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ABSTRACT

The Computer Integrated Assembly Systems project is concerned with developing the
software technology of programmable assembly devices, including computer controlied
manipulators and vision systems. A complete hardware system has been implemented
that includes manipulators with tactile sensors and TV cameras, tools, fixtures, and
auxiliary devices, a dedicated minicomputer, and a time-shared large computer equipped
with graphic display terminals. An advanced software system called AL has been
developed that can be used to program assembly applications. Research currently
underway includes refinement of AL, development of Improved languages and
interactive programming techniques for assembly and vision, extension of computer
* vision to areas which are currently infeasible, geometric modeling of objects and
constraints, assembly simulation, control algorithms, and adaptive methods of
calibration. '
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INTRODUCTION

This report is the third in a sequence of reports summarizing research progress in Computer
integrated Assembly Systems. This project, supported by the National Science Foundation, is
concerned with the software technology of programmable automation, including computer
controlled manipulators and vision systems. The basic goal is the simplification of assembly
and visual programming. -

Prior to the period covered in this current report, a complete hardware system was
implemented, including manipulators with tactile sensors and TV cameras, tools, fixtures,
and auxiliary devices, a dedicated minicomputer, and a time-shared large computer equipped
with graphic display terminals. An advanced software system called AL was developed as a
research tool for studying problems in assembly automation.

During the past year, the AL system has been debugged, improved, and extensively
documented. In the near future AL will be used to program some simple assembly
applications examples. From a succession of applications, generic assembly routines can be
identified and accumulated in a library. Additionally, a design review of AL has recently
been started to identify its strengths and weaknesses. As a preliminary to this review, a
questionnaire concerning the potential use of AL at other laboratories has been circulated,
and responses are being received.

Work has begun on the classification of assemblies, assembly processes, and manipulators.
Improved languages and interactive programming techniques for assembly and vision are
also being studied. It is hoped that this work will lead to the extension of computer vision to
areas that are currently infeasible, such as picking discrete parts out of a bin. Research has
also included geometric modeling of objects and constraints, assembly simulation, control
algorithms, and adaptive methods of calibration.

This overview offers a concise summary of recent progress by the varied research efforts
that constitute the Computer Integrated Assembly Systems project. The progress report is
divided into two main sections: work directly related to AL and assembly, and work on
computer vision and modeling. It is through a comprehensive project of this sort that
prototype systems will eventually be developed for practical programmable assembly.

AL SYSTEM AND ASSEMBLY

Extensive experience has shown that the debugging process is vastly more time-consuming
. than people are willing to admit. In AL, this problem is accentuated because the system
.interacts with the real world in real time and because there are two computers and a
language hierarchy. In response to these problems, Raphael Finkel has developed ALAID,
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an interactive debugger that allows AL program execution to be monitored and that
provides a means of patching AL programs to avoid the otherwise lengthy debugging loop.
ALAID resides on both computers and partial recompilations are done on the planning
machine, which maintains symbol table information. A by-product of the ALAID design is
that it can be used to interface complex feedback routines on the planning machine to the
runtime execution of AL programs. Finkel's work is described in the section ALAID: An
Interactive Debugger for AL. In industry, as microprocessors spread, multi-machine
hierarchies will be usual and debugging systems like ALAID will have wide potential
application.

Within the AL run-time system, the speed of routines that transform between Cartesian
space and joint-angle space is of considerable importance. Bruce Shimano has derived faster
procedures for computing these transformations. Additionally, he has found simpler
procedures for calibrating force sensors, needed in those industrial applications that involve
- force-controlled compliant motions. Compliance using sensing is an essential means of
coordinating two or more devices. Shimano explains his contributions in the section
Improvements in the AL Run-Time System.

Russell Taylor has been studying ways to generate AL motion programs automatically from
* higher level task descriptions. A paradigm of progressive refinement is used to expand a
single statement like “put peg in hole” into a succession of detailed steps necessary to get the
job done. The task is non-trivial if attention is given to making the generated code rugged
with respect to positioning errors. The work therefore requires an ability to maintain
extensive planning information concerning the description of the semantics of the
manipulator language, the definition of the task, the objects being manipulated, and the
execution-time environment. Taylor discusses his approach in the section Generating AL
Programs from High Level Task Descriptions.

Shahid Mujtaba has analyzed the automatic assembly of a pencil sharpener and compared
the motion times for the Stanford Arm with those obtained by the technique of Methods
Time Measurement for z person doing the same assembly. The task was also analyzed using
assembly primitives developed at Draper Lab. For this task, the mechanical arm was
considerably slower than the human. Identifying the sources of this lethargy should make
considerable speed improvements possible in the future. This work is discussed in the section
Case Study of Assembly of a Pencil Sharpener.

In recent years, the manipulator hardware has stabilized, and the need for hardware
construction has declined considerably. Nevertheless, certain hardware necessary for AL's
operation is being developed. These additions, which are not described in this report,
include hardware that provides increased PDP-11 memory for the run-time system, a second
arm interface to facilitate testing AL's novel software capability of controlling two arms in
simultaneous coordinated motion, a force-sensing wrist to provide greater accuracy in
determining forces and torques than is possible by monitoring servo errors, and an improved
gripper that should allow greater versatility in grasping small ob jects.
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COMPUTER VISION AND MODELING

Robert Bolles has shown that the execution time and memory size of his experimental
program for visual inspection are almost practical, and that programming is simple. His
recent work is concerned with establishing a firm mathematical basis for making verification
decisions. A least-squares technique is used to combine available information and derive
estimates for location and location accuracy of objects. Bayesian probability is used to
determine necessary confidences within a sequential pattern recognition scheme. These
- well-known techniques are combined to answer various questions raised within a verification
vision system. The work is described in the section Mathematical Tools for Verification
Vision.

Michael Roderick has been investigating the possibility of reducing the sampling rate used
by the run-time computer to contiol the Stanford arm. His analysis is based on the use of
z-transforms, since Laplace transforms are not applicable for low sampling rates. Specific
recommendations are derived for the lowest possible sampling rates at which the Stanford
Arm might be controlied. Roderick's approach is described in the section Discrete Control of
the Arm,

A previous progress report described POINTY, an interactive program for generating ob ject
models by manual positioning of the manipulator. During the course of writing applications
programs, Shahid Mujtaba has found this technique to be an aid in reducing the labor of
coding AL models. He has prepared a guide to the system entitled POINTY User Manual,
useful for both training and reference purposes.

David Grossman has used a geometric modeling program to simulate discrete parts
tolerancing, showing how manufacturing errors can propagate until they affect the
probability of successful assembly. The assembly of discrete parts is strongly influenced by
imprecise components, imperfect fixtures and tools, and inexact measurements. Production
engineers must choose among alternative ways to select individual tolerances in order to
achieve minimum cost while preserving product integrity. Grossman describes a
comprehensive Monte Carlo method for systematically analyzing the stochastic implications
of tolerances and related forms of imprecision. The method is explained in the section Monte
+ Carlo Simulation of Tolerancing. This work is one example in which technology developed
initially for programmable assembly is proving applicable in a much wider domain,
particularly manual assembly. :
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CHAPTER |

BACKGROUND

The road to constructing working code in any programming language can be long and
. tedious. Several of the important milestones are these: 1) understanding the problem
(conceptualization), 2) creating an algorithm to solve it (design), 3) writing that algorithm in a
suitable programming language (formalization), 4) submitting the program to the scrutiny of
the computer (compilation), 5) running the program (execution), 6) getting the program to do
what was intended (debugging), 7) making sure that the program behaves under diverse
conditions {festing), and 8) production runs of the finished program (bliss). These steps are
not necessarily distinct; it often happens that conceptualization, design, and formalization are
performed simultaneously, and the stages from formalization through debugging are often
repeated several times.

The problem of successfully traversing this route is compounded in the particular case of arm
code by several factors. The first obstacle is that the real world is less tractable than the
highly controlled world of the computer. Any given strategy to accomplish a given task may
fail, because the actual real-world result of the program may not be what the programmer
desired. An effort to insert a pin in & hole may result in a jammed pin or a jarred workpiece.

Not only is the world recalcitrant, it also is complex. A programmer in a purely algebraic
language can attempt to keep in mind the various states of his program at different places.
State information like loop invariants provides enough environment so that reasonable code
may be written. Not 30 in the realm of mechanical manipulation. Ob jects can be modelled,
but only partially, and the extent to which models reflect the real ob jects is sub ject to design
choices on the part of the programmer. He may only discover during debugging that his
model is incomplete in a crucial way, that some important feature of an object has been
omitted from consideration.

Design of appropriate error recovery routines depends greatly on what errors are encountered.
It is a waste of effort to design the program to carefully detect and remedy an error like
dropping a workpiece if in fact the arm never or rarely commits this error in practice. It is
even more frustrating to fail to foresee the possibility that a screw hole 1s mispositioned if that
error turns out to be frequent. Experience and sharpened intuition can slowly train a
programmer in what sorts of errors to expect, but the learning process is full of necessary and
clumsy iterations through the debugging loop.

Another feature (some would no doubt consider it a bug) of the real world is that many
actions are irreversible. In algebraic languages, most actions have inverse actions, and if it is
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important to be able to back up, care can be taken to preserve either the state of the
computation or a history of the actions that have been taken so that the code can be retried..
But the moving finger dips, and having smashed, moves on. Nor all our history lists nor glue
shall lure it back to fix but half the wreck, nor all our work shall make it look like new.
Even non-destructive actions, like puting a pin in a hole, cannot be reversed automatically,
since there is no way to determine what forces ought to be applied during the backward
motion; they are not closely related to the forces applied during the initial insertion,

In many programming languages, the debugging loop is exceptionally long. AL is no
exception. In order to fix a known error, it is necessary to modify the source code and then to
resubmit the program to the compiler. The compiler (which is fairly slow) produces an
intermediate output, which is finally loaded into the PDP-11. And then the pieces must be
reinitialized to their starting positions, and the race must be run up to the point where the
fatlure occurred in order to test the fix. The failure may rot be very reproducible, so the new
code may not be easily tested. The effort that must be exerted to locate a bug in the first
place can be immense. Making some small change and resubmitting the program in the hope
that the change will make the bug more traceabie is very tedious due to the long turn-around.

There are several debuggers for the PDP-11 machine; one typical example is 11-DDT, based
on RUG, another similar debugger, and implemented by Jeff Rubin at Stanford [Binford 75].
DDT is a symbolic interactive debugger, but it has no knowledge of AL; its microscopic
vision cannot see the forests of manipulator code built out of the trees of machine
instructions. The AL runtime environment has been implemented and debugged with the
assistance of 11-DDT, but the debugger is fairly useless for debu'ggmg manipulator programs,
especially if the person using AL is not an expert on the implementation. The problem is
_mostly one of level; 11-DDT is a low-level debugger, and AL 1s a high-level language. |

The intent of this report, which is taken from the third chapter of my thesis, is to examine
the problems of preparing correct manipulator code and to suggest the design of a user
interface that assists the programmer in fulfilling his function. This interface will have some
of the flavor of a debugger and some of the flavor of an operating system. Although it is
based specifically on the implementation of AL, the design of the interface is of interest for
more general reasons: it provides added insight into control structures for operating
mechanical devices under programmed computer control, and it proposes a uniform
debugging and preparation technique that might find use in any large and complex
ﬁ{ogramming environment. For this reason, this report may be read independently of the
remainder of my thesis.

The discussion has two distinct flavors. On the one hand, philosophical issues dealing with
debugging in general and arm code debugging in particular are treated in a rather abstract
fashion. On the other hand, details of implementation are mentioned in an attempt to
demonstrate how needed facilities can be obtained. This second type of discussion deals both
with a preliminary test implementation currently running in the AL context and with
extensions to it, both simple and complex.
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CHAPTER 2

CLASSICAL INTERACTIVE DEBUGGING

Success is the mother of disaster.

. - V. Cerf

The art of debugging programs has developed as a bastard son of the art of computer

programming. The first debugging was done by staring at the code until a bug was found, or

by inserting intermediate output statements to test hypotheses concerning the expected state of

the computation. An entire generation of programmers became familiar with the core dump,

either in raw machine representation (it is said that one can even come to love hexadecimal)

or with some preliminary transcription into instructions or, more often, ASCIH or EBCDIC
text representation.

Programming in machine language has given rise to such interactive debuggers as DDT,
which allow the user to interrupt his program, investigate it, make changes, and then allow it
to continue. The fact that in machine language, program and data are represented by the
same forms, namely, machine words, makes such debugging especially natural. Fundamental
to such debugging is the concept of breakpoints, which are locations in the program of
interest to the programmer during his debugging. When breakpoints are encountered, the
interactive terminal is connected directly to the debugger, and execution of the program is
suspended During this time, the user can examine the values of variables, set and remove
breakpoints, and then allow the computation to continue.

High level languages like FORTRAN and ALGOL no longer maintain a unity of program
and data, and debugging techniques either use post-mortem dumps and traces of procedure
calls and variable assignments, or they force the user to debug the generated machine code
using a DDT-like debugger. Some student-oriented languages (SNOBOL and ALGOL W
come to mind) provide the facility of optional post-mortem dumps that wind back through the
stack of procedure calls and print out the values of all variables for each procedural level.
These languages also allow the tracing of procedures, so that an examination of the program
~output will reveal the sequence in which control entered and exited procedures. In short, the
debugging facilities allow examination of the path of control and the values of variables.
(See [Satterthwaite 75] for a discussion of the debugging facilities of ALGOL W and a very
good summary of the history of debugging.)

Interactive high-level languages, like LISP and SAIL, increase the user's control over his
program. He can interrupt it at will and restart it. (This alone is a fantastic advantage over
batch systems. Many are the times that there is no apparent failure of the program, but the



[iL.4]

programmer suddenly remembers a2 mistike, and he can stop the program to fix it without
wasting unnecessary computer time to complete a worthless computation.) The idea of a
program trace has been strengthened to allow the user to do his examination whenever an
interesting place is reached. All the features developed in DDT for machine language
* Pprograms are incorporated into LISP debuggers.

LISP completes the circle; it is a high-level language that unifies program and data, so that a
program can be self-aware; it has become natural to write LISP debuggers in LISP itself.

Once it has become clear why a program is failing, it is often useful to patch that error and
let the program proceed. In this way the next failure can be found, and the patch can be
tested. An interactive debugger allows not only examination but also modification of the
contents of the program. In a language like LISP, where there is no distinction between
programs and data structures, the facility to modify data structures is extremely powerful,
because it implies a power to modify the program itself. This power is reflected in the
debugging packages found in most LISP implementations. (See, for example, [Teitelman 74)).

Flow of control is also a plaything in the hands of interactive debuggers. If some bad code is
to be avoided, the program can be made to Jump over it. Special code to be executed for
restorative purposes (initialization routines) can be executed directly from the debugger, and
then control returned to the ailing program.

In most algebraic languages, the input syntax is compiled into a machine language
representation, which is then executed. Interactive debugging of programs in these languages
is made difficult by the fact that the programmer must be able to associate machine code to
source code. This process is made easier by such debuggers as DDT and RAID (the latter
being a display version of DDT, a standard debugger on the PDP-10), which can display
memory cells in various modes, including symbolic instruction mode and various arithmetic
modes. Another feature that these debuggers offer is that they can refer symbolically to
locations in memory; if the programmer has named a variable "felicity”, then that name may
be used during debugging as well. If a program label is “charity”, then that is how the
debugger will refer to that section of code. Thus, these debugging programs contain
disassemblers that can take assembled code and recreate the source that spawned it. In order
to allow the user to modify instructions, classical debuggers also include primitive assemblers
as well.

The use of symbolic names for instructions (as opposed to numeric format), for fabels, and for
variables is a special case of a very important idea in debugging: the code that is being
debugged should be presented to the programmer in as close a way as possible to the code
that he himself wrote. Unfortunately, DDT and RAID only work on the machine language
level, a level at which most programs are not written. A significant effort in the direction of
source-language debugging is the debugger BAIL [Reiser 75), which is used for debugging
SAIL [VanLehn 73) programs. It is capable of displaying the exact text that is being
executed (by maintaining cross-references into the source file) and takes commands that are a
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subset of standard SAIL commands, especially procedure invocations. In this case. the
disassembly process is made possible by keeping pointers to the source code, not by
- eXamination of the object code. BAIL contains a primitive compiler, in that it can parse
some constructs of SAIL for the purpose of patching code. Other source-language debuggers
also exist; COPILOT [Swinehart 74) includes a sophisticated example. None of these can
display macros in their expanded form.

Style of debugging varies from person to person. A common technique is to proceed the
program until a fatal error occurs (like a memory reference trap). By examining the failing
instruction it is often possible to deduce what data are wrong; these data are then examined.
If they are indeed wrong, an attempt is made to localize the bug by installing a breakpoint at
some place where it is expected that the data are still right. The program is then restarted or
backed up to a safe place and allowed to proceed. When the breakpoint is encountered, the
suspect data are examined. If they already are in error, an earlier breakpoint is installed and
the process is repeated. If they are still good, single stepping is employed to see where they go
wrong. One powerful technique is to use a procedure that checks the consistency of the
world, and to call this procedure from the debugger at each of the test breakpoints. [Charles
- Simonyi, personal communication] Procedure cails that are expected not to be relevant to the
problem are executed as a single step. Finally the error is localized and the programmer
convinces himself that his code in fact makes a mistake. It is surprising how resistant the
human mind is to the suggestion that a perfectly straightforward piece of code might fail
under some circumstances. Once the error is found, it is fixed in place if at all possible (and
it often is possible if the debugger is capable of patching one piece of code in place of
another) and tested by backing up once again and seeing if the same fatal error occurs as
before.

A more cautious technique of debugging is to step through all new pieces of code one
instruction at a time in order to make sure they do not fail. The methods for determining
sources of error and fixing them are similar to the outline above. This method works well if
the failing program is not heavily context dependent, or if the errci is so severe that the
program never works. A later stage of debugping deals with programs that fail only
occasionally; stepping through such programs o find bugs is tedious and generally
unproductive. In these cases, debugging often proceeds by setting breakpoints and trying to
figure out the exact situation that causes failure, then reproducing the failure at will until the
source of the error has been tracked down.

In summary, what we might call classical interactive debugging has these interlocking features:
I. Symbols are used extensively.
2. Both examination and modification are possible.
3. These constructs are available for examination and modification:
program labels
program code
flow of control
values of variables (data structures)
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4. Backing up (or restarting) and patching are typical operations.

The realm of examination includes such abilities as searching for code or data having a
particular form, displaying instructions and data, setting breakpoints or traces on code or
variable-reference so that the flow of control and history of variables may be traced, and
single-stepping to execute only one instruction or procedure call at a time. Modification
involves depositing replacement code or data, zeroing large blocks of data, interrupting
execution, restarting execution at arbitrary places, inserting new labels or moving old ones
(although no debugger is yet capable of changing all old references to a label to correspond to
the new meaning, with the possible exception of SNOBOL), and directly executing
instructions from the debugger, especially procedure invocations.
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CHAPTER 3

INTERACTIVE ARM CODE DEBUGGING

The fact that AL is a real-time language for control of real-world devices in an environment
of multiple processes residing on several machines presents some unique problems for the
design and implementation of a debugger. The purpose of this chapter is to discuss
debugging issues raised by manipulator programming in general and by the AL language in
particular. Some conclusions will be reached not only for the design of a debugging package
for AL, but also for the implementation of AL so that it might be easier to debug. These
conclusions can be generalized beyond the context of debugging to the larger issue of
preparation of workable code in general and arm code in particular.

Section |
Block Structure

AL is a block-structured language. In most ways, it conforms to the scope rules standard in
such fanguages. As 2 block is entered, all variables for that block are declared and room
made for them in the environment of the current process. These variables include special
ones for condition monitors, force feedback, events, and calculators. As control exits from a
block, each of these variables is released and its space reclaimed. An attempt is made to sever
any connection between these variables and the state of the computation outside the block:
variables and expressions are unlinked from any graph-structural relations, condition
monitors are awakened to tell them to disappear, and events are returned to the kernel, which
awakens any process waiting on them with a failure indication.

Due to details of implementation, block structure is violated in a few ways. Changers can be
applied to a global variable in such a way that after contro! leaves the block in which the
changer was applied, the global variable still has the changer associated with it; this anomaly
should perhaps be considered more of an implementation bug than a part of the design of
the language.

During the course of debugging, it often happens that control must be forced to exit from a
block or transferred into the middle of another block. This facility is most easily implemented
by associating information on variables that must be created and destroyed with each block
entrance and exit. A premature block exit is then simulated by jumping to the end of the
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block where the exit code is to be found. If the programmer wishes to make a wild jump
from one part of the Program to another, it is only necessary to carefully close all the blocks
that lead out to the first common ancestor of the current locus of execution and the desired
one, and then to enter all blocks that lead in to the specified place. Once the appropriate
block has been entered, a direct jump to the indicated code should work.

Section 2
Parallelism

- The first problem that AL presents is its parallelism. The source language itself aliows the
user to split control explicitly into several threads of execution. These threads are treated as
S€parate processes in the running program. Condition monitors are implicitly also understood
to refer to processes that have a special scheduling priority. Even less explicit is the use of
processes to implement joint servos and force feedback variables. Parallelism in AL is
therefore only partially a result of the explicit nature of the language; any implications such
simultaneity may have for the debugger are equally valid for any language supporting
concurrency (like SAIL, or concurrent PASCAL). Other parallelism derives from the
real-time aspect of AL: condition monitors are intended specifically for rapid response to
real-time feedback. Still other parallelism is due to implementation decisions taken in the
coding of AL: Both servoing and force monitoring make use of the process structure available
in the runtime environment. Each Joint is separately treated by a software servo; to read
forces on the arm it is necessary occasionally to recompute some configuration-dependent
information. Force calculation is readily scheduled as an infrequent concurrent process, while
Servos are frequently executed.

During a debugging session, one would like to attack probiems in one thread of execution
without interfering with other threads. This consideration is especially important if one of
the threads is causing an arm to move, and a bug has been discovered in a different and
independent piece of code. It is not a good idea ta throttie the machine by debugging at high
machine priority while waiting for interactive input (unlike 11-DDT, which assumes control
of machine interrupts). The problem of non-interference has been discussed by D. Swinehart
[Swinehart 74]; his interest is to allow the debugger to oversee and report on the state of
continuing computations without interfering with them. The method he employs is to make
the debugger itself a process Just like the others. -

The debugging process is a window into the inner secrets of any other process it chooses to
examine. It can link itself into the data structures of that process and therefore it has access
to variables and code local to the object of its scrutiny. If variables are held in common
among several processes, then the data structures within any one of them point to ali the
global variables. Of course, there is a problem of naming, since different variables may be
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called the same thing in different blocks and in different threads. This problem of
non-unique naming is fairly well understood; standard PDP-10 DDT (and RAID) have
separate symbol tables for separate blocks, and they maintain a current block. If & variable is
requested, it is sought first in the current block, and then in successively more global blocks.
Commands are provided to change the context by moving to other blocks. This separate
symbol table idea can be generalized to the domain of concurrent processes; each one has its
own symbol table that associates internal names (those that the process itself uses when
making reference to 2 variable) with programmer-defined names. Along with a current
process currently under scrutiny by the debugger is a symbol table that dictates how that
process names its variables.

. The naming problem takes a different form with regard to names of processes themselves.
Somehow it must be possible to point to a process and sic [sic) the debugger on it. Naming
problems are exacerbated by the fact that processes come and go during the execution of the
program. It is necessary to be able to name a process that does not yet exist in such a way
that when it does exist, the debugger will use its symbols.

There may be some use to structuring the set of processes that have been examined so that
One may return to a previous one. A stack of processes that have been under examination is
one such technique, but it suffers from the fact that the order in which one examines
processes during debugging is often independent of the actual structure of processes in the
program. Therefore, stacking the processes violates the dictum of naturalness, which implies
that the debugging structures should be the same as the programming structures. A more
attractive alternative to stacking is to name processes as parents, siblings, and offspring of
other processes. If the current process splits into three (for a COBEGIN nest), then each of
the three can be considered an offspring of the current process and siblings to each other. It
is, however, unclear to what extent it is necessary to provide such process structure during the
debugging phase; what is clear is that each process that the user may wish to examine must
be accessible, either by an explicit name or implicitly in relation to other processes.

It is conceptually easiest for the debugger always to be pointed at one particular sub ject
process, known as the current process. All commands to examine or modify data or control
structures will apply only to that process. If another process should encounter a breakpoint, it
will send the debugger a message and wait, but will not be automatically connected as the
current process. This concept can be fruitfully generalized to the idea of current context,
which is a related set of processes, all of which are under scrutiny.  If the context includes
only one process, and it splits into several new ones, then each of the offspring are also part
of the same context; no explicit switch is necessary to examine them. Contexts are related to
each other according to the lexical pattern of the program; it makes sense to switch to the next
more general context (the parent) or to one of several more specific contexts (the offspring).

Parallelism makes the problem of backing up especially difficult. One seidom discovers a bug
until it has caused incorrect actions; the debugger must assist the user in restoring the worid
to the state it had before the bug struck in order to track it down and try repaired code. The
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essential ability is to have access to all the state of the machine that defines the world at any
point in the execution and to be able to modify it.

First, the point of execution must be defined in the presence of parallelism; it refers to a point
along each of the many threads that may be active. That is, the context in which execution s
understood is the most general context of all: the outermost block. This definition is more
restrictive than is strictly necessary, since backing up may only be needed with respect to one
or several threads, that is, within a more specific context. However, there is no guarantee that
a given context will contain any active processes unless that context is the most general one.

Next, a debugger that deals with parallel processes must be able to observe and manipulate
all synchronization control between them. If one thread has produced a signal that another
thread will eventually await, and a bug strikes, it must be possible to back up past the
signalling of the event. This consideration forces the debugger to keep track of what events
are signalled and awaited. If the event has been successfully awaited by another process, then
to back up the first requires that the second one be backed up at least to the point at which
the event was awaited. This consideration forces the debugger to hold a context large enough
to include all processes that use any important events.

An alternative that has shown some success when signals and waits are paired into a synch
command involves signals that have short lifetimes. If no process has received a signal after
a period of time, the signal disappears, and the signalling process repeats the signal. Backing
past such a piece of code is easy, since its effect is transitory. This solution cannot be
generalized to the types of events present in most parallel structures, including those found in
AL.

Section 3
Levels of Detail

Another problem presented by AL is the fact that the code and data exist at several levels of
detail. Each statement in the source language is translated to a set of pseudo-operations for
the target machine; that machine is implemented in PDP-11 assembler language, in which
each pseudo-operation is expanded to a hand-coded procedure. Variables are used to clothe
many disparate entities, including program variables, and expressions, which are in many
ways symmetric to program variables. Condition monitors are also implemented as a funny
kind of variable, the value of which determines the state of the monitor and the code that it
executes. Force feedback is implemented through yet more complicated variables.

The question is at what level the user would like to carry on his extermination activities. For
errors in logic of his program, he would most like to work in terms of the source language. If
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‘he wants to know the current status of the affixment structure, information not available in
the source language, he might want to track through the graph structure, assuming that he
understands how it is put together. If he is trying to implement a new pseudo-operation, he
may want to work at the level of machine instructions. In general, the debugger has the
responsibility to make accessible all information and power that the user will need in a form
that he can understand. This implies that there should be commands for examining graph
structure, even if it is not sub ject to scrutiny in the source language. The instructions that are
being executed should be visible either in source formalism, pseudo-code, or machine code, at
the desire of the user.

Part of this problem would disappear if the source formalism were directly interpreted in the
target machine. This is not an absurd idea, although the implementation chosen did not
follow that direction. Debuggers for LISP (See [Teitelman 74] for example) take full
advantage of the fart that all code in LISP is representable within the data structures native
to the language. Therefore there are no hidden structures except for compiled routines,
which are usually not used unless they are assumed to be bug-free.

Short of implementing AL in AL, some steps could be taken to add features to the language
that allow examination of structures. One such feature would allow the program to discover
if one frame is attached to another. It may happen that such investigatory functions would
be useful in their own right as parts of programs, independently of debugging strategies.
Another suggestion that leads still farther into the LISP-like realm is to make the debugger
homoiconic with the language, that is, let all debugging commands be available as statements
in the language. Then extend the debugger so that any statement in the language can be
given to it to execute.

The same argument holds at the level of the pseudo-code; not only should statements of the
source language be directly executable from the debugger, but pseudo-operations should also
be accessible. These operations are useful for performing only a part of a full-fledged
statement. For example, to cause a new variable to exist, it is most convenient to execute the
pseudo-code that creates variables.

The problem of unusual data types is reiated to the level-of-detail problem. Not only does
AL have algebraic types (scalar, vector, transform), it also has control types (events,
expressions, condition monitors, force feedback variables, motion tables), each of which has a
peculiar representation of its own. How is a motion table to be displayed so that the user can
see its destination, initizl point, and what clauses have been associated to it? This problem
requires a disassembler with some rather special knowledge of not only the code, but also the
data structures involved in the runtime implementation. The strange format used for such
things as force feedback variables, condition monitors, and motion tables can also pose
problems for modifying their information. According to the philosophy of representing
constructs in source formalism wherever possible, the way for the user to enter a correction to
these structures would be to restate his source code, and let the debugger regenerate the
proper forms. In this sense, the debugger should have the full power of the compiler.
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Yet another suggestion with regard to language design can be made in regard to these
complex data structures. In order to easily point the debugger at any object, it is most
convenient to somehow label that object. Variables automatically have names; that is why it
is s0 easy to refer to them during debugging. We have already seen that the fact that
processes do not have explicit names causes problems in pointing the debugger at a particular
process. The same consideration carries over to such cumbersome structures as motion tables,
not to mention statements. A reasonable suggestion is to associate variables of the
appropriate type with each of the control and data structures used by the AL language. Not
only would this association facilitate debugging, but it would also render the concepts
represented by the structures more flexible. For example, if motions are values that can be
named by variables, it becomes natural to consider composition and extraction operators that
can act on this datatype. Even some “arithmetic” operators may not be out of the question;
perhaps a scalar multiplied by a trajectory changes the overall timing of the motion. This
concept of increasing flexibility by explicit naming also arises in the context of limitations to
the language. The fact that the same suggestion arises naturally in the context of debugging
supports the hypothesis that debugging and programming are very similar activities that are
carried out in the same domain and require identical structures.

Section 4
Multiprocessor Environment

The best way to gain the full power of the compiler without actually writing one for the
execution system is to use the one that already exists. As we have seen, the trajectory
calculation problem is hard enough to warrant using a larger computer for at least that stage
of the compilation. This desire leads to the need for a linkage between the target machine
and the compiler that will allow parts of programs to be recompiled and reloaded during the
debugging phase. If the input formalism to the debugger is to be the same as the statement
formalism of AL, then for every debugging request it is necessary to compile the code implied
in the request and make the resulting pseudo-code available to the debugging process.

The idea of a two-machine link in which one machine can monitor and control the other is
found in some recent computers. The best example is the DEC KL-10, which uses a
PDP-11/40 to monitor and control the PDP-10 main machine. Another example is fourd in
the CDC 6600 computer, in whicn a set of peripheral processors each has access to the main
memory and can cause interrupts in the main processor, although there is little communication
in the reverse direction, and the several peripheral processors cannot pass information among
themselves. The concept we wish to develop in the context of debugging is slightly diiferent:
Two machines, with overlapping but not identical capabilities, cooperate to solve problems,
where the problems may originate on either machine, and the solution may be found on
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either machine.

This concept is a generalization of that found in the XNET debugger [Beeler 76), which
allows programs in a PDP-11 to be debugged across a network. XNET works with a skeletal
debugger in the PDP-11 capable of handling a small set of examination and deposit
operations (not in a symbolic fashion) and a sophisticated symbolic debugger in a larger
remote machine. The two machines are linked by a communications protocol described in
[Mader 74). The concept mentioned above generalizes XNET-type interactions by allowing
the debugging to proceed under direction from either machine, with symmetric
question-asking potentials in the two computers.

Linking two machines has many delightful properties beyond the ability to compile and
recompile. Firstly, it allows the debugging to take place from either machine. Information
can be distributed in such 2 way that the information necessary for the response to- some
queries is immediately available in the Aost machine, that is, the one with which the
programmer is directly communicating. At other times, the host computer will need to request
information from or perform actions on data that is only available on the remote machine,
that is, the one not currently discussing the knotty issues of bug control with the human
guide. In these cases, the host will send a request to the remote machine in exactly the format
that would be used by the human if he were working from that machine. In fact, there is no
_ particular reason why several people cannot be simultaneously debugging from different
portals, each with his own debugging process and his own host machine.

A second feature of linking the compiler to the execution machine is that it provides a
mechanism whereby the entire execution can be controlled by a supervisory program residing
on either machine. Instead of going through the standard stages of writing code, compiling it,
loading, and then trying it all out, using a different program for each stop on one machine or
the other, a unified command structure can control the entire program preparation endeavor.

A third happy result of the link is that complex forms of feedback (for example, visual
feedback) can be interfaced to running manipulater programs across this link. The running
program can wait for a picture to be taken and processed on the large machine and the
results of this exercise can be transiated into new values to be deposited in variables in the
running program. This interfacing of high-level or computationally expensive feedback is
easily obtained Ly using a program to emit the commands that the human usually would feed
* into the debugger. That same program would be in charge of controlling the television
camera or other feedback device. If the debugging commands are the same as the source
language statements, the debugger is also an ideal hook on which to hang strategist programs
that reduce abstract task descriptions into AL programs.
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Section 5

AL is designed with two independent types of programmable side effect: condition monitors
and affixment structures. The ability to associate side effects with situations that are suspected
of leading to bugs is very useful in debugging, but the fact that hidden responses are taking
place can be very confusing:

How can condition monitors be used to assist debugging? If it is suspected that some code is
failing because the arm is never feeling a desired force, a condition monitor can be designed
to stop the arm after some period of motion as if the force had been felt, and the program
can be continued. In this case, a structure is used to simulate a desired result so that other
errors can be found. The condition monitor can also be used to scan for the presence of a
bad condition; for example, suppose that an erroneous signal is being emitted on an event
somewhere and it is not possible to figure out who the culprit is. A condition monitor that
waits for that signal can then immediately stop execution and let the programmer poke
around and find out what is happening. Tracing evanescent situations is the most efficient
debugging use of condition monitors. A monitor can be used to trace the forces on an arm, so
that the programmer can figure out what a reasonable threshold might be for stopping the
arm. Condition monitors are also capable of testing variables and complaining if the values
are bad, but variable testing Is the special forte of affixment structures. A special changer
can be associated with a suspect variable; whenever its value is changed, the changer can
either trace the current value or it can make a validity check and complain if the value is
bad.

Both of these programmable side effects find debugging use, therefore, in testing out’
suspicions and running traces during the execution of the program. In this sense they are
very like output statements with which a programmer peppers his code in order to get some
fMavor of how the ingredients of his program are interacting. In order to use this approach it
is necessary to have some suspicions, to modify the program in such a way that the suspicions
can be tested, and to then try out the code anew. Interactive debugging usually does not
follow such a tracing paradigm; the debugger itself is used to do the necessary tracing. If we
allow the debugger the same power as the source language, there is no reason why a changer
could not be patched into the graph structure for a variable, or a condition monitor spawned
by the debugging process to perform the desired tracing. In this way, the power of the side
effects can be brought under the control of the debugger.

Side effects, aithough easily brought into the house as pets, are not 30 easily domesticated.
Those instances where changers, calculators, and condition monitors influence the values of
important variables or arm motions can be difficult to perceive. Mistakes in affixing frames
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can cause particularly opaque results. All that can be observed is that the arm goes to the
- wrong place. But how the destination frame managed to get such a value may be a complete
mystery. Condition monitors cause 2 new flow of control to temporarily exist, and during that
time, commands that move arms may be encovntered. In fact, it is possible to program
changers so that a side effect of assignment into a particular variable is to park an arm!

The debugger must help the programmer figure out the causes for all observable behavior.
If the arm starts to move unexpectedly, the user must be able to halt it and find the source
code that is is causing the motion. That means that the processes that implement condition
monitors and changers must be subject to the same scrutiny as all other garden-variety
threads of control. In particular, these special processes have unusual states that the debugger
should be able to influence. For example, a condition monitor has these states: inactive, active
but waiting for the next checking time, busy checking, executing the conclusion, and
uncreated (its block is not being executed). The debugger should be able to put a Aold on the
monitor 5o that it does not leave its present state, and then be able to force it into some other
state; in this way, it is possible to test out the conclusion of a condition monitor without
having to actually create the condition that normally triggers it.
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CHAPTER 4

DESICN OF A DEBUGGER

What's in @ name¥ That which we call a rose
By any other name would smell as sweet.
Shakespeare, Romeo and Juliet, 11:ii,43

This chapter describes some of the design of a debugger for AL. Following the pattern of
RAID, AID, and BAIL, this debugger is termed ALAID, although other suggestions [Cerf,
personal communication] include TRYAL, ADDALD, DEBAL, and even ALDEBERAN
(AL DEBugging Execution Arm Environment).

ALAID is an attempt to meet the special needs of an arm code debugger. Its driving
principles are these: 1) The link between the two computers allows a partitioning of planning
and runtime information. 2) Debugging should proceed equally well from either machine: they
should be symmetric as far as possible. 3) Debugging should be possible without the link
insofar as the necessary information is available on the machine used. 4) Debugging should
consist of symbolic examination and modification of data, program, and control flow. 5) The
debugger should be usable as a top-level command structure for the system composed of the
compiler, the runtime, and the debugging package. 6) Insofar as possible, all structures of AL
code should be available for examination and modification under formalisms present in the
source language.

The purpose of this chapter is to discuss the structures needed to implement such a debugger.
This treatment is heavily based on the nature of the current AL implementation at use at
Stanford, both its software and its hardware. The ideas, however, are generally applicable to
_ any AL implementation and in part to any programming language implementation.

The state of ALAID at the moment is fairly primitive; it resides on the two machines and can
start up the interpreter, examine and set arithmetic variables, signal/wait events, and cause
the runtime system to enter 11.DDT. These initial facilities alone make the current ALAID
implementation quite useful for testing out new runtime routines, AL programs, and
high-level feedback that requires the PDP-10. Many of the concepts introduced here are
therefore ideas for extensions to ALAID and design strategies for accomplishing their
implementation. '
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) Section 1
The Link Between Machines

ALAID is intended for the interactive debugging of a program that has been comptiled on
one machine and is being executed on another. (The XNET debugger [Beeler 76] also
operates in a multi-machine environment.) The compilation phase not only transforms the
input code into a form acceptable to the target machine, but also develops a planning model
of the values of variables throughout the program. Furthermore, it creates a symbol table
associating the printing names of variables with level-offset pairs. One might expect the
compilation phase to emit some of this state information into the output code, so that the
debugger can reside entirely on the target machine. However, since the tompilation machine
would be needed anyway if the programmer decides to rewrite a section of code, it seems
reasonable that the compiler (or at least some of its tables) remain available during a
debugging run in order to assist in associating names and planning values to variables and to
help in making patches. In this way, the runtime environment does not become cluttered with
too much information that is not directly needed during the execution of a program; such
information can be found in the other machine.

In order to make use of several machines, it is necessary to have a form of communication
between them. In this case of AL, the compiler process resides on the PDP-10, running under
a timesharing multiuser system, and the target machine resides on the PDP-11, running under
the kernel. The purpose of the link is to provide an efficient communication path between
* these machines so that each machine can 2ppear to be both a debugging user and a source of
information from the point of view of the other machine. This link has been implemented as
described below.

I. PROTOCOL FORTHE LINK

The actual link implementation uses the hardware interface that connects our PDP-10 with
the PDP-11. That interface allows either processor to generate interrupts on the other, and
the PDP-10 can read and write the PDP-11 unibus. In this way, information in the memory
of the PDP-11 is available to both processors.

In the following discussion, it is assumed that the interface is a foolproof channel; all
communications in both directions reach their destinations. Much work has been done in
computer networking to provide for noisy channels; most methods developed in such
environments involve positive acknowledgement, retransmission, and sequence numbers.
These techniques could be employed in the ALAID context as well if the channel were
unreliable; since the present hardware i5 no less reliable than the processors themselves,
problems of inaccurate transmission have been ignored. The current link is also less powerful
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than a full-fledged network-based communcations protocol; the two machines must be
physically connected by the PDP-11 unibus. These restrictions are not fundamental to the
idea of the two-machine link.

In order to avoid conflict in the allocation of this memory for communications, two fixed
blocks of memory, called noteboxes, are reserved at all times. One is for the PDP-10 to send
little notes to the PDP-11, and the other is for the PDP-11 to send notes to the PDP-10. Asa
sign that the note has been received and to clear the notebox for further communication, the
receiving processor overwrites the first word of the note, setting it to zero. The traffic in
notes provides for agreements on the use of the larger memory for more substantial messages;
all actual allocation is treated by the PDP-11, which honors requests for message space both
from its own processes and from foreign notes.

There are very few note types required to maintain the link, since the allocation of message
buffers is the prime activity at this level. Allocation is non-symmetrically handled by the
PDP-11, so the two processors send different kinds of notes to each other. Each note is at
most three words long; the noteboxes occupy very little space. The first word identifies the
type of note, and the second two words provide room for arguments to the requests and
responses.
2. NOTES FROM THE PDP-I0 TOTHE PDP-HI

These are the note types that the PDP-10 can place in the PDP-11s notebox:
note type GETBUF &

Allocate a message buffer s bytes long. The expected response is the BUFALC note.

note type USEBUF

The buffer that starts at address a is a message. Look at it, act on it, and then reclaim the
message buffer. '

note type RELBUF <&

The PDP-11 sent the PDP-10 a message at address a. The PDP-10 has looked at it and is
finished with it.

3. NOTES FROM THE PDP-1ITOTHE PDP-10

These are the note types that the PDP-11 can place in the PDP-10's notebox:
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note type BUFALC ¢, @

A requested buffer has been allocated for the PDP-10' use. It has size s (bytes) and is at
address a. :

note type TAKBUF <&

The buffer that starts at address a is a message for the PDP-10, which should look at it
and act on it. '

4. MESSAGE BUFFERS

Once the dickering between processors has established room for a message, the responsible
processor fills the given area (known as a message buffer). There are several kinds of
messages. The first is a request, which is either a query for information or a directive to be
obeyed. The second message type is an answer, which either contains information queried by
some other message or indicates that some directive has been carried out. A third type of
message is the ridbit, which is information possibly (but not necessarily) interesting to the
destination processor, and which may be ignored; it is never acknowledged.

Each message buffer holds the contents of the message along with a few header words that
indicate the nature of the communication:

buffer header MESID

This entry is the communication number of the message. Answers to requests have the
same number as the request; in that way, when a processor receives an answer it can use
the communication number to determine which process within its domain made the request
and is awaiting the response.

buffer header  MESTYP
This field distinguishes whether the message is an answer, a query, or a tidbit, and
whether it comes from the PDP-10 or from the PDP-11. When a message arrives at a
processor, this information is used to decide what to do with the message.

buffer header MESLTH

The length in bytes of the message.
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5. ASAMPLE DIALOG BETWEEN MACHINES

Suppose that the user has asked the PDP.IG for the value of some variable. The
communication between the machines might look like this:

GETBUF 50 from POP-10

BUFALC 50,20436 from POP-11

{message at 20436: type request. SHOW YALUE SKAME varl)

USEBUF 20435 from POP-10

<PDP-11 getls value, makes sn nswer ot 22312: type snswer. SCALAR 3.0>
TAKBUF 22312 from PDP-}} '

<PDP-10 gets anawer, reports it to vser)

RELBUF 22312 from POP-10

6. ROUTINES RESIDENT ON THE TWO MACHINES

Even though symmetry of form between the two processors is desired, each has a different
regime in force that constrains the implementation. The runtime system is under the tutelage
of the kernel, which has control over the various processes and scheduling. The part of
ALAID that resides on the PDP-10 must be compatible with the compiler, so it has been
written in SAIL (the language in which the compiler is written) using the SAIL process
mechanisms.

The most primitive routines on each processor are those capable of receiving and sending
notes. The implementation could make use of the interrupts that each machine can generate
on the other, but at present this is not done; the receiver on the PDP-11 sleeps for a short
time between checks of the notebox, and the receiver on the PDP-10 is a SAIL process that is
explicitly called when communication is expected. When the receiver gets a note, it makes a
Copy and zeroes out the first word of the notebox as z sign that the note has been seen.
When the sender is asked to transmit 2 note, it waits until the proper notebox is free (its first
word is zero) and then dumps the note in place, putting the first word in last,

These routines are under the control of & process known as the server, which perpetually
loops, calling the receiver to get a note and then deciding how to treat that note on the basis
of its type. For example, the server on the PDP-11 must interpret RELBUF, GETBUF, and
USEBUF. The first involves only the free storage allocator; the second also must call the
- sender to inform the PDP-10 that a buffer has been allocated. The third note, USEBUF,

implies that a message has arrived, in which case the routine treatmessage is called to handle
it.

Treating a message involves different actions for different kinds of messages. If the message
Is a request, a new process is started to handle it and eventually to return an answer. If the
message is an answer, then it is made available to whatever process sent the corresponding
request. The correspondence between process and request message number is kept in a list
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that is modified whenever a request is sent or an answer is received across the link. If the
message is a tidbit, then its contents are directed to a tidbit handler. The usual response to a
tidbit is to print it for the user to see. (A process that has encountered a breakpoint makes its
plight known by passing tidbits)

Just as there is only one server on each machine, there is likewise only one requester.
Sending a request involves adding the name of the requesting process to the waiting list and
sending notes across the link to agree on the transfer of the message. The process that asked
for the transfer is suspended until an answer arrives. '

7. FLOW OF INFORMATION

To demonstrate the manner in which information is passed among the various pieces of
ALAID, consider the user request to place a breakpoint at a particular point in the code.
Assume that the user is communicating directly with the PDP-10, and that he uses the name
of a program label to identify the spot. The request looks like this:

'BREAK SADORESS L1
Now the PDP-10 cannot itself insert breakpoints, so it passes the entire request to the PDP-11.
The PDP-11 cannot interpret the label, since it has no symbol table. Therefore it must ask
the PDP-10 to identify the location in its code:

CONVERT PADDRESS "SADDRESS L1*
The appropriate symbol table resides in the PDP-10, so it takes this request and finds that L1
is at location 132012, It then responds to the PDP-i1:

PADDRESS 132012
Now that the label has been resolved, the PDP-11 proceeds to place the breakpoint. Having
finished its task, it responds to the PDP-10:

DONE

Some tasks require more communication than this simple example demonstrates. If the user
wishes to assign a value to a variable, then the variable must be sought in a symbol table, the
value must be evaluatec (possibly involving compiling code and running it, or else by
repeated requests for the values of variables), and finally the assignment can be made.

These examples point out the various portals to which each ALAID member must respond.
One portal is the user: In the example above, this portal is in use on the PDP-10 member
only. Each of the two members in the example has a portal devoted to the other member. In
addition, ALAID can be used as an interface into AL from another program; in this case, a
portal is devoted to that program. One example is when the executing AL program
encounters the breakpoint set in the scenario above. It then informs the PDP-11 member of
ALAID through its own portal; ALAID then sends a tidbit to the other member.

More than one portal can be in use simultaneously, as we have seen; the PDP-10 member is
active on two portals during the breakpoint-setting example. In fact, the program portal can
be thought of as a potentially infinite set, with one portal for each process currently active.
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This would be the case when more than one process has_ hit a breakpoint.

Given the plurality of portals, effort must be exerted to direct information to the right place.
- Queries are signed by the originator, and responses carry the same signature, so it is
straightforward to direct the answers back to the proper portal. A harder question is to
decide where to send a query that cannot be answered locally. In the case of a two-member
ALAID, the usual answer is to send the query to the other member. If the query itself can be
. answered, but to complete the answer requires some information that is not available, then a
query can be formed to get that information from the other member. If that query fails, then
the user can be asked; he is also a member of the ALAID community, although perhaps not
in such good standing. In that case, care must be taken to distinguish between the user’s
answers and further queries that he might make. In this way, portals can be characterized by
their ability to make and respond to queries. The portal that connects ALAID with a
program is usually useful only for transmitting queries into ALAID and answers back out.
The user is also usually a questioner, but in some situations he can be asked queries directly.
The other members have both properties of originating and responding to requests. For the
sake of completeness, one can imagine a portal connected only to symbol tables; such a portal
can be queried but will never generate a request.

Given the multiplicity of ways to direct queries that cannot be directly answered, how can
ALAID know that a query cannot be answered at all? A simple approach for two-member
ALAID is to try only the other member, and if he cannot help, then the request is
unanswerable. If the impossible part is only a subset of the whole request, it can be useful to
report back that this particular part was the bottleneck. Otherwise, a simple failure return
suffices. More complicated situations ensue if there is more than one portal to which the
request can be directed, or if there are several ways to subdivide the query into easier
questions.” Then the process of finding an answer has the appearance of a depth-first tree
search; every node represents a subquery, and has a set of alternative strategies, each of which
leads to a collection of other nodes that must be successfully treated for that strategy to work.

In order to prevent the search from becoming circular, each query must contain some history
that tells which members of ALAID have tried to answer the question and have failed. The
initial history list indicates the originator of the query. If a member ever sees a query that he
has seen before, he immediately returns failure. In fact, queries should never be sent to any
member aiready on the history list. If a query generates a subquery that is somehow
equivalent, then circularity is still possible, because the subquery does not share the history
list of its parent, but can perhaps Spawn another subquery that has exactly the same form as
the original one. The only way to avoid this problem is to disallow equivalent subqueries or
to give them the same history list as the original queries.

Some frequently used information might be duplicated in several members. In :his case, any
one that receives a query that requires that information can service it. As long as the
information is static, there is no danger that inconsistencies will arise between the several
repositories. If, on the other hand, the information is subject to fluctuation (for example, the
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current context), then some method must be developed to keep the various versions as
consistent as possible. Tidbits can be sent to all interested parties to inform them of a change
in their data base; the issues reside in who should initiate these tidbits and to whom they
should be sent. '

- If every piece of shared data has an owner, then only that owner should be allowed to make z

change to the data, and when he does, a tidbit should be sent to the other members to inform

them of the change. That means that a request whose effect is to change information that

has duplicate copies must be directed to the member that owns that information; queries that

only investigate the information can be serviced from any of the sharing members. An

alternate technique is to allow any of the sharing members to make modifications, but to force

them to send tidbits whenever so doing. The disadvantage of this strategy is that it is not

possible to be sure of getting the most recent value of such information, because one of the

members may have changed it without yet informing the rest of the community. In the first -
approach, a good value can always be generated by asking the owner specifically.

Tidbits advising that multiply copied information must be updated could be broadcast to the
entire community of members, or each type of duplicated information could include pointers
linking it to the various members who have copies.

8. GENERALIZATIONS OF THE LINK

The idea of connecting two processors together to share in the work of debugging has some
obvious generalizations. The link that has been described is designed to share information
structures in a domain that naturally divides labor between two processors. Cases in which
more than two processors are in use are becoming more frequent; the ARPA network of
computers presents an environment in which cooperation among many machines may be used
in the execution of a single algorithm. Furthermore, the decreasing cost of processors seems to
be creating a trend to divide complex algorithms among several, perhaps many, machines.
The natural question is how well the two.machine link can be extended to treat many
machines.

The two issues raised in the prévious section, directionality and circularity, pose the major
problems to extending ALAID to more members. The circularity issue becomes worse with
fmany processors, since one question can generate several subordinate questions, each of which
can be directed to a different machine.

The directionality issue is the more severe. Each member could have a list associating types
of queries and members that are Capable of responding to them. If a query is not found on
that list, then it might be sent to each of the members in turn under the hope that the current
recognition list is out of date. If a member returns failure from a query, it must also indicate
what other members have been asked to ook at the same query; otherwise, there could be
wasted effort involved in sending the same query back to members that have aiready seen it.
A spanning tree that contains all the members could be used to direct queries; it would be
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illegal to pass a query along any link not in the tree or back across the link by which it
arrived. In this way, it is also possible to reduce the interconnectedness of the entire graph of
members.

It may be unreasonable that each processor should be able to recognize all the possible
- questions. In this case, a set of clearinghouse processors can keep track of who will answer a
given query. So the first action on receiving a query that cannot be immediately answered is
to query the clearinghouse for the name of the members to which to direct the original query.
Thus a legal datatype of the response language includes member names.

What does it mean to have many processors running on one aigorithm? In the case of AL,
one is an execution processor, the other is a planning processor. The most general case is to
have many execution and many planning processors. In AL, the two processors have very
restricted normal communication. The general case may include many channels of
communication among the execution machines. This communication could be handled
exclusively through ALAID on each machine through the program portal. In this way, the
communication link that is already present would be put to good use.

How to connect the various members together is 2 well-studied problem. ALAID takes some
advantage of the interface between PDP-10 and PDP-11. The requirement for many-way
connection is that any machine must be capable of getting messages to any other machine.
One common memory (with one non-reentrant process for parceling out memory) will work,
but short of that, especially for more than 10 or so processors (at which point such linking
may get too expensive) a new kind of message could be used, the transit message. It is not
intended for the recipient, but should be handed on. At this point we are getting into
networking, not debugging issues. As long as any processor can get a message to any other
one in such a way that the sender is identified, it suffices. ‘

One generalization of treating each processor as an indivisible entity, is to treat each process
as an entity. The ALAID member on each process could be shared among all the processes
within a single processor, giving rise to a two-level hierarchy of ALAID communication.
Once a hierarchy of processes is introduced, it can be used as a general ordering technique
for the entire cooperative computation, with higher level processes charged with parcelling out
tasks to inferior ones and directing communcations between those lower processes and the
outside world. Using ALAID-based communication might be fruitful in this domain; much
further research is warranted to investigate these issues.

Another realm for further work is the dynamic redistribution of information. Space

constraints may force one processor to relieve itself of some information of secondary
- importance by giving it to another processor to store. Frequent references to some data may
imply that those data should be made more accessible by copying them or moving them to the
requesting processor. To identify these situations, set up new processors with ALAID
members, and transmit the information is a problem of some difficulty whose solution may
prove quite powerful.
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Section 2
Symbol Tables

As we have seen, debugging is an activity that requires repeated examination and
modification of a test program. The link that has been described in such detail is
fundamental to making information available to the various parts of ALAID. In particular,
symbol tables residing on the PDP-10 provide correspondence between symbolic entities in the
source code and physical entities in the object code. A symbol table can be pictured as a
memory of bindings kept so that the decisions made in binding can be quickly simulated
without being explicitly recomputed. In this way, all the information that goes into the
decisions can be discarded; the result itself is distilled for future reference. Three examples of
symbol tables will be discussed here: variables, processes, and code. Each of these symbol
tables must work in both directions: the PDP-11 representation must be resolved into PDP-10
representation and vice-versa.

1. VARIABLES

The runtime representation of variables is based on their lexical level within the source
program and the order of declaration within that level. A new lexical level is started for each
COBEGIN and PROCEDURE (although procedures are not fully implemented); a slightly
different design might have counted each BEGIN in the lexical level count. Thus each
variable is identified (although not uniquely) by level and offset. Typical values for the level
are 0, 1, and 2, and typical offs s are even octal numbers from 10 to 100. In the runtime
system, these two quantities are combined into one 16-bit word with the level in the left 8 bits
and the offset in the right 8 bits. In order to make a level-offset pair uniquely refer to a
variable, it is necessary to know which of several paraliel blocks, that is, which context,
contains it uniquely. For example, consider this piece of code:
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BEGIN {level 0} {name 1}
SCALAR SI; {offset 10}
COBEGIN .
BEGIN {level 1} {name 2}
SCALAR 52; (offset 10)
SCALAR 53; (offset 12)
:na;'

BEGIN {level one) {name 3}
SCALAR 54 {offset’ 10}
END
EXD
SCALAR 55; {offset 12)
END

and S4, because they are each the first variable in the first level. During execution, there is
" no possible conflict, because two different interpreters are active; the one that has access to §2
cannot see 54, and vice-versa. Therefore a third datum is necessary to distinguish variables:
the name of the interpreter, or, equivalently, a context in which the variable is unambiguous.
Variable $2 is fully described by the triple (2,1,10), which gives the name, the level, and the
offset; variable $3 is (3,1,10). During execution, the name is always implicit, and no code need
be generated. However, if ALAID wishes to access a variable, it must specify the name as
well, either explicitly or implicitly. The current context gives a partial implicit specification; if
it contains only one interpreter, no interpreter name is necessary. If there are several
interpreters, then those variables to which each has access need no interpreter names; the
others do.

The symbol table for variables, which is used to make correspondences in both directions, is
structured according to interpreters. This structure implicitly includes the interpreter name in
each entry. The individual entries include source code name, internal compiler name (which
is different), and the level-offset pair. Search in the table for level-offset pairs is conducted
first in the top.level interpreter of the current context, and then, if necessary, in each of the
next lower-level interpreters. The result of the search is either a level.offser if that will
suffice, or a name-level.offset if necessary, or an error condition: found more than once, in
which case the context is not sufficiently specific. If the variable is not found at the current
interpreter, then surrounding contexts are searched until the variable is found. To find the
source name for a given levei-offser pair, if the level is deeper.than the current context, then
there is no unique solution." Otherwise, it is fairly easy to find the source name.

Once a name.level-offset triple has been found, to find the valye of that variable on the
PDP-11 requires that all interpreters be accessible by name. This is accomplished by keeping
a hinked list of all interpreters (a tree structure would be more efficient if there are many) and
providing a special-purpose pseudo-op INAME that causes the interpreter that executes it to
assume a new name.
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2. PROCESSES

The previous discussion shows that it is necessary to identify processes in order to properly
access variables. Each process is given a unique name by the compiler. An obvious
extension is to allow the user to assign process names himself; this will allow greater ease in
setting the context during a debugging session. A simple pairing of user-given names and
compiler-generated names suffices. (The actual implementation might use hash coding,
although the total number of processes is likely to be small enough so that even linear tables
are adequately efficient.)

3. CODE

The organization of code on the two machines is quite different. The basic unit in the source
. language is the statement, which is compiled into a stream of pseudo-operations. There are
four different naming techniques that can be partially interconverted: source code, source
labels, pseudo-code, and addresses on the runtime machine. Let us restrict our attention to the
problem of determining the current statement in the source language given the. runtime
address.

If the entire source program is kept in the PDP-10 memory (this is the case for the current
implementation), then markers can be emitted along with the code that refer back to statement
names that the compiler understands. In this way, the pseudo-.code can be made
self-descriptive, and to find the source code from an address on the PDP-11, one need only go
back in the pseudo.code until a marker is encountered. The price for this method is the
space occupied in the pseudo-code for the marks, which might amount to about 25 percent of
the total code, not counting trajecrory files and constants. (If these are also taken into account,
then the expense of the marks is only about five percent.)

" A related technique is for the compiler to emit a separate symbol table that coordinates
pseudo-code addresses with source language statements. Such a table would be searched by a
binary chop method. About the same space requirements would be necessary in this case; the
advantage is that the symboi table is separated from the objects it is describing, and it can
therefore be moved to the other machine. The trouble with this method is that during
compilation, no information is maintained about the location where the code will be placed,
and, furthermore, it is hoped that AL will soon become capable of compiling relocatable
modules. The implication of this observation is that the symbol table must be manipulated
by the loader to convert relocatable addresses into actual addresses.

The best solution is to combine these two approaches. The relocatable output should contain
marks that relate the code to source statements, and the loader should remove these marks,
constructing a symbol table in the process. In this way, the binding of the symbol table takes
place at the time that all necessary information is available, and at that point extraneous
information (the marks) can be discarded. This solution also lends itself to the problem of
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finding the pseudo-code location of a given source-language statement.

. Section 3
Control Over AL

Various programs must be applied in order to achieve execution of an AL program. One of
the purposes of ALAID is to control the compilation, loading, and execution process 3o that a
unified face is presented to the user. The ideas in this section lay a groundwork for such a
facility; these concepts have not been implemented in the current version of ALAID.

The primary unit of compilation is the module. It is one statement long, and is self-contained.
In general, the statement is a substantial program, but it can be very short as well. To refer
to variables that are not in that module, a global declaration is given. The planning values
for all global variables starts as "undefined”, so assertions are necessary before these variables
can be used. The output of a compilation is 2 load module that has symbol table, linking,
and planning model information. in the form of decorated parse trees.

A linking loader is invoked to take this load module and inser: it into the current runtime
system. This loader is one of the resident programs on the PDP-10; symbol tables on the
PDP-10 are referenced and modified during the loading process. Direct memory access on the'
PDP-11 is used to actually put the program in place. :

One useful concept is unloading, which takes the current set of modules on the PDP-11 and
packages them into a single load module for future reference. In this way programs that are
constructed piecemeal can be combined together into larger modules. The source code for the
various modules ~vrrently resident on the PDP-10 might be in part available on the PDP-10;
a similar process to unloading creates a source file that combines the various modules together
into one program.

Together, these facilities allow programming by experimentation. Routines are written and
tested until they seem to work, and then they are embedded in larger drivers. A legal
statement in the source language would be "MODULE <name>" that refers to a previously
compiled module. The compiler could either read the source code back in and compile it
again, at some cost of duplication of effort, or recover the decorated parse trees from the
compiled file.

The modules currently loaded in the PDP.11 are therefore a dynamic set; new ones can be
added (patched in), and old ones can be removed. A simple symbol table keeps track of
where each module begins in core, where it ends, and where it is referenced (which should
only be in one place, since procedures are not yet available). To remove a module, its
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physical space is reclaimed, and the place where it is referenced is patched to give an error
should it ever be called.

While programs are being written in this experimental mode, it is useful to be able to
manually move the arm, read the position with ALAID, and use the frame value as a
constant in the program. A simple facility that allows the result of a previous query to be
embedded in a new query will allow the arm position to be embedded in the program under
construction. Each snippet of program that the user constructs is remembered as a module,
and together the modules can be assembled into 2 working program, then stored for future
reference.



{11.30]

CHAPTER 5

COMMANDS FOR DEBUGGING

This chapter demonstrates a tentative subset of the commands to be available in a full
version of ALAID. Some of these commands have been implemented in the first preliminary
version; others are proposed.

In his work on COPILOT [Swinehart 74), Daniel Swinehart gave great attention to the use
of fast video displays for showing the state of a multi-process job. In addition to standard
debugging and control commands, he includes a set of display-oriented commands to
distribute the limited screen among the various data that could be shown and to point to
objects of interest by moving cursors. The display orientation of COPILOT could form a
useful base for ALAID, and the commands listed in this chapter would be enriched by the
addition of display features. It is likely that such facilities would be available only on the
ALAID member that resides on the larger machine, since space is at a premium on the smali
machine. Therefore, rapid redisplay of changing status may not be possible in the ALAID
- environment, but even occasional redisplay would be useful,

The commands are divided into finctional groups by the entities they deal with: internal state
of ALAID, data structures, control structures, control flow, and advanced commands. Each
group has three sections. First, the set of relevant typeout modes is introduced. These modes
 dictate which of several equivalent forms output is to take. Next, commands for examination
are listed, each with a brief description. Last, commands for modification are listed, again
with descriptions.

I. TYPEIN MODES

Many of the commands require specification of variables or code. For example, in order to
ask for the current value of a variable, one needs to name that variable. In general, there are
several alternate formalisms. Some can be immediately recognized in the PDP-11, and others
require the symbol tables that reside in the PDP.]0. Whenever alternatives exist, the user
should preface his typein with an identifying word that indicates what type he is using. (This
i3 a simple way of restricting the input syntax to avoid complex type determination. It is not
fecessary to the ideas behind the debugger.) In the following discussion, typein modes will be
introduced as needed. As an example, to refer to the variable “creativity” by s
source-language name, one would type
SNAME creativity
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Section |
Internal State of ALAID

The internal state of ALAID consists of the current context and a set of modes with which
various data are printed. The context is a thread of execution, possibly containing other
threads within it as subprocesses. Contexts are used to disambiguate the meaning of variable
names and to select processes for interaction. Typeout modes dictate the format in which
variables and code are displayed. Commands that affect execution (like halting and Jumping
commands) influence all active processes in the current context; therefore one should be
careful to distinguish contexts and threads.

This section will discuss the way modes are set; the appropriate typeout modes will be
discussed in the sections in which they arise. Once a mode has been set it is permanent until
reset. (Most versions of DDT have both permanent and temporary modes. RAID associates a
mode for every one of the twenty or so variables that can be concurrently displayed.) Every
time a query is answered in some mode, the name of the mode prefaces the result. The
purpose of this is to make ali output self-identifying, so that the result of one query can be
used as the input to the next. For example, the result of a query for the current locus of
control might be:

PADDRESS 132024,
or it might be

SCODE "MOVE BARM TO BPARK VIA EP°

1. TYPEOUT MODES

Contexts can be displayed by the code that starts up the thread of execution
(CONTEXT-BY-CODE mode). That code can be named by location or by contents.
Locations in the control store can be referred to either by octal location in the PDP.1]
(PADDRESS mode) or by labels and offsets in the source code (SADDRESS mode). The
contents of the control store can be shown either as pseudo-instructions (PCODE mode) or by
the source code that generated them (SCODE mode). Each process has a compiler-generated
identifier. The identifier associated with the top-level thread of a context can be used to
identify the context (CONTEXT-BY-IDENTIFIER mode).

2. EXAMINATION
SHOW CONTEXT

The current context is displayed. For example:
CONTEXT-BY-CODE SADDRESS LAB3



[11.32]

SHOW MODES
Each of the current modes in effect is listed. The only typeout mode in which this list can
be printed is LIST mode. For example:
LIsY
CONTEXT-BY IDENTIFIER
SADDRESS

3. MODIFICATION

SET CONTEXT <thread name>
The thread can be currently in execution or not. If not, then no information will be
available for variables local to that thread. The named thread can include many
subthreads; only those variables in active subthreads may be accessed. The name of a
thread can be given by the same modes used for showing thé context.

MOVE CONTEXT dlist of codes>
The context is to be changed from the current thread. One legal code is "UP n", where n
is a positive integer. This code moves the context to the surrounding thread n levels more
global. Another code is "ACROSS n", where n is any integer. The context is to be moved
to a sibling thread, either forwards (n>0) or backwards (n<0). The last code is "TDOWN
n". which moves down one level only, te the nth daughter thread. An abbreviation for
"DOWN n DOWN m .." is "DOWN n, m, ..".

SET MODE <node specifier>
The typeout mode is set to the one given in the command.

Section 2
Data Structures

i. TYPEOUT MODES

Al arithmetic quantities are displayed according to their type, which is built into the runtime
data structure. That is, vectors will always be typed as three numbers. However, there is
some flexibility in typing rotations {and therefore frames and transforms, which have rotation
components). One mode (ROT mode) reduces the rotation to one swivel about one axis, and
reports the rotation the same way the source language accepts them:
ROT{vector,angle}

The other mode (EULER mode) reduces the rotation to up to three rotations about cardinal
axes. This mode is far easier for the human to understand.



[11.33]

Non-arithmetic quantities include expressions and events. Expressions are printed as code:
the relevant modes are PADDRESS, PCODE, SADDRESS, and SCODE, as described above.

Variables can be named as they are called in the source language (SNAME mode) or as they
are translated for the pseudo code (PNAME mode).

2. EXAMINATION

SHOW VALUE <variable name>
The variable must be available in the current context. The name can either be in
SNAME or in PNAME modes:
SHOW VALUE SNAME barm
SHOW VALUE PNAME 32

EVALUATE <expression>
The expression, which is given in the source language (SCODE mode) is evaluated in the
current context, and the value is returned. With this command ALAID has the full power
of the source language to investigate data structures.

3. MODIFICATION

SET VALUE <variable name> ¢expression>
The variable name 1s given as for SHOW VALUE. The expression can be an expression
variable (in SNAME or ¥NAME modes) or a source-language expression (in SCODE
mode). The facility for “xeciiting source language statements (to be discussed in detail
below) can also be used to set values:
EXECUTE SCODE *(variabled = Cexpressiond*

Section 3
Controf Structures

I EXAMINATION

SHOW CODE <address>
The address can be in SADDRESS or PADDRESS format; the code that is displayed will
be in SCODE or in PCODE depending on the current typeout mode. Thus the SCODE
corresponding to @ PADDRESS can be displayed. If the PCODE is in the middle of a
single SCODE statement, the SCODE displayed will be annotated in progress.
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2. MODIFICATION

SET CODE <address> <code>

The given code (in SCODE or PCODE mode) is placed at the given address (in
SADDRESS or PADDRESS mode). There is no space problem if both the address and
the code are in P modes; other combinations cause difficulties. SADDRESS and PCODE
is usually foolish; it replaces the entire code for the statement with a single PCODE and a
jump to the next SCODE entry. PADDRESS and SCODE is interpreted to mean that
the SCODE at that PADDRESS is to be changed from the beginning, even thought the
PADDRESS may be in the middle. SADDRESS and SCODE is hard because the new
code might not fit in the old location. The newly compiled code is therefore placed in a
fresh location, and appropriate jump instructions are inserted to patch it in.

Section 4
Control Flow

1. TYPEOUT MODES

Locations in the control store can be referred to either by octal location in the PDP-11
(PADDRESS mode) or by labels and offsets in the source code (SADDRESS mode). The
contents of the control store can be shown either as pseudo-instructions (PCODE mode) or by
the source code that generated them (SCODE mode). (An extension to this facility would be
to allow MCODE and MADDRESS to refer to machine instructions.} If the location is a
- pseudo-instruction in the middle of several that all accomplish the same statement, then the
SADDRESS and SCODE outputs will be annotated in progress.

2. EXAMINATION

SHOW EXECUTION

All interpreters in the given context are listed, with the name of the statement currently in
execution. The statement is listed in pseudo-code and its address is given.

3. MODIFICATION

BREAK <address>
A breakpoint is inserted at the given address. When execution encounters this point, a
message will be sent to the user and control will pause until the user allows the program to
continue. The breakpoint influences only that process that hits it; all others that are active
will continue. The message that the affected process transmits to the user includes a
context specification that uniquely defines which process it is; in this way, the user can set
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the context appropriately before issuing investigatory commands.

SINGLESTEP
Once a breakpoint has been encountered, the user often wishes to execute a small piece of
code and observe its effect. The single step command allows a halted process to continue a
short distance and then once again pause. The process that this command affects is the
one pointed to by the current context; if that context includes several active processes, then
the command applies to all of them. This exemplifies the convention that ALAID uses
with regard to contexts: all commands given affect all processes in the current context. It is
always possible to restrict the context to contain only one process. If the single step
command is given to a process that is not in a halted state, then the process will be halted.
The amount that an affected process will execute when singly stepping depends on the
. current code typeout mode: if the mode is SADDRESS or SCODE, then one statement of
. the source language is executed; if the mode is PADDRESS or PCODE, then one
statement of the pseudo.code is executed. After the single step command has been
executed, each affected process will send the user a message that identifies the process and
where it is executing.

PROCEED
Any halted process in the current context is allowed to continue execution. Once the user
15 satisfied that the program is hehaving properly in the region of a breakpoint, this
command Is useful for proceeding to the next breakpoint.

HALT
All processes within the current context are halted. As they stop, they send the user a
message telling where they are. This command will not stop @ moving arm, since the
process controlling the arm is in the middle of a single pseudo-operation.

JUMP <address>
All processes in the current context stop executing at their current location and start
executing at the given address. If a block must be exited or entered before this jump can
be done, then the block exit/entry code is executed appropriately. Since this command is
dangerous, it is not honored if the current context contains more than one active process.

EXECUTE <instruction>
All processes in the current context execute the given instruction. It is not necessary that
the processes be halted first; as soon as they are finished with the current instruction, they
perform the given instruction and then proceed with whatever they were doing. Of
course, it 1s most usual to give this command to a stopped process. The instruction can be
in SCODE or PCODE modes. This facility is quite powerful; any operation available to
the AL language can be performed in this way. For example, to set the value of X to
VECTOR(L,1,3), one would tell ALAID
EXECUTE SCODE *X « VECTOR(1,1.3)*.
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SIGNAL <event variable>
. WAIT <event varisble

These commands are not strictly speaking either control or data modification commands,
but have some of the flavor of both. Their intent is to allow processes to proceed from
event waits by explicitly supplying the signal and to deactivate the ALAID portal until the
program supplies a signal. These facilities allow feedback routines residing on the PDP-10
to communicate with the program on the PDP-11: When the AL program wishes feedback.
it signals a particular "need feedback® event, and waits for the “feedback ready® event.
The cooperating routine waits for the “need feedback™ event, computes the desired
quantities and feeds them into the program by means of ALAID commands, and then
signals the "feedback ready” event, thereby allowing the program to proceed.

Section &
Advanced Commands

This section describes some miscellaneous powerful features of ALAID that do not easily fit
into the pattern used to describe the other commands.

1. CONVERSION

CONVERT <new mode» String)
.. Direct conversion of typeout modes is possible by means of this command. The string
~ should be prefaced with the mode that it carries. Not only does this facility allow direct
symbol-table lookup, but it also allows temporary modes to override the permanent modes.
For example, if the current mode is PCODE, then
| CONVERT SCODE "SHOW PCODE PADDRESS 132624~
is equivalent to
SHOW SCODE PADDRESS 132024
ALAID will respond with the source language representation of the code at location
132024. This example also demonstrates the use of embedding, which allows one ALAID
. query to be embedded in another one. First the innermost query is serviced, and the result
of that query is treated as the argument to the next. The conversion facility is used by the
PDP-11 to translate modes that it does not understand.

2. SUPERVISION

COMPILE clogical name> <source>
LOAD dogical name>

START «<ogical name>

DUMP «<logical name>
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GET <logical name>

INITEALIZE
These commands are intended to place ALAID as the sole supervisory program over the
entire AL system. Each program module can be given a logical name by the user, for
example "SAMPLE". (LNAME mode applies) The source might be a file on the PDP-10
(FILE mode) or a literal statement (SCODE mode). The result of compilation is a file
with name "SAMPLE.PSC"; this file can be loaded by the command

LOAD LNAME SAMPLE

Before the loading can take place, the AL runtime environment must be available on the
PDP-11. If it is not, then the INITIALIZE command will provide that environment.
This command also can be used to flush any old AL programs that might still be
cluttering the execution system. The LOAD command will load the named module after
whatever modules are already loaded, so that several modules can be linked together. Part
of the LOAD command is to make the PDP-10 environment aware of the necessary
symbol tables.

The pair GET and DUMP are used to save an entire state of the world. DUMP creates
the file "SAMPLEALD", which contains the entir» core image of the PDP.11, the
information necessary to continue it, and pointers to the necessary symbol tables in the
PDP-10. GET reverses this operation. In this way, safe points can be created during the
debugging of the program. After 2 GET command has restored the state, it is wise to
issue the command
EXECUTE SCODE *MOVE BARM TO BARM WITH DURATION = §*

which will have the effect of slowly moving the arm from whatever pasition it happens to
have back to the place that it occupied when the DUMP was performed.

3. HISTORY

Messages pass through portals in both directions. Those portals that connect to humans
contain the most important information from the user point of view; therefore it is natural to
keep track of that information so that it is easy to recover. If ALAID has responded to a
query, it is likely that the user will wish to use that response as part of his next query.
Therefore two history lists are kept for each portal that leads to a user: queries he has issued
and the responses that have been engendered by them. A legal field in any query is a
reference to a previous query or response; these references are BACKQ and BACKR, which
take numeric arguments. Therefore, if the user examines the value of a frame and then
decides to add a small vector to it, the dialog may look like this:

user: SHOW YALUE SNAME DEST
laid:  FRAME{ROT{XKAT, 180%DEG),VECTOR{1,2.3))

user:  SET YALUE SNAME DEST SCODE “BACKR{1} # VECTOR{D,0.1)*

For this reason, BACKQ and BACKR are not allowed as variables in the AL language.
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4. THE AL PORT AL

AL programs can talk to ALAID in the same manner as the user. The AL statement

ALAID{ (stringd}
sends the string to ALAID and waits for a response; the string that contains the response is
the value of the call to ALAID. In this way, a program can itself make use of the
state-saving features of ALAID, and it can call in a new load module.

5. ABBREVIATIONS

Certain frequently used commands have standard abbreviations. For example, to look at a
long set of consecutive pseudo-code instructions, it is awkward to repeat

SHOW CODE PADDRESS 1352004
SHOW CODE PADDRESS 132006
SHOW CODE PADDRESS 132010

Instead, the simple command <linefeed> suffices after the first location has been opened. Also
<control-P> can be used for the PROCEED command. Other abbreviations can . be
introduced as needed.
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CHAPTER ¢

CONCLUSIONS

In this repcrt we have seen an approach to debugging that extends to control of the entire
programming process. During debugging, the compiler is available, so that all code and data
structures can be examined as they appear in the source language, and modifications can be
made in the source language formalism. Modules of zcceptable code are Joined together into
larger modules, and eventually a working program is prepared, all under the unified control
of the debugger. In order to increase the investigatory power of the debugger, as many data
structures as possible are available to the scrutiny of the source-language program, and the
debugger has access to all the constructs of the source language.

Structures necessary to the implementation of such a debugger include special-purpose symbol
tables to keep track of the correspondences between the source code and the ob Ject code,
multi-machine links, and debugging processes that act in parallel to the processes they are
mantpulating.

'?he entire programming system that uses ALAID to cement it together and to act as a
supervisory program can be extended to include computationally expensive sensory feedback
by direct communication between the feedback processes and the running programs through
the ALAID links. In addition, this unified structure allows simple programs to be written in
AL that mimic several different modes of manipulator programming, from tape-recorder
mode (in which positions are inanually set and a program is written to repeat those positions)
to completely textual modes (in which all positions and uses of feedback are specified in the
source language). The unification of the various stages of AL compilation and execution also
provides a groundwork on which to base saving and restoring contexts from one stage of
debugging to another, and by the same token, allows backing up to a previous state in any
production run. Real-world problems that mitigate against reversability are not solved by
ALAID, but internal structures can be reset and then queried 30 that the user has some
assistance in repairing the state of the world to what is expected.
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A. KINEMATIC SOLUTION PROGRAMS

To date, several methods have been described for computing the joint angles necessary to
position the Stanford Scheinman Arm at a given point with a specified orientation.
. Pieper(3] presented a method of solution for the general case of any manipulator with three
intersecting axes. Paulll] presented a geometric solution which has been used at the
Artificial Intelligence Project since 1972. More recently, Lewis(4] described a method using
vector cross products to obtain expressions for the last three joint angles and Horn[2]
presented a method of solution using Euler angles for the MIT-Scheinman Arm.

The following is yet another method of solution which has the advantage of extreme speed.
The equations presented below were cerived by Lou Paul and Bruce Shimano using two
different methods, one using vectors and the other algebraic. Only the algebraic solution is
presented here. ' '

I. Transformation Equations

Given a 4x4 matrix (1) representing the transformation from a coordinate system fixed in
the hand of the manipulator to the base coordinate system, we wish to find one set of link
variables {5,.61,53,8‘.93.95} for the Stanford Arm which will produce an equivalent
transformation.

1 Ty Ty T

T 14
T!I TZ? Ti Tzl . { 1 )
Ty Ty Ty Ty

0 0 4] i i

The transformations for the individual links of the Stanford Arm were derived by Paul[1].
If we multiply these six matrices together symbolically and equate the components of the
total manipulator transformation to the required matrix elements (1), we get the following 12
» equations in the six joint variables, where "s" denotes the sine function and "c" denotes the
cosine function.

Ty = s6,( - s0,36, « B cBcl) cfy( - 30,500, c93£4c33c96 » c82c9‘556) (2)

Ty = - 30,8, « cb,c0s6,) + €0,(s0,3030, - <056 0,56, + el cb) (3)
T3 = s6,c0,50, + 6,(s8,¢8, + 0,50, s8,) (4)
Ty = $8,(c0,50,5¢ - S,) « c0,(s8,c8,5, s0,8; + 0,38 50,5 ,) (5)
T,y = s8,( - s8,56,c6, + €038 ¢0,c0, « B,c0,38,) « c6,(s6 30, - cx‘?‘cﬁscﬁﬁ) {6)
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Tyy = 38,(s8,c0; « <0438 58,) - cb,c8 56, (8)
Tau = 30,(85¢0sS¢ + 30,5, + 038,305} + B( - Bs0;Sg + S,) ©)
Ty = = (68y38,c0,c0, + 38,608, + cBy38,c0) | (10)
Tyy = 0,30, Bl - 0,0 B o Bys030 an
Ty, = - 38,58, + chyehy : (12)
Ty = - s6,30,805 + BychSg + B8, + 5, (3)

Of these 12 equations only six are independent - the three equations representing position
(5)(9)(13) and any three of the remaining nine equations which specify orientation.
Furthermore, no unique solution exists for the above set of equations. For the geometric
configuration of the Stanford Arm, there are always at least eight sets of joint variables
which satisfy the equations, but due to physical stop limits only two of these eight can ever
be attained.

2. Solution for 6,8,5,

To solve for the joint variables, we begin by taking advantage of the fact that the axes of
the last three joints of the Stanford Arm intersect forming a spherical joint. This simplified
geometry allows us to reduce the problem from one of simultanecusly solving for all six
degrees of freedom to two separate three degree of freedom problems. This is accomplished
by subtracting the directed length of the last three joints from the position of the hand.
This gives us three equations representing the position of the end of the prismatic joint.
These equations are only functions of the first three joint variables. Denoting the end of
the prismatic joint by {T.T}.T,} and combining equations (4) & (5), (8) & (9), (12) & (13),
we ge{: :

We can now obtain a equation in the single variable 8, by simultaneously eliminating 56,
and S; from equations (14) and {15). After substituting tangent of the half angle equivalents

for the sine and cosine of 8, the equation becomes a quadratic polynomial in tan -21- whose
solution follows:
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- 17
IZTI-E' S: ’T}' ( )

This equation will yield two values for 8, corresponding to the two configurations
obtainable by flipping the prismatic joint over, thus changing from a right to left shouldered
arm or vise versa. The solutions computed using the “s" sign in front of the radical will
produce positive rotation angles for joint 2, whereas the solutions using the negative sign
will produce negative values of 6,. Since we always operate our arms with 0, in the range
[-175, -5], we will use the negative form of the solution,

If $,+Ty is equal to zero, two special cases must be considered: either T 20, which indicates
that 8, is equal to 180 degrees, or Tx<0 in which case equation (17) is indeterminate and the
following equation can be derived after simplification of the polynomial used to develop
equation {(17): '
6, Ty
tan -f - T;: (IS)

Once the tangent of the half angle is determined, the sine and cosine of 8, can be computed
from the following tr gonometric identities:

8, 91
Z:an-;,- ; I-mn’-i-

5. = 2 b, = {19)
' Y : 1Y
1+tan 7 1+1tan 7

Next, re-writing équz:ions (15) and (16}, we obtain the following expressions for the sine
and cosine of 8,.

T}s - s:fai
) $340,

36,

Substituting expressions (17),(19) for the sine and cosine of 8,, we obtain:

VI TyT-§,1

T,-8§
Z 1
;82 = 53 Céz -

3

(20)

Since we are limited to working with the extension of the Prismatic joint, S;, between 6 and
35 inches, the ratio of above equations will be determinate and independent of §,. Hence, we
can compute &, using an arc-tangent function and equations (20).

The extension of joint three can now be found by evaluating the following equation which
was derived by simultaneously solving equations (14) and (15) for Sy
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Tvcl, + T.sB
S. = XY yivy

3 @

2

Since mechanical stop limits prevent §, from being either 0 or -180 degrees, the equation for
S, is never indeterminate.

Having found values for 6, 8,, and §,, we can now solve the remaining nine transform
element equations for values of §,, 6, and 8.

3. Solution for 6 8.8,

There are primarily two forms of the following equations that can be used to solve for the
last three joint angles. The two sets of equations differ in how the degenerate condition for
the last joints must be treated. The arm configuration is called degenerate whenever & is
equal to 0 or 180 degrees. At these times the axes of rotation for joints 4 and 6 are collinear
and only the sum of 8, and 8¢ can be treated as an independent variable. One form of the
solution equations for the last joints has the advantage of producing valid results whether or
not the arm is in a degenerate position. However, these equations are slower to evaluate
than the equations which require that degenerate configurations be treated as a special case.
For this reason, only the latter form of the equations will be presented.

We will find it convenient to work with combinations of the egquations for the third column
of the transform matrix in deriving expressions for 8, and §,. Since this column indicaes
the direction of the Z-axis of the hand, all of its terms are independent of 6. From
equations (4), (8), (12) we obtain the following expressions:

Tyg0) - Typch, = 6,56, (22)
Ty336; + Tyy30,c6, = 58,0 - B,56,¢0 6, (29)
Tayfy - T3330136, = 0,308 - ¢B,c6,e8,56, (24)
T30, - Tyye0,30, = s6,c8,c0,58 + 6,30, 58, (25)

In order to distinguish between degenerate and non-degenerate configurations, we will begin
by deriving equations for the sine and cosine of 6, in terms of 0,8, and S;. Combining
equations (22) & (23) and (22) & (24) & (25), we obiain:

(26)
By = (Ty§¢By+Ty330, 18, « Tyye,

The sine equation reflects the fact that 6, can be arbitrarily selected to be positive or
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negative. Since the last three joints have intersecting axes any two sets of joint angles
{6,050} and {6,+180,-8, 84180} are equivalent and in fact occupy the same volume in
space. If joints 4 or 6 have less than 360 degrees of rotational freedom, the duplicate
solutions can be used to minimize the loss in orientation capability. Otherwise the choice
among the solutions can be made on the basis of producing the minimum total change in
joint angles.

If 8, is equal to 0 or 180 degrees, then either 6, or 6, can be selected arbitrarily and. the
remaining angle of rotation must satisfy the transformation equations. As the full range of
O, for the Stanford Arm is [-110,110], we need only concern ourselves with the case of 0,
equal to zero. Equations (10) and (11) yield the desirec equations for this degenerate case.

T T
sin(B + 6 = - = cos(Blg + B,) = - -2 @
bt 2

If the configuration is not degenerate than we can use the following expressions for 8,

which can be derived from equations (22), (24), and (25).

. tT13C3:¢T23iB!}C82 - T33i62 cg . T”xe! - Tzacsi
b . st

s8, (28)

In order to form expressions for §,, we will now make use of the remaining two columns of
the transform. These first two columns give the orientation of the hand about its Z axis.
We will find it convenient to immediately combine equations (2) & (3), (&) & (7), and (10} &
{11) to eliminate some of the variables.

T80, ¢ Typcly = $0,c6, « s6,¢0,0, (20)
T“ses s T8, = =s,c6, {31)

From these three equations, we can cbtain explicit formulas for the sine and cosine of &,.
However, rather than use these equations we can obtain much simpler expressions if we
combine the three equations above with (22), (24), and (25) to obtain the following formulas.

(T, e80T, 56 )68, « 1,0 (T),60,4T,, 68,058, « T,.c0
585 - 12172 ‘ﬁl ] Ve 596 R R | ‘8| pd JiTT2 (32)
3 5

. This completes the solution for the joint angles of the Stanford Arm from a desired
tranformation.
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4. Solution Execution Time

A new arm solution program has been written which employs the equations presented in this
paper. The execution time for this routine is approximately 2.2 milliseconds on a PDP11/45
using hardware floating point arithmetic. This is roughly half of the time that was formerly
required to compute the joint angles given a tranformation.

4. Reverse Solution Program

To compute the hand transformation from the joint angles, Horn [2] demonstrated that for
the MIT-Scheinman Arm it was very efficient to symbolically expand the matrix products of
the first three and last three joint transformations and hand code the computation of the
resulting matrix elements. The total arm transformation could then be determined by
multiplying the two matrices together in the standard fashion. A further improvement to
this scheme has been suggested by Lou Paul. Instead of forming the full 4x4 matrix
representing the transformation for the last three joints, only its last three columns are
explicitly computed. The last three columns of the full arm transform can then be
determined by multiplying the two partial transformations together, while the first column of '
the full transformation can be formed by taking the cross product of the second and third
columns. We have written a program to perform these operations for the
Stanford-Scheinman Arm and find that it executes in approximately a third of the time of
our former method of multiplying the six link matrices together. The nominal execution
time for this new program is approximately 2.0 msec. The two partial transforms used for
this computation are presented below. All four columns of the transform for the last three -
joints are presented for the sake of completeness.

Transform from Al to AS:

36, cb,ch, cf,s8, -56,5,4¢0,50,5,
-cf, s0,¢0, s0,s8, s6,50,5 socﬁlsz
0 ‘382 582 Cezﬁfﬁ!

0 0 ¢ 1

Transform from A4 o AD:

-30,30+¢0,c0,cB  -50,c0s-c0 cB58, o€ 30 cf s8,S
s8,c0cO,0cl 50, -0, cO:50,+c0,cb 50,50 s0 36,5,
-38,c0, s6,38, by d.S¢
) 0 0 l

B. AUTOMATIC FORCE WRIST CALIBRATION

In an earlier report [6), we discussed the design criteria and operational specifications for a
six degree of freedom force and moment sensing wrist that was designed and built for the
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Stanford Arm. At that time, we noted the importance of calibrating the force wrist since we
found that unpredictable mechanical coupling had caused our theoretical estimates of the
response of the wrist to be in error by as much as 5 percent. Furthermore, while the thermal
drift and hysteresis were fairly small, it nevertheless seemed 2 wise precaution to re-calibrate
the wrist from time to time. For our initial tests, we calculated the calibration matrix using a
method that required that we apply three orthogonally oriented forces and three

orthogonally oriented moments to the geometric center of the wrist. To this end, we set up
" an elaborate system of pulleys and weights. While this type of procedure is acceptable for
testing purposes, it will prove to be too time consuming to employ when the wrist is in daily
use. Indeed, once the force wrist is mounted on the manipulator, applying pure forces and
moments to the force sensing wrist may be impossible without either detaching the hand or
attaching special collars. A more acceptable method than either of these two alternatives is
to use a method of calibration that can deal with coupled combinations of forces and
moments. Also, in order to minimize the set-up time, we wanted to employ a method of
calibration that requires the minimum number of special purpose attachments to the arm.
With this in mind, the following calibration procedure was devised.

l. Forwerd and Reverse Calibration Matrices

For our force sensing wrist, a total of eight pairs of strain gages must be sampled in order to
resolve the three components of force and the three components of moment applied to the
wrist. If the assumptions of superposition and perfect elasticity are made, any one of the
components of force or moment would in theory be only a function of two or possibly four of
the strain gage readings. In fact, we found that it was necessary to consider each component
of force to be a function of all eight strain gages in order to achieve better than 1% accuracy.
If we let {Fy FyF My MyM,} represent our force vector and ¢; {i =1 to 8) the eight strain
gage readings, calculating the force vector from the strain gage reading can be accomplished
by the following matrix operation.

F o= L x«¢ {33)
T

{ = itz <o (3 2 g g ty g tT
€11 €12 ©13 ©4 ©15 ©15 €17 €3
€21 ©22 ©23 ©4 C35 S5 Cp7 Cop
C « | ©3 ©32 ©33 ©3; ©35 S35 C37 C3g
€41 C42 C43 C44 C45 C4p CS47  Cu43
51 ©s2 ©53 ©s54 C55 S5 C57 Cog
61 ©62 ©33 Sg4 g5 Cgg g7 Cgy

The objective of calibrating the force sensing wrist is o compute the :ij matrix elements
based upon experimental information. To do this, we will first compute the elements of the
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pseudo inverse calibration matrix which was described by Watson [51 The calibration
matrix, C, and its pseudo inverse, Cn, are related by the following formula.

T

Ca={ cnl x Cn )'} x Cn (34)

The pseudo inverse matrix has terms called cn, j (i= 1108, j= 1 106). The pseudo inverse is

analogous to the normal inverse matrix but it is defined for non-square as well as square
matrices. The Cn matrix can be used for computing the response of a single strain gage to
the application of a specified force vector. This relationship can be written as follows:

¢« = CnxF (35)

Once we have computed Cn, we can use equation (34) to compute the elements of the
forward calibration matrix, C.

2. Computing the Pseudo Inverse Calibration Matrix

To compute the elements of the pseudo inverse matrix, six independent, known force vectors
must be applied to the wrist. These force vectors need not be orthogonal nor do they have to
* be pure forces or moments; however, we will require that their values be known at a single
point whose position is known relative to the center of the force wrist. For each of these
force systems, all eight strain gage readings are to be recorded. We will define the values of
the force vector and the readings as follows:

¢..= the reading of the jth strain gage due to the

i.
’ application of the ith force vector (i=1t0 6; j=1 to 8).
fiy = the kth component of the ith independent force

vector (i=1 to 6; k=1 to 6).
For each of the six independent force vectors, equation (35) must apply, so we can write:

{ij - fntﬂ'!iz ¥ e ws * {is‘cnjs

fori= 128 j= 128

These 48 equations can be re-written as the following matrix equations:

€1j f11 fiz f13 fie fis tis cnjy
€2j f21 f22 fz3 f24 fs f26 cnj2
;| . | f1 fa2z faz fa fas fas | | | "3 (36)
4 far fa2 fa3 faq fas fus cnj4
‘5j fg1 fs2 fsa fs4 fsg fog cnig
g fe1 fs2 fe3 feu fes fes cnig

This formula represents a system of eight matrix equations, each of which relates the
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response of an individual force sensing element 1o a series of force vectors. For each of the
matrix equations, we have read the six values of the specified strain gage and 50 long as the
six force vectors are independent, the 6x6 matrix in equation (36) will be non-singular.
Therefore, by applying a standard routine that solves sets of linear equations, we can solve
equation (36) for the values of the clements of one row of the inverse calibration matrix,
on (k = 110 6). By repeating this procedure for each of the eight matrix equations, all of

the elements of the pseudo inverse calibration matrix can be determined . Equation (34} can
then be used to compute the forward calibration matrix.

It should be noted that this basic merhod of calculating the pseudo inverse calibration
matrix would still be applicable if one wanted to utilize the information from more than six
force vectors. If there are n samples taken (n>8), the matrices in equation (36) can be
replaced by (n X m) matrices and an approximate solution for the rows of the inverse
calibration matrix can be found by the method of least squares.

3. Calibration Procedure for the Stanford Arm

As we are no longer restricted to applying pure forces and moments, we will be able to
calibrate the force wrist while it is mounted on the Stanford Arm. In fact, we can utilize the
positional and rotational degrees of freedom of the manipulator together with the weight of
its hand to aid in the calibration procedure.

Since the force wrist is mounted between the last active rotary joint and the hand of the
manipulator, the known weight of the hand will be used as a standard of reference against
~ which all other weights will be compared. While the weight of the hand is not the bes: of
all possible references, due to its light weight compared 1o the maximum load that the force
wrist can measure, it does have the advantage of being constant and ever presen:. Also,
since the weight of the hai.d must be subtracted from whatever readings we take with the
force wrist, using it as a reference will reduce the absolute error when small forces are to be
measured. Furthermore, since calibration measurements only require the reading of static
forces, many readings <an be taken for each force vector and digital filtering can be applied
to increase their precision.

We now present the outline of a simple program which can be used to calibrate the force
sensing wrist automatically, ie, without the intervention of manipulator programmers. For
our measurements, we will define HW to be the weight of the hand, DCM to be the distance
from the center of mass of the hand to the center of the force wrist, and DH to be the
distance from the center of the hand fingers to the center of the force wrist. We will resolve
all forces and moments at the geometric center of the force wrist.

l. The first force vector to be applied is {0.02HW,000. To obtain the
corresponding strain gages readings, the are is first moved to a position with
the hand pointing directly down and a series of reacings are taken. Then
the arm is re-positioned so that the hand is pointing directly up and a
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second set of readings are taken. The difference beiween the two sets of
readings are saved as our ¢ 1j

2. Next the wrist of the arm is rotated until the hand is horizontal and the X
axis of the force balance is vertical. The readings taken in this position and
with the hand rotated 180 degrees about its central axis correspond to the
force vector {2HW,0,0,02HW+DCM,0]}.

3. The third set of readings are to be taken in exactly the same manner as the
second set except that the hand is first rotated about its central axis 90
degrees to align the Y axis of the force sensor with the vertical. The force
vector associated with this set of readings is {0.2HW,0,-2HW+DCM,0,0}.

4. In order to obtain two more independent readings tha: combine forces and
moments along the X and Y axes, the manipulator is now directed to locate
and pick up any convenient object in the work area. After the object has
been grasped, all that we need to know is the position of center of mass of
the object relative to the center of the force wrist. For this purpose, it is
convenient to work with a fairly symmetric object that can be grasped such
that its center of mass coincides with the geometric center of the finger tips.
If this is true, then the weight of the object can be determined by repeating
step 1 with the object in hand. The new readings can be scaled against the
old and the weight of the object can be determined in terms of the known
weight of the hand. We will call the weight of the object WT. We can now
repeat step 2 with the object in hand. The force vector corresponding to
these readings will be {2HW2WT,0,0,02HWsDCM-2WT+DH,0}.

5. We now duplicate step 3 with the weight in hand to obtain a new set of
readings. The force vector produced by the combined weight of the hand
and ob ject will be {02HW2WT,0-2HWxDCM-2WT+DH,0,0}.

6. For the final force vector, the manipulator must grasp an object fixed in
place. This can be a vise, another manipulator, or even a willing and strong
human volunteer. After ensuring that no net forces or moments exist along
any of the axes, the motor of the last rotary joint of the arm is driven with a
constant and known torque, T. Readings are taken for the torque directed in
both directions and the corresponding force vector is given by {0,0,0,0,02T}.

Once the strain gage readings for the six independent force vectors have been taken, the
procedure discussed in the previous section can be used to compute the calibration matrix
for the force sensing wrist.

4. Resolving Forces and Moments at an Arbitrary Point

It is often necessary to resolve the strain gage readings into forces and moments that act at a
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point other than the position used for the calibration. For example, we might wish to
monitor the forces at the finger tips to enable us to stop on contact or we might be interested
in the interaction between a tool we are holding and a work piece. In either of these cases
the problem is to determine the applied force vecor at a point located at a distance
{d):‘d?‘dz} from the calibration point. For a simple linear translation, the new force vector,

{FX"FY‘Iz"MX"MY"MZ'] is related to the force vector at the point of calibration,
{FX'FY'FZ'M}:'MY'MZ}' by the following matrix equation.

Fyo 1 8 @& @ ¢ &8 Fy
Fys 8 1 & 8 8 8 Fy
Fos 8 a 1 8 2 8 F
|, x| 2 (37)
nxv 3 -ﬂz -i-ﬁv i ] a ﬁx
My -dy d¢ 8 8 8 1 My

We now call the 6x6 matrix on the right D. Then in order to directly resolve the strain gage
readings into an equivalent force and moment at a point located at {dx,dy.tiz} in the

calibration coordinate system, we combine equations {37) anc {33) 1o obzain:
F=DxCx«

Finally, if we desire to rozate the coordinate system along which the forces and moments are
resolved, we can again pre-multiply the calibration matrix by an appropriate 6 x & matrix.
Assuming that the rotation is represented by a 3 x 3 marrix, R, which defines the rotation
from the calibration to the new coordinate system, the total transformation from strain gage
readings to the desired force vector will be given by:

FF= RRx D x C x ¢

where
R
2 R

[

R* =

5. Current State of the Force Sensing System

The calibration method that has been described in the preceding sections has been used to
calibrate a force sensing wrist with an attached hand that was not as yet mounted on a
manipulator. From these initial tests it appears that the calibration method works quite well.
We were able to compute a calibration matrix that could accurately resolve subsequent forces
and moments to within approximately 1.

At present, we are awaiting the mounting of our force sensing wrist on one of our Stanford
Arms. In anticipation of this event, sofiware has been written which can be used to calibrate
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the wrist automatically. In addition, the software now exists to ompute forces from the
strain gage readings given the calibration matrix and to resolve these forces at a point
separated from the calibration center by a linear transformation.
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Chapter 1.
'{NTROQUCIZQE

This report summarizes recent work on the automatjc generation of AL Programs from
high level task descriptions. It s divided into three major chapters, First, the AL language
is reviewed briefly, and an extended Programming example is used 1o illustrate the problems
that arise when people write Manipulator programs, Next, the modeling requirements for
automatic coding are analyzed, since the automation of coding decisions requires that the

The material contained in this Teport is a condensed version of part of my dissertation
k4 The main omissions are a discussion of the AL Planning model, ob ject models, and
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Chapter 2.

2.1 Introductory Remarks

This chapter provides a brief overview of the AL language, illustrating its characteristics
by an extended programming example, which allows us to examine in some detail the AL
programming process.

2.2 Overview of the AL Language

Superficially, AL programs look very much like ALGOL programs. The language is block
oriented, and variants of the usual ALCOL structures are used for program control. Since
the programs must be executed in a real-time environment, where several things can be
happening at once, additional control structures for concurrency and synchronization are
required. The necessary capabilities are supplied by the well known cobegin ... coend and

event signal and wait primitives.!
Data Types

One of the key attributes of a formal language for manipulator control is the use of named
variables to describe positions, forces, and other relevant data. Using only the data types of
ALGOL would make programs hard to read and would increase the chance of bugs. AL
avoids these difficulties by providing data types and “arithmetic" operations for the physical
and geometric entities required for describing manipulation. The most important of these
special types are frames, which are used to represent coordinate systems, and transes, which
tell how frames are related. AL programs use frames to describe hand positions and ob ject
locations; the set of frame variables and their associated values thus constitute a major part
of a program's execution-time model of the world.

Affixment

In manipulation tasks, it is common to have several frames associated with the same ob ject,
with each frame playing an important role. When the object is moved, the frames all
assume new values. AL provides two distinct ways for handling this. One way is to use a
trans variable to recompute each frame value each time it is needed. Thus, a user might
write an expression like

doxsgrasp_xf
to specify the proper hand position for grasping the object whose coordinate system is given

' Various favors of these primitives come under many names. See, for instance, [8) for
further discussion.
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by the frame box. This approach can get tedious where the same frames are being
referenced repeatedly, and tends to hide the "intent” of a program behind a smokescreen of
frame transformations. The alternative method of using z separate frame variable for each
frame of interest makes motion statements easier to read and write, but means that all
associated variables must be updated whenever something is changed. The affix construct

-in AL allows the user to specify that a variable is to be “continuously” computed from other
variables. For instance,

affix box_grasp to box at grasp_xf
would cause the assignment statement

box_grasp « boxegrasp_xf
to be performed automatically every time box is updated.? When one ob Ject is assembled to
another, or when an object is grasped by the manipulator, it is customary to affix their

location variables. For example,

affix cover to box:
affix box to blue®

The data structures associated with afixments thus form another important part of an AL
program’s model of the world.

Motion Statements

In the tasks for which AL was designed, the hand is the only part of the manipulator that
interacts directly with other objects. The position of the rest of the arm is generally
irrelevant, so long as it doesn’t collide with anything. Thus, AL programs describe motions
by specifying a sequence of frame values through which the hand must pass. For instance,

move blue to dox_grasp via §rasj_approach
Since the purpose of manipulation is to move ob jects, rather than to get the manipulator's
hand to particular places, this concept has been generalized to allow the user to describe
motions in terms of frames other than the hand itself. Thus,

affix box to blue;

=

move box to new_lox_place via midair_point;

Here, the affix statement tells the system that changes in the value of the biue hand are to

2 Actually, this is an over-simplification. box_grasp would merely be marked as invalid and
2 new value recomputed when required.

3 The manipulator hardware at Stanford consists of two Scheinman arms, one of which is
anodized blue, and the other, gold. Thus, blue and yellow are predefined AL frames
corresponding to the hands of the two arms. (At the time of this writing, only blue has
been interfaced to the runtime system)
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cause corresponding changes in the value of box. This information is used to produce
hand positions that cause box to pass through midair_point and wind up at new_box_place.
The sequence of destination points is translated by AL into the corresponding  joint
behavior by a combination of compile-time planning and execution-time revision.

Although a simple list of destination points is sufficient for some purposes, many tasks
require a more detailed specification of how motions are to be performed. Items of interest
include the time to be spent on each motion segment, forces to be exerted by the hardware,
external forces to which the manipulator is to be compliant, and conditions to be monitored
during the motion. This information is supplied in AL programs by the use of clauses
which modify the basic motion statement, For example,

move carburetor to inspection_station
via unloading_ point
where force(xhat)s0,°
force(yhat)=0,
duration > 2esec
via approack_point
on force(zhat) » S+oz do
stop
on electric_eye_interrupt do
signal passed_check point;

might occur in a carburetor 1ssembly program, where a carburetor has been assembled in a
fixture and now must be moved to an inspection station. While the carburetor is removed
from the fixture, the arm is made compliant to forces in x and ¥, and the motion is slowed
down to take at least two seconds. The carburetor is then moved to the inspection_station
Via an intermediate approazh point. To avoid the possibility that a small positioning error
might cause the manipulator to shove the carburetor through the table, the motion is
terminated as soon as the force in the z direction exceeds a half pound. Finally, as soon as
an electric eye detects something, an external control signal is generated.

Trajectories

Ultimately, all manipulator motions must be described in terms of joint motions, since joints
are what the runtime system can control. However, this Tepresentation is awkward for
specifying motions and introduces a needless degree of hardware dependency if it is used.
Motions are specified in AL programs by giving a list of positions through which an ob ject
1s to pass. The required coordination is achieved by solving the Joint angle equations for
each position. These data points are then used to produce polynomials {in time) which
describe the behavior of each joint.

Unfortunately, the computation required for preparation of these polynomials is non-trivial,
Consequently, the compiler must pre-compute tra jectories, based on a planning model of

9 xhat, yhat, and zhat are unit vectors in the X, Y. and z directions.

® This method was developed by R. Paul, and is reported in (19 More recent refinements
may be found i [5] and [10] In his recent work, Paul has abandoned polynomials in
favor of an interpolation scheme [21,20].
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expected affixment and frame values. These precomputed polynomials are modified by the
addition of higher order terms just before the motion is executed, so that the positions
reached correspond to the actual runtime values. This approach produces well behaved
motions, 30 long as the required modifications are not too great. However, it also creates a
number of problems for the compiler, which must maintain the planning model.
Eventually, it is hoped that trajectory planning can be done completely at run time.
However, this will not eliminate the need for a planning model, which is also used for

affixments and for other purposes.®

2.3 Sample AL Program

Manipulator programming is a non-trivial intellectual activity, even for simple tasks. This
section illustrates the use of AL to accomplish a simple assembly operation — the insertion
of an aligning pin into a hole — which is a typical subtask for many assembly programs.
The discussion provides some insight into the process of writing AL programs. First, an
outline for the program will be developed. A simple “first cut” program implements this
task outline. We then examine the flexibility and “toughness” of this program. Methods for
error detection and recovery are discussed, and a new, more elaborate, program is produced.

231 The Task

Initially, the pin sits in a tool rack, and a metal box with holes in it sits on the table in some
krown position. Our mission is to get the aligning pin into one of the holes. The way to
- do this is to grasp the pin between the manipulator's fingers, extract it from the rack hole,
transport it to a point over the hole, and insert it into the hole. Thus, our program, in
cutline, looks something like this:

begin "pin-in-hole”

{ Declarations and initial affixmen:s }
{ Grasp the pin }

{ Extract & transport over hole }

{ Insert }

{ Let go of the pin }

end

2.3.2 Declarations and Affixments

The declarations include frame variables for the pin, hole, and other points of interest. In
addition, we must write affixment statements describing how the various frames are linked.
Strategy decisions are embodied in these declarations. For instance, we need to declare a
frame, pin_grasp, for use in the grasping operation. It seems natural to affix this frame to
pin. But where? If there is any chance that the pin can bind in the rack or box hole, then

—————— —" — ———— —— — " {— s — o o

® As present capabilities are extended, we will probably want to include other facilities (like
collision avoidance) which are too expensive to be done at runtime, and, $0, require pre-
planning.
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it will probably be a good idea to twist the pin during extraction andfor insertion
operations. To do this effectively, we must grasp the pin so that its axis lines up with the
wrist axis. Alternatively, grasping the pin at an angle may be better for reasons of collision
avoidance or may allow us to produce a more efficient program by reducing arm motion
times. In this case, we've decided to twist the pin, so that the “end on" grasping position
must be used. Usually, one doesn't sit down and write all the declarations before writing
any code. This has been done here largely for convenience of exposition:

frame pin, pin_grasp, pin_grasp_approach;
frame pin_holder, pin_withdraw;

frame Aole, in_hole_position, hole_ap proach;
frame box;

affix pin_withdraw to pin_holder
at trans(rot(zhat,30«deg),vector(0.0.4scm));
pin_holder + frame(nilrotn,vector(/5sinches,/0sinches,0));

affix pin_grasp to pin at trans(rot(xhat,l80«deg)vector(0,0,2¢cm))
affix pin_grasp_approach to pin_grasp at wrans(nilrotn,vector(0.0,-3ecm));
pin « pin_holder;

affix in_hole_position to hole rigidly

at trans(nilrotn,vector{0,0,-lvcm));
affix hAole_approach to hole at trans(nilrotn,vector(0,0,+Iscm));
affix hAole to box at trans(nilrotn,vector(5¢cm decm, Fscm))
box & initial_box_position;

There may be several choices of what affixments to make, as well as where to make them.
For instance, we have affixed pin_grasp to pin. One consequence is that, if zin should be
rotated, the position of the hand (with respect to the tool rack) when the pin is grasped will
similarly be rotated. The rotation won't make much difference in this case, since pin is
assigned an explicit value and since the arm configuration won’t be much changed by
rotations of pin, anyhow. In other circumstances, arm solution or collision avoidance
considerations may make it desirable to affix pin_grasp to pin_kolder instead.

2.3.3 Grasping the Pin

Te grasp the pin, it is necessary to open the fingsrs an approprizie amount, move the hand
to gin_grasp, and close the fingers. The correspoading AL code is

open bfingers to .0¢inches;
{ The L.OsINCHES is sort of arbitrary. }
move blue to pin_grasp;
close bfingers;
affix pin to bluey
{ The pin will move if the hand does. }

The most serious difficulty with this code is that the manipulator may collide with
something on the way to pin_grasp. Since the AL compiler does not do collision avoidance,



We must tend to this detail for ourselves by specifying enough intermediate points so that
we stay out of trouble. What points are required depends on where the manipulator is
before starting the motion, which we haven't specified, and on what other objects are in the
workspace. For the moment, we assume that the manipulator is “clear” of any extraneous
obstructions, and consider only the possibility that the fingers might collide with the pin
while moving to pin_grasp. This may be avoided by maving through an intermediate
point, pin_grasp_approach, affixed o pin_grasp in such a way that the final part of the
motion will take place along the wrist axis of the hand.” Note that this affixment structure
guarantees that the fingers will stay out of the way of the pin even if we change the relation
of pin_grasp to pin.

Another difficulty is that the execution-time value for pin_holder may be inaccurate. If the
rack is bolted to the table, the CLOSE statement may overstrain the manipulator. This
problem can be avoided by adding some compliance to the motion:

close blue
with force(xhat)s, force(yhat)s0;

An alternative is to use the center statement, which makes the motion compliant to the
touch sensors on the finger pads.

234 Initial Program

Once the pin is grasped, a single motion statement can perform the extraction, transport,
and insertion operations. A frer the pin is in the hole, we can let go of it and move the arm
back out of the way. again being sure not to hit the FIn with the fingers while moving off.
These operations and the (revised) grasp code gives us the following program:

begin “pin in hole™
{ Declarations and initial affi xments }

{ Grasp the pin }

open bfingers to /.0sinches;

move bjue to pin_grasp via pin_grasp_approach;
center bfingers;

affix pin to blue;

{ Extract, transport, and insert }
move pin to in_kole_position via pin_withdraw, hole_approach;

{ Let go of the pin }

open bfingers to LO¢inches;

unfix pin from blue;

move blue to bpark via pin_grasp_approach;

e s s e e . S v S ——————————

7 For this reason, Paul calls z the “approach” axis of the Manipulator. We will adopt this
usage occasionally, also.
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The value of pin_grasp_approach in the final move statement will have been updated as a
consequence of its (indirect) affixment to pin. If we had chosen to afix pin_grasp to
pin_holder, rather than to pin, this updating would not occur, and the motion specified
would be rather wild. In this case, we could always invent a new variable and affix it to
hole. Alternatively, we could compute the withdrawal point directly, as in:

move blue to bpark via bluestrans(nilrotn,vector(0,0,-3scm));

This works because the values of all points in the destination list are computed before the
motion is begun. If we have a number of such motions, it may be convenient to invent a
frame and affix it to the manipulator:

frame withdraw_3;
affix withdraw_3 to blue at trans(nilrotn,vector(0.0,-3scm))

move blue to bpark via withdraw_3;

23.5 Critique of Initial Program

The program we have just written is complete in the sense that it describes a sequence of
oOperations that should transfer the pin to the box hole. Whether it will work reliably
enough is another question.® Certainly, any “easy” things that we can do to make the code
more robust ought to be given careful consideration.

We have already built one important form of fexibility into the program by using
variables, rather than constants, to describe locations. This has several advantages. The
code is easier to understand, since an identifier like “pin_holder” is generally more -
informative than an expression  like ‘frame{niirom.’srector{litinchu.:'oviachea.ﬂ)}“.
Modification of programs to accommodate changes in part locations is much easier, since the

values only appear explicitly once.?

These advantages could also have been derived from the use of compile-time variables or
macros for symbolic definition of constants. An advantage unique to execution-time
variables is the fact that values can be recomputed and saved when the program is run.
Thus, our program will work correctly for many different initial box positions, so long as
the built-in assumptions (that the box is upright on the table, in reach of the arm, etc) are
not violated.!®

® Murphy [17] has investigated the reliability of systems in some detail. Experience has
verified that his results apply with special force to manipulator programming.

¥ Indeed, one can write programs like the one developed in this section at one's desk. The
required location values can then be measured during initial setup. (For instance, using a
system like POINTY, which is discussed in [148)). There are number of tradeofis
tnvolved in this mode of Programming, the principal advantage being the reduction of
manipulator downtime while a new application is programmed, and the principal
disadvantage being the loss of immediate feedback while the program is being written.

w Actually, the fact that AL preplans arm trajectories means that the underlying
assumptions are rather more restrictive, though still quite broad.
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In addition to the relatively broad assumptions about what the various runtime values are
apt to be, the program includes a number of much more restrictive assumptions about the
accuracy of its runtime model. If the values stored in the variables differ by even a small

It is worthwhile to consider what can be done to reduce the accuracy required, since extreme
precision may be rather expensive and difficult to attain.

2.3.6 Error Detection
Missing the Hole

Earlier, we noted that a simple close statement could overstrain the arm if the pin rack were
bolted down off center. A similar difficulty can arise if the box is displaced from where its
location variable says it is. If the error is big enough, then the pin tip will hit the top
surface of the box, rather thah go into the hole. Here, we cannot Just add a simple
compliance clause to the motion statement and expect things to work. We <an, however,
detect failure by monitoring force and stopping if a collision is detected:

in_hole_flag « true; { Assume it will work }
move pin to in_hole_position
via pin_withdraw,hole_approack
on force{pinsthat) > §+0z do
begin
stop; { Stop the motion }
in_tole_flagrfalse; { We lost }
end

The force threshold of eight ounces is rather arbitrary; a certain amount of “tuning” may be
required to get the best value.

Post-insertion Checks

This code assumes that successful pin insertion occurs if and only if the pin doesn’t hit the
top of the box. However, if the box is displaced far enough, the pin may miss it entirely.
Since the force threshold isn't exceeded in that case, the fingers will open, dropping the pin
on the floor. One way to avoid this problem would be to attempt small hand motions after
. insertion and check for resistance. For instance,

move pin to pimro:(xhu,iatdeg)

on torque(xhat) > /0so0zsinches do
begin
stop;
in_hole_checkwtrue;
end

on arrival do
begin
{ If the motion goes ail the way, we lost }
in_hole_check+false;
end;
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Two objections to this check are that the extra motion statements take time and that the
box may be moved inadvertently.

Always Stop on Force

Another possibility is to alter the insertion statement so that the successful insertion, as well
as a near miss, will trigger a force monitor that stops the motion. Success and failure can
then be distinguished by looking at how far the motion actually went.

move pin to in_hkole_positionevector(0,0.- 3¢inches)
via pin_withdraw,khole_approach
on force(pinszhat)> 8«0z do
stop;

distance_off + that * inv(in_hole_position)s pinsvector(0.0,0)

if distance_off < -.2¢inches then
missed_box_flag « true

else if distance_off > .2¢inches then
hit_top_flag « true

else
in_hole_flag + true;

An additional advantage of this “plan to hit something” strategy is that it is much less
vulnerable to small errors in the vertical position of the hole. If a fixed destination point
had been used, and the hole were slightly higher than the runtime value said it was, then
the forces produced as the arm tried to servo to the “nominal” position could become quite
large. If the hole were slightly below nominal, then no real damage would be done for this
particular task, since the pin would most likely drop into place when released. However,
other tasks are not so forgiving. If we were inserting a screw, for instance, the initial
insertion must bring the screw threads into contact with the threads in the hole.!! In such
cases, it is much better to get 2 positive contact than to rely on brute force accuracy.

“Tapping”

An Important requirement for using distance travelled along the hole axis as a success
criterion is that the plane of the hole and the expected penetration distance be known well
enough 5o that the various cases can be distinguished. In this case, there is no problem,
since the pin goes in a considerable distance and the box sits firmly on the table. However,
we may not always be so lucky. For example, the box might have been placed in 2 vise.
Instead of aligning pins, we could be inserting screws that go in only a short distance before
the threads engage. In such cases, it is sometimes possible to win by deliberately missing the
hole on the first attempt and then using the result to tell where the box surface {s. This
might be done as follows:

" Actually, this 1s a slight oversimplification, since we would probably push down while
driving the screw.
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move pin to spor_on_surfacesvector(0,0,-1.0¢inches)
via -‘oin_,wi!fzdmw.:par_omm[facﬂmtorfo.a.f.t?tluches)
on force(pinszhat) > Seoz do stop
on arrival do
begin
{ This should never happen }
abort("Help! Help! The box has been stolen™)
end;

correction « rhat - inv(:paf_orz_surface)opimmmr(ﬁ;aﬂ}:

move pin 10 in_kole_position via hole_approack
on force{pinsthat) > §40z2 do stop}

distance_off « that - inv{in_hole_ position)spinsvector(0,0,0) - correction;
{ et cetera }

Alternatively, one could use correction to make an appropriate modification to the box or
hole location. For instance,

box + box + vector(0,0,correction);

It is possible to take advantage of affixment to do away with the need for any explicit
mention of correction. For instance,

affix spot_on_surface to box rigidly ... 3

{ move down until hit the spot }

move pin to ipot_on_surfacesvector(0,0,-1.0sinches)
on force(pinezhat) > S0z do stop;

{ Say that's where we got to }
Spot_on_surface « pin;

The rigid affixment asserts that whenever either frame is updated, the other is to be
updated appropriately. Thus, the assignment statement will translate the box location to
account for whatever distance the pin actually travelled. This technique is 2asy to write,
since you don't have to invent variables or figure out complicated arithmetic expressions.
Also, it is easy to read, since the code is terser, and the assignment statement more nearly
reflects the "intent” of the motion statement, which was to get the pin to spof_on_surface.

23.7 Error Recovery

So far, we've been discussing ways for the Program to discover that it has lost.'? Once a

'2 An optimist would say *discover that it has won”, but this is unjustified. There is bound
to be at least one failure mode for which 4 program check has been left out. Even if it
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failure has been detected, we must do something about it. The simplest course is to give up.

if not in_kole_flag then
abort(*Pin is not in hole.”);

A somewhat more graceful termination might include some cleaning up to get ready for the
next iteration.

if not in_hole_flag then
begin { Put your toys away }
move pin to pin_kolder via pin_widthdraw;
{ We really should do some checking here, too }
open bfingers to 1.0¢inches;
unfix blue from pin;
move blue to bpark via pin_grasp_approach;
abort(*Pin is not in hole."); :
end;

In many cases, this is all that can be done. On the other hand, it would be nice if some
degree of error recovery could be built into the program.

Searches

Even if the first attempt to find the hole misses, it is plausible to assume that it is somewhere
near where the runtime model says it is. This suggests that we try searching the vicinity of

doing this. This construct has since dropped from sight; the desired effect can still be had
by means of a loop, however:

———— ——

were possible to anticipate and test for ol failures, it would not necessarily be economical to
do so.
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if not in_Aole_flag then
begin
vector dp;
scalar n;
dp + vector(0.Isinches.0,0);
for n « [ step 7 until 6 do
begin
dp + rot(zhat 50sdegledp;
{ Try to put pin in perturbed hole }

move pin to in_hole_ positionsdpevector(0,0,-Lsinches)
via hole_cpproachedp.vector(0,0,lsinches)
on force(pinezhat) > Seoz do stop;

{ Check distance travelled, etc. }

if in_kole_flag then
n+7; { This terminates the search }
end;

if not in_kole_flag then
abort("The hole doesn't seem to be there™);
end;

There are many variations possible on this theme, depending on how large an area is to be
searched, what pattern is to be used, etc. If vision is available, we may want to use it to
compute a correction for the next trial.

2.3.8 Refined Program

Combining a search loop with the other refinements and adding a check to be sure that the
Pin is successfully grasped, we get the following program:

begin "pin-in-hole"

frame pin, pin_grasp, pin_grasp_approach;
frame pin_holder, pin_withdraw;

Frame hole, in_hole_position, hole_approach;
frame box

affix pin_withdraw to pin_iolder
at teans(rot(zhat, 30¢deg).vector(0,0,4scrn))
pin_holder + f-ramc{n2irc:n.vectorf!itinches.moinchew)k

affix pin_grasp to pin at trans(w:(xhzt.?&’ﬂndcglvectcr{f?.ﬂz:cm}}:

affix pin_grasp_approack to pin_grasp at trans(nilrotn,vector(0.0.- 7scm %
pin & pin_holder;
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affix in_hole_position to hole rigidly

at trans(nilrotn,vector(0.0,-Jscm));
affix Aole_approack to hole at trans(nilrotn,vector(0.0,+Jscm));
affix Aole to box at trans(nilrotn,vector(Sscm decm,3ecm))
box « initial_box_position;

{ Grasp the pin }
open bfingers to 1.0sinches;
move blue to pin_grasp via pin_grasp_approach;
center bfingers
on opening < O.J¢inches do
begin
stop;
abort("Grasp failed to pick up pin"}
end;
affix pin to blue;

{ Extract, transport, and insert }
move pin to in_hole_positionsvector(0,0,~3sinches)
via pin_withdrew,hole_approack
on force(pinezhat)> §s0z do
stop;

distance_off + zhat * inv{in_hole_position)spinevector(0,0,0);

if not { 0.2sinches > distance_off > -.2¢inches ) then

begin

vector dp;

scalar n; boolean in_kole_flag;

dp + vector(0.lsinches,0.0)

in_kole_flag + false; n+0;

while (nen+]) < 6 and not in_kole_flag do;
begin
dp + rot(zhat,60+deg)edp;

{ Try to put pin in perturbed hole }

move pin to in_kole_position-dpevector(0,0,-1.sinches)
via hole_approachedpevector(0,0,lsinches)
on force(pinezhat) > 8voz do stop;

{ Check distance travelled, etc. }

distance_off « that * inv(in_Aole_position)spinevector(0,0,0%

if 0.2¢inches > distance_off > -0.2¢inches then
in_hole_flag-true;

end;

if not in_hole_flag then
abort("The hole doesn't seem to be there");
end;
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{ Let go of the pin }

open bfingers to /.0sinches;

unfix pin from blue;

in_hole_position+pin; { Update our model }
move blue to bpark via pin_grasp_approach;

end;

2.3.9 Further Discussion
Cost of Error Recovery

An important consideration in writing error recovery code, such as the loop above, is that it
is not always cheap. The amount of pregramming involved can frequently rival that
required for the "main” part — as, indeed, is the case here. If a useful purpose is served,

this cost is generally unimportant, aside from Procrustean considerations.'3 More important
is the extra time required in execution. The extra computer time spent in “head scratching”

isn't likely to be an issue.'® The time spent in manipulator motion is another matter. For
instance, each iteration through the loop may take nearly as long as does the initial attempt.
In an assembly line, this kind of delay can get very expensive, although some provision for
buffering between stations can help to smooth things somewhat.

Fortunately, some forms of error recovery impose almost no additional manipulation cost.
The principal example is the use of previous measurements to correct future behavior. For
instance, suppose we are putting screws into all the holes in the box. As each screw is
inserted, its location can be noted and used to update the value of box. Since the remaining
hole locations are updated implicitly, the likelihood of having to search decreases with each
screw. Vision is especially important in this regard, since the computations can be done in
the background, in parallel with necessary motions. For example, suppose there is some
chance that the pin may be misaligned in the fingers. If a picture is taken when the pin is
removed from the rack, the actual pin-fingers relation can be computed during the time that
the pin is being transported to the hole.'® This correction can then be used to get the
insertion right the first time.

—— s s . e S o — T —— _— S . o

'* If the program won't fit into the runtime space available to it, then it is necessary to
decide what to cut out. In many cases, the answer may be to get a larger machine.
Computers are already cheap, compared to other components in a manipulator system, and
are getting cheaper by a factor of ten every five years. This suggests that manipulator
systems should be designed for easy expansion, since the marginal cost of going to a whole
new system is considerably greater than expanding a pre-existing one.

4 An exception is if something really hairy is contemplated. For instance, several systems to
do “problem solving” to figure out how to correct errors have been proposed. See [12].
Sproull [25] has investigated the question of when runtime planning is cost-effective.

'S Bolles [7] is currently investigating iechniques for accomplishing exactly this kind of
task. Although his system isn't quite up to the real time requirements described here, his
results indicate that the task could be performed with essentiaily the present hardware,
provided that someone wanted to do the necessary programming on the runtime machine.
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“If we could first know where we are and whither we are

- tending, we could then better judge what to do, and Aow to
do it.”

Abraham Lincoln
Speech before the Illinois Republican Convention
June 16, 1858

Chapter 3.

ELANNING MODELS

8.1 Introductory Remarks

This chapter explores the relation of planning information to programming, in general, and
to manipulator programming, in particular.

Programming is a form of planning; the essential quality of a computer program is that it is
a prior specification of how the general capabilities of the machine are to be applied to a
specific problem. Every program embodies some assumptions about the special
circumstances in which it will be executed. Thus, an inherent part of the programming
process is the maintenance of information about the predicted execution-time environment,
and the use of such information as a basis for programming decisions. Indeed, the
intellectual burden of maintaining such a plenning model is one of the major factors in
determining the effectivencis of a particular programming formalism, when applied to a
task domain. This burden cannot be escaped; if we wish to help the programmer by taking
over some of the coding effort, then the computer must keep track to the information
relevant to the coding decisions it is asked to make.

8.2 Planning Information in Algorithmic Languages

3.21 An ALGOL Fragment

Consider the ALGOL fragment below, which is intended to select the largest element from
an unsorted array, a.
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integer array a[l:100}
integer i,n,maxel;
:

maxel + -27%; { largest negative number in machine }
{ Assume we want the maximum of the first n elements of a. }
for i « ] step I until n do

if maxel<a[i] then maxelva[i};

When we write the statement in the loop body, we know that variable i will contain a value
between 1 and n, that maxelsalj] for Isj<i, that maxel=alj] for at least one J in that range,
and that, by the time the loop has exited, we will have examined all values for i from | to

n. Further we assume ns100.! A process of great interest to researchers intent on proving
the correctness of programs has been the formalization of these assertions and the use of
well-formulated language semantics to prove the assumptions correct [11, 27, 1],
Similarly, one of the strongest claims of “structured programming” advocates is that one
should proceed from such assertions to 2 “correct” program [9]. There has been a great
deal of interest in applying theorem proving methods to automate the generation of
programs from assertions. [e.g., 16].

My own impression is that one does not, usually, write programs in such a step by step
fashion. Rather than working out from first principles how to synthesize this loop to
compute a maximum element, most programmers would reach into a grab-bag of tricks, pull
out & skeleton program structure, and then &l in the appropriate siots.2 To some extent, the
program is thus composed of “higher-level” chunks, with the programer acting in a dual
role as a problem solver and coder (translating between the conceptual units in which the
program was composed and those made available by the programming system).

Planning information is used at both levels. For instance, the fact a i$ an unsorted array or
that the loop sets maxe! to the maximum element of a[lin] would be typical “high level”
facts useful primarily in performing the problem-solving function. Coding information
includes the fact that { is available for use as an index variable, that ¢ is the name of the
array to be searched, etc.

-

— — —

' Several people have commented that the loop should be written, maxel~a[l}; for i + 2 step
I until n do ... It is interesting to note that this form is equivalent only if nzl. In other
words, we can make a marginal improvement in program performance if we have an
additional piece of planning information.

2 Program bugs happen when some precondition for using the trick is forgetten. (Eg., i
might be in use for some other purpose). It is not necessary to accept the psychological
validity qf this paragraph in order to appreciate the main point: that much coding can be
done by adaptation of standard “skeletons” to fit particular situations.
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3.2.2 Getting the Computer Involved

A dominant theme in the history of programming system development is the progressive
transfer to the computer of coding responsibilities. The nature of coding is largely clerical.
One keeps track of particular facts and applies them in a stylized manner. As elements of
programming practice become better understood or, at least, better formalized, this process
has been extended into areas of increasing abstraction.

Thus, symbolic assemblers feature the ability to keep track of addresses, maintain a literal
table, etc, providing a substantial improvement over “octal” or “push the switches”
programming. Similarly, algebraic compilers perform many functions of an assembly
language coder. They keep track of information like assignment of variables to registers,
where temporary results are stored, e, and follow highly stylized (though sometimes
extensive) rules to generate programs that are “equivalent” tq their input specifications.

There are several important points concerning such “automatic coding” systems: First, they
use their "understanding” of the formal semantics of the source language and of their own
decisions (eg., to keep maxel in register 1) to keep track of those facts that are appropriate
to its task as an assernbly language coder. Second, optimizing compilers produce more
efficient output code than non-optimizing compilers can, but they must keep track of more
information to do it. Third, there are limits tmposed by what can be stated explicitly in the
source language. In general, it is much more difficult to “infer” the intent of a particular
piece of code than to write code to achieve a particular purpote. The computer has no
“understanding” that our loop is intended to compute the maximum element of a. It could
not, for instance, decide (because of some sarlier code) that a is sorted and compile the loop
as though it were -

maxel + a[l}:

On the other hand, if the user's program were expressed in terms of concepts like “sort
array @”, and “select the maximum element”, then the computer might, in fact be able to
write the appropriate code. Recently, there has been a great deal of interest in “very high
level” Ia{tgungts. in which programs are expressed in exactly this fashion. [eg, 2, IS,
15,26, 8

Occasionally a user may wish to share coding responsibility with the programming system,.
For instance, he may wish to *hand-code” the inner loops of an ALGOL program, in ihe
belief (nowever deluded) that he can do a better Job. Tius creates certain difficulties for the
compiler, which generally only really “understands” code that it has written itself, and there
- has been a tendency among language designers (especially those wishing to enforce
particular programming methodologies) to outlaw such lampering. An alternative would be
to provide constructs that allow the user to tell the system about relevant assumptions or
effects for a particular piece of code, such registers used to contain the results of machine
language statements.

T e v s s e . S S s . . o . . . .

3 Another possibility, investigated by Samet [24] for LISP progams, is to write both “high
level” and hand.coded versions of the same program. The tystem can then verify that both
programs are, indeed, equivalent, even though it isn't necessarily clever enough to figure out

the hand-coded version on its own.
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This sharing of coding responsibility is especially important early in the evolution of an
automatic coding system, when many things cannot yet be handled by the computer. In
Chapter 4, we describe procedures for making the AL coding decisions of Section 2.3
automatically. Incorporation of this facility into & manipulator programming system
requires either that enough primitives be available so that all manipulator-level coding
decisions can be made by the system, or that coding be shared, perhaps by having the
computer generale program text for subsequent modelling by the user. Again, some
assertional mechanism is almost certainly necessary to help the system “understand” code
written for it by the user.

3.3 -Planning Information in Manipuizmr Programming

Mgny of the book-keeping: requirements. of gianipulator programming are essentially the
same as those for “algebraic” programming. One must keep track of what variables mean,
what things are initialized, what control structures do, etc.

In addition to these general requireme™ts, the domain requires the maintenance of
information particular to the problems of manipulation. This information may be divided,
roughly, into the following categories:

I. Descriptive information about the objects being manipulated.
2. Situational informatien about the execution-time environment.

3. Action information defining the task and semantics of the manipulator
language.

Subsequent sections discuss these issues in greater detail.

3.4 Object Models

Programs which specify explicitly what actions are to be performed by the manipulator
generally need contain little explicit description of the objects being manipulated. In the
AL program developed in Section 2.3, for instance, there is no information about the shape
of the pin, hole, or anything else. The prinapal language construct for describing ob jects is
the affix statement, which is used to specify how the location of an ob ject is related to the
location of its subparts or features. For instance,

affix hole to box at trans(rot(xhat,90«deg).vector(2.4.1.7,3.2))

On the other hand, a great many assumptions about the ob jects have been built into the
program. For instance, the check used to verify that the pin has been grasped successfully
relies on knowledge of the pin diameter; the extraction, grasping, and insertion positions
implicitly assert that the hand or pin will not crash into anything: the insertion strategy
assumes that the pin will accommodate to the hole somewhat, that misses will cause the pin
to hit a surface coplanar with the hole or else miss the object altogether; and so on
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These assumptions do not get built into programs by accident. Information about ob Jects is
used extensively in both the “problem solving” and coding functions involved in
manipulator programming. In mechanical assembly programs, the task is largely defined by
the design of the object being put together. In addition to specifying what is to be done,
the design also dictates many aspects of how to do it, such as in what order the various
parts must be assembled, how the parts can be grasped by the hand (or put in a fixture),
what motions are required while mating parts, and so forth,

For manipulator programming, the most important aspects of object descriptions derive
from the shape of the objects being manipulated, Unfortunately, good shape
representations for computer use have vet to be developed. Many decisions that are
ntuitively obvious to a human programmer require a laborious computation by the
omputer. On the other hand, it is possible to identify many “local” properties that play an .
nportant role in coding decisions. For instance, in coding the pin-in-hole example of
vection 2.3, we used ob ject information in a number of ways:

1. Filling in parameters. The most obvious example is the location of the hole
with respect to its parent ob ject:

affix hole to box at trans(niirotn.veclor{j'.&ccm.3.2-cm.4.9»cm));

Other uses include seting the minimum grasp threshold, the expected
penetration of the pin into the hole, and selection of a grasp point that kept
the fingers cut of the way

2. Estimating the accuracy required (o guarantee that the pin will seat
properly in the hole. The ailowable error is determined by such factors as
the point on the pin, chamfering around the hole, clearance between the pin
shaft and hole bore, etc. It is important in deciding whether the insertion
method used here will work and in seiting the “step size" for the search
loop.

Thhe object representations used in this work are described in my dissertation (28] It is
iMportant to note, here, that these uses predominantly involve local properties of features
(e.g., the chamfering around a hole, or the placement of holes in a surface) that are, in
principle, computable from a uniform shape representation, but which may also be
represented directly in several different forms to serve different purposes.

3.5 Situational Information

Manipulation programs transform their environment by moving objects around. This
means that the principal fluent® properties that must be considered are:

1. Where objects are in the work station.

2. 'What objects are attached to cach other.

4 By “Auent” properties, we mean any factors relevant to the task which may not remain
corstant during execution of the task.
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The use of this information was illustrated in our discussion of the pin-in-hole example,
Among the more important considerations were:

I. We made a number of unstated, though “obvious™, assumptions about the
location of the Various entities. For example, the hole was issumed to be
unobstructed (i.e, the box better be right side up).

2. In grasping the pin, we had 1o consider whether the hand tould reach the
required locations. If i s possible for the box to be in more than one
position or Orientation, then this must be taken intg account.

4. The code contains many assumptions about the accuracy of our variables
pin and hole. In deciding whether ';apptng“ Or a search were necessary, for
instance, it is necessary to consider Whether the along-axis" determination js
good enough and whather in-plane errors are within the “capture” radius
required by the pin to hole geometry.

Any reasonably sophisticated maniputator language allows much of this information to be
represented explicitly in the Program. In AL, for instance, ob ject locations are represented
by frame variables and attachments, by affixments. In writing programs, it js thus
necessary to keep track of Programming information, such a5 what variables have been

write programs in jr.% This is essential both for translating desired Mmanipulator actions into
the corresponding code and for keeping track of situational information.

surprising extent. For instance, the “grasping Sequence of our Pin-in-hole example is
readily adapted to Pick up more or Jass arbitrary ob jects.

————— —.—.————n.—-u-—--—.--.—.—.-——

5 or course, this knowledge does not have to be perfect. There are those whose approach
to Programming s EMpirical, 10 say the feas:. Even where a certain amount of
€xperimentation js altempted, however, one generally requires ar Jeast an approximate
model of what & Particular statement s Supposed to mean,
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open blue to initial_opening
move blue to object_grasp
via object_graspetrans(nilrotn,vector(0,0,-4sinchesk
center blue
on opening < minimum_opening do
begin
stop;
xbort("It just isn't there!™)
end;
move object te object_pickup_point;

The slots to fill n are fni:ia&apming, minimum_opening, object_grasp, and
object_pickup_point. As we will see in Chapter 4, these may be computed from the
situational and ob ject riodelling information.

3.7 Concluding Remarks

This chapter has disc ssed the role of planning information in programming and has
described the partic ar kinds of information that are needed for manipulator
programming. A key p sint, here, is that the burden of maintaining this information cannot
be escaped. If manipul zor programs are to be generated automatically, then the planning
information must repr:iented in a form that the computer can use to make reasonable
decisions.

A full discussion of the representation methods used by the automatic coding procedures
described in Chapter 4 may be found in my dissertation [28]. To make this report self-
contained, a short summary of the most important technical results is given below.

The AL Planning Model

The AL compiler itse: performs a number of coding functions, such as planning
trajectories and rewriting motion statements, not ordinarily found in algorithmic languages.
These functions require that the compiler keep a better model of situational information —
especially, the expected value of frame variables and affixments — than might otherwise
be the case. The compilsr associates a data base of assertional “forms” with each control
point in the program graph, and uses simple simulation rules to propagate facts. The same
mechanism — a multiple world assertional data base — is used by the automatic coding
procedures discussed in Chapter 4 to keep track of situational information.

Ob ject Information

Ob ject modeling is done by "attribute graphs”, in which shape information is represented in
the nodes, structural information by links, and location information by properties of the
links. The most interesting point is that coding decisions can generally be based on *Jocal”
properties of the ob ject.
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Situational Information

In order for the computer to make reasonable coding decisions it must often have numerical
estimates of object locations and of how accurately those locations will be known at
execution time. Techniques were developed for expressing “semantic” relations between
ob ject features in terms of mathematical constraints on scalar “degrees of freedom” and for
applying linear programming techniques to predict limits in inter-ob ject relationships.
Differential approximation methods were also developed and used to predict errors. The
appendix to this paper gives examples of both techniques.

Action Information
In the system described in this report, action information is not represented explicitly.

Instead, it is embedded implicitly in the procedures that make the coding decisions and
generate the output programs, as we will see in the next chapter,
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"Watch me pull a rabbit out of my hat!"

Bullwinkle Moose

Chapter 4.

In Section 2.3, we described the process of writing AL code for a common subtask in
assembly operations — insertion of a pin into a hole. We saw that writing the program
required a number of decisions, based on our expectation of where the ob jects will be and
how accurately their positions will be determined at runtime. The discussion of Chapter 2
focused on the modeling requirements for automatic coding. The key point was that
automation of coding decisions requires that the necessary information be represented in a
form usable by the computer. This chapter describes the use of the computer's planning
model to make these decisions automatically.

The program outline followed is essentially that derived in Section 2.3:
I. Grasp the pin.

2. Extract it from the pin rack and transport it to the hole via a point just
“above” the hole.

3. Attempt insertion by moving the pin along the axis of the hole until a
resisting force is encountered. Use the distance travelled to determine
whether or not the pin insertion is successful. '

4. If the insertion is unsuccessful, then use 2 local search to attempt to correct
the error.

The decisions that must be made include:

I. Where to grasp the pin.

2. How to approach the hole. Although we have decided on a co-axial
approach, we still must decide the relative rotation of the pin and hole
frames. :

3. What threshold values to use on our success test. Also, whether or not it is
necessary 1o "tap” the ob ject surface to get a better determination of the pin-
hole relation before trying the insertion.

4. What search pattern, if any, to use in error recovery. '
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The overall approach is fairly direct: First a number of oreliminary calculations are
performed, based on the task specification and initial planning model, to obtain initial
position and accuracy estimates and to determine basic tolerances. Then, the system
generates possible ways to grasp the pin, subject to geometric feasibility constraints. For
each distinct grasping strategy, a “best” approach symmetry for the pin relative to the hole is
computed, using expected motion time as an ob jective function.! The grasp-approach pairs
are sorted by "goodness” and then are reconsidered in "best first” order, to see what
additional refinements are required, based on the estimated pin-to-hole determination. If
the error along the hole axis is too large, then a “tapping place™ is found as near the hole as
is safely possible. Similarly, if the errors in the plane of the hole are too great, then a
decision to search is made. The expected time required for tapping and search are
calculated and added to the cost. The process is continued until an optimal strategy can be
chosen. Once the decisions have been made, it is fairly straightforward to generate the
corresponding AL code sequences, which are quite stylized.

Subsequent sections will describe each of these phases in greater detail.

4.1 Data Structures

Internally, strategies are represented by SAIL record structures summarizing the decisions
that have been made. This section describes the more important parameters kept for pin-

in-hole and pickup strategies.?
Pin-in-Hole Strategy

preliminaries — A list of *preliminary” actions that must be performed before
the code for the actual pin-in-hole code is begun. Typically, this involves
cleanup actions left over from the previous task, and is set up by the initial
processing.

pickup — A “pickup strategy” to get the pin afixed to the hand and free of any
obstructions. For Pick:‘ng Up an ob ject by grasping it in the fingers, this field
would point to a “grasp strategy”, defined below.

dtry — The distance into the hole that we will try to poke the pin.

standoff — The distance above the hole that we will place an approach point.

® — The relative rotation of the pin to the hole upon insertion.

' The combination of grasping method, approach symmetry, and expected penetration
distance into the hole constitutes sufficient information to write a *first order” program that
ignores errors, such as was produced in Section 2.3.4. However, as we saw earlier, the Job
isn't yet half done.

2 The structures shown here are slightly different from those actually kept. The changes
have been made for ease of explanation; the information content is the same. Section 48
includes z computer generated summary of the actual internal structures. You have been
warned, so don't get confused. -
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tapping place — Point on the ob Ject to be “tapped” to reduce the error along
the hole axis, if necessary.

4ax, Ay, Az, ¢ — Parameters summarizing the "error” footprint of the pin tip
with respect to the hole. Define a rectangular parallelepiped with sides (&x,
Ay, Az), rotated by § about the hole axis. See Figure 4.1.

Af - Maximum expected tilt error for the Pin axis with respect to the hole
axis. :

ttime — Expected time Spent in grasping the pin and transporting it to the
hole.

finetime — Time expected to be spent in “fine ad Jjustment" motions. Currently,
time for tapping motion + search time.

goodness — Estimated cost of this Strategy. Here, ttime « finetime «
goodness(pickup).

Grasp Strategy
object — The object to be grasped.
preliminaries — As before, a list of preliminary actions that must be performed
before the object (here, a pin) can be grasped. A typical element would be

code to put down a tool.

grasp point — Point where object is to be grasped. The structure used to
specify such “destination points” is discussed below.

approach point — Via point on the way to the grasp point.

approach opening — Required opening for the fingers by the time the hand
gets to the approach point.

grasp opening — Minimum expected opening for the hand to hold the ob ject.

grasp deterin — An estimate of the accuracy with which the object will be held
by the hand, once the grasping operation is successfully completed.

departure point - Via point through which pickup-and-move operation must
pass.

goodness — Measure of the cost of this pickup strategy. Typically, an estimate
of the amount of time required.

Destination Points
Destination points in AL motion statements really involve two components:

L. A frame-valued expression specifying some location in the work station.
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Figure 4.1. Error Footprint

2. A “controllable” frame variable whose value is to be made to coincide with
the target value.

Thus,
move a to b

is, In some sense, a manipulatory equivalent to the assignment statement
avb

For our present purposes, it will be sufficient to restrict the “right hand side™ component of
zll destination points to the form .

<object or feature named>ecconstant trans expression>
Thus, the data associated with each destination point consists of:
what — The ob ject or feature which Is to furnish the controllable frame.
base — Ob ject or feature for target expression,

xf — Constant trans for target expression.
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Section 4.7 describes how sequences of such “destination points” may be turned into
motion statements.

4.2 Initial Computations

The most important initial computations are those responsible for calculating the expected

initial positions and error determinations of the pin and hole. Following the methods
developed in my dissertation [28], we get

H = estimated position of hole {(with respect to work station)
= HQAp,.AL) = HRY)

Pinit = estimated initial position of the pin.
= Pinilv)

AH = estimated accuracy of H at runtime3
- AH®)

APy = estimated runtime accuracy of P.

sub ject to constraints on A, 4, b, and € For planning purposes, we will mainly deal with the
expected locations

HO = H(0)
POt = Pinicl®

Also, we need several important paramters describing how the pin fits into the hole:
direction — The end of the pin which is to be inserted into the hole.
dg — The distance the pin is to go into the hole.

dg — The maximum “sticking distance” into the hole that the pin can “jam”

without making it all the way to where it is supposed to go. Thus, dpd,

represents a minimum threshold for telling whether the pin insertion is
successful,

———— —— —

3 Here, we are being a bit sloppy in our use of "H". The difficulty is that we must deal with
three separate entities representing the hole: (1) the object model representation (a LEAP
item); (2) our location estimation; and (3) a variable in the output program. Generally, this

discussion will center on (1) and (2); (3) isn't needed until time comes to generate the actual
program text.
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Ob,p — Maximum possible axis misalignment for the Pin insertion to succeed.

Argy — Maximum possible radius misalignment between the pin and hole for

the insertion to succeed. Thus, Ay and Qrgy constitute a measure of the
effectiveness of accommodation during insertion.

The direction must be supplied by the user as part of the task description.® In principle, d¢
and dg may be computed by looking at the profiles of the pin and hole. At one time, this
was done. However, the computation turned out to be extremely tedious, and ignored some
important factors, such as friction® Therefore, these numbers were determined by
experimenting with the actual ob jects and included in the ob ject models, as were Argy and
Al This approach does not seem unreasonable, since pins and holes may be

standardized. Presumably, a data base could be built containing the relevant parameters
for each tip-hole combination encountered in a class of assemblies.

4.3 Grasping the Pin

Once the initial computations have been done, we proceed to generate alternative strategies
for picking up the pin. For each such strategy, we create a “grasp strategy” record, as
described in Section 4.1. Although we confine ourselves to grasping the pin directly between
the fingers, it is interesting to note that alternative methods, such as loading a screw onto the
end of a screwdriver, could be handled similarly. The rest of the pin-in-hole code (except
for the part about “letting go”) makes no assumptions about what the hand actually holds
onto. The important data used by the rest of the planning are:

I. The relative position of the pin to the hand.
2. The accuracy with which the pin is held with respect to the hand.

So long as this information is available, the remaining decisions can proceed more or less in
ignorance of the actual technique used.

—— ————— " ————

 This may not be strictly necessary. If the pin is to be part of a finished assembly, then the
direction and dy may be obtained from the description of the object being assembled.

Alternatively, it might be possible to tell which end to use by looking at the pin and hole
diameters or to keep 2 data base telling what the “standard” direction for each pin type.

® Whitney [18] has done an exhaustive analysis of some of the factors required to compute
tolerance requirements for insertion of a peg into a hole.
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4.3.1 Assumptions

The grasping method described in this section assumes that the pin initially sits in a hole
and that the hand is empty. The basic strategy is to open the fingers, move the hand to the
grasping position, and center the hand on the pin. Thus, we require that there be at least
one grasping position reachable by the manipulator and that the pin's position be known
with sufficient accuracy for the centering operation to succeed. Once the pin is grasped, it is
extracted from the hole. We assume that the pin will be free of obstructions once its tip has
cleared the plane of the hole by some fixed amount {currently, 1 inch).

432 G.raspirsg Position

The key element in our grasping strategy is where to grasp the pin. The present hand
consists of a pair of opposed “fingers”, which open and close through a range of about 4.5
inches. On each finger is a circular rubber pad, and in the middle of each pad is a
microswitch “touch sensor”. The AL center command assumes that the object being
grasped will trigger the touch sensors whenever it is in contact with one of the fingers.
Since we intend to use center, the finger pads must be centered on the pin shaft® The
important parameters remaining are thus: ’

¥ — The “grasp angle” between the pin axis and the approach vector {;} of the
hand.

d — The “grasp distance” along the pin axis.
@ — The orientation of the approach vector of the hand about the pin axis.

Following the convention that the “long” axis of pins is the z-axis, this means that the
grasping position will be given by

blue = pinsgrasp_xf = pinetrans(rot(zhat,w)erot(xhat,¥),vector(0.0.4);
Geometric Considerations

In selecting values for these parameters, it is important to guarantee that the hand not get
in the way of accomplishing the task. In general, this might require much better geometric
modelling capabilities than the system described here currently possesses. Therefore, we
must assume a relatively “uncluttered” environment. The following considerations are,
however, enforced by the present implementation:

1. The hand cannot intersect the body in which the hole is drilled. As an
approximation, we enforce this constraint with two sub-constraints for both
the initial and target holes:

———— — ——— {— —

® When sensitive force sensors are added to the fingers, center will presumably be modified
to respond to forces on the fingers, rather than triggering of a microswitch. This would
allow greater freedom in picking finger positions and would relax the .accuracy
| requirements.
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a. The fingers may not pass below the plane of the hole.

b. The hand’s approach direction must be at least 90 degrees
to the outward facing normal to the hole.

2. The "palm” of the hand cannot intersect the shaft of the pin.
Method

It is necessary to verify that arm solutions exist for the approach, grasp, and liftoff points.
However, the computation required by the arm solution procedure is non-trivial. Thus, we
proceed by pretending that the hand is moved by levitation. Arm solutions will only be
attempted for those grasping positions that do not try to do something bad with the hand.
If we assume that conditions (a) and (b) above are sufficient to guarantee that the hand
stays clear of any objects, then we can ignore W in selecting grasping positions to consider.
Cur overall selection method looks like this:

1. Use the position of the pin in the initial and target holes to determine legal
limits on ¥ and d.

2. Use the limits established in step 1 to generate “significantly” distinct values
for ¥ and d. For each such (Yd) pair, determine values of W for which
there is an arm solution.” Each (7,d,w) will then specify a possible grasping
position for the pin.

1

3. Once a grasping position has been generated, the remaining parameters to
the grasping strategy may be filled in, and the cost of the strategy assessed.
This process may result in some of the proposed grasping positions being
rejected, due to inability 1o find a suitable approach or departure position
or because of accuracy considerations.

These steps are discussed in somewhat greater detail below.
Determining values for ¥ and d

To simplify the discussion, let us assume that the pin initially has its z-axis parallel with its
starting hole, and that the origin of the pin's coordinate system is at the pin tip inserted into

the hole® The first step in determining ¥ and d is to determine the distances, d; and dg,
that the pin goes into the initial and final holes. There are two subcases:

I. The same end of the pin is inserted in both holes.

7 1f additional feasibility tests are to be made, this would be a good place to include them.
For instance, if good enough shape models {eg., those produced by GEOMED [4]) are
available, then a check can be made to see if the hand or arm do, in fact, interfere with
objects in the environment. Two problems with this check are (1) the difficulty of
distinguishing intersections caused by approximations and those caused by actual collisions
and (2) the difficulty of modelling sets of possible positions.

8 If the initial hole and pin axes are anti-parallel, the modifications required are obvious.
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2. Opposite ends of the pin are inserted in the initial and final holes. Le, we
must “turn over” the pin while transporting it from hole to hole.

In the first case, the lower bound on d will be given by
dz2 dmin = max(di.df) + I"f? * K
where

Ttp = radius of finger tips.
x = a small extra clearance factor {currently 0.1 inch)

To compute the upper bound, dmax: We must consider the pin geometry; if the pin has a
pointed tip, then we must grasp further down the shaft:

d % dmax = lpin - (taper*®)
where

k}in = length of pin

*taper = length of point on pin tip

If the interval dp,,,-din is relatively short (currently, less than 2.5 inches), then we just
pick the midpoint

d « (dmin*dmax)2

Otherwise, a succession of values must be considered. Currently, three values are
considered: one near the top of the pin, one near the bottom, and one in the middle.

d2 = dmin + 06 inches
dg = (dmin*dmax)/2

_For each value of d, the system must generate values for 7. Similarly, three approach
directions are considered:

¥ = 180 degrees (i.e. anti-parallel to the pin axis)
Y = 135 degrees

¥ = 100 degrees (i.e., approximately perpendicular to the axis)®

. With ¥ = 180 degrees, it is necessary to check that the pin doesn't poke up through the
palm of the hand. This is easily handled by checking to be sure that Ipm-d is less than the

¥ 90 degrees could be used here; however, the extra 10 degrees lessens the chance that the
hand or wrist will interfere with something.
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In the second case, where both ends of the pin will go into holes, we have
'Ipm-{ﬁfor.fp*x} 2d2dj+ fp * X

Again, if the interval is short, its midpoint will be picked. If the interval is longer, then
three values will be'used. Since the pin must be turned around, the only value for ¥ is 90
degrees.

Picking Values for @

Once we have picked values for ¥ and d, we still must determine the rotation value Ww.
Here it is necessary to consider actual arm solutions. Unfortunately, the only way presently
available for doing this is to invent values and try them out.'® Values of @ are considered
in increments of 45 degrees. For each value, the grasping position is calculated, and the
arm solution procedure is called to see if the position is feasible. In some cases, we may
produce a great number of candidate grasping positions. Therefore, the solutions for all
feasible positions are graded for “toughness” and non-degeneracy, and only the best few
values are retained for further investigation. The current rule for evaluating arm solutions
is very crude: the angle of the "elbow” (joint 5 of the Scheinman arm) is examined; Angles
near 45 degrees are considered best.'! Our selection procedure looks something like this:

for W « O step 45+«deg until 715+«deg do
begin trans Aand_placegrasp_xfi
grasp_xf « trans(rot(zhat,w)erot(xhat,¥),vector(0,0,d))
hand_place « initial_pin_locationegrasp_xf;
if solve_arm(hand_place} then
begin
cost = abs(¢5edeg-foint_angle[5])
< insert W into list of candidates, ranked by cost >

end;
end;

For the example situation described in Section 4.8, and grasping parameters:

0 Shimano is currently investigating the possibility of a “closed form" solution that will
. give the range of possible approach orientations for a given hand position. Such a solution
would be extremely useful, both as a guide for selecting grasping positions and as a means
for evaluating the robustness of a particular position under variations in ob ject position.

"' Alternatives include examining the error hypercube at the fingers or just using the
expected time to reach the grasping position. The latter ob jective function will eventually
be applied to any points that get through this filter {see Section 4.4).
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Y = 135 degrees
d = 35¢cm
we get:
W cost
0  42.1°
45° 9.98°
90° 31.4°
135° 56.0°
180° 56.0°
225° 56.0°
270° 45,5°
318° 56.0°

At present, only the best three values are retained, so we will select () = 45°, 90°%, and 0°.

This pruning introduces some risk that the program will fail to find an acceptable strategy

in some cases where it might otherwise have won. If this problem should become

significant, it would be fairly easy to provide a “try harder” mode where all possibilities are
retained.

4.3.3 Approach and Departure Positions

The purpose of .n approach point for the grasping operation is to prevent the arm from
trying to run its fingers through the pin. Currently, the only approach direction considered
is one along the approach vector of the hand, as shown in Figure 42. One plausible
alternative would be to move to a point above the pin and then move down along the pin
axis to the grasping position. If it should prove desirable to consider such alternatives, we
could do 30 by planning each route and then selecting the via point which gives the shortest
time.

Similarly, a departure point is needed to get the pin clear of its initial hole before trying to
move it away. We presently only use a standard takeoff point two inches above the hole.

move pin to pimznns{niimtn.vector(ﬁﬂzoinchend‘-k

where d; is the distance the pin is inserted into its starting hole. If this fixed choice should

ever become troublesome, it would be fairly easy to generate a set of alternative departure
points, and then pick the one giving the shortest motion time.
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pin

Figure 42. Approaching the Pin

4.3.4 Hand Openings

The present decision for hand opening is similarly arbitrary. On approach the hand is
opened by 1 inch plus the diameter of the pin at the grasp point. The closure threshold is
set to the pin diameter minus 0.1 inch.!?

4.4 Moving to the Hole

Once the pin has been grasped and lifted clear of its initial hole, the next step is to try
inserting it into the target hole. For the sake of simplicity, we assume that the origin of the
pin coordinate system is at the tip being inserted into the hole. Thus, our motion statement
will look something like:

move pin to #otntum(rut(:htt.ﬂ.mlcr{&.ﬁ.—dfry))

via holestrans(rot(zhat,$).vector(0,0,standoff)
on force(pinethat)> 80z do ...

where

'2 This latter figure comes from the observed behavior of the center primitive; relevant
factors include fiexion of the fingers and compression of the finger pads.
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¢ = rotation angle of pin with respect to hole.
dtry = distance try to push pin into hole.
) standoff = distance of approach point from the plane of the hole.

Of these parameters, the most important is ¢. The considerations in choosing a good value
are essentially the same as for selection of the grasping orientation, . The method

followed is also the same, except that a single value of ¢ is picked to minimize the expected
motion time and the destination location is used instead of the initial pin location. Thus,
the expected final position of the hand will be given by:

hand_destination = pin_destinationsgrasp_xf
= ﬁoe'ettnm(rot(:hnt,@?zclor(&.&,-dﬁ)&gm:p_xﬁ

For our example situation (Section 4.8) and grasping parameters:

Y = 135 degrees
@ = 90 degrees
d = 354cm
we get
§ time

o° 960 sec

45° 491 sec

90° 468 sec

138° 582 sec

225° 121 sec

270° 1.54 sec

315° 167 sec

¢ = 90 degrees will therefore be chosen.

The exact values of dtry and standoff are less imnportant. The principal constraint is that
they be large enough to guarantee that location errors in the hole (or pin) will not cause the
motion to stop prematurely or to knock the pin into the object while approaching the
approach point. Currently, arbitrary values,

dtry = dg + 1 inch
standoff = 1 inch

are used. Thus, for this case, our destination approach and target locations will be,
respectively:
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pin = holestrans(rot(zhat,90+deg),vector(0,0,2.54));
pin = holestrans(rot(zhat,90+deg),vector(0,0,-4.25))

When values for ¢, dtry, and standoff have been picked, they are combined with the

grasping strategy to form an embryo “pin-in-hole” strategy. The expected time to execute it
is Just the time expected for the pickup operation plus the time for moving to the hole.

4.5 Accuracy Refinements
In the absence of errors, the strategies derived in the previcus section would suffice to
accomplish the task. Unfortunately, the world is not so kind, and we must consider the
effects of errors. For each strategy, we apply the machinery given in my dissertation [28]

and {llustrated in the appendix to estimate the error between the pin and hole at the
approach point as a function of free variables: b

Bppp=Zhpkp, [Eqn 3.5.1]
ORpp =1+ Z gME,

sub ject to constraints
- on the free variables. We are principally interested in three things:
I Axis misalignment (A8) between the pin and hole.

2. Displacement error (Az) along the axis of the hole.

3. Displacement errors (4x,Ay) in the plane of the hole.

Each of these entities is discussed below.

4.5.1 Axis Misalignment

For suitably small values, A8 may be approximated by
Ab < y-ﬁkhpz + x-&Rth

Thus, we can use [Eqn 3.5.1] to compute the maximum expected misalignment.
A ax = max |AG|

where

Af; = max | vector{cos{;sin’;,0) '5.1-'{1,?;1
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At present, we consider six values of {;, ranging from 0 to 315 degrees.

For example, suppose that we are considering the in-hole position

pin = holestrans(nilrotn,vector(0,0,-1.71))
hand = pinstrans(rot(zhat,?/5+deg)srot(xhat,I180«deg),vector(0,0,3.54))

corresponding to grasping parameters W = 315 degrees, ¥ = 180 degrees, and d = 3.45 em;
and pin-hole rotation angle ¢ = 90 degrees.'> We assume that the hand holds the pin with
2ssentially no error, but the hand may be sub ject to orientation errors of up to £0.25 degrees
about the hand x, y, and z axes, and the hole orientation may be subject to rotation errors

of £5 degrees about the z axis. These values give us an estimate of the pin-hole rotation
error:

ARpp 31+ ROT(225%(n, My + 1My « 1;M;WROT(2:225°) + vM,

Y
where M, M,’, and M, are related to infinitesimal rotations about the x, y, and z axes and
are shown below:

0f
-1

|
l 0f

o OO
“CDCQ

0 i
0 0
0 0

QO

!
|
k1
10-1 0]
M,= 100
10 0 0

The constraints on the free variables are:

-5deg sV s bhdeg
-0.25 degrees s n, < 0.25 degrees

-0.25 degrees s ny s 0.25 degrees
-0.25 degrees s 1, < 9_.25 degrees

where 7, qy, and n, represént the hand rotation errors, and ¥ represents the rotation error
of the hole. Solving, we get '

= These parameters correspond to the best overall strategy found in Section 4.8.
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¢ aGh
0°  .35¢°
30°  .306°
60°  .306°
90°  .35¢°
120°  .806°
150°  .306°

‘
=

Consequently, A8, =.354°.

Once this value is computed, we compare it to the allowable limit, &8,,. If the value is

out of bounds, then the pin-to-hole alignment may not be good enough to guarantee success.
" Presently, this is grounds for rejection of the strategy. Other options would be to add
another parameter to the search loop, so that different pin orientations, as well as different
"Xy" positions are tried; to include “smarter” accommodation techniques; or to attempt in
some way to ascertain the pin-hole orientation more accurately. '

4.5.2 Error Along the Hole Axis

Az is easily computed from

Recall that our "in hole” test examines how far the pin gets along the hale axis before being
stopped. If it doesn't get far enough, then we assume that we hit the object, and must try

again. For this test to work, we must be sure that Az cannot be big enough to cause
confusion. Le,

|A2] s Teldrdg)

where T is a suitable "fudge factor” {currently 0.75) designed to keep us well within the
“safe” region. If the maximum value of Az falls within this limit, then no further

refinement is needed. If not, then “tapping” is consiered as a means of getting the
necessary accuracy. To use this strategy, the system must select a place to tap. The
principal considerations in making this choice are:

1. The point should be as close to the hole as practical, to minimize the effects

of rotation errors in the hole surface'® and to minimize the time wasted in
moving to a tapping place.

— —

'% Actually, this consideration is too strong. The “right” thing to do is to compute the

expected misorientation and then use that result to compute the allowable distance from the
hole.
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2. The point should be far enough from any confusing features (like holes) so
that we are sure to hit the surface we expect to hit.

T'he method used is roughly as follows: .

s + surface into which the hole is drilled;
{(x3yp) + location of hole in coordinate system of surface;

144 * radius of hole + radius of pin tip;
Ay, + max( 0.3 inches, L\.x&p. Byxp)

maxr + maximum distance of any point on s from the hole;
dbest « 0;

for r « ryy + Qryq step Oryyq until rmax do
begin real &
for & + 0 step QOryg/r until 27 do
begin real x3.d;
x + xp o recosks y & 3 ¢ resink;

d + distance of nearest hole or edge in 5 from {xy)
comment d<0 if (x.3) is outside of ¢
if d>dbest then

begin dbestedixbestexiybesteyend;
end; :

if -dbtm&xap then done;
end;

The tapping place is then computed from xbest and ybest as
pin = holestrans(nilrotn,Ry, evector(xbest ybest.0)-p ph
where

Typ  =trans(Rgppyp) _
=position of hole with respect to s

The results of a typical application of this method is shown below. Here, we are looking for
a tapping place near one of the corner holes of our box, located at (3.85,3.20) with respect to
the top surface of the box. In this case, we assume that the box location is known precisely,
so that the only xy error comes from the hand. Thus,

Aryg s max (0.3 inches, Ax, 89)

= max {762 ¢cm, .243 ¢cm, .226 ¢m)
=, 762 cm

On the first iteration through our outer (r) loop,
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r= 450 cm « 762 cm = 1.21 em

Going through our inner loop produces:

x b d
506 320 -B12'5
483 391 .397
422 435 -553
3.47 435  .552
287 381 -1l

264 320 577
287 249 -115
348 205 229

Thus, xbest + 2.64, ybest « 3.20, and dbest + 577 on this iteration. Since this value of dbest
is considerably larger than our possible confusion radius (243 cm), we have found an
acceptable tapping place, and can stop looking. The corresponding tapping point is:

trans(nilrotn,vector(-1.21,.002,0)};

Once such a point has been found, then Az is re-evaluated, taking account of the
additional measurement. If the potential error has now been sufficiently limited, then the
tapping place is entered into the strategy record, and the estimated cost is updated to
include the time of the extra motion. In this case, the reduced error is Az = .180 ¢cm, which
is much smaller than the required accuracy of 1.71 cm, and the estimated extra time is 1.2
seconds.

If no tapping place.can be found, then the system currently must give up on the strategy,
and hope that one of the other grasping positions will produce more accuracy along the
hole axis. Unfortunately, this hope is frequently a forlorn one. Eventually, we would like
to consider other measurement tricks to try if tapping doesn't work. These alternative tricks
presumably could be weighted according to their expected cost, and a “best” combination
picked. -

453 Errors in the Plane of the Hole-

These errors cause the pin to miss the hole, and are overcome by searching. To estimate in-
plane errors, we compute

& = max | {cosfy sindy 0y Oppp |
for

{x = 30k degrees
Osks?h

Then, we take

1% Negative values mean outside surface or on top of a hole.
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Ax = max &,

AY = §543) mod 6
=iy

This produces an “error footprint" rectangle with sides 2Ax and 24y, rotated by & with
respect to the hole. We set

Ar - m‘x(a K’ﬂﬂ

A typical instance of this calculation is illustrated below. Here, the nominal pin and hole
positions are the same as those given in Section 4.5.1. In addition, we assume that the
rotation errors are as previously stated and that the object in which the hole is drilled is
sub ject to small displacement errors in x and y. This gives us the following expression for
- pin-hole displacement errors.

ﬁpﬁp = Vevector(-3.20,-3.85,0)
+ Nyavector(2.5,-2.5,0) + nysvector(-2.5,2.5.0) + nyevector(0,0,0)

+ b evectar(.707,.707,0) + Sywector(-.?{??.-,?a?ﬂ} - 8 0zhat
- €,0Xhat - {.,ayim

where ny, ny, and n, represent rotation errors in the hand; 8, by, and &, represent

displacement errors in the hand; ¥ represents rotation error in the ob ject containing the hole
(our familiar box); and €, and €y represent ob ject displacement errors.

~ The corresponding constraint equations are:

{ 1.99 y o008 y 880 s o800 , +BE8 y -8088 1.V1ls .17
{1.00 y -088 y R8¢ s <808 s <808 » +888 ), VI 2-.127
t.es8 , 1.8 , .80 , .e@2 , .8@¢ , .ee8 ) . VIS .127

{ .080 y l.88 y <388 s o002 s <008 s 008 1.9 2-.127

{ .908 y <888 s 1.80 . «B08 s 808 s o888 . vis 7

l -‘3’ $ .333 ¥ I-la ¥ r'a' ' ’ l”s ¥ tk’“ } . vi 2--12?

{ .908 s + 888 ; 009 s 1.08 s 808 . oBOR 1.Vl S . 43%e-2
‘ i"‘ ¥ ‘.‘. F 3 -‘3. ¥ 1!" Y .‘33 # -i” 1 " y.l f-.‘“ﬂ-:
[ .0g8 s 808 . 8088 ; 008 y .88 y 888 }.ViS . 4d6e-2
‘ 0“‘ * -!8' ¥ .0'9 3 ¢338 ¥ 1.'0 ¥ -383 ! £ Vl 2-1‘3‘.‘2
(.08 , .ee¢ , .008 , .00 , .000 , 1.88 ) . VIS .436e-2
t.ee , .e00 , .e08 , 000 , .900 , 1.88 ] . Vi 2-.438e-2
{ 1.9 s M08 y o808} . V2 .762

{ 1.08 L s 888 3 . V22782

{ 068 s L.08 y 888 1 . V2 g 808

{.000 y L.08 y 888} . V2 2-.508

{ .900 y 808 y 4.08 P V23 87000

T.000  , 806, 108 1. V22-.87%-)

where
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vistd, 6“, 5, 1, g Mg )
VZelE, E“, 4]

Computing &, for six values of {, gives us:

0° 1.05cm
30° 14%¢m
60° 1.50cem
90° 1.24 ¢m
120° 116 cm
150° 1.15¢m

Consequently, Ax = 1L.50 ¢cm, Ay = 1.15¢m, and { = 60 degrees.

If Qr is less than Argy, then we won't have to worry about searching, since the pin will

always be within the allowable error radius of the hole, If not, then a search will have to
be planned. The search loop used is shown in Section 4.8.

If a search is required, the cost of the strategy must be ad justed to account for the time
spent doing it. This is difficult, since we don't know anything about the distributions of the
errors. A worst-case estimate can, of course, be obtained by multiplying the time to make
.one try by the total number of points in the search pattern. However, this seems too
pessimistic. Therefore, we oniy count thase points within Ax/2 and Ay/2 of the hole.

4.6 Selecting a Strategy

We wish to select the strategy with the smallest execution time. The most direct way to do
this is to plan all strategies out fully, evaluate them, and then take the cheapest. This
approach has the drawback that we may spend considerable time refining strategies whose
basic motions are so inefficient as to rule them out. Therefore, we first decide on the basic
motions for each distinct grasp point. All candidate strategies are sorted according to gross
motion time, and then considered in "best first” order. If we reach a point where the next

best unrefined strategy is more expensive than a fully planned strategy, then we can stop
searching. <

strategies « null;
for each g such that g is a grasping strategy do
begin
Decide best way to get pin to hole, using z.
if there is a way then
Create a pin in hole strategy & insert it in strategies,
ranked by expected time.
end;
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best_strategy « incantation;

shortest_time « 1037 seconds; { a very long time }
minimum_refinement_cost + lower bound on “fine motion" time;

for each 3 such that 5 € strategies do
begin
if cost(s)eminimum_refinement_costzshortest_time then
done; { best_strategy is the best strategy we've found}
Refine 5 to account for accuracy considerations.
Revise the cost estimate for s.
if cost(s)<shortest_time then
begin
shortest_time « cost{s)
best_strategy v 53
end;
end;

Here, we have used minimum_refinement_cost to tighten our cutoff somewhat. It may be
computed by assuming that there is no error in the arm or grasp, so that all error between

pin and hole comes from errors in the hole location, and then considering what refinements
would be necessary.

4.7 Code Generation

Once we have selected a strategy, the actual synthesis of program text is accomplished by
calling procedures that extract the appropriate values from the strategy record, substitute
them into the appropriate slots in code skeletons, and print the results.

Pickup Strategies
The procedure for writing pickup strategies looks something like this:

procedure write_pickup(pointer(pickup_strategy) pkp);
begin
print("{ PICKUP " pkp,":" remarks[pkp)"}"crif 'S);
print("OPEN BHAND TO “approach_opening{pkpl"")
write_motion_sequence({{approack_point[pkpl.grasp_point[pkpli}.nulll
print("CENTER BMANIP"crif); '

18 *Carriage Return, Line Feed”
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print(" ON OPENING < "grasp_opening[pkpl” DO "crif)
print(" ABORT(GRASP FAILED') crif}

print("AFFIX "location_variable(object[pkp)).” TO BMANIP; crif);
write_motion_sequence({{departure_point[pkpl}}.null);

end;'?

Pin-in-Hole Strategies

The write_pin_in_hole procedure is slightly more elaborate than write_pickup, which it uses
as a subroutine. In addition to generating more output, write_pin_in_hkole must make
several decisions about what code to emit:

1. Is "tapping” to be performed?
2. Is a search to be mace?

Actually, these decisions have already been made and are reflected in the data structures.
Thus, our code writer looks at the tapping pilace field of the strategy record to decide
question 1. If the record is null, it does nothing: if a point is specified, it emits the
appropriate code. (An example may be found at the end of Section 4.8). Similarly, in
deciding whether to emit code for a search, it looks to see if Ax is greater than .ﬂro-k."’ If
so, the search is produced; otherwise, a perfunctory check:

IF RBS(DISTANCE_OFF) > To{dpd ) THEN
RBORT("pin NISSEQ Aole™ UNEXPECTEOLY)
is written instead. The program text produced for a typical strategy, together with further

discussion of the particular constructs used to implement search loops, may be found in
Section 4.8.

Motion Sequences

Both write_pickup and write_pin_in_hole use a procedure, write_motion_sequence, to
generate motion statements. This procedure works roughly as follows:

17 *bmanip” is an akernative name (used in the current AL implementation) for the biue
arm, and “bhand” is the name for the blue hand.

'8 Recall that in Section 4.5.3, we selected { 50 that AxzAy.
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procedure write_motion_sequence(list destinationsistring qualifiers)
begin integer ijk;
j*0;
while j< length(destinations) do
begin
.ii-jl-jq.h
controllable « what[destinations[i]};
while j < length(destinations) and what[destinations[j+1]}scontrollable do
wfs ]
COI{I;‘LQDI Now, {{destinations[i}...destinations[j}}} is a
subsequence with the same controliable frame;
print("MOVE "Jlocation_varicble(controllable)” TO *,
location_variable(base[destinationsi))),"s" xf{destinations[i]}.crif);
for k « is] step ! until j do
print(if ksis] then "VIA "else ", =,
location_variable(base[destinations[k]]),
“¢"xfldestinations(k])crif);
print{qualifiers.crlf);
end;
end;

Here, we first break the destination sequence up into subsequences with common
“controllable” frames, and then generate a motion statement for each subsequence. There
are several possible pitfails, since the semantics of two successive motion statements are not
identical to a single statement, especially where the gqualifiers include stop-on-force tests. At
present, this difficuity is solved by being careful that the procedure will not be called with
arguments that “split” the motion at a bad point. This solution was satisfactory for our
present (small) set of code emitters, but something better will have to be done in the long
run. An alternative approach would be to compute the relation between each controllable
frame and the manipulator, and then to write the motion purely in terms of the
manipulator frame. This solves the abovementioned difficulty, but introduces additional
complexity, making the output programs harder to read. A better fix would probably be to
extend the syntax of AL to allow hybrid destination lists, and then allow the AL compiler

to worry about the relation to manipulator frames.i?

4.8 Example

- The task, strangely enough, is insertion of an aligning pin into a hole drilled in the top
surface of a small metal box. Initially, the box body sits on the work table at Tywhe and is

subject to displacement errors of up to 0.3 inches along the x-axis of the table and up to
0.2 inches along the y-axis and to rotation errors of up to § degrees about the table z-axis.
The hole (bA1) is located at Ty, with respect to the box, the pin (pinl) is held in a tool rack

at Twp- and the manipulator (bmanip) is parked at bpark, where

——————

'® Such an approach is a natural extension to the presen: translation performed by the AL
compiler.
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Twb = trans(nilrotn, vector(45.2, 102., 0))

Tph = trans(nilrotn, vector(3.85, 3.20, 4.90))

Typ = trans(rot(zhat,90+deg), vector(24.1, 117., 537
bpark = trans(rot(yhat,/80+«deg), vector(43.5,56.9,10.7)};

From the initial computation, we determine that

direction = axes parallel
dg » 171 cm

dg=0
Qrgy »0.762 cm
DB,y » 10 degrees

In other words, the pin is expected to go 1.71 ¢m into the hole. When we make the attempt,
if the pin tip is within 0.762 cm of hole center and the axes are within 10 degrees of
parallel, then the insertion operation will succeed. If we miss, then we won't go any distance
into the hole at all. (l.e, we won't get stuck halfway in).

The pickup strategy generator now goes to work and decides on a single grasping distance.
and a range of grasp angles:

dgrasp = 3.54 cm
100 degrees < ¥ s 180 degrees

It then produces nine feasible pickup strategies, ranging in cost from 4.08 seconds to 8.58
seconds. These are then elaborated into unrefined motion strategies, with time estimates of
5.47 seconds to 12.7 seconds. A computer generated summary of the best of these strategies
is shown below:?°

PHL 5SPEC 132757
PRELINS: NULL_RECORD
PICKUP: PICKUP SPEC 162775
PRELIMINRRIES: NULL_RECCRD
RPPRCACH OPENING: 2.88
APPROACH: BHANICLPINLsTRANS(ROTN(VECTOR(.876,.5679,.281),149DEG) ,VECTOR(~3.59,8,7.13))
GRASP QPENING: .185
GRASP: BHANIP«PINIeTRANS(ROTN(VECTOR(.679,.679,.281),1490EG) ,VECTOR(E,8,3.540)
CRASP DETERR: NILTRANS
DEPARTURE POINT: PINI«PINI«TRANSINILROTN VECTOR{(2,8,6.75))
GOODNESS: 4.13
REMARKS: W = S0.8 deg Grasp Rngle = [35. deg Urasp Distance = 3.54
RPPROACH: PIN1BRHIsTRRNS (ROTH (ZHRT, 28, oDEC) ,VECTORIE, §,2.541)
DESTINRTION: PIN1=BH1sTRANS (ROTN{ZHAT,B8.90EC) VECTOR(S,8,-1.71)}
TRRGET: PIN1sBHIoTRANS (ROTN (ZHRT,5%.00EG)  VECTOR(B,#,-4.25))
XPORT TIRE: 1.34
GOODNESS: 5.47

714P: WULL_RECORD (T he fields below aren't filled in yet)
FINE TINE: .80@

PH D21 .808

PH FP DX: .808

—— ——

20 The output has been edited slightly to improve readability.
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PH FP DY: .B800
PH FP ROT: .288

In terms of the parameters described in earlier sections, this strategy corresponds to:

w = 90 degrees

% = 135 degrees

grasp distance = 3.5¢ cm
dtry = 425 ¢cm

standoff = 2.5¢ cm

¢ = 90 degrees

Once all our candidate motion strategies have been generated, we set about refining them, in
best-first order. To do this, we generate the error terms and compare them against the
requirements established at the very beginning. For the strategy just shown, we get

Az =.180cm
Ax = 1.50 cm
Dy = 115¢cm
{ = 60 degrees

The value of Az is thus small enough so that we are sure not to be confused about whether
the pin will make it into the hole. Thus, we don't have to “tap". On the other hand, the
“error footprint” is bigger than Argy, so we will have to search. The estimated extra time

for this is 1.8 seconds, giving us a total estimated cost of 7.27 seconds.

The refinement of strategies continues until we reach:

PHL SPEC 134023
PREL ISy NULL_RECORD
PICKUP: PICKUP SPEC 163075
PRELININARIES: NULL_RECORD
APPROACK OPENING: 2.88
APPROACH: iﬂﬂﬂlPiPlﬂiiTRRHSlRQTNi?ECTDRX.SOS,‘Slﬁ,.ﬁiii,123-aﬁicl;VﬁtTﬁR!-ﬁ.,*,i.l:)!
GRASP DPENING: .185
GRASP: BHANIP=PINI#TRRNS (ROTN (VECTOR(. 588, .508,.518),126,#DE0) ,VECTOR(3,§,3.541)
GRASP DETERMN: NILTRANS
DEPARTURE POINT: P:xia'mza‘mnxsmzmuru,mmau,:,s,as):
GOODNESS: .95
REMARKS: M = 90.8 deg Grasp Rngis = 160, deg OCrasp Distince = 3.54
RPPROACH PlNiiBﬂlt‘lﬂNS{RGTﬂ(ZHﬁf,ﬁﬁ'IDEG},VECTQI(..S,}.S!?!
DESTINRTION: FIRIBBHICYRRNS{RDTN‘235T,§3.¥!DE$1,YEC!OR(O,?,-I.TI}E
TARCET: Plﬁloﬁﬂlt?ﬁﬁus(RUTN‘ZHQT,Q‘.'#QEGI,Vit?ﬂki‘,l,-i'QSl)
XPORT TINE: 2.56
GOODNESS: &.64
TAP: WULL_RECORD
FINE TINE: .09
PH D2: 808
PH FP DX: 888
PH FP DY: 008
PR FP ROT: .088

This strategy will take af least 664 seconds to execute, and all the rest will take even longer.
However, at this point, the best completely refined strategy is:
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PHL SPEC 138522
PRELINS: NULL_RECORD
PICKUP: PICXUP SPEC 72827
PRELINCNRRIES: NULL_RECORD .
RPPROACH OPENING: 2.88
RAPPROACH: BMANIPPIX1&TRANS(ROTHI(VECTOR(.824,.383,.4813,180.90EC) ,VECTOR(S,§,8.82))
GRASP OPEMING: 185
GRASP: BMANIPaPINITRANS(ROTN(VECTOR(.924,.383,.081},.180. oDEG) , VECTOR (S, #,3.54))
GRASP DETERM: NILTRANS
DEPRRTURE POINT: PINL=PINI«TRANSINILROTN,VECTOR{D,9,8.78))
GOODNESS: 4.16
RENRRKS: o = 3i5. deg Grasp Angle = 188. deg Grasp Distance = 3.54
RPPRORCH: PIN1aBHIeTRANS (ROTH{ZHAT, S0, 8:DEG), VECTOR(E, §,2.54))
DESTINRTION: PINi=BHis TRANS{ ROTN{ 2HRT, 92.908+DEC), VECTORC .088, .888,-1.711)
TARGET: PINI«BHIsTRANS(ROTN(ZHRT,58.08sDEG) VECTORCE, #,-4.25);
XPORT TINE: 1.38 ’
GODDNESS: 6.1d
TAP: NULL_RECORD
FINE TINE: .Ba@
PH D21 .127
PH FP DX 1.58
PH FP DY: 1.15
PH FP ROT: 1.85

Sinte we already have a refined strategy better than any of the remaining unrefined

strategies, we can stop looking, and write the AL code for our current best strategy. In this

case, the computer generated the following program text:!

{ PIN-IN-HOLE STRATEGY 138523:
DROK = .7B2 FPX = §.58 FPY = 1.15 FPU = 1,05
02 = 127 ESTINRTED TINE = 6.14 ]

i PICKUP 72827
M= 3i5. deg Crasp Angle s 188. deg OGrasp Distance = 3.5& 1}

OPEN BHRND TO 2.98;
NOVE BMANIP T0 PINIsTRANS(ROTN(VECTOR(.S24,.383,.881),188.DEG) ,VECTOR(S,8,3.54))
VIR PIN1#TRANS (ROTN (VECTOR(.524,.383,.801), 188, sDEC) , VECTOR(9,8,8.52));
CENTER BRANI®
ON DPENING < .185 DO
BEGIN RBORT("GRASP FRILED®); END;
AFFIX PINL TO BHAKIP;
NOVE PINI TO PINIsTRANS(NILROTN,VECTOR(S,8,6.783);

{ FIRSY RTTENAPT §

MOVE PINL TO BR12TRANS (ROTN(ZHRY,$8.84DEC)  VECTOR(S,8,-4.25))
VIR BH1sTRANS (ROTN (ZHAT,90.84DEC) , VECTOR(D,8,2.54))
ON FORCE (ORIENT(PIN1)2HAT) > 840Z DO STOP
ON RRRIVAL DO RBORT ("EXPECTED R FORCE HERE®);
DISTANCE_OFF.ZHRT . INV(BHITRANS(ROTN(ZHAT,$8.040EG), VECTOR(E, 8, -1.71)) ) sDISPL(PINI);
IF RBS(DISTANCE_OFF) > .169 THEN
BEGIN IPINI MISSED BHI I
BOOLERAN FLRG;
1 SERRCH LOOP: 1
RERL R,DU,U,X,Y;FLRG-FALSE;
R » .572; | 8.754DROK 1

2! The program has been edited very slightly to improve readability by removing excess
blanks and by rounding all numbers to three significant digits. (For instance, the computer
output had “0.00106", instead of "0.001")
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WHILE NOT FLRG RND R £ 1.7Z DO
BEGIN
o 85 DU« { 572/R)sRAD,
WHILE NOT FLRG RND M<253DEC DO
BEGIN
IF RES(XeRsCOS(MI 3« 1.58 AND ABS(Y+RsSIN(MI}< 1.15 THEN
BEGIN FRANE SETPNT;
5£?P3T.BHl*TRﬂHS{ﬁlLRQTﬂ.RDT{ZHQY.I.E5)tV££TUR{X,Y,83I;
KOVE PINL TO SETPNTe TRANS {(ROTN {2HRT, 88, 9:DEC) , VECTOR (8,8, -4.25))
ViR SETPNT#TRANS (ROTN (2HRT, S0.040EG) , VECTOR (2,8, 2.54))
OR FORCE(ORIENT(PIN1}e2ZHAT) » 5502 DO 510P
OK RRRIVAL DO RBORT(“EXPECTED R SORCE HERE™);
DISTRANCE_OFF+ZHAT . SHV(52??3?1738“8IRBT&(ZBRT,93.3t0563,?ICTURiﬁ,i,wl.?I]}I
sOISPLAPINL};
IF RBS{DISTANCE_OFF} < .165 THEN
FLAGSTRUE;
END;
u.ﬂoﬂﬂ;
END;
R+R & .572;
END;
IF NOT FLAG THEN RBORT(“PINI MISSED 8H1");
END;

| LET GO
OPEN BHAND 10 2.98;
UNFIX PINL FRON BRANIP;

i XKOW GET HAND CLERR }
HNOVE BNANIP TO BRRNIP#TRANS (NILROTN, VECTOR(,8,-5.88)3;

The search loop used here works by generating (x;) offsets in ever-widening circles about
the origin. Each point generated is tested to see if it is within the footprint limits:

-Ax sx s Ax
-Ay sy s Ay

If s0, then a displacement vector (in the coordinate system of the hole) is computed by:
rot(zhat,{Jsvector(x,y.0)

and used to produce an offest candidate location (setpnt) for the hole location. If the
insertion attempt for this point succeeds, then flag is set to indicate success and the loop is
terminated. If the attempt fails, or if (xj) was outside the error footprint, then the next
point is tried. The loop continues to be executed until either the entire expected error

range has been exhausted or the insertion succeeds.??
Variation

The example above required a search, but no “tapping”, since the error along the z-axis of
the hole was much smaller than the expected penetratiion of the pin into the hole. If we

——— — ——

%2 Some people have commented on the computational inefficiency of generating (possibly)
many values of (xy) which will be thrown away. For any reasonable error limits, however,
this cost can be ignored, since the time required for moving the manipulator far exceeds
that required to compute a target point.
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increase the uncertainty along this axis, then a tap (or some other measurement) must be
used before the insertion can be tried. This is illustrated by the code below, which was
written for the same assumptions as those used earlier, except that the box position is
assumed to be subject to no rotation or “in plane” displacement errors, but may have an
error of up to 0.75 inches up or down.

1 PIN-IN-HOLE STRRTEGY 1343561
DROK = .762 FPX = 243 FPY = 228 FPUE = 524
D2 « .188 ESTINATED TINE = 6.87 i

| PICKUP 147157 )
K= 88.8.deg Grasp Angie = 135. deg Grasp Distance = 3.54 )

OPEN BHAND TO 2.98;
NOVE BMANIP TO PIN1sTRANS (ROTN(VECTOR(.67S,.679,.281), 145+DEG) ,VECTOR(S,8,3.54))
VIR PINI&TRANS (ROTNIVECTOR(,.679,.679,.281),145+DEC) ,VECTOR(-3.53,8,7.13)}
CENTER BNANIP
ON OPENING < . 185 DO
BEGIN RBORT("GRASP FRILED™); ENDy

RFFIX PINI TO BRANIPg
NOVE PINL TO PINISTRANS(NILROTN,VECTOR(D,8,6.781);

i NUSTY TAP |

PBOVE PINI TO BHIsTRANSINILROTN,VECTOR(-1.21,-.882,-5.88)}
VIR BM1eTRANS(NILROTN, VECTOR(-1.21,-.802,5.080)
ON FORCE(ORIENT(PINlie2HRT) > 840Z 00 5707
ON RRRIVAL DO RBORT("EXPECTED R FORCE HERE™);
CORR =« ZHRT . INV(BHle TRANS{ NILROTN, VECTOR(-1.21,-.882, .880}))eDISPLIPIN]);

{ FIRST RTIEMPT |

ROVE PINI TO BHI«TRANS(ROTN{ZHRY,B0.840EC),VECTOR(E,8,-4.25))
VIR BHi=TRANS(ROTN{2MAT,90,8:0E0) ,VECTCR (R, 8,2.54))
ON FORCE (ORIENT{PINI}+ZHAT) > B¢0Z DC STOP
ON RRRIVAL DO RBORT("EXPECTED R FORCE RERE™);
DISTRNCE _DFF-2ZHAT. INV(ZH1eTRANS (ROTN (2HAT, 92, 84086 VECTOR (S, ¥,-1.71) 1) sDISPL(PINLI-CORR;
1F RBS(DISTANCE_OFF) » .233 THEN
ABORT(*PINI NISSED BHI UNEXPECTEOLY.®};

{LET GO ¥
OPEN BHRND T0 2.8§;
UNFIX PINI FRON BURKEP;

§ MO GET HAND CLERR i
MOVE BNANIP TO BHANIP&TRANS(NILROTN,VECTOR(D,8,-5.88) )

In this case, the error footprint in the plane of the hole is small enough so that no search is
needed. On the other hand, the uncertainty along the hole axis is quite large.
Consequently, the system has chosen a tapping place at

trans(nilrotn,vector{-1.21-.002,0))

with respect to the hole, which is then used to locate the top surface of the box more
precisely. This is accomplished by moving the pin along a path starting two inches above
the nominal height of the surface and ending two inches below it. When the pin hits the
surface, the motion is stopped and used to compute a correction {corr) for use in the success
test.
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Chapter 5.

The goal of this research was the generation of AL manipulator control programs from
high level task descriptions. The full topic of automatic generation of AL code is extremely
broad, and many narrowing assumptions have been necessary in order for us to
demonstrate basic feasibility while keeping the scope of effort within reasonable bounds.
This report has explained how AL programs have been generated automatically for a
- particular programming example, the insertion of a pin into a hole, which is a typical
subtask of many assembly operations.

The example was first discussed from the point of view of a programmer coding directly in
AL, to show that the task is non-trivial if attention is given to making the code rugged with
respect to positioning errors. Next, the modeling requirements for automatic coding were
analyzed, since the automation of coding decisions requires that the necessary information
be represented in a form usable by the computer. Finally, the programming example was
revisited, this time with the computer using its planning model to generate the AL code
automatically.

Extensions

Although the pin-in-hole task was used as an example throughout this work, a conscious
effort was made to avoid undue specialization. The modelling requirements for this task —
expected locations, accuracies, etc. — are applicable to other assembly operations, and the
techniques used to represent planning information were developed without any particular
task in mind. When time came to write the automatic coding procedures described in
Chapter 4, no substantial changes to the modelling mechanisms were required, although a
certain amount of bug killing was necessary.

However, it is worthwhile to consider how hard it would be to add automatic coding
procedures for otAer tasks.

As one might expect, the easiest additions would be for variations of pin-in-hole, such as

screw-in-hole, for which most of the analysis has already ‘been done.! The principal
additional difficulty that a screw-in-hole writer must handle would be figuring out how to
pick up a screwdriver and how to load ‘a screw onto it. Since these are fairly specialized
operations, it seems reasonable to construct a small library containing the appropriate code
for c.rferent drivers and screw dispensers. We would also want to consider alternative

methods, such as using the hand to start the screw into the hole? and then driving it down.

Almost as easy would be the task of fitting a nut or washer over a stud, although keeping
the fingers out of the way would probably be more of 2 problem. Only slightly harder
would be mating operations, such as fitting a cover plate or gasket over aligning pins, and
operations such as putting a part into a vise or simple fixture.

! Appendix A.2 illustrates a typical error calculation for a screw on the end of a driver.

2 This is just pin-in-hole with a twist at the end.
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The important characteristics of these tasks are that they can be performed with relatively
simple motion sequences and straightforward verification tests, that the accuracy
requirements are fairly easy to state, and that the coding decisions all rely on fairly local
properties. Where these characteristics are not present, automatic coding will be much
harder. Assembly tasks requiring clever uses of force, working in cluttered environments,
and handling limp ob jects are typical difficult tasks. It should be pointed out that humans
don’t know much about programming such operations, either. Since it is very difficult to
. automate coding decisions which cannot be clearly identified, these tasks must be much
better understood before much success can be expected.

Planning Coherent Strategies

My early research on automatic manipulator programming was primarily concerned with
the problem of how to write coherent programs which took account of interactions between
individual coding decisions. This work was done at a somewhat "symbolic" level; typical
decisions were selection of the order in which operations were to be performed, selection of
“good” workpiece positions, etc. It proved fairly easy to get a system to make these decisions
in a toy world of symbolic assertions. The rude awakening came with the transition to real
data. The work reported in this dissertation has been largely concerned with representation
of planning knowledge about real-world situations and then using it to make rather more
“local” coding decisions.

Although it is certainly possible o “put up” a system which plans each task-oriented
operation independently of the others, interactions must be considered if really efficient
programs are to be produced.

In Chapter 4, we saw that when selecting a grasping point to pick up the pin, we had to
consider both the initial and final positions of the pin. The estimated motion time included
both the time for the hand to reach the pin and the time for the pin to move to the hole.
Also, we discovered that some grasping strategies gave larger search patterns than others.
All these factors affected our final choice.

This sort of interaction is not confined to choices made within individual assembly
operations. For instance, suppose we must place pins into two -holes in our favorite box.
Then, in selecting a grasping method for the first pin, we should remember that our choice
will also affect how much time will be required to pick up the second pin. Other
interactions may be more subtle. Inserting the first pin gives us information about the box
Tocation. Since this information can be used to reduce the search required for the second
insertion, we perhaps ought to consider the accuracy associated with different grasping
orientations as well,

One of the key ideas of the earlier work was planning by progressive refinement. Within
this paradigm, a program outline is prepared, then elaborated into a more detailed one, and
the process is iterated until a finished product is produced. The advantages of this
approach are that planning for indiviaual operations can proceed within the context of
other parts of the program and that effort is not wasted on contradictory or irrelevant

strategies® Before these advantages can be obtained for real manipulator programs, we
need a better understanding of how individual coding decisions affect each other. Although

3 Sacerdoti [22, 23] successfully applied similar ideas to a different domain.
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the modelling techniques developed in this dissertation — particularly, those for representing
ob ject relations and fer relating planned actions to accuracy information — can, perhaps,
provide a basis for such understanding, much very hard work needs to be done. The
development of a good constraint formalism for position requirements, discussed earlier,
would be especially helpful.

5.1 Acknowledgements

I wish to thank my thesis advisory committee, Jerome Feldman, Vinton Cerf, and Thomas
Binford, for their continued interest and encouragement and for many suggestions which
have helped give this work some measure of coherence. Also, I must thank all the many
people with whom 1 have discussed various aspects of this work. I owe a special debt to
Dave Grossman, who had the patience to read these chapters several times, and who made
many valuable editorial improvements.



1]
(2]

(3]
[4]

(5]

(6]

(7
(8]
(9]
[10]
(1] |

(12]

[1V.55)

Chapter &.
BIBLIOGRAPHY

Procrééiings of an ACM Conference on Proving Assertions About Programs, SIGPLAN
Notices, January 1972.

Association for Computing Machinery, Proceedings of ¢ Symposium on Very High
Level Languages, SIGLAN Notices, April 1974

David Barstow, The PS! Coding Expert: A Knowledge-Based Approach to Automatic
Coding, Manuscript, Submitted to Second International Conference on Automatic
Coding, October 1976.

Bruce G. Baumgart, GEOMED — A Geometric Editor, Stanford Artificial Intelligence
Laboratory Memo AIM-232, Stanford Computer Science Report STAN-CS-74-414,
May 19%4.

T. O. Binford, D. D. Grossman, E. Miyamoto, R. Finkel, B. E. Shimano, R. H. Taylor,
R. C. Bolles, M. D. Roderick, M. S. Mujtaba, T. A. Gafford, Exploratory Study of
Computer Integrated Assembly Systems, Prepared for the National Science Foundation.
Stanford Artificial Intelligence Laboratory Progress Report covering September 1974
to November 1975.

T. O. Binford, D. D. Grossman, C. R. Liy, R. C. Bolles, R. Finkel, M. S. Mujtaba, M.

D. Roderick, B. E. Shimano, R. H. Taylor, R. H. Goldman, }. P. Jarvis, V.
Scheinman, T. A. Gafford, Exploratory Study of Computer Integrated Assembly
Systems, Prepared for the National Science Foundation. Stanford Artificial
Intelligence Laboratory Progress Report covering November 1975 to July 1976.

Robert C. Bolles, Verification Vision Within a Programmable Assembly System, Ph.D.
Dissertation, Summer 1976.

Per Brinch-Hansen, Operating System Principles, Prentice-Hall Series in Automatic
Computation, Englewood Cliffs, New Jersey, 1973,

Q. J. Dahl, E. W. Dijstra, C. A. R. Hoare, Structured Programming, Academic Press,
New York, 1872.

Raphael Finkel, Constructing and Debugging Manipulator Programs, Ph.D.
Dissertation, Stanford Computer Science Department, 1976.

Robert Floyd, Towards the Interactive Design of Correct Programs, Stanford Computer
Science Report STAN-CS-71-235, September 1971.

Guiseppi Gini, Maria Gini, and Marco Somalvico, Emergency Recovery in Intelligent
Robots, Proceedings of the Fifth International Symposium on Industrial Robots,
September 1975.



[IV.56]

(i3]
(14]
- (18]
[16]

um
(18]

(18]

[20]

(21]

(22]
[23]

[24]

[25]

[26]

C. Cordell Green, et al, Progress Report on Program-U udef:randiné* Systems, Stanford
Artificial Intelligence Laboratory Memo A1M-240, Stanford Computer Science Report
STAN-CS-72-444, August 1974.

David D. Grossman and Russell H. Taylor, Interactive Generation of Object Models
With a Manipulator, Stanford Artificial Intelligence Laboratory Memo AIM.274,
Stanford Computer Science Report STAN-CS-75-536, December 1975.

James R. Low, Automatic Coding: Choice of Data Structures, Ph.D. Dissertation,
Stanford Artificial Intelligence Laboratory Memo AIM-242, Stanford Computer
Science Report STAN-CS-74-452, August 1974. '

Zohar Manna and Richard Waldinger, Knowledge and Reasoning in Program
Synthesis, Stanford Research Institute Artificial Intelligence Center Technical Note 88,
November 1974.

C. Murphy, T Ae Reliability of Systems, unpublished manuscript, date unknown.

J. L. Nevins, D. E. Whitney, H. H. Doherty, D. Killoran, P. M. Lynch, D. S. Seltzer, S.
N. Simunovic, R. Sturges, P. C. Watson, E. A. Woodin, Exploratory Research in
Industrial Modular Assembly, The Charles Stark Draper Laboratory, Inc., Prepared
for the National Science Foundation, Memo No. R-800, covering June 1373 to
January 1974, March 1974; Memo No. R-850, covering February 1874 to November
1974, December 1974

Richard Paul, Modelling, Trajectory Calculation and Servoing of a Computer
Controlled Arm, Stanford Artificial Intelligence Laboratory Memo AIM-177, Stanford
Computer Science Report STAN-CS-72-311, November 1972.

Richard Paul, Manipulator Path Control, Proceedings of the 1975 International
Conference on Cybernetics and Society, 1975, pp. 147-152.

C. Rosen, D. Nitzan, R. Duda, G. Gleason, J. Kremers, W. Park, R. Paul, Exploratory
Research in Advanced Automation, Prepared for the National Science Foundation,
Stanford Research Institute Project 4391 Fifth Report, January 1976.

Earl D. Sacerdoti, The Nonlinear Nature of Plans, Stanford Research Institute
Artificial Intelligence Center Technical Note 101, January 1875,

Earl D. Sacerdoti, A Structure for Plans and Behavior, Stanford Research Institute
Artificial Intelligence Center Technical Note 109, August 1975.

Hanan Samet, Aufomatically Proving the Correctness of Translations Involving
Optimized Code, Ph.D Dissertation, Stanford Artificial Intelligence Laboratory Memo
ATM-.259, Stanford Computer Science Report STAN-CS-75-498, May 1975.

Raobert F. Sproull, (Title Unknown), Ph.D. Dissertation,. Stanford Computer Science
Department, Summer *1976.

J- T. Schwartz, Automatic Data Structure Choice in a Language of Very High Level,
Courant Institute, NYU, 1974




[IV.57)

[27] Norihisa Suzuki, Automatic Verification of Programs with Complex Data Structures,
Ph.D. Dissertation, Stanford Artificial Intelligence Laboratory Memo AIM-.279,
Stanford Computer Science Report STAN-CS-76-552, February 1976.

[28) Russell H. Taylor, Tke Synthesis of Manipulator Control Programs from Task-Level
S pecifications, Ph.D. Dissertation, July 1976.

[29] Richard Waldinger, Achieving Several Coals Simultaneously, Stanford Research
Institute Artificial Intelligence Center Technical Note 107, July 1975.



[1V.58]

Appendix A.

Al Box in a Fixture

This sequence of problems illustrates the translation of symbolic relations into constraints,
and shows the output estimates that result from application of the iterative method
described in my dissertation (28] Here, we have placed our ‘box into an open-topped
fixture, as illustrated in Figure A.l. In the first problem, the box i3 allowed to rattle
around loosely inside the confines of the fixture. In subsequent subproblems, we push the
corner edges up against sides of the fixture, thus further restricting the box.

First Problem

The box has been placed in the fixture, with the Bottom surface of the box in contact with
the bottom inside surface of the box. This is reflected in our data base by the assertion:

(contacts, bxbtm, bjl.sb, inside_of)

where bxbtm is the bottom of the box, and bjl.sb is the bottom of the fixture. This produces
the constraint set: %

YHATeRs 5,85 VECTOR(~.768,-.649, .800) S 5.083 - YHRT . PV
_XHATsRs S.85s VECTOR(-.760,-.643, .808) < 4.888 - -XKAT . PV
_YHRTsRe 5.85s VECTOR(-.768,~.543, .008) S 5.889 - -YHAT . PV
XHRTsRe 5,858 VECTOR(=.768,-.649, .200) S 4,888 - XWRT . PV
YHATsRs §.85s VECTOR( .768,-.649, .B00) € S5.888 - YHAT . PV
_XHATsRs 5.85s VECTOR( .768,-.548, .008) $ 4.800 - -XHAT . PV
_YHATsRe 5.85s VECTOR( .768,-.645, .008) S S.930 - -YHAT . PV
XHRTsRs 5.85¢ VECTOR( .768,-.645, .808) < 4.8388 - XHRT . PV
YHATsRe 5.85% VECTORC .76@, .648, .800) < 5.888 - YHRT . PV
_XHATsRe 5.85¢ VECTORC .768, .649, .08} S &.808 - —XHAT . PV
_YHRTeRe G.85¢ VECTOR( .76, .643, .0088) 5 5.808 - -YHAT . PV
XHATsRs 5.85s VECTOR( .762, .64, .808) 5 4.808 - XHAT . b/
YHATsRs S.85¢ VECTOR(-.760, .64, .088) S 5.808 - YHRT . PV
_XHATsRe 5.85¢ VECTOR(-.768, .648, .280) § &.008 - -XHRT . PV
_YHATsRs S.85s VECTOR(-.766, .53, .088) € 5.000 - -YWAT . PV
YHATsRe S.85s VECTOR(-.768, .B4S, .808) S 4.800 - XHRT . PV

t 88 - mT « PY
WHERE R = NILROTNsROTN{(-ZHRT, W}
PV = [X,Y, 2]

A pplying the aigorithm gives two possibie orientations:

ESTINATE LISTy

1TENA 161

: 4] -, 204 TO0 .284

¥: -.555 T0 .55%

21 -. 881 TO .BBl

M £7.368eDEC TO 82.532s0EC

COS(NE) = .888 SINWIE) = 1.800
COS(OW) = .8998 R« 846
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Appendix A.

" Al 'B_n‘x in a Fixture

This sequence of problems illustrates the transiation of symbolic relations into constraints,
and shows the output estimates that result from application of the iterative method
described in my dissertation [28) Here, we have placed our box into an open-topped
fixture, as illustrated in Figure A.l. In the first problem, the box is allowed to rattle
around loosely inside the confines of the fixture. In subsequent subproblems, we push the
corner edges up against sides of the fixture, thus further restricting the box.

First Problem

The box has been placed in the fixture, with the hottom surface of the box in contact with
the bottom inside surface of the box. This is reflected in our data base by the assertion:

(contacts, bxbtm, bjl.sb, inside_of)

where bxbtm is the bottom of the box, and ¥fl.sb is the bottom of the fixture. This produces
the constraint set:

YHATeRe 5.85¢ VECTOR(-.768,-.645, .800) 5 5.008 - YHAY , PV
-XHATeRe 5.85¢ VECTOR{-.760,-.649, .008) £ 4&.808 - -XHRT . PV
~YHRT#Re 5.85¢ VECTOR(-.768,~.649, .068) S 5.808 - =YHAT . PV
XHATeRe 5.85¢ VECTOR(-.768,-.645, .0008) § 4.808 - XHAT , PV

YHATeRe 5.85e VECTOR( .768,-.645, 8000 £ 5.808 - YHRT , PV
~XHATeRe 5.85¢ VECTOR( .768,-.665, .000) € 4.808 - -XHAT . PV
~YHATeRe 5.85¢ VECTORC .760,-.648, .008) 5 5.000 - -YHRT , PV

KHRATeRe 5.85¢ VECTOR( .76@,-.649, .B0C) £ &.808 - XHAT , PV

YHAT#Re 5.85¢ VECTOR( .768, .649, .808) € 5.688 - YHRT . PV
-XHATeRe 5.85¢ VECTOR( .768, .648, 8080 § &.888 - <XHRT . PV
~YHRTsRe 5.85¢ VECTOR( .768, .648, .800) < 5.008 - -YHAT . PV

KHRATeRe 5.85+ VECTORC .760, .649, .B0B) S 4.808 - XHAT ., PV

YHRT#Rs 5.85¢ VECTOR(-.768, .649, .808) £ 5.208 - YHRT . PV
-XHRT#Re 5.85¢ VECTOR(-.768, .64%, .008) S .80 - -XHRT , PV
~YHATeRs 5,85+ VECTOR(-.768, .64%5, .008) 3 5.002 - ~YHRY . PV

XHRTsRe S.85¢ VECTOR(-.768, .649, .800) < 4.008 - XHRY . PV

B= .868 - 2HRT , PV
WHERE R = NILROTHoROTR(-ZHAT,4)
PV = [X,¥, 2}

Applying the aigorithm gives two possible orientations:

ESTINATE LISTy

ITERL 16

b -, 280 TO .204

¥1 -.555 10 .5%5

21 -. 881 T¢ .&B:

i £7.368+DEC TO 82.532«DEC

COS{HE) = .08 SINWME) » .008
COS(DM) = .89% R« . 846
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Figure A.l. Box in Fixture

Figure A.2. Screw on Driver
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ITER&AIT

X1 -. 284 TO .284

¥: - 555 T0 .5%%

¥4 -.B81 TO .981

W ~82.63240EC TO -87.3684DEG

COS®NE) = .088 SIN(NE) « ~1.88%
COS(DM) » .938 R« 846

These results also illustrate the replacement of equality -constraints with a pair of
inequalities: here, Z goes from -0.001 to 0.001. This approximation is not strictly necessary.
However, it proved useful in some (other) cases where overdetermination was a problem.

Second Problem

We now assert that one of the corner edges of the box is in contact with a side of the
fixture.

(contacts, bxbtm, bjL.sb, inside_of)
(contacts, be9, bj1.52, ex tent_irrelevant)

This gives:
~XHATeRe 1.80s VECTOR(-.707,-.767, .880) < -.787
TIATeRs 5.85¢ VECTOR(-.768,-.545, .000) S 5.908 - YHAT . py
“XHATeRe .85« VECTOR(-.760,-.645, .000) S 4.803 - -XNAT PY

=YHRTsRe 5.85¢ vz:ran-.ne,-.sis, 200
XHATeRe S.85¢ VECTOR(-. 768,-.848, 030
YHATeRs 5.85s VELTOR( +768,-.848, .880)

~XHATeR® 5.85s VECTOR( +760,-.649, 800

-YHRTsRe §.85¢ VECTOR( -768,-,648, .800)
XHATeRe §.85¢ VECTOR( +768,~.648, .Qoa)
YHATeRe 5.85¢ VECTOR( .768, 648, .qed

~XHRTsRe 5.85¢ VECTOR( 760, .648, .ge®)

~YHRTeRe S5.85« VECTOR( -768, .64, L8002
XHATeRs 5.85& VELTOR( « 768, 548, .0em
YHRTsRe 5,85 VECTOR(-.760, .549, .808)

-XHRTeRs S.85s VECTOR(-.788, .B4S, .08

~YHATeRe 5,85« VECTOR(-.758, .843, .30

-XHRTeRe 5.85¢ VECTOR(~.760,-.643, .000)

B« 000 - 2HRT . PV

WHERE R »  NILROTNeROTN(-2HAT, 7)

ESTINATE LIST:

5.800 - -YHRT . pv
4.880 - XHAY ., pv
5.208 - YHRT . Py
4,808 - ~XHRT , PV
5,888 « <YHAT , PV
4,288 - XHWAT ., PV
§.80% - YMRT . Py
4,000 - -XHAT . PV
5.808 - -YHRT . PV
£.802 - XHRT . P¥
5.806 - vumt ., PY
4.008 -~ -XKAT . PV
5.808 - -YHAT , PV
.80 - XHRT . Py
~4.888 ~ -XHRT . py¥

L] MMMMU\V\!A“I&U\“I&MMM“M

1TENE28,

X1 -. 988 T0 .208

¥i -.558 T0 .ss58

2y -.881 Y0 .31

i ~82.632+0E6 TO -80.0880E5

COS{HB) = ~. 823 SIN(NG) » -1.80%
COS0W) = 1.308 R« .923

Notice that we have now rid ourselves of the ambiguity in the gross orientation of the box.
Final Problem

We now proceed to add two more edge-to-surface contacts:



[1V.61]

(contacts, bxbtm, bjl.sb, inside_of)
{contacts, be9, bjl.s2, extent_Irrelevant)
(contacts, bel0, bjl.s3, extent_irrelevant)
(contacts, bell, bjl.34, extent_irrelevant)

and wind up with the final estimate:

~YHATeRe 1,88« VECTOR( .707,-.787, .988) 5 -.787
XHATeRe §.86s VECTOR( .787, .787, .080) £ -.7@7
-7HATeRs 1.98s VECTOR(-.707,-.787, .080) £ -.787

YHRTeRs 5.8%5¢ VECTOR(-.760,-.645, .008) € 5.808 - YHRY . PY
-XHRTsRe 5.85s VECTOR(~.780,-.643, .000) § &.888 - -XHRT . PV
-YHRTsKs 5.85s VECTOR(-.760,-.643, 2200 S $5.808 - -YHRT . PV

XHRTsRe §.85¢ VECTOR(-.76@,-.649, .000) § 4.008 - XHRT . PV

YHAT#R+ 5.85¢ VECTORC .768,-.549, .8007 £ 5.860 - YHAT . PV
-XHATsRs 5.85¢ VECTORC .768,-.643, .800) § 4.808 - -XHAY . PV
-YHATeRe 5.85¢ VECTORC .768,-.545, .0800) = 5.888 - -YHRT . PY

XHATsRe 5.85& VECTOR( .768,-.54%, ,000) € 4.880 - XHRT . PV

YHRTsRe 5.85¢ VECTOR{ .760, .5¢3, .800) £ 5.008 - YHRT . PV
-XHATsRe S.85¢ VECTOR( .760, .843, .800) § 4.28% - -XHART . PV
~YHATsRe 5.85s VECTOR( .758, .649, .000) £ 5.888 - -YHRT . PV

XHATsRe §.85« VECTORC .763, .B49, .200) § 4.803 - XHAT . PV

YHATeRs 5.85¢ VECTOR(-.760, .B43, .000) § 5.008 « YHRY . PV
-XKATeRs 5.85s VECTOR(-.760, .B4%, .800) § &.200 - -XNRT . PV
-YHATeRs 5.85s VECTOR(-.768, .64%, .208) § S5.280 - -YHRT . PV

XHATsRs 5.85s VECTOR(-.768, .545, .880) S 4.808 - XHRT . PV
-YHRT+R¢ 5.85¢ VECTORC .768,-.543, .888) = -5.0808 - -YHAT . PV

XHAT+Re 5.85¢ VECTOR( .758, .649, .880) = -4.808 - XHAT . PV
-XHATsRe 5.85¢ VECTOR(-.768,-.643, 000} = 4,508 - -XHAT . PV

§= ,988 - ZHAT . PY
WHERE R = NILROTNeRDIN(-ZHRT,?)

ESTINATE LIST:

ITENE42s

X3 .8g2 0 .00d

¥i .378 10 .381

2t -.885 TO .88l

H -92.632+DEC TO -92.603+0EC

COS(NB) » -.B46 SIKNE » -.833
COS(OM} = 1.808 R - .200

A.2 Screw on Driver

This example illustrates use of the differential approximation methods to estimate runtime
errors. The task is insertion of a screw into a hole of our favorite box. The box is
assumed to sit on the table, with possible displacement errors in the xy plane and rotation
error about the r axis:

Abox = *Irsml(?\; + p;}a)rot(;."f}
where |

0.3 inches < A < 0.3 inches
.02 inches s g s 0.2 inches
-5 degrees s Y s 5 degrees
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The screw is held on the end of a driver, as shown in Figure A2, and the driver is held in
the hand. We assume that errors in the driver's position with respect to the hand are
negligible. However, the hand’s position will only be assumed accurate to within 0.05 inch
in displacement and 0.25 degree in orientation.

Dhand = transi(vector(8,.b,b erot(x.d Jerotly.d hrotzd,)
where

-0.05 inches s &, 5},. 6, < 0.05 inches
-0.25 degrees s ¢y, ¢¥. ¢, s 0.25 degrees

Likewise, the screw can wobble about the tip of the driver.

ATy = rot(x.aprot(y)
=1+aMy « BM,

where

-5 degrees < & < 5 degrees
-5 degrees s 8 s 5 degrees

We are interested in producing a parameterized estimate for AT}, the relation between the
center of the hole and the tip of the screw. In this case, the system finds only one acyclic

path of relations linking the hole and tip.
Thpe = holelutip
= (bort?bh}' 1 O{ﬁandﬁThéﬂTd sﬁT‘“)
= Tghebox *ohandeT o Ty Ty

where
Tph = Location of hole with respect to box.
Thd = Location of driver with respect to hand.
Tds = Location of screw with respect to driver.
Tg = Location of tip with respect to screw.
box "= Location of box in work station

Aand = Location of hand in work station

In this case, the nominal values for these quantities are given by:



All errors other than those described above
information,

where

Tyt
box
Aand

ATy,

Appy

- trans(nilrotn,vector(3.85,3.20,4.90)) (Distances in ¢m)

- = niltrans

= tra ns(niirotn,vector(0,0,25.4))
- trans(nilrotn,vector(0,0,3.18))
= tra ns(nilrotn,vector(45.7,101.6,0))
¥ trans(rot(y.180vdeg).vector(49.6,104.8.30.)

= transQpy ARy,

- Yevector(3.20,3.85,0)

+ $,avector(0,28.6,0) «+ -%wector(-.?&é

are assumed
application of the algorithm gives us a parameter
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to be negligible. Using this

ized form for ATy,

0.0} + $,avector(0,0,0)
+ asvector(0,3.18,0) «+ Bevector(-3.18,0,0)

¢ AX - py » xx*syi}-.az;

=1 Y™, » éxMx - qSyM}, . ¢1'M1 +aM, + ﬁM-y

Sub ject to constraints:

whers

[ 1.80
{I.08
{ .988
[ .gs08
[ .gee
[ .ge8
{1.88
[ 1.e8
{ .pep
[ .e0e
[ .o8e
[ .280
{ .e88
{ .008
[ .080
[ .oee
[ .800
{ .808
{1.80
[ 1.00
[ .8ee
{ .000

¥
L]
¥
¥
*
¥
#
1]
*
*
¥
¥
*
¥

?
L
*
¥
L
E
*
#

808
.08
1.08
i.08
-Boe
.88
809
808
i.08
1.600
208
BB
.qee
800
Be8
808
208
200
-808
doe
l.p8
- 1.88

*
*
¥
L]
¥
r
F
*
id
]
:
i
i

808 }.VLg .82

.Boe 1« ¥ 2-.762
.gae 1.Vl 588

220 1.Vl o2-.588
1.e8 1 .Vls «873e-1
1.08 . VI 2= 8730
800 s 808 » 808

e, 800, .g0e
.00 y 088 y 882
888 s <808 s 808
.8, .poe |, .gon
Lea | o008 | .p0e
Jae ¢ 1.88 s 808
:LE « l.88 s +BO8
808 s 288 s 1.88
-2e8 . 030 » L.00
808 ¢ 808 <880
008, .pow |, g0
« V125 .8736-1

W =!--373.—1

Vs .873e-3

V3 2-.8738-1

*
*
=

W OW W W oW W oW oW oW ow oW w

.Bee
808
808
888
8:LE
.Boo
808
.888
888
i.88
i.08

Sl ik Rk Bk B B N Wl Kok Bt ot

V2 5 .127
V2 2-.127
V2 £ .127

- V2 2-,127
- V2 5 127
. ¥2 2-.127

Y2 £ .436e-2

» V2 2-,4368-2
« V2 5 .4368-2

.

V2 2-.4368-2
¥2 5 .436g-2
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Vie A 4 7}
Yiel 8’; agc 8': ﬁ;s ¢ H ¢;3
vista, 83

We are interested in finding the maximum displacement errors in the plane of the hole (Ax

and Ay) and along the axis of the hole (A2). These quantities are given by the ob jective
functions:

Ox = ( 3.20, .008, -28.6, .800. .808, -3.18, 1.08, 900, 1.90, .989, .208 1 . V
Ay = t 3.85, 28.5, .809, 209, 3.18, .808, .90, -1.98, .800, 1.88, .080 1 . V
Oz« t .08, 908, (008, 000, 048, .00, .230, 489, 800, .00, 1.90) . V

where

Vet d,9,9é,.a 6,48, 6, 8,1

Solving these linear programming problems, the system gets

-1.57s Ax < 1.57 {1.57 ¢m: = 062 inches)
-1.837s Ay s 1.37 * {1.37 cm < 0.54 inches)
-127< A1 5 .127 {127 ¢m = 0.05 inches)

Also, we need to know the maximum direction error between the screw and hole axes. This
quantity will be given by:

A0 = max (1801 140,
where |
Ab, .t .00, -1.00, 000, 000, -1.03, 008 . V
ﬁ-ﬁy » [ .900, 000, -1.00, .098, 000, -1.00) . V
and

Ve '[?! 'ﬁx' ¢¥I ¢t’ a, 53

Solving gives us:

-0816 s Af, <.0916 (0.0916 radians = 0.525 degrees)
-0816 < ﬁﬂ}, < 0816
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INTRODUCTION

A mechanical pencil sharpener was assembled using the Stanford Arm to gain insight into
analyzing the mechanical assembly process. The process can be considered as a sequence of
motions of the component parts; these motions in turn dictate the need for a sequence of
motions of the manipulator hand.

The software system used for programming hand motions is of considerable importance in
determining the ease with which a manipulator can be used, and the path along which 1t
moves. For analyzing the hand motion times, however, software is much less important than
hardware, since the hardware characteristics of the manipulator largely determine the speed
and types of motions which may be made. It is believed, therefore, that whether the pencil
sharpener is assembled using WA VE or AL will not significantly affect the types of motions
used or the speed of execution. We plan to check this con jecture by assembling the pencil
sharpener both in WAVE and in AL. The results reported here use WAVE.

The main results which emerged from this study are these:

a) Special purpose fixtures were desirable for holding the parts in place so that
the manipulator could work on them. Plaster of Paris fixtures were easy to
design and produce, relatively cheap, and adequate for the purpose.

b) Positioning of parts could often be accomplished more readily by dropping
the parts and tapping them into place than by trying to position them accurately.

¢) Analysis of the movements made by the manipulator showed them 1o be
similar to human movements as defined by Methods Time Measurement
(MTM}.{ZSJ but since the mechanical arm was larger, clumsier and less versatile,
and had to avoid objects in the path of movement, had to check the precise
location of the spindle in its hand, and had to grope for the hole 10 insert the
spindle shaft in, total assembly by the manipulator took longer than by a human
by a factor of 8 times when the assembly was done, neglecting overhead. The
same factor was expected from theoretical analysis.

DESCRIPTION OF THE ASSEMBLY TASK

The parts of the assembly are shown in Figures 1, 2, and 3. Four parts were assembled
together - the handle (crank), body of the sharpener (base), spindle (assembled with the
cutters in place), and the shell.
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Figure 3: Handle and Spindie of Pencil Sharpener
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The whole assembly task was broken up in broad terms as follows:

a) get and position handle (crank)

b) get and position base (body)

c) get and insert spindle shaft through hole in base

d) screw spindle into hole in crank

e) get and position shell of sharpener against base, placing it over spindle
f) seat shell and turn it 45 degrees into place :

g) bring arm back to initial position

FIXTURES

(1]

A fixture® " is a holding device which supports the workpiece in a fixed orientation with
respect to the tool (in this case the manipulator hand). Each fixture has locators to position
the workpiece and clamps to hold it rigidly.

A free rigid body has three degrees of frecdom of rotation and three degress of freedom of
translation. Locators restrict these six degrees of freedom in order to give points of reference.
As shown in Figure 4, the workpiece would lose three degrees of freedom when placed and
maintained on the locators lettered (A); locators lettered (B) restrict another two degrees of
freedom, and locator (C) restricis the last degree of frecdom. The form of the locator selected
depends on the condition of the reference surface of the part; finished surfaces can be -
supported on a surface rather than suspended on points, while rough surfaces are given as
few points of contact as deemed necessary for stability of the part. Clamps hold the
workpiece firmly against the locators provided and resist all forces introduced by the
operation.

In the assembly of the pencil sharpener, fixtures were used to locate the parts precisely; since
the forces encountered in the assembly process were small (much smaller than in the case of
machining), clamping was not done by external clamps. Instead the manipulator was used to
provide the necessary reaction against the locators.

Fixtures were made by casting plaster of Paris in a box, and dipping the parts, suitably
covered with modelling clay and masking tape, and coated with a thin layer of petroleum
¢y into the plaster to make a mold for the part. The plaster was then machined to provide
#puce for the manipulator fingers to be inserted around the part to be gripped. Since the
sutfaces of the sharpener were smooth, surface contact was used instead of point contact.
Livawings of some of the fixtures used are shown in Figures 5,6, and 7.

The advantage of using plaster of Paris was that making the initial mold and machining
was a very simple and economical process which did not require specialized tools.



[V.6]

B
. -
o A
C ) L)
& ) (8) (B)

Figure 4: Placement of Locators
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Figure 5: Fixture for Pencil Sharpener Base
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Figure 6: Fixture for Pencil Sharpener Shell
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Overmachining of the plaster resulting in too much lossage could be easily corrected by tne
application of more wet plaster which was later allowed to dry. The biggest disadvantage of
using plaster as the potting material was that it chipped very easily, and each time the
fixture was used, a hittle bit of it wore out or broke off, resulting in more uncertainty of the
locations. This disadvantage could be overcome by using other potting compounds instead.

Another possible improvefnent in fixtures would be to design them to allow funcuonal
inspection. By putting sensors in the fixture at the appropriate places, it would be possible to
tell if the object has fallen in at the right position. An interesting but unanswered question
is whether or not a “universal” fixture can be designed.

ASSEMBLY OF THE SHARPENER

The handle was located with respect to the edge at the hole end. It was placed in the fixture,
and pushed until it 1ouched the sice of the fixture. The base fixture had parts removed to
ensure that the bottom or the back end did not bind against the base when the base was
lifted. In fact, without those parts removed, the fixture came up with the base when the
latter was lifted! The shell fixture did not need o have any parts removed, since 1t held the
shell securely at the bottom.

Problems were encountered with the original main fixture in which the assembly was done.
When the handle was being positioned in the fixture, either the hole end or the roller end |
touched the fixture and then the orientation of the handle was lost. As a result, the handle
ended up at unpredictable places, making correct positioning impossible. To correct this
problem, the well for the roller handle was tapered, as shown in Figure 7, s0 that when the
handle was dropped from about half an inch above the well, it landed in roughly the right
place, and just needed to be tapped into place by having the manipulator hand rest on it
and drag it towards the center by friction until the hole end of the crank was flush with the
fixture. The base was put into place by wobbling it a little while moving it down, and
stopping motion of the arm when a force was encountered; after releasing the base, the hand
was lifted, closed, and tapped down on the base.

The spindle presented special problems since the clearance between the shaft and the hole
into which it was inserted was 0.004 inches while the arm reading was given in terms of 0.01
inches; although noise in the A/D channels and devices resulted in an uncertainty of 0.04
inches. (This meant that (wo successive readings without movement would indicate the arm
to have moved by as much as 0.04 inches) The spindle shaft was touched against the sides
of the main fixture in order to locate more precisely the position of the hole, and then a
spiral search in steps of 0.04 inches was done to actually insert the spindle shaft into the
hole. While this small step may appear 10 be very close to the uncertainty of the A/D
channels, it had to be used since larger steps would have resulted in the arm making serious
overcorrections. Once the first part of the insertion had been accomplished (as evidenced by
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Ot encountering reaction at the end of the spindle), the spindle was pushed down and
twisted at the same time in order to seat it without binding. It was then twisted into the
haridle hole by applying a downward force and turning the hand through 360 degree
revolutions.

The shell was lifted vertically out of its fixture and positioned over the assembled spindle,
then lowered in place and released at a height of 0.2 inches from the mating surface,
regrasped and wobbled gently while being pressed down in orcer to ensure seating. It was
then turned 45 degrees to finish the final assembly, stopping when a resisting moment was
encountered.

COMPARISON OF ASSEMBLY BY MANIPULATOR VERSUS ASSEMBLY BY HUMAN

TIME DATA

The compiled program of about 20k bytes was able to-assemble the pencil sharpener in 2.4
minutes. Of this time, about 1.8 minutes or 108 seconds was actual CPU time, mainly for
servoing. The rest was overhead due to interprocessor communication and loss of the
processor in time-sharing mode. A theoretical estimate of the time taken for the arm to
perform the assembly also gave [0S seconds, assuming continuous motion and disregarding
lossage of the processor and overhead. Detailed analysis of the assembly procedure by the

manipulator is given in Appendix 2, and 1t should be noted that much time is spent in
' opening and closing the hand, centering over the object, and trying to verify the position of
the hole.

Estimates of a human operator using one hand on the basis of MTM dara to do the same
assembly showed that it took 14 seconds {verified by the author taking 15 seconds to do the
Job), a factor of 8 times faster than the manipulator. It mus: be remembered that the
manipulator did not utilize vision for help as a human operater does, and was thus akin to a
blindfolded, one armed, two fingered human operator doing the job. A table showing the
analysis of the MTM study for the human operator is given in Appendix 1.

It should be noted that the assembly procedure does not represent the optimum sequence of
movements, or placement of the component parts initially. The determination and
elimination of inefficiencies would mean running the system at the limit of its capability,
which would result in reduced assembly time.

ASSEMBLY AND MOTION PRIMITIVES

MTM and Draper use assembly primitives in studying the sequence of tasks invoived in
putting an assembly together, while WAVE uses motion primitives to specify arm motion.
The former primitives are descriptive in nature since they describe the actions performed,
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but not the motion for the manipulator to achieve the action. WAVE primitives are
strategic, since they specify where and how the arm has to move rather than what the
assembly task is. :

MTM ASSEMBLY PRIMITIVES! 2]

MTM primitives generally consist of several parts: the assembly primitive, the distance
involved, and specific cases involved in the the assembly primitive. For example, R 24 D
means to REACH 24 inches to an ob Ject in a fixed location, or to an object in. the other
hand, or to an ob Ject on which the other hangd rests. The following is a partal list of
primitives, their abbreviations and 2 description. A fuller description of the specific cases is
given in Appendix I.

REACH(R) _ Move hand to a destination or general location.

MOVE(M) ~ Transport an ob ject to a destination. :

TURN(T) Turn the hand by a movement that rotates the hand,
wrist, and forearm about the long axis of the forearm,

GRASP(G) - Secure sufficient control of one or more ob jects with the
hand.

POSITION(P) Align, orient and engage one ob Ject with another when
-the motions are minor.

RELEASE LOAD(RL) Relinquish control of an ob Ject by the fingers or hand.

- APPLY PRESSURE(AP) Apply force along the axis of the forearm,
TURN & APPLY TURN and APPLY PRESSURE are tabulated

PRESSURE(T & AP) together in MTM tables.

Draper Lab ASSEMBLY PRIMITvES!?/

While Draper Lab has defined 9 main primitives and 9 subprimitives for
"ACCOM MODATE", only the ones used in this paper are described bslow:

GRASP Device uses tool to grasp pari(s) to be assembled or to
grasp another tool.

POSITION Device executes gross motion tra jectory carrying tools
and/or parts.

INTERFACE Device goes from state of no contact between tool or

carried paris and other paris to a state of contact: ie.
device touches something,"makes contact™.

RELEASE Device causes tool to release its grasp on part or other
tool.
RETURN Device returns tool to storage area.

ACCOMMODATION Device allows the forces berween parts to modify the
motion of parts according to one of the following
subprimitives:
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COMPLEX ACCOMMODATE Accommodation  executed during  a
complex motion having no convenient
name to describe motion.

INSERT Push shaft into hole.

DEPRESS Deflect a part in its compliant direction.

WAVE MOTION PRIMITIVES! 7]

The following is a list of WA VE motion primitives used in programming the arm.

PARK Generates a tra jectory to the PARK (at rest) position.

GOTO Generates a three part trajectory consisting of the
departure, center and approach segments,

GO One part direct move without Wifioff or seidown.

MOVE Same as GOTO except that a smooth trajectory is
fitted through the three segments.

CHANGE Generates a trajectory for differential motion.

PLACE This causes the hand to move down until it meets some
resistance.

OPEN QOpens the hand.

CLOSE Closes the hand.

CENTER Closes the hand centrally over the ob ject to be grasped.

WAVE ASSEMBLY PRIMITIVES

The following primitives, similar to motion primitives, were used to describe the assembly
using the mechanical arm:

CENTER and CLOSE  Results in the hand grasping the object.

GOTO(MOVE) Three part move that uses GOTO primitive to make
a gross motion.
POSITION Motion which allows some form of maung of one ob ject

with another, or adjusts the position of the hand so
that the next motion can be easily executed.

OPEN Has the same effect as releasing the ob ject.
WAIT A short pause between movements.
TURN & Turning about an axis while applying force along the

APPLY PRESSURE  ,;,



[V.14]

COMMENTS

It should be noted that the comparisons are made between assembly primitives rather than
motion primitives, except where it is of interest to show correspondence between them. As
there was no one to one correspondence with MTM and WAVE primitives because similar
motions could be specified in several ways in WAVE, it was decided to use primitives
similar to those in MTM for the mechanical arm. Different fonts are used when referring to
different primitives to enable easier recognition of what the primitives are. The fonts are
summarized below:

MTM ASSEMBLY

DRAPER ASSEMBLY
WAVE MOTION
WAVE ASSEMBLY

No distinction is made between MOVE and REACH in the case of the mechanical arm, since
the parts are so small and light compared with the arm that it does not make a difference in
the movement whether the arm is carrying anything or not. WAITs are tabulated, since
these were explicitly inserted for the purpose of preventing the overlapping of consecutive
movements which tended to cause unpredictable results. For instance the WAIT after
dropping the handle ensured that the drop was not affected by the hand closing before the
handle had a chance to drop in place. The CENTER and CLOSE operaticns are
equivalent to the GRASP of the human but take much longer to do. OPEN for the
manipulator is equivalent to RELEASE performed by the human operator except that it is
not quite as gentle, and the hand usually opens quite suddenly.

The POSITION (obtained generally by GO) in the case of the mechanical arm is almost
- the same as GOTO(MOVE) and could have been considered the same and tabulated
together. The GOTO(MOVE) was movement to an approach point, while the
POSITION (mainly GO) was a one part directed move to the location of the grasping
position - a smooth move tended to cause a collision with the ob ject being grasped even
when the direction of approach was well defined, since the arm did not successfully null out
errors in all the six joints at the end of the allotted motion time - a one part downward
directed move required only the movement of three Joints; joint 2 to lower the arm, joint 3
to extend the boom so that the hand would move down vertically, and joint 5 to keep the
hand approach vector vertical.
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ASSEMBLY DATA

NUMERICAL BREAKDOWN OF ASSEMBLY ELEMENTS FOR ASSEMBLY BY HUMAN

GRASP | REACH | MOVE | PoSI- | ReLe- | Tumn +
| Tion | ase | apPLy
PRESSURE
| PUT HANDLE 1 1 1 1 1
PUT BASE 1 1 1 1 1
PUT SPINDLE 7 1 2 ] 6 12
PUT SHELL 1 1 1 1 1 1
MOVE BACK 1
TOTAL 18 5 5 4 9 13

TIMES REQUIRED FOR THE ELEMENTS (]JIFFIES)
(60 jiffies = | second)

GRASP | REACH | MOVE POSI- | RELE- | TURN +
TION ASE APPLY
PRESSURE
PUT HANDLE A 32 29 2 4
| PUT BASE 4 27 48 45 A
PUT SPINDLE 38 32 B2 45 26 244
PUT SHELL 4 38 51 45 A 8
MOVE BACK 38
TOTAL 42 153 182 157 38 252
AYERAGE & 32 35 39 4 i9

ESTIMATED TOTAL ASSEMBLY TIME = 830 JIFFIES = 13.9 SECONDS



[V.16])

BREAKDOWN OF ASSEMBLY ELEMENTS FOR YELLOW ARM USING WAVE

CENTER | GOTO | POSI- | OPEN | TURN + WALT
+ (MOVE) | TION APPLY
CLOSE PRESSURE
PUT HANDLE 2 3 3 2 1
PUT BASE 2 4 3 2
PUT SPINDLE
GET SPINDLE 1 1 1 1
PLACE SPINDLE 1 6 3 1 1
TURN SPINDLE 3 3 18
ASSEMBLE SHELL 2 2 3 2 1 2
PARK ARM 2 1
| TOTAL i1 18 13 12 28 3
TIMES FOR ASSEMBLY BY YELLOW ARM USING WAVE (JIFFIES)
CENTER | ©OTO POSI- | OPEN | TURN + WALT
+ {(MOVE) TION APPLY
CLOSE PRESSURE
PUT HANDLE 78 378 248 38 58
PUT BASE 118 458 338 82
PUT SPINDLE
GET SPINDLE 148 148 45 3
PLACE SPINDLE 85 1125 338 45 88
TURN SPINDLE 9a se 1178
ASSEMBLE SHELL 238 588 158 28 38 108
| PARK ARM 178 48
TOTAL 785 2835 1835 355 1338 158
AVERAGE TIME 64 158 84 30 67 58

ESTIMATED ASSEMBLY TIME = 108 SECONDS
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BREAKDOWN OF ASSEMBLY TASKS BY YELLOW ARM USING DRAPFR ANALYSIS

GRASP [POSI |PRE- |REL- [ROT- | INT- JUAIT|RET-{ACCO-| {DEP | INS ICPX
TION|CISE |[EASE |ATE |ERF- URN [Mi00-] |RES|ERTJACC
POS ACE ATE S *
PUT HANDLE 2 3 2 2 1 1 1
PUT BASE 2 4 2 2 1 i
PUT SPINDLE
GET SPINDLE i 1 i 1
PLACE SPINDLE} 1 6 1 2 2 111
TURN SPINDLE 3 3|18
ASSEMBLE SHELL] 2 2 i 2 2 3 3
PARK ARM i 1
TOTAL 11 16 612 | 18 2 3 1 7 2i11}4

ASSEMBLY TIMES FOR YELLOW ARM BY DRAPER ANALYSIS (JIFFIES)

GRASP |POS1 |PRE- |[REL-|ROT- | INT- [WAIT|RET-|ACCO-| |DEP]INS CPX |

T10n|cise |ease|aTE |ERF- urN |r10o-| [res lerT |ace
POS ACE ate |ls ¥
PUT HANDLE 78 | 378) 1%0] se 53 se || se
PUT BASE 112 | 458| 198| 88 162 | 148

PUT SPINDLE
GET SPINDLE 148 | 14B] 45) 8

PLACE SPINDLE| 65 [1125 45 258 168 88| &e
| TURN SPINDLE | s@ 98 (1178
ASSEMBLE SHELL| 238 | 588| 35| 28 188 195 185
PARK ARM 48 178

TOTAL 785 |2065| 468|355 [117@)258 {152 [178 | 545 ||198| se|27s

AVERAGE TIME B4 | 167 77| 38 651125 | S8 |178 78 S5] 88 B3

ESTIMATED ASSEMBLY TIME ~ 108 SECONDS

» Complex accommodate
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DISCUSSION

COMPARISON OF MOTION PRIMITIVES

A comparison of different motion primitives reveals several interesting features. More
motions are required by the mechanical arm than the human arm (64 vs 36, or 78% more),
since the mechanical arm cannot perform complex motions as easily as the human arm;
motions have to be broken up in order to prevent the hand from hitting something when it
tries to null out errors and mechanical arm motions take longer to complete especially when
nulling out errors.

Consider GRASP vs CENTER and CLOSE. 42 jiffies (0.7 second) are required by the
human operator for 10 GRASPs during the whole assembly while the mechanical arm
requires 805 jiffies (13.4 seconds) for 11 CENTER and CLOSE;. Average motion times
were 4 vs 64 jiffies (0.07 vs 1.07 seconds), or a factor of 16 times. Grasping is thus performed
a lot more quickly by the human arm than by the mechanical arm. The human operator can
move his fingers according to what he sees, while the mechanical arm in the CENTER
operation closes the hand until one touch sensor is triggered, and then moves the arm until
both sensors are triggered. By moving only small inertias, the human operator is able to
accomplish the GRASP much more quickly than the mechanical arm. While the difference
in total number of GRASPs and CENTER and CLOSEs may be small, their distribution
between the different tasks of the assembly is different. The human hand cannot rotate
through 360 degrees, and 2 GRASPs and 2 RELEASE:s need to be done for one done by the
mechanical arm rotating through 360 degrees. However, the mechanical hand has to release
the object and close the fingers before it can tap the part in place - unlike the human who
can position the ob ject precisely while holding it all the time.

The human operator performs 10 REACHes or MOVEs in 341 jiffies (568 seconds)
compared to the 18 GOTO(MOVE ) by the mechanical arm in 2835 jiffies (47.25 seconds)
which amounts to 34 vs 160 jiffies (0.57 vs 267 seconds) per movement. The human arm
performs faster than the mechanical arm by a factor of 5, while the mechanical arm does 2
times as many movements as the human arm when it is trying to position the spindle in
place. The reason is that the human operator does not need to worry about nulling out
errors, and utilizing visual feedback, does not have to spend time trying to locate the relative
positions between the spindle and the hole precisely, something which the mechanical arm
requires 4 MOVEs and 2 POSITIONs to accomplish, and in addition the use of
movements that are too rapid result in overloading the motors with a demand torque that is
too high.

The human operator performs 4 POSITIONs in 157 jiffies (262 seconds) compared to 13
POSITIONs in 1095 jiffies (18.25 seconds) performed by the mechanical arm, i.e. 39 vs 85
Jiffies (65 vs 1.42 seconds) per movement which means a factor of 2 in speed and a factor of
3 in number of movements. In each of the assembly subtasks the mechanical arm does three
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times as many POSITION: as the human arm, since it has to get itself veruically over the
part before grasping and vertically above the main fixture before releasing the part, and
then actually position the part in place. i

A

i

The human arm does 9 RELEASE; in 38 jiffies (63 second) compared to 12 OPEN5 in 355
jiffies (5.92 seconds) by the mechanical arm, ie. 4 'vs 30 jiffies (07 vs .5 second) per motion
which means a factor of 7 in speed and a factor of 1.3 in number of movements) The
human does twice as many RELEASEs in the turning of the spindle as the mechanical arm,
just as it did twice as many GRASPs, but in the placement of the parts, the mechanical arm
does twice as many OPENs, since the mechanical arm must first open the right amount to
grasp the part, then do a second OPEN to release the part.

The mechanical arm requires 3 WAITs after opening the hand to ensure that the
subsequent motion does not overlap with the opening of the hand. Waits are not tabulated
for the human arm since the human operator does not consciously have to take any
discernable pauses between overlapping motions.

ANl the motions seem to be fundamental and necessary in the mechanical assembly, except
for the 3 WAITs which took 150 jiffies (2.5 seconds), and trying to locate the position of
the hole which took 4 MOVEs and 2 POSITIONs and 1140 pifies (19 seconds) of
" assembly time. Eliminating these items would have resulted in a time saving of 21.5 seconds
or roughly 20%. Spiral searching for the hole was not considered since the arm performed
this operation only some of the time.

VALIDITY OF MOTION PRIMITIVES FOR THE MECHANICAL ARM

The analysis done has tried to model mechanical arm motion primitives in the light of
motion primitives known for the human arm enabling a direct comparison of the two. It is
apparent that the process of programming the manipulator to do the assembly the way a
human being does required special techniques in positioning and force and touch sensing
which the human operator takes for granted. The human operator makes use of vision,
which enables him not only to precisely locate the parts, but also to avoid obstacles, and
perform smooth and precise motions. Having more fingers and additional degrees of
freedom over the mechanical manipulator enables the human operator to perform motions
without having to go through the contortions the manipulator does. For instance, the
mechanical arm has to turn through 90 degrees when the hand touches the top and sides of
the main fixture to maintain the fingers parallel to the surface being touched, since
otherwise the spindle would tilt in the hand in the plane of the fingers and lose its
orientation.
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COMPARISON OF MOTION PRIMITIVES WITH THOSE OF DRAPER ANALYSIS

The similarities between the assembly primitives used by Draper and MTM and
relationships to WA VE are shown in the following table:

Draper MTM(HUMAN)  MTM(YELLOW) WAVE

RELEASE RELEASE OPEN OPEN

GRASP GRASP CENTER CENTER

CLOSE CLOSE

POSITION MOVE, GOTO(MOVE) GOTO,
REACH MOVE

ROTATE T & AP T & AP CHANGE

INTERFACE, POSITION POSITION PLACE,

ACCOMMODATE, CHANGE,

CPX ACCOM, GOTO

INSERT,

DEPRESS,

[PRECISE

POSITION]

RETURN REACH GOTO(MOVE) PARK

[wair] [waIT] wair WAIT

Elements is square brackets [ ] indicate elements that were necessary as assembly primitives
but were unavailable.

PRECISE POSITIONING OF THE MANIPULATOR

The time taken for the manipulator to null out position errors, while not obvious in the
analysis, slowed down the assembly process. To speed up the assembly, the motions which
did not require precise positioning were performed without nulling out the final position
errors. Of special importance was screwing in the spindle since software limitations required
that the rotation be made in steps of 120 degrees. To null out the error at the end of each
120 degree twist meant that the motor ground away to achieve the last bit of unnecessary
precision. Not nulling the movement resulted in the handle turming a few degrees more or
less than the desired amount, but this was not at all critical.
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It was found that asking the arm to move directly to the part to be picked up inevitably
resulted in the collision of the fingers with the part even though a vertical approach vector
had been specified, since although feedback was used to correct errors, at the end of the
allotted motion time there were errors in some of the joints which had to be corrected. While
the fingers did eventually ge: to the position desired, they did so with a lot of pressure and
hard pushing against the part, since the approach vector may tend to be tilted slightly from
the direction of force application. To overcome this problem the arm was asked to go to a
point vertically above the part to be picked up and then told to swoop down upon the part
in a vertical motion so that there was no danger of lateral movements of the fingers hitting
the part, since joint 1, the motor at the shoulder, did not move.

The arm performed differential motion precisely when the movement involved only one
joint and the change was of the nature of the joint movement, eg., angular motion could be
performed precisely by the rotary joints as long as the joint axis was parallel to the axis of
the desired rotation. This was illustrated particularly when the hand performed rotation
precisely around the z-axis when the wrist was vertical, but tended to change the wrist
orientation when told to make a differential vertical motion.

FORCE CONTROL OF THE MANIPULATOR

Pauiw] has shown that the arm can exert forces with a typical tolerance of 10 oz. Depending
on the motor used, the tolerance could be worse. This imprecsion of the force application
and measurement caused problems where these should not have occurred. Firstly, low contact
forces of the order of 2 or 3 oz were dominated by the noise force. Secondly, the manipulator
tended to apply more force than necessary or specified, especially in the sideways direction
when trying tc locate the hole position by touching the sides of the fixture, and at times
caused a shght movement or tilt of the spindle in the hand that resulted in difficulty later
when insertion of the spindie into the hole was attempted. The magnitude of force applied
in the downward direction did not matter so long as buckling did not occur, or the spindle
did not tilt, since the reaction of the table prevented any movement in the vertical direction.

Draper[ﬂ has shown that such forces are important to the extent that jamming occurs, and
this is discussed further below.

FURTHER ANALYSIS OF THE SPINDLE IN HOLE INSERTION PROCESS

Insertion of the spindle into the hole was an example of the pin in hole problem studied

(4]

intensively at Draper ™" with the parameters being as follows:
d = shaft diameter = 040 inches

D-d = clearance » 0.004 inches

{= insertion depth = 1.05 inches at full insertion
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C = clearance ratio = | -{d/D) « 0.0l

28, = minimum wobble at full insertion = 2C (D/1} = 0.430 deg
'B‘, = wobble from center line = 0.215 deg

To allow initial entry into the hole the limiting tilt angle is arc cos(1-C) = 8 degrees.

Note that while the Stanford Arm gripper was designed not to be compliant, compliance was
assumed at the gripping point for purposes of this discussion. The spindle had a step and
the hole had a chamfer, so the Draper parameters are:

Lg - distance from spindle end to grasping position = 2 inches

& = chamfer = 0.025 inch
Step = 0.05 inch

Dealing with the step as though it were a chamfer, insertion all the way was possible without
two point contact if the offset from the center, € < 0.05 + 0.025 = 0.075 in. In addition, the
entrance tilt (8 < -9£ - 1!1.3 ) will be less than 0.215 deg, depending on the offset €.

With the hardware available and the friction characteristics of the joint motors, it was
calculated that a minimum penetration of 0.8 inch using a nominal downward force of 10 oz
was necessary to prevent jamming.

SENSING REQUIREMENTS

Position Sensing

Position sensing would be all that is necessary if the arm could be positioned with a
tolerance of within 0.001 inch and tilt of 0.1 degree, and if parts could be positioned to these
tolerances within the fixtures. However, given the Stanford Yellow arm with a repeatability
of 0.04 inch and possibility of specifying distances to within 0.01 inch, it is essential that
force and touch feedback be used.

Vision Sensing

Verification ’viswnm] would be useful in determining the initial process of inserting the

spindle into the hole. Before insertion takes place, it is assumed that the spindle and the hole
are "near” each other, and verification vision could tell how close they are and actually
monitor the positions of the spindle and the hole as the spindle approaches the hole. For the
task given, being able to sense a tolerance of 0.002 inch and an angle of 0.1 deg would
enable decisions to be made as to which direction to move or tilt the spindle. Resolution at a
finer level would enable "how much” to be computed as well. With verification vision, a
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spiral search would not need to be done to locate the hole, as was necessary in the assembly.
Force and Touck Sensing

- Touch sensing is necessary at the fingers, together with ability to measure hand openings as
a means of telling whether the ob ject has been grasped at the right place, if at all. Since the
parts are fairly rigid, the touch resolution is not critical, as the gripping force is about 5 |b.
Force sensing to 2 resolution of 0.5 oz would allow the arm to know if the part has slippea
out of its grasp, by checking the weight at the end of the hand. Force sensors behind the
hole (at the fixture) and behind the spindle would be helpful in telling the forces and
moments at the hole and the spindle and together help to prevent jamming.

ARM DESIGN

Some of the problems in the movement of the arm stem from the fact that six degrees of
freedom determine an essentially unique solution for motion from any frame to any other
frame, so that even small motions may require that large inertias have to be moved. This
fact suggests alternative arm designs with redundant degrees of freedom allowing small
motions to be made with low inertia. Some of the possibilities are described below:

a) Extendible wrist which can elongate about 2.3 inches, so that hand can move
along the direction of approach without moving joints I, 2, or 3.

b) Extendible boom, so that joint 4 can move out of the boom a distance of 1.2
inches without moving joints 1, 2, or 3.

c) Independent finger movement, so that to grasp something without moving it,
it would be sufficient to move only the fingers without having to use the
CENTER command in which the whole arm has to move. When necessary, it
would be possible to move both fingers together, eg. when the position of the
hand is known precisely, and it is desired to move the grasped object to the
position defined by the location of the hand.

If redundant fine motions were provided in this fashion, then one might consider providing
detents for joints | through 3 so that these joints can stop only in a finite number of known
positions (say every 5 degrees or | degree apart) which can be determined to a high degree
of precision. If there were no backlash and no static deflection of the arm components due to
loading, the use of stepper motors in joints 1, 2, and 3 would accomplish the same purpose.

The advaniages of these changes would be faster nulling out of small errors and higher
spatial resolution for given A/D resolution. Disadvantages would be that the programming
language might become more highly hardware dependent, and there would be times when
additional gross motions would be needed to bring the fine motors back nearer the
centerpoints of their ranges.
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It is not known whether or not the advantages outweigh the disadvantages. In any event, we
do not plan to medify our arm hardware in the foreseeable future.

CONCLUSION

This paper has discussed some of the problems encousntered assembling a pencil sharpener
with the six degree of freedom Stanford Yellow Arm and comparison of the assembly
motions required with those of the human operator using MTM and Draper assembly
primitives. While arm resolution was lower than the clearances involved in the assembly, the
use of suitably designed fixtures enabled parts to be located to a high degree of precision by
just dropping the part and nudginy it into place rather than actually trying to position it
precisely. Analysis showed that the human operator is faster and requires fewer operations
for the assembly process than the mechanical arm since the human operator makes more
effective use of far more sensory feedback :nformation, and the human arm 1s lighter and
more flexible, and the hand is more dexterous and has more fingers than the mechanical
counterpart. With these handicaps it was found that the manipulator took eight times longer
to do the assembly job than the human operator did. It should be emphasized that this
study has indicated the presence of inefficiencies in the present setup. The quantitative
determination and elimination of these inefficiencies, the optimizauon of movements {(in
itself another important research area), and increased use of serisory feedback, would bring
about a reduction in the asiembly time.
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APPENDIX I: MTM STUDY OF ASSEMBLY BY HUMAN BEING

THU JIFFIES
=.8886 MIN =1 /68 SEC
REACH TO HANDLE R 26 A 14.9 32
GRASP HANDLE G1A 2.8 4
MOVE -TO FIXTURE M18 C 13.5 29
POSITION P1NS 18.4 22
RELEASE RL 1 2.8 4
REACH TO BASE R 16 A 12.3 27
GRASP BASE G1Aa 2.9 4
MOVE TO FIXTURE M16C 18.7 48
POSITION P 2NS 21.8 45
RELEASE RL 1 2.8 4
REACH TO SPINDLE R 26 A 14.9 32
GRASP SPINDLE G1a 2.8 4
MOVE TO FIXTURE M 24 C 25.5 55
POSITION P 2 NS 21.8 45
MOVE 1 INCH , Mi1c 3.4 7
6 TIMES

TURN 188 DEG T+AP 188 S 9.4 28.3

RELEASE AL 1 2.8 4.3

UNTURN T+AP 188 S 3.4 28.3

GRASP G1A 2.8 4.3
6 X  22.8=136.8 43.2 =235
REACH TO SHELL R21 A 14.8 el
GRASP G1A 2.9 4
MOVE TO FIXTURE nac 23.8 51
POSITION P2NS 21.8 45
TURN AND APPLY PRESSURE T+AP 45 S 3.5 8
RELEASE AL 1 2.8 4
MOVE BACK R 38 A 17.5 38

TOTAL 386.2 828

=8.232 HIN =13.8 SEC

* TIME MEASUREMENT UNIT
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EXPLANATION OF SPECIFIC CASES OF ASSEMBLY PRZM!T%\’ES[S]

REACH R 24 A

R stands for REACH, 24 for 24 inches, and A one of the following categories:

A Reach to object in fixed location, or to object in other hand or on which other
hand rests.

B Reach to single ob ject in location which may vary slightly from cycle to cycle.

€ Reach to object jumbled with other objects in a group so that search and select
OCCur.

D Reach to a very small ob ject or where accurate grasp is required.

E Reach to indefinite location to get hand in position for body balance or next
motion or out of way.

MOVE M 14 A

M stands for MOVE, 14 for distance of 14 inches, and A one of the following categories:
A Move ob ject to other hand or against stop.

B Move object to approximate or indefinite location.

C  Move object to exact locatior..

TURN & APPLY PRESSURE T & AP 180 S

T & AP stands for TURN & APPLY PRESSURE, 180 for a turn of 180 degrees, and S
one of the following ranges of weight that is turned:

S Ssmall-0to21b.

M Medium - 2.1 to 10 Ib.

L Large- 10.1 to 35 1b.

POSITION P 1 NS

P stands for POSITION, 1 for class of fit, NS for non-symmetry of the part.
1 Loose fit, no pressure required.

2 Close fit, light pressure required.

3 Exact fit, heavy pressure required.
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RELEASE RL 1

RL stands for RELEASE, for one of the two cases:
1 Normal release performed by opening fingers as independent motion.
2  Contact release.

GRASP G 1A

G stands for GRASP, 1 for a category, A for subcategory as shown.

1 Pick up grasp.

1 A Small, medium or large ob ject by itself, easily grasped.

1 B Very small object or ob ject lying close against a flat surface.

1 C Interference with grasp on bottom and one side of nearly cylindrical ob ject of
following subclasses.

1 C1 Diameter larger than 1/2 inch.

1 CZ2Diameter 1/4 inch to 1/2 inch.

1 C3 Diameter less than 1/4 inch.

2  Regrasp.

3 Transfer Grasp.

4  Object jumbled with other objects so search and select occur.

4 A Object larger than | ¢ 1 ¢ | inch>. "

4B Object /40 /40 1/4t01¢1alinch”.

4 C Object smaller than 1/4 o 1/4 o 1/8 inch>.

&  Contact, sliding or hook grasp.
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APPENDIX 2: MTM STUDY OF ASSEMBLY BY MACHINE

This analysis of the movements of the Yellow Arm is based on estimates of the times taken
to make various motions, as programmed under WAVE. Each movement is allowed a grace
- period of 20 jiffies (60 jiffies=] sec). The time for each joint to complete its motion is
computed as the distance or angle it has to move multiplied by the time taken to move per
unit distance or angle, based on a desired maximum average velocity. Estimated time for
each motion is the maximum time over all six joints. '

The aim was to record and measure the movements that looked reasonable in an attempt to
compare the actual assembly time with the estimated time for a working assembly. No
attempt was made to try to optimize the assembly time, or to run the arm at a higher speed.

Two different analyses are made, one to compare the movements of the arm with human
movements, the second to make use of motion primitives that were used in the analysis of

the washer gearbox by Draper Lab.[é} In doing the second analysis, 1t was assumed that the
only tool used by the arm was the hand consisting of the two fingers with binary touch
sensors, and that this tool was not replaced.

JIFFIES DRAPER MOTION
=l/68 sec  PRIMITIVES

PUT HANOLE
OPEN 0 tg Release
GOTO HA_GR M 288 Position
POSITION P S8 *P. Position
CENTER C 58 Grasp
GOTO MAIN FIXTURE M 148 Position
POSITION P 148 P. Position
OPEN HAND (DROP HANDLE) 0 38 Release
HALIT U G2 xait
CLOSE C 2 Grasp
PUSH INTO POSITION P 58 Accommodate {(Depress)
LIFTOFF H 38 Position

Subtotal 8ig

PUT BASE
OPEN 0 56 Release
GOTO BA_GR {APPROACH) H 143 Position
POSITION P 58 P. Position
CENTER C 68 Grasp
GOTO APPRDACH OF MAIN FIXTURE M 148 Position
PLACE IN POSITION P 148 P. Position
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OPEN HAND 0 38 Release
MOVE UP N 148 Position
CLOSE HAND C 58 Grasp
NOVE DOUN P 48 Accommodate {Depress}
LIFTOFF N 38 Position
Subtotal 378
PUT SPINDLE

GET SPINDLE

OPEN AND 0 Release
GOTO APPROACH OF SP GRIP M 148 Position
POSITION P 45 P. Position
CLOSE HAND C 148 Grasp

Subtotal 325

PLACE_SPINDLE

GOTO TOP OF MAIN FIXTURE M 388 Position

TOUCH TOP OF FIXTURE P 118 interface

HMOVE OUY H g8 Position

GOTO SIDE OF MAIN FIXTURE M 388 Position

TOUCH SIDE P 149 Interface

MOVE 0OUT N 5@ Position

SEARCH FOR HOLE (ASSUME GET RIGHT FIRST TINME)
GOT0 TOP OF HOLE M 208 Position t
HOVE DOUN P &8  Accommodate(lnsert)
TWIST AND FORCE DOWN T+AP 88 Accommodate {Complex

accomniodate)

OPEN HAND 0 45 Release
MOVE UP A BIT N 35 Position
CLOSE HAND C BS Grasp

Subtotal 1645

TURN SPINDLE

TURN 128 DEG CLOCKWISE T+AP &8 Rotate
OPEN HAND 0 38 Release
3 = TURN 128 CCW 3xT+AP 158 Rotate
CLOSE HAND C 38 Grasp
"3 x TURN 128 CU 3xT+AP 248 Rotate
OPEN HAND 0 38 Release
3 x TURN 1208 CCH 3xT+AP 158 Rotate

CLOSE HAND C 32 Grasp



3 x TURN 128 CH
OPEN HAND
RN 128 CCH
CLOSE HAND
Z = TURN 128 CUd

ASSENMBLE SHELL

PARK A

OPEN HAND AND

GOTO APPROACH OF SHELL
POSITION

CLOSE HAND (GRASP}
GOTC APPROACH OF BASE
UAIT

PUSH DOWN AND WOBBLE

WAIT

RELEASE

CLOSE HARD

FORCE DOWN AND HOBBLE

FORCE DOWN AND TURN 45

R
OPEN
MOVE UP
PARK

[V.31]

3xT+AP 248 Rotate
0 38 Release
3xT+AP 158 Rotate
C 38 Grasp
2=T+AP 188 Rotate
Subtotal 1358
0 Release
H 388 Position
F 35 P. Position
E 1ca Grasp
M 222 Position
H 58 Wait
P &8 Accommodate (Compiex
accommodate)
H 58 Wait
0 28 Release
C 88 Grasp
P 35 Accommodate {Complex
accommodatel)xxk
DEGC CU  T+AP &e Accommodate {(Complex
accomnodate)
Subtotal 1168
0 48 Release
] S8 )
i 128 JReturp
Subtotal
TOTAL ASSEMBLY TIME B6G78 jiffies = 188 sec

*dait and P.Position {Precise position} are twuo primitives introduced here
that are not used in Oraper report.

#xThis movement is not the peg in hole insertion probiem in the true sense;
it is the insertion of 3 round hole over an oval peg with a large
clearance until there is an interfacing.

rather
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CHAPTER |

INTAODUCTION

Verification Vision (VV), as defined in [BOLLES 75], has three main concerns:
(a) the confidence that the system is finding the correc: objec:fs),
(b) the precision within which the system has located the ob jeci(s),

and (¢j the cost involved in detez'mining this information.

For each task, such as visually locating a rivet hole, the assembly engineer specifies the
desired confidence and precision, and possibly some cost limits such as the maximum real time
that the task can take. During the execution of the task, the VV system gathers more and
more information until the confidence and precision requirements have been met or until
some cost limit has been exceeded.

The VV system that will be discussed in this paper gathers information by applying
“operators,” such as edge Operators, correlation operators, and region growers, which are
designed to locate and describe “features,” such as line fegments, correlation points, and
regions. The information produced by such operators can be roughly classified into two
types: value information and position information. Value information includes such things
as the value of a correlation coefficient, the contrast across an edge, and the intensity of a
region.  Position information, in addition to (x,y) or (x,y,2) information, may include
orientation information. For example, an edge operator can reiurn the {(x.y) position of &
point on a line and an estimate of the orientation of the line. The same edge operator may
return the contrast across the edge and the confidence that there really is an edge ar that
Place, both of which would be classified as value information.

The distinction between value information and position information is made because
often it is reasonable to assume that the values from different operators are independent, but
it is seldom reasonable to assume that the positions of features are independent {especially
features of rigid objects). “Independence” means that knowing the value of one operator
(such as a correlator} does not affect the expected value for another operator (such as an edge
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operator). The position information, on the other hand, is nof independent because the
lucation of one point or the orientation of one line greatly influences the possible positions for
othier features.

Figure L.1.1 shows the general flow of control for a VV system based upon these ideas,
The flowchart suggests several important questions which this or any similar VV system has
to be able to answer:

(1) Given a specific set of objects, what are some candidate features and
what operators can be used to find such features?

() What information can a specific operator contribute toward
increasing the confidence that the corvect object is being found?

(%)  What is the expected cost of applying operator X?
(1) 'What was the actual cost of applying operator X?
(%) Which operator should be applied next?

(6) How can the results of several operators be combined to give an
overall confidence?

(7) How can the results of several operators be combined to determine
an estimate for the location of the object and a precision about that
estimate?

(n)  What is the expccted number of operators required to achieve a
ceitain confidence?

These questions can be partitioned according to the time at which they are most
important. For exaniple, the question about the expected number of operators is important at
“planning time” when the system or user is trying to decide the expected cost of accomplishing
the task. The question about candidate features is important at "programming time” when
the user is describing potential sources of information. This paper divides a VV task into
faur times, or stages:

(1) PROGRAMMING TIME: the user states the goal of the task, gives
the confidences, precisions, and costs for the task, and interactively
chooses potential features and operators.
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input the initial constraints
on the objects' positions
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YES | Any maximum cost
limite exceeded?

1 NO
RETURN FAILURE .

NO Are there more

RETURN SUCCESS

untried operators?

YES

v

Choose the next operator

w

Oetermine the region in which
the feature might appear

|

Appiy the operator

|

Compute the best estimate and precision
for the obrects' positions

|

4
:
*w

Compute the confidence

|
+

e

Are the confidence and precision high enough?

NO

FIGURE 111
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(2) TRAINING TIME: the system applies the operators to several
sample pictures and gathers statistical information about the
effectiveness of the operators.

(3) PLANNING TIME: the system ranks the operators according to
their expected contribution, determines the expected number of
operators to be needed, and predicts the cost of accomplishing the

task.

(4) ENECUTION TIME: the system applics operaiors one at a time,
combines the results into confidences and precision, and stops when
the desived levels have been reached or until a cost limit has been
exceeded.

This paper concentrates on the mathematics required at the execution and planning
times. 1t describes methods for answering the questions about the conuibutions of operators
and how to combine the results of several opcrators. It is less concerned about how the
features and operators are suggested initially. The basic approach is to use a least squares
technique to combine the available information to form a cuirent, best estimate for the
lucation of the object (plus a tolerance about that estimate) and Bayesian probability within a
scquential pattern recognition scheme to compute the necessary confidences. These are all
well-known techniques, but they combine particularly nicely to answer the various questions
raised within a V'V system.

This paper relies heavily upon the domain of programmable assembly for its examples
and motivation. The techniques are discussed in the context of a highly controlicd
cnvironment in which mechanical arms are performing assembly tasks.  Some of the
techniques have been optimized to take advantage of specific properties of this environment,
hut the basic methods used to produce location and confidence information from the resulis of
several visual operators are more widely applicable. Other promising tasks areas that require
similar types of visual information processing are the interpretation of acrial photograph,
calibration, and medical diagnosis.
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CHAPTER 2

EXECUTION-TIME MATHEMATICS FOR INSPECTION

The description of the relevant mathematics has been separated into two segments,
execution-time mathematics and planning-time mathematics. The former is concerned with
combining the actual results of features as they are found. The later is concerned with
computing and combining the expected contributions of the features.

The mathematical tools are incrementally developed in con junction with a sequence of
examples that has been designed to incorporate an ordered set of complexities.

Section 1
OPERATOR VALUE INFORMATION

Consider the task of deciding whether or not there is a screw on the end of the
screwdriver. For simplicity assume that normalized cross-correlation is the only type of
operator known to the VV system. Correlation uses patches from a ‘planning’ picture as
features to be found in the actual (ie. the execution time) picture. Figure 4.1.1 shows a
planning picture with the screw on the end of the screwdriver and several sample pictures,
some with the screw present, some with it missing. Figure 4.1.2 shows several carrelation
"features” outlined on top of the planning picture. When operator | is applied to a sample
picture it locates a match with a certain value for the correlation coefficient. Correlation
coefficient values range from -1 to +I. Figure 4.1.3 shows the results of applying operator 1 to
ten different sample pictures of the screwdriver with the screw on the end. If the frequency
of these correlation values is assumed to follow a normal distribution, the corresponding
distribution can be approximated from the experimental mean and standard deviation of
these values. The fitted, sample distribution is shown in figure 4.1.4.

If operator | is applied to a sample picture in which the screw is missing, there will not
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be a portion of the picture that "looks like" operator 1, and hence there will not be a portion
of the picture that correlates well with operator 1. Operator 1 will still locate a "best match”
but the correlation coefficient will be lower. Thus, operator 1, if reliable, will {1} match the
correct piece of the screw, if the screw is there, and (2) match some ather feature (with a lower
correlation value) when the screw is not there. This performance difference is the basis for
deciding whether the screw is there or not.

If operator 1 is applied to several pictures without the screw, the resulting correlation
values will form some distribution. A table of ten such trials and the corresponding
distribution (again assuming a normal distribution) are shown in figure 415, The two
frequency functions are superimposed in {igure 4.1.6.

If operator | is applied to a picture for which it is not known whether the screw is
there or not, the operator will find a "best match™ with some correlation value, eg. 92 Baced
solely upon operator 1, should the system say that the screw is there or not? One would
probably say that the screw is there, but what is the confidence of that decision?  In
probabilistic terms, one is interested in the probability that the screw is there, given that
operator 1 has a value of .93, ie.

{4.1.1) P[{screw there> | <value{operator 1)=.93>].
Let
{(4.1.2) H E <{the screw is on the end of the screwdriver>

vl & <{value{operator 1) = X5

then Bayes' theorem (eg. see [Hoel 71]) expresses the desired a posteriori probability in terms
of the a priori and conditional probabilities as follows:

PI[vi|H] = P[H]

{4.1.3) P[H|v1] =
P[vi]H] = P[H] + P[vi|~H] = P[-H]
or
1
(4.1.4) P[H|vl] = "

Plvlj=H] = P[=H]
I+

P{vi|K] # P[H]

These formulas state the desired probability in terms of probabilities that are often more
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readily computed. The a priori probabilities are based upon measured statistics or the
experience of the assembly engineer. For example, if the screwdriver correctly acquires a
ccrew nine-tenths of the time, P{H] should be set to 9. The density functions shown in figure
4 16 can be used to compute the conditional probabilities, P[v1I-H] and PlviiH] Since the
functions are density functions, the probability of the operator producing any one particular
value is zero. Dut the probability of the operator producing a value within a certain range is
the integral of the function over that range. Thus one way of estimating the above ratio for
a specific value of the operator is to consider a small range about the value, compute the two
probabilities by integration, and form the ratio. Notice, however, that as the width of the
region decreases, the approximations for the ratio approach the ratio of the two values of the
density functions at X. That is, the ratio of the probabilities can be replaced by the ratio of
the densities. This observation makes is particularly easy to compute the appropriate ratio for
any value of the operator.

Bayes' theorem can be extended to combine the values of several operators:

1
(4.1.5) P[HIv1,v2,...vN] = .
P[v1,vZ,...vii|-H] P[-H]
i+ %

P[v1,v2,...vi|H] P[H]

Since
p[vi,H]
{4.1.0) P[vl|H] 8 ——
P[H]
and
P[vl,v2,H] P[H,vZ]
{4.1.7) P[vl,vZ|H] = * = P[vliH,v2] » P[vZ[H],

P[H] P{H,v2]
then, more generally, the conditional probabilities can be expanded into:

(4.1.8) P[vl,v2,...wN|K] = PLVIIH,v2,V3,...vi] * P[Vv2[H,v3,v4, .. .vii] =

& P[v(N=1)|H,vN] = P[VH[H].
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If the v's are assumed to be conditionally independent, ie.

{4.1.9) PIvilIH,vi+l,...vN] = P[vj|H]

then these probabilities reduce to

(4.1.10) Plvi,vZ,...vNIH] = P[vl|H] » P[v2|H] * ... = PLVN[H],

and Bayes' theorem becomes

1
(4.1.11) P[HIv1,v2,...vN] = i
N P[vi]-H] P[-H]
1+ *
izl P[vi|H] P[H]

In this form it is apparent that the contribution of an operator is the value of the ratio:

PEVile]
(4.1.12) _
P[vi[H]

The contribution of an operator is the amount of influence that the operator’s value has on
the estimate of the overall probability of H. The inverse of ratio 4.1.12, ie.

P[vilH]
(4.1.13) »
Plvij=H]

is known as the likelihood ratio. The logarithm of the likelihood ratio is also imporiang, as
the chapter on planning-time mathematics will show. The larger the likelihood ratio, the
stronger the evidence that the screw is present. This formulation agrees with one's intuition
in several ways. Consider figure 4.1.7 in which three values of the operator have been
indicated: W, X, and Y. If the operator happens to produce the value W, the likelihood
ratio is 1.0, and the probability of the screw being there is unchanged. Any value to the left
of W implies a likelihood ratio less than 1.0, and thus decreases the estimate of the
probability that the screw is there. Both X and Y are to the left of W. Both suzgest that the
screw is notf there, but Y contributes more (as expected) toward decreasing the estimated
probability that the screw is there than X does.

It is not true, however, that any value to the right of W increases the probability that
the screw is there. Consider figure 4.18. It emphasizes the difference between the two
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standard deviations so that it becomes :lear that there is a region on the right of W in which
the values produce likelihood ratios that are less than one. There is only a small interval
(labeled «) that contains values that increase the probability that the screw is there. The
likelihood ratios for every value in « are greater than one. All other values for the operator
produce likelihood ratios less than one. Figure 4.1.9 shows the likelihood ratios and the log
likelihood ratios associated with the distributions shown in figure 4 1.7.

This last form for Bayes' theorem is computationally convenient. For example, consicer

PL-H]
(4.1.14) t0 = -
P[H]
P[vtéiq}{}
N = ————— L{H-1} {for N > 0)
PIWN|H]
1
and P[H|v]l,...vl] & ———,
1 + tH

This set of formulas gives a straightforward way of incrementally incorporating the results of
sequentially applied, conditionally independsnt operators. In fact, it is a powerful way of
combining the value information of operator: into a probability that an object (or part of an
ob ject) is present.

Scction 2
KNOWN ALTERNATIVES FOR A FEATURE

In the last section, an operator was apnlied over some portion of a picture under the
assumption that there are only two possible results: {1) the screw is present and the operator
locates the appropriate piece of the screw or (2) the screw is ner present and the operator
iocated some other “feature.” It was also assumed that the operator was applied over the whole
region before returning the "best” match. In effect, these assumptions guarantee that the value
returned by the operator belongs to one of the two density functions (H or ~H). This is
pleasaat if true, but there are several reasons why these assumptions might be false:

(I) There may be other similar feature in the same local area that sometimes



[VLIS]

appear better to the operator than the "real” match. If a "similar” feature
appears regularly cnough so that the system can determine the correspondin
deisity function, the feature will be calicd a Anown clternative. In that cas
the desired feature will no longer be special. It will simply be one of the
alternatives. For arfy particular application of the operator, the system will
have to decide which alernative is being matched. If a similar feature occurs
infrequently and unpredictably, it will be referred to as a surprisc.

o
&
2

(2) The measurements made by the operator may not immediately single out the
"best” match.  The value returned by a correlation operator orders the
possible matches (the larger the coirclation cocificient, the better). Other
operators may return values along multiple scales.  The "best” match is
experimentally defined to be the one that procuces values “closest” to the
taining values. For example, an edge operator may veturn {a) the
distinctness of the edge and (b) the contrast across the edge. 1f the "desired”
line is a fuzzy line with a high contrast, it is not clear how to determine the
"best” match. A distance function has to be defined.

(2) The "desired” feature may not be in the portion of the picture scanned by the
opcrator.  This problem may occur if the system has incorrectly nairowed
down the sct of possible positions for a match, or if the feature has beon
obscured for some reason. The operator will still return the location and
value for the best match it can find, but it would be incorrect to assume that
su % a value belonged to one of the two densities and then draw some
conclusions about the confidence of H.

(4) Some global factor may change (eg. onc of the work station's lights may be
out) so that the feature appears quite different, even though it is in the
correct area.

(5) Each application of the operator may be so expensive that it is prohibitive to
scan it over the complete area and choose the best match. Instead it has to be
sequentially applied until some “reasonably good” match is found. If there
are a few similar features in the local area, a "reasonably good” match may
not be the best match and hence the value produced by the operator may not
belong to one of the two density functions.

This section develops the necessary mathematics to include known alternatives in the
confidence computations.

Consider the problem of correctly deciding which one of three porsible line segments an
edge operator has located. There are several sources of information (orientation, fuzzingss,
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contrast, etc.), but for the time being only consider one dimens.on (eg. contrast). Assume that
during the training session the system gathered enough statstics about the three lines to
approximate the three density functions associated with their contrast values. If an edge is
found with a certain contrast in an .actual picture, which line is the operator on (assuming
that there are only three possibilities) and what is the confidence associated with that
decision? This question can be answered by computing three probabilities: the probability
that the operator has located line 1, the probability that the operator has located line 2, and
the probability that the operator has located line 3. Let

(4.2.1) L1 & {operator 1 has located a point on line 1>
LZ = <operator 1 has located a poirt on line 2)

and L3 ® <{operator 1 has located a poi t on line 3).

Then Bayes' theorem states that

1
(4.2.2) P[L1]v] = _—
PLviaLl] & P[=l1]
1+ -

PLviLl] = P[L!]

Since

(4.2.3) -~L1 = L2 & L3 { & stands fo- exclusive OR }.
Then

(4.2.4) PLvi=L1] = P[v|L2I#P[L2]-L1] + P[v]L_J#P[L3|aL1].

Bayes' theorem reduces to

(4.2.5) PL1|v] =

PlviL2]#P[L2,AL1] PLviL3]xP[L3,-L1]
i+ +
P{viLl1JeP[L1] PLviLlJxr[L1]

or, since L2 and L3 are contained in -L1,
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{(4.2.0) P[Ll]lv] = ;
Plv]L2]#P[L2] P[vIL31%P[L3]

1 + +
PLviL1]+P[L1] P{viLI]xP[L1]

When there are N known alternatives this becomes

(4.2.7) P{Lilv] = .
PIviLi]=P[Li]

1+

i#3 PLVILIIAPILI]

This formula is convenient because the desired probability is stated in terms of a priori
probabilities and the simple ratios discussed in the last section.

The formula states how to compute the probability that the oporator has located &
particular feature, given several known aliernatives. The aliernative with the largest
probability is the “best” match. Some best matches are better than others, however, in the
sense that there is less chance of being wrong. For example, if there are four known
alternatives, the system should be more confident in its choice for the best match if the
probabilities are P[L1lv] = .52, P{L2}v] = P{L3[v] = P{Lilv] = .16 than if the probabilities are
P{L1v] = .52, P[L2lv] = 46, P{L3Iv] = P{L4lv] = .0I, even though the best match has the
same probability in both cases. One possible measure for this confidence is the ratio:

P[ "best"jv] - P["sccond bost"|v]
(4.2.8)

P["best"|v]

§ the probability of the second best alternative is aimost as large as the probability of the
beat altcinative, the confidence will be low.

When the task is an inspection-1ype task {og. checking to sce if there is a screw on the
screwdriver or not), there may be two or three hnown aliernatives that are possibie when the
ol ject is there and two or three known altanatives when the object is not there. In this case
the system is less concerned with which alternative is the best match than it is with the overall
probability that the obiect is theie or not. A derivation similsr 12 the one used above
produces the formula needed in this situation. Let {1, 12, ... {M be the known alternatives that
might occur when the object is there and let gl, g2, .. gN be the aliernatives that are possible
when the ob ject is not there. -Bayes' theorem states:
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1

(4.2.9) P[H!v] = .

P[’VEHH} * P{-\HI

1+

PLvIH] = P[H]
By assumption
(4.2.10) PLH] = P[f1] + P[f2] + ... + P[1M]
and
(4.2.11) P[-~H] = P[gl] + P[g2]) + ... + P[gN].

Notice that this is equivalent to assuming that there are no surprises. Bayes' theorem can be
expanded into

(4.2.12)
1
P[HIvV] =
P{vigi]=P{gl] + P[v|g2]#P[g2] + ... + P[v|gM]«P[gN]
1 +
P{vITI]«P[f1] + P[v|f2]eP[f2] + ... + PLv|fMIaP[ ]
or
1
(4.2.13) P[HIv] = .
D, PLvigil«P[gi]
1sisH
i+
> PLVIfileP[fi]
15isM

In essence, this formula gathers all of the evidence for and against H and forms a ratio
between them. To use this formula the system has to know a great deal abnut what can be
expected in a runtime picture. In particular, the system must know what the possible
alternatives are, what their values are, and how probable they are. Within the context of
programmable assembly this assumption is often reasonable because the environment is highly
constrained and the system has the opportunity to watch several examples of the assembly.

This type of formula can be easily extended to incorporate the results of several
operators, all of which may have known alternatives. Assume that there are K operators. Let
f3.1; 13,2; ... :Tj,NJ be the Nj known alternatives for the Jth operator, when the
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object is there. Let 93,15 93,2; ...;94.M5 be the MJ known alternatives for the i
Gperator, when the ob ject is not there. Then

(4.2.14)
1
PLHIvI,v2,...vK] = ‘
(K1) 2 PIVilgd,iJaPlgyd, 1)
P[H] K Isgisij

R ——— ﬂ

(K1) d=1 % PLvjlIfy,i3+p[1],1]
P[-H] 1Sighy

The exponent (K-1) appears because the expression for cach of the K operators produces
factor of

P[H]
(4.2.15) _—
P[=H)

“nd the ratio of a priori probabilities in Bayes' theorem cancels one of them.

Section 3
SURPRISES

The main assumption of the last section was that ail of the alternatives were known and
characterized in advance. Sometimes, however, operators maich unknown features and return
unueual values.  Such unknown and unexplained matches will be referred to as surprises,
The values produced by surprises can not be accounted for by the usual density functions.
There are two possible ways of dealing with these valuzs: (1) filter out particularly bad values
and (2) scale down the potential contribution (in the probability computations) of any
aperator that is known to find surprises. The first method involves a check on cach value
produced by an operator to make sure that it is a reasonable value for at least one of the
Known aiternatives. For example, any value that is not within three standard deviations of
the mean of a known alternative can be classified as an unusual value. There are several
prossible explanations for such a value (some global change, the feature is not present, or a
surprise), but in any case the value should not be used to “improve” the confidence value, It
may contribute to other considerations (such as some global error), but it should not be
Llindly cranked through the formula.
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The second method lowers the possible contribution of the suspect operator because_an
operator that finds surprises should be trusted less than one that doesn't. The assumption
used in the previous scction that all of the alternatives are known is equivalent to the
following equation relating the a priori probabilities:

(4.3.1) PLH] = P[f1] + P[f2] + ... P[fN].
If the operator occasionally locates surprises, a better model is
(4.3.2) PLH] = PLT1] + P[F2] + ... P[fN] + Pls]

where P[s] is the a priori probability of finding a surprise. To reflect this mociel in the
probability computations requires some density function to be associated with the surprises,
What should the form of this density be? If surprises can produce any value for the operator,
one reasonable assumption is that the density is a rectangular distribution. And in light of
the filtering mentioned in the last paragraph, it also seems reasonable to restrict the domain
of this function to the interval between the smallest reasonable value for the operator and the
largest reasonable value. Figure 4.3.1.a shows three density functions, one for the case when
the screw is there and two known alternatives when the screw is not there. If the operator
occasionally locates surprises, a rectangular density function is added, as shown in figure
43.1b.

The density function for surprises can be incorporated into the confidence computation
in a straightforward way. Since a surprise may occur whether the ob ject is there or not, the
new possibility is included in both the numerator and the denominator. That is, if "s"
represents the surprise, the formula is

(4.3.3) P[HIv] = _
. ]

PlvIsI*P[s] + > P[v|gi)xP[gi]
i=]

1+
. M

PLvIs]*P[s] ¢ > PLvIfiJsP[fi)
i=]

The additional density function, therefore restricts the contribution of the suspect operator.
The operator can not be as strongly for H or as strongly against H as it could when all of the
alternatives were known. For example, if all of the P{vlil's are essentially 2¢ro, the operator
¢an no longer force the overall probability to one. The new addition also means that
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sometimes the "best” match will be the surprise. For example, if the operator happens to
return the smallest reasonable value, the best match will probably be the surprise (depending
upon the a priori probabilities).

If the operator happens to find surprises more often when the object is there (o not
there), 1t is possible to set up two separate density functions and include one in the numerator
and one in the denominator. Let f J.0 be the surprise associated with the jth operator when
the object is there and let gj0 be the surprise for the jth operator when the object is not
there. Then the formula that combines the results of several operators, each of which may
have known alternatives and/or surprises, can be written as:

(4.3.4)

P[Hlvl,v2,...vK] =

D Plviled,i1#PLgj,i]
P[-H] K P[H] O<ighj

1 ( . )
PLH] J=1 P[~H] > PLvjIfy,i)sP[fy,i]
0<igty

1=

This extension of the formulas to include surprises means that there are thice possible
outcomes whenever an operator is applicd: (1) the value is outside the "reasonable” range, (2)
the value is reasonable, but it implies that the best match is a surprise, or (2} the value is
rcasonable and the best match is a known altiernative. The interpreiation, if any, of the
unusual values and surprises has to be left up to a higher level system. A later chapter will
pursue this question in more depth.

Section 4
MULTIPLE-VALUED OPERATORS

Some operators return more than one value; the description of what they have found
contains values along several scales. For example, a texture operator may describe a local
region in terms of many different characteristics. It has already been mentioned that edge
operators often return two or three values. When dealing with such operators onc wants to
combine all of the available information into one probability that the object is there. or to
determine the best alternative. Again there are Bayesian probability formulas that provide
one way of doing this. Consider an inspection task and one operator that returns N values,
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v1. v2, .. and vN. Then the standard Bayesian for mula is

1

(4.4.1) PIH]VI,v2,...vli] = :
P[vi,v2,...vi{ | ~H] P[-H]

1+ *
Plvl,vZ,...vii | H] P[H]

If the values are conditionally independent of each other, the usual reduction yields

i
{4.4.2) p[H|vl,vZ,...Vi] = 4
H 'P{,\H‘IHH) p{ﬂﬂ]
1+ ﬂ *

i=1l P[vi|H] P{H]

These formulas can be extended to include several operators, each of which may return
coveral valucs. Assume that there are N operators and each operator returns Mjvalues{Mjz2
1. Let vjl; vi2 .. viM] be the Mj values re;urned by the jth operator. 1f the values for
one operator are intcrdependent, but the values of separale operators are conditionally
independent, then

{4.4.3)
P{H | (v1,1; vi,2; ... vi, M1}, ... (VL1 VN 25 .. v, MN) ] =

1

NOPL (V3 1iV3e2ieeiva id) 1 ~H]  FL-H]
i*ﬂ =

3=1 PL (vi,15vd,2;..03v3,H3) | H] P{-H]

If all of the values are conditionally indepencent of each other this formula collapses back
into the previous formula (with a suitable renumbering of the v's).

This formula can be further extended to include operators that have several known
«lternatives and even surprises. Assume that the valucs for one operator are interdependent,
Lt that the values of separate operators are conditionally independent.  Let there be K
operators. Let the jth operator have M j known alternatives when the object is there, and Nj
known alternatives when the object is not there, and surprises. Assume that the jth operator
returns R j values as a description of what it finds. Then the appropriate formula is:
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(4.4.4)

PIH | (v1,1;v1,2;...5v1,Rl), ... {WH,1;vN,2;.. .5Vl RH) ] =

1
NJ
K > PL (i divi,25 wow VLRI | g3, 11%PL0d, 1]
P[H) K i=0
1+ *
K j=1 Mj
P[~H] S, R0 (vi,1ivin2; oo svERE) | T3, i0#P0F, 1)
i=0

To use operators that return several interdependent values the system has to gather
enough information to approximate the multi-dimensional density functions. Once this has
been done, the ratio of density values can be used in place of the ratio of probabilities, just as
in the one-dimensional case. '

Since the expression "(vjl; vj.2 .. vjR])" can be validly substituted for “vi"in any of
the derivations which follow, the remaining derivations will only be concerned with
single-valued operators. The formulas apply to multiple-valued operators, but for notational
simplicity they will not be stated in their full generality.

Section 5
POSITION INFORMATION

The local value information produced by an operator is important, but the relative
structure of the matches is crucial in verification vision. This section describes a method for
incorporating the structural information into the relevant mathematical formulas.

Figure 4.5.1.a shows ghe positions of three typical features in a planning picture.
Assume that the task involves determining the change from the planning picture to the actual
picture and the change mainly consists of an X and Y shift. If the three operators are
applied to an actual picture and the features are found at the positions shown in figure
4.5.1b, a least squares fitting routine (or some other fitting routine) would be able 1o produce
an estimate for the shift such that the errors between the actual locations for the matches and
the predicted positions are quite small (as shown in figure 4.5.1¢). In this case one would



[v1.28]

W

AR I |

A<
-

[ .
O~ ..

B

g

FIGURE 4.5.1




[V1.29]

probably say that the operators e ;i veturally consistens. However, if the three matches are
found at the positions shown i t.;ure 4.5.1.d, the best fit would still contain large errors (see
figure 4.5.1.e). In this case one would probably be suspicious of at least one of the matches,

The implication is that the errors (remaining after a fiting routine has tried to
determine the best transform that maps the planning positions of the features into their
matching positions) are a function of the structural consistency of a set of matches. The less
consistent the matches are, the larger the errors are. The sum of the squares of the errors is
commonly used to measure this type of consistency. It is a conveniont measure because there
are well-known techniques for minimizing it. It is also appealing because the distribution for
the sum of the squares of the errors is known to be 2 Chi-square distribution if the errors are
normally distributed [ref LS book]. Since measurement €rrors are known to be normally
distributed for a large number of situations, the use of least-squares techniques looks quite
promising.

The theorem that specifies the distribution of the sum of the squares of the errens can
be stated as follows:

THEOREM: If there are N linear equations relating the actua)l
matching positions with the planned positions and if there are R
parameters to be adjusted in the transformation from the planned
to actual positions, the sum of the squares of the errors (for
normally distributed errors) forms a Chi-square distribution
with (N-R} degrees of frecdon.

This means that a Chi-square test can be applied to a particular sum of squares to determine
whether it represents a consistent transformation between the planned and actual positions. s
the test indicates that the set of matches is nos consisient, 1t is possible to determine which
match is the least consistent. This least consistent match can be temporarily left out of the
solution and another least squares fit can be computed; another test for consistency c¢an he
made, and so forth. This culling of "bad” matches can continue until a consistent scr of
matches has been found. Thus, another measure of the consistenty of a set of matches is the
percentage of matches deemed consistent by this culling procedure.

v As expected, the concept of structural comsistency is an important aspect of verification.
The question is how to integrate it with the value information. Let

{4.5.1) Pi & Coperator i finds a match at position (x,y)>,

then Bayes' theorem becomes:
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Plvi,...vil,pl . .ptif=H]  P[-H]
1+ %
Plvl,...vl,pl...pl|H] PLH]

(Q-B-Z) P{}‘”Vl..-.VR,DI-;-.;,D”} s

I¥ the vi's are assumed to be conditionally independent of the pi's (and each other), this
reduces to:

(4.5.3) (HIvl,...vN,pl,...pN] =

N PLvil=H] P[pl...pN|-H] P[-H]

1‘*” x Y

izl P[vi|H] P{pl...pH{H] P[H]

The assumption that the vi's are conditionally independent of the pi's means that the value
of an opcrator is independent of the location of the match. That is, if the correct maich ic
made, the value of the operator can be expecied to be the same for all matching positions.
This assumption is generally reasonable. However, if different positions consistently produce
different lighting conditions (for example, cause a shadow to fall on a feature), the operator
values may depend upon the position.

The assumption one does not want to make is that the Pi's are conditionally
independent of each other. Such an assumption would completely ignore the structural

contistency, which is precisely what the mathematics is intended to capture. But what is the
value of

9{92;92.. --;3” ’ "H}
(4.5.4) ?

Plpl,pZ,...pH | H]

It would be particularly hard to gather sufficient statistic; in order to compute these
probabilities directly. One heuristic that has proved to be experimentally useful is to replace
this ratio by

<(percentage of consistent features, given -H)
{(4.5.5)

{porcentage of consistent features, given H>

T his ratio docs not really approximate the ratio of the probabilities, but it is useful because it
provicdes a way of including a factor based upon the structural consistency of the matches.
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In the simple case that each operator matches a unique feature when H is true, the
system knows which feature to associate with each match. The least squares culling routine
processes the list of pairs (planned feature position, matching position) and returns the
number of consistent matches. Similarly, if each operator matches a unigue feature when H is
false, the system can construct the appropriate list of (planned position, actual position) pairs
and determine the number of consistent matches. Since the total number of possible maiches
is the same for the two cases (H and ~H) the ratio of percentages reduces to

<number of consistent features, given -H)
{4.5.6) i
<number of consistent features, given H>

Thus the contribution of “structural consistency” in the probability formulas has been
transformed into a ratio of the numbers of consistent matches.

Recall that in the inspection-type tasks being described, the system does not know
whether H is true or false, so it applics the same list of operators in both cases.  The
difference, of course, is that the operators will be matching diiferent features in the two
situations. The set of features for each situation (eg. ~H) forms a geometric pattern (or
structure). The structural consistency check involves assuming one such patiern, secing how
well it agrees with the resulting positions of the operators, and then trying the other patiern.
The relative consistency of these two patterns determines the contribution toward the
confidence of H.

In most cases the structure of the planning features when H is true is significanly
different from the structure of the planning features when H is falte. This guaraniecs that
the ratio will seldom be close to 1.0. Intuitively this result is correct because it would be
surprising for the operators to find their best matches in both cases (H and ~H) in such a way
that they formed the same geometric pattern.

An important assumption of this discussion is that the operators match unique features,
one for H and one for ~-H. In order to apply the least squares culling routine the <ystem
needs to know which feature on the object to associate with each match. If the syzrem does
not know which features are being matched, it has no way of knowing what the structure of
the matches should be or how consistent the set of matches is.

If there are several known alternatives, the system can use the alternative with the
highest probability of being the correct match. Recall that the basic formula used to
“determine the best alternative is



{V1.32]

(4.5.7) P[Lilv] = .
PLvILiJ*P[L1]

1»

i#§ PLvILII*P[L]]

I there happen to be two or more alternatives that have approximately equal probabilities of
Leing the "best” match, the least squares culling procedure can be extended as follows:
whenever the first choice is about to be discarded (because it is the least consistenr match),
another approximately equal choice can be tried in its place. This increases the complexity of
the least squarcs culling routine, but it provides an automatic way of giving an operator the
niecessary second chance whenever there is more than one possible explanation for its results,

The incorporation of the position information does not alter the ease with which the
jnobabilities can be computed. Sequentially acquired information can still be included very
nicely. Since the least squares culling procedure can not be applied until some minimum
number of features has been located, the position information can not contribute anything
until then. The minimum number depends upon the number of parameters being ad justed,
the number of equations contributed by each feature, and any independence conditions. For
cxample, if the least-squares method is performing a planar fit, there are three parameoters,
dXN, dY, and de. Since each correlation feature and each point-on-a-line feature contributes
two equations, any two of these features would be sufficient. Threc or four would be better
because the least squares technique works better when the parameters are over-constrained.
Since this is true, the system may chose more than the minimum number of features before
trying to incorporate the position information. .

If there are several known alternatives for each feature, each operator does not
nccessarily contribute one "good” match toward the minimum nceded to incorporate the
position information. A better estimate is the probability associated with the best match.
Thus, if the probability of matching one of the alternatives is .8, it must be the best match,
and the operator contributes .8 of a "good” feature toward the desired minimum.

Figure 4.52 outlines the general method suggested by this section. One operator after
another is applied until the accumulated value information indicates that sufficient features
have been located; then the least-squares method is applied. Additional features are added
untit the confidence reaches the desired limit. This algorithm could form the basis for a
"discrete inspection” system. It could be used to check to see if a gasket is already on or not, if
- & hole has been drilled or not, or if the expected subassembly has been added.
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CHAPTER 3

EXECUTION-TIME MATHEMATICS FOR LOCATION

If the verification vision system is trying to locate, not inspect, an object, there are two
important parameters: (1) an estimate for the object's location and (2) the precision associated
with that estimate. In the context of VV the location of an object refers to the position and
oricntation of the object’s coordinate system in terms of some other coordinate system (eg. the
work station’s coordinate system). Usually there is some point on the object of particular
interest, eg. the center of a hole or the tip of a screw. Such a point will be referred to as a
point of interest.

The last chapter briefly mentioned that a least-squares method conveniently combines a
st of planned positions with a set of corresponding measured positions to produce an estimate
for the transformation between them. Given this transformation and the planned position of
the object, it is easy to compute the current estimate for the object’s location. The
least-squares technique can also produce the standard deviations associated with the estimates
for the individual parameters in the transform. These standard deviations can be combined
to produce an estimate for the precision.

The application of the least-squares technique depends upon knowing the
correspondence between the matching points and the planning features. If the correspondence
is correct, the estimate for the object’s location and the associated precision will be correct.
However, it is possible for an incorrect correspondence to lead to a (seemingly) structurelly
consistent subset of the features, which leads in turn to an incorrect estimate for the object's
location. This problem only arises when there are several known alkernatives for the features
or when the operators find surprises. To avoid incorrectly reporting a location it is necessary
to incorporate the operators’ value information with the least-squarcs information to produce
an overall probability that the object is within the stated precision of the estimate. This
chapter begins with a detailed explanation of how a least-squares method can be applied to
the VV problem to produce a location and a precision. The second section describes a
situation in which the results of the least-squares method are incorrect and then presents a

simple method for producing a rough estimate for the confidence associated with a statement
of precision.
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Section |
DETERMINING PRECISION

Fa

This section presents a general method for performing nonlinear generalized
least-squares ad justments. A major portion of this discussion is a restatement of an internal
paper at the Stanford Artificial Intelligence Project written by Donald B. Gennery entitled
“Least-Squares Stereo~Camera Calibration” The method uses partial derivatives to
approximate the problem under the general linear hypothesis model of statistics, and then
iterates to achieve the exact solution. For more detailed information see [Craybili 61]

4

The notational conventions are the following. Capital letters denote matrices. Vectors
are represented by column matrices. A particular element of a matrix is reprezented by the
corresponding lower-case letter followed by the appropriate indices. The transpose of a
matrin A is denoted by A', and the inverse of A is denoted by A~ Muliiplication {either
scalar or matrix) is denoted by an asterisk.

Let the vector G denote a set of m unknown parameters for which values are desired.
Let the vector U be a set of n scalar quantities (n2m) that are functions of G and can be
measured with some error. Let F represent the vector of n functions that relate elements in U
with G. Given an estimate for G, F(G) produces an estimate for U. Finally let the vecior V
represent the n residuals (ie. the unexplained errors) that remain between U and an estimate
produced by F(G). Thus

(5.1.1) U= F(G) + V.~
The goal is to eliminate {or minimize) V by modifications to G.

In verification vision G is the set of parameters in the transform that maps the planned
positions of the features into their matching positions (ie. the planned positions irio the
measured positions). Typical elements in G are the displacement in X (dx), the displacement
in Z {(dz), and the unknown rotation about the Z-axis (d«). Different features contribute
different components to U and F. For example, when the transform is planar (so that the
unknown parameters are dx,dy, and da), a correlation feature contributes two measured values
to U: the X and Y components of the match (let them be referred to as Xm and Ym). The
corresponding functions in F are:

{5.1.2) Xe = (Xp-Xc)*COS{da) - {Yp-Yc)*SIN(da) + dx + Xc
Yo = (Xp-Xc)«SIN{da) + (Yp-Yc}*COS(da) + dy + Yc
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where (Xc,Ye) is the center of rotation for de, (Xp,Yp) is the planned position for the
correlation patch, and {Xe,Ye) is the transformed position of {(Xp,Yp). The transformed
position of (Xp,Yp) is the estimate for (Xp,Yp)'s position in the current picture. The two
residuals that would be associated with a correlation feature are

{5.1.3) ¥mo= Xe
and Ym - Ye.

These residuals are the components of V. The goal, of course, is to use the measured values
to improve the estimates for the parameters.

T he quadratic form
(5.1.4) g = VieWwV

it the criterion of optimization that is 1o be minimized. W denotes an n by n weight matrix.
If W is the inverse of the covariance matrix of the errors in the observations, the result will
be the maximum likelihood (in the F space) solution if the errors have a normal distribution.
If W is a diagonal matrix, which indicates no correlation between errors in the different
observations, the quadratic form reduces 10 a weighted sum of the squares of the elements of
V. Thus the problem as stated here can be said to be a generalized least-squares ad justment.

The difficulty in obtaining a solution to the above problem lics in the fact that F in
(5.1.1) is a nonlinear function, and thus in general there is no closed-form solution. QOne way
of solving the problem is to use some type of general numerical minimization technique,
which tries new values of G, recomputes g, and tries to drive q to 2 minimum. However,
cuch methods tend to converge rather slowly. Also, numerical problems may occur if q has a
very broad minimum, for round-off errors may give rise to spurious local minima. Instead of
such an approach, the method described here approximates (5.1.1) by a linearization based on
the paitial derivatives of F. solves the resulting linear problem, and iterates this process to
obtain the solution to the nonlincar problem.

Let the n by m matrix P be composed of the partial derivatives of the functions in s
such that

afi
{(5.1.5) pij = —.
GLR

Lot GO denote an approximation to G. Then equation (5.1.1) can be approximated as follows:
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{(5.1.6) U = F(GO) + P(GO)%(G - GO) + V

where the functional dependence of P on G has been explicitly indicated. Define

{5.1.7) E = U - F(GO)
D = 6 - GO.
. Then (5.1.6) can be rewritten as
{5.1.8) E = PzD+ V.

Thus the nonlinear equation (5.1.1) has been replaced by the linear equation (5.1.8), in which
E represents the discrepancy between the ohscrvations and their computed values (using the
current approximations of the paramcters), and D represents the corrections needed to the
parameters.

it is necessary to solve for D in (5.1.8) in order to minimize q in (5.1.4). This is a
standard problem in linear statistical models {eg. see {Graybill 71]). The solution for D is

{5.1.9) D = (P'aNxP)~x{P'rWaE)

and the covariance matrix of errors in the solution for D is

{5.1.10) S = (P'xMaP)~

assuming that W is the inverse of the covariance matrix of the observation errors.

Several other quantities of interest can be derived from the solution. The expected
value of q is n-m. If the scale factor of the covariance matrix of obtervation ervors is
unknown, W can be ad justed by the ratio (n-m)/q and $ by the ratio g/{n-m). Othawise, g
can be used as a test on the adjustment; for, if the observation errors have the Guussian
distribution, q has the chi-square distribution with n-m degrees of frecdom. S vepresenis the
covariance matrix of errors in the adjusted parameters. The square roots of the dizonal
clements of S are the standard deviations of the ad justed paramcters. The lorrelation manix
of the parameters can be obtained from § by dividing the ij element by the product of the:
standard deviations of the ith and jth parameters, for all 1 and .

Other results are the wavariance matrix of the adjusted observations PaSaP and the
covariance matrix of the residuals W~ - (PsSsP). It is often useful to compare the
magnitude of the residuals to their standard deviations, ie. the square roots of the dirgonal
elements of their covariance matrix. If a residual is greater than two (or three) standard
deviations it indicates that the associated measured value is “inconsistent” with the other
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values used to compute the estimate for the transform. This test is the basis for the
least-squares culling procedure mentioned in the previous chapter.

The covariance matrix about a point nof in the solution is W~ + (PSP where P is
the sct of partial derivatives at the point and W is the inverse of the covariance matrix that
weights the measured values. In VV the standard deviation that ¢an be computed from this
covariance matrix can be used to determine the uncertainty associated with any other point on
the object {cg. a point of interest). It can also be used to determine the tolerance region about
the next feature to be tried.

The solution of the nonlinear problem can now be described as follows. An initial
approximation is used to compute the discrepancies Ei and the partial derivatives Pij. Then
D is computed from (5.1.9) and is added to the current approximation for G to obtain a better
approximation. This process repeats until there is no further appreciable change in G. Then
the final values from the last iteration can be used to obtain S, Vi, q, and the other derived
quantities described above. Of course, in order to converge to the absolute minimum of q
vather than convergence to some local minimum or divergence, it is necessary that the initial
approximation be sufficiently close to the true solution. In most practical problems the initial
approximation is not critical; in fact, often there is only one minimum.

Since on the last iteration the partial derivatives have been tomputed for the converged
valuc of G, the solution gives the true generalized least-squares ad justment regardless of the
nonlinearity. However, some of the other properties of the ad justment are only approximate
in the nonlincar case. Among these are the use of § as the covariance matrix of the errors in
the final value of G, and the properties that the solution for G is minimum-variance and
unbiased. However, if the amount of nonlinearity over the range of the measurement errors
is small, these results will be fairly accurate.

A few comments should be made about the numerical aspects of performing the
computations. The H matrix is always non-nezative definite; that is, if it is not singular it is
positive definite.  The best strategy io use when inverting a positive-definite matrix by an
climination technique is to pivot on the main diagonal (sce [Forsythe 71)). Therefore, a
simple matrix inverter without any pivoting can be used to obtain H~. H is also symmetrical;
therefore, some computation time can be saved if the inverter makes use of this fact.
However, if n is considerably larger “han m, much more time is spent in computing H than in
verting it, so this special care is hardly worth the trouble. In problems where the solution is
nearly indeterminate, H will be nearly singular, and much accuracy can be lost because of
numerical roundoff error. In such cases it may be necessary to use double precision in the
computations for H, C, D, and $ according to (5.1.9), and for the inversion of L. (If a good
inverter is used, there is usually not much point in having it in double precision unless a
double-precision H is available to invert, as explained in [Forsythe 71)) However, high
precision is not needed in computing the discrepancies Ei and the partial derivatives Pi, as
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long as consistent values are used throughout the computations for H and C.

Figure 5.1.1 is a flowchart that outlines the basic steps involved in using a least-squares
mcthod to compute an estimate for an object's position and a precision about that estimate.
The algorithm is a sequential algorithm that applies the least-squares routine as soon as a
sufficient number of features has been found. The best values for the parameters are used 0
map the object’s planned location into an estimate for its current location. The standard
cicviations associated with the best parameter values are combined to produce a region of
uncertainty about the estimate. As stated, the algorithm is concerned with the ob ject’s
location. Given the object’s estimate and precision, it is easy to produce estimates and
uncertainty regions for any other points of interest on the ob ject.

Scction 2
CONFIDENCE IN THE PRECISION

The algorithm shown in figure 5.1.1 can be used by itself to locate objects. However, to
do so requires an assumption: if the least-squares culling routine determines a siructurally
consistent subset of the features, and if the desired precision has been reached, then a correct
correspandence has been established between the positions produced by the operators and the
known alternatives for the features. This assumption is generally reasonable when the
number of known altcrnatives is small and the operators are reliable (ie. they do not locate
surprises very frequently). However, it is possible to locate a set of features that appears (to
the least-squares culling routine) to be structuraliy consistent, when in fact, some of the results
have been incorrectly associated with alternatives. For example, consider figure 5.2.1. Figure
52.1.a shows a point of interest and a set of known alernatives for four operators.
Operators three and four can each find two known alternative features. Figure 52.1.b shows
the actual positions of all of these points in a particular runtime picture. These positions are
not the positions where the operators found them, but the positions where the operators
should have found them, if the operators were reliable. Figure 52.1.c superimposes the four
positions where the operators think they have located known akernatives on top of the actual
positions. So far the operators are correct. However, if the system decides that operator three
has matched alternative 3.a and that operator four has matched alternative 4.a (both of which
are wrong), the least-squares routine will probably decide that the features are structuvally
consistent and proceed to place the estimate for the point of interest at the position shown in
figure 52.1.d. This conclusion is wrong. The cause of this eiror was the system's incorrect
assignment of alternatives to the operators' results. The resulting assignment happens to
appear to be structurally consistent and the system, having fooled itself, proceeds to draw an
incorrect conclusion. This example is a simple example, but it points out a potential danger
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in unconditionally believing the results of the least-squares culling routine.

One way to avoid this type of incorrect deduction is to usc more and more features,
which makes it Toss and less likely that the results will be incorrectly judged to be structurally
cousistent. This solution is fine if the features are inexpensive to apply. However, if the
cystem trics to minimize the number of features applied and minimize the amount of work
required to locate each match, some measure of the confidence in the precision produced by
the least-squarcs routine is necessary. This confidence helps the system minimize the number
of features by allowing the system to stop applying features as scon as the desived precision
and confidence in the precision have been met. It helps to minimize the amount of work
required because it provides a way of deciding when a prccision can be safely usec to restrict
the region that should be scanned in order to locate a new feature.

Unfortunately, it is difficult to compute the probability that the object is actually within
the stated precision of the least-squares’ estimate of its location. The computation requires
several new assumptions. There are, however, some ad Aac, but experimentally useful
methods for developing an estimate for the confidence.

One crude measure of the confidence associated with an assignment is the average of
the probabilities associated with the individual matches:

ST PLfimi | vi)
1sish

{5.2.3)
N

where T1,mi is the known alternative chosen by the least-squares cuSing vsuine as the match
for operator i. The higher the average, the more confidence there is in tne assignment. The
average of the individual matches has the nice property that one uncerta:a match can be
“averaged out” by several distinctly matched features. This property is mice becsuse it means
that one (or two) dubious matches can be part of an assignment without drastically Towering
its confidence. However, in conjunction with this, it i fiot pusible to rombine several
reasonably distinet matches into an assignment with a very high overall confidence.

This type of measure is really only a general indicater of the overall confidence that
should be associated with an assignment. It does not approxiinate the probability that the
ob ject has been correctly located.
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CHAPTER 4

PLANNING-TIME MATHEMATICS

The goal of this chapter is to investigate ways of producing information that is useful
to a strategisi. In this context a strategist is a program {or possibly a person) that evaluates
the various alternatives and develops a plan to achieve a particular goal. At one level a
strategist might be trying to decide whether to use visual feedback or force feedback to check
for a screw on the end of the screwdriver. At that decision point it needs information about
the expected costs and reliabilites of the alternative methods (see [Taylor 76] and [Sproull 787
for descriptions of strategists and the information used to make decisions). This chapter
develops techniques for producing this type of cost and reliabilty estimates for verification
vision.

Execution-time mathematics provides methods for combining the results of sequentially
applied operators to produce estimates for inspection confidences, precision, and precision
confidences. These methods make it possible for the system to stop gathering information as
soon as the desired confidence and precision have been reached. The underlying technique is
an ordered list of operators to be tried. The ordering criteria are important because some
operators are more reliable than others, some contribute more than others, and some operators
cost more to apply than others. This chapter investigates techniques for ordering the
operators according to their expected contributions and costs. It also presents techniques for
estimating the expected number of features (and costs) required to achieve certain coniidence
and precision limits.

The first few sections describe the mathematical tools used to rank operators by value
and cost estimates. The last few sections develop techniques to predict the expected number of
features necessary to reach various limits like the minimum number of features required to
apply the least-squares culling routine.
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Section | _
RANKING FEATURES BY VALUE

Consider the task of inspecting a scene to decide whether a screw is present or not.
Scction 4.1 developed a formula that reduces the value information from several operators
into an overall confidence that the object is present. It also pointed out that the contribution
of an operator is the value of the ratio:

Plvil=H]
{6.1.1) T
PLvilli]

where vi is the value (or set of values) returned by the operator and H denotes the
prroposition that the object is there (sec formula 4.1.12). For ranking purposes the logarithm
of the inverse ratio is more convenient:

Plvilll]
(6.1.23 log{ — ).
Plvi]=H]

The greater the ratio, the better the contribution. The logarithm of the likelihood ratio is
used because there is a theorem (to be discussed in section 6.5) that shows how to compute an
estimate for the number of operators required to reach a certain confidence from the
log-ratios of the operators.

At planning time, vi does not yet have a specific value, so the system is interested in the
average (or expected) value of this log-ratio. To compute this expected log-ratio onc needs
the density function for vi, which is a weighted sum of the density functions for H and -H
(as shown in figure 4.18). The weights are simply the a priovi probabilities. Therefore,

{(6.1.3} density(vi) = P[H] » H_density(vi) + P[~H] » ~H_density(vi).

This is a valid density function since



[V1.45]

(6.1.4)
+0o ‘o +0
J density(X)ax = [ PLHIeH_density(X)eX + [ P[-H]s-H_density(X)ox
-t - -0

00 +00
= P[H]«[H_density(X)dX + PL-H]# [~H_density(X)dX
-0 -0

= P[H] + P[-H] = 1.
The expected value can then be computed as follows:

o
_{6«1.5} g expected_log-ratio = f Tog-ratio(X) = density(X) dX.

MAXSYMA (see [MAXSYMA ref]) was used to expand this integral symbolically, assuming
that the density functions are normal. The derivation is given in the appendix. The result is
a readily evaluated expression of the two means (M1 & M2), the two standard deviations
(SD1 & SD2), and the a priori probability of H (ie. P):

{6.1.6) expected_log-ratio = 1og{SD2) - log(SD1) + 1/2 - P

2 b4 2 2

SDI + (M2 - HI1) SD2 + (M2 - MI1)
+ Px = {1-P)x
2 2

2 x 502 Z % 501

Later sections will also need estimates for the expected log-ratio, given either H or -H.
The expected log-ratio, given H, can be computed as follows:

+00
(6.1.7) ELR_given_H = f log-ratio{X} = H_density(X) dX.

-0

The integral can be expanded to produce
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2 2
SD1 + (M2 - M1) 1
{6.1.8)}) ELR_given_H = 10g(SD2) - log(SD1) + - -,
2 2
2 « 502
Similarly, the expected log-ratio, given ~H, can be expressed as
2 2
1 5b2 + (M2 - MI)
(6.1.9) ELR_given_=H = 10g({S02) - log(SDl) + - - X
2 2
2 %= SD1

Since the expected log-ratio for an operator rcpresents the operator's average
contribution, operators that have large expected log-ratios should be applicd first in orcer to
minimize the number of operators used to reach some confidence limit. Thus, a simple
operator-ranking scheme consists of computing the expected log-ratio for cach of the
opicrators and then ordering them according to their expected value (largest first).

Scction 2
KNOWN ALTERNATIVES AND SURPRISES

The method used in the last section can be used to compute the expected contributions
for operators that have several known alternatives andfor are subject to surprises. However,
it is quite difficult to expand symbolically the integrals that express the expected value. A
numerical technique is used instead.

Formula (4.3.4) expresses the probability that the object is present given the values of
several operators, each of which may have several known alternatives and surprises. That
formula is
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(6.2.1)

P[Hivl,v2,...vK] =

L

> PIviled,ilPlgj,i]

P[-H] K P[H] OsisNj
1] ¢ ———— % n ( * )
P[H] J=1  P[~H] S PLviIfy,i1%P[ 4, 1]
0<ishy

where TJ,1; 7j.2; ... TJ,NJ are the NJ known alternatives for jth operator when H is
true, gj,1; 93,25 ... 9J,MJ are the ¥j known alternatives for jth operator when H is
false, j,0 is the surprise for jth operator when H is true, and ¢j,0 is the surprise for Jth
operator when H is false. The contribution of the jth operator toward the overall probability
15:

D, PIviled,i)%Plgj,1]
P[H] 0sisNj
(6.2.2) ( . ).
P[-H] > PLViIfy,11+P[15,1]
0sisMj

For ranking purposes the logarithm of the inverse of this ratio is used:

> PLViIf,i1sP[f],1]
P[~H] OSisMj
(6.2.3)  log-ratio(vj) = 199( » ).

PLH] > PIviloj,1)sP[gj.i]
Ogishj

The expected value can again be computed by
4+
{6.2.4) expected_log-ratioc = f log-ratio(X) # density(X) dX,
-

where the density depends upon all of the known alternatives and surprises. Since

(6.2.5) P(H] = P[fJ,0] + P[fj,1] + ... P[T§,Nj]
and P[-H] = P[gJ,0] + P[gJ.1] + ... P[oJ.MJj],
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the density for operator J is

{(6.2.6)
M K
density(X) = Z{?{’f,j.,i}tdens‘ity{fj.i}} - Z(P[gj.i]tdnnsity{gj.1)}.
i=0 i=0

T'hus, if ELR denotes the expected log-ratio for the jth operator, then

(6.2.7)
S, PLvaIfy, 13#P0M5,1]
+w  P[-H] 0sisNj
ELR = f%og( * ) x density(X)dX
- pLH] . P[vJlod,i1xPLod,i]
0sisi]
or
(6.2.8)
S PLviIfd, 13#PL15, 1)
+0 Ogishy
ELR = log(P[-H1)-100(PLH]) + [10a( Jadensity(X)ex.
- S PLviled,11#Pled,1]
0sisiy

The logarithms of the sums could be expanded into Taylor series in order to integrate this
expression symbolically, but it is simpler to use a numerical integration technique to
approximate the value for a specific operator. Hich-precision values are not necded because
they are only used to rank the opcrators ana predict the expected number of opcrators
required to achieve a certain confidence in H.

It is not necessary to integrate the function from minus infinity to plus infinity. Recall
the discussion in section 4.3 about “filtering” out unusual values for an operator. Any value
-hat is not within three standard deviations of at least one of the alternatives’ means is 50
unusual that it is treated as a mistake. It is therefore sufficient to integrate the function over
the interval of wsual (or useful) values. This interval is simply the union of all the
alternatives' intervals defined by their means plus or minus three standard deviations. The
resulting interval is finite, which makes it easier to compute the integral numerically.

The result of this section is a set of formulas, which compute the expected contribution
of an operator, even if it may involve several known alternatives and surprises. These
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expected contributions will be used in later sections to compute other important quantities.

Section 3
COST INFORMATION

Since different operators cost different amounts to apply, a slightly more sophisticated
ranking scheme can rank the operators according to a cost-ad justed version of their expected
contribution, ie. :

¢expected log-ratiod
{-6'-3913

{expccted cost?>

The cost of applying an operator could involve such factors as training time, computation
time and memory space, but in this discussion, for simplicity the expectec cost of an operator
is defined to be the expected computation time required to locate a match.

Computation time is a function of several variables: (1) the initialization time, (2} the
number of times the operator is applied, and (3) the computation time for each application. 1f
an operator is applied over a complete region (eg. the tolerance region about some alternative),
it is relatively easy to predict the expected cost. However, if an operator is sequentially
. applied in a region (using some search strategy) until a reasonably good match is found, one
has to predict the number of separate applications to be used to find such a match. This
prediction is a little more difficult. It is based upon the type of feature, the expected
distributions of the feature and its alternatives, and the local characteristics of the operator
{eg. the size of the region covered by one application). Each feature-operator-stratezy triple
needs a separate mechanism for predicting the average number of applications required to
find a2 match. Some of these prediction methods are discussed in a later chapter.

An operator-ranking scheme that incorporates (COst estimates is:  compute the
benefit-cost ratios {as in formula 6.3.1) for each of the operators and order them according 1o
the largest first.
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Section 4
LEAST-SQUARES CULLING

As mentioned in section 4.5 the least-squares culling routine requires a minimum
number of martches. Let M represent this minimum number. Let N be the number of
cperators that must be applied in order to find M matches. Since an operator may or may
not locate & known alternative (ie. a match), N is greater than or equal to M. This section
develops a method for predicting N, given M and an ordered list of operators. The following
sections continue to derive methods to compute estimates for the expected number of operators
vequired to achieve some goal. It should be pointed out that it is possible to compute an
estimate for such numbers by simply applying the operators to enough training pictures and
averaging the number of operators needed to reach the desired goal. Often this direct way is
the best way to proceed. However, sometimes it is useful to be able to produce an
independent estimate of the expected number. The foilowing sections discuss some alternative
ways of computing the desired estimates.

In order to predict the average number of operators needed to locate M matches it is
necessary to compute each operator’s expected contribution toward M. Consider figure 6.4.1.
Figure 6.4.La shows the possible matches associated with a typical operator: three known
alternatives and a surprise {f1,f2f3, and ). Assume that the @ priori probabilities for these
possibilities are:

{6.4.1) P[f1]
PLT2)

P[f3]

and P[S] =

.5,
2,
1
2

Figure 6.4.1.b shows the densities associated with the various possibilities, but they are scaled
by their @ priori probabilities of occurring. Figure 6.4.1.c shows the weighted density function
for the operator. That is,

3
(6.4.2)  density(X) = P[S]sdensity(S) + D (P[fjldensity(fj)).
J=1

Given a specific value for the operator, the best alternative is the alternative with the
highcest probability of being the correct match, ie.
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(6.4.3) MAX{P[f1]v], P[T2]v], P[f3]v], P[SIv]).

The algorithm shown in figure 4.5.2 uses the probability associated with the best match as the
operator’s contribution toward the goal of M matches, except when the operator’s value is
unusual or it suggests that a surprise is the best match. In the case of an unusual value or a
surprise match, no contribution is credited to the operator. Figure 6.4.1.d superimposes the
graph of the operator's contribution (scaled by 10} on top of the scaled densities shown in
figure 6.4.1.b. Figure 6.4.1.d also labels each interval with the name of the possibility that
would be returned as the best match. Notice that there are three intervals that imply that the
surprise is the best match. '

The expected contribution of an operator toward M (abbreviated EC) can be computed
in the standard way:

40
{6.4.4) £C = J. {contribution at X> = density{¥X) dX

-t
where

1 0 {if unusual or surprise)
{6.4.5} <contribution at X> = |
| MAX{PLFIIXT,...P[TniX]) {(otherwise).

Again a numerical integration technique is the casiest way of computing the value of EC.

Formula 6.4.4 is important because it computes the expected contribution of an
operator. Given an ordered list of operators and their expected contributions it is possible to
estimate the number of operators that have o be applied in order to locate M matches. The
expected number of operators is the minimury N such that

N
{6.4.6) :Z(nperatar J's axpected centribution> 2 M.
=l
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Section 5
INSPECTION

In an inspection task each operator contributes a certain amount toward increasing (or
decreasing) the overall confidence that H is true. Sections 6.1 and 6.2 developed mieihods for
computing the expected contribution of an operator. Given the expected log-ratio (the
contribution) of each operator, what is the expecied number of operators required to generate
a certain confidence in H? The answer to this question is based upon a theorem in sequential
pattern recognition [PR bookl):

THEOREM: Let cof{H) be the error ratec allowed for saying that H is
true when it really 1s false and 1let e{~H) be the error rate

allowed for incorrectly saying that H is false when it really is
true. Let

I - Q{HH} ﬁ{q}f}
Az —————— and B —
e(H) 1 - e(H)

Then, given that H is true, the expected number of operators to
be uscd to make & decision is given by

{1-e{=H))}xlog{A} + e(=H)xlog(B)
expected_#(H) =

{avorage log-ratio, given H»

And given that -H 1is true, the expected number of operators to
be used to make a decision is given by

g{=H)xlog{A) + {l-c{H)})}=xlog{B)

*®

expected_#{-H) =

{average log-ratio, given =H>

find Tinally, the expected number of operators to achieve the
specified error rates is

expected_# = P{H)rexpected_#{H) + P(-H)xexpected_#(-H).
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The theorem is based upon the assumption that there are an infinite number of
epcrators whose average log-ratios are known. However, there are only a finite number of
operators (usually on the order of ten) for any specific VV task. The theorem can still be
ueed to produce an approximate number of operators expected by assuming that there are an
infinite number of operators with the contribution of the best operator. If that were the case,
how many operators would be needed? If the answer is one or less, then the best operator will
probably Le sufficient, on the average. If the answer is more than one, consider the averase
of the first two operators and compute the number needed if there were an infinite number of
operators with that expected ratio. If the answer is less than or equal to two, the best two
cjrcrators wil-be enough on the average, etc. Ficure 6.5.1 lists eight operators and their -
expected log ratios. Using those operators and a goal of e(H) = e(~H) = .03, the expected
number of operators would be one. The expected number of operators to achieve e(H) =
e(~H) = .005 would be three.

This theorem is powerful because it provides a way of predicting the number of
features, on the average, that will be necessary tu achieve a specific confidence. The theorem
applies to all operators whether or not they have several known alternatives and/or surprises.
The only effcct of alternatives and surprises is that the operator’s expected contribution will
probably be smaller than if it did not have such potential confusions.

Section &
PRECISION

Chapter 5 developed a method to locate ob jects (in the domain of VV). The method
divided a location task into three subtasks: '

(1) locate enough features to be able to apply the least-squares
culling routine (this set of features is referred to as the kernel),

(2) locate enough additional features to produce the desired
precision about the point of interest,

and (3) locate enough additional features to develop the required
amount of onfidence in the statement of precision.

In order to predict the total number of operators needed in a location task, one nceds
cstimates for each of the subtasks. Section 6.4 developed a method to predict the expecied
number of operators required in subtask (1). This section and the next section will develop
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methods to predict the expected number of operators required by subtasks (2) and (2}~
respectively. &
.

Given an edge operator and a specific line to be found, the edge operatpr™will be able
to locate a point on the line to within some precision. Given a different I's€¢ (maybe a fuzzy
line), the precision of the same edge operator will probably be different. Thus, there is a
precision associated with each operator-feature pair. In fact, the precision of most operators
also depends upon the fype and amount of change between the planning picture and the
actual picture (eg. the amount of rotation or the change in the overall light level). In order to
predict the number of operators necded it is necessary to have a model of each operztor's
precision. A statistical model provides the variance about each value. Given the variances
about the operators’ values, the weight matrix (ie. W) can be constructed, which makes it
possible for the least-squares routine to determine the variances about the resulting parameter

values.

In VV, and in particular in programmable assembly, one assumes that there are no
large unknown changes bctween the planning picture and the aciual picture.  The
environment is highly constrained. The main factors that affect an operator's precision are
(1) the inhereat operator characteristics (cg. its maximum resolution), (2 the local fexture
characteristics {eg. fuzziness), and (3) small rotations {eg. 15 degrees). Often the operator’s
inherent characteristics are the dominant factors involved in determining an operator's
precision. In this case an @ priori estimate can be used to model the precision. I this is not
true, it is possibie to apply the operator (in conjunction with several other operators with
known precisions) to several trial pictures and produce an estimate for the operator’s variance.

Cine property of the least-squares fitting technique is that it produces essentially the
same precision no matter what the position values from N matches are, as long as they
conform to the stated variances. Therefore the precision produced by any one application of
the fitting routine can be used as an estimate for the precision from the N operators. This
property is the basis of a straightforward method that predicts the number of features necded
to reach a certain precision: Given a trial picture, locate a kernel set of matches, and apply
the least-squares technique. If the resulting precision is sufficient, stop and return the
number of operators used as the expected number operators to be neeced. 1f the precision is
not sufficient, locate another match, apply the least-squares routine, and repeat the precision
check.
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Section 7
CONFIDENCE IN A PRECISION

As mentioned in section 5.2 it is often reasonable to assume that the confidence in the
precision is high enough whenever the least-squares routine produces the desired precision.
Under this assumption, the expected number of operators required for a location task is the
same as the expected number of operators necded to reach the desired precision. If this
assumption is not true it is possible to use a method similar to the one used in section 6.5 to
estimate the expected number of operators required to reach acertain confidence level.

Formula 53.11 shows each operator's contribution toward the overall confidence.
Given this symbolic expression for the contribution, it is possible to employ a numerical
integration routine to compute the expected contribution from an operator. The sequential
pattern recognition theorem referred to in section 6.5 can be applied again. Given the
expected contributions for the individual operators, the theorem produces the expected
number of operators to be needed.

The general prediction scheme for location tasks can now be stated: determine the
expected number of operators required to achieve the desived precision, determine the
expected number of operators required to reach the desired confidence, and return the
maximum of these values as the expected number required for the task.

Section 8
EXPECTED COST

Given (1) an ordered list of operators and (2) the expected number of operators (ie. N)
required to achieve a certain goal (either an inspection or location goal), it is easy to produce
an estimate for the expected cost associated with achieving the goal: sum the expected costs
for the first N operators. That is

N
(6.8.1) Z {expected cost of operator J>.
J=1
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This expression is just a rough estimate for the expected cost because it assumes that the
expected cost is the sum of the expected costs for the expected number of operators, which is
not generally true. A better estimate is:

(6.8.2) D (PLAJ] # Cj),
3=0

where AJ means that the goal is achieved after applying operators one through j and Cj
denotes the expected cost of applying the first j operators.
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CHAPTZR 5

ASSUMPTIONS

This chapter discusses the assumptions that are required by the mathematical formulas
tsed to compute confidences and precisions. These assumptions are fundamental assumptions
about the ¢/ass of tasks referred to as verification vision tasks and about the probabilistic and
least-squares methods used to model such tasks. An example of such an assumption is the
conditional independence of the operators' value and position information. If this assumption
is not approximately true for a particular task, none of the Bayesian probability formulas can
be applied; their preconditions are not satisfied.

The assumptions have been classified into three types: (1) Bayesian probability
assumptions, (2) value distribution assumptions, and (3) conditional independence
assumptions. Each type will be discussed in a separate section.

Section |
BAYESIAN PROBABILITIES

Bayes' theorem states a desired q posteriori probability in terms of the ¢ priori and
conditional probabilities:

P{v]H]*P[H]
17.1.1) P[H|v] = .
PLVIHI*P[H] + P[v]|-~H]«P[-H]

This formula is convenient because the conditional probabilites P[v|H] and Plv]-H] are
generally easier to measure (or estimate) than P{H|v]. However, Shortliffe and Buchanan
(see [Shortliffe and Buchanan 75) and [Nilsson 75)) have pointed out two related problems
invoived in applying Bayes' theorem to various decision tasks. The first problem is that it is
often difficult to estimate P[v]=H), especially if H is a compound proposition (ie. it is a
con junction of several propesitions). It is often unclear what the negation of H means. The
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second problem is that the amount of statistics required to estimate P[v]=H] can easily
become prohibitive, even if it is clear what statistics should be gathered.

The Bayesian formulas developed for VV in chapters 4 through 6 avoid the first
problem by insuring that H is not a compound proposition. For example, in inspection tasks H
represents the proposition that the object (eg. the screw) is there. The negation of H denotes
the proposition that the object is not there. There are no other possibilities.  Within
programmable assembly this assumption is reasonable because the environment s highly
controlled; the screw is either on the end of the screwdriver or it is not. The environment is
so predictable in programmable assembly that even the objects that form the background
{bchind the screwdriver and screw) are known in advance.

V'V relies heavily upon the assumption that there are only two possible events that can
occur. If there are more than two possible events, other techniques have to be used because
the "H or -H" model is insufficient. Consider the task of deciding whether a carburetor
subassembly has been attached or not. The assumption that Hor =H is true implies that the
only two possiblities are: (1) the carburetor is attached and in its proper place and (2) it is not
there at all. If a third alternative is possible (eg. a carburetor of the wrong type is attached),
the VV formulas are not directly applicable. It might be postible to extend the formulas to
cover three or four possibilities, but the modified VV techniques would essentially be
recognition-type techniques that choose the best match from several possibilities. Some of the
power of the specialized VV techniques would be lost.

It should be noted that there is a difference between three or four known alternatives
for an operator and three or four possible events that can occur. Known alternatives for an
operator are local to the operator. Possible events are global and hence affect all of the
operators. In particular, for each possible event there may be several known alternatives for
each operator. Therefore, it is quite a different problem to provide for several different
events than it is to provide for several known alernatives. The formulas developed for VV
deal with the latter, but not the former.

Even though the VV formulas avoid Shortliffe and Buchanan's first problem, they do
not avoid the second. Since they provide for several known aliernatives for each operator,
the training session has to gather statistics for all of the akernatives. Fortunazely, in
programmable assembly there is usually no shortage of potential operators so operators with
several known alternatives can often be avoided. In theory the ordering criteria for the
operators should include a measure of the expected training time and the space required for
the alternatives. These additions would automatically reduce the rating for an operator that
has several known alternatives and reduce the chance that the operator would be used in the
task.
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Section 2
VALUE DISTRIBUTIONS

Throughout the development of the formulas a noimal distribution was assumed for
the operaters' value information. That is, the values associated with an alternative were
assumed to have a normal distribution. This assumption, however, is nof necessary to
compute the likelihood ratios

plviili]
{7.2.1} .
Plvi|-H]

Any distribution is sufficient. It is even possible to use the histogram of values produced at
training time as the distribution, as long as there is a sufficient number of trials. .

A normal distribution was assumed in the derivations because it is a good model for
several of the operators. If the values of an operator are not normally distributed, there may
be a change of variable that can convert them into an approximately normal distribution. A
later portion of this section will discuss a change of variable that converts correlation valucs
into a distribution that is approximately normal.

If an operator's values are known to foliow some distribution other than a normal
distribution, it is easy to incorporate the new distribution into the execution-time formulas.
The only information needed in addition to the density function is a specification for the
interval of reasenable values. What values of the operator should be classified as unusual
and hence should be filtered out (see section 4.5 For normal distributions it is easy to
specify an interval by setting a threshold in terms of the number of standard deviations away
from the mean. Other distributions require some other specification for the interval of
reasonable values.

It is a little more difficult to incorporate an operator into the planning-time formulas if
its values form some distribution other than a normal distribution. It requires a different
function to be integrated in order to compute the operator’s expected log-likelihood ratio.
 lowever, since the integration can be done numerically, the extension to a new distribution
generally only requires a straghtforward modification of the existing routines.

One of the main points of this section is that any distribution can be used for an
operator's value information. For example, if some ¢ priori information implies that the
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distribution for a particular operator is a gamma distribution, a gamma distribution can be
substituted into the appropriate formulas. 1f the training results imply that the distribution is
not one of the standard distributions, the density function defined by the histogram can be
used in the formulas.

Cne operator that is known to produce a non-normal distribution is cross-correlation
(see [Hocl 71]). Consider the following formula for the correlation coefficient:

S (Xi-Mx)a(Yi-My)
i=1
{7.2.2) r ’
H & 5% = Sy

"

where Xi and Yi are jointly normally distributed, 1ix and My are the sample means of X and Y,
respectively, and Sx and Sy are the sample standard deviations. It would be possible 10 use
the actual distribution of r, but there is a convenient change of variable that converts r into
a distribution that is approximately normal. The change of variable is

1 1 +#r
(7.2.3) 2= — mg{—-——).
2 1-r
T he mean of the new distribution i3
H 1 +a
{(7.2.4) Mz = =— % 309('—);
2 1 -«

where o represents the theoretical value of the correlation coefficient. The standard deviation
for the new distribution is

17.2.5) Sz = :
sgri{l - 3}

where K is the number of samples used to compute r.

The correlation operator implemented by Hans P. Moravec at Stanford behaves
according to this theory. Consider figure 72.1. Figure 721a is a histogram of fifty
correlation coefficient values. The values are the results of applying the same correlation
operator to fifty different pictures of a scene for onc VV task. The interval size aiong the
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horizonal axis of the graph is one-hali of the sample standard deviation. As predicied the
correlation values form a skewed distribution (with a theoretical upper limit of 1.0). The
chi-square value is based upon the eleven intervals centered about the sample mean. Fizure
7.2.1.b is the histogram of values produced by the change of variable in formula 7.2.3. Fizure
7.2.1c is the histogram that wauid be expected if the sample fermed a perfect normal
distribution.

The chi-square value drops significantly from 254 (with eight degrees of freedom) to
9.2 (with cight degrees of freedom) for the naw distribution. The improvement is not always
that dramatic, but the change of variable scldom increases the chx-squ are value. Consider
figure 7.2.2. It is a scatter diagram of the pairs:

{7.2.6) ({chi-square of raw values), {chi-square of changed valuesd).

Any point to the right of the diagonal line represents a case in which the change of variable
made the distribution for an operator's values look more like a normal distribution (according
to the chi--square test). The change of variable only slightly degrades the chi-square value
in the few cases that it makes the distribution worse. A point in the shaded area of figure
7.2.2 represents an operator whose distribution was improved significantly. Before the change
of variable the chi-square test (at the 5% level) rejected the hypothesis that the sample could
have come from a normal distribution. After the change of variable the chi-square test
indicated that it was plausible for the sample to have come from a normal distribution.

The question about which distribution to use to model an operator's results is a hard
one. The chi-square test used above is helpful, but mainly as a method for rejecting a
proposed model.

After deciding which distribution to use to model an operator's results, one still has to
decide how many samples are necded to produce a good approximation to the distribution. [If
the chosen distribution is normal, one needs cnough samples to appoximate the mean and
standard deviation, since a normal distribution is completely determined by these two
parameters. How many samples are necded? There are two theorems that help answer these
questions {(sec [Hoel 71]):

THEOREM: If X is normally distributed with variance V and

N 2
> {Xi - Hs)
i=}

Vs

"
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is the sample variance based upon a random sanmple of size N and
Ms is the sample mean, then

NxVs

Vv
has & chi-square distribution with (N-1) degrees of freedon.

THEOREM: If X is normally distributed with ncan M and variance V and
a random sample of size N is taken, then the sample mean Ms will
be normally distibuted with mean M and variance V/N.

Let CS(n,p) represent the value such that a chi-square distribution with n degrees of
freedom has p percent of the population 1o the right of that value. One application of the

first theorem states that there is a ninty-five chance that the sample variance and actual
variance are related as follows:

HxVs
{7.2.7) CS{(N-1),.975} S =——— 5 C5((N-1),.025).
v

Let S and Ss represent the standard deviation and the sample standard deviation of the
distribution.  Since Vs = S5:Ss and V = S8, formula 727 can be converted into the
following statement concerning the actual and sample standard deviations:

sqrt(N) + Ss sqri{li} = Ss
(7.2.8) £ 5 g

sqri(CS((N-1},.025)) sqrt(CSE{N-l),_.Q?S)}

-

The second theorem can be used to produce a ninty-five percent confidence interval
about the mean. That is,

2%5
(7.2.9) M - Ms] € ——nur
sqri(N)
or, substituting the larger value from (7.2.8) into (7.2.9) produces

2%5s

{7.2.10) M- Ms] < .
sqri{CS({N-1},.975))
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For example, if Ms = 1.3 and Ss = .2, the ninty-five percent confidence intervals based upon
& sample size of 15 are

{7.2.11} M - Ms] 5 .16950
and .15092 £ 5§ <€ .32824.

For a sample size of 30 the intervals are

{7.2.12) IM - Ms] < .10022
and .1615]1 € 5 < ,27446.

One interesting possibility is to use the planning-time formulas to predict the effect of
gathering more samples from an operator's distribution. Two important questions can be
answered in this way:

(1) Given a sample mean and a sample standard deviation, plus
confidence intervals about them, what is a reasonable, but
conservative distribution (or set of distributions) that can be
used to model the operator?

(2) Given an additional set of N samples from a distribution, what
is the probable change in the operator's expected contribution?

In this situation a conservative distribution is a distribution that understates the contribution
of the operator. The use of such a distribution may require more operators to be applied
than theoretically necessary, but there is a smaller chance of making an incorrect decision.
For example, assume that a potential operator in an inspection task has the following
characteristics:

(7.2.13) (sample size of 15)
H =H

Ms = 1.3 Hs = 1.95

S5s = .2 S§s = .22

Assume that the probability of H is .9. Then the expected log-ratic for the operator is 3.41.
To pick a more conservative distribution for the operator consider the sixty percent
confidence intervals about the means and standard deviations:
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(7.2.14) * (sample size of 15)
H =-H

1.234s-M 51.365 1.8785s M £2.022

.1828 § 5.252 .200< 5 <.277

If one assumes that the the most conservative set of distributions is produced at the oxtremes
of these intervals, there are sixteen possible combinations for the pair of distributions to be
used to model the operator. Figure 7.2.3 shows the expected contribution of the opcrator for
each of the sixteen possibilities. The most conservative set is the set that has the lowest
expected contribution, ie.

{7.2.15) . (sample size of 15)
H -H

M= 1,365 M= 1,878

S =.182 § = 277

(the expected log-ratio is 1.25),

What is the expected gain from gathering another fifteen samples from the operator's
distributions? The intervals are:

(7.2.16) {sample size of 30)
H ~H
1.258s M <1.342  1.90a< M £1.996
.1855 § s5.231 .203s S 5.254

and the most conservative distribution (within the sixty percent intervals) is

{7.2.17) (sample size of 30)
H =

M= 1.342 M= 1.904

S =.185 S = .254

(the expected log-ratio is 1.80).

The potential gain is significant in terms of the increase in the expected log-ratio for the
conservative set of distributions. More samples would increase the expected log-ratio even
further. The upper limit on this log-ratio would be reached when the conservative set of
distributions was the same as the sample set. At that point the expected log-ratio for both of
them would be 3.41. The number of samples actually used in a VV task depends upon how
conservative the programmer is, how important execution time is, and how much time can be
devoted to training the system. Sample sizes on the order of twenty to fifty have worked well

In programmable assembly since each VV task is performed repeatably, it is possible to
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Expected Log-ratio

min M1, min 81, min M2, min S2: 4.04
min M1, min S1, min M2, max 52: 1.90
min M1, min 51, max M2, min 52: 6.03
min M1, min 51, max M2, max 52: ¢£.79

min M1, max 31, min M2, min S2: 4.38
min M1, max S1, min M2, max S2: 2.11
min M1, max S1, max MZ, min 52: 6.5
min MI, max S1, max M2, max 82: 3.15

max M1, min 51, min M2, min S2: 2.57
max M1, min 81, min M2, max S2: 1.25 »
max M1, min S1, max M2, min S2: 4.20
max M1, min 51, max M2, max 52: 1.98

max M1, max Sl, min M2, min 32: 2.81
max M1, max S1, min M2, max 52: 1.35
max M1, max 51, max M2, min S52: 4.56
max M1, max S1, max M2, max 52: 2.20

& the minimum expected log-ratio, the most conservative set
of distributions

FIGURE 723
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gather additional samples during production runs. This is important because a larger set of
samples can help to refine the model for an operator in two ways. First, more samples can
improve the distributions being used to mode! the operator, and second, if one of the clobal
variables (cg. lighting or camera sensitivity) changes slowly over time, continuous sampling
€an maintain an up-to-date model for the operator.

Section 3
CONDITIONAL INDEPENDENCE

The derivations of several of the formulas depend upon two important assumptions
about the conditional independence of the operators’ values: (1) the value of an operator is
conditionally independent of the values oi the other operators and (2) the value of an
operator is conditionally independent of the position of its match. Both of these assumptions
are instrumental in simplifying the relevant formulas. For example, in chapter 4 they make it
possible to simplify formula (4.5.2):

{7.3.1) P[Hivl,...vN,pl,...pl} = 1
Plvl,...wN,pl...pH]=H] P[-H]
1+ %
Plvl,...vl,pl...pN[H)] PEH]

into

(7.3.2) P[HIvl,...vN,pl,...pN] =

N PLvi|-H] P[pl...pH|=H] P[-H]

]-+n * ®

=1 Pvi|H] Plpl...plIH] PLH]

The assumptions significantly reduce the number of dependencies in the conditional
probabilities and make them feasible to compute.

There are several reasons why the appearance of a feature might change from one
picture to the next:

(I) The feature itself may be different. For example, in assembly
tasks all of the pump bases are not exactly the same. In

-
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photo-interpretation (abbreviated PI) the roads may be
widened, or otherwise changed.

(2) The position and orientation of the objects in the picture may

~ change. In assembly the range of positions and oricntations for
an object is generally specified in advance by an assembly
engineer.

(3) The lighting may be gifferent. The sun may bein a different
location, causing different shadows and glares. In
programmable assembly the lights can be controlled more easily,
but they still may vary slightly.

(4) The position and orientation of the camera may be different.
In asscmbly a camera may be in a fixed location, oF it may be
calibrated to a certain precision. In Pl the inertial guidance
system specifies the position and oricntation of the camera (to
within some uncertainty) when a picture is taken.

(5) The sensitivity of the camera may be different. All cameras
have internal parameters such as the target voliage that change
over time.

(6) The noise level is variable.

All of these sources of change can be considered to be global variables with respect to a VV
tatk. In effect the two conditional independence assumptions state that in VV none of these
variables change the expected distribution of values produced by an operator.

There do exist Operators and situations for which the assumptions are not truc. This
fact raises two important questions: (1) in general are the assumptions true for a sufficient
number of operators 1o accomplish practical VYV tasks? and (2) is there @ way of dctermining
if the assumptions are trué for an operator in a specific situation?  The remainder of this
«cction develops some insight into the complexity of these questions by analyzing the
assumptions further and investigating some of the situations in which they are not true.

T he first assumption states that the value of an operator is conditionally independent of
the values of the other operators, €g.

(7.3.3) pIv2iH,v1] = P[v2H].

This formula says that given H, the probability of operator 2 producing the vaiue v2 is the
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same whether or not the value of operator 1 is known. This statement is generally true in
verification vision. The probability of producing & certain value for a correlation operator is
generally unaffected by knowing the results of a a previously applied edge operator. An
obvious case in which the assumption is not true is when operator 1 and operator 2 are both
correlation operators and they overlap. Knowing the value of one operator would certainly
alter the possible values for the second. However, overlapping operators are quitc uncommon
and can be easily avoided in VV.

The second assumption states that the appearance of a feature on an object docs not
change as the object moves through its possible positions. Put another way, if an operator is
applied to several different pictures, and it locates the same known alternative in each, the
value returncd by the operator is indcpendent of the location of the alternative in the picture.
This is generally true in programmable assembly and VV because the changes are so small
that the appearance of a feature is essentially constant.

There are two situations in which the second assumption might be false. The first is
when a small change in one of the transform’s variables causes a shadow to fall on a feature.
At some locations the feature is in a shadow and at others it is not. The value of almost any
operator attempting to locate such a feature would depend upon whether the feature is i a
shadow or not as determined by the position. Hence the value of the operator depends upon
the position of the feature, which makes the assumption false. - The second situstion arises
when a small change in position causes a dramatic change in the appearance of z feature. As
an cxample one view may show a screw hole that is partially occluded on the left by a shaft
and a second view of the same hole may show the shaft occluding the hole on the right. This
problem is the standard problem of degenerate views first referred to in cot junction with the
blocks world.

Both of these situations lead to operators that produce bivariate (or at least high
variance) density functions. One peak is produced by the pictures showing the feature in the
shadow and the other peak is produced by the pictures showing it in the light. Since the
expected contribution for such operators is generally low, the automatic ranking scheme will
place this type of operator near the botiom of the list of potential operators to be used in a
task. If the V'V system is interactive, a programmer could discard this type of feature if one
were suggested by the system.
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I. INTRODUCTION

A. General

The use of computer controlled manipulators for industrial assembly tasks is becoming
increasing popular and feasible. Experimental systems are now being developed which
combine world modeling and sencory fecdback to complete tasks not previously possible with
conventional "pick and place” manipulators which move through 2 preplanned sequence of
points.

As the application of programmable manipulator systems becomes more widespread, the
number of manipulators utilized in an assembly task will increase. In some applications, all
of the manipulators will be controlled by a single medium sized computer. In others,
microprocessors will be dedicated to individual manipulators. In both of these cases, the
computer processing time available for control will be at a premium. The sampling rate of
the control systems will then become a critical factor that will determine the number of
functions that can be controlled.

The purpose of this thesis is to determine the minimum sampling rate needed to effectively
operate a manipulator and to pinpoint those factors which have the most predominant effect
on the minimum sampling rate. This thesis deals specifically with the Stanford robot arm
located at the Stanford Artificial Intelligence Laboratory. Previous analysis of the Stanford
arm control system has been performed in the continuous Laplace transform domain. This
approach is accurate for high sampling rates, but at low sampling rates, Laplace transforms
cannot accurately model discrete digital computations. An analysis was necded that could
accurately represent both discrete computations and the continuous arm servo system at low
sampling rates. '

In this thesis, the arm is medeled using z transforms, which can represent a sampled-data
system exactly at each sampling instant. The model is used to determine the effect of nertia
and sampling rate varations on the dynamic response of the arm. Recommendations are then
made describing methods for reducing the effects of inertia variations and for running the
arm at reduced sampling rates.

B. Description of Stanfor¢ Arm

The Stanford Arm has six joints plus a gripper consisting of two fingers with microswitches
for touch sensors. Each joint of the arm has a potentiometer and tachometer for sensing
position and velocity. Joint torque 1s determined by measuring the joint motor current.

The arm motor drives generate a current proportional to the command signal from the
computer, so that motor torque is directly proportional to the computer command signal
Brakes are applied to each joint when the arm is stopped to eliminate the need to servo the
arm continuously. The arm's absolute accuracy is 20.1 inches and its repeatability is 20.03
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inches.

An extensive manipulator programming system, known as "AL", has been developed at the
Artificial Intelligence Laboratory for running the arm. The AL system contains a compiler
for planning the arm’s trajectories and a run-time system which executes the programs
generated by the compiler. The compiler is written in a language similar to ALGOL and
resides on a PDP-10. The run-time system is written in PALX assembly language and runs
on a PDP-11/45.

C. Arm Trajectory Calculations

The arm’s trajectory is determined by evaluating the fifth order polynomial given in
equation (1-1) below.

Bci-k) -a e a,[k‘l‘] . aQIk'I‘}2 ’ 33&723 v a,;l[l-;'i‘]'i . 35&'1'}5. (1-1)
where

8 (k) = command joint position
T = sampling period

k = discrete time variable

a toay = polynomial coefficients

The command arm velocity, W c(k). is determined by differencing the current and previous
position: and then dividing by the sampling period.

w k) = 8(K)-8 (k1) (1-2)
' T

The arm's command acceleration, c:c{k}. is determined by differencing the current and
previous velocities and then dividing by the sampling period.

ac(k) - W (k)-m:(k-l)
T
= 8 c(k) .28 i{k-i} +8 {(k-'z) (1-3)




The z transforms of w (k) and & k) are given by

wc(z) = {1-1) B(2)
Tz

a ) = (21280

(Tz)2

where z = z transform operator.

[VIL3)

{1.4)
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II. CLASSICAL ANALYSIS OF THE ARM

A. Joint Model

The motor torque difference equation used to control each of the arm’s six joints is given by

T(k) = J(kdx (k) + G{K) + F - k k, [8,(k) - B(K) ]
k
- kek JO) Lo () - w (k) -k, 5 [8.()-8 () V)
I

where

T(k) = command motor torque {oz-in)
8, (k) = actual joint position (deg)
8 (k) = command joint position (deg)
w z(k} = actual velocity {deg/sec)
@ (k) = command joint velocity {deg/sec)

@ (k) = command joint acceleration {deg!sec2)

J(k) = joint inertia (oz-in-sec?)

G{(k) = joint gravity loading (oz-in)

F = joint friction with same sign as velocity (0z-in)
kp = proportional feedback constant (oz-in)

kv = derivative feedback constant {i/sec)

2

k, = integral feedback constant (ozz-in -.secz)

kc = constant to convert degrees to radians = .01745 (rad/deg)

The gravity loading, G(k), is calculated using a first order polynomial.

Glk) =g, + -Eg kT/S

where

g, = initial gravity loading

3g = change in gravity loading {oz-in)

T = sampling period (sec)

kT = elapsed time in segment (sec)

§ = total time required to pass through segment (sec)
kT/5 = fraction of time through segment (0.0~1.0)

2-1)

(2-2)
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The inertia, J(k), is also calculated using a first order polyncmial.
(k)= j_ <& KT/S -3)
Jky= g « 8, KTI (2-2)
where

jo = jnitial inertia (oz-m-secg)
] 3" change in inertia (oz-in-sec?)

kT/S = fraction of time through segment {0.0+1.0)

A block diagram of the control system described by equation (2-1) is shown in Figure 2-1. A
more detailed diagram of this model is given in Figure 2.2,

-ecm | ® |——| CONTROLLER o} B o} PLANT ls eam

F + Gk}

where

6 (k) = command arm position (deg)
8_(k) = actual arm position (rad)
FF = feedforward compensation for inerua = J{k) k) {oz-in)

PLANT = one joint of the arm and its associated gear train and motor
CONTROLLER = joint feedback equations

Figure 2-1: Joint Model



[VILS6]

T (k)

_tzla/a_

1k,
k. 2
i
—,
Jle-1)
8 (v} - &
o} L 4
+ 3
s Z —| 2 |— Z|—
P
- e
eaikl
jiz-I)z +*
A~ —| £
(Tz2)2
em{i}
z-1 + _L
| — |—| 2 Jk, |-
Tz
lf&c
where

 Gglz) = position transfer function of plant (rad/oz-in)

G, (2) = velocity transfer function of plant {rad/oz-in-sec)

A/D = analog to digital converter
DJ/A = digital to analcg converter

Figure 2-2: Detailed Joint Model

k/ﬂ:_

Gw{z)

w_(k}
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B. Joint Transfer Function

The transient response of a servomotor system is described by the differential equation given
in equation (2-4), °

T® = Jd%8,(0+BdB () +F (2-4)
' dt dt

where

J = Joint inertia Eoz-:n-se:g)
B = viscous damping constant {oz-in-sec)
F = coulomb friction constant (oz-in)

The inertia in the above equation is assumed to be a constant, although on some of the
joints, it is a time varying function which depends on the configuration of the arm. The
effect of variations in joint inertia will be discussed in Section V-B.

A compensation is made for coulomb {riction in the arm control system given in Figure 2-2.
A constant offset is added to the motor torque whenever the velocity of the motor is greater
than zero. The sign of the offset is the same as the sign o the veloaty. With this friction
compensation, the effects of coulomb friction are mimimized and the friction constant in
equation (2-4) can be assumed to zero.

The Laplace transform transfer functions for position and velocity of the arm are then given
by

Cgls) = 8,09 = 1 | (2-5)
TG)  Js%+Bs

Gw(s} = Na(s) = { {2-8)
T(s) Js+B

where s = Laplace transform operator.

When a D/A converter is placed in series with an analog plant, the response of the analog
plant can no longer be described exactly by continuous Laplace transform transfer functions.
A design tool which becomes very useful at this point is the zero-order-hold (ZOH)
approximation. The ZOH approximation can model the response of 2 D/A converter and a
continuous plant exactly at each sampling instant. The ZOH approximation is given by

ZOH(@) = (1)Z {Gl9)} @)
4 5
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where Z = z transform operation.

Since each joint of the Stanford arm uses a D/A converter between the output of the
computer and the-input of the motor drive, the two transfer functions of the arm system can
be derived using the ZOH approximation:

Cglz) = 'Ga(z) = (D 2Cglsh} = -1Z1 i }

T(@) z 5 z s(j52 + Bs)
= (TB « J(B-)z - TBA - J(B-1) (2-8)
B%z-1X2-8)

Gy = w (2) = @DZG ) = -BZ{ 1}
TG) z s z _]52 + Bs

- 2 ‘B ‘ (2‘ 9)
B(z-8)

where § = e'BT‘U.

The equations for the command torque T(z) have been computed using Figure 2-2 and are
given by

T@) = k [Jk, e+ (e kz )eg« Je12862)) (2-10)
jen (Tt
where
e, (2= @1 8(2) - G, T@) C(21
T ke
eg(2) = 8,(2) - Ggln) Th2) - @12)
2

<
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Combining equations (2-10) through (2-12) gives the transfer function for the controller

G (2).

G(z) T(2) -{' sz(zZ){zﬁ}} {z «d, 1246 uda}

8 c(z) (Tz)2 33 g 12 TR

where
kg = gain constant = kg!”‘g?

2 ¢y
kg = T Uk ok J 1 LK T 1]

kz2'582
by=TB+J@B-1
by, = TBE « JB-1)
¢ ={b Ek*LJJ -JBIBQR+B)+k JB- !)J!k
c2 {JB[B. 235 %, J8-1D]- bo [ &, ~a._]] k_]b m
-{kjb -JB[BB. k}(ﬂ»i}‘}ig
-{j[kT +JI% T 3311!a1
2 {J [k T‘S}Hkg

dg = {-J Yky,

(2-13)

Combining equations (2-8) and (2-13) gives the closed loop transfer function from © l2) o

8 (z)

: r 3 5
H(z) = 8,) = kk, [bjz-byJ{2°+d 2% < dyzed,]

-Bc(z} ('.F‘z}2 { 13 . ¢y 22 *Co2+Cy ]

There are several simplifications of the above transfer function that will be used later

(2-14)

in

other sections. The first of these is the transfer function of the arm without the feedforward

compensation term, Jor (k):

H{z) = 93{1} = kckg[blz-b?]fzz-e;z'tz}

'Bcfz} Tz{zg*c, zzcczzwa}z

(2-15)
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where
'k;g = gain constant = 'k-gi‘s_fk?g*i
2
kgf = JB
by =TB« JB-1)

by = TBE + J(B - 1)

¢ ={b, Tk, + kg) 1-JBIBQ+ Bk JB-1] LW
o= {JBIB+2BA 2K JB-1D1-by ke koJI-koJby ko

Cq= { kpjbi" -JB [ BE « kv‘](ﬁ - 1] }‘&gi}
€= (<) kT « 2k, ] Tk

12

The second simplified transfer function includes proportional and derivative feedback only.

The feedforward and integral feedback terms have been deleted.

H(z) = '93(1} - ktkg[blz-bg_][zag_}

6 (2) T:Izz‘f_ TS
< 1 2
where
:k g" gain constant = kgsli 46
kgb . -ir.PT +k,J
o2
kgﬁ - B

by = TB« J6- 1)

by = TBB + J(6 - 1)

f) = {koby - B« B) + k JB(1 - B) Yk
fp= { BB + K JB(1-B)- kobg Mkyg

(2-16)
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I1I. STATE SPACE CONTROL OF THE ARM

A. State Space Concepts

L. GENERAL EQUATIONS

The state and output equations for a continuous, linear, constant coefficient system are given
below.

dx{t)/dt = F x{t) « G u(t)
y@® = H x@- D uD) ' (3-1)
where

x(t) = state vector {n x 1)

u(t) = control vector {p x 1)

y(t) = output vector (q x 1)

F = system matrix {n x n}

G = control distribution matrix {n x p)
H = output matrix (q x n)

D = feedthrough matrix {q x p)

If the system is time invariant, the matrices F, G, H, and D become constant matrices. In
most cases, the feedthrough mamix D 1s not needed and it will be omitied in the following
discussion.
The system described above can also be represented, at discrete instants of time {i=kT where
k=0, 1, 2, .., and T is the sampling period), by a set of difference equations, as shown in
equations (3-2).

x(kel) = @ x(k)+ T ulk)

y(k) = H x(k) (3-2)

where

© = discrete system matrix {n x n) = el (L+FT F272 « .}
2!

and
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' = discrete control distribution matrix (n x p}

T
afeF“dﬁG
0

= [IT + FT2 « F°T° 4+ .JC
2 b
A diagram of the discrete state space system described above is shown in Figure 3-1.

The z-transform transfer function, derived from the difference equations (3.2), is shown
below.

H@ = H{d-87'T (3-3)
The characteristic equation of the transfer function given above is

det{2l-®]) = 0 ' ' (3-4)

% (k+l} x(k)

+ -1
uflk) =——s| T | T | 2 ——---rl H |——— y(k)

l

where 2°" represents a delay of one sampling period

Figure 3-I: Discrete State Space System Representation
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2. CONTROLLER DESIGN

A diagram of a discrete state space controller with state feedback is shown in Figure 3-2.
The general state feedback equation is given by

u(k) = -K x(k) + u_(k) | (3-5)
where

K = feedback gain matrix (p x n)
u (k) = system input vector (p x 1)

If the feedback equation (3-5) is substituted into the state difference equations in equations
(3-2), the following state difference equation is obtained.

x(ko1) = [®-TK Ix(k)~ I‘ua(k) (3-6)

The characteristic equation obtained from equation (3-6) is

det{2l-¢.TK] =0 {3-7)
x (ked) X (k)
+ . + -1
'uoik} - Z|—| I |—| 2 - 2 | H |—— yik)
A £ 3 + -

Figure 3-2: Discrete State Space System With State Feedback
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A system is defined as "controllable” if its controllability matrix,
C-(T I'e re? . re™')

is nonsingular. If a system is controllable, the roots of the system can be positioned at any
desired location by choosing the appropriate feedback gain matrix K.

B. Design of a Joint Controller

The differential equation describing the transient response of a servomotor system is
repeated below from Section II.B. The coulomb friction term has been omitted, however,
since the friction compensation used in the motor torque equation minimizes the effects of
the coulomb friction.

2 :
T() = Jd"8,(t)+ B dB () (2-8)
' dt dt

If position and velocity are chosen as states, the matrices describing a single joint are given
by

93 ) g 1 ]
X L 1 t }: = * G =
wa{ﬁ g -7 K

cofm]e el

where

8, = actual position (rad)
W = actual velocity (rad/sec)
T(t) = motor torque input (oz-in)
T = B/] (rad/sec)
K = 1/] (1/{oz-in-sec))
* B = viscous damping constant (0z-in-sec)
J = inertia {oz-m-secg)
t = continuous time
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Th'e discrete difference equations for a single joint are given by
x(kel) =« @ x(k) « T T(k)
y(k) = H x(k) (3-9

where

and

B - I

Y ={1-8)T
He{T-vIT

The motor torque input was given in Section [I-A as

Tk = Jax k) « Glk) « F - &k o [€,()-8(k) ]

k
- kek J) [ (k) -w ()] - KKk E{[Bam-ec{j} Ae) (2-1)
3:

The gravity loading and the friction compensation terms are updated by the computer
during motions, so G(k) and F do not need to be included in the joint model. The inertiz,
J(k), will be assumed to be a constant, although on some of the joints, it is a time varying
parameter which depends on the configuration of the arm. The effect of inertia variations
will be examined in Section V-B. Taking the z transform of the remaining terms in equation
(2-1) gives

TG - Je0P80) - k (k <k J@D - k2 }08,0)-8)] (310)
(T2)? T:  JD)

A block diagram of the system described above is given in Figure 2-3.
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Bc{ki
!
> +
| J-11° =] T
' le £ l l
KY Ky
wafki
+ +
-1 + -1
Z|l— 2 —_ Y —-rLE e —_ ﬁafk}
8 |
4
.
T
+] d
Z |e— f_:i — thc
Tz
- -—-Br_m
S
v
N
+ + +
- kc —_— T — RP — I | —
+‘A
k12
1 —
Jz-1})

Figure 3-3: Two State Joint Model
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By adding three more states, equation (3-10) can be combined with equations (3-9) to give a
new set of difference equations:

x(ke1) = [$®-TK Ix(k).T Gc(k)

y(k) = H x(k) (3-11)

The new x, ®, T, H, K, and u matrices are given by

X5 (k) 1 1k e 2 8 g -1
6 (k) 8 1 v 8 @ kKu @
a <
x = |wi|, ® =12 2 8 &8 2|, I' =l kxy 8
X (k) 2 ¢ 8 8 1 e @
X, (k) 2 2 ¢ @ @ g 1
b o b e - r
. (h +kK) 6_ - kK fﬂ?&kp)fkc k Jifx. hy by
8, 2 8 2 e @

and

‘ 2 2
hy = (kTS +k T+ T
hy =k, T] 2)IT?
hy = JIT?

A diagram showing the additional states is given in Figure 3-4.
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KI{“ xzik}
-1 -1
Gc(ki —t z
b hy hy
J |
- * -
— L |— T
kc"ﬂ’ k_ck'i.l
l wa{k} l 83(5&} { x3ik} i ’
+ ; d + -ar +
-1 - -1 + - =1 i+
z z —tf Y =] Tl 2 —_ Z|—l 2 - X
+1 +] +
g
Ik, /e, o/, k/kJ
J J
+ +
Z e T e

Figure 3-4: Five State Joint Model
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The transfer function for the closed loop system given above can be calculated using
equation (3-6) which is repeated below.

H(l) = ea(l) - H { ZI P FI\. ].l I" | {3-5)
8 (2)

c

Expanding equation (3-6) gives

-1
[ .
Z-i "'A/k{ B B B
2 s e e . _ ,
Lcktux z—1+me+aim k H=Y xcthx kthl;.ik
; 2 | e 2 ¥ ¢ : y
Hiz) = { 21888 ] kck’.’?k Lp“fmkim z-ﬁﬂvv Lchz‘n. kg‘xl‘)’k
] 2 2 z -1
e g ] e z
g -1
kck‘u 3
'ho-rkzl(
x | kXY g (3-12)
;
1
2 8
g 1

Reducing equation (3-12) gives

H@z) = Bz(z) = NUM

8 c{z) DEN

where
NUM = kcu {izl{zg “ ho(z-1322 . hl(z. i} h2(z-i) i (z-Bokv‘Y);J . ('r-kv.j.i)'r ]
DEN = 2% {[ 2.8k 7 11 kK2 o (aeD)-1ok ppx'kiuk‘z) ]

sK[Y-k b KK o (2-1¢k p“f +kYK) ]}
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Further reduction gives

3 2
H{z) = kckg{b;z-b.z}[z +d; 2%+ dy2+d, ] (3-13)

{’I‘z)ziz"”mI zz*:zzu:s}
where

kg = gain constant = kg:l”‘g?

kgz-'}‘r"{ki‘kpj]oj?{kv?d}
2

koo = JB

by=TB+J(B-1)

by = TBE + JBB- 1)

' ci-{bIikiokpjl-jBiB(2+§)okvj(ﬁ-1))}”:32
cz-{JB{B*2Bﬁ'*2kvj(5-I)]-bzikt*kpjbkpjbz}!232
cau{kPJbz-jBI'Bﬁ«ij(ﬁ-I)]}lkg2
fz,-1-3prTzqtzavr‘sn};xgi

12
do=1{] {va+3]}!kg;
dy = { -J2 kg

This is the same transfer that was obtained in Section 1I-B using a classical analysis.
Classical and state space methods of analysis often give the same transfer function, especially
for single input - single output systems. The transfer function above has two closed loop
poles at the origin of the z-plane, one real pole, and two poles which can be either real or
complex. If 10 feedback gains had been used in the feedback gain vector K, instead of five,
it would have been. possible to position the five poles at any desired location. Only five gains
were used, however, since there is no advantage in altering the positions of the two poles at
the origin.

The feedback gains required to obtain the desired joint characteristic equation given by
1 e a2 oaz.'lt‘-asl-r(} | (3-19)
can be computed using equation (3-15).

K =Blra.c) (3-15)
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where

o o, q
| ay -J°B(B-1) b b,
A =|a B - 2J%B(B-1) ~(b,+b,)] b,
g 2 z
JB 2
o3 BB ey 8
k, -(2+8)
K = [k, | C = 1428
k, -8

The computation of feedback gains will be discussed in further detail in Chapter VI



- [VIL22]

IV. DETERMINATION OF ARM PARAMETERS

A. Summary of Measurement Techniques

The differential equation describing the transient response of a single joint of the arm 15
‘repeated below from Section 11-B.

T - J¢%8.,(0)+BdB,(0+F | (2-4)
& at

where

T(t) = motor torque input (o0z-in)
8,(x) = actual joint position (rad)

] = inertia of motor, arm, and load (oz~an-sec2)
B = viscous damping of motor and arm (oz-in-sec)
F = coulomb friction of motor and arm (oz-in)

It can be seen from equation (2-4) that inertia, damping, and friction are the three arm
parameters which have the most predominant effect on the arm’s time response. Inertia can
be calculated from a knowledge of the mass and relative position of #ach of the component
parts of the arm. An excellent reference on this sub ject is (BEL

The arm’s coulomb friction and viscous damping are difficult to measure because they are
position dependent. The position dependency is illustrated in Figure -1 where the velocity
of each of the six joints has been plotted as a function of position for a constant torque step
input. If friction and damping were independent of position, the velocity would be constant
after an intial period of acceleration. In Figure 4-1, it can be seen that the velocities of the
joints are not constant, even after the acceleration period has ended. When the motions
plotted in Figure 4-1 were repeated, the velocities were found to be repeatable functions of
position.

The position dependency complicates the measurement process, but using the average values
of the friction and damping in the motor torque equation and the arm model gives an
accurate prediction of the arm's transient response. The insensitivity of the model to friction
and damping is a result of the fact that the velocity feedback overides the effects of errors in
the viscous damping, and the position and integral feedback minimize the effect of errors in
the coulomb friction.
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A measurement of the arm’s average coulomb friction can be obtained using a method
developed by Richard Paul and Bructe Shimano at the Artificial Inteligence Laboratory.
The method consists of applying a constant motor torque to a joint, and then measuring:

® the restraining force required to maintain a constant velocity in the direction of
applied torque

& the force required to pull the arm at a constant velocity in a direction opposite 1o
the applied motor torque.

The friction is determined by dividing the difference between the two force measurements
by two.

Five methods, which have been investigated for measuring joint viscous damping, are listed
below.

Terminal Velocty - Torque Step Input

Least Squares Fit - Torque Step Input
Transient Response - Position Step Input
Least Squares Fit - Position Step Input

Bode Plot Analys:s - Position Sine Wave Input

R -

e b

Some of these methods also measure inertia or coulomb friction as well. Of the methods
listed above, methods «3 and «5 give the most consistent results and are the easiest to use. All
of the methods are summarized briefly below, but tests #3 and «5 are explained in detail in
the following sections. '

L TERMINALVELOCITY - TORQUE STEP INPUT

The feedback and feedforward terms in the motor torque equation are deleted and the joint
is given a step input in torque. After the joint’s initial acceleration, the velocity of the joint
15 given by equation (4-1).

w_ () = (T- F)/k B (4-1)
where kc - constant to convert degrees to radians = .01745

Both the viscous damping and the coulomb friction can be determined as functions of
position by using different values of torque on successive runs. This test does not work well
on joints which have a limited amount of rotation. The applied torque must be kept very
low to allow the joints to reach their terminal velocities, yet at low torques, the erratic effects
of coulomb friction mask the real terminal velocities.
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2. LEAST SQUARES FIT - TORQUE STEP INPUT

The feedforward and feedback terms are deleted from the motor torque equation and the
joint is given a step input in torque. A least squares curve fit is then made between
equations (4-2) and (4-8) and the joint’s actual transient response.

6,0 - Klt-7(1-¢"M (4-2) -

w, (O - K (1-¢tT) - (4-3)
where

K «(T-F)B

T =])/B

This test also does not work well for joints which have a limited amount of rotation. The
curvature of the velocity versus time response of these joints is small and the values
obtained from the least squares fit vary with the applied motor torque.

3. TRANSIENT RESPONSE - POSITION STEP INPUT

The feedforward and the velocity and integral feedback terms are deleted from the motor
torque equation. The joint is then given a step input in position and its proportional gain 1s
varied until the joint’s response to the step is underdamped. The joint's viscous damping
and inertia can be computed from the peak time at which the arm begins to reverse its
motion and the magnitude of the peak overshoot. This test is the easiest to use of the five,
and it produces repeatable and accurate results. It is discussed in detail in Section IV-B.

4. LEAST SQUARES FIT - POSITION STEP INPUT

The feedforward and the velocity and integral feedback terms are deleted from the motor
torque equation. The joint is then given a step input in pasition and and its proportional
gain is varied until the joint’s response 10 the step 13 underdamped. A least squares fit is
made between the output of equation {4-4) and the joint's actual transient response.
{Equation (4-4) is derived in Section 1V-B-1)

: Jw t
RO kll-¢""n (cos W 4t «
(1-¢

} sin w 4t (4-4)
2}1!2

This test is the best method to use when extremely accurate values are needed for inertia
and damping. If the coulomb friction compensation is ad justed until the transient response is
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exactly second order, this test will give the most accurate results of the five tests presented in
this section. The added difficulties incurred in determining the exact coulomb friction
compensation, however, make this test difficult to use.

3. BODE PLOT ANALYSIS - POSITION SINE WAVE INPUT

The feedforward and the velocity and integral feedback terms are deleted from the motor
torque equation and the joint is excited with a sine wave position command. The frequency
which produces the largest peak to peak displacement is the joint’s resonant frequency and
can be used to compute the joint inertia. The viscous damping can be calculated from the
magnitude of the displacement at the resonant frequency.

This test produées accurate and repeatable results and is moderately easy to use. It is a good
backup test for verifying the results obtained from the Test 3.

B. Detailed Description of Preferred Measurement Techniques

1. TRANSIENT RESPONSE - POSITION STEP INPUT

This method uses the peak time and peak overshoot of a joint’s transient response 1o
determine the joint's inertia and viscous damping. The block diagram of the system
configuration used for this test is given in Figure $-2.

c p t e ——— a
s{js + B}

where

kp = proportional feedback constant
k = constant to convert degrees to radians = .01745

Figure 4-2 Configuration for Transient Response Test
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The joint is given a step input in position and its proportional gain is varied until the
joint’s step response 1s underdamped. The peak iime at which the arm begins 1o reverse is
motion, and the magnitude of the peak overshoot are then noted for step inputs of various
sizes. A typical motion is shown in Figure 4-3.

Since the present 60 hz sampling rate is more than 15 times higher than the bandwidth of
the joint configuration shown in Figure 4-2, a continuous transfer function can be used to
model the arm's closed loop transient response. The transfer function can be determined by
inspection of Figure 4-2 and is given by

He = 8a® o Kty (4-5)
8.(s) js2 +Bs kb
For a step input of magmltude 1.0, the response of the arm is given by
Ba(s) = keko
()52  Bs + ko)
. R W n2 ' (4-6)
62+ 2w s+ w9
where
w2 = k) SR )
Zw = B/] (4-8)

{ = damping ratio
w, - undamped natural frequency (rad/sec)

The time domain step response, Ga(t},lcan be calculated by taking the inverse Laplace
transform of equation (4-6).

.B ROERS t:[i - et ¥ nYcos w gt }sinW dt)i (4-9)

{ ‘{2)112

where W ; = W [1- 1’2 }“2.
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Figure 4-3: Typical Step Response - Transient Response Test
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The peak time t, can be determined by taking the derivative of Ba(t) given in equation
(4-9) and equating it to zero. This gives

The peak overshoot, MP' can be calculated by evaluating €_(1) at o

M = explmt/(1-42)112) (4-11)

Since rp and Mp can be measured experimentally, equations (4-10) and (4-11) can be
rearanged to give  and W, as functions of :{p and M o The inertia and damping can then
be determined from { and W, by rearranging equations (4-7) and (4.8).

- (tn(lIMp)z 2 (4-12) .
2. (n(11M )2

W - T {4-13)
. S
2,1/2
‘p‘: I-£9)

2 _
J= kpfwn (4-14)
B - Adw ] (4-15)

A more detailed derivation of equations (4.5) through (4-11) can be found in reference
[OG]. The results obtained using this test are shown in Table 4.].

2. Bode Piot Analysis - Position Sine Wave Input

For this method, the Joint is excited with 2 sine Wave pasition command and the peak to
peak displacement of the Joint's response is recorded as a function of the frequency of the
sine wave. The system configuration for this test is identical to that given for the closed loop



oint |Step Input| t & B
(deg) (sec) (deg) [{oz-in-sec) (oz-in-sec?)

H 20 10K 0616 415 87 334
| 30 ICK 0616 5624 94 384
] 40 10K Gble 84.3 127 384
1 F = 1150 0z-in AVG: 162 284
2 30 {0K 0.912 48.1 708 501
2 40 10K {656 659 6510 482
2 30 20K 0.512 52.5 £8s 525
2 F = {000 oz-in AVG: 664 503
3 5 7 $.880 58 0.24 0.55
3 5 7 0.895 i1 021 0.57
3 7 7 0.864 il 0.18 0.53
3 F = 1202in AVG: 0.24 0.55
4 40 IK G.304 6725 228 9.2
4 50 Ik 0.3C4 §6.9 186 83
4 60 1K 0.204 1674 4.5 6.3
4 F= 110 ozan AVG: 1856 93
5 40 400 0672 506 %7.0 174
5 7 50 400 0664 9.5 276 174
5 55 400 £692 0.6 234 14.1
5 F = 30 oz-in AVC: 29.3 18.1
b 50 200 0440 5.1 17. 56
6 60 300 0432 952 187 56
6 70 300 0432 1203 56 56
6 F=230z2in AVG: 13.3 55

where F = compensation for joint coulomb friction.

Table 4-1: Results - Transient Response Test
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The computations for this test can be performed in the s-plane since the sampling rate is 15
times the maximum joint bandwidth. The transfer function for this configuration is
repeated below from Section 1V-B-1.

Hs) = 998 o Rk, (#-5)
2
Bs) Js“eBse kp
i kw 2 (4-16)
(% + 2w s+ w %)
where
w 2. ko) (4-7)
dw, = B/) ) - (4-8)
Then
H(jw) = k. (4-17)
L2 (iw ) + (/w12
The mégniwde of the response is given by
[H(W) | = : (4-18)

(01w 2R o ww 212

The value of | H(jw) | peaks at the resonant frequency of the joint. The resonant frequency
can be computed by taking the derivative of equation (4-18) and equating it to zero. The
resonant frequency is then given by

2.,1/2
W o= w [1-2°) (4-19)

Since the proportional gain for this test was selected 5o that the system’s response would be
highly underdamped, { is very low and

w. = wo (4-20)

The inertia of a joint can be determined from the joint’s transient response using equation
(4-7). :
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- S .
J o ke x ko,

($-21)

The magnitude of the response at W = W_<an be founa by substituting equation (4-19) into
equation (4-18).

M= u2t(1-%)12) (4-22)
Thus
¢ o= 05-(1-um )R )12 (4-23)

The viscous damping can then be determined from equation (4-8).

B - 2w (4-24)

A detailed derivation of equations (4-16) through (4-19) can be obtained from reference
(OGl. The experimentally determined values of inertia and viscous damping have been
tabulated in Table 4-2.

Joint |Sine Input kp Y Bp B J
(deg P-P} | (sec) (ceg P-P)|{oz-in-sec) (oz-in-sec®)
l 6 7.5K | 1425 159 272 286
2 6 50K 05610 i5.1 a88 519
8 I 10 1.350 21.8 0.28 0.46
4 10 2K | 0400 158 242 8.1
5 10 IK 0.800 16.9 237 162
6 -8 1K | 0500 188 15.2 6.3

Table 4-2: Results - Bode Plot Analysis

3.COMPARISON OF TEST RESULTS

The results of the Transient Response Test and the Bode Plot Analysis are listed in Table
4-3. For purposes of comparison, the table also shows inertias computed by the present

run-time program using equations given in reference [BE] with parameter values for the
Stanford Arm.
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The results of these tests will be used in the following chapters for compuring the positions
of the closed loop roots of the Joints. The tests have also pointed out a discrepancy between
the computed inertia and the aciual inertia of joint 6 and possibly joint I. The feedforward
compensation on joint 6 will be more effective when the constants used to compute its inertia
are updated.

Joint| METHOD B J
{oz-in-sec) (oz~in-sec2)

I TR ig2 354
1 BP 272 386
i BE * 228
2 TR 669 503
2 BP 958 519
2 BE . 457
K TR 0.24 0.55
3 BP 028 046
3 BE . 048
§ TR 1856 9.3

4 BP 242 8.1

4 BE . 104
5 TR 263 8.1
5 BpP 237 . 162
5 BE . 12.1
6 TR 13.3 56

6 BP 152 6.3
6 BE . (.89

where
TR = Transient Response Test

BP = Bode Plot Analysis
BE = Run-time inertias calculated using equations from reference [BE]

Table 4-3: Comparison of Test Results
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V. STABILITY ANALYSIS

A. Root Locus Analysis

A roct locus analysis can be used to indicate the stability of the arm as a function of its
feedback gains, inertia, or sampling rate. In the analysis that follows, the arm has been
analyzed in the z-plane where the stability of the arm decreases as its closed locp poles move
away from the origin of the 2-plane toward the unit circle. When the roots move outside of
the unit circle, the arm becomes unstable.

The closed loop transfer function for the arm control system given in equation (2-14) is
repeated below.

H(z) « 8(1)-Eg[bzz‘bzl{z‘q«d!zgodgzodgl (2-14)
Sc{z) {'I‘r.)?{z?’wi :z*czz'cgl
where

Iv.g = gain constant = kgi’kg’z

2 2
kgInT IRI‘RPJ]‘J [vaoi}
kg2-332
by =TB+JB-1)
by = TBB « JB- 1)
c,.{bltki49}}-)3{3{2.5)»};‘,1(5-z)]}iagz
c2-{JB{Bo2B§v2kv1{ﬁ-l)}-bzikz.*itpﬂ-kpjb.! Mk
csu{kp_]bz- JBIBB -k JB-D)] )fkg2
d;-{-J-EkaerIQkVT¢31]}ikgi
dz-{f“[;‘vmalmg}

dg = (-2 Vi

g2

The parameter values and the present feedback gains for each of the Joints are listed 1n
Table 5.1. The values given for viscous damping and inertia are the averages of the
experimental measurements listed in Table 4-3.

Using these parameter values, the positions of the closed loop poles of each of the joints
have been determined. The positions of the closed loop poles for joint 1 are plouted in
Figure 5-1A. The far right side of Figure 5-1A has been expanded in Figure 5-1B. In the
interest of brevity, this report presents graphical results only for joint 1. Readers interested
in seeing the graphical resulis for the other joints are referred to my thesis.[RO)
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Joint J B K k K

P ¥ H
(oz-in-secz) (oz-in-sec)  |[{oz-in} |{1/sec) (022-zn2-sec2) .
l 385 187 15E5 50 " BOES
< 511 829 30ES 70 1.0 E6
3 0.51 0.26 200 30 4.0
4 8.7 214 7000 30 30E3
5 172 26.5 2000 | 40 1.0 E3
6 6.0 14.3 1000 100 50.0

where for joint 3 the units are | = -oz~sec2!in and B = oz-sec/in.

Table 5-1: Arm Parameter Values

B. Inertia Effects

The dynamic response of a joint is affected by its inertia and the inertia of any load picked
up by the arm. To illustrate the effects of inertia on the arm's closed loop poles, the joint |
pole locations have been plotted in Figure 52 for inertias of 1, 2, 4, 8, and 16 times the
nominal joint inertia listed in Table 5-1. In this analysis the feedback gains were held fixed
at the values shown in Table 5.1, and it was assumed that the inertia terms in the motor
torque equation were updated to include the additional inertia. Similar graphs are presented
in my thesis {rgferencz {ROJ) for the remaining 5 joints. These graphs show that the 2-plane
pole locations are shifted by inertia variations, but all joints remain stable for inertia
variations of at least a factor of 16 times the nominal inertia.

The inertia of joints I and 2 can vary by & factor of two, depending upon the configuration
of the arm. The effect of this variation on the closed loop poles of joint 1 is roughly equal to
the distance between points «} and «2 on Figure 5-2.

In reference [BE], Bejczy shows that the act of picking up a 4 Ib cube approximately
doubles the inertia of each of the joints. Thus, the closed loop poies of the joint, when the
arm is holding the cube, are shown as the «2 points in Figure 5-2.

In Section VI-A, a modification to the present motor torque equation will be discussed that
will significantly reduce the effects of inertia demonstrated above.
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Figure 5-1A: Joint Root Loci
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Figure 5-1B: Joint Root Loci - Expanded Scale
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C. Sampling Rate Sensitivity

The dynamic response of the arm control system is a strong function of the system’s sampling
rate. Figure 5-3 shows the movement of the closed loop poles of joint 1 as the sampling rate
is reduced from 100 hz to 10 hz. All feedback gains were held fixed at the values specified
in Table 5-1. Similar root locus plots for the other joints indicated that all of the joints
become unstable before the sampling rate reaches 10 hz

When the sampling rate sensitivity of the joints was verified by running the joints at
- reduced sampling rates, it was found that that the actual joint responses agreed with the root
locus plots, except for joint 6. The root locus plots indicated joint 6 would become unstable
at 50 hz, yet actual tests on the joint showed that it did not become unstable until the
sampling rate fell to between 5 and 10 hz. The anomaly was traced to the error in the
. computed inertia noted earlier in Table 4-3. The derivative feedback gain in the motor

torque equation is multiplied by inertia to recuce the sensitivity of the control system to

2

inertia. The inertia computed for joint & was shown in Table 4-3 to be 0.89 oz-in-sec” while

actual measurements showed the inertia to be 5.0 oz-in-sec2. Thus, the actual gain of the
derivative feedback term was 6.5 times smaller than expected. The root loci for joint & were
recomputed using the reducec value of derivative feedback. The new plot showed that the
joint will go unstable at 7.5 hi., in good agreement with the experimental findings.

On future arm systems, it wouild be interesting to investigate the feasibility of changing the
sampling rate dynamically, so that the sampiing rate would be higher during periods of
acceleration and deceleration It would then be desirable to make the control system as
insensitive as possible to variations in the sampling rate. A suggested modification for
reducing the present sensitivity to sampling rate variations will be presented in Section VI-B.
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V1. RECOMMENDATIONS

A. Reduction of Inertia Effects

In Section V-B, it was shown that the locations of the arm’s closed loop poles are affected by
changes in inertia. The effect of Joint inertia variations can be significantly reduced by
rearranging the inertia terms in the joint motor torque equation so that each of the feedback
gains 1s multiplied by the inertia. The feedback terms in the present motor torque equation
are given by

T{k)fb' -k, {k Iﬁ(k} 6.k . ko JG) [w (k) - w (k)]

. k EIB (-8} (6-1)
jn

If the inertia terms are rearranged to give

Tk = - & Jm{; [8,K)-80K)) « k, [w (%) -w k)]

.kEIBQ) 8.0 1} (6-2)
3-

then the joint transfer function becomes

) 23
H@) = 8. () « keky [b12-by 11 sz, 1°edyzed,] (6-3)

| Sc(z} {Tz)zizs’-wcl 22»«:2:.:3]

where

kg = gain constant = kgln;g?

2
kgi.-{ [kpv}tijik?'rtl
n2
_kgz-B
bluTB‘J(ﬁ-l)
by = TBA « J(B - 1)
-{b]jik +k;J-BIB(2. ﬂ)»k}{ﬂ I}]}!k
-13{3»283‘2;; JE-DI. bgj[kpdl LJbI}ik
-{kp_]b -BIBB+k JB- z)‘}fk
dy={- Ekp'r?wkr * 31 )k
do = {k,T > sm
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The root locus plot for the modified motor torque equation for joint 1 is plotted in Figure
6-1 using crosses to mark the root locations. The original inertia sensitivity from Figure 5.2
is plotted for purposes of comparison, using circles. It can be seen that the root variations
from the modified motor torque equation are concentrated within a small area, while the
variations from the original motor torgue equation cover the entire plot.

B. Reduction of Sampling Rate Sensitivity

The sensitivity of the present arm control system to variations in sampling rate was
demonstrated in Section V-C. It was shown that, when the feedback gains are held fixed, all
of the joints become unstable between 5 and 35 hz.

* Ideally, we would like to keep the closed loop poles in stationary positions as the sampling
‘rate is varied. Looking at the z-plane poles can be misleading when the sampling rate is
varied, however, because the same I-plane poles give different responses at different
sampling rates. The effect of sampling rate variations on the arm’s dynamic response is best
illustrated by using a transformation to map the z-plane poles to the s-plane.

Keeping the s-plane poles in stationary positions as the sampling rate is varied minimizes
the effect of tfampling rate on the arm's speed of response. To determine how the feedback
gains would have to be changed to keep the s-plane poles stationary in the presence of
sampling rate variations, a transformation was used to determine how the z-plane
characteristic equation would have to vary to keep the s-plane poles constant. The sampling
rate was then varied and the gains required to keep the s-plane poles stationary were
computed using equation (2-15). It was found that the required proportional and derivauve
feedback gains doubled as the sampling rate was doubled. The integral feedback gains
varied only slightly as the sampling rate was varied. By modifying the motor torque
equation so that the proportional and derivative feedback terms are divided by the sampling
period, the movement of the s-plane poles is significantly reduced. Thus, the fe:.dbacl.
portion of the motor torque equation given in equation (6-2) should be modified to

Tk, = -k J(k){k (B()-B.()IT « &k, [wk)-w &) IT

.k, 2{6(3) 8.1} (6-4)
j-

to become less dependent on sampling rate and inertia.
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With the recommended motor torque equation (6-4), the final joint transfer function becomes

H(z) = 83(2) - k‘:kﬁtbiz-bi,}[z?'wdI 12~d22+63] (6-5)

Bc{z) (Tz}gizg»cE 22ec22oc3}

« where

| kg = gain constant = kgi’kgz '

kg;-kPT»kiTﬁok?a!
1:».3,2._32
by =TB+JB-1)
by = TBB « J(B - 1)
-{b,J{k *kp/T1-B LB« B) -k, JB - NIT Jikg
c2v{BEB~2Bﬂ + 2K, JOB - DIT 3-bo) [k, /T 1- kjblT}!k
.{k_]b2ﬂ' BIBB+k JIB- T Ik
d ={- {kp'roza + 3]k 1
az-{kv.sykg;
dg = -llky

g2

The effect of sampling rate variations on the new motor torque equation described above 1s
illustrated in Figure 6-2 where the closed loop poles are plotted in the 2-plane. By comparing
Figures 5.3 and 6-2, it can be seen that the sampling ratcs at which the poles cross the unit
circle and cause the joints to become unstable are lower in every case for the modified motor
torque equation.

Preceding page blank



[VIL.46]

. 50-01

{0 2 3 40 860800 100

~¥.5E-81

.15 2.5 .75 1
RODT =2

.5

q IB RODY =1

&.5 _‘ ZB
0 jmws0 @ % |
” y —irn—— ‘
a ]
> ; ‘ /
14 s
= /
E 1 i 13 i i 1 1 i l 1 1 i ¥
& :
T
+ 2

38 4@ 38 6076380 100

_ 20
18

1 I LA B | T F 8 ' E I | LI I i1 LI § I ¥ i ] i ‘

2.% 2.% .7 4.9 ®.3 H

ROCGT =3 |

REAL RXIS

Figure 6-2: Reduced Sampling Rate Sensitivity - Joint 8] Root Loci



duced from &
Reprol! Hlable_copY VIL47)

The modifications to the motor torque equation could be carried one step farther by
including equation (3-15) for computing the feedback gains in the motor torque equation.
The resulting equation would consume a great deal of computation time on the computer,
but theoretically, the s-plane poles could be made perfectly stationary in the presence of
sampling rate variations. Thus, the speed of response of the arm could be held fixed
regardiess of the sampling rate. This sounds somewhat idealistic, and 1t is. Whenever the
sampling rate is reduced, the arm perfomance is degraded in several ways.

1. The arm's response time increases (even when the s-plane poles are held stationary).
2. The arm's sensitivity to disturbances (such as those caused by friction) increases.

8. The arm's sensitivity to parameter variations (such as those caused by errors in the
estimation of inertia) increases.

4. The roughness of the arm motions increases because the steps begin to appear in
the command signal from the digital to analog converter.

The above factors 3re discussed in detail in refcrence [KAJ Before the effects of sampling
rate on the arm's response can be fully understood, the relative importance of each of the
above factors must be determined.

The effect of the sampling rate on the response time of the joints 13 illustrated in Figure 6-2
for joint 1. For the motion shown in Figure 6-3, joint | was commanded to move 90 degrees
in one second. It can be seen that the response Lime increases as the sampling rate s
decreased, although the response time coes not increase significantly untl the sampling rate
is reduced to 20 hz.

The sensitivity of the joint to disturbances is shown in Figure 6-4 where joint 1 was again
commanded to move 90 degrees in one second. To simulate a disturbance, the coulomb
friction compensation was removed from the motor torque equation. it ¢an be seen that the
disturbance creates an additional error of almost 0.9 degrees in the 20 hz plots, but the error
for the 62.5 hz plots never exceeds 0.2 degrees.

The joint's sensitivity to parameter variations was simulated by alering the computed
inertia. The resulting error 1s plotted in Figure ©-5. It can be seen that the additional error
generated by varying the inertia 1s worse for the 20 hz sampling rate than for the 62.5 hz
rate.

The roughness due to the steps in the digital 10 analog converter signal is not an important
factor. At reasonable sampling rates above 20 hz, the roughness cannot be seen in the
position plots in Figure 6-2.



[VII.48)

CDEGH

FPOSITION

75

s

25

Tite GHLLISED
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In Figure 6-6, the error appearing in joint | for a one second, 90 degree motion is plotted as
a function of the sampling rate. Here the feedtack gains have been adjusted so that the
s-plane poles remain fixed when the sampling rate is changed. It can be seen that the
additional error created by reducing the sampling rate is almost insignificant at 40 hz. At
62.5 hz the maximum error in the middle of the motion is 1.5 degrees, while at 40 hz, the
maximum error is only 2.0 degrees.

The reot mean square (RMS) error defined by equation (6-6) has been calculated for the
motions described above and plotted in Figure 6-7A. Surprisingly, the rms error seems to
have no correlation with the inertia of the joints. In Figure 6-7B, the plot of rms error has
been normalized by subtracting the 62.5 hz value from all of the rms errors and then
dividing by the 10 hz value. The scale of the normalized rms error has been expanded in
Figure 6.7C. The normalized rms error gives a measure of the relative sensitivity of the
joints to sampling rate. It can be seen that joint 2 has the least percentage increase in rms
error when the sampling rate is reduced to 40 hz. Joint 6 has the largest increase.

n
_ 2.
E. = [2} b (6-6)
j=

The final recommendation of the sampling rates for each of the joints is an engineering
judgement based on the accuracy required in the middle segments of a2 motions and on the
amount of processing time available for control functions. The best performance will always
be obtained at high sampling rates. When operating conditions limit the arm sampling rate,
the joints should be sampled at rates which are based on the relative sensitivity of the joints.
Far the Stanford Arm, I recommend that the available sampling time be distributed as
shown in Table 6-1. This table also gives the recommended minimum sampling rate for each
joint. When the joints are operated below these sampling rates, the increased error and
roughness will soon become noticeable to the eye. |

JOINT | % OF SAMPLING TIME | MINIMUM SAMPLING RATE
{(hz)

I 17.5 47
2 14.9 40
3 17.8 48
4 152 41
5 171 46
6 175 : 47

Table 6-1: Sampling Rate Recommendations
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VII. CONCLUSIONS

The discrete z transform transfer function was computed for the joints of the Stanford robot
arm using both a classical model and a state space model. Several measurement techniques
were then devised for measuring and tabulating the parameters of the transfer function for
each joint.

The sensitivity of the present control system to variations in inertia and sampling rate was
demonstrated and recommendations were made to reduce these sensitivities. The suggestion
was made that the feedback gains should be ad justed to maintain the same s-plane pole
locations whenever the sampling rate is changed.

It was shown that the sampling rate of the joints can be decreased at the expense of reduced
speed of response, increased sensitivity to disturbances and to parameter variations, and
increased roughness due to the larger discrete steps in the digital to analog converter output
signal. It was noted that the additional roughness and reduced response speed were not
significant at reasonable sampling frequencies. The increased sensitivity to disturbances and
to parameter variations was significant anc was the limiting factor governing the minimum
effective sampling rate. Plots were made showiag the error in each of the joints as a function
of sampling rate. From these plots, recommendations were made concerning the relative
sensitivity of each of the joints to sampling rate and the minimum effective sampling rate of
each joint.
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AN INTERACTIVE SESSION USING POINTY

POINTY is a program that helps to generate an affixment structure of frames as described
in the AL manual [A] Memo-243, AL, A Programming System for Automation, by Raphael
Finkel, Russell Taylor, Robert Bolles, Richard Paul and Jerome Feldman, November 19741
The user is relieved of two burdens:

(1y The tedium of measuring the locations of workspace features in three
dimensions with a ruler and protractor by simply pointing to those
locations with the manipulator.

(2) The mental gymnastics involved in determining the frames and transes
from the physical measurements by using POINTY as a sort of desk
calculator.

POINTY was designed by Russell Taylor and David Grossman and is described in Al
Memo-274, Interactive Generation of Object Models with a Manipulator, December 1975, and
has been implemented on both the Yellow and Blue Arms at Stanford.

v

E satt
=

At this stage POINTY is used to generate affixment structures of the world model used in
AL programs. Since AL has been implemented on the Blue Arm, the following directions
are for use of POINTY on the Biue Arm. (The Yellow Arm runs on the PDP-10 under

-
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WAVE) In the explanations, bold type (eg. R 11TTY) represents characters typed by the
user, while italicized type (e.g. CORE) represent response by the system.

After logging in at a 11l or a DD terminal, the first thing to do is to ioad the PDP-11 with
the servo program to read joint angles, etc, using the following sequence of commands:

R 1ITTY <CR>

This loads IITTY which is a program that loads other programs into the PDP-11. 1ITTY
when loaded responds with an asterisk for further instructions.

*+ZERO CORE [CONFIRM J<CR>
*GET SAV FILE - DIAG[HALHECR>
#+START AT (D FOR DDT) - D<CR>

On the VTO05 (the DIGITAL terminal with the tinted glass in front of the screen) type
W <ALT> G
You should see continuous scanning of the VT05 screen as follows:

JT1 JT2 JT3 JT4 JTS5 JT6 HAND
17999 -89.86 1399 8982 8986 08 199
26 61 965 8§27 241 .35 .59

X 4 Z 0 A T
4337 5687 1089 8991 8964 00

JT 1 through 6 except $ represent joint angles in degrees. JT 3 gives the reading of the
boom extension in inches; the hand opening is given in inches. The second row of numbers
represent the A/D readings. X Y Z O A T represent the x5,z coordinates and the
orientation of the hand.

If at any time you accidentally hit one of the other keys of the VT05 and scanning stops, it
can be started again by the W <ALT> G sequence.

If the VTO5 does not respond as described, do the following at the PDP-11 console:

Press HALT

Set Switch Register to octal 0

Press LOAD ADD

Set Switch Register to octal 1

Press DEP

Press RUN

Go back to VTO5 and do the W<alt>G sequence again.
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* When the VTO05 is running along happily, IITTY must be killed by hitting the CALL key
on the terminal. Then type

.RU POINTY[HAL HE]
System will respond with (in the following italics represent response of the system)

BAIL is your command scanner.

BAIL ver. 6-Jun-76 using POINTY .BAIfHALHE}

End of BAIL initialization.

«]207 OUTSTR("BAIL is your command scanner.”);
;BAIL;

I:

POINTY is now ready to accept commands through BAIL. Release all the brakes of the
arm and move the hand to the reference point {called fiducial point). Grab the fiducial point
between the fingers, then reset the brakes. The hand co-ordinates will be shown on the
Y TO5. We are ready to give the first command to POINTY
DEFFID;<CR>

Note that the semi-colon must be typed in. This instruction will define the position of the
fiducial point in world coordinates. Note ihat the co-ordinates of ARM and FIDUCIAL are
the same on the table. The last three co-ordinates of the transform represent the location of
the hand co-ordinates while the first three represent the orientation information in degrees
(O AT X Y Z). Do not move the arm until the system responds with

I
* Release all the brakes again and grab the pointer in the hand, and reposition the hand so
that the tip of the pointer is now pointing to the fiducial point.

ATFID;<CR>

This defines the relationship between the pointer and the arm in terms of the relative
position between them. Note that the TR of POINTER is no longer (0,0,0,000). The
transform of POINTER is with respect to arm. If POINTER were made independent of the
affixment structure at this point, its co-ordinates would be those of FIDUCIAL. To verify
this do the following:

1: APUSH(ABSLOC("POINTER"));<CR>
This pushes the absolute value of the pointer on the arithmetic stack "A:", which is the
default arithmetic stack at initialization. To select stack "B:" instead you could have done
instead:

1:  APUSH(ABSLOC("POINTER"),"B:");<CR>
Verify that this value is the same as that of FIDUCIAL on the display screen.

You should note that merely moving the arm does not update the value of ARM in the
affixment structure, until an explicit instruction has been given to do so. The routine that
does this is READARM; and can be called directly by you. Certain other instructions (like
POINTIT; and GRABBIT; described below) also call READARM, so in those cases you
need not call it explicitly.
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Let us now find the location of the base of the pneumatic vise, and the coordinates of the
jaws with respect to the base. First, we will arbitrarily choose the corner of the base plate
closest to the top left hand corner of the table as we face the blue arm as the origin of our
co-ordinate system translated in world co-ordinates without any rotation. Release the brakes
again and point the end of the pointer (o the base point of the base plate, making sure that
the pointer does not bend or deform in the process.
POINTIT;<CR>
The Transformation of the base plate origin appears on the A: stack. This instruction is
equivalent to the two instructions
READARM;<CR>
APUSH(ABSLOC("POINTER"));<CR>
We could have done POINTIT("A:™); or POINTIT("B"); to put the frames into the
appropriate arithmetic stack. Note that the orientation of the vectors are non-zero. Let us
edit the values so that they are zero, since we want the origin of the base plate to be merely
translated without being rotated. We know that the pointer is pointing to the origin of the
base plate. Let us define a new node called “BASE_PLATE"
i
MK_NODE("BASE_PLATE");<CR>
Push the transform of the pointer on top of the B: stack.
1: *
APUSH(ABSLOC("POINTER"),"B:");<CR>
Note that there are two arithmetic stacks A: and B: and the default stack is the last used
stack; initialization makes the A: stack the default stack initially.
£
Let us change the orientation of the value at the pointer by changing the value of the top
element of the B: stack
TEDIT;<CR>
Computer responds with
I:
APUSH(TR(156,132,-102,~.030,48. 3,20),"B:");
Edit the first three values to make them zeros
I:
APUSH(TR(0, 0, 0, -.030,48.3,.20),"B:");<CR>
The new value will appear on top of the B: stack. We want this value to be the value of
BASE_PLATE;
1:
ABSSET;<CR>
I: +
Let us now define a point on the vise, say the outer jaw of the vise. The z-axis points in the
direction opposite to the world co-ordinate z-axis, and the x-axis is 45 deg from world
coordinates.

Point the pointer to the corner of the outer jaw.
POINTIT;<CR>
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I
Now point the pointer to a point vertically below the previous point - this is equivalent to
pointing to a point on the z-axis.

- POINTIT;<CR>
I:
Point the pointer to a point on the face of the vise (2 point on the x-z plane).
POINTIT;<CR>
1

Using the x,y,z position information of the last three transforms (ignoring the O A T values)
construct a transform giving the location and orientation of the outer jaw.
CONSTRUCT;<CR>
i:
Define a new node "OUTER_JAW"
MK_NODE("OUTER_JAW");<CR>
1:
ABSSET("OUTER_JAW");<CR>
Thic sets the value of the transform on the arithmetic stack as the absolute location of
OUTER_JAW. We know that OUTER_JAW is fixed rigidly to BASE_PLATE, so let us
define it as such. Set "BASE_PLATE" on the "D:" stack (the DAD stack).
I: _
CPUSH(x("BASE_PLATE"),"D:");<CR>
I
RIGID;<CR>
Note the asterisk which marke OUTER. JAW as rigidly connected to BASE_PLATE. A "+
indicates non-rigid affixment, while a "-" indicates independent affixment. Be very careful
of rigid affixments - when one of the members of a rigid affixment is changed, the other is
affected too. In the above example, had OUTER_JAW been rigidly affixed to
BASE_PLATE before the ABSSET instruction, the execution of the latter would have
changed the value of BASE_PLATE since the affixment structure would have updated
BASE_PLATE on the basis of the relative transform set up when RIGID was invoked.
1:
Let us now define another point at the other end of the jaw; by measurement, we find that it
is 8 inches along the x axis and 0.5 inches along the z-axis of "OUTER_JAWS; First we
define the transformation we want
APUSH(TR(0, 0, 0, 8, 0,0.5),"B:");<CR>
I:
Define a new node called "OUTER_JAW?2"
MK_NODE{"OUTER_JAWZ2");<CR>

i:
GOSON("D:");<CR>
Cursor D: is now at OUTER_JAW
I:
RIGID;<CR>

" This connects OQUTER_JAW?2 RIGIDLY to OUTER_JAW. However, the transform
assumes that OUTER_JAWZ2 was at the origin. Let us set the value of the top of the B:
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stack as the relative location of OUTER_JAW2.
I:
RELSET("OUTER_JAWZ2");<CR>
We now have a lot of garbage on the Arithmetic Stacks; let us get rid of them, starting with
stack B:
I
APOP;<CR>
This pops the top element off the stack. Keep on doing this until there are no more elements
on the B: stack.
I:
Now start emptying the A:stack
APOP("A:");<CR>
After this keep on doing APOP; if at any time just after popping you decide you really
want the value, type OOPS; and the value will be retrieved; however, if instead of APOP
you say AFLUSH; you won't be able to get the value again by saying OOPS;
I:
Let us now define the center of the outer jaw and call it "OUTER_JAW_C" and join it
rigidly to BASE_PLATE. The following operations will do the trick.
MK_NODE("OUTER_JAW_C");<CR>

C APUSH(TRI0,0,0,40,25)"A<CR>
p——
¥ RELSET<CR>
" GODAD(™D:");<CR>
¥ RoD<cR

This has been done by rigidly affixing OUTER_JAW_C to OUTER_JAW and defining its
relative position and then reaffixing it rigidly to BASE_PLATE.

Having done enough editing for one day, let us save the model in an AL_FILE and in a
P_FILE. An AL_FILE will contain the model of the affixment in terms of AL declarations
for future use with AL programs. A P_FILE will contain instructions to generate a model
which POINTY understands. Note that POINTY cannot understand the affixment
structure in terms of AL declarations. It can only understand the type of instructions we
have been using here.

To clean things up before saving what we want, let us move the “D:" pointer to WORLD,
and "N:" pointer to BASE_PLATE. The final cursor of “N:" and "D:" referenced before
saving will point to the node to be saved.
I:
GODAD;<CR>
repeatedly until D: points to "WORLD". Then do
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s
GODAD("N:");<CR>
and if necessary GODAD; repeatedly until N: points to BASE_PLATE
1: .
NONRIGID;<CR>
This will affix BASE_PLATE non-rigidly to the world.
i:
AL_WRITE<CR>
Computer responds with /
OUTPUT FILE (NULL TO FORGET IT)=
Type in desired filename (say VISE.AL). Note that this filename will appear on the display.
The file remains open for future input to it unless it is explicitly closed as in the following
instruction, or until EXIT; is typed. Other nodes can be dumped in AL declaration format
by moving the "N:" or "D:" cursor to the relevant node before typing AL_WRITE;. Note that
only one AL_FILE can be open at any one time. If an AL_FILE is open the computer will
not respond with the OUTPUT FILE (NULL TO FORGET IT) = prompt. If AL
declarations are to be saved in more than one file, the files have to be opened and closed
one at a time.
I_.
AL_CLOSE;<CR>
This instruction has the effect of closing the output file. Computer responds with
CLOSING VISE.AL
&
PSAVE;<CR>
Computer responds with
OUTPUT FILE (NULLTO FORGET IT )=
Type in desired filename (let's call it VISEP). Instructions to generate the affixment
structure connected to the node pointed to by "N:" cursor will be dumped out.
I,
Let's call it a day and quit.
EXIT;<CR>
End of SAIL execution
Note that this instruction automatically closes any files that are open. If <CONTROL>C or
CALL had been hit on the keyboard, any files would be lost, so be careful if you do not
want to lose your data. Note that if N: had been pointing to WORLD before we had asked
" for PSAVE or AL_WRITE, everything would have been saved, including the ARM,
FIDUCIAL and POINTER transformations, which we are not really interested in.

The last ipstruction that we typed in gives us back to the monitor again, so let us look at the
AL_FILE and the P_FILE that we have generated. To do this we type
ETV VISEAL<CR>
The monitor will respond with
NEED TO REFORMAT VISE.AL. OKXY OR N)
to which you should respond Y.
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Examination of VISE.AL will show that it consists of FRAME Declarations and
transformations and affixment relations of OUTER_JAW, OUTER_JAW._2, and
OUTER_JAW_C and BASE_PLATE. Examination of VISEP in a similar manner will
show a set of POINTY instructions. You can use the text editor to modify or add
instructions if you like, 30 long as you make sure the arguments are in the right places.

Suppose we want to continue and start over again the next day. Go through the whole
process from the beginning up to and including RU POINTY, and wait till POINTY, after
. initializing, prompts:
i
DSKIN("VISE.P™);<CR>

POINTY will then read in the state of the world as we read it in previousiy into VISE.P;
affixment structures for BASE_PLATE with OUTER_JAW, OUTER_JAW2, and
OUTER_JAW_C will then appear. We now redefine the positions of the FIDUCIAL and
POINTER with instructions similar to what we used before.

1:

DEFFID;<CR>
I:

ATFID;<CR>
f .

The BASE_PLATE location has shifted since the last time we used it, so let's redefine the
location. (Looking at the location, we see that it has shifted 4.5 inches in the -y direction.)
Release the brakes, and point the pointer to the origin.
POINTIT;<CR>
1
Move the pointer to a point on the Z-axis and then type POINTIT, and then move the
pointer to a point in the XZ-plane and type POINTIT; again.

POINTIT;<CR>
J:
POINTIT;<CR> _
f..
Let's now construct the trans of the origin.
CONSTRUCT;<CR>
I: _

Let's now define the position of the screwdriver. It is sitting on the BASE_PLATE, and by
grabbing it, we want to be able to define its position. Release the brakes again, and move the
arm to the screwdriver and grab the screwdriver between the fingers.
GRABBIT;<CR>
i
MK_NODE("DRIVER");<CR>
’:
ABSSET("DRIVER");<CR>
An alternate way of doing the same thing without releasing the brakes is to go through the
following sequence

1: FREE<CR>
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This frees the joints and enables you to move the arm around for five seconds - after
- moving the arm around to the location you want it, you should press the BLACK
BUTTON on the control box to apply the brakes. This feature is not supported yet.

I:  HERE("DRIVER");<CR>
Let's try it but without the FREE, and call the new position DRIVER2

I:

HERE("DRIVERZ");<CR>

Note that the values of DRIVER and DRIVER2 are the same. It's uncomfortable to have
two of the same node around, so let's kill DPIVER. First we have to get to DRIVER. Note
that DRIVER is the elder brother of DRIVER2 (just below it), so we have to go there first.

I:
ELDER;<CR>
Cursor N: has now shifted to DRIVER;
I:
KILL;<CR>

This kills node DRIVER. Now we have a node DRIVER? without DRIVER, so fet us
rename DRIVER? as DRIVER, first making sure that "N:" is pointing to DRIVER2.
I
NAME_NODE("DRIVER");<CR>
We know that "DRIVER" is non-rigidly fixed to BASE PLATE, and we want to show this
on the affixment structure.
I
CPUSH(X("BASE_PLATE"),"D:");<CR>
L.
NONRIGID;<CR>
DRIVER is now the youngest son of BASE_PLATE. Suppose we now want to put "N:" at
FIDUCIAL. One way to do it would be to do a GODAD; followed by ELDER; Another
way, if we want to do this pretty often is to define 2 MACRO (call it UNCLE).
i
MDEF("UNCLE");<CR>
Computer responds with
TYPE IN MACRO BODY (<ALT > WHEN DONE):
So we type in _
GODAD; ELDER;<ALT>
~UNCLE DEFINED.
I
Let us call UNCLE to verify that it works.
MCALL("UNCLE");<CR>
"N:" jumps to FIDUCIAL, thus verifying that UNCLE works. Let us redefine the macro so
that UNCLE means to go to younger brother rather than elder brother.
I:
MDEF;<CR>
Without any arguments in MDEF, the default is the last referenced macro, namely
"UNCLE".
TYPE IN MACRO BODY (<ALT> WHEN DONE):
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GODAD; ELDER;
Change ELDER to YOUNGER and type <ALT>
GODAD; YOUNGER; <ALT>
~DEFINED.
I
Let us save this macro in a file called VISEM
MSAVE("UNCLE");<CR>
OUTPUT FILE(NULL TO FORGET IT)=
VISE.M<CR>
SAVING UNCLE TOVISE M
Note that MSAVE uses the current P_FILE if one is open.

I:
PSAVE;<CR>
This saves BASE PLATE on VISEM to0;
i:

AL_WRITE;<CR>
To save the affixment structure in High level Al code.
OUTPUT FILE(NULL TO FORGET IT)=
VISE.AL3<CR>

EXIT;<CR>
End of SAIL execution
End of session. The two files that are open will be automatically closed. On our next session
DSKIN ("VISE.M") will define both UNCLE and BASE PLATE.




[VIILi)

POINTY COMMAND SUMMARY

INTRODUCTORY INFORMATION

There are three arithmetic stacks, two of them being used for arithmetic operations, and the
third for storing things that are popped off the first two in case at some future time you
decide that you didn't really mean to pop what you did. There are seven cursor stacks and
the varlable which contains the the pointer of the ‘op element begins with the prefix CUR.
We will mostly be concerned with the N stack and the D stack - the N stack acts as a general
working register while the D stack is used together with the N in making affixments.

Any of the procedures after the DECLARATIONS section may be called: by typing out the
procedure name with the relevant parameters, and a semi-colon followed by a carriage
return. The type of procedure is given as a matter of record for the advanced programmer.

The following sections of the command summary are arranged in the following order:

DESCRIPTION OF TERMS USED IN ARGUMENTS OF PROCEDURES
DECLARATIONS

NODE MANIPULATION

AFFIXMENT

MACRO DEFINITION AND MANIPULATION

ARITHMETIC

ARITHMETIC STACK OPERATIONS

CONNECTION OF AFFIXMENT STRUCTURE TO ARITHMETIC STACKS
ARM READING

ARM MOVEMENT

FILE INPUT OUTPUT

SPECIAL PARAMETERS

EXIT

DESCRIPTION OF TERMS USED IN ARGUMENTS OF PROCEDURES

()

The term in the parentheses, usually called NULL below, contains the default argument.

STRING STKID(NULL)
This is the name of the arithmetic stack used, and STKID « "A:" or "B, If no argument is
given, the default stack is the last referenced stack. Initialization makes "A:" the default stack.

STRING CID(NULL)
This is the name of the cursor stack used, and CID« NSDSPERS” CMESTS, or K IF
no argument is given, the default stack is the last referenced stack. Don't forget the colon ™"
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in both STKID and CID.

STRING NDSPC(NULL) or STRING NDSPC("N:")

" Here the print name of the node or frame must be given in quotation marks, eg.,
"VISE_JAW™. If no argument is given, the default string is taken from the N stack, except
in the case of procedure A

RPTR(NODE) VAL
This could be a procedure which generates a pointer to a node, or a pointer to a desired
node. eg. CTOP, A("NODE") or CURNODE.

OPND
This is a type of data structure and members of the arithmetic stack are of this nature.
XFELT, VECTOR, and SCALAR are all OPNDs.

Each member of the affixment structure is called a node, and its print name is the name we
give the node. The elements of cursor stacks are nodes. The cursor top elements are also
contained in the variables defined with the colon, eg., "N:". The identifiers beginning with
CUR are pointers to the top elements of cursor stacks. The actual names of the stacks in
POINTY begin with §, eg. the A stack is called $ASTACK, and the N stack is called
$CURNODE, but when referenced by the user "N:" is considered to be the name of the
stack.

Suppose we have a node called VISE_JAW which is the top element of the N stack, and its
absolute location is on the top of the A stack. Then

The print name of the node is "VISE_JAW",

"N = "VISE_JAW"

CURNODE = A("N:") w X("VISE_JAW")

ABSLOC('N:") s ATOP("A:")
where = indicates that both sides of the equation have the same value. Thus,
CPUSH(CURNODE), CPUSH(A("N:") and CPUSH(\("VISE_JAW")) will all have the same
effect.

DECLARATIONS

This section gives a list of declarations made in POINTY and can be skipped for a first
reading without much loss of understanding.

RCLASS NODE(STRING PNAME;RANY DAD,SON,EBRO,YBRO;
INTEGER HOWLINKED; REAL ARRAY XF);

This is the definition of a record called NODE, showing the fields associated in the record,
including the name of the node, information it has on any ancestor or son or elder or
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younger brother, how it is linked, and an array giving the transformation.

These are the cursor stack declarations:

DCLSTK(CURNODE,NODE,4,"N:");

DCLSTK(CURDAD ,NODE,4,"D:");

DCLSTK(CURPATH,NODE,4,"P:");

DCLSTK(CURREF ,NODE,4,"R:");

DCLSTK(CURMOVE,NODE,4,"M:");
DCLSTK(CURTREE,NODE 4,"T:");

DCLSTK(CURKILL,NODE,4,"K:");

These are the arithmetic stack declarations:

DCLSTK(ASTACK,OPND,100,"A:");
DCLSTK(BSTACK,0PND,100,"B:™);
DCLSTK(OSTACK,OPND,100,"0:");

These are the stack indicator declarations:

RPTR(STACK) LASTCURSOR;
RPTR(STACK) LASTARITH;
RPTR(STACK) LASTSTACK;

These are the definitions of types:

DEFINE CURSORS "[T"

general working register;

where subparts are to be affixed;
current name recognition subtree;
current reference frame for motion;
current motion frame;

current base node for display of tree;
magical kill stack;

operand stack;
operand stack;
“oops” stack;

last cursor operated on;
last arithmetic stack operated on;
last stack operated on;

=[8CURNODE,SCURDAD,SCURPATH,8CURREF,
SCURMOVE,SCURKILL,SCURTREE},
DEFINE OPND "[]" = [XFELT,VECTOR,SCALAR};
DEFINE ARITHS "[]" = [SASTACK,8BSTACK,80STACK];

NODE MANIPULATION COMMANDS

RPTR(NODE) PROCEDURE x(STRING NDSPC(NULL));
Pointer of node name stored in NDSPC. If the name is a cursor name, returns top of that
cursor stack. A null argument will give the same pointer given by the previous call of A.
- Note that the last node returned by A appears on the display.

RPTR(NODE) PROCEDURE CITH(INTEGER I(0);STRING CID(NULL));
Returns the pointer to the ith element on the appropriate cursor stack. This instruction is
useful when the element of interest is not on the top of the stack, and you do not want to
upset the stack. Thus CITH(2,"N:") refers to the element labelled 2: in the N stack.
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RPTR(NODE) PROCEDURE CPUSH(RPTR(NODE) VAL;STRING CID(NULL));
Pushes the pointer pointing to the desired node VAL into the appropriate cursor stack.

RPTR(NODE) PROCEDURE CPOP(STRING CID{NULL));
Pops the appropriate cursor stack.

RPTR(NODE) PROCEDURE CTOP(STRING CID(NULL});
Gets the top element of the appropriate cursor stack.

RPTR(NODE) PROCEDURE CROLLUP(STRING CID(NULL));
Rolls up all the elements of the appropriate cursor stack cyclically so that the top element
goes to the bottom and the rest of the elements are pushed up one place.

RPTR(NODE) PROCEDURE CROLLDOWN(STRING CID(NULL));
Rolls down all the elements of the appropriate cursor stack cyclically so that the bottom
element goes to the top and the rest of the elements are pushed down one place.

PROCEDURE CEXCH(STRING CID(NULL));

Exchange the two top elements of the appropriate cursor stack.

AFFIXMENT COMMANDS

PROCEDURE MK_NODE(STRING ID);
Defines a new node whose name is given by ID.

PROCEDURE COPY_NODE(STRING NDSPC("N:");
Produces another node (a copy) on the N stack with the name given in NDSPC.

PROCEDURE NAME_NODE(STRING 1D);
- Renames top node of N stack to the name specified in NDSPC.

PROCEDURE KILL{STRING NDSPC(™N:"));
Kills the node named by NDSPC.

PROCEDURE UNKILL;
Retrieves the last killed node. Actually, it retrieves the node on the top of the K cursor stack.

PROCEDURE RIGID;
Attaches the node pointed to by N as a son of node pointed to by D rigidly. Represented by
* sign.
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PROCEDURE NONRIGID;
Attaches the node pointed to by N: as a son of node pointed to by D: non-rigidly.
Represented by + sign.

PROCEDURE INDEPENDENT;
Attaches the node pointed to by N: as a son of node pointed to by D: independently.
Represented by - sign.

PROCEDURE MERGE;
Merges the nodes pointed to by N: and D: cursors.

PROCEDURE GOSON(STRING CID(NULL));
The cursor goes to the son of the present node pointed to.

PROCEDURE GODAD(STRING CID(NULL));
The cursor goes to the dad of the present node pointed to.

PROCEDURE ELDER(STRING CID(NULL));
Goes to the node just below (not above) the present one if the next node is at the same level
{ie. is an elder brother), otherwise goes to a dummy node and the cursor will point to
<empty>.

PROCEDURE YOUNGER(STRING CID(NULL));
Goes to the node just above (not below) the present one if there is one at the same level,
otherwise goes to a dummy node and the cursor will point to <empty>.

MACRO DEFINITION AND MANIPULATION COMMANDS

The macro facility available is a primitive one and requires that parameters be stored on a
macro parameter list.

INTEGER MPTOP; STRING ARRAY MPS[0:100};
MPTOP contains the position of the last parameter (last element) pushed into the macro
parameter list, which is one jess than the total number of parameters used since the
parameter list begins at MPS(0). The maximum stack size of the macro parameter list is
arbitrarily set to 100 at present.

PROCEDURE MDEF(STRING ID(NULL));

PROCEDURE MDEFQ(STRING 1D, BODY):
Define a macro whose name is referred to as ID if there isn't one with that name present, or
redefines the macro if it already exists - the default (in case no argument is included) is the
jast macro refererenced. The first allows the macro text to be typed in instruction by
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. instruction,the second enables the whole macro to be typed in and defined in the same line.
There are some useful macro defintions on MACROS[PNT,RHT]

PROCEDURE MCALL(STRING ID(NULL));
Expands and executes the macro referred toas ID.

PROCEDURE MPUSH(STRING PARAM);

Pushes the string PARAM on the macro parameter stack.

STRING PROCEDURES MPO,MP1,MP2 MP3;
Special procedures to return the top, 2nd, 3rd and 4th elements on the macro parameter
stack.

STRING PROCEDURE MPGET(INTEGER %
Get the Ith parameter on the macro parameter list, which is actually stored in MPSIMPTOP
= 11If I = 0 means the top of the parameter stack.

STRING PROCEDURE PROMPT(STRING S);
This procedure will output string $ as a message and will return INCHWL (ie. wait for a
string to be typed at the terminal followed by a <CR>).

RECURSIVE PROCEDURE BCALL(STRING S1¢ NULL),S2(NULL));
This procedure will output string S1 as a message and will accept a line of text S2 which it
Interprets and executes. If S2 finishes with "GO; execution will resume where it left off,
otherwise BAIL will prompt for more input. In that case, type "GO or <ALT>G to proceed.

Suppose we want to define a macro to construct the frame of a point but giving the user
helpful advice in the process. One way of doing it is as follows:
MDEF("CONSTRUCT_FRAME" ;
BCALL{"POINT AT ORIGIN" ; POINTIT;
BCALL("POINT AT Z AXIST); POINTIT;
BCALL("POINT AT X-Z PLANE"); POINT IT;
CONSTRUCT;
MK_NODE(PROMPT("NODE NAME = N
ABSSET; -
CPUSH(x(PROMPT("DAD = "),"D:");
BCALL(NULL,PROMPT("AFFIXMENT = &"NGO");
APOP;
<ALT>

An MCALL("CONSTRUCT_FRAME"): will wait for three prompts which must be replied
to by "GO or <ALT>G after telling where to point the pointer, and push the transforms
into the arithmetic stack and then generate one transformation from these frames. Then
there will be prompts for the node name, where it is to be affixed to and how it is to be
affixed, and then then the frame is popped from the arithmetic stack. The <ALT> is



[VIILI7]

prompted for by the computer to end the macro definition.

The following example in which the nodes to which two cursors point have their pointers
changed and illustrate the use of macro parameters.
MDEF("EXCHANGE_POINTERS");

CPUSH(\(MPO),MP1);

CROLLUP;

CPOP(MPO);

CPUSH(>:(MP1),MP0);

CPOP(MP1);

CROLLDOWN;

MPTOP«MPTOP-2;

<ALT>

A sample calling sequence to this macro would be as follows:
MPUSH("N:");
MPUSH("D:");
MCALL("EXCHANGE_POINTERS");

This macro call will have the effect of changing the elements pointed to by D and N with
each other. At the end of the execution, the macro parameter list will be popped.

ARITHMETIC COMMANDS

RPTR(XFELT) TR(REAL W,PH,THX,Y,Z);
Defines a trans which may be used as the first argument of APUSH. Note that XFELT is
an OPND.

RPTR(VECTOR) PROCEDURE VE(REAL X,Y,Z);
Defines a vector with components x,y,2

RPTR(SCALAR) PROCEDURE SC(REAL VAL);
Defines a new scalar and pushes it on the top of the current arithmetic stack.

REAL PROCEDURE VMAGN(RPTR(VECTOR) V);

Returns the magnitude of vector V).

RPTR(VECTOR) PROCEDURE VADD(RPTR(VECTOR) V1,V2);

Returns a new vector which is the sum of the vectors V1+V2,

RPTR(VECTOR) PROCEDURE VSUB(RPTR(VECTOR) V1, V2);
Returns a new vector which is the difference of the vectors VIi-V2.
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RPTR(VECTOR) PROCEDURE NORM(RPTR(VECTOR) V);
Returns a new vector whose components are those of V but rormalized so that the
magnitude is I.

RPTR(VECTOR) PROCEDURE VCROSS(RPTR(VECTOR) V1,V2);
Returns a new vector which is the cross-product V| x V2,

REAL PROCEDURE VDOT(RPTR(VECTOR) V1,V2);;
Returns the scalar dot product of vectors V1 and V2.

RPTR(XFELT) PROCEDURE VVVTRANS(RPTR(VECTOR) A,B,C);
This creates a trans with origin at A, z-axis through B, x-z plane through C.
CONSTRUCT makes use of this procedure by making using of the x,y and z coordinates of
the three transes on the top of the appropriate arithmetic stack, popping them, and pushing
the result on the top of the stack.

Note that no special commands for arithmetic operations on scalars have been defined, since
BAIL is able to do routine arithmetic computations. To find the value of an arithmetic .
expression, simply type the expression followed by a %" and & carriage return, and the value
will be given.

ARITHMETIC STACK OPERATIONS

RPTR(OPND) PROCEDURE AITH(INTEGER I(0);STRING STKID(NULL)Y);
This is a reference to elements in the appropriate arithmetic stack when the element is not at
the top of the stack. AITH(2,"A:") refers to the element labelled 2: in the A stack. Note that
the argument refers to the current position in the stack, and that this prodecure does not
alter the stack in any way. An example on its use as as follows:

APUSH(AITH(2,"B:"),"A:"™);

This has the effect of pushing the element labelled 2: in the B stack onto the top of the A

stack.

RPTR(OPND) PROCEDURE APUSH(RPTR(OPND) VAL;STRING STKID(NULL));
This pushes the transform given by VAL on the arithmetic stack. Be careful with the first
argument: it is the pointer to an OPND and should be a procedure that generates such a
pointer, eg. ATOP or TR{).

RPTR(OPND) PROCEDURE APOP(STRING STKID(NULL));
Pops the top element of the appropriate arthmetic stack.

RPTR(OPND) PROCEDURE AFLUSH(STRING STKID(NULL));
Like APOP except doesn’t save anything on the O stack.
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RPTR(OPND) PROCEDURE ATOP(STRING STKID(NULL));
Gers the pointer to the top element of arithmetic stack.

RPTR(OPND) PROCEDURE AROLLUP(STRING STKID(NULL)Y;
Rolis up all the elements of the appropriate arithmetic stack cyclically so that the top element
becomes the bottom element, and the other elements are all shifted one element.

RPTR(OPND) PROCEDURE AROLLDOWN(STRING STKID{NULL));
Rolls down ail the elements of the appropriate arithmetic stack cyclically so that the bottom
element becomes the top element, and the other elements are all shifted down one element.

PROCEDURE AEXCH(STRING STKID(NULL));
Exchange the top two elements of the appropriate arithmetic stack.

PROCEDURE TMUL(STRING STKID{NULL));
Multiply the top two elements of the appropriate stack and pop them, and push the answer
into the stack.

PROCEDURE TINV(STRING STKID(NULL));
Replace the top element of the appropriate stack with the inverse transform.

PROCEDURE TEDIT(STRING STKID(NULL));
Puts the top element of the appropriate stack into the line editor with the instruction te push
it back onto the stack after editing or correcting.

PROCEDURE OOPS(STRING STKID(NULL));
Gets back the value of the element we just popped from the appropriate stack.

PROCEDURE CONSTRUCT(STRING STKID{NULL));
This constructs an implicit frame from the top three frames on the last arithmetic stack
referenced. The three frames are popped off, and the new implicit frame is pushed on.

PROCEDURE VA(STRING STKID(NULL}));

PROCEDURE VS(STRING STKID(NULL));

PROCEDURE VM(STRING STKID(NULL));

PROCEDURE VC(STRING STKID(NULL));

PROCEDURE NV(STRING STKID(NULL));

PROCEDURE VD{STRING STKID(NULL));
These procedures have the same functions as VADD, VSUB, VMAGN, VCROSS, NORM,
and VDOT respectively, except that the operands are popped off the relevant arithmetic
stack, and the result then pushed into the stack. In the case where two operands are
necessary, V2 corrasponds to the top element of the stack, while v1 corresponds to the next
element.
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PROCEDURE PV(STRING STKID(NULL));
If the top element of the appropriate arithmetic stack Is a TR, then it is popped off, and the

position coordinates are ieft on the top of the stack. If the top element is not a trans, an error
message is returned.

COMMANDS TO CONNECT AFFIXMENT STRUCTURE TO ARITHMETIC STACKS

RPTR(XFELT) PROCEDURE ABSLOC(STRING NDSPC("N:"));
Absolute location of a node, the default node being the node pointed té by the "N:" cursor.
The argument must be the name of a node that has been previously defined.

RPTR(XFELT) PROCEDURE RELLOC(STRING NDSPC("N:");

Similar to ABSLOC except the relative transform of the node with respect to its parent is
returned.

PROCEDURE ABSSET(STRING NDSPC!"N:"),STKID(NULL));
Sets absolute location of the appropriate node (default is where N points) as the value on the
top of the appropriate arithmetic stack.

PROCEDURE RELSET(STRING NDSPC("N:"),STKID(NULL)):
Sets relative location of the appropriate node {(default is where N points) as the value on the
top of the appropriate arithmetic stack.

ARM READING COMMANDS

PROCEDURE READARM;
Reads the current position of the arm.

PROCEDURE ATFID;
Asserts that the pointer is at fiducial and updates the value of the arm.

PROCEDURE DEFFID;

Very first step; define fiducial with respect to world. This procedure asserts that the fiducial
is currently at the ARM frame.

PROCEDURE POINTIT(STRING STKID(NULL));

Reads position at the end of the pointer and pushes it into the appropriate arithmetic stack.
STKID is either "A:" or "B:"lower case a or b invalid.
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PROCEDURE GRABBIT(STRING STKID(NULL));
Reads position at the finger and pushes it into the appropriate arithmetic stack.

PROCEDURE HERE(STRING NAME);
Defines a new node called NAME and puts the current position of ARM into it.

ARM MOVEMENT COMMANDS

(These do not work on the Blue Arm at present.)

PROCEDURE GOARM(REAL ARRAY BXF);

This moves the arm to the 4x4 transformation given by BXF.

PROCEDURE MOVEABS(STRING STKID(NULL));
This moves the frame pointed to by CURMOVE to the frame specified in the arithmetic
stack. With no stack defined the appropriate stack is the last referenced arithmetic stack.

PROCEDURE MOVEREF(STRING STKID(NULL));
This moves the frame pointed to by CURMOVE to the frame specified in the arithmetic
stack assuming that the latter frame is with respect to a co-ordinate system pointed to by
CURREF.

PROCEDURE MOVEREL(STRING STKID(NULL));
This moves the frame pointed to by CURMOVE by a amount specified on the Arithmetic
Stack assuming that that value is'on a co-ordinate system pointed to by CURREF.

PROCEDURE FREE;

" This frees the arm for 5 seconds, during which time the user should move the arm to a
desired location and push the panic button. The absolute frame of the arm is then updated.
- If instead there is a time-out without the panic button being pushed, nothing happens.

PROCEDURE DMOVE(REAL X.Y,2);
Move the frame pointed to by CURMOVE differentially by x5,z in the X,y.z directions
respectively.

PROCEDURE DX(REAL X);
Move the frame pointed to by CURMOVE differentially in the x direction by quantity
specified. '

PROCEDURE DY(REAL Y);
Move the frame pointed to by CURMOVE differentially in the y direction by quantity
specified.
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PROCEDURE DZ(REAL 2);
Move the frame pointed to by CURMOVE differentially in the z direction by quantity
specified.

FILE INPUT/OUTPUT COMMANDS

PROCEDURE AL_WRITE;
Dumps into an AL_file in high-level Al code the affixment structure pointed to by
CURNODE. ‘

PROCEDURE AL_CLOSE;

Closes the file containing the AL declarations of the data structures,

PROCEDURE PSAVE(STRING NDSPC("N:");
Dumps out all the POINTY instructions necessary to generate the code needed to obtain the
affixment associated with the node NDSPC in case we lose everything carelessly into a P_file
= if there is no P_file open PSAVE will take the necessary steps to open one; the default
node is the node pointed to by CURNODE.

RECURSIVE PROCEDURE SAVE_NODE(RPTR(NODE) ND);
Dumps out into a P_file the affixment tree rooted at node ND. This routine is called by
PSAVE, which it is more desirable to call. RPTR(NODE) ND can be either of the form
CURNODE, CURDAD: etc or A("N:") or A("NODE").

PROCEDURE P_CLOSE;
Closes the currently open P_file.

RECURSIVE PROCEDURE DSKIN(STRING FID); _
Reads in and executes POINTY instructions from a disk file FID to generate affixment
structure(s) and set up the macros.

PROCEDURE MSAVE(STRING ID{NULL));
Save macro ID onto P_file. If one is not currently open, instructions to open one will be
given. "x” will dump all the macros. A null argument will dump the last macro referenced.

SPECIAL PARAMETERS

INTEGER UPDSUPPRESS, TISUPPRESS;
If UPDSUPPRESS>0 then do not display anything. UPDSUPPRESS is incremented by
integer TISUPPRESS at the start of a macro expansion or DSKIN and restored to the
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previous value upon exit. Thus, setting TISUPPRESS«0; will allow you to observe
successive steps in the macro expansion.

BOOLEAN SHOWXFS,SHOWLINKS;
These control the display (display if TRUE, suppress if FALSE) of the Transes and the
Link structures of nodes (the last used for debugging purposes) respectively.

REAL m;
POINTY knows the value of n to be 3.141592653.

EXIT COMMAND

PROCEDURE EXIT; _
Exits from POINTY, and closes any output files that might be open.
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INTRODUCTION

The assembly of discrete parts is a major fraction of industrial production. The role of
computers in this field has been lLimited primarily to production and inventory control,
computer aided design, and programming numerically controlied machine tools. Very little
progress has been made in applying computers to the problem of simulating assembly
processes, in spite of the fact that such simulation offers the possibility of considerable
savings over the alternative cost of building pilot production lines,

When one examines other large industrial fields one finds that computer simulation is a
much more widely used tool. There are basically two reasons, however, why this tool has not |
been extensively applied in discrete parts assembly. First, because assembly is not a scientific
discipline, experience is formulated as a set of ad Aoc principles rather than as 3

mathematical theory. Although such principles may be set forth in textbooks.m it is difficult
to embody them in computer simulations. This situation is in sharp contrast, for example, to
the way differential equations can be used to model complex chemical processes. The second
reason is that assembly environments contain an immense variety of dissimilar ob jects. This
aspect of assembly is in sharp contrast, for instance, to nuclear physics simulations where all
neutrons behave in the same way.

The only obvious unifying principle in discrete parts assembly is that in 3.dimensional space
no two ob jects may intersect. This fact suggests a formulation of the simulation problem in
terms of set theory, an approach which is being taken in research on parts description at the
University of R-ochesxer.tz'&ﬂ Set theoretic representations are good for determining if a
given point is inside a particular se:, but performance difficulties arise on problems
involving pairs of sets. For example, the question of whether or not a piston intersects a
motor block is difficult to answer because it is likely to cause a lengthy search for a point
contained in both sets. Compounding this difficulty is the fact that assembly involves
continuous motion of the discrete parts, so that it is desirable to be able to solve. set
intersection problems at every instant of time. The computational algorithms would not be
hard to formulate, but the execution times would be extremely long, even on the fastest
computers in the world. For this reason, simulation of the full assembly process is intractable,
- although simulation of special classes of assembly problems is still a practical and achievable

goal.

From among the many aspects of assembly which could conceivably be modeled, this paper
is concerned with the implications of tolerancing and imperfection. In the literature on this
subject, dimensional tolerancing has come to mean specifying the tolerances of parts in
mechanical drawings. A national standard has been established which def, ines the meanings
of tolerancing Isginbals in 1'.lra~.uir~igs{‘r’3 and textbooks have been written to explain the use of

these symbols.”™" The emphasis on drawings, however, tends to obscure the underlying
reasons for being concerned with tolerances. The issue is not 50 much what 3.000£.005 ¢m
means but rather why the designer chose to specify this tolerance in the first place.
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There are three factors which enter into specifying tolerances in drawings. First, the discrete
;pért which 1s described must ultimately be assembled into a product which is expected to
have some function, and the tolerance may be needed to provide this function. For instance,
it is highly desirable that each chamber of a Colt revolver align accurately with the barrel.
Secondly, the part may be required to have certain tolerances in order that the assembly
process itself be feasible. For example, in order to assemble an automobile engine, the holes
in the gasket must align with those in the block. Also, it is often necessary to have very
accurate parts to avoid jamming vibratory feeders. In fact, it is often necessary to design
higher precision into the assembly process than is functionally needed in the final product.
Finally, tolerances may be assigned to correspond to the capabilities of the manufacturing
method chosen. Tolerances achievable by sheet metal stamping would not be the same as
those achievable on a numerically controlled machine tool, and it would be foolish to assign
tolerances in a drawing which would give unreasonably small yields.

The product designer uses his expertise in product design, assembly, and manufacturing to
specify tolerances in the drawing which are both adequate and achievable. An excellent
textbook has been published which describes the considerations involved in this process.n}
The process is complicated because the design criteria depend on the combined tolerances,
rather than on the tolerances individually. Typicaily, the designer must trade off between
alternative ways “of selecting individual tolerances in order to achieve some resultant
tolerance with minimum cost. Unfortunately, the 3-dimensional relationships involved are
usually too tedious to allow a rigorous mathematical treatment in all but the simplest cases.
The designer therefore uses a great deal of intuition in reaching a decision. Finally he writes
down a number like 3.000.005 cm and throws away all the information which went into this
decision.

A recent paper from General Motors describes a system which enables product designers to
specify a set of individual parts tolerances and simulate the stochastic properties of
interesting resultant uﬂeranw&.[‘sJ The system is based on the Monte Carlo method, a
simulation technique which is well known and has been widely used in many other
applications. 9 The existence of the GM paper shows that 2 need exists for simulation tools
in the field of parts tolerancing. The problem of tolerancing is sufficiently hard, and the
stakes are sufficiently high, that intuition is no longer a satisfactory method for specifying
parts tolerances.

The approach taken in the GM work is to provide an interactive system in which the user
can obtain high statistics very quickly. In order to achieve execution Speed, the user must
explicitly provide all the equations which tell how the resultant tolerances depend on the
individual tolerances. The system models just the positions and orientations of a few features
of the part, rather than the entire part shape. This system is apparently proving quite useful
to GM designers.

Aside from the GM work, the only other published papers relating to modeling parts
tolerances are those from the University of Rochester, where a language called PADL for
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representing a class of discrete parts Is being ﬁ\‘:!.rc‘:iop«\acl.{g's;ﬂ The hope is that PADL
descriptions can someday be used to generate programs for numerically controlied machine
tools which can make the parts.

The topic of parts representation without regard to tolerancing has been studi :
; L [1011L,12) o [13,14]) [15,16) & 17] ed by Binford,
Agin, and Nevatia, Braid, Baumgart, Grossman, atid Lisberman

and Lavin L1819} Although none of these parts modeling schemes was designed with
tolerancing in mind, both the Baumgart and Grossman approaches offer a natural way of
adding Monte Carlo procedures to simulate tolerances. As the author of one of these papers,
my choice of which of the two Systems to use for the current work was highly biased. I chose
to use my own system solely because I am much more familiar with it.

Although the balance of this paper describes a specific implementation of Monte Carlo
tolerancing within a parts representation system, many of the issues discussed are
implementation independent. The point of this paper is not simply to give a blueprint for a
specific way of simulating tolerances but rather to show that such a system is possible, 1o
expose some of the design issues, and to give examples of ways in which the system might be
used.

The simulation method described in this Paper most closely resembles that of the GM paper,
but there are several major differcnces. Whereas the CM system computes the resultan:
tolerances of individual parts {rom tolerances specified in mechanical draw;ngs, the current
work is much more comprehensive. It allows one to simulate the propagation of tolerances al
the way from the manufacturing process right through the assembly process. Also, while the
GM work requires that the user explicitly supply formulas for the resultant tolerances as
functions of the individual tolerances, the current work provides system routines which
automatically perform these sorts of operations numerically. This provision is particularly
useful because in many situations the relevant formulas can not be derived in closed form.
On the other hand the GM System is interactive, runs at high speed, and yields high
statistics answers, while the current system runs in batch mode, executes much more slowly,
and therefore yields much poorer statistics.

The next section of this paper reviews the main features of my earlier publication on
representing parts by PL/I procedures and explains how this system can easily be applied to
the Monte Carlo simulation of parts tolerances. This method is then illustrated by four
specific examples, one of which is chosen from the field of assembly by computer controlicd
manipulators. The reason for chosing this example is that this research was carried out as
part of continuing manipulator projects at the IBM T. J. Watson Research Center and the
Stanford University Artificial Intelligence Laboratory. However, it is mportant to stress that
the simulation techniques described here are applicable not only in the domain of computer
controlled assembly, but also in the much wider domain of manufacturing and assembly as
they exist in industry today, using conventional €quipment and procedures. The paper closes
with a discussion of research areas appropriate for extension of the Monte Carlo tolerancing
method.
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MONTE CARLO METHOD

Distributions

The basic idea of any Monte Carlo calculation is to generate an ensemble of models which
simulates an ensemble of real entities. %) The statistical properties of the real entities may
then be simulated by studying the corresponding properties of the models. Such simulation is
useful when purely analytical methods cannot be found.

For the case of discrete parts manufacturing and assembly, the real entities consist of
three-dimensional ob jects at a workstation. These ob jects include Component parts and their
features, tools and fixtures, measuring instruments, and automation equipment up to the
level of complexity of transfer lines and computer contralled manipulators. For alf of these
ob jects, the primary attributes to be modeled are shape, position, and orientation.

In simulating statistical distributions of shape, position, and orientation attributes, it s
necessary to define the meaning of expressions of the form 3.000£.005 cm. One possible
definition would be a normal distribution with a mean of 3.000 ¢m and a standard deviation
of which .005 ¢m is some small integral multiple. This choice would allow dimensions to fal]
outside the specified range, albeit infrequently. Another possibility would be to have a
distribution which goes rigorously to zero outside the specified range. Inside the range, the
distribution could be uniform, or peaked at 3,000 m, or bimodally peaked at 2.995 ¢m and
3.005 em. The distribution function might also be skewed if, for example, a part has been
manufactured in a fixture which is showing signs of progressive wear.

The ANSI] dimensioning and tolerancing standards do not specify what statistical
distribution is implied by expressions of the form 3.000£.005 ¢m, 5] This omission is actually
necessary, because the shape of the distribution function depends on the manufacturing
process, so that the choice of this shape is best left to the production engineer. In the system
described in this paper, an arbitrary choice was made to restrict the class of alloweg
distributions to be either uniform or normal. This choice was made for the sake of
convenience and does not represent any inherent limitation in the method.

Part Ensembles

In most parts modeling systems the user describes each part in terms of numbers which are
entered directly into a data structure. This data structure, therefore, fepresents a particular
instance of a part rather than an ensemble of similar parts. For the Monte Carlo simulation
of tolerances, however, it is necessary that the parts modeling system provide some simple
means of representing ensembles. W_hat 15 necded, therefore, is a system in which the user
describes parts not in terms of numbers but In terms of parameters that are assigned
numerical values when a part is instantiated. The advantage of such a system for this Monte
Carlo simulation is that a random number generator may be used to assign values to these
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parameters.

The use of parameters to characterize arbitrary attributes of parts is one of the principle
features of the Procedural Geometric Modeling System (PGMS) developed earlier by this
aurhar.{iﬁ This modeling system was therefore used for the current study. The reader is
referred to the earlier publication for details concerning the way in which PGMS represents
3-dimensional objects as PL/I procedures. A brief summary of the main features of this
system are included here for the sake of completeness. Further features will be explained in
subsequent sections of this paper as the need arises.

In PGMS, a hypothetical part whose name is "widge:" and which has two attributes might
be invoked by the calling sequence

CALL SOLID(WIDGET,A,B);

The generic widget itselfl would be represented by a PL/I procedure whose entry point is
named WIDGET. This procedure would describe how the widget is hierarchlcaily
constructed out of its component subparts. These subparts might be positive SOLID's or
negative HOLE'’s. For example,

WIDGET: ENTRY (A,B);

CALL SOLID(CUBOID,AAB);
CALL HOLE(CUBOID,A,A/2,B-10),
RETURN;

A library of parts procedures already exists which starts with the primitive POINT and
includes such objects as LINE, CUBOID, CONE, WEDGE, CYLNDR, and HEMISPH.
More complicated ob jects have also been coded, up to the level of complexity of IMM, which
represents the IBM Research mechanical manipulator, and SUARM, which represents the
Stanford University arm.

In addition to parts procedures, PGMS provides routines to perform transformations in
3-dimensional space. For example, if the generic widget were translated by C units along the
Y-axis and then rotated by D degrees about the X-axis, the calling sequence would he

CALL YTRAN(C),
CALL XROT(D});
CALL SOLID(WIDCET A B);

A particular instance of a widget would be invoked by assigning values to the parameters
For example,

CALL YTRAN(12);
CALL XROT(30);
CALL SOLID(WIDGET,3.000,16.5);
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An ensemble of 500 similar widgets would be represented by the calling sequence

DO 1=1 TO 500

CALL YTRAN(I2:RAND(-0.1,+0.3));

CALL XROT(30:GAUSS(25);

CALL SOLID(WIDGET,3.000+RANDI(-.005,+.005), 16.5-RAND(-2,0 2));
END;

where the function RAND(X.Y) returns a random number uniformly distributed on the
interval from X to Y, and the function CAUSS(Z) returns a random number normally
distributed with mean 0 and standard deviation Z.

Semantics

Once an ensemble of parts has been represented, PGMS pravides a way to derive properties
from the representation. This process is referred to as attaching semantics to the
representation. The first step is to code a semantic routine which can compute a desired
property. For example, the routine TOTVOL shown below adds up the volume of ali
positive and negative CUBOID's in any ob ject.

TOTVOL: PROCEDURE (NODEX.Y.Z):
DECLARE NODE ENTRY;

IF NODE-CUBOID THEN VOLUME-VOLUMEPOLARITYsXoYZ;
RETURN;

END TOTVOL;

Next, calls to system routines BEGIN, EXEC, and END are used to attach these semantics to
the system and the part procedure of interest is executed. In the case of the ensemble of 500
widgets, one could print the volume of each widget with the following code.

DO 1«1 TO 500;

VOLUME-D; [INITIALIZE VOLUMEy/
CALL BEGIN(5000% [¢ALLOCATE STORAGEs/
CALL EXEC(TOTVOL), IPATTACH SEMANTICS/

CALL YTRAN(I2+RAND(-0.1,+0.3));

CALL XROT(30+CAUSS(2.5))

CALL SOLID(WIDGET,3.000¢RAND(-.005,+.005),16.5+R A ND(-.2,+.2));
CALL END; I"DEALLOCATE STORAGE:/
PUT SKIP DATA (VOLUME) /«PRINT WIDGET VOLUMEy/
END;

Generalizing from this example, one can easily see how to provide semantics to display
histograms of almost any desired properties of the ensemble. What is probably not ﬁiear
from this example is the fact that for more realistic parts, the hierarchy of subpart calls
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involves 0 much computation that execution is usually rather slow. For instance, when the
procedure for the Stanford arm is executed on an IBM 370/168 running the VM time
sharing system with 120 users, each instantiation takes about 6 seconds of virtual CPU time
and 1 minute of elapsed time. Deriving the properties of an ensemble of 500 Stanford arms
would therefore require about 8 hours of elapsed time. This number is prohibitively long for
casual use of the system. However, 8 hours of elapsed time in simulating a complex
mechanism would certainly not be excessive if the derived properties were to reveal a design
deficiency which would have taken months to correct had the hardware been built first.

Another fact which is not clear from the example above is that parts of typical complexity
require the allocation of several hundred thousand bytes of intermediate storage. The
Stanford arm procedure, for instance, requires nearly 300K of storage. The reason behind
this need for intermediate storage relates to the detailed implementation of PGMS, a topic
which is discussed in my prior publication and which will be omitted here.

EXAMPLES

e ——————

Rivet-Hole Brackel

The first example chosen 10 illustrate Monte Carlo tolerancing in PGMS is similar to the
rivet-hole bracket used as the example in the GM paper. A few changes were made because
the original drawing shows only a partial view of the bracket in two dimensions, while in
PGMS it is desirable to model the part completely and in three dimensions.

The modified rivet-hole bracket may be represented by the {ollowing code:

RHBRAK: ENTRY (XLY .RADI,X2Y2RAD2ANGTHICK,LENGNS ECT);
DECLARE RHBFRAM E(44) FLOAT:

CALL STORE(RHBFRAM Ek

CALL SOLID(WEDGE.TH ICK,LENG,ANG,I); [sBRACKET/

CALL XYZTRAN(XLY1,0)

CALL HOL’E{CYLNDR,THICK.RADi.NSE'CT}; [:HOLE 1%/

CALL RECALL(RHBFRAME),

CALL XYZTRAN(X2Y20)

CALL HOLE(CYLNDR.THiCK,RAD?,NSECT); JoHOLE 2f

RETURN; -

The call in the above code o the PGMS routine STORE is used to save the current
coordinate frame in the local array RHBFRAME. Subsequently, the current frame is
translated from the corner of the bracket to the position of the first hole. The current frame
is then returned to the bracket corner by the RESTORE routine, so that it may subsequently
be transiated to the position of the second hole.
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Figure I: Drawing of Rivet-Hole Bracket
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RHBRAK ()
WEDGE (1)
GLINE (LD
LINE (1,1,1)
POINT (L,1,1,1)

POINT (1,1,1,2)
GLINE (1,2)

LINE (1.2,1)
POINT (1.2,1,1)

POINT (1,2,1,2)
GLINE (1,9)

LINE (1,3,1)
POINT (1,3,1,1)
POINT (1,3,1,2)

- {a total of 8 GLIN E'S)

CYLNDR (2)
GLINE (2.,1)
LINE (2,1,1)

POINT (2,1,L,1)
POINT (2,1,1,2)

- (a total of 32NSECT CLINE'S)

CYLNDR (3)
GLINE (3,1)
LINE (3,1,1)
POINT (3,1,1,1)
POINT (3,1,1,2)

- (a total of 32NSECT GLINE'S)

Figure 2: Rivet-Hole Bracket Subpart Hierarchy
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The ten parameters of this procedure represent the seven dimensions sub ject to tolerancing,
the part thickness and length, and the number of sectors used in approximating the
cylindrical holes by polyhedra. The effect of this polyhedral approximation can oe seen in
Figure | which was generated by at _ching a standard graphics semantic routine to the
RHBRAK procedure.

The RHBRAK procedure represents a subpart hierarchy of 40.24:NSECT nodes as
indicated in Figure 2. At the top level, the RHBRAK consists of 2 sclid WEDGE and two
CYLNDR holes. The WEDGE in turn is composed of nine GLINE's (general lines), each of
which is made out of one LINE with two end POINT's. Every level in this hierarchy can be
referred to by a unique subaddress, also shown in Figure 2. For instance, the LINE along the
bottom left edge of the RHBRAK has a subaddress of (1,3,1). The importance of these
subaddresses will become clearer in the discussion which follows.

In the GM paper, the designer is concerned with the tlearance between the two holes and
the clearances between the second hole and the edges of the part. In order to study these
resultants, the following semantic routine might be used.

BRAKRES: PROCEDURE (NODEX1,YI,LRAD! X2 Y2 RAD?2):
DECLARE (RCHTEDGELEFTEDGEHOLEILHOLE?) POINTER:
DECLARE NODE ENTRY;
IF NODE=RHBRAK THEN DO;
CALL DEFINE (RGHTEDGE,1,2,1);
CALL DEFINE (LEFTEDGE,1,3,1);
CALL DEFINE (HOLEL?)
CALL DEFINE (HOLE2,3)
CLEAR1-DISTOO(HOLE[ HOLE2)-RADI-RADZ:
CLEAR2=DISTOX(HOLE2RCHTEDGE),
CLEAR3=DISTOX(HOLE2 LEFTEDGE),
END;
RETURN;
END BRAKRES;

The DEFINE routine of PGMS is used to associate a PL/I pointer variable with any
previously specified frame in the part hierarchy. The first argument in the call to DEFINE
gives the name of the pointer variable and the subsequent arguments give the subaddress ini
the part hierarchy. Encoding these subaddresses requires that the user have a manual which
summarizes the subpart hierarchy generated by each procedure in the part library and
shows drawings of the basic volume shapes. Understanding subaddresses is currently the
most tedious aspect of PGMS.

The function DISTOO invoked in this semantic routine returns the distance from Origin to
Origin (OO) of the two specified fran.es. The function DISTOX returns the distance from
Origin to X-axis (OX) of the two specified frames. In order to.have written this code it is
necessary to have known that every LINE runs along the X-axis of its frame, and that every
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CYLNDR runs along the positive Z-axis of its frame. Thus CLEARI, CLEAR?, and
CLEARS are the desired clearances. It can be seen from this example that the polyhedral
approximation has absolutely no effect on the statistical properties of these clearances,

Finally, a short program may be written to attach these semantics to the system and print the
three clearances for each of 500 rivet-hole brackets.

DO I=1 TO 500,
CALL BEGIN(50000;
CALL EXEC(BRAKRES)
CALL SOLID(RHBRAK,1.325.GAUSS(.005/3), JoX 1e/

B875+GAUSS(.005/3), [oY 12/
2.RAND(-.0075,0075), J:RADI4/
2.525«GAUSS(.005/3), foX20f
1.615.GAUSS{.005/3), [sY 23]
1.2.RAND{-.0075,0075), [sRAD2:/
67+RAND(-.25,+.25), [nANG:)
0.25, " THICK/
8.0, [:LENG«/
ik [«NSECTv/

CALL END; :

PUT SKIP DATA (CLEARICLEAR2CLEARS);

END;

Because execution time varies roughly in proportion tc the total number of nodes in the
subpart hierarchy, NSECT has been set to | here. This simulation of 500 rivet-hole brackets
takes about 3 minutes of CPU time on an 1BM 370/168.

For this example, using PGMS to model tolerances is somewhat more difficult than using
the GM system, largely because the tedium of understanding subaddresses outweighs that of
writing down a few trigonometric formulas. As the examples become more complicated,
however, the subaddress problem remains about consiant, while the trigonometry problems
become much worse. The overall balance therefore swings in favor of PGMS.

Box Manufacture

This example of Monte Carlo tolerancing is concerned with a manufacturing process in
which 4 holes are drilled into a rectangular box. The holes are made by a gang drill with
drill bits held in four separate chucks, while the box is held in a fixture attached to the drill
bed. The box is 12 cm long, 8 ¢cm wide, and 4 ¢m high, and the four corner holes have
radius 3 mm and depth 2.5 ¢cm and are nominally | cm from each edge.

Tolerance errors in the positions of the holes are generated because the fixture may be
translated or rotated slightly in the plane of the drill bed, and each of the four drill chucks
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may be radially displaced shghtly from its nominal position. To make the example somewhat
more interesting, it will be assumed that the rotational error in positioning the fixture is
about an axis which runs through a corner rather than the center of the box.

Each of the drill bits may be modeled as a cylinder which has been radially displaced by
RADERR in a random direction from its desired position.

DRILBIT: ENTRY (RADERR LENG,RADNSECT);
CALL ZROT(RAND(0,360));

CALL XTRAN(RADERR),

CALL SOLID(CYLNDR,LENG,RADNSECT):
RETURN;

An ensemblz of boxes manufactured by this process may then be represented as a cuboid
with holes cut out by the four drill bits. o

RECTBOX: ENTRY (X,Y,ZLENG,RADNSECT,
XERR,YERRANGERR,RADERR);

CALL SOLID(CUBOID,X.Y.Z); sBLOCK ¢/

CALL ZROT(ANGERR);

CALL XYZTRAN(XERR,YERR,Z-LENG),

CALL XYZTRAN(I,1,0);

CALL HOLE(DRILBIT,RADERR LENGRADNSECT);, /<HOLE 1¢/

CALL XTRAN(X-2); '

CALL HOLE(DRILBITRADERR,LENGRADNSECT), [HOLE 2/

CALL YTRAN(Y-2);

CALL HOLE(DRILBITRADERR,LENG,RADNSECT), [+HOLE 3/

CALL XTRAN(2-X);

CALL HOLE(DRILBIT RADERR LENGRADNSECT);, /cHOLE 4o/

RETURN;

The next step is to code a semantic routine which can derive the coordinates of the four
holes with respect to the coordinate system of the box. )

HOLFIND: PROCEDURE (NODE);

DECLARE (HOLEIHOLE2HOLE3HOLE4) POINTER:  ~

DECLARE NODE ENTRY;

IF NODE=-RECTBOX THEN DO;
CALL DEFINE (HOLEL2); CALL ORIGIN (HOLEI,POS!);
CALL DEFINE (HOLE23), CALL ORIGIN (HOLE2,POSY),
CALL DEFINE (HOLE34);, CALL ORIGIN (HOLE3,POS3),
CALL DEFINE (HOLE4,5); CALL ORIGIN (HOLE4,POS4),
END;

RETURN;

END HOLFIND;
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Figure 3: Double-Exposure Drawing of Rectangular Box
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The PGMS routine ORIGIN returns the origin vector associated with the frame of the
ob ject pointed to by the first argument. Finally, the locations of each of the four holes in an
ensemble of 500 boxes may be printed by attaching these semantics and executing the
RECTBOX.

DECLARE (POSI(3),POS2(3),POS3(3),POS4(3)) FLOAT;
DO l=1 TO 500;

CALL BEGIN(80000);

CALL EXEC(HOLFIND);

CALL SOLID(RECTBOX,1284, 1oX.Y Zof
2.503.1, [t\LENG,RADNSECT s/
GCAUSS(0.1/3), [¢XERRu/
GAUSS(0.1/3), [+YERR3/
RAND({-25,2.5), [sANGERR«/
GAUSS(0.05/3)); ["RADERR«/

CALL END;

PUT SKIP DATA (POS1,POS2,POS3,POSY);

END;

Execution time is about 8 minutes on an IBM 370/168. A "double-exposure” drawing
showing overlapping views of two boxes in the ensemble appears in Figure 3. This drawing
was generated by attaching a standard graphics semantic routine and calling the
RECTBOX procedure twice. The fact that graphics are produced so easily within PGMS is
of considerable help in verifying that the simulation is working properly.

One aspect of this simulation which is perhaps unrealistic is that the fixture is perturbed for
each box in the ensemble. In an actuai manufacturing operation, on the other hand, the
fixture would be locked in place. The statistical distributions obtained in the actual
manufacturing operation would therefore be narrower than those derived from this
simulation.

What has been simulated here is an ensemble of boxes produced by independent setups as
opposed to an ensemble produced by a fixed setup. In most cases of batch production, this
simulation would bz good enough for all practical purposes. One can Imagine situations,
however, in which the independent setup assumption is not appropriate. For instance, if
pairs of consecutive boxes were to be attached to one another, the fact that both were
produced on the same setup might be important. For this case, the code would have to be
changed to simulate pairs of boxes instead of single boxes.

Actually, the box would probably be manufactured by trying a succession of setups until one
was found which yielded satisfactory boxes, and this setup would then be retained for the
remainder of the batch. Simulating the resulting ensemble is possible within PGMS, but it
entails modeling the conditions used tc determine whether or not the Sewp is satisfactory.
Modeling conditional decisions is discussed briefly in the section of this paper dealing with
extensions of the Monte Carlo method.



[IX.15)
Box and Lid Assembly

This example is concerned with attaching a lid to the box of the previous example. The lid
is 12 ¢cm by 8 cm by 05 cm thick and is assumed to have been manufactured in the same
manner as the box. At assembly time, a fixture is used which holds the lid rigidly in place
on top of the box in such a way that the edges line up perfectly. The issue is whether or not
the holes in the lid are aligned sufficiently well with those in the box to allow four screws to
be inserted.

A procedure which represents both the box and its lid is shown below.

BOXNLID: ENTRY (X,Y,ZBOX,ZLID,LENG,RAD NSECT,
XERRB,YERRBANGERRBRADERRB,
XERRLYERRLANGERRLRADERRL},

CALL SOLID(RECTBOX ,X,YZBOX LENG,RADNSECT, 1«BOXaf
XERRB,YERRB,ANGERRBB,RADERRB});

CALL ZTRAN(ZBOX);

CALL SOLID(RECTBOX XY ZLIDZLID,RADNSECT, [«LID«/
XERRLYERRLANGERRLRADERRLY);

RETURN;

The next step is to code a semantic routine which computes the alignment errors for each of
the four pairs of holes.

ALICNER: PROCEDURE (NODE),
DECLARE (BOX,LID) POINTER;
DECLARE NHOLE BINARY FIXED;
DECLARE NODE ENTRY;
IF NODE=BOXNLID THEN DO;
FOR NHOLE=I TO 4 DO;
CALL DEFINE (BOX,ILNHOLE«LI);
CALL DEFINE (LID2NHOLE«L1);
ERROR(NHOLE)=DISTOZ(BOX,LID);
END;
END;
RETURN;
END ALIGNER;

The subaddresses in these DEFINE statements identify frames of corresponding CYLNDR
holes in the box and lid. The function DISTOZ returns the distance from the Origin to
Z-axis (OZ) of these two frames.

If it is assumed that the assembly process is unsuccessful whenever any of the four screw
hole misalignments exceeds 2 mm, a simple procedure can be written to determine the
number of successful assemblies in an ensemble of 500 boxes and lids.
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Figure 4: Drawing of Unsuccessful Box and Lid Assembly
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DECLARE ERROR(4);
DO I=1 TO 500;
NSUCCESS=0,
CALL BEGIN(120000),
CALL EXEC(ALIGNER);
CALL SOLID(BOXNLID,1284.05, [+X.YZBOX,ZLID:/

25031, [s{LENG,RADNSECT/
GAUSS(0.1/3), [«XERRB¢/
CAUSS(0.1/3), [«YERRB:/
RAND{(-2.52.5), [*ANGERRB«/
GAUSS(0.05/3), [:RADERRB«/
GAUSS(0.1/3), J[«XERRLs/
GAUSS(0.1/3), I«YERRLy/
RAND(-2.52.5), [.ANGERRL«/
GAUSS(0.05/3)); [s*RADERRLy/

CALL END;
IF ERROR(1)<.2
& ERROR{(2)<2
& ERROR(%)<2 -
& ERROR{4)<2
THEN NSUCCESS«NSUCCESS+1;
END;
PUT SKIP DATA (NSUCCESS),

When this program is executed, it determines that 277 of the assemblies would be successful.
About 10 minutes of CPU time are required to obtain this result using an IBM 370/168. A
drawing of one of the unsuccessful assemblies is shown in Figure 4.

Since in principle the lids are symmetric, it is also possible to generate an ensemble in which
the lids have been randomly flipped upside down or rotated 180 degrees in the horizontal
plane between the time of manufacture and the time of assembly. Such an ensemble
simulates the common industrial practise of throwirg freshly manufactured parts into a tote
bin. The simulation then yields 19% successful assemblies. The reason why this percentage is
much lower than the previous one is related to the fact that the rotational error in the
fixture was assumed to be about an axis which ran through a corner of the box rather than
through its center.

Stanford Arm

The final example is taken from the field of computer controlled manipulators. Currently,
two manipulator arms are being used at the Stanford University Artificial Intelligence
Laboratory to study problems in industrial automation. Figure 5 shows a drawing of one of
these arms holding a power screwdriver and a screw. Although the arm had been modeled

much earlier by Bzumgzr:,ms] this picture was obtained by using PCMS procedures instead.
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Figure 5: Drawing of Stanford Arm
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In advanced manipulator applications, it is frequently necessary to perform inspection to
measure the locations of ob jects or even simply to determine whether an ob ject is present or
missing. For instance, since a screw can easily fall off a screwdriver, it may be desirable to
verify that the screw is actually still on the end of the screwdriver.

Both touch sensing and computer vision have been used in the past to perform this type of
ins;:ectioa.me] Currently, Bolles is working on a2 more systematic approach to doing
inspection by computer vz‘sion.[m} One of the main problems encountered in this endeavor
relates to the fact that the location of the end of the screwdriver 'is not known precisely by
the program, because of backlash and compliance in the manipulator. The vision program,
therefore, can not simply look at the nominal location of the screw. Instead, it must search
the image over a finite region whose extent depends on the tolerance errors of the

manipulator joints.

The purpose of this example is to show that it is possible to do a Monte Carlo simulation of
as complex an object as a manipulator, without having to write down the trigonometric
formulas for the location of its gripper as a function of all the joint angles. An ensemble of
10 Stanford arms may be modeled simply by coding

DO I=1 TO 10;

CALIL SOLID(SUARM.-41+-RAND(-22), /¢JOINT ANGLE 1o/
-G2.RAND(-2,2), [:JOINT ANGLE 24/
15+RAND{(-.2,2), {sJOINT ANGLE 3y
-90«RAND(-2.2), JsJOINT ANGLE 4/
90-RAND(-2,2}, [2JOINT ANGLE 54/
0sRAND(-2,2), [cJOINT ANGLE 6/
1.5); [«GRIPPER QPENING«/

END; '

It is only slightly more difficult in PGMS to model an ensemble of arms, each of which is
holding a screwdriver with a screw. A semantic routine may then be supplied to draw the
first object in this ensemble, and for all subsequent objects to draw a little asterisk at the
location of the tip of the screw, as shown in Figure 5. Alternatively, semantics may be
provided to compute the parameters of an error ellipse in the image plane, so that a vision
program will know what region must be searched to verify the presence of the screw.

EXTENSIONS

In all four of the preceding examplcs, the simulation of tolerancing was used to derive
independent distributions of resultant properties. It is also possible to derive conditional
distributions of resultant properties. The need for considering conditional distributions arises
primarily whenever there are steps in the manufacturing and assembly process which
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involve conditional actions. Actually, such actions are quite common in discrete parts
production, although they tend to be overlooked because these steps are usually implicitly
assumed.

For instance, one expects an assembly worker to know without being told that

IF the lid doesn't fit
THEN throw it out and try another one
ELSE attach it

Alternatively, the worker might ignore any requirement of interchangeability and save the
nonfitting lid until a matching box was found. In either case, the statistical properties of the
resulting assemblies would no longer be the same. This fact is true whether or not the
conditional instructions are stated explicitly.

Not all conditional actions have the simple form IF .. THEN .. ELSE. For example, the
assembly process might involve sliding the lid until it s aligned with the box. This step
would move each lid by a different amount, depending on the Initial misalignment of that
particular lid and box.

In a2 PGMS tolerancing simulation, the addition of steps which simulate conditional actions
is a straightforward process, provided that these actions can be stated in the form of
procedures which involve spatial transformations no worse than rotations and transiations
by well defined amounts. For an IF .. THEN .. ELSE action, one simply adds the
appropriate IF .. THEN .. ELSE clause to the program. A problem arises, however, that
there are conditional actions which can not be easily expressed in the form of well defined
procedures.

A common and Insidious example of such actions relates to the way parts are often
chamfered to make the assembly process easier. As the assembly is performed, the chamfers
force parts into slightly different pesitions and alter their subsequent statistical properties.
The effect of a chamfer in locating a single pin can be expressed fairly easily in the form of
a procedure, but for more than one pin the effect of chamfering becomes very difficult to
state explicitly.

The effect of chamfers is a specific case of a general process which may be called fitting or b
accommodation. Case studies performed at the Charles Stark Draper Laboratory indicate that
in typical industrial assemblies, roughly 15% of the steps involve accommodation.”
Although this process is industrially important, it is very difficult to simulate except in the
simplest situations. For instance, it is well known that the way to attach a lid to a box is to
put all four screws in loosely and then tighten them, rather than tightening each one
immediately. Unfortunately, even in this case it is not known how to express the exact
process of accommodation in the form of a well defined procedure.

However, it is possible to approximate many accommodation processes. For example, in the
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box assembly one can say that the first screw to be loosely inserted produces 2 translation of
the lid such that its hole aligns with the corresponding box hole. The second screw produces
a rotation of the lid which makes the vector from the first to the second lid hole align with
the corresponding box vector, followed by a translation of the lid along this vector to make
the two alignment errors equal and opposite. The third screw only produces a translation
orthogonal to the previous vector, and the fourth sczew has no effect. Clearly, this procedure
Is only an approximation to what really happens, but the chances are that it is a good
enough approximation for most practical purposes. An alternative approximation would be
to say that each successive screw produces a transformation of the lid to a new position such
that the sum of the squares of of the alignment errors is minimized. In either of these cases,
one can easily add to PGMS procedures which simulate the approximate accommodation
process.

Another extension of Monte Carlo tolerancing would be to simulate the process of making
measurements with imperfect measuring tools. For example, suppose a computer vision
system is used to locate the position of a hole in a part so that a manipulator can insert a
screw. This measurement is limited by the camera resolution, which may be on the order of
one picture element in the scanning array. The measurement is also limited by pan and tilt
errors in aiming the camera. Projecting the camera errors from the image plane back to the
actual hole in three-dimensional space will generally give an elongated region within which
the location of the hole can not be resolved. If several features of a part are located in this
manner, the position and orientation of the part itself may be derived. All of Yhese steps can
be simulated within PGMS.

It is also possible to simulate part imperfections of a much grosser nature than those
normally considered in tolerancing. For instance, Agin has written a computer vision

_.program which inspects lamp bases for displaced or missing grnmmats.{m}‘ In order to
simulate an ensemble of lamp bases with an appropriate range of defects, one could
represent the generic lamp base by a routine with parameters specifying whether or not the

grommets are present.

LAMPBAS: ENTRY (GROMI,X1LYL,GROM2X2.Y2):
CALL XYZTRAN(X1Y1.0)
IF GROM x|
THEN CALL SOLID(GROMMET);
CALL XYZTRAN(X2-X1,Y2-Y1,0) '
IF CROM2=1
THEN CALL SOLIDIGROMMET):
RETURN;

Gross defects of this type are quite common In industry. The most familiar ex ample is that
- roughly 2% of all machine screws are ordinarily defective. Some have no heads, while others
have no slots or no threads. The defective fraction may be reduced by preinspection, but for
most applications the additional cost can not be justified. It is therefore worth emphasizing
the fact that errors of these types can also be simulated within a Mente Carlo parts
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tolerancing system.

CONCLUSIGON

This paper has described a Monte Carlo approach to the simulation of tolerancing and
other forms of imprecision in discrete parts manuf acturing and assembly. An implementation
of the method, based on the Procedural Geometric Modeling System developed earlier by
this author, is illustrated by four specific examples, one of which was chosen from the field
of assembly by computer controlled manipulators.

There appears to be a pressing need for simulation techniques relating to discrete parts
manufacturing and assembly. The assembly process is strongly affected by imprecise
components, imperfect fixtures and tools, and inexact measurements. It is often necessary to
design higher precision into the manufacturing and assembly process than is functionally
needed in the final product. Production costs are highly dependent on specified tolerances
and the resultant product yields.

The technique described in this paper can provide production engineers with a systematic
way of analyzing the stochastic implications of tolerancing and other forms of imprecision.
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