile following rule deals with tills case:

Rule XPMAP.2:

If a mapping is represented explicit ly , a new mapping with no initial
pairs may be created by creating a new explici t  mapp ing with no
initial pairs.

The second rule for creating new instances of mappings deals with the case in which
tile list of initial pairs is non-empty:

Rule EXPMAP.3:
A mapping with a non-empty list of initial pairs may be created by
f irst  creating a mapping with no initial pairs and then , for each pair in
the list , storing the range part as the image of the domain part,

As with collections , one must careful to distinguish between knowing the list of initial
pairs at compile time and at run time. PECOS’ s specification language requires an
explicit list of pairs of operations , and EXPMAP.3 applies in tills case. To specify a
vari able list of initial pairs , one would have to specify something like a collection of
plexes (with domain and range parts) and use a FOR—ALL-DO construct to explicitly
store the images for each plex of the collection. 

~~~~-
- - .

~~~~~~~~
— - -~~~~ 



-i

Page 120 Section 6

Most of tile otilcr operation refine ment rules for explicit mappings simply paraiiei tile
data structure refinement and are omitted. Tile one exception is the rule for testing
whether a given range element is tile image of a given domain element (an IS-IMAGE
test):

Rule EXPMAP .4:
A test of whether a given range element Is the image of a given
domain element may be computed by retrieving the Image of the
domain element and testing whether it is equal to the given range
element.

Tile principal value of this rule is that an IS—IM AGE test has been refined into a
GET-IMAGE operation , so that the IS-IMAGE test need not be refined to all levels for
all repreSeiltatiOlls of mappings.

There are two ways to represent mappings explicitly: storing the associations ill a
single s tructure or storing them in some kind of distributed structure. The rules for
distributed structures will be presented later. Tile following rule is for stored
mappings:

Rule EXPMAP.5:
An explicit mapping may be stored in a single structure.

The operation refinement rules parallel the data structure refinement rule.

There are n~any structures in wlliCll associations can be stored. Most of these are
dependent Ofl t h e  nature of tile domain of tile mapping. One interesting case
(unfortunately, not covered by the current rule set) is the use of a discrimination net.
Tile codification of knowledge about discrimination nets would be a very useful
extension of tile work on PECOS. PECOS can successfully deal with several other
structures.

MappinQs as collections of pairs (PAIRS)

One way to store tile associations of an explicit mapping Is with a collection of
<donlain element , range element> pairs. Each element of the collection specifies a
particular asSOCiatiO il. The following rule introduces this representation:

Rule PA1RS. 1:
A stored mapping may be represe~ted as a collection whos. elements
are pairs with a domain part and a range part.

Since the mappinq has been refined into a collection, all of the collection rules may
be applied here. If tile collection Is represent ed as a linked list, tile familiar
association list structure results. Note also that there are no restrictions on the
domain of tile mapping.

- 1



A knowledge base of progr amming rules Page 127

The otller rules for this representation refine the operations on mappings into
Operatiolls Oil CollectiollS:

Rule PAIRS.2:
If a stored mapping is represented as a collection , a new instance of
the mapping (with no Initial pairs) may be created by creating a new
collection with no initial elements.

Rule PAIRS.3:
If a stored mapping is represented as a collection , a given range
element , R , may be stored as the image of a given domain element , D,
by adding the pair (0 , R) to the collection.

Rule_PAIRS.4:
If a stored mapping is represente d as a collection , the image of a
given domain element , D , may be changed from a given range element ,
R i ,  to a given range element , R2, by finding in the collection an
element whose domain part is 0, and replacing its range part by R2; if
no such element is found , the pair (D , R2> should be added to the
collection.

Rule PAIRS.5:
If a stored mapping is represented as a collection,, M, the inverse
image of a given range element , R, may be computed by f i rst  creating
a collection , C, with no initial elements and then , for all elements , X ,
in M, such that the range part of X is A, add the domain part of X to
C.

Rule PAIRS.6:
If a stored mapping is represented as a collection , M , the domain of
the mapping may be computed by f i r s t  creating a collection, C, with no
initial elements and then, for all X in M, add the domain part of X to
C.

Rule PAIRS.7:
If a stored mapping is represented as a collection , the image of a
given domain element , 0, may be computed by finding in the collection
an element whose domain part is D, and returning its range part ; if no
such element is found , return the default image. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~——~~~~~ --


Page 128 Section 6

Map~pings with separate fields for each domain element (PLEXMAP)

Most of tile representation tecilniques for mappings have dealt with domain elements
that are instances of some general description. Sometimes the domain of a mapping
is a fixed set of known alternatives. For example, in the inverted mapping MARKS nV
ifl the Reachability Program, the domain collection is precisely the collection
{“EXPANDED” , “BOUNDARY” , “UNEXPLORED”). Under sucll circumstances , one cai~create some kind of record structure (in PECOS’ s terms, a plex) with one field for
each domain element and store the image in tllat field51. The following rule applies in
such situations:

Rule PLEXMAP.1:
A stored mapping whose domain is a fixsd set of N.,natives and
whose typical range element is V may be represented as a plex with
one field for each alternative and with each field being V62.

• An important observation to make is that one is no longer concerned with a generic
descriptor of tile range elements of the mapping: there is now a separate descriptor
for eacil possible range element (each image of one of the known domain elements).
With a single generic descriptor , all of the range elements must necessarily be
represented in tile same way. But with a separate descriptor for each range
element , this restriction no longer applies. Recall, for example , that “UNEXPLORED” in
tile Reachability Program was represented as a Boolean array, while “BOUNDARY” and
“EXPANDED” were re presented as l inked l ists.

The rule for creating a new instance of such a mapping shows this feature:

Rule PLEXMAP .2:
If a mapping is represented as a plex with a field for each domain
element , a new instance of the mapping may be created by creating a
new instance of the plex , with each field being a new instance of the
descriptor of that field.

Whi le tllis ability to represent different range elements differently has certain
efficiency advantages , it causes complications for some of the operation refinement
rules. If the domain element is known at compile time, the rules are fairly simple:

5~ This is useful only if tile domain collection is fairly small.

52 Tile rules in this section differ slightly from those in PECOS’. implementation in
order to focus on the programming knowledge involved, without getting lost in certain
Idiosyncrasies of the implementation.

- •~~- - - • -~~~~ - - -~~--- -— - -- -~~~ —- —--~~~~~~--- - - -~~~~-~~

A knowledge base of programming rules Page 129

Rule PLEXMAP .3:
If a mapping is represented as a plex with a field for each domain
element , the Image of a particular domain element 0 (known at
compile time), may be retrieved by retrieving the field f or 0.

Rule PLEXMAP .4:
If a mapping is represented as a plex with a f ield for each domain
element , a given range element , 8, may be stored as the image of a
particular domain element 0 (known at compile time), by storing R in
the field for 0.

Rule PLEXMAP. 5:
if a mapping is represented as a plex with a field for each domain
elcmcnt , the image of a particular domain element 0 (known at
compile tim e), may be changed from Ri to 82 by replacing the f ield
for Dby R2.

Computin an inverse image under such a mapping is somewhat more complicated ,
and PECOS ilas (10 rules for dealing with it.

When the donlaill element is not known at compile time , most of the operations must
be inipioniented as CASE statements , testing for each possible domain element , and
dealinci with the appropriate field in each case:

Rule PLEXMAP.6:
If a mapping is represented as a plex with a f ield for each domain
element , the image of a given domain element 0 (u~kno wn at compile
time), may be retrieved by testing , for each 0, in the domain , whether
o is equal to 0 , and if so, returning the field for 0.

Note that the complete set of D is known at compile time , so that a case structure
can be built.

Rule PLEXMAP.7:
If a mapp ing is represented as a plex with a field for each domain
element , a given range elemcnt A may be stored as the image of a
given domain element 0 (unknown at compile t ime), by testing, for
each 0 in the domain, whether 0 is equal to D , and if so , storing A in
the field for 0.

Rule PLEXMAP.8:
If a mapping is represented as a plex with a field for each domain
element , the image of a given domain element 0 (unknown at compile
time), may be changed from Ri to R2 by testing, for each 0, In the
domain, whether 0 is equal to 0,, and If so, replacing the field for 0,

• by R2.

—--- — ----

_~~ ••__J -~~---- ,•— ~ — -— — - •— — — - - .— -

- -
~1~~~

Page 130 Section 6

Association tables (ASSOCTABLE)

A com m on way to store associations in an explicit mapping is to use some kind of
association table , where the keys in tile table are tile domain elements and the
entries are the range elements. One of the principal features of such a table is that
storage and retrieval time are rougilly constant. On the other hand, it may be
difficult to compute the domain or an inverse image.

The lollowing is the data structure refinement rule for association tables:

Rule ASSOCTABLE .1:
A stored mapping with typical domain element X and typical range
element V may be represented with an association table whose typical
key is X and whose typical value is V.

The operation refinement ruies are all parallel , except that a CHANGE—IMAGE
operation refines into a STORE-IMAGE operation, since tile old entry in tile table is
simply overwritten:

Rule ASSOCTABLE .2:
If a stored mapping is represented as an association table , the image
of a given domain element 0 may be changed from Ri to R2 by storing
R2 as the image of 0.

Rule ASSOCTABLE .3:
If stored mapping is represented as an association table , the inverse
image of a range element R may be computed by a sequence of two
operations: f i rst , initialize a collection with no elements; then,
enumerate the keys of the table, adding each to the collection if Its
image is A.

Arrays as association tables (ARRAYTABLE)

One common way to represent an association table when the keys are integers is to
use an array:

Rule ARRAYTABLE .1:
An association table whose typical key is an integer from a fixed
range and whose typical value Is V may be represented as an array
with typical entry V.

Note that tile range of possible key values must be f ixed, since they will provide the
bounds on tile array . in fact , the situation is even more complicated, since some
languages only support arrays whose lower bound is 1. In such a case , If the lower


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

A knowledge base of programming rules Page 131

bound of the fixed range is not 1, some kind of offset or conversion must be
include d.

Tile operation refinement rules simply parallel tile data structure refinement rule.
The refined operations involve the same operations mentioned earlier in connection
with array subregions: NEW-ARRAY , DEPOSIT-IN-ARRAY , and
RETRIEVE-FROM-ARRAY.

(Rules for enumerating tIle keys of an association table represented as an array are
discussed briefly in connection with the enumeration rules in section 6.2.)

Hash tables (HASHTA~~~~
When the keys of an association table are not integers (or t ue  range is too large), a
C0~~fllOil rel)resefltatiOn teCilni(lue is to use a hash table. PECOS’ s rules currently
deal with hash tables only ill a very limited sense: they are suff ic ient to utilize
INTERLISP’s hash array functions. PECOS’ s data structure ref inement rule is as
follows:

Ruic HASHTABLE.1:
An association table whose typical value is V may be represented as a
hash table with typ ical entry Y.

Aqaiml , the operation refinement rules parallel the data structure rule.

in the more general notion of a hasll table , tllere are actuall y two mappings involved.
Tile first (a llasllinci function) maps keys of tIle assoCiatiO ll table into integer values
in a given r,lnq(’ , 0(1(1 the second (an array) mops those integers into entries. Tile
desired association table is tilen implemented as tile composit ior of the two
n~appings~-3 . One complication w ith hash tables is that the first mappmnq is typical l y
many-to-one , and two keys may map to tIle same inteqer although they are supposed
to map to separate entries in the association table. Some technique must be used to
prevent both from mapping to the same entry. Two common techniques used to
perform this collision resolution are rellasiliil(l aild t h e  use of buckets (instead of
sislqie range objects ) as the array entries. Much more knowledge about ilash tables
must l)e codified before tlley can be dealt Wit il adequately by an automatic
programming system.

53 In fact , tile notion of implementing a mapping as tile composition of two mappings is
more general than its use here for hasll tables. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


A knowledge base of programming rules Page 133

Note that the result of applying this rule is simply another mapping. This means that
all of the techniques applicable to general mappings can be applied to tile inverted
mapping.

Since the inverse images are kept explicitly, many of tile mapping operations
manipulate collections. Storing an image is implemented by addling the domain
element to tIle inverse image of the range element:

Rule INVMAP.2:

if a mapping is inverted , V may be stored as the image of X by adding
X to the image of V under the inverted mapping.

Chanqinq Oil image requires removing tile domain element from one collection and
adding it to another:

Rule INVMAP,3:

if a mapping is inverted , the image of X may be changed from V to Z
by removing X from the image of V under the inverted mapping and
adding X to the image of Z under the inverted mapping.

Testing whether a given range element ~5 tile image of a given domain element Is
implemented as a membership test:

Rule INVMAP.4:

If a mapping is inverted , a test of whether V is the image of X may be
implemented as test of whether X is a member of the Image of V under
the inverted mapping.

Computing the inverse image of a range element under tile original mapping is quite
simple:

Rule INVMAP.5:

If a mapping is inverted , the inverse image of V may be computed by
retrieving the image of V under the inverted mapping.

Certain operations ore much more difficult using an inverted mapping (and PECOS 1105
no rules to cieal with them). In particular , to compute the image of a domain element
requires enumerating all domain objects of the inverted mappiilg to test for
membership , and computing the domain of tile original mapping requires computing the
union of all range elements under the inverted mapping. In situations where both
images and Inverse images are computed frequently, it may be advisable to Consider
multiple representations for the mapping.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~



Page 134 Section 6

6.4.3. Other mapping operatIons

Other mapping operations (MAPMISC)

Just as with collections , it is also possible to duplicate mappings. Again , the term
“duplicated” refers to the fact that at the abstract level both objects have the
same type , “n~appii~cj”. However , at more refilled levels, the two mappings may have
different representations. PECOS can only duplicate one kind of mapping:

Rule MAPMISC.1:
If a mapping is represented as a stored collection of pairs , it may be
duplicated by a sequence of two actions: f irst , initialize the new
mapping with no associations; then, for each element of the co/lection,
set the image (under the new mapping) of the domain field of the pair
to be the range field. -

_ _ _ _ _ _ _ _ _ _ _ _  _ _ _ _  _ _



A knowledge base of programm ing rules Page 1 35

6.5. input, output, and representation conversion

The most interesting part of PECOS’ s abilities at writing input aild output routines
are tIle facilities for converting from one representation into another56. Every
specification of an input oper ation includes a descriptor of the kind of representation
that will be input. Similarly, every output operation includes a descriptor of the
representation that should be produced. In particular , collections may be input or
output citiler as linked lists without header cells or as array subregions. Mappings
may be input or output only as lists of (domain, range) pairs (i.e., association lists).
These representations may not be well suited to the particular way tllat tile data
structures are used . In the SUCCESSORS mapping of the Reachabiiity Program , for
exampie , tile use of an association list requires that some searching be done within
the inner ioop of the algorithm. In such cases , it may be useful to convert tile input
representation into a different internal representation (or the internal into the output
representation)57.

Representation conversion (CONVERT)

PECOS llas two rules for introducing representation conversions into input
operations:

Rule CONVERT,1:
if a collect ion is input, its representation may be converted into any
other representation before further processing.

Rule CONVERT.2:
If a mapping Is in put , its representation may be converted into any
of her representation before further processing.

Similarly, there are two rules for introducing representation conversions into output
operations:

Rule CONVEAT.3:
if a collection is out put , its representation may be converted into any
other representation before outputting it.

56 These issues also arise whenever a data structure representation is constrained
externally, not just when performing input and Output.

~ Of course , tile cost of performing the conversion must also aiso be taken Into
account when assessing the utility of using a different internal representation.

_



Page 136 Section 6

Rule CONVERT.4:
If a mapping is output , Its representation may be converted Into any
other representati on before out puffing It.

These rules actually seem overly restricted. In the long run, what is prol)ably
needed Is some technique for considering the entire history of a data structure ,
introducing representation conversions wherever appropriate. In fact , for some
purposes , multiple represent ations may be useful (e.g., representing a collection with
both a linked list and property list m.rkinas), maintaining th ir consistency throughout
tile progran~ that uses them.

Once the possibility of a conversion has been introduced, the techniques for
performing the conversion are relatively straight-forward. One rule is needed for the
case in which tile two representatio ns are the same : -

Rule CONVERT.5:
If the initial and final repr. ’4s’f aliens are the same, then no
conversion needs to be performed.

(In ef fect , this rule removes a representation conversion after it has been
introduced. Using some kind of “data structure history”, as suggested above, such
an unnecessary conversion would probably not be introduced.)

There arc two rules for performing the conversion when it is actually needed:

Rule CONVERT.6:
The representation of a collection may be converted by duplicating it.

Rule CONVERT.?:
The representation of a mapping may be converted by duplicating it.

Both of these rules refine the conversion operation into one of the “duplicating”
operations discussed earlier (DUPUCATED—COLLECTIOPJ, DUPLICATED-MAPPING).

- —~~~~~---~~~~ - - --— -—-.- - - - - - - -~~~~~~~~~~



A knowledge base of programming rules Page 137

6.6. Control structures

PECOS’ s specification language includes four basic control structures:

COMPOSITE
A partially-ordered set of actions to be performed58 .

LOOP
An initial action, a loop body, and a set of event indicators (similar to
tilose suggested by Zahn EZahn 1 974]) to handle exit conditions.

TEST
A test to be performed and actions to be performed if the test succeeds
and if it fails.

CASE
A set of <condition, action> pairs: each condition is a test , and if it
succeeds the associated action is to be performed. Tile colldlitiollS must
be both mutually exclusive and mutually exhaustive: exactly one of them
must hold whenever a CASE stateme nt Is entered.

In addition, one other control structure was introduced with tile rules for
enumeration:

PRETEST-LOOP
A loop with a single exit test to be performed before the loop body is
executed on each iteration59.

Control structures (CONTROL)

A single rule is needed to refine a pre-test loop into the standard loop structure:

Rule CONTROL.1:
A loop with a single exit test E to be performed before the loop body
B may be implemented as a ioop whose body is a test whose condition
is E , whose “true ” action is to exit the loop, and whose “false ” action
Is B.

The other structures are all low-level enough that there is a direct translation into
LISP, so there is really no need for LISP-independent rules. Nonetheless , several
interesting issues have arisen, and they will be discussed here.

5~ PECOS does not currently make use of the partial ordering and assumes that tile
actions are to be performed in tile order that tiley are given.

~~ (a “while” loop)



— — .-. ---——. —. 
-
~~ 

--

Page 138 Section 6

6.6.1. Local memory

Both loops and composites allow for the possibility of having “local” memory: a list of
LOCAL—MEMORY-UNiTS with associated data structures. Each such unit is available
witllin the scope of tile control structur e, and the results of particular computations
may be associated with a memory unit and later retrieved from that memory unit. For
most purposes , they can simply be considered to be local declarations. The one
difference is that LOCAL-MEMORY-UNITS are intended to allow for several different
ways of associatiilcJ and retrieving values. In addition to storing tile result of a
computation y assignIng It to a varIable, one might prefer to recompute the result
(e.g., if it i: ~rticularIy easy to compute).

Local memory (MEMORY)

Unfortunately, PECOS’ s rules cover only the “variable assignment” technique:

Rule MEMORY.1:
One technique for remembering the result of a computation is to save
it as the value of a variable.

It is also necessary to select the variable name to be used:

Rule MEMORY.2:
lf a result is being saved as the value of a variable , one way to select
a variable name is to invent one.

The action part of this rule includes a call to LISP’s GENSYM function. Since tilis is
PECOS’ s only rule for selecting variable names , the names appearing in PECOS’ s
programs are not particularly mnemonic.

The rules above are used to select a technique for storing and retrieving values.
The following two rules reflect the use of tilis technique in tile code of the
constructed program:

Rule MEMORY.3:
If the memory scheme of a local memory unit is to use the value of a
variable named V, a value may be stored by assigning the value to the
varIable V.

Rule MEMORY.4:
If the memory scheme of a local memory unit Is to use the value of a
variable named V, a value may be retrieved by retrieving f he value of
the variable V.

--- -~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —~~ - 
-, - - - , -

~~~~~~~~~~~
- -~~~~~~

-
~~~

. .
~~ 

.
~~ 

—--.
~~~~ ~--~-.


A knowledge base of programm ing rules Page 1 39

These two rules are actually rather obvious once tile memory scheme and the
variable name Ilave been chosen. in fact , the whole issue may seem somewhat
overblown, especially since rules for other memory techniques (such as “recompute ”)
are not included. Ultimately , better methods for modeiinq data flow betweer~computational units will have to be developed. The utility of different techniques for

• implementing that flow could then be more meaningfully assessed.

6.6.2. Loop exits

The loop construct employed in PECOS’ s rules involves tile use of event indicators.
Associated with each loop is a set of exit labels and associated actions. During the
execution of any loop, an action may signal one of these events (using a special
operation called ASSERT-EXIT-CONDITION). When such an event is signalled , tile
associated action is executed and the loop exited. Thus, the flow of control in a
loop with two exit conditions can be diagrammed as shown below:

j IN ITIAL IZAT ION

L1 BUOY

E X I T 1 E X I T 2

‘I.
_ _ _

[ACT I ON 1 J f ACTI ON2

~ _______

Exiting a loop (EXITS)

There are several ways that such exits can be implemented. PECOS can deal with
only one of them (in a fashion similar to that used for local memory units): -

Rule EXITS.1:
A technique f or exiting from a loop is to transfer control to a separate
place where the exit action will be executed.

This technique typically requires a label to which control can be transferred:

-fl—-i— - -— — ~~~~~~~~~~~ ‘ S - ~~~~~~S - -

-
-
~~

.—- -• -

Page 140 Section 6

Rule EXITS.2:
lf the exit technique is to transfer control to a separate place and a
label is needed , invent one.

(This rule is similar to the variable name rule , and also calls the LISP function
• GENSYM.)

Once the exit technique and label have been selected , the occurrences of
ASS ERT-EXIT-CONDITIONs can be refined:

Rule EXITS.3:
lf the exit technique is to transfer control to a separate place whose
label is L, an operation of asserting the event condition may be
implemented by a transfer of control to the label.

• The actual implementation of the loop structure will be discussed in connection with
the LISP-specific rules.

The “transfer ” exit technique is the only one covered by PECOS’ s rules. Another
common technique is to execute the action wherever the exit event is signaled. The
differe nce between these two alternatives is minor , but nonetheless real. Typically ,
tile transfer technique is used if there are several places where tile same event is
signaled. while the “in-place ” technique is used if the event is only signaled in one
place or the exit action is relatively simple to execute.

~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



- -
~ 

--
~~--~~~~~

-

A knowledge base of programming rules Page 141

6.7. LISP as a target language

In order for any automatic programming system to function , it must know something
about tile target language , tile language ill which it is supposed to write programs. In
PECOS’ s case , this language is a LISP dialect known as INTERLISP [Teiteiman 1975].
About one-fourth of PECOS’s rules deal directly with INTERLiSP (hereafter referred
to sim ply as LISP)60. Most of the LISP rules are quite straightforward , merely stating
tilat specific actions can be performed by specific LISP functions. They are all
expressed in exactly the same formalism as the rest of PECOS’s rules. Tile
significance of tills lies in tile fact that knowledge about LISP is associated with the
uses to which the LISP constructs cai~ be put. Rather than describ ing tIle function
CAR in terms of axioms or pre- and post-conditions, as is clone in most automatic
programming systems , PECOS has rules dealing with specific uses of CAR , such as
rettlrllillg tile item stored in a cell of a “LISP list” or returning tile object stored in
one of tile fields of a record structure represented as a CONS cell. Thus , there is
never a necessity of searching through the knowledge base of facts about LISP in
order to see whether some function will achieve some desired result. In effect , that
information is stored with tile description of tile result. The effect of tills
representation is two-fold: searching is significantly reduced , but so are the
possibilities of “inventing” some new use for a particular LISP function.

LISP code for syntactic primitives (LISPSYNTAX )

Several rules deal primarily with LISP syntax:

Rule LISPSYNTAX .1:
In LiSP , a program with name P, argument list A , and body B, is written
as a function definit ion with name P, argument list /1 , and definit ion
body 861.

Rule LISPSYNTAX.2:
In LISP, a fun ction definition , with argument list A and definit ion body
B, is writte n as (LAMBDA A B).

Of course, the internal form of the rule must distinguisil between the “constant”
LAMBDA and t he “variables” A and B.

~° in a preliminary experiment , these rules were replaced by rules for some aspects
of SAIL, an ALGOL-like language [Reiser 1976]. Tilrouçjil the use of both tile
“general” rules and the SAIL rules, PECOS succeeded in writing a few simple SAIL
programs.

61 After all , the knowledge that a function definition is a program has to exist
somewhere!



Page 142 Section 6

Rule LISPSYNTAX.3:
In LiSP, a call to the function named F, with argument expressions Aj ,

Ar,, is written as (F Ai A2 ... An ).

Rule L1SPSYNTAX.4:
In LISP, the evaluation of a variable named X is written as X.

Rule LISPSYNTA X.5:
In LISP, an atomic constant with value V Is written as (QUOTE V).

Rule L1SPSYNTAX.6:
In LISP, an integer constant with value V is written as V.

Rule LISPSYNTAX.7:
In LISP, a string constant with value V is written as V.

Rule LISPSYNTA:~~~In LISP, the Boolean constant with value “True ” is written as T.

Rule LISPSYNTAX . 9:
• In LISP , the Boolean constant with value “False ” Is written as NIL.

Rules are needed for a few of the basic functions:

Rule LISPSYNTAX.1 0:
in LISP, an assignment of a value V to a variable X may be
implemented with a call to the functIon SETQ with X and V as Its
arguments.

Rule LISPSYNTAX. 1 1:
In LISP, a test of whether two structured objects are the same may be
implemented as a call to the function EQUAL with the two objects as
its arguments.

From tills point on, the phrase “In LISP” will be omitted from the rule descriptions.

IL - •~~~~~ ~~~~~~~~~~~~~~~~~
• - -

~~~~~ 
-

~~~~~~~~~~
-— --

~~~~
— --

~~~~~~~~~~~~~~~~~ 
-

~~~~~~~
- - -

~~~~~~



~~~~~~~~~~~~~~~~~~

A knowledge base of programming rules Page 143

id~P control structures (LISPCONTROL)

LISP has only a few, relatively simple , control structures, but they can be used fairly
easily to implement tile control structures of PECOS’ s specif ication language. While
d eveloping rules to describe tills process, an attempt was made to break the
process down into its most primitive steps. In retrospect , tills attempt was probably
misguided. Althougil it may indeed have succeeded , it was probably not worth the
ef fort. in the long run, a more reasonable solution to the process of implementing
such simple control structures as COMPOSITEs and LOOPs would be to have it done
as a post-process , after all of tile other parts of the program have been
ilflplelllellted. But before that can be done, better metilods of describing control flow
must be developed. In tIle interests of clarity, the detailed rules that PECOS uses
will be omitted and a considerably simplified version presented.

Rule LISPCONTROL.1:
/l composite , with parts P1 , P2, ... Pn, and with no local memory may
be implemented as a call to the function PROGN.

The LISP statement then has the following form:

(PROGN P1 P2 ... Pn)

Rule LISPCONTROL.2:
A composite , with parts P1 , P2, ... Pm, and local memory Units Ml ,
M2, ... Mn, may be implemented as a call to the function PROG; if Pm
returns a value , then use (RETURN Pm) in place of Pm.

This rule produces code of the following form:

(PI1OG (Mi M2 ... Mn) P1 P2 ... Pm)

Rule L1SPCONTROL.3:
• A loop with init ial ization I , body B, exit event indicators E l , E2, ... Elf.

and local memory units Ml , M2, ... Mn, may be implemented as a call
to the function PROG.

Tile following PROG structure Is produced:

(PIIOG (Ml M2 ... Mn)

Li B (GOL1)
Li E1/action (GO L2)
E2 E2 faction (GO L2)

Ek Ek/act ion (GO L2)
L2)

L

Page 144 Section 6

In addition , the function RETURN must be used wherever appropriate (e.g., to return a
alue from tile loop).

Rule LISPCONTROL.4:
A test with condition C, “True action” TA, and “Fals. action” FA , may

be implemented as a call to the function COND.

The following code is produced:

(CONO (C TA)
(I FA))

Rule LISPCONTROL.5:
A test with conditi on C and “True action” TA , but no “False action”,
may be implemented as a call to th. function COND.

The following code results:

(COND (C TA))

Rule LISPCONTROL.6:
A case with pairs (Cl , A l .>, (C2 , A2) , ... (Ck, A k) , may be
implemented as a call to the function COND.

This rule results in the following code:

(COND (C1 Al)
-

• (C2 A2)

(Ck Ak))

LISP input and output (LISPIO)

Most input ailci output in LISP Is done wIth respect to single expressions , either
reading one in or printing one out.

Rule L1SPIO.1:
A single datum may be input by ceiling th. function READ with no
arguments.

—-~~~~-.-~~~~~~~ •~~~~~
. ----- .

~~~-



A knowledge base of programming rules Page 145

Rule LISPIO.2:
A single datum may be out put by calling the function PRINT with the
datum as its argument.

Rule LISPIO.3:
A string message may be printed on the feletype by calling the
function PRIN 1 with the string as its argument.

• Rule LISPIO,4:
An end-of-line may be printed on the teletype by calling the function
TERPRI with no arguments.

There is also a rule for a special case in which the d ita structure being output is
almost , but not quite , tile same as tile output representation:

Rule LISPIO.5:
If a collection C represented as a LiSP list with a special header cell ,
it may be out put as a LISP list without a special header cell by calling
the function PRINT , with its argument being a call to the function CDR
with C as its argument.

The knowledge embedded in tills rule belongs more properly with the rules about
converting between representat ions for collections.

LISP lists of CONS cells (LISPLIST)

In the summ ary of “linked free cells ” given earlier , several data structures and
operations were given. All of those map relatively directly into particular LISP data
structures and functions.

Rule LISPLIST.1:
Linked free cells may be represented as a LISP list of CONS cells.

Rule LISPLIST.2:
A test of whether an itq m is stored in some linked free cell of a LISP
list may be Implemented as a call to the functIon MEMBER with the

• Item and list as Its arguments. 

— -- - -



Page 146 Section 6

Rule LISPLIST.3:
If linked free cells are represented as a LiSP list , a link to a new cell ,
with item X and link L, may be created by creating a new CONS cell
with car-part X and cdr-part L.

Rule LISPLIST.4:
A new CONS cell with car-part /1 and cdr-part 0 may be created by
calling the function CONS with argument list (A 0).

Rule LISPLIST.5:
If linked free cells are represented as a L1SP list , a retrieval of the
link from a cell C may be implemented by retrieving the cdr-part of C.

Rule LISPLIST.6:
The cdr-part of a CONS cell C may be retrieved by calling the function
CDII with C as its argument.

Rule LISPLIST.7:
I’ linked free cells are represented as a LISP list , a retrieval of the
item from a cell C may be Implemented by retrieving the car-part of C.

Rule LISPLIST.8:
The car-part of a CONS cell C may be retrieved by calling the function
CAR with C as Its argument.

Rule LISPLIST.9:
If linked free cells are represented as a LISP list , the link of a cell C
may be replaced by a new link L by replacing the cdr-part of C with L.

Rule LISPLIST .1O:
The cdr-part of a CONS cell C may be replaced with a new value V by
calling the function APLACO with C and V as its argument.

Rule USPLIST.11:
If linked free cells are represented as a LISP list , the item of a cell C
may be replaced by a new Item L by replacing the car-part of C with L.

L •~~~ _ _  
_ _ _ _ _ _ _ _ _ _



—~~~~~~~~ - 
“s’ —-——--- - --- -

~~~

A knowledge base of programming rules Page 147

Rule LISPLIST.12:
The car-part of a CONS cell C may be replaced with a new value V by
calling the function APLA CA with C and V as Its argument.

Rule LISPLIST.1 3:
If linked free cells are represented as a LISP list , a new instance of
the empty link may be created by creating a new instance of the LISP
atom NIL.

Rule LISPLI5T.14:
If linked free cells are represented as a LiSP list , a test of whether a
link is the empty link may be implemented as a call to the function
NULL with the link as its argument.

Finally, tilere is a rule for determining whether two collections have matching
representations (c .f ., the discussion about REPRESENTATION -MATCH queries in
section 4.3):

Rule LISPLIST.15:
If two collections are represented as LISP l ists and the
representations of their elements match , then the two collections
match.

(There are also clauses to check special header cells and whether or not both lists
are ordered.)

There are similar representation match rules for other LISP data structures, and they
will be omitted in the interest of brevity.

Piexes represented with CONS cells (LISPCONS)

One of tile data structures in PECOS’ s specification language is an abstract record
structure called a PLEX. PLEXs can be implemented using CONS cells , but care must
be taken when tIle plex has more than two fields.

Rule LISPCONS.i:
A plex wit h two parts , A and B, may be represented as a CONS cell
whose car-part Is A and whose cdr-part is 8.

Page 148 Section 6

Rule LISPCONS .2:
/1 plex with more than two parts (A being the first and B being a list
of the rest) may be represented as a CONS cell whose car-part is A
and whose cdr-part is a plex with whose parts are those In the list 8.

Note that , in effect , LISPCONS.2 is a recursive rule, enabling piexes with many fields
to be built up out of the two field available in a CONS cell. In the rest of this
discussion, only tile rules for plexes with two fields will be given. The rules for
plexes with mnre than two parts are similar.

Rule LISPCONS.3:
If a plex is represented as a CONS cell , a new instance of the plex ,
with f i rs t f ield F l and second field P2 , may be created by creating a
new CONS cell with car-part Fl and cdr-par (P2.

The internal form of the rule is a Uttle more complicated in ou.Ier to insure that the
correct field is used for t he car-part and the correct field foi the cdr-part . Also note
that the CONS function rule given earlier with tile LISPLIST rules i-an now be applied.

Rule LISPCONS.4:
If a plcx P is represented as a CONS cell, and the field F is sto red in
th e car-part , the object In f ield F may be retrieved by retrieving the
car-part of P.

Rule LISPCON:
If a plex P is represented as a CONS cell , and the field F is stored in
the cdr-part , the object in field F may be retrieved by retrieving the
cdr-part of P.

Rule LlSPCO~L~.6;
If a plcx P is represented as a CONS cell, and the field F Is stored in
the car-part , th e object in field F may be replaced by replacing the
car—part of P.

Rule LISPCONS .7:
If a plex P is represented as a CONS cell , and the field F is stored in
the cdr-part , the object in field F may he replaced by replacing the
cdr-part of P.

After each of these rules , one of the LISPLIST rules given earlier may be applied to
produce the correct function

calls.k

A knowledge base of programming rules Page 149

LISP arrays (USPAR RAY)

INTERLISP allows arrays as a data type , and the following rules enable PECOS to
take adva ntage of th is:

Rule LISPARRAY.1:
An array with maximum index M and minimum index 1 may be
represented as a LISP array with size M.

With a facility for implicit mappings (e.g., mapp ng X into X+ 1). it would be possible to
deal with an ays whose minimum value was something other than 1.

Rule LISPARRAY.2:
A new instance of an array represented as a LISP array with size S
may be created by calling the LISP function ARRAY with argument S.

Rule LISPA RRAY .3:
The value at index I of an array A represented as a LISP array may be
retrieved by calling the function ELT wi th A and I as its arguments.

Rule_LISPARRAY.4:
A value V may be stored at index 1 of an array A represented as a LISP
array by calling the function SET/J with A , I, and V as its arguments.

Note that IN1ERLISP supports dynamic allocation of array storage and the passing of
array handles as variable values. Many languages do not have this flexib ility. In
order to enable PECOS to deal with such languages , some of tile “general” array
rules will probably have to be changed. T his is the most glaring example of the way
that hidden assumptions about the target language can find their way into
supposedly language-independent rules.

LISP hash arrays LLISPHASH)

INTFRUSP also has convenient functions for creating hash tables to associate values
with arbitrary pointers. PECOS’ s knowledge of these functions is its sole knowledge
about basil tables (i.e., PECOS really doesn’t know very much about hashing).

Rule LISPHAS1I.1:
/1 hash table whose keys are unique pointers and whose default value
is NIL may be represented as a LISP hash array .

The rule also specifies that tile size of the array will be 100. The appropriate size,
of course , depends on what is known about tile distribution of the keys.

Page 150 Section 6

Rule LISPHASH.2:
Il new instance of a hash table of size S may be created by calling the
function lIARRA Y with argument S.

Rule LISPHASH.3:
The value for key K of a hash table H represented as a LISP hash array
may be retrieved by calling the function GETHASH with K and H as its
arguments.

Rule LISPHASH.4:
A value V may be stored with key K of a hash table represented as a
LISP hash array H by calling the function PUTHASH with K , V, and H as
it 5 arguments.

Property lists (LISPPROP)

In most LISP systems, every atomic object has an associated structure known as a
property list. Property lists proVi (le a way of associating named values with atoms.
0110 of the more interesting uses of property lists is to implement distributed
mappings:

Rule LISPPROP, 1:
/1 distr ibuted mapping whose domain elements are LISP atoms and
whose default image is NIL may be represented as LISP property list
values.

The clefauit image must be NIL , since NIL is returned when attempting to retrieve tile
property value of an atom that does not have the property.

As ment ioned in connection with tile rules about n~al’pings (section 6.4), distributed
structures cannot be passed as values of computations. instead , some way of
accessing the distributed parts must be passed. For property list values , the
property name can be passed. Thus, if a collection is represented as a distributed
Boolean mapping, which in turn is represented with property list values for the
property XYZ, tile string XYZ is precisely what is passed around as the handle of the
collection. Thus , when initializing such a collection , a new name must be invented:

Rule L1SPPROP.2:
A new instance of a distributed mapping represented as LISP property
values may be created by Inventing a new property name.

- - —~~~- - _ _ _ _ ~~~— —- -~~~~~~~~~~~ -~~-

~~rn- ~~~~~~~~~~
— — r —

A knowledge base of programming rules Page 161

Rule LISPPROP.3:
A new property name may be invented by a call to the function
GENSYM with no arguments.

In contrast with tile variable name and transfer label rules , which merely used
GENSYM to invent new names while the program was being constructed , at applying
LISPPROP.3 results in a call to GENSYM actually appearing in tile constructed
program. Tilus , tile following code initializes such a mapping and assigns it to the
variable X: (S E T O X (GENSYM)) .

Ru~~ IJSPPRQ~~4:
11 a distributed mapping M is represented as property list values , the
retrieval of the image of a don din element D may be implemented as
the retrieval of the property named M from the atom D.

Rule LISPPROP.5:
The retrieval of the prop erty named P from the atom A may be
implemented as a call to the function GETPROP with arguments A and
P.

Rule LISPPROP.6:
If a distributed mapping M is represented as proper ty list values , a
value V may be stored as the image of a domain element D by putting V
as the property named M on the atom 0.

Rule LISPPROP.7:
Putting a value V as the property named P on an atom A may be
implemented as a call to the function PUTPROP with arguments A , P.
and V.

LISP atoms (LISPATOM)

Rule LISPATOM .1:
A string primitive may be represented as a LISP atom whose print
name is t he str ing.

Rule LISPATOM.2:
A new instance of a string primitive represented as a LISP atom with
print name P may be created by using an atomic constant with value P.

~~ — -~-- - -~~-~~ -~~ - - ~~~~~~-~~~~- - - - -~~~

Page 152 Section 6

Rule LISPATOM.3:
A test of whether an object is an atom with a particular value V may
be implemented as a call to the function EQ with th. object and the
atomic constant V as its arguments.

The following rule is used in determining whether a hash array can be used to
implement a mapping. See tIle earlier section on hash table tules.

Rule LISPATOM.4:
A LISP atom is a unique pointer.

LISP integers (LISPINT)

Rule LISPINT.1:
An integer primitive may be represented as a L1SP integer.

Rule LISPINT.2:
A new instance of an integer K represented as a LISP integer may be
created by using an integer constant with value K.

INTERLISP distinguishes between “small” and “large ” integers , with small integers
being guaranteed to be unique pointers, similar to the way that atom pointers are
guaranteed to be uni que. The following rule enables PECOS to use this feature to
construct basil tables whose keys are Integers. This can be of particular value when
the keys are relatively sparse in the range of possible values.

Rule LISPINT.3:
If the maximum value of an integer Is less than 1536 and the minimum
value is greater than - 1536, an integer represented as a LISP integer
is a unique pointer.

PECOS also knows about several elementary integer functions:

Rule LISPINT.4:
A test of whether an integer I is greater than an Integer J may be
implemented as a call to the function IGREA TERP with 1 and J as Its
arguments.

L. - ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _

A knowledge base of programming rules Page 15~

Rule LISPINT.5:
The sum of two Integers , I and J, may be computed by calli ng the
function IPLUS with I and J as its arguments.

Rule LISPINT.6:
The difference between two integers , / and J , may be computed by
call i ng the function IDIFF ERENCE with I and .1 as its arguments.

Rule LISPINT.7:
The product of two integers , I and J, may be computed by calling the
function ITIMES with I and J as its arguments.

LISP Booleans (LISPBOOL)

Rule LISPBOOL.1:
A Boolean primit ive may be represented as a LISP Boolean.

Rule LISP~30OL.2:
/1 new instance of a LISP Boolean with value V may be created by
using a Boolean constant with value V.

Rule LISPBOOL.3:
A LISP Boolean with value “False” is a pointer to NIL.

This is the rule used in chec king the defau lt images for arrays and ilasil tables.

Rule LISPBOOL.4:
The negation of a predicate may be computed by calling the function
NOT with the predicate as if 5 argument.

Rule LISPBOOL.5:
A test of whether any test (in a list of tests) is true may be
implemented as a call to the function OR with the list of tests as its
arguments.

—

- - —-~-~~~~~-~~~~~~~~~--— -~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -

—--~~~~~~~ ~~rn~~~~ -

Page 154 Section 6

Rule LISP000L.6:
A test of whether every test (In a list of tests) is true may be
Implemented as a call to the function ~N0 with the list of tests as its
arguments.

_ _ ~~~

A knowledge base of programming rules Page 155

6.8. Index of rule topics

Topic Page

Rules about collections
BOOLMAP: Collections as Boolean mappings 68
EXPCOL: Explicit collections 72
S[OCOL: Collections grouped in sequential structures 76
LIST: Sequential collections as linked lists 81
LISTLOC: Locations in linked lists 84
LISTDEST: Destructive operations Oil linked free cells with headers 85

ARRAY: Sequential collections as array subreg ions 89
A RRAYLOC : Locations in array subregions 92
AR RAY INS: inserting an element to an array subregion 92
ARRAYREM: Removing an element from an array subregion 95
ARRAYSH IFT: Shifting 611 array subregion 95
COLMiSC: Other collection operations 98

Rules about enumeration and sorting
FOR: High-level enumeration opera tions 1 00
ENUMSEO: Enumerating items in sequential collections 1 03
ENUMORDER: Enumeration order 1 05
ENUMLINEAR: Linear enumeration states 1 06
ENUMPART: Partial enumerations 11 0
LOCOP: Location operations 111
ENUMDEL: Enumerat ion state— saviilcJ through deletion 11 5
ENUMMISC: Other oIltlnIerat ion operations 1 1 7
T RANSFER: Tra nsferring elements ill sequent ial collections 121

Rui3s about mappings
EXPMAP: Explicit Mappings - 125
PAIRS: Mappings as collections of pairs 1 26
PLEXMAP: Mappings with separate fields for each domain element 1 28
ASSOCTABLE : Association tables 1 30
ARRAYTABLE: Arrays as association tables 1 30
HASHTABLE: Hash tables 131
DISTMAP: Distributed mappings 1 32
INVMAP: Inverted Mappings 1 32
MAPMISC: Other mapping operations 134

Rules about miscellaneous other operations
CONVERT: Representation conversion 1 35
CONTROL: Control structures 1 37
MEMORY: Local memory 138
EXITS: Exiting a loop 139

LISP-specific rules
LISPSYNTAX: LISP code for syntactic primitives 141
LISPCONTF1OL: LISP control structures 143

Page 156 Sect ion 6

LISPIO: LISP input and output 144
LISPLIST: LISP lists of CONS cells 145
LISPCONS: Plexes represented with CONS cells 1 47
LISPARRAY: LISP arrays ~49
LISPHASH: LISP hash arrays 149
L1SPPROP: Property lists 150-
LISPATOM: LISP atoms isi
LISPINT: LISP integers 152
LISPBOOL: LISP Booleans 153

______ _________________


~~~—
--

~~~~~~~~~~~~~
— - -- - - -- - -

Page 157

7. SAMPLE PROGRAMS

As an indication of tIle range of PECOS’ s capabilit ies , several sample proclrams will be
presented in this section62. Tile first four of these were selected as target
programs early in the research , in order to have a focus for the development of the
rules. Af ter most of the rules were wri tten , the last two were selected as a way of
testing the generality of the rules.

7.1. Membership test

The variety of implementations that PECOS can produce is illustrated well by a simple
membership test specification:

DAT A STRUCTURES
Y a collection of integers
X an integer

ALGORITHM
is X an element of Y

PECOS can implement such a test in about a dozen ways . differing primarily in the
way that ‘i is represented. it V is represented as a sequential collection , there are
several possibilities. in the special case of a linked list , the LISP functioll MEMBER
can be used. In addition , there are various ways of searching that are applicabl e for
either linked lists or arrays. if the collection is ordered, the search can be
terminate d early when an element larger than X is found. if tile collection is
unordered , the ellumoratioll must run to Completion. A rather strange case is an
ordered enumerati on of an ullordered collection, whose time requirement is order n2.
if Y is represented as a Booiean mapping, a membership test is implemented as the
retr ieval of tIle image of X. For each way to represent a rnapl)illcJ, there is a way to
retrieve the image of X. The LISP functions GETHASH , GETPROP, and ELI apply to
hash arrays , property list markings , and arrays respectively. in addition , a r~oliection
of pairs can l)e searciled for the entry whose CAR is X and return its COB. PECOS
has successfully implemented all of these cases.

62 iheoroticaily PECOS can implement any algorithm that can be described in its
specification language. In practice , however , PECOS cannot handle specifications
much longer than “a page ” before space limitations become prohibitive.

~

-.‘ .— - —. --~~~~~~ ——-—— --- - .~~~~~~~~~

Page 158 Section 7

7.2. A simple classification program

The second target program was a simple classification program called CLASS. CLASS
inputs a set (called the “concept”) and then repeatedly inputs other sets (called
“scenes”) and classifies them on tile basis of Wilether or not tile scene fits the
concept. A scene fits a concept if every member of the concept is a member of the
scene. The specification given to PECOS is paraphrased below63:

DATA STRUCTURES
CONCEPT a collection of integers
SCENE a collection of integers

ALGORITHM
CONCEPT .- input a list of integers;
loop:

SCENE .- input a list of integers or the string “QUIT” ;
if SCENE “QUIT” then exit tile loop;
if CONCEPT is a subset of SCENE

then output tile message “Fit”
else output the message “Didn’t fit” ;

e ~ eat;

The major variations in implementations of CLASS involve different representations
for SCENE and the role they play in tile subset test. Tile test is refilled into an
enumeration of the elements of COt’LCEPT, searching for one that is not a member of
SCENE64. In the simplest case, the internal representation of SCENE is the 56fll~ as
the input reprcscntation , a linked list. The other cases involve converting SCENE into
some oth er rei)reseiltation before performing tile subset test. The major motivation
for such a conversion is that membership tests for other representations are much
faster than for an unordered linked list. One possibility is to sort the list , but the
tiflie 56V1119S ill the membership test may not be sufficient to offset the time required
to perform the sorting65. Other possibilities include the use of Booiean mappings such
as property list markings and hash tables. PECOS has successfully constructed all of
these variations.

63 Integers were used as tile elements of the scenes and concept to facilitate the
use of ordered collections. A different set of implementations would be possible with
different types of elements in the sets.

64 For some representations that PECOS cannot yet handle , other forms for the
subset test are appropriate. For example , if CONCEPT and SCENE are both
represented as bit vector s, “SCENE v ,CONCEPT” is non-zero if and only if CONCEPT
is a subset of SCENE.

65 PECOS cannot currently use tI~e technique of sorting both lists so that they can bescanned in parallel , thereby greatly increasing the savings.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



—

Sample Programs Page 159

7.3. A simple concept formation program

The third target program was TF , a rather simplified version of Winston ’s concept
formation program [Winston 1975). TF builds up an internal model of a concept by
repeatedly reading in scenes which may or may not be instances of tIle concept. For
each instance , IF determines whether tile scene fits the internal model of the
concept and verifies tile result with the user. ihe internal model is then updated
based on whether or not tile result was correct. The internal model consists of a set
of relations , each marked as being “necessary” or “possible”. A scene fits the
model if all of the “necessary ” relations are in the instance. The full algorithm ,
including the updating process, is given below:

DATA STRUCTURES
RELA1 ION a relation name and a list of arguments
CONCEPT a mapping of RELATIONs to {“NECESSARY” , “POSSIBLE” )
SCENE a collection of RELATIONs
TEST-RESULT a Boolean
USER-RESPONSE either “CORRECT” or “WRONG”

ALGORITHM
loop:

SCENE — input a list of relations or the string “QUIT” ;
if SCENE “QUIT” then exit the loop;
if CONCEPT-1 [”NECESSARY”J is a subset of SCENE

then TEST-RESULT “True ”
else TEST-RESULT — “False ”;

if TEST-RESULT
then output tile message “Fit”
else output tile message “Didn’t fit” ;

USER-RESPONSE .- input a string;
if TEST-RESULT A USER-RESPONSE=”CORRECT”

then for all R in SCENE:
if B is not iii the domain of CONCEPT

then CONCEPT[R).- ”POSSiBLE ”
else if TEST-RESULT A USER-RESPONSE = ”W RONG”

then for any B in CONCEPT I[”POSSIBLE”]:
CONCEPT [RJ - “NECESSARY”

else if -‘TEST-RESULT A USER-RESPONSE:”CORRECT”
then nothing

else if ~TEST-RESULT A IJSER-RESPONSE=”WRONG”
then for all R in CONCEPT 1[”NECESSARY”]:

CONCEPT [R) “POSSIBLE” ;
repeat.

The most interestillg variations in tile impleme ntation revolve around tile
representation of the mapping CONCEPT. The uses of this mapping are similar to
those of the MARKS mapping in the Reachability Program , and an inverted mapping is
also appropriate here. in this case , there are two sets , NECESSARY and POSSIBLE.
Since “ally” and “all” operations are applied to these sets , a stored collection is



~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~
.—-

~~~~
-
~~~~~~~~~~~--~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Page 160 Section 7

appropriate (although for some distributions of input data Boolean mapping
representations may be better). Since elements will be added and removed from
both set s, linked lists are reasonable representations. The cOfl iputation of the
“domain ” of CONCEPT is fairly interesting , since the domain set does not exist
exp~icit ly with inverted mappings , but must be computed , in this case by a union of
NECESSARY and POSSIBLE. Note, however, that the only operation applied to the
domain is a membership test. In such a case, the test can be refined into an “or” of
two membership tests , one on NECESSARY and one on POSSIBLE, and there is no
need to explicitly compute the domain of CONCEPT. This is tile implementation that
PECOS constructed.

7.4. Sorting

PECOS’ s development originally began as an investigation into the programming
knowledge involved in simple sorting programs [Green and Barstow 1975, 1977a,
1977b] . PECOS’ s current rule set is sufficient to construct selection and insertion
sorts witilin the transfer paradigm (transferring elements from one collection to
another, such that the final collection is ordered) , using both arrays and lists for the
input and output collections.

7.5. Reachability

The Reachability Problem (discussed in section 2) was selected as a way of testing
the generality of the rules after PECOS had already handled the above programs
successfully. Very few add itional rules wer e required to enable PECOS to implement
it. The va riations that have been successful ly constructed involve different
representations for the EXPANDED , BOUNDARY, and UNEXPLORED sets and for the
SUCCESSORS mapping.

7.6 . Primes

Exercise 7.1-32 of Chapter 7 of Knuth’s textbook series describes the following
algorithm (attributed to R. Gale and V. A. Pratt) for computing all of the nonprime odd
integers less than a given integer (Knuth 1977):

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - . -  -



Sample Programs Page 161

DATA STRUCTURES
C a set of in tegers
S a set of integers
J an integer
N an integer

ALGORITHM
N — input an integer;
J — 3;
C .- {1);
S .- {1);
loop:

if J�N/3 then exit;
if J is not a member of C then

for all X in S:
if J~X<N

then acid J~X to S;
add J*X to C;

else remove X from S;
“Repeat until all elements of S have been handled ,

including those which were just newly inserted” ;
remove J from C;

J .- J+2;
r e p eat;

“Now C contains all tile nonprime odd numbers less than N.”

In this algorithm , J is stepped through tile odd primes and multiplied with each
element of S in order to determine the integers to add to C, tile set of nonprimes.
Integers are addled to and removed from S so that each nonprime will be added to C
only once (when its greatest prime factor is J). Since each integer is added to and
removed from S at most once, the number of set operations on S (as well as on C) is
0(n). Since each step in tile algorithm includes one of these set operations , the
total running time of the algorithm is 0(n) if tile set operations can be done in linear
time66.

As d escribed above, the algorithm includes an enumeration over a collection (S) that
is being modified during the enumerat ion process. PECOS’ s rules cannot yet handle
such enumerations , so the algorithm was changed slightl y by splitting S into two sets,
Si and 82. In add ition, an algorithm for computing the primes (the collection P) from
the nonprinles was added. The specification given to PECOS is paraphrased below:

66 Several other linear time prime algorithms have also been developed recently
[Gries 1977, Mairson 1977].

~

--- -

~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~
—-

~
.— -

~~~~
- --

~~~
—. -----

_
-~~

Page 162 Section 7

DATA STRUCTURES
C a set of integers
P a set of integers
Si a set of integers
S2 a set of integers
J an integer
K an integer
N an integer

ALGORITHM
N — input an integer;
J — 3;
C — (1);
Si ‘- {1);
loop:

If 3*J�N then exit;
if J is not a member of C then

S2 Si;
Si —

hoop until S2 is empty:
for any X iii S2:

remove X from S2;
if J*X<N then

add X to Si;
add J*X to S2;
add J*X to C;

remove J from C;
J — J + 2 ;
repeat;

K.- 3;

loop:
if N<K then exit;
if K i s n t a m e m b e r of C

then add K to P;
K.- K+2;
repeat;

output P as a linked list.

As noted above , tile efficiency of this algorithm depends strongly on the
representation of the sets Si , S2, and C. The only operations being performed on S2
are addition , removal . and taking “ally” element. The “any” operation suggests that
a Boolean mappillg may he inappropriate and the frequent ciestructive operations
suggest that an array may be relatively expensive. Thus, an unordered linked list is
a reasonable selection. Since the value of Si is assigned to S2, a representation
conversion can be avoided by using the same representation for both sets. This is
especially useful In this case , since tile only operatIon applied to Si , the addition of
elements, is relatively simple with unordered linked lists. The only operations applied
to C are addition and two membership tests. Such operations are fairly fast with

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



- -- - - -- 
- 

-

Sample Programs Page 163

Boolean mappings. Since the domain elements of the mapping are integers with a
relatively high density in their range of possible values , an array of Boolean values is
a reasonal)Ie representation of C. PECOS has implemented the Primes Program in this
way, as well as with a linked list representation fo r C. To check the re l at ive
efficiency of the two implementations , each was timed for various values of N (times
are given in milliseconds):

N C as linked list C as Boolean array

10 .05 .04
50 .28 .20

100 .63 .40
500 6.40 2.02

1000 21.21 4.08

Note tile approximately linear behavior of the Boolean array case and the distinctly
nonlinear behavior of the linked list case.

_  _ _



I

Page 164

8. RULE GENERALITY

One of tile motivations that led to the development of PECOS was a hope that a core
of knowledge about programming could be isolated and codified, and that this core of
knowledge would be useful when other aspects of symbolic programming (or even
other programming domains) are considered. Although PECOS’ s rules deal with many
of the fundamental aspects of symbolic ,~rogramming, it is certainly far too early to
say that this hope has been realized. Howev~~, several experiments , both formal and
informal , have been made , with tile hope of gaining a better understanding of the
utility and generality of PECOS’ s rules.

8.1. A sample set of target programs

For tile purposes of these experiments , a sample of twenty-four programs has been
selected. While the sample can hard ly be classified as “random ”, it of fers sufficient
variety that some trends may be. observed. These programs are all taken from those
discussed ill the previous section , and are listed in approximately tile order that they
were attenipteci while PECOS was being developed.

1 Membership: LISP function MEMBER applied to a list
2 Membership: LISP function ELT applied to a Boolean array
3 Melnbersilip: LISP function GETHASH applied to a hash table
4 Membership: LISP function GETPROP applied to property list markings
5 Me,nbersliip: unordleredl enumeration over an unord ered list
6 Membership: unordered enumeration over an unordered array
7 Membership: ordered enumeration over an ordereo list
8 Membersilip: ordered enumeration over an ordered array
9 Membership: searc h through a list of (element , flag) pairs

1 0 Membership: ordered enumeration over an unordered lst
11 CLASS: SCENE represented as a list
12 CLASS: SCENE converted to a hash table
1 3 CLASS: SCENE converted to property list markings
1 4 CLASS: SCENE converted to an ordered list
1 5 TF: CONCEPT inverted; NEC ESSARY and POSSIBLE as li sts
1 6 SORT: selection with array input and array output
1 7 SORT: selection with list input and array output
1 8 SORT: insertion with list input and list output
1 9 SORT: insertion with list input and array output
20 REACH: SUCCESSORS as a list of pairs; all collections as lists
21 REACH: SUCCESSORS as a list of pairs; UNEXPLORED as a Boolean array
22 REACH: SUCCESSORS converted to B. array; UNEXPLORED as a B. array
23 PRIMES: C as a Boolean array
24 PRIMES: C as a linked list

Sample Target Programs for Experiments

—— - - -



-~~~~~

_ _ _ _ _ _

Rule generality Page 165

The chart below shows the number of rules required for each individual program in
tile sample.

e

+

+ ÷ +

+ + + + 

I

S tO 15 25 25
INDtVIOUAL TARGET PROGRAMS

8.2. A sequence of target programs

In a sense , the table in the previous section SI1OWS “110W muCil Programming
knowleclqe ” is required for each target program in isolation from the others. One of
tile major benefits of tile knowledge—based approach , however , is that tIle targets
need not be cons idered in isolation: each can build upon the earlier ones.
Considering them ill sequence , t hen, a growing knowledge base can be identified. In
the first step, tile 25 rules required for P1 are added to the knowledge base. Then
tile additional rules required for P2 are added. Since 8 of P2’ s 24 rules were also
requ ired for P1 , only 16 more need be added. The graph below shows tile growth of
tile knowledge base as each program ill tile sequence is achieved:

_ _ _



Page 166 Section 8

0 ________________________________________________

TARGET PROGRAMS tN SEOUEMCE

The most interesting aspect of this graph is tile “scalloped” ef fect .  Tills e f fec t  is
CSl)OCialIy pronounced in the first part of tile graph. Tile shape sutl clests that the
process of accumulating the know’ edge base goes tllrOugll a SCCIUe.flCe. of stages.
The beginning 01 each stage involves the acquisition of a core of knowleJge about
some part of tile domain , and tIle rest of the stage involves acquiring a little more so
that tile knowledge can be applied to several specif ic tasks. The stages in tile
above graph can be characterized by the aspect of symbolic programming that is
involved :

Basics
T u e  f irst f ifty rules (for programs P1 through P4) constitute many of the
basics that are needled to write programs , such as tile syntax of function
calls in LISP , as well as the simplest da ta structure re finement chains for
collections and mappings.

Enumeration
The next ninety rules (for PS through P9) constitute tile knowledge
necessary for writing simple enumerations. Also included are tile rules for
simple operations on array subregions as a representation for collections.

Ordered Enumeration
T h e  next f i f ty (for PlO) deal largely with ordered enumerations of
unordered collections.

Destructive Operations and Inverted Mappings
The next f i f ty (for P11 through P15) include most of the rules for
destructive operations on unordered collections and the conversion of
collections and mappings from one representatIon to another.



r ~~~~~~~ 

.. 
,_.__-_---<-_•___ ___ -

~~~~~
—

~
----.---,------

~ - - - - - -

Rule generality Page 167

Insertion into Ordered Sequential Collections
The next f i f ty rules (for P16 tilrougll P19) dcci primnriiy with insertion
into ordered sequential collect ions, as well as tile few additional rules
required for simple transfer sorting (most of the necessary knowledge
was already in tile knowledge base).

“For any” and Numeric Operations
The next thirty (for P20 through P24) are concerned primarily with
techniques for taking “any” element of a collection. Also included are
rules for a few simple numeric operations.

At each stage , of course , a few rules that might be termed “basics ” were also
added, but generally each stage had a dominant theme.

8.3. Toward the development of a useful core of knowledge

Perhaps tIle most interesting question revolves around the utility of the knowledge
base for each successive program in the sequence. That is , given tile knowledge
bc~se at some polilt and the next target program , how muCil do the already codified
rules help in the acllievement of tllat program. This question can be made more
precise: at the time that a program in tile sequence is achieved , wllat proportion of
the needed rules were already present in the knowledge base? T h e chart below
SI10W5 this data for the twenty-four programs considered in the order in which they
were actually attempted:

0
0 __

:4

TARGET PROGRAMS U4 SEQUENCE

As can be seen, tile trend is toward increasingly larger amounts of the required

IIL~
-

Page 168 Section 8

knowledcj e to be in the knowledge base. W h ile the sample set is certainly too small
and non-random to justify general conclusions, such a trend is an encouraging s i gn
that the rules embody programming knowledge With a fairly high utility in symbolic
programming. Perhaps tile best sign is that almost 90% of the rules required for the
Reachability and Primes Programs had been written before the two programs were
even considered as potential targets.

8.4. The role of the target language rules

PECOS’ s rules can be d ivided into two categories , those of a relatively general
nature and tllose specific to LISP as a target language. Of PECOS’ s current 406
rules , 11 9 (about 30%) are LISP-specific. It is interesting to note that the ratio of
general rules to LISP rules has steadily increased during the development of tile
knowledge base. At tile beginning, it was necessary to encode large amounts of
LISP specific knowledge. But once that knowledge had been put into rule form, more
general kind3 of knowledge could L added. The latter stages of rule development
concentrated almost totally on dev loping and increasing the store of general rules.
The two growth rates are shown in tile graph below:

0
0 __________________________

- CENERA~..,~

10 15 20 25

TARGET PROGRAMS IN SEQUENCE

— -~~~~~ --~~~~~ - . - -~~~~~ ~~----

Page 169

9. A SEARCH SPACE OF CORRECT PROGRAMS

As noted Ill section 3.2, PECOS’ s refinement tree constitutes a space of correct
progr ams: each path in the tree is a refinement sequence from the al)StraCt
algorit hm through several partially refined descriptions to a concrete Implementation.
Each leaf represents a different implementation. Given some metric (e.g., an
efficiency measure) for comparing these implementations , tile tree can be viewed as
a space to be searched to find the “best” implementation. Techniques for comparing
implementations and for searching refinement trees have not been a central part of
tills work , a l t h o u g h the utility of such techniques is clear. in fact , much of PECOS ’s
development was influenced by a desire to facilitate the process of finding good
implementations. Work on LIBRA , PSI’ s efficiency expert , is aimed at developing
useful search and comparison techniques [Kant 1977]. Even in tile Work on PECOS
alone, however , several aspects of searching and comparison have arisen.

9,1. Refinement sequences

One interesting feature of the space is that individual refinement sequences seem to
vary about linearly with tile size of the final implementation. The following graph is
based on the twenty-four programs used for data in the previous section:

S
0

z

+ + +

100 200 300 400 500 600 700 800

IMPLEMENTAT ION SIZE (CONS CELLS)

Thus, if tile correct choice can be made at each choice point without exploring any
alternative patils , tile cost of constructing the best implementation is roughly linear
with the size of the final program.

This cost may be reduced through the use of special purpose rules to handle

Page 170 Section 9

frequently occurring cases. Such rules could collapse an entire sequence of rule
appl ications into a single rule. While tile rules to derive the sequence must still be
available for use in other situations , one can frequently get by with a “short—cut ”
rule. Of course, by skipping the standard sequence some option occuring partially
through the sequence may not be considered at all , SO tile circumstances under
which such a rule is appropriate must be identified carefully. PECOS currently has a
few such rules for some very simple cases. The further development of techniques
for using such silort-cut rules effectively would be a useful line for further research.

9.2. Techniques for reducing the space

There are several techniques that may be used to reduce the size of refinement
trees (i.e., the total number of rule applications) without eliminating ally of tile
alternative implementations. These techniques all deal with choice points , tasks for
which more than one rule is applicable 67. When several rules are to be applied , a
refinement path is split and a separate rule applied in each brancil. Thus, each
branch represents a different way to acilieve the choice point task. One important
observation is t ilat acliievincj a choice point permits reconsideration of those tasks
for which it was a subtask. The achievement of these tasks may, in turn , enable
higher level tasks to be considered , so the achievement of a single choice point may
result in a large number of tasks being enabled and achieved.

9.2.1. Postponing choice points

Tile technique of postponing all choice points is based on the observation that many
of tile steps Ill a ref inement sequence may l)e reordered Witi lOUt a f f e r~tiIlg the fin a l
iln plen)entation. For example , if a program involves two collections , t ile only ordering
requirements are that tile steps in the refinement sequence for one occur ill order
and that tile steps for tile Otiler also occur in order. The two subsequences may be
intermingled in any order. in fact , the only absolute ordering requirement on two
tasks ill any refinement sequence is that one must be achieved first if it is a subtask
of tile other.

Based on th is observatioti , consideration of all choice points may be postponed until
t h e only other tasks are those for which some choice point is a subtask. When this
te chnique is uSedi , tIle refinemen t trees tend to be “skinny” at the top and “bushy”
at the bottom. Experience has shown that a considerable reduction in tree size can
result. For example , the four Implementations of CLASS used as data in section 8
differed in tileir representation of tile SCENE collection: Boolean array, property list
marking, unordered linked list , and ordered linked list. in the tree for these four
implementations , there were tilree CiloiCe points: (A) whet iler to represent SCENE as

67 With the current rule set, choice points are relatively infrequent, in the
Reachability Program , for example , there were about three dozen choice points in a
refinement sequence that involved about one thousand rule applications.

~~~ ~- - - - - --.- - - -



- -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-~~~~~~~~~~~~~~~~~~~~~~~~~~
-.-- - -

~~~~~~
-
~~~— —~~~~~

—- -

A search space of correct programs Page 171

a Boolean mapping or as an explicit collection; (B) in the Boolean mapping case ,
whether to use a stored or distributed mapping; (C) in the explicit collection case ,
whether or not to keep the collection ordered68. The refinement tree is shown
below:

A

/

B

\ 

C

When PECOS was run without postponing the choice points, the split at A occurred
after 22 steps and t u e  splits at B and C occurred after 1 7 and 43 more steps
respectively. With tile postponement technique , the splits at A , 13 and C were made
after 236, 8, and 10 steps respectively. In tile trees shown below, tile path lengths
are roughly proportional to the number of steps , and the difference is clear:

A
/ \

/\ /\
without postponement with postponement

Effects of postponing choice points

Thus , in this case , the postponement technique saved over one third of the rule
applications without eliminating any of the possible implementations.

68 Several other choice points were encountered, of course, but only these three are
- I relevant to the four implementations.



_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
- -

Page 172 Sectio n 9

9.2.2. Independent choices

When two ciloice points are sufficiently independent tlìat a choice for one may be
made regardless of what choice is made for the other, parts of tile tree can be
ignored quite easily. The heaves of the entire tree represent tile cross-product of
tile alternatives for each of the choices. However, under the independence
assumption , some of tile leaves may be ignored. This may best be clarif ied by
example. Suppose there are two choice points (A and B), each having two applicable
rules. If one (say A) is consid ered first, then several further refinement steps (for
which A had been a subtask) may be made before B needs to be considered. Since A
is independlent of B, tile two paths for A can be carried far enough tilat a preference
for one path over tile other can be determined before B is considered. Thus , the
alternatives for B along the other path need not be considered at all, In the tree
shown below , the branches inside the box need not be explored if A2 can be
selected over A i independently of what choice is made for B.

B B

{A i , Bi3 [A 1, B2] (A2 ,B1) (A2. B2]
I .1

Pruning for independent choices

Thus, with independent choices, the full cross-product of the possibilities need not
be explored.

9.2.3. Dependent choices

When separate choice points are not independent , the order in which t he  choice
points are considered can strongly affect the size of the tree. One simple Strategy
is to consider first tIle choice point wh ose achievement will enable the refinement
sequence to be carried to tile greatest depth. For example , If achieving A would
permit the sequence to be carried on for 10 steps while achieving B would permit
carrying it on for 1 00 steps, the trees that result from different choice orderings
would be as shown below:

_ _



A search space of correct programs Page 173

I I

B~~~~~~~~B

,
A( \ /\ /\

(240 rule applIcations) (420 rule applications)

Choice ordering for dependent choices

Of course, ill practice it is often hard to predict 110W far a refinement could be
continued aft er applying a particular rule , but the technique is a useful guideline.
The use of tIlls technique , as well as more sophisticated ones, is being tested in
connection with LIBRA [Kant 1977].

9.3 . Choice making

The techniques described above help to reduce the size of the search space , but do
not remove the problem of actually selecting one of tile alternatives at a choice
point. l,itormeciiatr~-leve l abstractions facilitate such choice-making by focusing on
tile essential as pects of a choice while ignoring irrelevant detai ls 69. A consequence
is that it is usually unnecessary to complete all implementations in order to determine
which alternative is preferable. While testing rules and producing particular target
programs, several choice-making heuristics , based on these intermediate-level
abstractions , were added to PECOS. Such heuristics can be divided into three
relatively distinct categories.

9.3.1. Heuristics for avoiding paths that fail

Although most refinement sequences succeed in producing concrete implementations ,
paths occasio nally fai l by reaching a situation In which no rules are applicable 70.
Several of PECOS’ s heuristics are primarily intendedi to recognize branches that w ill
lead to such failure and to avnid s~ ir~ ting those alternatives. For example , PECOS
has no rules for adding an ‘‘ ‘ •~l ~Iie back of a linked ast.  One of tIle heuristics
(for selecting a position at whIch an element should be added to a sequential

69 Tile use of cost estimators for partially refined program parts is also facilitated.

70 The cause of failure is the Incompleteness of the knowledge base , not any
Inherent problem with the refinement path itself.

____  _____  
, - - - - - -~ .- - .

~~— .- ~~~~~



Page 174 Section 9

collection) tests whether tile sedluential collection has been refinedi into a linked list ,
and if so rejects “back” as a possibility. One interesting feature of such heuristics
is that they embody knowledge about the capabilities of the system itself , and thus
should be changed as rules are added and the system ’s capabilities change.

9.3.2. Local heuristics

Some decisions can be mache on a purely “local” basis , considering only the node
being refined and tile alternative rules. There are two types of local heuristics:

One alternative is always better than another. When one alternative is
known a priori to be better than another, if both are applicable the better
alternative should be taken. For example , one of PECOS’ s heuristics
prefers PROGN to PROG constructs: (PROGN ...) is better than (PROG NIL

)

It doesn ’t ma/c e much difference, but one is more useful. If the cost
cliff erence between two alternatives isn’t very great , but one is more
convenient for most purposes, that rule should usually be chosen. For
example , PECOS has a heuristic that suggests always using special
headers for linked free cells , since the extra cost is low (one extra cell)
and they are often more easily manipulated71.

9.3,3. Global heuristics

Many dec is ions require more global considerations , including such things as the
operations applied to a data structure , tile relative frequency of a particular
operation , and so on. None of PECOS’ s heuristics fit tilis category, but such
heuristics play a major role in LIBRA [Kant 1977].

71 Note that the heuristic doesn’t take into account whether or not the extra cell
actually helps in the particular case under consideration. And, indeed, it may be
difficult to tell dt the time the choice Is made.

_ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~ 
..- ,

~~
--, —

~~~~~
--—

~~~~~~
.-—----. -

~~
-- -

~~
-
~~~
—. . .

~~~~~



Page 176

10. INTERFACE WITH THE PSI

In addition to its role as an experimental system for th~veIoping and testing rules
ai)Out programming, PECOS also plays tile role of tile Coding Expert ill tile PSI
program synthesis system (‘I’) being developed at the Stanford Artificial Intelligence
Laboratory [Green 1976 , 1977]. ‘1’ permits tile user to specify a program tllrough
dialogue using natural language and traces. A program is then produced from this
specification. For current experiments , the target programs are all from the domain
of symbolic computation and the implementations of these programs are in LISP.

~I’ is a large system organized as a collection of interacting modules , as illustrated
below:

Traces Model Program~ Coder Target
— ~ and 

~ r~~ 
Builder ~~~ ~

.‘ 
~~

Examples 4 Model I PECOS Program
U J _ _ _ _

S i -
E
A

Parser / ~- Domain Effi-
— -~ Inter- — -~ Expert ciency

pre te r  -~ Expert

Moderator

Acquisition Group Synthesis Group

Processing in ‘4’ occurs in two relatively distinct phases. During the acquisition
phase, the user communicates with “4’ througll either of two modules, a
parser /inter preter [Ginsparg 1977), and a traces and examples expert [Phillips
1977). Tile dlialogue is guided by a moderator (developed by Louis Steinberg). Tile
interpretation process is supoorted by a domain expert. A domain module for concept
formation programs is being, developed by Ronny van den Heuvel. Tile model builder
[McCune 1977) assimilates tile information gathered by the other modules and
produces a complete and consistent description (in abstract terms ) of the desired
program. This description, referred to as a program model, is the output of the
acquisition phase. During the synthesis phase, tile coder and eff ic i ency expert



Page 176 Section 10

jointly determine a program that implements the program model. The basic purpose of
the coder is to suggest alternative implementation tecllniques. The efficiency
expert [Kant 1 977) selects the most efficient from among the possibilities.

As tile coder , PECOS interfaces primarily Witil two of these modules , the model
builder and the efficiency expert.

10.1. Interface with the Model Builder

The program model Provides tile interface between the model builder and the coder.
Tile model Is described using wilat is essentia lly a high-level language for symbolic
conlputation. Not surprisingly, tins language is closely related to PECOS’ s
specification language. TIle data structures available include collections and
mappings. The standard operations for such structures are available , as well as such
operations as computing tu e illVerse of a mapping and performing a given operation
for every member of a collection that satisfies some predicate. Most of the data
structures and operations were described in sectiOll 6.

When the coder is given a program model to be implemented , a simple translation
process is required to map the model builder ’s structure into a form suitab le for use
by PECOS. I ile most interesting aspect of this process is the fact that program
model statements are translated into rules expressed in tile same language as that
used fot PECOS’ s other rules. Tile main al goritllm is translated into a REF~ rule for
refining the special cOllcept USER /TOPNODE. When PECOS is initialized, tlle first
proclranl dleScriptioll consists of a single USER/TOPNODE node (node 1) and the first
task is (REFINE 1). Thus, when considering this task, tile only rule that is applicable
iS tile one d erived from the program model and it is applied. Some of tIle nodes
create d by it have concepts tllat are named for tile various data structure types
declared in the pro~irani model. These are refined by rules that are der ived from
each data structure declaration in the model. Procedure declarations are also
mapped into SUCI1 refinement rules , and procedure calls are refined in the same way
that ally other operation is refilled. In effect, the procedure declaration facility
provides a way for tile user to expand tile set of operations available ill tile model
language. PECOS currently has no facility for actual ly Constructing separate
procedures , so each procedure call (just like any other operation) is expanded “in
line ,” essentially in the manner of a macro. A useful extension would be tile addition
of a facility for writing separate procedures.

10.2. Interface with the Efficiency Expert

Two rather different paradigms for the interface between tile coder (PECOS) and the
efficiency exi)ert (LIBRA) have been tried72. The first paradigm is illustrated below:

72 Both were developed jointly with Elaine Kant. 

—~.- — ____-s- . — -‘ — —- —- -- -~ ——- —---—- -- --- -



- -

interface with the PSI Page 177

Program —p Coder 1 —* Target
Model PECOS 

I 

Program

H 

A 
-

analysis
language ordered

descriptions set of
of altern atives

alternat ives -

Eff ic iency Ex port
LIBR/ ~

Under tIlis paradigm , PECOS and LIBRA were viewed as processes communicating
through messages. Whenever PECOS was faced with a choice , each rule would be
applied and efficie ncy-oriented descript ions of tile results would be sent to LIBRA ,
which would analyze each on tile basis of efficiency considerations and return a
preferred ordering of the alternatives. PECOS would then continue the refinement
path 01 the preferred alternative. Several problems were encountered w ith this
approach. Tile primary problem was that tile bandwidth of tile message-oriented
communication path was too low for efficient use. The derivation of the
“efficiency-oriented” descriptions was quite expensive and the descriptions
themselves were rather large. Additional problems included difficulty in determining
WlliCil choice Point to consider next and tile necessity of embedding parts of the
efficiency expert within PECOS (for example , heuristic techniques for choosing from
among alternative rules without going through the relatively expensive process of
applying eacil and analyzing the results). These considerations are discussed in
more detail elsewhere [Barstow and Kant 1976].

The second (and current) paradigm Is Illustrated below. 

--~~~~—-- .~----—,~~~~ ~~~~~~ ~~-



Page 178 Section 10

Efficiency Expert
LIBRA 

I

H I

tree refinement tree
exploration

and
rule / \

application
commands

U I
Program Coder Target

Model PECOS Program

Under tills paradigm , the refinement tree is viewed as a search space of partially
implemeiiteci programs (see section 9). By defining some efficiency measure for tile
implementations, tile space may be searched for the leaf that minimizes tllat
measure. PECOS provides the capability of constructing tile space aild LIBRA guides
tile exploration of that space , deciding whicil branches should actually be
constructed and followed. Here , the refinement tree itself is tile major
communication mechanism . with LIBRA sendhincj various tree exploration and rule
application requests to PECOS for execution. In each cycle , LIBRA considers the
refinement tree and selects a particular program description for further expansion.
One of tile tasks for that program description is chosen for considerat ion 73. PECOS
is then asked to work on that task in an appropriate fashion. Working ~n tile task
may involve retrieving and testing relevant rules , gathering bindings for a rule , or
applying a rule. in aciriition, PECOS may be asked to split refinement paths at a given
program description in the tree. In essence , LIBRA explores a tree for which PECOS
is a “legal move generator. ” Tills approa ch allows a mucil higher rate of
communication between the two experts , since ea ch has ac cess to tile entire
refinement tree. Note also that LIBRA is allowed considerably more freedom ill

determiriillg path s to follow or suspend and tasks to consider or delay than was
possible in the first paradigm. Detailed explanations of tile techniques used by LIBRA
to select paths and tasks are available elsewhere [Kant 1977, Barsto w and Kant
1976).

~ The elficiency expert uses a task structure that Is similar to (but considerably
more complex tllan) that discussed in section 5.1. 

--— —-~~~~—-~~~~ -
~~~~~~ --


Page 179

11. EXPERIENCE WITH BUILDING A RULE-BASED SYSTEM

Developing PECOS has been an experime ntal process. Wllole sets of rules have
been tried and dliscarded. Several different conceptual frameworks have been used
Wit il varying degrees of success. Tile current implementation is the third, and it
certainly iSll ’t superior to the first two in all respects. In the hope that something
can be learned from the development process itself , several aspects of the process
will be discussed ill this section. The views presented are very subject ive and
based primarily on one person ’s experiences in developing a rule-based system for a - :
single task. No further generality can be claimed , but discussions such as these may
facilitate tile developnlent of other rule-based systems.

Two assumptions are central to this section:

The pr im ary goal is the development of a system to perform a certain (asl< .
In PECOS’ s case , the task was tile implementation of abstract algorithms.
it is irliportali t to distinguish this goal from that of “ex perim ent i ng w i th a
scheme for representing knowledge.” Both are legitimate research goals ,
but they lead ill different directions. In tIle task—specific case, 0110 must
keep in nlindl the fact that it may eventually be useful to try to apply tile
knowledge to a different task , and therefore guard against overly

• specialized representations. In tile representation-oriented case, tile
principal danger is that tile representation may not be useful ill real—world
applications.

It has been decided to encode domain- specifi c linowledge in some Ic/nd of
rule form. In PECOS’s case, this decision was based on the observation
th at “programmers seem to know a lot about programming. ” Tile
advantages and disadvantages of rule-based systems are discussed
elsewhere [Davis and King 1977). TIlls section focuses on the process
after sucll a decision has been made.

11.1. On developing a rule base

There are basically three aspects to tile development of a machine-useable rule
base for a specific task.

Explicating the /cno wledge. The emphasis ilere is on identifying “what” is
to be represented , rather than “how” to represent it. In PECOS’ s case ,
the informal “English” form s of the rules niake up this stage. For most
domains , such an attempt to find some kind of order or structure in tile
domain is a far from trivial task. Mucil of tile work involves identifying
domain-specific concepts that are often not apparent at first glance. In
PECOS, for example , two key identifications were the enumeration
structure (with an enumeration order and a state-saving scheme) and the
notion of a sequential collection.

Page 180 Section 11

Establishing a conceptual framework. In contrast with the first aspect ,
tills typically comes “ill a flash of insight ,” when several pieces suddenly
fall together. With PECOS , this ilappened with tile recognition of tile
refinement tree structure.

Selecting a rule representation. Once a conceptua l framework and a
sample of informal rules are available , a rule representation can be
designed for theni. Principally , th is involves recognizing certain patterns
in the informal rules. In PECOS , this stage resulted in the formalism
dliscussed ill se ction 4.

Willie the development of tile rule base typically involves several iterations alld the
three aspects cannot be totally isolated from each other , they may IlOiletIleless be
considered somewhat separately. My experience with PECOS has led me to believe
that they should be considered in the order suggested above. lii part icular , t h e
explication of an “informal” body of rules is a vital first step and must be carefully
constructed to reflect the ideas and structures inherent in the task domain. In most
diomains , tllese ideas and stru ctures are not known a priori, but must be discovered
in a morass of knowledge that is available only informally or subconsciously. Since
any conceptual framework or rule representation carries with it a certain perspective
on the world, an attempt to use a particular framework or representation to explicate
the infornlal rules will force the same perspective on tile domain. Many
domain-specific concepts or structures may not be identified or even noticed.

“Our reality is merely one of many descriptions... , My insistence on
holdindJ on to my standard version of reality rendered me almost blind to
dlOll JuOll ’s aims.... One had to learn tile new description in a total sense ,
for the purpose of pitting it against tile old one , and in that way break the
dogmatic certainty , which we all share , that the val idity of our
perceptiolls , or our reality of the world , is not to be questioned. ”

- Journey to Ixtlan [Castaneda 1972]

In practice , tills guideline is very difficult to follow. Before each implementation of
PECOS , I resolved “to make a list of all tile necessary rules before designing a
representation. Yet I always fell short -- in eacll case I thought I knew the diomain
well enough after a few rules (ten or twenty) that I could design a representat io~land express tile rest of the rules formally. And I was always wrong -- in each case I
later discovered kinds of rules that could not be expressed conveniently.

Another important part of rule base development involves knowing when a rule is
“right” or “wrong”, Tile answer , of course , dlel)efl(lS Ofl tile particular task. It has
been suggcstcd i that tile appropriate “grain—size ” of a rule is whatever iluman
expert - can view as a single chunk (Lenat and Harris 1977]. I have found two
guidoliri~..s to be of particular value in the programmIng domain.

If a rule is very big when IL / s written down , it is probably wrong. There
is too much going Ofl ill the rule for it all to be included in a single place.

If two rules are similar , there may be a useful underlying c’.ncept.
Perilaps tile common aspects can be isolated in a separate ru~~.

- — —
-‘~~ ~~~~~~ ‘~~‘ ‘ -

Experience with building a rule-based system Page 181

While these guidelines are certainly not absolute, they have been very helpful in
developing PECOS’s knowledge base.

1 1.2. Representation and organization of a rule base

There are five specific representation aild organization techniques tllat greatly
faci litated PECOS’ s development.

An agenda mechanism with interruptible tasks

Agenda mechanisms permit experimentation with a wid e variety of control structures.
As mentioned in section 5.1, the switch from a one-pass to a two-p~ 3s algorithm took
o.lly about an hour ’s work. Tile flexibility was increased by allowing interruption of
ta~~ s ~-t certain specific points that did not require mucil of tile context to be
preserved. This interruptibility permitted, for example , the postponement of choice
points by interrupting a task as soon as it was discovered that more tllan one rule
was applicable.

Allowing rules to operate within rule conditions

PECOS’ s QUERY’- rules provide a v.’ay of using rules to determine whether particular
condiltions hold. This helped factor the knowledge base into smaller units and
facil i tated adding knowledge in t ile form of new QUERY.- rules. Without such a
facility, proilibitively many rules would have required modification for each sucil
addition. QUERY conditions can also be used as abbreviations in ruie conditions. Had
I realized tills earlier , I would have use i tile QUERY facility even more than I did.

Generalized subtasks

When rules are considered and tileir conditions checked , there may be suhtasks to
be acllieved. In most systems , a rule is selected and its subtas ks are then
coi-ssic iered . By contrast , PECOS generalizes tile tasks slightly to avoid premature
commitment to a particular rule. For exa mple, if a rule requires that a certain data
structure , X, be represented as a linked list , and X Ilasn ’t been reliii ~ d yet, tile
standard subtask would be to “refine X into a linked list.” In PECOS , this subtask is
generalized to “refine X.”

Separate categories of subtasks

Although PECOS’ s total separation of rule conditions into applicability and binding
parts seems a bit ponderous , th~ idea of separating subtasks into different
categories seems useful. It permits some tasks to be avoided completely (if their
“supertasks ” are achieved some other way) and other tasks to be ordered according
to any kind of priority scheme.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~
• 

~~
•. .



Page 182 Section 11

~ rule compiler

Each of PECOS’ s rules is automatically translated into several different forms (LISP
functions and discrimination net entries) that are then used in different ways. The
implementation of this rule compiler turned out to be much easier than I expected (it
only took a few weeks ) and it greatly increased PECOS’s efficiency.

11 .3. Problems and pitfalls

The biggest problem in developing PECOS’ s rule base was alluded to earlier : the
explication of the programming knowledge itself , as opposed to the way it was
represented. But there is little more that can be said about the problem except that
care should be taken when constructing the informal rule list.

Another major problem with building a rule-based expert system is that there are
subtle and hidden assumptions that arise from working on a particular task. For
example , the operation of “creating a new instance of an array ” is refined by
PECOS’ s rules into a call to the LISP function ARRAY. The sequence of rules implicit ly
assumes that arrays can be allocated dynamically and array pointers passed as
values of variables. This assumption didn’t become apparent until rules for SAIL were
attempted (Ludlow 1977]. In SAIL , arrays are allocated through declarations and
cannot be passed as variable values. Before the SAIL rules are finished, this
particular assumption will have to be dealt with. The problem of hidden assumptions
is probably unavoidable and the best defense is simply to be aware of its existence.

Another common problem is that rules once thought correct may later be found to be
applicable in incorrect circumstances. The conditions on the rules are not strict
enough. This problem occurred in PECOS’ s development when enough rules had been
added that two different refinement paths could produce similar (but not identical)
structure s. When this happened, rules intended to be applicable in only one were
applied in both. Solving the problem required adding conditions to some of the earlier
rules.

A separate problem arises when a rule should indeed be applicable in both cases
(because it is “correct”) , but for some reason ~c inferior to another that may be
applicable In one (or even both). Such a preference of one correct rule over another
is a good candidate for a choice-making heuristic.

Two specific problems arise when the knowledge base gets quite large. The first is
that the rule—writer (or user) begins to lose his or her understanding of tIle
knowledge base as a whole. There is no longer a coherent overview. The problem is
probably unavoidable , but simple organizational techniques help to deal with it. For
example , I kept the rule listings on several different files , each dealing with one
general topic , and named the rules based on these topics. More sophisticat ed
techniques may also be usefully applied. The TEIRESIAS system explored several
techniques for knowledge acquisition and explanation (DavIs 1976].



Experience with building a rule-based system Page 1 83

Tile other problem with large rule sets Is that tile rules may interact in unexpected
ways. The biggest surprise in developing PECOS’s rules came when PECOS
considered using a hash table to repre sent the array allocation part of an array
subregion. In retrospect , I should have guessed that this would happen, since all
that was required was some kind of tabular association of elements with Indices, but
it was nonetheless rather unexpected. Such unexpected interactions may actually
have a positive effect , since tile system may then be able to deal successfully with
a wider variety of situations. So this “problem” may not be a problem at all.

The final problem encountered in developing PECOS’s rule set deals primarily with the
rule base organization: in a very real sense the rules are not strictly independent.
As tile rule-writer , I am well aware of the fact that many rule conditions were written
with the specific purpose of insuring that some other particular rule had been applied
in a certain situation. (This occurs most frequently with operation refinement rules
that are conditional on a certain data structure refinement having been made.) When
that is the case , then perhaps it would be better to allow the rules to refer to each
oth er more directly. This is, in fact , one of the extensions that sh ould be made in
PECOS’s knowledge base organization -- a better facility for linking rules more
closely together.



Page 184

12. FUTURE DIRECTIONS

There arc severally potentially fruitful research directions suggested by the results
of this “experiment in knowledge-based automatic programming.” Some of these
involve direct extensions that could be made to the current Implementation. Others
involve representation and control issues that are central to the way PECOS
currently operates , so it is not clear how easily they could be directly incorporated74 .
Other research directions that are suggested involve the incorporation of other
techniques into the basic methodology and the application of the methodology to
other tasks.

1 2.1. Extensions

More readable output

Most of the programs produced by PECOS are relatively hard for people to read and
understand. Several extensions would help eliminate this problem. Most important is
a facility for commenting the code. The history of rule applications provides a fairly
complete documentation for a program and summaries of this history would be quite
useful as comments in tile programs themselves. Such a facility is one of the goals
of ~4”s planned explanation system (being designed and implemented by Richard
Gabriel). Another contribution to more “readable ” output would be a post-processor
that performed simple syntactic transformations. For example ,
(PROGN A (PROGN B) C) could be simplified into (PROGN A B C).

A constraint mechanism

Currently, rules can be applied only if all of tlleir applicability patterns are satisfied.
A useful extension would be to allow a rule to be applied In the case o~ an
incomplete match (see section 5.3). Tills could be done with a mechanism for
guaranteeing that tile conditions would be satisfied at some later time. One
technique would be to attach constraints to the subtasks returned by the incomplete
match. One major benefit of permitting premature rule application Is that certain
branciles “doomed ” to failure could be avoided. Suppose, for example , tilat task A
has a subtask B, and there are two rules for achieving B (say Bi and B2). However ,
there is only one rule for A, and it Is not applicable if 82 is applied to B. Without the
constraint mechanism (or any other form of guidance), B would be considered first ,
causing a split In tile refinement path. On the B2 branch, the attempt to achieve A
would fail. With a constraint mechanism , A could be considered first (on the general

7’~ In f act , research In those directions Is likely to suggest or confirm weaknesses
that need to be corrected; It would be naive to expect that the current
implementation would not require significant revision (or even a complete reaesign)
as the nature of these weaknesses is clarified.

L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 



r - r’
—

Future directions Page 185

principle of delaying choice points) and a constraint guarding against applying B2 to B
could be noted, thereby avoiding the B2 branch. Such pruning can be especially
significant when fairly long refinement sequences are considered. Experimentation
with a constraint mechanism in an earlier implementation showed just such a pruning
effect.

~ pattern definition facility

There are many common constructs that can only be described rather ponderously
with the current set of pattern types in the pattern matcher. For example , to
specify the creation of a node for the Boolean constant “True ”, tile following
expression must be used:

(1/NEW NEW-PRIMITIVE
(.-#RDS (#NEW PRIMITIVE

(-1/P SPECIFIER (QUOTE BOOLEAN))
(‘.1/P VALUE (QUOTE TRUE)))))

A simple macro facility could be used for such common constructs. For example ,
1/TRUE could be defined as the above pattern. While it would not add to PECOS’ s
capabilities, it would certainly simplify rule writing.

Short cut rules

Common sequences of rule applications could easily be collapsed Into a single rule.
PECOS currently has a few such “short cut” rules, and more could signiticantly
increase PECOS’s efficiency, as long as they didn’t interfere with the exploration of
useful alternatives. A very interesting possibility would be to try to acquire these
short cut rules automatically on the basis of observations about tile relative
fr equency of rule sequences.

12.2. Improvements and modifications

Procedure calls and recursion

Currently, PECOS cannot write programs with several procedures, nor can it
implement any inherently recursive algorithms (such as Quicksort). The addition of a
facility for writing procedure calls would be a welcome addition. One possible
mechanism would be to permit an operation (at some level of abstraction) to be
refined into a call to a procedure whose body was the action of some applicable
refinement rule. The trick, of course, would be in determining when this would be a
reasonable thing to do! 

~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


—~

Page 186 Section 12

Use of state information

IflfornlatiOn about the state of the computation Is currently used In only one specIfic
situation. When reniovinçj an element from a sequential collection, one rule tests
whether the location of tile clement is already known, If SO, tile search for the
location can be avoided. It Is clear that much more significant use of sucil state
information could be made. In some membership tests , for example , it may be
possible to prove that tile particular element can never be in the collection75. The
element removal exampie was not particularly easy to express in PECOS’ s formalism,
and it is not clear how much PECOS wou’d have to be modified to make it more
convenient to deal with state information.

Parallel representations

One interesting modification would be to permit the use of multiple , parallel
representations of data structures. Currently, tile only use of multiple
representations involves a sequence of different representations with conversions
from each representation to the next. Many interesting algorithms depend on parallel
representations. For example , If a collection is represented as both a Boolean array
and a linked list , botil membership testing and enumeration would be fairly efficient
operations. The biggest problem here is to insure that tile two data structures are
consistent: modifications to one must be made in parallel with modifications to the
other.

Representation of data flow

Currently, the only representation of data structure usage within a program is an
unordered list of operations that affect a given data structure 76. Both of the
previous two improvements would be facilitated by a more convenient mechanism for
clealinci with data flow. Knowing that a collection is input in one place , repeatedly
modified tllro&JcJh additions, enumerated once , and finally tested for membership
several times , for example , would make it much easier to decide to use both a list
and a Boolean array for that collection.

Dynamic rule development

One very interesting possibility would be the development of techniques for creating
“rules” dynamically as a particular refinement progresses. Work along this line would
soon get into the realm of alternative types of specification (e.g., input and output
assertions Instead of concept names). The problem, of course , is to figure out how

~ Of course, this raises the question of resource allocation: how much effort should
be expended on trying to determine whether or not the membership test will always
fail?

78 This list is maintained by PECOS primarily for use by LIBRA.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — - . ——-~~~~ ~~~~~~~~~~~~~~~~~~



Future directions Page 187

to create a rule given a specification for which no rule is applicable. In a sense ,
much of the classical work in automatic programming and plan development could be
applied to this problem. Given some specification of an action, if it could be
determined that some particular loop structur e would achieve the action, a rule that
refines the action into a LOOP node (with appropriate subparts) could be created, If
a rule is found tilat “almost” fits the specifications of some action, then it could be
debugged to produce a rule that is correct.

12.3. Codification of programming knowledge

One obvious extension of this work (and probably the most fruitful in the long run) is
the further codification of programming knowledge. In addition to verifying (or
rejecting) the utility of the knowledge-based approach, the knowledge itself could
be quite useful to human programmers.

Other aspects of programming

The knowledge embodied in PECOS’s rules deals with only a small part of symbolic
programming. Several different representations for collections (e.g., trees) and
mappings (e.g., discrimination nets and hash tables) are not covered. Many important
algorithms (e.g., different kinds of searching and more efficient sorting techniques)
remain to be codified. In addition , several aspects of SymI)OIic programming are not
touched by the rules at all. For example . information retrieval systems , graph
algorithms, pattern matching (and even rule-based systems) are all important
aspects of symbolic programming. In addition to symbolic programming, other domains
that could be considered include operating systems and concurrent programs , text
editors , compliers , and various types of numeric programs.

Other types of knowledge

The codification of knowledge about other tasks and domains is likely to uncover
other typos of programming knowledge than are apparent in PECOS’ s rule base.
Some of tile possibilities here are efficiency knowledge (such as tile heuristics that
play a major role in L1BRA) and temporal knowiedge (such as that involved in building
a structure from elements known to be arriving in a certain order). In addition,
inferential knowledge Is likely to grow in importance. For example , a very complex
inference cilain is needed to derive the standard one-pass search from a description
of the desired element as the largest in a collection (Green and Barstow 1977b3.

. -



~~lPI ~~~~
. 

~~~~~~~~
. ...

~~~~~
. .-- .- . .- - -.. . . 

,

.

Page 188 Section 12

12.4. Applications of programming knowledge

Given that one has a detailed explication of programming knowledge for a particular
domain, there are several applications other than program construction.

Compilers for high-level languages

in a very real sense , PECOS (with LIBRA In the synthesis phase of ~
,) is a compiler

for a iligil—level language. Tile principal features of this compiler are the variety of
implementations that it can produce and the ease with which more alternatives can
be added. This “compiler ”, however , is too slow and ponderous for use as anything
other than a research device. An interesting application of PECOS’ s knowledge base
would be the development of a compiler for a “real-world” application.

Program analysis

Another intere sting possibility is the use of that knowledge to “analyze ” program s
written by human programmers (i.e., understand tile purposes of parts of the code).
This line of researcll is being pursued by Rich and Shrobe (Rich and Shrobe 1976).

Program verification

The detailed nature of the explication should make it relatively amenable to use In
automatic verification. For example , the state-saving scheme of an enumeration is
closely related to the standard invariant for the enumeration loop.

Teaching

Perhaps the most intriguing application is in tile area of teaching. Altilough It would
certainly be overkill to force students to memorize the entire list of PECOS’s rules,
the structure Imposed by the rules could be very useful in clarifying some of the
issues involved in symbolic programming. For example , when running PECOS
interactively, I am usually for ced to consider more implementation alternatives than I
would think of when programming by hand, and the necessity of making an explicit
decision at each of the choice points helped me to understand the relatIve merits of
the different representations and algorithms. 

~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ _ _



~~~~~~~~~~~~~ 

Page 189

13. CONCLUSIONS

T u e  development of PECOS represents the final stage in an experiment investigating
a knowledge-based approach to automatic program construction. The essence of
this approach involves the identification of concepts and d ecisions involved in the
programming process and their codification into individual rules. These rules are then
represented in a form suitable for use by an automatic prc.gramming system for
application to a specific task. In PECOS’ s case , tile particular task was that of
implementing abstract algorithms in tile domain of simple symbolic programming. Let
us briefly review some of the results of this experiment.

As seen in section 2, the process of constructing an implementation for an abstract
algorithm involves considering a large number of details, It seems a reasonable
conjecture that sr,me kind of ability to reason at a very detailed level will be
required if a systt~m is to “understand” what it is doing well enough to perform the
complex tasks t iat wHI be required of future automatic programming systems.
PECOS’ s ah”~ty rn deal successfully with such details is based largely on it’ s access
to a large store of programming knowledge.

Several aspects of PECOS’ s representation scheme (as discussed in sections. 3, 4,
and 5) contribute to tills ability. First , the refinement paradigm has shown itself to
be a convenient framework for coping with the complexity and variability that seem
inevitable in real-world programs. Tile use of several levels of abstra ction seems
particularly important. Second, factoring the knowledge into relatively small pieces
enables these pieces to be applied in a variety of different situations. The small
grain size also facilitates the intelligent use of tile knowledge (e.g., by a
choice-mak ing mechanism) , 5IflCe tile pieces are more “understandable. ” Two
techniques that have been instrumental In achieving this factoring are the use of
intermediate level abstractions (sucil as “sequential collection”) and the
identifi c ation of unifying decisions (suc h as “state-saving scheme ”).

Tile rules presented in section 6 constitut e a detailed body of knowledge about many
aspects of symbolic programming. These rules deal primarily with collections and
mappings and ways of manipulating such structures , Including 8everal enumeration ,
sorting and searching techniques. Tile principal representation tecilniques covered
include tile representation of sets as linked lists and arrays (both ordered and
unordleredi ), and tile representation of mappings as tables , sets of pairs , property list
markings , and illVertedi mappings. In addition to these general constructs , many
low-level programming details are covered. Although tile rules were developed to
dleal with simple symbolic programs in the domain of concept formation , they have
been successfully applied in otiler situations as well , including aigoritilms for solving
the reachability problem in graph theory and for generating prime numbers. The
successful application of the rules in such varied domains , as well as the
experimental results of section 8, suggest that the rules have a fairly high degree of
generality.

Putting all of these together, we have the fundamental result of the PECOS
experiment: a demonstration that knowledge about a significant programming domain



Page 190 Section 13

can be expressed effectively In a machine-usable form. The requirement of
machine-usability Is a very strong one. Most knowledge about programming is
available only informally, couched in unstated assumptions. While such knowledge is
understandable by people, it lacks tile detail necessary for use by a machine. To a
significant degree , PECOS’s rules fill in some of the detail and tile unstated
assumptions. Taken together, the rules form a coherent body of knowledge that
imposes a structure and taxonomy on part of tile programming process; in effect,
they constitute a step toward the development of a science of computer
programming.

F 



- - - -~~

Page 191

References

[Balzer , Goldman and Wile 1977]
Balzer , R., Goldman, N., and Wile , D. Infor mality in program specifications.
Proceedings of the Fifth International Joint Conference on Art ificial
Intelligence , Cambr idge, Massachusetts , August 1 97 7, 389-397.

[Barstow and Kant 1976]
Barstow , D.R., and Kant , E. Observations on the interaction of coding and
efficiency knowledge in the PSI program synthesis system. Proceedings
of the Second International Conference on Software Engineering, San
Francisco, Ca lifornia , October 1976, 19-31.

[Bobrow and Winograd 1977)
Bobrow, 0. and Winograd , T. An overview of KRL , a Knowledge
representation language. Cognitive ScIence , 1, January 1977 , 3-46.

(Buchanan and Lederberg 1971]
Buchanan, B., and Lederberg, J. The heuristic DENDR/I L program for
explaining empirical data. IFIP, 1971, 179-188.

[Castaneda 1972]
Castaneda , Carlos. Journey to lxt lan: The Lessons of Don Juan, Simon
and Schuster , New York , 1972.

[DahI, Dijkstra and Hoare 1972]
Dahl , O.-J., Dijkstra , E.W. , and Hoare , C.A.R. Structured Programming ,
Academic Press , New York , 1972.

[Darlington and Burstall 1976]
Darlington, J. and Burstall, R.M. A system which automatically improves
programs. Acta informatica , 6, 1976 , 41-60.

(Davis 1976)
Davis, R. Applications of mets level knowledge to the construction ,
maintenance and use of large knowledge bases. Stanford University,
Computer Science Department , AIM-283, July 1976.

(Davis and King 1977)
Davis, A., and King, J, An overview of production systems , in Elcock , E. W.,
and Michic , D. (Eds.) Machine Representations of Knowledge , Ellis
Horwood Ltdi. and John Wylie , 1977 , 301-332.

(Davis , Buchanan and Shortliffe 1977]
Davis, R., Buchanan, B., and Shortliffe , E. Production rules as a
representation for a knowledge-based consultation program. Artificial
intelligence, 8, February 1977, 15-45.

L _



~~,_ ~~~~~~~~~~~~~~~~~ - r ~~~~~~-r~-- 
- -

Page 192 References

[Duda et al 1977)
Dudla , R.O., Hart , P.E., Nilsson , N.J., and Sutherland, G.L. Semantic network
representation for rule-based inference systems. Stanford Research
Institute , Menlo Park , California , 1977.

[Ernst and Newell 1969]
Ernst , G.W. and Newell, A. GPS: A Case Study in Generality and Problem
Solving, Academic Press , New York , 1969.

[Fikes and Nilsson 1971]
Fikes, R. and Nilsson, N. STRiPS -- a new approach to the application of
theorem proving to problem solving. Artificial Intelligence, 2, Spring
1971.

[Ginsparg 1977]
Ginsparq, J. A parser for English and its application in an automatic
programming sys tem. forthcoming Al memo, Stanford University, 1977.

(Green 1969]
Gre en, C.C. The application of theorem proving to question-answering
systems. Stanford UIlivers~ty, Computer Science Department , AIM-ge,
August 1969.

[Green 1976]
Green, C.C. The design of the PSI program synthesis system. Proceedings
of the Second International Coaference on Software Engineering, San
Francisco, California , October 1976, 4-18.

(Green 1977]
Green, C.C. A summary of the PSI program synthesis system. Proceedings
of the Fifth International Joint Conference on Artificial Intelligence.
Cambridge , Massachusetts , August 1917, 380-381.

[Green and Barstow 1975]
Green, C.C. , and Barstow , D.R. Some rules for the automatic synthesis of
programs , Advance Papers of the Fourth International Joint
Conference on Artificial Intelligence , Tbilisi, Georgia , USSR , September

— 1975, 232-239.

[Green and Barstow 1977a)
Green, C.C., and Barstow , D.R. A hypothetical dialogue exhibiting a
knowledge base for a program understanding system , in Elcock , E. W., and
Midhie , D. (Eds.) Machine Representations of Knowledge, Ellis Horwood
Ltd. and John Wylie , 1977, 335-359.

(Green and Barstow 1977b]
Green, C.C., and Barstow, D.R. Program synthesis knowledge for efficient
sorting. (in preparation).

-~~~~ --—-~ - - _m_.—_~ -— _-- -‘-.- -~ -~~~~ 
- -



- -r ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~r W  -

References Page 1 93

(Green et al 1974]
Green , C.C. , Waldinger , R.J., Barstow , D.R., Elsch lager , R., Lenat , D.B.,
McCune , B.P., Shaw , D.E., and Steinberg, L.I., Progress report on program
understanding systems. Stanford University , Computer Science
Department , AIM-240, August 1974.

[Gries 1977]
Gries , D. /l linear sieve algorithm for f inding prime numbers. Cornell
University, Department of Computer Science , TR 77-313, 1977.

[Hewitt 1972]
Hewitt , C. Description and theoretical analysis (using schemata) of
PLANNER: a language for proving theorems and manipulating models in a
robot. Massachusetts Institute of Technology, Artificial Intelligence
Laboratory , A l-T R-258 , April 1972.

[Kant 1977]
Kant , E. The selection of eff ic ient implementations for a high level
language. Proceedings of ACM SIGART-S IGPLAN Symposium on Artificial
Intelligence and Programming Languages , August 1977 , 140-146.

[Knuth 1 973]
Knuth , D.E. The Art of Computer Programming , Sorting and Searching
(vol . 3). Addison-Wesley, Menlo Park , California , 1973.

[Knuth 1977]
Knuth , D.E. The Art of Computer Programming, Combinatorial Algorithms
(vol. 4). Add ison-Wesley, 1977 (preprint).

[Lenat 1976]
Lenat , D.B. AM: an art i f ic ial  intelligence approach to discovery in
mathematics as heuristic search. Stanford University, Computer Science
Department , AIM-286 , July 1976.

[Lenat and Harris 1977]
Lenat , D.B., and Harris , G. Designing a rule system that searches for
scient i f ic  discoveries , to appear in Waterman , D.A. and Hayes-Roth, F.
(Eds.) Pattern-Directed Inference Systems , Academic Press , 1977.

[Liskov et al 1977]
Liskov , B., Snyder , A., Atkinson, A., and Schaffert , C. Abstraction
mechanisms in CLU. Communications of the ACM, 20, August 1977 ,
564-576.

[Low 1974]
Low, J. Automatic coding: choice of dc~ta structures. Stanford University,
Computer Science Department , A IM-242, August ~974.

.

~ 

..._£ _ . ~~ -j.-- ~~~~~~~~~~ . . i  ~~ 4M ~~~..SS~Ca ~~e&...a ...~~~~~~~~— -- .—~ — ~~. 
- _ .  -



-- 
- 
‘ 

- - - - -

Page 194 References

[Lu dlow 1977)
Ludlow, J. Masters Proje ct. Stanford UnIversity, 1977.

[Macsyma 1974)
The MA CSYMA reference manual , The MATHLAB Group, Massachusetts
Institute of Technology, September 1974.

[Mairson 1977]
Mairson, H.G. Some new upper bounds on the generation of prime numbers.
Communications of the ACM, 20, Sept ember 1977, 664-669.

[Manna and Waldinger 1977]
Manna , Z., and Wa ldinger , A. The automatic synthesis of recursive
programs. Proceedings of ACM SIGART-S IGPLAN Symposium on Artificial
lntclligeiv~e and Programming Languages , August 1977, 29-36.

[MCAP 1954]
Symposium on Automatic Programming f or Digital Computers.
Mathematical Computing Advisory Panel, Office of Naval Research ,
Department of the Navy, Washington, D.C., May 1954.

(McCune 1977]
McCunc , B.P. The PSI program model builder: synthesis of very high-level
programs. Proceedings of ACM SIGART-S IGPLAN SymposIum on Artificial
Intelligence and Programming Languages, August 1977 , 130-139.

[Phillips 1977]
Phillips, J. Program inference from traces using multiple knowledge
sources. Proceedings of the Fifth International Joint Conference on
Artificial Intelligence , Cambridge , Massachusetts , August 1977, 812.

[Reiser 1 976]
Reiser , J.F. (Ed.) SAIL Reference Manual. Stanford University, Computer
Science Department , AIM-289, August 1076.

[Rich and Shrobe 1976]
Rich, C. and Shrobe, H. Initial report on a LISP programmer ’s apprentice.
Massachusetts Institute of Technology , Al-TR-354 , December 1976.

[Robinson and Levitt 1977)
Robinson, 1.. and Levitt K.N. Proof techniques for hierarchically structured
programs. Communications of the ACM , 20, April 1977 , 271-283.

[Rovner 1976]
Rovn er , P.D. Automatic Represen tation Selection for Associative Data
Structures. The University of Rochester, Computer Science Department ,
TR iO , September 1976.

:



_____ - —  ~ .,-,——--— ——--- .--. 
- 
...—

~

References Page 195

[Ruth 1976)
Rut h, G. Intelligent program analysis. Art ificial Intelligence, 7, Spring
1976, 65-85.

[Sacerdoti 1975]
Sacerdoti , E.D. The nonlinear nature of plans. Advance Papers of the
Fourth International Joint Conference on Artificial Intelligence , Tbilisi,
Georgia , USSR, September 1975, 206-2 14.

[Schwartz 1975)
Schwartz , J.T. On programming: an interim report on the SETL project.
New York University, Courant Institute of Mathematical Sciences,
Computer Science Department , June 1975. -

[Shortliffe 1974]
Shortliffe , E.H. MYCIN: Computer-Based Medical Consultations , American
Elsevier , New York , 1976.

(Standish et a) 1976)
Standlisll , 1., Harriman , 0., Kibler , D., and Neighbors, J. The Irvine program
trans formation catalogue. University of California at Irvine, Computer
Science Department , January 1976.

[Sussman 1975]
Sussman, G.J. A Computer Mode) of Skill Acquisition, American Elsevier ,
New York, 1975.

[Teitelman 1975]
Teitelman, W. INTERLISP Reference Manual. Xerox Palo Alto Research
Center , Palo Alto, California, December 1 975.

[Thorelli 1972]
Thorelli, L.-E. Marking algorithms. Behandling lnformations—tids krift for
Nordisk , 12, 1972 , pages 565-668.

[von Henke and Luckham 1974]
“. Henke , F.W. and Luckham , D.C. Automatic program verif ication Ill: a
methodology for veri fying programs. Stanford University, Computer
Science Department , AIM-256, December 1974.

[Wilber 1976]
Wi lber , R.M. A QLISP Reference Manual. Stanford Research Institute ,
Menlo Park , California , 1 976.

[Winston 1975]
Winston, P.H. Learning Structural Descriptions from Examples. In Winston ,
P.H. (Ed.) The Psychology of Computer Vision, McGraw-Hill , 1 975.

_ _ _  _ _ _ _ _  

- - - - - j - - - — —  -~~~~~~~~~~ -~~~~~~~ —- - — -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



_ _ _  _ _ _ _ _ _ _  _ _ _  

:~~~~~~~~~~~~~~~~~
— ._T~ T~~T ~

Page 196 References

(Wirth 1971]
Wirth , N. Program development by stepw ise refinement. Communications
of the ACM , 14 , Apr Il 1971 , 221-227.

(Wuif , London and Shaw 1976]
WuIf W., London , R., and Shaw , M. An introduction to the construction and
verif ic ation of ALPHAAD programs. IEEE Transactions on Software
Engineering, December 1976 , pages 253-265.

(Zahn 1974)
Zahn, C.T . A control statement for natural top-down structured
programming, Symposium on Programming Languages , Paris , 1974.

~ 
-
~ -~i_~~

____ _.__~~ _ . __ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

__
~ i__ _

~ ~~~~~~ - - - ~~

Page 197

Appendix 1. CONDITIONS AND ACTIONS EXPRESSIBLE IN RULES

This appendix contains a complete list of the pattern types that may occur In
PECOS’s rules, Patterns are matched in the context of a “current expressIon.” The
current expression is held as the value of the special variable U. Many of the
pattern types rebind U before attempting any aubpatterns; U wil l be used to stand
for this value, except that In expressions like “rebinds U ...“ It wIll s tand for the
variable itself. Hopefully, there will be no confusion and the resulting pattern
descriptions somewhat easier to follow. Other notational conventions that will be
used are:

[x] will denote the result of evaluating x
x;:y will d enote the value of the y property of x

Included in the description of each pattern type are specifications of any variables
that are bound by such patterns , any expressions that must be checked for their use
of free variables , whether or not such a pattern could fail directly, and whether any
subtasks might be generated by such a pattern.

The patterns are divided into three categories, those that occur in rule conditions,
those that occur in rule actions, and several rather esoteric patterns that are
conceptually related although some appear in conditions and some in actions.

1.1. Pattern types in conditions

1.1.1. Conditions on nodes

All of these condition patte rns fail if the current expression (the value of U) is not a
node.

(#C pati pat2 ...)
Bound variables: none
Free expressions: none

Rebinds U to the concept of U and attempts to match the pat, .

Page 198 - Appendix 1

(?CONCEPT-CLASS class)
Bound variables: none
Free expressions: none
May fail at this level -

Succeeds if U Is a node whose concept has as Its class class.

(#RFF concept pati pat2 ...)
Bound variables: none
Free expressions: none
Possible subtask: (REFINE <most refined node for U))
May fail at this level

Succeeds If # , or any refinement of U, matches the concept and all of the pati. If
none of the refinements of U match, but there Is a sequence of rules that refines
the most refined node under U into a node that matches the concept, the subtask is
generated. Otherwise the match fails, concept must be either a <concept name)
or an expression of the form (?CONCEPT-CLASS class), where class is the name
of a concept class.

1.1.2. Conditions on node properties

All of these condition patterns fail if U is not a node. They all involve various ways
of checking conditions of properties of nodes.

(UP pname pati pat2 ,..)
Bound variables: none
Free expressions: none
Possible subtask: (PROPERTY pname U)

Rebinds U to #::pname and checks the pat,. The subtask is generated if the
property does not exist yet.

(#P* expr pati pat2 ...)
Bound variables: none
Free expressions: expr
Possible subtask: (PROPERTY [expr] U)

The same as UP except that expr Is evaluated to determine the name of the
property.

L - - _ _ _ _ _ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Conditions and actions expressible in rules Page 199

(UP/NIL pname pati pat2 ...)

Round variables: none
Free expressions: none

The same as UP except that if the propert y does not exist for U, a value of NIL isassumed, and no subtask is generated.

(#P /NOTNIL pname pati pat2 ..,)
Bound variables: ~~~~~
Free expressions: none
Possible subtask: (PROPERTY pname U)

The same as UP except that the match fails if the property ’s value is NIL,

(UP; var pati pat2 .,,)

Paramet er va riables: va r
Bound variables: none
Free expressions: none

Rebinds 1/ to the value of any property of U, and attempts to match the pat~. If the
match succeeds , returns a binding of var to the name of the property. This is one of
the pattern types that can succeed in several ways. Hence, var is considered to be
a parameter. (Oefore such an expression is added to an applicability or binding
pattern , the #P: is replaced by #P* so that such expressions may evaluate var to
determine the property being examined. This is, of course, invisible to the rule
writer. As far lie or she is concerned, UP: patt erns are simply patterns that can
succeed in several ways.)

(#RDS pati pat2 ...)
Bound variables: none
Free expressions: none
Possible subtask: (PROPERTY RESULT-DATA-STRUCTURE U)

Rebinds U to #::RESULT-DATA-STRUCTURE , and evaluates the pate. If the property
does not exist yet , the subtask is generated.

(#DS pname pati pat2 ,..)

Bound variables: none
Free expressions: none
Possible subtask: (PROPERTY pname U)
Possible subtask: (PROPERTY RESULT-DATA-STRUCTURE U: :pname)

Rebinds U to (1,t ::PIiame)::RESULT~DATA_STRUCTURE , and attempts the pat,. If
either property does not exist yet, the appropriate subtask is generated.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

- ~~~
“~~~

-
~~~~~~~~~~~ 

-

Page 200 Appendix 1

1.1.3. Queries

Queries provide a way of testing more complex conditions than are conveniently
expressible in other forms of patterns. Their prIncipal value is due to the tact that
the same query may be answered b~ any of several rules. Thus, th ey permit the use
of rules to test conditions. There is currently only one query pattern.

(?QUERY rel arg i arg2 ...)
Bound variables: #ANSWER
Free expressions: argu
May fail at this level
Possible subtask: (QUERY rel (argi] (arg2] ...)

The arg are eva luated) to deter mine the query shown above. If this query has
already been answered, the pattern succe eds and returns a binding of #ANSWE R to
the query ’s answer. Otherwise the subtask Is generated.

1.1.4. Conditions on various structures

As property vaIt~es may be structures other than nodes, there are pattern types that
test conditions on other structures.

(?#: expr )
Bound variables: none
Free expressions: none
May fail at this level

Succeeds if U is equal to sxpr.

(?# * expr )
Bound variables: none
Free expressions: .xpr
May fail at this level

The same as ?#~ except that expr is evaluated. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


Conditions and actions expressible In rules Page 201

(?#:/NOT expr)
Bound variables: none
Free expressions: none
May fail at this level

Succeeds if U is not equal to expr.

1.1.5, Conditions on lists

Frequently, a property value will be a list. The elements of such a list are often
nodes but they may be arbitrary structures. Several pattern types are available for
test ing conditions on such lists.

(#ALL.- var expr)
Bound variables: var
Free expressions: expr

For every element of U, rebinds U to that element and evaluates expr. Returns a
binding of var to the list formed by collecting the results of these evaluations.

(#ALL— var NIL pati pat2 ...)
Bound variables: van
Free expressions: none
May fail at this level

For every element of U, rebinds U to that element and attempts the pat.. If all
succeed then returns a binding of var to a top level copy of U.

(#ALL.- van var2 pat, pat2 ...)
Bound variables: van
Free expressions: none
May fail at this level

For every element of U, rebinds U to that element and attempts the pat . If all
succeed then returns a binding of van to the list formed by collecting the binding of
var~ determined while attempting the pate.

L

Page 202 Appendix 1

(#SUBSET ~. var expn)
Bound variables: var
Free expressions: expr

For every element of U, rebinds U to that element and evaluates expr. Returns a
binding of var to the list formed by collecting the non-NIL results of these
evaluations.

(#SUBSET.- var NIL pati pat2 ...)
Bound variables: van
Free expres sions: none

For every element of U, rebinds U to that element and attempts the pat,. Returns a
binding of var to a list of those elements for which the attempt succeeded.

(#SUBSET - van var~ pati pat2 ...)
Bound variables: van
Free expressions: none

For every element of U, rebinds U to that element and attempts the pate. Returns a
binding of van to the list formed by collecting the binding of var2 determined while
attempting the pat, for all values of U for which the attempt succeeded.

(?#ALL pati pat2 ...)
Bound variables: none
Free expressions: none
May fail at this level

For every element of U, rebinds U to that element and attempts the pat,. If all
succeed then the ?#ALL. pattern succeeds.

(?#NONE pat, pat2 s..)
Bound variables: none .

Free expressions: none
May fail at this level

For every element of U, rebinds U to that element and attempts the pat,. If none
succeed then the ?#ALL pattern succeeds.

L —.-~~~~~~~~~~~~ -~~-‘ — - - -~~~~~~~~~~~~~~~~~~ - ~~~ - - -~~~~~~~~~~~~~~~~~~~ -~~~-~~~~- . - -

--

Conditions and actions expressible In rules Page 203

1,1.6. Patterns on segments of lists

The patterns of the previous section dealt with Individual elements of lists. In
addition, there are pattern types for dealing with segments of lists. As a list has
many ways to be broken into segments , such patterns may succeed In several ways.
Hence, they are considered to be parameterized patterns , but this fact is again
invisible to the user and rule writer.

(?#: pati pat2 ...)
Bound variables: none
Free expressions: none
May fail at this level

Each of the pat must be an ELi or a SEG: pattern (see below). Attempts to find all
possible matches of the pat, with the value of U.

(#EL: var pati pat2 ...)

Parameter variables: var
I3oundJ variables: none
Free expressions: none
May fail at this level

Rebinds U to the first element of U and attempts the pat,. var is considered to be a
parameter for consistency with #SEG:.

(#SEG : var pati pat2 ...)

Parameter variables: var
Bound variables: none
Free expressions: none

Rebinds U to any segment (including the empty segment) of U and attempts the pat,.
var is considered to be a parameter since many segments may succeed.

1.1.7. Patterns that simply provide bindings

Sever al patterns always succeed and only return bindings. Note that several of the
patterns described above also return bIndings In addItIon to their other functIons.

—

~

. -

~

-—-.-— —-—

~

-“ — -~~~~~~~~~—--~,-,.‘-- ~ ~~ — - - ~----— -- — --------~ --—-——~~~~~-—- - .— - ._.___.fl_________I~~~~~~~~~~

__________________ ~~~~~~~~~~~~~~~~~~~

Page 204 Appendix 1

(~~.. var)
Bound variables: var
Free expressions: none

Binds var to the current expression (U).

(—.- van expr)
Bound variables: var
Free expressions: expr

Binds var to (expr].

(i- .- van varz pat , pat2 ...)
Bound variables: var
Free expressions: none

Binds van to the binding found for var2 after matching all of the pati.

1.1.8. Other pattern types

There are sever& other pattern types that do not fit easily into the above
categorization.

(#. expr pati pat2 ...)
Bound variables: none
Free expressions: expr

Rebinds U to (expr] and checks the pate. This provides a way of specifying
arbitrary values to be matched against.

(UNOT pat, pat2 ...)
Bound variables: none
Free expressions: none

Succeeds if the any of the pate fail to match the current expression.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



~~~~~~~~
_ _

~~~~~~~~

- -

Conditions and actions expressible In rules Page 205

1.2, Pattern types that appear In rule actions

1.2.1. Patterns that return pointers to nodes

All of these patterns return pointers to nodes. In addition, they rebind U to the node
before evaluating any subpatterns. Such subpatterns are usually used to attach
properties to the nodes.

(#NEW concept pati pat2 ...)

Bound variables: none
Free expressions: none

Creates a new node with concept concept, rebinds U to that node, and evaluates
the pate.

(#SAME expr pati pat2 ...)

Bound variables: none
Free expressions: expr

RebInds U to (expr] and evaluates the pSti. ThIs Is normally used when attachIng an
old node as a refinement of some other node,

1.2.2. Patterns that attach properties to nodes

(.-#P pname expr)
Bound variables: none
Free expressions: expr

Attaches the value of expr as the pname property to U (which must be a node).

(...UP* pname expr)
Bound variables: none
Free expressions: none

The same as ~#P except that expn Is not evaluated.

~~~~
p-

~~~~~~~~~ 



Page 206 Appe ndIx 1

(..#P/NOTNIL pname expn)
Bound variables: none
Free expressions: expr

The same as ‘-UP except that It is only done if (expr) is not NIL.

(~ #RDS expr)
Bound variables: none
Free expressions: expr

Attaches [expr) as the RESULT-DATA-STRUCTURE property of U.

1.2.3. Patterns that perform other kinds of computations

These were included in order to avoid the use of “arbitrary LISP expressions” in the
rules. (BU t I hereby confess to having included just such arbitrary expressions at
various times in rules that I have written.)

(#LOCAL— var)
Bound variables: var
Free expressions: none

Binds var to U.

(#LOCAL.- var expr)
Bound variables: var
Free expressions: expr

Binds van to the result of evaluating expr.

(#IF expri expn~ expr3)
Bound variables: none
Free expressions: expri, expr2, expr s

expr i is eva luated , If the result is non-NIL, then expr~ is evaluated. Otherwise
expr ~ is evaluated.



-- —~~~ —~~ —“— —w- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~
- .,-.- — —. _iT~

Conditions and actions expressible in rules Page 207

(#JOIN var expni expr2)
Bound variables: van
Free expressions: expni, expr~

expni is evaluated) and the result should be a list. This list is mapped down, bindi:, -i
var to each element. The results of evaluating expr2 for each value are joined
together and returned.

(#COLLECT var expni expr2)
Bound variables: var
Free expressions: expni, expr2

expri is evaluated and the result should be a list. This list is mapped down, binding
van to each element. The results of evaluating expr2 for each value are collected
into a single list which is returned.

1,2.4. Patterns that perform refinements

Note that this does not appear in any rule statement , but is rather implied by a rule
being a REF.- rule.

(-#REF expr)
Bound variables: none
Free expressions: expr

Attaches [expr] as a refinement of U.

1.3. Esoteric patterns

1.3.1. Patterns involving pairs of values

Frequently it I,as been found necessary or useful to have a way of associating two
values, usually in a list of such associations, where the list is the value of some
property of some node. While it would have been possible to use such LISP functions
as CONS, CAR, COR, and ASSOC to deal with such situations, a bias against allowing
arbitrary LISP cod e in rules has resulted In a set of patterns that can put together
and take apart such pairs. The objects dealt with are termed <pair>s and each has
two parts , termed the first part and the second part.

.---- —--- -- 
.- - . ~~ 

,

,

- 

--—
~~~~~~~~~~~~~~~~~~~ ~--— -,—--

~~~ 
_ _ _

~_a_-- ~~~~~~~~~ - ——-- --- ‘ - —



~~-~~~~ -—~~~~~~~ - ------ -~—-~~~~~ -~ -—-~~ ~~~~~~~~~~~~~~~~~~~~~~

Page 208 Appendix 1

(#PAIR name expr)
Bound variables: none
Free expressions: expr

Creates a <pair> from name and (expr].

(#PAIR ~ expri expr2)
Bound variable s: none
Free expressions: expni, expr2

Creates a <pair> from (expri] and [expr2].

(#FIRST /VALUE expr)
Bound variables: none
Free expressions: cxpr

expr is evaluated and result must be a <pair>. Returns the first part of [expr].

(#SECOND /VALUE expn)
Bound variables: none
Free expressions: expr

expr is evaluated and result must be a <pai r>. Returns the first part of [expr].

(#PAIRED* /VALUE expri expr2)
Bound variables: none
Free expressions: expri , expr2

expr~ is evaluated and the result must be a list of (pair>s. Returns the second part
of •‘In,nent of [expr2) whose first part is (expni].

(#PAIRED name pati pat2 ...)

Boundi variables: none
Free expressions: none

U must be a list of <pain>s. Rebinds U to that <pair> whose first part is name and
attempts the pat,.



-

~

-

~

— 
, —.--—,..

Conditions and actions expressible in rules Page 209

(#PAIRED* expr pati pat2 ,..)

Bound variables: none
Free expressions: expr

U must be a list of (pair>s. Rebinds U to that <pair> whose first part is [expr] and
attempts the pat,.

(�#FIRST pat, pat2 ...)

Bound variables: none
Free expressions: none

# must be a <pair). Rebinds U to the first part of U and attempts the pat,.

(#SECOND pati pat2 ...)

Bound variables: none
Free expressions: none

U must be a <pair>. Rebinds # to the second part of U and attempts the pate.

1.3.2. Global ass ociations

The use of <pain>s permits the use of local associations (associations within a
localized list of such associations). In many cases , it has been necessary to have
ways of making global associations. For example , it is useful to be able to refer to a
pa,t icular memory structure through such a global association on the label of it
memory unit. The patterns given below provide this facility.

(#GLOBAL~ var)
Bound variables: van
Free expressions: none

Sets up a global association identifier for U, and binds var to that identifier.

(#GLOBAL pati pat2 ...)

Bound variables: none
Free expressions: none

U must be a global association Identifier. Rebinds U to the associated value and
attempts the pat,.

L — __ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 



Page 210 Appendix 1

1 ,3.3. Pattern for the use of the efficiency expert

There are several pattern types that have been Included for the use the efficiency
expert. They are included here for completeness.

(#P/EFF ... )

There is a separate category of properties for the exclusive use of the efficiency
expert. This pattern is just like UP except that it deals with the efficiency
properties.

(.-#P /EFF ...)

,Just like .-UP except that it deals with efficiency properties.

(#GLOBAL.- /EFF ...)

There is also a global association list available to the efficiency expert. This pattern
is the same as #GLOBAL.- except that it deals with this special association list.

(UGLOBAL/ EFF ...)

Similarly, this deals with the effi ciency expert’s association list.

1.3.4. Patterns for use by other aspects of the system

There are also two other categories of patterns for use by the system. STATE
properties are intended for use in keeping track of the state of the computation.
SYS properties are intended for use in maintaining various back pointers required by
the system. Currently no rules use eIther of these kinds of properties.

(UP/STATE ...)

Same as UP but for the state properties. 

~ -~~~~~~~ -- -~~ --~~~~ -~~~- 




