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1. Introduction

Managerial decision-meking traditionally conforms to a separstist
philoscphy,l i.e., decisions sre mede without questioning the origin of
the premises. Thus, accourting-dats, engineering-data, sales-dats, etc.,
as supplied by different functional representstives sre sccepted as valid
representations ~f the state -~ the decicirn-environment.

The development of powerful computerized information processing
systems has brought an increasingly lsrge rortion of msnagerial functions
within reach -f mechanizstion. Usually such wechanization is performed
by retaining the bascic philosophy of separatizsm, i.e., given unambigu-
~ucly represented dats, a programmed decisicn-procedure iz employed to
attesin desired results. This spprosch, however, does not fully take
advantage of the capabilities of modern information-technology, {.e.,
adventage has not been taken of the possibilitles of talloring the infor-
mati-r. systemg to the needs of the mansgers. However, the informstion-
needs cf the manager: sre by no meantg clearly defined. Dr. Parold Koontz
in 8 recent panel discussiorj2 degcribed how an informetion-system tailored
tc the -tated needs of the executives of 8 progressive company turned out
+c be 8 complete failure, because the decision-mekers were used to receive
informet _on, not to ssk for it.

Trnu:z essy access tc 3 large store of raw-dets, i.e., largely unedited
simple elemente of informst.-n, does not in itself give an optimel support
to efficient decision-making even if it potentislly cen supply eny infor-
mation rneeded by an executive. On the contrazry, .t is a commonly held
opinion tnzt efficient problem-sclving requires suiteble representations

of problems, and thus elso suitably crganized dsta,.
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The situation is fllustreted in an example due to liorn,.3 where a
"typical” inventory-problem such as finding sn optimsl reordering-policy
for spplisnces is represented as a queuing-problem. The existence of
alternate representations of problems implies that the need for data can
not be determined until a perticular representation is choser.. This
suggests that instead of supplying s set of well organized data-represen-
tetions to en informetion-processing system, a richer, and more satisfac-
tory situstion would be achieved if the "system” could sccept a minimal
rav-data representation, decide how to represent encountered problems,
orgenize dets as required, and then perform the actual data-processing-
phase. It may be doubtful if such s system can be designed, however, it
is quite possible that the following question at lesst for certain areas
can be answered in the negative.

Are all significant analogies (representstions) beyond the capabili-
ties of explicit design-rules, i.e., are sli significant anslogies
"crestive”?

The present thesis attempts to show the fessibility of designing
an sutomsted system for finding suitable representations in & specisl
cage, where

(a) The "raw-dasts” src restricted to symbol-differentiastion.

(v) The problem is restricted to sequence extrapolation.

(¢) The number of siternastive representations is restricted but

experdstble.,

Although the thesis iz restricted to s specific cese, the employed
rethodology end the genersl structure of the developed system will sug-

gest other areas -f application.



The design of the system will proceed via a study of how certain
epistemological models of inquiry represent an unlimited store of raw-
dsta, l.e.. "reality”, s discussion of the importance of representation
{n problem solving, to the organizati-n and implementation of a computer-
program for finding representations of sequential patterns.

1 3

1.1 Inguiry - A Problem of Representatiocn

Although the present thesic sttempts to solve a specific reprecenta-
tienal problem, major parts of the discussion can be held on a general
.eve., thug fsciiiteting future ettempts to generalize on achieved results.

We nave .n the Introductin indicated the reprecentaticnal problem
4 mensgeris]l decizion-making snd itc impesct on the decign ~f orgenize-
t.onal ‘nformetirn-processing systems, however, nc definition of the
probler. wes given. For the present discussion s definition wnich sbstracts
from *he zitustion of particular mansgers, but stili retains the basic

rejrecsentati-na. charscterictics is degired. One such definition ls:

The rtject of manasgerisl decision-msking is to initiate correct
action in 8 changing environment.

Ttz definition ~losely peral.elgs Churchman's pragmatic definition
rfoenow . edge

“¥rnow.edge .z 8 potentisl of taking correct sction In 8 changing
env rorment .

I+ shou.d be noted that by sssuming that correct action for the
menszer iz equivs.ent to correct sction for the orgsnlization, l.e., the
mansger .o s member ~f & team in the Marschak-HKadner sense, the role

~»f en orgpnizatic, can be defined e:z:

Orgsnizetions, ss its mansgers, seek s capsbility of taking correct
sction in e changing environment.
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This means that the objectives of organizations and of menagers in
the present context can ve considered to be synonymous to crestion of
knowledge, i.e., organizations and managers perform the functions of
inquiring-systems.

By studying the concepts of managerisl and crganizational decigion-
meking et @ level of abstraction corresponding to the genersl concept of
inquiry, several adventages can be achieved, e.g.,

@. Experience casn be drawn from epistemological models of ingquiry.

b. A convenient categorization of "problem-solvers” can be

developed.

c. Abstrac.ion from particular functions of managers permits a

stud, of the general problem of representation in inquiry.

Although the ultimete goal should be tc estsblish tc what extent
the epistemclogicel procblem of ingu.ry can be transformed to s technics)
problem, the present thesis surveys the general representaticnsl prob lems
of inquiry in order to mechanize = particular system. Thus by studying
the geners. problems:

l. What are tne necessery functi-ns of an inquiring-system?
and 2. Which functions, if any, ~f inquiry can be mechanized?

Answers may te found for more spec.fic questions such ssg:
5. How is the representstional function represented in the Byztems
of inguiry?
end 4. How cen & perticulasr represertations. function be mechsnized?
The sciution: t- the problems will have to be sought in severs! fields
stich as artificisl intelligence, computer sciernce, logic, mathemstics,

phlloscphy, psychclogy, etc.



As will be seen in the discuscion, s merging of informetion from
these diverre fields is complicated by linguistic incompatibilities.
Thus, the phencmens called "Cartesian Dualism”, i.e. the employment of
a different language for discourse on cognition then for subjects con-
cerning the materis! world, will present itself. This clash of langusges
has been nbzerved particulsrly in the literature on artificial intelligence,
where words such as machine-lesrning, machine-intelligence, machine-
«now .edge, etc., have caused s grest des. of Cﬂnfusicn.s However, since
“hese subjects (1. the [uture are likely to nccur more frequently, the
we ! . -gncwn abllity of language to adapt itself tn new categories through
e 8y rs or genuine crestion undoubtedly will eliminate this linguistie
bl~k. In the present diccussion, however, the incompleteness of language
raused vy the relative yruth of the fleld »f artificiasl intelligence

reqws ns a8 8 problem.

il On Mode.s

By = mwel - 8 cyctemc we mean any mechaniceal, chemlical, or symbolic
representation »f its relstinnal structure. A gymbeclic model consiste of
g nollecti-n of rules, namely:

i. Pules for trsnslsti~n of "reality” ‘~bject langusge) to the
.ang.age of the model (model-language’.

7. FRules for menipulstion of sentences .n the model-lsngusge (syntax
~f model |; snd

z Fules frr describing sentences of the mcdel-language in s mets-

languege (semantics’.



Type 1 rules are representations, i.e., reflexive and transitive
relations between the sentences of an object-language and the axioms,
theorems, and sentences of s model.

The extent to which a model can portray the "object-world” is deter-
mined by the richness of the employed languages (Figure 1.1). A "perfect”
description requires isomorphism between cobject and model, a situation
schieved easily when the model-language is richer than the object-lan-
guage. In most practical situatidns, however, a model is intended to be
an easily manipulated abstraction of its object, and therefore the model-
langusge and the object-language are homomorph by design.

To answer the questions set forth in section 1.1 a discussion is
necessary at two levels: 1. Inquiry should be discussed in the richest
possible model-language. 2. The mechanical design-models of the models
of inquiry must be formulated in s language that is simple enough to be
trenslated into a physical realization. The use of two levels of models
implies thst, a priori, inquiry is not considered to be within reach of
purely mechanical processes.

For the purpose of modelling what smounts to thought processes, there
{g no richer medium than that provided by the human mind sugmented by
proper tocls. As, among others, Crsik7 has reslized, "...human thought
has 8 definite function; it prcvides a convenient small scale model of
@ process, ... . He also notes that "Agsin, there is no doubt that we
do use external and mechanical symbolizations to sssist our own thinking."
The external devices are designed, however, by the human mind and we can
safely sssume that the brain without having to refer to any perticulsr

augmentations, is the most powerful medium svailable for modeling processes.
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An epistemological model is & model that the mini formulates about

(0]

itself. Such self-description or self-reproduction is feasible logically
and there is no paredox involved. But, the formulation of such models,
as evidenced in the literature, is a very difficult task.

It is well known that the less constrained a model is, the greater
its potential for reaching an optimum. The models that are formulated
in the mind gain their power and their limitations from language. The
power, is derived from the flexibility of langusge as a medium for pro-
cessing and expressing relations; the limitation is derived from the
slowness of language to keep pace with new situations and to discriminate
between certain categories. In particular, epistemologicai systems refer
to objects that can be described only vaguely by an essentially formal
lenguage. The situation is worsened because the approximated object-
language, the model-language, and the meta-language are all the same am-
biguous, natural language. As language develops, the object-language
toward more richness, and the model-language toward less ambiguity, the

task of building this kind of model is likely to be facilitated.
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reprinted in "Computers and Thought,” edited by E. A. Feigenbaum
and J. Feldman. McGraw-Hill, New York, 1963.
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2. On Models of Inguiry

In the present section a search for a theory, or at least a begin-
ning of a theory, of mechanized inquiry is initiated. Our search effort
will nave to touch upon such diverse areas of science as philosophy, psy-
chology, computer sciences, artificial intelligence, logic, etc.

Direction for the search effort is provided by the history of modern
epistemology, which aids in organizing ideas and machines for inquiry
into convenient classes; in addition, as Singerl points out, the history
of epistemology elso may provide direction by indicating where different
propnhsed systems of inquiry have fallen short of their goals.

To facilitate comparison between differing types of inquiring systems,
a classification of knowledge according to Spinoza2 may prove useful.

He recognized four kinds (or four levels in Polya‘s‘internretatirnj\ of
knowledge:

1. knowledge arising from hearsay - mechanical knowledge;
2. knowledge srising from mere exﬁérience - inductive knowledge;

3. knowledgé arising from demonstration - rational knowledge; and

4. knowledge arising from conviction that the inquirer knows -

intuitive knowledge.

Spinoza and Polys both considered level 4 to be the most importsnt. In
the present context, however, the pragmatic definition of knowledge im-
plies that the level of knowledge is of no consequence as long as potentisl
for correct action preveils; only in cases where such acgion excludes
certain kinds of knowledge will the categorization be of any value e.g.,
knowledge by hesrsay will not slways suffice for taking correct actinn

in a changing environment.
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Before proceeding to the discussion of epistemological models of
inquiry a brief note on the language that will be employed should be
given. Systems of inquiry are discussed most conveniently in teleological
terllh and since the main scurces for the present discussion is presented
in this form, it will continue to be used. However, mechanical design
of systems is likely to require & more descriptive langusge and therefore
program or model descriptions are given in a language approximeting only

the teleological functional definitions.

2.1 Rationalist Inquiring Systems

The law-regulated world image of the rationalist philosophers6 seems

suited particularly for sn investigation of the feasibility of mechanized

inquiry. Singer's brief suunuij provides a background of the basic ideas

of the ratioralists.

To sum up, the Rationalist's argument runs in this wise:

No contradiction appears in denying the hardest fact known to
us by observation, such knowledge may always be doubted. And
no less open to doubt must be any empirical rules generalized
from such observed facts. Resting their appearsnces of univer-
sality on induction, these rules can obviously be no more hard-
and-fast than are the facts on which they depend. But laws,
necessary truths' as the school called them, are as inexorable
and undenisble as the principles of logic by which they are
esteblished. By which alone they sre established, - for it
comes to that. As independent principles, the axioms of the
special sciences will have disappeared. Only logic remains

as the modus vivendi - the unique metnod of attaining to

truth.

A system of inquiry based on these ideas was described by Leibnitz
in his Monadology. However, our purpose is not to describe particulsr
historical systems but rather to investigate their major contributions
0 epistemclogical theory. A brief account of a generalized Leibnitzian

g
inquiring system by Churchman will illustrate rationalist ideas.



By reference to the generalized Leibnitzien inquiring system
hopefully two important questions will be answered partislly.

a) Which level of knowledge can be crested by a rationslist
inquiring-system?

b) To what extent can a rationalist-inquiring-system be implemented
as & progrem for s digital computer?

An snswer to the first question will be deduced from the proper-
ties of the system described by Churchmsr. The second question will
be answered by reference to work performed within artificiel intelli-
gence and mathematical programming.

Before proceeding to a description of the proposed system an
important contribution by Leibnitz should be acknowledged. He was one
of the firct philosophcrs9 to reslize the need for s universal langusge
of logic. Also he designed such s langusge to relieve his logical
processor from the difficulty of resolving ambiguities of natursl
language.

A Leibnitzisn Inguirer

Churchman's generalized Leibnitzisn inquiring system is presented
and commented from the sspect of mechanlical inquiry. The following
functions are required in s Leibnitzian inquiring system.

1. "An internal guarantee that genersted results will converge.”

This requirement is derived from Leibnitz’' insistence on innate
idess. Frr the practical design ¢ necesssry condition must be met~
the domain of inquiry must be deccribed in s decidsble formsl system.
2. "A capability of producing strings of symbols that can be broken

down intc recognizable unite.”
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The input sector cen notice, individuste, break down into units,
and dispstch strings of sentences (- logical processing. Strings of
sentences sre introduced to the syster. (as perceptions)m or generated
within the system. The importance of the design of the input sector
was realized clesrly by Leibnitz, this will de discussed further in s
later section.

3. "A capebility of establishing felsity or truth of sny unit.”

A logicsl processor and e dictionsry of definitions are employed
to establish truth (teutology) or falsity (self-contradiction) cf
received units. If these can’'t be established directly, the unit is
e '‘candidate’ for further processing.

L. "A capsbility of forming nets of units by means of s given set of
relations and operstors.”

The main deductive structure of the Leibnitzian inquirer is
provided by a memory, orgenized for direct end chained addressing.
From the beginning the memory is blank, but gradually it will build up
nets of relsted units. Por each received '‘candidate unit' the memory
1s sesrched for logically related units. If the search is successful,
the relsted units are connected and the 'candidate unit' becomes @
contingent truth. Now, truth for s Leibnitzian inquirer is an end-
result, which mesns that all sentences sre doubtful until their con-
nzctior; with the largest fact-net is established. This makes the
problem of inefficient generstion of new connections ascute. A proce-
dure for directing such generation is needed. At this point, it should
ve pointed out thet there is an analogy between the procedures of

Teibnitzian inquirers snd the representstion of problem sclving as @
11

tree searching.
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The relation nets of the inquirer correspond to tree structures
that are built without concern for di.ection, i.e., they are not
generated selectively. It is, however, known that by exhsustion of
sll combinstorial possibilities, will one net eventually provide a psth
between the "true” definitions and the "desired” end result. The
gituation strongly resembles that described by Newell, Shaw, and Simon
wl2

sc the "British Museum Algorithm.

Tc provide gelectivity in generation of strings of units, Churchman
ns: added twc requirements.
£ . "A capsbility of ranking the nets according to a prescribed
criterion”; and
k. “A method ~f processing symbols snd building nets baéed on the
ranv.ng, such that the sys“em will eventuslly arrive a3t an optimal net
and know when it has srrived. Or else will converge to an optimal net
end w.ll kncw that it is converging.”

Fequirements S and € are satisfied by introducing sn "executive"
whicn sssumes the responsibility of reducing unfruitful generation of
sentences to a2 minimum. The executive function, as conceived here hss
beeri ¢ major dezign problem for srtificiel intelligence machines; this
problem will be reviewed briefly later. Our present conzern is the
guestion of how powerful the executive can be permitted to be within
8 truly leibnitzian design.

The tagks of the executive sre represented in requirements L, 5,
and €. A trief discusszion of the respective functions follows:

Hequirement 4 permits the inquirer to apply slternative logical

syatems.lj Some choice has to be made sbout which system to use.




This decision is quite complicated unless, of course, all spproaches
can be tried out in persllel. It must be decided if the executive
should be permitted to conduct inquiry on the structure of its own
processing to learn about when to apply psrticular logical systems, or
if a priori decision rules should be applied.

Regquirement 5 necessitates an evaluation procedure for created

nets. Such eveluation msy be made in terms of computetion time,
simplicity, elegance, etc. It should be observed, however, that
simplicity and similar measures ere not defined otjectively and, as
such reguire & detailed investigation before they can be spplied.
Requirement 6 can be implemented in certsin aress, such as theorem
proving, where answers to well-defined guestions can be tested for
correctness. In genersl, however, this reguirement ls difficult to

implement.

2.1.1 Leibnitzien Mschines

In the following, inquiring systems, which nhave veen implemented
in. the form of programs for digital computers, will be called 'machines’.
Severa)l classes of Leibnitzian machines are described in the literature,
examples are computer programs for methematical programming, optimiza-
tion technigues, artificial intelligence, etc., & few of these will be
discussed priefly.

A majority of all computer-programs Can be considered to be

a.gorithmic-machines—i.e., 10 belong to & class cof machines that

nave peen proven to find solutions to ell proolems within 8 specified

domain, and tc do sc in 8 finite time. Typical examples of such
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machines are linear programming programs, programs for finding maxima

or minima, programs tc solve systems cf equations, etc. The Leibnitzian
requirements sre fulfilled in th.at.lh:

1. the machines operste within a decidable formal system;

5. ¢he machines have access to primitives and rules of sentence-

formation of the formal language,

NN

a1l definitions and rules of inference are available to the

machines,

4. en implication net is formed by strings of symbols connecting
given inputs with the desired result;

5. the time requirements of alternate paths of processing may
be determined; and

£ there is scme way of checking if 8 solution is obtained

Surch-mchiﬁea‘5, such as steepest ascent or other gradient search

machines, psttern-search machines, box-enalysis machines, etc., satisfy
+re leibnitzian requirements under the following two conditions:
s+heir envirorment is unimodal, and

) & soclution, or an optimum, is defined as a range around the

b special class of these machines are ‘heuristic' search machines
gucr as the line-valancing program by Tcngelé and other programs for
mernipulation of combinstorial situstions.

b class of programs, which follow very closely the Leibnitzian

dezcription, 5 the “simple deduction mechines”, or question-answering

8

mechines, exemplified by Reaphael s SIR,}‘T Slagle's Dﬂ)m,l
19

Melartny'e Advice Tsker, and others. In these machines simple facts
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formulated in a formal language are connected tc implication nets in
such a way that simple questions can te deduced by tracing through
relevant paths.
A typical problem solved by DEDUCOM is the "Monkey Question”.
The following facts are given:
1. The monkey can move the box to any place;
2. Someone moving v to u leads to v being at u;
3. The monkey can climb the box;
4. v being at u and p climbing ¥y leads to v being at u and p
being on ¥;
5. Under the bansenas is a place;
€. 1If the box is under the bansnas, and the monkey is on the box,
then the monkey can reach the bananas; and

7. p reaching x leads to p having x.

Question:

"what should the monkey do so that the monkey has the bananas?”

DEDUCOM'S ANSWER:

((THE MONKEY SHOULD DO THE FOLLOWING)
(THE MONKEY MOVES THE BOX UNDER THE BANAMAS)
(THE MONKEY CLIMBE THE BOX)
(THE MONKEY REACHES THE BANANAS))
An important group of Leibnitzien machines sre the theorem-proving

22
mechinec exemplified by those of Wsngzo, Davis & Putnam,2l McCarthy,
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2k

Robinson,23 Friedman, Gilmore,es Wos, Carson & Rdbinson,26 and others.

Such machines have been designed to employ:

a) Decision procedures, which are available for propositional
calculus, elementary algebra, elementary theory of conditional
expressions, and certain other branches of mltheml.tics.g7

For undecidable calculi, such as the first-order predicate
calculuseg, the machines may euployzg:

b) Decision procedures for solvable subclasses of undecidable

calculi;

c) Proof-procedures that will recognize any theorem, but will not
converge for non-theorems5o; or

4) Semi-decision procedures, which @pprosches: p and ¢ are
combined, i.e., provide decision procedures for solvable sub-
classes but proof-procedures cutside there.

Although theorem-proving machines perform satisfactorily in certain
domains, the problem arises of an exponentially-growing time requirement
of processing for linearly-increasing numbers of clauses or connectives,
limiting their applicability to rather simple theorem proving.

Complex-Search Machines, as exemplified by GROPE’~ by Flood and
Leon, utilize alternate logical processors. The processors are applied
to problems according to rules derived from their performance in previ-
ously encountered situations. In the case of GROPE, the executive
employs a simple symmetric stochastic learning model to choose a logical
processor. Progress in problem solving iz measured by criteria of
relative improvement in & hill-climbing situstion. The mechine exem-

plifies in this way the application of & sophisticated executive in a

Leibnitzian inquirer.
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Our brief review of typical Leibnitzian machines indicates clearly

that much work has been done in this area. This has lead to the develop-
ment of efficient methods for frequently encountered tasks. In this
context cnly the importance of efficient tree-searching methods, such

2
as the o B procedu.rse3 employed in several artificial-intelligence

machines will be stressed.

2.1.2 Knowledge Created by leibnitzian Inquirers.

An important contribution of the rationalists was their insistence
on removing ambiguities caused by natural language and introducing
instead precision in the form of a universal language of logic. How-
ever, the employment of an autonomous logi. "1 processor precluded any
investigation of the nature of the processed units, thus making the
results of inquiry precise but empty of content.

Given an internal guarantee of convergence, the Leibnitzian
inquirer is purely deductive and can thus be classified as producing
knowledge of Spinoza's third level. However, the inquirer guarantees
that, given a valid input-sentence, the 'correct’' answer will be
produced. Therefore, for an external observer, or user, its process
of producing knowledge can not be discriminated from a "dictionary-

look-up”, i.e., from "hearsay-knowledge". Thus, Spinoza's third
z
Vi

%
level,”” "perception arising when the essence of cne thing is inferred

from another thing, but not sdequately" is not resached. It should,

however, be noted that our pragmetic search for kKnowledge is not con-
cerned so much with how it was achieved as with what it means. There-

fore Leibnitziarn inquiring systems, even if looxed upon as huge
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dictionaries, are valuatle systems, not only when used separately, but

also when employed as logical processors in more sophisticated inquirers.

2.1.3 Representation in Leibritzian Inquirers

The problem of representation is only encountered at a superficial
level in the Leibnitzian inquirer, in fact, one to one correspondence
between symbolical representations and unambiguous raw-data precludes
any problem-oriented search for “optimal” representations. Orly in the
case of complex machines, e.g., GROPE, is an implicit choice among
alternate representations made. As such selectivity is the major
festure of Kantian inquiring-systems a detailed discussion will be

postponed.

2.2 Empiricist Inquiring Systems

The empiricists,ju in opposition to the emptiness of content of
the rationalists' system of formal inquiry, presented a theory of
inquiry based on the "reality of things.” At first glance their theory
appesars very reasonsble, in particular as it seems validated by common
sense feeling as well as psychological evidence of basic learning
processes.35 The empiricists' thesis may be summsrized in

Locke's words:

‘These two, I say, viz. external material things as the
objects of sensation and the operstions of our own minds within
as the objects of reflection, are to me the pgply origirals from
whence all our ideas take their beginnings.

The empiricists’ theories of inquiry hesve been criticized, snd

deservedly, by later schools of epistemology. However, as we are not

giving a critical survey but are seerching for ideas, an amended
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vergion of a Lockean inquiring system will be employed to represent
the ma jor ideas of the empiricists.

From a Lockean inquiring system we require:

1. a capability of receiving and individuating inputs

The input-sector acknowledges reception of input-units (sensations)
and individuates the unit by space-time-coordinates. The empiricists
failed to realize the importance of this sector, Singer points out:

“However sound may be the Empiricist’'s account of how our

knowledge has grown once having started, his own account of 37
this growth makes it impossible for its start to be part of it"

2. & capability of labelling and transmitting received inputs

The inp t pre-processor recognizes the unit as simple or complex
and labels the unit by attaching a list of properties corresponding to
impreseions from sense-organs. The pre-processed unit is transferred

to the memory

The task of the pre-processor is to define ideas, Churchman and

Ackoffje write

within empiricism progress in defining was "theoretically"
possible. To make & definition better, the references to

the immediate had to be made more precise. Insofar as we
could make that which was designated by a word less and less
ambiguous, the definition of it could be made better and
better. But as defining became better and better with respect
to "content”, for the empiricist, it became worse and worse
with respect to communicability, since content was a function
of the "immediate" which was itself inexpressible

In requirement 2 the empiricist manner of defining becomes a
labelling operation performed by a filing-system which can grow its own
categories Such categorization is performed by an artificial intelli-

z
gence machine, EPAM’g, which will be described in section 2.2 1.
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3. & capability to reflect on the internal processing.

One of the functions of the executive is to observe and label the
internal processing of the inquirer.

L., a capability to perform logical operations on labels,

The "acts of mind" according to Locke are combining, comparing,
and sbstracting. Thus the logical processor incorporates facilities
for compounding labels by logical connectives. A logic of classes is
employed.

5. a capability toc generalize on experienced sensations.

The generalization sector is globally applicable. It complements
the input preprocessor in making abstractions necessary for establishing
similarities of inputs. The logical processor as well as the executive
are possible domains for generalizations.

6. a capability to communicate about labels.

The Lockean inquiring-system needs a guarantor of reality to
replace the innate ideas of Leibnitz. Locke stated;

Our knocwledge, therefore, is real only so far as thereho
is a conformity between our idess and the reality of things

Such conformity according to Locke was present in his design. Simple
ideas were imposed upon the inquiring-system by reality and since
complex ideas were internally created for internal processing, they had
no reason tc be connected to reality. Complex inputs (substances)
caused complications, but an involved reference to their parts estab-

lished conformity.hl

Although the empiricist inquiring-system may have 8 tie to reality
via the naming of simple sensations, there is no guarantee cf validity

unless a community of inquirers can agree on the correct label of the
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input. Locke seems to feel that the labels of different inquirers are
isomorphic, becsuse he writes: "For what need of e sign, when the thing

w36 Churchmn,he however, points out

signified is present and in view.
thet it is & non-trivial tesk for s community of inquirers to agree that

they are talking about the seme input when assigning its nsme. Cammunity

consensus thus is employed as a method of ostensible definition of meaning.

2.2.1 Design of Mechanical Lockean Inquirers

There are three essential problems to be met in the design of Lockean
inquiring systems, namely

1) to define simplicity,

2) to represent generslizationm,
end 3) to design s non-triviel gmrantor-fmction.h}

Simplicity of sensations mey seem to be easily defired, in particular,
when there are words available to define simple concepts. However, as
simplicity is s property of particulsr situations, experience may require
further bresakdown of concepts which initially were considered simple.

Thus the Lockesn inquirer must have a capacity for changing its concepts
of simplicity. Such capacities are essily implemented in internal proces-
»1ng languages, but sre very difficult to handle in the communication
anguage. EPAM, a computer model of humsn learning by E. Feigenbamu
is an example of a Lockesn filing system which crestes ite own categories.
The EPAM progrsm is the precise statement of an information
processing t_heory of x’rer'bal leamings that provides an altemn;iw
to other verbal lesrning theories which have been proposed.

In the present context we sre less interested in EPAM ss s model of

verval learning than in its capecity for efficient cetegorizing, storing,
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and retrieval of informestion. The primary informstion structure in EPAM
is the discriminstion net, a sorting tree which is grown to sccommodate
all informstion encountered in the problem~-sclving process.

An exsmple of & discrimination net is given in Figure 2.1.

O : & test-node

a terminsl-rnode

Figure 2.1

Informetion is stcored 2t the terminsls of the net and tests sre plsced
st the nodes. Labels and/or property lists sssocisted with received en-

tities are tested at the nodes snd the entities, ss o result, sorted down

left or right.
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For retrieval of stored informetion only those properties of the
label which have been tested during the procedure have to be presented
to the net.hé If an attempt to store information at a previously occu-
pied terminsl is mede, 8 further discrimination has to be initis*ed, and

& new test is added, (Figure 2.2)

Figure 2.2

A simple exemple: Suppcse we heve translsted derived property lists
to binsry lsbels which sre introduced to *he discriminstion net, then
it mey grow ss examplified in Figure 2.7,

Ti = i:th digit test. (i - 1,2,3,4)

+. OStore 0l00 3100

2 S8tore 1011

0100 1011

Figure z.2.1



Store 0110

Store 0010

0100

0110

Figure
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EPAM clearly will never make & finer cetegorization thsn is neces-
sary at the moment of receiving sn entity. This mesns high efficiency
of tree-sesrching and low requirements of storsge. However, an smended
EPAM would be desirsble for the second problem, i.e., description of
generalization.

Generslization in & Lockean inquirer mesns grouping of concepte intc
classes. BSuch grouping cen be done syntheticslly by sdding concepts into
generic classes, or it can be done anslyticelly by considering incomplete
breakdowns of complex concepts. The situstion is most conveniently repre-
sented in a tree, where the terminal nodes sre simple concepts and sll
other nodes define sub-trees which ere classes of concepts. Thus &t the
trunk of the tree there is 8 cless 'something', which by trecing the tree
will e broken down into successively finer clesses. In the case of
EPAM, the terminel nodes represent des.red groupings provided that s
proper design and noticing-order of tests is imp_emented. In Figure 2.7,
there are two possible classificetions conteining 0110, nsmely
{0100, 0110} end {0010, 0110} . The correct grouping cen only be de-
termined by reference to a particulsr context, but since the posgibilities
for ambiguities to erise must be kept in mind, & carefully planned noti-
cing-order is meintained.

In mechanized inquiry the important gusrsntcr-function “community-
agreement” will have to be replasced by some "conventionsl"“2 method of
validating thet received inputs sre representations of reslity. One
such “conventionsl" design is to embed the inquirer in s larger system
which guarantees the velidity of its communicetions to the inguirer. A

non-trivial requirement would be that the proposed system hss tc agree
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with its own lsbeling over time. This requires s capability to abstract
from changes which sre functions of time, and, therefore, puts pressure

on the capsbility of individusting inputs.

2.2.2 Knowledge Created by Lockean Inguirers

The level of knowledge achieved by s Lockean inquirer depends upon
the nsture of its gusrantor-function. If the guarsntor is "conventional,”
then the Lockean inquirer does not go sny further than the Leibnitzian,
because the "sensstions” of the former do not correspond to reality any

more than the perceptiong of the latter.

2.2.% PRepresentstion in Lockean Inguirers

The ma‘or weaskness of the empiricist inquiring system is to be
fourd in the input-sector. Although s claim of correspondence between
lsbels and "reslity” is mede, physiclogical and psychological evidence
shows ths' the "sensstions” of reslity by no mesns are unambiguous, in
particular, the individuastion of objects, the intensity of impressions
cn the genge orgsns, snd the range of the sense-impressions sre not
uriiquely defined; furthermore, there is no representational function
tc guide the observstions on the real world. Thus the representational
functions of Lockean inquirers sre not sufficiently sophisticated to
support directed sesrch for informstion.

=

2.2 The A Priorl Sciences of Inquiring-Cystems

An sttempt to bring the rationalist and empiricist systems of Iinquiry

together wes made by Kant snd other criticists. We hsve given rether
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detailed descriptions of Leibnitzian and Lockean inquiring systems.
These systems employ most of the components of the Kantian inqu ‘er. One
major sector, however, remaias to be discussed, namely, the role of a
priori sciences.

Kant's main contribution to epistemology may well be that he realized
that "whenever there is experience, there are prerequisites of experience."
This realization led him to conclude that the sciences necessary for rec-
ognition (geometry) and individuation (logic) of phenomena had to be a
priori to any experience. Post-Kantian developments have introduced the
possibility of introducing slternste a priori-sciences, i.e., to employ
some geometry and some logic. The main difficulty of the Kantian doctrine,
however, still remains: to establish how the a priori enters the mind.
There have been seversl attempts to form such a theory ranging from Plato's
deduction of 8 previous existence to theories of psychological a prioris.
However, none of these, including Kant's has been convincing. 1In the
present pragmatic search for ideas, however, this is of no conrern, because,
if the a priori cen be shown to be a necessary attribute of inquiring-
systemg, then feasible methods of their implementation, not their actual
origin, is of importance.

The evailability of alternstives for the choice of the a priori sug-
gests the design of & Kantian inquiring-system with multiple sets of
s priori sciences. As Kant did not imply that the a priori sciences were
simple, the possibility of employing powerful s priori comes forth as a
viable alternative tc previous persimonious attempts. Churchman, in his

i..cussion of what he calls meximal a priori's, states:
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Suppose, instead, we were to say that there is no
"basic" mode of representation in the design of the input
sector of the inquirer, snd that a maximum flexibility
in representation is desirsble. Hence instead of attempting
to minimize the influence of the a priori of the inquiring
system on the information, the designer should try to
maximize this influence in order to represent the informa-

tion in a manﬂer in which the problem solution be.omes
facilitated. *7

Parsimony in a priori sciences, however, permits untiased generality
but is very likely to lead to inefficient problem-solving. Therefore, a
judicious balance between domain and efficiency of inquiry will have to
be maintained in order to permit an "optimel” degree of specialization.

The tasks of the executive of a Kantian maximum a priori inquiring-

system will have to be more sophisticated than in systems previously

discusced. In particular, the svailability of alternate a priori sciences

4 b
will

Thus

tion

to a

require decisions to be made on how to represent particular problems.
the task of the Kantian executive is to translate a problem-formula-
intc the language of a suitable model, i e., relate its object-domain

model. Other tasks of the executive are to select input for proces-

sing and to judge the relative difficulty of differently revoresented
problems. These tasks will be d.scussed in depth in Sections 3, 4, and

-

5 Instead of anticipating this discussion let us now turn to & more
sophisticated system of inquiry based on Singer's ideas.hg
Singer wag dissatisfied with the "paradox of a priori“ and, by ob-
serving the methodology of empirical and formal sciences, ceme up with
the system of inquiry presented in his "Experience and Reflection”.
Singer ' s "Experimentalist System” is based on a careful distinction be-

tween what is known to experience and what is known to reflection on

experience. Experience belongs to onz subject, the learner, but the
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8 priori possessions to another, the reflective mind. Thus, an inquirer
can be said to produce knowledge only if it is observed doing so by another
inquirer, and the designer of an inquiring-system is a member of the very
same system, because his prepossessions are reflected in its design. The
position of the experimentalist is to relate the formal and the non-formal
L
by their common purpose, progress of science. Churchman and Ackoff 9
summarize the experimentalist ideas as:
The precision with which we can respond to a question

is a function of the precision with which we can ask a ques-

tion. The latter is itself a function of the explicitness

of presuppositions of the asking and answering of s question.

The actual number of presuppositions involved in framing

any question is indefinitely large. It has been the lesson

of experimentalism that the final answer of any question

presupposes the final answering of every other question.

The absolute answer to a question is an ideal which may be

constantly approached but never attained. Consequently, the

presuppositions, as well as the response, are constantly

subject to change. Science is capable of progressive change

insofar as it can indefinitely reduce the error expressed
in the response to any gquestion.

Thus Singer's experimentalist inquiring-system employs a technique
of experimental ccntrol that will meke a progression of answer-question
pairs to converge to a limit - an a priori fact. Although the Singerian
system of inquiry is extremely hard tc visualize in a non-trivial mechan-
ized system, a slightly Singerian flavor is added to ocur sequence-extrapo-
.ating system by permitting its executive to inquire about the problem-

concocter in order, hopefully, to be able to predict his behavior.

2.3.1 Representstion, a function of the a priori

The Kantian inquiring-system stresses the importance of a priori
.c.ences, which in turn stresses the importance of finding suitable repre-

sentations of problems, because, tne presuppositions, i.e., the a priori
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sciences, determine what information to ask for, i.e., the representation
of rew data. The representational functions of the Kantian inquirer will
be discussed in Section 3. A more specific context, nsmely sequence

extrapolation, is the subject of Sections 4 and 5.

2.4 Summary

A few epistemoclogical models have been reviewed. Although several
alternate theories could have been presented, our choice has been based
on representativity of schools of thought as well as on potential for
computer-implementation. Thus an interesting inquirer - the Hegelian -
has not been reviewed, because the dislectic method at present seems toc
mich of a speculative tool for programming cn a computer.

The systems reviewed and especially, the Kantian, have contributed
to our understanding of efficient organization and classification of
mechanized inquirers. The later developments, including Singer's system
provide a direction for search of feasible ways of implementing more
sophisticated inquirers. In the next section, the problem of represen-

tation raised by the Kantien meximum & priori spproach will be discussed.
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3. On Representation

Inquiry and problem-solving generally raise the following qyzstionl:l
How are the premises collected? How does deduction proceed once they
are found? These questions are strongly interdependent in view of the
problem of representation evern though, according to the positivists and
statisticians, they could be attacked and solved separately. A third
question, therefore, will have to be posed, namely, how to represent the
protlem.

The subject of representation reaches far [t connects the a priori
theory necessary fcr observing the environment with the logical proces-
sing necessary for coming to any conclusions about it. OQur present task,
however, will restrict the discussion of representation to a technical
level by exploring it as a prerequisite for mechanized inquiry.

We have not asked if symbolic representation is really necessary at
all  For machines and for most human inquiries, it is. Even though
Henri Bergson2 describes an intuitive knowledge which arises without
employing symbolic representation, we have no reason to discount its
importance for inquiry.

The evidence in favor of representing reality by symbolism is too
maggive to permit us tc doubt its importance Evidence is available
from different btranches of science, and we will briefly indicate some
sources  Susan Langer states, "A new philosophical theme has been set
forth to a coming age. An epistemclogical theme, the comprehension of
science  The power of symbolism is its cue, asz the finality of sense-

z

data was the cue of a former epoch.”” GShe reviews in detail the liter-

ature on pnilosophy of language, which clearly indicates that the subject
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of representation is important in cortemporary philosophy. In psychology,
we need only to refer to works such as Bruner, Goodnow, and Austins:
"A Study of ?hinking,”h or Humphrey's "Thinking"s to establish the rel-
evance of language. Even neurology, anthropology, linguistics and other
branches of science, support the conclusion of A. D. Ritchie that, "as
far as thought is concerned, and at all levels of thought, it [mental
life] is a symbolic process.“6

The most elementary form of symbolism is the action, or push-button,
response tc signals, which corresponds to Spinoza s classification
"hearsay-knowledge. " This is in animal behavior represented by "built-
in subroutines"? and conditioned reflexes The level of knowledge sought
in sophisticated inquiring systems, however, requires far richer repre-
sentations than these pure signal-action relations permit,8 thus episte-
mological models, as previocusly shown, require elaborate languages for
internal processing as well as for communication

Granted that elasborate representations are required, then the ques-
tion of which one to use is relevant unless, as is the case between the
languages of Western culture, translation can be performed without actu-
ally distorting very much information ? Such translation is, however,
not possible between languages of very different cultures, for example
the detalled categorization of snow in the language of the Laps differs
in degree and the space-time relatione in the language of the Hopl-Indi-
ans, differ in kind from corresponding parts of the English language .
The linguist Whorf from these facts drew nis hypothezes that,

We are thus introduced tc a new principle of reality
wnich holds that all observers are not led by the same

physical evidence tc the zame picture of the universe,

unless their linguistic ba%Sgrfunds are similar or can
in sume way be calibrated. “7’°
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The observation of Kant that pecple put regularity into nature is
obviously supported by the fact that pecple actually see reality differ-
ently, depending upon their language Now if the world-image is a func-
tion of ite representation in terms of language we clearly should choose
the "best” possible representation. Unfortunately, as there is no ob-
jective measure of the goodness of language, comparisons of efficliency
can be made only along a few dimensions. Thus a language of internal
processing should ve unambigucus as Leibnitz, later Russell, and in

Li

particular Carnap, in his "Logical Syntax,” have observed. For other
dimensions the vagu.e notions of simpiicity, efficlency, etc., will have
to be employed.

Language ctvicucly provides a model of ous world image and helps
us to observe and inquire into reality. However, language can be used
tc design alternate models of specific domains of inquiry and therefore
the problem of chocsing an "optimal” representation arises. Churchman
has descrited the situation in nis discussion of the maximum a priori
approach to the cesig: of Kantlan inquiring systems.

Within our .anguage are several sub-languages relevant to descrip-
tion of particular domains, sc that events or problems are presented in
a form accessivle for "logical proceseing.” Such models, or grammars,
are abundantly represented in the progress of diverse sciences. Several
branches of zc.ence use igomorphic models, which has led to speculations
about universality of scientific laws or similarities between sciences
as suggested vy Von Bertalanffy,le in "An Outline of General Systems
Tneory” or, as expressed by McKay, in his statement "Many scientific

concepts in different fields have a logically equivalent structure.



One can abstract from them a logical form which is quite general and
takes on different peculiar meanings according to the conttxt."lg

If such universality exists, then of course one a priori would
suffice, but specialized models are still likely to be preferred for
reasons of efficiency and/or simplicity. The importance of scientific
representation cannot be overemphasized. We cannot here give a compre-
hensive discussion but will cite a few examples:

1. Kinematics by means of Newton & law received a new and very
powerful predictive model. Although the model has been found incomplete,
it still provides a useful representation on the terrestrial scale.

¢. Organic Chemistry‘developed more repidly after the represen-
tation of cyclical mclecular structures was invented.

3. The theory of ideal gases has led to many significant inven-
tions since the ccncep* of entrupy was introduced

L. Astronomy has experienced significant improvements in its pre-
dictive capabilitiec as the result of Kepler s and Einsteins’ represen-

tations

5 The impcrtant rcle ¢° mathematical notation can hardly be
doubted.

In summary, development -f adequate representations plays & very
important part in scientific iquiry, and is alsc reflected in the ap-
plied sciences

A1l models require a cer .ain structuring of their domain of appli-
cation Mulliganlh gives an amusing account of now people w.th varying
backgrounds try to squeeze an industrial engineering optimization vroblem

into their particular model.- One can question what 'reality 1is . ke
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when the same situation can be described as a linear programming model,

a lLagrangian multiplier application, a dynamic programming case, a sim-

ulation situation, a task for gradient search-methods, etc. The answer

obviously must be that "realtiy” is what our thoughts makes it, and that
it therefore depends upon representation.

I+ is obviocus that, fcllowing Kant, Hegel, Singer and others,
there is no 'right’' in the sense of an optimum representation of a sit-
uation. Every representstion is the result of some = priori theory. It
carries some experience-depender* spproximations etc., and we will there-
fore never escape the doubt of Hume ab-- ' the validity of sclentific
reasoning or, notably, induction based on such representations.

For a pragmatic use of representation, however, the situation is
different. An effi-ient rejregentation is not only a simple way of
handling data as opposed % an inefficient and complex way.ls An effi-
cient representation cften =eans the difference between success and
failure. If there haz beern at least one inductive step in the develop-
ment of a cuitable representation, then there !¢ no guarantee that ctome
cther representation based on a minimum a priori, will ever get to the
gclution unless a particular history should be repeated. Therefore,
mechanical inquiry will have tc be based on suitable representation, a

subjer* o which we will now turn.

2.1 Representation in Mechanized Inquiry

Tne present subject is most conveniently discussed in the context
of particular examples. Polytlé presents an anecdote about little Carl

Friedrich Gauss still attending primary school. "One day the teacher
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gave a stiff task: to add up the numbers 1, 2, 3, and so on to 20. The
teacher expected to have some time for himself while the boys were busy
doing that long sum. Therefore, he was disagreeably surprised as the
little Gauss stepped forward when the others had scarcely started work-
ing, put his slate on the teacher's desk, and said, 'Here it is!'"
Little Gauss had cbviously found an efficient representation of the
problem such as

1 + 2 + 3 L 5 + 6 + 7 + B & 9 + 10

2 20 ¢ 19 ¢+ 18 ¢ 17 + 16 <+ 15 + 1k 4+ 13 ¢ 12 + 1]

21 + 21 + 21 + 21 + 21 + 21 + 21 + 21 + 21 =« 21
= 10 x 21 = 210

How Gauss did it is not important, but the fact that there is a repre-
sentation which simplifies the protlem is suffi;ient evidence for us to
study the problem of how toc find it.

At a different level of representation problem-solving is often
described as a process of tree-searching In particular, almost all
currently implemented trtificiai-intelligence-na6h15e317 employ some
form of tree-searching and/c. tree-growing process. In general, a prob-
lem [z represented as a state So’ which by application of any of a
finite number of operators O1 ({=1,2, .., r) can be transformed
into cther statesg SJ (b =1, 2, 3,. ...) which, in turn, can be
transformed to new states by applying operators, etc. A solution to
“he proviem is defined as one particular state Ss or zny member of a

get of ztates §
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All states except So can be conceived as generated by some se-
quence of operators, operating on So . The totality of such sequences

can be summarized in the form of a tree. Suppose there are only two

operators 01 and O2 available, then the situation of figure 3.1

arises.

Figure 3.1

As we see, the representation of the problem So can be trans-
formed to a solution Ss by a seqience of applications of cperators.

The number ~f available operators mey be quite large. For our
purpcse the tree is most conveniently assumed to be bujlt from two com-

pounds of operators, one context-dependent and one context-independent.

t

context-dependent representations context-independent

Figure 3.2
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A problem thus is solved in two stages:

1. Find a solution to the context-dependent part, i.e., find a
feasible representation.

2. Starting with an acceptable representation, deduce the solution
of the problem.

Granted that such division can be made, Leibnitz's idea of a general
logical processor can be made operational, such processor could probably
be designed to perform quite well in the first order predicate calculus
and for other calculi. The matter of incomputability does not necessarily
prohibit the use of 'undecidable' systems, because an operational defi-
nition of failure in the form of a time- or operation-cycle-constraint
makes the system pragmatically decidable. Several logical calculi can,
of course, be employed such as suggested in the generalized Leibnitzian
system Lindxaylg writes, " an intelligent machine would achieve some
economy by employing general purpcse representations whenever usable
rather than devising special schemes for each case.” This statement in
the description of Figure 3.2 ‘ranslates to: "Try to minimize the uti-
lization of context-dependent operators,” which amounts to pushing the
line A in Figure 5.2 as -loge to Sg a8 possible. This approach is
taken in several artificial intelligence machines of minimum & priori
“ype, where a.l processing is performed in a single formal language.

Such machines are abundantly reprecented in the li‘erature on
artificial-intelligence  Actually, there is a whole sub-branch of arti-
ivial intelligence, which concerns iteelf with the design of such pro-
#ssore  Some examples are theorem-proving-machines, (see Section 2.1.1),

] P - 12 -, 1 ]
Cimple deducers,” such as Slagle s DEDUCOM, 9 Newell, Shaw and Simon's



LOGICAL THEORIST,-C and the ADVICE TAKER by McCarthy; and so-called
question answering machines such as Raphael's SIR,22 and Bobrou'se3
STUDENT, which compile English-like sentences into the language of the
logical processor.

The converse of the context-indevendent approach, namely almost
exclusive utilization of context-dependent operators, is also frequently
employed in the design of artificial intelligence-machines. Such maximum
a priori inquirers are represented by, for .nstance, Gelernter'525 geom-
etry proving program, Slagie'526 symbolic irtegration program, and other
special purpose perfocrmance machines.

In general, the design of such machines has been particularly suc-
cessful in areas where the choice of representation seems more or less
obvious to the human problem-golver as ir the following examples:

a. The use of diagrams for geometry problems. Gelernter supolied
a heuristic in the form of a coded model of a diagram to his geomet-y
machine in order to provide a 'filter’ for rejection of infeasible sen-
tences generzted as attempted sub-goals. "As an experiment, a number of
attempts were made to prove extremely simple theorems with the latter
heuristic 'dizconnected’ from the system (i.e., all non-c.rcular sub-
goals generated were accepted)....We estimate conservatively that, on
the average, a number of the order of 10C0 sub-goals are genera‘“ed per
stage by the decoupled system. If one compares the latter fligure with
the average of 5 sub-goals per stage accepted when the diagram ls cor-
sulted by the machine, it iz easy toc see that the use of a diagram is

crucial for our system. (Note that the total number of sub-goals appear-

ing on the problem-solving grapn grows exponentially with the number
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accepted per stsge).”z? To be fair the result would, of course, be no
less spectacular if the constraints were introduced into the problem by
some other method. The diagram simply was one convenient way of doing
BO.

5. Family relationships by convention are represented in trees,

80 1% is quite natural that Lindsay's SAD-SAM displays family relation-
ships in the form of tree structures (a representation particularly
suitable as the programming-language used was IPL-V).

¢ Fitting of lines to given sets of data is most easily visualized
in a diagram. This method of representation has therefore been programmed
into our sequence-extrapclators.

In terms of the representatinn of Figure 3.2, this approach pushes
the line A as close to the sclution as possible.

There is also a possibility of employing artificial intelligence-
machines such as 59528 where a context-independent "permanent core” iz
embedded in a context-dependent "environment-machine,"” i.e., problem-
solving i3 performed in a dialogue between two essentially separately
functioning sub-machines The btorder vetween the domains of the sub-
machines .s ir Figure 7.2 represented by the line A

By choosing a narrow dome'n for a cofite t-dependent inquirer, [t
may be possible to design quite powerful input-sectors, but the appeal
of naving a wide area of applicability is lost. If a wide domain is
chogen the input-sector s likely to become poorly selective and, in
shourt, mediocre in elegance and efficiency. The only way out of the di-

“mma ceem: Lo be the application of several powerful modele which, when

comb..led, cover a wide domala, but when correctly chosen permit strong
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selectivity. Such multiple maximum & griori Kantian inquiring-systems

as exemplified by the complex sequence-extrapoletor SEP, will be discussed

in Section 5. The main components of such a system sre indicated in

Figure 3.3.

Input

Qutput

Executive which Models Logical Analyzer
selectes model Processor

f.e., represen-

tation

Figure 3.3

In Figure 2.7 there iz a set of models, which define representations

suitable for specialized domains of inquiry. When a problem arrives, an

executive after studying the raw input-data decides which model to apply

first.

Input-data is represented according to the specifications of the

chosen model, and the processing iz performed. If the result is deemed

guccessful, an output results. Otherwise the process ls repested, i.e.,

a new model !s chosen, etc., The rules for choccing models, etc., are

discussed in Seztion 5.
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3.1.1 The Dominoc Problem

ltuelizg has presented the domino-problem as an example of the
insufficiency of the stock of ideas concerning representation. ncCarthyjo
has given s formal representation of the problem in the first order
predicate calculus as "A Tough Nut for Proof Procedures.” The problem
is interesting because, if represented as a straightforward formalization,
it is a very tough challenge for a logical processor. However, when
represented in an efficient model, the sclution of the problem is
easgily found.

The Problem: Is it possible to cover the mutilated checkerboard shown

in Figure 3.4 by dominoes of cize 1 x 2 squares?

Y,

Hence, the ultimate problem 13 not to discover the prcof,
but to bulld a machine that can discover the proof to the domino
proviem. [t is a falr ztatement, [ believe, that no one today
krowe how to build such a machine - or egquivalently, how to
cengtruct such a computer program

r

;

¢ itatement doeg not

...y represent Newell s and other writers'

€

rermcernt on ot the protlem; the foilowing guotation from a later section
i‘ ¥ =1 : r
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however, provides a clarification:
For, I believe. certainly, that given a modest amount of
additional effort, a reasonable program can be constructed

that finds the demino proof and does so fairly.

The last word should be emphasized: What a Eriori knowledge can be
considered falr for an artificial intelligence-machine?

The question of "fairness” is recurrent in discussions of artificial
intelligence. Mainly, this is because the total amount of contextual
information available to a machine must be far smaller than that avail-
able for a human problem-solver, thus making addition of any information
_{ pertinance to the context of a particular problem to stand out as
"unfairly” given. Therefore, fairness seems to imply that no information
present in the memory of a machine constitutes an anticipation of a par-
tlcular problem or -f a narrow class of problems. Thus, in the case of
*ne dominoc-problem, such contextual {information a3 the existence of black
snd white squares seems %o be tabu (compare McCarthy's 'clean’ represen-
<ation, and Newell's czreful avoldance of the subject) and we feel right-
vy s.. But falrnecr must imply some cortextua' information, come methods
wnich 'might' work, etc.

It should ve observed that the question of fairness looses its sig-
rificance if reference is made to careful definitions of the domains of
irquirers, instead of imposing rules of fairness on the employed methods
of solution.

The following proposal for a machine solution of the "Domino Prob-
lex” freely draws upon a priori knowledge, but still it should be con-

sidered fair in the light of our preceding discussion.

L ]
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The 'solution will be given step by step. Pl is the initial prob-
lem, P2 and P3 are questions generated by the machine.

Pl. 1Is it possible to cover the mutilated checkerboard by dominoes?

P2. How can "to cover 'something’ by dominoes” be repreienteé?

P3. How can "to cover by a domino” be represented?

P3 represents the cruc.al step in our approach and criticism against
it may certainly be justified because it seems o be so easily identified.
It should, however, be noted that several different approaches are at-
tempted in any ‘'resl’ situation, and that the 'one shot' success illus-
trated here may be the result of lengthy search.

Some a priori knowledge is required to represent "a cover."” as in
the minimal & priori Kantian inquirer, a cocrdinate-system for space-
relations is assumed to be avallable.

A representation of ‘a cover of a square (I, J) 1is given in

Figure %.5.

L]
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As seen, a 'cover' of the square (I, J) can be represented as any one

of four pairs:

(I, 3)s (I + 15 J)
(I, J)y (I -1, J)
(I, J)y (I, J + 1)

or (1, J), (1, J - 1).

The !nquirer attempts to find simple representations of concepts;
therefore, [ts "generalization sector” is employed to find a represen-
tation that subsumec the above four pairs. Looking for differences in
the pairc, it is found tha*t “hey only differ by +1 or -1, which

suggests thie picture of Figure 2.6

®.!

[ i ©

Figure 7.6

The representation of a cover g thus reduced to any one of two pairs:

(¥, M + 1)

or (ﬁ; H - l).
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In the next step, the "generalization sector” sttempts to combine
these two pairs into a common representation. Such representation can

be found as each pair consists of one odd and one even number.

or

The representation of a cover then is (E, C) -
The translations between representations given in Figures 3.5, 5.6,

and 3.7 are summarized in figure 3.8

Rik | ii. if.

!
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Figure 2 .E

SOLUTICN OF P>

Represent a 'cover ac (E, 0)

The next step is to find the sclution of P2, i.e., to represent &
board covered by dominoes.

This step requires a priori knowledge of the principle of mathema-
tical induction, or, in Newell's words, ".. If P(n) implies P(n + 1),

and P(1) is true, then P(n) is true for all positive n . Now, there

is only one such principle,.... Consequently, it is reasonable to
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sassume that a problem-solving program would be given this principle.”

Purely formal operation of this principle gives the result that to

cover something by n dominoces requires n pairs (E, 0) .

SOLUTION OF P2

"To cover the mutilated  heckerboard by dominces” is represented

n pairs [(E, O) .

The next step is to find the solution of Pl, 1i.e., %o establish
{f the mutilated checkerboard can be covered by n pairs (E, 0) .

1. The board has 62 squares, i.e., it can be divided into 31
pairs.

2. There are 3% E's and 32 0's, i.e., there cannoct be formed
31 pairs of E's and O's . !

. £

S80LUTION OF Pl

o, the mutilated checkerboard cannot be covered by n pairs
(g, 0) .

The described procedure explicitly searches for a simple represen-
tation of a cover. Even if the reader does not consider it to be &
‘fair' sclution, we hope that the simple lesson, "search for s simple
representation,” will justify the use of a well-known example on the
importance of finding a representation. It should be observed that the
simple induction-rules employed here alsc are employed in one of our

sequence-extrapolation programs (see Section 4) and, therefore are not



53

specific to the current example. This may increase the likelihood of a
verdict of fairness for the presented solution.

&7 =

_+¢ Levels of wrescm.ctisn in Mechanize. Models of I_nguifx

The discussion of Section 2.1 indicates that some way of representing
representations s needed [n order to find e suliable representation of
& problem. This result (s not empty, but on the contrary, it clearly
indicates the posrit ] 1y .. am;;,yiég & Lierarchy .I representations,
OF languages, in the provlem-so!ving process.

Such hlerarchy extends al! “he way from representat.on of problems,
vie formiliion 0 prilewese . ng progrems down to the internal pro-
ceszing leves fw 1l.''3 - mputer. By visuallzing problem-solving as
a tree iorting procedure we (because of the recursive definition of a
tree}zé implicitly suggest that search for representations be performed
at any level of the process.

Therefore, an initially conzidered protlem-formulation may, during
Lthe procezs of problem-czoiving, be ‘ranziated .nto other repregentations
in order to permit generslization and/or appliication of particular
technigues. The former case will now be briefly discucsed.

"The ability tc d.scern zimilari‘.es veneath divergence i3 ‘he
abllity to generalize,” aceording %o tne paychologict Hhmphrey.ji Our
task {5 to find reprezertat.ons that jermit such generalizations to be
made. There is an abundant |!terature on !nductive logie, but atill it

le very c¢ifficult to find some description of s language suitable for

2l
reprecenting generalization. A quotetion from E. Cassirer” character-

izeg the situation,



Thus, abstraction is very easy for the "philosopher” but,

on the other hand, the determination of the particular from the

universal, so much more difficult.

There are a few examples of application of inductive methods for
particular situations represented in the literature on artificial intel-
ligence. londan35 used induction on length of strings as a practical
tool. But his method is based 7n a particular theorem-proving situation
and he consequen®ly ctates,

The mechanization of thece technigues [induction and

case analysis) o tied intimately to this task and their

ceparation from the task along the lines of GPS iz desirable

if *he program .5 ¢~ beccme a more general aid and theorem-

prover.

Solomﬁnoff}6 describes a grammatical induction scheme. A very
simple but general induction technique is employed in the exemplification
of the dominoc problem (cec Figure 7.7 ) for representing a 'cover,'
where a cpecific representation (R1) iz first slightly generalized (R2)
and evertually a still more general representation (R2) is used for the
remainder of the process. Another example i{s provided by our sequence-
extrapola*®ing programs, where the input is represented as a sequence of
numbers which (s to be modeled. In cases where nc a priori models are
available, the tack ls fxirly stralight-forward, but, when the program
itself builds models, then the representation sust be such that it
permite generz)ization of experienced results. This requirement will
be discusged in Seciion k.

An instructive example of application of multi-level languages ig

given by T. Evans)( in his discussion of a program for analysis of

pictorial analogies.
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By utilizing multiple levels of language, situations (which at cne
level of abstraction seem to be unrelated) may, at a higher level, be
naturally connected. Occurrences which, in one representation, seem
random are clearly causal at a different degree of abstraction. Multi-
ple langusges permit abstraction, specialization, utilization of differ-
ent relational models on & constant data-base and, in short, gives the

"linguistic flexibility"” necessary for sophisticated problem-solving.

3.3 ?raﬁgntics cof Representation

The importance of suitable labelling, as discussed in the context
of Lockean inquiring-systems, applies equally well to mechanical inqui-
rers. The following palr of quctaticns ({llustrates the gsituation. The
psychologist K. J. W. CraikSS writes:

The effects of language in percepticn appear to be
to make those features of the cbjective world that are

represented ty linguistic forms stand ocu' in greater
articuiation.

This gquotation (8 strongly related to the computer scientist, Minsky's,)g

statement:

[+ iz usually necegsary to nave ways of assigning
nameg symbolic expressions) to the defined classes.
The gtructure of the namez will naves a crucial influence
on the mental world of the machine because [t determines
what things can be conveniently thought about.

We hamve shown how EPAM from given representations of complex enti-
tieg abtstractsz features, which suffice for an efficient parsimonious
latelling and, alsc, how the noticing-crder empioyed by EPAM will affect

itz categorizations. In general, c ter-generated labels can be made
A 24 ’

wr - zulted fur loglcal processing and classification than the conven-
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tional names of natural language are. In particular, 'content based'
addressing, as in EPAM, can be efficiently implemented.

In the pioneering works of Newell, Shaw, and 51:03,“0 there is a
recurrent realization that sopnisticated problem-solving requires power-
ful means of representing models. They write:

There ig a closge and reciprocal relation between

complexity and communication. On the one hand the

complexity of the systems we can specify depends upon

*he language in which we must specify them....

and

a more powerful language can specify greater complexity
with limited processing powers.

There is an obvious trend toward development of increasingly sophis-
ticated programming languages. We can trace how the basic signal lan-
guage of bits and gates of a computer (s activated from successively
more complex languages such as machine-language, assembly-language,
problem-oriented Languages,kl and all the way up to sub-routines and
execut!ve-routines of problem-solving programs. Our main concern, how-
ever, has been to study the languages from the other end of the program-
ming process, i.e., we have discussed the languages relevant tc problem~
solving. Az there i8, however, a very definite interaction between come
puter-languages and formulations of problem-solving machines, not only
in comporients but also in their very structure, a few comments on the
situation will be made. The users of the programming language, LISP,
for instance, sometimes "get carried away" by its convenient recursion
facilitieskg or choose problem-environments particularly suited to its

mathematical structure. Equally obvicus 1s the tendency to structure

problems according to IPL V's mor equential structure. Raphaelkﬁ has,



in somewhat confused terms, tried to classify computer- languages as
declarative or imperative vhere the former type  (if implemented) weuld
be more suitable for formulation of programs of artificial intelligeace.
It should be obr-rved here that "simulated” declarative languages cam %o
Sevised by proper strusturing of sub-routines. Although vesy iatereetiag,

the subject of prageatics of pregramming-languages will met be discussed
further is this eutut.“
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k. Seguence-Extrapolstion

Sequence-extrapolation has been chosen as the domein of & computer-
model of & representstionsl inquiring-system which will be presented in
the next few sections. As representational functions of inquiring-systems
are strongly context-oriented (Section 3.1.1), a brief introduction to
the field of sequence-extrapclation will be given in order to provide beck-
ground for lster discussion.

Sequence-extrapolation, or inquiry into the structure of sequential
patterns, iz s process of establishing relationships, rules of progression,
between members of a series of symbols. Such inquiry is deemed success-
ful, i.e., knowledge hss occurred when sets of identified rules, i.e.,
models, can be applied to generate arbitrary members of corresponding
sequences.

At first glsnce, sequence-extrapolation will seem to require applica-
tion of genuine induction, i.e., toc start out from & pattern, represented
by an input-sequence, and eventuslly arrive at s more genersl represents-
tion from which the input-sequence may be deduced. However, true inductive
ressoning is not necesssrily required. In many ceses, apparent inductive
behsvior should rather be described as "deduction disguised as induction”.t
Some such csses will be indicated during the following discussion.

The process of establishing relationships between members of s sequence
is sanslogous to finding grammars for sets of sentences. Buch grammars
can be trivislly designed by enumerstion or by employing rules such as:
“sentence — sentence + any word”. Any spparent generslity of such gram-
mar iz necesssrily not sufficient reason to sccept it as a desired type

of description. The essily realized drswbacks of these "general grammars”
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8re not as easily discovered when translated to the analogous case of
sequence extrspolation. In particular, some confusion sbout this situa-
tion has been noticeable in published work om sequence-extrapolation.
Specifically, the question of power, or inductive power, of sequence-
extrapolstors seems to have been misunderstood. The next section will
therefore be devoted to this subject.

b.1 “Generality” in Seguence-Extrspolation

In general, there exists no unique continuation to any sequence of

sysbols. Actually, no continuation can be ruled out as infessible.

EXAMPIE 1. Which are the next few entries of the sequence:
I'r 2; 5: h; 5, ........ ?

As for any sequeince, there are infinitely many possible continustions,

some of which are:

6, Ts 8, 9, 1o,  ........ (a)
Y 2, 5, L, Biy  mwwaaw .. (b)
8, 7, 16, 9, 32,  ........ (c)
T, 9, 11, 13, 16, e (d)

A few of the patterns may seem rather unlikelj, but tney can all
be justified if seen in their proper context: .

a) This is the continuation which would be preferred by most knowl-
edgeable people if no psrticulsr context is defined, i.e., in the typical
cage where the humen problem-solver lknovs the order of the numbers and

Sees no reason that the progression will not continue ag started.
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b) This pattern gives s cyclical repetition of the subsequence
1, 2, 3, 4, 5 . It may be chosen under the influence of previous exposure
G
to cyclical patterns, e.g., calendar dats.

c¢) This sequence has actuslly been given by a sequence-extrapolstion

program. The situstion was such that the program had encountered seversl
patterns consisting of intertwined subsequences, i.e., the p-ttfrn was

assumed to be:

g, Ptk o, P o3, e

LOO

d) This series is somewhat tricky. It consists of the primes and
their powers arranged in order of megnitude.

The exsmple is homely, but hopefully it helps to illustrate the
point that the context within which a psttern is presented should hsve
a ma jor influence on any prediction of its continustion.

The non-uniqueness of continustions of sequences thus forces us to
consider discovery as well as evaluation-procedures for representations
of sequences.

Discussion of evsluation will be postponed. For the moment, it
suffices to note that such evaluation is the task of the executive of
Leibnitzian inquirers. Representation of sequential patterns, on the
other hand, will be illustrated in the context of s few simple examples.

Given a sequence of n numbers, we can always find a polynomial
cn‘lxn'l + Cn_zxn"Q + ...+ CX+C_ which for consecutive values of
X, X =1,2,..., n; will represent the initisl uc;ucnce.2 Thus, sny
sequence of n numbers cen slways be described by an expression contain-

ing n 1independent persmeters which cannot only recreate the sequence



but alsc provide one justifiable continustion. Such extrapolator is
descrived in Section 6.1 This extrapolator will hereafter be denoted
as El1 El 1s completely genersl, but will not slwys provide repre-
sentations which seem ressomable.

Certain shortcomings of s class of "genersl” quuence-extrlpolltorl5

will be demonstrated by exemplification

L
EXAMPLE 2 1, 10, 100, 1000, 10000, k0951

The extrapclation 40951 does not seem reasonable. By representing the
input sequence differently, however, El, as shown in Example 3, is

applicatle
MPLE 10, 104, 1%, 10%, 10*, 102

The extrapclation is here performed on the sequence of exponents.
A generaiized version of El, described in Section 6.3, here denoted

E2, nasc & somewhat richer domain of representations.

EXAMPLE & .,y 10, 100, 1000, 10000, 100000

Trn= resuit is derived via an implicit treanslation of the input

seguence to o Lol 10, nl =1, where o, is the nth element
i 1«

1
4
of tne gequernce

AAMELE 5 1, 1ii, 111, 1111, 11111, 111111

Here 52 finds Lo (niu1 10) + 4, B, o+ 1

FXAMFLE € I, 12, 123, 123, 12345, 1234 56

F?2 transiates "0 n =

tn - .
L cla,, 10)+ 1, n =1

1
+0 general, Ez applies over 8 domein described by n, = Pi(ni_l, 1),

where P denotes a linear combinatiom of 1its erguments.
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EXAMPLE 7. 1, 22, 333, b4k, 15865

Here E2 obviously fails while a simple representation which could easily

be made internal to E2 succeeds. Compare Example 8.

EXAMPLE 8. 1, 22, 333, LLkh, 55555
n_L
where n, =i ° ( ;_1 . 10+ 1), ny = 1 or the sequence

1-1, 2+11, %-111, &-111, ..., 10-1111111111

or where ny = 1:i, where : stands for number of occurrences giving
the sequence 1l:1, 2:2, %:3, L:4, 5:5, ..., 10:10 .

(Note the dissimilar results for i = 10, i.e., 11111111110 and
10101010101010101010, respectively. )

The examples presented are very simple but, hopefully, they have
conveyed the idea thet even if we add features which take some of the
shortcomings out of a "general"” sequence-extrapolator, there will still
be unlimited numbers of sequences which will be extrapolated in & very
awkward manner. Obviocusly, context must be considered and, within any
context, simplicity and elegance zhould also be taken into account.

Thus, generality is not necessarily a virtue of sequence-extrapolators
but may actually be a hindrance for reasonable performance. Therefore,
the subject of context in sequence-extrapolation will be discussed in

the next section.

L.2 Context in Sequence-extrapolation

“How can you do 'new math' problems with an ‘old math' mind?"
(Linus in Peanuts by Chsrles Schultz)

Why do certain extrapolations seem more "right" than others?

How should an evaluation-procedure for sequence-extrapolation be designed?

o e U e B

By A OTIr . FE Y
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* These questions are very difficult to answer with suthority as
correctness ir sequence-sxtrapolation is clearly a function of how well
the results fit intc the particular context within which the problem is
formulated. Even if the context is weli-defired, there still remains to
evaluate alternatives which clearly cannot be judged on the criterion of
relevancy for context only Thus, the well known but rarely objectively
defined notions of simplicity, elegmnce, parsimony, etc., will have to
be employed The only guide that car te g1lven s2=ms tu be that the most
sppealirng of those alternatives which fit into the context should be
chosern . Thie guide is sdmitvtedly weak out still it is preferable to an
uncriticai acceprance of *hLe first alternative that comes along.

The impor*ance of context has bzen expressed repeatedly but how is
it introauced 1pntc mechanical geju=nce extrapolators?

There are several methods =«vallati- and we will now proceed to exem-
Plify thrhose which are mos* freq.ently empicyed
1. Design *re extrapolator to apply a few specialized methods (see 3
below) v.r, if these fall, to resort to some gereral "clean up’ method.
This approach is used 11 an =xTrapciator ty M. Pivar and M. Finkelstein,6
which corceptually 18 very close o *he previously described E2. They
TiwiE;

Inie repurt deals with trhe proplem of programming a

computer to perform inductions on certsin general

kinds of data in & manner superior *c the majority of

human beings.

In view of tre poor seiectivity of tne program, the above passage

“ariy corfuses uncrivicel generality, as demonstrated in Bection b,
“1 % inductive power  However, tne risk of confusimg “inductive powsy”
wit- efficient aigoritnms for exploring very cavrow demsins must alse

ve rea. lzed



Simon and Kotovsky? have published an account of e specialized se-

quence-extrapolator for the Thurstone letter-completion-tests. Although
persimonious in respect to immediate memory requirement and variety of
operstors, the extrapolator can satisfactorily account for most of the
test-sequences presented in their peper. However, t!‘n authors' claim
thet "several versions of the progrsm show varying levels of inductive
power” seems to miss the point that the purely deductive Leibnitzian
inquirer they present only needs & very limited amount of trial and error
or exhaustive sesrch to compile s generating model for any valid sequence.
A more straight-forward procedure, covering the same domain, is pre-
sented in Section 4.2.2, vhere an extrapolator is described which can

efficiently extrapolate segquences from s very well-defined domain.

4.2.1 A Sequence-extrspolator Which Builds a Model of Its Dommin

An extrapolater which, using & simple meta-langusge, can perform
certain ele.c:.tary generslizations is developed. The particular model is
rether restricted in scope but the methods employed are of wider applica-
bility. The inquirer is divided into two parts:

A. & model-building end evaluating executive, and

B. e set of tools for construction of models.
The executive is requested to build a model of sequences which, during
a learning period, are presented for analysis and extrepolationm. The
executive is genersl, in the sense that its methods are not context-

dependent.

The executive operstes on r-tuples which sre manipulated by simple
rules of induction. These rules are:



1. A set of n identical symbols 5 may be represented as a pair
(n, 8) .

2. A r-tuple of symbols which belong toc the same category C may
be abstracted to a pair (r, C) .

3. Initial states of sequences may be separsted from the relational
structure.
Part B of the program is context-dependent. The present discussion will
concern itself with s domein defined by a particular type of letter-
sequences which are used iﬁ Thurstone Letter Completion Teitse; however,
several other dammins cen easily be implemented.

The following @ priori facilities are available:

a. an slphabet, (usually the English);

b. facilities to establish 1f sany cne of a set R of relatioms

holds

R = { i ) '}

_——
-
B
s
W

equality

guccessor

*
L)

i
S
]

predecessor

c. facilities to estatlish cyclicity.

Cyclicity is established by the shifted difference approach, i.e.,

a sequence Y - Yi» Yo - 5 ¥» - 5 y_ 18 cyclical with the pericd Ik

7}

if for all i, y = Yy Cyclicity can be represented as

-K
yii" r ¥ s s ¥

10k Viege? Yiagepr o2 Yn

yl ’ ’ yi ’ 31,1 » yi*? r oy yh_kg"" ’i

y =y = p L ) =,
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A description of how a particular learning-period will influence the

model-building is given. The exsmples are taken from Simon and Kotwsky,B

A) a b & b a b

It should be noted that s model is designed to be a symbolical represen-
taticn of 8 relational structure; thus, where possible, details of com-
ponents sre excluded. Hence, by induction rule 3, i.e., in analogy with
mechanical models, the initial state is separated from the relstional

model. The sequence is conveniently described as:

(a, b) ('r ')
Initial State Model MA

By rule 1 the model may be written (2, =) .

¢
l "
B) c a 4 8 e a f a

Ags indicated by the arrow, model Mﬁ doe not apply. A more detailed

study is therefore required. There are several different approaches

available, two of which will be shown.
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1. -] a d4d a e a f a
2. c & & a e & f a
3 § = 4 = § =

The sequence of line 3 does not indicate cyclicity, unless a

generalization of the cyclicity-operator can be found. A potential

generalization is:

(e, a)(R, =) .

The nature of R will have to be studied. It turns out that R cor-

responds to (+), which suggests the model H' .

KB-(c, a)(+, =) .

Here s generalization has been made; instead of the parameter (=)
of the cycle-operator, the operator (+) 18 employed. A similar param-
eter has been found. Similarity is, in the present model, defined as
shared class-belonging, however, (=) and (+) both belong to the
~lass of relations R = { s, +, - } and, therefore, (+) is accepted

in the pregent situation.

Another approach is to apply the cycliclty-operator om & model of

the relational structure of the inputl-sequence
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Input —» ¢ a d a e a f =&

Model — fﬂfﬂ#-
4 = 4 = 4 =

The model sequence can be described as:

Initial State Relations

Use the model tc "maci” out the "questionable” sequence.

[¢2]
@
[
o]
0O
I‘b
0
[«%
]
s ]

This i3 a esimple cuccecsor-sequence which, by the a prior: facilities,

can Le recognized ac:

(c)(+)

cubstituting (c)(+) for (#)(=) gives (c, a)(+, @) i.e., Model “B .



No cyclicity can be directly applied,

the sequence permits analysis.

but reverting to a model of

e Y b b c c d
a a b b [ c 4
Relational model + ¢+ + +

A generalization, as in Example B, provides a model;

nci(al a)(+, *) .

The value of k = 2

is the result of previous experience and, further-

more, other periods do not provide models compatible with the periodicity

of the input-sequence.

The presently employed models are:

Completeness suggests:

4)_

(:,

Hx:

The relation (-)

is a potential candidate for entering the modsls.

By rule 2 the models can be generalized to:

T2
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D) a b x ¢ d4d x e f x g h x

The present model cannot describe this sequence; it will, therefore,

have to be filed away for future antlyais‘11
E) a x b y a x b y a x b
At first glance, the model (a, x)(+, +) seems applicable, however,

further testing establishes its falsity. The general model M does not

apply and a complete investigation will have to be made.

ME : (a, x, b, y)(=, =, =y ‘) .

The model resembles the previously developed ones and a consolida-

tion of mcdels is concelvable.

M (u, v) u, v € R

M: (s, t, u, v) g6, t, u, v€ R

The second model iz derived from ”E a3 o generalization by rule 2 .
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R has been substituted for (=) . The models may be represented as
pairs:;

M: (2, r) r € R

M: (4 r) reR.

A simple unified representation would be:

M: (mr) m€ (2, b}, rE€R .

The range of m can be tested by random generation of sequences which
are presented to a guarantor for approval or disapproval. A further
generalization, which is quite feasible and actually can be easily derived
from a suitable example, is tc expand the set of relations to

(=, +, -, M}, 1i.e., by adding the model itself to the set of relations. -
Bupposing that a period of 2 has been very frequently encountered,

i.e. a large fact-net (see Section 2.1) reinforces the period 2, then

an atiempt to employ the following representation is made:

M (a’ X)(Rl’ R2) .

The sequences ccrresponding tc Rl and R2 are:

Rl : a2, b, a, b, &, b

R2 : %, ¥, X, ¥s X, _
i.e., Rl : (a, b)(=, =)

R2 : (x, y)(=, =) .




This suggests

w : ((a, ), (x, y)) ((=, =), (= =)) .

Thus M is, as suggested above, included in the set of relations.

F)

The model

This reinforces

occurred.

H)

“F is easily found:

M? : (r, 8)(=, +)
HF € M.

MG : (a, b, ¢, a)(=, =, =, +) .

M as previously only (=, =, =, =) of length 4 has

m n 1 n k n J n

M, : (=, n)(-, =) .
M, € M.

This is the i.rst occurrence of (-) .

I)

(m, n, o)(=, +, =) .

75
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-

This suggests that the domain of m should be investigated. At present,
m€ (91 }’ ") .

J) c e g e 4 e h e e e i p f e

uJ : (cs ey g ) (+, =, +, .’_)

Or, in a different mode of expression, i.e., by considering M as a

relation,

My 2 ((cs g), €)((+) #), =) .

The present model M describes a major part of the domain of letter
completion tests. Although the model is developed by rather bold steps
of generalization, the methodology is still justified because the sequence-
extrapolator is conceived to be interrogated in time-sharing, where the

executive can test its hypothesis by asking the interrogator for valida-

tion of sequences generated by proposed models.

L.2.2. A Specialized Model

When knowledge about the structure of a domain is achieved, e.g.,
when the model M of section 4.2.1 is developed, efficient problem-
solving may be performed. 1n the present section, the domain of letter-
completion-tests, as described by the model M of the preceding section,

~ill be utilized for efficient sequence-extrapolation.



The model is:

(m, r) meE (2, 3, blj; r€ [=, + -, M} .

By temporarily disregarding the relation M, a simple strategy for
extrapolation can be designed.

Given an input-sequence Y = Yyr ¥pr 02 Y extrapolation is
performed in three steps.

1. Find the value of m .

2. i .
Find the relation r between Y .4 o, and ¥ .1.m

I Vn+1 «r (yn+1-m) *

The steps can most conveniently be represented graphically, as in

Figure L.1. Let the letters of the alphabet be represented on the
ordinate-axis and the order of elements of a sequence along the abscissa

of a 2-dimensional coordinate system.

"Solution"

77
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The proc-dure is as follows:

1. Starting at the point defined by entry Yn+lem

i.e., in the example at y7, test if a line of slope 0, +1, or -1

» where m = 2,

touches entry Yp+1-2m’ i.e., in the example ys- If this is the case,
also check points yn+1-3m’ yn+l-hm’ etc., until the sequence is
exhausted. In Figure 4.1, the negatively sloping line touches points

y#, ys, 33, and Yy - If such line does not exist, increment m by

1 and repeat the above steps. After, at most,13 (m=-1) .3+ g -1
elementary tests, where 2 <m< L, the periodicity of any valid sequence
is established.

2. The relation r between Yn+l-2m and y is defined by

n+l-m
the slope of the line establishing periodicity, i.e., no new test will

have to be performed.
3. Ypep ©an be computed from available information, i.e., by
extending the line until the intersection with Ype1 is found.

As seen, an exhaustive search only requires 8 + 2 or, in general,

approximately 12 elementary tests in the worst possible situation.
By optimizing the search-strategy of step 1, an average of 3 + E

elementary tests can be expected to suffice for extrapclation. Thus,

the required level of "inductive power" of sequence-extrapolation over

this domain is very low.

4.3 Error Correction in Sequence-extrapolation

In a constreined environment, redundant information may be utilized
“or error-detection and/or errcr-correction im "nearly" valid input

sequences. Although it is true that it is impossible to judge any
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sequence as invalid, in the Leibnitzian tradition the largest fact-net
is also presumed to be the most reliable, and therefore, minor changes
which permit a sequence to be connected to such a net are assumed to be
permissible, in particular, if the input-mechanism is known to be unre-
liable.
Error-correction cannot be performed by "general sequence-extrapola-

tors,” thus E1 would unhesitatingly produce:

1, 2, 3: L‘a h! 6) Ty 8; 9, -116

instead of reporting, "I believe the sequence to be"

152’§!h72,6;?,8’9’1_o'.

Extrapolators which establish their domain by experience can, in many
cases, reinforce models which have proved successful in a long run of
problems such that "erroneous” sequences are not permitted to influence
the design of the model. Furthermore, certain irregularities may be
detected by very simple tests. The greatest potential {or error-cor-
rection is, of course, to be found in strongly constreined sequence-
extrapolators. A particularly powerful error-correction facility has
been implemented in our sequence-extrapolator, 3EP, where several types
of errors can be dected and corrected. A brief description of these
facilities will be given in order to illustrate the power of such design.
Section 6.1.1 describes a set of error-correction procedures derived
for polynomial-extrapolation. By permitting certain transformations,

which preserve the properties upon which the procedures are based, we
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can, however, stretch the validity to cover more general situations. In
perticular, monctonous transformations of polynomial sequences are still

valid objects for error-correction. The following cases are satisfacto--

rily handled.

Case 1. At most, E entries of the input-sequence Y are incorrect.

An estimate YB of Y 1is produced by applying the extrapolator

+ ces
to m+ 1 consecutive values (y0+3, Yyey? » ym+3)
=01, ..., n-m . 1If Ys differs from Y in, at mocat, E
places .t is accepted, otherwise the procedure is repeated for new

values of J wuntil an acceptable estimate of Y is found.

Case 2. At most, E pairs of entries are interchanged. Apply the
procedure of case 1 but permit differences between Ys and Y in,
at most, E pairs of positions such that by interchanging tbhe

members of such a pair corresponding differences are eliminated.

€-g-, Y: 1, 2, 61 b, 5, 3,7, 8
Yﬂ: l, 2; 2, k; 53 é! T! 8
Combinations of case 1 and case 2 may, of course, be handled by

the same procedures.

Case 5. At most, E entries of Y are missing.
The present case is "diagnosed" when Ys and Y differ in leading
or trailing strings of consecutive entries. By adding "dummy”
members to the input-sequence, such that the number of discrepancies

is minimized, identification of missing entries can be performed,
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e.g. Y : 1 2 3% 5 6 7 8 10 1

e
o
o
1&

N

o

78 9 10

YY: 12 3 pD 5 6 7 8 D 10 1

Y - 2 3 56 7 8 9 10

Dummies are placed where the runs of discrepancies start.

Case 4. The input-sequence Y is scrambled.
Section 6.1.1 gives a detailed accouri »f how this case can be

handled satisfactorily.

In general error-correction-procedures are based upon context-depen-
dency and simplicity. The role of simplicity and efficiency in error-
correction is rather interesting and will be briefly discussed.

The authors of "Automation, Using LISP, of Inductive Inference on
Sequences,"lh have proposed the following method for error-correction
(detection of irregularities).

If, in a difference table15 at some level k, the majority of the
A§1 are equal, it ic assumed that all entries at this level should be
equal. By working backwards, a modified difference-table defining an

"ideal sequence," is constructed, e.g.,

Y 1 2 % 4« 5 5 7 8 1 2 % 4 5 6 7 8

&kY i1 1 1 2 0 2 1 == i+ 1 32 2 1 2

The "ideal sequence” is 1 1 1 1 1 1 1 and the result 1 2 3% 4
5 6 7 8.
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The method seems simple and efficient, but it can hardly be used in
any but rather trivial cases (for low-order polynomials) The reasons

for this limitation are described below.

Suppose we have the following situation:
There are n+*l entries in the input-sequence.
The polynomial in question is of k:th order.
E errors are permitted.

A typical difference-table may be represented as:

X = irregular entry

. = regular entry

The number of entries at the Ak level is n + 1 -k .

At level AF, each original error can affect k + 1 positions.

We, therefore, find that a majority of "constant” entries at
level a? requires that the original sequence is of length n + 1,
vhere:

n+l>2B(k+1)+k 16



The sequence-extrapolator of Section 6.2 requires k ¢ 1 consecu-

tive correct entries in order to extrapolate a polynomial of order k .

The situation can be illustrated aa:17
ik x - x . - . -
k k k+l

In this case, the required number of entries is expressed by:

n+l1>k(E+1)+1.

A stil]l more efficient method is provided by Newton's general

interpolation-formula, which would require:

n+l>k+1+E.

The difference ir. efficiency between the first twc approaches can

be written as:

Diff. = 2BE(k + 1) + k - k(E+ 1)+ 1

=« EB(k +2) - 1.

The difference is thus dominated by the product E - k, which
indicates that the first method is unsuitable for higher order polyno-

mials.

8
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11.

13«
14,
15.
16.

17.

FOOTNOTES AND REFERENCES FOR SECTION &

This formulation is due to Thomae A. Cowan.

Compare Sectiom 6.

One extra-polator belonging to this class is described by Malcolm
Pivar and Mark Finkelstein in "Automation, Using LISP, of Inductive
on Sequences,” in "The Programming-Language LISP," edited by
Berkeley and Bobrow, Cambridge, Massachusetts, 1964.

An underlined element of a sequence represents a prediction or
correction made by & sequence-extrapclator.

E2's representations of examples 4, 5, and 6 are described in more
detail in Section 6.3.2.

See [3].

See "Human Acquisition of Concepte for Sequential Patterns” by

H. A. Simon sand K. Kotovsky in Psychological Review, 1963, Vol. 70,
Nao 6’ p- 5}%‘5“6-

See (7).

See (3].

See [7]: p- 536.

The necessary capabilities are easily implemented. See section T.

Actually list processing langueges such as IPL-V, and LISP favor
such recursion.

In a perverse case, (m-1) - 6 + E - 1 tests may be required.
See note [3].

Some concepts discussed in Section 6 are employed here.

The expression is derived from E(k + 1) < % (n+1-k).

The illustrated spacing of errors represents the worst case. Only
at one place is it possible to find Kk+l1 consecutive error-free
entries.
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5. On the Executive Function

The tasks of executires for inquiring-systems, and particularly so
in non-minimum s priori designs are strongly context-dependent (compare
section 2.%). The organizestion of execitives, on the other hand, can
often be designed independently of context. In the present section we
will therefore employ a particular complex sequence-extrapolation
inquirer 8&?1 to exemplify an essentislly generally sppliceble execu-

tive design.

5.1 Organizstion of a Complex Sequence Extrapolstor

It has previously, in Section 4, been shown that sequence-
extrapolation, as the general representational problem, is strongly
context-dependent and that, for this reason, no single extrapclator can
be expected to operate efficiently over s wide domain. However, by
combining several extrapolators into one complex machine, an inquiring-
system with, as well, wide domain as efficient operation can be designed.

Employment of specialized segquence-extrapolators, or in more gen-
eral, Kentian terms maximal g priori sciences, means that the problem-
solving is likely to be bissed, such that problems are, non-selectively,
squeezed into available models, and furthermore there is a& possibility
thet the chosen domsin of the inquirer is too narrow to permit inter-
esting problem-solving. The problem of widening the domain is easily
solved as an extrapolator corresponding to the Kantien minimal a2 priori
may be added, thus permitting a greadusl model-building whenever more
specislized & prioris fail. B8uch organization permits efficient inquiry

oVer well known domains as well 83 8 great Jdegree of flexibility over
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more general areas. Though the risk for bias of course still remains,
by completely eliminating it no contextual inforsetion can be sdvan-
tageously employed. Therefore, s judicious balance will have to be
established between efficiency and bias, such that optimal perforsance
is achieved.

As shown in Section 3, the available sequence-extrapclators are
means for utilizing alternate representations of sequences. Conse-
Quently, the task of the complex extrapolator consists of two phases:

1. the choice of an efficient representation

2. the application of appropriate methods of extrapolation

Phase 1 will be described in the present section, phase 2 is in
Sections 6 and 7.

5.2 Domain of the Complex Sequence Extrapolator
Before proceeding some notation will have to be introduced.
!k = & sequence-extrapolator, k = 1,2,%,4,5

Ik = the problem-domain of Mk

M = a set of sequence-extrapolators Mk operating under a
common executive.

X = the problem-doma:n of M

Xi = @ particular problem, X, 6 ¢ X, i=1,2,3, ...

i
{ the solution to problem X

a
1

i
The application of a sequence-extrapolator, or heresfter "machine,"

o a problem is denoted ﬂk(xi). In this case Mk represents a function

and xi is its argument. The value of Mk(xi) is Y‘ Af & solution

is found, otherwise it is undefined.
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The presently implemented machines are:
Hl : Polynomial machine
M~ : Extended polynomial machine
M5 : Extrapolator for intertwined sequences
M : Recognizer and retrieval machine
and Ms : Complex machine for letter-sequences.
The problem-domains of the machines are related as follows:

1 2

X" Nnx Non-empty (approximately Xl)

xt nx - Non-empty (approximately Xl)

xtnx* - Non-empty (very small)
xnx = Non-empty (very small)

2 by 2
X~ N X° = Non-empty (approximately X°)
x° n xh = Non-empty (small)

X2 nx - Non-empty (very small)

X n Xh Non-empty (small)

XNy s Non-empty (very small)
Xt nx = Non-empty (very small)
The complex machine M has a domain X which represants the

union of the domains Xk of the machines Mk.

x=xXuxPur ux*uxd
5
f.e., X=U xk . The above relations are illustrated in figure 5.1.

k=1
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Figure 5.1

(2

,
A\ S/

Any X, € X can by the definition of X be successfully solved by

some machine Mk. 4 o Xi € KK it is said t« be of the probvlem-type Xk

The type of a problem can not be determined & priori, only when a
solution is found can 1ts type be estan:ished. l.e,

Xi € Xk ife V{Mk(xi‘} = 1, where the function V{A} = 1 iff its
argument A defines a proper go..* .o,

The executive functions ot *tr~ .. aplex maci.ne M may employ a
great variety of strategies, rargirg from simple seguential application
»f sub-machines ¢ e.aborate predictive Gtra*egies which sweep in all
conceivable aspects of the ing.iring-process, Regardlegs of the com-
plexity, however, the goal of *re executive -5 “c propose optimal
representations, i.e., to aliccate *ne work tetween its sub-machines
such taht:

+o A sciution is fowd for any problem Xi e X,

2. The average amruint cf informa‘icn required to find a solution

is minimized
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3. The expected amount of time (computational effort) necessary
for the identification of a solution is minimized.
The first goal causes no difficulty in the design of the executive
machine, but the other two are in a sense contradictory and do, there-
fore, require rather complicated analyses for a high degree of simul-

taneous achievement.

Tre next few sections will illustrate a gradually implemented

complex executive for a set of extrapolators.

5.% The Executive Functions of & Closed Machine

Hereafter a purely Leibnitzien inquiring-system is called a closed
machine. Such machine may be simple, e.g. MK, or it mnay be complex
e.g., M. A closed complex machine MS is defined by any predeter-
mined sequence Z of application of simple machines Mk. Figure 5.2

illustrates a simple case.

Flow of Control in a Closed Machine

l(Mz '%j,_ '

I + + +
Input _L,. M e M . M’

|
|
' )

— —

OQutput

+ = success
- = failure

Figure 5.2
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A closed complex machine Mz is defined such that its sub-machines

are employed in the order: Mkl, Mke, Mkj, Mkh % Hks where the sequence
of superscripts stands for any predetermined permutation of machines,
ke (1,2,3,4,5) and  i=1,2,3,4,5 .

Machine MZ satisfies goal one because successive application of
each of the five sub-machines covers the problem-domain X. Thus, any

Xiex is solvable provided that a sufficient amount of information

about Xi is available.

MZ does not, in general, achieve goals two and/or three, a defici-
ency which may be partly removed by an appropriate organization of the
closed machine.

Goal 2 may be realized by the following procedure:

1 Introduce the smallest possible amount of information about

Xi into the machine Mz. Denote this amount of information
by lq{Xi); (in general, an amount of J quanta of informa-
tion about X, is denoted by jq(Xi), i.e., here J = 1).

2 Apply M, to jq(xi). If a solution is found goals 1 and 2

are achieved.

3. If no solution is found in step 2, introduce a new quantum

of information, i.e., substitute (j+l)c for J3q. Then re-

turn to ctep 2.

By applying the machine MZ to increasingly large amounts of

information until & solution is found, we know that within the size of

one quantum a minimum amount of information 1s employed,
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In symbolic form, the procedure may be written as:

Find the lowest value 3 of j for which

viny(Fa(x,))} = 1 (1)

Where V{A} =1 if snd only if its argument A defines a
sclution.

In general, this procedure will defeat the realization of goal
three and particularly so when information is added in very small
quantea. If we assume that the time requirement for a solution is in-
dependent of the amount of information employed, then goal three may
bve achieved by introducing eany amount of information larger than
Eq(xi). As we do not have any a priori information about the size of
E , & time-minimizing strategy would have to apply all information
available sbout Xi in order to assure successful solution of Xi in

the first attempt.

Symbolically this strategy may be written as;

viM,(maxq(X,))} = 1

Where maxq(Xi) = all available information about X1.5

Goals two and three are simultaneously satisfied only when
3q(xi) = maxq(Xi) . Depending upon the relative importance attached
to the two goals, some compromise such as introduction of an amount
mq of information, Eq(Xi) < mq(Xi) < maxq(xi), may be justified.h

Further improvements of the efficiency of M are not possible

without relaxing the assumption of & closed machine MZ .
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5.4 The Executive Functions of an Adaptive Machine

By relaxing the restriction of using a closed machine, information
about previous performance can be used to improve the efficiency of
the executive.

An easily implemented improvement consists in assigning thresholds
Ek to each sub-machine Mk such that it does not accept any amount of
information below ;k, - Jq(Xi) > ak is required. A machine

employing such thresholds is iliustrated in Figure 5.3%

Input

\TT = =

Figure 5.3
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q can be determined as
a. the smallest amount of information that has evei sufficed to
solve a problem Xiexk ; or
b. the expected amount of information necessary to solve a
problem Xiexk .

In both cases Ek can be determined from information sbout previ-

ously solved problems.

In symbolic nota*ion we have:

-k K

. A = nin ga(xp) (3)
ok

or b - EQax)) = & -z 5 a(x) ()
r n=1

n=l,2..., rk

k=1,2,3,h,5
rk = The number of problems of type Xk encountered,
jnq(xi) = The amount of information about the n:th problem

of type Xk which was found necessary for its

solution.
-k
A simple example may clarify the use of the thresholds q

Suppose the sequence of sub-machines defining HZ is:

Assume the following thresholds have been derived from previous

experience:



Sub-machine Threshold
! T = b
M T -5
w ? - 6
Cx -3
o = _ 4

q
In the process of solving a problem X,, the sub-machines would be

applied in the following order:

(3a(x,)): M
(bq(x,)): MY, M*, W
(5a(x,)): wb, M2, M,
(6a(x,)): ut, W,
(7q(x,)): M°, M

etc.

The sequence is terminated when a solution is found.

Further adaptation may be made in response to information gained
about the relative frequencies #k of occurrence of the different
problem-types X~ (k=1,2,5,4,5) . If svailable such information may
be used tc minimize the expected time-requirement for finding a solution.

The minimization may be expressed as:

Chocse the permutation Z of sub-machines for which the expected

time for solution of s problem X, iz minimized, i.e., find:

i



5
Min L ¥St%
Z k=l
k
k K 3
K - J
., = _ L (9 - « £ T” ) (5)
z kJSl kj‘l’k kj’k 1’1

k
Where MS = A given permutation of machines M J where

k,e1,2,3 ih:S} .

J
1; = Expected time for finding a solution to s problem of
type Xk on the machine Mz

(8 = 1,2,..., 120) .
$kj,k = The probability that the machine de will solve

8 problem of type Xk.
k

J
T” = The expected time for solution (or indicetion of failure)

k
of a problem X, on machine M J .

i
A simple example may indicate how 1; is determined:
Suppose: M, = (ME, Hk, MB, Hl, n)
ge,b = 0.25
Q}ﬁ-,i& = ]1.00

2 2 L
L
1, = 0.257 o (1 - 0.25) (Tu o7 )
The procedures for increasing the efficiency of the executive
function of e problem solver M, as outlined here, may of course also
be based on information received from external sources. Unless such

information can be received and acted upom continuously the potential



%

for improvement is limited to s given environment, i.e., we still have a
basicslly closed machine. Such mechine can, however, itself be used to
collect informstion sbout the problem types, to compute its own "optimel”
orgsnizetion, and to revise said orgenization f the environment chenges.
This gives us @& fully adaptive mschine which will be “optimel” in some
sense over @ wide renge of different environments.

The tesk of the executive is to optimize the permutstion of subme-
chines at time 4%, denoted Z(t) on the basis of statistics of perfor-

mence. Any one of 8 number of sdaptive procedures E may be employed.

z(t) = E[Z(t-1)] (6)

Improvements in efficiency due to the executive function has, until
now, been limited to rether simple rescheduling of the flow of control
between sub-machines. However, given well-defined problems, i.e., &
guarantor for the correctness of produced extrapolationse, en introspective
executive (compare Lockean inquiring systems) will be able to perform s
more sophisticated sllocation of work. The next section will illustrate

such executive.

5.5 Inguiring Executives

We have previously indiceted that it would be necesssary to know the
type (class-belonging Xk) of the problem xi for simultanecus schieve-
ment of goals two and three. This informstiocn is not directly derivable
from the formulation of the protlem Xi, but it may etill be possible
‘c predict the cless-belonging of any given Xi . We have been concerned

witn statistical messures for improving the expected performeance of the



basic mschine. Now we intend to investigate methods to predict the
problem-type for specific problems, i.e., we want to find some reesonsbly
efficient way of predicting the next entry in the time-sequence of problem-
types encountered by the machine.

To do reasonsble predictions the executive needs s model of its
environment end our task will now be to erplore the possibilities of
generating such a model.

A useful model of the environment should be formulsted in terms of
the processes available within the system, sand furthermcre, it should
slsc be manipulated and interpreted internslly. These restrictions, of
course, limit the possibilities but it is still feasible to design s use-
ful model provided certain s priori sssumptions are shown to be Justified.

The task of the model ghould be to permit prediction of the type
of sny given sequence in order to essign suitable extrasplstors. 8uch
prediction can omnly, tc 8 very limited extent, be made by studying the
properties of input-sequences; however, by assuming such regulsrity in
the environment thst input-sequences, if observed in their context would
be psrts of 8 pattern, then prediction would be possible if only the
psttern could be revesled. The only context, within which the executive
can sesrch for informetion, ie the sequence in which different problem-
types have been received. Therefore, the following sssumptions will have
tc be made:

1. that there exists some pattern or strstegy sccording to which
problems sre genersted and presented, and

2. thst, given such psttern, its categories sre homomorph to the

provlem-types which can be recognized by the inquirer M .
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Assumptions 1 snd 2 imply that the context of events (problem-types)

can be represented as a sequence of problem-types. Prediction can then
be performed provided that some suitable sequence-extrapolator is available.
The situation is slightly re-formulated in the following descrip-

tion:

1. the machine M receives its problems xi according to some
strstegy S for presentation of problem-types xk, and

2. the strategy S 1is operational for the executive E, 1i.e.,
E can extrspolate & sequence of problem-types generated according to S .

Figure 5.4 illustrstes the functions of the executive.

Memory -
‘ Predictorl < i-},s)
P X
pred
M 7
xi - — xi
Figure 5.4
i
X = {nput-sequence
X, = extrspolated X,
Xk = problem-type
Xk y = predicted problem-type
i-ls = gtored parts of the input-strategy

=
n

complex extrapolator
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In Figure 5.4 the executive receives problems Xi in a sequence

determined by a previously chosen strategy. The executive E, on arrival
of a problem, retrieves a sequence, denoted 1-15’ of the i-1 latest

encountered problem-types. The sequence i-ls corresponds to the first
i-1 positions of the strategy S . The executive, by employing a pre-
dictor, i.e., sequence-extrapolator, attempts to predict the next problem.
Assuming that this is most likely to be of type xk, machine Mk is
chosen. Whenever s solution is found, the name of the successful sub-
machine is stored in the memory as the type of the corresponding problem.

The procedure for problem-solving is as follows:

1. The class-belonging )(k of X

4
i

is predicted by E,

(i.e., Xiexk)

i
i.e., E(i-ls) - X
2. Assuming the prediction of the class-belonging to be correct, the

sub-machine Mk :8 applied to the problem Xi,

f.e., M‘k(xi) =¥,
3. If a solution is found, the "memory" is updated,
ie., 5t M-,

otherwise, some other class-belonging is assumed and points 2-3 are re-

peated.

Obviocusly the prediction of the problem-type xk for a given xi
is a problem which may be attacked in exactly the same way as solving the
problem Xi, itself. 1t is, therefore, possible to extend the complexity

of the executive E as far as we have been able to extend the organiza-

tion of the problem-solving machine M, itself.
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5.6 Complex Inquiring Executive

It is quite possible that there may be several alternate types of
strategies of presenting problems to the inquirer. If this is the case,
the question of efficient domain for the executive will arise. Thus, the
executive, too, may be most efficiently organized as a complex machine.
In thise case, the external problem-poser can be assumed to employ &
strategy of presenting types of strategies for presenting problems to the
inquirer M . As seen, the situation at the strategy-level parallels
that of the problem-level.

For convenience, we may think of each available strategy-type as
an 'experimenter' who has a particular way of presenting problems. The
situation resembles the frequent case where students learn about their
professor's strategy of formulating test-problems in order to optimize
their problem-solving performance, but as every new professor employs
his own strategy, they have to be alert to changes.

In summary, the situation is:

1. the machine M receives its problems X, from any one of

several experimenters;

2. each experimenter employs his own stragegy of presentation of
problems;

3. the executive has models for prediction of the probable strategies,
but is not informed which model is aprlicable at any given time.

An important goal of the executive is to identify the experimenter,
or rether the current strategy, before trying to solve any given problem

X,

1
&<
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As there is no & priori knowledge available about the identity of
the experimentor, we have to find decision-rules for identification of
efficient machines. There are several possible rules, some of which are

listed below:

1. Committee-vote: Let each sub-machine of the executive make a predic-

tion, choose the vote of the majority. This approach could be used
in a two-choice situation, for multiple choices it might bring con-
fusion. Furthermore, as only one prediction can be correct, no
compromise solution is likely to be satisfactory.

2. Priority-choice: (Dictatorship) In this case one sub-machine of the

executive is given pricrity, such that when it is sble to produce a
prediction, this will be chosen. This method may, in certain in-
ctances, be very powerful. The design of the priority-scheme, however,
requires certain a priori information about the environment.

%, Competition: Let all machines provide predictions and pick the

"opinion" of the machine which in most cases has proven to be correct.
This may require very extensive double-computation unless a computa-
tionally efficient approe~h is chcsen. Some approaches are listed
below:

a. In stage 1, experience is collected and the prediction of
each sub-maschine is used to find s suitable representation
of Xi . A corresponding method of problem-solving is
applied. The amount of time used for each of the methods of
solution is recorded. In stage 2, experience is employed
to choose the sub-machine which has the lowest expected

time-requirement.
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b. The prediction of a randomly chosen sub-machine is used to
choose representation. The probability of picking e particu-
lar machine is determined by statistics of past performance,
which are updated as soon as success or failure of a predic-
tion is established.

c. All sub-machines make predictions. One of these is chosen
by random for solution of the problem. The time requirement

is recorded. Thereafter, knowing the actual problem-type,

each of the remaining predictions is employed as a starting-
point for simulated problem-solving. The expected time-
requirements are computed and compared, then the represen-
tation corresponding to the lowest time-requirement is
chosen. (Section 5.6.1 gives a more detailed description

of this approach.)

5.6.1 Employment of a Model of the Complex Machine

The situation facing the complex problem-solver of Section 5.6 may
be briefly stated as:

There is a community of inquirers which is to decide about the cate-
gorization of a particular element, which cannot be senalyzed by direct
observation, but which may be indirectly spproachable via its membership
in 8 sequence of presentations. Such membership can be, as shown, es-
tablished by brute-force methods, though, simpler and more efficient
methods are to be preferred. A detailed account of one such method, namely
“mp.cyment of a simulated model of the executive, will now be given. The

method is most conveniently described as a sequence of steps:
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1. Apply a probsbility vector to pick one sub-machine by random.
Solve the problem xi as suggested by the prediction. Record the compu-
tational time used at each step of the problem-solving process and store
the results at each particular sub-machine. (When a sub-machine has been
previously “timed", a stored average is updated.) Alsc, keep track of the

real cumulative time used up to and including each stage of the solution

process.

~

2. When a solution is found, the type Xk of the corresponding
problem Xi is known.

2. For each sub-machine not used in step 1., simulate the problem-
solving which would have been necessary for finding a solution, starting
at the pcint defined by the prediction of step 1. (A detailed descrip-
tion of this stage will be given below.)

L. Compare the time used for actusl problem-solving with those time-
requirements which have been derived by simulated problem-solving. In-
crease the probability of picking the machine which provided the smsllest
time-requirement (regardless of whether the time-requirement was derived
by actusl or simulated problem-solving). This ensures that the machine
which has heen most successful in predicting the correct problem-types
will be most likeiy to provide the prediction used for future problem=-
sclving.

By previous assumptions about the nature of the problem-domain, we
know that any sequence of applicstion of gll sub-machines Mk will,
providing that sufficient information about Xi is given, ultimestely
fird a solution. The permutation of sub-machines defined by the struc-

ture of Mz, augmented by thresholds for minimum and maximum amounts of
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informmtion used by the different sub-machines defines a path between any

starting-point and a solution. An example is given in Tables 5.1 and 5.2.

EXAMPLE :

A problem xi 18 received and steps 1 and 2 of the above

sequence have been performed.

Suppose that the solution found in step 1, and recognized
in step 2, indicates problem-type 3 requiring 7q of

information.

Suppose that some other sub-machine G predicts the
problem to be of type 2, and that past experience in-
dicates that problem-type 2 requires at least 6q of

information.

The two assumptions give a starting-point type 2, 6q
end sn end-point type 3, T7q for the simulated problem-
solving of a machine defined in Table 5.1. The situation
is illustrated in Table 5.2. The expected time for

solution of the problem is computed to be T .

Parameters of the machine Hz

W= 0, 0, W, W, W)

Machine number Minimum threshold Maximum threshold
1 3q éq
2 bq 8q
3 6q 10q
L bq kq
5 8q 10q
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Simulated protlem-solving by MZ

Sequence of Information Average time Cumulsted time
application quantity required in for the current
of sub-machines previous use problem
1 3q tl}
1 Lq tlk
2 Lq to,
L bq thh
1 5q tl5
2 5q t25
1 6q tig
Start — 2 6q t26 t25
(predicted) 3 6q t}é tog * t36
2 Tq ﬁ?{ f'zé + t’)é + t??
Solution —» 3 Tq t37 T = t26 + t56 + t?? + t37

(achieved)

Table 5.2

5.6.1.1 A Nute on Simulated Problem-solving

It mey turn out tc be 8 rather difficult task to construct s new
table for every encountered problem (N-B! thresholds and flow of
control may very sccording to experience.) Therefore, the machine
itgelf iz employed sas s generalized table, i.e., the machine is used
to dezcribe itself. The method is rather straightforwerd. A simple

illustrstion is given in Figure 5.5.
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The mode of operation of the sub-machine llk is determined by the

executive machine. During the actual problem-solving phase, the compu-
tation mode is chosen, i.e., the necessary computations are performed and

the amount of time t"k 15 used by !lk is stored in s location sccessible
¥

during the simulated lode.s In the simulated mode, the time ¢t is
k, i

picked up after which the actusl computstional part of Mk is by=-pessed.
Control is thereafter transferred to the failure-exit or the success-exit,

depending upon the relation between the type of the problem X, (es de-

i
cided by actusl problem-solving) and the domain of the machine Pf under

test. xi
o= B
& |
' t’k, $ Mode? :
| |
3 l

Computstional
Simulation oy
Mode

cecl|
Exit success —‘-—)- +

By providing each sub-mechine with a facility for by-pessing most of

its time-consuming perts, we have, in effect, faclilitated introduction
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of partially decentralized control which permits the use of a very simple
executive machine. When the sub-machines sre made "responsible” for per-
forming most tests for feasibility, constrsints, etc., the executive machine
essentially transfers control between the sub-machines in a roundercbin-
fashion (with provisions made for high level constraints). The sub-mechines
thus can be used tc make s majority of decisions concerning their own rele-
vance for a given situation.

Some advantages of this approach are:

l. Any number of sub-machines (with very differing epplicability)
may be esslly connected to the executive machine without greatly increas-
ing the total level of complexity.

2. Any pesrticulsr constreint may be included into s sub-mschine without
necessitating any changes in the executive orgsnization.

’. The feature of "simulating” the time-requirement for using the

sub-machines may be eszily implemented.

wn

.7 Exgplors+ion of s "Super-strategy”

The situstion, as previcusly indicated, may well be that problems
sre presented sccording to slternate stretegies which, for instance, could
be the case when experimenters are alternating sccording to some "super-
strategy’ . By trying to identify such super-strstegy, the executive im-
plicitly sssumes that there sre multiple levels of ceusstion of events.
One possibllity of doing this will be cutlined.

To describe the super-strategy S8, we need sn indicstor which at
any given point of time can be used to find the class-belonging of the

current estrategy. As we have previcusly shown, the simulation spprosch
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may be used to identify the best predictor for a sequence of problem-types

xk . We have slso indicsted that the probability of applying e particulsr
predictor is positively correlated to its current degree of success, i.e.,
after a large number cf successful predictions by s machine, the probability
of applying it will be greater than that of any other mschine. But if the
current strategy is replaced by some other (in accordance with the super-
strategy SS8), then the probability-vector for choosing predictor will
adapt to the new situation. Changes in said probebiliiy-vector thus in-
dicate the sequence of strategy-types applied by S8 . We thus can con-
clude that veristions in the probability-vector for choosing prediction

machines indicates changes initiated by the super-strategy S8 .

The situstion is illustrated in Figure 5.6.

Machine with
highest proba- A
bility of being
chosen

Time
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Disregarding transitory oscillations, we, from Figure 5.6, find that

the sub-machines, l.e., the classes of strstegies, have been applied in the

following sequence:
B A CBATCUBASTC

The executive is s generally spplicsble machine for identification
~f strategies snd can thus be used to find the super-strstegy S8 by
extrapolating the sbove sequence.

Two levels of prediction have been described. One may be identi-
fied ss prediction of problem-types under s non-chsnging environment, the
cther predicts changes in the environment itself. At any point of time
the strategy in use is sssumed to be known, thus permitting a successful
prediction of the sequence of future problem-types. When the strstegy is
cnanged, this s manifested as an oscillation in the previously discussed
orobability-vector. Any change in said vector triggers s rapid adaptation

tc e predicted chsnge in the enviromment.
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!’ootmgs for Section 2.

1'

2.

SEP (Sequence Extrapolstor) is a progrsm for s digital computer
written in the programming-langusge IPL-V.

There are 120 such permutstions.

3. Any Xid will be solved in the first application of HZ "

k.,

The cost of informetion is rerely discussed in the litersture on
decision-making. A rotable exception, however, is Marshak and
Redners’ work on the theory of teams.

In most instances tk { is computed as an aversge time-requirement
’
for seversl solved problems of type k .

A "timing-routine”, in the form of an operstion-cycle counter, can
be inserted st any pert of sn IPL-V program during the execution-
phase.
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6. Extraspolstors for Sequences of Numbers

Representation and modeling in the general ares of inquiry as well
a8 in sequence extrapclation has in preceding sections been dis-
cussed with only superficial connection to particular programs for
digital computers. In this and the following section a description
will be given of several implemented sequence extrapolating programs.
The discussion will be given at a sufficiently dctailed level to permit
reconstruction of the basic ideas of the programs, however, particular
aspects of programming will not be discussed.

The sequence-extrapolators presented are all "complete” in the
sense that thev can be employed as isolated Leibnitzisn systems and,
furthermore, most of them are also homogeneous such that their input-
output specification:s permit connection to SEP. A program can be in-
cluded in SEP by simply adding its name to a list of members. That is,
ell transfers of information between SEP and its members are performed

"

via "public

"

commun.cation cells, and thus great flexibility in organi-

zation is achieved.

£.1 Extrspolastion of Polynomisl Sequences

The following basic scheme will correctly extrapoclate any sequence
nf m numbers generated by a polynomisl of a degree lower than m.
A polynomial sequence Y = Fp¥yreees ¥y is defined as a tabulation

of & polynomial f(x) for the values

ys = f(xs) 8 = 0,1,2,---, n
X =X + 3 h h=_
g <

x =0



The k:th forward difference of X denoted & kx. is defined by:

k-1

8%t(x) =" t(x +n) -2 £(x,)
8°t(x,) = £(x) .
Rearranging terms
a"e(x, + n) = a%le(x,) + 8%t (x)) (1)

Denote the set of polynomials of order m by . Por

any f(x)eP® (2)
ar(x)epP!
a"r (x)er° or b‘f(x.) =A’f(x'+1) (3)
8™t (x ) = 0 3=1,2,. .. )

By (1) and (3), eny polynomial sequence Y =y , y,,...» ¥, (o> m)
can be extrapolated by the following scheme:

A‘f{n - (m-1)) =a%(n - m)

2% - m-2) =2 (- (=1)) + 8% (n - (1))

ar(n) = af(n - 1) *Aaf(n - 1)

f(m + 1) = £(n) + Ar(n)
or

4

nel “ 'Vn * Ayn

The procedure is most esmveniently demonstrated im s &iffevemce-

table (figure 6.0).
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Bach entry of the difference-table equals the sum of its left neighbor

and the entry just below said neighbor.

A simple example may illustrate the procedure. Y = 1, b, 9, 16, 25.

r{x) 1 b 9 16 25 ‘é- 11 + 25 | (2)
ar(x) 3 5 7 9 |1u=9 :-l
8%t (x) 2 2 2 [z2-2 (1)
8°1(X) 0 0

(1) Azr{x‘) -azf(x.ﬂ) 4A2f(x)€P° -wf(x)'El"‘2
@) £x) = (x +1)? X =0, 1, ...

6.1.1 Error-correction in Polynomial Extrapolation

By limiting the domain of a sequence-extrapolator to polynomial
sequencees of degree m or less, certain error-correction-procedures
based on the following theorem may be implemented.

Theorem 1: There is one and only one polynomial f(X) of degree m

which for m + 1 different arguments x = x, {1 =0,1,2 ,..

assumes m + | given values f(xi). 2

11k

m)

The design of the polynomial extrapolator has been based on the existence

part of Theorem 1. The uniqueness part permits implementation of certain

error correction facili.ies.
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Given a polynomial input-sequence Y of a degree not exceeding m

Y’Yoiylr"'?yn n>m
" g

YEU P
J=0

Y defines a set of argument-value pairs XxY where X = [0,1,...,n} .
By Thecorem 1 there is cone and only one m:th degree polynomial

£ : X =Y such thet { satisfies m+l arbitrggz values of XxY .

~

constant .ntervals, however, requires m + 1 consecutive values of XxY.

Result 1: A polynomial sequence of degree m or less can be uniquely

identified by any m + . consecutive entries.

Definition: A polynomial input-set U = {uo,ul,...,un} is an

arbitrary permutation of a polynomial input-sequence.

Proposition 1. Any sufficiently large polynomial input-set U can
be identified, ordered, and extrapolated by the

pclynomial sequence-extrapolator.
In the following, a heuristic proof of Proposition 1, based on certain

well known properties of polynomial functions, will be given.

Treorem 2: The derivative f'(x) of a m:th degree polynomial has

at most m-] root:-zj
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Theorem 2 insures that ¢ polynomisl sequence f(x) will monotonously
approech +® or - for sufficiently large arguments, i.e., for
srguments larger than seny root of f'(x).

All possidble forms for grephs of polynomial sequences of degree 4 or
less sre given in Pigure 6.1.5/

Degree 1 _ Degree 2
Degree > Degree 4
Figure 6.1

Polynomial functions are eontinuous, therefore, all values corresponding

to finite arguments are finite. This property in combination with

Theorem 2 leads to the following result.

Result 2. There exists for any polymomisl f(x) a constamt x* such
that

It(x)l < |f(xo ) P ox < x* .

[£(x + 1)] > etx)} x > x*



Based on Result 2, the following procedure will identify the polynomial

input-sequence Y underlying any sufficiently large polynomisl

input-set U .

i

N

Sort the members of U into s sequence ﬁi’u?""'ﬁi""ﬁn

gsuch that

|ui 5'|u1*1‘ i=0,...,n=1

Find the generating polynomial g of the subsequence
un—h’“n-}’un-e’un-l’uh . Provided that n > x* + 5 , Result 2

gusrantees that u, =y, for 1 o n-h,...,n.

D

Generste s sequence Z where z = g(i-(n-k)) 1 «0,1,...,n

If n=x*+ 5, Theorem 1 assures that T, =Y,

The genersting polynomisl f(X) of Y is found by substituting

x-(p-4) for Z in g .

The procedure is illustrsted in Figure 6.2.

117
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€.1.2 Computer Implementstion of s Basic Polynomial Extrspolstor
The procedure described in Section 6.1 has been implemented using

seversl different programming-languages such ss IPL-V, FORTMAN, PDP-5
mschine-language, etc. The IPL-V version is employed by SEP for certsin
support-functions, however, the unrestricted generality, compare Sec-
tion 4.1, mekes direct applicstion of the progrsm unsuitable for the
purpcses of SEP.

A simple flow-chart of the program is given in Figure 6.3.

£.2 ldentification of Genersting Pol ials

The bssic scheme derived from Equation 1 is sapplicable for
extrapolation of sny polynomisl sequence, but it does not explicitly
identify the genersting polynomisl f(x) . An adaptation of Newton's

forward interpclstior formuls, however, permits such identificetion.

Hewton's forward formula can be written

xo‘ L 19* s-h 2
fix +8 - h)=¢f(x )+ af{x ) + A°f(x ) +
o o o o
1 2
x + g°h

‘oL on &nt’(:o} + R

n X *2-h 3
= I n a'¢(x ) ¢+ R . (1)

o | ©

For the present extrspolator x, = O and h =1 . Furthermore, for

polyn-misl sequences of order m ; R = 0. .for n > m.

[



A Bagic Pg;mmhl Extrepolstor

Y‘j
Input is Y° P
Produce the seguence !‘”1 Jo1
by epplying & to esch () @)
member of T . T
Je—J 1 *
Are all msembers of N0
Y equal.
yes
Add snother copy of y‘l (Y‘j}-—((‘l‘j).y‘l}
to Y‘j v
.__'.t_ = !
J j. g
|
Compute and eppend & pow (YJ) L A
entry to YJ .
Yoi (.Vor yll"" ’.l ’m) ' (Yo,

- name of o seguanee or lisé
(Y‘j) = & sequenes oF list
Piampe 60
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n [ ]
t(x) = £ Ajf(lgi (2)
J=o J

Any order difference can be vritten as & linesr cambinstiom of

functional velues.

J
J -k
8°f(x ) e L (-1) {:)f(xh) )
Zquetions (2) and (3) give

n 3 x |d

f(x )= L ') . (e1)d '( ’ “"u) . (&)
s Jm=o |J k=o k

Equation () is suitsble for polynomisl extrspolstion. Substituting -

n+l for s gives the value of le'”’nol”' .

Limiting the domsin to polynomisls of order m < 4, Equetion (2)

can be written:

£(x,) = £(x ) ¢ s - 6f(x ) + 5 - s(s-1) * 6°(x,) +

o3 s(s-1)(s2) - B22(x)) ¢ g ¢ s(se1)(s-2)(s23) - 8't(x,)
(5)
The equation can be rearranged as:

!(x') - 1 ¢ (f£(x) )

atix) - 2o%r(x) ¢ $W2(x,) - §6°2(x)) )
+ -1-62!'(!0) - %9!(:0) * {ga"r(;o))

e
» g0t - F4E(x) )

+

+ 0+
D.__[tnbmb

+

"Eﬁi‘ﬁkf(xj )
(6)



Or in metrix notatiom:

tix,) = (1a0%0%" -

0o o o0 o r(xa)

1 -%*-} -t af(x_)

k &% -% Oé- . Azf(xg)

o Q oi -é a’r(xo)

o o0 0 051: a“f{:o) )
f('s) -8 - Al 1 (Ta)

Por m = & Equstion (3) cen be written:

f(xo)

&fﬁ:lo}

25

f.’sfgl
C

}
/

a?r(xo}

L

Lofix )
(#

In metrix notation:

# ! \
/ f‘lcz
E,f(xo;

2 \
an f(xc)

\ < i
Fa f(xo)

L
\z,f{xo}

\

|

f(x )
£(x,)
f(x,)
r(xg)

f(x,‘)

f(xo)

L]

21(11} + f(xo)

L]

5f(x,) + 3f(xy) - fx )

kf(xj) + 6f(x2) - hf(xi) + f(xo)
........ (B)

oooooooo séce (”



or

ﬁ-ﬂa'? (-)
Equation (M) cen be written:
f(l.)-g-al'uz-? (10)
where:
0 O 0 o
96 -T2. 352 -6
&1 lzﬂilg - Gh b - 16 1

5’6 'ha 26 4-6

Thus:
0 s} 4] 0 f(:a)

9% - 72 Iz -6 f(xl}

f(x,) = L g5 0 4 - 6h s - 16 1 f(xy)
36 - 48 28 -6 f(x.j)
- b 6 - & 1 f(x,)
(10m)

Example: Y =1, 4, 9, 16, 25
2 0 0 0 0 1
50 9% -T2 32 -6 b
£(x,) = (1,8,82,6,8" ) 25 -6 S - 16 1 9
-10 36 - 8 28 -6 16
1 - b 6 - b 1 25

-1424-#:2-(16-}2

L ]
P e
pes
-
| ]
-
-]
n
-
A
L ]
F
St
OO
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Yhe extrapolator derived in Section 6.2 and there defined by

Eqution ( 10) hes been implemented in e program for ¢ digitel computer.
The progrea is vritten in IPL-V but could easily be pdapted to some
slgebrsic programming langusge such es FORTMN. The IPL-V progras
follows the inpute snd output-specificstions of SEP.

In the progremmed version (x-1) has been substituted for s 1in
Bgustion 5.

#

fx) =y, o (a-18 yy v b (ee1)e-2) - 2%y o 2 (e (2)(x3) - &7y

o g @)(x-2)(a3)(xk) Ay (5x)

Corresponding modifications have been made in Eqm'tims é, 7, snd 10.
Certsin additionsl festures have been sdded. So, for instance,
only the minimum necesssry emount of information about input-sequences
{g utilized. Therefore, s m:th degree polynomial sequence can be
extrapolated from any m+l consecutive entries, i.e., no minimum

number of entries is required. All extrspoclations are normalized such

that the general expression slways uses the first entry of the sequence

ez origin.
2.g., The sequence: 1, 4, 6, 16, 25, 36, k9, 6s, ... if extrapolated

from 14, 25, 36 gives the genersl expressiom (12 + éx + 9) , however o
translation of the origin of the genersl expression is desirsble, such
that x - | corresponds to the first value of the sequende. Thsrefom,

. the next step, 8 sequence for the srgmmests -2, <1, 0, *i, *2, of =

ig generated giving the velues 1, 4, 9, 16, 25, 36, 49, O, ... Wieh

1
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sequence in turn, is extrspolated from 1, 4, 9, giving the genersl expression
(x2) . Thus, the normalizstion is performed without sctuslly employing
any ptrticuu"r rules for symbolic transformation of slgebraic expressions.
A flowchart is given in Figure 6.b.

An sctusl output from 8 computer-run of the extrepolator is i{lluse
trated in Figure €.5. A few comments tO the example are given below:

Given s sequence of numbers (line 5), SEP on the besis of pest
experience selects the number of entries from the input-sequence that
will be used for forming & temporsry hypothesis (1ine 11). The first
four entries sre chosen (line 52) end the slgorithm is applied (line T1).
The genersl expression -X2 + 10X is genersted (1ine 7%). By substi-
tuting the values 1, 2, 3, and L for X, four values are genersted.
These four values asre tested sgainst the four input-values (lines T4-77),
as the computed values are the ssme as the given, the complete input-
sequence is used to test the nypothesis (1ines 78-84). During this test
one discrepancy occurs (by previous decisions of SEP one error is per-
mitted ), thie is ignored and the temporsry hypothesis is accepted.
Thereafter, an extrlp'clttion of the sequence is made using the temporsry
hypotheses ss generstor for values (lines 91-92). The result is stored
i, the memory for future reference. (line P)

Exsmples of extrapolstion of “scrambled sequencies” are given in

Figure €.6.
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6.3 Generslized Polynomisl Extrapolator
The domein of the basic polynomisl extrapolator can be extended by
introducing edditional operators.

A [:th level sequence

‘[‘ - yi s yi, ooy y! is derived as the result of

Ti=

sequential applicetion of ! arbitrery operstors

03 (3 =1,2 ... 1) ona sequence Y.

Y - 0y (0y_(04 5 --- 0, (Y) ..l) )

cr 1'! = :‘raj‘l
J=1

¥ =t ,

The following operstors are defined for integer values only.

The difference operstor &
r 1 !
By =¥ " Yy

The quotient operstor &
t

t  Yiel
T
Yy

The cycle operstor pk

ﬁ!_. ¢t !
i T Yiegx

= O'l, -eepll
<1+ Jk<aool .

L O
[}
Pu‘
-
%
-

130
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Inverse spplicstion of the operstors can be used for extrapolation

- r 1 ! t t
&(Arn' yn)'yn‘i-laﬁyn’yn
. 1 1 t |
87(8 y» ¥) =V, =W, ¥,

k.- A ! !
() ¥ *Yne1 T Ynowel .

At esch level of anslysis the operstors are applied in order ¢,
&t , snd & Dbecsuse:
f is used as stopping rule for recursion
2 applies to any sequence, therefore & would never

be spplied if preceded by & .

Extrapolation proceeds 88 follows:

1. Orerators are applied recursively on sequences ‘tl until
any one of two stopping-rules is met.
a. The sequence Y s gemnted,s or
t. The § operstor spplies.
Thue, et most, n eapplications of operstors leads to
rermination.

2. Application of sll employed cperstors in reverse order

provides desired extraspolstion.

The domsin of the present extraspolstor is rether wide.6 By the
difference-operstor, sll polynomial sequences c8n be extrapolated.

The quotient cperstor is applicable on exponential and factorial
sequences. The cycle-operator by itself can recognize all cyclical
sequences and, in combinstion with the other operators, recognizes in-

tertwined sequences. Other combinations of operstors cover rather
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complicsted genersting expressions; however, 8s illustrated in Section 4.1,

the present extrepolstor is not selective enough to be employed by SEP.

6.3.1 Computer-Implementstion of & Generslized Polynomisl Extrapolator
The generslized polynomisl extrspolstor is, at present, not included
in the complex sequence-extrspolstor SEP, the reason being its generality

which would "overlook” svailable contextusl information snd thus decresse

the power of the compound. An implementstion, currently progrsmmed in
PORTMN, is illustrsted as a flow-chart in Figure 6.7, here recursion

is simulsted by iterstion.

6.3.2 Example. of Representstion

Examples b, 5, and € of Section L.l are below represented ss is

implicitly done by the Generslized Polynomial Extrespolstor. The it'h

entry of & sequence is denoted n, .

Example 4: 1 10 100 1000 10000
8: 10 10 10 10

5 (&n =10 - n

) =n, =5n “ng -

£-17 P11 i i-1

The representation is

ni = 10 ni-l
Example 5: 1 11 111 1111 11111
A 10 100 1000 10000
5% 10 10 10
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Generalized Polynomisl Extrapolator

Input sequence

1

Y = er yg""! ?n .

f)k applies when y; = y;*k ﬂkY‘
for all i, 1 =1,2,..., n-k-I sppliceble?
& applies when for ell i,
i=1,2, .., n-1-t y, 18
s factor ¢ Yie1 A
/. salways applies. 0, b G; -b
Apply cperstor O! Ot‘fl = Y“l
{ Push down previous operator). it
i
The last entry of Y is 3 1 ! 1
g as yb =y ¥ ¥, yn—!'*i-k)
Yoet? Yi = Y5k
the next entry is
1 1
yn"l*}. - yﬁ'!*l'k . . (of j) YI-J
Apply 8ll inverse operators in
reverse order of application. for § = 0,1,..., |

(Pop up the operators).

STOP



From the representation of example 4, we have

&ni = BW‘M) . &mi-l) =10 * &n,
an, = ng <N,

(By-ny_y) = 10(ng ;) - By )

B, = 10n _, *+ (ni-l - 10 “1-2)

=10n,_,* (10 Byo* By p - 10 nyx - 10 ni_e)

=10n,_, * (n -10n, )

1 i-2 b

In genersl we can derive

= - 10 =
n, =10n, , + (n, nk_l) kK =1,2,

ni - 10 n,q = nk - 10 nk-l

which holds for all k

For k=2 we have

ni - 10 ni.1 =11 - 10 -1 =1

Tne representation is

ni = 10 ni-l + 1

Exsmple 6: i 12 123 1234

& il 111 1111

Using the representstion of example 5

An, =108n _, +1

12345

n, =8, =10 (n ;- ”1-2) +1

n, - 0n (n, , -10m, ¢+ 1)

n, =10mn,  + (10n 5 «n 5" 0n, , + 1 - 108 p* 1)
n, = 10n,  + (o, =108 5*2)

123456

111111
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In general

n,®1l0mn ,*+ (nk - 10 i 5 % 1-k)

or

ﬁi - 10 n1-1 -y = nk - 10 nk-l -k

Using the initial conditions for k = 3

we have

- 10
ny P4

-1i=12% - 10"

The representation is

nitlo

6.4 An Extended Sequence-extrspolstor

The domein A8 of the present extrapolator is recursively defined.

2
PRI

a8 -

n +
i-1 .

A° € P*

Bt €

e

Ph = The set of all polynomials of degree h or less which

P‘

7~

have integer coefficients.

4

h

=

1,2,4.
0,1,.
1,2,...4D
1,2,...40
05 Lys

0,1, ...
'3 T
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A sequence Y belonging to the domsin A8 can, in genersl, not be
extrepolated by strictly slgoritimic methods. Repested spplicstion of
polynomisl extrepolators to sequences derived from Y will, however,
suffice for its extrspolstion.

The applicetion of polynomisl extrspolators requires thet each
entry y, of the sequence Y is represented ss three sepsrate
¢lements ., b

19‘“’-61.

V=8 0Py

If this is the case, the three sequences

A = 8 s 8,558
B = bop hl’.."bn
c = co’ Cl,.. .,Cn

can be seperstely extrapolated.

The subdivision of Y 1into A, B, and C is, of course, ro trivial
task. The limitetion of the dommins of the component sequences, however,
permits rather efficient sesrch for proper subdivisioms.

By definition

cy repetitions of '1

The search for subsequencies A, B, C pow proceeds iam three phases.

Pnase 1:
Find sequence C.
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From & given number ¥y it is not possible to directly identify
corresponding cy An upper bound can, however, be found becsuse @
prime factor occurring X times in L and Z timesz in hi must
ve represented

x+ci-z times in yy -

Result 1. The exponent ey can not sssume sny velue grester than the
number of occurrencies of the most frequent prime factor
8
of ¥y -
Step 1. Generste a sequence P = Pyres Pysces Pg such that for each
yiEY, Py is the number of occurrencies of its most

frequently occurring prime f‘a{:?,or‘.g|

By Result 1, the relstion cif_ Py in general holds.lo Therefore,

P mey be considered as an upper bound for C.

Step 2. Find a sequence Ceste P° which is bounded from above by
the sequence P .
We have assumed that =1, thus C 1is linear snd its estimate mey

be written

Cest can not be derived directly from P, however, a rather efficient

search-procedure cen be designed for its identification. The search

for Ce is most easily conceptualized as the fitting of s line to

st
s set of points (i, pi) in a 2-dimensionasl graph.
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Result 1 implies the following restriction:

Restriction 1: c may, for st most m = 2 + E srguments 1,

est
exceed corresponding P . ( E stends for the

maximum number of irregularities in Y .)n

Any estimete which satisfies Restriction 1 is said to be legsl.

The following heuristic rules for choice of psremeters for C“t

are employed.
1. The initisl estimstes of h and k, denoted by h° end k "

2,

sre set as follows: .

i* is the largest 1 for wvhich the inequality

Py < Py, holds.

If C.. = K ° i+ h satisfies Restriction 1, them k end/or h
are incremented by | until neither cen be incremsnted without

violsting Restriction 1. Then Rule 3 is applied.

ir ceat does not sstisfy Restrictien 1, k end/er h are
decreased in the following order until the resulting sequence

is legsl.

i. k 1is decreased in steps of 1.
ii. If k =0, h 1is decressed by 1 amd the initisl velue
of k 1is restored.
114. The procedure is contimued wmtil C.“ is legnl, then

Rule 2 is applied.
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3, The "highest legal"” estimete is: C =k "1+h.

est
Assumption 1: C“t is a correct estimate of C .
Phasgse 2:
Find sequence B .
e
In the relstion Yy =8 : b1 ! , 8 given value of 4 implies
that esch factor of bi occurs st least ¢y times in Yy - Thus, no

prime fsctor occurring less than ¢ times in y, csn be contributed

i
by b, -

Regult 2. b, cannot exceed the product of sll prime factors which

i
12
occur st least Ci times in yi a
Step 1. Generate a sequence g = Q- Qyreces Qyr e such that for

esch yié Y, 9y is the product of the r:th power of
every prime factor which occurs st least r - C4 times
ey, - ( r is s positive integer)
By Result 2, the relation b1 < Ay s in general, holds. Therefore,
G mey be considered as an upper bound of B.
We hasve assumed that B€P1 , therefore, substitution of B for C

snd @ for P will permit application of Step 2 of Fhase 1 to find

B _€p

est

Assumption 2: Best ig a correct estimste of B.
Phase J:

Identify the sequence A by the definition

v =% by or . S



140

Step 1. Generate s sequence A =a ,8,,...,8 such that for each yiﬁ Y

Step 2. A is tested by the polynomial extrspolator. If Aﬁ?k .

the extended extrapolator is applied (substituting A for Y).
When, at some level of recursion A€ Ph , corresponding sequence Y
can be extrspolated by perts A, B, and C. This permits extrepolstion

of the next level, etc., until the original sequence Y is extrspolated.

6.h.1 Computer-Implementation of sn Extended Sequence Extrspolstor

At present, s somewhat simplified version of the extended extrspolater

ig included in SEP. The domain can be written

c

A€EP

BE P

cer
The program written in IPL-V is completely compstible with other members
of SEP. Some smbiguities of the procedure hsve had to be resolved in
programming. A few of these are exemplified:

Examples:
Suppose that the sequence C = 1,1,1,1,1...... 1.e.,

e, = 1 for all 1. Then it is impossible to isclste ‘i from L
on the basis of the number of prime fectors in n, . Therefore, vhea
& is & polynomisl seguence of L:th order and b 1is of first order
the resulting sequence s - b 1is of the 5:th order, 8 cese vhich 19

not included in the domain of the polymemisl extmapolstor.
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The easiest way out of this difficulty is to simply extend the
domain of the polynomisl extrspolator to include 5:th order polynomials.
Although this extension is easily implemented, we have chosen another
approach, nsmely, to use a simple heuristic for guessing the form of the
sequence b.

Write bi as L+ (i-1) "1 set L to the value of one of the
prime factors of the first entry of the input-sequence. 1f for

13 By

every i T is integer, then we sssume that e

{ = the value

of said integer.

The metnod as outlined seems to cover a very restricted class of
situstions (perticularly s the coefficient for (i=1) is =1) . We can,
however, show that the procedure may be applied in more genersl situs-

L
tions, because:

-

hegecume b, =

; + (i-1) " K then n, =a, - (L + (1-1) - X)

i i

+ (1-1), , where b, 1s of the ssme form as above,

and where the sequence K ° a can be extrapolated by the polynomial

mire

or o - K a; (

routine equslly well ags 8 itself, provided that % is integer-valued.

Several cother types of difficulties may cccur in the process of
extrapclstion. So, for instance, values n, = O can in genersl not be

c

1
({ e., bi = ), we would have to divide ng by O in order to identify

accepted, because if the exponentisl part b would turn ocut to be O

vhe velue of 2, The sclution to this problem is very simple; delete O
if it occurs in tne first position of the input-sequence, otherwise re-
pisce it with | (this will, of course, introduce an error into the

input-sequence, but by edding one tc the number of permisssble errors

this will be takern csre of).



In sddition to sbove mentioned instances, several locsl tests and
safeguards agsinst adverse combinstions of perameters hsve been included

into the sequence-extrapolator vhenever deemed necessary.

l\ep_r_e_lentation of Results

The procedure used for {dentification of the sequences B and C
will implicitly factor out powers of sub-expressions of O:th or 1l:st
degree.‘ The actusl result of the fasctoring will depend upon certain

adaptive parameters soO, for instance, the polynomial:

- )
-.y’bcprintgdu:
| o -1) -
(x3-x)-x
+X) - (X -1); or
-x2)°(x+1).

By eapplying the procedure recursively, we could also get:

X+1) " (X-1) % ;
(x2+x;~(x-1;-x;or

(R - X) - (X+ 1) X; ete.

Tne general expression je internally represented as & list of nine

parameters (Ah’ A}, A, Ay A Bi’ Bo, Cl, and CO) which represent:

(Ahx A3X/ + A, o+ AX + A ) - (B)X + B, )(C X+ C )

W2
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The sbove general expression will be simplified as much ss possible
before it is printed out, some rules sre:
a. Atern AX' where A =0 will not be printed out,

e.g.y (SXh + 0!5 * 212 + OX -2) is printed:
(sx" .22 - 2) .

b. If (le + Bo) - 1, then the exponential pert will be deleted,

e.g. (be + 212 -2) - (ox + 1)(5x +2) is printed:

c. If (CIX + CO} = 1, then the exponent will be deleted,

1)

L
eg, (X 22 -2) (5x+2) %" 1) (5 printea:

(5xl‘+2x2-2)'(51+2).

a. 1If (clx + Co} = 0, then the exponentiasl pert will be deleted,

e, (X + 22 -2) - (sx+2)(%* 0

(sx* + 2x° - 2)

is printed:

Error-Correction by the Extended Segx_x_ence-zxtmp_ohf_.gr

It can be shown that all error-correction features available for
tne polynomial extrspolstor are also applicable to the extended extrap-
slator. Intuitively we can consider the present extrapolstor as sn ex-
tension of its polynomial counter-part, where the added features
(extrapclation of the exponential part) do not reduce the error-
correction abilities. To show how the most complicated case can be
taken care of, let us study how a “scrambled” sequence, if necessary,
cen be "unscrambled”.

From the form of the genersl expression, we have:

(L:tn order polynomisl) - (exponential expression) .




The exponential expression cen be considered as a transforming
operator. There are basically two different situations:

1. The transform is monotonouus.

2. The transform gives rise to oscillationms.

The two cases are illustrated in Figure 6.8.

The illustration of the monotonous case shows that the trsnsformed
polynomial has actually lost the two original extremum-points, which
permits us to set X* to & lower value than in the pure polynomial case
(in our situstion X* = 1). By decreasing the value of X*, we have
increased the possibility of finding a "tail" of K+l em:.r.ies,]'5
thus, also increased the power of the error-correction facilities.

The oscillstory case may seem somewhat more difficult, but by
essentislly splitting the sequence in two parts, one for even and the
other for odd indices, the procedure ends up being identical with the
previous case. It is also possible to identify e "tail" for the
oscillsting sequence by studying only absolute-values, which in the
"tail" are increasing monotonously.

A simplified flow-chart over the extrapolator is given in
Figure 6.9. '

In Figure 6.10, an example of an actual output from a computer-run
of the extrapolator is given. The example is self-documenting, therefore,

o comments will be given here.
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2 Y
Y=alist of 2 ambers. 1
1
e
a " a
(Y) = cach msaber of a list. (L) « 11st of all primsfactors of (Y)
i 1
1
2 pel
Y - ¥ = sxtrepolation. (P)-—ﬂcrotmnofﬂn
11
mttm-.naf (I.)
1
n
Find linear sequence c, (c)g{?)
1 1
The general expression of 3 is
Gl 1
1
(r)..mor-mnar(i-)
which cccur at least (C) times
i
|
n a n
Pind linear squence B, (3) < (P)
1 1 1
Ths general expressiom of :1.
az 1
|

n n n
(®) - (3) ** ()
1 1 i
|

n n n
(1) « (Y} / (B)
1 1 3

PUBH DOWE B.
Gl, end G2




n+l n
Y «Y
1 1

general expression = G

Produce Print List
PL = (G)

ﬂ)_*

n+l n
E «E
L 1

n+l n+l n+l
(Y) « (Y) - (E)
] 1 1

Modify Print List
PL « ((PL), %*G2, **Gl)

Pop up E,
Gl, and G2

no End of

Stack
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0".##"."‘.'.'.000.‘t'..t.’.‘..‘.t.
“iF ITNPUT UNDER CONSTDERATION IS 4
3 S_ujt__lzn__JJZhﬁ__Zﬂﬁ13i_-*LQQD&Q,_EIQQLQIT 3
ALIOM O ERRDRS FOx THF INPUT 'S
IHE SFOUENCE STARTS wITH G. FOR SAFETY DELETE THIS 7
-'.‘.tttttti"t..'tttt’tl..‘..ti.t‘..li
“JREFNT INPUT LIST [}
NUW TKY TO FIND THe PRINFFACTORS OF 5 _ 10
HAVE | SFEN 9 LEFORF 11
N0 NDT AS 1 CAN REMEMBFR 12
USF THE PRIMETABLE 13
5 IS A PRIMF. 14
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HAVF T StEN 7 BLFIRE 31
NI NOT AS T CAN REMEFRER 32
7 1S A PRIMF, b} |
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2 2 2 1
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tt.tttccttt.tt.t't.il‘l.t"‘...lt“lt
CURRFNT 1nPUT I IST 37
8 S 729
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1SE THF PRIMETABLE &2
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Figure 6.10.1
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N0 HOT AS 1 CAN RENERBER 48
3 1% A FACTOR OF 61 wniCh LFAVES 27 49
HAVF ] SEEN 27 weFURE $0
11 NOT AS | CAN REHEFMBER 51
3 15 A FACTOR OF 27 wMICH LEAVES 9 52
e HAYF_I1_SFEN_9  BEFNRE __ i ST
NG NOT AS | CAN REMEMBER 54
3 1S A FACTOR OF 9 wHICH LEAVES ) 1]
HAVF | SFFN 3 BEFNAE 56
NG HOT AS 1 CAN KEMEMBER 57
3 IS A PRIMF, 56
_MFﬂﬂﬁllfnlzi.ﬁi.&ﬂﬂslﬁflﬂﬁ.9Eﬂ1§l.£ﬁttﬂulli_tlﬁl9!§ 29

1 3 % 31 3 13

J#Ct“tct‘-t..i.t‘t...’..‘.”.'.“..'
IRAFNT LIST w#F INPUT IS TCU SHONT FOR EFFICTENT WORK 61
i e s a s s e s EE TS SE SSESES PP E R R R
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N0 MOT AS 1 CAN REMEMBER 79
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TEVE T SEFR 357 BEFOKE [ §1
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nAVF 1 SFEN 176 BEFORE (19
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NGO ANT AS T CAN REMEMBER 91
7 1% A TaCTuR OF 44 wHICH LEAVES 22 92
HAVF | SEEN 22 REFURE . ’ /- 93
0. 0T AS 1 CAN REMEMBER 94
7 IS A FALTOKk OF 22 WHICH LEAVES 11 95
HEVE | SFEN 11 BEFURE 96
NG FiIT AS 1 CAN REMFMAER 97
. 11 18 A PATAE. ' ) 94
MEMNEIZE 1264 AS CONSTISTING OF THE FOLLOWING FACTCRS 99

Figure 6.10.2
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Figure 6,10.%



151

1 00 xNOF Kxiie AUST Te Y TU INCREASE 17 - — - 148
CUGAPUTE AiD TRST ESTIMATE 149
TAar FSTIAATE 1S mia 3 ¢ (X=1)® 1 150
THE FLTIMATE 1S TUO AIGH 151
AL (e 2 FSTLHAATES To REE TOC MIGH (TAKES CARE OF THE
FACTGRAS . AMD 1 TOGFTHER wITH O ERRONECUS INPUTIS)).
L _IMF FSTIRATE IS TGO WIGH. . o e o e T LLS6_
Trf ESTIARATE IS5 Tuld HIGH. REDUCE FIRST ENTTY 159
AND TRY AGALIN 156
COMPUTE AND TFST ESTIMATE 157
THF ESTIAATE IS Nuw 2 ¢ {x=-1)s 1 158
PR EST. IS LeGAL BUT 1S 1T Twe LARGEST 159
_YFS T 1S5. -t.JU§}_ﬁ£3uifQ,j3.Dlnj.ﬁi_ll_!éiulgﬂ_ﬂlﬁﬁ.____Jﬁﬁu“__,
1HE FESTIMATED LINEAR SFOUENLE 15 2 ¢ (2=1)% 1 181
minF A& ) IST 8 THE EST. 162
5 3 4 % 6 7T & 9 10 11 12 13 14 1S 18 17 1a 19 20 163
21
TRY Ti FINU Twme BASIS UF Tht EXP. 16%
ASSUMED J IST NE_ nASIS__ " 164
i 2 3 & 5
N« | HAVE AN FSTIMATE UF THE BASIS 148
TFST THF FST. AND IF NFCESSARY MAKF IT LINFAR 169
AGD 1 TN THE FIRST ENTRY OF THE INPUT~SEQUENCE. AND 170
USE THE RESUIT AS FIRST ENTRY OF TME ESTIMATED SEOQUENCE
o _ . CCMPUTE AND TEST ESTIMATE 172
THF FSTIMATE IS NOw 2 ¢ {A=13¢ 1 173
IME FSTIMATE 1S TO0O nlGH i74%
ALiOw 7 cSTIMATES TO scE TOO HIGHM {TAKES CARE OF THE
FACTURS O aND 1 TOGETHER WIfH O ERRONENUS INPUTIS) ).
THE FSTIMATF IS Tu HIGH 177
L Tre £5TINATE 5 Tou HIGH. REOUCE FIRST ENTRY 173
AN T4y aGaAlN 179
COAPUTF AND TFST ESTIMATF 180
(HE FSTIRATE 1S NUW 1 ¢ (X=1)% 1 181
OUR FST. 15§ LEGAL BUT IS 1T THE LARGESY 162
YES 1T 1S8. wc JUST REDUCED 1T Ay 1 AS 17 WAS TOO HIGH 1683
C e FSTIMATFD LINFAR SFOUENCE 15 1 ¢ (N=1)®] Iné
- ATIST OF THF FST, 185
) 3 4 & & T 8 9 10 11 12 13 1é 15 18 17 18 19 185
VE
HCWw COMPUTE THE EXP SEU. (BASESCEXP.) 188
HERF 1S TufF RESULT 189
A &1 1024 15%02% &7993%6
NIVIDE (NEUT RY EST. GFTEXP T PAAT. THIS | CIVES K POLYNOMTAL ot
NOW TEST THF PULYNOMIAL PARTY 192
~ 7T 9 11 13
(HSF THF ALGOW ] THA 194
THF EENEwAl FRPARSSIONTI1S 198
(26X ¢ %) 196
e>TIMATE = 5 INPUT = 5 197
FSTIMATF = 7 INPUT = 7 198
____ _ESTINATE = 9 ) INPUT = 9 199 i
FSTIMATE = 11 [NpPUY = 11 200

F 6.10.4%
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e e HSTIMATE ® 13 - - INPUT .-} -~ - — 200 - -
POLYNONI AL SEENS OX 202
MW 1T 1S TIMF T3 AUILD UP THE FINAL ESTINATE AND TO TEST IV 203
THE FSTINATE IS 204
$ S 720 11286 203125 4199040
INE INPUT TD THE RUUTINE wAS 206
.S .86 120 11284 203125 _

FAPONENT 1S 208

% 4 % & 7 & 9% 10 i1 12 13 14 1% 16 17 13 19 20 209
n

THF RASTS IS 211
t 2 % &4 % &6 7T 8 9 10 11 12 13 14 1% 1& 17 18 19 212
2 .. __ .. i

THE FXPUNFNT AL PAAT 18 ' 214
1 B B 102& 1562% 2799%

THF PNIYNCHI AL PART IS 216

$ 7T ¢ 11 13 15 17 19 21 2% 2% 27 29 31 33 3% 37 MY
41 43

Jue_ouTeul 1S 219
A 8 S& 779 11244 203125 4199040
INF GENFRAL FXPRFSSIUN IS 221
{20 ¢+ 2)10{1oN)nsj]ioN + |) ‘ 222 .

L WILL RENFMAFR JHIS
CPEPPS00090S5000000 00808348 5000000008 00000000800000000040000000800000080
PRAINE~-FACTNRS AKF MOV AVAILABLE FOR 22
03178 11266 TP 56 5 223
TINE USED =,.836073 01 SECONDS 236

P ———— ——
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6.5 An Extrapolator for Intertwined Sequences

In certain situations, sequences consisting of more than one sub-

sequence are presented,

1l 1 1
QUSI’ nl ’ ﬁz IIIIIIIIIIIII ni , [ ] L AR BN BN B B B ]
and
ng nz n2
1 ’ 2 # 4 & 8 & & 8 8 8 5 1 ’ IIIIIIIIII e

or

We have, in our sequence-extrspolator, included the ability to
separste two intertwined subsequences, extrapolate them separately,
and recombine them. It is, of course, trivially simple to include the
sbility toc separate any number of intertwined subsequences. We have,
however, chosen not to do so. The case of two intertvin;d subsequences
{s included because it is very useful for extrapolstion of oscillating
sequences which occur for certain combinstions of perameters of the
extended polynomial sequence extrspolators.

The oscillating sequences are extrapolated in two parts, one for

even and one for odd indeces.

€.6 Recognition of Previously Encountered Sequences
Unless the extrapolation procedure is extremely efficient, there

should be s fecility for recognition of previcusly encountered sequences,
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such that simple retrieval from memory substitutes extrspolstion. BSEP
includes several schemes for dynamic storsge of intermediate results;
one of these it designed as an associative file for sequences.

The simplest case of informetion retrieval is the situstion where
& unique label can be assigned as index for storage as well as retrieval
of informaticn. The. task-envirorment of our machine 1s such that it is
not feasible tc assign & unique label to every conceivable sequence,
end even if it were, there would bte no way of finding the correct label
' for an input-sequence without actuazily extrapolating and analyring it.
The first few entries of a seqguence could possible be used as an
identifier but, as we want our machine to recognize sub-sequences of
previously encountered snd extrapolated sequences, this indicator wvould

cbviocusly not suffice.

-

The simple scheme descritbed below has been chosen for implemse~

tation.

Description of Associative Storsge

1. Any entry of a sequence may be used as a clue C, few Lte
retrieval.

2. Any clue C, mey occur 15 several sequences. For efficiemty
in retrieval, we therefore allow the use of sultiple elmes.
Assume m clues erz used, e.g., C,’ cao esp G- .

%, The total number of conceivable clues is very largs. WS,

' therefore, for certain cperstioms coubims cluss into

classes 13 alﬁ
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4, For each class of clues K‘} ’
which have been encountered,

there is a subset LJ of clues

i.e., if C, € 1.3 then z,écn:‘1 .
5. For each C, € I.‘J , there is associated a set ’1 of the names
of all sequences Ye on which C‘1 is known to occur,
l.e., if C €L, , then N = (Y, |c,ey, ).
The indirect definition of sets make the description somewhat
sviorard; an example may clarify the situstion.
Given a sequence Y, (Y =1, 3, 5, 20, 30, 40, 80, 155,) establish
{f it hes been previously encountered. Allow for one error in the
input -sequence.
1. Extrsct clues, by any method, in s number determined by
experience.

C =5, 30, 80, 155 .

2. Establish the class-belonging of the clues

56!1 i.e., 0< 5< 25
26 < 30< 75
76 < 80 < 200

76 <155 < 200 .

5. Retrieve L, , L,, snd Lj (correspordiing to K, , K,
and % ) ’
L,: (1, &, §5, 12, 16, 21)
L?,: (2?; 22) I"2! 1‘9)

: (58, 8_0; 9%, 120, 155, 305)
L}

SEL1,50EL2,BO€L5a and 155€L3.
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It is now established that all clues have been encountered previously.

The members of L}. ’ and ‘L3 do not only represent clues, i.e.,

2 ¥
numericsl values, they are alsc names of sete, which can be retrieved.

Denote the name of 5 by R5 , etc.

k. Retrieve the sets named by clues

. £
us @ %shr 37’ 391 811)
ot (8, 8, Sy 5,
Ngo ¢ (B 8.0 8155 8- Sig/

3155= (37, 815’ )

5. Find the sequences whose names are members of at least

m -2 (i.e, trree) se's N . i=5, 30, 80, 155 .

By inspectio:, we find “hst:

l., is 2 memver of &4 sets, and

'1& ig = member of 5 sets.

The two sequences, a7 snd sﬁ , are now retrisved amd tested against
“he input-sequence. As 3.' occurs on more liste tham ln , it is

tested first.

Im’ (., - 5’ 30’ 805 155, ...... oco.ll.i')
& (1, 3, 5, 30, 80, 155, 268 s BERES K)

Stosege of iaformtios in the sbove ssseciative store fellows

essemtially the same steps as outlined for the retrieval preesdure.
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The main differences are that clues are added to the sets LJ ard
that the name of the sequence containing the clues is added to the
proper sets Ki . If no such sets exist, they are created.

The method for informetion retrieval, illustrated above, has the
disadvantage that information hss to be duplicated and stored in two
different places, namely, as clues and as members of sequences. The
advantages are that no direct sddressing is necessary at any stage of
the procedure, all sets sre completely flexible, and any smount of in-
formation can be accommodated without modification of the scheme.IT

The rigidity of clsssification may turn out to be disadvantageous,

in which case an EPAM-like structure, which grows its own categories as

found necessary, is contemplated for implementation.



FOOTNOTES FOR SECTION 6
By the definition of &F and the distributive law for A .
For a proof, see Kuntz's "Numerical Analysis”, McGraw Hill,
1957.
Proofs of this theorem may be found in most textbooks on Algebrs.

For a proof, see reference in Footnote 1, above.

All cases are normalized by appropriate translation of the coor-
dinate-system.

The sequence Y® has only one entry.

By permitting any order of polynomisls as valid extrapolations,
any sequence of numbers can be extrapolated.

In the presently implemented extrapolator, the values of k, 1,
and m, are limited to respectively, 4, 1, and 1.

There are & few exceptions to result 1:

a. If =a

L}
[

O then ¥y O regardless of ¢

i .
b. If bi = 0 then ¥, = O regardless of ey -
. 4T bi =1 then y, = 8 regardless of ey -

The value of this factor is st this stege irrelevent.
Note previously listed exceptions.

The velue 2 represents exceptions a, b, and c¢ of result 1.

158

If three exceptions occur simultaneously, @ and b will coincide.

With the following exceptions:
. If &, = O, then the velue of bi is irrelevant.
b. The rule does not apply for errcneous y, -

Except for s number of values corresponding to E.

The procedure amounts to guessing ome of the five roots of a pely-
nomisl equation of degree 5. ‘
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15. k + 1 entries are needed for the polynomial part, however, the ex-
ponentisl part may use the same entries and it often needs less than

k +1 entries for identificstion.

16. Such classification grestly reduces the time-requirement for search--
ing the storage.

17. As long as the storage is not exhausted.
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7. Extrapolation of Sequencies of Symbols

Models based on the extrapolation for the Thurstone-letter-completion
tests, described in Section 4, are presented in this section; generaliza-

tions as well as particular implementations are discussed.

7.1. A Basic Extrapolator

The present extrapolator is included in SEP. It is based on the
graphical representation of test-sequencies given in Section L.,2.2. The
computer-program is written in the programming-language IPL-V, and certain
features of this language has dictated the design.

Let us demonstrate the extrapolating procedure in terms of an

example. Find the next entry of the sequence:

1. Reverse the order of the sequence-1

2. Identify the periodicity of the sequence. "Guess" the most
likely periodicity k, assume k = 3 . If the guess is correct, the

underlined symbols should form a "legal" sub-sequence.

There are only three legal sequencies. They are partially represented

below.
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d 4 d 4 4 (=)
c 4 e f g (+)
| @ a4 c b a (<)
- d ¢ b a (assumed sub-sequence)

3. Comparison of sequencies gives the result that the next letter
is e .

It should be observed that the here outlined procedure is based
exclusively on ordinal properties of the alphabet, nd thus does not
require any numerical computations. We want to stress this fact because
certain sequence-extrapolators employ a policy like: "Any symbol can
be encoded intc numbers, therefore, a numerical extrapolator can be
employed for any sequence of symbols.“2 The risk of using this poliey
is that the ordinal character of alphabets is replaced by the cardinal

properties of numbers. 8o, for instance, the sequence:
e & 1 or encoded 1 b 9 16

could be extrapollted:5

M9 16 25 which is decoded s 4 i p 7¥.

Pt

Aa important advantage ef using purely symbolic comparisons 1s
that egy slphabet or actuwally any number of different alphabets cam be
‘ntro@ueed as dgfp for Whe sequence-extrapolator. We, thms, in owr

case whwally isslele st least the Baglish alphabet and the alphabet of



162

vowels.h When several alphabets are employed, they are ranked according
to the relative frequencies of their occurrence in input-sequences.
Input-sequences are tested against one alphabet at a time until success
or failure of the extrapolation is established. A print out of results

derived by the present extrapolator is given in figure T-1.

7.1.1 A Numerical Version of the Basic Extrapolator

We can easily extend the domain of our basic extrapolator to cover
srvitrary, but constant, step-sizes for each sub-sequence. The most
convenient way of tmplementing this extension {8 to use numerical encod-
ing for the input-sequence (N.B.: the warning concerning this approach
given in the preceding section). By restricting the domain of the numer-
ical extrapolator to linear sequencies most objections against the
appruach may be avoided.

Procedure:

1. Encode the alphabet into numbers.

a =1 (or 27)

b =2 (or 28)

z = 26 (or 52)

¢. Instead of trying to match the encoded sequence against a set
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of “legal” sequences, we now try to find linear sub-sequences
of the form:

Ci = Ck,* FASEI | where: Ci = the 1:th member of the
sub-sequence.

A =18 constent (first dif-
ference).

3. 1f s legsl subsequence containing the blank _ is found, the

velue corresponding to _ is computed.

1y Under certain circumstances, seversl “legsl” subsequences of

different periodicity may be found; in this case, the smallest

velue k for the periodicity is chosen.

EXAMPLE: Find the next entry of the sequence:
a X d y £ z J a
Encode:
1 24 L 25 7 26 10 1

hssume that the periodicity is = 2.
1 L 7 10
Iz this subsequence linear?

From the two first entries, 8 linear sequence is generated:

[ad

4

We generste for 1 =1, 2, 3,

=1+ (b -1)(1-1) or Ci = -2 + 31 .

1 L 7 10 13 =
Now, tect the generated sequence against the given subsequence.
As the two sequences sre identical in the first four positions,

the vslue 05 = 1% iz accepted for _ .
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We now have:

1 i T 10 13

Or, for the "complete” sequence:

1 26 4 25 7 26 10 21 13
Decode:

7.2. A "Two-Dimensionsl” Extension of the Besic Extrapolator

abbcccddd _

The continuation of the sbove sequence seems obvious. We have,
therefore, decided to extend the problem-domain of the besic ex-
trapolator to include a class of “two-dimensional” sequences, which,
as & simple special case, can solve the above problem.

The procedure is based upon re-representstion of "runs” of symbols

by & peir (s , n) wvhere s is the symbol and n is the number of oc-

currences of s .

EXAMPLE :

btgwwbbbhvvbbbbiuubbbbbjtt is
reprecsented as
(b,2)(g,1)(w,2)(b,3)(h,1)(v,2)(b,4)(1,1)(m,2)(b,5)(4,1)(¢,2)
or, as no confusion cen result, as
b2glw2b3hlv2bsdilm2b55jltz_.
which, in the model of section 4, is represented ss

(bfzr&fl;“'fz)’("’;*5"!="':=)-

This model can be applied to generate the continustiom »
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The present extrspolator can be used to extrapolate most of the
numerical examples of section 4, e.g., the sequence 1, 11, 111, 1111,
11111, is represented by the sequence
E.’_l,.lfﬁﬂ ,1 14 ,1 15,1
1 , 11 , etc.
which is translsted into the model
(1,1, , , 1,) (= +, = =) .
which is extraspolated by generstion of as many entries as necessary to
produce a comma-sign, e.g.,
11, 1i2, 113, 114, 115, 116,
Retrsnslation toc & “one-dimensional” sequence gives:
1, 11, 111, 1111, 11111, 111111 .
Semple-outputs from the extended extrspolstors are given in

Figure 7 1.

.2.1 A Modified "Two-dimensionsl” Extrspolator
The following sequence cannot be extrapolated by the method of
section 7.2 because some adjscent members of the subsequencies are
identical.
ceeddddddeccdfbbbdgesdh _ .
However, by utilizing the restrictions of the model of section &, e
revised procedure can be employed for its extrapolation.
1. Trsnslate into s “two-dimensional® sequence
cle2d6belc2dlflb3dlgle2dl hl_ -
2. Try to find s legal subsequence, regardless of periodicity

cdefgh .
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3. Retrieve the quantities corresponding to the subsequence

cldébeljlglh .

The resulting sequence should be valid in the model of Section h,2.1.
If it is not so, make the necessary edjustments:
(e, 1)+, =)= cl1dleljlglhl
k. Subtrect the "candidate” subsequence from the initial
"swo-dimensionsl” sequence. The remsinder is:
e2d45c2dl1lb3dla2dl
5. Repeat steps 2-L:
2. edcba
3, e2d5c2blaec?
(e, (2,3)), (-, (=, =))» e243c2bBa?
bk, 4d2d414141
5. 4ddad
2. d2dldladl
3, d2dldldle- ddddd~-a1d141d14)]
L, 4.
6. Assemble the subsequences:

Cl D1 El n Gl m

Dl Dl n Pl 1) 8

c1L 22 DL 1L D3 DL E1 @ 91 F1. B Pl Gl A2 51 H

7. Employ the model N to find contimstion
(e, 1, e, ‘2 s 3), &, 1)(’; - o, " ) ')3 -, =) .

8. The result is 2z .
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7.3 An Extrapolator for Non-regular Sequences

The present extrapolator utilizes certain statistical properties
of @ sequence to “guess” its most likely contimuation.

A short digression may clerify the bases of its design.

Given an infinite sequence, generated by a good pseudo-random-
generator, then the best strategy of predicting its next member is to
produce the, in the past, most frequently occurring number. Or, in
other words, the most frequently occurring member under an infinite
horizon.

Given a sequence where members occur in randomly distributed runs
of random length, then the best stracegy would be to always select
the latest occurring member as prediction of the next occurrence.5
Or, in other words, the most frequently occurring member under a hori-
zon of 1.

G ven sequences of other designs, it is likely that a strategy
such as selecting the most frequently occurring member under en optimslly
long horizon will prove suitable.

The present sequence-extrapolator tests the given historic sequence,
Vo Y1 - Y, o for all horizons h from 1 to n and chooses the
horizon which provides the highest number of correct predictions on
the n first items. Because of the finite length of the sequence,
predictions on the first few items y’ e ¥p will be based upon &
horizon smeller than h.

An example of a computer-output from the extrspolstor is given

in Figure 7.2.
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PCLCTNCTES FOR SECTION 7

This is done for convenience of programming; it is not a necessary
step.

Pivar and Finkelstein (Section 6, ref. [3]) use this approach; they,
however, mainly discuss "linear" sequences but also claim,

"...compounding of operations is necessary when dealing with more
complex sejuencies.”

The sejuence is assumed to be X .

i.e , AABECIDCE_ 1is extrapolated
AABECIDCE'! .

Compare the ccncept "frejuency of diagrams” in cryptology-



' BLANK PAGE



171
8. Sumary

The present section, after a brief summary of previous sections,
demonstrates how features of epistemological models of inquiry are
implemented in the design of our sequence-extrapolating system (SEP),
and furthermore, indicates how experience gained in the design of SEP
can be generalized to apply in & wide range of technological models of
inquiry.

Section 1 introduces the purpose of this thesis: an investigation
into the feasibility of designing mechanized inquiring-systems for find-
ing suitable representations of problems, i.e.; to perform the "creative”
task of firding analogies. Because at present a general solution to this
problem does nct seem to be within reach, the feasibility of mechanizing
a particular representational inquirer is chosen as & reasonable first
step towards an increased understanding of the general problem. It is
indicated that by actually designing, programming, and running a repre-
sentational inguirer as a program for a digital computer, a severe test
of its consistency and potential for future extensions can be performed.
A shc-t discussion of the use cf models for analysis of complex "real"
problems is also given.

Section 2. reviews several proposed systems of inquiry in order to
indicate the possibilities of performing investigation by systems where
no technical limitations exist. Although our goal is to translate the
"unlimited” epistemological systems of inquiry presented by the philos-
ophers into mechanical design, 1.e.; to reduce the epistemological prob-
lems to a technical level, the discussion clearly indicates how the

representational problem (in the form of a priori knowledge) assumes an
o
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increasingly important role in more sophisticated systems. A convenient
classification of inquiring-systems, i.e., in Leibnitzian, Lockean, and
Kantian systems is employed.

Section 3. discusses the problem of representation raised in
Section 2. As no general results are available, the presentation is
given in terms of specific examples. However, certain generally arising
problems of representation are identified, (and exemplified in the dis-
cussion of the domino problem).

Section 4. digresses into the area of sequence-extrapolation. The
discussion of context in this section, however, is analogous to the
representational aspects presented in Sections 2 and 3. This section
1links the general discussion of inquiry to the particular problem of
mechanized sequence-extrapolation.

Section 5. is based on a description of a particular computer-pro-
gram, SEP However, the discussion is performed at such a level that
the executive structure of SEP can be directly translated into a far
more general class of inquirers, in fact, the executive functions are
basically context-independent.

Sections 6 and 7. present particular strongly context-dependent
programs for sequence-extrapolation. The individual programs are
Leibnitzian but correspond to Kantian maximal a priorl sciences, i.e.;
to alternate representations of symbolic data The presentation is
given at a level which permits replication of the logic of the programs,
however, no detailed discussion at the actual programming level is given.

The summary clearly indicates how our design of a representational

inguiring system for sequence extrapolation has been derived frem the
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general epistemological models of inquiry. However, it remains to be
shown how experience gained in the design of SEP can be generalized to
a wider area of applicability.

The limited availability of resources nakes a strict translation of
epistemological models of inquiry into technological designs difficult.
This means that several functions can only be approximately implemented.
Purthermore, the concept of efficiency will have a dominating influence
on particular designs. g8till, certain major features of the epistemo-
logical models of inquiry are directly reflected in the design of SEP,
gsuch as:

1. the Leibnitzian logical processor (Section 2.1);

5. the Kantian employment of a priori sciences (Section 2.3);

N

the Lockean capability of reflection on the internal processing

(Section 2 2); and

L. +the Singerian idea of bringing the problem-concocter into the
domain of inquiry. :i

A detailed discussion of these:features follows:

|
SEP is organized around a set of Leibnitzian processors which,

—

although complicated in themselves, do not suggest any general rules of
design. Nevertheless, their organization and modes of communication,
i.e., the executive and the organizational functions, are most interest-
ing from the general aspect of efficiency. |

2. The multiple a priori gciences of Churchman's version of Kantian
inquiring systems (Section 2.%) has been implemented in SEP; however, it
is not quite obvious if a given technological model is to be classified

asz Leibnitzian or Kantian In the case of SEP, the complete system
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viewed as a translation from the input to the output is Leibnitzian,
and furthermore, each sub-machine (including the executive) is also
Leibnitzian. Thus, SEP is, in fact, a two-stage Leibnitzian inquiring-
system operating under a "time-conscious” executive. This, of course,
is true of all mechanized inquirers. However, SEP approximates a Kantian
design, which is reflected by the fact that its level of sophistication
permits greater efficiency in terms of available resources than a purely
Leibnitzian design. Moreover, the multiple a priori sciences permit
class.fication of problems, such that suitable representations may be
found.

We have shown (Section 4) that not only the efficiency, but also
the quality of problem sclving depends upon the partitioning of s wide
domain of potential representations into suitable domains for the
& priori sciences, but no rules for such partitioning have been given.
8uch rulec >an, however, be deduced from the functions of the executive
in a Lockean design.

2 The lockean capability cf reflection on the internal processing
of the inquiring system is implemented in the executive of SEP. Imple-
mentation of a vague, or intuitive rule, such as "the operations of cur
own minds within, as the objects of reflection,” (Section 2.2) requires
a formal definition of introspective reflection. [n the case of SEP,
the reflections of the “inquiring executive” (Section 5.9) are ansalogous
to processing of the “external material things as subjects of sensations”
(Section 2 2). That is the executive operates upon internally generated

‘rings of symbols, hence, the problem arises of where, and how these
strings are generated. In SEP observation can be performed on the

communication between submachines and/or between submachines and the
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executive. This suggests that the composition of the a priori must not
only be considered as a sufficiently large set of sub-machines to "cover™
a specified domain of inquiry, but that the relative domains are alsc
important.

L. It has been shown (Section 5.5) that the division into sub-
domain of SEP should be homomorph to the problem-concocters conception
of classes of problems. Thus, flexibility requires a great variety of

classes, i.e.; a large number of a Eriori sciences.
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9. Conclusions

§
T ¥

ﬂmii thesis hn purmd s limited goal; 'to design & systeam for find-
ing suitable representstions in a specific environment. This goal nae
&;*;chiewd in that & model, which meets reasonable requirements of
performance for such a system, w programmed and tested on a
digital computer.

In the light of the discussion of Sectiomn 8, it may be argued that
;;i two-stage Leibnitzian inquiring system represents an algorithm for
finding slgorithms, however, this is (az shown in Section 3) always
true of the representational mode of information. Therefore, such
arguments must be based on & more restricted conception of the represen-
tational problem in mechanized inquiry than is possible in the scope of
this dissertation.

The presented model permits generalization in several directions
due to the basically context-independent design of the executive struc-
ture. Although it does not represent the only, and hardly even the best,
way to design the executive structure of a complex representational
inquiring-system, it is felt that a direction for future research s to

be founé slong the lines of reasoning presented here.



