CS 106
A.l. 65

A PROGRAM TO PLAY CHESS END GAMES

BY

BARBARA J. HUBERMAN

SPONSORED BY
ADVANCED RESEARCH PROJECTS AGENCY
ARPA ORDER NO. 457

TECHNICAL REPORT NO. CS 106

AUGUST 19, 1968 L=

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERSITY

' Reproduced by the
CLEARINGHOUSE

. for Federal Scientific & Technical

. Information Springfield Va. 22151

£
%

STANFORD ARTIFICIAL INTELLIGENCE PROJECT August 19, 1968

MEMO AI-65

CS 106

ABSTRACT:

A PROGRAM TO PLAY CHESS END GAMES

by Barbara Jane Huberman

A program to play chess end games is described, The model
used in the program is very close to the model assumed in
chess books. Embedded in the model are ftwo predicates,
better and worse, which contain the heuristics of play,

different for each end game., The definitions of better ang
Worse were obtained by programmer translation from tre
chess books,

The program model is shown to be a zood one for chesz end
games by the success achieved for three end games. Also
the model enables us to prove that the program can reach
checkmate from any starting position, Insights about
translation from book problem solving methods into computer
program heuristics are discussed; they are obtained by
comparing the chess book methods with the definitions of
better and worse, and by considering the difficulty en-

countered by the programmer when doing the translation.

The research reported here was supported in part by the Advanced
Research Projects Agency of the Office of the Secretary of Defense

(sD-183).

ACKNOWLEDGEMENTS

I would like to express deepest thanks to my thesis advisor,

Professor John McCarthy, for his many valuable suggestions and helpful
criticisms. Also I am grateful to Professor J. Feldman for his construc-
tive reading of the final version of the thesis, and to Professor R.
Reddy for his earlier reading and assistance.

In addition I am indebted to my colleague, Mr. John Lennie, for
his critical evaluation of parts of this work, and to my cousin, Mrs.
Jill Custer, for her encouragement and careful reading.

I wish to express my appreciation to Mrs. Judy Muller for her
excellent typing and preparation of this report, and to Mrs. Dorothy
McGrath for her fine illustrations.

This work was supported by the Advanced Research Projects Agency

of the Office of the Secretary of Defense, (SD-183).

iii

TABLE OF CONTENTS
\

Chagter

l!

Introduction « & o » 5 » 4 s w @ & ¥ &
Methods and Models, .

Model and Methods for Chess End Games
Goals of the Research
Outline of the Thesis ,
Program Organization H o m om oo w e
Botabion . « o w « « v % @ « = % & &
Program Organization
Tree Search Heuristies

Representation

Definition of better and worse .

Formalizetion ., .,
Additions to better and worse
Rook and King Against King P s @ oW e

Formal Definitions of better and worse

Additions to better and worse

Examples of Program Play
Evaluation of Program Play
Two Bishops and King against King . .
Stage 3
Stage &

Formal Definitions of better and worse

Changes to better and worse . .

iv

Page

10
10
il
21
22
24

26

65
68
71
T2

Table of Contents (cont'd,)

Chapter
Examples of Program Play

Evaluation of Program Play

6. Bishop, Knight and King against King . . .
Stage O
Brage . « w9 5 5o m 8§ 8w s § B .
Stage 2 e ...
SEage 3 . . . u e e e e e
Stage L

Stage

-
.
.
.
.
.
.
.
.
.
.
.
.

Stage 6 e ...
Formal Definitions of better and worse . .

Additions to better and worse

Examples of Program Play
7. Program Correctness
8. Evaluations and Conclusions

Evaluation of the Forcing Tree Model . .

Correspondence of Program and Book Methods .

Evaluation of the Translation Process . .
Extensions in Chess , . .
Conclusions . « o o v o« 4 5 5 % 5 o »
Appendix A . . i o s s i s 0 6 5 ¢ 0 6 4 0 b e e

BIiblIograpll¥ . o« ¢ « ¢ ¢ ¢ ¢ 0 ¢ ¢ o 9 % s » & @

Page
80
86
87
89

P
108

108

. 118

. 118

119
131

140

. 150

150
155
156
161

163
166

167

FIGURES

Figure Number

1.1
2.1
2.8
2.3
2.k
2.5
2.6
T |
5.2

5.7
5.8

Example of a Forcing Tree
Example of Forcing Tree e

Main Program Flow . « . s « « & 5 o « 5 & &

. - - . 3 - - - . - . .

Example from Capablanca, pages 26-28
Stages in Figure 3,1
Listing of the Rules Introduced in Chapter 3

Example from Fine, pages 14 and 15
Examples of Moves in Stage 2 . ., .,
Examples of Stage 3
Illustrations of Examples of Program Play . .
Example from Fine, pages 15-17

Examples of Quadrants

Example from Capablanca, pages 29-30 ., , . ,
Examples of Stage 3
Examples of Stage 4 , .,

vi

15
17
18
19
20
a5
30
36
37
39
Lo
L)
b7
50
oy,
56
59
60
63
66
67

70

Figures (cont'd)
Figure Number

5.9 Illegal Positions-, B HE R B Ed e oo « i

2.10 Tree Pruning Heuristics for Non-Head Quadrants ... 75
.11 Examples of Head Quadrants , , ., 78
5.12 Examples of Program Play ., L. 83
6.1 Example from Fine, pages 18-20 L. 88
T -
/
6.393
T -
6. e e e e . 1oz
6.6 Examples of Knight Interference . , oy

6.7 Forbidden Knight Interference S 105

6.8 L 1oy

6.9 Example from Capablanca, pages 110 and 111 1lo9

6.10 Examples for Stage 5 E B Bl s omamm r ow oo 123

T =
L R -
BT G i b i F e ey F e e . w4 12h
T -

6.15 starting Positions for Examples of Program Play . . 132

8- l - - - - - . - - . . » L3 - . . " - - - - - - - - 15’*

8.2 Program Organization for Doing Simple Learning .. 1729

vii

CHAPTER 1

INTRODUCTION

This research 1s concerned with the process of translating book
descriptions of problem solving methods into program heuristics. Many
books have been written for the purpose of teaching how to perform some
task, The task under discussion may be almost any kind of activity,
including intellectual activities such as proving theorems in geometry
or solving differential equations. People are able to learn from these
books although the difficulty in learning varies from task to task.
Therefore we can consider the information in the books as sufficient
for people. It would be convenient if the book infoymation could be
used by computer programs. We are interested in whether the information
is sufficient for computers, and if not, then we want té know what kind
of additional information is needed.

The fact that book information is sufficient for people does not
mean that it can be used directly. If the book describes an algorithm,
then sometimes only memorization is required of the reader; for example,
the method of finding truth values of sentences in propositional calculus
by means of truth tables can be learned by memorization. Many tasks,
however, require substantial learning before the student can understand
the book. The task of playing chess end games by computer provides a
simple but not trivial area for this research. By chess end games we

mean those games where the number of pieces on the board is small, but

the number of moves to checkmate large: for example, Two Bishops and
King against King, or the various Pawn endings. Chéss bocks give rules
for these end games which are not algorithms but are supposed to be
simplie and complete enough that beginners at chess can learn to play
the end games fairly easily. A certain amount of intelligence is
reguired of the student, but still we expect to need only a minimal
amount of additional information. In this study the programmer will do
the translation. Since this translation from the chess books to the
program is not direct, as it would be in the case of truth tables, we

expect to learn something from the translation process.

Methods and Models

Computer researchers are well aware by now of the fact that any
task requiring intelligence can be profitably approached by distinguishing
between models and methods. The model, which is a representation of the
structure of the p}oblem [Minsky, 1961]};determines the overall logic of
the program, The methods are the heuristics which the program uses

within this structure. For example, in the Logic Theory Machine

[Newell, Shaw, and Simon, 1957], the model is a backwards tree and is
represented by that part of the program called the "Executive Routine”.
Within this framework substitution, detachment and chaining methods are
used; these are encodings of the way people apply the rules of inference
in propositional calculus.,

Generally books are concerned only with teaching the methods which

should be used to solve problems in the task area. The methods must be

1. See page L13 of Minsky [1961].

applied within a structure which is assumed in the book but not generally
defined explicitly. It is necessary to build a model of this structure
in the computer before information about methods can be taken from the
book,

We expect that different models are required for different tasks,

Very often the model is a backwards tree; the General Problem Solver

[Newell and Simon, 1961] is based upon this fact. However there are
problems which would require a different model: for example, bidding
in bridge. The closer the model used in the program is to the way that
the author of the book thinks about the problem, the easier it will be
to translate the methods of the book into heuristics for the program.

Chess end games could be handled by the General Problem Solver; however

in this research a model is used which is much closer to the abstract
model assumed in the chess books. In this way we hope to eliminate
making changes in the methods to account for & difference between the
program's model and the abstract model assumed in the beook, This means
that any difficulty experience in translating the book methods into

A\
rrogram heuristics can only be die to inadequacy in the method descriptions.

Model and Methods for Chess End Games

The model used for chess end games is a forcing tree. The program

is supplied with two functions better and worse {containing the methods)

which compare positions. From a given starting position p , in which
the program has the move, it uses tree search to find positions g

which are better than p . It will search until such a position g

is found for every sequence of moves by the opposition. An example of
such a tree is given in Figure 1.1. The program will then make the
moves dictated by the tree until it reaches a ¢ at the end of a
branch in the tree; then it recalculates the trec '» force positions
better than gq . This process continues until checkmate is reached.
worse is used by the program to cut off branches of the tree which lead
to disaster {stalemate, etc.), and also to prune the tree. This model
is described in detail in Chapter 2.

The forcing tree model will be used for all the different end
games, However each end game is played by different methods which will
result in different definitions of better and worse. This enables us
to examine the problems of translation from methods to program heuristics
several times and for games of varying degrees of difficulty.

better and worse are built up out of pattern recognition functions
of positions which can be definéd in a natural manner from information
given in the chess books, The methods, or rules, of play are defined
in two ways in the books. First of all, written statements are made,
For example, in the description of the Rook and King against King game in
Capablanca [1935] we find: "The principle is to drive the opposing
King to the last line on any side of the board" and then the student
should "Keep his King as much as possible on the same rank, or...file,
as the opposing King".2 The play of other games (and in other books)
is described by similar rules. It is not difficult to convert a
principle into a pattern recognition function of positions because the

pattern is inherent in the principle., For example, to express the

2. See pages 26 and 27 in Capablanca [1935]
L

Figure 1.1. Example of a Forcing tree. The program has the move in
p; it must make a move leading to a position q Jjudged better than p
tor every sequence of moves by the opposition. Each iteration of the
program will produce a tree like this; several iterations will be re-
quired to reach checkmate.

" first principle quoted above we define

f(x) = the opposition king is confinéd to an edge of the board in x ,
for x a position. Then we might decide a position q was better than
position p 1if

£(q) A~ £(p)
because the principle is satisfied by making the moves leading from p
to q .

The chess books supplement the principles with examples of program
play. The principles generally cover the gross features of the game
and form a framework for viewing the play of the game. The majority of
moves are only partly derived from the principles; they are more directly
derived from the examples of program play. Thé examples contain more or
less complete information about methods of play; the difficulty comes
in deciding what pattern features of the positions are important.
Obviously, induction is required to make this decision. Each example
is considered representative of a large class of positions and a general
rule must be defined for that class. If.the example is accompanied by
principles, this simplifies the induction by providing clues to important
features (see Figure 3.1). The induction leads automatically to the
kind of pattern recognition functions used in better and worse.

F
Goals of the Research

The primary goal ol the research 1. to study lne transiation
process. We begin by stating two criteria wnich will help us achieve
this goal. First we would like to see if our model is a good cne for

chess end games. Our first hypothesis is: the model used in the

program is a good representation of the abstract model assumed by
chess books. We can support this hypothesis by successfully running
the program on different end games., Furthermore, conditions can be
given on better and worse which permit us to prove informally that the
program works correctly. The proof depends heavily on the model and
could not be given for a different model (for example the General

Problem Solver model),

Our second hypothesis is: the information in the chess bocks is

sufficient for the definitions of better and -worse. The chess book in-

formation will suffice for worse if all cdisastrous positions are
described. For better much more information is needed; the books must
give rules for recognizing progress frequently enough that the tree
search between positions is reasonable. For example it is not enough
to have rules recognizing only checkmate positions.

Finally we turn our attention to the primary goal of studying the
translation process. We assume that the two criteria are satisfied.
First we consider how closely the definitions of better and worse
correspond to the chess book methods, wsasuring the correspondence
by comparing program play with the book examples, «!:0 we consider the

difficulty encountered in defining better and worse.

Outline of the Thesis

In Chapter 2, the overall organization will be described., A

detailed definition of the uses of better, worse, aud trec search will

be given; this constitutes the model which we use for chess end games.

In Chapter 3> the form of the contents of functions better and worse
will be discussed. These functions are different for each end game,
since different methods are used for each game. However, the form
given for better and worse is used in all end games. Some rules are
given for better and worse which will enable us to prove that the
program is correct in the sense of being able to achieve checkmate from
a given starting position.

Chapters 4, 5, and 6 eaéh describe the definitions of better and
worse for a different end game. Rook and King against King is discﬁssed
in Chapter 4, two Bishops and King against King in Chapter 5, and
Bishop, Knight and King against King in Chapter 6. These games are
presented in order of difficulty. The rook end game is quite a
simple one; two Bishops is a e of moderate difficulty, while the
Bishop-Knight end game is very difficult. The process of translating _
from the book information into pattern recognition functions will be
described, and reasons will be given for the programming decisions,
Examples of program play will be included for each game.

Chapter 7 contains an informal proof of program correctness, This
proof is given after the various end games are described because it
depends on the heuristics used for each game.

Chapter 8 will contain an evaluation of the better, worse format

in terms of the two primary goals, BSubjects covered will include
program efficiency, a description of a way to have the program do

some of the inductive learning, and extensions to other task areas.

8

In the following chapters, crdinary chess notations will be used
[Capablanca, 1935]. The program is written in LISP [McCarthy, Abrams,
Edwards, Hart and Levin, 1965], and the reader is expected to .have some
knowledge of this language. Function definitions are given using notation
and basic functions which are defined in Appendix A. They are built up
>f the connectives = (equivalence), D (implication), A (conjuction),

v (disjunction), and — (negation). These are used in the same way LISP

(not ALGOL) uses them; i.e., if in p Aq, p is evaluated and found

to be false, then q 1is not evaluated.

CHAPTER 2

PROGRAM ORGANIZATION

Notation

Throughout this thesis, certain conventions of notation will be
used. As in the ordinary use in chess books, the white side is the
winning side. The program will play white and a person black. The
letter p , with possibly subscripts or superscripts, is used to
represent a posjition with white (program) to move, and q , again with
subscripts or sﬁéegéégipts, for positions with black to move. When the
color of the move-is unimportant, letters x , y , etc., with subscripts
or superscripts wiil be used.

In a position p ,;a cer%g;n set of white moves is legal according
to the rules of chess. A legal move is made from p to produce a new
position gq with black to move, We will represent the connection
between p and q by means of the relation Mw . The statement
prq is read: q 1is a position which results from making one legal
white move in p . Similarly we write qMBp which means p is a
position which results from making one legal black move in q . If
prq we sgy q 1is an immediete successor position of p , and

similarly for qMBp . If we say that g 1is an ultimate successor of

p this means there exist Pys--es Py and Q.,..., q, such that
EN

pMuay A My A ... AqMap, Ap M.

10

The program is given as a starting position a position p with
white to move. In some end games, white can win only from certain

legal positions with white to move. Let

P={p | p is a legal position with white to move, and
white can win from p} .
The program must work correctly for any starting position p € P ;
we do not care what happens for p € P .

As explained in Chapter 1, better and worse are used to compare
positions. They both have as an argument a pair of positions (p, @) .
The first position is always & position with white to move; the second
is always a position with black to move, q is either an immediate or
ultimate successor to p .

The statement better(p, q) is (not) true is equivalent to saying
q is (not) better than p , and similarly worse(p, q) is (not) true
is equivalent to q is (not) worse than p . Ceccasionally when
discussing a tree search a statement like " q 1is a better position"
will be made, This means q is be?ter than the 'p at the head of

the tree. better and worse will always be underlined; so will all

other function names except those consisting of only one letter.

Program QOrganization

To start with, the program is given an initial position p € P .
It generates all positions q such that prq . The order in which

these positions are generated is not important; let us refer to them

11

as Q= {q,..., q } . For each q, ‘the program asks the question
worse(p, qi) S ; q, 1is worse than p then g is immediately re-
jected by the program. If worse(p, qi) is false, then the program

asks better(p, q;) . If better(p, qi) is true, the move which led

to qi is retrieved by the program and made at this point without any
further analysis or examination of the remaining positions Qg 4 -
Figure 2.1 is a flowchart of this part of the program.

If all qi have been examined and none is found which is both
better and not worse than p , the program will resort to tree search,
The work it has done so far is really the first level of the tree search.
A branch remains in the tree for each a; which was not worse than p .
Call this set Q,1 i

During the tree search the first element of the argument pair of
better and worse remains the initial position p . As explained pre-
viously, the second element must be a position with black to move. This
means that in the tree search, the ends of the branches can't be evalu-
ated after every move, since half of the moves result in positions with
white to move, Also it is convenient to have the depth in the tree equal
tc the number of white moves required to get to that point. If a position
q is said to be at depth n in the tree, this means that 2n-1 moves
are required to get to g ; of these n are white moves and n-l1 are
black moves,

The basic premise cf this method of play is that from p white is
able to force a position q better than p . "“Force™ means that white

¥

must be able to answer every black move with an eventual better position;

enter with p,Q ' Q'eNIL

return Q'

no

qecar(Q)

wecar(Q) worse(p,q)

¥

noe

Q'H{a-q")

“igure 2.1. Bi(p,Q)

p € P is a starting position
Q 1is a list of successor positions of p .
BW returns

a single position q 3 this means q 1is bftter =na nof
worge than p

s 1ist of positions (possibly.empty) contuinin; =11
positions which were not worse than p ; thic mem
no member of @ is better snd not worse than 71 .

conversely if any black mcve results in all poritions worse than P,
the positiorn 1n which that black move was made must be discarded,

The tree search is a breadth-fir:st search. For each qi the

3
s

v = i : ; t
program generates P, = {p..,..., pis,} . Each p;; 1s the result of

1
a legal black move in. q 3 i.e., qiMBpij for J= ... s, . Then

for each piJcPi the program generates Qij = {qijl""’ qijsjj] P
M § = ce - 1en ¢)
Py My g Tor k=1,..., By 4 The program then computes BW(p, Q..)

(see Figure 2.1); that is, the gq

ij
15k are compared with p in the same
way in which the q, were compared with p previously. In order for
the move leading to qi to be accepted by the program, for each p__j

[A

2 xigt / i 1 d
there must exist a qijk such that worse(p, qijk) is false an
beﬁﬁer(p, qijk) is true; that is, BW(p, Qij) must return a single

position for j = 1 s, (i.e., for every black move gq..). If

’.ll, i J-J
this happens, then the move leading to qi is made by the program with-
out examining the other qi€Q1 ;

If BW(p, Qij) returns the null list for some Qij this means

>
that all qijkeQij are worse than p . Ta:s happens because in qi

the black move leading to pij is permittea, apd white is not in a
position to control the result. In this case‘ 9 is completely removed
from the tree, just as if it had been worse than p in the first place.
The move 4, is eliminated in this way in Figure 2.2,

1f a is neither rejected nor accepted, then for one or more of

the Pijy s there exist several 9 5 such that worse(p, q
false but better(p, qijk) is also false. In this case, BW(p, QEJ)

k) 1S

returns the list of such qijk ; this information is saved in Q*j in

14

£ AN

n

number of

moves] 3
\
\
.. AY
This is 2° . - I GP
set
Q 1
g 5 o] o o T
=} W M
N o = =
s {
3 e
First 4° 2 K? ' S
o= o
tree = M e |-
com- >
parison & t
depth 2
o ol o o
AN AN N pe N
NTECRES n n
nf |- = =
o =] o =
4
econd Tl Ul N NE
: ny oo o\ o
B BEISEE
EoRl _ ~ (S LI =
parison 5t
depth 3 Ll W o o

Figure 2.2. Example of Forcing Tree.

. From positicn qp , for the black move leading to Ppz . 2ll white

moves lead to positions worse than p . Therefore this branch is
eliminated. pg, will not be examined.

Positions which are ‘better than p are marked with a B . A branct
is accepted when every termination is marked B. Note that eve:r if
a single position with white to move remains at a level, it is rot

necessarily bg;ig;; €.€., Qun11 - This would be true even on the very
first level (set Q).

No decision is made at depth 2.

Now depth 3 is begun. For

q; no cGecision is made and all informztio
is saved.

The branch for Q3 is examined next, and it is accepted since ithe cnd
of every branch is marked with a B . One branch ends at depth 2; ihe

others end at depth 3. The program will now make the move leading to
Q- It does not examine the remaining branches for Qpyreees 9, -

15

case no q. is accepted at this level. For example in Figure 2.2, e
_would have set Q) = {9,575 400} -

If no q; is accepted by the program at this level, the program
extends the tree cne more level every place where a decision wasn't

made previously (where a list Qij is saved). Every element qijngi

one for each immediate

J
produces several lists of positions Qijkm 5

successor positien Py ikm to % sy - Now BW(p, Q, is called.

1jkm)
If it returns a single position for each immediate successor pijkm
of 9 i then 9 5y is accepted at depth 2 (just as before a4

would have been accepted at depth 1). In this case the other members

of Qij are not considered. Also, as before, a branch can be rejected,
either back to depth 2 (qi&,k) or all the way back to depth 1 (qi) .

If no decision is made at depth 3, the program goes down another
level to depth 4. The search is continued until a decision is made.
Figure 2.2 is an example of a position which required a search of
depth 3. No decision was made for q; at depth 3 so all the information
in the figure would have been saved. For qj , only one black move
P25 remained to be answered and q322 is accepted at this level,
Therefore q5 is accepted by the program at thif point, and Qsenns qm
are not examined.

When the program has selected a branch of the tree, it remembers
the tree, and will make the moves dictated by the tree for as long as
it lasts, This is a very important point since it is the feature
which enables the program to force a better position,

Figures 2.3 to 2,6 are flow charts of the program. Figure 2.3 is

the main program; the other three flow charts cover the tree search,

16

enter with starting

position »p
TREE<IIL

- Q{ a*| pM e

Q“BW(P: Q)

return, pro-
gram error

o oTS(p,Q)

no

| g(move in TREE)
TREE«cdr (TREE)

- —a

Figure 2.3. Main Program Flow.

17

enter with p,Q Q,!(—RIT

L

1
 §

yves

no

! car(M) yes
SS9

no

Figure 2.4, Function TS(p,Q) is the top level tree search function
which starts the tree search going; calls the functions
which follow the branches of the tree; returns the select-
ed position and saves the branch in TREE if a decision
is made; or starts again to extend the search one more
level if no decision is made,

18

enter with p,q P{p" ‘qMBP'}

P'VIL

‘

p'ecar(P)

&H{q'|p'Ma'}

l

Q—BW(PJ Q)

null(Q)? e ={ return NIL)

no .

P'e{QeF')
Pecdr(P)

no

Figure 2.5.

(1)
(2)

(3)

11 meml?ers yes)
of P! single > return (YES*P')
ositions ..

return P!

Function MB(p,q).q 1s a single position. Three values are
returned,

NIL means that some black move from q cannot be answered.

YES+'P' means that a better position is found for each black
move from q.

P' means that for at ieas‘o one black move no decision has
been made.

19

caber with p,Q

v

Tt
QT

gear(Q)

Figure 2.6. Function TB(p,Q). Q is a list consisting of positions
and of lists of positions. If an element of Q is a single
position, then it was found to be better at the previous level.
If the element is a list of -ositions, these are the non-worse
positions from the previous level. Q contains an element for
each black move in the ppsition immediately above in the tree.

Function TB returns
NIL - each member of a list of positions which is a element of
@ 1is rejected in the search.

YES-Q' - all elements of Q are or lead to better positions.
Q' - some elements of Q do not lead to better positions.

Q" contains the tree from Q on down.

20

Tree Search Heuristics

Two heuristics are used during tree search. One helps to cut off
redundant branches of the tree; the other helps the program find the
better position faster.

s
1. Redundant Branch Cut-Off

Suppose we are down at a node at depth n 1in the tree. A history
of the branch to this point is given by all the positions with black tec
move which the program has examined on the way to this node. There are

n positions in this history, say qi, [T

(jorer Ygk...m - A this

point, suppose it is time to expand the rode at the end of the branch.
For simplicity let g* = qijk...m Now suppose that BW(p, Ql*)
returns a list of positions @Q* . The program checks the positions of
the white pieces in each qi*EQ* against the positions of the white
pieces in aq., qij""’ g* , and if there is a match, qi* is
eliminated.

The reasoning behind this heuristic is as follows. It is true that
two positions in which the white pieces are in the same squares but the
black king is in a different square may have very different patterns.
However, in this case one position is a successor of the other, and
intuitively, if the placement of the white pieces is good, we should
have taken advantage of this originally and done something else from
there.

As far as the program is concerned, this heuristic has never
caused it to miss a move it should have made. Part of the reason for

this is that the treesare quite short (no more than a depth of seven)

and within that short a span the intuition is probably valid. At

21

least one quarter of the positions returned by BW are eliminated by
this heuristic,
2. Killer Heuristic

If in the tree a position q; is found to be better and not

Jk...m

worse than p , the program finds out what the last white move, w ,

to qijk...m was, and it remembers this move, Then every time after
this, when it forms a set Q* to be used as an argument to BW , it
checks to see if w was the last move made to form some g*€Q* . If
it was, then gq* is made the first position in @Q* , so that it will
be examined first.

The theory is that in a tree search the positions are all similar,
so a move which led to a better position at one point is likely to do
so again, By putting the new position g* first we eliminate many
comparisons if the theory holds., If the theory fails we have lost a
little time,

In these end games the theory holds very well., If an examination
is made of the final moves to the better positions during a tree
search, usually there are only one or two such moves. The Lime saved
when the position put first is actually the one selected is large
enough to more than compensate for the time spent in ordering the

positions,

Representation

No attempt has been made to develop a sophisticated representation
for these end games., A position is represented by a list of the positions

of the pieces, Moves are generated rather than stored. Patterns are

o2

discovered by functions. Some information is very time consuming to
obtain in this way, for example the set of all squares which a piece
can reach in two moves. In general patterns of this type are not

used, and the heuristics chosen for the end games reflect this.

CHAPTER 3
DEFINITION OF BETTER AND WORSE
As was explained in Chapter 1, each end game is played by different

methods which we expect to result in different definitions of better

and worse. However the form of better and worse is independent of the

particular end games. In this chapter we will define the form, which
will enable us to put a condition on the pattern recognition functions
which make up better and worse. We will use this conditicn to prove that
the program can reach checkmate from any starting position p € P .

First of all, in order for the program to work correctly it must
have a sense of direction. In the chess books this is achieved by an
ordering of methods, For example in the rocok end game, first we drive
the opponent's king to an edge and then we keep our king on the same
file (rank) as his. In the program, rules are represented by patterns
.of positions. Therefore the ordering of the heuristics is converted
into an ordering of patterns, and positions from the end game can be
grouped into subsets according to this ordering. Then a position gq
w#ill be better than position p if the subset containing q is higher
in the order than the subset containing p .

Recall that the program builds a forcing tree from a position p
and ther follows a branch of the tree (which branch is determined by the
opponent's moves) until a position q at the end of the branch is

reached. This position gq 1is better than p . Now the opponent makes

2k

The ending Rook and King against King.

fhe principle is to drive the opposing King to the last line on any
side of the board.

In this position the power of the Rook is demonstrated by the first
move, H-R7, which immediately confines the Black King to the last rank,
and the mate is quickly accomplished by: 1 R-R7, K=Ktl; 2 K-Kt2.

The combined action of King and Rook is needed to arrive at a posi-
tion in which mate car be forced. The general principle for a beginner

DIAGRAM 20

¢ lollow is to keep his King as much as possible on the same rank, or,
ac in this case, file, as the opposing King.

When, in this case, the King has been brought to the sixth rank, it
vetter to place it, not on the same file, but on the one next to it
towarus the center.

CeeoK=Bl; 3 K-B3, K-K1; 4 K—K4, K—Ql; 5 K—Q5, K—Bl; € K—Qf.

liot ¥-B(, because then the Black King will go back to Ql and it will
tuke much longer to mate. If now the King moves back to Ql, R—RE mates
al Onces.

Ceesk=Ktl; 7 B-QB7, ¥~Rl; & K—BG, K—Ktl; 9 K=Kt6, K—R1; 10 R—KE¢ mate.

IL has taken exactly ten moves to mate from the original position.
On move 5 Black could have played K-K1, and, according to principle,
White would have continued 6 K—-Q6, K-Bl (the Black King will ultimately
be lorced to move in front of the White King and be mated by RB-R8);

P

7 F—HU, K=Ktl; 8 K=BG, K-Rl; ¢ K—Kt6, K=Ktl; 10 R-R8 mate.

Figure 3.1. Example from Capablanca, pages 26-28.

25

a move, giving position p' . At this point the program will build a
forcing tree from p' . It doez this without memory of positions p
and q . If the program is to work correctly, it must be able to derive
information about the state of the game from p' , and any q' at the
end of a branch of the forcing tree from p' must be better than p in
addition to being better than p' . If this is true then we say the
program is playing consistently. Consistency is accomplished by being
careful about the selsction of g in the first tree; however we must
remember that ornly a moderate amount of tree search to q 1s permitted.
In the following section we will have much more to say about better
than worse. This is not surprising, since for the program to work
correctly worse need only recognize disaster and not interfere with

better. Both of these conditions will be satisfied.

Formalization

The notion of a stage has been adopted to facilitate the program's
sense of direction. The positions in an end game are divided into a
number of different subsets called stages. The s%ages are not necessarily
disjoint; however all the positions in a stage share a common pattern. |
In general a stage contains both positions with white to move and
positions with black to move., The stages must exhaust the universe of
positions in the end game. Let

Q=PU {a| 3p(peP A pMa)} ,
for P the set of all legal positionsfrom which white can win. Every
position x € @ must be in at least one stage. The stages are ordered,

from the lowest (zerc) stage containing stalemate positions and other

26

positions from which white cannot win, to the highest stage containing
checkmate positions. The nth stage in the order is called stage n .

For programming purposes we prefer to deal with disjoint subsets,

If x € Q, we define

sk{x) = © if x € stage O .

1]

max ({n | x € stage n }) if x ¢ stage O .
The subsets {x | st(x) = n} can be ordered by the value of st when
applied to the elements of the subsets., These subsets are used to give
the program a sense of direction in a natural way by
3.1 st(g)>st(p) o better(p,q) .
Also we will have

better(p,q) > st(q)> stip) .
The statement
3.2 st(qpst(p) = better(p,q)
is not used because it would result in tree searches of immoderate
length.

3.1 is a partial definition of better, so we consider what conditicn
is required to ensure that the program works consistently. Recall that
we want to be able to deduce from the successors of q information
about the state of the game at g . Suppose for now that 3.2 is the
definition of better. Then the program can be forced to play consistently
by the condition on stage definitions.
5.5 Vp' ValagMpp' o st(p')> st(q)] . -
5.5 says the stages must be defined in such a way that black can n ver

force a return to a lower stage. This embodies the spirit of thes:

27 -

games; that is, that white is in complete control, and that the black
moves are considered (by the program/student) only as part of the white
strategy. We need not worry about a black move strategy.

There is no condition similar to 3.3 for white moves. However
5.4 vp 3q(pMq A stla)> st(p))

¢

is often useful. Intuitively it would seeﬁ that if scme p had all

-

successors at a lower stage, then p was efaluated incorrectly. This

-

is not always true, but if 3.4 isnotsatisfipd it is important to under-
stand why. "

As far as EEEEE is concerned, we always have

st(q)=0 > worse(p,q)
which accomplishes branch termination and insures that worse recpgnizes
disaster. We do not have ‘

st(q)<st(p) > worse(p,q)
because sometimes the path that the program should follow involves this
kind of situation. We will always have

worse(p,q) 2 st(q)< st(p) ,
since worse may not interfere with better.

To help explain the definitions given in this chapter, an example
will be developed as we proceed. It covers the play of part of the
Rook and King against King end game, as explained in Capablanca [1935];
the text is given in Figure 3.1. This example can be handled in five
stages. First we introduce pattern recognition functions f and g .
For x a position, we have

f(x) = {the black king is confined to a file (rank) edge in x} .
Let edge(x) bpe the edge to which the black king is confined in x .

28

g(x) = {£(x) A (the white king is on the file (rank) two away from
the file (rank) edge containing the black king and on a
rank (file) closer to the center of the board than the
black king)} .
f(x) represents the first principle in Figure 5.1. g(x) partly
represents the second principle in Figure 5.1; it will be used to
recognize white move 6.
Now we can define the stages. These definitions are built up out

of basic functions and notation which are described in Appendix A.

x € stage O = {x 1is stalemate, or x is a position with black
to move, and black can take a white piece in

one move}.

x € stage 1 = {x canno* be assigned to any other stage].

x € stage 2 = {f(x) A gg(wkx,edge(x)l>2},
x € stage 3 = g(x).
x € stage & = {x is checkmate}.

Figure 3.2 gives examples of some of these stages. The opening position
in Figure 3.1 is in stage 1. Note that every legal position (every
position in set Q) is in some stage, because of the definition of
stage 1. In every end game there will be a catch-all stage defined
like stage 1.

Now we must check that st satisfies 3.3. If st(q) = 2
or EE(Q) = 3 , then the black king can never move in such a way as to
form a p with st(p)<2 . This is because in q the black king is
confined to an edge, and the white king is not blocking the rook since

it is two or more files (ranks) away from the edge while the rook is

29

Wi W
m
Wi, W
)

;A /J/

“L%”W:wﬁy 497 é%y
. //%:

//
.

m, M
/////
’///////
.

W W

‘{E" ‘.'i 4
ik 7
753

j"z“/ *l //
5:2 %3’ ﬁ?ﬁ
Y,

“a
, Y
A1)

i /// m
/il i f ;, f/é 2%
Ve . il Pide, v

i,
f%/ N

//
. !
ff/// %//A

e 5
i i A /
T e /:4
7.
% 5
Vi

’)"
-,;, 7
/

//%

Figure 3.2.

= Y
_S_t_(XI) - L

a(xq) = 5'

S_E:’.(Nl) = k.

30

This is the position after white
move k4.

This is the position after white
move €. Note that x_ is in both

stage 2 and stage 3.

This is the checkmate position.

Stages in Figure 3.1.

only cne away. The black king is not threatening to take the rook in
any q with st(g)>0 , because in that case we would have st(q)=0 .

Rule 3.4 is also easy to satisfy. In stage 1 there is no
difficulty. 1In stages 2 and 3, the rook will always be able to move to
another square on the same file (rank) (for a file (rank) edge) and .
thus preserve the same stage.

If we use 3.2 as our definition of better and define worse by

worse(p,q) = st(q)=0 ,
then only moves 1, 6 and 10 from the example in Figure 3.1 will be
chosen by better. Thus the tree searches are fairly long, and also the
tree is very wide. This brings us to the remainder of the definitions
of better and worse. If we change the definition of better to
5.5 better(p,q) = {st(a)>st(p) v [st(q)=st(p)=2

A de(uk, edge (a))<de (uk , edge(p)))
then moves 1, 2, 3, 4, 5, 6, 10 will be recognized by better. This is
a considerable improvement in the length of the tree search.

What is happening here in stage 2 happens in the other end games
as well, The stage itself is rather large, but the positions inside it
can be put into subsets, just as the whole universe of positions Q was
put into stages. In fact, additional stages could be added, one for
each of these new subsets.

However, we must consider an interesting property of the stages
as they are defined in this end game, and one that is worth preserving
in other end games. Recall that each stage is defined by a distinct

pattern; in addition each stage is associated with its own heuristics,

31

LY

Each stage has as its immediate goal the achievement of the next stage
and its heuristics are directed toward that end. For example, in

stage 2 we move the white king up toward the edge until stage 3 is
reached; in stage 3 we force the black king toward a corner until check-
mate is given,

If new stages were added for all these subsets, this heuristic
property would be lost. While we may‘eXpect to use additional heuristics
for two positions in the same subset of a stage, these heuristics are
independent of the particular subset and can be used for all subsets
within that stage. So it makes gerse to handle these subsets differently
from the stages. Therefore a r.ew function has been added which is called
a measure. For each stage n , function m is defined for all
positions in stage n . m is not meaningful for every stage; in
that case we have

Q ¥x(x € stage nj) .

=

~
L

H

Definition 3.5 implies the following measures

m, (x)

m, (x)

"

gg(wkx,edgex) ¥x(x € stage 2) .

1

0 ¥x(x € stage i) , i =0, 1, 3, &
Note that the smaller the measure, the better the position. This is
the opposite of stages. Then the new (and complete) definition of
better is
3.6 better(p,q) = {st(q)>st(p) v

st =st A m <m .

L__(Q) __(P) EE(Q)(Q) EE(Q)(?)}]
For program consistency, 3.3 becomes
5.1 V¥p vq{q Mpp o [st(p)>st(q) v (st(p)=st(q)
Am <m .

22

An addition is also made to give the complete definition of worse.

We have

il]

3.8 worse(p,q) = {st(q)=0 v [st(p)=st(a) A ms_t(p)(pkms_t(p)@)}} ’

We can use this strong definition because if we have two positions in

the same stage we know better how to compare them than if they come

from different stages. We e%tend 3.4 to

5.9 ¥p 3q {p Ma A (st(a)>st(p) v [st(q)=st(p) A
?EE(Q)(Q)SmEE(p)(P)})}.

Like B.h, 3.9 is not necessary to the consistency of the program.

So far in this example stages have been defined in the same way
for positions with white and black to move, excepting stage O and
stage 4 which only contain pesitions with black to move. 1In general,
however, slightly different versions of the same pattern are used to
recognize positions with white to move as part of a stage than are
used for positions with black to move.

For example, 3.6 selects white moves 1, 2, 3, 4, 5 6, and 10 in
Figure 5.1, but these are not the only moves it would select. In
general we are not tco concerned if the program doesn't select the book
move, because the program is looking for a better position and not a
best move. However in this case the program is playing differently
from the bock; it doesn't follcw the second principle in Figure 3.1
and white moves 2 through 5 are affected by this. If we define

x € stage 2 = {f'(x) A gg(wkx,§§§g(x))>2] ,
where

£'(x) = {f(x) A (the two kings are on the same rank (file) in x)},

33

then we will violate 3.7. For instance after move 1 ir Figure 5.1,
we have f'(q) ; then the black king makes its move and we have
~ f£*(p) .
What is needed is to define stage 2 differently for positions with
white and black to move, We will use
x € stage 2 E'if”(x) A gg(wkx, edge(x))>2} ,
where

£"(q) = £'(q)

" (p)

1]

{f(p) A (the kings are on the same rank (file) or on
adjacent ranks (files) in p)} .

With this new definition of stage 2 the program will chose moves 2, 3,
4L and 5 correctly independeént of the order in which the moves are
generated. Another effect of the new definition is to put more
positions in stage 1. In reality stage 1 would be divided into two or
more stages, but here we are concerned only with the part of the end

game covered in Figure 3.1.

Additions to better and worse

When functions are actually written for the play of end games,
3.6 will be the form for better and 3.8 for worse. However, certain

additions will have to be made to better and worse tc make the program

practical. These additions will be made in the following format.
If the tree search is too long, then an addition to better is
required. This will always have the form (for fixed n-)

3.10 (st(p)=st(q)=n A ...).

We assume mn(p)=mh(q) since mn(p)<mn(q) woul * have been worse, and
mn(pl>mn(q) would already have been better. If the tree search is
too broad, an addition will be made to worse. This will always have
the form (for fixed n)

3.11 {st(p)=n A [st(a)<n v (st(a)=n Am (q)=m (p))] A ...} .

To be sure that the program will work consistently it is always
necessary to extend 3.8 to cover additions 5.10, and 3.11 must not
eliminate all former paths to better positions. Program consistency
must be considered separately for each addition.

As =n example of additions consider 3.6 and 3.8 as they apply to
Figure 3.1. The definition of better is sufficient for this end game,
so no problem of consistency arises. However the definition of worse
needs to be enlarged. After move 6 in Figure 3.1, a tree of depth k is
required to reach checkmate., Position pl in Figure 3.3 appears at
the head of this tree. At the first level alone, 12 white moves are

considered, and similar large numbers at further levels. If worse is

changed to

wOrse st{q)=0 v {st{qg)=st A m >m
__(P:Q.) '[___(Q.) [__(Q) __(P) E-.E(p)(Q) ﬁ(?)(p)]
v [st(p)=3 A st(a)<3 A (dq(wk,rbdp(wk,r)
v [st(a) # 3 A d (we,r)>1])]]}
then only 4 moves are considered in Py - In p,, five out of nine
moves remain; note that the desired move, wk-QKt6 gives % not in

stage 3 (see Figure 3.3). This tree is still rather broad and other

or different heuristics can be added to prune more.

35

)

E %
,.I.' W /// ///
/// o //// ///
///////

/’////////
’//////////

This is the position after black move 6
///A

in Figure 3.1.
Z

o T T
5 M M
////// ///////f’//// /////A

”, /// // /// This is the position after black move
R //// i " 8

// /// // in Figure 3.1.
’/////// ///%///A

S // // .
%/7///////// 4//// After white move 9; note that gﬁ(qe) = L
// // //
// v //// .

Vw7 %

Figure 3.3

36

Formal Definitions of better and worse

3.6 better(p,q) = {st(q)>st(p) v

[st(a)=st(p) A Mt (q) (VMse(q)(PHT -

M
o

worse(p,q) = {st(q)=0 v [st(p)=st(q) A mst(p)(p)<mst(p}(q}}} .

Conditions on Stages and Measures

3.7 ¥p Va{q Mgp > [st(p)>st(a) v (st(p)=st(q)
Amst(p)(p)smst(q)(q”]} .
3.9 Yo 3q {p Mg A (st(g)>st(p) v [st(q)=st(p) A

mst(q)(q)smst(p)(p)])} .

Additions to the Formal Definitions of better and worse

Additions to better have the form

3.10 (stp)=st(a)=n A ...) .

Additions to worse have the form

.11 (st(p)=n A [st(a)<n v (st(a)=n Am (a)=m (p))] A ...) .

igure 3.k Listing of the Rules Introduced in Chapter 3,

37

CHAPTER L

ROOK AND KING AGATINST KING

Formal Definitions of better and worse

The method of play chosen for this end game is taken primarily
from Fine [1942]. His description is given in Figure 4.1, The last
few moves of the game are choseﬁ‘by Capablanca's [1935] method
illustrated by moves 8-10 in Figure 3.1.

Only one basic pattern, shown in position 9 in Figure 4.2, is
required for this method of play. The ability of the rook to control
ranks and files is utilized; as long as the black king is not in check
it is held in some area of the board by the rook, Usually this area
is a quadrant as shown in q . If the white king is not on the boundary
of the area, the black king can escape only by attacking the rook. If
the white king is outside of the area, as shown in ql , it is able to
protect the rook from such an attack if it is close enough. It can't
be blocked from protecting the rook by the black king.

If the pattern shown in 9 holds in a position, this is
recognized by function guad:

guad(x) = (the rook confines the black king to an area of the

board in x , and the white king is outside that area),
Qquad describes the pattern occurring in almost all positions of
Figure 4,1, For example guad holds after each of the first three black

and white moves. If guad is satisfied by a position, we will refer to

38

mis piece is not nearly as strong as the Queen and the mate is
accordingly far more difficult. The Rook alone cannot drive the King t>
the edge of ithe board—it needs the assistance of
its own monarch. OSince the Rook is much less
powerful than the Queen, there is less danger of
stalemate—this is the brighter side of the picture.

In order to mate, the enemy King must again
be driven to the edge of the board. The mating /// f/f ég?
position is then the same as the second one with éﬁy / 42;
the Queen. Thus the problem here is essentially ﬁ?ﬁ ¢5§
the same as that in the previous case, the chief
difference being that the two preliminary steps

Mating Position wit
the Rook.

/?/

/ 7 ///
(driving the enemy King back and bringing one's //i gg? ¢é§ Jg

own King up) are carried out simultaneously. The 7, {é;
only stalemate that should be watched for occurs ?y

Black to Play is
No. 2 Stalemated.

// / / / % %

// . f///// . B /e/ -

W%//////%//,// 7 U U W

%%? ?ﬁé ﬁﬁf 562 when the Black King is in the corner.
Starting from any position such as tFEE

?’

\\

/'f
///‘%”
/ shown here in No. 2 we would then proceed

follows: 1R—Q2 (confining the Black King
the right-hand side of the board), 1 K—m;
2 RQ5, K-K5; 3 K-BS, K—Kb; 4 R—Q4 (now he has only three ranks and four
flles), K—K7: 5 KQ5, K- Ké € K=K5, K—K7; 7 K—Kbi, K~B7; 8 R—Q3 (see diz-
sram No. 2a). K—K7; 9 K4, K-B7; 10 R—K3, K—KtT7; 11 K—Kui, K-B7; 12 K-ik,
¥=Kt7; 1% R—i2ch, K-—B8 1k ¥—B3, ¥K—Kt8 (diagram No. 2b); 15 K—-Kt‘j K=Bf ;
16 R=K8, K=K~ 3; 17 R-Kl mate.

The fin:1 maneuver, which involves losing a tempo, or mose, choulc
be remembere —it is the key to this mate.

s o

?0 2a : No. 2b

/ 7.9% W, %, 0, 0
//, // //// /%ﬁ%
f {y % B 7/ %

4’/
Position after 8 R—Q3. P051t10n after lh
... K=Kt8.

Figure L.1. Example from Fine, pe =s 1k and 15.

29

7.) ﬁ
%
@Q%ﬂ
//

il 42? 4%2
/ W W W
”///// ////%

)
bt

§

;%j%;/
W/'V//*////
o
///////
%//@

Favn
W/////,///

R,

"W W Y
/4%//’//

©7

W, 5. T, T
//‘V//”"’//
%7%//%
W'//////
////7

We have guad(ql) and sguad(ql) = 16s

We still have guad(pg) but we must move
the rook or we will lose it. The rook

can move so that there will be a quad-

rant, but the size will be larger.

Here we have guad(pl) and sguad(pl) = 20.
We have leﬁql . We do not want to accept-.
q; as better than Py -

Here we have 9uad(x2) and sguad(xe) = 2

Xn is in stage 3.

Figure 4.2

40

the area in question as a quadrant., This patterr lends itself very
naturally to a measure, If we have quad(x), ther squad(x) is the number
of squares inside the quadrant. For example, in 4y in Figure 4.2,
squad(q,) = 16.

If guad is to be used to determine a stage and squad is to be a
measure in that stage, we must satisfy conditions %.7 and 3.9 (see
Figure 3.4). Condition 3.7 presents no problem since both guad and
squad depend only on the positions of the white pieces, The black
king is unable to escape from a quadrant except by taking the rook; in
this case the position q prior to the black move would be in stage O,

Rule 3.9 cannot be satisfied without putting additional conditions
in the stage definition., For example, suppose in position 9 the
black king moved to Q4 to attack the rock, forming p, in
Figure 4.2, The white king is not close enough -o protect the rook;
therefore we must move the rook away from the black king. It is simple
to form a new quadrant; for example, aﬂy rook move on the fourth rank
will do this. However every rook move which forms a guadrant forms
one of a larger size. In general, the rook can always form a quadrant,
but it may be larger than the present one. This viclates rule 3.9,

Note that—it really would be incorrect for the program to accept
a position like q, as better than for example, p, in Figure k.2,

At position p, , the best that white can do is te mainiain the smallest
possible quadrant. This will have size 20, the same as Egggg(pl).
Therefore nothing has been gained by making the move to q1 and the

burden of correct play has been pushed onto the tree search.

L3

Now the problem in position q:L came about only because the white
king was too far away from the rook to protect it from the black king's
attack. Therefore all that is needed to satisfy rule 5.9 is to
insist that the white king protect the rook. The condition of pro-

tection is given by function goocdquad

goodquad(p) = {quad(p) A dp(wk,r)gﬁp(bk,r)+l}

goodgquad(q) = {guad(q) A dp(wk,r)g@q(bk,r)] :

Different definitions are given for p and gq to insure that goodquad
satisfies 3.7. (We remind the reader that definitions of basic functions
and notation are given in Appendix A.)

The use of goodquad for a stage and squad for a measure in that
stage will inexorably force the black king toward a corner of the
board. However, this process must stop when we reach a quadrant of
size 2, since any smaller quadrant would be stalemate. Therefore when
squad = 2 we must move to a new stage. At this point we shift to the
heuristics taken from Capablanca [1935]. X, in Figure L.2 is an
example of a position from this stage (stage 3).

We give the formal definition of better and worse by defining the

stages and measures.

x € stage 0 = (x is stalemate or x is a position with black to
move and black can take the rook in one move),

x € stage 1-5 x cannot be assigned to any other stage.

x € stage 2 = {goodquad(x) A squad(x) > 2} .

x € stage 3 = {goodquad(x) A squad(x) = 2} .

x € stage 4 = x is checkmate.

42

Only stage 2 has a meaningful measure. We have

m,(x) = squad(x) ¥x(x € stage 2) ;

1]

mi(x) 0 i#2

Additions to better and worse

We are now ready to consider how well the program plays tusing the
formal definition of better and worse. We need not worry about the
transition from stage 1 to stage 2, since the tree search is no greater
than depth 2. However, the depth of tree search in stae 2 can be as
large as 8, although a depth of 3 is average; in stage 3 the;g is a
maximum depth of 5. Therefore, we must make additions to better.and
worse in stages 2 and 3.

In stage 2 both the length and the width of the tree must.be
reduced. Recall that we are striving to shrink the size of the quad-
rant. The rook alone is unable to do this; scmetimes the white king
must be used to force the black king away from the rook. For example,
in Py in Figure 4.3 the white king must move onto the boundary of
the quadrant. Then on the next white move the rook can form a new
quadrant smaller than the present one (see position %4 in Figure 4.3).
In order for the white king to be useful, it must first be next to the
rook. Position p, in Figure 4.3 is an example of a position in
which the white king must move up to the rook. We can recognize this

kind of move by adding to better

k.1 st(p)=st(q)=2 A dq(wk,r)Cdp(wk,r) ;

43

T
h
/,// ////////4,///
/////‘f///f//////
/////%,, //
_////////////

L

//A//// ‘f// ////

/ =1 f
//// ’///////
7 /// /// f//
////////// ’///

W
W/ ///%

/ ///////;///Z
/ﬁ/// ’///

///,,// ///// o "

////f////////”////

///////’//A//
/i‘%/////////

////////'

f/////_ /
/// e, y

Figure 4.3.

In this position obviously we want wk-Q5 or

Wk-KS -

This is the position beforg move & in Fine
(Figure 3.1). Now we want to move the white
king onto the boundary to force the black king
away from the rook. The move made in Fine is
wk-Kbi; wk-KB4W 1is just as good.

The black king is forced to move away from
the rook (bk-KB7 in Fine), and then the rook
can form a smaller quadrant (r-Q3), giving a4

p*, taken from Figure 4.1 before white move 5,
is the start of the longest tree (depth 4).

Examples of Moves in Stage 2.

Ly

4.1 reduceé the lengfh of the tree search to a maximum of four. This
is a manageable length so no further change need be made to better.

A tree search of depth thfee or four requires considerable
pruning to be practical. In the formal definition only rook moves
leading to larger quadrants and moves giving stage O are eliminated.

In p* in Figure 4.3, for example, seven white king moves and four
rook moves would be examined in the tree search. This tree will be too
broad.

Note first of all that tree search will take place only when
dp(wk,r) = 1 . The strategy at this point is to move the white king
onto the boundary, which gives a position gq in stage 1. Therefore
not all stage 1 positions q can be declared worse than p . However,
the rook can also move to form a stage 1 position, either by moving
so that in q there is no quadrant or the rook is not protected by the
white king. All these moves can be eliminated. In addition all white
king moves which result in ﬁq(wk,r) > 1 can be eliminated. We add to
worse
b2 st(p)=2 A [st(g)<@ v (st(a)=2 A my(p)=m,(a))]

A [dp(wk,r):l]
A [dq(wk,rl>1 v (st(q)=1 A rp#rq)]

It is easy to see that these additions to better and worse are

correct. First we note that

(QMBP A,EE(Q)=2) o> (st(p)=2 A ?EE(p)(P) = m§§(p}(Q)

T A d,(uk, r) = dg(vk, 1)) .

Therefore 3.7 can be extended to cover 4.1. As far as 3.9 is concerned,

the important thing is that the white king is always able to move toc

k5

protect the rook and such a move will insure

dq(wk,r) < dp(wk,r) .

We note also that 4.1 can only be applied to finite number of times
(no more than 7) between applications of the formal definition of
better. 4.2 is correct because it dres not interfere with 4,1 or the
formal definition of better, even when a tree search is required to
force a smaller quadrant.

In stage 3, the maximum length of the tree search is five, so it
is not necessary to change better. However considerable tree pruning
will be needed to make the tree manageable,

The checkmate position is illustrated by q5 in Figure 3.2. Before
the checkmate can be given, the white king must be in the square in-
dicated in Q3 . Note d(wk,r) = 1 in the checkmate position. Now we
could have used dx(wk,r) as a measure in stage 3 but it leads to
considerable inaccuracy of play since only the indicateg square, cf
all the séuares next to the rook square, is used for checkmate. We have
concentrated instead on tree pruning.

Although we do not use d(wk,r) as a measure, it is obvious that
we do not want to move the white king away from the rook. This one rule
will eliminate many king moves. However, the rock also contributes
many moves, some rook moves giving stage 2 positions and some stage 1.
The stage 2 moves can be eliminated, but sometimes a stage 1 rook move
is necessary., This case is illustrated by pésition pl in Figure 4.4,
At this point the rook must make a "tempo" move., It must remain on the
QB file, so that the black king is forced to move into the corner.

However, there are six usable Squares on that file. We can limit the

46

A'W

" ///

b

1 //////%
;//////7/
ff//////////%

| 78 7
W w w
//’S//’/////////%//ﬂ
q 58
R
%/ o // "
p¥ /;4}//,?/

“

e /////y

»

/.///4”' ///4 W
7.

Figure 4.4,

No immediate successor position is better
than Py - r-gB6 is a desired move

After r-QB6, we have q. 1in stage 1. bk=Rl
is the only legal move, and then we can get
checkmate. This rook move is needed for parity.

p* 1is an example of the longest tree search,
and the depth of this tree is 5 moves. Tt
is quite narrow, however. After pruning, the
remaining white moves are r-Q7, r-K7, r-QR8
and wk-Q7.

Examples of Stage 3.

47

rook moves examined by insisting that the rook stay next tc the white
king. In stage 3> we add to worse:
k.3 st(p)=3 A [st(q)=2 v (st(q)=1 A dq(wk,r)ﬂ)
v (st(q)=3 A dq(wk,r)>1 A dq(wk,r):_?_dp(wk,r))]

k.% is correct because again we have been careful not to eliminate all
paths tc checkmate. Now the tree is narrow enough to manage. 1In Py
'f\(instance only four moves are left after pruning; in p¥ also four
moves aré left. Since very few moves are available to the black king
the tree remains quite narrow.

Combining formulas 4.1, 4.2 and 4.3 with the formal definitions
of better and worse we have:

better(p,q) = {(st(q)>st(p))

v (st(q)=st(p) A mﬁ(q)(Q)mﬁ(q)(P))

v (st(p)=st(q)=2 A dq{wk,r)<dp(wk,r))} .

worse(p,q) = {st(q)=0 v (stla)=st(p) Am . y(p)<m ;. y(a))
v (st(p)=2 A [st(a)=1 v (st(a)=2 A m,(p)=m,(a))]
A dp(wk,r)=l
A [dq(wk,r)>3. v (st(q)=1 A rp;érq)])
v (st(p)=3 A [st(a)=2 v (st(q)=1 A dq(wk,r)>l)
v (st(a)=3 A dq(wk,r)n
A dq(wk,r)Zﬂp(wk,r))])] .

These are the functions actually used in the program.

Examples of Program Play

In order to prove that the program works we must give examples of

program play. The first example is taken from Figure 4.1. The program

438

is started at the second move because it would maker -QR5 as its first

move,

1.

9.

The opening position is

r-q8

wk-Q6
wk-K6
wk-K5

r.

wk-K4

r'-3

wk-Qh

10. T -K3

11, wk-K&

bk -K5
bk -X6
bk -K5
bk -K6

bk -B6

bk -K7

bk -B7

bk -KT7

bk -BT

bk -Kt7

bk -B7

The reason for this difference will be discussed later.

in Figure 4.5, We have:

Py is a stage 1 position, there-
|

fore the first stage 2 position

generated is better,

The program has lost one move,.

Now we have squad = 16, The white
moves 3 to 6 are chosen by a tree

search,

This is the same position as the
book's after move 8, White moves
7 and 8 are chosen in a tree

search.

The tree has depth 3, but this
branch (moves 9 and 10) is only

depth 2,

//// /// /

P, /// /// // ’i’;lgg;pirjing position for the example is in
W, M. % 1,
m, /// 7

ﬁv

// 7
.M. ////
//V//// M //// 7
// /// //év // The position after book move 13.
. M M
//j///////é////////ﬂ
. T T T

Y

7
/_?/ ////
L %ﬂ%/% U
p,.-//////

%’/ W
%/,////////

The rook and white king are in the position
after move 13 by the program.

Figure 4.5. Tllustrations of Examples of Program Play.

50

12. wk-Bb& bk -K+7
13. r-B3 Moves 9-12 are the same as the

book's, but now we differ.

bk -R7
1%, r -Kt3 We are now in stage 3; see
Figure 3.1 at move 7.
bk -R8
15. wk-B3 bk -R7
16. wk-B2 bk -R8

17. r -R3 mate \

The program is playing very similarly to the book up to move 15.
It choses a better and not the best position at move 1, and then must
work hard to catch up to the book. It is in a better position after
move 6 than the book is after move 4 and is able to regain two moves,
At move 1% the book makes a move using a different strategy. Instead
of shrinking the quadrant it puts the king in check (see g, in
Figure 4.5). 1If the black king goes to any sguare tut B8 the book
gives mate in two or three moves, but for the move to B8, four moves
are required. The program's mcve also requires four more moves to
checkmate, so it is really just as good as the book move.

Position o in Figure 4.5 is the starting position for this next

example. Py is the position which results if in the previous example

we have
3T waw bk -Kt8
14, wk-Kt3 bk -R8

51

- -

15. r -B2 "' r-Bl is checkmate, butr -B2 is
generated first and also gives a
better (stage 3) position.

bk-Kt8

16. r -B4 bk-R8

17. r -Bl Checkmate.

However, the order of moves can also be correct. If

13. oes bk-RE

4. r -B2 and two moves to checkmate. r-Kt3
also gives a better position, but
four moves would have been required
tc mate,.

The numbering of the program moves is one less then it should be
since the program started aﬁ book move two. This means the program

never recovered the move it lost at its first move.

Evaluation of Program Play

Now we can see that the program plays similarly to the books.
More important, it is using the same heuristics as the book's in most
cases. For example, the use of squad as a measure exactly models Fine's
book when it is concerned with cutting down the number of ranks and
files available to the black king (see the comment after move 4 in
Figure 4.1). Also both the program and the book use the white king
to protect the roock and to force the black king away from the rook so

a smaller quadrant can be formed.

52

The differences in program and book play that do occur illustrate
features of program play. These will be discussed in detail in
Chapter T7; only a list will be given here.

1. The goodness of program play is dependent on the order of move
generation (illustrated by the last two game examples).

2. The program will accept a move which gives a better position at
depth 1 even if an advantage would be gained by waiting until depth 2
to evaluate, This is the reason that the program will not make book
move 1.

5. The program uses a single main heuristic inside a stage; it will
not switch heuristics until it reaches a new stage. This is th; reason
the program will not make book move 13,

None of these features causes the program any serious difficulty. 1In
fact, the program plays this end game very well. If it can do as well

on other end games, we will be very satisfied with it.

23

CHAPTER 5

TWO BISHOPS AND KING AGATNST KING

This end game, while not difficult, is considerably harder to play
than the Rook end game, and the increase in difficulty is mirrored in
the program. The final definitions of better and worse are quite
complicated. As in the Rook game, the method of play used is a com-
posite of Fine [1944] and Capablanca [1935]. Figure 5.1 is the example
from Fine; Capablanca's method is given in Figure 5.6. Again Fine's
method is used to guide the first part of the game, while Capablanca's
is used in the final stages.

Two basic patterns are sufficient for the entire end gam:, The
first, as in the Rook end game, is concerned with confining the black
king to an area of the board. Unlike the rook, a bishop does not hold
an uncrossable line., However when two bishops are on adjacent diagonals
they together do hold such a line. Position Xy in Figure 5.2 illus-
trates this; the black king is confined to approximately half the
board. When the bishops are also on adjacent squares, the space avail-
able to the tlack king is even smaller, approximately a quarter of the
board. This is shown in positions X, and x3 in Figure 5'2'u In
addition when the two bishops are on adjacent squares they may §rotect
each other, as in Xy . If not, as in x3 , then only one bishop is

open to attack, and there is only one square inside the area from which

the black king can attack it. Therefore it is fairly easy for the

Sk

In the previous cases it has always been sufficient to drive the

King to the

edge of the board.

Here, however, it is essential to have

the enemy King in a corner, for though mating positions in the center

are possible they cannot be forced.

case with Bi

No.

No

Fi gure ,!5» 1.

shop and Knight).

3

move?:

Any corner will do (unlike the

Beginning with any arbitrary position (see’
diagram No. 3) the first task is to reduce the
mobility of the Black King.

Thus 1 B-B3, K-KO;
2 B-B6, K-Q5.

Now that the Bishops are as well
placed as possible the King must come up.

3 K-Kth, ¥-Qb6; 4 B-K5, K-Kb; 5 KB4, KQ7; © B-
Q4, K-K7; 7 K-B3, K—BS (see diagram No. 3a);

8 B-B3, K—K8; 9 B-Kt2, K—K7; 10 B-B5 (a tempo
White cannot approach directly and loses
a move to compel Black to retreat), K—K8; 11 K-
Q3, ¥—QB8 (see diagram No. 3b). _
on the rest is quite simple: by successively
cutting off the squares to the right of Black he
is compelled to play into the corner.

From this point

12 B-Ktk,

, K-B8; 13 B-KB3, K-Kt7; 14 B-Q1 (the King must not
be allowed to escape), K=B8; 15 B-R4, K—Kt8; 16 k—Q2, K-Kt7; 17 KFQl,
K-Kt8; 18 B-B3, K-R7; 19 ¥K-B2, K-R6; 20 B-Kt5, K-R7; 21 B-Kth, K—R8;
22 BQ3 (tempo move), K—R7; 23 B-Bich, K-R8; 24 B—B3 mate.

« 3a. Position after
Black's Tth Move.

/7 7 o o
7 7 7 o /
‘ 7 77 %‘ 7 /{*,
7
77 ;,’/

NI W W

7 % g %
7

7 7

% 7

/ﬁﬁ{é 7.

i
i 7
A Z s
7

Example from Fine, p.

25

Black's 11th Move.

20
A,

7

i
Yz

E <7
f

7,;

i
o
’

%%%?

T .
¥ %
o e,
o, %@% ,ﬁ?
o %%% L

':;/‘f/ ;// ,- / i

No. 5b. Position after

7 T

This method serves as a guide
for the first part of the game.

\ M

”///

W, ! /u’/// Y

Uw W, W
/// // %/ /// When the two bishops are on adjacent diagonsals

//// */// {// they confine the black king to approximately

' /// half the board.
///// ”//// '%//%

" / ..
«/,"’%//// W

0 gAY W
Z/ ﬁé}/// U
/w / ///

”//, ///

If in addition they are on adjacent squares
they confine the black king to approximately
a quarter of the board. In X, they also
protect each other.

mas
,%/,,/ i

However, the white bishop is open to attack
in x

5

%/ ’//’7/

Figure 5.2. Examples of Quadrants.

56

program to evaluate the danger of attack and decide how to prevent

it. For this reason, together with the advantage of confining the black
king to a small area, the program uses this configuration as its sole
pattern. In Fine, this pattern is combined with the one where the two
bishops are simply on adjacent diagonals. Capablanca does not describe
the middle part of this end game; however the part he describes is a
continuation of this method (see Figure 5.6).

Now when the bishops are side by side they keep the black king in
approximatel& a quarter of the board, so this area will be called a
quadrant.‘/Such an area will be recognized by function quad(x) . In
order for the black king to be confined tu an area it must either be
inside the area or else possibly on the inner diagonal of the boundary
of the area. For example, in x3 in Figure 5.2, squares QR2, QKt3,
Q3, K2 and KBl may be acceptable positions for the black king, in
addition to the inside squares. We have

quad(x) = {the black king is inside the area formed by the two

adjacent bishops, or it is on the inner diagonal of
the boundary of the area}.
Note that the position of the white king is not considered in quad.

It is easy to define a size for a quadrant. The area in which
the black king. is controlled by the bishops has the shape of a triangle,
and an edge of the board forms the side of the triangle copposite the
two bishops. Call this edge, edge(x) . Then

squad(x) = gg(kbx,gggg(x))ﬁggﬁqu, edge(x)) .

Thus ESEEE(XQ) =8 and EBEEQ(X5) =7 . (For definitions of basic
functions and notation, refer to Appendix A,)

o7

The fact that we intend to use Capablanca's method for the last
part of the game puts a restriction on the quadrants the program uses
in this stage (stage 2). Position x, 1in Figure 5.3 is an example of

the start of Capablanca's method. Note that the quadrant in Xy contains
a corner, Now if we decrease the size of the quadrant indiscriminately
we may end up with the black king confined to a small area not contain-
ing a corner, as in x, 1in Figure 5.3. Then we would have to use an’

intermediate heuristic to achieve Xy Rather than do this we force
xl to occur directly by only using quadrants containing corners.
Function hascorner(x) is true if the quadrant in x contains a
corner. This constraint makes it more difficult tor the program to
force a smaller quadrant, since often only one of the two immediately
smaller quadrants contains a corner, Position p in Figure 5.3 is an

example,

We now must consider whether quad and squad will satisfy conditions

3.7 and 3,9, For condition 3.7 we define

spec(x) = [some successor of the black king in x is not
inside the gquadrant]}.

Then for a quadrant to be accepted in gq , EEEE(Q) must be false. For
example, ql in Figure 5.4 will be rightfully rejected by this condition;
after the black king moves to KB7 no white move can force it back into
the area. Requiring that EEEE(Q) be false insures that the black king
must move inside the quadrant, and any p with the black king inside
the quadrant will be accepted. Therefore rule 3.7 is satisfied.
Condition 3,9 presents more difficulty. First we must reject positions

like p, in Figure 5.4. 1In P, , only gb-Q6 will form a quadrant, but

58

= %/.@ /

Wy%’/ %

W’f////%}//
/fo//,//

% W, I
%ﬁﬁ//ﬁ//ﬁl

y

9///
//%?i

f?///f//‘V///

i,

“// //////

//

/%%W

X5 % / /
| ///V "W m. m
// w

The quadrant in p has a corner. However,
of the two ways of forming a2 smaller quadrant,

only one, qb-QBS, produces a quadrant with
a corner.

Figure 5.3.

29

7, T
//// .
, M, W ///
/w/////

“amm
//////////

/
/‘%%

\\.‘\

,

" /”7
Z// M ////// %//////
Po ///

5/
////
" m. W
@////////%

%//// %Mﬁ

The black king can move to KB7, giving Py »

and no white move can contain the black king
in a quadrant of size 8.

The white bishop has just moved from QB6
(squad =9). Now squad(g;) = 8. The black
king is controlled by the zhlte king and must
move inside the guadrant.

Figure 5.k4.

60

this quadrant has size 9. If b, 15 considered to have a quadrant,
then that quadrant would have size 8. Therefore, if in p the black
king is on the boundary of the area, we insist that spec(p) be false
if the quadrant is to be accepted.

We have now eliminated any possibility of direct black escape from
the quadrant. However, we must consider whether white may be forced to
give up an advantage because of a black threat. Now black can only
threaten a bishop, and in a position like X, 1in Figure 5.2 the bi~Lops
protect each other. Therefore we need only worry about a quadrant like
the one in x3 in Figure 5.2. A position x with a pattern like x5
can easily be recognized because Egggg(x) is odd. If this is true,
the quadrant is called a head quadrant, and head(x) is the square
containing the bishop closest to the black king. This bishop is referred
to as the head bishop.

In the Rook end game we solved a similar problem by always insisting
that the white king be close to the vulnerable piece. Here things are
not so simple. In the Rook game the white king could assist in shrinking
the quadrant from a sguare next to the rook, but in this end game the
white king may have to move away from the head bishop in order to be of
use. For example in qﬁ in Figure 5.4 the king's bishop has just moved
from QB6; prior to this move the queen's bishop on black square QBS5 was
the head bishop, and the white king is four away from this bishop.

If in a head quadrant we can make a move intoc a smaller non-head
quadrant we have cancelled any threat the black king was making. If

either bishop could move tc meke a smaller quadrant, then if

61

d(bkq, head(q)) > 3 we would always be sure of formirg the non-head
quadrant in time. However, because of the corner condition, usually
only one bishop move is permitted. In this case the white king is the
only sure means of defending the head bishop. However, if at any point
we know we can form a smaller quadrant in time, we will take advantage
of that fact.

It is difficult to be sure that the white king can protect the
head bishop. In 9 in Figure 5.5 we have |

d(wk head(ql)) = d(bkql, head(ql)) , but even so the white king

q]_’

cannot protect the head bishop. Therefore in q we expect the condition
d(wkq, head(q)) < d(bkq, head{(q))

and in p

5.1 d(wkp, head(p)) < d(okp, head(p)) .

However these conditions are not even sufficient. Position p5 in

Figure 5.5 is an example. satisfies 5.1 but a bishop will have to

Fs
move to form a larger quadrant because every white king move leaves
the head bishop unprotected. This condition can be recognized in the
position from which black moved to form Ps (position g, in
Figune 5.5). Note that the white king position shown in g, and P
is just one of many which are bad. The bad squares are: KKt3, KKth,
QB3, QB4+, KB6, and Q6. Also all squares more than two away from the
head bishop are bad. The remaining squares are good: they are KKt5,
KKt6, KKt7, KBS, KB7, K7, @5, Q7, QB5, QB6, and QBT.

One final case remains to be considered, and it is illustrated by

position gq in Figure 5.5. We have d(bkqh, head(qh)) =2 and

62

%?

i,

| //
P 5’7// ///#;/

_///// W

W%
%/M

%%

: / /." /%% /?_
¥/ /

W ///M.'ﬁ..' m
N, /ﬁ . W

‘V/W,"/f%
’/%V// 7
) 1

A

/%/ %

fffﬁ -

/%%

dql(wk, gb) =3 = dql(bk, gb). However the
white king is unable to prevent the attack
on the head bishop since it will be blocked
by the black king.

d(WRqL’ Qggg(qu)) = 3, but tne white king is still able tc protect the
head bishop. This is because the black king is in check, so it is
unable to use the direct attacking path (it needs twc mcves tc attack).
The fact that the black king is in check but there is a quadrant, means
either the white king is guarding the boundary or the boundary is next
to an edge of the board. If the white king is guarding the boundary of
the area, we know that it cannot be prevented from protecting tne head
bishop. If the boundary is next to an edge, white will have no dif-
ficulty in forming a smaller quadrant, since we then know that either
bishop move will form a smaller quadrant containing a corner. So, if
tne black king is in check in q , and d(bkq, head(q)) = 2 , we accept
q as long as d(wkq, head(q)) < 3 . The reason for going to all this
trouble is that this is a very common OCCUrrence, and if we do not make
the exception the program will essentially play from one non-head quad-
rant to another with only tree search in tetween. This makes the trees
too long., Even so some perfectly saile positions will be rejected.

Let us formalize the conditions discussed in the preceding

paragraphs. A function badc is defined to recognize the situations

occurring in positions 4, and p3 of Figure 5.5. For aq, badc
is concerned with all positions with d(bkq, head(q)) = 2 . Thus the
case of the black king in check is nandled in badc also. We have
safe(q) = {(squad(q) is even) V [d(bkq,g_e_@_é(q))=2 A — badc(q)] Vv
[a(bk ,kead(a))>2 A a(wk,head(q))<d(bk,head(a)) 1} .
Note that q with d(wkq,_i}_@_gg(q)):d(bkq,_?}gg.g(q)):l will satigfy safe.

In p , badc handles all positions with d(bkp,head(p))zl . We have

64

safe(p) = [(squad(p) 1is even) v (a(bk ,head(p))=1 A - bade(p)) v

(a(bk ,head(p)>1 A d(uk , head(p))<a(k ,head(p)))] .

Now we can define the recognizer for stage 2:

1t}

goodquad(p) = {quad(p) A hascorner(p) A safe(p)}

goodquad(q) = {quad(q) A — spec(q) A hascorner(q) A safe(q)} .

goodguad and squad satisfy 3.7 and 3.9.

Stage >

As explained previously the condition hascorner is used to insure
that stage 2 will eventually fit in with Capablanca's method for the
end of the game. The example from Capablanca is given in Figure 5.6;
position Xy in Figure 5.3 "satisfies the same pattern as Capablanca's
position after white move 3. This is the point at which stage 3 should
start because now we will use different heuristics., If goodquad(x) ,
then squad(x)>6 indicates stage 2, while squad(x)=5 or 6 gives
stage 3. If §3&2§(x)<5 we allow the program to use tree search to
arrive at the larger quadrant of stage 3.

Position Py in Figure 5.7 is the position in Capablanca after
white move 3, Capablanca's strategy for this part of the game is to
move the white king up into one of the squares marked X1, X2, or Y ,
or the square occupied by the black king. For the program, this has
been simplified. Only the squares marked X1 and X2 are used as
goal squares for the white king. When squad=6 , X1 is the goal
square. When squad=5 , either X1 or X2 is allowed; one of these
will be covered by a bishop. Since with ESEE§F5 we have a head

quadrant, this is used only as a back-up for squad=6 . It is needed

65

llow we come to two Bishops and King against King.

Since the Black King is in the corner, White can play 1 B—Q3,
K—Kt2; 2 B-KKt5, K-B2; 3 B-BS5, and already the Black King is confined
to a few squares. If the Black King, in the original position, had
been in the center of the board, or away from the last row, White should
have advanced his King, and then, with the aid of his Bishops, restrict-
~d the Black King's movements to as few squares as possible.

We might now continue: 3...K-Kte; L ¥~B2. 1In this ending the Black
Kinz must not only be driven to the edge of the bcard, but he must also
be forced into a corner, and, before a mate can be given, the White King
rust be brought to the sixth rank and, at the same time, in one of the
last two files; in this case either KR6, KKt6, KET, KB8, and as KR6 and
ZXTF are the nearest squares, it is to either of these squares that the
King ought to go. 4...K™B2; 5 K=Xt3, K—Kt2; 6 K—R4, K-B2; 7 K-RD, K—Kt2;
5 BKtf, K—Ktl; 9 K—R6, K—Bl. White must now mark time and move one of
the Bishops, so as to force the Black King to go back; 10 B—R5, K-Ktl;
11 BX7, K-Rl. Now the White Bishop must take up a position from which
it can give check next move along the White diagonal, when the Black King
moves back to Ktl. 12 B—KKth, K-Xtl; 13 B—Kéch, K—Rlj; 14 B—B6 mate.

Figure 5.6. Example from Capablance, page 29-30. The program plays
almost exactly the same from White move 4 on.

66

Z W /*W
/ //4@/:“

| f//////’////

% //ﬁ
"f//’//////
W W
f%y%/%f

44444

./
//5;’»// 7
%V%%%,g
% % %

Figure 5.7.

67

Examples of Stage 3.

in a position like P in Figure 5.7; the king's bishop moves to KKt6
which is really a tempo move (position q, 1in Figure 5.7).

The obvious measure for stage 3 is some kind of distance function
measuring the number of moves required for the white king to reach the
goal syuare. This function must .take account of obstructions (the
bishops) and tempo moves. The following function works well. First we
define, for position x in stage 3, functions sql(x) and sg2(x) .
ggl(x) contains the goal square like Xl in Py s and §g§(x) the other

goal square X2 . We use as a measure

max (d(wkx,ﬂ;(x)),d(wkx,ﬂg(x))) .
This function has a minimum value of 1; it will bring the white king up
to sql and sg2 , but will not select the actual goal square. When
a goal square is achieved, we will be in stage .

We must consider the problem of satisfying conditions 3.7 and 3.9.
If goodgquad holds we obviously have no prcblem, since no new difficulty
has been added. Actually goodquad is stronger than needed, since no
objection is raised now to moving from squad=> to EﬂEEQFé . But
there is no particular reason to remove this condition, and it tends

to prevent foolish bishop moves.

Stage 4

Once the white king has actually moved into the goal square, the
position is in stage 4. (Since st selects the highest stage there
is no conflict.) Three factors, recognized by function end2 , are
used to determine stage 4. One is the position of the white king in a

goal square. In addition the black king must be confined to the edge

68

opposite the white king. This condition will always be satisfied if

we are coming from stage 3 and the white king is in the appropriate

goal square. If squad=6 and the white king is in sg2 , usually the
condition is not satisfied. Position q, in Figure 5.8 is an example.
For the white king as shown, in gg;(ql), we have stage 4. If the white
king were in Egg(ql)=KR6 , the black king would be able to escape from
the edge (to KB2), so we would not have stage L. The third factor is
concerned with “he distance of the black king and all its legal successOrs

from the corner closest to the white king. Let succ(x) be the set of

all successors to the black king in x . Let
sucel(x) = suce(x) U ok if the black king is not in check
in x.
= succ(x) otherwise.
Let c(x) be the corner closest to the white king in x . Then let

dedge(x) = max({d(r,c(x))|resucel(x)})
and ggggg(x)gj is the condition used for stage L,

The reason for the choice of three as a limit comes from the fact
that this is the highest value which the ordinary entry through stage 3
will satisfy. Sometimes a starting position, like P in Figure 5.8,
will haveqthe white king in position and the black king confined to the
edge, bub farther than three squares from the corner. Either a long
tree search or different heuristics would be required to handle such a
position if we called it stage 4, This is not worthwhile for such a

special case.

69

// /////W/
. 7 /’,//
' ;////// ////A

/// // ,,/// //4

b s
V///@:’f////

= W // W ’7/
w1
W/// ////////’/////

7
“waae

b, % T,
.
=,

W//’///////
//////’/////

T . % T
/////7///%%
////ﬂ////

Py . é 47 //
// W, W "
7 / //////
m, 7

Figure 5.8. Examples of Stage L,

70

The heuristic for this stage is to use the bishops to force the
black king into the corner. Checkmate can only be given in or next to
a corner in this game. dedge can be used to express this heuristic
and is the measurz for stage b,

Again we must worry about satisfying conditions 3.7 and 3.9. The
difficulty arises from non-standard entries into stage 4. Consider
first q, in Figure 5.8. All conditions for stage 4 seem to be satis-
fiod, but when the black king moves to Kl (position 95 in Figure 5.8)
we no longer have a stage 4 position. To avoid such trouble we add
condition

dcond(g) = {fh_d«:;-_\qud(bkq,C(q)) v

(goodquad(q) A 5 < squad(q) < 6)}.
— badk [p)

]

deond(p)
This condition says that the black king is forced to move closer to the
corner; we only insist upon this when the entry is not from stage 3.
Condition decond is sufficient to satisfy both rules 3.7 and 3.9,
sinc; there is no way in which the black king can force white to
abandon stage 4. Since the black king cannot be in check in p , we
know that if a bishop 1s preventing 1ts escape from an edge. that bishop
must be bearing on the edge. Unless a bishop is blocked by the white
king, as in p in Figure 5.8 (satisfying badkt), white can maintain
stage 4. If the white king is preventing the black king from escaping,

the bishops have sufficient mobility to keep the advantage.

Formal Definitions of better and worse

Here are the definitions of the stages,

71

x € stage O {x 1is stalemate or x 1is a position with black to

move and black can take a piece in one move}.

x € stage 1 = {x is not in any otner stage}.

x € stage 2 = {goodquad(x) A squad(x) > 6]},

x € stage 3

{goodquad(x) A 5< squad(x) < 6 }.
{end2(x) A decoud(x)}.

x € stage b

{x 1is checkmate}.

X € stage 5

The measures are

mz(x) = squad(x) x € stage 2
m5(x) = max(d(wkx,ggé(x)),d(wkx,ggg(x))) x € stage 3
mh(x) = dedge(x) X € stage 4
mi(x) = 0 i=0,1,5, x € stage i

An explanation is needed about the definition of stage O, There
are positions p with white to move which are successcrs of some
q€EQ, but p ¢ P . They are all Like position Ps in Figure 5.9
which is a successor of position a9y in Figure 5.9. It is not
necessary to recognize ql as a member of stage O however. Since
position 9 is a stage 1 position, and since no position with white
to move is in stage C, 9 will never be accepted by better. Therefore

the program will work correctly with the present definition of stage 0.

Changes to better and worse

Now that we have given the formal definitions of better and worse,

we consider what changes are needed to make the program practical. At

present a tree of at most depth 3 is required to move from stage 1 to

stage 2, This tree is very wide, but since it occurs at most once in

a game no changes have been made to stage 1 heuristics.

72

/; ‘//' W'
Yo ///////////

W
5“/ ’///’///
| 4//’/

9 /z

/’

{y/
"
U/, //4

Qﬂ

W/
",:'—";’- jy/f //

///

E b f?/ ///

e w ////.e./////,
w b
- W, / ///

/N

o

'

Figure 5.9.

Illegal Positions.

13

In stage 2, very long tree searches may be needed, up to a
maximum of depth 8. The wors% cases occur in non-head quadrants.
Frequently in such positicns, tlree search to a new ncn-head quadrant
is required because of tne difficulty in being certain a head quadrant
is safe. For ekémple, in position Py in Figure 5.10 a tree of depth 5
is required to force a better pesition; in o the tree has depth 7.
We will discuss heuristics for non-head quadrants first,

Obviously we would like to cut down on both the length and breadth
of the tree search. Unfortunately it is very difficult to define
heuristics to add to better which will work in all long trees. In
position Py > the moves wk-QB5 and wk-QB6 are equally gcod moves, and
either would be selected at depth 5. Both moves enable the white king
to guard the boundary of the quadrant. The move wk-QB6 satisfies
5.2 dq(wk,bkkdp(wk,bk) ﬁd_mlg(q)(_g@_i_g(p)
where

dmin(x) = min(dx(wk,kb),dx(wk,qb)),
while wk-QB5 does not., When 5.2 is added to better it will cut the
tree search in Py (starting at level 2 of the original tree) to b;
in P nothing is gained. In many positions, however, considerable
reduction in tree search is galned by this heuristic, and the maximum
tree depth is cut to 7 (position pE)' 5.2 satisfies 3.7 because dmin
depends only on the positions of the white pieces. dmin also insures

that 5.2 will be applied only a finite number of times (no more than

I

fivé).

Now rule 5.2 will obviously fail if

7h

,/ ///f//,
//////////////

;/////

7 J’i),
77 /; // /
//%///% /////
5 //’7////////4@/
., W, U
////7////
s

V)

/ ‘gf Jﬁy J%V/ }

/ ///// //// /f/

M .@’M _;
//
7 /// // /M

”//////w’%
ph//

i M
//// // %///'7
;gﬁ :

Figure 5.10. Tree Pruning Heuristics for Non-Head Quadrants.

15

1. dp(wk,bk) =2 , or
2. dmin(p) = 1 .
If these patterns hold in p , we must turn to tree pruning to make the
tree manageable, First, all movec leading to positions without quad-
rants can pe eliminated by rejecting g satisfying

badquad(q) = {— quad(q) Vv spec(q) V — hascorner(q) Vv

[(squad(q) is odd) A d(bk ,head{a))}2 A bade(a) 1} -

Bishop moves leading to larger quadrants are already eliminated; in
addition badquad eliminates some bishop moves leading to smaller
quadrants. Few bishop moves are left; these are the ones which hope-
fully will lead to either a legal head quadrant or a small non-head gquad-
rant in one more move.

badquad applies only to bishop moves; king moves must also be
eliminated. First we reject all king moves such that
5.3 iq(wk,bky>dp(wk,bk) :
We would alsc like to reject moves with

dmin(q)>dmin(p)

because although 5.2 is not a measure, since 1t is a predicate instead

of a function with integer values, it would be nice to use it like a

measure. However this condition is too strict; in p3 in Figure 5.10
¢

for example, the move wk-QB5 must be permitted. The condition is

changed to

5.4 dmin(q)>2 A dmin(q)>dmin(p)

which works because when dmin(g)>2 we have almost no chance of forming
a better position with a head quadrant farther down in the tree, so it 1is

much harder to terminate the search.

76

When dp(wk,bk)>2 it is not always possible to move the white king
up to the black king. This is illustrated in Py, in Figure 5.10. In
P, the white king is needed on the side of the quadrant toward the
center of the board. If he goes there via KKtlh, a tree of depth 8 will
be required to force better positions, while if he goes via K3 the tree
terminates at depth 6. In this case we have dp(wk,bk):dq(wk,bk) and
dmin{q)=1 . We define :

5.5 dp(wk,bk):ég(wk,bk) A d?(wk,bk)>2 A dmin(q)>1
as our final heuristic for rejecting king moves in non-head quadrants.

In head quadrants there is usually less difficulty in forcing a
better position since a non-head quadran. is automatically safe. 1In
general the tree searches are not as long as for head quadrants before
the addition of 5.2; a depth less than four is average. Position Py
in Figure 5.11 is an example; this position may occur after the tree
search from position Py in Figure 5.10. A tree of depth 2 is required
and the first move should be any white king move but wk-KS5 or wk-K6.
The heuristic added to better for non-head quadrants does not apply and
this is true in general for head quadrants. Since the trees are of
manageable length no changes have been made to better.

Slightly different heuristics are used for tree pruning for head
quadrants than for non-head gquadrants. badgquad is replaced by the
stronger condition that only legal stage 2 positions are permitted for
q . This rule eliminates king as well as bishop moves, Other king
moves are rejected by
5.6 dmin(g)>1 A (dq(wk,bk)>dp(wk,bk)

v [dq(wk,bk):dp(wk,bk) A dP(wk,bkbE]) .

7

n

i

Y/
7 //// //// M
W ",
F’/ f/// M2 f//

///)
7//'//////// 7
o /J% / 4

’// T
//’f' i

/f./
?/’////////%

o ///) /// - /
o W,
W %_

e
r_-j,r-’;/)‘;i
) 1:

Figure S.1ll.

Examples of Head Quadrants.

78

In head guadrants it may actually be necessary to move the white king

away from the black king. his is shown in position Py in Figure 5.11,

It is essential to move the white king to QB3 at this point; the move

is similar to the cne made in D), in Figure 5.10. A tree of depth 5

is needed from p, . The correct move is permitted since dmin(q)=1 .
Summing up the additional heuristics in stage 2, we add to better

5.7 st(p)=st(q)=2 A (squad(p) is even) A dq(wk,bk)<dp(wk,bk)

A dmin(q)<dmin(p) .

We add to worse

5.8 st(p)=2 A [(st(a)=1 A [(squad(p) is odd) v badquad(q)]})
v (st(a)=2 A m,(p)=m,(a) A cutk(p,q))]
where
cutk(p,q) = {[(squad(q) is even) A(dq{wk,bk)::dp(wk,bk)
v {dq(wk,bk):dp(wk,bk) A dmin(q)>1
A dp(wk,bk)>2]

v [dmin(q)>2 A dmin(q)>dmin(p)])] v

[(squad(p) is odd) A dmin(g)>1 A
(a_(wk,bk)>d_(wk, bk)
q P

Y [dp(wk,bk)=qq(wk,bk) A dp(wk,bk)>2])]]

combines the king move heuristics 5.3, 5.4, 5.5, and 5.6.
In stage 3, the formal definitions work very well. Considerable

tree pruning car be gained by adding to worse
5.9 st(p)=3 A st(q)<3 ,
which will not eliminate all paths to better positions. The tree
searches have a maximum lergth of 3, and with the addition of 5.8, a

width of no more than three moves at any level.

79

In stage 4 we are also doing fine as far as tree length is concerned
since the tree will only have a depth of 2. We add
5.10 st(p)=k A st(q)<t A = end2(q)
to worse; even with 5.9 the tree is quite wide but this is not serious
since it is so short.

Combining 5.7, 5.8, 5.9 and 5.10 with the formal definitions of

better and worse we have

better(p,q) = {st(a)>st(p) v [st(a)=st(p) A m ‘(Q)<mst(p)(p)}

st(p)

v [st(p)=st(q)=2 A (squad(p) is even) A

dq(wk,bk)<dp(wk,bk) A dmin(q)<dmin(p)l} .

worse(p,q) = {st(q)=0 v [st(q)=st(p) A ?gg(p)(9)<mss(p)EQ)]
v [st(p)=2 A
([st(a)=1 A ((squad(p) ic odd) v badguad(q))]
v [st(a)=2 A my(p)=m,(q) A cutk(p,q)])]

v [s5(p)=3 A st(q)<3]
v [st(p)=k A st(q)<h A —vend2(q)l} -

These are the funciions used by the program.

Examples of Program Play

OQur first example will illustrate how the program plays the last
part of the game. We will start with the position occurring after
black move 3 in Capablanca's example (Figure 5.€). This position is
the same as p, in Figure 5.7 except that the black king is in KKt2,
The program would not make the same first moves as are given in
Capablanca because a search of depth > has been made while the program

will use a depth 2 tree, We have

b, wk-Q@ This move gives m3(qj<m5(p),

put it is not as good as the book

move wk-KB2.
bk-KB2
5. wk-K3 bk-KKt2
6. wk-KBk bk-KB2
7. wk-KKth We have lost one move.
bk-KKt1l
8. wk-KRS Moves 7 and 8 are found by a tree
search of depth 2.
bk-KKt2
9. Kb-KKt6 bk-KKtZ
10. wk-KR6 Again by a tree search of depth 2.
bk-KBl
11. qb-KB6 bk-KKt1
12, ab-KT7 Again a tree of depth 2. The
program's move 11 is just as good
as the book's move 10 (it is a tempo
move).
bk-KR1
13, kb-KB> bk-KKt1l
14, kb-K6 ch. bk-KR1

15. qb-KB6 mate.

This example Shows that the program plays the last part of the game

very well. Its only mistake is move 4 and this is not serious.

81

Our next example is taken from Fine (Figure 5.1). Our starting
pusition, Py in Figure 5.12, occurs after black move 2., The program
will make different initial moves than the book because of the order of

in Figure 5.12 would result). We have

move generation (position Ps
3. wk-QKt6 This move is not nearly as good as
the book move or wk-QKt5. Move
generation is at fault again.
bk-Q6
L, kb-Q5 We are now playing differently
from the book.
bk-K6
5. wk-QB7 bk-Q5
6. wk-QB6 bk-K6
7. wk-Q7 We need the king on the other side
of the quadrant.
bk-Q5
8. wk-K6 bk-K6
9. wk-K5 bk-KBY
10. wk-KBH bk-KKt 6
11. wk-KKt3 Condi‘ion dcond prevents the program
' from accepting the position at this
point (qi in Figure 5.12) as better.
bk-KB8
12. ab-QB5 Moves 5-12 are found by a tree

search of depth 8. The black moves

are on the longest branch.

82

/ W /
//% w

Py / // Position Py is the start of the second
7 //// %’ ///

"
I // »

example of program play.

Z
e
W ////// W ///
P W//{y/ ///r///

| w////

The program arrives at p2 af'ter two moves

from the initisl positionin Figure %.1.

'g,; " / q_?_ cccurs after program move 11; end?\q,)
/
/ % is true but dcond(q3) is false, which prevents
//

/,////f
'/’/7,,4;’%‘///

/

the program from accepting q5 as better.

Figure 5.12, Examples of Program Play.

83

bk-K7

15 wk-KBh4 bk-Q6

14, wk-KB3 bk-QBF

15, wk-Kb bk-Q7

16. kb-QBh4 Moves 13 through 16 form a branch

| of length 4 in a tree of depth 6.

bk-K8

17. wk-K2 bk-G8

18. gb-QKt4 We are now in stage 3.
bk-QBT

19, wk-Q4 bk-QB8

20. wk-QB3 bk-Q8

21.. wk-QKt3

Move 21 gives a stage 4 position, and the play from this point on is
essentially identical to the first example. Five more moves are
required to mate. This means that the program uses 24k moves to reach
checkmate from p, in Figure 5.12, while the book uses 22. Therefore
the program is playing quite well in spite of the interference caused
by bad mcve generation, The moves selected for black vary from ones
which present white with meximum difficulty (for example, black
moves 4 through 11) to medium difficulty (black moves 12 through 15).
Similar kinds of black moves are given in the book. The program would
require about 28 moves to reach checkmate from p, , s0 for the entire
example, it uses six more moves than the book.

The only place where the program is likely to have difficulty in

this example is with the tree of depth 8 (moves 5 through 12).

8k

Fortunately this tree is very narrow. Since the position at the
beginning of the tree has a head quadrant, most black moves allow
white to form a better position immediately. There is one other main
branch in the tree (wk-QB5); this branch would terminate at depth 9.
This tree provides an illustration of the necessity of alldwing the
white king to move away from the black king. Generally trees from
head quadrants are short (for examplg, moves 17 and 18); the one
exception occurs when the presence of the white king is required on
the other side of the quadrant, as in this tree.

One lasﬁlexample is given to illustrate some remarks made about
non-head quadrants, We begin with position Py in Figure 5.10.
1. wk-K3 The white king is taking the

shortest route to the other side

of the quadrant.

bk-K3
2. wk-Q4 bk-Q2
3. wk-Q5 bk-QBl
L, wk-QB6 bk-Ql
5. Kkb-=KBS We have not yet reached a better
position because the white king is
too far away from the head bishop.
bk-K2

€. wk-Q5
Now we have reached a better position. At move 6, gb-KKt5 would give
a smaller non-head quadrant, but unfortunately this move was not

generated soon enough.

85

Evaluation of Program Play

The program is playing adequately, and the comments made at the
end of Chapter 4 can be applied to this game also. We merely note
that a second-best move in this game hurts the program more. Since
the game is harder, more precision 1is required for good play.

The program play is very close to book play in the last part of
the game. This is not true in the first part. However, the method

used in the first part was suggested by the book and works well,

CHAPIER 6

BISHOP, KNIGHT AND KING AGAINST KING

This end game is one of the most difficult of the classical
endings. When it is discussed in the chess bocks, it is broken into
two main parts. The first part of the game consists in forcing the
black king to an edge. gince the mate can only be given in (or next to)
a corner of the same color as the bishop (the black corner in this
discussion since we will assume that white has the queen's bishop), we
expect to finish the first part with the black king in the corner of
opposite color to the bishop (the white corner). Then the second part
consists in forcing the black king down the edge to the corner where
mate can be given.

While the method of play used by the program in the second part of
the game agrees exactly with the books, in the first part we are forced
to provide our own neuristics. There are two reasons for this. First,
the books only give a limited example of this part of the game; the
program must be able to handle all black king moves, not just those that
are most likely. And although books do make some attempt to explain how
to play, the procedures described are too local in nature to be used
directly. Figure 6.1 is taken from Fine [1944]; the two patterns
desceribed are quite powerful, and in his example very conveniently the
white pieces are in a position to make constructive use of them. However
these patterns are useful in general only when embedded in some global

heuristic.

81

In order to drive the enemy King back to the edge of the bcard
White must make use of two typical positions (see diagram No. 5). 1In
the first - 5A - all the points leading towards the center are inac-
cessible to tne Black King and he cannot maintain the status queo; he
must retreat. In the second - 5B - the two pieces are cooperating
beautifully. Black's King can do nothing better than mark time and
as soon as the White King comes up he will have to give way. The
important feature in No. 5B is that the two pieces are diagonally
adjacent to one another, for it is because of this fact that they
cover SO many squares.

Starting from some arbitrary position such as No. 6 the most
effective continuation would 1 Kt—B3 (No. 5B), K—Q%; 2 B-B6 (No. 5A),
¥—K*; 3 K=B5, KK2; L ¥Q5, K-Bl. Black is well advised to go to the

lioe 5« Driving the Black
King Back. No. 6

p/ /// W
%//Z///f/ //////
el

N

«rong corner, for that is the only way in which he can hold out for
any appreciable time. 5 K-K&6, K-Kt2; 6 Kt—K5, K-Bl; 7 K-B6, ¥—Ktl;

8 ¥t—Kti{, K-R2; 9 BQ5, K-R3; 10 B—Kt8 and now we have position No. 4
since the fact that Black will be chased along the file rather than
along the rank makes no difference.

S
B ///4 /////-@f%
5///;%

/ /' ﬁ%ﬁ ? |

/’//

%/ S //
%///% i

Figure 6.1. Example from Fine, pages 18-20.

88

Stage 0

Stage O as usual contains the various illegal positions which in
this end game compr ¢ quite a large ° . Iy, contalr positions in which
the black king can take a plece in two moves as well as the usual loss
in one move. Since immediate loss or stalemate is obvious we concen-
trate on describing the other kind of stage O position.

In order to be sure that we discover all illegal positions we
consider how such positions might occur. First, suppose the black king
can attack only one of the bishop and knight. Since the bishop has so
much mobility, it will be able to escape the black king unless its path
is blocked by the knight. Therefore the knight is slso under attack,
and this case will be discussed later. The knight does not have as much
mobility as the bishop and in fact is open to attack if it is in a
corner. Examples are shown in g, and q, of Figure 6.2, To avoid
having to recognize positions like 9 and 9 (and distinguish them
from similar positions in which white is able to protect the knight) we
assign all positions in which the knight is in tﬁe corner to stage 1,
which in this game proceeds the catch-all stage. This insures that the
program w%ll move the knight out of a corner if it is in one in a starting
position, and will never accept such a position as better.

It is also possible for the black king to attack the knight and
bishop at the samé time. The attack must come in one move or white
will be able to avoid it. We have.

dq(kt,qb)gz A dq(bk,qb)ge A dq(bk,kt)ga "

(The reader should refer to Appendix A for definitions of basic functions
and notation,) We also assume that neither the knight nor the bishop is

89

(il

W

Iy

/// /////%

// C
W W
/f//{/ ',/é@/%

.
/%/;///Z//
//////// -
e

///W//WV// |

7

m2mem,, m
// o
/////a@%

’7//////%%

b, ,_
e

§////////////

////’//
), ,ﬁ

two moves.

After bk—KKt2, white will be unable to
avoid losing the knight.

After bk—QKt2, white will be unsable to
avoid losing the knight.

After bk—Ql, white will be unable to
avoid loss of a piece.

After bk—Ql, white will be unable to
avoid loss of a piece.

Figure 6.2. Examples of positions in which black can take a piece in

Positions q3 and q) are in stage 0, but ql

and q, are in stage 1.

90

susceptible to being taken immediately. If dq(qb,kt):? , there is only
one configuration of knight and bishop which permits such an attack, It
is illustrated in q_5 in Figure 6,2. If the black king instead were

on Kh, K5 or QBS5 he could also move to attack both pieces. In q5 the
knight is on a white square, and corsequently is bearing on a black
square., This means that it is not able to move to protect the bishop,
and also the bishop ceani tpossibly move to protect it. Since the black
king will threaten both the bishop and the knight, it is not possible to
simply move a piece cut of danger. Therefore, the white king is white's
only means of defense. If the white kinz is next to either piece the
loss can be avoided. Also, if the white king can come to the aid of

the knight no loss will occur since the knight protects the bishop.

So we will lose a piece if

dq(wk,qb))»l A dq(wk,kt)>2 :

If dq(kt,qb)=l we have several cases to consider, First we have
positions like q, in Figure 6.2 in which the knight is on a white
square. The black king could also be on Q3 or QB3 and be able to move
to attack the pieces, Such a position is similar to the previous case,
but in q, the knight does not protect the bishop, so the white king
must be able to move to protect both pieces if loss is to be avoided.
Therefore

dq(wk, qb)>2 v dq(wk, kt >2
implies a piece will certainly be lost. In addition, even if this
condition is not satisfied white may still lose a piece since the move
black makes to attack may block the white protecting move. This would
happen in q, if the white king were on QB6.

91

Positions ql and Qs of Figure 6.3 are examples of dq(kt,qb):l
with the knight on a black square. In such positions the bishop is pro-
tecting the knight. If the bishop were not on ar edge, it would be able
to retreat from the black attack and continue to protect the knight. If
in ql or q2 we had dq(wk,qb)ml , then the white king would prevent
the black king from moving into the attacking square. Also not all the
squares two away from the bishop are forbidden to the black king; for
example in ay only from squares Q6, K6, and KB6 can the black king
force the loss of a white piece. As usual, we do not worry about
dq(wk,qb))? since we will handle that through stage 1. All of the
various cases of positions two black moves away from the loss of a
piece will be recognized by function badgos(q) .

In the positions shown in Figure 6.2 and also in q, and g, in
Figure 6.5 the black king causes difficulty for white by attacking
pieces. It is also possible for black to combine a threat of stalemate
with an attack on a piece. Position q5 in Figure 6.3 is an example.
There is no danger that this position would be chosen by better in some

later stage. Therefore it is not necessary to recognize it.

Stage 1

As mentioned during the discussion of stage O, stage 1 is inserted
before the catch-all stage because this is a way of using simple tests
to avoid a lot of pattern recognition. Stage 1 contains all positions
with the knight in a corner and also all positions where

dp(wk,qb)>dp(bk,qb)+l

dq(wk,qb)>dq(bk,qb)

’/% W //%

7

///////%
1

///////////A

N ﬂ/ //
”W’//gﬁ//ﬂ

M W
Wi T 7w
W//////////////////j
= m
////////%

e
E///a '

////)
V//’””///%//
f;/f/////f-/
o B B
////ziy/////
_
///,/./%/f_//

If the black king moves toc K7, white will
lose either the knight or the bishop.

If the black king moves to KKtl, then white
will lose the bishop.

ffter the black king moves to KKtl, white
will either lose the bishop or give a
stalemate.

Figure 6.5. More examples of p051t10ns in which black can force a draw
in two moves. Position q, and qg are in stage O; position g, would never
be accepted as betier, so we need not worry about recognazln% it

95

provided such positions are not already in stage 0. All of these
conditions are recognized by function stagel.

There are many positions p which are not in stage 1 but all of
whose successors are, In such a p the black king is_&itacking the
knight and white must move the knight away to proteét ig; It may then
happen that the black king is closer to the bishop than the white king. is,
'giviné a q in stage 1. We will not worry about recognizing either p
or a q which preceeds this p Dbecause the strategy in the later
stages is equipped to handle such 2 p . Therefore p remains in the
stage it should be in (generally stage 2), and we do not break rule

%.7 although we do violate rule 3.9,

Stage 2

Since stage 1 has other uses, stage 2 is the catch-all stage whose
presence is recognized by the absence of all other stages. Position 6
in Figure 3.1 is in stage 2. A measure will be glven for this stage,
This measure is based on the statement in Capablanca [1935] which says
that we should begin this end game "by advancing the king to the center
of the boa.rd".5 One result of following this rule is that the program
will move wk-QB6 or wk-QBS5 in position € in Figure 6.1, There are four
squares in the center of the board; they are @4, Q5, K4, K5. So we

define as our measure for stage 2 the function

dcent(x) = min (d(wk_,sq)) , S = {Q4, Q5, Kb, K5}
sgES x

There is no difficulty in showing that rule 3.7 holds for dcent,

since this function depends only on the position of the white pieces.

We do expect to break rule 3.9 occasionally by having all suv-cessors to

%. Page 109,
gk

some p be in stage 1, To use dcent as a measure in worse, we must be
sure that it is never necessary to move the white king away from the
center of the board. Although the black king can move into a position

p which would be in stage 0 if it were a position with black to move,
white will always be able to avoid stage O without moving the white king
away from the center. £Since this p 'is in stage 2, we know that the
knight is not in a corner, and dp(wk,qb)gép(bk,qb)+l . An example of
such a position is given in Py in Figure 6.4k. We will avoid the loss
of a piece by moving the white king to K4t and then the knight to KB3.

Py is representative of such stage 2 positions; if it is not possible
to move the knight immediately, there will be a king move.which will
enable us to move the knight and protect the bishop on the next move.
This king move will generally give a position q in stage 1; the point
is, it is not necessary to allow the white king to move away from the
center (such a move would probably give a stage @ position). Therefore

we can use dcent as a measure,

Stage 3

The positions in stage > have a definite pattern dependent on
recognizing that the black king ic contained in a certain area of the
board, A size s can be assigned to this area and as usual we will
attempt to shrink s . However s cannot be used as a measure, It can
be used like a measure in better; that is

st(p)=st(a)=3 A s(p)>s(q)
will mean that q is better than p . But s cannot be used in worse

because in a few cases this part of worse

95 ’

n

0

7

f/‘
7, /
%x

Vi
W
1"/?.1

‘b__. .

fﬁ/

Wi W
%%

7

W,
//////////
//////

Y ///,
4%; 7 4%74%V4?

i

2

7
/ ”///

/
//////ﬁ

///A

.

..........

4@
///
M

m

i :,:;—, #Z /
/%/// 7 ///
/J' 7
u w v
ﬁw j%% g%g »é%
Enry
7 % ,z ;g

9

Py in is stege 2, and dcent(pl) = U

fore wk=KBY, the only move giving a stage 2
position, will be rejected since dcenu{q) = 1.
However, wk—K&, which gives a stage ge 1 position,
will permit kt—KB3 on the next move, thus
avoiding the loss of a piece.

There-

One corner of the board corresponds to the
right angle of the area triangle. The size
of that area is marked at the corner.

The black king is inside areas of size 5 and .

-

Figure 6.bk.

st(p)=st(a)=3 A s(p)<s(q)
would eliminate the only move(s) which the program must make to proceed
correctly. When this happens, it is because the pattern recognition on
q is not sufficient to define the real value of s(q) . Since such
violetions occur infrequently it is of course possible to add pattern
recognition to assign the proper value to the offending q . However
this approach is not teaken. First of all, the pattern recognition would
nave to be extremely detailed to define s(q) correctly and it is not
worthwhile to do all this analysis. As long as s(gq) 1is never smaller
than it should be we can be sure the program will not accept q for the
wrong reasons, Alsc S satisfies rule 3.7; once a q has been accepted,
we know that for any p which follows from it by one black move,
either p 1is in a higher stage than q or if p is in stage 3 then
s(p)gs(q) . Therefore the program will be able to proceed consistently
even if s(p) is larger than it should be.

Second is the fact that throughout stage 3 we are liable to break
rule 3.9, generally by having all successors to a p in stage 3 in a
lower stage, and when worse is occasionally incorrect this is only a
special case of the overall problem. As explained in Chapter 5, rule 3.9
is useful but not necessary, and in this end game the amount of pattern
recognition required to satisfy rule 3.9 is not worthwhile.

Briefly, the reason for the violation of rule 3.9 is the following.
In the preceding games the black king could escape from an area in at
most one way, but in this game the black king will be able to escape
from the area defined for stage 5 in many different ways. Some of these

will force a larger area and so must be prevented, but the majority will

ar

put black in a pcor position from which he must retreat or white will be
able to ultimately "confine" the black king to a smaller area of the
board. “Confine" is put in quotes here because of course the same kind
of escape may be available to black in the smaller area. White should
take advantage of such moves; the problem is that the smaller area may
not be recognized right away, and in the meantime we may break rule 3.9.
First let us see what kind of area we can use to define stage 3.
We must parvition the board globally or we might not be consistent in
our evaluation of successive positions (satisfy rule 3.7). Therefore,
the bishop must be the primary piece involved in defining the area,
since it is the only white piece which can hold a line through the
entire board. In this game we will deal with halves rather than quarters
of the board. For any bishop position there are two diagonals, and each
diagonal defines areas on both its sides. Therefore there are four
different areas to consider. (If the bishop is in a corner there are
only three.)

We assign a size to each area in a very simple way. An area is a
right triangle in shape with the hypotenense the bishop diagonal. It
may be necessary to extend the board to complete the triangle. The
other two sides are edges of the board; call them edgel(x) and edge2(x) .
Then tne size of the area is
6.1 de(ab ,edgel(x))+de(qb ,edge2(x)) ,
for de as defined in Appendix A. x, in Figure 6.4 provides an illus-
tration of areas. For the bishop diagonal as drawn, the area above the

diagonal has size 5, and the area below has size G. The other diagonal

98

defines areas of sizes 6 and 8. 1In stage 3 we are only interested in
areas of size less than or equal to 6.

So far we have only discussed how to assign a size to an area. We
have not said which area is used to represent a position. Making this
decision is a complicated procedure, As explained before, the black king
will have many points of escape from an area in this game. We do not
want to block all escapes but only thqse which would force a larger
area. However we must satisfy rulg 5.%;G}To accomplish this we insist
that an area in q holds if a{é/;ﬁé“suééessors of the black king are
in it, while in p we recognize the area if it contains the black king.
Then we can be sure that after one black move the program will be able
to see the same area which it used as the basis for accepting gq .

Now suppose the black king is placed on the board. The black king
is necessarily inside one area, and sometimes inside two. For example,
in x, in Figure 6.4, the black king is in an area of size 5 and an
area of size 6, We must decide which of these areas to use. Obviously
we want (1) to assign the smaller area if possible and (2) to be sure
the black king cannot escape from the assigned area into a larger one.

We have already stated that the black king cannot escape in one move in

q ; however it may be able to escape in two moves in q and consequently
in one move in p . Since it is difficult to calculate whether the knight
can be brought into position to block an escape, we rely mainly on the
white king,

The way we decide about an area is as follows. First we use the

position of the black king relative to the bishop to propose an area,

99

This condition is different for positions p and q . To do this we

—

define a function which selects areas:

area(x,C) = (the area on the board whose right angle is corner c).
For any area @& , c(a) produces the corner which is the right angle

§°f a . Now we define

gg(sq,a):ég(sq,fileedge(c{a)))+§g(sq,rankedge(c(a)))
where sq is some square on the board, and fileedge and rankedge
produce the appropriate rank and file containing c(a) . Then

size(x,a)=dc(ab,,a)
is the correct defiﬁitien of the size of the area and agrees with 6.1s
This function dc is basic bo the kind of area with which we are concerned
because it has the same value for any square on a diagonal parallel to
the boundary of the area. We can also use it to determine where &
square 54 is with respect to an area 2 by

locaticn(x, sq,a):_s_ig:_(x,a) -dc(sq, a) .
If location(x,sq,a) is positive then sg is inside a ; if it is
zero sq is on the boundary of a and if it is negative sq 1is
outside a . locaticn is also used to tell how far the diagonal con-
taining the square is from the boundary.

Let succ(x) be the set of syuares to which the black king can

legally move in x . Now we can define for area &

i

inside(q, &) [location(bkqfa)z 0 A
yr(resucc(q) > location(r,a)>0)]
inside(p,2) = 1ocation(bkpﬁa)>0
The definition of inside for q 1insures that the black king must move

inside the area, and this will then be recognized Dy inside for p .

100

Once an area has satisfied inside we are ready to make further
tests on the positions of the white king and bishop. First we insist
that the bishop be placed toward the center of the boundary of the area.
Recall that any bishop position on the boundary of a given area will
produce the same value for size. The conditinn is

bpos(x,a) = [d(qu,c(a))s(s_i_z;g(x,a)-m] .

The reason for this condition is that when the bishop is placed toward
the center of the boundary it is easier for white to form a smaller area
and also to control the black king if he tries to escape, If
Eégg(x,a)<h , no squares would satisfy bpos and in fact areas of size
less than 4 are not used.

If the bishop is in an acceptable position, the program will examine
the position of the white king and its relationship to the bishop and
black king. First the white king must be outside the area, i.e.,

location(x,wk_,a)<0 .

Alsc we always have

6.2 dx(wk,qb)sa

and the white king must be close enough to the bishop to protect it;
otherwise we would be in stage 1. The final condition on the white
king position is

kpos(x,a) = (a(uk,_,c(a))<size(x,a))
which says that the white king must be fairly centrally located. These
conditions are illustrated in Figure 6.5. In X and Xg all possible
squares satisfying kpos and location will also satisfy 6.2, but some
squares may be eliminated in Xg Summing up all the conditions

stated so far, we have

101

" W
/ // ”#’// %///

7 ’m:,, 425/’ //
| % {, W/ M

« W
//////////

/ i
/// - x/////

/// x

/ x ;(%K///
. 7/
,/////j////,:?/

N

| % 7
f}/// / Z/, ﬂ% v
//) % 7

] ?i//
_,//,,; 5 //% "a%;&,, %%
P

\5\
\%

\\\
\

@*
*

Figure 6.5. Legal squares for the bishop are marked B

3y for
the white king they are marked K.

102

safe(x,a) = {inside(x,a) A location(x,wk ,a)<0 A

bpos(x,a) A kpos(x,a) A dx(wk,bb)gﬁ] ’

These conditions are correct as far as they go, but we have not
paid any attention to the knight. Actually we want to use the knight
to help force a smaller area, but when the knight is not being used it
possibly will be a hindrance. There are three ways in which the knight
can interfere: it can block the white king or bishop, or it :an force
white to lose a move by being open to black attack. Examples of the
three different types of interference are shown in Figure €.6. All of
these cxamples could arise as the result of one black move from a
position q which has an area satisfying safe. None of the kinds of
knight interference shown in Figure 6.6 is bad since whites can always
either maintain the same area or find a smaller one very shortly.
Therefore there is no reason to forbid the kind of interference shown
in these three positions.

We do want to forbid certain kinds of knight interference however.
We use the same guiding principal for eliminating knight positions as
we have all along; we cannot allow the black king to force a larger area.
There are two kinds of bad knight positions. These are shown in 9y
and q, in Figure 6.7. In both cases the black king will be able to
attack the knight in one move and thus escape toward the center of the
board, Even so white has no %rouble controlling the escape when the
bishop satisfies

a(ab,e(2))< size(x,a)-3 ,
because this insures that the white king will be able to block the
escape (since in q it is protecting the bishop). The patterns shown

103

Py

T T

/,/V/W %/

7/’7/%
v

\ T T
W men
'”‘?///@«%ﬂ//

//”%
/////i///

W
////f///%

i

Figure 6.6.

The knight is blocking the white king.

The knight is blocking the bishop.

The knight is being attacked.

Examples of Knight Interference.

104

",
| /;f///// ///////

//7’//7///%

v
/////w
/////%/M/

7
//%//%////

///////%//
/f//’/////////

////////////

M //
7 "
////i //////’/&//;//

»
//////%//////

///’///%/‘7///

4 / o «//’//

///
'///////////"//

//

Figure €.7.

If the black king moves to K it will then
-

be able to escape.

Black can escape by first moving to K, .
A

This position is essentially the same as
sult of bk—=K_ in .
resu T {5 ql

If the white king were in K§ the escape
could be blocked

Forbidden Knight Interference.

105

the

in ql and 94 are the only bad ones in ¢ (with minor variations)

and are recognized by
badkt(qg,a) = {dq(kt,qb)=5 A dq(bk,qb)=1 A dq(bk,kt):2
d(qbq,c(a))z size(q,a)-3 A location(q,ktq,a):E
V'roation(qdbkq,a)=0 A ggggiiggfq,ktqvaY:E)}.
More pattern recognition is required in p because we must be prepared
for bad initial positions as well as results of one move from a ¢
satisfying badkt . Position p} and p, are examples, Both these
positions cannot possibly have come in one black move from a position in
which the area of the appropriate size was recognized. We have
badkt(p,a) = {loseknight(p) A locaticz{",bkp,a) =1
A location(p,ktpzf
A[(dp(wk,bk):B A d(bkp,c(a))=5) v
(dp(wk,bk):u A d(bkp,a(a)):h A
location(p,wkp,a):-fll} .
There remains one more knight condition to define. This case occurs

only in areas of size 4, and is illustrated by 9 and Py in Figure 6.8.

In Py the black king is able to escape from the area because the only

move to block the escape, wk-KE, gives stalemate. p, 1s a successor
to ql . We recognize this pattern by
badk(p,a) = {size(p,a)=4 A location(p,ktp,a):j
A location(p,bkp,a):l A dp(bk,kt):B}
badl(q,e) = (size(q,a)=" A location(q,ktq,a)=3
A d(bxq,c(a))=2} :
Now we can give a complete description of the conditions which an

area must satisfy to be acceptable. We combine.safe, badkt and badlk into

106

%

/’//////Z
m, W, "
x mon

// ///
/////////
///%//////’///%

A
:///%///%
//////[g;/////
//// L7

////////
/////ﬁ/
’//////////if/

oW

//,//%//
9 Y % U
u U Y

q, satisfies function badk. If the black
king moves to K1 (position pe) white must
permit him to escape from the area.

X is an example of a stage 4 position.

Figure 6.8.

107

goodarea(x,a) = (safe(x,a) A - vadkt(,a) A — badh(x,a)} .
It is possible that more than one area in 2 position will satisty
gooéarea. s will be the size of the sme -st such area., Let C be
a set containiné the four corners of the ird. Then we have

s(x) = min({size(x,a) | 3 c(cec A a= ea(c) A goodarea(x,a))} U (15)) .
if no good area exists in x,s(x):lS and x is in stage 2; otherwise

s(x)<15 and x is in stage 3,

Stage L

This stage is designed to be intermediate between stages 5 and >.
It is possible for the program to move irco stage D (or even stage 6)
directly. However, if black plays the best defense he will move toward
the white corner and in that case the prcziram will need stage 4 for at
least two moves.

Position Xs in Figure 6.8 is in stage 4. The black king is
confined to the edge and completely controlled by the bishop and king.
Function revcornpos(x) recognizes the pattern of these three pieces.
Obviously revcornpos satisfies 3.7 and 3.9.

It is the position of the knight which determines that stage b4
rather than stage 5 holds. The bishop and king maintain control of the

black king until the knight is in a position for stage 5.

Stage 5

Stage 5 controls the forcing of the black king down the‘edge cf the
board toward the corner where mete can te given. The play of the
pieces in this stage must be very precise, The program follows closely
the example from Capablanca [1935] giver in Figure.6.9; it is interesting

108

The second and last part will consist in
driving the Black King now from QR8 to QR1 or

Zf’ ﬁ/ //' KRS in order to mate him. GR1 will be the
Yo m, M

quickest in this position

// // f/// //// 10. Kt—Ktébeh K-R2

////// R 12 s
///// ////, /// // 13, Kt=05 A

Black tries to make for KRl with his King.
White has two ways to prevent that, one by

14 B—K5, K-Kt6; 15 Kt—K3, and the other which
I give as text, and which I consider better for the student to learn, te-
cause it is more methodical and more Iin accord with the spirit of all
these endings, by using the King as much as possible.

1k. K-B5! K—Kt6
15. Kt—Ktb K—B6
16. B-BL4 K—Kt6
17. B-K5 ¥=R5
18. K-Bb K—RL
1%. B-B7ch K-RS
20. Kt—Q3 K—=R6
21. B-Ktb K=R5
22. Kt—Kt2ch K—RE
23, K-B? KRT
2L, K-B2 K=RE
25. B-BSch ¥—R7
26. Kt—Q3 KRS
27. B-Kth K-R7
28. Kt~Blch K=R5

29. B-B3 mate

It will te seen that the ending is rather laborious. There are two out-

standing features: the close following by the King, and the controlling

of the squares of opposite color to the Bishop by the combined action of
the Knight and King. The student would do well to exercise himself
methodically in this ending, as it gives a very good idea of the actual
power of the pieces, and it requires foresight in order to accomplish the
mate within the fifty moves which are granted by the rules.

Figure 6.9. Example from Capzblanca, pages 110 and 111.

109

to note that this example is almost identical to the description of
this part of the end game in all the other chessbooks we have examined.

During the play of this part of the game the white pieces must
keep the black king close to the edge, and at the same time must force
it toward the black corner. To simplify the pattern recognition, we
limit the definitions, only recognizing enough positions to make the
stage playable, Stage 5 will not contain all the positions occurring
after white moves in Figure 6.9. As in stage 3, we will violate rule
3.9, but in this stage we can define a usable measure.

First of all we look for an edge e which satisfies the following
predicates. Let E;E{e) be the black corner on edge € . Then we have
6.3 de(bk ,e)=0 .

6.4 de(wk ,e)=2 A (3< gg{wkx,gl_c_(e))g) "

6.5 de(ab_,e)f2 v d(ab ,blc(e))>d(uk ,bic(e))) .

Rule 6.3 says that the black king must be on the edge. Rule 6.k says
that the white king must be on the file/rank two away from the edge

and also limits its position on that file or rank. For example if e

is the QRfile, then the white king must be on the QBfile in one of the
following squares: B2, QB3, QB4, QB5, QB6. Rule 6.5 prevents the
bishop from interfer ng with the movement of the white king down this
file.

It is relativel easy to use the bishop and white king correctly
in this game; the knight is a more difficult piece to control. For
example the knight is the only piece which can be used to deny the black

king a white square on the edge. If it is used to deny the black king a

110

!
black square on edge it probably will not be available for its correct
use when it is needed. We adopt the following stringent condition:
6.6 (onblack(ktx) A gg(ktx,e)=l) v (—zonblack(ktx) A gg(ktx,e):j))
Function onblack(sg) is true if the square sq is black. 6.6 allows
the knight to bear only on white squares on the edge, and only on black
squares on the file/rank next to the edge. One result of this is that
we will be sure the white king is actually being used (once functions
conf and el are defined) since it is the only piece which can bear on
white squares in the file/rank next to the edge. Let function
eposs(x,e) be true if rules 6.3% through 6.6 are satisfied.

In addition to rule 6.6, we also must be sure that the knight is
close enough to the black king to be used effectively. First we must
define a new distance function f{(sql,sqz) which equals the difference
in files between sql and sg2 plus the difference in ranks between
sql and sqg2 . For example in p; in Figure 6.10, gzpl(bk,kt)=k .
Then we have, for edge e

ktpos(p,e) = {[onblack(ktp) A ££p(bk,kt)§2] v

[—1onblack(ktp) A g;p(bk,kt)<5]]

ktpos(q,e) ([onblack(ktq) A dq(wk,kt)gaq(bk,kt)
A d(bkq,blc(e})-25d(ktq,blc(e))fﬁ(bkq,blc(e))+l]
Vv onblack({kt) A fr (bk,kt)= .
[(q) (bk,kt)=3])
This condition, for the knight on a black square, prevents the knight
from denying white edge squares to the black king from a position above

the black king, because in that case the knight could not be used on

the next move to keep the black king confined to the edge. The part

111

of ktpos which says dq‘wk,kt)gdq(bk,kt) prevents the bishop from
being used when the white king should be.

5o far we have defined the relationships between the white pieces,
but wehave not said exactly how they should control the black king.
There are two parts to this control., First the black king must te
prevented from escaping from the edge. A small escape may occur, as
in black moves 14-16 in Figure 6.9, but we must be sure no larger
escape is possible. For EESS(X) the set containing the legal succes-

sors of the black king in x , we have

conf(p,e) = vr{resucc(p) > (de(r,e)=0 v ££(bkp,r)=2)]

conf(q,e) vr[resuce(q) D de(r,e)=0] .

conf is only concerned with the squares labeled Xl X2 and X3 in Pq-
in Figure 6.10. In g both squares are denied to the black king in
p only X2 is denied.

The control of squares X3, X4, X5 and X6 is measured by
function el . The function determines the amount of control the white
pieces have on the black king from above., To define el , we need
function bears(x,X) which is true if the white pieces in x bear on
square X , or if X is not on the board. In the following definition
XN stands for a function with arguments (position,edge,N) which
produces the appropriate square, or NIL if the square is off the board.
onblack(NIL)=NIL . The following definition assumes that conf is

satisfied. We have

112

-,
d
-l

W
///////////////
///’///////
ﬁéﬂx %ZTZ%%? .%V

e 5]
U e
//////////

///,;///////////

V/

/////////,///////////

,/,/////

’////{ﬂ///

W, M., T
//////”////

7
,///V
wixsall
////¢/////

//////////
=////////

\ W, /////7//

7/////’
//7 ’7//

b /// ////7

///""/////

7, / f/

’///

//////

ﬁ%ﬂ
7

v

gl(?l,QRfile) = 2 and dedge(p,) = 5.

c-QKtl will give a q with dedge(q) = L.

el(p, ,QRfile) = O and dedge(p,) = 4.
qb—QB7 will give a q with dedge(q) = 3.

Positions p3 and p, are not accepted

by stage 5.

Figure 6.10. Examples for Stage 5.

113

]
O

El(p,e) if [bears(p,Xt) A (onblack(X3) Vv bears(p,X3))] .

-1 if [- bears(p,X4) A bears(p,X3)

A bears(p,X6) A (bears(p,X5) v onblack(X5))] .
-2 if [bears(p,X+) A bears(p,X3) A - bears(p,X6)

A (bears(p,X5) v onblack(X5))]

= 3 otherwise.

el(g,e)= 0 if [bears(q,x4)] .
=1 if [- bears(qg,Xt) A bears(q,X6)
A (onblack(X5) v bears(q,X5))] .
= 2 if [bears(g,X5) A - bears(q,X4)
A — bears(q,X6)1 .
= 3 otherwise.
g}(x,e)<§ means sufficient control from above exists in X . Combining

this with conf, we have in q that the black king must be confined to
the edge. In p itcannot escape the edge into 32 , Lhe square next
to its present position; rule 3.9, may be violatéd at this point, If
it can escape above, the escape square must be black, This is necessary
+n accomodate a position like the one in Figure 6.9 after black move 18.
A white square off the edge 1s not permitted £0 the black king, even in
two moves. Only the white king can control such a square. Values of
el are given in Figure 6.10 for positions p, and p, .

Finally there are two positions p which satisfy all the conditions
given so far, but cannct be handled by-the ordinary rules. They are
i}lustrateﬁ by Py and p, in Figure 6.10. The problem is one of
parity; if identical positions to p3 and P, occurred farther down

on the same edge, the bishop would be able to make a move while

114

continuing to bear on the same edge square. We recognize p:5 and By,
by badedge(p,e) , and padedge(g,e) = false for all q .
Now we can give a complete definition of a good edge. Let E be

a set containing the four edges of the board. Then we have

edge(x) = e if [e€E A eposs(x,e) A ktpos(x,e) A conf(x,e)

A el(x,e)<3 A — badedge(x,e)] .

NIL if no such e exists.
A position x is in stage 5 if edge(x) is not null.

Next we define a measure for stage 5. This is an indicator of how
much access the black king has to the white corner. For p we can use
d(bkp,gég(gggg(p)))+§i(p,§g§g(p)) . For gq we must make some adjust-

ments in this formula., We define

adj(g,e) = -1 if [el(g,e)=0 A
(the black king is in check in a)l .
= +1 if [el(q,e)=2 A onblack(bkq) A-—tonblack(ktq)] ;
= 0 otherwise,
adj(p,e) = O

Then we have

dedge(x)=a(vk_, edge(x)) +el(x,edge(x))+adj(x,dge(x)
and dedge is a measure for stage 5. For example in Py in Figure 6.10,
edge(p;)= QRfile and dedge(p)=5 . Only kt-GKtd will give a q in
stage 5, and dedge(q)=4# . Therefore this g will be accepted by
better. For either black king move in this q , we will get a p with
dedge(p)=t . p, in Figure 5.10 is one of these successors. In p,,
wk-QB5 and gb-K3 give positions in stage 5 with dedge=lt ; however
gb-QB7 will give dedge=3 .

| 115

It is not difficult to show that edge and dedge satisfy rule 3.7.
For edge, the only condition which presents any difficulty is el and
the value of el determines dedge. We must consider cases. fi 3
El(q,e):O , then the black king must move toward the black corner,
giving el(p,e)=0 or 1, depending on whether the black king was in
check in q . In either case dedge(p) = dedge(q) . If el(q,e)=1
and the black king moves down the edge then there is no problem and
gg(p,e)=2 s if the black king moves away from the black corner, we have
a position like p, in Figure 6.10, with el(p,e)=0 . There is no
danger that a white square off the edge and above 1s available to the
black king in p , because this is expressly forbidden in q . Again
we have ggggg(p)=§gg§g(q) . If el(q,e)=2 , we must have a position
like q; or 4, in Figure 6.11. The black king can move down only

in q , and we will obviously get el(p,e)=2 and dedge(p)<dedge(a) ;

if the black king moves up in q W€ will get el(p,e)=lor 2
depending on adj(q) . In 4, with adj(q1)=l , we get el(p,e)=2 ,
while in g, , with adj(q,)=0 , ve get el(p,e)=1 . In either case

dedge(q)=dedge(p) . Therefore all of rule 3.7 is satisfied.

We cannot hope to satisfy rule 3.9 pbecause sometimes a P will
havé all successors in a lower stage. For example this occurs &ftef
black move 13 in Figure 6.9. As explained before, this is not critical
to the working of the program. The reason we can use dedge as a
measure in this stage is because there is no error in the evaluation

of dedge, and if dedge(q)>dedge(p) , there really has been a loss of

control.

116

9"

W w
// % 'f////’f///

///// // // é(ql’%fne) = 2 and dedge(q,) = 5.
e ////// /,,2 W ;///
2 ///// //// ////

W, //// "W // |

B i // i .
a5 %w//’ // ///// el(q,,QRfile) = 2 and dedge(a,) = 4
///// ////,@////
/// '///, //////

/

/ W / /A’/ //, | A
/ /f /// /f/ For stage 6, the bishop must be in a square
/% /// ,/// 1 marked X , and the black king in a square
Wil marked Y; the white king must be as shown.

/ /A //// / The posatlon of the knight is not important.
M ///
Y

)
//»

7 "///ﬁ gy

B
_,{//

}

W////,%’/

’// , %’
| / / /// kt—QB4 preserves the area and protects the
/// / / bishop. However, dq(wk ,qb) > 4d (bk ab),

so q is in stage 1.

,.///
’%/ ////
_

Figure 6.11.

117

Stage 5

Stage 6 is similar to stage 4 in that the white king and bishop
control the black king, while the knight is maneuvered into position
for the next stage (checkmate). Position Xy in Figure 6.11 is an
example of a stage 6 position. The relative positions of the white
king and bishop and the black king are recognized ty cornerpos(x) .

Obviously, cornerpos satisfies 3.7 and 3.9.

Formal Definitions of better and worse

Now we can give the definitions of stages and measures. The

stages are

x € stage 0 = [(x 1is a position with black to move) A
[(x is stalemate) V (the black king can take a piece

in one move in x) V badpos(x)]}.

x € stage 1 = stagel (x) .

x € stage 2 = {— stagel(x) A s(x) = 15} .
x € stage 3 = (— stagel(x) A s(x) < 15} .
x € stage 4 = revcornpos(x) .

x € stage 5 = edge(x)

x € stage 6 = cornerpos(x)

1]

x € stage 7 x 1is checkmate.

The measures are

m2(x) = decent(x) x € stage 2.
m5(x) = dedge(x) x € stage 5.
mi(x)=0 x € stage i, 1 =0, 1, 3, 4, 6, 7T

118

Additions to better and worse

The formal definition of better is grossly inadequate only in
stage 3. In the other stages additions may be needed in worse. No
changes will be made in stage 1 since it is very short,

In stage 2 when dcent(p)>C we ordinarily expect a tree search
of no more than depth 2, If the tree search is longer, this will mean
we are moving the knight out of danger and so the tree will be quite
narrow. When dcent(p)=0 the tree may be deeper, since several moves
may be required to establish s(q)<l5 . We can eliminate many bishop
moves by
6.7 st(p)=2 A st(a)2 A @b fab " 4, (uk, q0)>2 A (decent(p)=0 Vv st(q)=2) .
6.7 is defined for all valuess of dcent(p) because when dcent(p)>0 ,
we are not interested in bishop moves except to protect the bishop.
There will always be time to make these protective moves without
viclating 6.7 because if there were not, we would be in stage 1.

Stage 3 may require more than 20 moves. We immediately add to
better
6.8 st(p)=s1(a)=3 A s(a)<s(p)
because as previously noted the difficulty with s as a measure
involves worse (it viclates rule 3.9 but satisfies rule 3.7 which is
the critical one for better). However even with 6.8, more than ten
moves may be needed to force a smaller area, Both the length and the
breadth of the tree search must be decreased. In the following dis-
cussicn ar(s(x)) gives the area for which s is the size.

-We can eliminate many moves by adding to worse

119

6.9 (st(p)=3 A st(q)<3
A (dq (wk,qb)>2 v [st{a)=1 A = ktspec(p,q)]))
where
ktspec(p,q)= [dP(kt,qb)=l A 1ocation(p,ktp,§£(s(p)))=o
A losebishop(p) A dp(wk,kt)zl A ££p(wk,qb)=3
A wkpzwkq A qbp:qbq A —aonblack(ktq)} ‘
ktspec recognizes a position like Py in Figure 6.11. All moves but
kt-QB4% will be rejected at depth 1 since either we would have a q in
stage 0, or dq(wk,qb)>2 . The last three requirements of ktspec
eliminate moves farther down in the tree,

6.9 does not provide sufficient pruning to permit the program to
handle a tree of depth 10. We can shorten the tree by considering how
‘Ehe program must move to force a smaller area, It does this by co-
ordinating the action of the three pieces. We recognize certain of the

patterns involted by means of function v defined for x in stage 3.

We have
v(x) = 1 if = ktvi(x)
=3 if ktvl(x) A - ktva(x)
= 5 if ktvl(x) A ktva(x)
where
ktvl(x) = {1ocation(x,ktx,§£(s(x)))=-2
A d(kt_,c(ar(s(x))))=s(x))
ktv2{x) = ([s(x)=h A dx{wk,ktl>l]

v [s(x)>k A dx(qb,kt)=5 A dx(wx,kt)=3

A dx(wk,qh)=1]} .

120

Figure ©.12 gives examples of v=5 end v=5 , for s=5 , We can use
v by adding to better
6.10 st(p)=st(a)=3 A s{a)=s(p) A v(g)>v(p) .

6.10 cuts down the depth of tree search in almost all cases to a
maximum of 6. This meximum is exceeded when the black king is able to
escape from the area in p . This escape will either result in a
smaller area, Or will quickly be blocked. In the latter case, the moves
used to block the escape must be added to the moves required to increase
the value of v . Position 93 in Figure 6.12 is an example; a tree
of depth 8 is required. We can reduce this as follows., We define
function 2255(9) which is true if the black king can escape in one
move from p . Then
6.11 st(p)=st(a)=3 A s(p)=s(a) A poss(p) A ktposs(p,a)
can be added to better. Function ktposs handles a position like P,
in Figure 6.12. If the program simply accepted any aQ in stage >
with the same size area, then it would accept one with the knight still
on the boundary of the area, SO the whole tree would have to be repeated.
ktposs yill reject such a ¢q .

Thé addition of 6.11 to better insures a meximum depth of 6 for
trees in stage 3. Considerable pruning will be needed befcre the
program can handle these trees. As an aid to pruning we introduce
function §l- for positions gq in stage 2. sl(q) is the size of the
smallest area a in which
6.12 inside(q,a) A — badkt(q,a) A — bad4(g,a)

holds. sl(q)=15 if no area in q satisfies 6.12, If s(q)=15 ard

121

L

, i W/ 7

/@// ", W

| Y
uaTaa
%%//»W »

W,

?/%
//////
é”////
4% .i

/4 T T
'/’/’/ »
7

Jeininl

7/

» ...w/%

K77 {/ A
Y %fl

,,,,, A

///W s
. % //// W, ‘f_‘f,/,_).

s(py) = 5, V(pl) = %, The knight is guard-

ing part of the boundary of thd'area, which

frees the king so it can force a smaller ares=.

\

K
s(é?} =5, v(pg) = 5, The king must do the
forQing on the part of the boundary away
from%the knight.

5(93) =
the knight (to QBY4) and the black king can
If the

king were in K6, it would be unable to later

and v(p5) = White must move
escape to QKté6. goss(ps) is true.

block the escape and the position would be
in stage 2.

S(ph) = 5 and V(ph) =1 and Eoss(pk). If
after wk—Q5 and bk—QKt3, then wk—K5, the
resulting q will be rejected by ktposs.

Figure 6.12.

122

s1(q)<6 , this means either bpos or kpos failed for the area., One
possibility is that sl(q)=3 (?ESE cannot be satisfied in this case).

When st(g)=2 , we loock at sl(q) . If sl(q)<s(p) either white
is blocking an escape by forcing a smaller area, in which case
El(q):s(p)-l , or white is trying to meke a smaller area by moving the
bishop toward the corner, giving sl(q)=s(p)-2 . Often such a move is
wasted because the black king will easily escape. When s(p)=4 we
eliminate both kinds of moves; in addition we reject the second kind
when sl(q)=3 unless v{p)=5 (in this case.it is an interim move to
stage 4). We also eliminate positions with unlikely king locations.
We reject all positions satisfying

badsmall(p,q) = (s(p)=t v [=(p)=s1(q)+2 A

([s1(a)=3 A vip)<5] v 1ocation(p,wkq,§£(S(P)))%1
vd(wkq,C(ﬂ(S(p)))f’"?}‘.‘

We divide the remainder of the discussion of st(p)=7 into two
parts: v(p)=1 and v(p)>l . For v(p)>1 , we can be very concise in
our description of bad moves., When v(p)=3 we refuse all moves such
that
6.13 (s(a)=s(p) A v(q)=1) v (st(q)=2 A sl(q)>s(p)) .

We permit st(q)=2 only if s1(q)=s(p) . This occurs when the white
king has moved into the area to try to force a smeller area without the
aid of the knight. Positi.n p. in Figure 6.13 is an example of a
place where such a move should be made. Again this kind of move will
often be wasted since the black king can easily escape. We reject all

such q satisfying

123

wk—QB6 is the best move, and on the next
move, qb—QB7 will give stage b. ¢

i
iy

(i

)

A %y

7

When v(p) = 5, it is time to move the white
king inside the arez to the square indicated
in py. s(py) =15, but si(p,) = 5.

s(pB) = 4 and v(pﬁ) = 5. The knight moves
to Q5; on the next move, it may go to K7
giving qy, «

s_t(qh) = 4 and ﬂ(qh} = 15. We are almost
in stage 5, but need to move the bishop.

Figure 6.13.

12k

trysmall(p,q) = [qbp%qbq v location(p,wkq,ég(s(p)))}1
v [dq(wk,bk):s(p)-5 A (dq(wk,q'b)x
v location(p,bkq,gE(s(p)))<s(p)—l)]
v dq(wk,bkps(p)_uv {dq(wk,bk)ns(p)-h
A Mit.i.g@(p,bkq,g(sw)))<S(p}-?-}} ‘
For example, if in p, the black king were in GQR3, the white move wk-QB6
would be rejected by trysmall. |
When v(p)=5 , the tree is fairly long, up to depth 6. First, we
introduce a rule similar to 6.13. gq will be worse than p if
6.14 (s(a)=s(p) A v(a)=3) v (st(a)=2 A si(aps(p)) .
We can decide what other moves to reject.by considering how the
program should play. We want to move the white king inside the area to
form a position like p, in Figure 6.13. The knight is protecting the
boundary of the area, so we need not worry that the black king will
escape when we do this. Sometimes it will be necessary to move the
knight before the king move canlbe made. This knight move is a tempo
move; it must satisfy
ktmove(p,q) = {ktp:ktq v [dq(wk,bk):Q A
(s(ppl A location(p,ktq,ég(s(p)))=~l
A alke ,clan(s(p))))=s(p)-2) v
(s(p)=b A location(p,ktq,gg(s(p)))=0
v [location(p,ktq,3£(s(p))):-3 A
a(xt ,c(ar(s(p))N=4101}
Wwhen s(p)>4+ , only one knight move is permitted. In p, this is the
move kt-Q5. When s(p)=4 an additional knight move must be allowed

owing to the peculiarities of stage 5. Positions 95 and q, in

125

Figure 6.13 are examples. One result of the second knight move is
that 6.14 must be amended so that a position like q, will not be
rejected (Eé(th>4) . Instead of 6.14 we have

((s(@)=s(p) A v(a)=3) v (st(a)=2 A si(a)>s(p)

A [s(plh v ktp:ktq V = ktmove(p,q)1)} .

In addition to the knight, the bishop makes a tempo move. Py in
Figure 6.13 is an example. However we can limit the number of bishop
moves allowed by refusing those satisfying

{qbp;éqbq A [d(qbq,qbi)bl v dq(wk,bk)>2 Vv bpos(q,ar(s(p)))1} .
Finally we can reject many king moves (and an occasional bishop move)
by

badkmove(p,q,10) = {lo<-1 VvV 1la>l Vv [1lo<l A (dq(wk,hk)>2

Vv qbpjéqbq v [lo=-1 A wkp%wkq])}} "
where

lo:location(p,wkqug(s(p))) .

We combine all these conditions for v(p)>l , excepting s(q)<s(p) or
s1(a)<s(p) in

check3b(p,q) = ((st(q)=2 A s1(q)>s(p) A [s(pP>h v v(p)<5

% ktp:ktq v — ktmove(p,q)])
v (v(p)=3 A [st(q)=3 A v(q)=1]
v [st(q)=2 A sl(q)=s(p) A trymove(p,q)])
v (v(p)=5 A [st(a)=3 v s1(q)=s(p)]

A [— ktmove(p,q) v (st(q)=3 A v(q)=3) v

badkmove{p,q,loqgtioq(p,wkq?ggﬁs(p))))})]

When v(p)=1 white does not have much control. All knight moves

must be permitted except those giving stage O or stage 1. When
126

s{(q)=s(p) , we Hﬁmit the numberfof moves somewhat by
s(a)=s(p) f}dq(wk,bkbd(wl{p,bkq) .
st(q)=2 or s(q)>s(p) is only permissible when the black king is
able to escape from the area in p . Position Py in Figure 6.1 is
an example. Then g 1is an intermediate position on a branch of the
tree leading either to a smaller area oOr vhe same area under better
control. We can limit moves by
(= poss(p) v - kpos(q,ar(s(p))) v 4 (wk,bk)>d (wk,bk)
v location(p,wkqhgg(s(p)))>-l} ;
We combine conditions for v(p)=1 excepting $(q)<s(p) or
sl(q)<s(p) 1in ' A
check3a(p,a) = ((st(a)=3 A s(a)=s(p) A dq(w%t',bk}‘f-dp(wk,bk))
v (st(a)=2 A s1(a)=s(p) A trysmall(p,q))
v ([(st(a)=3 A s(a)l>s(p)) v (st(a)=2 A si(a)>s(p))]
A [s(p)=k v @b #ab, vV poss(p)
vV = _}E_go_s(q,ir_(s(p))) v dq(wk,bk)mp(wk,bk)
v location(p,wkq,gE(s(p)))>-1])} :
The heuristics for p in stage 5> in worse are
check3(p,q) = (st(q)<3 A [dq(wk,qb)>2 v
(st(a)=1 A — Xébpec(p,q)) V ‘ ;
(st(q)=2 A sl(q)<S(p) A baﬁi:_mﬁ_l‘li(p, qQ)) v
/ (l(st(a)=3 A s(q)>s pJ) v (*_(q)“ﬁ A s1(q)>s(p))]
A [(v(p)>3 A check3b(p,q)) V
(v(p)=1 A check3a(p,q))])]1]} . -

In better we add 6.8, 6.10 and 6.11.

127 s

ww
9 ,,%// %/ “%/W
2 f 4%

% / W, Wh
7
et

"W W

s(pl) = 5, but when wk—Q5 we will have
s(q) = 6 . We permit this move,

d (wk, bk) < d_ (wk, bk) and poss(p,).
q Py 1

This position is at the head of the major
tree search in stage 5(depth 7). kt—Q5 is
the only move on the first level.

This position occurs down in the tree
from Pys after 2 white and 2 black moves.
%t=QKts is the only move permitted.

Figure 6.1k.

128

In stage 4 ordinarily a tree of depth 2 will be required to reach
stage 5 because we expect to enter stage 4 from stage 3 with the knight
appropriately placed for s=5 . However we may occasionally have
stage 4 in a starting position or enter it from s=5 before the knight
is put in position. 1In such a case a tree search of up to depth 5 may
occur, Since the whole point of stage 4 is that the white king ard
bishop can control the black king without moving, allowing white to
bring the knight into play, we can easily reduce the breadth of the
tree search by adding to worse:

st(p)=h A st(q)<

E
-

Then trees in stage 4 will be almost all knight moves-

In stage 5 tree searches are very short except for the one black
attempt to escape from the edge (movés 14-16 in Figure 6.9), when a
tree of depth 7 is required. p, in Figure 6.14 is the position at
the head of the tree. We first of all eliminate all positions gq with
EE(q)#E . Before proceeding further we must be able to recognize the
edge e even in positions where the black king is not on an edge.

We look for q in stage 2 such that, for e=edge(p)
kcond(q,e) = (eposs(q,e) A I@(bkq,e)ﬂ A el(q,e)<3
A d(bkq,gg(e))gj A kconda(q,e)]
v [ﬁgébh,e)ﬂ) A d(bkq,g_lg(e))ga‘ A kcondb(g,e)]}
where

kconda(g,e) = qu(bk,kt)<§ A (onblack(bkq) v qu(wk,bk)(h)
and '

kcondb(q,e) = {dfwk,bk)<3 f\([_@_q(bkq,e):l A

¥r(resucc(q) o [de(r,e)<@ v gg(wkq,r)=2])]
v [gg(bkq,e)=2 A Vr(resucc(q) o de(r,e)=1)1)} .

129

.%

.

f

These conditions insure that the white pieces remain in the proper
locations for stage 5. In addition, they are so stringent that they
ofteh prevent the many bishop moves (the bishop is the least constrained
piece in stage 5) simply because one of the other pieces has to move.
Positions p, and Py in Figure 6.1k are examples. In p, , only
kt-Q5 will be permitted and in Pz only kt-QKtk., In fact the efchf
of‘these rules is to reduce the tree to almost one branch, Occasionally
a few bishop moves will be considered but they are\down in the tree
where they do not do much harm. Since the tree haéioniy one branch we
could décide on many of- the moves without tree searcﬂ. Howéver handling
them,thr&ﬁéh tree search enables the program to avoid extra pattern
recognition of the p@sitions with white to move which would result

from such positions. Summing up these rules, we add to worse

(st(p)=5 A st(q)<5 A (st(a)f2 v — kecond(q,edge(p)))]} -

Stage 6/is similar to stage h, and we immediately add to worse

st(p)=6 A st(a)<6 .

£

However this may permit four bishop moves at every level in-addition to

all the knight moves, and although usually the tree is only of depth 3

i
PR

or 4, it méy be longer. We must allow one bishop move for parity, but
we éliminate ali others by insisting that they satisfy
beorner(p,q) = {dq(Qb,Wk)<5
(dp(qb,wk)=2 A dq(qb,wk):B)] i
Combining the formal definitions of better and worse with the

[2 5
véilous additions we have

130

betser(p,a) = (st(p)<zt(a) v [st(p)-st(a) A m oy y(admy (o))
v [st(p)=3 A (s(a)<s(p) Vv
[s(q)=s(p) A (v(a)>v(p) v poss(p))])]}
worse(p,q) = (st(q)=0 v (st(p)=st(a) A mﬂ(p)(qust(p)(p))
[st(a)< stlp) A
((st(p)=2 A qb ?’qbp A dq(wk,qb)>2 A [decent(p)=0 v st(q)=2])
v (st(p)=3 A Edq(wk,qb)>2 v (st(g)=1 A — ktspec(p,q))
v (st(g)>1 A check3(p,q))])
v (stp)=t A st(q)<4)
v (st(p)=5 A st(a)<5 A

[st(q)f2 Vv — keond(g, edge(p)) 1)

v (st(p)=6 A [st(q)<6 Vv — beornerip,q)]) 1} .

These functions are equivalent to the definitions used by the program,

Examples of Program Play

Our first example starts with position p, in Figure 6.15.

EE(91)=2 and mE(pl)=3 .

1. wk-Q bk-K2
2. wk-QB3 bk-K3
3. wk-Qb We now have m2=0 .
bk-G-
L. gb-KB4 ch. bk-QB3
5. gb-K5 vk-QF
6. wk-Q5 Now we are in stage 3 with an area
of size 6. Moves 4, 5 and 6 are
selected by tree search.
bk-K2

15%

4 Tt b
e
iz, :, Wi /,'l -
W i i
y

51

Py
P2
// Aﬁ%%fﬂé ;
/////
p
3

Y
/’//%

7 7
e //

/é%%

L
Figure 6.15. Stgrting Positions for Example of Program Play.

/

Py ig in stage

P

is in stage 2, and dcent(pl) = 3,

> and dcent(pg)

is in Stage 2 and dcent(%) = 3,

However

all immedidte successors of 95 are in stage

0 or

i32

/7

10.

il.

12,

13.

14,

15.

16,
1T,

18.

19.

20,

a1,

kt-KR3

kt-KB2

kt-KKth

kt-KB6
wk-Q5

wk- QB4

gb-QB5 ch.

wk-QKt5
gb-QKth

gb-QR5

wk-QB6
qb-QRT

kt-Q7

bk-KB2

bk-K1

bk-Ql

bk-QB1

bk-QKt2 .

bk-QKt3
bk-QR>
bk-QKt3

bk-QKt2

bk-QB2

bk-QKt2

bk-QR2
|
k-QR5

bk-QR2
bk-QR1

Now v=5 . We have skipped over

v=3 .

Moves 9 and 10 are selected by a
tree search of depth 2. Now we have
an area of size 5.

Now v=3 .

Now v=5 . Moves 13, 14 and 15 are
selected by a tree of depth 5.

This is the bishop move allowed
for tempo.

Now we have §};3 .

Now we are in stage 4. Moves 16
through 20 are selected by a tree
of depth 4.

155

23.

2k,

25.
26.

27.
28.

29.
30.

21 B8

.

33.

35.
36.

kt-QKt6 ch.

qb-QH

gh-QKt8

kt-Q5
wk-QB5
Kt-QKth
gb-KBl
wk- QB4
gb-K5

qb-@4

qb-QKt6

kt-Q5

kt-QKt2 ch.

wk-QB>
wk-QB2

We are in the same position as
Figure 6.9 after white move 10.

bk-QR2
A tempo move,
bk-@QR>
m5=5 .
bk-QRY
bk-QRS
bk-QR6
bk-QKt7
bk-QKt8
bk-QKtT
This is the only place in the tree
starting at move 25 where more than
one white move is considered.
bk-QR6
Now we have reached the end of the
branch of the tree (of depth 7) and
m =L}. i
>
bk-QR5
m5=3 i
bk-QR6
bk-QRS
=2
.
bk-QR6
bk-QRT
bk-QR6

134

37, qo-GBS5 ch. mg=1l . Moves 35, 36 and 37
are selected by a tree of

depth 3.
bk-QRT This move gives a p in stage 6.
38. kt-Q3 bk-QR8
39, Qgb-QKth | A tempo move,
bk-QRT
39, kt-QBL ch. bk-QR8

4O, qb-QB3 mate.
The program plays the last part of the geame (from move 22 on)
identically to Figure 6.9; different black moves have been selected
to give some ?ariety. In the first part of the game the program play
is dull but steady. As usual, the program sometimes does: not make the
best move. About four moves are wasted in this way. The black moves
are selected tc¢ give the program a maximum amount of trouble. The
s§§rting‘position P, is tge one given in Capablanca [i955}f¥
Capablénca only uses nine white moves for the first part (compared with
21 program moves); however his black king'moves are more cooperative
than the ones selected in this example. v
Our next example is taken from Fine (Figure 6.1). We start from
p, in Figure 6.15 which is the same as the starting position in
Figure 6.1 after adjustments have been made for the fact that the
program has the queen's rather than the king's bishop. Again we start

in stage 2. We have

1. wk-QB4 . bk-K5
2. qb-@b bk-KB4
L, Page 109.

135

3.
v 6.

-~ 7,

10,

il,

15.

1k,

15.

16.

wk-Q4

wk-K4

Kt-QB7
kt-Q5
kt-QKt6

kt-QB8
kt-Qb6

kt-Kh

kt-KKt5

gb-K5

bk-KKt5

bk-KKth

bk-KR3

bk-KKt3

bk-KB2

bk-KKt3

bk-KR3

bk-K R2

bk-KKt1l

bk-KR2

bk-KR3

bk-KR4

bk-KR5

Now mMo=0 but actually we are in
stage 3 with an area of size 6.

This move gives a p with
poss(p) true.

White blocks the escape, so the .-
positiopn i§ﬁ§%Q9pted by bettefi

.
-

.

b
W ¥

Now v=3 .

Now vwv= 5 .

Now we are in an area of size k.

-
IE)

Now v=5 .

This is the first allowable knight
move.,

This is the second knight move.
We have s1(q)=15 .

Now we are in stage 5, and m5=h .

136

g

There is no point in continuing the example since the program will play

the same as in example 1. Ten more moves are required to mate. As

eépected, the program plays differently from Fine, The moves for black
* »

) o BTe chosen to iilustrate how the program reaches stage 5 through areas
i {pdf size £ and 4. When this path is chosen, stage 5 is short and check-
mate is reached quickly.

We will now give two short examples to illustrate special cases
in the first part of the geme. The next example shows how the program
handles a temporary escape from an area. We begin at position P, in

Figure 6,12, EE(ph)=3 5 s(pu)=5 , and EOSS{Ph) is true, We have

1. wk-Q5 bk-QKt5
2. kt-Kb bk-QKt6
3, wk-Q4 bk-QBT
L. gb-QKth Now sl(q)=h
bk-Q8
5. wk-@Q3 bk-QB3
6. gb-QB>3 Now we are in an area of size L.

If at any time the black king had returned to the area of size 5, he

would have been trapped there and that branch would have terminated.
Our final example shows what happens when we must cope with a

stage 2 position coaumplicated by the locations., We start at p§ in

Figure 6.15. p3 is in stage 2,but all of its immediate successors

£
are in stage O or stage 1.

157

1. kt-KBS wk-KKt6 would give ma(q)<m2(p)
and dqﬂwk,qb)idq(bk,qb) but this
positian is correctly recognized
as a member of stage O. We have
q in stage 1.

bk-KKtl
2. qb-KB6 We are in stage 2, but
mE(q)=m2(p) . Note dq(wk,qb)=2.
bk-KB2
3. wk-KKt5 Now we can accept q as better
. b
since m (q)<m,(p) .
bk-X3
4, kt-KKt7 ch. The knight was blocking the path
' of the king.
bk-Q3
5. wk-KBS Now mg(q)=1 .
bk~ Ql
6. wk-KB4+ The black king is blocking the
white king move intc the center.
bk~ QB4
7. wk-Kb Now mz(q)=0 ;
bk-QB 2
8. qb-Q Now we are in stage 3.

The program manages nicely.
This last example indicates that the prégram should be able to
reach checkmate from any starting position within the 50 move limit.

Stages 5 and 6 together never require more than 19 moves, and the first

example of program play gives a-close to maximum number of moves through

1: £ 1 ‘”" oF
stage 3. Since this example ends similéfL§ftc the first exampls after
_— J ' R

]

138

move 6, this means the program still has a margin of 8 moves to take
care of any complications which arise.

The remarks about the previous end games are also valid herg.

-1

However, the medioccre (better but not best) program moves are not‘Eo
frequent in this game. This is because the difficulty‘of winning
forces more exactness in program play. The difficulty of this game
also provides a good test of the program, The fact that the program
can win, using the fairly simple patterns which provide the outline of
the play, “indicates that the forcing tree model used for the program is

a good one. Also the program play is jdentical to the book's when

sufficient information is available.

139

CHAPTER 7

PROGRAM CORRECTNESS

Now that the definitions of better and worse have been given for
the various end games, we Can consider the question of program correct-
ness. We will say that the program plays an end game correctly if we
can prove that it will reach checkmate from any legal starting position
pEP . To prove, given the position p€P, that the program will actually
win from p , we must show
1. The program can force positions q which are better than p .

2. This process need only be repeated a finite number of t}mes before

checkmate is reached.

First we must introduce scme notation.

Defn. grosl(p) = {q | ¢ is at “he end of a branch of the tree from

p which is produced by the program} .

If an immediate successor q of p 1is better than p, then grogl(pf-
will contain the single element q . If the program is unable to force
better positions from ©p , we would have grogl(p)=N1L , which means
either that all branches are rejected or that the program does not

terminate (in 50 moves). The first stavement can therefore be written:

Theorem 1. Vpl[p€EP :>—1null(grogl(p))] .

Proof. This theorem must be éroved separately for the different stages

and measures within each end game. It is sufficient to show that an

1L0

acceptable path exists; we will not know for cerﬁaingwhat Ezggl(p)
contains but we will know that it is not empty since.the program uses
a breadth first search.

We give a proof here for positions in stagé 2 Sf the Rook end

game. Recall that stage 2 is defined by

x € stage 2 = {goodquad(x) A squad(x)>2] .
The measure in stage 2 is
(K) . squhd(x) vx{x€Estage 2) .
better for' stage 2 is defined by

(p) =2 A (stfqbc_’ v .)

(st (q)=st(p) A (my(a)<m, (p) v d (wk t‘)<<1 (wk r)) 1))
an& worse by :

(st(p)=2 A ([s’a(q)=lé A my()>my(p)] v
[(st(a)=1 v [58()=2 A my(a)=my(p)]) A 8wk,)2
A (a (wk r)bl y [st(a)=l AT ;!r)]}]

We divide the proof 1nto two parts dependlng con dp(wk,r) .
‘1. dp(wk,r)>1 . Bhen there exists a ¢ ‘with dq(wk,r)<dp(wk,r))
g will have the same quadrant as p , and since P satisfies
d (wk r)<d (bls r)+1 , we can be sure that d (wk,r)<dq(bk,r))
This q will ée better than p , and EL.&l(P) (g*} .

(g* is not necessaxlly equal to gq.)

2, dp(wk,r):l . There are two cases %o copsider, Let p'spor a

4

successor of some ,q down in the tree from p .

a. There is a rook move leading %o a pbsition q (in stage 2 or %)

with a smaller quadrant. Such a pﬂolt on q. wi¥l be better tnan

p , and so we know the tree terminates. We are always in ciﬁe ba

141

&)

if dp,(bk,rl>2 .
b. No such rook mcve exist%.
is dp,(bk,r):l and we are not in 2a. Then we make one
of the king moves such that dq(wk,r):l and qu(bk,wk)<h
for fr as defined in Appendix A. A move like this always
exists and is not worse; fgq(wk,bk)(h insures that after
the black king mgmges we will be in 2a or 2bii, which means
the tree will terminaté ﬁfFEF or;two more moves.
1f. dpi(bk’r)=2 A zgp,(bk,wk)=h and we ﬁ;e‘not in 2a. This
is the place where the whﬁte king moves onto the boundary
of the quadrant. Then after the black' king moves we are
in case 2a with just one move to tefminate the tree,
§44., dp,(bk,r):E A’_f_z;P'(blE;wk)ﬁ and we are not in 2a. “We make
a white king move such that dq(wk,rj%l , and after the
black king moves we are in case 2bi or 2a (at most three

more moves to terminate the search).

1

’

Cbviously such\proofs are very tedious and we will not attempt to give

them for the other stages. The method of proof remains the same, and

sketches of such proof have been given in the varicus chapters.
i

Although the example chosen for the proof of thg previous theorem

was given using tHe practical definition of better, for the rest of

this discussion we will use the formal definition of better. We will
discussf the extension of the theorems to the practical definition after

they have been proved.

First we must prove that rule 3.7 holds.
I‘.’*

142

i

¥

Theorem 2. ¥q Vp(aMgp o [st(p)Pstlq) Vv

(_S_E(P)T-S_t‘(q} A mst(p)(P>Smst(p)(q))D .
= ==\R

Proof. Again we must prove this for the different stages and measures.

In fact we have proved it informally in the chapters covering the end
games, The reason it is possible to prove this is that stages and

measures depend almost entirely upon the position of the white pieces.
When a rule is made about the position of the black king it is stated
in q and in p in such a way that if it holds in gq , it will hold

in all immediate successors p of q.

S
We have purposely given informal proofs for Theorems 1 and 2 bécause
the detail required for a formal proof is excessive and uninstructive.
It is necessary in these theorems to give separate proofs for each stage
of each end game. The proof given for Theorem 1 is correct for stage 2
of théiﬁook end game, and serves as an ;%;ﬁﬁp_?if how such proofs should
proceed; both for Theorem 1, and Theorem 2, althdugh the proofs for
Theorem 2fa£e gimpler. _ . ¥ * ‘
Egggl(p) produces d;ij cne step of the program. To handle the

entire program we meke the following definition

Defn. For D1,

prog, (p)=(a | 3p'q'(a'€prog; ,(p) A a'Mgp" A q€prog, (p'))} -

Please note that the 1 in Erogi{p) does not generally stand for
the ith move from p ; it stands for the ith iteration of the
program, A new iteration is not begun until the tree (possibly of

depth 1) from the previous program entry is exhausted.

?

143

'4

Now we can formalize the second statement.

Theorem 3. Vp[peP D 3K VN(I>K > null(prog {r)))] .

Proof. P is associated with some end game, and let us suppose this
cagme has n stages. For each stage i , let ki be the numbér of
different values which the measure mi assumes, We know kﬁzl for
all 1 . (ki must be finite; this is t{Hﬁ @Fr all the measures which
have been defined.) Let

n

K = Z (k) .

i=1
K is the number of different categories into which positions in the
end game can be put, not counting stage 0. We refer to each categcry
as a level, and we define a function le , which gives the level of a

position as follows.

(1) le(x)=1 = {st(x)=1 A m (x)=max(m (y))} , for s=(y | stly)=1} .
yeES

(2) ‘Assume we have defined the set of positions x for which
le(x)=1i . If this set is empty, then so is level i+l . Other-
wise, we define the set for which le(x)=i+l as follows. Let
x be a position such that le(x)=i .

If i=K , then x 1is a checkmate position and the i+l level
is empty.

Otherwise st(x)<n . If ?ﬁE(x)(XI>§ég(%§E(y)(y)) , for

S = {y | st(y)=st(x)} , we have

Le(2)=i41 = (s8(2)=580x) A myy (o (2)maxlmgy (1))
— y —_—

for 8= (y | EE(¥)=§E(3) A mst(x)(y)<mstﬂx)(x)l .

1Lk

Otherwise we have

le(z)=i+l = {st(z)=st(x)+1 A mst(z)()—max(m,t(z)(y))})
- yeES

for 8 = {y | st(y)=st(z)} .
For completeness we define

R le(x)=0 = st(x)=0 . i,

o

The levels have the same order as. we would like the program to follow;

we know O0< le(x)<K , for all x€Q . Recall QP U (q|3p(peP A pMa)] .

We have the following lemmas.

i

Lemma 1. Vpq((q€Q A aMyp) o le(p)> le(q)] .

Proof. This follows immediately from Theorem 2.

Lemma 2. Vpal((p€P A geprog, (p)) D le(a)>1le(p)] . 1

L |

Proof. Since qﬁgrogl(p) , we know better(p,g) is trﬁg: Therefore,
.

le(q)>le(p) . * b

N

Now, for pEP and N>K , let us assume there exists a QEEEOSN(b)\-

We unravel the meaning of this: *\
a€prog, (p)

¢ ®3pq ... Py g%y (g ,€prog, (p) A'ay Mopy) A...A a€prog(p;)) .

-%e select the eppropriate p., Q,,..., P q. , and apply our
I =32 ¥ "N~ _N-l

lemmas to get i’

)

le(qy ,)>1e(p) A le(py ,)> le(ay) A...A le(qple(p)) .

145

-

[
)+1
¥

. t - L B
Each time we have }_g(qi)>£g(pi+l) we can write le(q.)> lelp;

since le is an integer function. So we have
= 1 3
le(qy ;)2 le(p)+l A le(py o)2 le(qy ;)
! i‘l {

h Therefore E{qN-E)Z le(p)+2 A }E(QN_E)?_ le(p)+2 .

b

v

le(g,)> lelp,)+l A le(p;)> lela)) . 4

This gives _]__E(gl)z le(p)+N-1 and since ie(g)> l.g_(pljﬂ. , we have

le(q)> le(p)+Ns> le(p)+K > K+1 ',
]

but this is impossible since le{x)< K for all x€Q . Therefore
4 . o g .'
QrogN\p) is empty. ?'f "
) 'y ' .-J

Thecrem % insures t.hat;‘the prc??*; will never get into a loop. It

¥ t S R

says that ki , in addition to being tre number of values the measure mi,‘
assumes in stage i, is also a bound on the number of times the program
can produce better positions in stage i as .t moves along from a starting
position to checkmate. The proof of Theoreg 3 depends entirely upcn
i ol

Theorem 2 and the definition of b-ette!‘i'f&,enmas 1 and 2",

"We use this theorem as follow§. Consider how the set Erogﬁﬁp)
is formed. There are two parts tc‘i'thf: definition. One part looks like

A t i i 5 B
qiEErogl(piﬂ) ; the o.he‘zi is a statement like qiM_Bp1 . Now Theorem 1
|

says that the statement q';"aprog(pi +1) is always true provided

p. .€P . We know this for the original p . However we must show

i+l

16

Theorem 4. Vp*[3pq(peP A qEErogl(p) A qMBp*) o p¥€P] .

Proof. This proof is the same for all end games and it produces a }
condition on the definition of stages. If we assume the premise for
some p* , then we know le(p*)>2 , since le(p)>1 . This meags that
all non-winning positions which can be precduced from a winning position
must be below the second level. 1In all three of the games discussed
the second level is in stage 2. The only questionable game is the
Bishop-Knight; we are confident that there is no p€P , st(p)=1,

which produces p* , st(p*)=2 , but p*¢P in this end game.

-

By Theorems 1 and 4 we ¢an be sure that the chain leading to
EEEEN(P) does not fail because a set gzggl(pi+l) is empty. There-
fore it mpst,%?il in the other statement , qiMBpi . This can only
“:happen if some q; has no successors. But if 9 has no successors
it is either stalemate or checkmate. In this case it cannot be stalemate
since we know it is better than some p ; therefore it must be checkmate.
Sc Theorem 3 means that less ﬁhaﬂ}\K uses of prog, are required to;
reach checkmate for any p€P . Tﬁé;efore we can say

*

Theorem. Vp(pE€P D the program will force checkmate from p).

Before leaving the subject of correctness we must discuss the
extension of these theorems to the practical definitions of better and
worse. Theorem 4 is the only one which is unaffected by the additions.
We consider Theorems 1, 2 and 3.

We first realize that Theorem 1 is not -affected by the addifions

to better. This theorem is really a statement of existence and if the .

147

program terminates sooner than expected this does not affeét the proof.
Theorem 1 is affected,however, by the additions to worse. We must be !
sure that worse does not now'g!iminate‘the path which is followed for

the proof of Theorem 1. When we used the formal definitions of betier

and worse there was no danger of this sort because worse hardly w0

eliminated anything. Recall the formal definition of worse

-

\
worse(p,q) = [st(q)=0 v (st(p)=st(a) A mst(p)(p)<mst(p)(q))] ‘

Since all positions in stage C were disastrous, only the second part
of the rule could affect the eventual finding of better positions.
This problem was considered carefully as the stages and measures wvere
defined for each end game, and only if we were sure the program would

work correctly was a function allowed to be a measure. The proof of

1)
}
Thecrem 1 is based upon this fact. Similar carg must be exercig%d when
S

additions are made to worse. This problem is considered in Chaﬁtirs L,
: - S 3
S5 and 6, when the additions to wogpe ate’described.
Theorem 2 is the s%atement of rule 3.7, and must be extghded to

cover each addition to better. This extension was discussed as the

]
additions were made, but we will consider it again here. Theorem 3 is

4

affected by the additions because we must redefine K . We discuss

both theorems at the same time.

In the Rook end game only one addition is made to the formal
definition of better; this is
st(p)=st(q)=2 A m,(p)=m,(q) A dq(wk,{)édp(wk,r) .
As was mentioned in Chapter 4, this use ofckd is like a measure.
Since only the position of whitéEQigce§ is involved we can be sure
that the evaluation of a successqrgsg% q using d will give the same 'y

tlhg‘ Ll

F
¢ -

value as q ; therefore the correctness of this addition depends on the.
correctness of stage 2 and its méasure. In‘Theorem 5, we must use a

different va;ug fgr K ,Eylreplacing k2 with ke* y
k2*=7-k2 ;id!ncé 1d‘(fk,f) can have al{ most 7 different ;alues.

where

In the BishoP-Kﬂfght.end geme we need only worry about stage o 2%
As was mentioned in Chapter 6, s satisfies 3.7, and hé:} . ¥ glso
is nearly a measure and %.7 can be extended to cover itisince it de%ends
only on the position cf the white pieces. Vv leads us to give a value
of k3*=9 ;

In they Two-Bishops end game, we added a function which is not
like Y méature since it is not integer-valued. This is the rule u:zed
for non-head gquadrants in stage 2:

st(p)=st(a)=2 A squad(p)=squad(a) A (squad(p) is even)

A dq(wk,bkkdp(wk,bk} A dmin(q)<dmin(p) .

This rule is acceptable because of the use of dmin which is a fun~tion

4

of white pieces only. Therefore we know that

Mpp O dmin(p)=dmin(q) .

Also the rule can be applied no more than six times since dmin(x)<6
for all x. with st(x)=2 . dmin could be used as ; measure by itself.
We can think of the other part of the rule,

(squad(p) is even) A dq(wk,bkkdp(wk,bk)
as a modifier on dmin. It does not affect the extension of Theorems 2

and 3.

149

CHAPTER 8

EVALUATIONS AND CONCLUSIONS

Evaluation of the Forcing Tree Model

We consider first the forcing tree model selected for the program.

This model has proved to be a good one for our purposes. The end games
described have all led to fairly simple pattern descriptions. Also, we
have been able to prove that the program can reach checkﬁaﬁe from a
gf;en starting position, This procf depends heavily on the mode1? which
is represented by functions prog, and prog .

As far as the quality of prégram play is concerned, the program plays
411 of the end games discussed in quite a reasonable manner. The main
objection which can be made * ~* -t the program does not always play as well
as it might. Sometimes when there is a perfectly obvious move which
produces a position much better than the present one, the program will
select another move which is not as good.

Such play is a natural consequence of a method which looks for a
good move rather than the best move. And obviously, the more heuristics
the program has the more likely it is that the pest move will not be
selected. For erample if only checkmate positions were recognized by
better the best move would always be selected. However this approach
is not practical bgéause the tree s;arch is too large. In genepal
there is this trade-off between goodness of play and length of tree

search,.

150

There are several fairly simple ways of making the program play
more efficiently., First of all we could improve program play by having
it search for the best move, rather than just settling for a good one.
This is easy to implement when examining immedf¥ate successors q of
some position p . We would simply let @ be the list containing all
q ‘which were better and not worse than p . Then after all successors
éf p had been exaﬁined, if @ were not empty we would compare the
members of Q with each other, using a function similar to the formal
defénition of better. The formal definition could not be used because
it expects a position with white to move as its first argument. However

*function
8.1 betterg(q,q') = (st(q')>st(q) v mﬂ(q)(q' }<ms_t(,q)(q)]
could easily be defined to compare two positions with black to move.

We convert the formal definition of better rather than the actual
one for two reasons, First of all, there is so little difference between
two positions,.both successors of the same position p with the same
stage and measure, that it is not worth the extra work to distinguisﬁ
between them. However even if we wanted to, it is not always possible
to convert the actual value of better into a rule like 8.1, because
sometimes some information about p 1is ysed to assign a value to g
in this definition. For example, in Twoeﬁfghops we use the fact that
p is non-head quadrant to decide about .q,. This decision really
depends on the fact that p .-is a predecessor of q, and cannot be
converted into a comparison of two positions with black to move,

It is not simple to extend this method of program improvement to
tree search because ‘the choice of one branch over ancther is not so

r

151

clear=-cut. In a tree search it is not usually a matter of deciding
which particular gq tolput at the end of the branch, although this
would improve the program somewhat. It is more important to decide
between several branches all of which terminate at the same depth,

For example, suppose ore branch of a tree almost always leads toc a
much better position than the original p , except in one or two places
which are only slightly better, while another branch is neither as
good nor as poor as the first, It is difficult to say which branch.
should be chosen, .

The mein thing wr;hg with this method, even if we do ncl consider
tﬁe problem of choosing between branches of a tree, is the fag¢t that it
would greatly increase program run time. After all, the killer heuristic,

i
discussed in Chapter 2, introduces playing inefficiency but is*used
because the time saved is more important. This method of Searching for
the best move would waste more time than is saved by the killer
heuristic (an@ also it is incompatible with the killer heuristic).

A way of improving program play which is not so time consuming is
the foilowing, which compensates for the inefficiency in play intro-
duced by using extra heuristics to avoid tree search, We could replace
better with a hierarchy of functions which will be referred to as
versions of better. For example, version 1 would recog...Ze gross
differences between p and q (for instance, only changes in stage);
version 2 would recognize smaller differences and so on. Then all non-
worse successors q of some position p would pe exaﬁined using

version 1 of better; if none were selected they would be examined by

1, 4

version 2; and so on., This woild be faster than the previous method
5ecause the tests in each version of better would be very short, and as
soon as a q was selected, all tegtihg‘ﬁould stop. A gain in efficiegﬁy
would be made even if just two versions were used; one would be the
formal definition of better whileithe other wouldg%e the additions
which make the program practical. However three;%ersions would be |
required to get the most out of the method, beCﬁﬁse we would alw&js
prefer a change in stage to a change in measure{

| Another way in which program efficiency cpuld be improved would be
by paying attention to the order of move genejation. This ha§5already
been done to some extent for egample in the Rook end game, réok moves
are examined before klng moves, so that a s aller quadrant will be
Formed if possible. On the obher hand in !he Rishop-Knight game, ’
knight moves are examined first so that foﬁ example in pogition Py

in Figure 8.1, kt-KB2 w711 be selected (s(q)=6 , v(q)=5) , although
gb-@6 would give s(q)=5 . Even if the only ordering done is to

decide what piece's moées to examine first, some gain in efficiency

can be obtained. More gain'in efficiencf can be made by considering

the orderlng of moyes for each piece. For example if the rook moves

farthest away frgim the rook were generatkd first, then in Py in

Figure 8.1, we yould select either r-Kj or r-QB3% giving a quadrant

no

of size 10 or . If moves are generated in the opposite way, r=-Q

or r-QB4 wbuld be selected glVlng a qgadrant of size 15 or 16.

Impro-lng program play by’changlnglthe move ordering does not

increase fthe playing time (provided the killer heuristic is allowed to

// ; 153

///1‘7//////// %/ -p:(t is) inést.age(}.)

_slpy) =9 vip,) =1.
%//////////;';’ / kt—KB2 gives sii; =6, viq; =5,
n’f , g6 gives s(q) =5, vig)=1.
R // ”

o
//

_f /A Pe is in stage 2, and
Y / my(p,) = 20. If rQB3, then
N %V// - m2(5 - 10. If rX5, then
/ /"// /% mg(q) = 12. If rQ5, then mq(q) = 16.

%/ If r~QB4, then me(q) = 15.

Figure 8.1.

15h

stand). However, many times the move ordering will be wrong for the
particular situation. The board is symmetric in many ways in these
games, and so it is often possible to think of two positions p which
require oppcsite move ordering if the best position q 1is to be ¥
generated first. Position p, in Figure 8.1 is an example. Altgbugh
we can order the moves so that a quadrant of size 10 or 12 will be
selected instead of one of size 15 or 16, there is no way to order the
moves so that we can be sure that the gquadrant of size 10 will be

selected in both p, and all positions which are equivalent to
2. P2

with respect to the symmetry of the board.

b T

Correspondence of Program and Book Methods

Now we consider how closely the definitions of better and worse
correspond to the methods described in the chess books. When the
information in the books is reasonably complete, we would like the
program to play similarly to the books. We feel this goal has been
achieved, The only place where the information about play is very
inadequate is the first part of the Bishop-Knight game (actually stage 3).
In all other parts the informaticn is adequate, and generally tﬁere is
nc question that the program plays the same as the books.

The one exception is stage 2 of the Two-Bishopsgame. The lack of
correspondence here comes from the fact that sometimes the took chooses
a move by a different heuristic even though the stage has not changed.
The reascn the book does this is probably tO'Eﬁdﬁpthe*student tﬁat more

]
than one kind of method can be appiied. In other stages and other games,

the number of moves chosen by a different heuristic is very small and so

155

does not worry us. It is perfectly reasonable to limit the program to
one kind of heuristic for each stége, and this is what is done in Two-
Bishdps.

Another kind of difference between program and book moves 18 that
sometimes the book locks aheac one move (or more) even though it could
make a decision jmmediately. There 18 no reason to attempt tO model
this. It does not happen consiétently, and does not indicate any

essential change in methods.

Evaluation of the Translation Process

We heée shown that the forcing tree model allows the program to
produce winning play for three end games, one of which is very difficult.
Further there is a fairly close correspondence petween book and program
play. We take this as proof*ﬁhat the model is a good representation of
the abstract mcdel assumed by cﬁess players. Now we turn our attention
to the difficulty encountered in translating from the books into the

definitions of bether and WOrse.

An examination of Chapters L, 5 and 6 will suffice to convince

us that this translation process is surprisingly difficult. Sometimes
we are hampered by a lack of book information, but even whern there is
plenty of information we still encounter difficulty. The reason for
this is that the induction required of the student is more extensive
than we expected.. For example, in the last part of the Bishop-Knight
game (stage 5) the chess books give an almost complete example of play.
However it is very difficult to decide which features should be used to

represent the pattern.

156

Now if we divide the translation process into simple versus
difficult tasks we find the following. It is simple to decide roughly
what the stages are, and what kind of heuristic each requires, This
information is often stated in the bocks. It is difficult to give the
exact definition of the stages and measures, and generally it is even
more difficult to define the additions to better and worse which make
them practical. So we ask the question: can we use the computer to
help with the translation?

One way in which the amount of work might be lessened is the
following, which helps with some of the difficult tasks. First ve
observe that all the heuristics used in better and worse consist of
complicated predicates built up out of simpler predicates joined by
propositional calculus connectives. Many of the simpler predicates
are useful in all the different games, for example functions d and de .
Others are not so widespread but are still basic to the structure of the
end game; for example function location in the Bishop-Knight game is a
natural function for measuring distances from diagonals.

Next we observe that defining the heuri%;ics for an end geme is
done in two separate parts. First we give the definitions of the stages
and measures, which are taken from the che;s books whenever possible,
When the game is well defined the péocess of arriving at the stages and
measures, while sometimes tedious, can be guideq by the books.

After the formal definitions of better and‘ggzég are complete we
turn our attention to the practicality of the method. At this point

the chess boocks are not so useful; painstaking examination of the paths

157

which the program shogld and should nct follow is the important thing.
The rules a¥rived at are built up out of the distance functions and
pieces of the definitions of stages and measures. So it is edtirely
feasible that this part of the definition of heuristics can be done by
the program.

The following method assumes that stages and measures have been
defined. The program has available to it the definitions and can get at
parts of them. It can generate many other functions, in particular the

f

distance functions, and also tests like wkp:wkq . Whenveriig has to
do a tree search at some D , then for all q at the top of & branch of
the tree, it generates a descri;tion of g which it the conjunction of
the values of all the functions it has at its disposal. When the tree
seerch terminates it notes which pattern describes the successful
brench and which patterns describe branches which failed. Then the next
time it encounters a position p' 1like p it will accept a successor
q' of p' which fits a previously successful pattern. If it still has
to do a tree search, it will reject all successors of p' which fit a
failure pattern. Since q' may actually be in a lower stage than p' ,
the program must remember, when it accepts q' in this way, to use p'
as the first argument of better (rather than p" such that q‘MBp“)
until it finally reaches & g which is accepted by better. A flow
chart of this process is given in Figure 8.2,

The tree search required to implement this method will be Vvery
lengthy at first, but will decrease in time. The more simple functions -

the program has to work with, the longer it will take to converge on &

useful pattern, On the other hand, if the program has too few simple

158

untcr/hith

trtin:

pusifiow

return,
PO rum erroyx

i.e n posi
tion which has
been seen

™ -
before?

can

2>

tegect g in

vhich were

Lo tree

Savin’

-
mation. vreviously
w3 {rirsip,Q) 1 cac.

retuarn,
pProfframn error

Figure 8.2.

Program Organization for Doing Simple Learning.

159

-

14 Vgrsn | s
functions it may make errors in the sense of being unable to distinguish
' (Y
between two positions g and 4q' p

3

shortest branch, while the other is rejected as leading to worse positions.

, one of which is at the head of a

This method has been implemented for the Rook end game in an abridged

form, The program was given the formal definitions of better and worse,

plus the following functions (2-valued or 3-valued; f : g has the

3 values < , = , and >): y
quad(q)
squad(p) = squad(q) (If - quad(p) v — quad(q) > pthe

value' is undefined. This function is
useful only in stage 3, since Eﬁﬁﬁg
is a measure in stage 2.)
dp(wk,r) : dq(wk,r)
dp(wk,bk) : dq(wk,bk)
dp(bk,r} : dq(bk,r)
f{p(wk,r) : ;Eq(wk,r)
gp (wk,bk) : f‘_rq (wk,bk‘)
dq(wk,r) : dq(bk,r)i:f"é
Th?se functions were given to it; it did not derive them. In addition
the program needed a way of classifying positions p so it would know
when its new functions should be used.‘ To classify pi, the program
used
st(p) (only stages 1, 2, 3 apply) ;
dp(wk,r)zl i

Thus the program had a maximum of six classifications, d

F L
- t,

160

*

The program used a "complete" treelsearchj which means that when it
discovered a good branch of the tree at some depth n , it continued the
tree search for the rest of depth n to see if any other br;nches were
also good at that depth. The p}ogram was run on a series of 34 positions
requiring tree search; it was able to make moves immediately for 16 of
them, including 7 out of the last 10.

The moves which the program discovered were not always the same as
the moves which the practical version of better would find. For example
it learned to make the moves satisfying

dp(wk,r)>1 A dq{wk,r)(dp(wk,r) , | /
but ip also learned to move the white king onto the boundary of the quadrant
so that a smailer quadrant could be formed on the next move. Theoretically,
of couﬁse, it should be possible to make every move without tree search.

Iﬁ fact, this method is quite gocd at extending the definitiﬁns of
better but does not develop much of a definition of worse. Note also
that this method produces a hierarchy of versions of better, as was
discussed in the first part of this chapter, so program play remains

quite efficient.

Fxtensions in Chess

To illustrate the fact that the program is useful, we discuss how
it could be extended to cover a larger set of end games. Up to now,
chess progrﬁms have not been concerned with these games. The program
of Bayleor and Simon [1966} could not be used to play chess end games.

It deals with mating combinations; these are the chess problems, in

161

which there are many pieces on the board and only a few moves to check-
mate, The more general programs (for~exgmp1e, Greenblati’s program
[Creenblatt and Crocker, 1367]) are written to play the middle game.
The end games are ignored since they are played differently from both
the middle game and each other. Therefore, if enough end games could
r: handled by the program, it would be a useful addition to a more

general program like Greenblatt's.
v

f

The success of the program has convinced us that it can be applied
to other end games. All that i; féquired ié the conviction of chess
players that the particular end game can be won from all but certain
defined positions. If a position truly can be won, this means there
must be features of the position which express this fact. The notioﬁ
of better, using stages and measures, provides-a good framework for
gathering and using these features.

There are tﬁg main problems to consider when extending the program.
First, it would seem that the method is not suitable to games in which
black has many moves, If black has a few pawns that is all right, but
as soon as black has a major piece, there would be too many black
moves to do the tree search which the method requires. However, the
number of moves is more apparent than real because usually most black
moves would be disastrous. One way to take advantage of this fact
would be to modify the program to evaluate positions in the tree search
.after black moves as well as after white moves. After black moves, the
program would look for positions which lead to a better position in one
white move (there is no reason why this could not be recognized at

this point). After white moves possibly only worse would be used,

162

since we would know better could not be satisfied or we would not have
searched so far. With this change, which is not a major one, many
games would become amenable to the method; for example King and Queen
against King and Rook.

A more serious problem is the fact that the heuristics are different
for each end game and this means that better and worse must be redefined.
However, if the induction method described in the previcus section’
could be used, we could extend the program without too much difficulty
to other end games. For example we could easily in;lude King and
Queen against King and the various Pawn end games.

In addition, we can use the program to handle other games without
giving new definitioné of better and worse. These are end games which
include some solved end game as a subset. For example, suppose we had
esséntial}y the Bishop-Knight end gamé, ?ut black had a pawn and white
an extra bishop. Then the program could afford to sacrifice a bishop
to take the pawn. It would recognize this fact by obtaining at the
end of a tree search, which should be fairly short, a position q in
the Bishop-Knight game such that st(q)z 2.

Therefore the program can be extended to cover a-fairly large
set of end games. This means thet translating from book methods into
program heuristics can produce a useful program, at least in this task

area.

Conclusions

The principsl goal of this research was to study the process of

the translation of book problem solving methods into compu’«r program

163

{
heuristics, ?e chose the task area of chess end game; for this work.
Tc isolate the translation process, we distinguished between the model
which chess books use for these games, and the methods wnich are applied
to particﬁlar end games. We decided to represent the model ac closely
as possible, so that the translation process would be contained mainly

t

in the representation of book methods by program heuristics.
|

The forcing tree model chosen for the program has proved to be a
good representation of the abstract book model. As a consequence of
the closeness of the representatiocn, we are able to express the methods
in fairly simple patterns, and in addition we can prove that the program
will reach checkmate from a given starting position. The value of the
proof comes from the condition (rule 3.7.) which it forces us to state.

The condition gives us a way of evaluating functions proposed for

defining better and worse, which is simpler than trying to think only

in terms of sequences of moves, and more likely to be correct. This
advantage supports our arguments that the program model should be as
close as ﬁossible to the abstract model assumed in the book. The first
hypothesis should therefore be considered when future efforts in
translation of book information are made.

Now we turn our attention to the translation process itself.
The main result is that we now see how much induction is required.
Induction is a form of learning which we would like to urnderstand
better. The example in the preceding section of this chapter leads
us to believe that the field of chess end games is & good one in which

to study induction. It may be possible to develop a program which

164

will do most of the work of translating, and research can profitably be
done in this direction.

‘ We would also like to extend this translation process to other
fields of study. A field which presents itself is integration. When
integration is taught in a mathematics text, examples are given showing
how the rules should be applied. It seems reasonable that Inductive
learning is going on here; some pattern in the original expression
suggests the application of a certain transformation. The learning is
probably less involved than in chess end games. 1In Slagle's [1963]
program he has simply done all the work ahead of time. It would be

interesting to see what could be done by trying to use the book more

directly.

165 /

>

-APPENDIX A

DESCRIPTION OF NOTATION AND DEFINITIONS

OF BASIC FUNCTIONS

The following abbreviations are used to represent pieces.

bk plack king

whk white king

r rook

gb queen's bishop
kb king's bishop
kt knight

For x a position, and n the name of a piece,

n = the square which piece n occupies in x .,
Function d(X1,X2) equals the number of king moves required to
move a piece from square X1 to square X2 .
Function QEG(,e) equals the minimum number of king moves required
to move a piece from square X to a square on the edge of the
board e .
Function fz(Xl,XE) equals the difference in files between squares
X1 and X2 , plus the aifference in ranks.
fx(nl,nE) is used as an abbreviation of f(nlx,nQX) when the

squares containing pieces nl and n2 are to be selected from

the same position x .

166

BIBLICGRAPHY

In addition to the chess books referred to in the body of the
thesis, several other books are mentioned here which were alsc found
useful,

Baylor, G. W., and Simon, H. A., 1966, A Chess Mating Combinations

N

Program, Proceedings of the AFIPS Sﬁfing Joint Computer

Conference, Spartan Books, Washington, D. C., 28: U431-L47.

Capablanca, J. R., 1955, A Primer of Chess, Harcourt, Brace, New York.

Fine, R., 1944, Chess the Easy Way, David McKay, New York.

Foster, A. W., and Kemp, R. E., 1943, Chess: An Easy Game, David

McKay, New York.

Greenblatt, R. D., and Crocker, S. D., 1967, The Greenblatt Chess

Program, Proceedings of the AFIPS Fall Joint Computer Conference,

Thompson, Washington D. C., 31: 801-810.

Horowitz, I. A., 1957, How to Win in the Chess Endings, David McKay,

New York.

Mason, James, 1905, The Art of Chess, Howard Cox, London.

McCarthy, J., Abrams, P. W., Edwards, D. J., Hart, T. P., Levin, M. I

19€5, LISP 1.5 Programmers Manual, The M.I.T, Press, Cambridge,

Massachusetts.

167

Minsky, M. L., 1961, Steps Toward Artificial Intelligence, Proceedings

of the I.R.E., 8-30; reprinted in Computers and Thought,

Feigenbaum, E., and Feldman, J.‘(Ed), McGraw-Hill, New York,

L06-450. ‘
¢
Newell, A., Shaw, J. C., and Simon, H. A., 1957, Empirical Explorations

with the Logic Theory Machine, Proceedings of the 1957 Western

Joint Computer Conference, I.R.E., New York, 15: 218-239.

Newell, A., and Simon, H. A., 1961, GPS - A Program That Simulates

Human Thought, Lernende Automaten, H. Billing, Munich, 109-124,

lagle, J. R., 1963, A Heuristic Program That Solves Simple Symbolic

Integration Problems in Freshman Calculus, Computers and Thought,

Feigenbaum, E., and Feldman, J. (Ed), McGraw-Hill, New York,

191-203,

168

Security Classification g »

DOCUMENT CONTROL DATA-R&D r L4

ir 1 g PP
(Security classilication of titlio, body of abstract and indexing aanotation must be entered whnn the ovoerail repory is ¢lasificef,

1. CRIGINATING ACTIVITY {Corporate autho

Artificial Intelligence Project

l2u. HREPORT SECURITY CLASSIFICATIO!

Unclassified ™

Computer Science Department
Stanford University

2b, GROUP

3. REPORT TITLE

A Program to Play Chess End Games

¥
-

? 4. DESCRIPTIVE NOTES (Type of report and inclusive dates)

: A.I, Memo

i $. AUTHORI(S} (Firet name, middle initial, fasf name) :

Barbara J. Huberman

{ - :
5- REPORT DATE Ja. TOTAL NO. OF PAGES Th. NO. GF REFS

L~ A9 August 1968 | 168 12
Sa8. CONTRACT OR GRANT NO. %a. CRIGINATOR'S REPORT NUMBE IS,

L eS8 206 AT-65

MR L e S R
a

S0, OTHER REPORT NOIS) (Any other numoers that may o assigned
thie rcport)

ol &

-

- DISTRIDUTION STATEMENT

.‘s
%

Statement No. 1 - Distribution of this document is unlimited,

- SUPPLEMENTARY NOTES iZ. SPONSORING MILITARY ACTIVITY

Advanced Research Projects Agency

|
'\ |

-
w

P aks'rnm:'r

A

I A B R T T R R ST TN A A L
-
-

TR L

each end game, The definiticns of better and worse were obtained by programmer
translation from the chess books.

achieved for three end games. Also the model enables us to prove that the
program can reach checkmate from any starting position. Insights about transla-
tion from book problem solving methods into computer program heuristics are
discussed; they are obtained by comparing the chess book methods with the defin-

i programmer when doing the translation,

AN

itions of bz2tter and worse, and by considering the difficulty encountered by the

) A program to play chess end games is described, The model used in the program;
is very close to the model assumed in chess books. Embedded in the model are two |
predicates, better and worse, which contain the heuristics of play, different for

: The program model is shown to be a good one for chess end games by the success !

H

DD o 1473

Security Ciassification

ST e T O e

.
) z
< L..1
izl :
1315
)
x
-
qa £
1
e - iz - S—— SE— — —
[l BT
4121
o
i 4
- : S R o e S RS = = - i
E] w
*
ES
B
o e (EE LS i = S R B e i i St i
»
A
4] 4 iz
Q
x
i

L
KEY WOROS

tree search

heuristics
end games
duadrants

better
worse

SasenwLaln

Mt

SCCwiily

