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articles, comparatively little effort has been applied o

knowledge in{o machine-usable form. The research reported hgre has invol\;ecc’l ttm.a;

explication of certain kinds of programming knowledge to a sufficient le.vel of de :l

that it can be used effectively by a machine in the task of. constructm_g concrete

implementations of abstract algorithms in the domain of symbolic programming.

Knowledge about several aspects of symbolic programming ha§ bet_-zn exfpress;ledta.xs a
collection of four hundred refinement rules. The rules deal primarily with collections

and mappings and ways of manipulating such structures, including several -

enumeration, * sortiing and searching techniques. The pr!nciple : representation
techniques covered include the representation of sets as ln.nked lists and artrayi
{both ordered and unordered), and the representation of mappings as tables, set)s 7n
pairs, property list markings, and inverted mappings (indexed by range eleme}: X x
addition to these general constructs, many low-level programming .detalis ar
covered (such as the use of variables to store values).

7o test the correctness and utility of these rules, a computer system (called PECOS) |

has been designed and implemented. Algorithms are specified to PECOS inna
high-level language for symbolic programming. By repeatedly applying rules from its

xnowiedge base, PECOS gradually refines the abstract specification into a concrete '

impiementation in the target language. When sever'al rules are applicable irti tt':e
same situation, a refinement sequence can be split. Thus, PECOS can actually
coastruct a variety of different implementations for the same abstract algorithm.

PECOS has successfully implemented algorithms in several applicati?n domalns,

including sorting and concept formation,
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Despite the wealth of programming knowledge available in the form of textbooks and .
articles, comparatively little effort has been applied to the codification of this
knowledge into machine-usable form. The research reported here has involved the
explication of certain kinds of programming knowledge to a sufficient level of detail
that it can be used effectively by a machine in the task of constructing concrete
implementations of abstract algorithms in the domain of symbolic programming.

i Knowledge about several aspects of symbolic programming has been expressed as a s
collection of four hundred refinement rules. The rules deal primarily with collections
and mappings and ways of manipulating such structures, including several
enumeration, sorting and searching techniques. The principle representation
techniques covered include the representation of sets as linked lists and arrays
(both ordered and unordered), and the representation of mappings as tables, sets of
pairs, property list markings, and inverted mappings (indexed by range element). In
addition to these gencral constructs, many low-level programming details are
covered (such as the use of variables to store values).

To test the correctness and utility of these rules, a computer system (called PECOS)
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including sorting and concept formation, as well as algorithms for solving the
reachability problem in graph theory and for generating prime numbers. PECOS's
ability to construct programs from such varied domains suggests both the generality
of the rules in its knowledge base and the viability of the knowledge-based approach
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Although large amounts of programming knowledge are available to human

programmers in the form of books and articles, very little of this knowledge is
; available in a form suitable for use by a machin2 in performing programming tasks
automatically. The principal goal of the research reported here is the explication of
programming knowledge to a sufficlent level of detail that it can be used effectively
by a machine. The programming task considered in this experiment is that of
canstructing concrete implementations of abstract algorithms in the domain of
symbolic programming. Knowledge about several aspects of symbolic programming
has been expressed as a collection of four hundred refinement rules. The rules deal
primarily with collections and mappings and ways of manipulating such structures,
including several enumeration, sorting and searching techniques. The principal
representation techniques covered include the representation of sets as linked lists
and arrays (both ordered and unordered), and the representation of mappings as
tables, sets of pairs, property list markings, and inverted mappings (indexed by
range element). In addition to these general constructs, many low-level programming
details are covered (such as the use of variables to store values). =

—

To test the correctness and utility of these rules, a computer system (called PECOS)
has been designed and implemented. Algorithms are specified to PECOS in a
high-level language for symbolic programming. By repeatedly applying rules from its
knowledge base, PECOS gradually refines the abstract specification into a concrete
implementation in the target language. Currently, the target language is LISP (in
particular, a subset of INTERLISP [Teitelman 1975]). Preliminary experiments
indicate that PECOS can be fairly easily extended to deal with SAIL (an ALGOL-like
language) [Ludlow 1977]. PECOS has successfully implemented algorithms in
several application domains, including sorting and concept formation, as well as
algorithms for solving the reachability problem in graph theory and for generating
prime numbers.

1. INTRODUCTION

L

Since the rules embody programming knowledge about several different techniques
for implementing abstract constructs, PECOS can actually produce a variety of
implementations for a single abstract algorithm. The primary value of such variability
is that different implementations are appropriate under different circumstances.
Efficiency considerations (such as expected set sizes or even the cost function
itself) play a major role in the relative utility of different implementations.
Constraints on the representation of the input and output also influence the
suitability of a given implementation in a particular situation.

PECOS can be used under two different operational paradigms. In an interactive
mode, when more than one rule is applicable, the user is allowed to select which
should be applied (and, hence, which implementation will be constructed). For the
convenience of the user, about a dozen choice-making heuristics have been added
to PECOS. Experience indicates that these can handle about two-thirds of the
choices that typically arise. If a user is uncertain about which rule is "best" for his
or her purposes, PECOS can apply each in parallel, constructing a separate
implementation for each rule that is applied.




Page 2 Section 1

PECOS also operates as the Coding Expert of the PSI program synthesis system
[Green 1976]. In this role, choices between rules are made by an automated
Efficiency Expert (known as LIBRA) that incorporates more sophisticated techniques
than the simple heuristics mentioned above [Kant 1977]. The capability of
developing different implementations in parallel is used extensively in the interaction
between PECOS and LIBRA.

Although PECOS has been fairly successful, the long-term benefits of this research
lie not in this particular implementation, but more in the rules themselves, for they
help to formalize programming knowledge that has previously been available only
informally. The variability of the domains in which the rules have been successfully
applied indicates a fairly high degree of generality in the rules.

1.1. Guide to the reader

The rest of section 1 provides a general introduction to knowledge-based automatic
programming. Section 2 is a concrete example of PECOS in operation. These
sections set much of the stage for the rest of this thesis.

Sections 3, 4, and & provide more detailed discussions of PECOS's
refinement paradigm, rule representation, and control structure. While such details
are central to the operation of any rule-based system, these three sections can be
skimmed without loss of continuity. In particular, later sections do not depend on
learning the conventions of the rule representation.

Section 6 presents a detailed discussion of the heart of the PECOS experiment:
a knowledge base of programming rules. Taken together, these rules constitute a
detailed codification of knowledge about several different aspects of symbolic
programming. While the entire rule set may exceed the casual reader's interest, it is
hoped that individual subsections wili be useful to those concerned about particular
programming topics. Most of the rules are independent of the fact that PECOS's
target language is LISP and can be understood without knowing LISP to any great
detail. Programming experience in some language, however, certainly contributes to
an understanding of the details included in the rules.

The next few sections are intended to characterize the rules and the kinds of
programs they can successfully deal with. Section 7 presents a representative
sample of the programs that PECOS can handle. Section 8 presents the results
of several experiments designed to show how PECOS's capabilities changed as the
knowledge base was increased. These sections are relatively important for
understanding what part of programming has been codified and what part has not.
Section 9 presents a short discussion of the nature of the refinement trees
generated by PECOS's rules.

PECOS was developed as one of the modules of the PSI program synthesis system,
and section 10 contains a discussion of the interaction between PECOS and PSI.
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The last three sections summarize the results of this experiment. Section 11 is
a retrospective discussion of my experiences in building a rule-based system for
automatic programming. Hopefully these lessons will be of value to those readers
interested in building their own rule-based systems for other tasks. Section 12
discusses some directions for further research suggested by this work. Finally,
section 13 summarizes the conclusions that can be drawn from the PECOS
experiment.

The appendix contains a complete list of all of the constructs available in PECOS's
pattern matching facility.

1.2. Knowledge-based computer systems

The role of task-specific knowledge has become increasingly important in recent
artificial intelligence work. MACSYMA, for example, emhodies very large amounts of
knowledge about mathematics and symbol manipulation [Macsyma 1974]. DENDRAL
and MYCIN both depend on large coilections of rules characterizing aspects of
chemistry and infectious disease [Buchanan and Lederberg 1971, Shortliffe
1874]. AM uses several hundred specific heuristics to expand on its core of
knowledge aboul elementary mathematics [Lenat 1976]. The central feature of all
of these systems is that their performance is based not on their application of a few
general principles, but on their access to large amounts of task-specific knowledge.

The basic methodology involved in developing such systems is to express knowledge
about the system's task in a machine-usable form. One form that has been used with
some success is the separation of the knowledge into relatively small, identifiable
chunks!. One of the primary benefits of using such a form is the relative ease with
which the knowledge base can be changed: new chunks can be added and old
chunks changed2. Another benefit is the possibility of using the same knowledge for
several different purposes (e.g., both forward- and backward-chaining). A third
benefit comes from the potential for the system to explain its own actions so that
human users neced not take its conclusions on blind faith [Davis 1976]. Finally, the
existence of identifiable chunks of knowledge about a particular domain can be of
value to human experts in the domain by suggesting ways of stating and organizing
knowledge that has often only been available informally. For example, geologists
have expressed a great deal of interest in PROSPECTOR's knowledge base [Duda et
al 1977]. Perhaps the central issue here is one of accessibility -- expressing
domain-specific knowledge as small chunks makes it accessible for a variety of
purposes.

1 A separate issue concerns the way that such chunks are organized in the
knowledge base.

2 While this oversimplifies the situation somewhat, experience with such systems has
been relatively successful in this regard (e.g., MYCIN [Davis, Buchanan and
Shortliffe 1977]).
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1.8. Knowledge-based automatic programming

The PECOS experiment has been an application of this knowledge-based approach to
the development of an automatic programming system. The primary kind of
knowledge involved is knowledge about the process of designing data structures and
algorithms. The principal method used to identify this knowledge has been to
examine particular algorithms, programs, and representation techniques and to try to
identify the individual reasoning steps involved in their design. The knowiledge
involved in making such steps is then the knowledge to be codified into
machine-useable form: each step is reflected by a single rule. A representative
sample of these rules is presented below (in English, for the sake of clarity):

e e e

A sequential collection may be represented as a linked list.

If a linked list is represented as a LISP list without a special header
cell, then a retrieval of the first element in the list may be
implemented as a call to the function CAR.

If a linked list is represented as a LISP list without a special header
cell, then a test of whether an item is stored in an element cell of the ‘
list may be refined into a call to the LISP function MEMBER.

If the enumeration order is the same as the stored order of a
collection, then the state of the enumeration may be saved as a
location in the collection.

A collection may be represented as a mapping from items to Boolean
values.

If an element X was determined by retrieving the element at location L
of a sequential collection C, then L is the location of X in C.

Note that the rules deal with specific, detailed aspects of symbolic programming.
Note also that the rules are defined using specific programming concepts rather tiian
in terms of goals or transformations on world models. The LISP function MEMBER is
described explicitly as a way of testing whether an item is stored in an element cell
of a linked list, rather than in terms of an output predicate defined over objects
satisfying an input predicate. Another feature of the rules is that they explicitly
mention decisions that are often only implicit in the final implementation. For
example, "enumeration order" refers to the order in which elements of a stored
collection are enumerated. An implicit part of a decision to trace down successive
links in a list is a decision that the stored order of the list is the desired enumeration
order.

Perhaps the greatest single benefit of the use of "small" rules is that the knowledge
embedded in such rules can be applied in a variety of situations. As a simple
example, consider the derivations of an enumerator over an array and an enumerator
over a linked list. Many of the reasoning steps are shared by the two derivations.
] By breaking the derivation down into simple steps (as opposed to having two large
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rules, one for each derivation), the knowledge relevant to both derivations need not
be repeated. This breakdown has been achieved primarily through the use of
intermediate-level abstractions. For example, a "sequential collection" is more
concrete than a collection and more abstract than a linked list or array. Most of the
enumeration rules operate at the level of sequential collections.

Such a use of abstractions has recently been applied in several other areas.
Verification systems, for example, have recently begun to incorporate the use of
abstractions [von Henke and Luckham 1974, Robinson and Levitt 1977].
Abstraction is a key element in such languages as ALPHARD and CLU [Wulf, London
and Shaw 1976, Liskov et al 1977]. The major reason for the use of abstractions
is that they help to reduce the complexity of large programs. Abstractions enable
systems (or people) to concentrate on important aspects while ignhoring minor details.
The use of abstractions in PECOS shares this motivation.

1.4. Program construction through gradual refinement

As noted earlier, through the successive application of its rules, PECOS gradually
refines the original abstract specification into a concrete LISP implementation. The
process may be viewed as the construction of a sequence of program descriptions.
The first description in the sequence represents the abstract specification and the
final description represents the concrete implementation. Each rule application
produces the next description by adding a small amount of detail. While constructing
such a sequence, there will be many situations in which more than one rule is
applicable. Under such circumstances, PECOS can apply each rule separately,
causing the refinement sequence to split into several sequences. Thus, PECOS can
actually construct a refinement tree in which each path from the root to a leaf is a
refinement sequence. Each leaf represents a different concrete implementation of
the abstract algorithm represented by the root3.

Similar notions of refinement have recently gained importance in the area of
programming methodology. "Structured programming" and "stepwise refinement", for
example, are programming techniques based on the gradual refinement of program
statements until constructs available in the target language have been reached
[Dahl, Dijkstra and Hoare 1972, Wirth 1971]. Despite its success in human
programming efforts, relatively little work has been applied to its use in automatic
programming systems.

3 This space of alternative implementations is precisely the space explored by PSl's
efficiency expert.
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1.5. Approaches to automatic programming

The terin "automatic programming" has a long history. It was used as early as 1954
to refer to the development of programming languages [MCAP 1864]. More
generally, the term is used to describe attempts to automate various parts of the
programming process. Several approaches have been (and continue to be) used in
solving the problem.

1.6.1. Codification of programming knowledge

Although large amounts of programming knowledge are available to people in the form
of books and articles, comparatively littie work has been done on the codification of
this knowledge into machine-usable form. The one notable exception is the
identification and collection of optimizing transformations. Standish, for example, has
a collection of several hundred [Standish et al 1976]. Low's system, with its
knowledge of seven different representations, is one form of codified knowledge
about sets [Low 1974]. In related work, Rovner has identified several techniques
for representing associative triples [Rovner 1976]. Ruth todified some of the
aspects of simple sorting for the purpose of automating the analysis of student
programs [Ruth 1976]. The work presented here is, in part, a continuation of
previous attempts to codify knowledge about sorting [Green and Barstow 1975,
1977a, 1977b].

In their work on the development of a program analysis system as part of a
programmer's apprentice, Rich and Shrobe have codified some of the knowledge
involved in hash table programs, but their work has concentrated on representational
issues [Rich and Shrobe 1976]. They discuss similar notions of refinement and
knowledge base organization, although few details are given.

1.6.2. High-level languages

Another trend in programming methodology has been the development of high-level
languages incorporating Increasingly abstract constructs. SETL, for example,
includes various set operations [Schwartz 1976]. As such constructs have become
further abstracted from constructs available at the machine level, different
techniques for determining data structure representations and operation
implementations have been developed. Low's system, for example, used a
partitioning and hill-climbing technique to select the representation likely to be the
most efficient in a particular situation [Low 1974]. The most significant point for
comparison between Low's system and PECOS revolves around PECOS's use of
intermediate-level abstractions. While Low's system refines an abstract data
structure into a particular machine representation in a single step, PECOS's rules
might involve four or five steps, each corresponding to a separate abstraction level.
This use of abstractions helps to avoid one of the restrictions that Low's system was
forced to make: under certain circumstances the arguments to various set
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operations were forced to have the same representation so that the number of
conversion tables could be kept manageably small. In effect, the intermediate level
abstractions enable PECOS to write the table entries as they are needed, rather
than to keep them all stored.

1.6.3. Problem=-solving and theorem-proving approaches

Much work in automatic programming has involved the use of general purpose
theorem-provers and problem-sclvers. Programs are usually specified in terms of
input-output relations. For theorem-provers these are normally in the form of
predicates over the input and output variables. Problem-solvers normally accept
specifications in terms of initial and final (or goal) states expressed as assertions.
In both cases, the primitive operations available are described in similar terms. The
earliest work in probiem-solving involved determining a single sequence of operations
satisfying the input-output relation [Green 1969, Fikes and Nilsson 1971]. This has
led to various ways of planning through the use of intermediate subgoals (e.g., NOAH
[Sacerdoti 1975]) or programs that "almost" work (e.g., HACKER [Sussman 1976]).
As these systems have become more sophisticated, the general progression has
been away from general purpose inference systems and toward systems designed
specifically for program manipulation [Manna and Waldinger 1977, Darlington and
Burstall 1876]. Despite this trend, most of this work has been aimed at identifying
aeneral programming principles that are relatively domain-independent.

In a sense, PECOS and such problem-solving systems are aimed at different tasks.
PECOS assumes that the basic algorithm has already been determined, while the
problem-solving approach is aimed at determining an algorithm when such an algorithm
is not known. One could, in fact, imagine using such a problem-solver as a front end
for an implementation system like PECOS: the target language of the problem-solver
would be the specification language of the implementation system.

1.5.4. Program specification

A more central issue is that of program specification: what are the best ways for
human users to specify programs for an automatic programming system to write?
Experience suggests that different specification methods (e.g., input-output
specifications, high-level languages, examples and traces, natural language,
dialogue) are appropriate for different domains and even for different users [Green
et al 1974]. Various research projects are developing techniques for handling such
specifications. PSl's acquisition phase (see section 10) is aimed at allowing
either dialogue or traces. The SAFE system is aimed at using informal English
specifications [Balzer, Goldman and Wile 1977].
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2. A DETAILED EXAMPLE

In this section the use of programming rules to construct a particular program will be
illustrated. In order to focus on the nature of the rules and the refinement process,
the example will be presented entirely in English. The details of PECOS's internal
representations will be covered in sections 3, 4 and 5.

After a description of the abstract algorithm to be implemented, several specific
aspects will be discussed in detail. For each of these aspects, the abstract
description of that part of the algorithm specification will be presented. Then a
sequence of rules will be given, together with the refinements they produce in the
original description. The result of this sequence of rule applications will be a
concrete LISP implementation of the original abstract description.

One principal characteristic of these refinement sequences is the fairly small step
size: each step produces a description that is only slightly more specific than the
previous description. This is characteristic of the rules as well: each embodies a
rather small, detailed "piece" of programming knowledge. As suggested in the
introduction, one effect of this small rule size is that the knowledge embedded in the
rule can be applied in a variety of situations. This will be seen in the examples in
this section, as the same rules will be applied in several different situations.

2.1. The Reachability Problem
The example is based on a variant of the Reachability Problem [Thorelli 1972]:

Given a directed graph, G, and an initial vertex, v, find the vertices
reachable from v by following zero or more arcs.

The problem can be solved with the following algorithm:

Mark v as a boundary vertex and mark the rest of the vertices of G as
unexplored. If there are any vertices marked as boundary vertices,
select one, mark it as explored, and mark each of its unexplored
successors as a boundary vertex. Repeat until there are no more
bopndary vertices. The set of vertices marked as explored is the
desired set of reachable vertices.

Note that the algorithm's major actions involve manipulating a mapping of vertices to
markings. Based on this observation, the algorithm can be expressed at the level of
PECOS's specification lanquage. The following is an English paraphrase of the
specification given to PECOS when this example was run. (As a notational
convenience, X[Y] will be used to denote the image of Y under the mapping X and
X-1[Z] will be used to denote the inverse image of Z under X. Note that the inverse
image is a collection of domain elements, while the image is a single range element.)

At
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DATA STRUCTURES

VERTICES a collection of integers

SUCCESSORS a mapping of integers to collections of integers
START an integer

MARKS a mapping of integers to

{"EXPLORED", "BOUNDARY", 'I‘UNEXPLORED“}

ALGORITHM

VERTICES « input a list of integers;
SUCCESSORS « input an association list of integer, list of integers> pairs;
START « input an integer;
for all X in VERTICES:

MARKS[ X] « "UNEXPLORED";
MARKS[START] ~ "BOUNDARY";
repeat until MARKS-1["BOUNDARY"] is empty:

X « any element of MARKS-'["BOUNDARY"];

MARKS[X] « "EXPLORED";

for all Y in SUCCESSORS[X]:

if MARKS[Y] = "UNEXPLORED" then MARKS[Y] « "BOUNDARY";

output MARKS-1["EXPLORED"] as a list of integers.

The specification is abstract enough that several significantly different
implementations are possible. For example, MARKS could be represented as an
association list of <integer, mark> pairs or as an array whose entries are the marks.
The relative efficiency of these implementations varies considerably with several
factors. For example, if the set of vertices (integers) is relatively sparse in a large
range of possible values, then implementing MARKS as an array with a separate
index for each possible value would probably require too much space, and an
association list would be preferable. On the other hand, if the set of vertices is
dense or the range small, an array might allow much faster algorithms because of the
random-access capabilities of arrays. For the remainder of this discussion, it will be
assumed that the range of possible values for the vertices is small enough that array
representations are feasible. (When the example was run, a range of 1 to 100 was
specified.) Note also that concrete input representations are specified for VERTICES
(a linked list), SUCCESSORS (an association list), and START (an integer), and that an
output representation is specified for MARKS - '["EXPLORED"] (a linked list). These
constrain the input and output but not the internal representation. They are intended
to reflect the desires of some hypothetical user and PECOS could handle other input
and output representations equally well.

When PECOS was run on the Reachability Algorithm, there were several dozen
situations in which more than one rule was applicable. In most of these cases,
selecting different rules would result in the successful construction of different
implementations. As mentioned in the introduction, PECOS has a set of about a dozen
heuristics for selecting one rule over another. These heuristics were sufficient to
select a rule in about two-thirds of the choice points. In the remaining third, a rule
was selected interactively in order to construct the particular implementation.

/
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2.2, SUCCESSORS

One of the major data structures in the Reachability Algorithm is the SUCCESSORS
mapping. Under this mapping, the image of a vertex is the set of immediate
successors of the vertex:

SUCCESSORS[v] = { x | v+x in G}

SUCCESSORS is constrained to be an association list when it is input, but such a
representation may require significant amounts of searching to compute
SUCCESSORS[X]. Since this would be done in the inner loop, a significantly faster
algorithm can be achieved by using an array representation with the entry at index k
being the set of successors of vertex k. In the rest of this section, the derivation of
this array representation will be considered in detail.

2.2.1. Representation of SUCCESSORS

SUCCESSORS is a mapping of integers to collections of integers. This abstract
description may be summarized as shown below (an English paraphrase of PECOS's
internal representation):

SUCCESSORS:
MAPPING (integers » collections of integers)

The first representation decision for many abstract data structures is whether to
represent the structure explicitly or implicitly. An explicit representation for a
mapping involves indicating every <domain, range> pair explicitly. An implicit
representation is one in which, for example, the image of a domain element is
computed by some function. In this case, we will represent SUCCESSORS explicitly.
So we apply the following rule (again, an English paraphrase of PECOS's internal
representation):

A mapping may be represented explicitly.

The result of applying this rule is shown below:

SUCCESSORS:
EXPLICIT MAPPING (integers + collections of integers)

The second decision is whether to store the pairs in a single structure or to keep
them distributed in several structures (e.g., property list markings). Here we will use
a single structure, applying the following rule:
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An explicit mapping may be stored in a single structure.

with the following resuit:

SUCCESSORS:
STORED MAPPING (integers » collections of integers)

The next step involves selecting the type of structure to be used. There are many
possibilities here, including tabular structures, discrimination nets, and sets of
<domain, range> pairs. Applying the following rule:

A stored mapping with typical domain element X and typical
range element Y may be represented with an association table
whose typical key is X and whose typical value is Y.

gives us a tabular representation for SUCCESSORS in the inner loop4. The following
description results5:

SUCCESSORStable:
ASSOCIATION TABLE (integers » collections of integers)

The possibilities for tabular representations are dependent on the keys of the table.
In the case of SUCCESSORS1able, each key is an integer from a fixed range, so an
array representation can be used. The following rule is applied:

An association table whose typical key is an integer from a
fixed range and whose typical value is Y may be represented as
an array with typical entry Y.

and the following description results:

SUCCESSORSarray:
ARRAY (collection of integers)

4 This is one of the situations in which a rule was chosen interactively. The other
applicable rule is: A stored mapping with typical domain element X and typical
range element Y may be represented as a stored collection whose typical element
is a pair with DOMAIN part X and RANGE part Y. Had this other rule been applied,
one could have derived, for example, an association list representation.

5 Subscripts (as in SUCCESSORStable) will be used to distinguish between
representations at different refinement levels.
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The final step in the representation involves the selection of a particular data
structure in the target language. The following rule allows us to use the array
representation available in the LISP dialect being used (INTERLISP):

An array may be represented directly as a LISP array.

Thus, through the application of five rules, SUCCESSORS has been refined from the
abstract notion of a mapping into a particular concrete LISP representation:

SUCCESSORSiisp:
LISP ARRAY (collection of integers)

The next step is the representation of the objects to be stored in the array.
Through a sequence of about six rule applications, a LISP LIST representation is
developed. The sequence of rules is similar to that of the BOUNDARY set (see
section 2.4) and will be omitted here. Their result is the final description of
SUCCLSSORS:

SUCCESSORSIisp:
LISP ARRAY (LISP LIST (integer))

2.2.2. SUCCESSORS[X]

Determining the set of successor vertices for a given vertex involves computing the
image of that vertex under the SUCCESSORS mapping. The abstract specification of
this operation is:

compute the image of X under SUCCESSORS

The construction of the program for computing SUCCESSORS[X] follows a line parallel
to the determination of the representation of SUCCESSORS. The first rule is
dependent on the fact that SUCCESSORS[X] is represented as an association table:

If a mapping is stored as an association table, the image of a
domain element X may be computed by retrieving the table
entry associated with the key X.

Applying this rule produces the following description:
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retrieve the entry in SUCCESSORS1anie for the key X

Similarly, the next rule depends on the representation of SUCCESSORStable as an
array:

If an association table is represented by an array, the entry for
a key X may be retrieved by retrieving the array entry whose
index is X.

When this rule is applied, the following description results:

retrieve the entry in SUCCESSORSarray for the index X

Finally, a LISP-specific rule is applied:

If an array is represented as a LISP array, the entry for an
index X may be retrieved by applying the function ELT.

yielding the LISP code for this part of the program:

(ELT SUCCESSORSIisp X)

2.2.3. Converting between Representations of SUCCESSORS

Recall that the input representation for SUCCESSORS is constrained to be an
association list of <integer, list of integers) pairs. The description corresponding to
this representation is the following:

SUCCESSORSinput:
LISP LIST (CONS CELL (DOMAIN . RANGE))
DOMAIN: integer
RANGE: L/SP LIST (integer)

Since the input and internal representations differ, a representation conversion must
be performed. This occurs when the association list representation is input. The
original program description for the input operation is the following:
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SUCCESSORS « input a mapping (as an association list);

The following rule introduces the representation conversion:

If a mapping is input, its representation may be converted into
any other representation before further processing.

When this rule is applied, the following description is produced:

SUCCESSORSinput « input a mapping (as an association list);
SUCCESSORS « Convert SUCCESSORSinput

The construction of a program for performing a conversion is generally dependent on
both the initial and the final representations. In the case of the SUCCESSORS
mapping, the first rule shows this dependence on the initial representation:

If a mapping is represented as a stored collection of pairs, it
may be converted by considering all pairs in the collection and
setting the image (under the new mapping) of the domain field
of the pair to be the range field.

When the rule is applied to the convert operation, we have the following description:

For all X in SUCCESSORSinput:
set SUCCESSORS[X:DOMAIN] to X:RANGE

where X:DOMAIN and X:RANGE signify the retrieval of the DOMAIN and RANGE parts of
the pairs.

Since the pairs in SUCCESSORSinput are represented as CONS cells, the X:DOMAIN ar,
X:RANGE operations may be implemented easily through the application of one rule in
each case.

If a pair is represented as a CONS cell and field X is stored in
the CAR part of the cell, the value of field X may be retrieved
by applying the function CAR.

(CAR X)

If a pair is represented as a CONS cell and field X is stored in
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the CDR part of the cell, the value of field X may be retrieved
by applying the function COR.

(CDR X)

When these pieces of code are substituted into the previous description we have
the following:

For all X in SUCCESSORSinput:
set SUCCESSORS[(CAR X)] to (CDR X)

The implementation of the "set SUCCESSORS[(CAR X)]" operation is constructed by
applying a sequence of rules similar to those used for implementing SUCCESSORS[X]
in the previous section. The resuit of applying these rules is the following LISP code:

(SETA SUCCESSORSIisp (CAR X) (CDR X))

Substituting this into the "For all" construct, we have the following:

For ail X in SUCCESSORSinput:
(SETA SUCCESSORSIisp (CAR X) (CDR X))

We can now consider the derivation of the program for the "For all" construct. The
first rule to be applied is the following:

An opcration of performing some action for all elements of a
stored collection may be implemented by a total enumeration of
the eclements, applying the action to each element as it is
enumerated.

This rule effectively states that the action will be performed to one element at a
time (as opposed to some kind of parallel control structure). It results in the
following description:

Enumerate X in SUCCESSORSinput:
(SETA SUCCESSORSiisp (CAR X) (CDR X))
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The development of a structure for enumerating the elements of a stored collection
involves several considerations. The first decision is the determination of the order
in which the elements are to be enumerated. In many applications (such as sorting),
this order may be constrained to be relative to some particular ordering relation. In
this case, however, there is no such constraint, and the following rule may be

applied:

If the enumeration order is unconstrained, the elements of a
stored collection may be enumerated in the order in which they
are stored®.

The next consideration involves selecting some scheme by which the state of the
enumeration can be saved on each iteration. The following rule can be applied here:

If a stored collection is represented as a linked list and the
enumeration order is the stored order, the state of the
enumeration may be saved as a pointer to the list cell of the
next element?,

The derivation path now proceeds through several steps based on the particular
state-saving scheme chosen, including the determination of the initial state (a
pointer to the first cell), a termination test (the LISP function NULL), and an
incrementation step (the LISP function CDR). The end result is a loop approximated
by the following description:

STATE « SUCCESSORSinput;
loop:
if (NULL STATE) then exit;
X « (CAR STATE) ;
(SETA SUCCESSORSiisp (CAR X) (CDR X)) ;
STATE « (CDR STATE) ;
repeat;

The complete LISP code for this part is included in the listing of the final Reachability
Program in section 2.6.

6 This is actually a slight simplification; the complete rule also reflects a dependence
on viewing the collection as a "sequential collection". Sequential collections will be
introduced in the discussion of the BOUNDARY set in section 2.4.

7 This is also a simplification of a more general rule for sequential collections.
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2.3. MARKS

MARKS is tha principal data structure involved in the Reachability Algorithm. At each
iteration thvough the loop it represents what is currently known about the
reachability of each of the vertices in the graph:

MARKS[X] = "EXPLORED"

=> X is reachable and its successors have been noted as reachable
MARKS[X] = "BOUNDARY"

=> X is reachable and its successors have not been examined
MARKS[X] = "UNEXPLORED"

= no path to X has yet been found

In the rest of this section, E, B, and U will denote "EXPLORED", "BOUNDARY", and
"UNEXPLORED" respectively.

Note that the computation of the inverse image of some range element is a common
operation on MARKS. In such situations, it is often convenient to use an inverted
representation. That is, rather than associating range elements with domain
elements, sets of domain elements can be associated with range elements. In this
section, we will consider the derivation of such a representation for MARKS.

2.3.1. Representation of MARKS

MARKS is a mapping of integers to a collection of three elements, E, B, and U. The
abstract description for MARKS is as follows:

MARKS:
MAPPING (integers » {E.B,U})

The "inverted" option for mappings is available through the use of the following rule:

A mapping with typical domain element X and typical range
element Y may be represented as a mapping with typical domain
element Y and typical range element a collection with typical
element X.

Applying this rule gives the following description:

MARKSiny:
MAPPING ({E,B,U} » collections of integers)

IR PP IR TIPS,
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At this point, the same two rules that were applied to SUCCESSORS can be applied to
MARKSiny:

A mapping may be represented explicitly.

MARKSinv:
EXPLICIT MAPPING ({E,B,U} » collections of integers)

An explicit mapping may be stored in a single structure.

MARKSinv:
STORED MAPPING ({E,B,U} » collections of integers)

Again we are faced with the selection of the structure in which the mapping is
stored. In this case, we may take advantage of the fact that the domain is a fixed
set of known alternatives (E, B, and U) and apply the following rule:

A stored mapping whose domain is a fixed set of alternatives
and whose typical range element is Y may be represented as a
plex with one field for each alternative and with each field
being Y.

A plex is an abstract kind of record structure, consisting of a fixed set of named
fields, each with an associated substructure, but without any particular commitment
to the way the fields are stored in the plex. The description of MARKSpiex is then as
follows:

MARKSpIex:

PLEX (UNEXPLORED, BOUNDARY, EXPLORED)
EXPLORED: collection of integers
BOUNDARY: collection of integers
UNEXPLORED: collection of integers

Of course, the rules for manipulating mappings represented in this way must insure
that the three collections are mutually disjoint.

In LISP, the obvious way to represent such a structure is with CONS cells. The
application of several rules dealing with such cells yields the following S-expression
representation for MARKSpiex:
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MARK S;isp:
CONS CELLS (UNEXPLORED BOUNDARY . EXPLORED)
EXPLORED: collection of integers
BOUNDARY: collection of integers
UNEXPLORED: collection of integers

Notice that we are now concerned with three separate collections which need not be
represented the same way. In fact, since they are used for different purposes, it
may well be advantageous to represent them differently. The representations of
BOUNDARY and UNEXPLORED will be considered in sections 2.4 and 2.5. First,
however, we will look at some of the operations applied to MARKS.

2.3.2. MARKS-'["BOUNDARY"]

The first operation we will consider is the computation of the inverse image of B
under the MARKS mapping. The abstract description of this operation is as follows:

\

compute the inverse image of B under MARKS

With most representations for mappings, the computation of an inverse image can be
relatively complex, possibly including an enumeration of all domain elements. In the
case of MARKS, however, the mapping was inverted and the computation of the
inverse is quite simpled. The following rule allows us to take advantage of this
property:

if a mapping is represented as an inverted mapping, the inverse
image of a range element X may be computed by computing the
image of X under the inverted correspondcnce.

Applying this rule yields the following description:

compute the image of B under MARKSinv

The nexl refinement step for MARKSinv was the decision to use a plex to represent
the mapping. This is particularly useful if the domain element is known when the
program is being constructed, as is the case here. (The domain element is B.) The
following rule can then be applied:

- -

8 This is, presumably, the reason for inverting the mapping.
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If a mapping is represented as a plex, the image of a known
domain element X may be computed by retrieving the X field of
the plex.

This yields the following description:

retrieve the BOUNDARY field of MARKSpiex

The next two steps involve retrieving the field from the CONS cells used to
represent MARKSpiex. The result is the following LISP code:

(CAR (CDR MARKSiisp))

2.3.3. Change MARKS[X] from "BOUNDARY" to "EXPLORED"

One of the operations applied frequently to the MARKS mapping is to change the
image of a particular element. For example, after X (an element of
MARKS-1["BOUNDARY"]) has been chosen, one of the operations applied to X is the
following:

change MARKS[X] from B to E

The refinement rule of this operation is dependent on the representation of MARKS
as an inverted mapping.

If a mapping is represented as an inverted mapping, the
operation of changing the image of a domain element X from Y
to Z may be implemented by removing X from the image of Y
and adding X to the image of Z under the inverted mapping.

When this rule is applied the following description results:

remove X from MARKSinv[B];
add X to MARKSinv[E]

The removal operation will be considered in more detail after determining a
representation for the BOUNDARY collection.

T e v i
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2.4. BOUNDARY

BOUNDARY is the set of all vertices that map to B under MARKS. Since MARKS is
inverted, this collection exists explicitly and a representation for it must be
selected. The operations that are applied to BOUNDARY include the addition and
deletion of elements and the selection of some element from the collection. For such
operations, a linked list structure is cften convenient. In this sectior we will
consider the derivation of such a representation.

2.4,1. Representation of BOUNDARY

PECOS's internal representation for the description of BOUNDARY may be
paraphrased as follows:

BOUNDARY:
COLLECTION (integer)

As with mappings, the first decision is whether to use an explicit or an implicit
representation. In the case of collections, an explicit representation is one in which
each element is indicated explicitly. An implicit representation is one in which not all
elements have such an explicit indication. For example, upper and lower bounds on a

set of integers is an implicit representation. In the case of BOUNDARY, the following
rule will be applied:

A collection may be represented explicitly.

yielding the following description:

BOUNDARY:
EXPLICIT COLLECTION (integer)

Here again, the next decision is whether to keep all of the elements in a single

structure or to use some kind of distributed representation. Applying the following
rule:

An explicit collection may be stored in a single structure.

indicates a decision to store all of the elements together:

BOUNDARY:
STORED COLLECTION (integer)

- DR y——— b i st e - .
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The next step is the selection of a particular structure. One common type of
structure involves the use of some sequential arrangement of locations. Each
location contains one element in the collection. (Another common type is to a tree
structure.) The following rule can be applied:

A stored collection with typical element X may be represented
as a sequential arrangement of locations in which instances of
X are stored.

producing the following description:

BOUNDARYseq:
SEQUENTIAL COLLECTION (integer)

Note that there is no commitment to any particular way of achieving the sequential
arrangement. Both arrays and linked lists are reasonable aiternatives here. Applying
the following rule:

A sequential arrangement of locations may be represented as a
linked list.

commits us to the use of some kind of linked list:

BOUNDARYiist:
LINKED LIST (integer)

Again, there are still several possibilities. Under some circumstances, paraliel arrays
may be used, with one array containing the elements and one containing the links.
The following rule takes the alternative of using cells allocated from free storage:

A linked list may be represented using linked free cells.

The resulting description is as follows:

BOUNDARYcells:
LINKED FREE CELLS (integer)

It is often convenient to use a special header cell with such lists, so that the empty
list need not be considered as a special case. Applying the following rule:

A special header cell may be used with linked free cells.

enables us to make use of this technique:
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BOUNDARY elis:
LINKED FREE CELLS (integer) with special header cell

Any use of cells allocated from free storage requires allocation and garbage
collection mechanisms. In LISP, both are available with the use of CONS cells, so we
can apply the following rule:

Linked free cells may be represented using a LISP list of CONS
cells.

Thus, the concrete data structure selected for representing the BOUNDARY collection
is the following:

BOUNDARYiisp:
LISP LIST (integer) with special header cell

2.4.2. Any Element of MARKS-'["BOUNDARY"]

The main loop of the algorithm is repeated until MARKS-'["BOUNDARY"] (i.e., the
BOUNDARY collection) is empty. The action at each iteration involves selecting some
element from this collection. PECOS's representation of this operation may be
paraphrased as:

retrieve any element of BOUNDARY

Recall that one of the intermediate steps in the BOUNDARY derivation involved the
use of a sequential collection. The first refinement step for the "any" operation is
dependent on that step having been made. The relevant rule is:

If a collection is represented as a sequential collection, the
retrieval of any element in the collection may be implemented
as the retrieval of the element at any location in the collection.

Applying this rule yields:

retrieve the element at location L of BOUNDARY seq
L is any location
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The next step is then to select the location to be used. There are several
possibilities for sequential collections, of which the two most useful are the front and
the back. Of these, the front is generally best for linked lists; although the back can
also be used, it is usually less efficientS. The decision to use the front can be taken
by applying the following rule:

If a location in a sequential collection is unconstrained, the
front may be used.

which produces the following description:

retrieve the element at the front of BOUNDARY ist

The next step is dependent on the representation of BOUNDARY as linked free cells
with a special header cell. The appropriate rule here is:

If a linked list is represented using linked free cells with a
special header cell, the front location may be computed by
retrieving the link from the first cell.

When this rule is applied, we have:

retrieve the element from the cell indicated
by the link from the first cell of BOUNDARYcelis

The computation of the link can be implemented by applying the following
LISP-specific rule:

If linked free cells are implemented as a LISP list, the link from
the first cell may be computed by using the function CDR.

Once the cell has been determined, the computation of the element can be
implemented by applying the following rule:

If linked Vree cells are implemented as a LISP list, the element
at a cell may be computed by using the function CAR.

The result of these two rule applications, when combined with the code for computing
MARKSinv[B], is the following LISP code for computing "any element of
MARKS- [ "BOUNDARY"]":

..........

9 The selection of the "front" rule over the "back" rule for linked lists is one of the
choices made by PECOS's heuristics.
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(CAR (CDR (CAR (CDR MARKSiisp))))

2.4.3. Remove X from MARKSin/["BOUNDARY"]

Recall that one of the operations involved in changing the image of X from B to E is
the removal of X from MARKSinv[B]:

remove X from BOUNDARY

The first step in refining this removal operation is similar to that of the "any element"
operation:

It a collection is represented as a sequential collection, an
element may be removed by removing the item at the location of
the element in the collection.

When this rule is applied, the following description results:

remove the item at location L of BOUNDARY
L is the location of X

Normally, determining the location of an element in a sequential collection involves
some kind of search for that location. In this case, however, the location is already
known, since X was determined by taking the element at the front of BOUNDARY. The
following rule enables us to take advantage of this predetermined knowledge:

If an element X was determined by retrieving the element at

location L of a sequential collection C, then L is the location of
X inC.

Testing the condition of this rule involves tracing back over the steps that produce
the particular element X and determining that, indeed, the location of X in BOUNDARY

is the front. When this is done, the rule can be applied, and we have the following
description:

remove the item at the front of BOUNDARY

From this point on, the program construction process is relatively straightforward, and
similar to the "any element" derivation. The end result is the following LISP code:
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(RPLACD (CAR (CDR MARKSiisp))
(CDR (CDR (CAR (CDR MARKSiisp))))))

2.5. UNEXPLORED

The UNEXPLORED collection contains all of those vertices to which no path has yet
been found. The only operations applied to this collection are membership testing
and addition and deletion of elements. Note that each of these operations is applied
to some particular element in the collection. (By contrast, the selection of "any"
element of a collection does not have this property.) For such operations, it is often
convenient to use a different representation than simply storing the elements in a
common structure (as was done with the BOUNDARY collection). In particular,
UNEXPLORED will be represented as an array of Boolean values, where the entry for
index k is TRUE if and only if vertex k is in the UNEXPLORED collection.

2.5.1. Representation of UNEXPLORED

The initial description of UNEXPLORED is the same as that of BOUNDARY:

UNEXPLORED:
COLLECTION (integer)

One view of collections is simply as a mapping of items to Boolean values. An item
maps to TRUE if and only if it is in the collection. This possibility is available through
the use of the following rule:

A collection may be represented as a Boolean mapping.

The following description results from applying the rule:

UNEXPLOREDmap:
MAPPING (integer » {TRUE,FALSE})

Having decided to use a Boolean mapping, all of the rules available for use with
general mappings are applicable here. In particular, the same sequence of rules that
was applied t¢ derive the representation of SUCCESSORS can be applied here:

A mapping may be represented explicitly.




A Detailed Example

UNEXPLOREDmap:
EXPLICIT MAPPING (integers » {TRUE,FALSE})

An explicit mapping may be stored in a single structure.

UNEXPLOREDmap:
STORED MAPPING (integers » {TRUE,FALSE})

A stored mapping with typical domain element X and typical
range element Y may be represented with an association table
whose typical key is X and whose typical value is Y.

UNEXPLORED?1able:
ASSOCIATION TABLE (integers » {TRUE,FALSE})

An association table whose typical key is an integer from a
fixed range and whose typical value is Y may be represented
with an array with typical entry Y.

UNEXPLOREDarray:
ARRAY ({TRUE,FALSE})

An array may be represented directly as a LISP array.

UNEXPLOREDiisp:
LISP ARRAY ({TRUE,FALSE})

Thus, the final LISP representation of the UNEXPLORED collection is an
Boolean values, with the value being TRUE if the index is in the UNEXPLORED
collection and FALSE otherwise.

Page 27
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2,5.2. Remove Y from MARKSinv["UNEXPLORED"]

The implementation of the "change MARKS[Y] from U to B" operation involves
removing Y from the UNEXPLORED collection. Recall that removing an element from
the BOUNDARY set involved modifying one of the links in the list structure
representation. As UNEXPLORED is represented differently, removing an element will
require a different implementation. The abstract description is the same as in the
case of removing X from BOUNDARY.

remove Y from UNEXPLORED

The first refinement rule for this removal operation is based on the representation of
UNEXPLORED as a Boolean mapping.

If a collection is represented as a Boolean mapping, the
operation of removing an element X from the collection may be
implemented as the operation of changing the image of X from
TRUE to FALSE under the mapping.

When this rule is applied, the following description results:

change UNEXPLOREDmap[ Y] from TRUE to FALSE

The next refinement rule is dependent on the tabular representation of UNEXPLORED:

If a mapping is stored as an association table, the image of a
domain element X may be changed from Y to Z by storing Z as
the table entry for X.

(Note that this rule does not use the fact that the old image of X is Y; in tabular
representations, storing a value simply overwrites the old value.) When this rule is
applied, we have the following description:

store FALSE in UNEXPLORED1able as the entry for the key Y

The next rule depends of the representation of UNEXPLORED as an array:
If an association table is represented as an array, a value may
be stored as the entry for a key K by storing it in the array
under the index X.

Applying this rule, we have:
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slore FALSE in UNEXPLORED1able as the entry for the index Y

The last rule to apply here is a LISP-specific rule:

If an array is represented as a LISP array, a value may be
stored under an index X by applying the function SETA.

When this rule is applied, and the LISP representation of FALSE as NIL is used, we
have the final LISP code for removing Y from UNEXPLORED:

(SETA UNEXPLOREDisp X NIL)

2.6. Final program

The other aspects of the implementation of the Reachability Algorithm are similar to
those we have seen. The following is a paraphrase of the final program. (Here, X[Y]
denotes the Y!h entry in the array X and X:Y denotes the Y field of the plex X.)
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Reachability Program
VERTICES « input a list of integers;
SUCCESSORSinput « input an association list of <integer, list of integers> pairs;
SUCCESSORS «~ create an array of size 100;
for all X in the list SUCCESSORSinput:
SUCCESSORS[X:DOMAIN] « X:RANGE;
START « input an integer;
MARKS:EXPLORED « create an empty list with header cell;
MARKS:BOUNDARY « create an empty list with header cell;
MARKS:UNEXPLORED « create an array of size 100;
for all X in the list VERTICES: '
MARKS:UNEXPLORED[X] ~ TRUE;
UNEXPLOREDR[START] «~ FALSE;
insert START at front of MARKS:BOUNDARY;
loop:
if MARKS:BOUNDARY is the empty list then exit;
X « front element of MARKS:BOUNDARY;
remove front element of MARKS:BOUNDARY;
insert X at front of MARKS:EXPLORED;
for all Y in the list SUCCESSORS[X]:
if MARKS:UNEXPLORED[Y] then
MARKS:UNEXPLORED[Y] « FALSE;
insert Y at front of MARKS:BOUNDARY;
repeat;
output MARKS:EXPLORED.
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Below is given the final LISP code for the program, exactly as it was produced by

PECOS:

(REACH
{LAMBDA NIL
(PROG (V0030 V0031 V0032 V0033)
(PROGN (SETQ V0030 (PROGN (PRIN1 "Points:")
(READ)))
(SETQ V0031 (PROG (V0077 V0075 V0074 V0071 V0070)
(PROGN (PROGN (SETQ V0074 (PROGN (PRINI "Links ")
(READ)))
(SETQ V0070 (ARRAY 100)))
(SETQ V0077 V0074))
60079
[PROGN (SETQ V0075 V0077)
(COND
((NULL V0077)
(GO L0078)))
(PROGN (PROGN (SETQ V0071 (CAR V0075))
(SETA V0070 (CAR VOO7 1)
(CDR V0071)))
(SETQ V0077 (COR VO077}
(GO G0079)
L0078
(RETURN V0070)))
(SETQ V0032 (PROGN (PRIN| "Starting peint:")
(READ)))
[SETQ V0033 (CONS (ARRAY 100)
(CONS (CONS (QUOTE "HEAD")
(QUOTE NIL))
(CONS (QUOTE "HEAD")
(QUOTE NIL)
(PROG (V0040 V0038 V0037 V0034)
(PROGN (SETQ V0037 V0030)
(SETQ V0040 V0037))
60042
[PROGN (SETQ V0038 V0040)
(COND
((NULL V0040)
(GO L0041)))
(PROGN (PROGN (SETQ V0034 (CAR V0038))
(SETA (CAR V0033)
V0034 1))
(SETQ V0040 (CDR V0040]
(GO G0042)
Loo4t
(RETURN))
(PROGN [PROG (V0044)
(SETQ V0044 (CAR (CDR V0033)))
(RPLACD V0044 (CONS V0032 (COR V0044)
(SETA (CAR V0033)
V0032 NIL))

B
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G0066
[PROG (V0054 V0046)
(SETQ V0054 (CAR (CDR V0033)))
(COND
((NULL (CDR V0054))
: (GO L0045))
: (T (PROGN (SETQ V0046 (CAR (CDR V0054)))
3 (PROGN [PROGN [PROG (V004§
(SETQ V0048 (CDR (COR V0033)))
(RPLACD V0048 (CONS V0046 (CDR V0048)
(PROG (VOO51 V0052)
(SETQ VOO51 (CAR (CDR V(033)))
(SETQ V0052 V0046)
(RPLACD V0051 (CDR (CCR V0051]
(PROG (V0063 V0061 V0060 V0055)
(PROGN (SETQ V0060 (ELT VOO31 V0046))
(SETQ V0063 V0060))

60065 i
[PROGN (SETQ V0061 V0063)
(COND
((NULL V0063)
(GO L0064)))
(PROGN [PROGN (SETQ V0055 (CAR V006 1))
(COND
((ELT (CAR V0033)
V0055)
(PROGN [PROG (V0057)
(SETQ V0057 (CAR (CDR V0033)))
(RPLACD V0057 (CONS V005§ (COR V0057]
(SETA (CAR V0033)
V0055 NiL]
(SETQ V0063 (COR V0063]
(GO G0065)
10064
(RETURN)

R

(GO G0066)

L0045
[PRINT (CDR (CDR (CDR V0033]
(RETURN))
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3. A REFINEMENT MODEL OF PROGRAM SYNTHESIS

3.1. Refinement sequences

PECOS's organization and rule representation are based on a model of program
synthesis as gradual refinement. The process may be simply illustrated as a
sequence of program descriptions:

original partially concrete
abstract => refined = « e => |description
description description (program)

Each description in the sequence is slightly more refined (concrete) than the
previous description. The first is the program description in the specification
language and the last is the fully implemented program in the target language. Such
sequences will be referred to as refinement sequences and the individual
descriptions will be referred to as program descriptions. The modification involved in
deriving one description from the previous one will be referred to as a refinement
step10,

Note that the refinements at each step involve only very small changes to a
particular part of the program description. Although such small steps are not required
by the formalism, this is one ramification of the attempt to identify and isolate
individual programming decisions. To take a simple example, when PECOS implements
a membership test using the LISP function MEMBER, there are about a dozen
refinement steps, divided about equally between data structure refinements and
operation refinements. One could imagine producing such a simple function call in a
single step. Indeed, this may be appropriate for some uses. However, in so doing
numerous decisions are collapsed into a single step, thereby leaving many of them
only implicit in the fact that a particular implementation has been chosen. When one
decides to represent a collection using "the standard LISP list representation," one
is, in fact, implicitly making several interrelated decisions at once: that the collection
will be represented explicitly, that it will be stored in a single structure, that a
sequential arrangement of positions will be used to hold the elements, that links will
be used to connect positions, that cells from free storage will be used for the
positions, and finally that CONS cells will be used.

Another characteristic of PECOS's refinement sequences is that, in many cases, the
order in which particular refinement steps occur is unimportant. All that is necessary
is that each part of the original description eventually be refined to the most

----------

10 Section 2 presented several steps in the refinement sequence for the
Reachability Program. The entire sequence took almost a thousand steps.
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concrete level, the level of the target language. Frequently, separate parts are
independent enough that either may be refined before the other. However, there
may be a partial ordering on the steps. Typically, data structure refinements
precede the refinement of operations on them. Despite such partial orderings, the
refinements of particular data structures and operations on them occur as separate
steps. This is one of the features that distinguishes PECOS and its knowledge base
from most other refinement formalisms. For example, each ALPHARD form consists of
a data structure refinement and refinements for each operation on that data
structure [Wulf, London and Shaw 1976]. By de-coupling the refinements of data
structures and algorithms, greater variability in target programs can be achieved.

3.2. Refinement trees

In a typical refinement sequence, there are several steps where alternative
refinements can be made. Thus, the notion of a refinement sequence may be
generalized into that of a refinement tree, as illustrated below:
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original
abstract
description
partially
refined
description
partially partially
refined refined
description description
. 0 L )
L] . L] .
concrete concrete concrete concrete concrete
description description description description description
(program) (program) (program) (program) (program)

The root of such a tree is the original specification, the leaves are alternative
implementations, and each path is a refinement sequence.

An important feature of such trees is that all the nodes (program descriptions) all
represent "correct" programs'l. Each node represents a step in a path from the
abstract specification to some concrete implementation of it. When paths cannot be
completed (as happens occasionally), the cause is generally the absence of rules for
dealing with a particular program description, rather than any inherent problem with
the description itself. The fact that each path is correct greatly facilitates the use
of refinement trees as a space to be explored in search of the "best"
implementation. This topic is pursued further in section 9.

11 Assuming correctness of the rules, of course.
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3.3. Program descriptions

Each program description in a refinement sequence is reprasented with a semantic
network formalism. Each part of the program is represented as a node, labeled with
a particular programming concept, and a set of properties. For example, the following
represents a collection of integers:

COLLECTION

l element
INTEGER

With a few exceptions, the semantics of the property names depend solely on the
concept with which the node is labeled. For COLLECTION nodes, the element
property is a generic description of the elements of the collection.

A membership test operation is represented by an IS-ELEMENT node:

IS-ELEMENT

l resul t-data-structure

element

collection

The element and collection properties indicate the operands of this particular
operation. That is, the element property is the node for the operation whose result
is the item to be tested. Similarly, the collection property is the operation whose
result is the collection to be tested. The result-data-structure property indicates
the data structure which is the result of the IS-ELEMENT operation. In this case, it
would be a BOOLEAN node.

Result-data-structure properties play an important role in PECOS's program
descriptions: the node for any operation that produces some result must have such
a result-data-structure property. The result-data-structure property of an
operand specifies the data structure that is passed from that operand to the
operation. For example, the result-data-structure of the collection property of an
IS-ELEMENT node is the node of the collection data structure (as opposed to the
operation that produces the collection).

This may be clarified by considering the expression IS-ELEMENT(X,INVERSE(Y,Z))'2.

12 Mg X an element of the inverse image of Y under the mapping Z?"; in this example,
all primitives involved will be integers.
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Part of the node representation for this expression is given below:

IS-ELEMENT

[ resul t-data-structure
— | BOOLEAN

element

REMEMBERED-VALUE

tesult-data—structure

INTEGER

collection
— INVERSE

l resul t-data-structure

s

range-element

COLLECTION

' element

INTEGER

— | REMEMBERED-VALUE

tesul t-data-structure

mapping
‘\————— | REMEMBERED-VALUE

result-data-structure

INTEGER

— | MAPPING
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10

11

Node § is the collection operand of the IS-ELEMENT operation represented by node
1; that is, node 5 represents the expression whose value is the collection to be
tested. Node 6, the result-data-structure property of node 5, is the data structure
itself, in this case a COLLECTION of INTEGERs. Node 6 thus represents the data
structure passed from the INVERSE operation to the IS-ELEMENT operation. As will
be seen more clearly later, the fact that a single, particular node represents the
data structure passed from one operation to another helps to coordinate the final
implementations of the operations so that both are based on the same data structure

representation.
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Node 3 illustrates another way that data structures may be passed from one
operation to another. A REMEMBERED-VALUE node signifies that the data structure
to be used is computed elsewhere. Although such a data structure is frequently
passed as the value of a variable (as suggested by the presence of X in the English
expression), that need not necessarily be the case. For example, a value whose
computation is relatively easy and has no side effects may be recomputed rather
than stored.

Note that the collection represented by node 6 is not mentioned explicitly in the
original expression. Rather it is only implicit in the fact that an IS-ELEMENT
operation takes a collection as an argument and the fact that an INVERSE operation
produces one. The use of result-data-structure properties enables such implicit
data structures to be referenced explicitly in program descriptions.

In all of the above examples, property values have been other nodes. Although this
is frequently the case, property values may be arbitrary structures. For example, in
the description below (taken from the final description in a sequence), the value of
the arguments property is a list of nodes:

LISP-FUNCTION-CALL

MEMBER

I i function-name

I arguments
LISP-FUNCTION-CALL
L function-name
READ
arguments
- NIL
LISP-VARIABLE-NAME
[ variable-name
\ -+ V0817

This description corresponds to the LISP expression:
(MEMBER (READ) V0017)

Note that the program descriptions are oriented somewhat toward operations as
opposed to data structures. This is no doubt one of many subtle (and often
unconscious) effects of using LISP as the target language. One could imagine a
data-oriented style in which, for example, data paths could be more easily described
than is possible with the program descriptions PECOS uses.
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3.4. Refinement steps

In a refinement step, there are two ways that detail can be added to a program
description: a property may be added to an existing node, or one node may be
identified as a refinement of another. This second type may also involve the
introduction of new nodes'3. Of these two types of changes, the identification of
one node as a refinement of another is the most significant. The result of making
such a change is illustrated below:

IS-ELEMENT

resul t-data-structure

L

element

collection
— INVERSE

result-data-structure
— | COLLECTION

1 element
. . .

EXPLICIT-COLLECTION

l element
INTEGER

refinement |ink

range-element

mapping

In  this refinement step, the COLLECTION node has been refined into an
EXPLICIT-COLLECTION node. In essence, it has been decided to implement the
collection explicitly. Note that the element property of the EXPLICIT-COLLECTION
node is the same nodc as the element property of the original COLLECTION node.
Such links between nodes will be referred to as refinement links. A sequence of
nodes connected by such refinement links will be referred to as a refinement chain.
Conceptually, such a link may be viewed as a simple replacement of the abstract
node by the concrete node.

13 Although one could imagine other types of changes (e.q., modifying a property on a
node), no need for them has yet been encountered.

ReTT— -
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4. RULE REPRESENTATION

4.1. Rule types

As discussed in the previous section, each step in a refinement sequence consists of
a small change that transforms one program description into the next. PECOS makes
these transformations by applying rules from its knowledge base, each refineament
slep being performed by one rule. Corresponding to the two ways of adding detail in
such steps (as mentioned in section 3.4), there are two types of rules:

Refinement rules establish refinement links between nodes. Typically,
the refinement node is created at the time the rule is applied.
Refinement rules are by far the most common type of rule in PECOS's
knowledge base. The application of such a rule generally corresponds to
a decision to use a particular, more concrete, implementation for either a
data structure or some abstract operation.

Property rules cause a particular property to be attached to some
already existing node. Property rules are less common than refinement
rules, but play a wider variety of roles. Several examples of property
rules in some of these roles will be given later.

The rule types correspond to particular actions - refining a node or adding a property
to a node. In addition, each rule has an applicability condition consisting of a pattern
of nodes and properties. In the next section, the types of patterns that may occur
in these conditions are discussed.

Refinement and property rules are used to construct refinement sequences. In
addition to these types of rules, a third type has been found to be quite useful,
especially in tv s ting rule conditions:

Query ruis ¢ 'n be used to determine the answers to questions that have
been posed anout program descriptions. Since applying such a rule does
not change the program description in any way, query rules do not
correspond to refinement steps.

For example, there are about five query rules that determine whether or not two
data structures have matching representations. In many situations, it would have
been equally possible to embed the query rules directly into the rule conditions that
pose the queries. Since there are often several rules for the same query, a facility
for "or" conditions would have to be added to the pattern matcher in order to
accomplish this. However, query rules do not just simplify the pattern matcher; they
also greatly increase the modularity of the individual rules. If a new way of
answering a query is discovered, it can simply be added as a new query rule.
Otherwise, the conditions of all of the rules that pose the query would have to be
modified.
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PECOS's representation for these three rule types is shown below:
(REF~ <node pattern> <refinement specification)
(PROP+~ <property name> <node pattern> <property vaiue))
(QUERY+~ <query pattern> <query answer>)

(where REF+~, PROP«~, and QUERY« are tags indicating the rule type'4). A REF« rule
specifies that if a node matches <node pattern>, then it may be refined into
<refinement specification>. A PROP« rule specifies that if a node matches
<node pattern>, then {property value> may be attached to that node as the value
of the <property name> property. A QUERY« rule specifies that if a query matches
<{query pattern>, then the answer to the query is {query answer>. In the rest of
this section, the matching of <node pattern>s against nodes in program descriptions
will be discussed. The action parts of the rules will be discussed in connection with
PECOS's control structure.

4.2. The pattern matcher

In many respecls, PECOS's pattern matcher is similar to most other pattern matchers
(e.g., QLISP [Wilber 1976], PLANNER [Hewitt 1972]). There are facilities for
following various links through the substructures of the pattern and object being
matched, for testing conditions on the structures, and for binding variables. In this
case, the substructure links are primarily the node properties and refinement links.
But since the pattern matcher has been designed with a particular purpose in mind -
the codification of programming rules based on the refinement model of program
synthesis - there are many idiosyncratic constructs. One of these constructs
represents a major departure from most other pattern matchers: in addition to
returning with success or failure, a match attempt may aiso resuit in an incomplete
match. The determination of incomplete matches will be discussed further in section
4.2.2.

4.2.1. Pattern types in rule conditions

A <node pattern> consists of a concept name and a list of subpatterns. A <node
pattern> matches a node in a program description if (1) the concept of the <node
pattern> is the same as the concept of the node and (2) the subpatterns all match.
There is a variety of different types of subpatterns. For ease in implementation,
these are generally indicated by the first element of the pattern. Appendix 1
gives a complete list of these types. Some of the more common types will be
illustrated by considering several rules in full detail.

4 The «'s are historical artifacts with no relationship to assignment.
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Rule:
A sequential collection with typical element X may be refined into a
linked list with typical element X.

Representation:
(REF ~ (SEQUENTIAL-COLLECTION
(#P ELEMENT (e~ X)))
(#NEW LINKED-LIST
(«#P ELEMENT X)))

This rule can be used to refine an abstract data structure (a sequential collection)
into a more concrete data structure (a linked list); that is, a refinement link is set up
between the abstract node and the concrete node. REFe« denotes a refinement rule.
The first part of the <node pattern>, SEQUENTIAL-COLLECTION specifies the
concept of the node to be refined. #P indicates that a parlicular property should he
matched against a subpattern. In this case, the property is the ELEMENT property
and the subpattern is (=« X), which specifies that the property's value is to be
bound to the variable X for use in executing the rule's action. #NEW in the
<refinement specification> specifies that a new node is to be created.
LINKED-LIST specifies the concept of the new node. «#P specifies that a property
is to be attached to this node. In this case, the property is the ELEMENT property
and the value is the value of the variable X (which had been bound to the ELEMENT
property of the SEQUENTIAL-COLLECTION node while evaluating the condition of the
rule).

Thus, applying this rule would produce the refinement link indicated in the diagram
below:

SEQUENTIAL-COLLECTION

w l elemnent

|
v

refinement

LINKED-LIST

[ element

Note that there are no conditions on the node that represents the elements of the
sequential collection, and that the same node is used to represent the elements of
the linked list {accomplished using the «« mechanism for binding the variable X).
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Rule:
If a linked list is represented as a LISP list and the representation of
an item is the same as the representation of the elements of the LISP
list, a test of whether the item is stored in a list cell of the list may be

refined into a call to the LISP function MEMBER, with the item and the
list as its arguments.

Representation:
(REF« (IS-STORED=-IN-SOME=-LIST-CELL
(#P LIST («=1L)
(#RDS
(#REF LISP-LIST
(#P ELEMENT (e« EX)))))
(#P ELEMENT (~~ E)
(#RDS
(?QUERY REPRESENTATION-MATCH # EX))))
(#NEW LISP-FUNCTION-CALL
(«#P FUNCTION-NAME (QUOTE MEMBER))
(«#P ARGUMENTS (LIST E L))))

This rule can be used to refine an abstract operation into a call to a particular LISP
function. There are several new pattern types in this rule. A #RDS pattern
specifies that the RESULT-DATA-STRUCTURE property of the current node should
be matched against the subpattern. In the first, the subpattern is a #REF pattern.
Such patterns play a crucial role in PECOS's rules, specifying that the chain of
refinement links from the current node should be searched for one that matches the
subpattern. In effect, such patterns are used to ask whether particular
implementation decisions have been made. In this case, it is used to insure that the
data structure under consideration is really a LISP list (LISP-LIST specifies the
concept of the node pattern); if it were not, then the rule would clearly be
inapplicable. In the second #RDS case, the subpattern is a query,
(?QUERY REPRESENTATION-MATCH # EX). The # in the query refers to the
current node, in this case the node representing the element being tested. Thus, the
query checks whether the element being tested is represented in the same way as
the elements of the list. This rule would match the node pattern illustrated below (if
nodes 6 and 8 have matching representations):

SR T
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1S-STORED-IN-SOME-LIST-CELL 1
[ resul t-data-structure
> 2
list
3
l resul t-data-structure
> 4
refinement chain
v
LISP-LIST 1
I element
6
element
—— 7
resul t-data-structure
8

Note that there are no conditions on nodes 3 and 7, the operations that produce the
argument data structures. The way in which the LISP list is produced has no
relevance for this rule. All that matters is that the data structure (node 4) be a LISP
list and that the two element nodes (6 and 8) have matching representations. It
should also be pointed out that refinement rules automatically cause
RESULT-DATA-STRUCTURE properties to be inherited. Applying this rule would
create a LISP-FUNCTION=-CALL node with arguments as specified above. In addition,
the RESULT-DATA-STRUCTURE property of this node would be node 2 above.
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Rule:
If the memory scheme of a local memory unit is to bind a variable to
the value, a retrieval of the value may be refined into a retrieval of
the value of the variable.

Representation:
(REF« (REMEMBERED-VALUE
(#P LABEL
(#GLOBAL
(#P SCHEME (?#= VALUE-OF-VARIABLE))
(#P VARIABLE («~+ X)))))
(#NEW GET-ASSIGNED-VALUE-OF-VARIABLE
(«#P VARIABLE X)))

This rule can be used to refine the abstract operation of retrieving some previously
computed value into the operation of retrieving the value of a variable. A global
association list is used to relate labels to their LOCAL-MEMORY-UNIT nodes. The
#GLOBAL pattern finds the node associated with this label. The 7#= pattern is
used to test whether the node's SCHEME property is exactly equal to
VALUE-OF-VARIABLE.

Rule:

A memory scheme for a local memory unit is to bind a variable to the
computed value.

Representation:
(PROP~ SCHEME
(LOCAL-MEMORY=-UNIT)
(QUOTE VALUE=-OF-VARIABLE))

This rule, which can be used to attach the SCHEME property to a
LOCAL-MEMORY-UNIT node, is an example of a property rule used to focus a
particular decision. The SCHEME property specifies the technique that will be used
to store and retrieve the particular value. Each REMEMBER or REMEMBERED-VALUE
operation is dependent on this scheme (as illustrated by the previous rule). Thus,
the scheme guarantees that all of these operations will be refined in coordination.
An alternative way for the rules to deal with such situations could have been to allow
any one of the operations to be refined first, and then to force each of the others to
be coordinated with the first. There are two primary motivations for the scheme
used in PECOS. The first is practical: there is no need to keep extra property links
for each operation to refer to the other operations. The second is philosophical: by
forcing the operations all to be coordinated through a single property on a single
node, a more global view can be taken when selecting one such property rule over
another. The use of the scheme property focuses the decision into a single, easily
identifiable place. The import of such rules is that a particular programming decision
has been identified and isolated.

b
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|
Rule: l
One way to get a variable name is to invent a new one.

Representation:
(PROP~ VARIABLE !
(LOCAL-MEMORY=-UNIT _
(#P SCHEME (?#= VALUE-OF-VARIABLE))) |
(GENSYM (QUOTE V)))

This rule is used to attach the VARIABLE property to a LOCAL-MEMORY-UNIT node.
It illustrates the use of property rules to gather further information: a variable name
is required, so one is selected. This is, in fact, the only rule that PECOS has for

selecting variable names'5. One could argue that the selection of a particular |
1 variable name is also an identifiable programming decision, rather than simply an |
information gathering task. In fact, when one is concerned about the use of
; mnemonic variable names, the choice can be important. This has not been a concern ‘
with the PECOS implementation. |
E |
|
: Rule: |
k If there is an ordering relation for the elements of a collection, the

elements may be stored in the collection according to that relation.

it a e

Representation:
(PROP+~ ORDERING
(SEQUENTIAL-COLLECTION
(#P ELEMENT |
(-~ REL #ANSWER
(?QUERY ORDERING-RELATION #))))
(LIST (QUOTE ORDERED) REL))

This rule may be used to determine the order in which elements in a collection are to ]
be stored. (The #ANSWER in the «~ pattern denotes the answer of the query about |
whether there is an ordering relation on the elements of the sequential collection.) |
This rule illustrates the use of a property rule to further specify a particular data

structure without making a refinement. Thus, all of the rules for refining sequential

collections (into linked lists and arrays) are applicable whether or not this rule has {
been applied. It would have been quite possible to have this be a refinement rule,

but then duplication of some of the knowledge in the refinement rules for

non-ordered sequential collections would have been required. There are several

other places where there seemed to be the possibility of using either a refinement |
rule or a property rule, and the decision has generally been made on the basis of

"what seems right at the time." No better justification has been found.

é 16 This is one of the reasons that PECOS's programs often seem unreadable!
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Rule:
If the elements of a collection are to be enumerated in the same order
as that in which they are stored, then the enumeration order is the
same as the stored order.

Representation:
(QUERY+~ (STORED-ENUMERATION-ORDER
(#- #
(#P ENUMERATION-ORDER («+ EO))
(#P COLLECTION
(#RDS
(#REF SEQUENTIAL-COLLECTION
(#P ORDERING (?#=* EO0)))))))

T

This rather trivial rule can be used as one way of answering a query of the form
(?QUERY STORED-ENUMERATION-ORDER n) when the enumeration order is specified
to be based on some ordering relation. (Another rule that answers the same query is
applicable when the enumeration order is specified to be the stored order,
regardiess of any ordering relation on the elements.) The #« # in the pattern simply
allows multiple patterns to be specified, in this case two #P patterns. The 2?2#=x
pattern tests whether the property's value is the same as the result of evaluating
the expression; in this case, the variable EO has been bound previously to the
enumeration order of the enumeration node.

Rule:
If a node has been refined into a LISP syntactic entry, the code for the
node may be determined by examining the LISP-CODE property of the
node, uniess the attempt to determine the LISP-CODE property failed.

Bepresentation:
(QUERY+~ (CODE
(#REF (?CONCEPT-CLASS LISP-SYNTACTIC-ENTRY)
(#P LISP=-CODE («~« C))))

C)

This is the rule that guides the entire process of determining the actual code of the
program after all of the parts have been refined into specific LISP objects (see
section 56.1). Many concepts have a "class" associated with them. (One of
these is known as the LISP-SYNTACTIC-ENTRY class.) A 2CONCEPT-CLASS pattern
simply tests the class of the node's concept. Currently, few other uses are made of
the concept classes.
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4.2.2, The matching process

A relatively standard type of pattern matcher is used to match the {node patterns>
in the rules agains* nodes in program descriptions. The most interesting aspect of
the matcher is thau .n addition to identifying success and failure, it may also identify
an incomplete match'6. This occurs in situations where parts of the pattern succeed,
but for other parts too little information is available to make a definite answer. Such
situations can occur in three ways.

#REF patterns

If a particular node has not been refined far enough to give a definitive answer to a
#REF pattern, this can result in an incomplete match. The matcher considers all
nodes in the refinement chain leading from the node being matched!'”. If any of
these match the <node pattern>, the matcher succeeds. Otherwise, the matcher
performs a quick check to try to eliminate the possibility of extending the refinement
chain to a node that matches the <node pattern>. If it can eliminate the possibility,
the match fails. If the possibility cannot be eliminated, the matcher signifies an
incomplete match and indicates that the refinement chain must be refined further.
The quick check is performed by considering only the concept of the most refined
node in the chain (call it concept1) and the concept of the <{node pattern> (call it
concept2). The matcher considers all refinement rules for concepty and the concepts
of the nodes they would produce If applied. Reflnement rules for each of these
concepts are then considered, and so on. if there is any chain of refinement rules
that leads from concept1 to conceptz, then the matcher signifies an incomplete match
and indicates that the refinement chain must be extended.

For example, the rule that refines GET-ASSOCIATED-VALUE into
GET-VALUE-AT-ARRAY-INDEX is dependent on the fact that the TABLE argument
has been refined into an ARRAY. If this data structure has only been refined as far
as an ASSOCIATION-TABLE, attempting to match this rule results in the examination
of a concept chain as described above. In this case, concepti is
ASSOCIATION-TABLE and conceptz is ARRAY (the <node pattern> s
(#REF ARRAY ...)). There are two rules for refining an ASSOCIATION-TABLE, one
producing an ARRAY (only applicable if the keys are integers in a fixed range) and
one producing a HASH-TABLE. Since conceptz can be reached from concepti, the
original match attempt yields an incomplete match.

Note that the matcher is relatively conservative in how it determines incomplete
matches in this situation. By considering the conditions on the rules, in addition to
the concepts involved, it might be possible to determine that a particular rule chain is
not possible. Or it might be possible to determine that the node produced by such a

16 The use of incomplete matches in PECOS's control structure (discussed in section
6) is similar to the use of state differences in GPS [Ernst and Newell 1969].

17 This is the main reason that the refinement links are retained instead of simply
replacing the abstract node by the refined node.
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rule chain would not match the rest of the #REF pattern. In the above case, for
example, if the keys of the association table are not integers, the array rule would
be inapplicable. To check for such conditions, however, would require considerably
more computation than the simple concept chain involves. (in fact, the rule base is
organized around such concepts, so that very little computation is required to
determine the existence of concept chains.) Note that this technique allows
"misjudgements" of only one kind: it is never the case that a match attempt is
considered to have failed when there is still a possibility that the given refinement
chain can be extended to match the pattern.

#P patterns

Matching a #P pattern always involves considering a particular property of a
particular node. |f that property is missing, then the match is considered to be
incomplete, and the matcher specifies that the property must be determined. As with
#REF matches, the matcher is again conservative in determining when such a match
should fail. It makes no checks at all to determine whether there are any rules that
could produce a value for the property that would match the pattern. Here, too, the
only misjudgements are in being too conservative, i.e., not rejecting matches that
could theoretically be rejected immediately.

?QUERY patterns

When a 7QUERY pattern is encountered, the matcher checks to see whether the
query has already been answered. If not, an incomplete match is specified, with a
request that the particular query be answered. Again, no special checks are made
to determine whether there is some way that the query could be answered in such a
way that the rest of the pattern would succeed.

4.2.3. Patterns not expressible

There are several types of conditions that are not easily expressed using the
pattern types currently available. One example was mentioned earlier: there are no
facilities for "or" conditions. There are also no iacilities for loops in the actions
except for a few ways to map down lists. Since the pattern matcher is implemented
using LISP's EVAL, it is not hard to include such things in the rules. But the actual
inclusion of arbitrary INTERLISP code is contrary to the intent of the rules, and has
been avoided for two reasons. The first is a practical one based on the
implementation: the ability to identify every form that occurs in a pattern simplifies
the separation of the rules into their various parts and their analysis for free variable
usage (see section 6.6). The second is philosophical, going back to the original
purpose of this research: the explication of programming knowledge. In discussions
of such knowledge, a consistent set of conceptual primitives should be used, and the
use of "arbitrary LISP expressions" tends to bypass such primitives. After
identifying the conceptual primitive behind the LISP expression, a pattern type for it

g
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could be added to the matcher. |If the concepts behind the code cannot be
y identified, then the content of the rule is not sufficiently understood by the rule
' writer, and the rule should probably be reconsidered informally before trying to
express it formally.

Another type of pattern that is not conveniently expressible involves the flow of
data between operations. Consider, for example, the refinement of an operation for
modifying a linked list by deleting the cell before a cell computed by a complex
expression. At the abstract level, the operation looks about like:
(DELETE-CELL-BEFORE-CELL <expression>). But a straightforward refinement of
such a structure into a call to the LISP function RPLACD yields (RPLACD <expression>
(CDR <expression>)), which might involve recomputing the expression. The problem
is that the DELETE-CELL-BEFORE-CELL operation implicitly performs a kind of
X\ -binding, after computing its argument. In order to reflect this, the rule for refining
DELETE-CELL-BEFORE-CELL actually produces a COMPOSITE node with a
LOCAL-MEMORY-UNIT in which to store the argument. While this rule correctly
reflects the semantics of what is involved, it seems overly ponderous to try to
express it. A better facility for dealing with patterns of data flow would be a useful
extension.

4.3. Idiosyncrasies of the rule formalism

By way of clarification, a few of the rule formalism's idiosyncrasies should be
discussed before they appear in the rules given in section 6. One of these
involves the refinement of operations which are applied to data structures that have
already been refined. As a typical case, consider a membership test applied to a
collection, X. The complete refinement of X into a LISP list involves six rule
applications, each further specifying the representation of X. While this is
straightforward, there is more difficulty with the membership operation: how many
refinement steps should be involved? With a single step (say, into the LISP function
MEMBER) many other alternatives are missed. For example, if the list is ordered,
some efficiency can be gained by abandoning the search for the element when some
larger element is found. The knowledge that leads to this more efficient algorithm
also applies if the collection is represented as an ordered array. This suggests that
there may be some intermediate concept between "membership test" and "MEMBER
function", perhaps "membership test for sequential collection". In PECOS's rules,
this argument has been carried to an extreme, and there is a separate named
concept for "membership test" corresponding to each data structure refinement
level. Thus, membership test operations typically go through a sequence of
i refinements that parallel those of the data structure to which the test is applied. In

retrospect, it is not at all clear that such a complete set of intermediate concepts is
appropriate: is there really any content to a concept like "membership test in an
explicit collection"? In the rule descriptions in section 6, many of these
intermediate-level operations will be omitted.

e ET

A related issue concerns the way that the data structure and operation refinement
rules are related to each other. In most refinement formalisms, operation refinement
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rules are attached directly to the data structure refinement rules (e.g., forms in
ALPHARD [Wulf, London and Shaw 1976]). In PECOS, they have been totally
separated. One consequence of this is that the rules for refining an operation
typically have conditions testing the refinement chains of its operands. These
operand checks are performed by #REF patterns. As discussed in section 4.2, a
#REF pattern specifies that the refinement chain from the current node be searched
for a node that satisfies the rest of the pattern. As certain concepts may be linked
through different refinement chains, it is often necessary to complicate #REF
patterns to distinguish the refinement chains from each other. For example,
COLLECTION may be refined into STORED~-COLLECTION in two different ways:

COLLECTION =»> EXPLICIT-COLLECTION > STORED-COLLECTION
element: X element: X element: X
COLLECTION => CORRESPONDENCE > STORED-COLLECTION
element: X domain: X element: <X, value)

range: boolean values

Note that (#REF STORED-COLLECTION) would match both chains. The primary
technique for dealing with such multiple refinement chains is the use of
"representation match" queries. Thus, since the element properties of the two
STORED-COLLECTION nodes would be different, a pattern like

(#REF STORED-COLLECTION
(#P ELEMENT
(?QUERY REPRESENTATION-MATCH # X)))

would only succeed when the element property matched X, effectively distinguishing
the two cases. Such representation match patterns play a very important role,
although their necessity only became apparent after enough rules had been added to
make such muitiple refinement chains possible'8,

In part, the inclusion of such details in the rule conditions is a consequence of the
decision to separate the programming knowledge into "independent" chunks. Such
conditions often merely test whether a particular rule has been applied by testing
whether the situation matches what would have resulted had the rule been applied.
A more efficient codification of the knowledge might be to link the rules together
more directly, either by combining several rules into a single unit or by allowing rules
to reference other rules by name.

18 In fact, the omission of such conditions was a major source of bugs in the earlier
rules.
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5. PECOS'S CONTROL STRUCTURE

5.1. An agenda of tasks

As noted above, PECOS derives refinement sequences by successively retrieving
and applying rules from its knowledge base. This process is guided by an agenda of
tasks'®. Each task specifies some action that must be performed before the
refinement sequence can be completed. Achievement of a task yields a new
description in a refinement sequence.

A task is achieved by applying a rule (i.e., evaluating the rule's action) that fits the
task. ("Fit" will be defined shortly.) At each stage a task is selected and a rule for
that task is retrieved and applied. While retrieving a rule for a task, subtasks may
be generated. These are added to the agenda and considered before the original
task is reconsidered20,

There are three types of tasks:
(REFINE n) specifies that node n is to be refined.

(PROPERTY p n) specifies that property p of node n is to be
determined.

(QUERY rel argi argz ...) specifies that the query (rel argt argz ...)
must be answered.

The first two correspond to the ways that detail may be added in a single refinement
step, as discussed in section 3.4. The third amounts to a facility for allowing rules to
be used to answer questions about program descriptions. For example,
(QUERY STORED-ENUMERATION-ORDER n) is used to determine whether the order
of enumerating the elements of a collection is the same as the order in which they
are stored. QUERY tasks are typically set up while testing the applicability of a rule
to some other task.

There is nothing particularly unusual about PECOS's use of an agenda for its control
structure; several olher current Al systems use similar techniques [Lenat 1976,
Bobrow and Winograd 1977]). There are, however, a few interesting aspects which
merit further discussion.

Before adding a subtask to the agenda, PECOS checks whether it can be achieved

19 Much of the agenda control structure was developed jointly with Elaine Kant in
connection with her work on LIBRA, PSli's efficiency expert.

20 As will be clarified in section 6.4, the order in which tasks are considered is
approximately depth-first.

—




PECOS's Control Structure Page 63

easily. Currently, an "easy" subtask is defined to be a QUERY or PROPERTY task
that has a single applicable rule with no subtasks. In such cases the rule is applied
immediately without modifying the agenda at ali2!,

Another feature is the method of determining when to add a task to the agenda. Two
different schemes have been tried. The first involves adding a task only when it is
identified as a subtask of another task on the agenda®2. In essence, tasks are
added to the agenda only "on demand". Initially, the agenda consists of a single
task: (QUERY CODE 1)23. Since node 1 is the top node, the task amounts to a
request to determine the code for the entire program. As no rule can answer the
query immediately, subtasks are set up and added to the agenda. After these
subtasks are considered, the original task is reconsidered, and again subtasks are
added to the agenda. Most subtasks thus generated are refinement tasks: the
parts of the program must be refined to sufficient detail that code for them can be
determined with a single rule application. Generally, this means that they must be
refined inlo any of various kinds of LISP constructs, such as function calls or
constants.

The second scheme takes advantage of the fact that PECOS's basic purpose is to
refine abstract concepts into specific implementations: whenever a node is created,
a refinement task for that node is added to the agenda, regardless of whether or not
it is known to be a subtask of some other task. Since most (usually all) parts of the
program must eventually be refined into LISP constructs, those tasks can be set up
as soon as possible. This technique offers the opportunity for greater flexibility in
selecting the tasks to consider next, since the agenda has a more "complete" list of
things to do. In the second case, the initial agenda also has a single task:
(REFINE 1). Just as in the first scheme, working on a task may still require that
other tasks be sel up (property and query tasks). The second scheme permits a
simple two-pass process to be used to determine the LISP code of the final
implementation: when no further tasks remain, a (QUERY CODE 1) task is set up
and worked on. Since each node has been refined into a LISP construct, the code
can be determined without generating any further subtasks. The switch from the
first scheme to the second was quite simple (less than one hour's work), largely
because of the convenience of using an agenda mechanism.

21 Strictly speaking, this is a feature of the pattern matcher, not the control
structure.

22 Subtask identification is considered further in section 5.3.

23 (QUERY CODE n) specifies that the code for the subpart of the program headed
by node n must be determined.
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5.2. A tree of program descriptions

Recail that the only changes involved in the refinement steps are the identification
of one node as a refinement of another and the addition of properties to existing
nodes. Each rule application for a REFINE or PROPERTY task corresponds to such a
step. Thus, the task agenda guides the construction of such refinement sequences.

Wher more than one rule is applicable, separate program descriptions can be
generated for use with each rule. The result is a refinement tree such as those
discussed in section 3.2. PECOS uses a simple context mechanism to deal with
these trees, thereby avoiding the necessity of copying the entire descriptions at
each split. The process of finding a particular node or property is then a simple
search from the current description through its chain of ancestors. Since agendas
are also maintained "relative" to a context, several branches in a refinement tree
may be explored in parallel without interfering with each other.

This is perhaps best clarified by an example. A COLLECTION node has an element
property to describe the data structure of the elements of the collection. When a
COLLECTION node has been refined into an EXPLICIT-COLLECTION node, the refined
node also has an clement property (and, in this case, the two properties would have
the same value). The property must be attached explicitly to each of the nodes.
That is, in fact, precisely what the particular refinement rule does. In effect, the
rules specify which properties are to be inherited, and the execution of the rule
action forces those inherited properties to be attached expiicitly to the new node.
Later in the synthesis process, after several descendant contexts have been
created, an attempt to access the element property of the EXPLICIT-COLLECTION
node would result in a backward scan through the contexts until one was found in
which the EXPLICIT-COLLECTION node had that property.

For purposcs of cfficicncy, separate program descriptions are actually set up only at
choice points (when more than one rule is to be applied to the same task). When
only one rulc is to be applied, the same context is used. This saves a considerable
amount of overhead that would otherwise be used for establishing contexts and
searching context trees. Thus, the refinement trees that PECOS constructs are
actually collapsed trees in which each description is either a leaf or has more than
one successor.

When no rules are applicable to a task, the task is considered to have failed.
However, the refinement process may still continue. For example, failure of a
(QUERY ORDERING-RELATION n3) task simply indicates that no ordering relation
could be found for the data structure represented by node ni. The effect of this
failure would be that certain rules for enumerating collections of such structures
would be inapplicable to some other task (usually a REFINE task, say for node n2).
Node n2 might still be refined by some rule that is not dependent on the existence of
such an ordering relation. In other situations, however, task failure may imply the
failure of the entire sequence that is currently being followed. PECOS is relatively
conservative in deciding to abandon a path: a path is considered to have failed only
if a refinement task fails. Under some circumstances, this may require more work to
recognize failure than is strictly necessary, but this has not yet been a significant
problem.
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5.2, Task achievement through rule application

Tasks are achieved by applying a rule that fits the task, where "fit" is defined as

follows:

A (REF+~ <node pattern> <(refinement specification>) rule fits a
(REFINE n) task if the <node pattern> matches node n.

A (PROP~ <property name> <node pattern> {property value)) rule
fits a (PROPERTY p n) task if the <{property named is p and the
<{node pattern> matches node n.

A (QUERY«~ <relation name) <patterni> <patternz> ...) rule fits a

(QUERY rel argi argz ...) task if the <relation name> is rel and each
{patterni> matches the corresponding argi.

Matching of a <node pattern> to a node was defined in section 4.2.

Wihile it is relatively simple to implement this scheme, searching and testing every
rule for every task would be computationally prohibitive. The organization of PECOS's
knowledge base is designed to eliminate the need for most of this search.

65.3.1. Rule retrieval

Recall that a necessary condition for a {node pattern> to match a node is that the
two concepts be the same. A simple discrimination net is used to filter out those
rules that fail this part of the test. Associated with each rule is a set of task
patterns. These are of three forms, reiated to the types of tasks:
(REFINE <concept)), (PROPERTY <(property name) <concept)), and
(QUERY <relation name)). Associated with each concept is a list of all rules
specifying that concept in one of the associated task patterns24. This list is
partitioned into refinement and property rules. The property rules are further
partitioned according to the property name. A similar scheme is used for query
patterns. Given a task (and the concept of the node or query relation involved), the
associated list of "relevant” rules can easily be retrieved. Using this scheme, the
number of rules which must be tested for applicability to any given task is generally
quite small (sometimes only one, rarely more than three or four).

24 There are also separate lists for use with {concept class> expressions.
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5.3.2. Matching rules to tasks

Once this preliminary filtering is done, the subpatterns of the rule's <node pattern>
are matched against the properties of the node specified in the task. As described
in section 4.2, the result may be success, failure, or an incomplete match. With
incomplete matches, the match procedure indicates which parts of the program are
to be considered further by specifying a set of tasks. These tasks are added to the
agenda and noted to be subtasks of the original task. After considering the
subtasks, the original match is reconsiclered, and suhtasks may again be specified.
The cycle repeats until the match succeeds or fails. Suppose, for example, that the
task is to refine an IS-ELEMENT node. If the collection data structure has been
refined into a Boolean mapping, the rule for refining an IS-ELEMENT node into a
GET-IMAGE node is applicable. If the collection has been refined into something
other than a Boolean mapping, the rule is inapplicable. However, if it has not been
refined at all, there is only an incomplete match, with a subtask of refining the
collection node. Once the collection node has been refined, the attempt to match
the rule to the task is repeated.

Note that the achievement of the subtask does not imply that the original rule will
match the original task, but only that the matching process can proceed. In effect, a
kind of "generalized subtask" is used: it specifies that a certain part of the program
must be considered further, but does not include constraints on what the result must
be25. In fact, it is frequently the case that the same subtask is specified for several
relevant rules and the subtask's achievement eliminates most of the rules. In effect,
such subtasks often perform a kind of filtering on the list of relevant rules.

5.3.3. Separation of applicability and binding

As in most pattern-directed inference systems, the matching process performs a dual
purpcse: the determination of success or failure, and the determination of various
hindings 1o be used when the rule's action part is executed. In PECOS, these two
aspects have been separated into distinct stages, termed the applicability stage
and the binding stage. In the applicability stage, only those parts of the pattern
that may lead to failure of the entire match are attempted. The binding stage is not
attempted until the match has completed the applicability stage successfully without
generating any further subtasks. In the binding stage, only those parts of the
pattern that return bindings for use in the rule action are considered. Subtasks may
be generated in each of these stages.

As an illustration, consider the following rule:

If a value is remembered by storing it as the value of a variable
whose name is X, a retrieval of the remembered value may be refined
into a retrieval of the value of the variable X.

25 MYCIN uses a similar kind of generalized subgoal, but for different purposes[Dauvis,
Buchanan and Shortliffe 1977].
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whose internal form is as follows:

(REF« (REMEMBERED-VALUE
(#P LABEL
(#GLOBAL
(#P SCHFME (?#= VALUE-OF-VARIABLE))
(#P VARIABLE (=« X)))))
(#NEW GET-ASSIGNED-VALUE-OF-VARIABLE
(«#P VARIABLE X)))

Since there is a condition on the SCHEME property (namely, that the property be
VALUE-OF-VARIABLE), that subpattern appears in the applicability part:

(#P LABEL
(#GLOBAL
(#P SCHEME (?#= VALUE-OF-VARIABLE))))

A (PROPERTY SCHEME n) subtask would be generated during the applicability
stage. By contrast, there are no conditions on the VARIABLE-NAME property and it
would appear as a subtask during the binding stage. The binding part is:

(#P LABEL
(#GLOBAL
(#P VARIABLE (~« X))))

In retrospect, the distinction between the "applicability" and "binding" parts of a
pattern has some merit in preventing certain kinds of unnecessary work and in
delaying commitment to a particular rule for as long as possible. But the overhead
incurred by the total separation employed by PECOS is relatively high. A more
efficient technique might involve only a single condition-testing phase in which
proposed subtasks are tagged by type (i.e., either “applicability" or "binding").

5.4, Task ordering

There is only one absolute constraint on the order in which tasks must be achieved:
a rule may not be applied until it has passed its applicability test and its bindings
have been gathered. This ordering is determined through the use of subtasks
generated during the applicability and binding processes. Note that this ordering is
only partial: either of two unordered parts may be refined before the other in a
refinement sequence?6, Finally, note that there is nothing in the formalism that
prevents two tasks from being subtasks of one another. In fact, such cases have
occurred while the rules were being debugged (PECOS did not recognize the problem
and entered a loop without an exit!).

26 From another perspective, two parts of a program may often be refined
independently from each other without interfering with the correctness of the final
program. Of course, the determination of the best way to refine a particular part may
involve looking at many other parts.
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However, task ordering can have a significant effect on the size of the refinement
tree constructed, as well as on the overall effliciency of the program. For this
reason, various strategies have been used in an effort to reduce tree sizes and
increase efficiency. These strategies are based on the fact that the process of
achieving a task gces through several separable stages:

(a) retrieve rules relevant to the task
(b) test each of these for applicability
(c) select one of these for application
(or establish separate contexts for each rule application)
(d) determine the bindings required by the rule action
(e) execute the rule action

Stage (a) needs to be done only once and can be accomplished relatively quickly
using the discrimination net described earlier. Stage (b) is relatively complex and
may need to be repeated several times until all matches either fail or succeed (and
no subtasks remain)27. Stage (c) is relatively simple except that extra overhead is
involved when separate contexts must be established. Stage (d) is generally simple,
although occasionally subtasks are generated. Stage (e) is executed only once.

in addition, tasks in several of the stages can be further categorized. Tasks in
stage (a) can be distinguished on the basis of whether or not they are known to be
subtasks of other tasks. (Recall that refinement tasks are set up as soon as new
nodes are created.) Tasks in stages (b) and (d) can be distinguished on the basis of
whether or not the stage has already been altempted and subtasks identified.
Tasks in stage (c) can be distinguished on the basis of whether or not more than one
rule is applicable to the task. In addition, a task may be either active or suspended
depending on whether any of its outstanding subtasks have been achieved. Only
active tasks need to be worked on, since considering a suspended task would only
yield the same set of subtasks.

Based on these stages and categories, a task can be identified as being in one of
the following eight states:

state name description

new task stage (a), not known to be a subtask of some other task
get rules stage (a), known to be a subtask of some other task
test rules stage (b), not yet attempted

more subtasks stage (b), subtasks identified

pick rule stage (c), applicable rules identified

choice point stage (c), several rules applicable, choice not yet made
gather bindings stage (d)

apply rule stage (e)

There is no necessity that a single task be carried through all of these states before

27 PECOS has a facility for splitting a refinement path as soon as one rule's match
has succeeded, but this is currently not being used.
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considering any other tasks. The process of working on a task is easily interruptible
in each of these states. That is, one task can be carried through some number of
these states and then be interrupted for an extended period of time during which
many other tasks may be initiated or completed. This observation allows certain
gains in efficiency by carefully picking which task to work on next. This selection is
based on a priority ranking of these states. During each cycle, PECOS works on one
of the tasks in the highest priority state for which there are any active tasks28,

The progression of a task through its states and the priority rating of each of these

states are illustrated below:

state
start — new task
start — get rules
test rules
L more subtasks
v
pick rule

L choice point

d [
gather bindings :I

finish « app]yy rule

priority
(7)
(S)
4)
(6)
(3)

(8)

(2)

0

The priority ordering shown above incorporates several different strategies, including

the following:

Put off making decisions for as long as possible, in the hope that they will
be easier to make. Choice points are delayed as long as possible. This
allows much of the program to be developed before considering choice
points, making more information available when the decision must be
made, and saving considerable effort which might otherwise be duplicated
in separate refinement sequences if a decision cannot be made and the
refinement path must be split. This is the most important strategy, and
the reason that the choice point state has the lowest priority.

28 |n fact, PECOS picks the task that entered that state most recently, but this is an
accident of the implementation due to the use of task lists for each state, with tasks

being added and removed at the front of the list.

-
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If a task can be completed easily, do it and get it over with. Tasks in
advanced slages are considered before tasks in early stages. Hence,
the relatively high priorities of the apply rule and gather bindings states.

If a subtask can be done easily, do it on the assumption that the result may
help eliminate some possibilities for the original task. Some consideration
is given to all of a task's subtasks before reconsidering the task. So the
get rules state has a higher priority than more subtasks.

First work on things that you know you have to do. Tasks known to be
subtasks of other tasks are considered before tasks projected to be
necessary in the future (such as refinement tasks set up when nodes are
created). Hence, the new task state has a low priority.

Wait until you are actually committed to a particular choice before
cleaning up the details. Bindings are postponed until a rule has passed its
applicability test. This is the motivation for the separation of the
applicability and binding parts of the condition testing.

One of the interesting effects of this particular combination of strategies is that a
mixed approach is taken with respect to the question of when a task with subtasks
should be reconsidered. All of the subtasks are considered to see if any can be
done easily; if any is achieved the task is reconsidered before working on any
subtasks that involve choices. This has the advantage that necessary subtasks may
be identified relatively early in the process (since each attempt at matching a rule to
a task may indicate new subtasks).

Another interesting aspect is the separation of the condition into the applicability and
binding parts, as described in the previous section. This prevents wasting effort in
trying to achieve a task before it is known that it will be necessary. For example, if
the VALUE-OF-VARIABLE scheme is not used (and the associated refinement rules
are not applied), there is no need to achieve the (PROPERTY VARIABLE-NAME n)
task. This can be especially critical if there are several rules for achieving such a
subtask. There is, however, a certain amount of overhead involved in using the
separation. It is not clear yet how much efficiency is really gained (or lost) by the
technique.

The particular ordering and strategies used in PECOS have been developed
empirically, bascd on observations of PECOS's behavior. The value of many of these
strategies is probably derived from characteristics of tlie types of rules in the
knowledge base and on the particular implementation. For example, two of the
strategies seem somewhat contradictory at the abstract level. The separation of
applicability and binding is based on the assumption that tasks whose necessity is
not known should be delayed for as long as possible. The establishment of
refinement tasks for every node as it is created is based on the assumption that
such tasks should be attempted even before their absolute necessity is known. The
utility of these strategies is based on a characteristic of the knowledge base and
the tasks involved: refinement tasks are almost always necessary, while other
types of tasks frequently are not. Thus, it would be premature to make any
generalized claims about the utility of these strategies for other domains.

|
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5.5. Automatic derivation of rule parts

As indicated in the previous section, each rule is used in several different ways in
the process of applying it to a particular task. For the sake of efficiency, PECOS
maintains separate representations of the rule for each of these uses. These are
derived automatically by PECOS and are invisible to the user (and to the rule writer).
That is, rules are always dealt with externally in terms of condition-action pairs, as
described in section 4. Internally, PECOS maintains a list of relevant task patterns,
the applicability subpatterns of the condition, the binding subpatterns of the
condition, and a specification of the action to be executed29. The derivation of each
of these parts is relatively straightforward.

5.56.1. Derivation of relevant task patterns

Relevant task patlerns are derived in a simple manner, based on the type of the
particular rule. A REFe rule has a relevant task pattern of the form
(REFINE <concept>). A PROP«~ rule has a relevant task pattern of the form
(PROPERTY <property name> <conceptd). A QUERY« rule has a relevant task
pattern of the form (QUERY <relation name>). Currently, each rule has exactly one
such pattern.

5.5.2. Derivation of applicability and binding patterns

The most interesting aspect of the derivation of rule parts relates to the separation
of a rule's node pattern into applicability and binding parts. The process is driven by
a table of pattern types. Each type has tags indicating whether it performs a test
(e.g., (#REF MAPPING) tests whether a node has been refined into a MAPPING) and
whether it performs any bindings (e.g., (v~ X) binds the variable X). A pattern is
then included in the applicability part if it or any subpattern performs a test.
Similarly, a pattern is included in the binding part if it or a subpattern performs a
binding.

The process is complicated somewhat by the fact that some of the patterns use
variables freely, so that subpatterns that bind these parts must also be included. In
order to deal with this, the pattern tables also indicate which subparts are
evalualed, so that these may be checked for their use of free variables. The
process that uses these tables examines subpatterns in the opposite order from that
in which they will be evaluated at run time in order to maintain an accurate list of all
free variables used freely in later subpatterns. Any subpattern that binds a variable
on this list must be included. The relevant table entries for each of the pattern
types are included in appendix 1.

29 Each of these last three is stored as the compiled definition of a LISP function, so
that rules can be matched and executed quickly by evaluating simple LISP
expressions.
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As an example of this derivation process, consider the following rule:

(REF« (IS-STORED-IN-SOME-LIST-CELL
(#P LIST (~+1L)
(#RDS
(#REF LISP-LIST
(#P ELEMENT (e« EX)))))
(#P ELEMENT (-~ E)
(#RDS
(?QUERY REPRESENTATION-MATCH # EX))))
(#NEW LISP-FUNCTION-CALL
(~#P FUNCTION-NAME (QUOTE MEMBER))
(«#P ARGUMENTS (LIST E L))

Analysis of the action determines that E and L are used freely. Those parts of the
condition that bind either of these variables are included in the binding part:

(#P LIST (e+Ll))
(#P ELEMENT (+~« E))

Now the applicability part of the condition is constructed. Each of the subpatterns is
considered to determine whether it could result in failure or whether it binds any
variable used freely in later expressions that are part of the applicability check.
The two subpatterns are considered in reverse order:

(#P ELEMENT (e~ E)
(#RDS ;
(?QUERY REPRESENTATION-MATCH # EX))))

(#P LIST («~«1L)
(#RDS
(#REF LISP-LIST
(#P ELEMENT (e« EX)))))

While considering the first of these subpatterns, the process is called recursively.
This inner call determines that (?QUERY REPRESENTATION-MATCH # EX) could
result in failure so it must be included. The fact that EX is used freely is noted.
Since a subpattern of the #RDS pattern is included, it must also be included, and so
on. The (~« E) need not be included since it cannot result in failure and does not
bind a variable used freely in the applicability test. Thus, it is determined that the
following must be included in the applicability part:

(#P ELEMENT
(#RDS
(?QUERY REPRESENTATION-MATCH # EX)))

When the second of the subpatterns is considered, the (~« EX) is included since it
binds EX, and the #REF is included since it could result in match failure. Thus, the
following must also be included in the applicability check:

ony |
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(#P LIST
(#RDS
(#REF LISP-LIST
(#P ELEMENT («« EX)))))

and the full applicability pattern is then the following:

(#P LIST
(#RDS
(#REF LISP-LIST
(#P ELEMENT (e« EX)))))
(#P ELEMENT
(#RDS
(?QUERY REPRESENTATION-MATCH # EX)))

5.5.3. Multiple~valued matches

Several of the pattern types may succeed in several ways. Thal is, several
different scits of bindings may satisfy a pattern. In such cases, every set of values
is considered to be a separate relevant rule. Those variables that can have multiple
vdings arc considered to be parameters for the rule. The process of retrieving
relevant rules is thus somewhat more complicated than indicated in the previous
section: after the list of relevant rules has been found, each rule on the list is
checked for parameters and all possible values for these parameters are then
determined. Very few of the rules in PECOS's current knowledge base are
parameterized in this fashion. Those pattern types that yield such parameters are
indicated in appendix 1.




6. A KNOWLEDGE BASE OF PROGRAMMING RULES

One of the most important aspects of PECOS's development has been the detailed
codification of knowledge about symbolic programming in the form of explicit rules. A
formalism for expressing such rules (discussed in section 4) has enabled the
statement of the rules in machine-useable form and the development of a system for
applying them. However, most of the knowledge embodied in the rules is independent
of the particular formalism used to express them. In order to separate the content
of the rules from the idiosyncrasies of the formalism the rules discussed in this
section will be expressed in English. The translations from internal form are
relatively loose. The same internal representation may be stated in several different
ways and some details are omitted on the assumption that they are "obvious."
Hopefully, this will make them somewhat easier to read and understand, without any
significant loss of content. Any implementation of such rules, of course, requires that
a great deal of atlention be paid to just such details. To indicate the detail required,
as well as the way the formalism can be used to express the rules, several rules will
also be given in their complete, machine-readable form.

The rules divide naturally into categories based on the particular concepts involved.
The rules for three of these categories will be discussed in detail, as summarized
below:

Representations of collections
Boolean mapping
linked list
array

Enumeration and sorting of stored collections

Representations of mappings
collection of pairs
hash table
array
property list entry
inverted mapping

In addition, aspects of several other rule groups will be discussed.

On the assumption that most readers will not be interested in examining all of the
rules in full detail, a brief index of the rule groups is presented at the end of this
section.
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6.1. Collections

A collection may be thought of as a structure consisting of any number of
substructures, each an instance of the same generic description30. There are six
basic operations for dealing with collections, as given below (with names used in
PECOS's specification language):

NEW-COLLECTION
Creates a new collection and returns it as the operation's value. A list of
elements to be contained in the collection initially may also be specified.

ADD-ELEMENT
Adds a given element to a given collection.

REMOVE-ELEMENT
Removes a given element from a given collection. It is assumed that the
element is in the coliection before the operation is executed.

IS-ELEMENT
Tests whether a given element is in a given collection.

IS-EMPTY
Tests whether a given collection has no elements in it.

ANY=-ELEMENT
Given a collection, returns some unspecified element.

Typically, a program uses only a subset of these operations. The particular
operations used in a given program strongly influence the utility of certain
representations. For some representations, certain operations are impossible (e.g.,
ANY-ELEMENT when the collection is represented using property list markings). In
other cases, the efficiency of an operation can differ significantly for different
operations (e.g., IS-ELEMENT for hash table entries and linked lists). Two
characteristics of the operations are of primary importance. The first characteristic
may be termed destructive: the collection operand is physically modified by the
operation. ADD-ELEMENT and REMOVE-ELEMENT are both destructive operations.
The second characteristic may be termed element-oriented: any required elements
are known at the time the operation is performed. ADD-ELEMENT,
REMOVE=-ELEMENT, and IS-ELEMENT are element-oriented; ANY-ELEMENT is not.
These considerations will be discussed further in the context of particular rules.

In addition to the basic operations discussed above, there are six operations that
deal with several collections simultaneously:

DUPLICATED~COLLECTION
Creates a new collection whose elements are all elements of another
collection.

30 Currently PECOS does not differentiate between multisets and sets.
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SUBSET
Creates a new collection whose elements are all elements of another
collection that satisfy a given predicate.

UNION
Creates a new collection whose elements are all objects that are
elements of any collection in an explicit list of collections.

INTERSECTION
Creates a new collection whose elements are all objects that are
elements of every collection in an explicit list of collections.

DIFFERENCE
Creates a new collection whose elements are all elements of one
collection that are not elements of another.

IS-SUBSET
Tests whether every element of one collection is also an element of

another.

Finally, there are four control structures that potentially involve considering all
elements of a collection:

FOR-ALL-DO
Performs a given action for every member of a given collection. If a
predicate is specified, the action is performed only for the elements
satisfying the predicate.

FOR-ANY-DO
Performs a given action for some member of a given collection. The
member may be required to satisfy a given predicate. An action to be
performed if there is no such element may also be specified.

FOR-ALL-TRUE
Tests whether every element of a given collection satisfies a given
predicate.

FOR-ANY~-TRUE
Tests whether any element of a given collection satisfies a given
predicate.

6.1.1. Overview of collection representations

The following diagram summarizes the representation techniques that PECOS
currently employs for collections, as well as several (indicated by dashed lines) that
it does not. Each branch represents a refinement relationship. The terms will be
defined in the sections dealing with the rules for that representation.
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6.1.2. Rules about collections

Collections as Boolean mappings (BOOLMAP)

One way to represent a collection is as a mapping of items to Boolean values, where
an item is considered to be in the collection if and only if its image is "True" under
the mapping. If no value has been explicitly associated with an item, then it is
assumed to map to "False". This view of collections is especially important if most of
the operations being performed on the collection are "element-oriented", since
addition, removal, and membership testing can generally be done in time independent
of the size of the set. The following rule can be applied to use such a
representation:

Rule BOOLMAP.1:
A collection may be represented as a mapping of elements to Boolean
values, with the default image being "False".

The machine-usable form of this rule, using the patterns described in section 4, is
given below:

[REF« (COLLECTION
(#P ELEMENT (=« X)))
(#NEW MAPPING
(~#P DOMAIN-ELEMENT X)
[~#P RANGE-ELEMENT
(#NEW PRIMITIVE
(~#P SPECIFIER (QUOTE BOOLEAN]
(~#P DEFAULT-IMAGE
(#NEW PRIMITIVE
(«~#P SPECIFIER (QUOTE BOOLEAN))
(~#P VALUE (QUOTE FALSE]

The rule performs a refinement as illustrated below:
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COLLECTION

element
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MAPPING

L domain-element .
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» | PRIMITIVE

specifier

defaul t-image
» | PRIMITIVE '
l specifier
BOOLEAN

value
FALSE

PN

i

ive

BOOLEAN

Note that the domain-element property of the MAPPING node is the same as the
element property of the COLLECTION node.

The next rule can be used to implement the operation for creating a collection when
the collection is represented as Boolean mapping:

Rule BOOLMAP,2:
A collection represented by a Boolean mapping may be created by
crcating a mapping; for each initial element (X) of the collection,
there is an initial pair <X, "True"> for the mapping.

The full form of the rule is as shown below31;

31 The (#COLLECT ...) pattern applies a function to every item in a list (in this case
the list of initial elements) and returns a list of the results.
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[REF« (NEW-COLLECTION
[#RDS (#REF MAPPING
(#P DOMAIN-ELEMENT)
(#P RANGE-ELEMENT
(#REF PRIMITIVE (?#= BOOLEAN]
(#P ELEMENTS («« ELS)))
(#NEW NEW-MAPPING
(«#P PAIRS
(#COLLECT X ELS
(LIST X
(#NEW NEW-PRIMITIVE
(«#RDS (#NEW PRIMITIVE
(~#P SPECIFIER (QUOTE BOOLEAN))
(«#P VALUE (QUOTE TRUE]

Note the condition on the data structure that is the value of the operation (the
result-data-structure property, as indicated by the #RDS): it must be represented
as a Boolean mapping. The complexity of the (#REF MAPPING ...) condition on the
result-data-structure property is related to the idiosyncrasies of the rule formalism;
the condition insures that the proper kind of correspondence is being dealt with. An
alternative way to handle this would have been to use some construct like (?QUERY
BOOLEAN-CORRESPONDENCE #), with the detailed conditions appearing in a rule for
dealing with such queries32.

The rule performs the following refinement:

[ NEN-CDLLECTIONA]

[ resul t-data-structure
— | MAPPING

elements

- ¢ e e )

1]

v
[ NEN—MAPP]NEA]

[ resul t-data-structure
- — | MAPPING l
pairs ( ) {

This rule also illustrates another feature of the rule interpreter: the
result-data-structure property of a node is automatically inherited by all
refinements of the node. No other properties are inherited automatically.

The next rule describes how to refine a test on whether a collection is empty:

32 In fact, if | were to write the rules again, | would use such a technique, since it
would considerably simplify many of the conditions. See section 11.
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Rule BOOLMAP.3:
If a collection is represented as a Boolean mapping, a test of whether
the collection is empty may be implemented by a test on whether the
inverse image of "True" under the mapping is empty.

The rule's full form is:

[REF« [IS-EMPTY
(#P COLLECTION («« C)
(#RDS (#REF CORRESPONDENCE
(#P RANGE-ELEMENT
(##REF PRIMITIVE
(#P SPECIFIER (?#= BOOLEAN]
(#NEW HAS-EMPTY-INVERSE
(~#P CORRESPONDENCE C)
(~#P RANGE-ELEMENT
(#NEW NEW-PRIMITIVE
(~#RDS (#NEW PRIMITIVE
(~#P SPECIFIER (QUOTE BOOLEAN))
{«#P VALUE (QUOTE TRUE]

Note that the rule conditions are on the result-data-structure of the argument
operation nodes. As discussed in section 4, the result-data-structure property
represents the data structure passed from one operation to another, in this case
from the operation that produces the collection to the IS-EMPTY operation. Most of
the rules have such conditions attached to the result-data-structures of their
operands.

The membership rule for this representation is similar:

Rule BOOLMAP.4:
{f a collection is represented as a Boolean mapping, a test of whether
an item is in the collection may be implemented as a retrieval of the
image of the item under the mapping.

The next rule considers how to add elements to such collections:

Rule BOOLMAP.5:
If a collection is represented as a Boolean mapping, an item may be
added to the collection by changing the image of the item from
"False'" to "True".

Such a "change image" operation may take different forms, depending on whether
the item maps explicitly to "False" or whether it maps to "False" because “False" is
the default image. The rules for dealing with such operations will be discussed with
the mapping rules in section 6.4. The rule about removing elements also involves
changing the image of the item:
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Rule BOOLMAP.G:
If a collection is represented as a Boolean mapping, an item may be
removed from the collection by changing the image of the item from
“True’” to "False".

The implementation of an ANY-ELEMENT operation involves retrieving some element
in the inverse image of "True": )

Ruie BOOLMAP.7:
The retrieval of some unspecified element of a collection represented
as a Boolean mapping may be implemented by a retrieval of some
unspecified element of the inverse image of “True"” under the
mapping.

For some representations of mappings (e.g., property list markings), this operation
may not be effectively computable.

A Boolean mapping is a special case of jgeneral mappings. The rules for dealing with
mappings will be discussed in section 6.4,

Explicit collections (EXPCOL)

The elements of a collection may be represented either explicitly or implicitly. For
example, a list of elements is an explicit representation, while upper and lower
bounds on a set of integers is an implicit representation. PECOS's rules deal only
with explicit representations:

Bule EXPCOL.1:
A collection may be represented explicitly.

The full form of the rule is as follows:
(REF« (COLLECTION .
(#P ELEMENT («« X)))

(#NEW EXPLICIT-COLLECTION
(«#P ELEMENT X)))

It performs a refinement as illustrated below:
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COLLECTION
l element
X
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\

EXPLICIT-COLLECTION

l element
X

Note that the element properties of the two nodes are the same.

There are two rules dealing with the creation of instances of a collection (the
NEW-COLLECTION operation), differing on whether or not any elements are specified
to be in the collection initially. Typically, collections are created with no elements.
The following rule is intended primarily for this case, but is applicable regardless of
the initial elements of the collection:

Rule EXPCOL.2:
If a collection is represented explicitly, a new collection with initial
elements Z may be created by creating a new explicit collection with
initial elements 2.

This rule is similar to the rule for the case in which the collection is represented as a
Boolean mapping. The rule in its full form is as follows:

(REF« (NEW-COLLECTION
(#RDS (#REF EXPLICIT-COLLECTION))
(#P ELEMENTS («+ 2)))
(#NEW NEW-EXPLICIT-COLLECTION
(~#P ELEMENTS 7))

The condition on the result-data-structure property prevents this rule from being
applied when the collection is represented as a mapping. The refinement performed
by this rule is iilustrated below (with the refinement chain for the data structure
explicitly indicated):
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Note that the elements property of the NEW-COLLECTION node specifies the initial
set of elements. The following rule is applicable only if this set is non-empty:

Rule EXPCOL.3:
A collection with a non-empty list of initial elements may be created
by creating a coliection with no initial elements and adding each one
of the initial elements to this collection.

One must be careful to distinguish between the case where the list of elements is
known at "compile time" and where the list is known at "run time". In PECOS's
specification language, the description of the initial elements is an explicit list of
operations whose values at run time will be the initial elements, and EXPCOL.3
reflects this. If one wanted to specify a variable list of initial elements, one would
have to specify a collection whose elements are to be in the new collection initially.

EXPCOL.3 is actually applicable regardiess of the representation of the collection. It
is included in the discussion here to illustrate that different refinement rules for the
same concept may be applicable in different situations.

As mentioned in section 4.3, for many data structure refinement rules there are
corresponding operation refinement rules that are applicable only if the data
structure refinement has been made. Rule EXPCOL.2 above is such a rule. In
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addition, there are similar rules for the ADD-ELEMENT, REMOVE-ELEMENT,
IS-ELEMENT, IS-EMPTY, and ANY-ELEMENT operations. In order to focus on the
more central issues, such rules will be omitted from this and further discussions.

There are two ways to indicate the elements of a collection explicitly: they can
either be stored in a singie structure or they can be kept in several structures
("distributed"). For example, using property list markings is one kind of distributed
representation. PECOS can currently deal with distributed collections only through
the use of distributed mappings; see section 6.4.

The rule for stored collections is the following:

Rule EXPCOL.4:
An explicit collection may be stored in a single structure.

In addition to the above rule, there are six rules for performing the paraliel
refinements on operations. They will be omitted here.

There are two rules for refining a membership test that are independent of the way
that the stored collection is represented:

Rule EXPCOL.5:
A mcmbership test on a stored collection may be refined into test on
whether any item in the collection is eqgual io the item being tested.

The refinement produced by this rule is a FOR-ANY-TRUE test. The rules for dealing
witlh such tests will be discussed in section 6.2.

Notice that there is no requirement that the FOR-ANY-TRUE operation be performed
by enumerating the items of the collection, although that is frequently the technique
used. The following rule, on the other hand, requires that the elements be
ehumerated according to a particular ordering relation.

Rule EXPCOL.6:

If there is an ordering relation for the elements of a stored collection,
a membership test may be implemented as a total enumeration of the
elements of the collection according to the ordering relation; if an
element is found that is equal to the item being tested, return "True"
as the answer; if an element is found that follows the item being
tested, abandon the enumeration; if the enumeration terminates, either
through abandonment or through exhaustion of the elements, return
"False".

The constraint on the enumeration order is effected by attaching an
enumeration-order property to the ENUMERATE-ITEMS node, as illustrated by part
of the complete form of EXPCOL.6:

P
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[REF« [1S-STORED-IN-COLLECTION
[#P COLLECTION (&« Y)
(#RDS (#REF STORED-COLLECTION
(#P ELEMENT (~« XX)
(~~ OR #ANSWER
(?QUERY ORDERING-RELATION #)
(#P ELEMENT («~ X)
(#RDS (7QUERY REPRESENTATION-MATCH # XX]
(#NEW ENUMERATE-ITEMS

(~#P ENUMERATION-ORDER (LIST (QUOTE ORDERED) OR))
ot

The role of the enumeration-order property will be discussed in connection with the
rules for enumeration structures in section 6.2.

Collections grouped in sequential structures (SEQCOL)

Several types of structures can be used for storing the elements of a collection.
PECOS's rules only cover one technique: the use of a sequential collection.

Rule SEQCOL.1:
A stored collection may be represented using a sequential collection.

A sequential collection may be thought of as a linear arrangement of locations, where
each location contains a single element of the collection.

The rules for dealing with the "any element" operation illustrate the relationship
between locations in sequential collections and the elements that are stored in the
locations:

Rule SEQCOL.2:
The retrieval of any unspecified element from a collection
represented as a sequential collection may be Impiemented by the
retrieval of the element at any unspecified {ocation.

The full form of this rule is given below:

(REF« [ANY-STORED-ELEMENT
(#RDS (=« X))
(#P COLLECTION («+ C)
(#RDS (#REF SEQUENTIAL-COLLECTION
(#P ELEMENT
(?QUERY REPRESENTATION-MATCH # X]
(#NEW ELEMENT-AT-LOCATION
(~#P COLLECTION C)))
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An ELEMENT-AT-LOCATION node normally has both a collection and a location
propertly. Note that SEQCOL.2 specifies only the collection property. The fact that
no location property is specified reflects the "any unspecified location" of the
English version.

The retrieval of an element at a location in a collection can't be implemented until the
location is determined. In some situations this may involve searching through the
coliection. In this particular case, any jocation at all may be used. PECOS currently
has only one rule for determining an unspecified location for an
ELEMENT-AT-LOCATION operation:

Rule SEQCOL.3:
The retrieval of the element at any unspecified location may be
specified to retrieve the element at the front.

This rule simply specifies one of the many possible locations that could be used. For
sequential collections, the front and the hack are often convenient, since these are
generally more easily isolated than, for example, the "middle" lccation. In fact, the
front and back differ in their utility for different implementations of sequential
collections. In particular, for arrays front and back are generally equally convenient
since the upper and lower bounds of the array are known (but see the discussion on
growing, shrinking, and fixed boundaries in section 6.1.4). For linked lists,
the front is generally more accessible than the back.

The full form of the rule illustrates the use of property rules:
(PROP+~ LOCATION
(ELEMENT-AT-LOCATION)
(QUOTE FRONT))

When applied, this rule adds the location property to an ELEMENT-AT-LOCATION
node, as illustrated below:

[ ELEMENT-AT-LOCATION ]

element
L
| collection D
I

location

FRONT

Thus, the rule further specifies a previously unspecified aspect of a node. Property
rules are used quite frequently for such purposes.

Removing an element from a sequential collection is slightly more complicated, as
shown by the following rule:
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Rule SEQCOL.4:
If a stored collection is represented as a sequential collection, an
element may be removed from the collection by finding the location of
the element and removing the item at that location.

The addition of an element to a collection involves the notion of a position in such a
collection. A POSITION may be thought of as the space "between" two locations.
Note that a collection with n elements has n locations, but n+1 positions (including
the positions before the first element and after the last). The following rule makes
use of such a notion:

Rule SEQCOL.5:
If a stored collection is represented as a sequential collection, an
clement may be added to the collection by adding it at an unspecified
position.

The position is unspecified and must be determined. The determination of the
position is complicated by the fact that the elements of a sequential collection may
be stored according to some ordering relation. When the collection is unordered,
elements may be added at any convenient position; when the collection is ordered,
the precise position must usually be found by searching for it. In the unordered
case, the two possibilities are given by the following rules:

Rule SEQCOL.6:
If the elements of a sequential collection are not stored according to
any ordering relation, the position at which an element is added may
be specified to be the front position.

Rule SEQCOL.7:
If the elements of a sequential collection are not stored according to
any ordering relation, the position at which an element is added may
be specified to be the back position.

The ordered case is somewhat more complicated:

Rule SEQCOL.8:
If the elements of a sequential collection are stored according to some
ordering relation, the position at which an element is added may be
specified to be the result of an operation of finding the position of the
element in the collection.

There are scveral ways that such positions may be represented. Among the more
common are pairs of location indicators (giving the two locations between which the
position occurs) and a single indicator giving either the preceding location or the
following location. PECOS's rules deal only with the last of these:

T T——
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Rule SEQCOL.9:
A position for inserting an element in a sequential collection may be
represented as the location which immediately follows the position.

Once this method of representing a position between two locations has been
selected, the following rule can be applied to implement the actual addition
operation:

Rule SEQCOL.10:
If an inscrtion position is represented as the location that follows the
position of the new element, the element may be added by inserting it
before the location.

The rules for inserting an element before a location depend on the representation of
the sequential collection and will be covered later.
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6.1.2.1. Summary for sequential collections

Before considering techniques for implementing sequential collections, it may be
helpful to summarize the data structures and operations at this refinement level.
There are two principal data structures:

SEQUENTIAL-COLLECTION
A linearly related set of locations that contain the elements of the
collection.

LOCATION=-IN-COLLECTION
A way of referring to locations in a sequential collection.

There are seven operations:

NEW-SEQUENTIAL-COLLECTION
Creates a new sequential collection.

TEST-EMPTY-SEQUENTIAL-COLLECTION
Tests whether a sequential collection is empty.

IS-STORED-IN-SOME-LOCATION
Tests whether an item is stored in any location of a sequential collection.

ELEMENT-AT-LOCATION
Returns the element at a particular location in a sequential collection.

INSERT-ELEMENT-AT-POSITION
Inserts an element at a position in a sequential collection when the
position is specified as FRONT or BACK.

INSERT-BEFORE-LOCATION
Inserts an item before a location in a sequential collection when the
location is specified as a LOCATION=IN-COLLECTION.

REMOVE-ELEMENT-AT-LOCATION
Removes the element at a location in a sequential collection when the
location is specified as a LOCATION=-IN-COLLECTION.
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6.1.3. Rules about linked lists

One way to implement a sequential collection is to use a linked list: each location
contains one element and a link indicating the next location in the sequence33. The
principal features of linked lists are that insertions, deletions, and rearrangements
are relatively easy: the links can be manipulated without changing the items stored
in the locations. The price paid for this flexibility is that a list can be accessed in
only one direction, from the first element to the last element. One consequence is
that the time savings that often result from keeping a sequential collection ordered
are not as significant with lists. For example, binary searching methods do not apply
to linked lists.

Sequential collections as linked lists  (LIST)

The data structure refinement rule is similar to those already considered:

Rule LIST.1:
A sequential collection may be represented as a linked list.

There are many ways that linked lists can be implemented. For example, when the
data are record structures, there can be a field in the structure that contains an
indicator of the next datum. Parallel arrays can also be used: one array contains
the items and one array contains the links (indices). A third way involves the
allocation of cells from free storage. Necessary ingredients for such an
implementation include some way of allocating such cells and some way of retrieving
cells no longer in use (garbage collection). Each cell is considered to have two
parts, an item (the element stored in the cell) and a link (a pointer to the next cell).
A special flag is generally used as an indication of an empty list or as the list
terminator (the link of the last cell). Typically, the same flag will be used for both
purposes, since it simplifies many algorithms (especially recursive algorithms that
trace cdown the links of a list).

PECOS's rules deal with some aspects of the use of free cells to implement linked
lists. They assume that allocation and garbage collection are handled automatically
and that the same flag is uscd both to terminate lists and to indicate the empty list.

The first ruie is the data structure refinement rule:

Rule LIST

A linked list may be represented using linked free cells.

When dealing with linked free cells, it is often helpful to use a special cell at the
head of such a list. In such cases, the list is always a pointer to a particular cell.

33 Multiply-linked lists are a variation not covered by the rules.
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Without such a header ceil, a list may be a pointer to a cell or it may be the empty
list flag (e.g., either a CONS cell or NIL in LISP). Using a header cell facilitates
addition and removal of elements, since the special case of the empty list can easily
be ignored. PECOS has rules for lists with and without such special header cells.
The following two rules are used to select one of these possibilities:

Rule LIST.3:
Linked free cells may be used without a special header cell.

Rule LIST.4:
Linked free cells may be used with a special header cell which is a
primitive with value "HEAD"34,

These rules are both implemented using property rules. For example, the internal
form of LIST.3 is given below:

(PROP« SPECIAL-HEADER-CELL (LINKED-FREE-CELLS)
NIL)

Properly rules such as these are often used to deal with minor variations of a basic
notion.

The implementations of operations on linked free cells generally differ only slightly in
the two cases. The two rules for creating a new instance of a linked list are as
follows: -

Rule LIST.5:
If a linked list is represented as linked free cells without a special
header cell, a new list may be created by creating a new instance of
the empty link flag.

(Recall that the same flag is used for both the empty list and for the list terminator.)

Rule LIST.6:
If a linked list is represented as linked free cells with a spccial
header cell, a new list may be created by allocating a new cell whose
item part is a new instance of the special header and whose link part
is a new instance of the empty link flag.

Testing whether a list is empty is also different in the two cases:

34 The "HEAD" is simply a tag denoting the header cell. There is, of course, no
necessity that any particular value be used. In fact, having the value be a link to
some distinguished cell in the list may facilitate other operations. For example, if the
header contains a pointer to the last cell in the list, the insertion of elements at the
back of the list is relatively easy. PECOS currently has no rules for such special
purpose cells.
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Rule LIST.7:
If a linked list is represented with linked free cells without a special
header cell, a test of whether the list is empty may be implemented by
a test of whether the list is the empty link flag.

Rule LIST.8:
If a linked list is represented with linked free cells with a special
hecader cell, a test of whether the list is empty may be implemented by
a test of whether the link of the first cell of the list is the empty link
flag.

The only difference between the two is that with a special header cell, the link from
the first cell must be taken before the test can be applied. The same holds true for
a membership test:

If a linked list is represented with linked free cells without a special
header cell, a test of whether an item is in the list may be
implemented by a test of whether the item is in one of the cells of the
list.

Rule LIST.10:
If a linked list is represented with linked free cells with a special
header cell, a test of whether an item is in the list may be
implemented by a test of whether the item is in one of the cells of the

list pointed to by the link of the first cell.

Finally, the retrieval of the element at the front of a list is dependent on whether or
not there is a header cell:

Rule LIST.11:
If a linked list is represented as linked free cells without a special
header cell, the retrieval of the element at the front position of the list
may be implemented by a retrieval of the item part of the first cell of

the list.

Rule LIST,12:
If a linked list is represented as linked free cells with a special
header cell, the retrieval of the element at the front position of the list
may be implemented by a retrieval of the item part of the cell pointed
to by the link of the first cell in the list.

B i ey o ad

With destructive operations applied to linked free celis without a header, the
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situation is complicated by the fact that the empty list must be dealt with as a
special case. When adding an element to an empty list, the list is changed from an
empty list flag to a free cell. Usually, this cannot be done by simply manipulating
pointers. It is necessary to determine the original "source" of the structure (e.g.,
the variable whose value is the collection), so that this source may be modified to
have a cell as its value. Likewise, when removing the only element of a list with no
header, the result is the empty link flag. Again, this cannot be achieved by simply
manipulating pointers, and the source of the collection must be known. In general,
determining the source of a structure can be rather difficult, especially in languages
whose variables may assume pointer values (such as LISP), and PECOS has no rules
for dealing with this case. The effect is that PECOS cannot implement any
destructive operations on linked lists without hcader cells. The rules for destructive
operations on lists with header cells will be considered after a brief discussion of the
notion of a location in a linked list.

Locations in linked lists (LISTLOC)

A location in a linked list is some indication of a particular cell of the list. There are
several ways to indicate cells in linked lists. PECOS's rules deal with two of them35:

Rule LISTLOC.1:
If a linked list is represented as linked free cells, a location may be
represented as a link to the cell of the location.

Rule LISTLOC.2:
If a linked list is represented as linked free cells with a special
header cell, a location may be represented as a link to the cell
preceding the location.

An illustration may help to clarify the difference between these two location
representations:

location

V
TR e T RN

i; 1
PREDECESSOR~LINK  ITEM-LINK

The retrieval of the item at a location in a linked list is dependent on the location
representation, as seen in the following two rules:

----------

35 Although the rules are stated in terms of linked free cells, the notions involved
also apply to other representations for linked lists.
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Rule LISTLOC.3:
If a location is represented as a link to the cell of the location, a
retrieval of the item at the position may be implemented by retrieving
the item part of the cell indicated by the location representation.

Rule LISTLOC.4:
If a location is represented as a link to the cell preceding the cell of
the location, a retrieval of the item at the location may be implemented
by retrieving the item part of the cell pointed to by the link of the cell
indicated by the location representation.

Destructive operations o~ linked free cells with headers (LISTDEST)

PECOS's rules for destructive operations on linked lists deal only with linked free
cells with headers. For inserting an element, the simplest case is when the position
is specified to be the front of the list:

Rule LISTDEST.1:
If a linked list is represented as linked free cells with a special
header cell the insertion of an element at the front position may be
implemented as an insertion of the element after the first cell of the
list,

The "“insertion" operation can be implemented by applying the following rule:

Rule LISTDEST.2:
An insertion of an item after a cell in a linked list may be implemented
by replacing the link of the cell by a pointer to a new cell whose item
part is the new item and whose link part is the link part of the original
cell.

An illustration may clarify this operation:
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cell

BEFORE —— —

AFTER >

The other insertion operation for sequential collections involves inserting an element
before a given location. PECOS can only deal with the case where the location is
represented as a predecessor link. The difficulties of dealing with item links are
similar to those of dealing with lists without header cells.

Rule LISTDEST.3:
If a location is represented as a link to the cell preceding the location,
an insertion of an element before the location may be implemented as
an insertion of the element after the cell indicated by the location
representation.

Since the cell indicated by the location is the cell after which the element is to be
inserted, the cell whose link must be modified is accessible. This is the primary
virtue of using header cells and predecessor links to represent locations. Once the
above rule has been applied, the previously given rule (LISTDEST.2) for inserting an
item after a cell may be used.

The rules for removing an element at a location in a linked list are similar to those for
inserting an element. The simplest case is again where the location is at the front:

Rule LISTDEST.4:
If a linked list is represented as linked free cells with a special
header cell the removal of an element at the front location may be
implemented as a removal of the cell after the first cell of the list.

Rule LISTDEST.5:
A removal of the cell after a cell in a linked list may be implemented
by replacing the link of the cell by the link part of the cell pointed to
by the link part of the original cell.

An illustration may also be helpful here:
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6.1.3.1. Summary for linked free cells
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The removal of an element at a location can also only be done if the location is 3
represented as a predecessor link:
Rule LISTDEST.G: |
If a location is represented as a link to the cell preceding the location, |
the removal of the element at the location may be implemented the
removal of the cell after the cell indicated by the location 4
representation. |
|
|
e
|

The following data structures and operations constitute those required at this level
of refinement: :

LINKED-FREE-CELLS
Each cell contains an item and a link.

ITEM=LINK
A link to the cell of a particular item (or the list terminator flag).

PREDECESSOR-LINK
A link to the cell preceding that of a particular item.

NEW-EMPTY=-FREE~-LINK
Creates a new instance of the empty list flag.

TEST-EMPTY=-FREE=-LINK
Tests whether a link is the empty list flag.

IS-STORED~-IN-SOME~-LINKED-FREE-CELL
Tests whether an element is stored in any free cell in a linked list.

%
z.
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LINK-TO-NEW-CELL
Creates a new cell with the specified item and link and returns a pointer
to that cell.

ITEM-OF-CELL
Returns the item stored in a cell.

LINK=-OF=-CELL
Returns the link part from a cell.

REPLACE-LINK-OF-CELL
Replaces the link of a cell with another link.
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6.1.4. Rules about contiguous regions of arrays

Another standard technique for representing a sequential-collection is to use a
contiguous subregion of an array, where the linear relationship between locations is
that defined by the indices of the array. Every location in the contiguous subregion
contains one of the elements of the collection. Such a representation will be termed
an "array subregion". Conceptually, such structures actually consist of three parts:
a lower bound, an upper bound, and an allocation of consecutive cells from storage.
Typically, the bounds are changed dynamically as elements are added and removed,
while the allocation remains fixed. The lower bound will be considered to be the
index of the first element (the front) and the upper bound will be considered to be
the index of the last element (the back). There are two principal virtues of array
subregions as collection representations. The primary advantage comes with the use
of ordered collections: searching for a position or element can be done fairly quickly
using binary search techniques. On the other hand, insertions and deletions on such
ordered collections can be relatively expensive since shifts are required. A less
significant advantage is that less space is required than for linked lists, since no
memory is needed to store the links to each location's successor. In addition, no
facilities for free storage allocation or garbage collection are required.

Although the discussion of array subregions will use such terms as array and index,
the notion is actually somewhat more general than that. All that is required of the
"indices" is that there be some way of incrementing and decrementing them. All that
is required of the "storage allocation" is that there be some way of determining the
element that corresponds to a particular "index". Any way of representing this
mapping of integers to elements would suffice. For example, a list of <integer,
element> pairs could be used. For the sake of clarity, the intermediate step
between secquential collections and the standard array representation will be ignored
in the following discussion.

Sequential collections as array subregions (ARRAY)

The data structure refinement rule is similar to that for linked lists:

Rule ARRAY.1:
A sequential collection may be represented as an array subregion with
an allocation, a lower bound, and an upper bound.

When adding an element to an array subregions, it is necessary to expand the region
so that a location may be made available for the new element. Similarly, when
removing an element the region must be shrunk so there will be no locations that do
not contain elements. PECOS's rules deal only with the case it which a specific
boundary is identified as being the "growing" boundary, and a specific boundary is
identified as the "shrinking" boundary. The case in which the growing boundary and
shrinking boundary are selected dynamically is not covered. In fact, the current set
of rules only deals with the case in which the growing and shrinking boundaries are
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the same and in which a particular boundary is identified as a "fixed" boundary. The
following rules permit the selection of particular boundaries for these purposes.

‘In some situations PECOS is free to select the boundary to be used as the fixed
boundary. The first rule allows this selection be made:

Rule ARRAY.2:
If the fixed boundary of an array subregion is unspecified, the lower
bound may be used.

NRade it

There is no particular reason that the lower bound should be preferred over the
upper bound. In fact, many Interesting cases arise when the same allocation is
shared by two separate array subregions, with the two growing in opposite
directions. For example, many iteratlive sorting programs fit this paradigm [Green
and Barstow 1977b]. The remaining four rules permit PECOS to deal with array
subregions in which either boundary is specified to be the fixed boundary:

i

=T

Rule ARRAY.3:
If the fixed boundary of an array subregion is specified to be the
lower bound, the growing boundary may be specified to be the upper F
bound.

Rule ARRAY.4: f
If the fixed boundary of an array subregion is specified to be the |
lower bound, the shrinking boundary may be specified to be the upper 4
bound.

Rule ARRAY.5:
If the fixed boundary of an array subregion is specified to be the
upper bound, the growing boundary may be specified to be the lower
bound.

Rule ARRAY.6:
If the fixed boundary of an array subregion is specified to be the .
upper bound, the shrinking boundary may be specified to be the lower
bound.

Many of the rules for dealing with array subregions must differentiate between the
two cases. There are two rules for creating a new array subregion:

PR ——T T
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Rule ARRAY.7:
A sequential collection represented as an array subregion with fixed
lower bound may be created by creating a new allocation, a new Jower
bound which is the minimum value of the index and an upper bound
which is one less than the minimum value of the index.

Rule ARRAY.8:
A sequential collection represented as an array subregion with fixed
upper bound may be created by creating a new allocation, a new
lower bound which is one less than the maximum value of the index
and an upper bound which is the maximum value of the index.

Note the dependence of the index values on the range of possible values for the
index. Generally it is necessary to determine both the size of the array and the
range of index values. These depend on such parameters as the expected and
maximum size of the collection under consideration. Note also that the initial values
of the upper and lower bounds depend on which boundary is fixed. The rule for
testing whether an array subregion is empty, however, applies in both cases:

Rule ARRAY.9:
A test of whether a sequential collection represented as an array
subregion is empty may be implemented by a test of whether the lower
bound is greater than the upper bound.

Regardiess of which boundary is fixed, if the lower bound is greater than the upper
bound, the subregion is empty.

PECOS has no rules for refining membership tests at the level of array subregions.
Membership tests for such collections are constructed through the application of
either rule EXPCOL.S or rule EXPCOL.6, discussed in section 6.1.2 earlier.

The retrieval of the element at either the front or back Is straightforward:

If a sequential collection is represented as an array subregion, the
retrieval of the element at the front location may be implemented by
retrieving from the allocation the item stored at the lower bound.

Rule ARRAY.11:
If a sequential collection is represented as an array subregion, the
retrieval of the element at the back location may be implemented by
retrieving from the allocation the item stored at the upper bound.

e
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Locations in array subregions (ARRAYLOC)

There are many ways to indicate locations in array subregions. The most natural is to
simply use the index of the location, but the index of the preceding or following
location is also possible. PECOS's rules only deal with the use of the index of the
location:

Rule ARRAYLOC.1:
If a sequential collection is represented as an array subregion, a
location may be represented as an index.

The corresponding rule for an ELEMENT=AT=LOCATION operation is:

Rule ARRAYLOC.2:
If a sequcential collection is represented as an array subregion, the
retrieval of the element at a location indicated by an index may be
implemented by retrieving from the allocation the item stored at that
index.

Inserting an element to an array subregion (ARRAYINS)

In general, adding an element will require that the subregion be expanded, and that
the old elements be shifted to make room for the new one36. Two of the rules for
inserting an element at a particular position avoid the shift by taking advantage of
the fact that the element is being inserted at the growing boundary:

Rule ARRAYINS.1:
If the growing boundary of an array subregion is the upper bound, the
insertion of an element at the back may be implemented by expanding
the array subregion by 1 location and depositing the element at the
location indicated by the new upper bound.

Rule ARRAYINS.2:
If the growing boundary of an array subregion is the lower bound, the
insertion of an element at the front may be implemented by expanding
the array subregion by 1 location and depositing the element at the
location indicated by the new lower bound.

Inserting an element at an end which is not the growing boundary is somewhat more
complicated:
36 In addition, the expanded bounds must be checked to insure that they are not
outside the limits of the allocation. PECOS's rules do not include this aspect of array
manipulation.

o
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Rule ARRAYINS.3:
If the growing boundary of an array subregion is the lower bound, the
insertion of an element at the back may be implemented by expanding
the array allocation hy 1, shifting all of the elements down by 1, and
depositing the new element in the location indicated by the upper
bound.

Rule ARRAYINS.4:
If the growing boundary of an array subregion is the upper bound, the
insertion of an elcment at the front may be implemented by expanding
the array allocation by 1, shifting all of the elements up by 1, and
depositing the new element in the location indicated by the lower
bound.

The "expansion" referred to in the above rules merely expands the bounds without
doing any shifting, addition, or removal or any elements. Such an operation can be
implemented through the use of the following two rules.

Rule ARRAYINS.5:
If the growing boundary of an array subregion is the upper bound, the
array may be expanded by incrementing the upper bound by 1.

Rule ARRAYINS.6:
If the growing boundary of an array subregion is the lower bound, the
array may be expanded by decrementing the lower bound by 1.

Finally, the general case of inserting an element before an arbitrary location also
involves some shifting.

Rule ARRAYINS.7:
If a sequential collection is represented as an array subregion, an
clement may be inserted before a location by expanding the allocation
by 1, by vacating the position before the location, and by Inserting the
element into the vacated position.

The operation of vacating the position before a bcation will insure that the position is
not occupied, so that the element can be deposited without overwriting any other
elements. Aithough this ARRAYINS.7 is applicable for both growth directions, vacating
the position before the location differs for the two cases. Before presenting the
rules, it may be helpful to illustrate the operation. The figure below shows the
situation before vacating the position before the "4" (so that, say, "3" could be
inserted between "2" and "4"). Also shown are the situations after the "vacate"
has been performed in the upward and downward directions.

sassaaa
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item index after vacating upward  after vacating downward

Note that in the "upward" case the index specifies the physical location that was
vacated, while in the "downward" case it specifies the physical location after that
vacated.

Rule ARRAYINS.8:
If the growing boundary of an array subregion is the upper bound, the
position before a location indicated by an index may be vacated by
shifting the elements from the index through the upper bound up by 1.

Rule ARRAYINS.9:
If the growing boundary of an array subregion is the lower bound, the
position before a location indicated by an index may be vacated by
shifting the elements from the lower bound through the 1 less than the
index down by 1.

The two rules for storing an item before a subregion position display the same
asymmetry:

Rule ARRAYINS.10:
If the growing boundary of an array subregion is the upper bound, an
element may be stored before a vacated position (indicated by an
index) by depositing the element in the allocation at the index.

Bule ARRAYINS.11:
If the growing boundary of an array subregion is the lower bound, an
element may be stored before a vacated position (indicated by an
index) by depositing the element in the allocation of 1 less than the
index.
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Removing an element from an array subregion (ARRAYREM)

TR PN

The considerations involved in removing an element at a location in an array
‘ subregion are similar to those for inserting an element, except that the appropriate
‘ part of the subregion must be shrunk rather than expanded:

Rule ARRAYREM.1:
If the shrinking boundary of an array subregion is the upper bound, an
item may be removed from a location by shifting the elements from the
k index after the location through the upper bound down by 7 and
k shrinking the array subregion.

Rule ARRAYREM.2:
If the shrinking boundary of an array subregion is the lower bound, an
item may bec removed from a location by shifting the elements from
lower bound through the index before the location up by 1 and
shrinking the array subregion.

g

Shrinking an array is quite similar to expanding an array: only the bounds are
affected explicitly.

E Rule ARRAYREM.3:

If the shrinking boundary of an array subregion is the upper bound,
the array may be shrunk by decrementing the upper bound by 1.

Rule ARRAYREM.4:

If the shrinking boundary of an array subregion is the lower bound,
the array may be shrunk by incrementing the lower bound by 1.

Shifting an array subregion (ARRAYSHIFT)

Several of the rules for vacating positions and removing elements involved shifting a
part of the array subregion. Such an operation may be viewed in many ways,
including the enumeration of positions, a transfer between two coliections, and a
sequence of operations changing the correspondent of successive indices [Green
and Barstow 1977b]. Critical to all of these is an understanding that the shift must
be performed in such a way that no elements are overwritten and lost. PECOS has
two rules for shifting, one for each direction, but they are probably short-cut rules in
that some of the reasoning process is hidden.
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Rule ARRAYSHIFT.1:
A part of an array subregion may be shifted down by enumerating the
locations between the lower and oper bound in the stored order; for
each location, the item at that location is deposited into the location
whose index is the Jocation minus the amount of the shift.

Rule ARRAYSHIFT.2:
A part of an array subregion may be shifted up by enumerating the .
locations between the upper and lower bound in the reverse of the
stored order; for each location, the item at that location is deposited
into the location whose index is the location plus the amount of the
shift.

6.1.4,1, Summary for array subregions as association tables

The following data structures and operations constitute those required at this level
of refinement:

- ARRAY
o Some way of associating a distinct item with every index (integer) in a :
E given range. 1

INDEX

For our purposes, always an integer in a given range. :
PLEX ;

Since an array subregion consists of three parts (allocation, lower bound, 3

upper bound), a facility for dealing with structures with multiple parts is .

needed. The techniques uses often depend on the target language, and

whether or not that language has facilities for dealing with record

structures or array pointers.

]

NEW-ARRAY

A way to allocate a new block of storage for an array. The techniques
for handling this operation also depend on the target language. In
particular, in some languages arrays can be allocated only at compile time
or at certain specified times during execution. In INTERLISP, array
pointers can be passed as variable values.

DEPOSIT-IN-ARRAY
A way to deposit an item with a given index in a given array. i

RETRIEVE-FROM~ARRAY
A way to retrieve the item associated with a given index in a given array.
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In addition, techniques for enumerating, incrementing, and decrementing indices are
needed.
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6.1.5. Rules about other collection operations

Of the top-level collection operations mentioned earlier, six deal with several
collections simultaneously:

DUPLICATED-COLLECTION
Creates a new collection whose elements are all elements of another
collection.

SUBSET
Creates a new collection whose elements are all elements of another
collection that satisfy a given predicate.

UNION
Creates a new collection whose elements are all objects that are
elements of any collection in an explicit list of collections.

INTERSECTION
Creates a new collection whose elements are all objects that are
elements of every collection in an explicit list of collections.

DIFFERENCE
Creates a new collection whose elements are all elements of one
collection that are not elements of another.

IS-SUBSET .
Tests whether every element of one collection is also an element of
another.

PECOS can currently deal with only three of these (DUPLICATED-COLLECTION,

SUBSET, IS-SUBSET). The knowledge needed for the other three remains to be
codified.

Other collection operations (COLMISC)

The idea of duplicating a collection is that, given a collection with certain elements,
another collection with the same elements should be created. At the abstract level
of "collection" the two data structures involved are of the same type; hence, the
term "duplicated". However, at more refined levels, it is perfectly possible for the
two collections to be represented differently. In fact, a frequent use of this
operalion is to convert from one representation to another. The rule for duplicating
collections is as follows:

T T .
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Rule COLMISC.1:
A collection may be duplicated by a sequence of two actions: first,
initialize the new collection with no elements; then, for each element
of the original collection, add the element to the new collection.

Note that there must be some way to perform an action for all elements of the
original collection. For certain representations, this may not be feasible. For
example, if a collection is represented using LISP property list markings, every
atom's property list would have to be examined, a very time consuming task. Of
course, this problem only arises in connection with the original collection, and not with
the duplicated one. For example, it is quite simple to start with & linked list and
produce a property list marking.

The rules for computing and testing subsets are also fairly simple:

Rule COLMISC.2:
The subset S of a collection C, such that every element of S satisfies a
predicate P, may be computed by a sequence of two actions: first,
initialize S with no elements; then, for each element of C, if the
element satisfies P add it to S.

Rule COLMISC.3:
A test of whether a collection C1 is a subset of a collection C» may be

implemented as a test of whether all elements of C1 are members of
Ca.

PECOS can deal with the union operation in one specific case:

Rule COLMISC.4:
If the "collection" operand of a membership test is computed by
computing the wunion of scveral collections, the test may be

implemented as an "or" of membership tests on each of the
collcctions.

This is one of the few rules whose conditions apply to the operation that produces
one of the operands, rather than to the data structure produced by that operation.
Such operation simplifications are fairly common in optimizing transformations
[Standish et al 1976].
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6.2. Enumerations over collections

As mentioned earlier, there are four control structures that may involve considering }
each of the elements of a collection:

| FOR-ALL-DO

: Performs a given action for every member of a given collection. If a
predicate is specified, the action is performed only for the elements
satisfying the predicate.

-

B
I FOR-ANY-DO
i Performs a given action for some member of a given collection. The
F member may be required to satisfy a given predicate. An action to be
4 performed if there is no such element may also be specified.
i FOR-ALL-TRUE
E" Tests whether every element of a given collection satisfies a given
3 predicate.
FOR-ANY-TRUE
Tests whether any element of a given collection satisfies a given
predicate.
i
: High-level enumeration operations (FOR)

In a FOR-ALL-DO construct, there is no necessity that the elements be considered
sequentially (i.e., one after another). For example, with languages or machines that
support parallel processes, a separate process could be started for each element of
the collection. However, PECOS's rules deal only with the sequential case:

Rule FOR.1:
2 The process of performing an action A for all elements of a collection
may be implemented by a total enumeration of the elements; if a
predicate is specified, the action for each element consists of testing
the predicate and performing A if the test succeeds; if no predicate is
specified, the action for each element is A%.
The notion of enumerating the items in a collection is central to most of the rules in
this section, and will be elaborated in more detail after discussions of the rest of the
top-level constructs.
; With FOR-ANY-DO constructs, it is often necessary to distinguishh between two
4
’ 37 PECOS's rule actually includes somewhat more detail, in that initial and final
actions (for the FOR-ALL-DO) may also be specified, and these are passed on to the
ENUMERATE-ITEMS construct created by an application of FOR.1.
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cases: (a) the collection is empty (or no elements satisfy the predicate); (b) there
is an element that satisfies the predicate. For this reason, FOR-ANY-DO constructs
may also specify an action to be performed if no satisfactory element is found. In
the discussions below, this action will be referred to as the "not-found" action.

There are two rules dealing with FOR=ANY=DO constructs. The first is for the case
in which no predicate is specified, so there is no need to perform any kind of
enumeration to try to find an element satisfying the predicate:

Rule FOR.2:
{f no predicate is specified, the process of performing an action A for
any element of a collection may be implemented as a test of whether
the collection is enipty; if the test succeeds, the “not-found" action is
executed; if the test fails, A is performed on the result of retrieving 1
any element of the collection3s,

If a predicate is specified, then some element satisfying that predicate must be
found. The next rule enables this to be done by searching for such an element3S,

Rule FOR.3:
The process of performing an action A for any element of a collection
such that the element satisfies a predicate P may be implemented as a
search in the collection for an item satisfying P; if found, A is
performed; if not, the “not-found” action is performed.

There are many ways that such a search can be implemented. If the results of
testing the predicate on one element can be used to guide the process, relatively
complex search strategies can be developed. The only case covered by PECOS's

rules, however, is simply to enumerate the items, one after another, testing each in 1
turn:
Rule FOR.4:

A search in a collection for an element satistying a predicate P may
be implemented as a total enumeration of the items in the collection;
the action for each item is a test of whether the item satisfies P; if so,
the enumeration halts and the "found" action is performed; if all
elements are enumerated (and none satisfies P), the "not found"
action is performed.

e i et A b 1

i T 5 i

Note that the FOR-ALL-DO and FOR-ANY-DO constructs have both been refined into
ENUMERATE-ITEMS constructs. The same is true for the two predicates,

38 The "retrieve any element” refers to the ANY-ELEMENT operation discussed with
the collection rules in section 6.1.

39 Again, PECOS's rules do not cover any non-sequential ways of finding the element.
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FOR-ANY-TRUE and FOR-ALL-TRUE. The FOR-ANY=-TRUE is first refined into a
search:

Rule FOR.S:
A test of whether any element in a collection satisfies a predicate P
may be implemented as a search in the collection for an element
satisfying P; if such an item is found, return "True"; if not, return
"False".

The search rule given earlier (FOR.4) may now be used to refine this into a total
enumeration.

The most common way of testing whether every element in a collection satisfies a
predicate is to determine whether any element fails to satisfy the predicate. This
technique is embodied in the following rule:

Rule FOR.6:
A tcst of wheiher all elements of a collection satisfy a predicate P
may be implemented as the negation of a test of whether any element
of the collection satisfies the negation of P. ;

At this point, the previously given rule can be applied, and eventually a total ;
enumeration over the collection is reached. Thus, all four of the top-level constructs .
are refined into a single notion, that of enumerating the items in a collection. The E
refinement relationships between these constructs are summarized below:

FOR-ALL-TRUE

FOR-ANY-DO  FOR-ANY-TRUE !

FNR-ALL-DO SEARCH-FOR-1TEM

ENUMERATE-1TENMS

6.2.1. Enumerating the items in a collection

In its most general form, enumerating the items in a collection can be viewed as an
independent process or coroutine. Each call produces onc item from the coilection.
The process must guarantee that every item will be produced on some call and that
each will be produced only once. In addition, there must be some way to indicate
that all of the items have been produced, as well as some way to start up the
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process initially. It may also be useful to constrain the process to produce the items
in a particular order. For example, EXPCOL.6, a membership test rule given earlier,
requires that the items be enumerated according to an ordering relation. This
"process" view of an enumerator includes a wide range of constructs. Among the
simplest are a counter for enumerating the positive integers in a given range and a
pointer tracing down a linked list. Examples of more complex enumerators include
processes for producing all possible propositional logic expressions or for producing
the elements (of an unordered collection of integers) in increasing order. Note that
some of these involve implicit (and even infinite) collections as well as explicit ones.
PECOS's rules deal primarily with explicit collections.

Enumerating items in sequential collections (ENUMSEQ)

The principal ENUMERATE-ITEMS rule deals with enumerating the items in a
sequential collection:

Rule ENUMSEQ.1:
The items of a sequential collection may be enumerated by
enumerating the locations in the collection and retrieving the items
stored in each location4°,

The internal representation of ENUMSEQ.1 is more complicated than the English form
indicates, primarily because of a variety of optional property links, including "early
exits" and an "initial action". These are omitted here in the interest of clarity.

As noted above, an enumerator can be seen as a coroutine that supplies items from
the coilection as they are needed. There are, of course, many ways to implement
such a coroutine arrangement. PECOS's rules deal with only one of these, a
generate and process structure. In such a structure, the actions to be performed
between "calls" to the enumerator are embedded within the enumerator itself.

The following rule refines a location enumerator into a generate and process
structure:

Rule ENUMSEQ.2:

An enumeration of the locations in a sequential collection, with an
action A to be performed for each location, may be implemented as a
generate and process structure; the generator initialization is an
initialization of the enumeration state; the generator incrementation is
an incrementation of the enumeration state; the termination test is a
test of whether the enumeration state is in its final state; the process
consists of determining the next location from the enumeration state
and performing the action A.

----------

40 The retrieval of the items in the location is the ELEMENT-AT-LOCATION operation
discussed in the section on sequential collections.

fot
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This rule includes two other parts that are most properly classified as temporary
solutions ("kluges") to problems involving certain special cases:

Positions vs. locations: Recall that a distinction is made between locations (in which
the elements are stored in a sequential collection) and positions (which occur
"between" locations). ENUMSEQ.2, the enumeration rule for locations, is also used
for enumerating positions (as needed for inserting elements into ordered sequential
collections). A problem arises, however, since a collection with n locations has n+1
positions, including those before the first location and after the last location. An
enumeration of the locations would normally go through only n iterations before
exiting. To allow for the n+17st position to be considered, the "process" is actually
separated into two parts, and the determination of the next "location" from the
enumeration state is done before the termination test. When the termination action
is executed, the n+1st position is available if necessary. While this solution works in
the situations in which it has been tested, it is clearly unsatisfactory: the
relationship between enumerations of locations and positions would benefit from
further analysis and clarification.

Special action for the first location: Many enumerations require that some special
action be performed for the first location in the coilection. For example, if the
enumeration is part of a search for the location of the smallest element in the
collection, the standard technique involves saving the location of the smallest
element found so far. This must be initialized to the first location produced by the
enumerator. If such a special action is specified, the process (in the
GENERATE-AND-PROCESS) is initialized by determining the location from the initial
state, performing the special action, and incrementing the state. While this solution
seems adequate, it is not very satisfying. More flexible rules for coroutines would
be heipful.

The next rule can now be used to refine the generate and process structure into a
simple kind of loop:

Rule ENUMSEQ.3:
A generate and piocess structure can be implemented as a loop with
an exit test before the loop body; the loop initialization consists of the
initial actions for the generator and the process; the body consists of
the process followed by the generator incrementation; the exit test is
the termination test of the generator.

The rules for dealing with such loops will be covered in section 6.6. The
different parts of an enumerator (initialization, incrementation, and termination test)
are closely related, although they may be physically separated in the actual code.
There are two fundamental decisions involved in constructing the parts: determining
the order in which the items are to be produced and selecting a scheme for saving
the state betlween calls to the enumerator. In the constructed code for the
enumerator, there is nothing explicitly corresponding to these decisions. Rather they
are implicit in the way the enumerator parts are coordinated so that they function
properly together. The identification of these two decisions is @ good example of the
explication of "hidden" decisions involved in the programming process.




T Y

A knowledge base of programming rules Page 105

6.2.2. Enumeration order

As noted above, the enumeration order may be specified to be based on some
ordering relation. If no enumeration order is specified, one must nonetheless be
selected: an enumerator cannot be implemented without knowing the order in which
the elemeiits are to be enumerated. There are several possible orders in addition to
those based on ordering relations on the elements. One very useful order is based
on the fact that most structures have some “natural® order. With sequential
collections, this natural order is the first-to-last order; either from the first cell to
the last cell (for linked lists) or in order of increasing index (for array subregions).
The order will be referred to as the "stored order" of a sequential collection.

Enumeration order (ENUMORDER)

In the absence of any reason to select otherwise, the stored order is usually a
reasonable one to choose, and PECOS does this by applying the following rule:

Rule ENUMORDER.1:
The locations in a sequential collection may be enumerated in the
order in which they are stored.

There is actually another way to have an enumeration order that is the same as the
stared order:

Rule ENUMORDER.2:
If the enumeration order is based on an ordering relation and the
elements of a sequential collection are stored according to the same
relation, the enumeration order is the same as the stored order.

This rule is especially useful when EXPCOL.6, the membership rule involving an
ordering relation, is used. In fact, a useful heuristic is that EXPCOL.6 should only be
applied if the collection is kept ordered4],

The stored order has an important property that may be described as "linearity": the
enumeration order bears a simple relationship to the structure and is independent of
the items that are actually stored in the locations. The following rule is used to
answer queries about the linearity of the enumeration order:

Rule ENUMORDER.3:
If the enumeration order is the same as the stored order, it is linear.

The only other linear order is the reverse of the stored order (e.g., by decreasing
index in an array subregion):

41 Otherwise a membership test with order n2 running time would be implemented!
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Rule ENUMORDER.4:
If the enumeration order is the reverse of the stored order, it is
linear.

Typically, nonlinear enumeration orders are based on ordering relations defined for
the elements of the coliection. For almost any type of element, an ordering relation
could be defined. However, PECOS's rules currently deal with only one particular
ordering relation:

Rule ENUMORDER.5:
An ordering relation for integers is "greater than".

For any ordering relation to be useful, it must be possible to compare two objects to
see if one follows the other under the relation:

Rule ENUMORDER.6:
A test of whether an item X follows an item Y under the relation
"greater than" may be implemented as a test of whether X is greater
thanY.

In a few situations, PECOS also needs to be able to deal with the opposite relation,
"less than". In particular, comparisons must occasionally be made:

Rule ENUMORDER.7:
A test of whether an item X follows an item Y under the relation "less
than" may be implemented as a test of whether Y is greater than X.

PECOS'S rules do not make any special provisions for the case in which the two
items may be the same (e.g., if a collection has repeated elements).

6.2.3. Enumeration state

One of the principal features of enumerators is that they produce each element of
the collection exactly onced2. This implies that there must be some way for the
enumerator to "remember" which elements have been produced and which have not.
That is, the state of the computation must somehow be saved. There are a variety
of ways that such states can be saved. In the coroutine model, the state is saved
within the control structure. In the generate and process model, there must be some
data structure that represents the "state".

There are four operations that can be performed on such data structures:

42 Unless, of course, the collection itself has repeated elements.
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INITIAL-ENUMERATION-STATE
Returns a data structure representing the initial state of the enumeration;

intuitively, the initial state means that "no locations have been
produced."

TEST-FINAL-ENUMERATION-STATE
Returns "True" if the enumeration state is in its final state and "False" if

it is not; intuitively, the final state means that "all locations have been
produced."

INCREMENT-ENUMERATION-STATE
Modifies the enumeration state to reflect the fact that a particular
location (one of the arguments to this operation) has been produced.

FIND=-ENUMERATED-LOCATION
Given an enumeration state, returns the next location to be enumerated;

the implementation of such an operation will depend on the enumeration
order.

6.2.3.1. Linear enumeration states

Whenever the enumeration order is "linear" (as described above), it is fairly easy to
save the state of the enumeration. All that is needed is to remember the current
location in the sequential collection (either the current cell or the current index).
Althougin other possibilities exist, PECOS's rules assume that the current location is
the next location to be produced. Thus, all of the locations before the current
location (or after it, in the case of the reverse stored order) have already been
produced, and the current location and all of the locations after it (or before, in the
reverse case) have not yet been produced. The diagram below illustrates this for

the case of a "stored order" enumeration of a linked list:

enumeration order = stored order

most recently next location
produced location to be produced

Y i
l_J_El—*Ll—}—’[ B

enumeration state = current location
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Linear enumeration states (ENUMLINEAR)

The first rule is used to refine an enumeration state data structure into a location
indicator:

Rule ENUMLINEAR.1:
If the enumeration order is linear with respect to the stored order, the
state of an enumeration may be represented as a location in the
sequential collection.

The first rule for initializing such states (the INITIAL-ENUMERATION-STATE
operation) depends on the enumeration being "total" (i.e., all locations in the
collection are to be produced):

Rule ENUMLINEAR.2: :
If an enumeration is total, the initial enumeration state must specify
that no elements have been produced.

Partial enumerations will be discussed later.

The next two rules deal with representing the fact that no elements have been
produced in the two linear cases:

Rule ENUMLINEAR.3:
If the enumeration order is the same as the stored order and the
enumeration state is represented as a location in the collection, the
fact that no locations have been produced may be specified by the
location of the first element in the collection.

Rule ENUMLINEAR.4:
If the enumeration order is the reverse of the stored order and the
enumeration state is represented as a location in the collection, the
fact that no locations have been produced may be specified by the
location of the last element in the collection.

The rules for testing the final state of the enumeration are similar to those for
initializing it:

Rule ENUMLINEAR.G:

If an enumeration is total, a test of whether the enumeration state is in
the final state may be implemented as a test of whether the state
specifies that all of the locations have been produced.
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Rule ENUMLINEAR.G:
If the enumeration order is the same as the stored order and the
enumeration state is represented as a location in the collection, a test
of whether all of the locations have been produced may be
implemented as a test of whether the location is the location after the
last element of the collection.

Rule ENUMLINEAR.7:
If the enumeration order is the reverse of the stored order and the
enumeration state is represented as a location in the collection, a test
of whether all of the locations have been produced may be
implemented as a test of whether the location is the location before
the first element of the collection.

The rules for incrementing linear enumeration states also depend on whether the
enumeration order is the stored order or the reverse stored order:

Rule ENUMLINEAR.8:
If the enumeration state is represented as a location in the collection,
the state may be incremented by using the location of the next element
to be produced.

Rule ENUMLINEAR.9:
If the enumeration order is the same as the stored order and the
cnumeration is total, the location of the next element to be produced
is the location after the current location.

Rule ENUMLINEAR.10:
If the envmeration order is the reverse of the stored order and the
enumeration is total, the location of the next element to be produced
is the location before the current location.

Finally, the location must be produced from the current state. As shown in the
diagram above, the current location is exactly the location to be produced, and the
following rule reflects that:

Rulc ENUMLINEAR.11:
If the enumeration state is represented as a location in the collection,
the location to be produced may be implemented by simply returning
the state indicator itself.

(Note that this rule is independent of whether the enumeration order is the stored
order or its reverse.)
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Partial enumerations (ENUMPART)

The rules given above deal with total enumerations: all of the elements (or locations)
of the sequential collection are to be enumerated. For many purposes, partial
enumerations are required. In the array shifting rules, for example, only the indices
within a certain range are to be enumerated. The following rules deal with
enumeration states for partial enumerations over array subregions43:

Rule ENUMPART.1:
If the enumeration order is the stored order, the enumeration state is
represented as an array index, and the range is determined by lower
and upper bounds, the initial enumeration state is the lower bound.

Rule ENUMPART.2:
If the enumeration order is the reverse of the the stored order, the
enumeration state is represented as an array index, and the range is
determined by lower and upper bounds, the initial enumeration state is
the upper bound.

Rule ENUMPART.3:
If the enumeration order is the stored order, the enumeration state is
represented as an array index, and the range is determined by lower
and upper bounds, a test of whether the state is in its final state may
be implemented as a test of whether the state is greater than the
upper bound.

Rule ENUMPART.4:
If the enumeration order is the reverse of the the stored order, the
enumeration state is represented as an array index, and the range is
determined by lower and upper bounds, a test of whether the state is
in its final state may be implemented as a test of whether the state is
less than the lower bound.

When incrementing the enumeration state, the rule given c¢hove for linear
enumeration states (rule ENUMLINEAR.8) would be applied, followed by one of the
next two rules:

Rule ENUMPART.5:
If the enumeration order is the stored order, the enumeration state is
represented as an array index, and the range is determined by lower
and upper bounds, the location of the next enumerated item is the
location after the current location.

43 PECOS has no rules dealing with partial enumerations over linked lists.




A knowledge base of programming rules Page 111

Rule ENUMPART.6:
If the enumeration order is the reverse of the the stored order, the
enumeration state is represented as an array index, and the range is
determined by lower and upper bounds, the location of the next
enumerated item is the location before the current location.

Note that the rule for retrieving the location from the current state (rule
ENUMLINEAR.11 given earlier) is applicable for partial enumerations as well as for
total enumerations. No special case rule is needed.

6.2.3.2. Operations applied to locations in collections

The linear enumeration state rules have introduced several location operations other
than the ELEMENT-AT-LOCATION operation discussed earlier. The operations
needed for "stored order" enumerations are as follows:

LOCATION-OF-FIR5T-ELEMENT
Returns the location of the first element in the collection.

TEST-LOCATION-AFTER-LAST=ELEMENT
Tests whether a location is the location after the last element in the
collection. :

LOCATION-AFTER-LOCATION
Returns the location after a given location.

The foilowing are needed for "reverse stored order" enumerations:

LOCATION-OF-LAST-ELEMENT
Returns the location of the last element in the collection.

TEST-LOCATION-BEFORE=-FIRST=ELEMENT
Tests whether a location is the location before the last element in the
collection.

LOCATION-BEFORE=-LOCATION
Returns the location before a given location.

Location operations (LOCOP)

For locations in linked lists, only the "stored order" operations are relevant. There is
no simple way to enumerate the cells of a singly linked list in the reverse order.
Since there are two ways to represent linked lists (with or without special header
cells) and two ways to represent locations in linked lists (a link to the cell of the

ol o e B Lo E AR




Page 112 Section 6

location or a link to the cell preceding the location), the rules for dealing with these
location operations must deal with a variety of cases. In the interest of clarity,
slightly simplified versions of the rules are presented here. There are three rules
dealing with the location of the first item:

Rule LOCOP.1:
If a linked list is represented as linked free cells without a header
cell, and if a location is represented as a link to the cell of the
location, the location of the first item may be returned by returning a
link to the first cell in the list.

Rule LOCOP.2:
If a linked list is represented as linked free cells with a header cell,
and if a location is represented as a link to the cell of the location, the
location of the first item may be returned by returning the link part of
the first cell in the list.

: Rule LOCOP.3:

If a linked list is represented as linked free cells with a header cell,
and if a location is represented as a link to the cell preceding the cell
of the location, the location of the first item may be returned by

returning a link to the first cell in the list.

pEren

i Note that there is no rule for the case of a location represented by a predecessor
link when the list does not have a special header cell. The problem, of course, is
that there is no cell before the cell of the first element.

Testing whether the location is the location after the last item differs only with
respect to the location representation, but not with respect to the existence of a
header cell:

Rule LOCOP.4:
If a location is represented as a link to the cell of the location, a test
of whether the location indicates the location after the last item may
be implemented by a test of whether the location indicates the empty
list flag®s.

Rule LOCOP.5:
If a location is represented as a link to the cell preceding the cell of
the location, a test of whether the location indicates the location after
the last item may be implemented by a test of whether the link part of
the cell indicated by the location is the empty list flag.

44 The TEST-EMPTY-FREE-LINK operation discussed earlier.
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The process of determining the location after a given location is the same for both
location representations:

Rule LOCOP.6: |
If a location is represented as a link to the cell of the location, the |
location after a given location may be returned by retrieving the link
part of the cell indicated by the location45,

Rule LOCOP.7:
If a location is represented as a link to the cell preceding the cell of
the location, the location after a given location may be returned by
1 retrieving the link part of the cell indicated by the location.

For array subregions, is is quite feasible to enumerate the locations in either the
stored order (increasing index) or the reverse stored order (decreasing index), and
PECOS's rules deal with both cases:

Rule LOCOP.8:
If a location is represented as an index in an array subregion, the
location of the first item may be returned by returning the index of
the lower bound of the subregion.

Rule LOCOP.9:
{f a location is represented as an index in an array subregion, the
location of the last item may be returned by returning the index of the
upper bound of the subregion.

Rule LOCOP.10:
If a location is represented as an index in an array subregion, a test
of whether the location indicates the location after the last item in the
subregion may be implemented as a test of whether the location index
is greater than the index of the upper bound.

Rule LOCOP,11:
If a location is represented as an index in an array subregion, a test
of whether the location indicates the location before the first item in
the subregion may be implemented as a test of whether the index of

the lower bound is greater than the location index.

45 The LINK-OF-CELL operation discussed earlier.
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Rule LOCOP.12:
If a location is represented as an index in an array subregion, the
location after a given location may be returned by returning the sum
of the location index and the integer 1.

Rule LOCOP.13:
If a location is represented as an index in an array subregion, the
location before a given location may be returned by returning the
difference between the location index and the integer 1.

6.2.3.3. Nonlinear enumeration states

Unless the elements are stored in order, an enumeration order based on an ordering
relation is nonlinear: the temporal order in which the elements are produced does not
bear any simple relationship to the physical order in which they are stored. Nonlinear
orderings generally lead to more complex enumerators, since bhoth finding the next
element (location) to be produced and saving the state are not as simple as with
linear orders. Finding the next element to produce typically involves searching
through the entire collection to find the element that comes next according to the
orcdering relation. In the process, the state must be interrogated to determine
whether an element has already been produced, so that it will not be produced again.
There are basically two types of techniques that can be used to save the
enumeration state for nonlinear enumerations: destructive and nondestructive. With
destructive schemes, each element is somehow removed from the collection after it
is enumerated. The two obvious techniques for performing the removal are to remove
the location in which the element is stored and to overwrite the element with some
special marker. In the first case, all locations in the collection contain elements that
have not yet been produced, so the "interrogation" part of the search is actually
unnecessary. In the second case, the interrogation of the state is performed by
testing whether the item in the location is the special marker. There are several
nondestructive schemes. Abstractly, all that is necessary is to maintain some kind of
mapping between elements (or locations) and indicators of whether or not the
element (or location) has already been produced. The search process can then
interrogate the state by retrieving the image of the element under the mapping.
Under this view, all of the knowledge relevant to mappings could be applied here.
For example, a hash table of locations could he maintained, or the mapping could be
inverted so that, in effect, the set of enumerated elements would be stored.
Unfortunately time restrictions prevented this topic from being explored to any great
detail, and PECOS's rules do not cover any nondestructive enumeration state
techniques. In fact, the only nonlinear technique covered by PECOS's rules is the
deletion of the enumerated locations from the collection.
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Enumeration state-saving through deletion (ENUMDEL)

The first rule for deletion involves a test of whether the collection can be destroyed:

Rule ENUMDEL.1:
If a collection is destructible, the enumeration state may be saved by
deleting locations from the collection.

The question, of course, is how to determine whether a collection can be destroyed.
PECOS's rules are relatively conservative in that respect. There is only one rule for
determining destructibility:

Rule ENUMDEL.2:
A collection is destructible if it has at some point been explicitly
noted as being destructible.

And there is only one rule that makes such an explicit note:

Rule ENUMDEL.3:
The items of a collection may be enumerated by duplicating the
collection and enumerating the items of the new collection; the new
collection is destructible?6,

ENUMDEL.3 is another rule for refining ENUMERATE-ITEMS constructs. Note that
ENUMDEL.3 is applicable whether or not the enumeration order is nonlinear. It wouid
be correct to use a destructive scheme even in the linear case. One of PECOS's
choice-making heuristics, however, suggests choosing ENUMDEL.3 only if the
enumeration order is known to be nonlinear.

The rules for manipulating the enumeration state are relatively simple.

Rule ENUMDEL.4:
If the enumeration state is saved by deleting locations from the
collection, the fact that no locations have been produced may be
specified by using the original collection.

Rule ENUMDEL,5:
If the enumeration state is saved by deleting locations from the
collection, a test of whether the state specifies that all of the
locations have been produced may be implemented as a test of
whether the collection is empty.

46 Techniques for duplicating collections were discussed earlier (section 6.1.5).
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Rule ENUMDEL.6:
If the enumeration state is saved by deleting locations from the
collection, the state may be incremented by removing the item at the
location that has most recently been produced.

The most complicated aspect of nonlinear enumerations through deletion is the
operation of finding the next location to produce. As noted above, the next location
to produce is that of the least element according to the ordering relation:

Rule ENUMDEL.7:
If the enumecration state is saved by deleting locations from the
collection, and the enumeration order is ordered by a relation R, the
ncxt location to be produced may be determined by finding the
location of the least element according to R.

The process of finding this location is normally done by considering all of the
locations to determine the location which contains least element. The standard
technique involves saving a pointer to the "least so far", which must be initialized to
the first location that is considered. After this initialization, the elements at the rest
of the locations are compared with the "least so far", replacing it if the new element
is found to be smaller. The reasoning process that leads to this technique is fairly
complex [Green and Barstow 1977b]. In PECOS's rule base, all of this complexity
is encoded in a single rule. A more detailed set of rules for this situation would be a
valuable extension.

Rule ENUMDEL.8:

The location of the least element (according to a relation R) may be
found by enumerating the locations of the collection; for the first
location, remember the location as BEST; for the other locations, the
action to bc performed is a test of whether the element at BEST
follows the element at the location according to R; if it does,
remember thc new location as BEST; after all locations have been
considered, return BEST as the result.

Note that ENUMDEL.8 specifies a special action to be performed for the first location.
The relationship of this case to the basic enumeration structure was discussed
earlier (as one of the "kluges" in the enumeration rule). From this point on, the rules
for enumerating locations can be applied, and the entire nonlinear enumeration is
implemented as an enumeration within an enumeration.
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6.2.4. Other enumeration operations

There are several other operations involving enumerations over stored collections.

As they do not fit conveniently into any of the categories previously discussed, they
are included here.

Other enumeration operations (ENUMMISC)

Recall that the process of adding an element to an ordered sequential collection
involves finding the particular position (i.e., the space between two locations) in
which the new element belongs. There are several ways that this may be done. For
array subregions, for example, some variant of binary search might be faster than a
linear scan’. PECOS's rules, however, deal only with a simple linear enumeration:

Rule ENUMMISC.1:

The opcration of finding the appropriate posiiion for an element in an
ordered scquential collection may be implemented by enumcrating the
the locations of the collection; the action performed for each location
is to test whether the item at the location follows the new element
according to the ordering relation; if so, halt the enumeration and
return that location; if the enumeration runs to completion, then the
appropriate position is the last position in the collection.

(This rule uses the "kluge" for relating position and location enumerations, as
discussed earlier. A cleaner set of rules for dealing with this situation would be a
worthwhile extension.)

The operation of removing an element from a sequential collection required finding
the location of the element. The following rule may be used to implement the search
for that location:

Rule ENUMMISC,2:
The operation of finding the location of an item in a sequential
collection may be implemented by enumerating the locations of the
collection; for each location, if the item at the location is the desired
item, halt the enumeration and return the location found.

(Since the removal operation assumes that the element is in the collection originally,
there is no need to deal with the case in which no location satisfies the test.)

Under some circumstances, the position of an element in a collection can be deduced
while the program is being constructed. One such case is that in which the element
was originally determined by retrieving the item at some location:

47 But since the insertion of the new element still requires a scan for the shift, the
find plus insertion still runs in linear time.
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Rule ENUMMISC.3:
If an element X was determined by retrieving the item at a location L

of a sequential collection C the location of X in C is L.

If the location can be deduced, there is no need for a search:

Rule ENUMMISC.4:
If the location of an item X in a sequential collection C is known to be

L, an operation of finding the location of X in C can be implemented by
simply using L.

These two rules illustrate a style different from most of the other rules: they deal
with the use of state information to simplify or avoid a computation. These rules
were not particularly easy to express in PECOS's rule formalism. In fact, five
separate rules were needed in order to trace certain kinds of pointers to try to
deduce the necessary information. The development of betier techniques for using
state information could be a valuable extension. Perhaps what is needed is a more
general mechanism that tries to deduce the result of any part of the program before
writing code to compute the result.

The final kind of enumeration that PECOS can construct involves enumerating the
elements in a collection represented as a Boolean mapping:

Rule ENUMMISC.G:
The items in a collection represented as a Boolean mapping may be
enumerated by enumerating the inverse image of "True" under the

mapping.

The next rule applies to any attempt to enumerate the items in an inverse image of
association table mappings, and is not restricted to Boolean mappings:

Rule ENUMNISC.G:
If a mapping is represented as an association table, the inverse image
of a range element R may be enumerated by enumerating the keys of
the table and considering only those keys whose associated value is
R.

Rule ENUMMISC.7:
The keys of an association tables represented as an array may be
enumcrated by enumerating the integers between the lower and upper
bounds.

The final rule in this chain is also applicable whether or not the range elements are
Boolean values:
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Rule ENUMMISC.8:
An enumeration of the integers between a minimum value X and a
maximum value Y in the order of increasing value may be implemented
as a generate and process structure; the generator initialization sets
the state to X; the generator incrementation increments the state by 1;
the termination test is a test of whether the state is greater than Y.

Note that this rule simply constructs a generate and process for an implicit
collection, rather than for an explicit collection as we have seen earlier. The
"enumeration order" is in terms of increasing value, and the enumeration state is an
integer. With further analysis, it may be possible to incorporate knowledge about
enumerating implicit collections with the knowledge about explicit collecticns.
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6.3. The transfer paradigm for sorting

The rules given up to this point provide much of the programming knowledge needed
for some simple sorting algorithms. One class of sorting algorithms may be described
as transfer sorts. Algorithms in this class take a collection as input and produce
another collection as the output. Both collections are represented as sequential
collections, and the elements of the output are required to be stored according to
some ordering relation. At each stage in a transfer algorithm, one element is
selected from the input and added to the output48. The process is illustrated below:

[ l

INPUT OUTPUT

Transfer Paradigm

Algorithms in this class divide naturally into two categories, selection sorts and
insertion sorts. In selection sorts, the elements are selected from the input in the
same order as they are to be stored in the final output (i.e., according to the same
ordering relation). The part of the program that performs the selection is relatively
complicated. Since the elements arrive in the same order in which they are to be
stored, the part that adds them to the output set is relatively simple, usually an
addition at either the front or the back. With insertion sorts, the elements are
selected from the input in any convenient order (normally the stored order) and
added to the output in such a way that the output at each stage is in the correct
order. Thus, the part that adds the element to the output is relatively complicated,
involving a search for the correct position to add the element. The part that does
the selecting, on the other hand, is relatively simple. The essential difference
between these two categories involves the order in which the elements are
transferred from the input to the output. This order will be referred to as the
transfer order and is illustrated below:

Transfer Order ]
| e g v ey '

INPUT ouTPUT

In a selection sort, thie transfer order bears a simple linear relationship to the desired
order for the output collection (the sorted order). In an insertion sort, the transfer
order is lincarly related to the stored order of the input.

48 Note that the running time of these algorithms is O(n2).
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With a few modifications, the transfer sorting algorithms discussed here can be
adapted to perform certain kinds of "in-place" sorts, algorithms in which the input
and output collections are stored in the same structure. For example, an array to be
sorted may divided (conceptually) into two regions, an "input" which is the unsorted
part and an "output" which is the sorted part. Under this view, an insertion sort
becomes the classical bubble sort and a selection sort becomes a sinking sort
[Knuth 1973]. The reader is referred elsewhere for a more detailed discussion of
these issues, as well as some aspects of more sophisticated sorting programs such
as quicksort and mergesort [Green and Barstow 1977b].

Transferring elements in sequential collections (TRANSFER)

The importance of the transfer order can be seen in the first two rules, each
providing one way to choose the transfer order4?:

Rule TRANSFER.1:
A transfer order for a transfer operation is the stored order of the
input collection.

Rule TRANSFER.2:
A transfer order for a transfer operation is the stored order of the
output collection.

The first of these two rules leads to an insertion sort and the second leads to a
selection sort. Once the transfer order has been chosen, the actual transfer
operation can be refined:

Rule TRANSFER.3:
A transfer of the elements from one sequential collection to another
may be implemented by a total enumeration of the items in the input
collection, where the enumeration order is the transfer order; the
action for each item is to add it to the output.

When the transfer order is the stored order of the input, then the addition operation
will require searching for the right position and adding it there. The rules for adding
elements to ordered collections were given earlier. When the transfer order is the
same as the sorted order, however, this information is not used very effectively,
since the addition operation is considered essentially in isolation. The following rule
can be used to take fuller advantage of the transfer order:

49 Note that these rules, as well the other rules in this section, are expressed in
terms of sequential collections: they are equally applicable for linked lists and for
array subregions.
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Rule TRANSFER.4:
If the transfer order is the same as the stored order of the output, a
transfer of the elements from one sequential collection to another may
be implemented by a total enumeration of the items in the input
collection, where the enumeration order is the transfer order; the
action for each item is to add it to the back of the outputs,

The use of two separate rules for refining the transfer operation is aesthetically
unsatisfying, but they are probably both necessary until better methods for
representing temporal constraints (as well as coroutine structures) have been
incorporated into PECOS's program description formalism. In this particular case, the
obvious way to merge the two rules is to describe the action (addition of the element
to the output) as a process similar to an enumerator, and to specify that the
elements will arrive in the transfer order. Various methods for describing such
constructs have been considered, but PECOS currently does not use any of them
[Green and Barstow 1976].

50 |t is interesting to note that this rule also correctly handies the case in which the
input collection is already sorted. The enumeration rules determine the "linearity" of
an enumeration order by comparing it to the order in which the elements are stored.
If the input is already sorted, the enumeration order is the same as the stored order,
so a simple scan of the input will be constructed.
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6.4. Mappings

A mapping is a way of associating objects in one set (range elements) with objects
in another set (domain elements). In PECOS's rules, the domain and range sets are
only implicit, with generic descriptors of domain elements and range elements being
stored as part of the mapping descriptor. In addition, PECOS only deals with
many-to-one mappings and not with more general correspondences or relations. The
range element to which a given domain element maps will be referred to as the image
of the domain element. The set of domain elements that map to a given range
element will be referred to as the inverse image of the range element. A mapping
may (optionally) have a default Image: if there is no stored image for a particular
domain element, a request to determine its image can return the default image. For
example, when a Boolean mapping is used to represent a collection, the default
image is “False."

There are seven basic operations for dealing with mappings:

NEW-MAPPING
Creates a new mapping and returns it as the operation's value. A list of
{domain element, range element> pairs to be contained in the mapping
initially may also be specified.

STORE-IMAGE
Sets the image of a given domain element under a given mapping to a
given range element.

CHANGE-IMAGE
Changes the image of a given domain element under a given mapping from
one given range element to another given range element.

IS-IMAGE
Tests whether a given range element is the image of a given domain
element under a given mapping.

GET-IMAGE
Retrieves the range element that is the image of a given domain element
under a given mapping.

GET-INVERSE-IMAGE
Returns a collection whose elements are all the domain elements whose
image is a given range element under a given mapping.

DOMAIN-OF-MAPPING
Returns a collection whose elements are all the domain elements for
which any image exists.
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6.4.1. Overview of mapping representations

The following diagram summarizes representation techniques for mappings.

MAPPING

INVERTED-MAPPING EXPLICIT-MAPPING

STORED-MAPPING OISTRIBUTED-MAPPING

Tl sy

ASSOCIATION-TABLE PLEX COLLECTION

(of pairs)

ARRAY HASH-TABLE
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6.4.2. Rules about mappings

Explicit Mappings (EXPMAP)

Just as with collactions, a mapping may be represented either explicitly or implicitly.
An explicit mapping is one in which every pair is somehow given explicitly. In an
implicit mapping the pairs are computed as needed. For instance, a function that
computes X+1 given X is an implicit mapping. In addition to the pure cases, there is
also the possibility of a hybrid representation. For example, since "False" is the
default image for a Boolean mapping, it is an implicit representation for any domain
element that does not have an explicitly stored image. An interesting variant of the
Reachability Program involves representing the MARKS mapping with two explicit
range elements ("EXPANDED" and "BOUNDARY") and one implicit range element
("UNEXPLORED"). If such a representation is used, the initialization of the mapping
with all vertices mapped to "UNEXPLORED" is unnecessary, and the test of whether a
vertex is "UNEXPLORED" must be implemented as a test of whether the image is
neither "BOUNDARY" nor "EXPANDED".

PECOS's rules currently deal only with explicit mappings:

Rule EXPMAP.1:
A mapping may be represented explicitly. 3
As with collections, there are two rules dealing with the creation of instances of a
mapping. Typically, a new instance of a mapping is created without specifying any
initial pairs, and the following rule deals with this case:
Rule ZXPMAP.2:
If a mapping is represented explicitly, a new mapping with no initial

pairs may be created by creating a new explicit mapping with no
initial pairs.

The second rule for creating new instances of mappings deals with the case in which
the list of initial pairs is non-empty:

o antadaie L Lo gh

Rule EXPMAP.3: ’:
A mapping with a non-empty list of initial pairs may be created by |
first creating a mapping with no initial pairs and then, for each pair in
the list, storing the range part as the image of the domain part.

As with collections, one must careful to distinguish between knowing the list of initial
pairs at compile time and at run time. PECOS's specification language requires an
explicit list of pairs of operations, and EXPMAP.3 applies in this case. To specify a
variable list of initial pairs, one would have to specify something like a collection of
plexes (with domain and range parts) and use a FOR-ALL-DO construct to explicitly
store the images for each plex of the collection.
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Most of the other operation refinement rules for explicit mappings simply parallel the
data structure refinement and are omitted. The one exception is the rule for testing
whether a given range element is the image of a given domain element (an IS-IMAGE
test):

Rule EXPMAP.4:
A test of whether a given range element is the image of a given
domain element may be computed by retrieving the image of the
domain element and testing whether it is equal to the given range
element. .

The principal value of this rule is that an IS=-IMAGE test has been refined into a
GET-IMAGE operation, so that the IS-IMAGE test need not he refined to all levels for
all representations of mappings.

There are two ways to represent mappings explicitly: storing the associations in a
single structure or storing them in some kind of distributed structure. The rules for
distributed structures will be presented later. The following rule is for stored
mappings:

Rule EXPMAP.5:
An explicit mapping may be stored in a single structure.

The operation refinement rules parallel the data structure refinement rule.

There are many structures in which associations can be stored. Most of these are
dependent on the nature of the domain of the mapping. One interesting case
(unfortunately, not covered by the current rule set) is the use of a discrimination net.
The codification of knowledge about discrimination nets would be a very useful
extension of the work on PECOS. PECOS can successfully deal with several other
structures.

Mappings as collections of pairs (PAIRS)

One way to store the associations of an explicit mapping is with a collection of
{domain element, range element> pairs. Each element of the collection specifies a
particular association. The following rule introduces this representation:

Rule PAIRS.1:

A stored mapping may be represented as a collection whose elements
are pairs with a domain part and a range part.

Since the mapping has been refined into a coilection, all of the collection rules may
be applied here. If the collection Is represented as a linked list, the familiar
association list structure results. Note also that there are no restrictions on the
domain of the mapping.
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The other rules for this representation refine the operations on mappings into
operations on collections:

Rule PAIRS.2:
If a stored mapping is represented as a collection, a new instance of
the mapping (with no initial pairs) may be created by creating a new
collection with no initial elements.

Rule PAIRS.3:
If a stored mapping is represented as a collection, a given range
element, R, may be stored as the image of a given domain element, D,
by adding the pair <D, R> to the collection.

Rule PAIRS.4:
If a stored mapping is represented as a collection, the image of a
given domain element, D, may be changed from a given range element,
R1, to a given range element, Rz, by finding in the collection an
element whose domain part is D, and replacing its range part by R2; if
no such clement is found, the pair <D, R2> should be added to the
collection.

Rule PAIRS.S:
If a stored mapping is represented as a collection, M, the inverse
image of a given range element, R, may be computed by first creating
a collection, C, with no initial elements and then, for all elements, X,
in M, such that the range part of X is R, add the domain part of X to
C-

Rule PAIRS.6:
If a stored mapping is represented as a collection, M, the domain of
the mapping may be computed by first creating a collection, C, with no
initial elements and then, for all X in M, add the domain part of X to
C.

Rule PAIRS.7:
If a stored mapping is represented as a collection, the image of a
given domain element, D, may be computed by finding in the collection
an element whose domain part is D, and returning its range part; if no
such element is found, return the default image.
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Mappings with separate fields for each domain element (PLEXMAP)

Most of the representation techniques for mappings have dealt with domain elements
that are instances of some general description. Sometimes the domain of a mapping
is a fixed set of known alternatives. For example, in the inverted mapping MARKSinyv
in the Reachability Program, the domain collection is precisely the collection
{"EXPANDED", "BOUNDARY", "UNEXPLORED"}. Under such circumstances, one can
create some kind of record structure (in PECOS's terms, a plex) with one field for
each domain element and store the image in that field5!. The following rule applies in
such situations:

Rule PLEXMAP.1:
A stored mapping whose domain is a fixed set of alternatives and
whose typical range element is Y may be represented as a plex with
one field for each alternative and with each tield being Y52,

An important observation to make is that one is no longer concerned with a generic
descriptor of the range elements of the mapping: there is now a separate descriptor
for each possible range element (each image of one of the known domain elements).
With a single generic descriptor, all of the range elements must necessarily be
represented in the same way. But with a separate-descriptor for each range
element, this restriction no longer applies. Recall, for example, that "UNEXPLORED" in
the Reachability Program was represented as a Boolean array, while "BOUNDARY" and
"EXPANDED" were represented as linked lists.

The rule for creating a new instance of such a mapping shows this feature:

Rule PLEXMAP.2:
If a mapping is represented as a plex with a field for each domain
element, a new instance of the mapping may be created by creating a
new instance of the plex, with each field being a new instance of the
descriptor of that field.

While this ability to represent different range elements differently has certain
efficiency advantages, it causes complications for some of the operation refinement
rules. |f the domain element is known at compile time, the rules are fairly simple:

51 This is useful only if the domain collection is fairly small.

52 The rules in this section differ slightly from those in PECOS's implementation in
order to focus on the programming knowledge involved, without getting lost in certain
idiosyncrasies of the implementation.
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Rule PLEXMAP,3:
If a mapping is represented as a plex with a field for each domain
element, the image of a particular domain element D (known at
compile time), may be retrieved by retrieving the tield for D.

Rule PLEXMAP.4:
If a mapping is represented as a plex with a field for each domain
element, a given range element, R, may be stored as the image of a
particular domain element D (known at compile time), by storing R in
the field for D.

Rule PLEXMAP.5:
If a mapping is represented as a plex with a field for each domain
element, the image of a particular domain element D (known at
compile time), may be changed from Ri to Rz by replacing the field
for D by Ro.

Computing an inverse image under such a mapping is somewhat more complicated,
and PECOS has no rules for dealing with it.

When the domain element is not known at compile time, most of the operations must
be implemented as CASE statements, testing tor each possible domain element, and
dealing with the appropriate field in each case:

Rule PLEXMAP.6:
If a mapping is represented as a plex with a field for each domain
element, the image of a given domain element D (uaknows at compile
time), may be retrieved by testing, for each Di in the domain, whether
D is equal to D\, and if so, returning the field for D..

Note that the complete set of Di is known at compile time, so that a case structure
can be built.

Rule PLEXMAP.7:
If a mapping is represented as a plex with a field for each domain
element, a given range element R may be stored as the image of a
given domain element D (unknown at compile time), by testing, for
each D in the domain, whether D is equal to D\, and if so, storing R in
the field for D..

Rule PLEXMAP.8:
If a mapping is represented as a plex with a field for each domain
element, the image of a given domain element D (unknown at compile
time), may be changed from Ri to Rz by testing, for each Di in the
domain, whether D is equal to D, and if so, replacing the field for D,
by Ra.
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Association tables (ASSOCTABLE

A common way to store associations in an explicit mapping is to use some kind of
association table, where the keys in the table are the domain elements and the
entries are the range elements. One of the principal features of such a table is that
storage and retrieval time are roughly constant. On the other hand, it may be
difficult to compute the domain or an inverse image.

The following is the data structure refinement rule for association tables:

Rule ASSOCTABLE.1:
A stored mapping with typical domain element X and typical range
element Y may be represented with an association table whose typical
key is X and whose typical value is Y.

The operation refinement rules are all parallel, except that a CHANGE-IMAGE
operation refines into a STORE-IMAGE operation, since the old entry in the table is
simply overwritten:

Rule ASSOCTABLE.2:
If a stored mapping is represented as an association table, the image
of a given domain element D may be changed from R1 to Rz by storing
R2 as the image of D.

Rule ASSOCTABLE.3:
If stored mapping is represented as an association table, the inverse
image of a range element R may be computed by a sequence of two
operations: first, initialize a collection with no elements; then,
enumerate the keys of the table, adding each to the collection if its
image is R.

Arrays as association tables (ARRAYTABLE)

One common way to represent an association table when the keys are integers is to
use an array:

Rule ARRAYTABLE.1:
An association table whose typical key is an integer from a fixed
range and whose typical value is Y may be represented as an array
with typical entry Y.

Note that the range of possibie key values must be fixed, since they will provide the
bounds on the array. In fact, the situation is even more complicated, since some
languages only support arrays whose lower bound is 1. In such a case, if the lower
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bound of the fixed range is not 1, some kind of offset or conversion must be
included.

The operation refinement rules simply parallel the data structure refinement rule.
The refined operations involve the same operations mentioned earlier in connection
with array subregions: NEW=-ARRAY, DEPOSIT-IN-ARRAY, and
RETRIEVE-FROM-ARRAY.

(Rules for enumerating the keys of an association table represented as an array are
discussed briefly in connection with the enumeration rules in section 6.2.)

Hash tables (HASHTABLE)

When the keys of an association table are not integers (or the range is too large), a
common representation technique is to use a hash table. PECOS's rules currently
deal with hash tables only in a very limited sense: they are sufficient to utilize
INTERLISP's hash array functions. PECOS's data siructure refinement rule is as
follows:

Rule HASHTABLE.1:
An association table whose typical value is Y may be represented as a
hash table with typical entry Y.

Again, the operation refinement rules paraliel the data structure rule.

In the more general notion of a hash table, there are actually two mappings involved.
The first (a hashing function) maps keys of the association table into integer values
in a given range, and the second (an array) maps those integers into eutries. The
desired association table is then implemented as the composition of the two
mappingss3. One complication with hash tables is that the first mapping is typically
many-to-one, and two keys may map to the same integer although they are supposed
to map to separate entries in the association table. Some technique must be used to
prevent both from mapping to the same entry. Two common techniques used to
perform this collision resolution are rehashing and the use of buckets (instead of
single rangc objects) as the array entries. Much more knowledge about hash tables
must be codified before they can be dealt with adequately by an automatic
programming system.

53 In fact, the notion of implementing a mapping as the composition of two mappings is
more general than its use here for hash tables.
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Distributed mappings (DISTMAP)

A distributed mapping is one in which the associations are not stored in a single
structure. A simple example of a distributed mapping is to store the images on the
property lists of the atoms in the domain of the mapping. Distributed mappings are
introduced with the following rule:

Rule DISTMAP.1:
An explicit mapping may be distributed among the domain elements.

The operation refinement rules are paraliel except that the domain and inverse image
operations are not effectively computable.

Distributed mappings are the only kind of distributed data structure that PECOS can
deal with®. One of the interesting questions is what it means to return a
wdistributed" structurc as the value of an operation. Clearly, one cannot return the
structure itself, since it doesn't exist as a single entity. The solution adopted in
PECOS's rules is to pass the "name" of the structure. In the case of LISP property
list markers, the name is the "property name". This example will be pursued further
in the discussion on LISP rules in section 6.7.

Inverted Mappings (INVMAP

Most representations for mappings have a "one way" flavor: it is generally easier to
compute the image of a given domain element than to compute the inverse image of a
given range element. For many applications, however, inverse images may be
computed quite frequently. For example, in the Reachability Algorithm (see section
2), the inverse image of "BOUNDARY" under the MARKS mapping is a central part of
the algorithm. In such cases, it is often useful to “invert" the mapping: rather than
associating a range element with each domain element, a coliection of domain
elements may be associated with each range element. The following rule
accomplishes this inversion: &

Rule INVMAP.1:
A mapping with typical domain element X and typical range element Y
may be represented as a mapping with typical domain element Y and
typical range element a collection with typical element X; the default
image under the inverted mapping is the empty collectionss,
54 Distributed collections can be handled as distributed Boolean mappings (e.g., with
"True" or "False" as the value of some property name for atoms that might be in the
collection).

55 PECOS's rule actually has an additional condition specifying that the range objects
of the original mapping must be primitive (integer or string). This more properly
belongs in a choice-making heuristic that reflects the fact that PECOS's current rule
set can only implement mappings whose domain objects are primitive.
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Note that the result of applying this rule is simply another mapping. This means that
all of the techniques applicable to general mappings can be applied to the inverted
mapping.

Since the inverse images are kept explicitly, many of the mapping operations
manipulate collections. Storing an image is implemented by adding the domain
element to the inverse image of the range element:

Rule INVMAP,2:

If a mapping is inverted, Y may be stored as the image of X by adding
X to the image of Y under the inverted mapping.

Changing an image requires removing the domain element from one collection and
adding it to another:

Rule INVMAP.3:

If a mapping is inverted, the image of X may be changed from Y to Z
by removing X from the image of Y under the inverted mapping and
adding X to the image of Z under the inverted mapping.

Testing whether a given range element is the image of a given domain element is
implemented as a membership test:

Rule INVMAP.4:

If a mapping is inverted, a test of whether Y is the image of X may be
implemented as test of whether X is a member of the image of Y under
the inverted mapping.

Compuling the inverse image of a range element under the original mapping is quite
simple:

Rule INVMAP.5:
If a mapping is inverted, the inverse image of Y may be computed by
retrieving the image of Y under the inverted mapping.

Certain operations are much more difficult using an inverted mapping (and PECOS has
no rules to deal with them). In particular, to compute the image of a domain element
requires enumerating all domain objects of the inverted mapping to test for
membership, and computing the domain of the original mapping requires computing the
union of all range elements under the inverted mapping. In situations where both
images and inverse images are computed frequently, it may be advisable to consider
multiple representations for the mapping.




Page 134 Section 6

6.4.3. Other mapping operations

Other mapping operations (MAPMISC)

Just as with collections, it is also possible to duplicate mappings. Again, the term
"duplicated" refers to the fact that at the abstract level both objects have the
same type, "mapping". However, at more refined levels, the two mappings may have
different representations. PECOS can only duplicate one kind of mapping:

Rule MAPMISC.1:
If a mapping is represented as a stored collection of pairs, it may be
duplicated by a sequence of two actions: first, initialize the new
mapping with no associations; then, for each element of the collection,
set the image (under the new mapping) of the domain field of the pair
to be the range field. i
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6.5. Input, output, and representation conversion

The most interesting part of PECOS's abilities at writing input and output routines
are the facilities for converting from one representation into another56, Every
specification of an input operation includes a descriptor of the kind of representation
that will be input. Similarly, every output operation includes a descriptor of the
representation that should be produced. In particular, collections may be input or
output either as linked lists without header cells or as array subregions. Mappings
may be input or output only as lists of <domain, range> pairs (i.e., association lists).
These representations may not be well suited to the particular way that the data
structures are used. In the SUCCESSORS mapping of the Reachability Program, for
example, the use of an association list requires that some searching be done within
the inner loop of the algorithm. In such cases, it may be useful to convert the input
representation into a different internal representation (or the internal into the output
representation)5’.

Representation conversion (CONVERT)

PECOS has two rules for introducing representation conversions into input
operations:

Rule CONVERT.1:
If a collection is input, its representation may be converted into any
other representation before further processing.

Rule CONVERT,2:
If a mapping is input, its representation may be converted into any
other representation before further processing.

Similarly, there are two rules for introducing representation conversions into output
operations:

Rule CONVERT.3:
If a collection is output, its representation may be converted into any
other representation before outputting it.

56 These issues also arise whenever a data structure representation is constrained
externally, not just when performing input and output.

57 Of course, the cost of performing the conversion must also also be taken into
account when assessing the utility of using a different internal representation.
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Rule CONVERT.4:
If a mapping is output, its representation may be converted into any

other representation betore outputting it.

These rules actually seem overly restricted. In the long run, what is probably
needed is some technique for considering the entire history of a data structure,
introducing representation conversions wherever appropriate. In fact, for some
purposes, multiple representations may be useful (e.g., representing a coliection with
both a linked list and property list markings), maintaining their consistency throughout
the program that uses them.

Once the possibility of a conversion has been introduced, the techniques for
performing the conversion are relatively straight-forward. One rule is needed for the
case in which the two representations are the same:

Rule CONVERT.S:
If the initial and tinal representations are the same, then no
conversion needs to be performed.

(In effect, this rule removes a representation conversion after it has been
introduced. Using some kind of "data structure history", as suggested above, such
an unnecessary conversion would probably not be introduced.)

There are two rules for performing the conversion when it is actually needed:

Rule CONVERT.6:
The representation of a collection may be converted by duplicating it.

Rule CONVERT.7:
The representation of a mapping may be converted by duplicating it.

Both of these rules refine the conversion operation into one of the "duplicating"
operations discussed earlier (DUPLICATED=COLLECTION, DUPLICATED-MAPPING).

s
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6.6. Control structures

PECOS's specification language includes four basic control structures:

COMPOSITE
A partially-ordered set of actions to be performeds8,

LOOP
An initial action, a loop body, and a set of event indicators (similar to
those suggested by Zahn [Zahn 1974]) to handle exit conditions.

TEST
A test to be performed and actions to be performed if the test succeeds
and if it fails.

CASE
A set of <condition, action> pairs: each condition is a test, and if it
succeeds the associated action is to be performed. The conditions must
be both mutually exclusive and mutually exhaustive: exactly one of them
must hold whenever a CASE statement is entered.

In addition, one other control structure was introduced with the rules for
enumeration:

PRETEST-LOOQOP
A loop with a single exit test to be performed before the loop body is
executed on each iterationS.

Control structures (CONTROL)
A single rule is needed to refine a pre-test loop into the standard loop structure:

Rule CONTROL.1:
A loop with a single exit test E to be performed before the loop body
B may be implemented as a loop whose body is a test whose condition
is E, whose "true" action is to exit the loop, and whose ""false" action
is 8.

The other structures are all low-level enough that there is a direct translation into
LISP, so there is really no need for LISP-independent rules. Nonetheless, several
interesting issues have arisen, and they will be discussed here.

58 PECOS does not currantly make use of the partial ordering and assumes that the
actions are to be performed in the order that they are given.

59 (a "while" loop)
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6.6.1. Local memory

Both loops and composites allow for the possibility of having "local" memory: a list of
LOCAL-MEMORY-UNITS with associated data structures. Each such unit is available
within the scope of the control structure, and the results of particular computations
may be associated with a memory unit and later retrieved from that memory unit. For
most purposes, they can simply be considered to be local declarations. The one
difference is that LOCAL-MEMORY=UNITS are intended to allow for several different
ways of associating and retrieving values. In addition to storing the result of a
computation by assigning it to a variable, one might prefer to recompute the result
(e.g., if it ic particularly easy to compute).

Local memor MEMORY
Unfortunately, PECOS's rules cover only the "variable assignment" technique:
Rule MEMORY.1:

One technique for remembering the result of a computation is to save
it as the value of a variable.

It is also necessary to select the variable name to be used:

Rule MEMORY.2:
If a result is being saved as the value of a variable, one way to select
a variable name is to invent one.

The action part of this rule includes a call to LISP's GENSYM function. Since this is
PECOS's only rule for selecting variable names, the names appearing in PECOS's
programs are not particularly mnemonic.

The rules above are used to select a technique for storing and retrieving values.
The following two rules reflect the use of this technique in the code of the
constructed program:

Rule MEMORY.3:
If the memory scheme of a local memory unit is to use the value of a
variable named V, a value may be stored by assigning the value to the
variable V.

Rule MEMORY.4:
If the memory scheme of a local memory unit is to use the value of a
variable named V, a value may be retrieved by retrieving the value of
the variable V.
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These two rules are actually rather obvious once the memory scheme and the
variable name have been chosen. In fact, the whole issue may seem somewhat
overblown, especially since rules for other memory techniques (such as "recompute")
are not included. Ultimately, better methods for modeling data flow between
computational units will have to be developed. The utility of different techniques for
implementing that flow could then be more meaningfully assessed.

6.6.2. Loop exits

The loop construct employed in PECOS's rules involves the use of event indicators.
Associated with each loop is a set of exit labels and associated actions. During the
execution of any loop, an action may signal one of these events (using a special
operation called ASSERT-EXIT-CONDITION). When such an event is signalled, the
associated action is executed and the loop exited. Thus, the flow of control in a
loop with two exit conditions can be diagrammed as shown below:

INITIALTZATION

ol

— BODY

| |
EXITI EXIT2

l l

ACTIONI ACTIONZ

l____,l¢_.__l

Exiting a loop (EXITS)

There are several ways tha<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>