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ABSTRACT

)

The research reported in this thesis concentrates on a subclass of visual information processing
referred to as verification vision (abbreviated VV). VV uses a model of a scene to locate ob jects
of interest in a picture of the scene. The characteristics that distinguish VV from the other
types of visual information processing are: (1) the system has a great deal of prior knowledge
about the type, placement, and appearance of the ob jects that form the scene and (2) the goal is
to verify and refine the location of one or more ob jects in the scene. VYV includes a significant
portion of the visual feedback tasks required within programmable assembly. For example,
locating a screw hole and determining the relative displacement between a screw and the screw

hole are both VV tasks.

There are several types of information available in VV tasks that can facilitate the solution of
such tasks: a model of each ob ject in the scene, a set of initial constraints on the locations of the
ob jects, and a set of previous pictures of this scene or similar scenes. Additional information can
be obtained by applying visual operators to a current picture of the scene. [continued next page)
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How can all of this information be used to minimize the amount of work required to perform a
task? Two steps are involved in answering this question: (1) formalize the types of tasks,
available information, and quantities of interest and (2) formulate combination rules that use the
available information to estimate the quantities of interest. The combination rules that estimate
confidences are based upon Bayes' theorem. They are designed to combine the results of
operators that are not completely reliable, i.e, operators that may find any one of several known
features or a surprise. The combination rules that estimate precisions are based upon a least-
squares technique. They use the expected precisions of the operators to check the structural
consistency of a set of matches and to estimate the resulting precisions of the points of interest.

An interactive VV system based upon these ideas has been implemented. It helps the
programmer select potentially useful operator/feature pairs, provides a training session to gather
statistics on the behavior of the operators, automatically ranks the operator/feature pairs
according to their expected contributions, and performs the desired task. The VV system has
also been interfaced to the AL control system for the mechanical arms and has been tested on
tasks that involve a combination of touch, force, and visual feedback.

This thesis was submitted to the Department of Computer Science and the Committee on
Graduate Studies of Stanford University in partial fulfiliment of the requirements for the degree
of Doctor of Philosophy.
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PREFACE

The work reported in this thesis was performed while the author was a member of the
hand/eye group at the Stanford Artificial Intelligence Project. The group has traditionally
followed the philosophy that one of the most important stages in testing a theory is to build
the necessary hardware and software and make sure that the combination performs as
desired. In line with that philosophy a verification vision (abbreviated VV) system has been
implemented that incorporates most of the ideas discussed in this thesis. It has been used to
perform several inspection and location tasks. It has also been interfaced to the mechanical
arm and the combination has been used to perform a few tasks that involve both
manipulation. and visual feedback.

The current implementation suffers from a well-known disease of programming:
unplanned growth. Because of that, a few of the ideas, such as the heuristic to determine
conservative distributions, have been implemented as separate programs. All of the examples
used in the thesis are results from the VV system or one of these auxillary programs.
Appendices [V and V are extensive traces of the interaction between a programmer and the
VYV system as the programmer prepares VV programs to perform different tasks. Comments
have been added to these traces and a few minor changes have been made to clarify the

explanations.
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The thesis is a combination of theory and practice. Chapters three, four, and five
present the theory; the rest of the chapters present the practical motivation and system aspects.
The casual reader can pick up the main ideas by reading the introduction (chapter 1), the
motivation chapter (chapter 2), the two traces (appendices IV and V), and the conclusion
(chapter 7). A more serious reader may also want to look at the traces and conclusion before

starting chapters three, four, and five.
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CHAPTER |

INTRONDUCTION

Verification vision is a type of visual information processing that uses a model of a
scene to locate ob jects of interest in a picture of the scene. The characteristics that distinguish
verification vision (abbreviated VV) from the other types of visual information processing
are: (1) the system has a great deal of prior knowledge about the type, placement, and
appearance of the objects that form the scene and (2) the goal is to verify and refine the
location of one or more ob jects in the scene. The following situation illustrates a typical use
of VV:

During the assembly of a pump, a mechanical arm
places the pump base in a vise. The next step is to
insert an aligning pin into one of the screw holes in the
base. But the location of the screw hole is not known
precisely enough to 1insert the pin directly. The
programmable assembly program needs to improve its
estimate for the location of the hole. VV is one way to
accomplish this subtask.

In this task the pump base may be mispositioned to the extent of perhaps plus or minus half
an inch and rotated plus or minus fifteen degrees, but there will not be any big surprises: the
base will not be upside down or at the other end of the workstation.

The class of VV tasks can be placed in perspective by comparing it to other types of
visual information processing. Baumgart distinguishes three types: description, recognition,
and verification (see {[Baumgart 74b)). These types can be conveniently defined in terms of
three factors: prior knowledge about what can be in a scene (and can therefore appear in a
picture of the scene), prior knowledge about where things might be with respect to the camera
(and hence where they might appear in a picture), and the goal of the task. The three types
of tasks are:
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DESCRIPTION
Prior knowledge only includes the types of features that comprise
the objects and how to build complex models from these features;
the identity and position of the objects are unknown; the goal is
to build a model that describes the scene.

If you have never seen a telephone, but you
know about colors, shapes, and sizes, you might describe
a standard, black telephone, 1like this: it is black
and about half the size of a shoe box; there is a
dumbbell-shaped crossbar on top, near the back; it has
a round, disk with several holes in it on the top, near
the front; the ten digits are arranged in an arc of a
circle underneath the holes in the disk.

RECOGNITION
Prior knowledge includes a fixed set of possible object models and
occasionally a few constraints on where the objects might occur; |
the goal is to identify an object in the scene and possibly |
quantify a few paramcters about it.

If you know about telephones, what they look
like, where they normally are, and what they are used
for, you might identify a telephone in an office like
this: you will probably first look on the desk for
something black and about half the size of a shoe box.
There may be several objects on the desk that you
recognize: books, pencils, a coffee cup, and a telephone. ‘
Having recognized the phone you could roughly describe
its location: it is on the far left corner of the desk,
almost against the back wall. Garvey has written a x
program that performs this type of recognition for
tclcphonecs and other officc equipment (see [Garvey
76]).

VERIFICATION
Prior knowledge includes the identity of all objects in the scene
and approximately where they are; the goal is to determine the
precise location of one or more of the objects.
If you know approximately where the telephone
is (e.g., with the same general precision as Garvey's
program) and you wish to dial a number, you would verify »
that the phone really is in that general area and then
f locate the receiver precisely enough to pick it up and >
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locate the holes precisely enough to insert your finger
and dial.

VYV provides a way to reduce the uncertainties associated with the location of an ob ject. It
bridges the gap between the known tolerances on an object and the desired tolerances when
the initial tolerances greatly restrict the possible appearance of the object. V'V manipulates
three-dimensional object models and it can determine three-dimensional corrections, but it
assumes that the two-dimensional appearance of the features do not change significantly from
one execution of the task to the next. Thus, VV as discussed in this thesis is restricted to
quasi two-dimensional tasks. This type of feedback, however, plays an important role in
several areas. Programmable assembly is one; aerial photograph interpretation and medical
image processing are others.

V'V has been used in several ways in the past. Possibly the best known is within the
hypothesis and test paradigm. For example, a high-level procedure hypothesizes an edge at
a certain place; the verification step verifies that the edge is there and computes its position
and angle. The model includes exactly what will appear (the edge), approximately where (at
some position and orientation), and approximately how it will appear (with some given
contrast). There are several systems in which this type of VV plays a major role (see [Falk
70), (Shirai 73], [Tenenbaum 70], and [Grape 73)). Another area in which VV has been used
is narrow-angle stereo programs. In these cases, a model is a set of correlation patches from
one view of the scene and the goal is to locate these patches in the second view. Again the
model states the identity (the unnamed features that produce the correlation patches), the
approximate position (near the back-projection of the ray), and the appearance (a slight
variation from the correlation patch). See [Quam 74]), (Hannah 74), and [Pingle 74] for
programs of this ‘ype.

More recently there has been considerable interest in visual perception within a
programmable assembly system. Such systems provide complex, but predictable environments.
For example, consider the task of inserting a screw in a hole. it can be reduced to a few
subtasks, each of which could involve VV:

(1) locate the hole with the screw outside the field of
view (see figure 1.1),
(2) move the screwdriver and screw into the picture and
locate them against the now known background (see
figure 1.2),
(3) decide how tc move the screw closer to the hole,
and (4) return to step 2 if necessary.

Assume that a mechanical arm picks up the part with the hole and places it in a vise whose
position is reasonably well known. In that case the hole may appear displaced in a picture at




Page 4

“*iiil’f““‘“?“fi.» X
o (e
i"i Hl- mLi. ﬂl; i 13*“"'

iy ¥

Y |
If!mhl. = }.‘.,uuﬁ'l.“y

u‘ |

l! i
i
i

M ‘ wyﬂ |l1 |

B ;:uu 4




i
f
:
¥

| Page 5

step (1) because (a) the part does not seat in the vise exactly as planned and (b) the
calibration between the arm and the camera is not exact. Finding the hole in step (1) reduces
these factors. Thus, there are fewer uncertainties for step (2). For step (3) the main factor
contributing to the error will be the imprecision of the arm since the problem will have been
reduced to an analysis of the relative displacement between the tip of the screw and the hole.

More and more information about the expected appearance of the objects can be
brought to bear as the program progresses from step to step. For step (1) the only
information may be a comparison picture of this same step during a previous assembly and
possibly a synthetic picture generated from the model of the expected scene. For step (2) the
picture taken at step (1) is available. It contains the background that will appear throughout
the task. For step (3) the earlier pictures provide information cuout actual glares, shadows,
and hight levels as the screw approaches the hole.

Thus, the three steps offer successively greater constraints on the positions of the
ob jects and greater knowledge about the appearances of the objects. The increasing amount
of information should make each successive step easier and faster. The algorithms employed
by VV are specifically designed to take advantage of this type of information. VYV tries to
determine the cheapest, most reliable way to locate an ob ject within a desired precision.

V'V is nat the only method that a programmable assembly system can use to improve its
estimate of the location of an object. In the past, the most common method has been to grasp
an ob ject at two or three places and then combine the resuiting position information into an
estimate for the location of the object. Each grasp is equivalent to a visual operator in the
information that it gathers: a value (the thickness of the object at the grasping point) and a
position (the position of a point on a plane parallel to the plane of the fingers). But visual
operators hold several advantages over grasping operators:

(1) Visual operators are potentially faster; they function at electronic
speeds as opposed to the mechanical speeds that limit touch and
force feedback.

(2) Visual operators are passive; they gather information about an
object without disturbing it. This may be important for small,
delicate parts.

(3) Visual operators offer a wider variety, some locate a corner, some
locate a point on a line, some locate a point on a plane, etc.

(4) Visual operators offer a wider range of scales; the same operators
can be used with microscopes or telescopes.
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(5) Visual feedback offers a more global view of a situation. For
example, it is virtually impossible to use force feedback to decide
which way to proceed after a screw has missed a hole. A spiral
search by the arm is possible, but slow.

(6) Visual information processing can often be performed concurrently
with mechanical motion. For example, if the screwdriver almost
always succeeds in picking up a screw from the dispenser, it may be
possible to take a picture of the end of the screwdriver as it is
leaving the dispenser in order to verify that the screw is present.
The arm can move toward the hole while the VV system decides
whether or not the screw is present. If the system decides that it is
present, the arm is free to continue along its path. However, if the
screw is not there, the VV system can signal the arm to return to the
dispenser to try again. The economics of this parallel checking
depends upon the frequency that the screw is missed and whether or
not the resources are otherwise idle.

This hst of advantages should not be taken as an argument for the exclusive use of visual
feedback. In fact, vision is most effective when it is used in con junction with touch and force
sensing; the different systems can check each other. For example, if visual feedback is trying
to servo a screw into a hole, force feedback can indicate that the screw has missed the hole.

One long-range goal of the research described in this thesis is to make it easier for
programmers who are not experts in computer vision to program VV feedback. In the past,
simple touch and force feedback have been understood and incorporated into mechanical arm
programs, but vision has been treated like a never-never land by anyone not involved in
vision research. The goal is to make vision a viable alternative within the feedback trio of
touch, force, and vision. To do that requires a way to extract useful information from a
picture of the workstation, to combine the results of such extractions, and finally to make a
decision based upon the summarized results (see figure 1.3).

Programmers generally know how to express their vision tasks in terms of the following
three quantities:

(a) the confidence that the system has found the correct ob ject(s),
(b) the precision within which the system has located the ob ject(s),
and (¢) the cost involved in determining this information.

These concepts have to be formalized in order for a programmer to specify the goal of a task
precisely. But the more difficult problem is to develop methods that produce this information
from pictures of the scene. There are two aspects of this second problem: (1) the extraction
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of individual pieces of useful information from a picture and (2) the combination of several
pieces of information to form estimates of the quantities of interest. This thesis concentrates
on the latter problem.

The implementation of the VV system discussed in this thesis gathers information by
applying well-known operators, such as edge operators, correlation operators, and region
growers, that are designed to locate and describe features, such as line segments, correlation
points, and regions. The information produced by such operators can be roughly classified
into two types: value information and position information. Value information includes the
value of a correlation coefficient, the contrast across an edge, and the intensity of a region.
Position information, in addition to (x,y) or (x,y,z) information, may include orientation
information. For example, an edge operator might return the (x,y) position of a point on a
line and an estimate of the orientation of the line. This information is classified as position
information. The same edge operator may compute the contrast across the edge and the
confidence that there really is an edge at that position, both of which are classified as value
information.

T he distinction between value information and position information is natural because
often it is reasonable to assume that values from different operators are independent, but it is
seldom reasonable to assume that positians of features are independent (especially features of
rigid ob jects). Independence means that the value of one operator (such as a correlator) does
not affect the expected value for another operator (such as an edge operator). The position
information, on the other hand, is not independent because the location of one point or the
orientation of one line greatly influences the possible positions for cther features.

Given the position and value information from several operators, what is the best
estimate of the location of an object? What is the precision associated with that estimate?
What should the combination rules be? In the past the combination rules have been designed
for specific operators and/or tasks. There have been a few special-purpose programs written
that perform VV tasks within programmable assembly environments (e.g., see [Bolles 73] and
(Dewar 73)) and a few programs that handle a subclass of the VV tasks (e.g., see [Agin 75],
[Fischler 71b), [Chien 75) and [Holland 75])), but none of these programs concentrates on
precision and confidence and is general enough to accomplish a wide variety of V'V tasks.

Part of this thesis describes a set of mathematical tools that form a set of combination
rules for the class of VV tasks. A least-squares technique is used to combine available
position information to form a current, best estimate of the location of the ob ject (plus a
tolerance about that estimate). Bayesian probability is used within a sequential decision
scheme to compute the necessary confidences. These techniques are well-known, but they
combine particularly nicely to answer the various needs of a VV system.
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Figure 1.4 shows the general flow of control for a VV program based upon these ideas.
The flowchart describes the subtasks performed at execution time. There are also several
preliminary subtasks that have to be periormed in order to produce such a program. The
following is a list of some of the subtasks involved in VV:

Given a specific set of ob jects, suggest some candidate features and
operators to find such features.

Determine the information that a specific operator can contribute
toward the confidence that the correct ob ject has been found.

Estimate the expected cost of applying operator X.
Determine the actual cost of applying operator X.
Select the next operator to be applied.

Combine the results of several operators to give an overall
confidence.

Estimate the location of an object based upon the results of several
operators.

Predict the expected number of operators required to achieve a
certain confidence.

These subtasks can be partitioned according to the time at which they are most important.
For example, to predict the expected number of operators is important at planning time when
the program or user is trying to decide the expected cost of accomplishing the task.
Suggesting candidate features is important at programming time when the user is describing
potential sources of information. Four such times or stages will be distinguished within this

PROGRAMMING TIME: the user states the goal of the task,
specifies the confidence, precision, and cost constraints, and
interactively chooses potential features and operators.

TRAINING TIME: the program applies the chosen operators to
several sample pictures and gathers statistical information about
their effectiveness. :
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(3) PLANNING TIME: the system ranks the operators according to
their expected contribution, determines the expected number of
operators to be needed, and predicts the cost of accomplishing the
task.

(4) EXECUTION TIME: the system applies operators one at a time,
combines the results into confidences and precision, and stops when
the desired levels have been reached or a cost limit has been
exceeded.

To accomplish a VV task requires progress from one stage to the next in the order
shown above. However, for clarity, these stages will be discussed in a different order:
execution time, planning time, programming time, and training time. The execution-time
discussion describes how the results of operators are combined for the two types of tasks,
inspection ‘and location; the planning-time discussion describes how the application order and
number of the operators is determined; the programming-time discussion describes how an
operator/feature pair is chosen as a potential source of information; the training-time
discussion describes how the potential benefits of an operator are characterized from several
trial runs. The thesis concludes with a description of some possible extensions.

This thesis relies heavily upon the domain of programmable assembly for its examples
and motivation (eg, see [Finkel 75] and {Finkel 76]). The techniques are discussed in the
context of a highly controlled environment in which mechanical arms are performing
assembly tasks. Some of the techniques have been optimized to take advantage of specific
properties of this environment, but the basic methods used to produce location and confidence
information from the results of several visual operators are more widely applicable. Other
possible areas include photo-interpretation and medical image processing.

There is one’ other general remark that should be made at the beginning of this
discussion. Although most of the examples and techniques described here are based upon
conventional television cameras and their images, there is no reason why the same or similar
techniques could not be used within systems based upon direct ranging devices, laser trackers,
or multiple touch sensors.
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CHAPTER 2

MOTIVATION

The purpose of this chapter is to outline the general requirements and the semantic
structures necessary for a VV system that can be easily programmed (see [Bolles 75)). Two
example tasks and their solutions are used to introduce the desired capabilities. Later
chapters will discuss specific mechanisms in detail. Appendices IV and V contain traces of a
programmer using the current implementation of the VV system to set up and test VV
programs that perform the two tasks discussed in this chapter.

The two example tasks are (1) check for a screw on the end of the screwdriver and (2)
locate a screw hole in a part that has been placed in a vise. The goal of the first task is to
make a yes or no decision: Is the screw present? VYV tasks of this type will be referred to as
inspection tasks. The goal of a location task, on’the other hand, is to estimate the current
location of the object, or equivalently to estimate the displacement between the current
location of the object and its planned location. The success of an inspection task is usually
measured by its confidence; the success of a location task is usually measured by its precision.

Section 1
CHECKING FOR A SCREW

Consider visually deciding whether or not there is a screw on the end of the
screwdriver. One idea for a solution is to aim a camera at the exit of the screw dispenser,
take a picture of the end of the screwdriver as it leaves the dispenser, apply a series of
! operators to the picture, and use the values of the operators to decide whether or not the
! screw is on the end. There are several decisions to be made before this idea can be converted
into an algorithm to perform the desired task: Which visual operators should be applied?
Where should they be applied? In what order should the operators be applied? How should
the results of several operators be combined? How much can an operator contribute toward .
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the final decision? These and other questions will be briefly discussed below.

1. What are some potentially useful operator/feature pairs?

Since the goal of this task is to decide whether or not the screw is on the end of the
screwdriver, each operator chosen should contribute toward this decision. Consider figure
2.1.1, which shows typical pictures of the two expected situations: one with the screw on the
end of the screwdriver and one with the screw missing. An operator that can distinguish the
exture formed by the screw threads is a potentially useful operator, because the presence of
screw threads distinguishes the two situations. An operator that locates a feature on the
screwdriver would not directly contribute to a decision because the screwdriver is present
whether the screw is there or not. But this operator may still be useful to improve the
system’s estimate of the location of the screwdriver tip and hence make it easier for the
texture operator to find the screw threads. Thus, operators may directly or indirectly
contribute to the final decision.

i
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Figure 2.1.1

In general, the objects in a scene have several visual features: colors, textures, sizes,
b edges, corners, and holes. The more unique features an ob ject has, the easier it is to find.
One reason the blocks world is difficult to analyze visually is that blocks do not have very
many distinctive features. All blocks have edges, corners, and planes so it is difficult to
distinguish one from another. Programmable assembly, on the other hand, offers a wide
. variety of features.
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Given a wide variety of features, which ones would be useful to locate? Which
operators should be applied to find such features? A VV program can provide a user with
three levels of assistance in order to help him choose potentially useful operator/feature pairs
for a specific task:

(1) The VV system can provide a convenient environment within
which to experiment with different operators. The user might describe
features such as lines, corners, and correlation patches and apply various
operators to locate them in trial pictures. For example, the user could
describe the corner formed by the head of the screw and the shaft of the
screwdriver (see figure 2.1.2), try a corner-finder to find it, try a
correlation operator to find it, choose the more promising operator, and
add the chosen operator and corner to the list of potentially useful
operator/feature pairs.

(2) The VV system can analyze a typical picture of the scene to
produce a ranked list of potential operator/feature pairs. For example,
an edge operator may be applied to the picture in order to pick out all
pairs of line segments that form a corner of a certain minimum size.
One of these corners might be the corner formed by the head of the
screw and the shaft of the screwdriver.- Since both a corner-finder and a
correlation operator can locate corners, two operator/feature pairs can be
added to the list of suggestions for each corner: a corner-finder/corner
pair and a correlation operator/corner pair.

This type of automatic operator/feature suggestion procedure
reduces the amount of detailed work required of the user. The user only
has to filter out suggestions that are difficult to locate reliably or that
produce unreliable position information.

(3) The VV system can analyze a model of the scene to produce a
ranked list of operator/feature pairs. The more complete the model, the
better the suggestions. The model might include a three-dimensional
representation of all the ob jects in the scene, a model of the camera, and
a model of the light sources. For example, a hidden-line elimination
scheme can be used to predict visible corners from models of the screw
and screwdriver. One of these corners might be the one formed by the
head of the screw and the shaft of the screwdriver.

This type of automatic suggestion procedure can analyze potential
operator/feature pairs at a higher level than the system mentioned above.
Potentially it can bring to bear all the knowledge associated with real
ob jects: their appearance, their structure, and their function. However,
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the results are only as good as the model, whereas in (2) the results are
only as good as the training picture.

This list is ordered according to the sophistication of the proposed system; the later
procedures require more information about the task and they can analyze the potential
suggestions more efficiently. For example, the second level might suggest a corner feature, one
side of which is formed by a shadow. If the shadow changes from one trial picture to the
next, the feature is probably not a good one. The only way that the second level system can
arrive at this conclusion is (1) to monitor the relative positions of several features in several
trial pictures and (2) to notice that the corner changes position with respect to the other
features. The third level system could directly determine that one side is formed by a shadow
and discard this feature immediately.

2. Where should an operator be applied?

In the screw inspection task, since the arm and c.mera are not exact, the end of the
screwdriver will sometimes appear at one point in the picture and sometimes at another. If
the total range of possible positions is only a small portion of the picture, there is no reason to
apply operators over the whole picture. The region of possible positions for a feature in a
picture will be referred to as the tolerance region for the feature. It can be determined once
during a programming session and can remain-fixed during the training, planning, and
execution phases. In order to find the feature during one of these phases, only its tolerance
region must be scanned, not the whole picture.

How can the tolerance region for a feature be determined? One way would be to have
the arm attempt to get a screw from the dispenser several hundred times, take a picture after
each attempt, mark the position of the end of the screwdriver in each of the pictures,
incorporate all of the occurrences into a continuous region (eg., a convex polygon), and
declare that region to be the tolerance region for the end of the screwdriver.

Another way to determine the tolerance region about a feature is to ask the user to
specify the constraints that limit the uncertainty associated with the position of the feature.
For the screw-checking example tl.2 constraints would include such information as the
accuracy of the arm and the accuracy of the hand grasping the screwdriver. These
constraints can be translated into a three-dimensional volume that represents the possible
positions of the feature. This volume will be referred to as the tolerance volume of the
feature. The tolerance region for the feature can be formed by projecting its tolerance
volume onto the screen. :

In order to project the three-dimensional volume onto the camera screen a camera
calibration is needed. Camera calibrations are designed to provide (1) a transform that maps




212 Page 17

a point in the workstation coordinate system onto a point in the screen coordinate system and
(2) a transform that maps a point in the screen coordinate system into a ray in the workstation
coordinate system. Some additional piece of information (eg., the height of a point) is
necessary to map a point on the screen into a point in the workstation coordinate system (e.g.,
see [Sobel 74]). Camera calibrations are not exact, so tolerance regions should be expanded to
accommodate for this additional inaccuracy. The application of a camera calibration to move
back and forth between the screen cocrdinate system and the workstation coordinate system
will be used several times throughout the remainder of this discussion.

Given a feature, its tolerance region, and an operator to find the feature, where should
the operator be applied within the region to locate the best match for the feature? The
search strategy depends upon several factors, including the type of feature, the operator being
used, the size of the tolerance region, and the feature's expected distribution of positions
within the tolerance region. If a correlation operator is used to locate the corner formed by
the head of the screw and the shaft of the screwdriver, an exhaustive search may be
reasonable if the tolerance region is small. When an edge operator is used to locate a point
on a line segment, a few linear scans across the tolerance region are often sufficient. A set of
search techniques and met. xds to predict their expected cost in different situations are
required in order to choose a good search strategy.

3. How should the results of an operator be interpreted?

Consider a hypothetical texture operator that ranks local regions in a picture according
to their similarity to the texture formed by the screw threads. It may return a value of .95
when applied to an example picture with the screw present (see figure 2.1.1) and .57 when
applied to an example picture with the screw missing. If the same operator is applied to a
new picture to decide whether or not the screw is present, and it returns a value of .86, what
is the probability that the screw is on the end of the screwdriver? How can the a priori
probabilities be incorporated into the computation?

If one operator implies that there is a probability of .76 that the screw is present and
another operator implies that there is a probability of .84 that the screw is present, what is the
overall probability of the screw being present? How are the results of the two operators
related? In general, how can the values of several operators be integrated into one estimate
for the probability that the screw is present?

There are two errors that can be made in a task of this sort: (a) the operator values
may imply that the screw is present when it is not, and (b) the operator values may imply that
the screw is missing when, in fact, it is present. These errors are referred to as errors of the
first and second type, respectively [Shewhart 39). How can an assembly engineer set the limits
on the acceptable number of errors of each type? Given such limits and a set of operators,
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what is the expected number of operators that will have to be applied in order to make a
decision that satisfies these limits?

The combination rules are complicated by the fact that visual operators are not
completely reliable. Sometimes the best match they find is not the intended match. For
example, consider the correlation operator shown in figure 2.1.3. If it is applied throughout
the tolerance region shown in figure 2.1.2.b, it will probably find two good matches, as shown
in figure 2.1.3.c. If the operator happens to prefer match B, it will return an incorrect match.
In general, when an operator is applied at several positions within a tolerance region, it
returns a set of different values. Which position is the best match? What is the chance that
the best match is really the correct match? How can the combination rules ad just for this
unreliability?

The paossibility of unreliable operators means that (1) the user should check for
potential confusions at programming time; (2) the training-time subsystem should gather
statistics on the reliability of the operators; (3) the planning-time subsystem should reduce the
desirability of unreliable operators; and (4) the execution-time combination rules should
reduce the contribution of any operator known to be unreliable.

4. Which operator should be applied first?

Some operators find their matches more easily than others; some operators contribute
more toward the fina! decision than others. In what order should the operators be applied?
For example, in the screw-checking task the screw thread operator may be faster than the
corner-finder, but the corner-finder may produce more information than the screw thread
operator. Which one should be applied first?

One possible choice mechanism is to apply the operator with the largest expected value
for the ratio

{contribution toward the final decision>

{cost>

first. But what is the expcclal' contribution of an operator? At execution time the
combination rules compute a specific contribution for a specific value of an operator. The
planning mechanism needs the average contribution of the operator, which depends upon the
distribution of the values of the operator as well as the contribution derived from each value.

As mentioned earlier, operators can contribute indirectly as well as directly toward the
final decision. How can these indirect contributions be incorporated into the ranking of the
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operators? For example, an edge operator that locates a point on the side of the shaft of the
screwdriver may be the cheapest operator to apply in the screw-checking task. It only
indirectly contributes to the task by increasing the constraints on the position of the
screwdriver and screw, but it still may be the best first step toward the final decision. How
can the strategist take this type of expected progress into account?

5. A refined VV program

In light of this discussion the execution-time program for the screw-checking task can

be restated as follows:
(a) Aim the camera at the exit of the screw dispenser.
(b) Calibrate the camera.

(c) Take a picture of the end of the screwdriver as it leaves the

dispenser.

(d) Apply one operator at a time, using the best one first. For each one,
employ the appropriate search technique to locate the best match
within the tolerance region of the fedture.

(e) Incrementally incorporate the results of each operator into an
estimate of the probability that the screw is present. Be aware of
possible confusions and ad just the probabilities accordingly.

(f) Stop applying operators and make a decision as soon as one can be
made with the desired confidence.

The calibration steps (steps a and b) may be performed only once for each series of
assemblies. The remaining steps are performed each time the arm tries to obtain a screw
from the screw dispenser.
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Section 2
LOCATING A HOLE

Consider visually locating a screw hole in a part that has been placed in a vise. Such a
task is a location task; the user is more concerned about the location and precision associated
with the hole than about the confidence that the hole is present. There is no question about
what is sought, just an uncertainty about where it is.

Figure 2.2.1

Assume that a flat side of the part is placed in contact with one of the vise jaws (see
figure 2.2.1). Then the part can only be rotated and transiated in the plane parallel to the
jaws. If the vise Jocation is well-known, the uncertainties associated with the location of the
part can be described as a planar transformation, which is a function of three parameters: dx,
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dy, and d-+. The parameters dx and dy are unknown translations in the plane of the vise
jaws; des 18 an unknown rotation about a vector perpendicular to the plane of the vise jaws.
Constraint resolving routines can combine the accuracy of the arm and the accuracy of
grasping the part to produce a priori imits on these parameters. For example,

=1.32. 6m € dx & 1.32 ¢en
-.76 cm € dy £ .76 cn
-10.4 degrecs s d« < 10.4 degrees.

The goal of the task is to improve these limits to a prescribed value. For example, the arm
control program might need to know the location of the screw hole to within the following

tolerances:

-. 15 em € dx's .15 cm
-.15¢cm £ dy s .15 cm.

A general way to accomplish this goal is to apply several operators and combine their
position nformation to form a better estimate for the location of the screw hole and a
measure of the precision of that estimate. What are the combination rules necessary to
produce such estimates, and how can the precision of each individual operator be taken into
account? These and other questions will be briefly discussed in the following subsections.

I. How can position estimates and precisions be computed?

In the hole-locating task each operator locates a specific point on the part in the vise.
The function of the combination rules is to determine the values of dx, dy, and de that
transform the expected (or planned) positions of the features into the observed positions of
the features. T his set of combination rules will be referred to as the fitting scheme.

Fitting schemes encounter several complicating factors. First, visual operators locate
matches in a picture of a scene and hence produce position information within the coorainate
systerth of the camera screen, not the workstation. Since the arm control program n:eds to
know the location of the hole in the workstation coordinate system, the position information
has to be transformed by the camera calibration into the workstation coordinate system. If
two or more cameras are being used, stereo techniques can directly locate features in the
workstation coordinate system. With one camera, however, additional position information is
needed to determine a feature's workstation coordinates. In the screw hole task, since the
uncertainties have the form of a planar transform, the distance from a feature to the known
plane is sufficient. That is, given the screen coorcinates for the image of a feature and the
height of the feature, it is possible to locate the unique, three-dimensional position for the
feature. Stereo is preferable, but useful information can be derived from a single camera and
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some additional information.

The second complication is that some operators are more precise than others. For
example, a correlation operator may locate the corner formed by the head of the screw and
shaft of the screwdriver to within 1.5 pixels and the corner-finder may locate the same corner
to within half a pixel. (A pixel is one resolution element in a digitized picture.) The fitting
scheme should be able to weight the results of these operators appropriately.

A third complication is that some operators do not locate a specific point on the part;
they locate a piece of a line or a portion of a region. For example, the edge operator that
looks for the side of the shaft locates a point on a line segment and the hypothetical screw
thread operator locates a portion of a small region. The fitting scheme should be general
enough to incorporate these different types of position information.

A fourth complication is that an operator may locate a decoy instead of the correct
match. If the decoy looks locally like the desired match, the only way to determine that it is a
decoy is to check the global structure of the matches. Since the features of a rigid ob ject are
expected to remain at fixed relative positions, it should be possible to check a set of feature
matches for their structural consistency. Do the matching positions correspond to some
reasonable transformation of the object? Structural consistency can also be incorporated into
the confidence computations used in inspection tasks. If the program is checking for a
vertical screw, and a pair of operators imply that the tip of the screw and the top of the screw
are side by side, one ought to be suspicious.

This discussion of decoys and unreliable operators suggests two general conclusions: (1)
the confidence that an operator has located the correct match is just as important within
location tasks as it is within inspection tasks, and (2) position information (i.e, structural
consistency) can make a significant contribution in an inspection task toward the overall
confidence in a decision. In other words inspection tasks should be concerned with position
information in addition to confidences, and location tasks should be concerned with
confidences in addition to position information. Thus, structural consistency and confidence
are important within both types of tasks.

Finally, the fitting scheme should be able to incorporate new information incrementally.
As more operators are applied and matches are found, their results should be combined with
previous results. Intermediate estimates can be used to reduce the amount of searching
required to locate a new feature. For example, after a point on the shaft of the screwdriver
has been located, its position and precision can be combined with a priori limits associated
with the location of the screw to form a new, smaller tolerance region about the corner formed
by the head of the screw and the side of the shaft. The use of intermediate estimates to
reduce tolerance regions re-emphasizes the importance of the order of the operators and the
need for a sequential strategy to locate the desired ob ject to within the desired precision.
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2. A refined VIV program to locate the screw hole
The execution-time V'V program to locate the screw hole can be restated as follows:
(a) Aim the camera at the vise.
(b) Calibrate the camera.
(c)  Apply one operator at a time in the most strategic order.

(d) Use each operator's position information to update the estimates for
the parameters, dx, dy, and d«.

(e) Use the estimates for the parameters to determine the expected
position of the next feature and a new, improved tolerance region
about that position.

(f) Be cautious about the implications drawn from the position
information because the operators are not completely reliable.

Scction 3
SUMMARY OF REQUIRED FACILITIES

This section summarizes the facilities required by a VV system. It lists the main
components, states their role within the complete system, and briefly describes the current
state-of -the-art in each area.

1. Calibration Techniques

Calibration routines provide transformations back and forth between the screen
coordinate system and the workstation coordinate system. Almost every computer vision
system has its own methods for calibrating the cameras. The basic techniques can be found
in [Sobel 74), [Sproull 73], and [Baumgart 74b]

Calibration can itself be described as a VV task: place a known object at a known
position, visually locate the object, and compute the current position of the camera. The
advantage of this formulation is that the same VV program can be used to calibrate the
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cameras and to perform the desired feedback task; a special-purpose calibration subsystem is
not necessary. Another advantage of this approach is that the camera can directly calibrate
itself with respect to the stationary ob jects in the scene (e.g. the vise or the screw dispenser)
instead of a special calibration object. Gill used his corner-finder to develop a version of this
type of calibration system for the blocks world (see [Gill 72]).

A calibration routine may also include an estimate for the camera noise and a
description of the lens distortion. These quantities are important factors in predicting the
appearances and positions of features. Gennery and Moravec have developed a program to
estimate these quantities [Moravec 76).

2. Visual Operators

A visual operator locates the image of a feature and returns an estimate for its location
and a description of its appearance. For example, a region grower might locate a small, dark,
elliptical region inside a larger, grey region; an edge operator might locate a distinct,
high-contrast edge with some particular orientation at a certain location.

There are several well-known types of operators: edge operators (e.g. see [Roberts 63),
[Horn 71), and [Hueckel 69)), line followers (e.g. see [Tenenbaum 70) and [Shirai 73)), corner
finders (eg. see [Gill 72] and [Perkins 73)), correlation operators (e.g. see [Quam 71), [Hannah
74), and [Moravec 76)), region growers (e.g. see [Brice 70], [Yakimovsky 73a], [Agin 75), and
[Garvey 76)), and texture operators (eg. see [Bajcsy 72), (Lieberman 74] and [Marr 75a)).
There is, however, still a need for a wider variety of more powerful operators. Some of the
most useful would be operators to grow textured regions and locate boundaries between two
textured regions.

3. Search Strategies

The purpose of a search strategy is to choose where to apply an operator in order to
locate the best (or at least a good) match as cheaply as possible. Strategies may include
heuristics to avoid the cost of an exhaustive search. For example, Moravec uses a
two-dimensional binary search to locate a good match for a correlation operator (see
[Moravec 76)). Exhaustive searches can also be avoided when looking for extended features,
such as lines and regions. The larger the feature, the easier it is to find.

If an operator is known to be unreliable, a search strategy may be used to produce an
ordered list of the best three or four matches for the operator. A VV program may try one
match after another until it finds a structurally consistent one.
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4. A Light Model

A hight model describes the position, brightness, and spectrum of each light source at
the workstation. It can be used in conjunction with the object models to predict the
appearance of an object. The angle of incidence, the reflectance of the ob ject, and the angle
of observation are the basic variables that determine the appearance of a point on an ob ject.

There are several programs that use object models and light models to produce

| synthetic pictures. Some of the most complete graphic display sysiems have been developed at

the University of Utah (eg., see [Gouraud 71]). Such systems are general enough to handle

ob jects with smooth, curved surfaces (eg. car bodies), transparent ob jects (e.g. wine glasses),

| and shadows. The two main restrictions associated with these programs are that (1) the
ob ject models are difficult to construct and (2) they require a great deal of computation time.

Horn at MIT [Horn 70] has investigated techniques to reverse this process. That is,
use pixel intensities, contours between the intensity levels, object models, and reflectance
properties of light to recognize an objuct in a scene. It is difficult to analyze complex pictures
i because of the interaction of several light sources and the reflection from several small
surfaces.

5. Object Models

Ob ject models are used to predict the positions and appearances of features. For
example, if the model includes descriptions of the shapes and surfaces of the ob ject, it is
possible to predict the positions, shapes, and colors of the corresponding regions in a picture
of the ob ject.

Ob ject modelling at this level of detail is quite complex. The representation depends
upon the purpose of the model. It makes a difference whether the ob ject is going to be
' looked at, picked up, or painted. Models may include one or all of the following facets: a
rigid inter-affixment of features (c.g. sec [Finkel 74], [Taylor 76), and [Lieberman 75b)), a
structural description (eg. see [Agin 72), [Nevatia 74), (Baumgart 74a), [Grossman 75a),
[Miyamoto 75], and [PADL 74]), an articulation description (e.g. see [Nevatia 74]), and a
description of the surfaces (eg. see [Coons 67), [Gorden 72), and [Gould 72]). These
individual components are reasonably well understood, but there are no existing systems that
provide all of them.

6. A Constraint Resolving Algorithm

.A constraint resolving algorithm takes as input an ob ject model and a set of constraints
on the object, and produces a list of the remaining degrees of freedom and the resulting

|(| .
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constraints associated with those degrees of freedom. For example, if a coffee cup is known to
be sitting upright on the table and a vision program locates the center of the hole on top, the
constraint system produces a locus of points that describes the possible positions for the
handle of the coffee cup.

A completely general constraint resolving system is difficult to program because an
ob ject may have as many as six nonlinearly related degrees of freedom (three displacements
and three rotations) and the loci are often quite complex subregions of this 6-space. Ambler
and Popplestone have investigated a limited set of constraints for cylinders and V -blocks (see
[Ambler 73]). Taylor has developed a linear programming system that handles a wider range
of constraints and produces specific tolerance information (see [Taylor 76]). Grossman has
combined a graphics model with a Monte Carlo simulation technique to produce the
distributions formed by a set of input constraints (see [Grossman 76)). All of these programs
are steps in the right direction, but there is still a great deal of work to be done.

7. Combination Rules for Probabilities

Combination rules use a priori probabilities and the value and position information
provided by the operators to produce estimates for various probabilities.  Typical
probabilities of interest are the probability that an object is present (eg. a screw), the
probability that the current match is the correct match, and the probability that a set of
matches is structurally consistent.

Probability analyses have been used for numerous tasks. Some of the formulations that
are the closest to the one developed in this thesis are: medical diagnosis models (e.g. see
[Shortliffe 75), and [Davis 76)), a fault detection model (e.g. see [Nilsson 75]), and parts
recognition models (eg. see [Duda) and [Rosen 74]). All of these models use Bayes' theorem
or a closely related mechanism to compute the desired a posteriori probabilities.

All of these systems have to make some strong independence and conditional
independence assumptions in order to convert Bayes' theorem into a usable form. Similar
assumptions are made in this thesis. The validity of the results depend upon the validity of
these assumptions.

8. Combination Rules for Position Information

Combination rules for position information use position and orientation estimates from
individual operators to produce an overall estimate for the location of the object. The rules
can also use the precisions associated with each position estimate to produce an overall
precision estimate for the location of the object. For example, if it is known that a screw
dispenser is sitting upright on the table and if a vision program locates two features on the
dispenser, then the combination rules should be able to produce an estimate for the location
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of the dispenser. The precision of this estimate depends upon the precision of the position
information of the operators and on the structural relationship between the two features. I[f
the line joining the two features happens to be perpendicular to the table, the overall
contribution of the two features will be less than if the line is parallel to the table, because the
plane of the uncertainties is parallel to the table.

Combination rules of this type are closely related to constraint resolving procedures.
Both' reduce a set of constraints into a single, overall description of the remaining
uncertainties.  The difference is that the combination rules are designed to deal with
unreliable operators. In particular, they have to deal with inconsistent pieces of information,
some of which are seriously in error, and should be discarded, and some of which are only
slightly inconsistent and should be included in the computation.

Some fitting schemes, such as least-squares, are well-known and have been used in a
wide variety of tasks. Almost from the very beginning of computer vision research, fitting
schemes have been used to optimize various criteria. Roberts used a least-squares routine in
one of the intermediate steps involved in deciding which block prototype best fit the observed
data (see [Roberts 63])). Perkins used a least-squares fitting technique within his
corner-finder to locate the lines that form the corner (Perkins 73]  Gennery used a
least-squares fitting routine to calibrate a stereo pair of cameras (see [Gennery 75]).

Fischler and Elschlager have taken a slightly different approach to the combination
rules problem. They use a linear programming scheme to determine the optimum matching
position for a structure of features (see [Fischler 71b)). Their method can weight each feature
and the links between the features. Their technique, however, is more concerned with the
position of the best overall match than with the precision and confidence associated with that
match.

9. A Stategist

A strategist tries to construct the most efficient program to accomplish a task by ranking
the available operators and choosing the most appropriate control structures. It bases its
decisions upon the expected contributions and costs of the operators when applied to the
specific task. For example, a strategist may decide to try to locate a point on a large ellipse
and use the information from that operation to locate the desired hole. Or the strategy
program may decide to locate a point on the ellipse, follow the ellipse a short distance in order
to refine the system'’s estimate of the location of the ellipse, and then try to locate the desired
hole.

The artificial intelligenice community has been working on the straregy problem for a
long time. The basic approaches can be found in [McCarthy 58), [Nilsson 71], [Fikes 71),
[Sacerdoti 75b), and [Taylor 76]. Feldman and Sproull have developed one of the most
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comprehensive systems to deal with costs, constraints, and confidences (see [Feldman 75] and
[Sproull 77)). Their system is based upon a decision theoretic model of strategies. Other
examples of the use of strategy programs within computer vision research can be found in
[Yakimovsky 73a) and [Garvey 76).

10. An Interactive Programming System

A VV system that can be easily programmed requires a human engineered, top-level
system that interacts with the user. This type of control program provides an environment in
which a user can experiment with different operators, arrange VV programs, and test them
on trial pictures.

Recently considerable interest has been shown in teach-by-doing programming
techniques for arm programs (eg. see [Rosen 74]). Some of this enthusiasm has extended into
vision research. For example, an interactive parts recognition system has been implemented
at SRI [Rosen 74). Two other vision systems that provide this type of user interface are
described in [Agin 75) and [Garvey 76).

1. Conclusions

The purpose of this chapter was to outline the set of capabilities required within a VV
system. Systems already exist that provide several of these capabilities, such as camera
calibration and object modelling. However, two of the most important capabilities are
missing: combination rules for probabilities and combination rules for position information.
The next three chapters develop a set of these combinatien rules for VV.
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CHAPTER 3

FXECUTION-TIME COMBINATION RULES FOR INSPECTION

The introductory chapters have stressed the importance of combining the results of
several, possibly unreliable tests. Chapters 3, 4, and 5 derive combination rules for VV. The
derivations are fundamental, but the reader may wish to look at some examples first.
Appendices 1V and V contain extended examples of the application of these combination
rules. The examples provide a general fecling for the behavior of the rules.

There are two types of combination rules: execution-time rules and planning-time
rules. The former is concerned with combining the actual results of the operators as they find
features. The latter is concerned with computing and combining the expected contributions of
the operators. In this chapter we deal with execution-time rules needed to accomplish
inspection. Execution-time rules for location are discussed in the next chapter.

The combination rules are incrementally developed in conjunction with a sequence of
examples designed to incorporate increasing levels of complexity. Each section, except the last
one, extends the rulcs to cover one additional aspect of the problem. The last section
discusses some of the important assumptions that are made in the first five sections in order
to derive the combination rules.

Section |
OPERATOR VALUE INFORMATION

Consider the standard inspection task: decide whether or not there is a screw on the
end of the screwdriver. For simplicity assume that normalized cross-correlation is the only
type of operator known to the VV system. Correlation uses patches from a planning picture
as features to be found in a test picture. Figure 3.1.1 shows a planning picture with the screw
on the end of the screwdriver and several sample pictures, some with the screw present, some
with it missing. Figure 3.1.2 shows several correlation patches outlined on top of the planning
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picture. Whenever operator | is applied to a sample picture it locates a best match with a
certain value, which is a function of the correlation coefficient.

If operator | is applied to a sample picture in which the screw is missing, no portion of
the picture will match operator | very well. Operator | will still locate a best match, but the
correlation coefficient will be lower. Thus, operator 1, if reliable, will (1) match the correct
piece of the screw, if the screw is there, and (2) match some other feature (with a lower
correlation value) if the screw is not there. This performance difference is the basis for
deciding whether the screw is there or not.

Figure 3.1.3 shows the results of applying operator | to ten different sample pictures
where the screw is present. If the frequency of these values is assumed to follow a normal
distribution, the corresponding distribution can be approximated from the experimental mean
and standard deviation of these values. The fitted sample distribution is shown in figure
3.14. If operator | is applied to several pictures without the screw, the resulting values wil
form some other distribution. A table of ten such trials and the corresponding distribution
(again assuming a normal distribution) are shown in figure 3.1.5. The two frequency
functions are superimposed in figure 3.16. The assumption of normality is not necessary for
the rules derived in this chapter. The assumption is convenient for displaying example
distributions and it simplifies some of the planning-time computations, but it is not necessary
for the execution-time formulas. Section 3.6 will outline the potential advantages of normally
distributed values.

If operator | is applied to a test picture to determine whether the screw is there, the
operator will find a best match with some value, say .93. Based solely upon operator I,
should the system say that the screw is there or not? In probabilistic terms, what is the
probability that the screw is there, given that operator | has a value of .93? Denote that
quantity as follows:

t3.1. 1) P[<{screw there> | <value of operator 1 is .93>].
Let
§3.1.2) On & <{the screw is on the end of the screwdriver>

Off & (the screw is not on the end of the screwdriver>
vl & <operator 1 returns the value vl>

then the basic a priori probability diagram is
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.67 Sample mean = .65

:61 Sample standard deviatien = .07
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On Off

and the inclusion of P[v1] produces

On Off

. vl .

Bayes' theorem {eg. see [Hoel 71)) is a convenient way of combining this a priori probability
information with the distribution information to produce an estimate for the probability that
the screw is On. Bayes’ theorem expresses the desired a posteriori probability in terms of the
a priori and conditional probabilities as follows:

P[v1|On]«P[On])

(3.1.3) P{On|vl] =
P[v1|On]«P[On] + P[v1|Off]«P[Off])
or
1
(3.1.4) P[On|vl] =

P[v1|Off]«P[Off]

1+
P{v1|On]xP[On]

These formulas state the desired probability in terms of probabilities that are often more
readily computed. The a priori probabilities are based upon measured statistics or the
experience of the assembly engineer. For example, if the screwdriver correctly acquires a
screw nine-tenths of the time, P[On] is .9. The density functions showr in figure 3.1.6 can be
used to compute the conditional probabilities, P[v1|0ff] and P[v1|On]. Since the functions
are density functions, the probability of the operator producing any one particular value is
zero. But the probability of the operator producing a value within a certain range is the
integral of the function over that range. Thus one way of estimating the above ratio for a
specific value of the operator is to consider a small range about the value, compute the two
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probabilities by integration, and form the ratio. Notice, however, that as the width of the
region decreases, the approximations for the ratio approach the ratio of the two values of the
density functions at X. That is, the ratio of the probabilities can be replaced by the ratio of
the densities. This observation makes it particularly easy to compute the appropriate ratio for
any value of the operator.

Bayes' theorem can be extended to combine the values of several operators:

1

(3.1.5) P[On]vl,v2,...VvN] = .
P[vl,v2,...vN|Off ]JxP[Off]

P{vl,v2,...vN|On]xP[On]

Let P[v1,0n] represent the probability that the screw is On and that operator number one
produces the value vl. Since

P[v1,0n]

(3.1.6) P{vl|On] =
P[On]

and
P[vl,v2,0n] P[On,v2]

(3.1.7) P[vl,v2{On] = * = P[vl|On,v2] * P[v2|{0n],
P[On] P[On,v2]

then, more generally, the conditional probabilities can be expanded into:

(3.1.8) P(vl,v2,...vN|On] = P[v1|On,v2,v3,...vN] « P[v2|0On,v3,v4,...vN] «

* P[v(N-1)|0n,vN] » P[VN|On].
If the vj's are assumed to be conditionally independent, that is,
(3.199) PLvjlon,vj+l,...vN] = P[vi{On] (for &11 J§'s)
then these probabilities reduce to

{(3.1.10) P[vl,v2,...vN|On] = P[vl|On]) %« P[v2|On] * ... % P[VN|On],
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and (3.1.5) becomes

(3.1.11) P{Onjvl,vZ,...vN] = f
P[Off] P[vi|Off]
1+ *

P[On] i

:z

1 P[vilOn]

The conditional independence assumption stated in (3.1.10) is a major assumption. It
makes it possible to reduce the interdependences significantly. But it also restricts the type of
operators that can be used within a V'V system that is based upon formulas such as (3.1.11).
If the value of an operator is not approximately conditionally independent of the values of
other operators, it can not be used.

Both (3.1.4) and (3.1.11) make it clear that the contribution of an operator is the value of
the ratio:

P{vijOff]

(3.1.12) :
P[vi|On]

The contribution of an operator determines its influence on the estimate of
P[On|vl,v2,...vA]) The inverse of ratio 3.1.12,

P[vi|On]

(3.1.13) Sy
PLvijOff]

is known as the likelihood ratio. The logarithm of the likelihood ratio is also important, as
the chapter on planning-time combination rules will show. The larger the likelihood ratio,
the stronger the evidence that the screw is present. This formulation agrees with one's
intuition in several ways. Consider figure 3.1.7 in which three values of the operator have
been indicated: W, X, and Y. If the operator happens to produce the value W, the
likelihood ratio is 1.0, and the estimate for the probability that the screw is there is
unchanged. Any value to the left of W implies a likelihood ratio less than 1.0, and thus
decreases the estimate of the probability that the screw is there. Both X and Y are to the left
of W; both suggest that the screw is not there, but Y does so more strongly, as expected.

Not all values to the right of W will necessarily suggest that the screw is there.
Consider figure 3.1.8. It emphasizes the difference between the two standard deviations so
that it becomes clear that there can be a region to the right of W in which the likelihood
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ratios are less than one. Only a small interval (labeled «) contains values that suggest that the
screw is there. The likelithood ratios for every value in « are greater than one. All other
values for the operator produce likelihood ratios less than one. Figure 3.1.9 shows the
likelihood ratios and the log likelihood ratios associated with the distributions shown in

figure 3.1.7.

The formuiation of (3.1.11) is computationally convenient. For example, define

P{Off]
(3.1.14) t(0) =

P[On]

P[vjlOff]

and t(J) = * t(j-1) (for j > 0)°

P[vjlOn]

then
]
(3.1.15) P[On|vi,...vj] = o
1+ t(J)

This set of formulas gives a straightforward way to incorporate the resuits of sequentially
applied, conditionally independent operators incrementally. In fact, it is a powerful way to
combine the value information of operators into a probability that an ob ject is present.

For example, consider the screw checking task. If P[On] is .90, then t(0) is ALt
Assume that the density functions shown in figure 3.1.10 correspond to operator 1. If it
returns a value of 810 (represented by the vertical line in the figure), then t(1) is .0080 and
P[On|v1] is .9920. If the desired confidence is less than this amount, the program can stop
applying operators and make a decision: the screw is present. If the desired confidence is
999, more information is needed. Consider the density functions for operator 2 shown in
figure 3.1.11. If the second operator returns a value of .840, then t(2) is .000476 and
P[On|vl,v2] is .9995 which is sufficient to make a decision.
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Section 2
KNOWN ALTERNATIVES FOR A FEATURE

32

In the previous section, an operator was applied over some portion of a picture under
the assumption that there are only two possible results: (1) the screw is present and the
operator locates the appropriate picce of the screw or (2) the screw is not present and the
operator locates some other best match. It was also assumed that the operator was applied
over the whole region before returning the best match. In effect, these assumptions guarantee
that the value returried by the operator belongs to one of the two density functions, Or or Off.
This result is pleasant if true, but there are several reasons why these assumptions might be

unwarranted:

(n

@

(3)

(4)

There may be similar features in the same local area that sometimes appear
better to the operator than the proper match. [f a similar feature appears
regularly enough in sample pictures so that the system can determine the
corresponding density function, the feature will be called a known alternative.
In that case the desired feature is itself considered to be one of the known
alternatives. Every time a best match is fouid, the VV program must decide
which alternative is being matched. If a similar feature occurs infrequently
and unpredictably, it will be referred to as a surprise.

Each application of the operator may be so expensive that it is prohibitive to
scan it over the complete area in order to choose the best match. Instead, it
has to be sequentially applied until some reasonably good match is found. If
there are a few similar features in the local area, a reasonably good match
may not be the best match, and hence the value produced by the operator
may not belong to one of the two density functions.

The measurements made by the operator may not immediately single out the
best match. A correlation operator is a special type of operator; it only
returns one value, so it is easy to determine which match is best. Other
operators may return values along several scales. The best match is
experimentally defined to be the one that produces values closest to the
training values. For example, an edge operator may return both the
distinctness of the edge and the contrast across the edge. If the desired line is
a fuzzy line with a high contrast, it is not clear how to determine the best
match. A metric has to be defined.

The desired feature may not be in the portion of the picture scanned by the
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operator. This problem may occur if the program has incorrectly restricted
the tolerance region for a match, or if the feature has been obscured for some
reason. The operator still returns the location and value for the best match it
can find, but such a value does not belong to either of the densities; no
conclusions can be drawn about P[On|vl,v2,...vN].

(5) Some global factor may change (eg., one of the workstation’s lights may be
out) so that the feature appears quite different, even though it is in the
correct area. In this case the values of the operator may be radically different
than planned.

In this section the combination rules are extended to include known alternatives. Later
sections will discuss the extensions necessary for surprises, multiple-valued operators, sparsely
applied operators, and global changes.

Consider the problem of correctly deciding which of three possible line segments an
edge operator has located. There are several sources of information (orientation, fuzziness,
contrast, etc.), but for the time being consider only one dimension (e.g., contrast). Assume that
during the training session the system gathered enough statistics about the three lines to
approximate the three density functions associated with their contrast values. If an edge is
found with a certain contrast in an actual picture, which line is the operator on (assuming
that there are only three possibilities) and what is the confidence associated with that
decision? This question can be answered by computing three probabilities: the probability
that the operator has located line 1, the probability that the operator has located line 2, and
the probability that the operator has located line 3. Let

(3.2.1) L1 & <operator 1 has located a point on line 1>
L2 & <operator 1 has located a point on line 2>

and L3 = <operator 1 has located a point on line 3)>.

Then Bayes' theorem states that

(3.2.2) P(L1|v] = 5
P{vI=L1]*P[=L1]
1+

P{viL1])*P[L1]

Consider the following diagram
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L1 L2 £3
. v .
Since
{(3.2.3) aLtl = L2 @ L3 { ® stands for exclusive OR },
(3.2.4) Plv]=aL1] = P[v|L2]xP[L2]|-L1] + P[v|L3]*P[L3|~L1l].
Formula 3.22 reduces to
1
(3.2.9) P[LY|v] = ;
P[v|L2]*P[L2,-L1] P[v|L3])%P[L3,-L1]
1+ +
P[viL1]%P[L1] PLv|L1]*P[L1]

Since L2 and L3 form -L1, each is contained in -L1. Therefore, (2.2.5) can be further reduced
to

1

(3.2.6) P[L1|v] = -
P{vIL2]xP[L2] P(vIL3]*xP[L3]
1 + +
PCviLLI]«P[L1] PLvILI]J«P[LI]

When there are N known alternatives formula 3.2.6 can be generalized to

1
(3.2.7) P[LjIv] = " (for 1<jsN)
P{v]Li)*P[Li]
1+ z

i#J PLvILII*P[LJ]

This formula is convenient because it states the desired probability in terms of a priori
probabilities and likelihood ratios. Given the value of an operator that has several known
alternatives, the probability of each alternative is computed, and the alternative with the
largest probability is the best match.
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This derivation is also useful for an inspection task in which there are two or three
known alternatives when the ob ject is there and two or three known alternatives when the
ob ject is not there. In this case the program is less concerned about which alternative is the
best match than about the overall probability that the ob ject is there. A derivation similar to
the one used above produces the formula needed in this situation. Let f1, f2, ... fM be
the known alternatives that might be matched when the ob ject is there and let gl, g2, ...
gN be the alternatives that are possible when the ob ject is not there. Bayes' theorem states:

1
(3.2.8) P[On|v] = e
P[v|Off]xP[Off ]
1+
P{v|On]xP[On]
By assumption
(3.2.9) P[On] = P[f1] + P[f2] + ... + P[fM] _
and
(3.2.10) P[Off] = P(gl] + P[g2] + ... + P[gN].
Formula 3.2.8 can be expanded into
{3.2.11)
1
P[On|v] =
Plvigl]xP[gl] + P[v|g2]xP[g2] + ... + P[v|gM]+P[gN]
1+ :
PLvIfl1]«P[f1] + P[v|f2]xP[f2] + ... + P[v|fM]«P[fM]
or
1
(3.2.12) P[On|v] = ;
> PLvigilsPlgi]
1<isN
1+
> PIVIfiJeP[fi]
1<isM

This formula gathers all of the evidence for and against the proposition On and forms
a ratio between them. To use this formula requires a great deal of knowledge about what can
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be expected in a runtime picture. In particular, this knowledge includes the set of possible
alternatives, their values, and their a priori probabilities. ~ Within the context of
programmable assembly this information is often available because the environment is highly
constrained and a program has the opportunity to watch several examples of the assembly.

Consider the application of formula 3.2.12 to the screw checking example. When the
screw is not on the end, one of the operators (say operator 1 that tries to locate the tip of the
screw) may return a different set of values depending upon whether or not the detent at the
end of the sciewdriver is showing. (The detent is the spring-loaded ballbearing that holds
the screw on the end) It appears in the picture only if the screwdriver is oriented in such a
way that aims the detent at the camera. Thus, there are two known alternatives for operator |
when the screw is not on the end: (1) the detent is showing and (2) the detent is not showing.
When the screw is present, there is still only onie known alternative. Thus, the a priont
probabilities for operator | are:

(3.2 13) P[On] = P[Screw]
P[Off] = P[Detent] + P[No Detent],

which can be diagramed as follows:

On Off
Detent
Screw
No
Detent

This diagram is just for operator |. The other operators may not be affected by the detent.
If operator | is the first operator to be applied, formula 3.2.12 simplifies to:

(3.2.14)

P[On|vl] = 5
P{vl|Detent JaP[Detent] + P[vl|No Detent]*P[No Detent]

P{v]|Screw]xP[Screw]
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Assume that

{3.2.15) P[Screw] =
P[Detent] = .03
P[No Detent] =

and that the density functions shown in figure 3.2.1 are the functions for operator 1. If
operator | returns a value of 81, then P[On|v1]is .9910. Figure 3.2.2 shows the three known
alternatives for operator | and three typical values produced by operator 1. Each column of
the table contains P[Tip|v]. P[No Detent|v] and P[Detent|v]). Given a value, vl, for
operatcr |, the known alternative with the largest value of P[<known alternative> | v1]
is the best match for that value. For example, given the value .47, the best match is the
Detent. That is, based upon the a priort probabilities and the training information, a value
of 47 for operator | implies that the most likely feature being matched is the detent in the
end of the screwdriver. The second best choice is the end of the screwdriver without the
detent.

- /
- SCREW

T*"“‘I o T‘*ﬂ
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Figure 32.1
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VALUE OF OFERATOR 1

&l £3 g
Screu <3910 0811 . 03e3
KNOUN 1 + I8 |
ALTERNATIVE No Detent| .8098 884 Y9C30

fJetent .80@8 | .1343 7478

Figure 322

Formula 2212 can be easily extended to incorporate the results of several operators, all
of which may have known alternatives.  Assume that there are K operators. Let fj,1;
f3,2; ... ;fi,Nj be the Nj known alternatives for the jth operator when the object is
present. bet ai, by ag,25 .-.30d,MJ be the Mj known alternatives for the jth operator

when the object 1s not present. Then

£3:2.16)

1
P[On|vl,v2,...vVK]} = =~ -
(K-1) > Plviled,i)*Pej,i]
P[On) K 1gisNg
Lo —— ]
(K=1) 3=l D PLViIf,iJ#P[£],1]
PLoff] 1Sishj

The exponent (K-1) appears because the expression tor each of the K operators produces a

factor of
PLOn]
$3.2.37) —
PLoffr]

and the ratio of a priori probabilities in formula 3.2.8 cancels one of them.
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Section 3
SURPRISES

The main assumption of the last section is that all of the alternatives are known and
characterized in advance. Sometimes, however, operators match unknown features and return
unusual values. Such unknown and unexplained matches will be referred to as surprises.
The values produced by surprises can not be accounted for by the usual density functions

There are several possible causes for an unusual match (some global change, the feature
I$ not present, or a surprise), so the values produced for such a match should not be used to
alter the overall confidence estimate. The values may contribute to other considerations (such
as a global error decision), but they should not be blindly cranked through the combination

rules.

There are two ways to deal with unusual values: (1) filter out particularly bad values
and (2) scale down the potential contribution (inn the probability computations) of any
operator that is known to find surprises. The first method involves a check on each value
produced by an operator to make sure that it is reasonable for at least one of the known
alternatives. For example, if a value is not within three standard deviations of the mean of
at least one known alternative, classify it as an unusual value. This method is generally only
applicable when some unexpected event occurs, such as one of the lights burns out at the
workstation so that the pictures of the scene are significantly different than expected.

The second method is to lower the possible contribution of unreliable operators. This
method 1s based upon a simple rule: an operator that finds surprises should not be trusted as
much as one that doesn't. The assumption that all of the alternatives are known has been
expressed in formula 3.2.9.

(3.3.1) PEOn]) = PLFL] « Plf2] + ... PLTN].
If the operator occasionally locates surprises, a better model is
(3.3.2) P{On] = P[f1] + P[f2] + ... P[fN] + P[s]

where P[s] is the a priori probability of finding a surprise. To reflect this model in the
probability computations requires a density function to be associated with the surprises.
What should the form of this density be? If surprises can randomly produce any value for
the operator, one reasonable assumption is that the surprise density has a rectangular
distribution. If the filtering method (i.e, method | mentioned above) is applied, the range of
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the rectangular distribution can be restnicted to the interval between the smallest reasonable
value for the operator and the largest reatonable value. Figure 3.2.1.a shows three density
functions, one tor the case in which the screw is present and two known alternatives when the
screw 1s not present. If the operator occasionally locates surprises, a rectangular density

function is added, as shown n figure 32.1b

The denuty function for surprises can be incorporated into the confidence computation
in a straightforward way. Since a surprise may occur whether or not the ob ject is present, the
new possibility is included in both the numerator and the denominator. However, the
probabihty of a surprise may be different when the screw is present than when it is not.
That is, P[Surprise|On] may be different from P[Surprise|0ff]) In order to provide for
this possibility, different quantities are included in the numerator and denominator. If s

represents a surprise, formula 3.2.12 can be restated as:

(3.3.3) P[On|v] =
N

P[v|s,Off]JxP[s,0ff] + Z Plv|gi]xP[gi]
i=1

M

PLvIs,0n]xP[s,0n] + > PLv[fiJsP[fi]
i=1

The additional density function restricts the contribution of the suspect operator. The
operator can not be as strongly for or against the proposition On as it could be when all of the
alternatives were known. For example, consider operator | mentioned in the last section. The
a priori probabilities are

(3.3.4) P[On] = P[On,Surprise] + P[Screw]
P{Off] = P[Off,Surprise] + P[Detent] + P[No Detent]

and the corresponding diagram is
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On Off

0ff,Surprise

On,Surprise

Detent

Screwu
No
Detent

Formula 3.2.2

reduces to

(3.3.9) P[On]JvX] =

1

PLvX|Off,Surp]+P[Off,Surp] + P{vX|Det]x'[Det] + P[vX|No Det]xP[No Det]

pPlvXion,Surp)«P[0n,Surp) + P[vX|Screw)*P[Screw)
Assume that

{3.3.6) P[Screw] = .88
P[Det] = .02
P{No Det] = .06
P[Off,Surp] = .02.
and P[On,Surp] = .02,

Since PLOff,Surp]. P[On,Surp], P{v1[On,Surp], and P[vI1[Off,Surp] are constants,

formula 2.2.5 reduces to

§3.3.7)
1

P[Onlvl] = .
.0318 + Plv1|Det])*xP[Det] + P[Vv]|No Det]JxP[No Det]

.0318 + P[vl|Screw]xP[Screw]

The maximum value of P[On|vl] is achieved when operator | returns a value that
minimizes both P{v1|Det] and P{v]l|No Det] At that point P[On]v1] is .7754. This value
1s significantly less than the maximum value of 1.0, which is possibie if the surprises are not
incorporated into the formula. So incorporating surprises into the formulas for operators
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known to produce surprising values reduces the operators' contributions toward the overall
probabilities, thereby implementing method 2 above.

If the density functions shown in figure 3.3.1.b are the functions for operator 1, and
operator | returns a, value of .63, the conditional probabilities associated with the alternatives

are:
(3.3.8) P[Tip|.63] = .0011
P[Det|.63] = .1338
P[No Det|.63] = .7096
and P[Surprise|.63] = .1556.

The best alternative is No Detent and the overall probability that the screw is on is .0789.

The incorporation of surprises also means that sometimes the best match may be a
surprise. For example, if operator | happens to return a value of .40,
P[ Surprise] .40 ]=.8869, which means that the best match is the surprise.

Formula 33.2 can be extended to combine the results of several operators, each of
which may have known alternatives and/or surprises. Let fj,0 be the surprise associated
with the jth operator when the object is there and let gj,0 be the surprise for the jth
operator when the ob ject is not there. Then the formula can be written as:

(3.3.9)

P[On|vl,v2,...vK] = ’
2. PLviled,11aP[gj,1]
PlOff] K P(ON]  0sisNj
5 1 PR )
P[On] 4=1 P[Off] > PLvIfy,11#P[F],1]
0<isMj

1 +

This extension to include surprises means that there are three possible outcomes
whenever an operator is applied: (1) the value is outside the reasonable range, (2) the value is
reasonable, but the best match is a surprise, or (3) the value is reasonable and the best match
is a known alternative. The higher-level interpretation, if any, of the unusual values and
surprises will be discussed in a later chapter.
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Section 4
MULTIPLE-VALUED OPERATORS

Some operators reiurn more than one value; the description of what they have found
contains values along several scales. For example, a texture operator may describe a Jocal
region in terms of its size, density, and periodicity. it has already been mentioned that edge
operators often return two or three values. When dealing with such operators one wants to
combine all of the available information mto one probability that the ob ject is present, or to
determine the best alternative.  Again Dayesian probability provides a way to make this
combination.  Consider an inspection task and one operator that returns M values, x1, x2,

.. and xM. Then the standard Bayesian formula is

(3.4.1) PlOn|x),x2,...xM] =
Pixl, %2, ..M | Off] PLOTT]

1 + *
P[X1,x2,...xM | On] P[On]

If the values happen to be conditionally independent of each other, the usual reduction yields

(3.4.2) PlOn)x],x2,...xM] = A
pLoff] M P[xi]|Off]

] 4 —— & n——-———-

P[On] i=] P[x1|0n])

 These formulas can be extended to include several operators, each of which may return
several values. Assume that there are N operators and each operator returns Mj values (Mj 2
1). Let xj,1; xj,2; ... xj,MJj be the Mj values returned by the jth operator. If the
values for one operator are interdependent, but the values of separate operators are
conditionally independent, then




| ——

24 Page 57

(3.4.3)
P[On | (x1,1; x1,2; ... x1,Ml), ..., (xN,1; xN,2; ... xN,MN) ] =

1

P[Off] N P[ (xJj,1;x3,2;...;%x3,Mj) | Off]

» [l

PLOn] J=1 P[ (xJ,1;xJ3,25...3%3,MJ) | On]

1 +

If all of the values are conditionally independent of each other this formula collapses back to
the previous formula (with a suitable renumbering of the x's).

Formula 34.2 can be further extended to include operators that have several known
alternatives and even surprises. Assume that the values for one operator are interdependent,
but that the values of separate operators are conditionally independent. Let there be K
operators. Let the jth operator have Mj known alternatives when the ob ject is there, and Nj
known alternatives when the object is not there. Let MO and NO represent the surprises.
Assume that the jth operator returns Rj values as a description of what it finds. Then the
appropriate formula is:

(3.4.4)

P[On ) (x1,1;x1,2;...;x1,R1), ..., (xN,1;xN,2;...;xN,RN)] =

O PL(xi,15xi,2;5...5x1,Ri)|gd,11#P[9J, 1]
PLOFF] K PLOn] 0si<Ny
o [1{ i )
PLOR] J=1  PLOFF] D PL(xi,1ixi,2;...;x1,Ri)IF5,11aP[Fj, 1]
0<isMj

1 +

To use operators that return several interdependent values requires enough informatian
to approximate the multi-dimensional density functions. Once this has been done, the ratio
of density values can be used in place of the ratio of probabilities, just as in the
one-dimensional case.

Since the expression (xj,1; xJ,2; ... xJ,Rj) can be validly substituted for vj in
any of the derivations that follow, the remaining derivations will only be concerned with
single-valued operators. The formulas apply to multiple-valued operators, but for notational
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simplicity they will not be stated in their full generality.

Section b
POSI'I'ION INFORMATION

The lacal value information produced by an operator is important, but the relative
structure of the matches is crucial in verification vision. This section describes two methods
that incorporate structural information into the execution-time formulas for inspection. One
method uses a set of matches to determine the most consistent location for the ob ject and then
decides how likely that location is in light of the initial task constraints and the training
information. The second method simply determines the number of reasonably consistent
matches, given the fact that the features ave part of a rigid, three-dimensional object. A
ma jor drawback of the first method is that the amount of computation goes up exponentially
as the number of operators increases. The second method is a simple heuristic to avoid this
large amount of computation, but it does not take full advantage of the available information.

Figure 25 la shows the positions of four typical features in a planning picture.
Assume that the task is to determine the change from the planning picture to the test picture
and that the change is mainly an X-Y shift. If the four operators are applied to a test
picture and they locate their best matches at the positions shown in figure 3.5.1.b, the relative
structure of the matches appears to be correct. A least-squares fitting routine (or some other
fitting routine) can be used to produce an estimate for the shift and an estimate for the
goodness of it In this example, the residual ervors are quite small (as shown in figure
35 1c). Since this is a good fit, one would say that the matches are structurally consistent.
However, if the four matches are found at the positions shown in figure 3.5.1.d, the best fit
would contain large errors (sec figure 3.5.1.e). I this case one would probably be suspicious
of at least one of the matches

The implication is that the residual errors are a function of the structural consistency of
the set of matches. The less consistent the matches, the larger the errors. The sum of the
squares of the errors is commonly used to measure this type of consistency. It is a convenient
measure because there are well-known techniques for minimizing it. It is also appealing
because the distribution of the sum of the squares of the errors is known to be a Chi-square
distribution if the errors are normally distributed [Graybill 61). Since measurement errors are
known to be normally distributed for a large number of situations, the use of least-squares
techniques looks quite promising.

T he thearem that specifies the distribution of the sum of the squares of the errors can
be stated as follows
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THEOREM: If there are N 1lincar equations relating the actual
matching positions with the planned positions and if there are R
parameters to be adjusted in the transformation from the planned
to actual positions, the sum of the squares of the errors (for
normally distributed errors) forms a Chi-square distribution
wilth (N-R) dearees of freedom.

One implication of this theorem is that a Chi-square test can be applied to a particular sum
of squares to determine whether it represents a consistent transformation between the planned
and actual positions. If the test indicates that the set of matches s not consistent, it is possible
to determine which match is the least consistent. Tor example, in figure 3.5.1.¢, the hexagon is
the least consistent feature. The least consistent match can be temporarily left out of the
solution and another least-squares fit can be computed. 1f the new fit is significantly bette:
than the previous one, the least consistent match can be permanently removed from the set of
matches  This culling of bad matches can continue until a consistent set of matches has been
found. Thus, another measure of the consistency of a set of matches is the percentage of
matckes deemed consistent by this culling procedure. Figure 3.5.1.f shows the best fit after the
least consistent match has been discarded. The remaining three matches are structurally
consistent

As expected, the concept of structural consistency s an important aspect of verification
But how should it be integrated with the value information? It is possible to extend the
conditional probabihity formulas to include the positions of the matches in addition to the
values of the matches. Let

£§3.5.1) pi & <the position of operator i's match>,

then Bayes' theorem states:

£3.5.2) PIOnlvl,...vN,pl,...pN] = s
P{vl,...vN,pl...pN|Off] P[Off]
1+ *
P{vl,...vN,pl...pN|On] P[On]

If the vi's are assumed to be conditionally independent of the pi's (and each other), formula
3.5.2 reduces to: ;
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(3.5.3)

P[On|vl,...vN,pl,...pN] =
P[pl...pN|Off] P[Off] N Pliviloffi]

IR * *]—]___._.

P{pl...pN|On] P[On] izl P[vi|On]

The assumption that the vi's are conditionally independent of the pi's means that the value
of an operator is independent of the location of the match. That is, if an operator locates the
same feature at different positions in different test pictures, it is expected to produce the same
value. In programmable assembly this is generally a reasonable assumption except when
different positions consistently produce different lighting conditions. For example, if a
shadow happens to fall on a feature when (he ob ject is oriented in a certain way, the value of
the operator that tries to find that feature will depend upon the orientation of the ob ject

The assumption one does not want to make is that the pi's are conditionally
independent of each other. Such an assumption would completely ignore structural
consistency, which is precisely what the mathematics is intended to capture. But what is the
value of

Blpl,p2; <. ol 1 O]
(3.5.4) ?
P[pl,p2,...pN | Ori]

First, consider a simpler version of (3.5.4) that is only concerned with the positions of two
operators:

P(pl,p2 | Off]

(3.5.5)
P{pl,p2 | On]

The probability P[pl,p2|0ff] is the probability that operator 1 will find its match at the
position pl and that operator 2 will find its match at the position p2. Ratio 3.5.5 can be
rewritten as

P(pl,p2,0ff]«P[On]

(3.5.6) "
P[pl,p2,0n]xP[Off]

If PLOff ] could be expressed simply as:

{3:.4.7) P{Off] = P[X] + P[Y] + P[Z],

LR S e el i AL W e
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then P[pl,0ff ] could be expressed as

(3.5.8) Plpl,0ff]) = P[pl,X] * P{pl,Y] + P[pl,Z]

and P[pl,p2,0ff ] could be expressed as

{34599 Pl pl,p2,0fFf] = Plpl,p2,X] + Pipl.,p2;Y] ¢ Plpk,p2+2]-

However, PLOff ] is more complicated than that. Itis a sum of several con junctions. Assume
that the first operator has ml known alternatives when the screw is Off and nl known
alternatives when the screw is On.  Let gl,1; gl1,2; ... gl,ml be the ml known
alternatives when the screw is Off and let f1,1; f1,2; ... fl,nl be the nl known
alternatives when the screw is On. Similarly let g2,1; ¢2,2; ... g2,m2 and f2,1; f2,2;

. £2,n2 be the known alternatives for the second operator. Then P[Off] and P[On] can

be expressed as follows:

ml m2
{3.5.10) ploff) = > S Plol,j; 92,k).
3=1 k=1

Given this expression for the probability PLOff ], the analogous formula to (3.5.9) is

ml mZ

(3.5.11) PLp1,p2,0f] = D > Plpl;p2;gl,jig2,k].
J=1 k=1

Then ratio 2.56 can be rewritten as
ml me

ST 3 elel; p2; gl,d; 92,k]
P[On]) Jj=1 k=1

$3:.%.12) *
PLoOff] nl n2

2. 2 Plpls p2s Thid 2,4,
J=1 k=1

Thus, ratio 254 has been reduced to the evaluation of several expressions of the form
Plpd:pk;fl,J;f2,k]). which represents the probrability that operator 1 has found known
alternative 1, j at position pJ and operator Z has found known alternative 2,k at position

pk
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In order to see how estimates for probabilities such as P[pl;p2;f1,j;f2,k] might be
computed, consider figure 352, which is a picture of a screw taken during the standard screw
checking task. In that task the location of the tip of the screw is assumed to be known within
plus or minus one quarter inch along each axis and the orientation of the screw is assumed to
be within plus or minus fifteen degrees of vertical. Figure 3.5.2 shows two features on the
screw. If two operators trying to locate these features happen to find their best matches at the
locations shown in figure 353, what is the probability that they have located the correct
features? The chance is probably small because it would require the screw to be rotated 140
degrees from vertical, which is highly unlikely since the initial uncertainty is only plus or
minus fifteen degrees. If the two matching positions are at the locations shown in figure 3.5.4,
the probability that the matches are correct is significantly higher since the impliec
displacements and rotation are within the expected ranges. The important idea is that the
estimate of the probability P[pl;p2;fl,j;f2,k] can be based upon the likelihood that the
ob ject would be at the location implied by the set of matches.

The likelihood that an object is at a specific location can be expressed in terms of the
parameters that describe the location. For example, consider a task in which the uncertainties
are pseudo-planar (i.e, the unknown parameters are X and Y displacements, dx and dy; a
rotation change, dt; and a scale change, ds). Statistics can be gathered at training time that
describe the expected density functions for these parameters (see figure 3.5.5). If two matches
imply that dx=.1, dy=-.2, dt=-2.3, and ds=1.02, the probability P[pl;p2;f1,j;f2,k]
can be expressed as

€3.5:.13) Plpl; p2; f1,J; f2,k] = P[dx=.1;dy=-.2;dt=~2.3;ds=1.02].
To a first approximation the parameters can be treated independently. Thus,
(3.5.14) Plpl;p2;fl,J;f2,k] = P[dx=.1]%P[dy=-.2]*xP[dt=-2.3]%P[ds=1.02].

The value of each of the component probabilities can be determined by integrating the
appropriate density function over a small interval centered about the nominal value.

This step completes the demonstration that the position information can be
incorporated into the conditional probability formulas and that there are reasonable
techniques for estimating the necessary probabilities. The final formula for two operators is:
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Figure 3.52
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£3.5.15) P[On)vl,v2,pl,p2] =

ml m2

-~

Pipl; p2; ¢l,d; 92.k]
1

; N
N P[vilOff] J= k=

1+H %

i=]l P[vi|On] nl ne
3 % Pl p2i #1.4: 12K
J=1l k=l

The value terms are based upon the operators’ evaluations of the appearances of the features
and the position teyms are based upon the likelihood of the object being at the location
implied by the position of the matches.

Formula 2515 can be expanded to include N operators, but the combinatorial
explosioti lunits its usefulness.  For example, 1if five operators each have three known
alternatives when the screw is present and three alicrnatives when the screw is missing, 496
separate probabilities would have to be computed. Ten operators would require 118118
terms. T his fact suggests that formula 2.5.15 should only be used to evaluate the structural
consistenicy of small subsets of the total number of operators. Section 4.2 will discuss the use
of this type of formula to assign known alternatives to the results of two or three operators.
In effect, the formula makes it possible to choose the most consistent pattern of alternatives
for a.small number of operators.

One way to avoid the computation costs inherent in the straightforward application of
formula 3.5.15 to a large number of operators is to use some other technique to approximate
the ratio

P(pl,p2 | Off]
(3.5.16) ’
Plpl,p2 | On]

One heuristic that has proved to be experimentally useful is to replace (3.5.16) by

{percentage of consistent features, given Off>
§3:9.17) ;
{percentage of consistent fcatures, given On>

This ratio is only a crude approximation to the ratio of the probabilities, but it is usefu)
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because it contributes a factor based upon the structural consistency of the matches.

Since the total number of possible matches is the same for the two cases, On and Off,
the ratio of percentages reduces to

<{number of consistent features, given Off)

(3.5.18) s
<number of consistent features, given On>

Thus, the contribution of structural consistency in the probability formulas can be
transformed into a ratio of the numbers of consistent matches.

In order to compute a value for the ratio in (3.5.18) the least-squares culling routine is
applied twice: once assuming that the screw is present and once assuming that the screw is
missing. The input for each application is a list of pairs:

(3.5.19) <planned feature position, matching position of the operator).

s The planned feature positions for the operators depend upon the assumption about the screw.
If the screw is assumed to be present, one set of planning positions is used. If the screw is
assumed to be missing, a different set of planning positions is used, because the operators are
expected to find different features when the screw is missing.

The set of features for each assumption forms a geometric pattern (or structure). The
least-squares culling routine is used to measure the agreement between a planning pattern
and an actual pattern of matches. The ratio in (3.5.18) measures the relative agreement. This
relative measure is the contribution of the position information toward the overall confidence.

In most cases the structure of the planning features is significantly different when the
screw 15 On than when the screw is Off. This difference essentially guarantees that the ratio
in (3.518) will not be close to 1.0. As the number of matches included in the fit increases, the
structures for the two situations become more distinct. This behavior is important if the
position information is to distinguish between the two situations.

An important assumption of this discussion so far has been that the operators match
unique features, one for On and one for Off. If there are several known alternatives for an
operator, the program has to decide which is the best match for that operator and assign that
match to the operator so the least-squares culling routine can be called. The basic formula
used to determine the best alternative was developed in section 3.2. It is

b~
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(3.5.20) PlLJIV] = (for all J).
PlviLiJ#P[L1]

1 + %

Py

i#J PLvILiJ*P[LJ)]

If there happen to be two or move alternatives with approximately equal probabilities of
being the best match, the least-squares culling procedure can be extended as follows:
whenever the first choice 1s about to he discarded (because it is the least consistent match),
replace it with another one of the approximately equal choices. This extension increases the
complexity of the least-squares culling routine, but it provides an automatic way of giving an
operator a second chance whenever there is more than one possible explanation for its results.

The incorporation of the position information does not alter the ease with which the
probabihities can be computed.  Scquentially acquired information can still be included very
nicely. Since the least-squares culling procecure can not be applied until some minimum
number of festures has been located, the position information can not contribute anything
until that muumum number has been reached.  The minimum number depends upon the
number of parameters being  adjusted, the number of equations contributed by each
operator/feature pair, and the number of independence conditions. For example, if the
least-squares method is performing a planar fit, there are three parameters, dX, dY, and dao.
Since each coryelation feature and cach point-on~a-line feature contributes two equations, any
two of these features would be sufficient. Three or four would be better because the
least-squares technique performs better when the parameters are over-constrained. Since this
is true, it may be advantageous to increase the number of matches above the theoretical
minimum before using this method to incorporate position information.

If there are several known alternatives for an operator, the program may make a
mistake when 1t assigns an alternative to the results of an operator. That is, given the value
and position information of a match for the operator, the program may decide that the
operator located alternative 1,1, when in fact, it located alternative f1,2. Since the program
does not know whether it is correct or not, one possibility is to use the probability associated
with the best match as the expected number of good matches contributed by the operator.
Thus, it the probability associated with the best alternative is .8, the operator contributes .8 of
a good match toward the desired minimum.

Figure 256 outlines the general method suggested by this section. One operator after
another is apphed until the accumulated value information indicates that sufficient features
have been located; then the least-squares method is applied. Additional features are added
until the confidence yeaches the desired limit. This algorithm could form the basis for an
inspection system. It can be used to decide if a gasket is already on, to decide if a hole has
been drilled, or to decide if the expecied subasszmbly has been added.

i
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Section &
ASSUMPTIONS

T his section discusses the assumptions that are required by the combination rules used
to compute the probabilities of intevest.  These assumptions are fundamental assumptions
about the class of tasks referred to as venfication vision tasks and about the probabilistic
methods used to model such tasks.  An example of such an assumption is the conditional
independence of the value and position information of the operators. If this assumption is
not approximately true for a particular task, none of the Bayesian probability formulas
develaped in this chapter can be applied; their picconditions are not satisfied.

t

The assamptions have been classitied into three types: (1) Bayesian probability
assumptions, (2)  value distribution  assumptions, and (3) conditional independence
assumptions. Each type will be discussed in a separate subsection.

1. Bayesian Probabilities

Bayes' thcorem states a desired a posteriori probability in terms of the a priori and
conditional probabilities:

PLv|H]*P[H]
(3:6.1.%) P[H|v] = .
P{vIH]*P[H] + P[v]|~H]*P[-H]

This formula is convenient because the conditional probabilities P[v|H] and P[v|-H] are
generally easier to measure (or estimate) than P{I|v]. However, Shortliffe and Buchanan
(see [Shorthitte 75] and [Nilsson 75]) have pointed out two related problems involved in
applying DBayes' theorem to various decision tasks. The first is that one must be careful to
specify the set of possible events and their relationship to the propositions of interest, H and
=H. In particular, Shoithiffe, Buchanan, and Nilssonn were concerned about the case in which
H is a compound proposition and the desived probability is PLv|=H]. What is the meaning of
-~H?  The second problem is that the aimount of statistics required to estimate the desired
probabilities may be prohibjtive, even if it is clear which statistics should be gathered.

In programmable assembly the first problem is generally easy to solve because the
environment is highly controlled and predictable. For example, consider the task of deciding
whether or not a carburetor has been attached to an engine assembly. Assume that there are
three possible events: ;
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$3.6.1.2) A & {carburetor of type X is attached>,
8 {carburetor of type Y is attached>,
and C {no carburetor 1s attached>.

m

m

Consider an operator that behaves as follows: when a carburetor of type X is attached, it
locates one of two features, f1 or 2, when a carburetor of type Y is attached, it locates feature
£3. and when there is no carburetor attached, it locates one of two features, f4 or fS5. The
corresponding a priori probabilities can be diagramed as follows:

H -H
L 1 ]
¥ T |
A B C
fl
f4
£3
L S

P[vIH] and P[v|-H] can be expanded into

(3.6.1.3) PLVIH] POVITIJ*PLII] + P(v[f2]*P[f2] + P[v[f3]«P[f3]

and P[v]-H) = P[v|fa)xP[fa] + P[v|f5]+P[f5].

"

The same enumeration procedure can be applied when H is a compound proposition.
For example, assume that the engine casing, mentioned in the previous example, may or may
not be painted and that the @ priori probabilities of the possible events are:

A B C
f2
fa4
PAINTED £3
fl
5 J
f.
UNPAINTED f3 £7
(19
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It the proposition of interest is
{3.6.1.4) i H & A n <PAINTED>,

PlvIH] and P[v|~H] can be expressed as follows

£3.6.1.5) Plv]IH] P[v|fz)aP[f2] + P[v|f1,PAINTED]*P[f1,PAINTED]

and P[v|aH] = P[v|r3]xP[f3] + P[v|f4]xP[f4] + P[v|f5]xP[f5] +
PLv]fG)«P[T6] + P[v|T7]xP[f7] +
PLv|f1,UNPAINTED J4P{ 1, UNPAINTED].

Thus, the tist problem can be solved by carefully enumerating the possible events and their

mteractions

Iven thoupgh it is casy to solve the first problem within programmable assembly, it is
difficult to avoid the second. Whenev 1 there arve several known alternatives, the training
session has to gather statistics for ol of the alternatives and all of the interactions between the
alternatives. The amount of statistica. information required and the number of trials necded
to produce valid estimates for the statistics depend upon the number of alternatives and the
expected distributions for the information. These quantities will be discussed in the chapter
describing the the programming and training phases.

2. Value Distributions

Throughout the development of the formulas a normal distribution has been assumed
for the value information of the operators. That is, the values associated with an alternative
were assumed 1o have a normal disiribution.  This assumption, however, is not necessary to

compute the likelihood ratios

PivilOn]

(3.6.2.1) .
Plviloff)

Any distribution is sufficient. It is even possible to use the histogram of values produced at
training time as the distribution, as lony as there is a suificient number of trials.

A normal distribution was assumed in the derivations because it is a good model for
some of the operators and it is convenient for displaying example distributions. However, if
the values of an operator are not normally distributed, there may be a change of variable that
can convert them into an approximately normal distribution. A later portion of this section
will discuss a change of variable that converts correlation values into a distribution that is
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approximately normal.

If values of an operator are known to follow some distribution other than a normal
distribution, it is easy to incorporate the new distribution into the execution-time formulas.
The only information needed in addition to the density function is a specification for the
interval of reasonable values What values of the operator should be classified as unusual
and hence should be filtered out (see section 3.3)? For normal distributions it is easy to
specify an interval in terms of the number of standard deviations away from the mean.
Other distributions require some other specification for the interval of reasonable values.

Any distribution can be used for the value information of an operator. For example, if
some a priori information implies that the distribution for a particular operator is.a gamma
distribution, a gamma distributicn can be substituted into the appropriate formulas. If the
training results imply that the distribution is not one of the standard distributions, the density
function defined by the histogram can be used in the formulas.

Some of these other distributions have properties that make them good models for the
operators used in VV. For example, the gamma distribution is asymmetrical; it can model a
wider range of distributions than a normal distribution, and yet its form can be easily
determined from the experimental mean and standard deviation of the training samples.

A Change of Variable for Correlation Values

One operator that is known to produce a non-normal distribution is cross- correlauon
(see [Hoel 71]). Consider the following formula for the correlation coefficient:

N
D (Xi-Mx)*(Yi-My)
i=1
(3.6.232) rs= '
N %« Sx * Sy

where Xi and Yi are jointly normally distributed, Mx and My are the sample means of X and
Y, respectively, and Sx and Sy are the sample standard deviations. It would be possible to use
the actual distribution of r, but there is a convenient change of variable that converts r into
a distribution that is approximately normal. The change of variable is

).

1 i
(3.6.2.3) Z = — 109(

2 1 = F
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The mean of the new distribution is

1 ]+ o
£3.6.2.4) Mz = — % log( ),
2 l - a

where a represents the theoretical value of the coirclation coefficient. The standard deviation

for the new distribution is

{3.6:2:5) Sz = ,
sqrt(N - 3)

where N is the number of samples used to compute r.

The correlation operator implemented by Hans P Moravec at Stanford and used in
this work behaves according to this theory [Moravee 76). Consider figure 36.2.1. Figure
262 1a is a histogram of fifty corrclation coctficient values. The values are the results of
applying the same corrclation operator to fifty different pictures of a scene for one V'V task.
The interval size along the horizontal axis of the graph is one-half of the sample standard
deviation.  As predicted, the correlation values form a skewed distribution (with a theoretical
upper hmit of 1.0). The chi-square value is based upon the eleven intervals centered about
the sample mean. Figure 36.2.1b is the histogram of values produced by the change of
variable in formula 26.2.3. Figure 26.2.1.c is the histogram that would be expected if the
sample formed a perfect normal distribution.

The chi-square value drops significantly from 254 (with eight degrees of freedom) to
9.2 (with ersht degrecs of freedom) for the new distribution. The improvement is not always
that dramatic, but the change of variable often transforms a skewed distribution into a
distribution closer to normal. Consider figure 2.6.2.2, a scatter diagram of the pairs:

{3.0.2.6) (<chi-square of raw values>, <{chi-squarc of changed values>).

Any pomnt ta the right of the diagonal line represents a case in which the change of variable
macle the disttibution for the values of an operator look more like a normal distribution
(according to the chi-square test). The change of variable only slightly degrades the
chi-square value in the few cases that it makes the distribution worse. A point in the shaded
arca of figure 2622 represents an operator whose distribution was improved significantly.
Before the change of variable the chi-square test (at the 57 level) re jected the hypothesis that
the sample could have come from a notmal distribution.  After the change of variable the
chi-square test indicated that it was plausible for the sample to have come from a normal
distribution.
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The question about which distribution to use to model the results of an operator is a
hard one. The chi-square test used above is helpful, but it is mainly a method to reject
proposed maodels.

3. Conditional Independence

The derivations of several of the formulas depend upon two important assumptions
about the conditional independence of the values of the operators: (1) the value of an
operator is conditionally independent of the values of the other operators and (2) the value of
an operator is conditionally independent of the position of its match. Both of these
assumptions are instrumental in simplifying the relevant formulas. For example, they make it
possible to simplify formula 3.52:

(3.6.3.1) P{On]vl,...vN,pl,...pN] =
P{vl,...vN,pl...pN|Off] PLOff]

P{vl,...vN,pl...pN|On] P[On]

into

(3.6.3.2)

P[On]vl,...vN,pl,...pN] =
; P[pl...pN|Off] P[Off] N P[vi|Off]

% * tﬂ-—_——

P(pl...pNiOn] P{On] i=1 P[vi|On]

The assumptions significantly reduce the number of dependencies within the conditional
probabilities and make them feasible to compute. The formulas are designed to be as flexible
as possible and still be computable. If the assumptions are not true for an operator, formula
36.3.2 can not be used to estimate the desired probabilities.

Both of the assumptions depend upon the values of the operators and the values of the
operators are based upon the appearances of the features. Unfortunately, there are several
reasons why the appearance of a feature might change from one picture to the next:

(1) The feature itself may be different. For example, in assembly
tasks all pump bases are not exactly the same, so all screw holes
are not the exactly same. In photo-interpretation (abbreviated
PI) features, such as roads, may be changed
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()

(2)

(©)

The position and orientation of objects in the picture may
change. In assembly the pump bases may not seat exactly the

same way in the vise

The highting may be different. T PI the sun may be in a
different location, causing different shadows and glares. In
programmable asserably lights can be controiled more easily, but
they still may vary shightly. .

The position and orientation of the camera may be different.
In assembly the camera may be used for more than one task in
such a way that it must be repositioned before each task.
Repositioning is not exact. In Pl the position of the plane or
satellite may be different

The sensitivity of the camera may be different. Cameras have
internal parameters such as target voltage that change over

time.

T he camera noise level is variable

36.5

In effect, the two conditional independence assumptions state that none of these

variables change the expected disiribution of values produced by an operator in VV. Some
operators, of course, do depend upon one or more of these variables. This fact raises an

Important question:

Given a specific VV task, is there a way to determine
whcther or not the assumptions hold for a particular
combination of operators?

The remainder of this section develops some insight into this question.

The first assumption states that the value of an operator is conditionally independent
of the values of the other operators, e.g,

(3.6.3.3)

P{v2|On,vl] = P[v2]|On].
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This formula says that given On, the probability of operator 2 producing the value v2 is the
same whether or not the value of operator | is known. Formula 36.3.3 is equivalent to

P[v2,On,vl]

{3.6.3.4) ' = P[v2|0n],
P[On,vl]
P(vl,v2|0n]

(3.6.3.5) = P[v2|0On],
P[vi{On]

and

(3.6.3.6) P(vl,v2|On] = P[vl|On] « P[v2|On].

Thus, it is possible to check the first assumption for two operators by (1) gathering the
statistics necessary to form the distributions associated with the three conditional probabilities
in (36.36) and (2) appling a test, such as the Chi-square test, to decide if the distribution
formed by the convolution of the distributions for P[v1]0n] and P[v2|0n] is the same as the
distribution for P[vl,v2|0n] The second assumption can be checked in a similar manner.

The first assumption is often true in VV because different operators depend upon
different properties of the picture. The probability of producing a certain value for a
correlation operator is often unaffected by the results of a previously applied edge operator.
An obvious case in which the assumption is not true is when operator | and operator 2 are
both correlation operators and they overlap. IKnowing the value of one operator certainly
alters the possible values for the second. Similarly, an edge and correlation test for the same
corner will be inter-dependent. Fortunately, since most of the objects in programmable
assemble have several interesting features, overlapping operators can be avoided.

The second assumption states that the appcarance of a feature on an ob ject does not
change as the object moves around within its tolerance volume. Put another way, if an
operator is applied to several different pictures, and it locates the same known alternative in
each, the value returned by the operator is incependent of the location of the alternative in
the picture. This is usually true in VV because, by assumption, the changes are so small that
the appearance of a feature is essentially constant.

However, there are two situations in which the second assumption might be false. The
first is when a small change in one of the variables in the transform causes a shadow to fall
on a feature. At some locations the feature is in a shadow and at others it is not. The value
of almost any operator attempting to locate such a feature would depend upon whether the
feature is in a shadow or not. Hence the value of the operator would depend upon the
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position of the feature and the assumption would be false. The second situation arises when
a small change in position causes a dramatic change i the appearance of a feature. Fot
example, one picture may show a screw hole that is paitially occluded on the left by a shaft
and a second picture of the same hole may show the shaft occluding the hole on the right

Bath of these situations lead to operators that produce bivariate (or at least high
variance) density functions. One peak is produced by the pictures showing the feature in the
shadow and the other peak is produced by the pictures showing it in the light. Since the
expected contribution for such operators is generally low, the automatic ranking scheme will
place this type of operator near the bottom of the list of potential operators to be used in a
task. If the V'V system is interactive, a programmer can also discard any features of this type
sugeested by the system. If an operator is particularly important it is possible to break up the
task into two or thiee subtasks, each of which satisfics the assumption. Taylor has used this
technique within his constraint resolving systern whenever the angular uncertainties are

greater than a few degrees [Taylor 70]
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CHAPTER 4

EXECUTION-TIME COMBINATION RULES FOR LOCATION

If the verification vision system is trying to locate, not inspect, an ob ject, there are two
important quantities: (1) an estimate for the location of the object and (2) the precision
associated with that estimate. In the context of V'V the location of an object refers to the
position and orientation of thé object's coordinate system in terms of some other coordinate
system (e.g., the workstation coordinate system). Usually there is some point or feature on the
ob ject of particular interest, ey, the center of a hole or the tip of a screw. Such a point will
be referred to as a point of inferest.

The previous chapter briefly mentioned that a least-squares technique can be used to
combine a set of planned positions with a set of corresponding measured positions to produce
an estimate for the transformation between them. Given this transformation and the planned
location of the ob ject, it is easy to compute the current estimate for the location of the ob ject.
The least-squares technique can also produce the standard deviations associated with the
estimates for the individual parameters in the transform. These standard deviations can be
combined to produce an estimate for the precision.

There are other metrics and fitting procedures beside least-squares techniques. The
least-squares approach was chosen for the current implementation of the V'V system because
it provides the desired location and precision information and it is a well-known technique.

The apphcation of the least-squares routine depends upon the correspondence between
the matching points and the planning features. If the correspondence is correct, the estimate
for the location of the object and the associated precision will be correct. If it is not correct, it
is possible to determine a (seemingly) structurally consistent subset of the features, which
leads to an incorrect estimate for the location of the object. This problem only arises when
there are several known alternatives for the features or when the operators find surprises. To
avoid making this mistake an overall estimate of the probability that the object is within the
stated precision is needed. Such an estimate can be based upon the value and position
information of the operators.

This chapter begins with a detailed explanation of the least-squares method and its
application to the VV problem of producing location and precision estimates. The emphasis
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is on the theoretical aspects of the least-squares micthod. The practical applications of this
methad are demonstrated in appendis V, which contains an annotated trace of a programmer
interacting with the current implementation of the VV system. The programmer sets up a
V'V pragiam ta locate a scew hole and tests it on several examples. The trace demonstrates
the computation of precision, the culling of bad matches, and the reduction of tolerance

regions.

The second section of this chapter describes an example in which the results of the
{ f
least-squares method are incorrect and then discusses two methods to estimate the confidence

associated with a statement of precision.

Section |
DETERMINING PRECISION

This section presents o general method for  performing  nonlineer  generalized
least-squares adjustments. A mapn poition of this discussion is a restatement of an internal
paper at the Stanford Artificial Intclhgence Project wiitten by Donald B. Gennery entitled
"Least-Squates Stereo-Camera Calibration” [Gennery 78] The method uses partial
derivatives to approximate the problem under the general linear hypothesis model of
statistics, and then iterates to achieve the exact solution. For more detailed information see
[Graybill 61]

T he notational conventions are the following. Capital letters denote matrices. Vectors
are represented by column matrices. A particular element of a matrix is represented by the
corresponding lower-case letier followed by the appropriate indices,  The transpose of a
matrix A is denoted by A, and the inverse of A is denoted by A~ Multiplication (either

scalar or matrix) is denoted by an asterisk.

Let the vector G denote a set of m unknown parameters for which values are desired.
Let the vector U be a sct of n scalar quantities (n>m) that are functions of G and can be
measured with some envor. Let Foaepresent the vector of nofunctions that relate elements in U
with G. Given an estimate for G, F(G) produces an estimate for U, Finally let the vector V
represent the noresiduals (e, the unexplained ervors) that remain beiween U and an estimate

produced by F(G) Thus

(4.1.1) U= F(G) + V.

The goal is to minumize a function of V by modifying G
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In verification vision G is the set of parameters in the transform that maps the planned
positions of the features into their matching positions (ie, the planned positions into the
measured positions). Typical elements in G are the displacement in X, dx, the displacement
in Z, dz, and the unknown rotation about the Z-axis, du. Different operator/feature pairs
contribute ditferent components to U and F. For example, when the transform is planar (so
that the unknown parameters are dxdy, and da), a correlation operator/feature pair
contributes two measured values to U: the X and Y components of the match (let them be
referred to as Xm and Ym). The corresponding functions in F are:

(4,1.2) Xe
Ye

(Xp-Xc)*xCOS(da) - (Yp-Yc)*SIN(da) + dx + Xc
(Xp-Xc)«SIN(da) + (Yp-Yc)xCOS(da) + dy + Yc

where (Xc,Yc) is the center of rotation for da, (Xp,Yp) is the planned position for the
correlation patch, and (Xe,Ye) is the transformed position of (Xp,Yp). The transformed
pasition of (Xp,Yp) is the estimate for (Xp,Yp)'s position in the current picture. The two
residuals that would be associated with a correlation feature are

£4%.1.3) ¥m - Xe
and Ym - Ye.

These residuals are the components of V. The goal, of course, is to use the measured values
to improve the estimates for the parameters.

The quadratic form
(4.1.4) q = V'xWxV

i< the criterion of optimization that is to be minimized. W denotes an n by n weight matrix.
If W is the inverse of the covariance matrix of the errors in the observations, the result will
be the maximum likelihood (in the F space) solution if the errors have a normal distribution.
it W ic a diagonal matrix, which indicates no correlation between errors in the different
observations, the quadratic form reduces to a weighted sum of the squares of the elements of
V. Thus the problem as stated here can be said to be a generalized least-squares ad justment.

The difficulty in obtaining a solution to the above problem lies in the fact that F in
(4.1.1) is a nonlinear function, and thus in general there is no closed-form solution. One way
of solving the problem is to use some type of steepest descent technique, which tries new
values of G, recomputes q, and trics to drive q to a minimum. However, such methods tend
to converge rather slowly. Also, numerical problems may occur if q has a very broad
minimum, for round-off errors may give rise to spurious local minima. Instead of such an
approach, the method described here approximates (4.1.1) by a linearization based on the



parual devivatives of I, solves the resulting linear problem, and iterates this process to obtain

the solution to the nonlinear problem. Hhe idea is similar to the Newton-Raphson method.

Let the n by m matrin P be composed of the partial derivatives of the functions in F,
|

stuch that
afi
{4.1.5) pig = —.
993
Let GO denote an approxmmation to G. Then equation (4.1.1) can be approximated as follows:
(4.1.6) U = F(GO) + P(GO)*(G - GO) + V

where the tunctonal dependence of P on G has been explicitly indicated. Define

€4.1.7) Boogl i = G0
DA Gt S

Then (4.1.6) can be rewritten as

P + V.

(4.1.8) t
Thus the nonhinear equation (4.1.1) has been replaced by the linear equation (4.1.8), in which
E represents the discrepancy between the observations and their computed values (using the
current approximations of the parameters), and D represents the corrections needed to the

parameters i

Jt is necessary to solve for D in (4.1.8) in order to minimize q in (4.1.4). This is a
standard problem in linear statistical mocsls (e.g, see [Graybill 71)). The solution for D is

(4.1.9) D = (PtaWap )~ (P sWxE)
and the covariance matrix of ervors in the solution for D s
(4.1.10) S = (P'sWaP)~

assuming that W is the inverse of the covariance ratiix of the observation errors.

Several other quantties of interest can be derived from the solution. The expected
value of q 15 n-m. I the scale factor of the covariance matrix of observation errors is
unknown, W can be ad justed by the ratio (n-m)/q and $ by the ratio g/(n-m). Otherwise, q
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can be used as a test on the adjustment; for, if the observation errors have the Gaussian
distribution, q has the chi-square distribution with n-m degrees of freedom. S represents the
cavatiance matrix of errors in the adjusted parameters. The square roots of the diagonal
elements of S are the standard deviations of the ad justed parameters. The correlation matrix
of the parameters can be obtained from S by dividing the i,) element by the product of the
standard deviations of the ith and jth parameters, for all i and .

Other resulis are the covariance matrix of the adjusted observations P#S#P' and the
covatiance matrix of the residuals W~ ~ (PzS#P'). It is often useful to compare the
magnitude of the residuals to their standard deviations, i.e, the square roots of the diagonal
elements of their covariance matiix. If a residual is greater than two (or three) standard
deviations 1t indicates that the associated measured value is inconsistent with the other values
used to compute the estimate for the transform. This test is the basis for the least-squares
culling procedure mentioned in the previous chapter.

The covariance matrix about a point not in the solution is W~ + (P#S#P’) where P is
the set of partial derivatives at the point and W is the inverse of the covariance matrix that
weights the measured values. In V'V the standard deviation that can be computed from this
covariance matrix can be used to determine the uncertainty associated with any other point
on the object (eg, a point of interest). It can also be used to determine the tolerance region

about the next feature to be tried

The solution of the nonlinear problem can now be described as follows.  An initial
approximation is used to compute the discrepancies Ei and the partial derivatives Pij. Then
D is compured from (4.1.9) and is added to the current approximation for G to obtain a better
approximation. This process repeats until there is no further appreciable change in G. Then
the final values from the last iteration can be used to obtain S, Vi, q, and the other derived
quantities described above. Of course, in order to converge to the absolute minimum of q
rather than converge to some local minimum or divergence, it is necessary that the initial
approximation be sufficiently close to the true solution. In most practical problems the initial
approximation is not critical, in fact, often there is only one minimum.

Since on the last iteratioin the partial derivatives have been computed for the converged
value of G, the solution gives the tue generalized least-squares ad justment regardless of the
nonlinearity.  However, some other properties of the ad justment are only approximate in the
nonhinear cace. Among these are the use of S as the covariance matrix of the errors in the
final value of G, and the properties that the solution for G i1s minimum-variance and
unbiased.  However, if the ammount of nonlinearity over the range of the measurement errors
is small, these results will be fairly accurate.

Fipure 4 1.1 is a flowchart that outlines the basic steps involved in using a least-squares
method to compute an estimate for the location of an object and a precision about that
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estimate. T'he alporithm s a sequential aleorithm that applies the least-squates routine as
soon as a sufticient number of features has been found. The best values for the parameters
are used to map the ob ject's planned location into an estimate for its current location. T he
standard deviations associated with the best parameter values are combined to produce a
region of uncertainty about the cstimate  As stated, the algorithm is concerned with the
location of the object. Given the estimate for the location of an object and a precision, it is
easy to produce estimates and tolerance 1egions for any points of interest on the ob ject.

Section 2
CONFIDENCE IN THE PRECISION

The alvorithm shown in ficure 4.1.1 can be used by itself to locate ob jects. However, to
do so requires an assumption: if the least-squares culling routine determines a structurally
consistent subset of the features, and if the desired precision has been reached, then a correct
correspondence has been estabilished between the positions produced by the operators and the
known alternatives for the features.  This assumption s generally reasonable when the
number of known alternatives is small and the operators are reliable (1.e, they do not locate
surprises very frequently). However, it is possible to locate a set of features that appears (to
the least-squares culling routine) to be structurally consistent, when in fact, somie of the results
have bern incorrectly assigned to aliernatives. For example, consider figure 4.2.1. Figure
42 l.a shows a point of interest and sets of known alternatives for four operators. Operators

rec and tour each have two known aliernatives. Figure 4.2.1.b shows the actual positions of
I of these points in a particular test picture. These positions are the positions at which the
operators should find them, if they are reliable. Figure 42 1.c superimposes the best matching
positions for the four operators on top of the actual positions. If the program decides that
operator three has matched aliernative 2.a and that operator four has matched alternative 4.a
(both of which are wrong), the least-squares routine will probably decide that the features are
structurally consistent and proceed to predict that the point of interest is located at the
position marked in figure 4.2 1.d. T his conclusion is wrong. The cause of the error was the
mcorrect assgnment of alternatives to the results of the operators. “i"he resulting assignment
happens to appear to be structurally consistent and the program, having fooled itself, proceeds
to draw an incorrect conclusion.  This example is a simple example, but it points out a
potential danger in unconditionally believing the results of the least-squares culling routine

The program makes the wiong implication because (a) some of the known alternatives
are incorrectly assipned to the results of the operators and (b) the pattern formed by the
mcorrect assignment happens to be structurally consistent. Thus there are two basic questions
related to this type of mistake:
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(1)  Given the value and position information for several operators and
an assignment of known alternatives to these results, what is the
probability that the assignment is correct? That is, what is the
probability that all of the individual assignments for the operators
are correct?

(2) Given an assignment for a set of operators that is structurally
consistent, are there other assignments for the same results that are
also structurally consistent?  That is, how unique is the pattern
formed by the assignment?

These questions will be discussed in the remainder of this section.

It is possible to formulate a version of Bayes' theorem that expresses the probability
that all of the individual assignments are correct, given the position and value information
produced by the operators. Consider the case of two operators. Assume that operator 1 has M
known alternatives and operator 2 has N known alternatives. Let f1,f2,...fM be the
alternatives for operator 1 and gl,g2,...aN be the alternatives for operator 2. Then Bayes’
’ theorem states:

(4.2.1) PLTy.ok | vi,pl,v2,p2] =
Plvl,v2,pl,p2|-~(fJ,gk)] P[~(fJj,gk)]

PLvl,v2,pl,p2|fj,0k] PLfJ, k]
The probability P[fj,gk|vl,pl,v2,p2] represents the probability that the first operator has
located alternative fj and that the second operator has located alternative gk, given the value
and position information pruduced by the two operators. In other words, it is the probability
that the assignment of fj to operator 1 and gk to operator 2 is correct.

Formula 4.2.1 can be rewritten in a more convenient form (see appendix I):

{4.2.2) PLfj,ok | vl,pl,v2,p2] =

PLvl|fr] Plv2|gx] P(pl,p2,fy,gz]

i 5 ¥ D ————Q[r, s Jo—————aQ[ W, X ]#

' 1+ a(r=j a(wzj aly=j P[Vv1If§] Plv2|gk] P{pl,p2,fj,gk)
& s=k) & x=k) & z:=k)
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where Q[ r,s] represents P[fr,gs|-(fj,gk)] This version of the formula is convenient
because the important probabilities form ratios that can be easily evaluated from the density

functions.

This formula can be extended to include N operators, but its utility is limited by the
number of terms that have to be computed. QOne possible way around this drawback is to
consider only the position information produced by the operators. The rationale behind this
simplitication is that the local value information produced by an operator should be used to
determine the known alternative that has been matched, if it can do so with the desired
confidence. Otherwise, combining the value information from two or three operators is not
expected to add any new constraints that might distinguish between the possible alternatives.
The position information of an operator, however, is expected to contribute new constraints if
it is combincd with the position information from other operators. Thus, if the program is
trying to determine the best assignment for two operators, it can choose the assignment
[fJ.gk] that has the highest value of:

(4.2.3) PLfJ,gk | pl,p2].
Since
PLfJ,gk,pl,p2]
(4.2.4) P[fj,ak | pl,p2] =
Plpl,p2]

and the denominator in (4.2.4) is the same for all j's and k's, the program can simply choose
the assignment that has the highest value of P[fj,gk,pl,p2] Once the best assignment has
been found, the probability that it is the correct assignment can be computed by the following
formula:

(4.2.5) P[fj,gk | pl,p2] = .
Plpl,p2,fx,gy]
1+ Z

~(x=J & y=k) P[pl,p2,fj,gk]

Even formula 4.25 involves a large number of terms for a reasonable number of
operators. For example, ten operators, each with two alternatives, require 1024 probabilities
to be computed in order to determine the best assignment.  This fact implies that formula
4.2.5 should be used to assign alternatives to small subsets of the operators and then combine
these assignments to form the overall assignment.  The probability that the complete
assigniment is correct can be estimated by a function of the probabilities associated with the
subsets. It is even possible to incorporate some position information for each subset. For
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example, the centroid of each subset can be used as the position of the subset. Then the
overall probability that the assignment is correct can be based upon the structure of these

subsets.

The subsets can be set up in advance or they can be created dynamically. If the subsets
are created dynamically more and more information can be used to make the assignments, if
necessary. The idea is to only use the position information of other operators if the local
information is not sufficient to choose a known alternative with the desired confidence. The
assignments in section 3.2 were made by choosing the known alternative that has the highest
value of

(4.2.6) PLfJ | vl] (1sjsM).
This formula can be extended to include the position of the match (see appendix 11):
(4.2.7) PLfj | vl,pl] (1<jsM).

If the confidence is still not high enough in the assignment, the position information’ from
another operator can be included:

(4.2.8) P[fj,gk | pl,p2] (1<j<M).

This process can continue until an assignment can be made with the desired confidence or the
system gives up because of the amount of computation.

It is important to choose subsets that are expected to produce unique patterns. For
example, consider figure 4.2.2, which shows the known alternatives for four operators. If the
program is trying to assign one of the two alternatives to the results of operator [, and more
information is needec to distinguish between these two alternatives, which of the other
operators should be used? Operator 2 may not be helpful because it is probably difficult to
distinguish between the assignment [1a,2b] and [Ib,2a). If the initial constraints allow for a
small angular uncertainty and a small scale uncertainty, it may be difficult to distinguish
between the assignments [1a,4) and [Ib,4). However, even if the scale is allowed to change
fifty percent and the orientation in the plane is completely unconstrained, it is still possible to
distinguish between the assignments [1a,2a) and [Ib,3a), or between [la,3b] and [Ib,3b].
T herefore, the subset should be operator | and operator 3.

Since the known alternatives for the operators are known in advance and the task
constraints are known in advance, it is possible to estimate the distinctness patterns and

choose the best subsets. This choice can ke made at planning time.

The main ideas in this section are (1) the probability that an assignment is correct is

-
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important because it determines whether or not the results of the least-squares routine should
be believed, (2) the combination of the position information produced by several operators
adds constraints that help determine correct assignraents, (3) the uniqueness of a pattern of .
matches determines the pattern's contribution toward the assignment decision, and (4) the

uniqueness of a.pattern can be estimated at planning time since the alternatives for the

operaters are known at planning time.

3a
o
b P
o
la
o
2a
. -
2b
o 4

oF

Figure 4.2.2

PP

R I



P

o

Page 93

CHAPTER 5

PLANNING-TIME COMBINATION RULES

The goal of this chapter is to investigate ways to produce information that is useful to a
strategist. In this context a strategist is a program (or possibly a person) that evaluates the
various alternatives and develops a plan to achieve a particular goal. At one leve! a strategist
might be trying to decide whether to use visual feedback or force feedback to check for a
screw on the end of the screwdriver. At that decision point it needs information about the
expected costs and reliabilities of the alternative methods (see [Taylor 76] and [Sproull 77] for
descriptions of strategists and the information used to make such decisions). This chapter
develops techniques to produce this type of cost and reliability estimates for verification
vision.

The execution-time combination rules combine the results of sequentially applied
operators and produce estimates for inspection confidences, precision, and precision
confidences. These methods make it possible for the program to stop gathering information
as soon as the desired confidence and precision have been reached. The underlying program
structure is an ordered list of operators to be applied. The ordering criteria are important
because some operators are more reliable than others, some operators contribute more than
others, and some operators cost more to apply than others. This chapter investigates
techniques to rank the operators according to their expected contributions and costs. It also
presents tcchrﬁques to estimate the expected number of features (and costs) required to achieve
certain confidence and precision limits. Appendices 1V and V demonstrate the application of
some of these techniques.
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. Scction |
RANKING FEATURES BY VALUE

Consider the standard task of inspecting a scene to decide whether a screw is present or
not. Section 21 developed a formula that reduces the value information from several
operators into an overall confidence that the ob ject is present. It also pointed out that the
contribution of an operator is the value of the ratio:

PLvi|Off]
(5.1.1)
P[vi|On]

where vi is the value (or set of values) returned by the operator and On denotes the
proposition that the ob ject is present (see formula 3.1.12). For ranking purposes the logarithm
of the inverse ratio,

P{vi|On]

(5.1.2) log( ——m ),
P[vi|Off]

is more convenient. I he greater the ratio, the better the contribution. The logarithm of the
likelihood ratio is used because it is additive and there is a theorem (to be discussed in section
5.5) that uses it to estimate the number of operators required to reach a certain confidence.

At planning tirme, vi docs not have a specific value. Operator i has only two density
functions, one for its values when the screw is On and one for its values when the screw is
Off. For ranking puiposes one is interested in the expected value of the log-ratio, which
depends upon the total density function for the values associated with operator i. The total
density function is a weighted sum of the density functions for On and Off (as shown in
figure 3.1.6). The weights are simply the corresponding a priori probabilities. Therefore,

(5.1.3) density(vi) = P[On]*On_density(vi) + P[Off]xOff_density(vi).

This is a valid density function since
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(5.1.4)
400 400 +00
f density(X)dX = fP[On]tOn_dcnsity(X)dX + f PLOfF J#Off_density(X)dX
=00 -0 -0
+om +00
= P[On]*fOn_density(X)dX + P[Off]tIOff_density(X)dx
- -0
= P[On] + P[Off] = 1.
The expected value can then be computed as follows:
+o
(5.1.5) expected_log-ratio = f log-ratio(X) = density(X) dX.
=00

MACSYMA (see [Mathlab Group 74]) was used to expand this integral symbolically,
assuming that the density functions are normal. The derivation is given in appendix III.
The result is a readily evaluated expression of the two means (M1 & M2), the two standard

deviations (SD1 & SD2), and the a priori probability of On (ie., P)
(5.1.6) expected_log-ratio = 1og(SD2) - log(SDl) + 1/2 - P

2 2 2 2

SD1  + (M2 - M1) SD2 + (M2 - M1)
+ Px ~ (1-P)=
2 2

2 * SD2 2 * SD1

Later sections will also need estimates for the expected log-ratio, given either On or Off.
The expected log-ratio, given On, can be computed as follows:

+m
(5.1.7) ELR_given_On = [ log-ratio(X) » On_density(X) dX.

The integral can be expanded to produce
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2 2
SD1  + (M2 - M1) 1
(5.1.8) ELR_given_On = log(SD2) - log(SD1l) + -
2 2
2 % SD2
Similarly, the expected log-ratio, given 0ff, can be expressed as
2 2

1 SD2 + (M2 - i4])
(5.1.9) ELR_given_Off = 10g(SD2) - log(S01) + - -
2 2

2 * SD1

Since the expected log-ratio for an operator represents the operator's average
contribution, operators that have large expected log-ratios should be applied first in order to
minimize the number of operators used to reach a ceitain confidence limit. Thus, a simple
operator-ranking scheme is to compute the expected log-ratio for each of the operators and
then rank them according to their expected value (largest first).

Scction 2
KNOWN ALTERNATIVES AND SURPRISES

The method used in the last section can also be used to compute the expected
contributions for operators that have several known alternatives and/or are subject to
surprises. However, it is quite difficult to expand symbolically the integrals that express the
expected value. A numerical technique is used instead.

Formula 3.3.9 expresses the probability that the object is present, given the values of
several operators, each of which may have several known alternatives and surprises. That
formula is
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(5.2.1)

P(On|vl,v2,...vK] = .
S, PIviled,11+Pg], 4]

poff] K P[On] 0sisNj
1 + * r] ( * )
PlOn] j=1  P[Off] 2 PLV3IfS,11%P[f],1]
0sisMj

where fj,1; 1j,2; ... fj,Nj are the Nj known alternatives for jth operator when On is
true, aj,1; 9J,2; ... 9j,Mj are the Mj known alternatives for jth operator when On is
false, £3j,0 is the surprise for jth operator when On is true, and gj,0 is the surprise for jth
operator when On is false. The contribution of the jth operator toward the overall probability
18:

S Pvilgd,11#P[gd,i]
P[On] 0<isNg
(5.2.2) ( * )-

PLOff) 2. PLViIfy,il*P[f],1]
0sisMj

For ranking purposes the logarithm of the inverse of this ratio is used:

% S PLVJIf, 11%P[F],1]
! PLoff] 0<isMJ
(5.2.3) log~ratio(vj) = log( % )

Plon] S Pvjles,il+P[g], 1]
0<isNg

The expected value can again be computed by

400
(5.2.4) expected_log-ratio = f log-ratio(X) » density(X) dX,
’ -0
F : where the density depends upon all of the known alternatives and surprises. Since
(5.2.5) P(On] = P[fj,0] + P[fj,1] + ... P[f3,Nj]

-and P[Off] = P[gj,0] + P[gj,1] + ... P[gJ,MJj],
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the density for operator J is

(5.2.6)
MJ N
density(X) = D (P[fJ,ilsdensity(fj,i)) + D (P[gJ,1]rdensity(gj,i)).

i=0 i=0

Thus, if ELR denotes the expected log-ratio for the jth operator, then

(5.2.7)
§: PLVI|fg,1]%P[fj,1]
+o PLOff] 0<isMj
ELR = jHog( . ) * density(X)dX
- P[ON) D P[VJlgj,11+Plgd, 1)
0<isNj
or

(5.2.8) ELR =
> PLVIIfS, 1P, 1]

s 0Si<Mj
S IOt Ty FAEIRRRE & flog( )tdensitY(X)dX.
-00 Z P[VJngoil*P[gJ"i]
0< 1SN

The logarithms of the sums could be expanded in a Taylor series in order to integrate this
expression symbolically, but it is simpler to use a numerical integration technique to
approximate the value for a specific value of the operator. High-precision values are not
needed because they are only used to rank the operators and predict the expected number of
operators required to achieve a certain confidence in On.

It is not necessary to integrate the function from minus infinity to plus infinity. As
discussed in section 3.3 each alternative defines an interval of reasonable values: plus or
minus three standard deviations about its expected value. It is only necessary to integrate
over the range that is the union of all of the intervals for the individual alternatives.

The result of this section is a set of formulas that compute the expected contribution of -
an operator, even if it may involve several known alternatives and surprises. These expected
contributions will be used in later sections to compute other important quantities.
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Section 3
COST INFORMATION

Since different operators cost different amounts to apply, a slightly more sophisticated
ranking scheme can rank the operators according to a cost-ad justed version of their expected
contribution, i.e,, the expected value of

{log-ratio>
(5.3.1)
{cost>

If it is difficult to compute the expected value of that ratio, it can be approximated by

{expected log-ratio>

€5.3.2)
<expected cost>

The cost of applying an operator could involve such factors as training time,
computation time, and memory space, but in this discussion, for simplicity, the expected cost
of an operator is defined tc be the expected computation time required to locate a match.

Computation time is a function of several variables: (1) the initialization time, (2) the
number of times the operator is applied, and (3) the computation time for each application. If
an operator is applied over a complete region (e.g, the tolerance region about a known
alternative), it is relatively easy to predict the expected cost. However, if an operator is
sequentially applied in a region (using some search strategy) until a reasonably good match is
found, one has to predict the number of separate applications to be used to find such a
match. This prediction is a little more difficult. It is based upon the type of feature, the
expected distributions of the feature and its alternatives, and the local characteristics of the
operator (eg., the size of the region covered by one application). Each
feature-operator-sirategy triple needs a separate mechanism to predict the average number of
applications required to find a match.

An operator-ranking scheme that incorporates cost estimates is: compute the
benefit-cost ratios (as in formula 5.3.1) for each of the operators and order them according to
the largest first.
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Scction 4
LEAST-SQUARES CULLING

As mentioned in section 2.5 the least-squares culling routine requires a minimum
number of matches,  Let M represent this minimum number.  Let N be the number of
operators that must be applied in order to find M matches. Since an operator may or may not
locate a known alternative (ie, a match), N is greater than or equal to M. This section
develops a method to predict N, given M and an ordered list of operators. The following
sections derive methods to estimate the expected nwmber of operators required to achieve a
certain goal It should be pointed out that it is possible to estimate these numbers by simply
applying the operators to several training pictures and averaging the number of operators
necded to reach the desired goal. Ofien this direct way is the best way to proceed. However,
sometimes it is useful to be able (o produce an indepencent estimate of the expected number
of operators. Techniques to produce these independent estimates will be discussed in the
following sectioris

In order to predict the average number of operators required to locate M matches it is
necessary to compute each operatoi’s expected contribution toward M. Consider figure 5.4.1.
Figure 54.1.a shows the possible matches associated with a typical operator: three known
alternatives and a surprise (f1,12,f3, and S). Assume that the a priori probabilities for
these possibilities are:

(5.4.1) P(r1] 5
P(f2] = .2,
1
2

P[f3]
and P[S]

Figure 54 1b shows the densities associated with the various possibilities, but they are scaled
by their a fioi probabilities of occurrence. TFigure 54.1.c shows the weighted density
function for the operator. That is,

¢

L2
(5.4.2)  density(X) = P[S]adensity(S) + O (P[fjlsdensity(fj)).
Je1

Given a specific value for the operator, the best alternative is the alternative with the
highest probability of being the correct match, ie.,

(5.4.3) MAX(P[f1|v], P[f2|v], P[f3|v], P[S|v]).
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The algorithm shown in figure 3.52 uses the probability associated with the best match as the
operator's contribution toward the goal of M matches, except when the operator’s value is
unusual or it suggests that a surprise is the best match. In the case of an unusual value or
surprise, no contribution is credited to the operator. Figure 54.1.d superimposes the graph of
the operator's contribution (scaled by a factor of 10) on top of the scaled densities shown in
figure 54.1.b. Figure 54.1.d also labels each interval with the name of the possibility that
wotild be returned as the best match. Notice that there are three intervals that imply that the
surprise is the best match.

The expected contribution of an operator toward M (abbreviated EC) can be computed
in the standard way:

400
(5.4.4) EC = f Ccontribution at X> % density(X) dX

-

é where

8 (if unusual or surprise)

(5.4.5) <contribution at X> =
MAX(P[f1|X),...P[fn|X]) (otheruise).,

Again a numerical integration technique is the easiest way to compute the value of EC

Formula 544 is important because it computes the expected contribution of an
operator. Given an ordered list of operators and their expected contributions it is possible to
estimate the number of operators that have to be applied in order to locate M matches. The
expected number of operators is the minimum N such that

N
(5.4.6) Z(operator Jj's expected contribution> 2 M.
J=1

This value of N is the planning stage's prediction of the number of operators to be
needed at execution time. At execution time the actual contributions of the operators can be
used to decide when a sufficient sumber of matches have been found. For example, if the
theoretical minimum number of matches required by the least-squares routine is two, then M
is two. If the planning stage predicts that each of the operator/feature pairs will contribute .5
toward the required number of reliable matches, N would be four. At execution time, when
the operators are applied to a test picture, if each operator happens to locate a best match
with a probability of .75, then the first threc operators are sufficient. If the user wants to be




Page 104 b4

]
particularly conservative about including the structural consistency information, he can
increase the minimum number, M, from two to threc. This increase forces the program to
apply more operators before incorporating the position information, which means that therve is
a smaller chance that the least=squares routine will produce an incorrect precision estimate (as

discussed in section 4.2).

Scection 5
INSPECTION

In an inspection task each opcrator contributes a certain amount toward increasing (o
decreasing) the overall confidence that the proposition On is true.  Sections 5.1 and 52
developed techniques to compute the expected contribution of an operator.  Given the
expected log-ratio (ie, the expected contribution) of each operator, what is the expected
number of operators required to pencrate a certain confidence in On?  The answer to this
question is based upon a theorem in sequential pattern recognition [Andrews 72]:

THEOREM: Let e¢(On) be the error rate allowed for saying that On is
truc when it really is falsc and let e(Off) be the error rate
allowed for incorrectly saying that Off is true when it really is

false. Let
1 - e(0ff) e(0ff)
G I, and B = —————
e(On) 1 - e(On)

Then, given that On is true, the expected number of operators to
be used to make a decision is given by

(l-e(Off))_ﬂ(:g(A) + e(0ff)*xlog(B)

cxpected_#(0On) =
Caverage log-ratio, given On>

And given that Off is true, Lhe expected number of operators to
be uscd to make a decision is given by

e(On)%log(A) + (1-e(On))xlog(B)
expected_#(-0n) = .
{average log-ratio, given Off>
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And finally, the expected number of operators to achieve the
specified error rates is

expected_# = P(On)xcxpected_#(0n) + P(Off)xexpected_#(Off).

The theorem is based upon the assumption that there are an infinite number of
operators whose average log-ratios are known. However, there are only a finite number of
operators (usually on the order of ten) for any specific VV task. The theorem can still be
used to produce an approximate number of operators expected by assuming that there are an
infinite number of operators with the contribution of the best operator. If that were the case,
how many operators would be needed? If the answer is one or less, then the best operator will
probably be sufficient, on the average. If the answer is more than one, consider the average
of the first two operators and compute the number needed if there were an infinite number of
operators with that expected ratio. If the answer is less than or equal to two, the best two
operators will be enough on the average, etc. Figure 5.5.1 lists eight operators and their
expected log ratios. Using those operators and a goal of e(On) = e(~On) = .05, the
expected number of operators would be one. The expected number of operators to achieve
e(On) = e(=0n) = .005 would be three.

O N W N
Pt et e e e N NN
N N BN O~ O

Expected Log-likelihood Ratios
Figure 5.5.1

This theorem is powerful because it provides a way to predict the number of features,
on the average, that will be necessary to achicve a specific confidence. The theorem applies
to all operators whether or not they have several known alternatives and/or surprises. The
only effect of alternatives and surprises is to reduce the expected contribution of the operator.
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Scection 6
PRECISION

Chapter 4 developed a method to locate ob jects (in the domain of VV). The method

divided a location task into three subtasks:

(1) locate enough features to be able to apply the least-squares
culling routine (this sct of features is referred to as the kernel),

(?) locate enough additional features to produce the desired
precision about the point of interest,

and (2) locate enough additional features to develop the required
amount of confidence in the statement of precision.

In order to predict the total number of operators needed in a location task, one needs
estimates for each of the subtasks. Section b4 developed a method to predict the expected
number of operatars required in suistask (1). This section and the next section will develop
methods to predict the expected number of operators required by subtasks (2) and (2),
respectively

There is a precision associated with each operator/feature pair. For example, given an
edye operator and a specific line to be tound, the edge operator will locate a point on the line
within some precision. Given a different line (maybe a fuzzy line), the precision of the same
edge operator will probably be different. In fact, the precision of most operators also depends
upon the type and amount of change between the planning picture and the test picture (e g,
the amount of rotation or the change in the overall light level). In order to predict the
number of operators necded to locate a point of interest within a predeclared precision, it is
necessary to mocdel the precision of cach operator. A statistical model is convenient because it
provides variance information for each picce of position information. Given the variances
about the position information, the weight matrix (ie, W) can be constructed. The
least-squares routine uses the weight matrix to determine the variances about the resulting
parameter values and the points of interest.

The modelling of the position information is simplified in VV because there are no
large unknown changes between the planning picture and the test picture. The variation in
the appearance of a feature is limited. The main factors that affect the precision of an
operator are: (1) the inherent operator characteristics (eg., its maximum resolution), (2) the
local feature characteristics (e.g., fuzziness), and (3) small rotations (eg., 15 degrees). Often the
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inherent characteristics of an operator are the dominant factors involved in determiring the
precision of the operator. If that is true, an a priori estimate can be used to model the
precision. If that is not true or if a better esimate is desired, it is possible to apply the
operator (in con junction with several other operators with known precisions) to several trial
pictures and produce an estimate for the precision of the operator/feature pair.

Given a statistical model for each operator/feature pair, approximately how many
operators will be needed by the least-squares routine to produce the desired precision? A
property of the least-squares routine makes it possible to answer this question in a
straightforward way. If the least-squares routine is applied to a set of N operator/feature
results, it produces essentially the same precision no matter what the actual position values
are, as long as they conform to the stated variances. Therefore, if the routine is applied to
the position information produced by N operator/feature pairs when they are applied to two
different trial pictures, it will return approximately the same precision about the point of
interest. The precisions are approximately equal because they mainly depend upon the
relative structure of the features and the expected variances, both of which remain the same
from trial to trial This property is the basis for a procedure to predict the number of
features necded to reach a certain precision: given a trial picture, locate a kernel set of
matches, and apply the least-squares technique; if the resulting precision is sufficient, stop
and return the number of operators used as the expected number operators to be needed; if
the precision is not sufficient, locate another match, apply the least-squares routine, and
repeat the precision check.

This procedure estimates the number of operators required to produce a certain
precision. This estimate is an important piece of information for a strategist. If the
least-squares routine requires a minimum of two matches before it can be applied, and if the
expected number of matches required to reach the desired precision is six, a strategist has to
cecide when to apply the least-squares routine. One strategy is to locate six matches and then
apply the routine. Another strategy is to locate two matches, apply the routine, use the results
to reduce the searching required to find the third match, find the thiri match, apply the
routine, etc. The second strategy may be more efficient in terms of the number of operators
used, but less efficient in terms of the amount of computation time. It may be able to stop
after four matches, but each application of the least-squares routine requires a certain amount
of computation time. It is not clear which strategy is better. Sproull has investigated this type
of problem and has implemented a strategist based upon decision theory that can decide
which strategy is better [Sproull 77]. This chapter mainly develops techniques to estimate the
quantities that are of interest to a strategist like his.



Pape 108 5.7

Section 7
CONFIDENCFE IN THE PRECISION

g0

As mactioned inosection 4.2 0t s often reasonable to assume that the location estimate
for an object and the precision about that esiimate produced by the least-squares routine is
correlt  Under that assumption, the expected number of operators required for a location |
task is the same as the expected number of operdtors necded to reach the desired precision. It
the assumption is not true, it is possible to ute a racthod similar (o the one used in section 5.5
to estimate the expected number of operators required to reach a certain confidence in an

inspection task.

Formula 427 indicates what the contribution of an operator is toward the overall
confidence in a precision. Given this symbolic expression for the contribution, it is possible to
employ a numecrical integration routine to compute the expected contribution from an
operator. The sequential pattern recogznition theorem referred to in section 5.5 can be applied
again. Given the expected contributions for the individual operators, the theorem produces
the expected number of opcrators nceded to reach a certain confidence in a precision.

Given this technique, the gencral prediction scheme for location tasks can be stated as
follows:  dctermine the expeced number of operators requited to achieve the desired
precision, determine the expected number of operators required to reach the desired
confidence in that precision and return that number as the expected number of operators
required to accomphish the task. For example, if the expected number of operators required
to achieve the precision is four, and if the expected number required to develop the
confidence is six (ie, an additional two opegators are needed), then predict that six operators
will be needed for the task.

‘i : Section 8
EXPECTED COST

Given an ordered list of operators and the expected number of operators required to
achieve a ceitain goal (i.e, N), it is easy to produce an estimate for the expected cost associated
with achieving the goal: surn the expected costs for the first N operators, e,

A e W
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N

(5.8.1) Z {expected cost of operator j>.
J=1

This expression is just a rough estimate for the expected cost because it assumes that the
expected cost is the sum of the expected costs for the expected number of operators, which is
not generally true. A better estimate is:

(]

(5.8.2) S (PLAS] * CJ),
J=0

where Aj means that the goal is achicved after applying operators one through j and Cj
denotes the expected cost of applying the first j operators. ;
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CHAPTER 6

PROGRAMMING TIME AND TRAINING TIME

There are four stages in the development of a VV program: programming, training,
planning, and exccution (sce figure 6.1). There are also four types of information that are
passed from one stage to the next:

(1) A statement of the task, i.e. the feature of interest, a set of constraints
on the ob jects in the scene, and the goal.

(2) A camera calibration, ie. the transformation between the camera's
screen coordinate system and the workstation coordinate system.

(3) A lst of operator/feature pairs. Each pair contains a feature that is
part of one of the objects in the scene and an operator that can
locate the image of the feature in a picture of the scene.

(4) A set of statistics for the operators, ie. statistics that describe the
reliability of the operators and the distribution of values produced
by the operators.
The execution-time and planning-time chapters described the combination rules, assuming
that all of this information already existed. This chapter describes how this information is
produced. Fach type of information will be discussed in a separate section. The Yiscussions
are based upon several example VV tasks. Annotated traces for two of these tasks can be
found in appendices 1V and V. The traces show the capabilities of the -current
implementation of the system.

P

B kR
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Programming time

N
Statement of the task
Camera Ca

libration
List of potential g

serator/feature pairs

Training time

Statement éf the task
Camera Calibration
List of potential operator/feature pairs
and
Set of statistics for the operators

Y

Planning time

Statement ;f the task
Camera Calibration
Set of statistics for the operators
and
Ordered list of operator/feature pairs

PICTURES OF =====—=3| Execution time
THE SCENE

=== A DECISION
OR LOCATION

Figure 6.1
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Section 1
STATE THE TASK

1. An Inspection Task

The first step in the description of a task is the statement of the type of task: inspection
or location. For example, consider the task of checking for a screw on the end of the
screwdriver. T he ultimate goal is a yes or no: Is there a screw on the end of the screwdriver?
This goal makes the task an inspection task. The remainder of the description depends upon
this fact. The description of an inspection task includes the following information:

(1) the a priori probability that the object is present,

(2) the thresholds to be reached in order to decide that
the object is present or not,

(3) the models of the objecls in the scene,
(4) the expected locations of the objects in the scene,

and (5) the set of constraints on the deviations from the
expected locations of the objects.

The first portion of the dialog in appendix 1V shows how the user currently specifies this
information.

In order to set the a priori probability in the screw-checking task, the user has to
decide from his experience what percentage of the time the screwdriver successfully picks up a
screw from the dispenser. Dees it pick up a screw nine times out of ten or only five times out
of ten? The lower the a priori | ~obability, the more information the program has to gather
to decide that the screw is present.

The second puart of an inspection task description is a statement of the desired
thresholds.  In order to decide that the screw s present, the program has to raise the
probability that the screw is present above a certain threshold. To decide that the screw is
not present the system has to lower the piobability that the screw is present below a certain
threshold. The first threshold will be referred to as the yes threshold and the second will be
referred to as the no threshold. “T'he user has to determine the expected consequences of a
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wrong decision and set the thresholds accordingly, taking into account the fact that more
stringent thresholds are harder to achieve. For example, if the arm jams the screw dispenser
if it tries to pick up a screw when it already has one, the no threshold should be set to a low
value, eg. .0005. This value would force the VV system to be quite sure that a screw is not
on the end before trying to pick up another one.

Sometimes these thresholds will be referred to as the confidences to be reached by the
system. In these terms the system increases its confidence in a no decision as it lowers the
probability that the ob ject is present.

The third part of a description is a set of object models. An ob ject model is used to
state the set of constraints that limit the possible locations of the ob ject and to describe the
structure of the features that the system can use to locate the ob ject.

The current object models are simply a three-dimensional reference coordinate system
and a structured set of features defined in terms of that coordinate system. Features are
added as they are needed to describe constraints or as they are discovered during the
programming process. For example, in the screw-checking task, the screw is initially
represented as a coordinate system whose origin is located at the tip of the screw. As features
of the screw, such as the corner formed by the head of the screw and side of the shaft, are
investigated they are added to the model.

The fourth part of a task description is a list of the expected locations for all of the
objects of interest in the scene. For the screw-checking task this simply consists of an
expected position and an expected orientation of the screw:

(6.1.1) The expected position of the screw (i.e., the tip of the
screw) is (60 cm, 45 cm, 5 cm).

The expected orientation of the screw is ROT(X, 180xDEG),
i.e., vertical, pointing down.

The expression, ROT(X, 180+DEG), is an AL expression for an orientation (see [Finkel 74]).
It means that the screw coordinate system is formed by rotating the workstation coordinate
system 180 degrees about its X-axis. Since the Z-axis of the workstation points up, the
Z-axis of the screw points down.

The fifth and final part of a task description is a set of constraints that state the
location restrictions associated with the objects in the scene. The following statement is a
typical set of constraints for the screw-checking task:
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(6.1.2) Llel a represent the angle between the z-axis of the screw
and the z-axis of the workstation. Then the maximum
deviations from the expected positions are:

=l.2 em s dx £ 1.2 ¢cn

-1.2 cm S dy < 1.2 cm
-.8cmsdz < .8cm

-10 deg < da < 10 deg.

Given the location of a feature in the screw cooidinate system, these constraints are sufficient
to determine the three-dimensional volume that represents the possible positions for the
feature. Given this volume and a camera calibration, it is possible to determine the tolerance
region of the feature in the screen coordinate systeim.

The constraints mentioned above are all stated directly in terms of the location of the
screw even though they are the result of several other uncertainties, such as the accuracy of
the arm. The user is responsible for combining the various inaccuracies and producing the
final set of constraints associated with the location of the saew. It would be significantly
better if the user could state the basic inaccuracies and have the system compute the resulting
constraints on the screw. For example, the screw is on the end of the screwdriver, which is
held in the hand of the arm. In this arrangement theie are three places for uncertainties: the
arm (ie, the placement of the hand), the linkage between the hand and the screwdriver, and
the linkage between the end of the screwdriver and the screw. Typical expected locations and
constraints on these three sources of uncertainty are:

(6.1.3) The expected position and oricntation of the hand in the
workstation's coordinate system is (60 cm, 45 cm, 15 cm)
and ROT(X, 180%DtG).

The expected position and orientation of the screwdriver in
the hand's coordinate system is (0 c¢cm, 0 cm, 8 cm) and
ROT(X, 0DEG).

The expected position. and orientation of the screw in the
screwdriver's coordinate system is (0 cm, 0 cm, 2 cm) and
ROT(X, 04«DEG).

Let al represent the angle between the 2z-axis of the hand
and the 2z-axis of the workstation. Then the maximum
deviations about the Jlocation of the hand due to the
inaccuracics of the arm are:
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-.6 cm s dx £ .6 cm
-.6cm s dy £ .6 cm
-.4cm < dz s .4 cm
-4 deg < dal < 4 deg.

Let a2 represent the angle between the 2z-axis of the
screwdriver and the z-axis of the hand. Then the maximum
deviations about the location of the screwdriver due to the
inaccuracies of the grasping operation are:
-.1cm<dx € .1cm
-.1cmsdy s .1 cm
-=.1cm s dz £ .1 ¢cm
-3 deg S da2 S 3 deg.

Let a3 represent the angle between the z-axis of the screw
and the z-axis of the screwdriver. Then the maximum
deviations about the 1location of the screw due to the
inaccuracies of the attachment of the screw to the
screwdriver are:

-.1cmsdx < .1cm

-.1lcnsdy £.1cm

<] em'< dz £ .1 cm

-3 deg € da3 < 3 deg.

A constraint resolving system can reduce this series of expected locations and constraints to an
expected position for the screw and a single set of constraints on the screw, such as the set
stated in (6.1.2). Taylor's constraint resolving system provides this type of capahility for
position deviations and small ang.e deviations, where small angles are defined to be five
degrees or less [Taylor 76].

2. A Location Task
Consider the task of locating the screw dispenser, which is sitting upright on the table.
It is a location task. The goai of the task is to locate the pick-up point on the screw dispenser
so the arm can insert the tip of the screwdriver and pick up a screw. Since it is a location
task, the statement of the task consists of '

(1) an ob ject model of the screw dispenser,

(2) an expected location for the screw dispenser,
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(3) the known constraints on the location of the screw dispenser,
¢ and (4) the desired constraints on the pick-up point.

The initial model for the screw dispenser contains the origin of the coordinate system and the
location of the pick-up point. A typical expected location for the screw dispenser is (55 cm,
50 cm, 0 cm) and ROT(Z, 180«DEG) in the workstation coordinate system.

Since the dispenser is known to be sitting upright on the table, there are only three
remaining degrees of freedom: X, Y, and «, where « is a rotation about the z-axis of the
workstation. Typical initial constraints on the dispenser are:

(0.1.3) =1.0 cn € dx < 1.0 cm
-1.0 cm s dy < 1.0 cm
-5 deg <€ da < 5 deg.

Typical desired constraints on the location of the pick-up point are:

(6.1.4) : ~.lcmsgsdx < .1 cm
=:1 cm s dy & .1 em.

Thus, the goal of this task is to reduce the uncertainties associated with the screw dispenser so
that thke location of the pick-up point is known within the desired tolerances.

All of the constraints mentioned above assume that the camera is positioned once,
calibrated, and left in a fixed position for all of the assemblies. If that is not the case, the

constraint computations need to include the uncertainties associated with the repositioning of
the camera.

Section 2
POSITION AND CALIBRATE THE CAMERA

l. Set up for a Location Task

There are two main considerations that enter into the placement of the camera:

(1) Can several features on the ob jects of interest be seen?
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and (2) Is the resolution of the picture high enough for the program ‘o
produce the desired precision?

Both requirements have to be met in order for the placement to be acceptable.

Intuitively the first requirement seems easy to meet: place the ob jects in their expected
locaticns and then manually move the camera around until a sufficient number of features
are in view. However, even for this requirement there are several complicating factors. For
example, there have to be a sufficient number of visible features at all possible locations for
the ob jects, not just their expected locations. If the uncertainty about the location of an
ob ject includes an unknown rotation of plus or minus ten degrees, the V'V system needs to be
able to see enough features at all angles within that twenty-degree range.

The resol:tion of the picture is important because (a) it may not be possible to achieve
the desired precision if the resolution is too low and (b) the amount of searching may be
excessive if the resolution is too high. Thus, if the resolution is properly ad justed for a task,
the program can locate the feature of interest within the desired precision without requiring

an unnecessary amount of searching.

The VV system can help the user find a good location for a camera if it is given
several pieces of information in addition to a camera calibration:

(1) the expected locations for the ob jects in the scene,

(2) the known constraints on the ob jects,

(3) a list of potential features,

(4) the feature of interest,

(5) the desired precision about the feature of interest,

(6) the types of operator/feature pairs to be used,
and (7) the expected resolution of the operatcis.

The first three pieces of information can be used to determine the three-dimensional
volume that should be visible to the camera (see the trace in appendix 1V). The user roughly
points out several potential features, indicates which ob jects they are a part of, and the system
uses the set of constraints to sweep out the total volume that they might appear in. That

volume will be referred to as the tolerance velume for the task. It is essentially the union of
the tolerance volumes associated with the individual features. For example, consider figure
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Figure 6.2.1.a

Figure 6.2.1¢c

Figure 6.2.1.b
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6.2.1.a, which shows a model of a screw on the end of a model of a screwdriver. Figure
6.2.1.b shows one feature and its tolerance volume. Figure 6.2.1.c shows several features and
their tolerance volumes. Figure 6.2.1.d shows the task tolerance volume.

Given a camera calibration and the tolerance volume of the task, it is easy to check if
the volume is included in a picture: project the volume onto the screen of the camera and see
if that region is contained in the picture. (The projection of the tolerance volume for a task
is the tolerance region for the task.)

Thus, if the tolerance region of a task is contained in the picture, the potential features
will be visible unless they are obscured by other objects in the scene. Currently the user is
responsible for deciding whether or not ob jects in the scene will obscure the potential features.
Eventually the program will be able to simulate the movement of the ob jects in a scene and
decide automatically whether or not the features are visible throughout the full range of
uncertainties for the ob jects. ;

Items (1), (2), and (4) can be combined to produce the known precision about the
feature of interest. If the initial constraints happen to imply that the initial precision is
greater than the desired precision, there is no need to apply any operators; the feature is
already known within the desired precision. In general, however, an increase in precision is
desired and a sequence of operators has to be applied to gather position information.

The expected resolution of each operator is important because it determines the
expected contribution of the operator toward the overall precision. Given the
two-dimensional resolution of an operator in the screen coordinate system, it is possible to
determine the corresponding resolution in the workstation coordinate system. For example, if
a correlation operator can reliably locate a corner within one pixel and if the height of the
corner is known, it is possible to convert the one-pixel uncertainty into workstation X and Y
uncertainties, such as

(6.2.1) =.07cm £ Cx < +.07cm
-.12cm s Cy s +.12cm,

where Cx is the operator's best estimate for the X coordinate of the corner and Cy is the
operator’s best estimate for the Y coordinate of the corner.

A set of these uncertainties can be used directly by the least-squares fitting routine to
determine the expected precision to be produced by a reasonable number of operators, such as
five or ten. This expected precision can then be compared with the desired precision. If it is
less than the desired precision the resolution of the picture has to be increased. If it is much
greater than the desired precision, the resolution of the picture can be reduced.
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Fiaure 6.22 shows an iterative method for finding a carnera location that satisfies both
the visible feature requirement and the resolution requirement. The basic idea is to place the
camera at some reasonable position, ad just the focal length so that the precision requirement
can be met, and then locally ad just the position so that enough features are in view.

An improvement in this algorithm can be made by incorporating the following
interactive technique:

(1) Intentionally include more of the workstation than is probably
necessary in the first picture.

(2) Use a split screen display; show the first picture, which is the
wide-angle view of the scene, on the left side and show a picture
taken at another camcra location, which is hopefully better than the
first, on the right (see figure 6.2.2.a).

(%) Have the system superimpose the tolerance region of the task on top
of the fust picture. Since the first picture was designed to cover
mote of the scene than is necessary, the tolerance region of the task
should fit within the bounds of the picture (see figure 6.2.3.b).

(4) After determining the desired change in magnification, scale the
tolerance region of the task to the desired size, and overlay it on the
right side (see figure 6.2.3.c).

(5) Then the user can adjust the camera, take a picture, display it, and
see if the camera is correctly positioned (see figure 6.2.3d). The
camera 15 correctly positioned if the region outlined in the left
picture is blown up at least as large as the region outlined on the
right and the region outlined on the left is completely contained in
the picture on the right.

This technique simplifies the earlier procedure because the user can easily see the effect of
changing the position and focal length of the camera. He can position the camera by
ad justing the portion of the picture outlined on the left until it fills up the outline on the
right

This technique s interactive, not automatic.  Currently there is no substitute for
experience when it comes to deciding which camera positions are reasonable and which are
not. Eventually high-lcvel strategy programs will be able to suggest reasonable camera
locations from models of the task. To do that the strategy program will have to consider
several factors:
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l

PERFORM_THE INITIAL CAMERA CALIBRATION

Input the knoun tolerances on the objects in the scene,
input the desired tolerances on the point of interest,
position the objects and camera at their expected locations,
take a picture for calibration,
point out features in the picture and give their 3-D coordinates,
calibrate the camera,
specify the 3-D volume that contains potential features,
determine the region of the picture uhere potential features might appear,
$ and
specify the expected resolution of the operators to be used

l

Use the calibration to determine -
the effective 3-0 resclution |e———lUse the old picture and the
of the operators to be used operator/feature pairs to

1 recalibrate the camera

L.

Determine the expected tolerance
produced by several operators Take a neuw picture|e—
le the expected tolerance close| NO Zoom the camera in or out
to the desired tolerance? | to improve the tolerance
-
YES 1

ls the desired region of the picture in view?

ves | | no

Return successJ Adjust the position of the camera

Figure 6.2.2
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(a) the tolerance volume of the task,
(b) the resolution of the picture,
(c) the other ob jects in the scene,
(d) the path of the arm,
(e) the lighting,
and (f) the other vision tasks for which the camera might be used.

For example, if VV is to be used to check for a screw on the end of the screwdriver as the
screwdriver leaves the screw dispenser, the camera must be in a safe place and must be able
to see the screw. To be in a safe place it must be out of the way of the arm. To see the screw
it must be above the table and not behind the dispenser. In general, the placement of the
camera is similar to the ob ject avoidance problem. The program has to locate a place for the
camera such that the line of sight from the camera to the object of interest does not pass
through any other ob jects in the scene.

If the camera is not movable, it has to be out of the way of the arm for all of the
motions in the task, not just the one or two proceeding the vision subtask. For example, if a
camera is to be used to locate a hole, it has to be out of the working area of the arm when the
arm places the part in the vise, aligns the top, inserts the screws, and finally transfers the part
to its packing box.

The strategy program should also consider the complete sequence of events when it tries
to select a position for the camera. If a camera can be used for more than one task, try to
position it so that it meets the requirements for all of the tasks. For example, if a camera can
be used to locate a hole and visually servo.a screw into the hole, try to position it so that it
does not have to be moved between tasks. In general, try to minimize the amount of
repositioning of the cameras,

2. Set up for an Inspection Task

For an inspection task the resolution of the picture is not critical as long as the
operators produce sufficiently different results when the ob ject is present than when it is not.
For example, in the screw-checking task if one correlation operator can reliably decide
whether the screw is present or not when the image of the screw is only a few pixels high, the
resolution of the picture can be quite low (see figure 6.2.4.a). However, if one operator is not
reliable enough or distinguishing enough, the resolution has to be increased so that several
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features are visible.  Figure 6.2.4b shows the screw enlarged so that the corners can be
distinguished. An even higher resolution would be required to detect the texture of the screw
threads.

Scction 3
CHOOSE POTENTIAL OPERATOR/FEATURE PAIRS

How does one choose potentially useful operator/feature pairs? Often the appearances
of several features are quite similar. How can one find operators that locate unique features
or operators that only have a few known alternatives?  As mentioned in chapter 2, a VV
system can provide three levels of assistance to help a user answer these questions: (1) a
convenient environment in which to experiment with different operators, (2) a list of
suggestions derived trom typical piciures of the task, or (3) a list of suggestions derived from
a model of the task. These three levels of assistance are discussed below.

1. A Convenient Environment

One of the basic features of the cuirent V'V system is a user interface that facilitates
experimentation.  Such an interface is important because the current analytic tools are not
complete enough to predict the result of applying an operator to a picture. The VV system
can not automatically investigate all aspects of an operator. A user has to help the program
decide which operator/feature pairs have the most potential. To help the system, the user has
to experiment with different operators and develop an intuition about them. Thus, empirical
techniques are used to bridge the paps that remain in analytic models. An operator is applied
to several tramning pictures in order to predict how it will behave when applied to an
unknown picture.

‘Figure 6.2.1.1 is a flowchart for one type of interactive system. A user of that system
might produce the following protocol as he selects potential operator/feature pairs:

(1) Tosition the screw dispenser at its eapected location and take a
picture to be used as the planning picture.

(2) Describe a corner that has an internal angle of approximately 90
degrees and a contrast across the edges of approximately 12 grey
levels. (The digitization of an analog picture converts the intensity
at each pixel into one of a finite number of grey levels. Pictures are
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Input the planning picture

l

Describe the feature to be located

~

Describe the operator to be tried

v

fescr ibe uhere the operator
should be applied

l

Describe the information
to be gathered

l

Input a trial picture

l

Apply the operator as directed

l

Display the results

1
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Another picture?

Neu feature?

Satisfied? Modification?

Add the operator/feature

Modify the description of the feature,
pair to the list

operator, or search technique

Figure 6.2.1.1
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(G)

(10)

(1

(12)

(ad

(14)

(15)

(16)

usually digitized to 16, 32, 64, or 256 grey levels.)
Describe a correlation operator to find the corner,

Use the camera calibration and the constraint model to produce the

tolerance region about the corner.
Indicate that the operator should locate the three best matches for
the corner, show the positions of the matches, and display the

associated correlation cocfficients.

Move the screw dispenser to one of 1ts typical positions and take a
| Yi P
picture to be used as a trial picture.

Apply the correlation operator throughout the tolerance region.

Move the screw dispenser to another one of its typical positions and
take a picture to be used as the second trial picture.

Apply the correlation operator throughout the tolerance region.
Since the appearance of the corner changes significantly from one
picture to the next, the correlation operator does not always locate
the correct corner. Tiy a corner-finder instead of the correlation
operator. A corner-finder is more reliable over a wider range of
rotations, but it is more expensive to apply.

Apply the corner-finder throughout the tolerance region.

Input the first trial picture to see if the corner-finder can locate the
correct feature.

Apply the corner-finder throughout the tolerance region.

Move the screw dispenser to another one of its typical positions and
take a picture to be used as the third trial picture.

Apply the corner-finder throughout the tolerance region.

Since the operator appears to be correctly matching the desired
corner, add the corner-finder and corner to the list of potential
operator/feature pairs. The pair may be discarded later during the

()]




e ——

planning stage, but so far it looks like a potential source of
information.

This protocol demonstrates the overall process involved in choosing potential operator/feature
pairs. Traces of this process within the current version of the VV system can be found in

appendices 1V and V.

Several of the terms and operations used in the above protocol need to be explained
further. The remainder of this section describes these concepts in more detail.

Planning picture

The planning picture is a picture of the objects in their expected locations. It is the
reference picture in the sense that it is used to define the planning locations for all of the
features. For example, the planning location for the 90-degree corner on the screw dispenser
can be defined by pointing out its position in the planning picture. Since the model of the
screw dispenser contains the height of the 90-degree corner, the camera calibration can be
used to compute the corresponding point in the workstation coordinate system. At execution
time when the corner-finder determines the matching position for the corner in the picture,
the same calibration and height can be used to compute the current location for the corner.

Since relative location changes can be more accurately computed than absolute locations,
the execution-time program directly computes the relative change from the position of a
feature in a planning picture, its position in the current picture, and its planning location in
the workstation. T his relative change can be used to ad just the destination of the arm.

Describing a feature

There are two basic mechanisms that are necessary to describe features: (1) a cursor
with which to point out features and (2) a model within which to store the description of the
features. For example, consider the 90-degree corner that is part of the screw dispenser
shown in figure 6.3.1.2. In order to describe that corner the user might do the following:

(a) Declare that he is about to describe a corner.

(b) Use the cursor to point out the vertex of the
corner.

(c) State the height of the vertex.

(d) Indicate a point on one of the edges that forms the
corner.
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(e) Indicate a point on the second edge that forms the
corner.

T his sequence of actions describes the location of the teature in the planning picture and in
the workstation coordinate system. It does not describe the appearance of the feature. The
appearance is described in conjunction with the description of the operator used to find the
feature. A different description of the appearance is made if a correlation operator is to be
used than it a corner-tinder is to be used.
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Different types of features require different types of descriptors. For example, a texture
has to be described in terms of frequencies, sizes, and shapes; a region has to be described in
terms of boundary segmerts or arcas; and an edje has to be described in terms of length,
orientation, and distinctness.  As new features are added to the V'V system, the appropriate
descriptors have to be added to the interactive systen,

Describing an operato

Operators are generally parameterized; they have different sizes, different thresholds,
and different versions. The user has to set the values for these parameters in order to begin
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experimenting with an operator. For example, in order to apply a corner-finder, such as
Aharon Gill's [Gill 72], the user may have to specify an estimate for the contrast across the
edges that form the corner. Often estimates for this type of quantity can be obtained by
applying a less complicated operator, such as an intensity extraction operator, to one of the

training pictures.

In general, the parameters for an operator go through three stages as the VV program

is constructed:

(1) they are initially estimated, possibly with the help of other
operators,

(2) they are changed several times as the user experiments
with different variations,

and (3) they are finally fixed after the training session.

As operators are better understooi and modelling techniques improve, this process of
successive approximation will be shortened.

Describing where an operator should be applied

Given a feature and an operator ta locate the feature, the calibration can be used to
determine the tolerance region about the feature, but where should the operator be applied
within the tolerance region? That is, what search strategy should be used to locate the
feature? As mentioned in chapter 2 the strategy depends upon several factors: the type of
feature, the size of the operator, the size of the tolerance region, and the distribution of
occurrences within the tolerance region. Each type of feature needs its own method to
determine the best search technique for each situation.

Figure 6.3.1.3 shows an example of a search strategy to be used to find a point of a line
segment. The diagonal line is the expected location of line segment in question. The
rectangle is the tolerance region about the center of the segment. The numbered dots indicate
the position and order of the edge operator applications. The first part of the search
concentrates on the region close to the planned position of the center of the segment because
the distribution of occurrences indicates that the probability of finding a match is highest
there. The pattern guarantees at least one point on the line segment.
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Figure 6.2.1.3

Checking for potential decoys

The reliability and expected contribution of an operator depend upon the number of
potential confusions for the operator. For example, if there are three corners that all appear
similar to the 90-degree corner, the corner-finder may sometimes locate one them and think
that it has found the expected 90-degree corner.

To check for decoys the user can ask the operator to return the best three or four
matches for a feature. If the values of the operator indicate that it is difficult to distinguish
between the matches, the operator may be discarded. If the matches are similar, but the
operator seems to be able to distinguish the desired match from the others, the decoys can be
added to the model of the feature as known alternatives. The training session will gather
statistics on the known alternatives and decide whether or not they can be reliably
distinguished from the desired match.

2. Suggestions from Typical Pictures

Given a convenient environment for experimentation, the user still has to generate his
own candidates for potential operator/feature pairs. This section describes an automatic
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method to generate such candidates. The idea is to apply an operator to a training picture
and locate visually distinct features. For example, a procedure to suggest line segments mig ht
be: apply an edge operator to a picture, link up sets of edge segments that form lines, and
suggest as candidates those lines that have a certain minimum length, contrast, and
uniqueness. Given a list of suggestions, the user can discard any of them because they are not
on the ob jects of interest or because they can not be reliably found.

This type of automatic suggestion system is most important when it is difficult for the
user to be part of the feature selection process. For example, if a vehicle is navigating across
the martian surface, it would be difficult for a user to point out features of interest. It would
be possible, of course, but it would be better if the vision system could make its own
suggestions. In programmable assembly the user is currently part of the programming process,
but an automatic suggestion system is still useful if it makes reasonable suggestions. The
better the suggestions, the less work the user has to perform. If a user asks for suggestions
and they are all unreasonable, he can easily revert back to pointing out features himself.

Line segment suggestions

The following list of steps is a more detailed description of a line segment suggestion
procedure:

(1) Automatically set thresholds for the edge operator.
(2) Automatically apply the operator to the whole picture.

(3) Automatically group the resulting edges according to position, angle, and
contrast.

(4) Automatically fit lines through the groups.

(5) Automatically analyze the resulting line segments and suggest those lines
that are a certain length.

The fact that the suggestions are produced automatically is important because it reduces the
user's work to the subtask of selecting good line segments from the list of suggestions.

The technique referred to in the first step that automatically sets the thresholds for the
edge operator was developed by Binford [Binford 75]. The existence of this technique is
important because it avoids the educated guessing that has characterized the use of edge
operators in the past. Binford's technique makes it possible for a consistent method to be
used to set the thresholds at programming time, training time, and execution time.
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The fact that the same operator is applied at programming time to make the suggestion
and at execution time to find the segment insures that the suggestions are realistic. The
sugpestions are not hypothetical; they are features that have becn found by a standard visual
operator.  This concreteness avoids features that are not distinct, but it also introduces
suggestions that are based upon strictly visual phenomena, such as shadows and glares.

The idea of linking edge points together, mentioned in steps three and four, is not new;
line followers have been used within blocks world vision for some time. Recently, however,
there has been renewed interest in this problem (see [Marr 78b), [Nevatia 75), and [Binford
76blJ).  The new approaches apply edge operators to a picture and then collect the edge
segments that form larger structures, such as lines or curves.

The line segment suggestion system can be extended to suggest more complex features
such as corners and curves, but the heuristics requited to decide which points are related are
much more complex. A partial step in that direction is to let the user point out two or three
points on a curve and have the system automatically apply the edge operator to follow and
characterize the curve that appears in the picture. A limited system of this type has been
implemented for the programmable assembly environment (see appendix VI). Smooth curves
are particularly important within programmable assembly because the parts are often formed
by boring and milling operations, which produce cylindrical holes and other surfaces that
appear as smooth curves in a picture.

Correlation sugpestions

Some operators cain not be directly used to locate suggestions like the edge operator.
They require more information than a few paramcter values before they can be applied. A
correlation operator is a prime example It is defined in terms of an array of intensity values,
which are normally taken divectly from a planning picture. For such operators a companion
operator, called an interest operator can be defined that locates portions of the picture that
are likely candidates for that type of operator. Once the interest operator has located a likely
portion of the picture, the operator can be defined. In the case of a correlation operator, the
intensity values in the picture are used to define the correlation operator.

Quam and Moravec have both designed and implemented interest operators that locate
promising positions for correlation operators {Quam 74] and (Moravec 76]). The basic idea is
that the most effective correlation operators are based upon portions of a picture that contain
high variance information along two different directions.  For example, consider the
ninty-degree angle shown in figure 6.2.2.1.a. It has high variance information in the vertical
and horizontal directions because of the sharp changes in intensities in those directions.
When that corielation operator tries to find a match in another picture, such as figure
622 1.b, which contains a similai corner, the two-dimensional information will clearly
distinguish the best match. The correlation operator shown in figure 6.3.2.1.c, on the other
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hand, only has high variance information along one direction. When it is applied to another
picture, such as figure 6.2.2.1.d, it will not be able to locate a unique match because all of the
points along the line match equally well. Thus, good correlation operators should be based
upon regions that have high variance information in two directions. The closer the directions
are to being orthogonal, the better the operator.

Gennery has developed a correlation operator that directly measures the precision of
each match, which depends upon the two-cimensional information contained in the operator
and the trial picture [Moravec 76]. His operator returns an error ‘ellipse with each match.
The ellipse indicates the two-dimensional precision associated with the match. For an
operator like the one shown in figure 6.2.2.1.c the error ellipses are generally elongated
because the precision is poor along the edge, but good perpendicular to the edge.

Both Quam's and Moravec's interest operators check local areas of a picture for high
variance information in two directions. Moravec's operator accumulates the sum of the
squares of the differences along four directions: vertical, horizontal, and the two diagonals. If
the local area has no directional informstion or only one-directional information, one of the
four sums will be close to zero. If the iocal area has two-dimensional information, all of the
sums will be greater than 210, The measure of interest for a local region is the minimum of
the four sums. In this way it the area has two-dimensional information the measure will be
significantly greater than zero. Otherwise, it will be close to zero. To distinguish interesting
areas from uninteresting areas the program compares the interest values of the areas with a
threshold. The program sorts the potential suggestions according to their interest value and
presents them to the user as an ordered list of suggestions.

Figure 6.3...2 shows four typical planning pictures to which Moravec's interest operator
has been applied. Figure 6.2.2.3 shows the same four pictures and the first fifteen suggestions
made by interest operator. Most of the suggestions are reasonable in the sense that the areas
contain two-dimensional information. However, some of the suggestions are on ob jects that
not of interest. For example, the twelfth suggestion in figure 6.3.2.3.a is on the screw 'dispenser,
which remains the same whether the screw is present or not. Hence, its values will not
contribute much to the final decision. If an operator of this type happens to be given to the
training stage, the system will accumulate values of the operator and form two distributions,
one for the case with the screw present and one for the case with the screw missing. The two
distributions will be essentially the same. Since they are essentially the same, the planning
stage will give the operator/feature pair a poor rating and the operator will not be used.

A few of the operators shown in figure 6.32.2 are based upon visual features that
change as the objects in the scene change locations. For example, the twelfth operator in
figure 6.3.2.2b is centered upon an angle formed by the side of the pencil sharpener and part
of the fixture. Since the location of the fixture is initially only known within plus or minus
ten degrees, it may rotate ten degrees during an actual assembly. Since there is a large depth




Page 136 6.3.2

i!"j M"lugil
i I il

b
‘ 2 i |" m}l ‘ f 1 f
‘:" M 'J‘W ix ',\_. "l{ ” '
4 ‘ lwl ik ;

o
\ " m!mF'wuull';l'! |

il |
mt 'i f
” 'hi!y'"’W“'
-

L

Figure 6.32.1.a Figure 6.32.1.b

Figure 6.32.1¢ Figure 6.3.2.1.d




6.3.2 Page 137

discontinuity between the side of the pencil sharpener and the fixture, the rotation will cause
the visual corner to slide along the side. Thus, even if the correlation operator locates the
same visual corner, it will not be locating the same point on the pencil sharpener.

Operator number seven in figure 6.32.3b is another example of an operator that may
not locate the same point on the pencil sharpener even though it finds a good match. In this
case the operator is based upon one of the teeth in the main gear. If the subassembly rotates
ten degrees away from its planning position, the operator will find a matching tooth, but it
will be the wrong one. The user or the current system should discard suggestions of this type
because their position information is not reliable. A more powerful system could use the fact
that all of the tecth ferm a circle. If a VV program finds one tooth, it has located one point

on that circle.

The training system can automatically discard features that produce unreliable position
information if it uses the least-squares fitting routine to check the structural consistency of a

set of matches:

(a) After all of the matches have been made, use the
least-squares routine to determine the best fit for all of the

matches.

(b) Use the best fit to determine the residual error for each
feature.

(c) Gather statistics on the residual errors of the features.
and (d) Discard features that consistently have large residual errors.

This procedure works (and is demonstrated in appendix V), but it would be more esthetically
pleasing if the program could analyze a model of the scene and determine the character of
each visual feature. The next subsection will discuss this type of analysis.

One of the problems with Moravec's current interest operator is that some of its
suggestions are not centered about the portion of the picture that contains the
two-dimensional information. For example, operator number six in figure 6.2.2.2.a is not
centered on the corner that provides the two-dimensional information. This problem arises
because the interest operator is actually applied to a reduced version of the picture instead of
the picture itself. This approach is nice because it avoids some of the high frequency noise
that otherwise might confuse the interest operator, but it also makes it difficult to locate
sugpestions accurately. This slight problem will soon be solved by applying the interest
operator to the reduced picture and then refining the position of the suggestion by applying
the operator to the original picture.
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The mierest operator also suggests a few regions that do not have two-dimensional

a5

information, ey, sec operator number fifteen in figure 6.22.2.c and operator six in figure
6322d Since the variances are only computed at forty-five-degree intervals, edges at
approximately twenty-two degrees appear to have some variance along all four directions. If
these variances are large enough, the area may be erroneously suggested as a good place for a
correlation operator. A partial solution to this problem is to increase the number of directions

in which the variance information Is computed.

I programmable assembly, sitce suggestions are only made once for each task, one can
tolerate relatively slow methods that suggest potential operator/feature pairs. The better the

suggestions, the less work required of the user.

3. Suggestions from a Model

A model-based suggestion procedure uses a three-dimensional model of the scene to
produce a synthetic picture of the scene and then analyzes the synthetic picture to suggest
potential operator/feature pairs. T he advantage of such a procedure is that it can associate
visual features with the parts of the objects that produce them. Given this correspondence,
the system can patentially use all of the propeities of the ob jects to decide which visual
features are the best candidates for a V'V task.

In this discussion a synthetic picture is a picture that is generated from an analytic
model of the scene. A real picture is a picture taken by a camera. An analytic model of a

scene may include:

(1) object models and camera models that determine the
positions of the features of the ob jects in the picture,

(2) light models and surface models that determine the grey
level for each pixel,

and (2) attachment models and constraint models that determine
the tolerance region for each feature.

There are several levels of complexity for each of these models. For example, the surface
maodels may be planar patches or splined quadratic patches. The better the model, the better
the suggestions.

In programmable assembly, since many of the parts are manufactured from mechanical
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drawings, it is relatively easy to produce the basic object models. Hopefully as ob ject
modelling is improved, a three-dimensional description language will be developed that can
be used to control all of the processing associated with a part: manufacturing, inspection, and
assembly. Such a language would help standatrdize parts and unify the process of assembly.

A first step toward an automatic suggestion system has been implemented. It is used to
suggest promising curve segments. It is based upon Miyamoto’s modelling and graphics
system [Miyamoto 75), which in turn is based upon Binford's spine-cross-section model (see
[Agin 72), [Nevatia 73], and [Miyamoto 75)). Each part within a spine-cross-section model
consists of a spine and a sequence of smoothly varying cross-sections along that spine. For
example, a shaft can be described as a straight line that has circular cross-sections (see figure
6.3.3.1.a). A rectangular box can be described as a straight line that has rectangular
cross-sections (see figure 6.3.3.1.b). Smooth curves are approximated by a sequence of line
scgments. The user specifies the curve and the number of segments to use to approximate the
curve and the system produces the correct sequence of line segments. This representation has
the nice property that it distinguishes between lines that are actually part of the object and
lines that are used to approximate a curve. Since this distinction is made, the system can be
smart about which lines it displays. For example, the hidden-line view of the shaft shown in
figure 6.3.3.1.a does not show all of the visible approximating lines, only those that outline the
part (see figure 6.3.3.1.c). Figure 6.3.3.1.d shows the standard hidden-line view that includes
all of the visible lines.

The steps in the curve segment suggestion procedure are:

(1) Interactively construct models for the ob jects in the scene and place them
at the correct relative locations with respect to the camera.

(2) Use a hidden-line scheme to delete lines that are not visible and produce
a two-dimensional line drawing of the scene.

(2) Interactively point out promising curve segments that appear in the line
drawing.

(4) Automatically fit a smooth curve through the broken-line segments that
approximate the curve segment.

(5) Interactively estimate the contrast across the curve.

(6) Automatically use the smooth curve to locate and characterize a similar
curve in a real picture of the scene, if one exists.

(7) If the characterization of the curve indicates that it has sufficient
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Figure 6.3.3.1.a
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Figure 6322 shows a line drawing produced from a typical model and a real picture of the
cotresponding scene. The object is the points ascembly on the shaft of a chainsaw engine.
The user interactively points out one of the curve segments and the system automatically
characterizes it Figure 6.2.2.2.a shows one of the biroken-line approximations overlayed on
top of the real picture. Figure 62220 shows the smooth curve that the system fit through
the broker-line sepments. Figure 6.2.2.2.¢ shows the initial applications of the edge operator
that are designed to locate points oin the actual curve. Figure 6.2.3.3.d shows the final curve
produced by the curve follower. It extends from the right-angle corner at the top to the

shadow at the bottom.

Since the program can maintain pomnters that relate features in the synthetic picture to
the ob joct modlels that produce the features, it is theoretically possible for the program to
avoid several of the problems mcntioned in the previous subsection. For example, the system
could determine that the right-angle corner at the end of the smooth curve is formed by two
ob jects that have a depth discontnuity between them: the shaft is in front of the side of the
points assembly casing. Such a corner would not be & good susgestion because its position
and appearance will change as the locations of the ob jects i the scene change.

The system could also decide whether or not a visual feature is formed by a shadow. If
a light model 15 available, the system could directly label all of the synthetic visual features
that are formed by shadows or glares. It a light model is not available, the system could
check the line drawing for object features that misht correspond to a specific visual feature.
If there are no object features that might explain the visual feature, the visual feature would
be classified as a transient feature.  Transient features include such things as dirt spots,
shadows, and glares. For exarmple, one end of the smooth curve in figure 6.3.3.3.d is lost is a
shadow. When the characterization routine notices the change in contrast and distinctness as
it s following the curve, it could ask the modelling system if the change is due to a feature of
the ob ject or some transient. In this case the change is due to a transient.

T his same type of suggestion procedure can sugsest other features, such as corners, line
segrments, and regions The system has to be able o locate the features in a line drawing of
the scene and decide if the grey levels are distinet cnough to make them easy to find.

The ultimate sugeestion system would be able to use the constraint information
associated with the absjects i the scene to perforn a more comprehensive analysis. It could
determine the number of known alternatives, the range of appearances for a feature, and the

existence of degenerate views.
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Figure 6.3.3.2.a
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Section 4

GATUHER STATISTICS

I. The Training Session

Given a list of operator/feature pairs, the purpose of the training phase is to gather
statistics on the reliability of the operators and determine the distributions of values produced
by the operators. ‘I his information is passed to the planning phase where it is used to rank
the potential operator/feature pairs and to the execution phase where it is used to determine
the likelihood ratios that correspond to the values produced by the operators.

The training phase is generally considered to be a one-shot learning process that
determines the a priori information associated with the operators. In programmable
assembly, however, since the same task is repeated many times, additional statistics can be
gathered during the execution phase. The system can dynamically maintain models for all of
the opcrators. Dynamic models can adjust for gradual changes, such as gradual lighting
changes.

The reliability statistics arc based upon the relative number of times the operator
locates the correct match. Each time the operator is applied there are three possible outcomes:

(1) the operator locates the correct match,
(2) the operator locates one of the known alternatives,
o1 (2) the operatoi locates a surprise.
If there are two known alternatives in addition to the correct match, there are really four
possible outcomes  The user supervises the training session and indicates the outcome for
each application of each operator (see appendix V).
The system uses the percentage of times that the operator matches a possibility as an

estimate for the a priori probability of that possibility. For example, if an operator matches a
surprise three times out of thirty applications, the system's estimate for that operator's a priori

probability of a surprise is 0.1°.

The training phase also gathers statistics on the values produced by each operator. If
an operator has four possible outcomes, the system gathers statistics to approximate the four
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distributions. I the tash is an inspection task, the system gathers one set of statistics for the
case in which the object is present and anothcr sct ot statistics for the case in which the

ob ject 1s missing.

The type of statistics gathered depends upon the expected form of the distribution. If
the distribution is expected to be a normal distribution, the sum of the values and the surn of
the squares of the values are sufficient to determine the distribution uniquely. As mentioned
in section 262 there is a change of variable that converts correlation values into values that
form an approxumately normal curve. Thus, for correlation operators the changed values are
used instead of the correlation coefficients. 1 an operator produces an unusual distribution
and if a scaled verdion of the histogram is to be used as the distribution of the operator, the

system stores the values themselves.

Fioure 6400 is a tlowchatt for a traiing session based upon these ideas. It uses a
spht screen to display the planning picture on the left and the current training picture on the
right. Ino this way the planming positions and appearances for the features can be overlayed
on top of the leit picture and the maiching positions can be overlayed on top of the right
picture. The user can easily see which {eatures are being looked for, where they are located,

and whether or not thie operator finds the correct match.

This particular training method displays an espected feature and all of its known
alteinanives on the leit and the maching festure on the right (see figure 6.4.1.2). One
operator at a time s displayed and the user decides which alternative has been matched (e.g.,
number 2 a0 figure 64 1.2)0 A separaie cisplay for each operator is necessary if the operators
have several hnown alternatives lowever, if only a few of the features have known
alternatives it is more efficient to show all of the expected features and all of the matching
positions at once (see figure 6.4.1.2). The user can still decide the outcome of each operator

and indicate it to the system

Hothe apcrators almost always locate the correct match, the process can be shortened
further so that the user only specifies the results for the operators that miss their expected
match (s the tace of the taining phace inappondic 1V) This approach makes it is easy to
gather the traang antormation:  the user positions the ob jects at typical positions, takes a
picture, applies the operators to the picture, and incicates which ones locate something other

than then expected feature

Given a system that can casily gather the appropriate statistical information, the user
still has two concerns (1) the number of raining pictures to use and (2) the arrangement of
the ob jects to use to take the pictures. “Fhe set of traming pictures should include enough
pictures to determine the value distributions of the operators and a sufficient range of
pictures to provide the system with a representative sct of situations,



6.4.1 Page 149

Input the statement of the task, the camera
calibration, and a list of operator/feature pairs

J_

Input @ planning picture and display
it on the left of a split-screen display

l

Input a training picture and display it on the right

l :
YES

Is the task an lnspection tack? ———|Ask user if the object is present
NO l J

— Choose the operator to be applied

l

YES

Is the task an Inzpection task? l
NOl ODisplay the correct set of
knoun alternatives, depending
Display the planning positions upon uhether or not
for all of the knoun alternatives the object is present

1 l

Applu the operator to the feature's tolerance region and
display the matching position in the training picture

l

Ask if the match is the correct feature, one of
the knoun alternatives, or a surprise

)
Add the operator's values to the appropriate sums
| VES
YES NO NO
More untried operators? f—|llore training pictures? ——| Comnpute
Statistics

Figure 64.1.1
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Figure 6.4.1.2
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The number of training pictures depends upon the type of the distribution. Twenty to
fifty are normally required for normal distribuﬂ:ons (see section 6.4.1.2). Scaled histograms
often require over a hundred if the values are widely distributed.

It is more difficult to specify which pictures should be used. The overall distribution of
pictures should roughly correspond to the expected distribution of ob ject arrangements. The
more representative the training pictures are, the better the statistics will be. The set of
training pictures should include some of the unusual and special situations in addition to
several of the standard arrangements. For example, the set should include pictures of the
ob jects when they are at their extreme locations, such as at their maximum rotations and
translations. These pictures insure that the operators can locate their matches when the
features are distorted the most. The set should also include any degenerate cases that involve
one or more of the features. For example, if a corner is one of the expected features and if
an edge on another ob ject happens to appear close to the corner when the ob jects are in one
particular arrangement, that arrangement should be included in the training sequence. In
order to present the correct relative importance of the pictures, all of them should be weighted
by their a priori probability of occurrence. '

Given a sufficient number of training pictures that reflect the expected distribution of
scenes, the training system, under the supervision of the user, produces behavior models of
the operators. The planning system analyzes these models to construct a plan to achieve the
goal and the execution system uses these models to make decisions based upon the behavior
of the operators when applied to the pictures of unknown situations.

2. Number of Trials for Normally Distributed Values

After deciding which distribution to use to model the results of an operator, one still
has to decide how many training pictures to use in order to produce a good approximation
for the distribution. If the chosen distribution is normal, one needs enough samples to
approximate the mean and standard deviation, since a normal distribution is completely
determined by these two parameters. How many samples are needed? There are two
theorems that help answer this question (see [Hoel 71]):

THEOREM: If X is normally distributed with variance V and
N 2
> (Xi - Ms)

i=]
Vs =
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1s the sample variance based upon a random sample of size N and
Ms is the sample mean, then

NxVs

has a chi-square distribution with (N-1) degrees of freedom.

THEOREM: If X is normally distributed with mean M and variance V and
a random sample of size N is taken, then the sample mean Ms will
be normally distributed wilh mean M and variance V/N.

Let CS(n,p) represent the value such that a chi-square distribution with n degrees of
freedom has p percent of the population to the right of that value. One application of the
first theorem states that there is a ninety-five percent chance that the sample variance and
actual variance are related as follows:

NxVs
(6.4.2.1) CS((N-1),.975) <

S CS{(N=1},.025).

Let S and Ss represent the standard deviation and the sample standard deviation of the
distribution.  Since Vs = SsSs and V = §iS, formula 6.4.2.1 can be converted into the
following statement concerning the actual and sample standard deviations:

sqrt(N) = Ss sqrt(N) % Ss
(6.4.2.2) Tl R .
sqrt(CS((N-1),.025)) sqrt(CS((N-1),.975))

The second theorem can be used to produce a ninety-five percent confidence interval
about the mean. That is,

2%
(6.4.2.3) iM - Ms| €
sqri(N)

or, substituting the larger value from (6.4.2.2) into (6.4.2.3) produces

2%Ss
(6.4.2.4) IM = Ms| <

sqrt(CS((N-1),.975))
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For example, if Ms = 1.3 and Ss = 2, the ninty-five percent confidence intervals based upon
a sample size of 15 are

(6.4.2.5) IM - Ms| < .16950
and .15092 £ S < .32824.

For a sample size of 30 the intervals are

(6.4.2.6) IM - Ms| s .10022
and .10151 £ § s .27446.

One interesting possibility is to use the planning-time formulas to predict the effect of
gathering more samples from an operator's distribution. Two important questions can be
answered in this way:

(1) Given a sample mean and a sample standard deviation, plus
confidence intervals about them, what is a reasonable, but
conservative distribution (or set of distributions) that can be
used to model the operaior?

(2) Given an additional set of N samples from a distribution, what
is the probable change in the operator's expected contribution?

'n this situation a conservative distribution is a distribution that understates the contribution
of the operator. The use of such a distribution may require more operators to be applied
than theoretically necessary, but there is a smaller chance of making an incorrect decision.
For example, assume that a potential opcrator in an inspection task has the following
characteristics:

(6.4.2.7) (sample size of 15)
On off

Ms = 1.3 Ms = 1.95

S8 g Ss = .22

Assume that the probability of On is .9. Then the expected log-ratio for the operator is 3.41.
To pick a more conservative distribution for the operator consider the sixty percent
confidence intervals about the means and standard deviations:
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(6.4.2.8) (sample size of 15)
Oon off
1.234< M <1.365 1.878s M £2.022
182 § £.:25¢ 200 § $.277

If one assumes that the the most conservative set of distributions is produced at the extremes
of these itervals, there are sixteen possible combinations for the pair of distributions to b
used to model the operator. Figure 6.4.2.1 shows the expected contribution of the operator fol
each of the sixteen possibilities. T he most conservative set is the set that has the lowest

expected contribution, e,

(6.4.2.9) (sample size of 15)
On off
"= ].365 M=1.878
S =.182 S s w2ty

(the expected log-ratio is 1.25).

Expected Log-likelihood Ratios

min M1, min S1, min M2, min S2: 4.04
min M1, min S1, min M2, max S2: 1.90
min M1, min S1, max M2, min S2: 6.03
min M1, min S1, max M2, max S2: 2.79
min M1, max S1, min M2, min S2: 4.38
min M1, max S1, min M2, max S2: 2.1l
min M1, max S1, max M2, min S2: 6.52
min M1, max S1, max M2, max S2: 3.15

max M1, min S1, min M2, min S2:
max M1, min S1, min M2, max S2:
max M1, min S1, max M2, min S2:
max M1, min S1, max M2, max S2:

—l - N
~N
o
»

max M1, max Sl, min M2, min S2: 2.81
max M1, max S1, min M2, max S2: 1.35
max M1, max S1, max M2, min S2: 4.56
max M1, max S1, max M2, max S2: 2.20

# the minimum expected log-likelihood ratio, the most
conservative set of distributions

Figure 6.4.2.1
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What is the expected gain from gathering another fifteen samples from the operator's
distributions? The intervals are:

(6.4.2.10) (sample size of 30)
On of f

1.258< M <1.342 1.904< M <1.996

1858 S £.231 .203< § 5.254

and the most conservative distribution (within the sixty percent intervals) is

{6.4.2.11) (sample size of 30)
On off

M= 1.342 M= 1.904

S =.185 S = 204

(the expected log-ratio is 1.80).

The potential gain is significant in terms of the increase in the expected log-ratio for the
conservative set of distributions. More samples would increase the expected log-ratio even
further. The upper limit on this log-ratio would be reached when the conservative set of
distributions was the same as the sample set. At that point the expected log-ratio for both of
them would be 241" The number of samples actually used in a VV task depends upon how
conservative the programmer is, how important execution time is, and how much time can be
devoted to training the system. Sample sizes on the order of twenty to fifty have worked well.

In programmable assembly since each V'V task is performed repeatedly, it is possible to
gather additional samples during production runs. This is important because a larger set of
samples can help to refine the model for an operator in two ways. First, more samples can
improve the distributions being used to model the operator, and second, if one of the global
variables (eg, lighting or camera sensitivity) changes slowly over time, continuous sampling

can maintain an up-to-date model for the operator.
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CHAPTER 7

CONCLUSIONS AND EXTENSIONS

There are two main conclusions of this thesis

(D A Jlage class of visual feedback tasks can be formulated and

accomplished within one framework.

(2)  The framework can be implemented in such a way that it is relatively
casty ftor a programmer who is not an expert o vision research to

construct programs that perform visual feedback tasks.

The justificationsfor both of these statements were essentially proofs by construction. A class
of visual feedback tasks, referred to as verification vision tasks, was characterized and an

interactive system that gn‘:u(iy simplities the programming of such tasks was implemented.

Section |
FRAMEWORK FOR VV

A VYV task is a task in which the scene is highly predictable; there are no big surprises
The largest single step involved in establishing a framework for VV is the development of a
set of combination rules that use this predictability to accomplish the task in as efficient way
as possible.  Since several types of visual operators have been used extensively in the past,
their behaviors are reasonably well understood. 1t is al:o relatively clear that the quantities of
interest tor imspection and location tasks are conficdences and precisions. But it is not clea
how to combine the results of different operators in order to estimate the quantities of

interest

Two swis of combination rules were derived in the thesis: one for inspection tasks and
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one for location tasks. Each of these sets will be discussed in a separate subsection below.
I Inspection
The inspection rules had to deal with four types of complications:

(1) Difterent operators return different distributions of values that describe
their best local match. One type of operator computes correlation values;
another computes the distinctness of an edge.

(2)  An operator may not locate a unique feature. It may locate any one of
two or three possible features.

(3) An operator may be so unpredictable that it occasionally finds a
completely unexpected feature as its best match.

(4)  An operator may compute several values that describe the matching
feature

The straightforward extensions of the rules to cover these possibilities involved increasingly
complex formulas. A set of assumptions were made in order to make the formulas
computable.  The most basic assumption was that training examples were availzble from
which the behavior of the operators could be approximated. Fortunately, training examples
are available in several types of visual feedback tasks, eg., programmable assembly, satellite
monitoring of crops, and chest x-rays

The second type of assumption used within the derivations of the inspection rules is the
conditional independence of some of the information produced by the operators. These
assumptions were critical because they reduced the interdependencies sufficiently so that the
rules were computable. The two conditional independence assumptions were:

(1) The value of an operator is conditionally independent of the values of
all the other operators.

(2) The value of an operator is conditionally independent of its matching
position

Within programmable assembly these assumptions were found to be approximately true for
the set of tasks that were programmed. The first assumption is often true because different

operators, especially different types of operators, depend upon different properties of the
pictures. The second is generally true because the size of the location uncertainties is so small
within V'V that the appearances of the features do not change significantly from one position
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to the next. lt is also important to note that there are techniques that can be used to check
the validity of these assumptions for a specific set of operators.

2. Location

The combination rules for location tasks systematize a collection of special-purpose
rules that use the location of one or more features to help locate other features. Given the
location of one hole in a subassembly, the system can predict the location of a second hole. In
fact, the system can produce a range of possible locations for the second hole. This range of
locations can be interpreted as a precision about that hole. Precisions are important for two
reasons: (1) they specify information that is of direct interest to the programmer and (2) they
can be used to cull matches that are inconsistent. Culling is important, of course, because the

operators are not completely reliable.

A least-squares technique was used to combine the position information for a large
number of matches. There are other possible metrics, but least-squares is a well known
technique and can be easily extended to include different types of position information, such

as a point on a circle

The location rules can be extended in at lcast two ways: (1) they could incorporate a
wider range of position information and (2) they could ad just a larger set of parameters. The
current routines only provide for point-to-point matches.  Other possibilities include
point-on-a-hne matches and point-oin-a-circle matches. The parameters could include the
six parameters that describe a relative change in the location of the object. The parameters
could also represent a relative change in the location of the camera.

The location rules also provide a way to check the consistency of a small number of
matches  “T'he consistency is based upon the likelihood that the object would be at the
location jgeplied by the matches. If it is impossible or very unlikely that the ob ject is at the
mx[ﬁ:mou. one or more of the matches must be incorrect.

Scetion 2
EASE OF PROGRAMMING

The difficulty in using the VV system depends upon two factors: (1) the number of
steps that are not completely automated and (2) the quality of the human engineering for
those steps. ‘I he semantic structures necessary to automate some of the steps, such as ranking

L
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operator/feature pairs, have been presented in this thesis. These techniques need to be
improved and others have to be added in order to complete the automation of all four stages
within VV.

In the programming stage the current system helps the user

(1) choose potential operator/feature pairs by applying an
interest operator to the picture,

(2) determine the correct position of the camera by computing
the task tolerance volume and by predicting the expected
precision produced by the operators,

and (2) recalibrate the camera each time a new location is tried.

The user has to state the task, filter out suggested operator/feature pairs that the system does
not know enough to avoid, suggest additional operator/feature pairs, measure the
three-dimensional position of the features on the ob jects, and manually ad just the location of
the camera

The system can be easily extended to ad just the location of the camera automatically. A
pair of cameras and the associated sterco techniques can be used to measure the
three-dimensional positions of the features. DBut it is considerably more difficult to improve
the operator/feature pair suggestion subsystem. Two types of suggestion techniques were
liscussed: (1) apply interest operators to typical pictures in order to locate visually distinct
features and (2) use models of the ob jects to predict visually distinct features. The analysis of
pictures needs to be extended so that it locates other types of features besides correlation
features. Curve linking and region growing should be used to suggest line features, curve
features, and region features The small step made toward model-based suggestions should be
completed and extended to produce several different types of suggestions.

At training time the user has to position the ob jects in the scene, take a picture, decide
how typical the arrangement is, and indicate whether or not each operator locates a known
alternative or a surprise. Same of the ob ject positioning can be automated by programming
the mechanical arms to sequence through a set of typical locations. The structural consistency
tests can be used to convert the reliability decisions into a monitoring operation. That is,
after all of the operators have been applied, the best structural match is formed and the
system shows it to the user, who only has to decide whether or not the whole structure is
correct.

The current planning stage ranks the operator/feature pairs for inspection tasks
according to their expected contribution (ie, their expected log-likelihood ratio) and the
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opcrator/feature pains for location tasks according to their relative structural consistency.
These methods are useful, but they do not take several important factors into account. For
example, they do not consider the possibility of expanding the local context about a match
That is, if the results of an operator da not uniquely determine a match, incorporate the
position intormation of other operators to distinguish between the aliernatives. A better
strategy subsystem s needed that develops more complete plans based upon better estimates
for the expected costs, more flexible VV o program structures, and better models of the

trade-ofts between local and global checking.

‘Al programming time the user only monitors the progress of the task. However, the
system can stll be improved so that it provides more complete diagnostic information if
something fails and manual intervention is required. For example, it would be useful if the
system could tell the user what it expects ithe current state of the world is and why an erro

occurred




"

—r

Page 161

BIBLIOGRAPHY

Agin, Gerald J. [1972], Representation and Description of Curved Objects,
Stanford Artificial Intelligence Project Memo No. 173, October 1972.

Agin, Gerald J. and Binford, Thomas 0. [1973], Computer Description of
Curved Objects, Proceedings of the Third International Joint
Conference on Artificial Intelligence, Stanford, August 1973, pp.
629-640,

Agin, Gerald J., and Duda, Richard 0. [1975], SRI Vision Research for
Advanced Industrial Automation, Second USA-Japan Computer
Conference, pp. 113 - 117.

Ambler ,A.P. and Popplestone,R.J. [1973], Inferring the Positions of Bodies
from Specified Spatial Relationships, Dept. of Machine
Intelligence, University of Edinburgh, Edinburgh, Scotland.

Andrews,H.C. [1972], 1ntroduction to Mathematical Techniques 1in Pattern
Recognition, John Wiley and Sons, Inc., 1972.

Bajcsy,R. [1972], Computer Identification of Textured Visual Scenes,
Stanford Artificial Intelligence Project Memo No. 180, October 1972.

Bajcsy,R. [1973a], Computer Description of Textured Surfaces, Proceedings
of the Third International Joint Conference on Artificial
Intelligence, Stanford, August 1973, pp. 572-579.

Bajcsy,R. and Tavakoli,M. [1973b], A Computer Recognition of Bridges,
Islands, Rivers and Lakes from Satellite Pictures, Conference
Proceedings Machine Processing of Remotely Sensed Data, Purdue
University, October 1973, pp. 54-68.

Barnea, Daniel I. and Silverman, Harvey F. [1972], A Class of Algorithms for
Fast Digital Image Registration, IEEE Transactions on Computers,
Vol. C-21, No. 2, February 1972, pp. 179-186.

Barrow,H.G. and Popplestone,R.J. [1971], Relational Description in Picture
Processing, Machine Intelligence 6, 1971, pp. 377-396.



Page 162
¢

Baumgart, Bruce G. [1972], Minged Ldge Polyhedron Representation, Stanford
Artificial Intelligence Project Memo No. 179, October 1972.

Baumgart, Bruce G. [1973], lmage Contouring and Comparing, Stanford
Artificial Intelligence Project Memo No. 199, October 1973.

Baumgart, Bruce G. [1974a], CIOMID - A Geomctric Editor, Stanford Artificial
Intelligence Project Mcmo No. 232, May 1974.

Baumgart, 3ruce 6. [1974b], Geomctric Modeling for Computer Vision,
Stanford Artificial Intelligence Project Memo No. 249, October 1974.

Binford,1.0., Paul,R., Feldman,d.A.; Finkel,R., Bolles,R.C., Taylor,R.H.,
Shimano,B.E., Pingle,K.K., and Gafford, T.A. [1974], Computer
Integrated Assembly Systems, Progress Report covering March 1974 to
Seplember 1974, prepared for the HNational Science Foundation,
Stanford Artificial Intelligence P'rogect, Scptember 1974,

Biaferd,1.0., Grossman,D.D., Miyamoto, k., Finkel R., Shimano,B.E.,
TFaytor,R. k., dolles,R.C., Roderick,M.D., Mujtaba,M.S., and
Gafford,T.A. [1975a]), Exploratory Study of Computer Integrated
Asscimbly Systems, Progress Report covering September 1974 to
Novembier 1975 prepared for the MNational Science Foundation.
Stanford Artificial Intelligence Project, November 1975,

Binford, lhomas O. [1975b], Optimizing the Hueckel Operator, an internal
memora<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>