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Abstract

Physicians need to understand the clinical research literature if they are to make

informed clinical decisions; yet the techniques required for using the literature in this

way are difficult for many clinicians to acquire and to use. I call this dilemma of

needing information yet being unable to extract it the literature problem. To date,

automated statistical methods used to solve the literature problem have been limited

in the degree to which they can represent methodological and domain concepts that

are crucial to the physician who must take clinical action. In this dissertation, I

consider the thesis that Bayesian decision theory can provide the foundation for a

computer-based environment that helps physicians to use the research literature.

As a basis for evaluating approaches to solving the literature problem, I develop

a knowledge-level analysis of the problem. On the basis of this analysis, I argue for

the use of Bayesian statistics over classical statistics. The shift to Bayesian statistics

requires a change in the paradigm within which research data are evaluated.

To show that the new paradigm can be implemented in a functioning computer

system, I have developed a prototype system, called THOMAS, that gives the physician

reader a number of capabilities: (1) to analyze a study in a structured way, (2) to

examine a study in multiple ways, (3) to incorporate domain knowledge and prior

belief into an analysis, (4) to incorporate methodological knowledge into an analysis,

(5) to determine the optimal therapy, (6) to examine the change in belief in any

parameter of the underlying statistical model, (7) to compare the beliefs in any two
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parameters, and (8) to examine the sensitivity of any posterior belief or decision to

different prior beliefs. THOMAS operates in the domain of randomized clinical trials

that compare the effects of different drugs on a patients’ survival.

To incorporate any methodological concern, THOMAS (1) requires a statistical sub-

mode! for the concern, and (2) requires a visual metaphor though which the physi-

cian can communicate the particular concern. THOMAS contains submodels for the

methodological concerns of loss to followup, withdrawal, noncompliance, crossing-

over, and measurement unreliability. The system uses the visual metaphor of the

patient-flow diagram for physician input.

In the course of each consultation, the user implicitly constructs a statistical model

appropriate to the study and to the user’s reading of that study. The construction

process is based on representing the statistical models as hierarchical, typed influence

diagrams, a structure that limits the interactions among parameters in a statisti-

cal model. Prespecified construction steps dictate how the primitive methodological

submodels are pieced together. A metfadata-state diagram, containing basic method- |

ological knowledge assessed from a statistical expert and from the methodological

literature, limits the sequence of construction steps the user is allowed.

The system has been evaluated positively by a small number of its intended users.

The representational framework can be extended to deal with methodological concerns
beyond THOMAS’s current abilities. |

This dissertation extends the Confidence Profile Method of Eddy, Hasselblad, and

Shachter (1991) by automating its use. In addition, this dissertation puts on the

medical-informatics agenda the question of how physicians should act on the basis

of research data, and suggests novel methods for storing, using, and retrieving the

contents of the biomedical research literature.
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Chapter 1

The Literature Problem

The clinical research literature provides important information for physicians making

clinical decisions, yet clinicians generally have limited skills for appraising such studies

critically. In addition, they have difficulty using statistical tools to help in analyzing

such literature. In this chapter, I introduce this problem, which I call the Literature

problem, and1 present my thesis, that the problem can be solved within a computer-

based decision-analytic framework, specially tailored for the problem.

Section 1.1 introduces the literature problem. Section 1.2 provides a specific ex-

ample, which I then use as an illustration throughout the dissertation. Section 1.3

places the literature problem in the context of medical informatics and Section 1.4
explains the need for a novel solution to the problem. My research was developed

in response to this need, and in Section 1.5, I summarize my thesis, discussing ifs

conceptual components and the representational structure of the solution I propose.

This section also introduces the domain within which I evaluate the thesis, the do-

main of randomized clinical trials. Section 1.6 introduces the program, THOMAS, that

embodies the solution, and presents a demonstration of the program in use. Finally,

Section 1.7 provides a reader’s guide for the remainder of the dissertation.

| 1



2 The Literature Problem .

1.1 The Clinical Scientific Literature and Biostatis-

tics |

Physicians appeal to the clinical research literature when they want to rationalize,

justify, or explain their actions. The clinical research literature is important in this re-

gard, because research papers provide the medical community with its highest-quality
imformation for making clinical decisions. These decisions may involve individual

patients,’ and classes of patients (Yusuf et al., 1985). The federal government (Field

and Lohr, 1990) and other third-party reimbursers are increasingly demanding justifi-

cations of specific medical practices (Eddy, 1990), and they, too, look to the research |

literature.

The medical scientific community uses biostatistics as its formal framework for

interpreting clinically derived, scientific information. Members of the community

use statistical methods to arbitrate questions of scientific validity. The techniques

involve qualitative understanding of methodology and quantitative analysis of data.

Among the methods most relevant to clinicians are those used in studies that compare

| treatment alternatives.

Despite basic biostatistics courses in most preclinical curricula, physicians tend

to lack statistical knowledge and need help in applying statistical methods. Current
strategies for providing such help include seeking ways to reinforce the statistical con-

cepts taught in medical school, offering postgraduate continuing education in statis-

tics, publishing reviews articles, and providing a variety of methodology checklists |
and guidelines.

A novel strategy for providing such help is the introduction of computer-based

~ 1For example, the patient-specific problems analyzed in Dr. S. Pauker’s series entitled “Clinical
Decision Making Rounds” in the journal Medical Decision Making.



1.2. The Metoprolol Example 3

expert systems. Expert systems constitute a class of computer program that pro-

vide users with expert-level advice in domains where such expertise tends to be ill-

structured and judgmental (Hayes-Roth et al., 1983). Experience over the past 15

years shows that such programs can indeed perform at a high level of expertise (Smith

et al., 1985; Heckerman et al., 1989).

In this dissertation, I shall explore the literature problem: How should we judge

clinical action and reach patient-specific management decisions on the basis of results

in the clinical research literature. My goal is to formulate a framework for helping

physicians to solve the literature problem, and to describe an implementation of that

formulation in a working computer program.

1.2 The Metoprolol Example

As a concrete example of the literature problem, imagine you are a physician treating

a 55-year-old white man who has just had a heart attack (myocardial infarction,

MI) and who has been brought into the hospital almost immediately after symptoms

began. Besides needing to stabilize his acute cardiovascular status, you want to

prevent worsening of his general cardiac condition. You have heard that a drug,

metoprolol, which belongs to the beta-blocker class of medications, might improve

| his cardiac status. It has, however, serious known side effects. Should you administer

the drug?

You have access to a paper by Hjalmarson and colleagues (1981) (see Figure 1.1)

that reports that acute administration of metoprolol 1s associated with subsequent

fewer deaths than placebo administration over the first three months after the acute

heart attack. The observed mortality rates were 8.9 percent in the placebo group

and 3.7 percent in the metoprolol group. The strength of the conclusion is suggested

by the classical statistical measure, the p value, of 0.012, which 1s less than the



4 The Literature Problem

i Vd Metoprolol £4| ———p

40 \697
: Deaths

Patients

(5.7%) p Value
0.012

62
698 |

. : Deaths

Patients Patients (8.9%)

with Va Placebo
Myocardial EE———
Infarction |

Figure 1.1: The metoprolol study. This patient-flow diagram for patients enrolled in

the study shows the sequence of states study patients experienced: the imitial state |
| of suffering a myocardial infarction, the assignment state to metoprolol or placebo,

and the endpoint state of surviving or not. The terminal state contains a statistical

summary of the study results—the p value. (Source: adapted from Hjalmarson, A.,
Herlitz, J., et al., Effect on mortality of metoprolol in acute myocardial infarction,

Lancet 2(9251):823-827 (1981).)

traditional threshold of 0.05, suggesting the superiority of metoprolol. This suggestion

does not answer definitively an important question: Does the observed difference in

mortality rates offset the possible side effects? A further piece of information raises a |

methodological concern: In a close reading of the article, you find that fully 19 percent

of the patients assigned to receive metoprolol in fact were not treated with the test

medication. How much should this departure from protocol affect your assessment of

the study’s validity and your decision to give metoprolol to your own patient?

I shall use this example throughout this dissertation for clarifying the issues in- |

volved in solving the literature problem. The particular report by Hjalmarson and

colleagues (Hjalmarson et al., 1981) has played an important role in the practice of
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cardiology. For instance, Yusuf and colleagues (Yusuf et al., 1985) included this study

in their meta-analysis of the use of beta-blockers after acute myocardial infarction.

By the end of the 1980s, the use of such drugs became the standard of care (Antman

and Braunwald, 1990). oo

1.3 Medical Informatics and the Literature Prob-

lem | |

The field of medical informatics has given relatively little attention to statistical

issues. An informal review of the proceedings of MEDINFO and the Symposium on

Medical Applications in Medical Care between the years 1984 and 1990 shows that

about 50 articles out of 1200 (4 percent) could be related to issues of data analysis

of scientifically collected data; even fewer refer to the problem of using the published

scientific literature. Rennels (1987), whose work is based on classical statistics, comes

closest to tackling the literature problem, and I shall refer to it several times in the

course of this dissertation.

We can presume that the medical informatics community’s general indifference

to statistics derives from physicians’ belief that statistics is best left to statisticians.

Statisticians have, in fact, built systems to help statisticians of different levels of pro-

ficiency to perform data analyses (Gale, 1986a; Nugent, 1986; Oldford and Peters,

1988; Tierney, 1990), and even to help in the design of clinical studies (Weiner et al.

1987). I shall argue, however, that such systems are inappropnate for use by physi-

cians in hight of the demonstrated limited knowledge physicians have of sophisticated

statistics. I claim that for decision making by end users (such as physicians), an ad-

ditional layer of interface and semantics is needed beyond those supplied by existing

programs and by classical statistics itself.

An important consequence of this indifference to statistics 1s that physicians



6 ] The Literature Problem

have lost control of an important source of information—clinical research data—

~ with the result that this information—ostensibly collected to aid practitioners in

their ministrations—has had less effect on daily practice than investigators have ex-

pected (Gelband, 1983). Because an important goal of medical informatics is to give

physicians control over the mass of information deluging them today, this dissertation

demonstrates that improving physicians’ statistical reasoning and their evaluation of

the clinical research literature should be on the agenda of the medical informatics

community. |

1.4 Problems with Classical Statistics

I propose that a aed type of computer system is needed to help solve the literature |
problem. Although I shall discuss the full argument for this proposal in Chapter 2, 1

shall discuss two important issues here: physicians have difficulty with statistics, and

classical biostatistics is unable to deliver important services needed by physicians.

1.4.1 Physicians’ Difficulty with Statistics

Famiharity with a minimal fund of knowledge—descriptive statistics and elementary

statistical tests—would give a physician access to two-thirds of clinical research ar-

ticles, according to a review by Emerson and Colditz (1983) of published reports.

As shown in Table 1.1, investigators have surveyed whether physicians possess that

minimal fund of knowledge. Wulff and colleagues (Wulff et al., 1987) sent a ques-

tionnaire of nine biostatistical problems to 250 subjects randomly selected from the

national registry of Danish physicians. The questions covered the basic concepts to

which Emerson and Colditz refer. The median score on this questionnaire was 2.4,

out of a maximum of 9. Among physicians who said they did “understand all the

expressions” (Wulff et al., 1987, p. 4) in the survey, the median score was 4.1. This
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well-designed and executed study suggests that average clinicians are not familiar

with basic statistical concepts, even if they think they are. Weiss and Samet (1980)

sent a 10-item questionnaire to 141 internal-medicine house staff and attending physi-

cians at an academic institution. This instrument garnered a mean score of 7.4, out

of a maximum of 10. In a separate study, two questions were sent byFriedman and

Phillips (1981) to 685 pediatric residents nationwide. Twenty percent answered the

correlation question correctly; 50 percent answered the p-value question correctly.

Table 1.1: Data documenting physician statistical fund of knowledge. |

| Size ~~ Questions (Method)

Wulff et al., 1987 Random 250 9 2.4
Physicians (Median)

Weiss and Samet, 1980 Academic 141 10 7.4 3
Internists (Mean)

Friedman and Phillips, 1981 Pediatric 684 1 20

Residents (Percent)
1 50

(Percent)

A possible cause of the difficulty encountered when physicians use statistics is the

numerical nature of the domain. The relatively better scores obtained by Weiss and

Samet (1980) may result from the fact that many of the questions dealt with method-

ological concepts, whose qualitative nature physicians found more within their ken

than the number-based items of the other investigators. Another source of difhculty,

however, 1s the counterintuitive nature of certain constructs in classical statistics.

Pocock, Hughes, and Lee (1987) document problems investigators have with clas-

sical statistics. Their review of published reports of controlled clinical trials from

major journals (see Section 1.6.2) discloses problems in a number of areas: multiple
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analyses of data, misuse of p values as measures of strength of evidence, misapplication |

of hypothesis testing for arriving at conclusions, inappropriate analyses of subgroups

of patients, and improper examination of data before the formal conclusion of the

study. Note that each goal (e.g., to analyze the data in different ways) desired by the

different investigators is reasonable, and that their errors lay in their misapplication

of classical statistics due to their misconstrual of classical statistical notions.

The now-classical example that demonstrates the counterintuitivity of the classical

statistical approach is the controversy over the University Group Diabetes Program

study of oral hypoglycemic medication (UGDP, 1970). In this study, the medication,

intended to help in the management of diabetes, apparently caused some patients to

die: 26 of 204 patients died in the experimental group and 10 of 205 patients died in

the placebo group, an apparent double death rate. The study was not designed to de-

tect differences in mortality rates, and the trial was terminated earlier than originally

intended, as a result of the examination of these data before the formal conclusion

of the study. The departure from the initial protocol and the altered focus in the

| results both cast doubt on the validity of the statistical conclusions. Meinert and

Tonascia (1986) review the history of the controversy. By its conclusion, the debate

had involved several universities and national institutions. Diamond (1983) shows |

how the confusion and controversy resulted primarily from a basic misunderstanding

of the p value. I shall explore the difficulties with the p value more extensively in

Section 3.5.

1.4.2 Limitations of the Classical Paradigm

Over the past 80 years, the classical paradigm has been successful in helping physi-

cians to distinguish useful from useless—and even harmful—therapy. The paradigm
has been a linchpin in the biomedical community’s drive to promote a scientific ap-

| proach to medical care (Feinstein, 1985). Nevertheless, there are profound difficulties
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with classical statistics. I shall discuss them extensively in Section 3.5; here, I shall

preview an important problem: classical statistics does not offer capabilities that

| physicians need. Two such functions are the ability to express uncertainty and the

ability to recommend a decision for a specific individual.

Readers have uncertainty about a domain both before and after they have read

an article. The degree of readers’ uncertainty plays heavily in their decision whether

to act or to seek further information. Classical statistics’ primary locution for ex- |

pressing uncertainty is the confidence interval (see page 67). A study may be faulted

simply for not reporting these intervals (Gardner and Bond, 1990) and some method-

ologists see the confidence interval as a solution to the problem of overreliance on

the p value as a measure of the strength of evidence (Felson et al., 1990). Yet, it is

commonly understood within the statistical community that consumers of statistical

reports misconstrue the true semantics of the confidence interval (Rubin, 1984). As

properly understood, confidence intervals communicate uncertainty in an estimate of

the parameter involved (e.g., mortality rate); the true value may still be any num-

ber (Armitage, 1983, p.109). As commonly misunderstood, they express how likely

it 1s that the true value of the parameter lies within the reported interval.

Readers also want to make decisions. The statistical subspecialty of statistical

decision theory (Wald, 1950) has been developed over the past 40 years for this pur-

pose. Its focus, however, is on making policy decisions that affect many people (or

studies) over time, rather than on making an individually tailored choice. Modifying

the derived global policies for individual cases involves nonobjective, heuristic pro-

cedures, as both statisticians (Brown, 1984) and expert-system designers (Rennels,

1987) know. |
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1.5 Thesis: An Alternative Paradigm

Would it be possible to modify classical statistics so that we could obtain the bene- |

fits, yet correct the problems? Bayesian statistics (de Finetti, 1974; DeGroot, 1970;

Lindley, 1972; Savage, 1972; Box and Tiao, 1973; Berger, 1985) is an approach that is

designed to do just that. Specifically, Bayesian statistics? allows for the expression of

uncertainty, through subjective probability, and for the recommendation of individual

action, through decision analysis (Howard and Matheson, 1981), a formal discipline |

concerned primarily with helping decision makers to take action in individual cases.

The thesis of this dissertation is that, decision analysis and the Bayesian paradigm

can form the basis of a computer-based environment to aid physicians making clinical

decisions on the basis of scientific data from the clinical research literature. 1 shall

explore the components of this thesis in the following six subsections, I shall out-

line the representational structure needed in the seventh, and I shall summarize the

evaluation of the thesis in the eighth.

1.5.1 Clinical Focus of Decision Making

There are many uses physicians make of scientific data from the research literature.

One is to guide further reading, using an article to decide what is important to learn.

Another is to take clinical action. Qur concern with clinical decision making implies

that our methods will be grounded in the clinical significance of any conclusion from

a study, as opposed to the strictly statistical significance of the results.

Named after the Reverend Thomas Bayes (1702-1761)
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1.5.2 Published Scientific Data as Primary Source

There are many sources of information physicians can use for making decisions. A

| database of past observations and therapeutic actions is one; when such data are rigor-

ously collected, they may form the basis for formal statistical analysis or for matching

a current situation with similar circumstances that have occurred in the past. Nonsci-

entifically collected, published observations, such as case histories, constitute another

source, for which statistical methods are inapplicable. We shall narrow the scope of
this dissertation to scientific studies as they are published. Rennels (1987) and Eddy

and colleagues (1991) have done work in this narrowed scope that comes closest in

spirit and in detail to the work presented in this dissertation. I shall discuss Rennels’ :

work in Section 3.6, and Eddy’s work in Section 4.7.

1.5.3 Applicability of Decision Analysis

The primary requirements of decision analysis are that any uncertainty of the decision

maker is represented by probability, that any preference of the decision maker 1s

represented by utility, and that the optimum decision for the decision maker 1s the

action that maximizes the expected utility (Howard and Matheson, 1981; Berger,

1985).

| Decision analysis is appropriate in domains where (1) uncertainty is a major con-

cern, (2) the stakes are high enough that a formal analysis is worth the effort, and

(3) there is an individual decision maker. My definition of the literature problem sat-

isfies these conditions: (1) Biostatistics is, by its nature, concerned with uncertainty.

(2) The stakes involved are often life and death, as well as unpleasant outcomes and

substantial monetary expense. (3) The focus is the individual clinician who must

take action on behalf of a particular patient. In building artificial-intelligence (Al)

systems, knowledge engineers have taken a decision-analytic approach in a vanety
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of domains, including diagnosis (Heckerman et al., 1990), learning (Star, 1987; Bun-

tine, 1989), vision (Levitt, 1988), and control of inference (Breese and Fehling, 1988;

| Horvitz et al., 1989), but not, to date, in statistical consulting.

Some underlying assumptions of decision analysis violate basic principles held by

classical statisticians. Chapter 2 provides my arguments to justify violating these

principles in my solution to the literature problem. I shall summarizethe line of

argument here. Recent approaches to knowledge acquisition in expert systems pay

attention to the differentiation between the goals of interest in the domain and the

procedures by which the goals are met. As difficult as it is to achieve this separation

in many domains, it 1s even more difficult in statistics. In most domains, there is no

articulation or theory of the procedures used by domain experts to achieve the desired |

goals. Statistics, however, seems to contain just such an articulation—the body of

statistical methods we are enjoined to use—which blurs the separation between the

goals and the implementation of the domain. The basic principles of classical statistics

constitute the foundation of this body of methods. I have found that, to achieve the

differentiation between goals and procedures necessary to solve the literature problem,

we must tease apart those principles necessary for the solution from those which make
it difficult to solve. |

1.5.4 Extending the Bayesian Paradigm

The kernel of the Bayesian solution to the literature problem is as follows. The

investigators summarize their results in a form called the likelihood function (see

page 53). The reader then combines her® prior knowledge of the domain with the

| likelihood function to arrive at her posterior belief. This belief can then be used by

"34s a convention throughout this dissertation, the physician 1s female; the patient, the statistician,
the investigator, and the system builder are male; and the machine is neuter. The term analyst refers
either to the statistician or to the reader, depending on context. These conventions allow the reader
to follow the discussion more clearly.
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the decision-analytic engine to arrive at the optimal recommendation for action.

Various approaches to Bayesian reporting (Hildreth, 1963; Dickey, 1973; Berger,

1985; Hilden, 1987) combine the likelihood functions conveyed by investigators and

the prior beliefs expressed by readers to arrive at depictions of the corresponding pos-

terior beliefs. These approaches assume a single likelihood function for each study,

which corresponds to a single way of analyzing the data or of examining the study.

This assumption makes sense if we characterize the relationship between the investiga-

tor and the reader as a separation of labor: The investigator reports what happened, |

the reader updates her beliefs. This premise does not, however, empower the reader to

| apply her knowledge of methodology (what can go wrong in a study) or of pathophys-

iology (how the specific medical context affects the study) in arriving at a conclusion.

Therefore, the concept of representing prior knowledge must be broadened. This

extension 1s a contribution of this dissertation. I justify my heuristic approach in

Section 4.4 and describe 1t fully in Sections 6.3.2 and 6.3.3.

1.5.5 Dynamic Computer-Based Environment

Computers have generally been necessary for any practical application of Bayesian

| statistics, because solutions need numerical integration and other computation-intensive

procedures (Goel, 1988). Knowledge-based methods would appear to offer a solution

to the literature problem because there are multiple sources of knowledge (statistical,

methodological, domain, and clinical) needed to solve the problem, and because they

can provide structure to the precarious act of building a solution (Efron, 1986).

To clarify the process of structuring a Bayesian statistical analysis, I shall con-

trast it with the approach of classical statistics (see Section 3.5 for 2 more complete

examination). The classical procedure calls for the statistician first to choose a sta-

tistical model appropriate for the problem, then to choose the best test suited to that

model and to the data available, and then to execute the test. The final inference
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1s a result of the test chosen and the result of the test. Expert systems founded

on this approach are diagnosing systems, because their primary task is to select the

appropriate model and its corresponding test. Selection is the central task, because

creating a new test for any given statistical model is too dificult an activity (worthy

of a doctoral dissertation in its own right).

The Bayesian approach, however, allows the analyst to construct an arbitrary

model that he feels is appropriate. Regardless of the model constructed, the approach

calls for a single inference procedure applied to all statistical models—probabilistic |

updating (see Section 4.3.1). The final inference uses the result of that calculation in

a well defined (and uniform) way to arrive at a recommendation. Thus, the central

task of a Bayesian system is the construction of the appropriate model, and the

system must create a mode] anew for each problem, doing so on demand. A Bayesian

system is, therefore, primarily a planning, or even a knowledge-acquiring, system. The

contrast between the two approaches is discussed more fully in Sections 3.5 and 4.6.

My solution to the problem of dynamic Bayesian statistical-model construction

depends on two knowledge representations: |

e Influence diagrams are data structures that have been used increasingly over the

past 10 years for representing uncertainty in probability-based expert systems.

The use I shall make of influence diagrams for creating statistical models is a

novel application of this representation (see Section 7.3).

eo Metadata-state diagrams are state-transition networks I have created specifi-

cally for this dissertation (see Section 7.2). They comprise two sets of know!-

edge: what can happen to patients at different stages of a study, and how those

circumstances affect the growing statistical model. |
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1.5.6 Physicians Readers as the Target Users

We wish to empower physician readers to apply their knowledge of methodology and |

of pathophysiology to solving the literature problem within a computer-based envi-

ronment. The inferface between the physician and the decision-analytic approach

therefore must be a major concern in this dissertation. The interface must be based

on semantics familiar to physicians; the challenge is to find interactive metaphors that

such users find intuitive and that have operations that can be translated into proce-

dures consistent with the decision-analytic approach. 1 shall use two such metaphors:

| checklists and patient-flow diagrams.

Checklists are used by many methodologists (Warren, 1981; Gehlbach, 1982; Fein-

stein, 1985; Haynes et al., 1986; Sacks et al., 1987; L’Abbé et al., 1987; Reisch et al., |

1989) for organizing information in studies. Physicians find intuitive the action of

checking which problems need attention or of choosing among possible choices. In a

computer-based environment, a checklist can be made dynamic in that different ques-

tions come into view depending on the choice made by the user. Such an environment

has the advantage that the sequence of actions can be guided by the machine. My
use of checklists is discussed in Section 6.2.

Patient-flow diagrams are used by many journal-article authors to communicate

to readers what happened to patients over the course of a study. These diagrams

group together patients who are similar in some way; I call these groups cohorts.

Figure 1.1 showed an example of such a diagram for the metoprolol study. In a

computer-based environment, these diagrams can made dynamic, allowing the reader

to communicate to the machine attributes of each patient group, such as the total

number of patients in the group and the methodological problems experienced by

those patients. I describe these diagrams fully in Section 6.3.2.



16 The Literature Problem

1.5.7. Representational Structure

With this background of the components of my proposed solution to the literature

problem, we shall construct the representation structure needed to solve the problem
by examining the information needed for a decision-analytic solution. 1 shall build

up the resulting framework from its components. Technical terms will be defined in

Chapter 4. |

We begin with the decision analysis (Figure 1.2}. This process uses a decision

model (not shown) which consists of the outcomes of interest, their utilities (reflecting

mortality-morbidity tradeoffs),* and the parameters that determine their likelihoods.

The analysis takes as one if its inputs probability distributions for the beliefs in the

values of those parameters. Since the distributions are based on observed data, they

are distributions posterior to the reading of the study. The analysis also takes as its

input preferences of the patient that reflect his mortality-morbidity tradeoffs. The

decision analysis produces, as its output, the optimal decision. In the metoprolol

study, the outcome of interest is the death of a patient, whose likelihood is parame-

terized by a single number, the mortality rate, and the decision is whether to treat

with metoprolol.

There are two ways to produce the posterior probabilities, once the reader has

read the paper. She could assess her posterior beliefs directly. However, this method

ignores the limited statistical sophistication of the reader, leaving implicit all the

methodological considerations we want to make explicit, and ignores the known prob-

abilistic processes that generated the data. The second way is to help the reader with

this complex task by performing an analysis that takes the probabilistic processes and

methodological considerations explicitly into account: a Bayesian statistical analysis

(Figure 1.3). This analysis takes as its input a statistical model that includes the

~ %For purposes of this dissertation, financial costs of treatments or outcomes will not be considered

im the utility models. The approach used could be extended, however, to handle multiattribute
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Posterior

Probabilities .
Decision OptimalDecision |

Patient
Preferences Analysis

Figure 1.2: Decision analysis. This information-flow diagram depicts the data needed
by the process to produce the optimal decision. The structure of the decision model

(not shown) is fixed by the knowledge engineer. |

parameters of interest and parameters relating to biases and errors perceived by the

reader as relevant to the understanding of the report. The analysis also needs as its

input the prior beliefs about every parameter. Bayesian statisticians have expended

much effort in developing ways to compute the posterior distribution from a given

model (Eddy, 1989).

Statistical

Model .
Bayesian

Prior Posterior
Probabilities Statistical Probabilities

Figure 1.3: Bayesian statistical analysis. This information-low diagram depicts the
data needed by the statistical analysis to produce the posterior probabilities required

as input items by the process in Figure 1.2.

The statistical model required for the Bayesian analysis (Figure 1.3) must be

constructed on the basis of the methodological concerns (Figure 1.4). The structural

element responsible for this task is the Bayesian methodological formulation. The

structure and function of this element are major contributions of this dissertation,
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and are the subjects of Chapter 7.

Methodological Bayesian Statistical
Concerns .——emMethodological Model

Formulation

Figure 1.4: Bayesian methodological formulation.

The fundamental input into the system is information from the research report

itself (see Figure 1.5). The contents of the clinical research report include numerical

and text data. Because computer-based processing of the text in an article would be

an unrealistic demand on current natural-language processing abilities, my approach

expects the reader to interpret the contents of the paper for the machine, arriving at

the appropriate numerical input and the appropriate methodological concerns, such

as the identity of the central quantitative elements of the study and of threats to

internal validity.

Methodological
Reader's Concerns

Abstraction

Data

of Report

Figure 1.5: Reader’s abstraction of report. The numerical and text information from |
the written report of the study must be transformed by the reader into numerical data
and methodological concerns. The data are required by the Bayesian statistical anal-

ysis (Figure 1.3), whereas the methodologic concerns are required for the computer's
formulation of the statistical model (Figure 1.4).
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The entire model 1s given in Figure 1.6. In this completed model I have made

explicit the reader’s background knowledge as the source for the prior probabilities

for parameters in the statistical mode], and her posterior knowledge as being the net

output and goal of the entire process. Her prior knowledge in fact enters everywhere

in the framework: in choosing methodological concerns, in choosing parameters of

interest, and in establishing the decision model. |

Statistical Posterior

| . Decision

Methodological Statistical Patient
Preferences Analysis

Formulation Analysis |

Methodological Prior Optimal
Concerns Probabilities Decision

Reader's Reader's Reader’s

Abstraction Background Posterior

of Report Knowledge Knowledge

Figure 1.6: The Bayesian strategy. This diagram is a composite information-flow
| diagram, constructed from Figures 1.2, 1.3, 1.4 and 1.5, depicting the Bayesian model

to assist with using a clinical research article for clinical decision making.

1.5.8 Evaluation

The evaluation of the thesis has two components: evaluating the representational

integrity of the framework I propose, and evaluating the prototype system built to

implement the framework. The representational integrity will be demonstrated in

the course of this dissertation, asI show the various specifications the framework is
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designed to meet. The evaluation of the prototype system has two parts: demon-

strating that it meets its specifications, and that a physician can use the system for

its intended purpose. 1 shall discuss these evaluations in Chapter 8.

The thesis, as I have presented it, encompasses large areas of medical research. In

this dissertation, I shall focus on one particular domain (randomized clinical trials),

and I shall demonstrate the thesis with a computer program that helps physicians to

apply the results of that class of research to clinical decision making.

1.6 THOMAS

In this section, I shall describe the prototype system I have built to demonstrate the

concepts of the thesis. I shall first describe the program in general terms, and then 1

shall present a demonstration of using the program in the context of the metoprolol

example.

1.6.1 The Program

THOMAS? is my prototype computer system® that embodies the concepts in this thesis.

The system provides the physician user with the following abilities: |

¢ To analyze a study in a structured way

e To examine a study in multiple ways

¢ To incorporate domain knowledge into an analysis

SNamed in honor of Reverend Thomas Bayes. Blackford Middleton made me aware of the res-
onance with the concept of doubling Thomas, which is appropriate in this context of uncertain
information and high-stakes decisions.

*The system is implemented on the Macintosh computer, with Allegro Common Lisp as the lan-
guage for the inference engine, and HyperTalk as the language for the user interface. The occasional
crowded computer screens result from the window-size limitations of the version of HyperCard used.
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¢ To incorporate methodological knowledge into an analysis

¢ To determine the optimal therapy

¢ To examine the change in belief in any parameter

e To compare the beliefs in any two parameters

¢ To examine the sensitivity of any posterior belief or decision to different prior

beliefs

I shall describe, in Chapter 5, how the system delivers these services. The out-

put comes closest in spirit to the 2-test for proportions in classical statistics. Thus,

THOMAS is a prototype for helping physicians perform Bayesian statistical analyses,

obviating the need to use classical-statistical tests. The following sections give a flavor

of the interaction; Chapter 6 goes into more detail.

1.6.2 Methodological Domain

Physicians can use THOMAS when reading a study report of a particular research

design—the randomized clinical trial (RCT), a type of controlled clinical irial (CCT).

| CCTs are prospective studies in which patients are assigned to one of two or more

interventions, such as drug and placebo, and are followed over time for the occurrence

of some endpoint, such as mortality or a specific morbidity. RCTs are studies where

the assignment to therapy is made randomly. The purpose of randomization is to

limit possible biases in the study. RCTs are the current gold standard for clinical |

research (Feinstein, 1985) and, although they represent only about 1 percent of the

articles published each year {Meinert et al., 1984), their influence in academic and

public discourse is proportionally much greater (Gelband, 1983). RCTs are the par-

ticular domain that we shall examine. In particular, we will be concerned with RCTs

| that compare the effects of drug therapy on patient mortality.
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1.6.3 A Sample Interactive Session

THOMAS’s interaction with the user is divided into five tasks, as indicated by the

master checklist in Figure 1.7: defining the problem, describing the study, examin-

ing the statistical results, examining the recommended decision, and finishing the

consultation.

1.6.3.1 Definition of the Problem

THOMAS needs two pieces of information to define the problem. First is the identity

of the medications involved in the study. Figure 1.8a shows the user telling THOMAS

that metoprolol is the experimental drug; not shown is the user informing the machine |

that placebo is the control drug.

The second piece of information conveys the physician user’s judgment about the

mortality-morbidity tradeoff. In Figure 1.8b, the user tells the machine that, in her

judgment, 6 months of increased life expectancy for the patient would be required to

justify using the drug, to balance the implicit morbidities: side effects of arrhythmias,

added cost, and added hassle of taking metoprolol. The input value of this pragmatic

difference is where the physician encodes her prior knowledge about the domain as it

applies to the patient at hand.”

1.6.3.2 Describe the Study |

The process of describing the study entails selecting the study to be examined, speci-

fying the design, cornmunicating current knowledge about the drugs and methodology

mvolved, and describing the study execution.

"Note that this evaluation is 2 composite indicator of utilities of the possible morbidities and
other risks. Although this assessment could be approached with a formal decision analysis, for
purposes of this research, I have chosen simply to request a single utility measure. This measure 1s
discussed more fully in Section 5.3.
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Consultation

iE Click on each check bow, in sequence. nh

lll O Describe the study =

| | (OO Get the treatment recommendation i |

Ll] () Examine the statistical analysis a

|1 (O) Finish the consultation 5

Figure 1.7: THOMAS’s top level checklist. This screen image from the program shows
the five tasks the user completes in performing an analysis. The first four tasks
correspond to parts of the overall design of Figure 1.6: The task Define the clinical
problem includes the task of giving the system patient preferences. The task De-
scribe the study corresponds to the task in inputting methodological concerns, prior
probabilities, and study data. The task Get the treatment recommendation comprises
the system’s performing the Bayesian statistical analysis and decision analysis and
displaying the optimal decision. The task Examine the statistical analysis allows the
user to examine the posterior probabilities generated by the system.
The panel of rectangles at the top of the screen helps users to keep track of their

progress through the tasks in the course of completing an analysis. The icons on
the right side of the screen refer to ancillary functions. Users begin their traversal
through the dynamic checklist by clicking on the indicated button.
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| pn and hold for each cheice, To y B 3 ———— for euch choice. a | E

Enter name af enperimental drug )

(a) (b) |

Figure 1.8: Definition of the problem in THOMAS. (a) Specification of the experimen-
| tal drug. This screen image is an overlay of two images. In the first, the user indicates

the choice of selecting the Ezperimental drug. A pop-down menu (not shown) allows
the user to select a previously known choice or to enter a new drug name. The sec-

ond image shows the name the user has typed in (Metoprolol). (b) Specification of
the pragmatic difference. The graphic on the screen suggests the meaning of this
difference.

1.6.3.2.1 Selection of the Study There are two parts to the task of study

selection: specification of the citation and commencement of the analysis of the study

(Figure 1.9). To specify the citation, THOMAS allows the user to select from a list of

citations that grows as new citations are typed in. THOMAS does not have access to

the contents of the chosen article except through information entered by the user.

The machine enables the user to create a sequence of analyses. The initial anal-

ysis is called the baseline description, by default. The user may return several times

to modify this and subsequent descriptions by dividing groups of patients initially

lumped together (see Figure 1.15). The sequence of analyses creates a tree of analy-

ses, where a descendent analysis is a modification of its ancestor. These alternative

analyses enable the user to answer questions regarding the effects of different method-

ological concerns, either alone or in concert.



1.6. THOMAS 25

1.6.3.2.2 Specification of the Design Before getting the details about the

study, THOMAS must know basic information about the general design of the study.

The details of the statistical-construction algorithm depend on what design is used.

There are two components to the design: the architecture of the study (Fig-

ure 1.10a) and the outcome of the study (Figure 1.10b). THOMAS at present knows |

about only one design, the two-arm randomized clinical trial (depicted in Figure 1.1),

and about only one outcome, mortality.

1.6.3.2.3 Communication of Current Knowledge The Bayesian paradigm |

demands that an agent assess her prior beliefs before viewing information that could

update those beliefs. In the statistical domain, this assessment translates into eval-

uating beliefs about parameters, such as mortality rates. THOMAS requests such

information before allowing the user to input data from the study.

| __ _ ___ Select Study RB § Label The Analysis _____ J

]—Click on noido ERE g : Texon the appropriste—To |
; TITY ) .: What is the name of his siatistical analysis?
: EI ~

McCrackeng® ol : g

: Pragibon9} wn | 3 -

(a) (b)

Figure 1.9: Selection of the study in THOMAS. (a) Specification of the citation. This
image 1s an overlay similar to Figure 1.8a. (b) Specification of the name of the
analysis. Another image overlay, this screen image shows the user choosing to define
a new analysis with the name Baseline description. If she so wished, the user could
return to this screen to define other analyses that modify the baseline description or

each other, and thereby generate a tree of analyses.
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~ Figure 1.10: Specification of the study design in THOMAS. (a) Specification of the
architecture. Using the recurrent interface of the pull-down menu, the machine as-
certains the study architecture. THOMAS currently knows about only the 2-Arm

Randomized Clinical Trial. Hence, the New option is greyed out on the screen and
disabled. (b) Specification of the study outcome. THOMAS currently allows only the
outcome Mortality. Issues of morbidity were previously addressed in defining the
required pragmatic difference (Figure 1.8b).

The user must first select the parameter she wishes to consider from a list gener-

ated by the machine. In this example, this list comprises two names (Figure 1.11a):

the population mortality rate in patients assigned to placebo and the population mor-

tality rate in patients assigned lo metoprolol. THOMAS assembles the names from

information already input by the user and from knowledge it has about RCTs. The

names of the medications come from information input by the user (Figure 1.8a). The

parameter type (mortality rate) derives from the name of the outcome (Figure 1.10b)

and that outcome’s method of assessment (count of death events).

Having chosen to consider the placebo mortality rate, the user requests help in

understanding the assessment task. Figure 1.11b shows the machine’s response to her

request: Prior knowledge about placebo gives THOMAS domain knowledge.

In Figure 1.11c, the user has selected to claim total ignorance about mortality
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rates in patients with acute myocardial infarctions treated with placebo. Note that,

although this choice will result in an analysis most comparable to the classical sta-

tistical analysis (see Figure 1.11b), it 1s probably an inaccurate assessment of the

physician user’s prior knowledge. This disparity between the mathematical demand

for presumed objectivity and the domain reality of intersubject variation in knowl-

edge and disagreement is at the heart of the contrast between classical and Bayesian

approaches.

Not shown in the figures is the user’s similar choice to assume total ignorance of

| the mortality rate in patients treated with metoprolol.

1.6.3.2.4 Description of Study Execution Figure 1.12 shows the patient-flow

diagram used to inform the machine about what happened to patients in the meto-

prolol study; this approach is unique to THOMAS, and is a major distinguishing fea-

ture with respect to programs such as that implemented for the Confidence Profile

Method (Eddy, 1989) (see Section 4.7). Figure 1.12a shows the diagram at the start

of the description, before the user has entered any information, and Figure 1.12b

displays the diagram at the end of the description, after all the information from

the study (see Figure 1.1) has been input. The diagrams are dynamic in that the

name of each patient cohort depends on how the cohort was formed, and in that the

user can specify a cohort’s history in any order she wishes. Figure 1.12a shows the

user informing THOMAS via a keypad interface about the total number of patients

assigned to placebo. In Figure 1.12b the machine gives the user an opportunity to

change her description before continuing on to the statistical analysis (Figure 1.15

shows such a change). When the user indicates that she is finished, the statistical

mode! is complete; the machine automatically performs the probabilistic-updating

procedure.
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Figure 1.11: Specification of prior knowledge in THOMAS. This task is labeled Specify
Current Knowledge to encourage the user to think about her personal experience and
knowledge of the domain. (a) Choice of a parameter. An overlay of two images,
this figure shows the user selecting a parameter (Population mortality rate in patients
assigned to placebo) from a set constrained and generated by THOMAS. (b) Acquisition

of help. The user has asked for an explanation of the task (note the highlighted help
icon in the upper right). (c) Specification of the actual knowledge. The user has
a choice of numerical and qualitative types of specification; see Section 6.3.3 for
a full discussion. Once a choice is made, the machine requests information about
other parameters (hence, the Select Parameter box), until all needed parameters are
accounted for.
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Figure 1.12: Specification of the study execution in THOMAS. Both of these screens
contain a patient-flow diagram. The boxes refer to cohorts of patients in the study.
Each line of a cohort’s box is active. Placing the mouse icon over the first line induces
the machine to present a choice of actions for the cohort (see Figure 1.15a). Placing
the icon over the second line makes the program request input about the total number
of patients in the cohort. Placing the icon over the third line makes the system ask for |
the number of patients who experienced the endpoint of the study. (a) Specification |

| of the number of patients in a cohort. A keypad interface pops up for mouse-based
entry. (b) Completion of the description. This image shows the patient-flow diagram
for the baseline description of the metoprolol study (see Figure 1.1), with all numbers
entered in the appropriate lines. The machine computes the sums, and displays them
in the root cohort.

1.6.3.3 Examination of the Decision

To place the results of the analysis into clinically meaningful terms, THOMAS com-

putes the life expectancy contingent on the belief distributions calculated from the

probabilistic update. Figure 1.13a depicts the graphs of these computed life expectan-

cies. Figure 1.13b shows the results of such a computation, taking into account the

threshold for clinical significance the user made when she defined the clinical problem

(see Figure 1.8b). In this case, the increase in life expectancy for metoprolol over

that for placebo is greater than the minimum demanded by the physician user, so the
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Figure 1.13: Examination of THOMAS’s recommendation. (a) Life expectancy. This
screen displays a bar graph of a patient’s life expectancy, given each therapy, based on
the belief distributions THOMAS has calculated (Figure 1.14d). (b) Recommendation.

This verbal statement is based on the threshold set by the user in Figure 1.8b.

1.6.3.4 Examination of Statistical Results

The user’s third major task is to review the results of the probabilistic updating,

although this task is optional if she is interested in only the clinical implications.

Two aspects of this examination are the review of the results and a performance of a

sensitivity analysis.

1.6.3.4.1 Review of Results The user has the option of allowing the machine

to guide the examination {see Figure 1.14a). During the study-description task (see

Section 1.6.3.2.4), not only does the machine create the appropriate statistical model,

but it applies canonical questions in which the user would probably be interested, and

it associates with every question a pair of parameters to be compared. In completing
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the task of examining the statistical analysis, the user can choose to pose the ques-

tions the machine has formulated for her (see Figure 1.14b). For instance, in every

consultation, the user is likely to ask if the mortality rate in the treatment group is sta-

tistically significantly different from the mortality rate in the control group. THOMAS

answers this question by comparing the difference in beliefs (see Figure 1.14c) in the

corresponding parameters (see Figure 1.14d). This report is the Bayesian measure

closest to the notion of a p value, although this measure is irrelevant in arriving at a

decision.

1.6.3.4.2 Performance of Sensitivity Analysis Although it is not a formal

part of the decision-analytic sequence of Figure 1.6, sensitivity analysis plays an

important part in decision analysis. THOMAS allows the user to perform two types of

sensitivity analysis: varying prior belief and varying the structure of the statistical

- model.

The user may reanalyze the study, using different prior beliefs. Such reanalysis

might, for instance, show the effect on the final conclusion of the assumption of total |

ignorance.

The user may also reanalyze the study, taking into account different method-

ological problems. Figure 1.15a shows how the user would deal with the issue of

the 19 percent of patients in the metoprolol study who withdrew from therapy (see

page 4). The figure shows that THOMAS knows that patients assigned to the experi-

mental treatment can undergo four types of protocol departures: They might be lost

to followup, they might be withdrawn from the study, they might not comply with
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Figure 1.14: Examination of statistical results, guided by THOMAS. These screen

images indicate the sequence of events. (2) When the user chooses to examine the
statistical analysis, she is shown this screen, which gives her a number of options. The
user has chosen to seek answers to questions posed by the machine. (b) An overlay of
two images, this figure shows the user choosing the first of two questions suggested by
THOMAS. (c) To answer the question, the machine presents a report at the top of the
screen, containing the question selected, the parameters concerned, the probability
that the difference is positive, and the conclusion (in this case, yes, the mortality
rates are statistically significantly different). The examination of the difference is
presented in several ways: the verbal report just described; the numerical summary,
giving the mean and standard deviation of the posterior belief in the difference; and
the graph, showing the distributions of the posterior belief in each parameter. (d) The
user may examine the belief in each of the mortality rates individually, and may ask
to review the report about the difference between them. The belief distributions
shown are centered at their respective mean posterior beliefs, 0.089 (placebo) and
0.058 (metoprolol).
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therapy, or they might be given the control treatment instead. The metadata-state

diagram, set by the knowledge engineer but not shown, determines what protocol

departures are possible for patients in different cohorts. |

Figure 1.15b displays a comparison between the belief in the metoprolol mortality

rate taking the withdrawals into account (the debiased population mortality rate in

patients assigned to metoprolol) and not taking them into account (the raw observed

mortality rate in patients assigned to metoprolol). The value of the debiased mor- |

tality rate 1s lower than that of the observed mortality rate, but 1s more uncertain.

These adjustments makes sense on two accounts. First, we examine the value. The

observed metoprolol mortality rate is a mixture of two debiased mortality rates: the

debiased metoprolol mortality rate (patients who were assigned to metoprolol and

who received it) and the debiased baseline-care mortality rate (patients who were as-

signed to metoprolol but who received baseline care, which is equivalent to receiving

placebo). The previous analysis regarding the placebo mortality rate told us that |

patients not treated with metoprolol have a higher mortality rate. The debiased
metoprolol mortality rate therefore must be lower than the mixture mortality rate of

5.7 percent, which indeed it is (4.5 percent). Second, we examine the uncertainty.

We note that the uncertainty of the debiased mortality rate (standard deviation of

0.03) is larger than that of the observed mortality rate (standard deviation 0.009).

The increase in uncertainty between the observed and debiased mortality rates makes

intuitive sense, because the inference regarding the debiased mortality rate is further

removed from the actual data.

| Rennels’ ROUNDSMAN program {Rennels, 1987) produces the same behavior, but

resorts to potentially subjective heuristics to do so. THOMAS generates this behavior

| from a principled and formal basis.
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1.7 Guide to the Reader |

The remainder of the dissertation develops and fills out the concepts introduced in

this chapter. The next three chapters justify the approach taken in this dissertation to

solving the literature problem: In Chapter 2, I present a framework for constructing

an expert system to solve the problem, based on recent approaches to knowledge

| acquisition. In Chapter 3, I examine the classical-statistical domain in light of that
framework, demonstrating weaknesses of classical procedures for achieving desired

goals. Readers acquainted with the contents of the statistical domain may wish to

skip this chapter, except for those portions describing the use of influence diagrams

in representing statistical models, scattered throughout the chapter, and the critique

of the classical approach presented in Section 3.5. In Chapter 4, I present Bayesian

concepts in more detail and demonstrate how the Bayesian paradigm is expected to

solve the problems of classical statistics. Readers familiar with Bayesian notions can

bypass this chapter, except, perhaps, for Section 4.6, which presents a critique of the

Bayesian approach in hight of the knowledge-acquisition principles developed earlier.

The subsequent three chapters present my approach to implementing the Bayesian

approach: Chapter 5 delineates the design of the prototype system, including the

system’s intended user, restricted domain, utility model, probabilistic models, and

approach to statistical parameters. Chapter 6 discusses the interface problems and

solutions particular to a Bayesian statistical system intended for nonstatisticians.

Chapter 7 presents the novel data structures and algorithms needed for allowing the

system to perform dynamic statistical-model construction.

In Chapter 8, I discuss the evaluation of the thesis with respect to its meeting

the various specifications laid out in the early chapters of the dissertation and with

respect to use of THOMAS by physicians. I close the dissertation with my conclusions,

in Chapter 9.
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Figure 1.15: Examination of a modified model in THOMAS. In this analysis, the user is
examining the effect of incorporating the methodological issue of patient withdrawals.
(a) Specification of the model. The choice of modifications may be different for each
cohort and is constrained by THOMAS. Not shown in this figure is the growth of the
patient-flow diagram to account for patients who were assigned to metoprolol but who |
did not receive the drug, and for patients who were assigned to placebo but who did
not continue the study. There were 131 patients in each of these withdrawal cohorts.
(b) Examination of the statistical results. The two parameters of interest are the
observed metoprolol! mortality rate (thin line), which takes at face value the observed
deaths, and the population metoprolol mortality rate (thick line), which removes bias
in the observed mortality rate, taking into account the fact that patients who were
included in the observed rate did not, indeed, receive metoprolol. Note that the user
should believe the debiased mortality rate to be lower than the observed rate, but that
the user should be more uncertain about the debiased rate than about the observed

rate.



36 The Literature Problem



Chapter 2

L @ J

Knowledge Acquisition for the

Literature Problem

In building any decision-support system, the system builder must have an understand-

ing, or a model, of the domain of interest. There are at least two strategies for building

such a model (Musen, 1989). Using the eztractive strategy (Breuker et al., 1987, p.

13), the knowledge engineer assembles a model that copies as accurately as possible |

| the concepts, methods, and strategies used by domain experts. Rennels (1987), for

instance, built the ROUNDSMAN system applying this strategy.

Using the constructive strategy (Anjewierden, 1987), system designers divide

their task into the construction of three models (see Figure 2.1). The conceptual

model encodes the designer’s comprehension of domain concepts. The knowledge-

level model (Newell, 1981) abstracts desired domain goals. The design model contains

specifications for a working system. |

In Section 2.1, I shall summarize the sources of knowledge I have used in assem-

bling the different models needed to develop the framework and to build THOMAS. In

Section 2.2, I shall develop the knowledge-level specifications to be used for creating

37 |
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the conceptual and design models for the literature problem. The use of such a cas-

cade of models is recommended by the Knowledge- Analysis and Design-Structuring

(KADS) methodology (Anjewierden, 1987). |

The knowledge-level specifications, summarized in Section 2.3, are the major con-

tribution of this chapter. The central insight is that the guidelines offered by method-

ologists for solving the literature problem properly belong to the knowledge-level

model (see especially Section 2.2.3.2). This insight gives the knowledge engineer an

extra degree of freedom in building the design model.

Although Figure 2.1 suggests that the knowledge engineer proceed along the se-

quence of conceptual to knowledge-level to design models, 1n the biostatistical domain,

different approaches within the domain lead to different conceptual models for the |

same problem. Therefore, I shall present the knowledge level in this chapter, and

the conceptual and design models together for each approach in the subsequent two

chapters, where I shall describe the classical and the Bayesian models, examining

them in terms of these specifications. |

2.1 Sources of Domain Knowledge

I have used three sources of knowledge for this dissertation: knowledge acquisition

from a domain expert, reading in the biomedical literature, and personal experience.

Although this chapter and the two following it present a logical progression, achieving

that linear sequence required several cycles of testing and refinement. |

Much of the knowledge acquisition for this dissertation grew out of research done

for the REFEREE project (Lehmann, 1988). The purpose of that project was to

build an expert system that would help a reader to evaluate the credibility of a

report of a randomized clinical trial. Knowledge acquisition in that project comprised

observations of and interviews with a biostatistician, Byron Wm. Brown, Jr., by
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Diana Forsythe (an anthropologist) and myself as he read reports of randomized

clinical trials. We spent 45 hours on this process over a period of 1 year, Our analysis

was concurrently reviewed by other members of the project: Bruce G. Buchanan, Dan

| E. Feldman, and R. Martin Chavez. The detailed results of the knowledge acquisition

sessions are not used explicitly in THOMAS, but the interviews helped me to develop

the specifications for the program.

Phenomena Models |

- Observation

Problem Conceptual
Solving Model
Behavior

Knowledge-Level Knowledge
Model Specification

Systern Design
Behavior Model

System
Implementation

Figure 2.1: Knowledge-analysis and design-structuring (KADS) methodology. Do-
main problem-solving behavior is transformed into system behavior via three tasks
(observation, knowledge specification, and system implementation). Knowledge en-
gineering requires the construction of three models: the conceptual model, the

knowledge-level model, and the design model. These models are explained in the
text. (Source: Adapted from Akkermanns, G.S.H. and Wielinga, B., On problems
with the knowledge-level perspective, in Proceedings of the fifth knowledge acquisition

for knowledge-based systems workshop, Gaines, B.R and Boose, J.H. eds., University |
of Calgary, 1990, pp. 30/1-30/20.)
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The subdomain of statistical inference (see Section 3.3.2) comprises the tools bio-

statisticians employ in offering suggestions for clinical decision making based on

research data, and supplies the instruments academic physicians use in construct-

ing decision criteria. I accordingly drew on a large body of literature in this do-

main, including contributions by statisticians (Peto et al., 1976; Brown and Hollan-

der, 1977; Armitage, 1983; Meinert and Tonascia, 1986), epidemiologists (Feinstein,

1985), clinicians (Sackett, 1979; Sackett et al., 1991; Haynes et al., 1986), and meta-

analysts (L'Abbé et al., 1987; Sacks et al., 1987; Eddy et al., 1990). These sources

present quantitative and qualitative methods for interpreting the scientific biomedical |

literature. The variety of approaches available provides the knowledge engineer with

the challenge of integrating them.

Finally, my background in epidemiology, statistics, and clinical medicine, including

discussions with colleagues, has allowed me to serve as my own “expert,” especially

for the purposes of considering what notions physicians find difficult to comprehend

and what forms of information physicians find manageable.

2.2 Knowledge-Level Analysis

Clancey (1989) presents a manifesto for knowledge acquisition for “second generation

expert systems” (p. 285). His research programme! includes the following notions

regarding knowledge acquisition (adapted from pages 288-289 Clancey, 1989}): |

1. Expert systems are situated systems.

2. Data gathering for problem solving represents a social interaction rather than

a problem solver’s internal process.

" IFollowingphilosophersof science (e.g., Kuhn (1962) and Radnitzky (1973), I shall denote a
long-term research agenda by the British spelling. This orthographic convention is especially needed
in a dissertation where computer software is a major topic of discussion.
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3. Knowledge-level descriptions abstract sequences of (expert) behaviors.

4. Domain models are not the expert’s “mental model.”

I shall explain and use these dicta as an outline for a knowledge-level description

of the domain of the literature problem. Our consideration of each point will lead to

desiderata for a potential design model.

2.2.1 Situated System

The act of solving the literature problem occurs in a context comprising basic scien-

‘tists, clinical researchers, statisticians, funding agencies, editors, librarians, lawyers,

judges, junes, and clinicians. There are three components to this context: (1) re-

search, (2) publication, and (3) interpretation.

The research component depends on the biomedical scientific community main-

taining a research programme for scientific research, the agenda (Radnitzky, 1973)

for which is made explicit by funding agencies and is kept implicit in the theories, |
methods, and aims of the scientific community (Laudan, 1984). Theories ate the con-

cepts (such as the relative merits of metoprolol and placebo in treating patients who

have had heart attacks) that scientific studies are attempting to establish. Methods

are the agreed-on techniques (such as randomized clinical trials) scientists employ in

arriving at conclusions about theories. Aims are the criteria upon which different

methods are judged.

Objectivity is the primary aim of the biomedical scientific community: Individual

studies and whole methodologies are judged on this basis. A defining aspect of objec-

tivity is that disagreement between two scientists over the implications of study results

for a particular theory must be accessible to external review and, therefore, must be

expressed in explicit terms. Methods that employ numerical reasoning appear ob-

jective, as do methods that apply coherent and consistent procedures for evaluating
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the resulting numbers. Thus, biostatistics provides an attractive framework for, and

toolbox of, methods in biomedicine.

Reproducibility is an important component of objectivity; if a study’s results can-

not be reproduced on the basis of information provided by its investigators, it has

low credibility (Lehmann, 1988). The information provided lays out the study’s audit

trail. Thus, the auditability of a study’s design and execution plays an important part

in assessment of a study’s reproducibility. The use of formal models is one way of

ensuring auditability.

The report component of the literature problem’s context comprises the publication

of results in the scientific literature, which depends on peer reviewers’ judgment of

| acceptability, and on editors’ assessment of newsworthiness (Goffman, 1981). Opinion

leaders in the clinical community publish secondary articles, reviewing the primary

research (Williamson et al., 1989). These evaluations often contain the commentators’

opinions regarding the applicability of the researchers’ conclusions to clinical practice.

The interpretation component involves the individual clinician’s reading of the

article. Her decision to change her actions on the basis of the article depends on her

personal reading of the article, on her regard for the opinion leaders, on the opinions

of her day-to-day colleagues, and on her assessment of her legal risk in taking the

action suggested by the article (Williamson et al., 1989).

An expert system that aids the clinician reading a research paper sheds light on

only one aspect of this multifaceted context. While the construction of a system

capable of hosting all the agents described above remains a futuristic fantasy, we

need now a design model that supports the interactions among those agents. We

need systems that allow for the intersubjective differences among readers such that

the sources of, and reasons for, the variation are apparent.

Thus, we need a system that is grounded on the community-shared aim of objec-

tivity and auditability, but that allows for intersubjective differences among readers.
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2.2.2 Social Aspects of Data Gathering

There are two social features we observed in the course of our knowledge acquisition

for the REFEREE project. They are the consequence of the expert's own position in

the scientific community, and the importance of the social context of the problem at

hand. |

A statistician functions in a community of statisticians, and is, of necessity, aware

of who is trustworthy and who 1s not. Thus, one of the first queries our expert

made in reviewing every paper concerned the identity of the study’s investigators and

statisticians, or the level of statistical expertise available to the study investigators.

Rather than being the product of simple parochial interest, this concern provided the

basis for our expert’s evaluation of information not available in the written report.

If he considered the study statistician to be trustworthy, he would give the study

the “benefit of the doubt”; if not, he would assume that any missing information

meant that the corresponding methodological concern was implemented by the study

investigators 1n the least credible way. Such knowledge of the community is difficult |

to include in an expert system; it is the most private, idiosyncratic, and mutable of

information. I decided not to attempt to represent it explicitly in THOMAS. |

The context of the problem at hand is a social issue in that different questions

are raised by different user communities. Clinicians will be most concerned with

questions of clinical, practical effectiveness, whereas clinical researchers will be most

concerned with biological, ideal efficacy. These different concerns lead to different

strategies of analysis. The ability to deal with both strategies—effectiveness and

efficacy (Feinstein, 1985)~—shall be part of the specification for the design model.
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2.2.3 Sequence of Behaviors

Methodologists (Sackett, 1981; Feinstein, 1985; Meinert and Tonascia, 1986) provide

various prescriptions for clinicians’ reading of the scientific literature. I shall show, in

this section, how these prescriptions serve as ready-made knowledge-level analyses,

but do not supply the details necessary to implement those analyses.

These authorities view the clinician as solving the literature problem in the fol-

lowing steps. (1) The physician articulates a particular clinical problem related to a

single patient or to a class of patients. (2) She then seeks and finds an article relevant

to this problem (Scura and Davidoff, 1981). (3) In reading the paper, the physician

keeps in mind concerns about the credibility of the report, the validity of the study,

and the applicability of the authors’ conclusions to the problem at hand (Sackett,

1981; Mosteller, 1981). (4) The physician offers the therapy suggested by the con-

clusions of the study, if the conclusions support that action, and if the conclusions

meet a variety of criteria (Rennels, 1987). 1 shall first discuss the limitations of this

idealization, and then shall concentrate on the currently available prescriptions for

step 3.

2.2.3.1 Limitations of the Idealization

The ideal reader presumed by the methodological literature differs from a real person

in important ways. (1) Physicians often do not articulate their clinical problems

in as structured a way as is required by formal systems, such as online literature-

retrieval programs (Walker et al., 1989). (2) Finding a relevant article is made easier

by literature-retrieval programs, but they are not 100 percent sensitive in finding all

relevant articles. (3) Clinicians often use methodological and numerical techniques

incorrectly (see Section 1.4.1). (4) An individual’s conclusions, after she has read a

paper, are not the sole determinants of her subsequent behavior (Williamson et al.,

1989). |
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In this dissertation, I shall make the following assumptions. (1) Because problem

formulation 1s currently too difficult to automate, I shall presume that the reader can

| articulate the clinical problem formally. The machine will help the user to refine the

| clinical question, if necessary. (2) Because the retrieval and understanding of texts

recovered by online hiterature-retrieval programs are difficult problems in their own

right, I shall assume that the physician-user of the system selects the article on her

own and informs the machine of its contents. (3) Because statistical difficulty is the

major reason why naive users employ statistical software, I shall expect the system

to ease the clinician’s difficulty with statistics and methodology. (4) Because of the

narrowed focus we chose in Section 2.2.1, I shall assume that the physician makes her
decision in isolation from the biomedical community. I shall, however, expect her to |

take the opinions of statisticians, investigators, and other physicians into account; for |

instance, such opinions will influence her answer to the systems’s questions regarding

" domain and methodological knowledge.

2.2.3.2 Prescriptions as Knowledge-Level Descriptions

Knowledge-level descriptions focus on desired domain goals and avoid specifying

methods for achieving those goals (Newell, 1981). As an example of methodologi-

cal prescription for reading a clinical research article, Chalmers and colleagues (1981)

provide the following, among several pages of similar injunctions:

(1) TESTING PROCEDURES. The next group of determinants of a good

study has to do with certain measurements that the investigators should under-

take before or during the study.... (2) The importance of patient compliance in

clinical trials has been emphasized repeatedly.... (3) Some objective methods

of verifying that patients are conforming to the protocol must be described.

For example, in a drug trial pill counts would be acceptable. Subjective as-

sessments of compliance are often used.... (4) In some trials, the assessment of
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compliance is considered not applicable. ... (Chalmers et al., 1981, pp. 36-37,

sentence numbers added)

Sentence 1 establishes determination of a study’s quality as the goal for the entire

process, and defines testing procedures to be a major subtask to achieve this goal. The

methodologists strive for normativity, since they tell us that they are offering testing

procedures that investigators should undertake. Sentence 2 presents the determination

of the level of noncompliance as a further subgoal. Sentence 3 identifies methods (pill

counts and subjective assessments) for satisfying this subgoal. Finally, in sentence 4,

the authors allude to instances where the subgoal is not relevant.

Regarding procedures for satisfying the goals, we note that, in sentence 3, the |

authors do not describe how investigators should actually use pill counts to measure

noncompliance, they do not describe how to make the subjective assessments, and

they do not give details as to how the determination of noncompliance would af-

fect the overall determination of the “good study.” These considerations are left as

implementational details.

Sackett and colleagues (1981) are interested 1n helping practicing clinicians to ne-

gotiate the literature problem. They follow a strategy similar to that of Chalmers

and colleagues (1981), describing further desiderata for determining a study’s quality.

They seem to provide, however, an implementable method for achieving the desider-

ata, instructing the reader simply to ignore any article that fails to meet all the

criteria. They clarify, however, that this Procrustean algorithm should be applied

when the physician is reading simply to “keep up” with the literature. However,

“when reading up on a specific patient,” to solve the literature problem, “before

accepting the conclusions” of nonexperimental studies, for instance, they offer a dif-

| ferent procedure, concluding that this procedure “is obviously a judgment call and |

should be tempered” (Sackett, 1981, p. 150). How to make the judgment call and

to what degree that judgment should be tempered are again left as implementation
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detaals.

Finally, in the REFEREE project, we found that our expert brought to our attention

many of the same concepts detailed by these different authors. We also found that

it was difficult for him to define those concepts crisply: We spent about 10 hours

working on the definition of credibility, alone. These difficulties can be explained on

the basis of a difference between the knowledge-level description of the solution to the

literature problem, which is shared by the statistical community, and its procedural-

level implementation, which 1s rarely specified by statisticians, and hence is subject

to interpretation and controversy.

In conclusion, we should use as many of the prescriptions as possible in guiding the

construction of the design model. I shall give the conceptual details underlying these

prescriptions when I discuss the domain concepts involved in solving the literature

problem (see Section 3.2.3).

2.2.4 No Expert Mental Model

Statistics 1s different from other domains for which expert systems have been built,

because 1ts practitioners construct formal models of their actions. In focusing on the

instrumental use to which statistics is put, Armitage (1983, p. 1) defines statistics

as a discipline concerned with the treatment of numbers obtained from the study

of groups. Snedecor and Cochran (1980, p 1) offer the broader description that

“statistics deals with techniques for collecting, analyzing, and drawing conclusions

from data.” Efron (1986) presents a typology of those techniques: data enumeration,

data summary, data comparison, statistical inference. Fisher (1959), Neyman and

| Pearson (1930), and Lehmann (1986) have formalized one of these types, statistical

inference, in terms of what actions statisticians should take in response to different

computed results.

Despite the understanding statisticians have of their techniques, Hand (1986), in
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developing an expert system to help novice statisticians perform multivanate statisti-

cal analyses, was surprised to find that the way he went about performing such anal-

yses was different from the way he thought he did them, and also was different from

the way he was taught to do them. Clayden,? in building a statistical consultative

system at the University of Leeds, was surprised to find that statistical consultants |

perform the function of educators almost as often as they act as technical advisers.

Other developers of statistical expert systems (Oldford and Peters, 1986; Pregibon,

1986) are equally concerned with the actual actions taken by practicing statisticians.

Still other statisticians (Cox, 1977; Mallows and Walley, 1980) seek formal theories |

to describe the complex tasks of data (or datum (Good, 1980)) analysis.

Using the research literature to solve clinical problems is an activity even less rigor-

ously defined than 1s data analysis, as we saw In Section 2.2.3.21n examining method-

ologists’ prescriptions. The various desiderata of Chalmers and colleagues (Chalmers

et al., 1981), the flowcharts of Sackett and colleagues (1981, 1991), and the prescrip-

tions of Feinstein (1985) come closest to defining that activity, but they are informal

and clearly are abstracted from statistical activity; no one would claim that they

describe accurately, and in detail, what happens in the mind of any single reader of

the scientific literature. |

2.3 Knowledge-Level Summary

From the discussion in Section 2.2, we can assemble, as specifications, desired prop-

erties of a system designed to help physicians solve the literature problem.

1. Objectivity: The system should depend on objective, reproducible, and au-

ditable methods (Section 2.2.1).



2.3. Knowledge-Level Summary 49

2. Intersubjectivity: The system should allow for differences of opinion among

readers (Section 2.2.1).

3. Normativity: The system should implement methodologists’ knowledge-level

prescriptions (Section 2.2.3.2).

4. Flexibility: The system should be able to evaluate both the pragmatic effective-

ness and the ideal efficacy of tested therapy (Section 2.2.2).

5. Adaptability: The system should enable the chnician to express methodological

concerns without using statistical language (Section 2.2.3). |

| 6. Simplicity: A simplified system should help the physician to interpret a single

article that she has selected and read; should exclude explicit knowledge about

particular statisticians and investigators (Section 2.2.3.1); should exclude ex-

plicit knowledge about particular statisticians and investigators (Section 2.2.2};

should assume that the physician user has the ability to express clearly the

particular problem at hand (Section 2.2.3.1); and should support the decision

making of a single physician, rather than that of an entire community (Sec-

tion 2.2.3.1).

The first and second specifications seem at odds with each other: One calls for

objectivity, whereas the other calls for subjectivity. In the next chapter, we shall

examine one proposed resolution of this tension in the traditional implementation of

the knowledge-level model—the classical statistical design model.
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Chapter 3

Classical Design Model

The implicit solution to the literature problem currently carried out by the biomedical

community is founded on classical statistics. In this chapter, I shall examine the

classical solution as a design model’ for solving the literature problem, and I shall

examine the adequacy of the solution in terms of the knowledge-level specifications

from the previous chapter (see Section 2.3). 1 shall also examine, in Section 3.6, some

previous computer-based solutions to the literature problem.

In Sections 3.1 through 3.4, I shall present the basic concepts—the vocabulary—of

the domain. I shall use the metoprolol example to clarify the concepts. Continuing

to use the Knowledge-analysis and design-structuring (KADS) (Anjewierden, 1987) |

approach to knowledge acquisition, I shall organize the presentation by their fourfold
division of domain knowledge into (1) task concepts, (2) domain concepts, (3) infer-

ence concepts, and (4) strategy concepts. In explicating these concepts, we will also

develop the design model, from the bottom up.

Section 3.5 provides a knowledge-level critique of the classical-statistical approach,

using the knowledge-level conditions of Section 2.3 as test criteria. This critique

" 1See theintroductionto Chapter 2 for the definition of this and other knowledge-engineering
terms.

51
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motivates the exposition in Chapter 4—the Bayesian design model.

Readers already familiar with classical statistics may wish to read only the last

three sections. However, the first sections present statistical concepts in a novel way,

“using influence diagrams? to describe the statistical concepts; the reader may wish to

peruse the figures in those sections. Section 3.6 summarizes previous computer-based

work.

3.1 Task Concepts

Therapy selection, which we shall define as a choice between two drugs, is one of the

phvsician’s primary clinical tasks. Statistical inference (see Section 3.3.2) is the major

subtask that statisticians recommend for satisfying the primary task. Statistical

inference is, to use an information-flow metaphor, the primary conduit between the

reporting statistician and the deciding physician. The question to be answered by the

design model 1s, What information should flow through that channel? A summary of

the classical answer is given on page 71.

3.2 Domain Concepts

I shall discuss four classes of domain concepts in statistics. Probabilistic concepts con-

cern the representation and management of uncertainty, statistical concepts concern

the relationships among observations, methodological concepts concern the structure

of the observation process, and inference concepts the way investigators should learn

from observations. The concepts constitute the primary vocabulary needed to under-

stand any biostatistical system.

2See Section B in the Appendix for a short tutorial on this knowledge representation.
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3.2.1 Probabilistic Concepts

Probability embodies notions of observations, of random variables (which abstract

observations}, of likelihoods {which communicate the chances of observations occur-

ring), and of parameters (which summarize likelihoods). | -

The concept of an observation is central to any model of statistics. Statisticians

make two basic, implicit assumptions: observations of the world are possible, and

observations of past events are related to future observations. Classical statisticians

take as their fundamental axiom that probabilities are ratios of observations observed

to observations that could be observed; probabilities are frequencies. This is the

frequentist aziom (see von Mises and Geiringer (1964) and Kolmogorov (1965)). In

this dissertation, observations, such as the death of a patient from a myocardial

infarction (MI), shall be denoted by lowercase italic letters (e.g., z).

A random variable can take on a value that refers to any one of a number of

outcomes; an observation is an outcome that has occurred. The random aspect of

| such a variable 1s that different outcomes have different chances of occurring. The

variable aspect is that different numbers are assigned to different outcomes (or to sets |
of outcomes). Random variables shall be denoted by uppercase italic letters (e.g., X);

vectors of random vanables shall be denoted by boldface uppercase Roman letters

(e.g., X). A patient’s lifespan (denoted L) is an example of a random variable.

The probability density function (pdf) or likelihood function (which is
directly proportional to a pdf) assembles the chances of occurrence for different out-

comes of a random variable. The hallmarks of a pdf are that the sum (or integral) of

all likelihoods 1s 1 and that no likelihood is negative. The pdfs shall be denoted as

P(X) (for the random variable X), and the likelihood functions shall be denoted as

£€(X); {(X) = k P(X), for some constant k.

Likelihood functions can take on many different shapes. There are some shapes,

however, that are canonical in that, if you were to know the values of a small number of



54 Classical Design Model

parameters of the likelihood function, you could derive the entire likelihood function.

Such likelihood functions are called parametric models. Distributions we shall be

using are these: the Bernoulli distribution, which we shall denote B(p), with the single

parameter the probability of success; the binomial distribution, which we shall denote

BI(p,n), with parameters the probability of success and the sample size; the normal

distribution, which we shall denote A'(g, 0%), with parameters mean and variance;

the the beta distribution, which we shall denote BE(a, #), with the parameters the

effective number of successes and the effective number of failures®; and the exponential

model, which we shall denote £()), with the single parameter the instantaneous failure |
rate.

From a computer-science point of view, parametric models reduce computational |

complexity. For instance, consider the random variable that indicates the lifespan

of a physician’s next patient with an acute MI. That variable is continuous, with an

uncountably infinite number of values, and hence, an uncountably infinite number of |

likelihoods. If the physician assumes that the vanable is exponentially distributed,

then only two facts are needed to generate the uncountably infinite number of likeli-
hoods: the identity of the distribution (exponential), the value of the instantaneous

failure (mortality) rate. This huge reduction in computational complexity is a com-

pelling reason for using parametric models in statistical work.

A parameter, therefore, is an unobserved entity, that, when specified, can be used

to determine the likelihood function of a random variable. Practitioners and students

of classical statistics view parameters as real, physical quantities, like the speed of

light. The purpose of research, from this point of view, is to determine the value of

those constant quantities. I shall denote individual parameters lowercase by Greek

letters (except for the Bernoulli success probability, which shall be denoted by p).

The symbol 8 shall denote the general, nonspecific parameter.

~ 3These labels are my own; there are no standard names for these two parameters. | |



3.2. Domain Concepts 55 |

In summary, parametric models represent the uncertainty—probability—investi-

gators and readers have in the occurrence of outcomes of interest. 1 demonstrate

the concepts presented in this section in Figure 3.1, using an influence-diagram rep-

resentation. The graphical conventions for this and future diagrams are listed in

the Appendix (Section A.3). In brief, uncertain quantities are represented by ovals

and deterministic quantities (constant or functional) are represented by double ovals.

Arrows (arcs) represent dependency: An arrow from A to B means that knowledge

(belief) in B depends on knowledge (belief) in A. In the case where B is determinis-

tic, such an arrow means that the value of B is certain, given the value of A. I shall

introduce further graphical conventions as they arise.

3.2.2 Statistical Concepts

One goal of statisticians is to learn from scientific studies. In such studies, inves-

tigators are interested in the relationships among observations; statisticians express

such relationships in terms of the associations of the observations to the unobserv-

able parameters, and, therefore, work with probabilistic concepts. The heart of these

relationships is the notion of a population of individuals with similar features, such

as all patients with MIs; a new patient with an MI is thought of as a member of

this ideal population. The amalgamation of likelihoods for individuals exhibiting the

outcome of interest leads to a likelihood function for the population. If that function

can be parameterized, its parameters are called population parameters. In the course

of research, the experimenters collect a sample of individuals from the population,

such as patients with an MI admitted to a particular hospital in South Sweden. The

goal of statistical analysis is to relate observations made on sample individuals to pop-

ulation parameters. This relationship is encoded in a statistical model (Ellman,

1986). The statistical model is the central knowledge representation in statistics. |
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We can examine the metoprolol example from this perspective. Consider the pop-

ulation of all patients with an MI who survive the acute attack and are admitted to

the hospital; the outcome of interest is survival by 3 months after admission. The

random, observable variable, X, assigns 1 to the outcome death and 0 to the outcome

survival. The likelihood function for X is parameterized by a single, unobserved

number, the probability (p) of the patient dying, yielding a Bernoulli, parametric,

probabilistic model. (The probability of survival is 1 — p; the two probabilities con- |

stitute the entire pdf.) Consider the experiment of observing 698 such patients over 3

months. The observed patients constitute the sample. If we assume that the outcome

of each patient is related to the parameter, p, the same way, and is not influenced by

the outcome of any other patient, then we can use the binomial statistical model to

represent the relationship between the sample outcomes and the population parame-

ter. The binomial model relates p to the number of deaths, D, in the 698 patients:

P(D | 698) = ¢esCp pP(1 — p)®*-2, where ¢sCp 1s the binomial coefficient. The

likelihood function for the number of deaths is £(D | 698) = pP(1 — p)®%~2. Note ~

that, in this discussion, two types of knowledge are involved: One is the statisti-

cal technical knowledge regarding classes of probabilistic models. The second is the

domain knowledge that patient deaths do not affect one another.

If the observations are independent of one another and each has the same relation-

ship to the population parameter, then the observations are said to be independent

and identically distributed (itd). 1 shall say that, in such a situation, the pa-

rameter governs the sample observations. Figure 3.2 depicts this central notion of

independence, and introduces the idea of a statistic: a function of observed data.

One powerful result of the concept of iid 1s that simple functions of the different out-

comes can be shown to have simple relationships to the original parameter(s)

of

t608Cp = DUES—DY'
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(a) (b)
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Figure 3.1: Classical random variables. (a) An oval containing a label represents the
random variable, X. The variable might represent the death of a patient. (b) The
uncertainty of X is dependent on one parameter, p, that is constant {and therefore
represented by a double oval, indicating a deterministic node). The value of p may
be unknown. The parameter p might have the semantics of mortality rate. (c¢) The
dependence of X on its parameter is such that, if the parameter were known, then
the uncertainty in X, given the values of that parameter, would be fixed; X remains
uncertain. This functional dependency is indicated by the double oval. (d) This

| graph shows the actual values of the deterministic dependence of X’s likelihood on
the parameter, where X = 1 denotes that the proposition signified by X 1s true.
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Figure 3.2: Classical model for independent and identically distributed (iid) random
variables. (a) 698 patient deaths (X;), with parameter p, are modeled as conditionally
independent of one another, given the parameter, and each having the same relation-
ship to that parameter (i.e., the Bernoulli distribution). The X; have been observed,
and are therefore represented by a shaded oval. The binomial distribution implied by

698

this diagram (P(D = ¥ Xi | p), see the text) actually has two parameters: p, an |
1=1

unknown, fixed constant, and 698, the number of patients, in this case, a known, fixed |
constant. D is a statistical function (or, simply, statistic) of the observations. (b)
An alternative graphical convention for the model in (a) is shown. Here, X is a vec-
tor of the values (X;,X5,..., Xess). The speckled (derived-probability) arc indicates
that the distribution of D given p and 698 is known; the identity of this distribution
depends on the solid-arc relationships in the diagram.
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interest. Thus, D = TX, 18 the total number of deaths in the sample and is a
statistic (function) of the observed data. A well-known result of probability leads to
the conclusion that D ~ BZ(698, p). |

3.2.3 Methodological Concepts

Baseline statistical models, such as those described in the previous section, embody

the assumption that observations made on sample individuals give information di-

rectly for the population parameter. Investigators analyzing—and readers examining-
the results of a study need this premise to erect a bridge between prior observations

“and future decisions. Methodological concerns modify this assumption. There are

two classes of concerns that we shall consider (Cook and Campbell, 1979). The first

comprises those concerns that consider the possibility that the parameters governing

- each individual may differ between subjects; these are concerns regarding internal

validity. The second comprises those concerns that take into account the possibility

that the parameters governing the sample observations are not the same as those

governing the population; these are concerns of eziernal validity.

Clearly, no two patients are ever identical. Internal velidity concerns the degree

to which the assumption that they are is violated in the study at hand, and the

degree to which the violation affects the ultimate conclusion. Important questions

include: Are the observations indeed independent of one another? Do the observations

represent accurately the true values of the subjects’ outcomes (Miettinen and Cook,

1981)? In RCTs, investigators answer these questions by examining the treatment

and endpoint-assessment phases of a study (see Figure 3.3).

Many methodologists, including our expert in.the REFEREE project, regard the

blindfolding of investigators® as most important (Meinert and Tonascia, 1986; Sacks

 SBlindfolding—also called masking—is the practice whereby patients or care providers or inves-
tigators remain ignorant of the identity of the treatment received by a subject in the course of a
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et al., 1987), yet there are no mathematical models (to my knowledge) that instruct

the reader how to debias the conclusions, given apparent blindfolding violations in

a given study. The amount of blindfolding possible depends on the nature of the

treatments under investigation: Medical treatment can often be masked, whereas

surgical procedures are difficult to disguise.

For readers to take into account biases occurring during the treatment and end-

point phases of a study, authors have described the qualitative problems that might

affect any inference (Sackett, 1979; Feinstein, 1985), and have specified quantitative |

models for debiasing the conclusions (Greenland, 1984; Greenland and Robins, 1986; |

Greenland, 1987). An important set of potential biases are those due to protocol

departures, in which patients do not follow the directives of the study (e.g., be-

cause they move out of the area and lose contact with the study investigators). In

the case of protocol departures, the measurements made do not necessarily represent

the measurements intended: If patients move away, then the investigators lose the

contributions of these patients’ outcomes to the conclusions about the study param- |

eters. Eddy and colleagues (1991) provide the relatively straightforward models that

I use in THOMAS for protocol departures (see Section 5.6); Lakatos (1986) presents a

variation on those models.

Even if patients within a study are identical for the purposes of the conclusions,

the entire sample of patients may differ from the population of patients of inter- |

est. Eziernal validity concerns the generalizability of a study: Are subjects in the

study the same as subjects governed by the population parameter (Antman et al., |

1985)7 Does the aggregate of sample subjects represent accurately subjects in the

population (Chalmers et al., 1983)7 In RCTs, these questions translate into the fol-

lowing queries: Were subjects recruited from the population of relevant patientsina

representative manner? Were they assigned evenly to each therapy? (see Figure 3.3).

study.
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Figure 3.3: Methodological concerns in randomized clinical trials (RCTs). The central
graphic shows the canonical time course of an RCT (compare to Figure 1.1}. The
upper line shows the methodological goals of each phase in the study. The lower
Ine shows problems that can confound each goal. External-validity goals involve the

recruitment and assignment phases of the study; internal-validity objectives involve
patient-treatment and endpoint-assessment phases.

Representative patient recruitment is crucial for generalizing the results of a

| study (Antman et al., 1985); selection bies confounds this process. The general screen

for detecting this bias is to compare, on the basis of important baseline character-

istics, patients consenting entry into a trial with patients refusing entry. Although

there are mathematical, implementable classical-statistical techniques for dealing with
this confounder {Kleinbaum et al., 1981), it is difficult for investigators to assemble

the data necessary to apply the methods, because it entails getting information on

| patients not in the study. |

The primary statistical strategy for achieving equivalent assignment is random

sampling. Random sampling and its descendent, the randomized clinical trial, have

become the gold standards for judging experimental designs (Gelband, 1983; Ellen-

berg, 1984), although the suitability of this strategy for biomedical research has been

debated from the days of Student (1937) and Fisher, early in this century, through

the present (Howson and Urbach, 1989). The major attraction of randomization 1s
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that, if a randomized sample is obtained, then, for increasingly large sample sizes, the

values of simple functions of the sample observations can be shown to approach the

values of the population parameters (see Figure 3.4); the functions used are then said

to be statistically unbiased. Yor instance, the value of the observed mortality rate in

the group of patients treated with metoprolol can be shown, under mild conditions,

to approach the population mortality rate for patients treated with metoprolol, in

general. Furthermore, this approach minimizes the confounding that results from

uneven distribution of influential baseline characteristics (Efron, 1971).

(a) (b)

Figure 3.4: Classical-statistical parameter estimation. (a) This arc denotes the iid
assumption, allowed by the process of random sampling. (b) This arc denotes the
function that determines the estimate, 6, of the unobserved parameter, 6. As the

sample size (i.g., as the number of components in the vector X) approaches infinity,
the value of # approaches that of 6.

In summary, statistical models are build out of a web of concepts: observations,

probabilities, parameters, independence, identity of distributions, populations, sam-

ples, and biases. The interrelations among these concepts determine how we should

use the results of a study to take action in future circumstances.

3.3 Inference Concepts

Inference concepts describe how the basic domain concepts should be used to achieve

the goal—making drug choices, in our case. I shall discuss four areas of inference

concepts in statistical analyses: metadata, classical hypothesis testing, statistical

| significance, and adjustments.
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3.3.1 Metadata

The term metadata refers to data about data (Chytil, 1986). There is much infor-

mation an analyst can glean about a study by just knowing the type of data involved.

A simple example 1s that, for instance, only a continuous quantity may be exponen-

tially distributed. Metadata is an inference concept, because it relates the type of the

data the analyst is analyzing to the types of actions he may take with those data.

The inference is made on the basis of the metadata before the data themselves are

examined. A number of expert systems for statistics embody such rules (Chytil, 1986;

Jasinski, 1986). Domain knowledge is important as well, suggesting, for instance, the

numerical values that a datum can take. Thus, metadata are useful for making basic

inferences about the data that are about to examined.

Expert-system researchers are paying attention to the concept of metadata, be- |
cause it is the metadata that strongly affect the choice of statistical analysis. This

1s especially true in classical statistics, where the analyst should not examine the ob-

served data in choosing the appropriate statistical analysis for the study (Wittkowski,

1986). Metadata are important in making these higher-level decisions. For instance,

an analyst might know the type of distribution appropriate for cancer deaths or for

cardiac deaths, without examining the actuarial table of deaths observed. Further-

more, metadata can suggest what adjustment models might be appropriate. For

instance, the assessment of death rarely produces a false-positive report; measure-

ment reliability is probably less important in studies measuring this outcome than in

studies assessing morbidity, where study results are less certain.

3.3.2 Hypothesis testing

Statistical inference provides the rules for making statistical decisions on the basis

of study results, relating observations to unobservables. Classical hypothesis testing
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is the now-traditional method of statistical inference. A complete description and

analysis of this approach is beyond the scope of this dissertation; the reader is referred

to classic texts, such as that of Lehmann (1986). A broad outline of the technical

details is necessary, however, if we are to appreciate the differences from the approach

I shall introduce in the next chapter, where we will show how the Bayesian approach

replaces the concepts of this section. Novel in this presentation of hypothesis testing

is the use of influence diagrams to clarify what information is used by this approach

and where it 1s applied.

The goal for the analyst taking the hypothesis-testing approach 1s to rule in or

out statements about real-world entities. This goal is implemented in terms of ruling

in or out a preferred value of a fixed, unknown parameter, such as the difference in

mortality rates of patients treated with metoprolol and those treated with placebo.

Figure 3.5 shows how a general hypothesis test 1s represented in the influence-diagram

representation. The state of the world in which the parameter has the preferred value

is called the null hypothesis; one null hypothesis is that the difference in mortality rates

is zero—the preferred value. The decision regarding the truth of the null hypothesis

1s based on the calculation of a test statistic, such as the z-score or the t-test statistic,

whose value is a function of the observed data, and of a particular type of probability.

That probability is called the p value, the probability that the experimenters would

have observed data resulting in that value of the test statistic, or data more extreme,

were the null hypothesis true. If the p value is under a certain threshold, then the

experimenters were unlikely to have observed the data that led to the calculated value

of the test statistic. If the data (or the corresponding test statistic) appear unlikely,

we should reject the null hypothesis in favor of the alternative hypothesis. The rule

may be written as follows, for the random variable X and observed data, z:

if P(t(X)>t(zo) | Ho) £ a, then rejectHy

© No relation to me.
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The threshold, a, determines the type I error—the threshold for rejecting the null hy-

pothesis when, in fact, it is true. A second threshold, 5, determines the type II error—

the threshold for accepting the null hypothesis when, in fact, an alternative is true.

As an example of this process, let us expand on the metoprolol example, where

the 2-test for proportions (Snedecor and Cochran, 1980), 7 provides the appropriate

measure. Figure 3.6 shows this test in influence-diagram representation; it is a spe-

cialization of Figures 3.4 and 3.5. The question here is whether the the mortality

rate for patients treated with metoprolol and that for patients treated with placebo

are the same. The parameter tested is a third parameter—the difference between the

two mortality rates, which are proportions. The preferred value for this parameter of

| interest is zero, because the semantics of a zero difference are that the two mortality

rates are the same. If, as a result of the hypothesis test, we reject the null hypothesis,

then we are rejecting the notion that the mortality rates are the same.

The details of the z-test are given in the caption to Figure 3.6. This hypothesis

test has four components: (1) the choice of the parametric model (in this case, the

Bernoulli distribution) for the iid observations in the samples; (2) the choice of an

appropriate statistic (the z-score), or function, of the observed data; (3) the knowl-

edge regarding the distribution (the normal distribution) of that statistic given some

value of the fixed, unknown parameters; and (4) the inference rule (rejecting the null

hypothesis that the means are equal if the observed probability 1s less than some

threshold), given the results of the observed probability. The choice of the paramet-

ric model (component 1) is often made on the basis of metadata and of prior domain

knowledge. The knowledge regarding the distribution (component 3) depends cru-

cially on the assumption that the investigators obtained observations by randomly

sampling from a population governed by the population parameter. The sensitivity

"This test is more properly called the likelihood ratio test for proporfions, where asymptotic
properties of the process and nonextreme values of the true proportions allow for the assumption of
a normal distribution.
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Figure 3.5: Hypothesis testing. Two samples (X; and X,) are observed, each pre-
sumed to have probability-distribution functions governed by a general parameter, 0.
(a) The null hypothesis, Hy states that the two population parameters are identical
(Hy : 6, = 8; = 8). The test statistic is computed from the observed data; the p value
is computed assuming the null hypothesis to be true. (b) The alternative hypothesis,
H4 states that the two population parameters are different (Hj : 6; # 62).
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of this process to this sampling assumption implies that, if it were known that the

sampling occurred in some other way, an entirely different choice of sample statistic

would have to be made. For this reason, much classical statistical research entails |

| creating the appropriate test (component 2) for different sampling situations. Finally,

the thresholds (component 4) and the test must be chosen before the beginning of

the study, and the data must be examined only once (see Section 3.3.3). These

requirements also make the process sensitive to departures from design.

A variation on the hypothesis-testing approach is the confidence-interval tech-

nique, which biostatisticians and medical investigators use to communicate the degree |

of uncertainty in a parameter estimate (see Figure 3.4). In calculating confidence in-

tervals, the analyst determines the values of the parameter estimate that would lead

to rejection of the null hypothesis at the specified a threshold. The range of val-

ues derived 1s called a confidence interval. One way of expressing a given confidence

interval’s semantics are these: If the experiment were repeated n times after the

current experiment, then, even if the true parameter lay in the given interval, 100

percent of those times the experimenter would observe data that would lead to a

calculated confidence interval that would not overlap the given confidence interval;

the experimenter would mistakenly believe that the parameter’s value lay elsewhere.

The narrower the given confidence interval, the more confident are we about the va-

lidity of the parameter estimate. It 1s false to say that the experimenter believes,

with 100(1 — «) percent confidence, that the value of the true parameter lies within

the given confidence interval, because, by the frequentist axiom (see page 53), all

probabilities are frequencies, and not measures of belief. In this case, the frequency

being counted is the proportion of overlaps of calculated intervals. We shall see, in

the Section 4.3.5.2, that a Bayesian version is more straightforward.
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Nic. ial J Nici

Figure 3.6: The z-test for proportions. The constant population parameters for two
Bernoulli-distributed populations are p; and p;. The two samples are X,, with n, iid
observations, and X,, with n, iid observations. The z-score statistic is a function of

the observed proportions of success, py and 73, (which are parameter estimates (see
Figure 3.4) for p, and p, respectively), and of the (constant) sample sizes, n; and na.

z-score statistic, given that the difference, p; — pj, is truly zero, is, asymptotically,
the normal distribution. Note that the identity of this distribution depends crucially
on all assumptions about the relationships between different entities in the remainder

of the diagram, including the values of p; and p;. Xf P(Z 2 20 | p1 — p2 = 0) is less
than some threshold probability, then the statistician accepts the hypothesis that, in
fact, the two population parameters are not equal to each other.
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3.3.3 Statistical Significance

Inferences require criteria for decision making. The inference concept of statistical

significance supplies the criterion in classical statistics. When the hypothesis-testing

approach is used for answering questions such as, Is the mortality rate due to meto-

proiol different from the mortality rate placebo?, the statistical implementation of

this question is, Are the two mortality rates statistically significantly different from

each other? |

The purpose of the criterion 1s to set bounds on errors over the course of several

tests (either between studies or within a single study): If a clinician acts on the basis

of the type I- and Il-error thresholds, then, on 100¢ percent of studies, she will make

a clinical error if she acts on the basis of rejecting the null hypothesis, and she will err

1005 percent of the time if she acts on the basis of accepting the null hypothesis. The

test must be selected on the basis of the study design, which 1s implied by information

available at the outset of the study, before any data are known; the bounds protect

| the reader regardless of what data are observed. Because the errors are expressed

as a percent of a total number of actions, the true bounds depend on how often the

tests are made. Therefore, the analyst should examine the data (and calculate a test

statistic) only once in a study; if not, the thresholds must be modified.

Many authors distinguish statistical significance from clinical significance. Statis-

ticians leave to the domain experts the heuristic judgments regarding the clinical

meaning of a particular statistically significant difference. For instance, if the confi-

dence interval for the mortality rate due to metoprolol lay between 0.015 and 0.020,

and that for the mortality rate due to placebo lay between 0.020 and 0.021——many

clinicians would state that, although the difference is statistically significant, because

the two intervals do not overlap, it 1s not clinically meaningful, because the difference

| in midpoints is only 0.003. This notion of clinical significance is the final limb of the
classical solution to the literature problem.
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As an example of an heuristic judgment translating statistical into clinical sig-

nificance, some statisticians advocate explicit adjustment of the p value to take into

account prior opinion. Consider the following prescription from an often-referenced

article by leading British biostatisticians (Peto et al., 1976), regarding a report’s claim

of sigmficance made on the basis of p values by investigators of a clinical trial:

Suppose. ..that before you saw these results you had no opinion, but on
reflection the claim seems reasonable.... Now, a P = 0.05 result would not in

itself be convincing, although it would make you more receptive to future such |

claims; a P = 0.01 result would be difficult to dismiss; while a P < 0.001 result

would be extremely convincing.

Suppose, finally, that, had your opinion been sought before reading the

| published report, you would have thought that there was little prospect of such

| a treatment being of value. Now, a P = 0.05 result would leave you almost as

sceptical as before; and although a P < 0.001 result would change your mind,

you would still retain a secret little doubt. (Peto et al., 1976, p. 595)

We note that these methodologists leave important notions, such as more receptive

and convincing, undefined; they are left to the reader’s heuristic judgment.

3.3.4 Adjustments

The fourth class of inference concepts concern the heuristic judgments just mentioned.

Expert-system researchers have endeavored to define those heuristics that enable a |

reader to apply the conclusions of a study to specific contexts. The expert-system

that embodies the most comprehensive set of heuristics is Rennels’ ROUNDSMAN pro-

gram (Rennels, 1987) (see Section 3.6). |

The discipline of meta-analysis is apposite in this context. The discipline was

| created for the purpose of extending the classical statistical approach to enable an
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analyst to integrate the conclusions of multiple studies. Although we are interested

in single studies in this dissertation, meta-analysis is relevant because it, too, deals

with issues such as problems with methodology and difficulty in determining which

actions to take on the basis of research studies. There are three ways that meta-

analysts address these difficulties; all involve weighting the statistical measures from

each study, and computing an overall statistical measure from the base measures and

the corresponding weights. In one approach (called the Peto method by Berlin and

colleagues (1989), the weights are a measure of the uncertainty in the statistic due

to within-study samphng. These weights are simple functions of the sample sizes and

the results of the component studies. In the second approach, due to DerSimonian

and Laird (1986), the weights take into account between-study variation, as well. In

the third approach, taken by many meta-analysts {Sacks et al., 1987; 1.’Abbé et al.,

1987), a score is computed based on a scale reflecting the study’s methodological

integrity. These scores are heuristic, because their values have no normative basis,

except that, on the basis of items on the scale, a higher score implies that a study

is of higher quality than one with a lower score. Different meta-analysts may use

different scales. |

In summary, the classical answer to the question raised in Section 3.1—What

information should be conveyed by the investigators to the reader?—is that the in-

formation should include the identities of the hypothesis tests used, the thresholds

assumed, the results of the tests, as well as the qualitative assessment of factors that

may have confounded those results and that thus may indicate a need for adjusting

the conclusion.
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3.4 Strategy Concepts

The fourth class of concepts needed for the design model for solving the Literature

problem prescribes how the analyst should use the information provided by the in- |

vestigators, which is based on the task, domain, and inference concepts. The classical

statistical strategy is as follows: |

1. Select the appropriate statistical model and test for the study, based on the

study’s original design.

2. Calculate the test statistic and the p value for the study.

3. Adjust the threshold for rejecting the null hypothesis on the basis of heuristics

that represent prior methodological and clinical knowledge.

4. Take the action dictated by the adjusted threshold.

The sequence of these steps is depicted in Figure 3.7, in a manner analogous to

the Bayesian solution of this dissertation (see Figure 1.6).

3.5 Critique of the Classical Approach

Having just completed an overview of classical statistics, we need to evaluate the suit-

ability of the classical approach as a design model for solving the literature problem.

I shall organize this critique in terms of the desiderata for systems to help physicians

with the literature problem, as outlined in Section 2.3.
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Figure 3.7: Information flow-diagram depicting the classical-statistical strategy for
solving the literature problem. Although the sources of inputs are similar to the
Bayesian flow diagram in Figure 1.6, the information needed, the steps taken, and
the calculations made in the classical approach differ from those in the Bayesian
framework.
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3.5.1 Objectivity

The system should depend on objective, reproducible, and auditable methods.

| The apparent objectivity offered by the classical-statistical approach is its most

attractive feature. The procedure of hypothesis testing, for instance, is automatic,

which ensures that two users will arrive at the same statistical conclusion; a user is,

therefore, less likely to make a mistake using this approach than using an approach in

which the user is expected to make a series of statistical decisions (Efron, 1986). I shall

show that this automaticity is not enough, however, to keep the method objective, |

because of the inherent need for nonobjective heuristics (see Figure 3.7) to solve the

literature problem. |

The problem with the needed heuristics is that they cannot be audited. Because

they have no formal basis, there is no way of recording the reasoning that goes into a

heuristic such that a second analyst would arrive at the same numerical estimate for

the necessary adjustment. I have pointed out in a number of places (see pages 45, 69,

and 70) that prescriptions for different adjustments are too vague to be implemented,

which leaves much room for variation among analysts, and, so doing, contradicts the

aim of objectivity. |

Thus, although the statistical procedure might be objective, the overall process |

of solving the literature problem is not. In this light, the p value itself, the product

of the statistical procedure, is seen to be just another heuristic for decision making,

rather than the determining criterion classical statisticians designed it to be.

Yet, even the objectivity of the statistical component may be called into question.

Although hypothesis testing might not be objective as a way of providing the final

conclusion, we might think it is objective in providing a partial answer. An alternative
| role for p values, for instance, is as a measure of the strength of evidence that observed

data have for or against the null hypothesis. This role was, for instance, implied in

the quotation (see page 70) regarding the heuristic for dealing with prior knowledge.
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Most statisticians agree that the strength of evidence provided by a study should be

a function of the study alone, and, hence, would be an objective measure of that

study (Edwards, 1972). Bayesian statisticians (Cornfield, 1966a; Cornfield, 1966b)

have analyzed this role of the p value. Berger (1985) has shown that this alternative

interpretation is flawed in a number of ways. First, it is inconsistent with simple

axioms of evidential support. Specifically, the p value takes into account data that

were not observed,® rather than examining the evidential power of the observed data

alone (Berger and Berry, 1988). Second, the traditional categories of strength—a of

0.05, 0.01, and 0.001, apparent support, against the null hypothesis, of 1:20, 1:100, |

and 1:1000—can be shown to represent evidential support, against the null hypothesis,

of roughly 1:4, 1:8, and 1:244 (Berger, 1985, p. 152), values much weaker than the

apparent support.’ This disparity between the apparent strength and true strength of

the p values invalidates the measure’s use as an objective report of evidential strength.

3.5.2 Intersubjectivity | |

The system should allow for differences of opinion among readers.

If the evidential support of a study should be independent of a reader, then two

readers may rationally disagree in their conclusions only if they disagree about the

propriety of the statistical model, if they differ in their beliefs about the domain prior

to having read the study, or if they differ in their interpretation of the study results.

If a reader thought that the reported statistical model were wrong, then she would

have to choose her own model. From the classical point of view, however, there are

" BRecall that thecomputationof the p value involves considering how likely were both the data
actually observed and data more extreme to have been observed under the null hypothesis.

*The assumptions in this example are that the tested parameter is the mean of a normal dis-
tribution, where the variances under the null and alternative hypotheses are the same, where the
prior belief is evenly divided between the null and alternative hypotheses, and where the equivalence
between p values and posterior probabilities is based on a two-tailed test. The results are most

sensitive to the assumption that the variances are the same in the two hypotheses.
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difficulties associated with reanalyzing data. First, the correct test may be difficult

to discern or to derive (component 2 in Section 3.3.2). Second, retesting data poten-

tially violates the single-review assumption of the hypothesis-testing framework (see

Section 3.3.3). Wittkowski (1982) shows how this potential violation also invalidates

the construction of backward-chaining expert systems for classical statistics, which

review study data multiple times before deciding on the appropriate test.

Disagreements about prior beliefs are even more difficult to resolve in the classical

statistical framework. Classical statistics does not allow for the representation of

| personal, prior belief, except in the form of heuristics such as those mentioned on

page 70. This strategy is untenable in general, however, because it necessitates the |

construction of a new heuristic for each user reading each research report. As much as

the assessment of prior probabilities for Bayesian systems (see Section 6.3.3) is criti-
cized by classical statisticians for its nonobjectivity, the acquisition of such heuristics

in classical systems is open to even more reproach on this same score and is less likely

to be implemented successfully in an computer program that would be expected to

operate automatically. | |

Reinterpreting the hypothesis test leads to a more specific criticism regarding prior

belief. A number of Bayesians (Cornfield, 1966a; Berger, 1985) have shown that a

hypothesis test can be recast in terms of the belief a reader has in the null hypothesis

before and after the test. In this reformulation, the test must assume that the reader

has a particular type of prior belief if it 1s to remain probabilistically coherent. That

belief must be that the data from the study constitute the only information the

reader has ever had about the parameters of interest. This assumption is equivalent

to saying, in regards to the metoprolol study, that the reader, in advance of reading

the study, has neither knowledge nor experience with patients who have had heart

attacks, and, therefore, believes that the likelihood that the mortality rate due to

metoprolol 1s the same as that due to placebo is equal to the likelihood that the two
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3.5.3 Normativity

The system should implement methodologists’ knowledge-level prescriptions.

A classical-statistical system could represent methodologists’ prescriptions. Sec-

tion 3.4, and Figure 3.7, in particular, suggested the information flow in such a system.

The larger question of normativity is, What action should the physician take on the

basis of the results of the study? The difficulty of the classical-statistical approach

to answer this question was discussed in Section 3.5.1.

3.5.4 Flexibility

The system should be able to evaluate both the pragmatic effectiveness and the ideal

efficacy of tested therapy.

The fact that the design of a study determines the appropriate analysis for the |

experiment leaves the reader little choice of techniques for examining the results of

the study. Yet, different readers have different expectations regarding what the data

of a study will tell them. Some readers will expect to assess the effectiveness of

the proposed treatment, while others will expect to determine the biological efficacy.

~ Classical methodologists argue (see Sackett and Gent (1979)) over how to extract

such different functions in a formalism that does not ostensibly allow for simultaneous

diversity.

3.5.5 Adaptability

The system should enable the clinician to express methodological concerns without

using statistical language. |

The studies cited in Table 1.1 provide testimony to the difficulties physicians have

with classical statistical measures; physicians need help in understanding, at least,

the basic concepts of p value and confidence intervals. A decision-support system for
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rates are different. Many clinicians find this assumption clearly incorrect, because

they are able to say exactly which statement they believe to be true, and how firm

their belief is. Therefore, the hypothesis-testing approach makes assumptions about

prior beliefs out of touch with the knowledge of the physician readers.

Finally, we have seen {Section 3.3.3) that classical statistics relegates the inter-

pretation of clinical import to heuristic adjustment. There are problems in creating a

formal framework for this interpretation. First, the appropriate alternative action, in

the wake of rejecting the null hypothesis, will not always be apparent. For instance,

rejecting the hypothesis that two mortality rates are equal implies that the two rates

are not the same, but it does not specify which rate is better. Second, mistakes in

different clinical contexts have different costs, which cannot always be folded into a

single threshold. The formal solution to this last problem is to choose the levels of the

thresholds depending on the type of problem. A reader might choose a stricter thresh-

old for higher-stakes decisions, for instance; the values of a and 8 chosen are supposed

to take into account the cost of actions based on false-positive and of false-negative

conclusions. Unfortunately, investigators and reviewers generally do not make cost-

dependent choices of statistical thresholds. Rather, they stick to a traditional set of

criteria (e.g., an a of 0.05 for any primary clinical effect); they would otherwise be

open to the charge of choosing an a to make the data “significant.” Presumably, this

adherence to a fixed set of thresholds is due to the difficulty in choosing different

thresholds and the difficulty in auditing and reproducing (and justifying) the process

of choosing them. Thus, even the accepted formal solution is heunstic and cannot be

audited.

In conclusion, although there are feasible techniques to allow for intersubjectivity

within the classical-statistical framework, they perforce must be nonobjective and

cannot be audited, negating the very aims the framework was set up to protect.
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classical statistics would need a semantic layer to provide this help. Unfortunately,

what those semantics should be is not clear, because they are neither decision criteria

nor evidential strengths, as we saw in Section 3.5.1.

3.5.6 Simplicity

A simplified system should help the physician to interpret a single article that she has

selected and read; should exclude explicit knowledge about particular statisticians and
investigators; should assume that the physician user has the ability to express clearly

the particular problem at hand; and should support the decision making of a single

physician, rather than that of an entire community. |

A system designer could build a classical-statistical system to solve the literature

problem in the specified, simplified context. The classical-statistical design model 1s |

tailored to the problem of working with the individual study and is easily capable of

excluding idiosyncratic knowledge. The assumption that the user is able to formulate

the problem at hand is made implicitly in every statistical expert system. The notion

that the reader is making the decision on her own is the central pillar of hypothesis

testing. Thus, these simplifications do not bias our conclusion against the classical-

statistical approach.

However, if we re-examine the classical-statistical strategy as embodied in Fig-

ure 3.7, we will realize that a computer-based implementation of the strategy would

stretch the limits of available technology. As suggested in Section 1.5.5, the classical |

approach requires a seleclion-based strategy, which could be implemented as a diag-

nostic expert system. The output of this step is a statistical procedure, which may

be any one of a number of complicated algorithms. The test-statistic calculation is

straightforward, given a program that implements the statistical procedure. The final

step of heuristic adjustment is not formal and would require another type of expert

system. The assessment of thresholds and adjustment heuristics—all needed by this
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system—is even less formal, and is probably no easier than the problem of automating

knowledge acquisition for expert systems in general. Finally, the decision produced

by the adjustment step bears no certainty of being optimal. Systems geared towards |

~~ statisticians have been built that perform different aspects of these tasks. However,

the variety of subsystems, interfaces, and assessments needed explains the difficulty

system designers have had in building general-purpose, classical-statistical expert sys- |

tems for providing statistical support to domain clients.

3.6 Previous Systems

Most computer-based statistical systems have been aimed at statisticians. A few sys-

tems have been built for helping investigators to design a study. Weiner (1987) de-

scribes a research programme to develop a suite of programs for aiding in the design

of clinical trials. Wyatt et al. (1991) have developed a rule-based expert system that

critiques prospective designs. Their system is noteworthy in its targeting physician

users. | |

The vast majority of systems, however, are targeted to novice statisticians who

are confronted with the task of analyzing data after the completion of a study. The

statistical packages, such as spss (SPSS, 1983) and BMDP (Dixon, 1985) are well

known. A number of systems are so flexible that they are programming languages

in their own right, such as the C-based 5 (Becker et al., 1988) and the LISP-based

Lisp-Stat (Tierney, 1990). It is precisely the power of these programs that has led

researchers to devise “intelligent” front ends to these systems that would constrain

novice users from abusing that power. Gale’s (1986) REX system was built as a front

end to S, using a rule-based approach to statistical strategy (Pregibon, 1986). Nelde

and Wolstenhome (1986) built a rule-based front end for the general linear modeling

program, GLIM. As a final entry in this brief survey, Oldford and Peters (1988) built
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an object-oriented system, DINDE, that allows the construction and visualization of

multiple analyses of the same set of data.

The less constrained these systems are, the less bound they are to the classical-

statistical paradigm. Wittkowski (1982) has made the point, as I have already men- |

tioned, that systems that permit multiple analyses of the same set of data violate

basic assumptions of the classical approach. Furthermore, the more general a statis-

tical system 1s, the less realistic it 1s to expect clinicians to use them. On the other

hand, there are systems that advise user’s as to the propriety of different classical-

statistical tests. Chavez (unpublished) devised such a rule-based expert system as

part of the REFEREE research.

Rennels’ (1987) system comes closest, however, to one that helps physicians to go

beyond simple hypothesis testing, and to solve the literature problem. Specifically,

the ROUNDSMAN system allows a user to evaluate a patient-specific therapeutic plan

in terms of research articles already saved in the program’s literature database. The

articles have been read previously by a domain expert and are stored in a program-

specific format. The format includes heuristics that compute numbers to be used

to adjust the study’s conclusion as it pertains to an individual patient, for instance,

through the heuristic distance between the patient at hand and patients examined in

the study; such a heuristic are measures of external validity. Other heuristics attenu-

ate the results of the study for such problems as protocol departures; these heuristics

encode 1ssues of internal validity. The heuristics are acquired from the domain expert

by a knowledge engineer. Thus, the system requires two phases: knowledge acqui-

sition with a domain expert reading a set of articles, followed by interaction with a

clinician who has in mind a particular patient.

We shall see that THOMAS and ROUNDSMAN complement each other. Rennels

has tackled a wider range of methodological problems, whereas 1 have focused on

making the system usable by less expert readers and on ensuring that the system’s
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recommendations have a normative basis.

3.7 Summary

The classical design model provides the essential ingredients for implementing a
decision-support system designed to help physicians solve the literature problem.

Such a system must represent a number of concepts: the probabilistic concepts of

observations, random variables, parameters, likelihoods; the statistical concepts of

samples, populations, and statistical models; and the methodological concepts of in- |

ternal validity, external validity, and bias. We have found, however, that the bedrock

inference concept of classical statistics~—hypothesis testing—does not provide an ap-

propriate foundation for constructing such a system: The difficulty physicians have

with the inference concepts makes the techniques inaccessible. The statistical strategy

of applying possibly opaque heuristics makes the approach violate important scien-

tific aims of objectivity and auditability. The inability of the approach to represent

prior belief and the inability of readers to use the results for multiple purposes in a

coherent manner both limit the utility of the approach.

In the next chapter, I shall discuss a Bayesian solution that builds on the basic

probabilistic, statistical, and methodological concepts, and that answers the criticisms

of the classical design model that we have detailed.
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Bayesian Design Model

| In this chapter, I shall present the framework for my decision-theory-based solution

to the literature problem. I shall do so by developing a sequence of concepts that

are represented in terms of influence diagrams. Beyond serving as a mechanism for

illustrating those concepts, the influence diagrams here provide the knowledge repre-

sentation of a design model that acts as the conceptual framework, as the specification

for a computer program, and as a structure actually to be used by that program. As

before, I shall use the metoprolol example to illustrate the concepts.

The concepts are presented in the same manner as in Chapter 3 to show the

| comparisons with the classical approach: task (Section 4.1), domain (Section 4.2),

inference (Section 4.3), and strategy (Section 4.4) concepts. In particular, the com-

parison shows how many classical concepts are reinterpreted in the Bayesian contexts.

(1) Statistical parameters are random variables, rather than fixed, unknown constants

(page 87). (2) Exchangeability replaces the concept of independent, identically dis-

tributed random variables (page 90). (3) Likelihood debiasing is an important way of
producing adjustments to the conclusions, taking into account methodological con-

cerns (page 95). (4) Calculation of posterior-probability distributions replaces test-

statistic calculation (page 100). (5) Utility maximization is the implementation of the

83
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notion of making decisions on the basis of clinical significance, rather than statistical

significance (page 103).

Readers familiar with Bayesian statistics may wish to skip to Section 4.5, where

the entire Bayesian design model is presented, along with references to locations

earlier in the chapter where relevant concepts are discussed. The model, depicted in

Figure 4.12, represents the culmination of a sequence of influence diagrams presented

in the course of the chapter (Figures 4.1, 4.3, 4.4, and 4.7). All readers will find useful

in this section the application of the design model to the metoprolol example.

| In Section 4.6, I shall examine the Bayesian design model in terms of the knowledge-

level criteria established in Section 2.3. The key discussion in this section revolves

around the notion of objectivity that most critics claim to be lacking in Bayesian sta-

tistical approaches. Finally, in Section 4.7 1 shall summarize work of other researchers |

in this field.

4.1 Task Concepts |

The primary task—therapy selection—is the same in the Bayesian as in the classical

context. The Bayesian framework assumes the following relationships:

¢ The choice of the optimal therapy (e.g., nothing versus metoprolol) depends on

how that choice affects the happiness, or total utility, of the patient; maximizing |
patient utility 1s the goal of therapy selection. |

e The effect the treatment choice has on patient utility depends on an important

outcome, such as lifespan.

e The choice to be made depends on information regarding the outcome that the

reader has available from a study report.



4.1. Task Concepts 85

These relationships are depicted in the initial influence diagram of the framework,

shown in Figure 4.1. The relationships among therapy choice, outcome, and patient

utility are represented in a utility model, which is indicated implicitly by the arcs

incident on the patient-utility node. Typical models balance mortality gains against

morbidity losses, such as gains in lifespan versus side effects from medication. Patient-

specific risk and time preferences can be included in such models as well.

Figure 4.1 shows the heart of the influence-diagram-based Bayesian design model.

The diagram depicts the relationships just discussed. The diagram will be extended

in the course of this chapter.

47 Study ) Patient Observe2™ Patient
\.. Data Outcome i Mortality4 Lifespan

Therapy Patient Metoprolol
Selection Utility Placebo

(a) (b)

Figure 4.1: Decision component of the Bayesian design model. (a) The general model.
The patient’s total, expected utility (happiness) depends on the choice of therapy and
the outcome that results from that choice. The utility model is implicit in the arcs
incident on the patient-utility node. The fact that the chnician has the study data

at hand before making her decision is represented by the arc between the study-

data and therapy-selection nodes. (b) The model for the metoprolol problem. The
therapy choices are metoprolol and placebo. The outcome of interest is the patient's
lifespan. The study data are the observed mortality rates reported in the paper. (An
alternative depiction of the relationship between therapy choice and lifespan would
make the outcome node directly dependent on the decision node. However, we could
not modify such a diagram as we shall need to do in subsequent figures.)
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The primary likelihood function of the patient outcome, given the study data, is

the Bayesian answer to this question: What are the contents of the channel between

the reporting statistician and the reading physician? I shall explain how the likelihood

* is the proper channel, on page 102. | |

4.2 Domain Concepts |

Most probabilistic, statistical, and methodological concepts—the domain concepts—

are similar in the Bayesian context to those in the classical paradigm, but with a

few fundamental, philosophical changes. These changes result in radically different

inference and strategy concepts, as we shall see in Sections 4.3 and 4.4.

4.2.1 Probabilistic Concepts

The Bayesian approach views probability as a measure of personal uncertainty.! The

agent’s personal beliefs are the atomic probabilistic concepts in the Bayesian ap-

proach. Those beliefs, however, are still expressed in terms of probability. Ran-

dom variables, therefore, differ in the Bayesian paradigm only in their semantics—

probability representing uncertainty, not frequency—but not in their mathemati-

cal mampulation and calculation. As a result, observations in the world that are

expressed as numerical frequencies—the atomic concepts of classical statistics—are

simply one type of information that informs an agent’s personal beliefs. Thus, the

probability that a physician states regarding a patient’s surviving an MI 3 months is

a measure of a physician’s knowledge and belief about the patient and his disease.’

Study data, epidemiological results, and actuarial rates may each be used by the

1More specifically, we are using the subjective Bayesian approach. There are other Bayesian views
of probability (Good, 1983).

2We shall use the same statistical model for the metoprolol example, given on page 55.
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physician in her constructing that probability. Figure 4.2 shows the influence-diagram

representation of Bayesian probabilistic concepts.

Likelihood functions and pdfs are the same as in classical statistics. We shall be

concerned with two properties of these functions: their mean and their uncertainty.

The mean of a pdf is the value that is needed for decision making. In a symmetric,

unimodal pdf (one with only one peak), it is the value of the random variable that

we believe is most likely; in this case, the mean is also the location of the pdf. The

uncertainty of a pdf is how uncertain it is that the variable actually will take on

the value at the location. This uncertainty is calculated as the variance or standard

deviation (the square root of the variance) of the pdf. The higher the variance, the

more uncertain it is that the variable will take on the value at the location. Thus, the |

location of a pdf for X is {X) = fzP(z) dz, and the variance is f(z — (X))*P(z) dz.

A graph of the likelihood function is called a belief curve, to highlight its subjective

use.

Parameters perform the same function in Bayesian statistics as in classical statis-

tics: They reduce computational complexity. The semantics differ, however, because

there 1s no need to view parameters as real, fixed, physical quantities; parameters

are random vanables in their own right. Because they summarize probabilities for

primary variables, the uncertainty in a parameter’s belief is a second-order probabil

ity (Kyburg, 1987; Pearl, 1987) in the primary variable. This second-order probability

1s useful in expert systems for controlling the system’s sequence of actions {Heckerman

and Jimison, 1987), and is useful in planning research and guiding further investi-

gation. The purpose of research, from the Bayesian point of view, is to refine belief

in the value of a parameter—to narrow the uncertainty of the parameter’s pdf. As

an example, we may be uncertain about p, the probability of a patient’s dying in 3

months after an MI, and we can express our uncertainty about p in a pdf; Figure 4.2d

gives an example of such a belief curve.
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One implication of the random-variable nature of parameters is that the belief a

person has in those parameters must be modeled and expressed before any research

data pertaining to the parameters have been considered. Such prior probabilities allow

| an analyst to include in a Bayesian analysis just the sort of personal domain knowledge

missing from classical analyses. Sets of prior probability may be assessed subjectively,

or, because they are probability distributions,theymay be parameterized, and only

a small number of parameters need to be assessed; these new parameters are called

hyperparameters. For instance, one common tactic for dealing with prior belief |

about a binomial rate, such as p, is to represent the prior belief as a beta distribution, |

BE(a, 8); a and 3 are the hyperparameters. The combined model of data, p, a, and 3
| is called the beta-binomial model. The mean belief (location) and the variance, or |

uncertainty, are calculated from the {following equations,

vy = a+b,

po= 3 (4.1) |

| s? = alos)

These terms have the following semantics: v is the effective sample size, the analyst’s

total prior experience of situations similar to what she is about to observe, so pg (the

mean) is the proportion of “success” events that occurred in that prior experience, and

1 — pu is the proportion of “failure” events that occurred in that same experience. s? is

the variance of the distribution. As an example, a prior of BE(10,90) for the 3-month

mortality rate in patients assigned to placebo means that the analyst’s experience 1s

that, out of the 100 patients with myocardial infarction who constitute her experience

with this disease, 10 died within 3 months after the initial event. With a beta prior

| model, the larger the denominator, the more certain the analyst is about her prior

belief; the variance of the beta distribution narrows as the denominator increases.
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Figure 4.2: Bayesian random variables. (a) A chance node containing a label repre- |
sents the random vanable, X, the survival status of a patient 3 months after acute

survival of an MI. (b) The uncertainty of X is dependent on a parameter, p, which
1s, itself, a random variable. (c¢) The dependence of X on p 1s such that, if p were
known, then the uncertainty in X, given the values of that parameter, would be fixed;
X remains uncertain. The content of the dependence is the same as in the classical

case (Figure 3.1d). (d) The prior belief in p may be defined by the hyperparameters,
a and B (placed together in a single node)—two fixed, constant parameters of a beta
distribution. The graph displays the prior distribution for particular values of & and

8, with shaded Lines showing the location (z = £) and uncertainty (els) of the
distribution, where v = a + # is the effective sample size.
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These probabilistic concepts extend the Bayesian framework of Figure 4.1 by mod-

eling the uncertainty of the patient’s outcome (see Figure 4.3). The arc between the

parameter and the outcome represents a likelihood function. The patient’s outcome

1s a random variable that the physician reader has not observed at the time of the

decision, but about which she has subjective belief, whereas the study data are ran-

dom variables whose values she has observed, through reading the report. Finally, a

chance node is used in the figure to indicate explicitly the random-variable nature of

the parameter.

To complete the “circuit” in this figure, we need to relate the parameters to the

study evidence. The combination of study data with prior belief in the parameters

results in posterior probabilities that represent posterior beliefs for the parameters.

We shall see, in Section 4.3, how to calculate these posterior probabilities. First,

however, we need to understand, from the Bayesian perspective, the relationship

between parameters and study data.

4.2.2 Statistical Concepts |

Bayesians have the same interest in learning from study data as do classical statis-

ticlans. Bayesians, however, cannot appeal to physical reality in defining the rela-

tionship between observations and parameters; instead, they must invoke subjective

reasoning to permit their use of statistical models. The key tool for translating sub-

jective modeling into statistical modeling is the notion of ezchangeability.

Consider the metoprolol statistical model (page 55). In that example, I made the

assumptions that each patient death is individually related to the parameter, p, in

the same way, and that each such outcome is not influenced by the outcome of any

other patient. Classical statisticians interpret these assumptions as reflecting physical

reality. However, the assumption is actually subjective knowledge, because there 1s no

assurance that it is, in fact, true. For instance, it may be that nurses in the hospital
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become more experienced over time, learning from the survivals and deaths of patients

under their care; later outcomes would then be dependent on earlier outcomes. Or,

some of the patients assigned to metoprolol may not have complied with therapy—for

example, by not having taken the drug for the entire course of therapy; the outcomes

of these patients are dependent on a parameter different from the parameter that

governs the outcomes of those who received the assigned medication in the manner

| prescribed. The Bayesian way of expressing this assumption 1s through the concept of

exchangeability (de Finetti, 1974): If you believe that the conclusion about p would

be the same after observing the patients in any order, then the patient deaths are

said to be exchangeable observations. In particular, any future death is equivalent to

any previous one. Thus, observations in the past have implications for the future. de

Finetti (de Finetii, 1974) proved that, in the case of an infinite number of observations, |

the assumption of exchangeability is identical to the statistical notion of independent,

identically distributed random variables (iid; see page 56). This theorem has been |
extended to finite samples (Ericson, 1969; Diaconis and Freedman, 1980). These

theorems provide for Bayesian statisticians a justification for the use of classical-

statistics modeling techniques. Thus, the analyst makes, subjectively the assumption

of exchangeability. Domain experts can understand and make this assumption, as

well.

In extending the influence diagram for the literature problem, statistical models
define the relationships among the parameters and the study data, and the rela-

tionships among the parameters and the patient outcomes; see Figure 4.4a. For the

metoprolol problem, we assume an exponential distribution, with the parameter, A—

the instantaneous mortality rate. The influence diagram expresses the notion that

study data and the patient outcome are exchangeable.

 3The relationship between p and A is that A = 2- In i=, where At is the period of observation;
see Equation 5.5.
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Figure 4.3: The parameter component of the Bayesian design model. (a) The general
model. The uncertainty in the patient’s outcome is modeled as depending on a
parameter. The actual parametric model is indicated implicitly by the arc between
the parameter and the outcome nodes. (b) The model for the metoprolol problem.
The uncertainty in a patient’s lifespan is modeled as depending on a single parameter,
the instantaneous mortality rate, A. There is one such parameter for each therapy

selection. |
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The influence-diagram representation of exchangeability for a set of observations,

a parameter, and any other variables has three conditions:

1. The observations are conditionally independent of one another, given the pa-

rameter (i.e., the same parameter governs each outcome). oo

2. The probabilistic dependence of each observation on the parameter is the same.

3. If any variable is dependent on one observation, then that variable must be

dependent on all the observations. Its likelihood function, for the case of a de-

pendent chance-node, or its deterministic function, for the case of a dependent |

deterministic-node, given those observations, must be symmetric in all the ob-

servations. So, statistical functions of observations must be symmetric in the

observations.

The case where nurses’ abilities to care for heart-attack patients improve over time

violates condition 1, and the case of noncompliance violates condition 2. The graph-

ical representation of exchangeability (Figure 4.5) is identical to that of iid (see

Figure 3.2), except for the random-variable nature of the parameters; the hyper-

parameters for p are indicated in the figure. Note further the implicit equality of the

likelihoods for the observations (each is B(p)), and the symmetry of the dependent

statistic D = ba) Xj, in its parents, the Xi.
The notion of exchangeability defines the relevance of a study for a particular |

decision problem, and lies at the heart of the reader’s dilemma: Are patients in the
study “like” the patient in the clinician’s care? If the clinician thinks that the two

sets of patients are not the same, then the assumption of exchangeability does not
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Figure 4.4: The statistical component of the Bayesian design model. (a) The general
model. The statistical model for the study data is implicit in the arc between the
parameter and the study-data nodes. In this diagram, the study data and patient
outcome are exchangeable. (b) The model for the metoprolol problem.
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hold. In our framework, the way of dealing with this assumption violation is to model

the reasons for the violation. This consideration brings us to the issue of modeling

methodological concerns.

4.2.3 Methodological Concepts

Statistical models akin to those of classical statistics can be used inBayesian statistics

if the analyst assumes exchangeability, When exchangeability cannot be assumed, the

Bayesian statistician has two options. The first is the predictive-modeling approach.

Using this strategy, the statistician ignores parameters altogether, and models directly

his belief in a future observation in terms of previous data (Hill and Weisman, 1991).

Thus, the analyst might be asked to state the probability of a future death given

the deaths observed in the study, without reference to population mortality rates.

This strategy obviates the need for statistical models, which we have specified as |

| representing the relationship between the outcome of the patient at hand and the data

from the study; we shall not use this strategy in solving the literature problem. The

second is the model-refinement approach, of which there are two strategies: likelihood

debiasing and hierarchical modeling. Using these approaches, the statistician encodes

knowledge about methodological concerns. We shall find that, when we apply this

strategy, the notions of population, sample, and bias recur. Because only likelihood

debiasing is used in THOMAS, I shall describe that strategy.

Likelihood debiasing requires the statistician to express the original parameter

in terms of other parameters, This approach calls into play new parameters. I

distinguish three types of parameters: (1) the population parameter, which is the

parameter governing the outcome for a general subject, or the parameter of interest;

(2) the study parameter, which is the parameter governing the patients in the study,

" 48ee page 226 for a discussion of hierarchical modeling.
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Figure 4.5: Bayesian model for exchangeable observations. (a) 698 patient outcomes
(X;) are modeled as conditionally independent of one another, given the parameter,
p. The likelihood of each outcome given p is the same (i.e., the Bernoulli distribution,
B(p)). The hyperparameters, a and 8, govern the prior-probability distribution for
p. The X; have been observed. D, the number of deaths, is a statistical function of

698

the observations, D = }_ X;. (b) An alternative graphical convention for the model
1=1

in (a) is shown. Here, X is a vector of the values (Xi, X3,..., Xess). The derived-
probability arcs denote the binomial distribution (on the right) and the beta-binomial
distribution (on the left).
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or a subgroup of those patients; and (3) the effective parameter, which is the pa-

rameter governing the observation for a specific subject of the experiment. Consider

the metoprolol example, in the case of noncompliance (page 90), where condition 2

of exchangeability (page 93) is violated. If we have to dispense with exchangeabil-

ity, then the Bernoulli parameter for each patient is different, and we need 698 such

parameters, as in Figure 4.6a. Instead, however, we might use the model shown

in Figure 4.6b, where these parameters constitute two groups: One group shares a

common study parameter (the mortality rate of patients assigned to metoprolol who

received it) and another shares a different study parameter (the mortality rate of pa-

tients assigned to metoprolol who were noncompliant for a common period of time).

Then, the efective parameter for each patient in a group 1s dependent on—and iden-

| tical to—the group’s study parameter; the patient outcomes within each group are
exchangeable. The study parameters, in turn, depend on the population parameters.

For the metoprolol group, the dependence is again that of identity. For the noncom-

pliance group, the dependence is that the study parameter is a functional mixture of

the population parameters and an ancillary methodological parameter—the propor-

tion of time the patients were compliant. The relationship between the population

parameters—the parameters of interest for making the decision—and the study data

is now fully specified. The pieces of the relationship are straightforward. I refer to

this strategy as likelthood debiasing,® because the resulting likelihood function for an

observation given the population parameters is more complex than it was before the

| introduction of the extra parameters, but 1t remains well defined.

Figure 4.7 suggests how we can extend the Bayesian design model in a number of

ways, using likelihood debiasing. For instance, we can model methodological issues of

internal validity. Protocol departures—ways in which the study as executed deviated

from its design—divide the study patients into different groups: patients

| 5] thank David Spiegelhalter for suggesting this expression.
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Figure 4.6: Likelihood debiasing. 698 patient outcomes, Xj, that are not exchange-

able, because of noncompliance. (a) The likelihood for an individual patient is

X; ~ BI(p;); the relationship between an individual p; and the population param-
eter of interest, p (not shown) is unclear. (b) A likelihood-debiasing model for the
nonexchangeability of the observations employs the notion of different levels of pa-
rameters: the effective parameters for the individual observations, the study param-

| eters for groups sharing properties in common, and population parameters for the
parameters of interest. In this example, the effective parameters are identical to the
corresponding study parameters. The compliant group’s study parameter is identical
to the population metoprolol mortality-rate parameter. The noncompliant group’s
study parameter is equal to a mixture of the metoprolol and placebo mortality-rate
parameters. Thus, Xess ~ BZ{(Pnc group), Where Pnc group = TPmet + (1 — T)Pplac; the
relationship between p; and the population parameters is fully specified.
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Figure 4.7: Likelihood debiasing in the Bayesian design model. (a) The general
model. The relationship between the patient parameter and the study data has been
expanded in terms of the population, study, and effective parameters. The method-
ological concerns of selection, protocol design, protocol departures, and measurement
reliability are represented in the model in the indicated places. (b} The likelihood
debiasing model for the metoprolol example. This model contains the following spe-
cializations of the general model: The study is a two-arm parallel randomized chnical
trial, a protocol departure of concern is withdrawal of patients from their intended
therapy, and a source of measurement error is the inaccuracy with which death cer-
tificates establish a person’s mortality status. RCT denotes randomized clinical trial.
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who violated protocol and patients who did not. The two groups have different

study parameters, and likelihood debiasing is used to define those parameters, as in

Figure 4.6b. Measurement error—ways in which is the results observed differ from

the true outcomes—manifest themselves in differences between study parameters and

effective parameters; likelihood debiasing is used to define those differences.

4.3 Inference Concepts |

Inference, in Bayesian statistics, involves questions about the parameters and about

the decision of interest. The procedure that answers the first set of questions is

probabilistic updating, and the procedure that answers the second set is utility max-

imization. I shall discuss these procedures; then, to complete the parallel with the

classical design model, and to lay the groundwork for THOMAS, I shall discuss the

Bayesian perspectives on metadata and adjustments.

4.3.1 Probabilistic Updating

The goal of probabilistic updating is to find values of the parameters that are most

consistent with the prior belief, with the data observed, and with the known rela-

tionships among parameters. Probabilistic updating, using influence diagrams, has

shown itself useful in domains such as medical diagnosis (Heckerman et al., 1990),

robot vision (Agosta, 1988), and medical technology assessment (Shachter, 1990).

Figure 4.8 depicts the influence-diagram representation of probabilistic updating.

Given a statistical model, the Bayesian investigator 1s interested in the posterior-

probability distributions for the parameters, given the data observed. These are “pos-

terior” beliefs, because they describe the beliefs the investigator should have after
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study data have been observed. Bayes’ theorem gives the method of calculating pos-

terior belief from prior belief and from the evidence:

| P(X) = A aay (4.2)
where 6 is the parameter of interest, and X = {Xj,...,X,} are the observed data.

Equation 4.2 states that the posterior belief in a particular value of the parameter,

given the observed data, is a function of three pieces of information: (1) the Likelihood
of the observed data, given the value of the parameter; (2) the prior belief in that

value of the parameter; and (3) the overall probability of having observed the data. |

Equation 4.2 follows directly from the axioms of probability, once we allow for a

parameter to be a random variable. Because the new belief is the old belief updated by

the new evidence, the process of calculating the posterior belief 1s called probabilistic

updating.

Note that the overall probability of the evidence is a constant once the data are

observed. If we were to ignore the denominator in Equation 4.2, we would have, for

each possible value of the parameter, a number equal to the posterior probabilities,

scaled by the same number, P(X). These new numbers are called the posterior

likelihoods for the parameter, and, in fact, many Bayesians refer to a likelihood

function for the parameter,

The Bayesian literature uses the same expression, likelihood function, to refer to the
probabilistic dependence of the data on the parameter, and to refer to the posterior

likelihood of the parameter. To avoid confusion, I shall thus use primary likelihood

function to refer to the former (£(X | 6)), and likelthood function for the parameter

to refer to the latter (£(@ | X)).
The likelihood function for the parameter plays a significant inferential role in

Bayesian statistics. Note that, once the data are observed, £( | X) is a deterministic
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function of the data; this hkelihood is thus a statistic. The fundamental princi-

ple of Bayesian statistics, called the Likelihood Principle, is that the Likelihood

’ function for the parameter is the statistic necessary and sufficient to update a per

son’s belief in the parameter of interest. This principle may be viewed as an axiom of

Bayesian statistics (Berger and Wolpert, 1984), or may be derived as a theorem (Birn-

baum, 1962; Berger, 1988), based on commonly accepted axioms. The importance

of the Likelihood Principle cannot be overstated, for the principle obviates the need

to create any of the well-known statistical tests, such as the z-score and {-test, for

evaluating the inferential implications of data. We should not be surprised to find, |

then, that Bayesian inference has no need for statistical tests.® Instead, Bayesian

statisticians examine the posterior-probability distribution functions, calculated via |

tlic same procedure—probabilistic updating—regardless of the statistical model em-

ployed. The difficulties encountered in Bayesian updating are numerical, such as how

to ensure the stability of an update, or how to perform the update for an arbitrary

function; they are not conceptual.

Conjugate prior-probability distributions form a class of probability distributions

that lack some numerical difficulties of generalized probabilistic updating. Conju-

gate distributions are pdfs where the prior- and posterior-probability distribution have

the same form, with respect to a class of primary likelihood function. Thus, the beta

distribution is the conjugate prior for binomial evidence. There are two advantages to

using this class of prior pdfs. First, there are closed-form solutions to the probabilistic

updating. Second, updated belief in a parameter can be expressed as altered values of

| the parameters modeling the belief in that parameter. Thus, if prior belief in a mor-

tality rate were expressed as BE(a, f), and if s “successes” were observed along with

f “failures,” then the posterior distribution would be expressed as B€(a + 3, 8 + f).

" ®This statement is not true, however, with regard to model selection; see Section 44.
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Figure 4.8: Probabilistic updating. (a) Initial structure. This structure is similar
to that in Figure 4.4a. (b) After updating. The node for the parameter contains
the posterior belief in the parameter, given the data, X; utility maximization can
now proceed. The arcs between the parameter and data nodes are emphasized to
point out that probabilistic updating entails creation of the likelihood function for

the parameter, £(8 | X).

4.3.2 Utility Maximization | |

Decision analysis is the field concerned with discerning the optimal, normative de-

cision among a series of choices, generally under uncertainty. The representation

of uncertainty in this field is provided by Bayesian, subjectivist probability. The

representation of optimality is provided by utility theory. von Neumann and Mor-

genstern (1947), in their seminal book, developed an axiomatic system to encode the

preferences of individuals to allow for normative decision making. Utility is a finite, :

subjective scale that is isomorphic to the closed interval {0, 1]. The normative, op-

timal decision is defined as that decision that maximizes the expected utility of the

decision maker:

J 4.4& = max [ u(6,0)P(0]X)de, (4.4)
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where § is the optimal decision, A is the space of all possible decision alternatives,

and u (6,0) 1s the utility of taking action é, when the parameter of interest takes

on the value, 8; the other variables are defined as previously. The decision maker’s

| attitudes to risk, time, and other tradeoffs are represented in the utility function.

4.3.3 Bayesian Metadata |

In addition to the types of data involved in a particular study, Bayesian metadata

| include information about the types of parameters concerned in the problem, and

about the availability of information about either data or parameters. Knowledge

about the nature of a parameter might be used, for instance, in choosing the shape

of the parameter’s belief curve. Information about data availability is important,

| because just knowing that a particular type of datum is available 1s information that

can update a Bayesian analyst’s belief. The use of such metadata is a central theme

of Chapter 7.

4.3.4 Adjustments

As discussed in Section 3.3.4, the classical design model asks us to adjust conclusions,

post hoc, on the basis of information not included directly in the analysis. Such

information is often the subjective type of knowledge encoded in Bayesian prior-

probability distributions. Thus, the Bayesian approach does not require post hoc |

adjustments. Rather, “adjustments” to any estimates or conclusions result from the

structure of the model employed in the analysis and from the form of the prior-

probability distributions used.
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4.3.5 Reformulation of Classical Measures

Many classical-statistical measures are reformulated in the Bayesian context; THOMAS

uses these reformulated measures in its interaction with the user. We shall find that

the posterior-probability distribution contains the information needed to construct

the Bayesian equivalent of each classical statistic.

4.3.5.1 Parameter Estimation

The classical task of parameter estimation is to derive a statistical function that,

on average, gives an estimate of the true parameter that is unbiased and has the

least variance. Figure 3.4 depicted this process. By unbiased, we mean that, with

increasing sample size, the estimate approaches the true value of the parameter. The

Bayesian equivalent is expressed in Figure 4.9—choosing a value that maximizes the

user’s utility. In statistics, the utility function often used is the domain-independent

least-squares function: The further the estimate is from the true value, the lower

the utility. In this context, the mean of the posterior-probability distribution is the

function that produces the desired estimate (Berger, 1985).

4.3.5.2 Confidence Intervals

Consumers of classical-statistical analyses often have a misguided understanding of

how a confidence interval expresses the statistician’s uncertainty in his parameter

estimate. The posterior-probability distribution can offer the semantics the consumers

want: The area under the pdf bounded by two values of the parameter has exactly

the semantics of the degree to which the user believes the value of the parameter lies

between those two values. However, the implied question, “What interval contains

the desired amount of the user’s belief?” (e.g., the ubiquitous 95 percent) actually has

an ambiguous answer. The interval may lie, for instance, from the left-hand limiting
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(a) (b)

Figure 4.9: Bayesian parameter estimation. (a) The choice of an estimate, 0, based
on data, X, results from utility maximization of the utility function dependent on
that estimate, and the true parameter, 8. The utility function may, or may not, be
domain-dependent. (b) The estimate is then used as a constant in the domain decision
problem. The decision problem in this figure that of treatment choice (Figure 4.4).
The utility function is domain-dependent.

value to some upper bound (Figure 4.10a}, or 1t may lie from the right-hand limiting

value to some lower bound (Figure 4.10b). The Bayesian convention is to find the

narrowest interval around the posterior mean that contains the desired amount of

belief (Figure 4.10c); this interval is called the credible set (Berger, 1985).

4.3.5.3 Hypothesis Testing

The traditional hypothesis test examines the implications of a parameter of interest

taking on a particular value. For instance, in the metoprolol example, we create and

test a new parameter, the difference between the drug-induced mortality rates (i.e.,

the mortality rate due to placebo minus the mortality rate due to metoprolol) (see

Section 3.3.2). In the Bayesian paradigm (see Berger (1985)), we incorporate that

difference parameter into the statistical model and arrive at a posterior-probability

distribution for the difference (Figure 4.11b). The area under the belief curve for

values of the difference greater than zero gives the posterior belief in the statement
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| Figure 4.10: Credible sets. These sets refer to an interval over which the be-
lief is of a certain level. In each case, the endpoints satisfy the relationship that

Pla £8 <b|z)=1- a, where a and b are the endpoints, § is the parameter of |
interest, = is the observed data, and « is the small amount of error probability de-
sired. Compared this relationship with the statement implied by a confidence interval:

Pla(z) <8 <b(z) | §) = 1 — a, where a(z) and &(z) make clear that the endpoints
| are functions of the data. Note that this statement is conditioned on knowing the

value of the parameter. (a) One-tail credible set, with the parameter’s minimum
value as one anchor point. (b) One-tail credible set, with the parameter’s maximum
value as one anchor. (c) The standard credible set, which is the narrowest credible
set of the specified belief that contains the mean value of the parameter.

that the mortality rate due to placebo is larger, on average, than the mortality rate

due to metoprolol. The larger that area—that belief~—the more certain we are about

the conclusion about the relative efficacy of the two drugs. Above a certain threshold

value of belief, we may choose to accept that conclusion as true. A popular threshold

is 95 percent. Clearly, this threshold is arbitrary and community-bound. Regardless

of the threshold, this measure is irrelevant for decision making, where the individual

posterior-probability distributions are all that are needed, as we saw 1n Section 4.3.2.

4.4 Strategy Concepts

I first shall show the sequence of steps—the strategy—dictated by the Bayesian ap-

proach, and then shall focus on the problem of selecting the appropriate probabilistic
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Figure 4.11: Bayesian hypothesis testing. This example shows the test for the hy-
pothesis that the difference between two mortality rates is positive (the Bayesian

z-test). (a) The influence diagram for the test. The parameter Agcy exp = fect = Oexp 13
the difference between the control-treatment and experimental-treatment mortality
rates. Compare with Figure 3.6.(b) Belief curve for posterior belief in the difference.
If the area under the curve for positive values is greater than a certain threshold,
then the reader can conclude that the drug with the smaller posterior mean mor-
tality rate is in fact better than the other drug. The threshold must be set by the
reader on external grounds. The area under the curve represents the probabilistic

expression, P(f, — 0, > 0 | X), rather than the expression used in hypothesis testing, | |
P{t(X) | 6, — 8, = 0), where t(-) is the appropriate statistical function.

model. The general strategy for performing a Bayesian analysis, depicted in Fig-

ure 4.12 (repeated from Chapter 1) is as follows:

1. Construct the analysis model relevant to the study using an appropriate method-

ological formulation of the problem at hand.

2. Assess the necessary prior beliefs from the reader

3. Assess the necessary patient preferences.

4. Include the evidence from the study.

5. Perform probabilistic updating.
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6. Perform utility maximization.

7. Examine the posterior distributions.

8. Examine the utihties.

This sequence of steps was shown in Figure 1.6. The only step that we need to

justify 1s the model-construction step (step 1). |

Proper model selection In Bayesian data analysis is depicted in Figure 4.13a. In
this proper analysis, the analyst must specify, for every statistical model in the uni-

verse, a prior belief that represents the analyst’s belief that that model is appropriate

to the problem at hand. The space of all parametric models is very large. Specifically,

if we label models on the basis of the variables in those models (i.e., on the basis of

structure}, then the space is countably infinite, because we can enumerate the vari-

ables in some order (say, alphabetically). Consider, too, that parametric models differ

in probabilistic type. Thus, we might construct a Gaussian-based, linear-regression

mode] for the level of an outcome with parameters for age, sex, and prognosis. Or,

we might construct a logistic-regression model for the probability of outcome with

parameters for ethnicity and cardiovascular status. Note that the two models have no

parameters in common, so their prior beliefs must be assessed separately. Even worse,

the analyst would also have to specify a prior belief in every parameter contained in

each of the models.” Making all these assessments is clearly impossible. Thus, it is

not possible to periorm a general Bayesian analysis in finite time. Therefore, analysts

must take approaches that are not formally correct, but that may be informed by an

understanding of the general analysis.

There are two ways of modifying the proper Bayesian approach. The first is to

choose the model and the parameter estimates in some unified way (Figure 4.13b).

"The node labeled 8 contains a countably infinite list of parameters. The distribution implied by
the three nodes, M, 8, and X, P (x | M, 0), selects the parameters from that list that are appropriate
to the model M.
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Statistical Posterior
Bayesian Model Bayesian Probabilities

Preferences Analysis
Formulation Analysis |

Methodological Prior | Optimal
Concerns Probabilities Decision

Reader's Reader's Reader's |

Abstraction Background Posterior

of Report Knowledge Knowledge

Figure 4.12: The information-flow diagram depicting the Bayesian strategy for using
the Bayesian design model, same as Figure 1.6.

Here, the analyst generates pseudopriors over models. A pseudoprior is a weight

| for a model that can be calculated on the basis of attributes of the model, and

that, therefore, obviates the need for subjective assessments. The calculations take

into account the tradeoff between how well the model fits the data at hand and

how many parameters are in the model. A tradeoff results because the better a

model accounts for the data at hand, the less likely it is to generalize—the model

is said to be less robust. Furthermore, the greater the number of parameters in the

model, the less posterior certainty we have about their values, given the data at

hand. The concerns of fit, robustness, and posterior uncertainty would be objectives

in the utility function the Bayesian-style analyst would use in choosing a model and

its parameter estimates. Statistical tests—here used as heuristics—are helpful in

making these choices. The methods used in this strategy are numerically intense,
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result in parameter estimates rather than posterior beliefs, and usually do not use a
domain-based utility function (Clayton et al., 1986; Linhart and Zucchini, 1986).

The second modification is to choose the model first, and update behef in its

parameters later (Figure 4.13c). There are three strategies for implementing this

modification. In each of these three strategies, the final analysis performed is condi-

tioned implicitly on the choice of the probabilistic model, as indicated in the figure.

The first strategy is to use domain knowledge to narrow attention to a number

of models of interest, and then to assess prior behef in that reduced set of mod-

els (Clayton et al., 1986). Self and Cheeseman (1987) calls this strategy transduction: |

The analyst chooses a set of models that share a parameter; the prior belief in that

parameter expresses prior belief in different models (Herskovits, 1991). |

The second strategy is to choose a model based on principles of model quality,

such as simplicity and parsimony. These principles may be both domain- and data-

independent; their use is advocated by researchers in the field of abduction (Thagard,

1978).

The third strategy is to construct the model that seems most appropriate to |

the problem at hand, and to modify it in response to the availability of the data

at hand—that is, In response to the metadata of the problem. Thus, we would

introduce a noncompliance model only if we knew that there were data referable to

this protocol departure. Such data might be specific, such as a listing of the numbers

| of patients who were noncompliant for the indicated time periods, or they might

be nonspecific, such as the identity of the drug, which indicates to a knowledgeable

reader the degree of compliance one can expect. Appealing to metadata prevents

violation of the principle that data should be counted only once (Wittkowski, 1986),

if we were tempted to use the data themselves to select the model and to update

behefs in parameters. This strategy is the one I take in this dissertation.
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Figure 4.13: Bayesian model selection. (a) The general, proper Bayesian analysis
requires the analyst to assess a prior belief in every possible probabilistic models |

(M) and in every possible parameter (0). (b) Bayesian-style model selection involves
the choice of a particular model (M) and a particular estimate for the parameters |
of that model (6). The utility function determining that choice need not be related
to a particular domain. (c) Alternatively, the analyst might select a model on do-
main grounds, and update belief in the parameters using a domain-dependent utility

function. | |
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4.5 The Bayesian Design Model

We can finally view the completed Bayesian design model for the literature problem.

It contains the various probabilistic, statistical, and methodological concepts we have

discussed in this chapter. The theoretical aspects have been discussed in previous
sections; now let us review how the model applies to the metoprolol problem.

We reiterate the example from Section 1.2. Consider a 55-year-old white man

who has just had a heart attack and who has been brought into the hospital almost

immediately after symptoms began. Besides needing to stabilize his acute cardiovas- |

cular status, his physician wants to prevent further deterioration of his general cardiac

condition. The doctor knows that metoprolol might improve his cardiac status. This

drug has, however, serious known side effects. Should she administer the drug? :

The patient-utilily model (Sections 4.1 and 4.3.2) focuses on life expectancy: The

drug associated with the longer life expectancy is preferred. The outcome of in-

terest, therefore, is mortality. We make the modeling decision (Section 4.4) to use

the patient’s probability of death (after he has survived the hospitalization) as the

patient parameter (Section 4.2.1), which we will assume to be constant over time

(constant-hazard model). For the modeling decision of which referent population to

use (Figure 4.6b), we have at least two choices on the basis of cardiological domain

knowledge: middle-aged men and middle-aged adults. If we choose the population of

combined sexes, there will be a larger number of studies, each with a large sample

size, that we can bring to bear on this problem. This modeling decision exposes the

tradeoff between the specificity of the data and the number of data available.®

The sample in the study (Figure 4.6b) consists of all heart-attack victims from

south Sweden in the late 1970s. This characterization represents selection from our

" #This tradeoff is more obvious for women patients, because there are so many fewer studies of
women who have had heart attacks. The tradeoff is an example of a larger class of problems, called
the reference-class problem (Kyburg, 1983).
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population on ethnic grounds, but not on the basis of referral, diagnostic purity, or

diagnostic-access biases (Sackett, 1979). The protocol design 1s reported to have been

that of a double-masked, randomized, clinical trial. There is evidence to support the

"claim that the protocol was implemented as designed. For instance, the compositions

of the metoprolol and placebo groups turned out to be similar with respect to relevant

baseline characteristics, corroborating the implementation of randomization (see

Protocol

Protocol Design Select
Implementation election

Measurement

Reliability

Effective Study Population
Parameter Parameter Parameter

pTTS8 ,
£’Experimental ©} Patient

Outcome 4 Parameter

Credibility

Reported Patient
Data Qutcome

Therapy Patient
Selection Utility

Figure 4.14: Bayesian design model. This framework takes into account the proba-
bilistic, statistical, and methodological concepts discussed in this chapter.
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Section 8.3.4 for further discussion about this concern). The numbers of withdrawals

from the two groups on the basis of side effects are also similar, suggesting that, if

there was some unmasking of care providers such that the treating physicians became

aware of the true treatment assignments, the degree of unmasking was the same in

both groups. |

Protocol departures (Section 4.2.3) are evident in the study, because a number of
patients did not receive the treatment to which they were assigned; they withdrew from

the study. Estimating the actual degree of withdrawal explicitly is important for cal-

culating posterior-probability distributions for the study parameters. This estimation

| adds bias parameters to be inferred—the probability of withdrawal from metoprolol

and the probability of withdrawal from placebo—which, in turn, results in our con-

sidering a space of observational models larger than that we would be considering if

we did not include the withdrawal bias. The withdrawal-bias parameter in this study

models the fact that the study parameter for metoprolol was a result of mixing the

treatment group with a third group of patients show received no treatment-—that 1s,

a group with the baseline mortality risk (the group of patients withdrawn). ( We

shall consider this methodological concern in more detail in Section 5.6.2.)

Continuing around Figure 4.14, measurement reliability (Section 4.2.3) for mor-

tality studies depends on the sensitivity and specificity of the classification process.

These new parameters are P(labeling patient as “dead” | patient is deceased) and

P(labeling the patient as “alive” | patient is alive), respectively, both of which de-

pend on patients who have dropped out of the study. The authors inform us that

the mortality status of each patient entered into the study was assessed, regardless of

subsequent treatment status. Finally, the credentials of the authors are such that we

consider the study to have high credibility; therefore, we do not need to incorporate

this extra debias.
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Having specified the model, the physician can now assess her prior beliefs (Sec-

tion 4.2.1), enter the relevant data, calculate the posterior-probability distributions

(Section 4.3.1), assess the relative importance of side-effects losses to mortality gains,

find which drug leads to the most ufility (Section 4.3.2), and thus, arrive at the

appropriate decision.

4.6 Critique of the Bayesian Approach

In this section, I shall discuss how the Bayesian approach satisfies the knowledge-level

specifications of Section 2.3.

4.6.1 Intersubjectivity

The system should allow for differences of opinion among readers.

The capability of the Bayesian approach to represent divergent beliefs is the |

method’s obvious strength. The rules of the Bayesian game are straightforward: If |

two people disagree about the conclusion of a study, then either they disagree about

their prior behef, or they disagree about their analyses of the study, or both. Hl they

disagree about their prior belief, then they can discuss the sources of their divergent

prior belief. If they disagree about the analysis of the study, then they can dissect

| their disagreement in terms of the design model of Section 4.5. Bonduelle (1987)

describes in detail the use of an influence-diagram-based framework for settling such

disagreements.

The Bayesian approach may founder on its reliance on the subjectivity of the

assessed prior beliefs. Physicians are not skilled at generating such assessments (Eddy,

1982). There are two strategies for overcoming this problem: to improve the interface |

and to educate the physician users. In terms of the interface, we might allow the

physician to communicate qualitatively with a Bayesian system. Such an interaction
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might involve the physician stating that she thinks with a “high” degree of certainty,

that a mortality rate 1s “low.” Alternatively, such a system might use a graphical

depiction of prior- and posterior-belief curves as the language of interaction with the

user. Discussion of educational approaches is beyond the scope of this dissertation.

4.6.2 Objectivity |

The system should depend on objective, reproducible, and auditable methods. |

The primary danger in the intersubjectivity of the Bayesian approach is that a

dishonest reader may work backward from a desired posterior-probability distribution

(with its policy implications) to a pdf that she could claim to be her prior belief. The

primary defense against this abuse is that the Bayesian approach forces the physician

to be explicit about that prior belief. The explicit nature of the representation acts

as a tool to audit the physician’s behavior. If the physician prefers to take a different

approach for a different, but similar, patient, then the physician will have to justify

explicitly the changing of her “prior” belief. Thus, the weakness of the approach, in
being potentially subverted, can be turned into a strength, in its being objectively

© audited.

A second strength of the approach 1s that the probabilistic structure can generate

clearly understood, numerical strengths of evidence.? A third strength is that multiple
analyses may be done, if the analyst is honest (via her prior beliefs) in what she

expected to find out before she performed the analysis. A fourth strength is that

the process of making a decision based on the results of a study is well defined, can

incorporate patients’ explicit values, and does not require ad hoc heuristics; it is, In

fact, objective, although the content is subjective.

9The strength of evidence for one hypothesis over another is the likelihood ratio, nl,
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4.6.3 Normativity |

The system should implement methodologists’ knowledge-level prescriptions.

I have shown, in Section 4.2.3, that concerns of methodologists—the desire to

ensure high-quality and credible studies—can be represented in the Bayesian frame- |

work. It remains to be shown how the details are actually incorporated in an ongoing

analysis (see Section 5.8). | |

The notion of normativity has a more specific meaning in the Bayesian con-

text (Savage, 1972). The concept is usually taken to mean that an appropriate

inferential method 1s one that leads to a conclusion consistent with prior behef and

with the data; such a method is said to be coherent. Clearly, the Bayesian approach

fulfills this criterion, as we saw with Equation 4.2. Equally clear is that any classical

statistical method that violates the Bayesian approach is incoherent.

4.6.4 Flexibility :

The system should be able to evaluate both the pragmatic effectiveness and the ideal

efficacy of tested therapy.

| The decision-analytic framework provides a context for reinterpreting and under-

standing the dispute between analysts favoring efficacy-based interpretations, and

those favoring effectiveness-based analyses.

The Bayesian reinterpretation is that the dispute turns on the decision to be

made (Sackett and Gent, 1979). The analyst who cares about clinical decision making,

under this interpretation, will perform an analysis based on effectiveness, whereas the

analyst who concerns herself with discerning physical causality (and with deciding

what study should next be performed) will perform an analysis based on efficacy. In

the first case, the analyst will care about the effective parameters and their posterior-

probability distributions. In the second case, the analyst will examine the posterior
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| beliefs in the population parameters. The population parameters can be used in the |

first case, as well, if the analyst has a patient-specific model for how a patient might

violate protocol or might differ from the general population of patients. Note that,

because the analyst may construct a single model to include both sets of parameters,

| neither analysis precludes the other.1° :

4.6.5 Adaptability |

The system should enable the clinician to express methodological concerns without |

using statistical language.

Bayesian-formulated measures implement the semantics desired by physicians,

such as degrees of belef. Yet, the complexity of a Bayesian analysis 1s such that

1t 1s unrealistic to expect physicians to employ the statistical knowledge necessary

to execute the analysis. My conclusion from this potential conflict is that physicians

require a semantic layer between them and the full power of a Bayesian statistical

analysis. Such a layer permits the physician to express a possibly constrained set of

concerns, and creates a Bayesian statistical model reflecting those concerns, protect-

ing the physician from unnecessary statistical details. The structure and function of

this layer are the subjects of Chapters 6 and 7, and are two contributions of this

dissertation.

4.6.6 Simplicity

A simplified system should help the physician to interpret a single article that she has

selected and read; should exclude explicit knowledge about particular statisticians and

investigators; should assume that the physician user has the ability to express clearly

10} however, the study has been designed with one type of analysis in mind, then the uncertainty
brought into the analysis through considering methodological concerns that convert that analysis
to one of the other types may overwhelmingly negate any certitude provided by the observed data
themselves.
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the particular problem at hand; and should support the decision making of a single

physician, rather than that of an entire community.

The narrowed specifications can be accommodated in the Bayesian framework, |

although a computer-based implementation is needed; the developmentof the spec-

fications for such an implementation is the subject of the next chapter. Note that

subjective information, such as the reader’s perception of the integrity of the reporting

| investigators, can be incorporated straightforwardly in the Bayesian framework.

| 4.7 Previous Systems

As with classical statistics, most of the computer-based systems have been built by

statisticians for statisticians, Goel (1988) provides a useful reference list of statistical

systems. |

Investigators have built a number of graphically oriented systems that allow users

to build knowledge-based systems with influence diagrams {Shachter, 1988c; Andersen

et al., 1989; Chavez, 1991; Beinlich and Herskovits, 19890). Each of these systems

assumes discrete variables in the networks, and is, therefore, not useful for statistical

problems. Furthermore, these systems require that the user be conversant in the

representational nature and power of the influence diagram, skills that are beyond

most clinicians. I shall discuss, in Chapter 7, approaches that enable users to build

influence diagrams without understanding the details of their contents.

My approach builds on the Confidence Profile Method (Eddy, 1989; Eddy et al.,

1990; Shachter, 1990; Eddy et al., 1991), which enables analysts to combine the

results of multiple studies into a coherent diagnostic or treatment policy. The tech-

| nique, is based on Bayesian probability, and its most recent representation is based

on influence diagrams. The method calls for the analyst to assemble an evidence
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table of information from the different studies, noting the interventions used, the pa-

tients studied, the outcomes measured, and the biases involved. The analyst then

may construct the influence diagram that integrates the evidence together, or may

use adjustment formulae that produce estimates of the parameters of interest, The

output of the approach consists of a set of posterior-belief curves; the analyst can

infer much information from the relative position of the summary curve with respect

to the curves representing the results of the different studies.

We shall find that the CPM and the method developed here supplement each

other. The CPM is geared toward policy makers, and, therefore, often advises the |

use of noninformative prior beliefs. Here, we are targeting individual clinicians, and

can, therefore, allow for prior beliefs that truly reflect domain knowledge. The CPM

approach is generally used by specialist analysts (Trudeau, 1991), whereas my ap-
proach automates the construction of the relevant models to enable wider use of the

CPM. We shall examine other differences in Section 7.8.

4.8 Summary

The Bayesian framework satisfies the knowledge-level criteria for solving the literature

problem. It does so mainly by preserving many classical probabilistic, statistical, and

methodological concepts, and by extending them to include subjective information.

The gain is that the overall process becomes auditable and objective. The loss is the |

increased complexity and the demands on the user to provide just such explicit prior

information. My thesis is that a computer-based environment can help to ease the

complexity and to fulfill the demands, thereby enabling physicians to use the Bayesian

framework to solve the literature problem. How such an environment provides this

help is the subject of the next three chapters.
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Chapter 5

THOMAS’s Design Model |

The framework of Chapter 4 can be applied to a large number of contexts in medicine.

To show that the framework can be used for solving the hterature problem—the

point of this dissertation—I shall start by applying it to a limited domain. My

“working hypothesis is that understanding how to assess methodological concerns in

this constrained context will help us to create environments where more complex

concerns are involved. In this chapter, I shall discuss the system’s design model,

summarized in Figure 5.1; it is a specialization of the model shown in Figure 4.14.

Our concern shall be to define the limited domain from both the user’s and the

statistician’s points of view, so the domain is well defined either way.

In Section 5.1, I shall define the type of user expected by THOMAS; in Section 5.2, 1

shall discuss the type of domain to which THOMAS applies. The next two sections nar-

row the scope of the Bayesian computational context: Section 5.3 discusses THOMAS’s

utility model, and section 5.4 describes THOMAS’s probabilistic model. The following

three sections describe THOMAS’s use of the three types of parameters introduced in |

section 4.2.3: Section 5.5 elaborates on the use of population parameters, Section 5.6

shows how THOMAS uses study parameters to deal with departures from protocol,

and Section 5.7 describes the use of effective parameters in representing measurement

123
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reliability. In Section 5.8, 1 discuss how all the models are used to capture notions

of credibility. Finally, in Section 5.9, I shall summarize the model. In each section, I

shall describe the design model, the limitations of that model, and the ways that the

model might be extended.

5.1 Intended User |

Because all physicians incorporate new policies into their practice, the hiterature prob- |

lem should be universally important to physicians. Yet, not all physicians base their

decisions on the clinical research literature (Williamson et al., 1989; Greer, 1988; Hill

and Weisman, 1991); fewer still take the time necessary to examine critically the

clinical research literature. The audience for a program such as THOMAS comprises

these latter individuals. Although studies have documented that such physicians are

not adept at statistical and quantitative thinking (Eddy, 1982), medical educators

expect physicians to master the qualitative issues manifested in the clinical research

literature (Sackett et al., 1991; Haynes et al., 1986). Thus, we shall define our user

community as physicians who have an interest in the clinical research literature, and

who have a familiarity with the basic concepts of research design and methodology.

This group of intended users could be expanded to include medical students and

medical-journal editors. However, the system would have to be modified to take into

account educational goals, in the first case, and publishing needs, in the second.
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Figure 5.1: THOMAS’s design model. This framework is a specialization of that shown
in Figure 4.14. Encircled numbers refer to section numbers in this chapter where the
indicated entity or relationship is discussed. Credibility is only implicit in the model,
and, therefore, is represented by a ghost node.



126 THOMAS’s Design Model

5.2 Restricted Domain

THOMAS operates in two domains: a methodological domain, and a medical domain.

THOMAS’s methodological domain is restricted to a single class of study designs: the

two-arm parallel RCT, a schematic of which was shown in Figure 1.1. In such studies,

patients are assigned to only one of two possible interventions: the control or the

experimental. I chose this design because biostatisticians deem it least vulnerable to

bias, and academic physicians accept it as the gold-standard method for determining

the ideal biological efficacy or the pragmatic effectiveness of therapy. Furthermore,

other types of designs can be modeled as modifications of this core design (Eddy

et al., 1991). | |

The medical domain consists of patients, diseases, practitioners, therapies, and

outcomes. THOMAS can consider any type of disease, class of patients, or practitioner;

| it does not, however, reason about them, as such considerations constitute 1ssues of

external validity. The class of therapy will be limited to drugs. The reason for this

restriction 1s that drug therapy 1s the type of intervention most amenable to gold-

standard testing: The control drug can be made physically almost identical to the

experimental drug, maximizing the degree of masking possible in the study. Mortality

1s the outcome to which physicians and patients pay the greatest attention—we will

do so as well. Our concern will be with the lifespan of a patient, symbolically denoted |

L. As we shall see in Section 5.3, morbidity concerns will also be considered, but not

as explicitly is does lifespan.

These restrictions leave THOMAS applicable to 0.3 percent of the medical literature,

as indexed by the National Library of Medicine (Meinert et al., 1984). Although this

proportion is small, it represents the published data that the academic community |

finds most influential, as we infer from the recurrent appeal to the results of RCTs or

to the demand that proof be offered through the execution of such a study. Although
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the statistical components of the model could be extended to other outcomes and

therapies, our approach is limited mostly by the system’s utility model.

5.3 Utility Model

If a study were to report that the experimental drug leads to a lower mortality rate

than does the control drug, then, as clinician readers, we still might not prescribe the

experimental drug. There are two reasons for not taking at face value the predicted

hfe expectancy. First is the issue of uncertainty: The experimental drug may have |

led to a better outcome in this study, but it might fare less well in some future com-

parison. This issue is not relevant in a normative decision-making context, because

in choices based on formal decision analysis, only the means of the decision maker's

posterior beliefs matters (Howard, 1988)." Second is the issue of treatment cost: The |

“better” treatment may have associated with it side eftects and financial costs that

are not worth even a substantial increase in life expectancy. Here, the issue is one of

| preferences, where mortality gains from the experimental drug, in specific cases, may
be perceived as overwhelmed by morbidity losses.

Preferences are captured in utility models, which involve balancing potentially

conflicting objectives (Klein et al., 1990). A problem in constructing utility models |

is that of the comensuration of disparate qualities: mixing apples and oranges. For

instance, how does a reader balance the objective of minimizing mortality, with the

objective of minimizing morbidity when the drug with the lower mortality increases

morbidity? One solution is to measure the less important attribute on the same scale

as the more important entity. THOMAS takes this approach, using the scale of life

"Posterior uncertainty is relevant in deciding what study to perform next. In such a decision,
the investigator should pursue the variable in the decision model with the greatest uncertainty,
posterior to the study at hand, where narrowing that uncertainty would result in the greatest
increase in utility. This approach is called conirel-decision making on the basis of erpecied value of
informeiion (Howard, 1983).



128 THOMAS’s Design Model

years.

THOMAS asks the user (see Figure 5.2): How much gain in life span does the

patient believe 1s necessaryto balance the treatment morbidity and, therefore, to

make taking the drug worthwhile? I call this difference the pragmatic difference. If

the difference, based on the posterior beliefs, between the life expectancy associated

with the experimental drug and that associated with the control drug is less than

the pragmatic difference, then the patient should not take the experimental drug.

Ideally, THOMAS would use a value that takes into account patient-specific factors

(e.g., based on actuarial data for age, sex, and disease, as in the DEALE utility |

mode] (Beck et al., 1982)); currently, the system uses the life expectancy calculated

only from the analysis of the study at hand.

The utility function that THOMAS uses is

| u(b,L) = L = Ijeerp)4, (5.1) |

where u (-} is utility, é is drug choice, § = exp denotes the experimental drug, L is

lifespan, I.) is the indicator function, and A is the pragmatic difference. The posterior

utility (uv (6,L)) = (L |G=exp)D) = (L } = I(szexp)4; only the life expectancy must
be calculated for any given case on the basis of prior knowledge and of the data in

the study.

This preference model underlies the set of arcs in Figure 5.1 between the drug-

selection and patient-utility nodes and between the patient-lifespan and patient-utility

nodes.

An alternative preference model might use quality-adjusted life years (QALY),
which THOMAS would assess by asking the user the relative utility of a year survived

without disease while taking the medication to a year of survival with disease without

the drug treatment. THOMAS does not, at present, use this model. Adding this

extension, however, requires no conceptual changes beyond offering the user the choice
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of preference models. Most users would make this choice implicitly by using the utility

scale (life years or QALYs) with which they are more comfortable.

The restricted preference mode! does prevent THOMAS from addressing objectives—

or outcomes—beyond mortality. We might think that Equation 5.1 could be used for

any time-dependent outcome, replacing lifespan (time to death) with a different time-

to-episode variable (e.g., time-to-next-stroke, in a study examining whether an ex-

perimental medication reduces the incidence of strokes (Canadian Cooperative Study

Group, 1978)). Any such preference model, however, would have to include mortal-

ity, as well, in the decision. Thus, the single-objective model of Equation 5.1 would |

require adaptation for the multi-objective case.

5.4 Probabilistic Models

There are two probabilistic models in THOMAS: one for lifespan, the other for the

observed data. In keeping with the strategy of Bayesian model selection that we have

chosen (see Section 4.4), THOMAS conditions its analysis on particular probabilistic

models.

For lifespan, the system uses the exponential model

L~EN, (5.2)

where \ is the instantaneous mortality rate (see page 54 for the symbols used for

parametric probability models). This model makes the strong assumption that the

instantaneous mortality rate is constant throughout present and future life. The

model 1s often used by biostatisticians for inferences regarding short- and medium-

term survival, and serves as the baseline parametric model in survival studies (Miller,

1981) and in mortality-based decision models (Beck et al., 1982).
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I Clinical Significance :

[11 | Click and hold to define the pragmatic clinical difference [£1

gx Control Threshold Maxaroum gig

1 expectancy Merge PE expectancy iE

: - Click and hold on this button to make your choice.

| The PRAGMATIC DIFFERENCE balances the GAIN from

A life expectancy and the LOSSES from side-effect
As morbidity and costs of the experimental drug.

LE * The “control life expectancy” is the edpected life

- LT abort.Ahart eee span from the control drug, on the basis of the
{esseme anlaysis of this study.

The“maximum life expectancy” Is the maximum
possible. |

e The “threshold life expectancy” is the life span

| which balances the gain and losses.
* The “pragmatic difference” is the difference
between the threshold and control life eupectancies.

| Thus, a patient would generally want a higher
pragmatic difference for cancer chemotherapy than
for less toric medication. |

Click here to hide this text.

Figure 5.2: The pragmatic difference. (a) This screen shows how THOMAS requests
| the user’s pragmatic difference for the problem at hand. When the button Pragmatic

Difference is clicked and held, a submenu of possible times is presented; the user can
type in a time not listed. (b) This screen inset shows the help text THOMAS supplies
to explain the terms used.
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A consequence of this choice of probabilistic model is that the life expectancy for

an individual patient can be calculated in terms of the parameter:

where the superscript pat refers to the individual patient, and the subscript Rz refers

to either of the experimental or the control treatments.

This model underlies the arc in Figure 5.1 between the instantaneous-mortality-

rate and patient-mortality-rate nodes.

For the second probabilistic model, discrete observed data are dependent on a |
parameter in a binormal model, where the parameter 1s the mortality rate over a

specified period of time:

2° ~ BI (64), (5.4)

| where 2° is the observed mortality rate (using z to denote data; see Figure 4.8), Oa:
is the mortality rate over a specified time interval, and At is that time period, which

15 also called the study period or observation duration.

Because lifespan has a particular probability distribution, we can derive exactly

the timed mortality rate from the instantaneous mortality rate. Due to our assump-

tion that L ~ £(}), P(L > At) = e~?4%. Now, the timed mortality rate is defined

as the probability of surviving just up to time At: 05, = P(L < At) = 1 — e™*2%,

Solving for A gives

A= in— (5.5) |
Thus, the instantaneous-rate parameter, A, can be made deterministically depen-

dent on the time-rate parameter, 85,. This function defines the deterministic relation-

ship between the population-mortality-rate node and instantaneous-mortality-rate

node in Figure 5.1.

If we wished to extend the approach taken here and to enable the physician user
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to modify these two probabilistic models, the system would be required to have ca-

pabilities it does not now possess. First, it would have to determine the appropriate

probabilistic model through data-intensive methods (see, for instance Linhart and |

Zucchini (1986) such as model-fitting or bootstrapping. Second, it would need ac-

cess to the entire data set of the study. Third, it would need to apply—and to
possess—much more domain knowledge (e.g., that the Weibull distribution is more

appropriate in pediatric oncology). On the user side of the interaction, the user

would have to be more statistically sophisticated than we assumed she was in Sec-

tion 5.1. Systems with the first two capabilities have been built by research in Al

and statistics (Gale, 1986b; Oldford and Peters, 1988). Although such a system can

be modeled within the Bayesian approach I am presenting in the dissertation, two

muportant questions remain: How should prior uncertainty about the propriety of a

statistical model be represented within the system? How should the nature of such

uncertainty be explained to and assessed from the physician user? There are some

solutions to the first question (Geisser and Eddy, 1979; Draper and Guttman, 1986;

Clayton et al., 1986), although the prior belief is based on nondomain issues, such as |

the number of parameters in the model. The second question has not been posed, to

my knowledge. These remain fundamental unanswered questions, at present, within

Bayesian statistics.

Having defined the various models THOMAS uses, we turn our attention to the

parameters within those models, and to the relationships among them.

5.5 Population Parameters

A population parameter characterizes belief in a parameter governing the likelihood |

of an outcome for a member of a population of patients who have a disorder in

common. As we change our focus from the individual patient to that of the population
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of patients who have the same condition, we change our focus from the patient’s

instantaneous mortality rate to the population’s timed mortality rate—for instance,

the mortality rate in the year following a myocardial infarction. I shall denote such

a mortality rate by 65s, or simply 6°". |

THOMAS assumes that the individual patient’s timed mortality rate 8° is the same

as the population timed mortality rate 8° ©, which is why instantaneous-mortality-

rate node in Figure 5.1 is dependent on the population-mortality-rate node. If the

user had a belief that the patient and population timed mortality rates were different,

she would have to specify a model relating the two parameters, which THOMAS does |

not currently support.

5.6 Study Parameters

A study parameter governs the likelihood of outcomes of patients enrolled in the

study. THOMAS achieves model-construction flexibility by having the system’s al-

low the user to construct different relationships between the population and study

parameters. With respect to the Bayesian design model of Figure 4.14, THOMAS

does not implement selection models, but, instead, conditions its analysis on a fixed

design. Hence, 1t 1s the variety of protocol departures represented in THOMAS that

allows the user to represent important methodological concerns. More than a simple

convenience, this availability permits us to build the system on the work of other

researchers and to avoid constructing models that might be criticized as subjective.

The mathematical forms of the models THOMAS uses are found in the textbook by

Eddy, et al. (1991). In general, these models involve debiasing the primary likelihood

of the observed mortality rate given in the study report, as suggested in Section 4.2.3.

We shall assume, as recommended by Peto, et al. (1976), that this rate is reported

in terms of patients’ assignments to therapy, regardless of the treatment actually



134 THOMAS’s Design Model

received by patients in the course of the study. 1 shall call the group of patients

assigned to a therapy the cohort of patients assigned to a therapy; the study mortality

| rate of patients assigned to therapy refers to this study group. (If the mortality

rates reported are more specific, we will incorporate those data more directly; see

Section 6.3.2).

In general, the observed mortality rate is dependent on the study mortality rate

for the study group. We write z8> ~ BT (65) , where Ruz refers either to the con-
trol or to the experimental treatment. For each protocol departure, we shall model

the study-group parameter as a function of population parameters governing compo- |

nent subgroups of the study group itself. We now consider four protocol departures:

crossover, withdrawal, noncomplicance, and loss to followup. |

2.6.1 Crossover

~~ Patients who cross over from one therapy to another are patients who were assigned

to one therapy, but in fact received the other. I shall use the term crossovers for the

patients who switched therapies on the direction of the investigators.? Crossing over

usually results from side effects of medications.

Assume that a particular set of patients crossed over from the experimental to

the control group. Then, the observed mortality rate for the experimental group

as a whole reflects a mizture of effects: Some of the patients in the experimental

group received the control medication, and the remainder received the experimental

drug. The degree of mixture depends on how many patients crossed over. The

model describes the mixing as it relates to the study parameter for the study group

| of patients assigned to the experimental treatment. The qualitative relationships

among the parameters are shown in Figure 5.3.

| " 2This bias should not be confused with a crossover design, where patients are purposely treated
| with both drugs in the course of a study.
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Population
Mortality Rate

| in Patients

Assigned to
Experimental Drug

Study
Mortality Rate Proportion of Patients
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Experimental Drug Received Control Drug 4
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JA SN Mortality Rate
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Mortality Rate 3 Control Drug
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Figure 5.3: THOMAS’s crossover model. The study mortality rate in patients assigned
to therapy is a mixture of two population parameters, determined by one method-
ological parameter.

The mathematical model for crossovers is

study PCP PoP

Ooo = Op TQ p=] + 0:0 * Qexp—rctls (5.6)

where Orn is the study mortality rate in patients who were assigned to the experi-

mental group; f, is the population mortality rate in patients assigned to, and who

received, the experimental treatment; 8, is the mortality rate in patients who were

assigned to, and who received, the control treatment; expe 1s the study crossover

rate of patients assigned to the experimental drug who received the control drug; and

Coo 18 the proportion of patients who did not crossover; expe + Ogp=ag = 1-

The subscripts ezp and ctl are interchanged in the model for crossovers from the

control to the experimental therapy.
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The two crossover-rate parameters (expen and asso) are examples of method-

ological parameters, because their values define the likelihood-debiased model (see

Section 4.2.3). The values of methodological parameters give a sense of the quality

of a study. Note that, if apc is high (say, close to 0.50}, then we would probably

think that the investigators were too sloppy in executing the study, whereas if the pa-

per reports a very low value of ¢teyp—cn (say, 0.001), we would probably conclude that

the authors suppressed information from the report. In each case, we are implicitly

comparing the reported value with a subjective, internal, prior value. The Bayesian

approach asks us to make that value explicit.

There are two assumptions implicit in Equation 5.6. First is the assumption that

patients who crossed over did so immediately. Second is the assumption that the

mortality rate of patients who crossed over was identical to that of patients who were

assigned to, and who received, the crossed-to medication.

5.6.2 Withdrawal

A patient who withdraws from a study is one who does not receive the assigned therapy

and whose outcome status is known to the study investigators. These patients may

have experienced a severe setback from the disease; the study investigators, rather

than switch the patient to a different arm, may have decided to let the attending

physician care for the patient off the study protocol. Thus, the investigators continue

following such patients, and know, at the end of the study, whether the patients

survived the study period.

Thus, again, the observed mortality rate is dependent on a study parameter that

represents a mixture of mortality rates (see Figure 5.4), as in the crossover model. In

this case, however, the admixed rate is the mortality rate of patients who withdrew

from the study, which is the mortality rate of patients who have the disease but are

not enrolled in the study; this rate is the baseline mortality rate of the patients who
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Figure 5.4: THOMAS’s withdrawal model. The study mortality rate in patients as-

signed to therapy is a mixture of two population parameters, determined by one
methodological parameter.

withdrew, namely, the mortality rate of patients exposed to standard, or baseline,

care. If we were assessing a prior belief in this mortality rate, we might choose a rate

higher than the mortality rate for the general patient in the study, because patients

who withdrew might be sicker than those who did not. Or, we might assume that

the rate is the same as that of patients assigned to the control group, if placebo were

the control therapy.

The model 1s

study pop pop

Oop = Oop Qexp, withd + Baseline * exp, withd (5.7)

where 85... is the population mortality rate in patients who receive baseline care,

Oexp, withd 15 the study withdrawal rate of patients assigned to the experimental drug,
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and a, ong 1s the proportion of patients assigned to the experimental drug who did

not Withdraw; Qexp, withd + Xp wing = 1- For withdrawals from controls, the model is

the same, except that we substitute the subscript ctl for exp; Oy.on.. is still needed. |

Note that, in either case, assessing a prior belief in f;....;. gives the user the chance

to express her domain medical knowledge, because such knowledge is necessary in

evaluating whether patients who withdraw from a particular therapy are different

from those who do not, with respect to factors prognostic for the outcome of interest.

5.6.3 Noncompliance |

Patients who do not comply with therapy are patients who receive varying exposure

to their assigned medication. The study-group mortality rate 1s a mixture of a po-

tentially complex array of mortality rates. Available models (Lakatos, 1986; Eddy

et al., 1991) present the treatment received as a diluted version of the treatment to

which a patient was assigned. The degree of dilution introduces another method-

ological parameter, 7, the proportion of the time noncompliant patients were, in fact,

comphant. |

The model 1s

Ore = 0 erp * exp,mE + (One * Tne + Obascline Tac) * Qexp,nc (5.8)

where 7,,; 1s the proportion of the time that study patients who were noncompliant |

were initially compliant with therapy, 7. is the proportion of the time they were

noncompliant, and 7 + Tp = 1. Furthermore, opne 1s the noncompliance rate

of study patients assigned to the experimental drug, c..5. 1s the proportion of

experimental-group patients who were not noncompliant, and Clexp,nc + Mexp, 5c = 1- For

noncompliance from the control therapy, the subscript exp is changed to ctl. These

model enables the reader to represent the different types of compliance expected

| under different treatments; Freedman (1990) considers a number of such models.
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Note that this model is an implementation of the directives given by Chalmers and

colleagues (1981), quoted on page 45.
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Figure 5.5: THOMAS’s noncompliance model. The study mortality rate in patients
assigned to therapy is a mixture of two population parameters, requiring two method-
ological parameters.

5.6.4 Loss to Followup

Patients who are lost to followup are patients whose outcome status is not known

to the study investigators. The observed mortality rate, therefore, reflects the con-

tribution of the study parameters only of those patients who have remained in the
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study (see Figure 5.6). Thus, the study-group mortality rate is a mixture of compo-

nent rates, as is the withdrawal model, but the evidence is available from only one

component. |

The model is similar to the withdrawal model, as well:

study study study

Oexp = 0, oi | A exp, tha + 8 exo, itfn ~ Yexp,ltfu, (5.9)

where Gon? is the study-group mortality rate in patients assigned to the experimental

treatment, 0 is the study mortality rate in patients who were not lost to followup,

_ Oo et is the study mortality rate in patients who were lost to followup, aexp, 115 15 the |
proportion of patients who were lost to follow up, @,,57 is the proportion of patients

not lost to followup; Oxy isu + ® oil = 1 By nature of the lack of information

about patients lost to followup, any evidence for 0 is modeled as dependent on

0 : ops ~ BI (62) . For losses to followup from the control group, the :
subscript exp 1s changed to ctl.

Note that these models introduce the notion of splitting the study parameter itself

into component study parameters, a strategy we will use to implement each of these

protocol-departure models; see Section 7.4.1. |
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Figure 5.6: THOMAS's loss-to-followup model. The study mortality rate in patients

assigned to therapy is a mixture of two other study parameters, determined by one
methodological parameter. The observed mortality rate is dependent on the compo-
nent parameter governing the likelihood of death in patients who were not lost to
followup. |
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5.7 Effective Parameters

An effective parameter governs the likelihoods of the observations made in the study.

If the reliability of the measurements of the outcomes made in a study is in ques-

tion, THOMAS represents the reliability in a model that relates study parameters to |

effective parameters; observed data become dependent on the effective parameter:

28% ~ BI (ra) . The form of the model for measurement reliability depends on
the type of the outcome measured. For binary outcomes, such as mortality status,

measurement reliability is properly called classification error, and is expressed in a

calibration model in terms of sensitivity and specificity (see Figure 5.7).

The formula for the effective parameter is | |

bo == Ons + 8€ + (1 — Orns} (1 — sp), (5.10)

wheré se 1s the sensitivity for determining mortality status in patients who are dead,

and sp 1s the specificity for determining mortality status in patients who are alive.

5.8 Credibility

A formal model of credibility, as suggested by Figure 4.14, would describe the reported

data as an unreliable report of the actual, observed data. For instance, the system

would ask the user for the probability that the investigators would report the data

they did, if the data were as reported and if they were not, P(reported z | any z); it

would also ask for the probability that the investigators would have reported other

data, if the data were as reported and if they were not, P(other z | any x). These

assessments would give the system sensitivities and specificities for the reported data,

modeling credibility as an issue of measurement reliability. These assessments are

difficult and are not appropriate for this first-phase system.
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Figure 5.7: THOMAS’s classification-error model. The parameter of effective
experimental-drug-mortality rate is a function of the study mortality rate, and of
the sensitivity and specificity of the mortality-determination procedure.

However, credibility as measurement unreliability is not the only way to interpret

the believability of a study report. THOMAS allows the appraisal of believability

by assessing prior beliefs in methodological parameters, and through allowing the

user to choose which protocol departures she thinks are relevant. Thus, notions of

credibility are distributed throughout THOMAS’s constructed statistical models. This

distribution is in contrast to the usual strategy of unifying estimates of credibility

through the derivation of a single number. This unifying approach is taken by many

meta-analysts (Sacks et al., 1987; Reisch et al., 1989), who assess the quality of a study

by summing checklist scores. This approach is also taken by expert-system builders,
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who have used belief networks to assemble a single number (Lehmann, 1988) or have

used value theory to compute such a unifying result (Klein et al., 1990). Furthermore,

there is no meaningful interpretation of the final number. In each case, there is no

justification for multiplying the quality weight (or the credibility probability or the

credibility value) by a test score derived from a study report. By contrast, the strategy

of distributing at least some aspects of credibility throughout the statistical model

results in a process that remains normatively valid. |

5.9 Summary |

THOMAS specializes the general Bayesian design model as follows:

e User: physician with basic knowledge of methodology and design

e¢ Domain: two-arm parallel RCT comparing two drugs, with the outcome of

mortality

o Utility model: threshold model scaled in life years

e Probabilistic models: exponential for lifespan, binomial for observed mortality

e Conjugate models: beta distributions for all rate parameters

e Population parameters: equal to patient parameters

e Study parameters: determined by population parameters through individual

models for crossovers, withdrawals, noncompliants, and losses to followup

o Effective parameters: determined by study parameters through a classification-

error model for binary outcomes

e Credibility: distributed throughout a statistical model
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In the next two chapters, we shall see how THOMAS delivers this design model to

the user.
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Chapter 6

A Bayesian Interface for the

Literature Problem

THOMAS’s implementation of its design model is based on Figure 1.6. In this chapter, |

we shall focus on the components of interaction between the user and the system.

The novel component of this computer-based environment is a semantic layer that

protects the user from the technical Bayesian framework. I divide the discussion of

that layer into two parts. I shall describe the user interface in this chapter in moderate

detail, because otherwise it would be difficult to describe what types of information

are needed by the system and how the system obtains that information from the user.

Similarly, the interface illustrates what types of information are offered by the system |

and how the system presents that information to the user. The second part—the

machine’s representation and management of the semantic layer—is presented in the

chapter 7.

In Section 6.1, I shall discuss the general principles of building a user interface that

reflects a Bayesian context. In Section 6.2, I shall present the control of the interaction

between the machine and the user. In Section 6.3, I shall describe how the user

communicates her knowledge to the machine: knowledge about clinical significance,

147
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information about the structure of the study, prior knowledge about parameters in

the model, and the evidence from the study. I shall also introduce the patient-flow

diagram data structure. Finally, Section 6.4 shows how the machine reports back to |

the user the posterior probabilities, the decision recommendation, the sensitivity of

the analysis to different prior beliefs, and the implications of different analyses.

6.1 Interface Principles

The are two basic principles that guide the construction of a user interface within

THOMAS’s design model. The first is that the interface must use visual metaphors

familiar to the intended user. The second is that the interface must be reflect the

Bayesian paradigm.

6.1.1 Visual Metaphors

The principle that an interface must use visual metaphors familiar to the intended |

user applies to any graphical computer environment. System designers believe that

following the principle provides greater intuitiveness to the interaction. Yet, the

degree of intuition depends on the user for whom for the system is intended; poets

would not be expected to find spreadsheets second nature, and physicians cannot be |

expected to manipulate the parametric statistical models needed to solve the literature

problem. :

We can, however, expect that the physician user of THOMAS will be familiar with

visual metaphors from the research literature itself. A number of such metaphors are

available. One graphical device, found in the meta-analytic literature, is the method-

ology checklist (Reisch et al., 1989), where meta-analysts record their assessments of

the methodological merit of a study. Another device, used by research authors, is
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the patient-flow diagram (Hjalmarson et al., 1981), where the investigators commu-

nicate the fate of groups of patients during the study. A third device is the evidence

table (Eddy et al., 1991), where analysts present data about different studies (see Sec-

tion 4.7). I shall describe my use of these metaphors in Sections 6.2, 6.3.2, and 6.3.4,

respectively.

6.1.2 Consistency with the Bayesian Paradigm

The second interface principle derives from our use of a Bayesian design model. The

Bayesian interface paradigm is that, before examining evidence, you must assess rel-

evant prior beliefs. The paradigm applies to the process of furnishing evidence per-
taining to entities of interest, and of constructing the statistical model. The interface

issue 1s how best to obtain the information necessary, in the proper sequence.

| In THOMAS, the entities for which evidence is provided are the parameters in the

decision model (Figure 4.14). The challenge in applying the Bayesian paradigm in

assessing prior belief in, and obtaining evidence for, these parameters arises from the

first principle: We want the system to ask for information regarding a parameter

without presuming that the user understands the entire statistical infrastructure im-

plied by the request. My primary solution to this problem is for the machine to label

parameters with names that the physician user will find intuitive. How the system

| names parameters will be discussed in Section 7.4.1.

As an example, before the system can accept evidence regarding the mortality of

patients exposed to the experimental drug, it must assess from the user her belief

about the parameter corresponding to that mortality (the study mortality rate in pa-

tients assigned to the experimental drug), or about the components of that parameter,

in the case of protocol departures (e.g., the population mortality rate in patients as-

signed to the experimental drug and the population mortality rate in patients assigned

to baseline care). The very notion of a group of patients assigned to a particular drug
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implies what Feinstein (1985) has called the underlying architecture to the research

study. The name of the parameter suggests that parameter’s context to the physician

| user, whose clinical-epidemiological fund of knowledge includes (see Section 5.1) the

terms population, study, observed, and assignment. |

The Bayesian paradigm also applies to the process of constructing the statistical

model pertaining to a study. When a physician indicates that a methodological

issue is of concern in analyzing a study, that new concern induces a modification in

the statistical model under construction, as was described in Sections 5.6 and 5.7.

At times, the modification leads to the creation of new parameters, such as the

methodological parameter that describes the degree of crossover protocol departures

(see Section 5.6.1). In keeping with the principle, the system first must determine |

the identityof any new parameters, then must assess the user’s prior beliefs in these

parameters, and finally must allow the user to provide the evidence. This sequence

is a bit different from what physicians often do now: Observe the data, then assess

relevant adjustments. My primary solution for implementing the Bayesian sequence

Is to make constant the order of system requests after the user has informed the

machine about the methodological concerns. How the system identifies the relevant

new parameters will be discussed in Section 6.3.3.

6.2 Input Sequence

There are three basic subtasks to the task of a consultation for solving the literature

problem: formulate the problem, instantiate it, and view the results. In any expert

system, there are two strategies for obtaining information from the user: data-driven,

where the user directs control of the interchange, implicitly creating a model for the

problem, and model-driven (or goal-driven), where the system seeks information to |

fill an extant model. In constructing THOMAS, I have combined these strategies. On
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the one hand, the overall sequence is fixed. The primary reason for such restriction is

that, although I assume the user to be knowledgeable about methodological concerns,

I cannot assume the user to be aware of all the interactions among those concerns. By

forcing the user to advance through a prescribed sequence, I ensure that she does not

ignore important interactions (such as, for instance, the dependence of the permitted
methodological concerns on the study design). On the other hand, in the subtask

of describing the study, I have given the user greater freedom, as I shall show in

Section 6.3.2.

The overall sequence is presented to the user as a recursive set of steps to be taken.

Thus, for instance, the top-level step, Consultation, (see Figure 6.1) comprises five

subtasks: define the clinical problem, describe the study, view the results, examine the

statistics, and finish the consultation. The problem-definition step, in turn, comprises

two subtasks: define the drugs involved and define the meaning of clinical significance.

‘The explanatory semantics inherent in the relationship between one level and the

next1s that the first level suggests the why of the second level, and the second level

| provides the how of the first, to use language familiar to builders of rule-based expert

systems (Buchanan and Shortliffe, 1984).

| The visual interface for this overall sequence employs the checklist metaphor men-

tioned in Section 6.1.1: The user checks off attributes that apply to the problem at

hand (see Figure 6.1). The input graphics vary {See Figure 6.2), depending on which

type of selection is required: single choice (out of a fixed set, out of a modifiable set,

or in sequence) or multiple choice.

The checklist 1s the visual manifestation of an implicit dependency, or AND-OR,

tree. Each screen represents a node in this tree. There are AND nodes, which require

that every child be satisfied (generally, in an ordered sequence (Figure 6.2c)), and OR

nodes, which require that any child be satisfied. OR nodes, in turn, may allow for

multiple choices (Figure 6.2d), or only single choices (Figures 6.2a and 6.2b).
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Consultation

| Ciek on ech check bon, n sequence.

(OD Describe the study : |

| O Get the treatment recommendsation :
§ (O) Examine the statistical analysis |

Bf (O Finish the consultation

Why | How
Define the Problem )

‘a Po on coc check bow, In sequence. ;

1 0 Define the meaning of clinical E
significance

Figure 6.1: Checklist metaphor. The tasks to be performed are listed. As one task is
checked off by the user, any subtasks relevent to the task are displayed. This sequence
generates a dependency tree for the interface, where the semantics of movement to

a lower level (toward the leaves of the tree) is that of how a higher level is satisfied,
and where the semantics of movement to a higher level (toward the root of the tree)
is that of why a lower level is requested.
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Internal nodes of the tree are, generally, sequential, single-choice AND nodes. Progress

through the tree may proceed only when a node and its relevant children have been

satisfied. Satisfaction, here, means selection. Once a node is satisfied, the machine |

| executes all forward-chaining action dependent on that node. The content of the

dependency tree 1s platform-independent, but its graphic appearance is not. The

dependency tree for THOMAS is listed in Table 6.1.

6.3 Input of Content

THOMAS needs four types of technical information: the decision model, the statistical

| model, the user’s prior beliefs in relevant parameters, and the evidence from the study.

We shall discuss each in turn.

6.3.1 Decision Model |

THOMAS constrains the user's definition of the decision model by assuming the canon-

ical model discussed in Section 5.3. In asking for the pragmatic threshold, the key

number in this model (see Figure 5.2), the machine points out that this threshold

may be patient- or drug-specific .

6.3.2 Statistical Model

So that it can assess the statistical model from the user, the system requires the user

to take several actions. As discussed in Section 5.4, THOMAS currently assumes a

single probabilistic model (see Figure 4.13); as shown in Figure 5.1, THOMAS assumes

a single protocol design, as well. THOMAS does allow flexibility in letting the user

establish the protocol implementation and the measurement reliability of the study.
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Table 6.1: THOMAS's dependency tree.

Consultation

I Define the problem!
I.A Specify the drugs
I1.Al Specify the experimental drug
I.A2 Specify the control drug
1.B Define the clinical significance
I1B.1 Define the pragmatic difference |

II Describe the study

II.A.1 Select the study
II.LA.2 Examine the study
II.A.2.a Label the analysis
I.D.1.a Choose a label

IILA.2.b Analyze the study
| IT.A2.bi Specify the design

II.A.2.b.i.l Specify the architecture
II.A.2.ba.la Choose the two-arm RCT

[I.A.2.ba2 Specify the outcome

[I.A2.bi2.a Choose the mortality outcome

I1.A.2.b.1i Specify the observation duration
I1.A.2.b.1i.1 Enter the time
I1.A.2.b.ii.2 Enter the units :
I1.A.2.b. Describe the study execution
III Get the treatment recommendation

I1I.A Specify the use of statistics?
II1LA.1 Choose effectiveness

I11.A.2 Choose efficacy
III.LB Examine the decision

IV Examine the statistical analysis®
IV.A Compare prior/posterior probabilities

| IV.B Examine probabilities for a parameter
IV.C Perform a sensitivity analysis |
IV.C.1 Alter a prior belief
IV.D Answer a statistical question
IV.D.1 Choose a question
V Finish the consultation?

V.A Choose a new user

V.B Choose the same user, new problem
V.C Choose the same problem, new analysis
V.D Quit from THOMAS

} Unless otherwise indicated, this and all nodes are AND nodes.

| | 2 This is an OR node.
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Seiact lise of Statistics. 1

| Select one: } Click and hold for each choice. |
i O Effectiveness :

i : 3 Pltatebo

(a) (b)

Analyze Study | |____txamine StatisticalAnalysis_

: Click on each check box, In sequence,BE : : Selact any number of thoices. Click Isnd .
: Click and hold on <More Details» to . E aold) on ¢Mure Detsls> to elaborate. }
E elaborate, 3 py
H @ Specify the design of Hjalmarsond| § RP © Answer statistical questions :

. @ Specify the execution of Hjalmarson8| .f : 0 Give prior/posterior probabilities
Bl — [Specify the duration of observation for | (I BB | y
. @ Hjalmarsond | 3 {J Compare probabilities |
| i 3 B® Perform sensitivity analysis

(©) (d)

Figure 6.2: Checklist formats. THOMAS uses four interface styles to communicate

the type of response needed to satisfy a subtask. (a) Single choice from a fixed
set. Selection of one choice automatically deselects any other choice, if one has al-

ready been made. (b) Single choice out of a modifiable set. Selection of the choice
New for the control treatment prompts the system to request the name of the new

| choice. (c) Single choice in sequence. The system darkens the box corresponding
to a choice previously taken; the rectangle directs the user to the next choice to be
made. (d) Multiple choice. To proceed with subtasks for the selections, the user must
explicitly request More Details, at the bottom of the screen.
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Although the protocol design and the outcome of the study (both components of

the study architecture (see page 147)) are fixed by THOMAS as the two-arm parallel

RCT and mortality, respectively, THOMAS still asks the user to select these choices |

explicitly, as a way of communicating to the user the “thought” process used by the |

system, and as a way of marking where the system shouid be expanded in the future.

In giving input about the protocol implementation, the user has the most flexibility,

constrained only by the metaphor of the patient-flow diagram (see Figure 1.1 and

Section 6.1.1). The diagram employs the cohort as 1ts unit of construction. A cohort

| is a group of patients who share a history. A patient-flow diagram is a rooted tree |

of cohorts. A parent cohort in the tree comprises the patients in each of its children

cohorts, and a child cohort comprises patients in the parental cohort whose fate is the

same as that of the parental patients, but is different from that of its sibling cohort.’

The root cohort comprises patients admitted to the study.’

For each cohort, the system displays the following information (see Figure 6.3):

its functional name, the total number of patients, and the number of patients in the

group who experienced the outcome. |

The physician uses the patient-flow diagram to pinpoint which methodological

issues are of concern. By clicking and holding the mouse pointing device on the name

line of a cohort, the user can view a menu of possible protocol departures allowed in

that cohort (Figure 6.3). By holding the device on the Number Died line, she can

view a menu of possible options relating to measurement reliability.

"parental cohorts, in THOMAS, when split, are divided into only two parts.
2If patient selection were to be represented in the program, then the root cohort would comprise

patients who potentially could have been admitted to the study.
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Figure 6.3: The patient-flow diagram. This figure shows part of the patient-flow
diagram for the metoprolol example. The three cohorts shown in three boxes refer to

the group of patients assigned to placebo, and its components: patients who withdrew
from assigned therapy, and patients who did not withdraw from therapy. The box
corresponding to each cohort shows the part of the name of the cohort that identifies
the group of patients (e.g., the cohort Patients assigned to placebo who withdrew from
therapy 1s 1dentified by the name fragment ... who withdrew from therapy). The box
also has slots for the total number of patients in the cohort and for the number of
patients who experienced the outcome of interest. If a number is not known, the slot

is left blank. The slot values are entered by the user as evidence (e.g., 131), or are
calculated by the machine (e.g., 567 = 698 — 131).

In addition to viewing the cohorts on this screen, the user can get a synopsis of the
entire patient-flow diagram, as shown by the hierarchical graphic at the top of the
screen, showing the name of the cohort Patients assigned to placebo who withdrew from
therapy as a highlighted path through the diagram. (The cohort Patients assigned to
baseline care is a dummy cohort that allows the system to implement the different

protocol-departure models.)
The number of cohorts that can be realistically displayed at a single time 1s ar-

tificially constrained by the version of HyperCard used for this work. More recent

versions, with variable-size windows, would usually allow display of the entire patient-
flow diagram at one time.
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The user adds protocol departures to the statistical model by selecting the de-

partures that took place in the most specific cohort: The system presents a menu of

| possible departures specific to each cohort (see Figure 6.4). The result of selecting

a protocol departure is the creation of two new cohorts: components of the origi-

nal cohort comprising patients who did—and who did not-—experience the protocol

departure. (These subcohorts are shown in Figure 6.3.) If the creation of the new

cohorts engenders new methodological parameters, then, before allowing the user to

enter any data, the system assesses prior opinions about these new parameters. This

sequence 1s in keeping with the Bayesian paradigm, as described in Section 6.1.2.

: Describe Study Execution B

1: Click and hold on different bowxes to take i

1: actions. z

A: [otalNumber: 1385 NR:

: 1: Mumber Died: 102 aE

= talNumber; 698 Ki

i Number Died: 2 ,

a Assignedto metoprolol Full Name

1 a fctions d LOSS-TO-FOLLOW-UP

BEaen.aDone REE NONCOMPLIANCE

Figure 6.4: Communicating methodological concerns. The system displays potential
methodological concerns appropriate to the cohort of Patients assigned to metoprolol;
in this case, there are four possible concerns. Other options are simply to view the
full name of the cohort, and to view the parent cohort of which the present cohort is
a component.
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6.3.3 Prior Beliefs

The system needs the physician’s prior belief in two classes of parameters (see Sec-

tion 7.3.1): outcome parameters and methodological parameters. Different types of
knowledge are communicated by specifying prior beliefs in different types of param-

eters. Domain knowledge is communicated by the user giving prior knowledge about

the control and the experimental mortality rates (e.g., how many myocardial infarc-

tion patients survive three months). Study knowledge is communicated by the user
stating that two parameters are equivalent (e.g., the mortality rate in patients who |

receive baseline care and the mortality rate in patients who receive placebo). Method-

ological knowledge is communicated by the user’s belief in methodological parameters

(e.g., that 10 percent of patients in a well-done cardiology study may be expected

to withdraw from the study). The user’s assessment of methodological knowledge

implicitly gives the system knowledge about specific authors and about credibility.

THOMAS allows two types of assessment about any of these parameters: numerical

| and qualitative. In each case, the system translates the user’s input into a prior

distribution over a parameter, assuming the parameter’s uncertainty to have a beta

distribution, with parameters a and S.

| The style of the numeric assessments are based on types of estimates about pro-

portions with which physicians are familiar. One style is the raw proportion, where

a proportion is assessed as a numerator divided by a denominator (see Figure 6.5).

Thus, a physician’s prior belief about a mortality rate may be 2 patients having

died out of 10 previously observed. This belief is less certain than having observed

| 20 patients out of 100. The translation into a beta distribution is straightforward;
the machine sets a to the reported numerator, and § to the difference between the

denominator and the numerator.

The second style of assessing prior belief in a proportion 1s as a mean with a

standard deviation. For instance, the user may report that she believes the mortahty



160 A Bayesian Interface for the Literature Problem

. Specify Current Knowledge

1 Population mortality rate in palients assigned to I
1 placebo (1

Be CL. Number of people... I
I 1 (OM™Mean/Standard Deviation ui

11 Oconfidence Interval i

Ll OrTotal Ignorance 78 9] Lf
1 Out of? 4] 5| 6] ig
| | OMake Equivalent... KI 12 3K)

1 wbort =|

Figure 6.5: Using sample size to assess a proportion.

| rate to be 0.2 4 0.1. The machine computes the beta-distribution parameters from

the formulas for mean and variance for the beta distribution, given in Equation 4.1. |

The third style is through the user’s reporting an interval with an attached level of

confidence. The system arrives at the beta-distribution parameters by fitting a normal

distribution to the interval, computing the mean and variance of that distribution,

and fitting beta-distribution parameters to the calculated mean and variance, again,

using the relationships on page 88. For instance, the user may report her belief in |

a mortality rate to be between 0.1 and 0.3, with 70 percent confidence. The mean

would be 0.2, the variance would be nearly 0.1; the resulting ¢ and are 0.12 and
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0.48 (a very uncertain prior).

THOMAS takes two qualitative approaches. The first allows the user to stipulate

that she has no prior knowledge about the parameter in question. This declaration is

| called claiming total ignorance, and leads to the Bayesian equivalent of performing a

classical statistical analysis. The machine creates a prior distribution for the param-

eter that is BE(3, 2). Many Bayesian statisticians recornmend this distribution for a

number of reasons, one being that this is the distribution that satisfies a number of

conditions: invariance, data-translation, Kullback-Leibler divergence, and maximum

entropy (Bernardo, 1979). |

The second qualitative approach allows the user to specify that two parameters

are equivalent, or are the same. In this case, the prior and posterior beliefs for the two

parameters are exactly the same, and any evidence for one parameter updates belief in

the other. This approach allows the user to communicate such domain knowledge as,

| for instance, that the mortality rate in patients given baseline care is the same as that

of patients treated with placebo—that placebo confers no further benefit to patients.

It also allows the user to communicate methodological knowledge; for instance, she

can say that the sensitivity of death certificates for detecting death in patients treated

with placebo is the same as that in patients treated with the experimental drug.

6.3.4 Evidence

Philosophers of science (Hanson, 1961) have made the scientific community cognizant

of the theory-ladenness of facts: There are no facts {evidence) without a context

within which to place them. A central mission of THOMAS’s interface is to provide |

that context without the user having to understand the formal basis or structure—the

statistical model. The patient-flow diagram again performs the functions of focus-

ing a user’s attention and of implicitly defining the context. Because study data are
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reported in terms of study cohorts, and because the names of the cohorts have seman-

tics clear to the physician, the user should be able to give the system the appropriate

data. Figure 6.6 shows such an interaction. |

i Click and hold on different boxes to take I

or Number Died: 1

1 Number Died: a

| il2 skal (EE
El eae3gigned to metoprolol 0 |. | ai
| —————— CC pea 1
FE Number Died ey

1 Abort K—fee’ift

Figure 6.6: Entering evidence into THOMAS. A pop-up keypad interface is anchored
to the cohort slot for which the entered number is evidence.

Whenever a datum is input, to ensure that the input datum does not contradict

data already input, THOMAS performs constraint propagation through the patient-

flow diagram. I there is a contradiction (e.g., a cohort’s input total number is not

equal to the sum of the already-input total numbers of the cohort’s component sub-

cohorts), THOMAS issues an error message and refuses the input datum. The system
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also computes sums or differences, if two out of three cohorts (among the parent

and two children cohorts) have their data defined; it then stores the results in the

appropriate cohort. |

6.4 Output Review

There are five different questions to which THOMAS responds:

1. Which drug should the user employ?

2. How has the user’s belief in a parameter changed from before to after having

viewed the evidence?

3. How do the user’s beliefs in different parameters compare?

4. How sensitive are the user’s posterior beliefs to different prior beliefs?

5. What effects do different methodological concerns have on the final conclusion?

I shall describe how THOMAS answers each of these questions.

6.4.1 THOMAS’s Recommendation |

The decision-analytic basis for answering the first question is the utility calculations

of Equation 5.1. The system must first choose the parameter on which it will base

its calculations, and must then present its conclusions to the user.

The outcome of interest—the patient’s lifespan (and, therefore, life expectancy)—

can be made dependent on one of two parameters that represent the mortality rates

of interest. The efficacy choice is concerned with the biological effect of the drug; an |

efficacy-based analysis, therefore, compares the most debiased mortality-rate param-

| eters, because they represent most closely just this effect. Thus, the efficacy choice
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uses the population parameters for patients who were assigned to (and who received)

the experimental (or control) drug. The effectiveness choice is concerned with the

effect of the drug in clinical practice; an effectiveness-based analysis, therefore, com- |

pares the parameters that reflect all the protocol departures clinicians are likely to

encounter, but debiases with respect to the reliability of the assessment instruments.

Thus, the effectiveness choice uses the study parameters in patients assigned to the

respective therapies. The user is given the choice of which analysis she wants (see

Figure 6.7a). Thus, THOMAS’s hierarchy of parameters enables the system to trans-

late the user-based semantics of effectiveness and efficacy into a meaningful clinical |

report (see Figures 6.7b and 6.7c).

THOMAS answers this first question by plotting the posterior life expectancies

(L) of the two drugs, and comparing the life expectancies, taking into account the

pragmatic difference specified by the user. The plot can be labeled, annotated, and

saved for later examination.

6.4.2 User’s Beliefs

The uncertainties given to THOMAS are the user’s prior beliefs in different parame-

ters. The uncertainties THOMAS calculates are the beliefs the user should have, given

those prior beliefs, given the methodological concerns the user entered, and given the

nurmnerical data, assuming the user wishes to remain consistent with Bayesian prob-

ability theory. THOMAS’s reporting capability allows the user to view the prior and

posterior beliefs in parameters, or to have the machine guide the query process.

6.4.2.1 Prior and Posterior Beliefs

Figure 6.8 shows THOMAS’s report of prior and posterior probabilities. The report

has three components. The first component is the numerical report of the means and

standard deviations of the two distributions. The mean reported is actually the mode
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of the distribution; the difference between mean and mode is slight in unimodal beta

distributions. The second component is the credible interval (see Section 4.3.5.1); in

the figure, 95-percent credible intervals are shown. The third component is the graph

of the belief. |

The interpretation of Figure 6.8, the prior and posterior beliefs in the population

mortality rate of patients assigned to placebo in the metoprolol study, is as follows.

The prior belief had been set as total ignorance, which resulted in a BE (2, 1) prior
distribution, which has a mean of 0.5 and a standard deviation of 0.707. These latter

numbers are shown in the left-hand panel. The 95 percent credible interval for this

distribution ranges between 0.0 and 1.0.° The graph of the distribution shows a peak

at 0.5; it is fairly flat, except at the extremes.® The posterior belief, with a mean of

0.0894 and a standard deviation of 0.0108, represents a BE (62.5,636.5) distribution,

which 1s the appropriate posterior for a BE (2,1) prior distribution, updated with
the data of 62 deaths and 636 survivors in the placebo group. The posterior credible

interval is much narrower than is the prior credible interval. The belief curve is

narrower than is the prior belief curve, reflecting smaller uncertainty.

6.4.2.2 Semantically Based Statistical Questions

Further statistical questions can be posed via an additional level of semantics above

the raw statistical reports: The system frames comparisons between parameters as
answers to statistical questions in which the user probably is interested. Each method-

ological concern is associated, by the knowledge engineer, with a comparison between

parameters specific to that concern. For instance, the very design of a two-arm RCT

~ 3The credible interval is, 0 + ¢ to 1 — €, where ¢ is a number too small to be printed.
‘A BS (3, 2) distribution is bathtub shaped—fiat in the middle, and rising to infinite likelihood

at both extremes. For consistency in reporting, THOMAS makes all distributions unimodal.
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Figure 6.7: The question of drug choice. THOMAS answers this question in three
| steps. (a) Choice of use of statistics. THOMAS enables the user to answer the ques-

tion in terms of efficacy or of effectiveness. (b) Plot of posterior life expectancy. The
life expectancies are a function of the posterior uncertainty in the parameters im-
plicitly chosen via the choice of use of statistics. (¢) Recommendation of treatment.
THOMAS’s recommendation is a function of the pragmatic difference, previously set
by the user (6 months, in this case).



6.4. Output Review 167

18 associated with the following question: Is the experimental-drug mortality rate dif-

ferent from the control-drug mortality rate? This question 1s attached to a comparison

‘between the population mortality rates in patients assigned the experimental drug

and in patients assigned the control drug. When a methodological concern is included |

by the user, the system creates the comparison’s label and selects the parameters to

be compared (see Figures 6.9a and 6.9b).

A comparison has two parts. One part is the display of the belief information for

each parameter, including the mean, the standard deviation, and the belief curves

(see Figure 6.9d). The other part is a display that actually answers the question (see

Figure 6.9¢c). For the second part, the machine creates a new parameter, the identity

of which depends on the question and is set by the system builder. In THOMAS,

these parameters are always the difference between two parameters. Because such a

parameter is a function of other parameters, its prior probability can be calculated |

| without further input from the user. Thus, the system can calculate the parame-

ter’s posterior belief. The system uses this posterior belief to answer the statistical

| question by examining the amount of belief adherentto values greater than 0 (i.e.,

P (difference > 0 | prior beliefs and evidence)). If a significant amount (e.g., 95 per-

| cent) of belief is attached to positive values, then the system can draw a statistical

conclusion. For instance, 1n the mortality-rate comparison, if more then 95 percent

of the posterior belief is that the difference is positive, than the control drug has a

statistically significantly higher mortality rate, and, hence, the system answers that

the experimental drug is statistically better. This comparison is similar in flavor to

the z-test for proportions, or to the t-test; see Figure 4.11. However, the answer to

the Bayesian comparison does not determine the system’s recommendation, as it does

in classical statistics.
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Figure 6.8: The question of prior versus posterior belief. THOMAS displays the prior
and posterior beliefs in the population mortality rate in three ways: numbers, credible
intervals (Bayesian credible sets), and belief curves, Numeric and credible-set infor-
mation about the prior distribution is on the left, and its belief curve is graphed with
the thin line. Numeric and credible-set information about the posterior distribution
1s on the right, and its belief curve is graphed with the thick line. The user is able to
make a comment about the report, or to save it for later review.
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6.4.3 Sensitivity Analysis

The fourth question allows the user to examine the sensitivity of any conclusion to

changes in prior belief. The strategy THOMAS uses In answering this question is to
| allow the user to make an explicit change in a prior belief in a specific parameter,

and then to display the implications of that change in belief.

Figure 6.10 shows a sample interaction between THOMAS and the user in the

metoprolol problem. The system allows the user to choose a parameter and to al-

ter her prior belief (see Figure 6.10a; the menu of parameter names displayed by |

THOMAS is not shown). The physician’s entry of prior belief follows the same for-

| mat as does the entry of initial prior belief {see Section 6.3.3). In Figure 6.10b, the

user has employed the equivalent-sample-size method of describing her prior belief

in the placebo-population mortality rate; in Figure 6.10c, the user has employedthe

confidence-interval method for the metoprolol-population mortality rate. When the

user indicates she is finished modifying her prior beliefs (not shown), the system

performs probabilistic updating as usual, and makes available the same statistical

analyses as in the baseline analysis. Figure 6.10d shows a comparison between the

prior beliefs in the placebo-population (thin line) and metoprolol-population mor-

tality rates, and Figure 6.10e compares the posterior beliefs in the two parameters.

Finally, Figure 6.10f shows the life expectancies based on the new posterior distribu-

tions. Comparing this figure to Figure 6.7b, we see that the new prior beliefs do not

change the recommendation. |

Note that the conclusion regarding the effect of the change in prior belief is made

by the user; THOMAS, at present, has no method for comparing the posterior means

between analyses, either numerically or graphically.
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Figure 6.9: The question of statistical conclusion. (a) THOMAS allows the user to
pose a statistical question. (b) The user selects a question from a list provided by the

system. THOMAS here displays the questions generated by the baseline metoprolol |
analysis. The user has chosen to ask whether the experimental mortality rate is lower
than the control mortality rate. (¢) THOMAS answers the question by examining a
new parameter, the difference between the two population mortality rates. If the

probability that the difference is positive is large (over 95 percent), then the system
reports the conclusion, Yes, the treatments are statistically different. (d) The system
also displays a comparison between the two parameters that make up the difference
parameter.
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6.4.4 Multiple Analyses

| Although THOMAS constructs models instead of using belief distributions over models,

the user may still believe that no one single model is best. This ambivalence derives

from the fact that the more specific the model, the less certainty there will be about

estimates, yet the less specific the model, the less domain knowledge is incorporated

within the statistical model.® To give the user the ability to consider different ways of

viewing the same study, THOMAS allows the construction of several models, and the

viewing of the implications of a set of models. This process may be called a sensitivity

analysis over the model structure.

THOMAS asks the user to label each analysis (see Figures 6.11a through ¢). I

there are analyses already present, the system asks the name of the analysis of which

the new analysis is an extension (not shown). Figure 6.11d shows the implied tree

of analyses after four iterations. The tree indicates that the analyses taking into

account crossovers, withdrawals, and classification error is each a modification of the

baseline analysis, whereas the analysis taking into account withdrawals and classifica-

tion error { Withdrawals with CE} is a modification of the analysis taking into account

withdrawals.

For analyses that extend previous analyses, the system takes the user directly to

the subtask of filling in the patient-flow diagram, with evidence already entered from

the foundation analysis made available.

6.5 Conclusion |

THOMAS delivers the Bayesian paradigm to the physician user in a number of ways.

First, its sequence is based on the Bayesian paradigm of assessing prior belief before

viewing evidence. Second, the details it assesses from, and reports back to, the user

" 5This ambivalence is the Bayesian equivalent of the bias-variance tradeoff of classical statistics.
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are based on a Bayesian view of parameters, evidence, and decisions. The assessments

and the recommendation are communicated in as non-Bayesian a language as possible,

however, as they use domain terms. Third, the system provides the decision-analytic

tool of sensitivity analysis as a way of evaluating the influence of personal beliefs |

on the values of parameter or of evaluating the influence of different methodological

concerns. We now turn our attention to how the system achieves these capabilities.
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Figure 6.11: The question of effect of methodological concerns. (a) Request for a
new analysis. (b) Entry of new analysis name. (¢) Request to start the analysis.
(d) Analysis tree after several analyses have been entered. Screen displays have been
truncated.
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Figure 6.10: The question of sensitivity to prior beliefs. (a} Beginning of dialogue.
Choice of parameters names is not shown. (b) Entry of new placebo prior. (c) Entry
of new metoprolol prior. (d) Display of prior-belief information. (d) Display of
posterior-belief information. (e) Display of recommendation based on new posterior
beliefs. Screen displays have been truncated.



Chapter 7

Data Structures and Algorithms

Having seen how the machine and the user interact with each other, we need now to

see how the system achieves that interaction. We saw, in Figure 1.6, that this process

comprises three components: Bayesian methodological formulation, probabihstic up-

dating, and utility maximization. In this chapter, we shall examine these segments,

spending most of our time on the first component: how the system represents, and

executes, the process of statistical-model construction.

Because THOMAS represents statistical models as influence diagrams, this problem

1s an example of the more general problem of assisting a relatively naive user to

construct an influence diagram. Statistical modeling is a process of responding to

the type and availability—the metadata (see Sections 3.3.1 and 4.3.3)—of the study. |

There is structure to this process: There are restrictions to the sequence in which data

may be analyzed, and particular metadata demand that specific modeling actions be

taken. The system builder! can assess directly from domain experts the rules that

constrain this process, or can derive them from statistical definitions. The challenge

"1 shall use the term system builder to refer to the person who builds a program such as THOMAS;
I shall use the term user or physician reader to refer to a user of a program such as THOMAS.

| 21 use the word rule to refer to domain-level strategy heuristics; they need not be implemented
as data structures to be processed by a backward- or forward-chaining inference mechanism.

175



176 Data Structures and Algorithms

for the system builder is to coordinate these domain rules with the symbolic and
algorithmic needs of the process of influence-diagram construction in a way that is

accessible to the user. |

In Section 7.1, I shall show how the need to adjust conclusions in light of method-

ological concerns, and how the need for those adjustments to be composed modularly,

lead to the metadata-driven approach. This approach uses three data structures: the

patient-flow diagram, the metadata-state diagram, and the statistical model. The |

interactions among these structures are shown in Figure 7.1. I described patient-flow |

diagrams in Section 6.3.2. I shall discuss the metadata-state diagram in Section 7.2,

defining the diagram, explaining the metarules for its construction, and describing its

use in THOMAS. In Section 7.3, I shall describe statistical models, emphasizing how

the models are structured to allow for automatic processing. Section T.4 elaborates

how these three structures interact to effect the construction process. The process

is demonstrated in Section 7.5, where it is applied to the metoprolol example; this

example should clarify the use of the data structures and algorithms. |

Section 7.6 explains how THOMAS uses the statistical model created in the con-

struction process to update the user’s beliefs in the parameters. Section 7.7 shows how

THOMAS uses the posterior probabilities so calculated to make its recommendation.

I close the chapter with Section 7.8, where I compare the metadata-driven ap-

proach with influence-diagram-construction methods of other investigators. |

7.1 Adjustments and Modularity

The notion of constructing statistical models is closely tied to the concept of ad-

justing a statistical conclusion in light of methodological concerns (see Sections 3.3.4

and 4.3.4). As we discussed in Section 3.4, the natural way for physicians to make
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Figure 7.1: Interactions among THOMAS’s components. The user’s interaction with

the patient-flow diagram sends a message regarding metadata to the metadata state
diagram. If the message is valid, the metadata-state diagram executes a construction
step. The effect of that step on the statistical model 1s to induce changes in the
influence diagram representing the statistical model, such as the creation of new
parameters. The effect of that step on the patient-flow diagram 1s to induce changes
in that diagram, such as the creation of new subcohorts.

such adjustments 1s to modify parameter estimates after they been calculated, work-

ing from the data to the adjusted model parameters. The appeal of this strategy

1s the modularity of the corrections: the ability of the analyst to consider each arm

of a study (or each study of a set of studies) independently of the others. If such

independence were to hold true, then adjustment formulae for one arm (or study)

| would apply, formally, to any other. An implication of this notion of independence is

that the overall adjustment due to a set of methodological concerns would simply be

the union of adjustments due to the individual concerns making up that set. We shall

find that, as in rule-based expert systems (Heckerman and Horvitz, 1988), adjustment

in the data-driven direction leads to incorrect conclusions. The nature of the unit of

modularity, therefore, must be reformulated.
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The problem with data-driven adjustments is that the process violates two knowledge-

level criteria established in Section 2.3 for THOMAS: objectivity and normativity. In

Section 3.5.1, we saw that these adjustments may not be auditable, leading to a

nonobjective process. As we shall now show, from the Bayesian perspective of nor-

mativity (see Section 4.6.3), the strategy may not be coherent, because it may lead to

the calculation of a posterior belief that is inconsistent with the prior belief and the

data. Inconsistencies arise because methodological concerns, when included in the

statistical model, make the arms (or studies) dependent on each other. To remove

the inconsistencies from within the classical framework, the analyst would have to

obtain information that 1s difficult, if not impossible, to assess from the investigators

or from the user. From within the influence-diagram-based framework, the solution
to this difficulty is to separate the assessment process from the adjustment process;

the modularity is situated in the assessment process, whereas the adjustments emerge

from the calculation of probabilistic updates.

The following example should clarify the potential incoherence and lack of modu-

larity of the data-driven—adjustment process. Consider a study where outcome classi-

fication had been assessed in a way that is potentially unreliable; the analyst would be

interested in assessing the sensitivity and specificity of the assessment process. The

two methodological parameters—sensitivity and specificity—are common to the two

treatment arms; this sharing of parameters makes the adjustments for the evidence
within each arm dependent on the outcome parameter in the other arm. We shall see

that the dependencies introduced are difficult to assess.

Figure 7.2 displays this example. There are two study arms, the control and the

experimental, where the entities of interest are the mortality rates in the two arms.

Each arm has outcomes—deaths—that provide evidence for the respective mortality

rates. From the simple model in Figure 7.22, the adjustment model can be constructed

in the direction shown in Figure 7.2b. No new assessments are needed, and the reversal
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leads to formulae for deriving the mortality rates from the observations, in the data-

driven direction and independently in each arm. As the notion of modularity implies,

| the formulae for the control- and for the experimental-arm mortality are the same.

Figure 7.2c shows the original model of Figure 7.2a with the methodological pa-

rameters of sensitivity and specificity added. To derive the appropriate adjustment

formulae, the analyst has two choices. One choice is to assess new dependencies, such

as the dependency of the sensitivity on the specificity, and the dependency of the

mortality rates on the methodological parameters (Figure 7.2d). These dependen-

cies, however, are difficult to determine, and run against the experience of physicians.

The other choice is to assess the a priori dependence of one mortality on the other

(Figure 7.2e). But this dependence violates the desideratum of assessing evidence for
the arms independently of each other. In either case, the adjustment formula for one

arm is not the same as the formula for the other one.?

: There are two solutions to this problem. One is to teach physicians how to make

the needed assessments. This approach would force physicians to view their medical

experience in ways that are clearly not natural to them.

The second is to separate the assessment from the calculation: Allow the physician

reader to structure the analysis in the order with which she is comfortable (the data-

driven direction), but to make the system construct the actual model in the model-

driven direction. The model-driven direction remains important, because it defines

what information is to be assessed from the user. The metadata-driven approach

works in this way: The user supplies metadata in the data-driven direction, which

are used by the system to produce the statistical model in the model-driven direction.

The modified statistical model then has sites for evidence that has semantics of the

data-driven direction, and that, therefore, can be assessed from the user.

 3Because, as 1 showed in Chapter 3, influence diagrams can be used to represent classical mod-
els, the argument I have just presented—using an apparently Bayesian structure (the influence
diagram)—is not biased against the classical approach.
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Figure 7.2: Dependence in adjustments. Arcs show the direction of assessment. (a) A
simple two-arm model for the relationship between the entity of interest (mortality
rate) and evidence (deaths) in two arms of a study. (b) The simple model, with
dependencies reversed, as in data-driven adjustment models. The two arms remain

independent of each other. (c¢) The simple model modified by the introduction of
methodological parameters (sensitivity and specificity) in common to the two arms;
the arms are now dependent on each other. (d) The previous model with the depen-
dencies reversed. New dependencies must be assessed. {e) The previous model with
the methodological parameters averaged out. The dependencies of the two arms are
made explicit; compare with Fig. 7.2b.
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7.2 The Metadata-State Diagram

The task of coordinating metadata-driven statistical-model construction is given to

the metadata-state diagram. The model-driven direction of statistical-model con-

struction is implemented in the actions—construction steps—taken by the system in

response to the user’s concerns. A construction step for the statistical model is an

action thal takes a formally valid influence diagram and produces another formally

| valid influence diagram, where the new influence diagram now has components repre- |

senting the concern of interest. The final statistical model, therefore, has a history, |

consisting of a sequence of construction steps. Because there are restrictions on—

and preconditions to—taking individual construction steps, the specific rules for the

construction process induce an order on the space of histories of statistical models.

The metadata-state diagram reflects this order. The states in the diagram refer

| to states of the analyst’s knowledge about a group of patients—the metadata—and

the directed arcs refer to the construction steps permitted in response to metadata |

possibly available at a particular state of knowledge. * The semantics of each state are
those of the the path from the root state to the state—the state’s history. Thus, the

data-driven direction is established through the metadata permitted at each state.

Figure 7.3 shows a simplified version of the diagram that governs THOMAS’s in-

teraction with the user. The displayed diagram implements several rules.’ Arc 1

embodies the rule that protocol departures may be considered only after a patient’s

assignment status is known. This rule concerns the semantics of protocol departure,

a specific type of concern. Note that the knowledge about the assignment status be-

longs to the analyst (reader), in keeping with the definition of a state in this diagram.

Arc 2 (more precisely, a corresponding absence) symbolizes the rule that outcome

" 4Loops are allowed; e.g., the ability to modify errors in the evidence requires the implied recursion.
SThe use of rules in building a Bayesian system is permitted because of the Bayesian difficulty

with model construction; see Section 4.4.
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evidence may not be given for patients who ere known fo have been lost to followup.

This rule concerns the implications of a particular methodological concern. Arc 3

represents the rule that classification error may be modeled only if outcome evidence

has been provided. This rule concerns the aveslability of information. These rules all

concern metadata of the study, rather than the primary data.

System builders have the choice of making these rules explicit, or making the

state diagram induced by the rules explicit, or both. In choosing to make the rules

explicit, as in a rule- or blackboard-based system, the system builder leaves implicit

the interactions among the rules. These interactions are made visible in the state |

diagram. However, in choosing to make the metadata-state diagram explicit, the

system builder may lose the explanatory power resulting from the modular semantics

of rules, and risks an exponential explosion in the size of the diagram. When both |

rules and diagram are used, the rules can act as an interface for the system builder:

The system builder enters rules, and the machine modifies its metadata-state diagram.
Difterent choices among these approaches lead to different control algorithms. In this

dissertation, I have chosen the explicit-diagram approach, because of the exploratory

nature of the work.

7.2.1 Metarules

The structure of the metadata-state diagram is domain-dependent. For the literature

problem, that structure is based on the sequence of events that subjects may expe-

rience in the course of a study. Diagrams of potential patient histories, which are

potential patient-flow diagrams, are found in clinical epidemiology texts (Feinstein,

1985) or in expert-system interfaces (Musen, 1989); an example is shown in Fig-

ure 1.1. Because the metadata-state diagram is implicitly a structure of rules, rules |

for generating the diagram are metarules. Thus, the metarule for the structuring the

metadata-state diagram for the literature problem is the following,
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Figure 7.3: A metadata-state diagram. This diagram presents a simplified version of
the metadata-state diagram used by THOMAS. Each arc is labeled with the name of
a. metadatum that is valid at the indicated state. The numbered arcs are discussed

in the text. The direction of an arc assumes that time increases in the same direction

as the arc.
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Metarule 7.1 Order states in the metadata-state diagram according to the temporal |
sequence of petients’ experience in a study.O

Metarule 7.1 expresses the notion of using the potential patient-low diagram to

construct the metadata-state diagram. The use of the metadata-state diagram in

analyzing a study is guided by one metarule.

Metarule 7.2 Assign evidence to the most specific cohort possible.D

Metarule 7.2 is the Bayesian analyst’s response to the reference-class problem (Ky-

burg, 1983). The metarule keeps the model as simple as possible, and it results in the

smallest posterior uncertainty in a parameter: The further away evidence 1s from its

appropriate parameter, the more hkely intervening concerns will dilute that certainty.

The metarule is implemented implicitly in THOMAS’s user interface (Section 6.3.4).

The use of the metadata-state diagram to sequence a series of analyses of the same

study (see Section 6.4.4) is guided by the principle of not bringing in irrelevant infor-

mation.

Metarule 7.3 If (1) no specific prior knowledge is available, or (2) no specific ev-

idence is available, or (3) the type of distinction is not important to the problem at

hand, then do not model the concern (i.e., do not invoke a modeling rule); enter con-

cerns for which you have the most evidence before concerns for which you have less

evidence.O

The main justification for Metarule 7.3 is that it minimizes the analyst’s time

spent in the analysis. In terms of the usefulness of the results—also important to

the analyst—if the conditions of the metarule are met, but the user does proceed to

model the concern, then the posterior belief in many parameters may be diffuse, no
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matter how much specific information is in place in other parts of the model; a set of
such diffuse beliefs is not useful. This diffuseness becomes even worse when there are

more basic parameters than there are strong prior beliefs or data. I currently leave |

the metarule implicit in the options that the systern makes available to the user.

7.2.2 Use of the Metadata-State Diagram

The metadata-state diagram mediates between the data-driven direction, via meta-

data input, and the model-driven direction, via model! construction of statistical

model construction. The top-level controlling loop of the algorithm works as follows:

The patient-flow diagram translates the user’s metadata directive into a machine-
usable format that includes the metadatum and a target cohort. Unless the directive

signals termination of the modeling process, the system examines the metadata-state

diagram to determine whether the directive is permitted, by inspecting the arcs ema-

nating from the state in the diagram referred to by the target cohort. If the directive

1s permitted, the system then executes the construction step indicated by the meta-

datum, indirectly modifying the patient-flow diagram and the statistical model. H

new parentless parameters are created by the construction step, the user is asked to

assess prior beliefs about those parameters.

7.3 The Statistical Model

The third component of the metadata-driven approach is the statistical model, rep-

resented as an influence diagram. The statistical model 1s a specially structured

influence diagram, whose structure provides a lexicon linking user-based semantics to

statistical-model components. Thus, the statistical model involves types of variables,

as well as types of larger components that allow the statistical model to represent
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methodological concerns. The larger components—within which variables reside—

are levels, whose semantics are based on the approach for likelihood debiasing given

in Section 4.2.3 and on the design model for the program (see Figures 4.14 and 5.1).

There are four levels of variables in THOMAS’s hierarchy: the population, the study,

the effective, and the patients levels. The topology of the hierarchy is shown in

Figure 7.4.

Population Parameters

Effective Parameters

Figure 7.4: The levels of THOMAS. Variables are defined within only one of the levels:
population, study, effective, or patient.

As with any hierarchy, the purpose of separating nodes into levels is to limit the | |

interactions possible between nodes, which makes construction and assessment easier.

Nodes in one level of the statistical model may have parents only in their own level,

or in the level above them, and may have children only in their own level, or in

the level below them; nodes two layers away are irrelevant if values of the nodes in

the intervening layers are known. This limitation exploits the notion of conditional

independence inherent in influence diagrams.

Within levels, nodes and arcs are typed, allowing further semantic identification

and interpretation. The type of a node dictates that node's semantics to the user,

its possible values, the form of its probability-distribution function or deterministic
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function, and its level in the hierarchy of the influence diagram. The type of an arc

depends on its location: between levels (interlevel arcs) or within levels {intralevel

arcs). Intralevel arcs are divided into arcs connecting nodes of the same type (istotypal

arcs), and those connecting nodes of different types (heterotypal arcs). By virtue of

the acyclic nature of influence diagrams, there 1s no need for upward arcs between

levels.

Table 7.1 lists the classes and types of nodes and arcs used in THOMAS. We shall

now examine the components of this structured statistical model.

7.3.1 Types of Nodes

As suggested by THOMAS’s design model, THOMAS uses two types of variables: the

outcome type and the parameter type. An outcome-type variable reflects an outcome

of interest in a study, such as lifespan. A parameter-type variable parameterizes

the uncertainty in an outcome-type variable. The statistical model 1s composed of

parameters, whereas the decision model—linked to the statistical model at the patient

level-—contains outcome nodes as well.

The possible values of an outcome node depend on the outcome itself. For lifespan,

the possible values are all positive numbers. The probability-distribution function

(pdf; see page 53) associated with an outcome node depends on the outcome type

and on the probability model assumed by the knowledge engineer.

The possible values for a parameter node depend on the pdf for which the variable

1s a parameter. For an instantaneous-rate parameter of an exponential distribution,

these values are all numbers between ( and 1. The parametric pdf for a parameter

node may be chosen on the basis of its possible values. For THOMAS, I assume a

beta distribution for parameters whose possible values are bounded, a log-normal

distribution for parameters whose possible values are bounded on one only side, and

| a normal distribution for parameters whose possible values are unbounded (Shachter,
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Table 7.1: Types used in statistical-model construction in THOMAS.

Type Class Type Used in THOMAS

Level Population |
Study
Effective

Patient

Node Outcome

e.g., lifespan
Parameter:

Qutcome parameter

e.g., mortality rate
Methodological parameter

e.g., crossover rate {a subset parameter)

Arc Interlevel:

Population — Study: Selection bias

Study — Effective: Measurement reliability
Isotypal: |

Population parameter — Population parameter: Domain knowledge |
e.g., baseline mortality rate = placebo mortality rate

Study parameter — Study parameter: Protocol departure
e.g., mirture model: dependence of an outcome parameter

on component outcome parameters

Heterotypal:

Methodological parameter — Outcome parameter: Protocol departure
e.g., mirture model: dependence of an outcome parameter
on a subset parameter
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1988a).

Parameters come in two subtypes: outcome and methodological. Quicome param-

eters parameterize beliefs in domain-level concerns (outcomes). Qutcome parameters

are further divided into subtypes that are named by the different levels. Thus, there

are population outcome parameters, study outcome parameters, effective outcome

parameters, and patient outcome parameters. This type classification provides the

user access to parameters, through the semantics of their levels. |

Methodological parameters are divided into subtypes as well, depending on the

methodological concerns represented in the system. A subset parameter signifies the |

proportions of patients in a cohort who did, or did not, experience a protocol depar-

ture. Other subtypes depend on the particular methodological concern. For instance,

modeling the methodological concern of noncompliance requires a special parameter

to represent the proportion of time a patient remains compliant with therapy.

| | Finally, nodes have types defined within the language of influence diagrams: de-

terministic parameters, chance parameters, and basic parameters (chance parameters

without parents). |

7.3.2 Types of Arcs

The type classification of arcs, that gives semantics to individual arcs and to groups

of arcs in THOMAS, gives the system much of its ability to communicate meaningfully

with the user. The key semantics are those of difference: An arc between parameters

allows the system builder or the knowledge engineer to account for differences between

subjects, whether these differences are due to baseline status, to treatment status, or

| to biases encountered.

The semantics of interlevel arcs depend on the levels connected by the arc. An arc

| between the population level and the study level enables the system builder and the

user to represent ways in which study parameters differ from population parameters,



190 Data Structures and Algorithms

which are ways in which study patients are different from population patients. Such

differences derive from selection bias. Thus, the semantics of an interlevel arc between

the population and study levels are those of selection bias (see Table 7.1). An arc

between the study level and the effective level enables the system builder and the user

to represent ways in which effective results differ from those measurable, ideally, in

| the study patients. Interlevel arcs between the study and effective levels, therefore,

have the semantics of measurement reliability.

Isotypal arcs furnish one location for the system builder or the user to represent

domain knowledge. For instance, the population mortality rate in patients treated |

with placebo and the population mortality rate of patients given baseline care are

two parameters in the same level. The domain belief that each results in the same

lifespan is represented by an arc between nodes representing the parameters, with the

identity function as the target node’s determinisitic function. Isotypal arcs are used

also in methodological models. For instance, an arc between the node representing

the outcome parameter study mortality rate in patients assigned to metoprolol and the |

node representing the outcome parameter study mortality rate in patients assigned to

| metoprolol who received placebo instead is an arc between nodes of the same type, but

denotes the fact that the latter’s value is dependent on the former’s. The actual form

of the dependency relies on the methodological model involved.

Heterotypal arcs participate in methodological models, as well. Thus, an arc be-

tween a subset-parameter node and an outcome-parameter node is part of the model |

for representing crossovers.
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7.4 The Construction Steps

To coordinate the actions taken in traversing the arcs of the metadata-state diagram

| during the construction steps, THOMAS depends on one more set of structural rela-

tionships: the relationships among the three major data structures (Figure 7.1} and
the components of those data structures, shown in Figure 7.5. The consultation is

instantiated by the user during a consultation with THOMAS, and comprises a defini-

tion of the problem and study, as well as two major data structures-—a patient-flow

diagram and a statistical model. The problem definition comprises a number of treat-

ments (e.g., control and experimental) and a number of outcomes (though THOMAS

only deals with mortality). The patient-flow diagram is a tree of cohorts. Each cohort

refers to the treatment received by patients in that cohort and to outcomes assessed

in the study. A cohort refers to other cohorts below it in the patient-flow diagram,

and to population, study, and effective parameters. Each cohort also refers to a state

in the third major data structure, the metadata-state diagram. Parameters refer back

to their owning cohort and to other parameters in the statistical model. The statistical

model refers to parameters, and to the history of methodological concerns that modify

the statistical model in the course of THOMAS’s interaction with the user. Finally,

the metadata-state diagram, created by TEOMAS’s system builder, refers to states and

to transitions. The central coordinating object is the diagram is the cohort, the ob-

ject manipulated by the user. By referring to the cohort, the system can locate the

different elements it needs for its processing.

Specific construction steps are specialization of the generic construction-step in-

voked by the top-level controlling loop (see Section 7.2.2). There are three types of

construction steps in THOMAS: the inclusion of methodological concerns, the assess- |

ment of prior belief, and the assessment of evidence. We shall examine each type.
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Problem/ Patient-Flow Statistical |e
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Figure 7.5: THOMAS’s data structures. The relationships among the different objects
are modeled analogously to an entity-relationship diagram (Chen, 1976), where the |
boxes indicate objects, the arc — indicates reference (e.g., a cohort refers to a single
patient-flow diagram), and the arc— indicates multiple ownership (e.g., 2 cohort
owns many parameters). The cohort entity is outlined the most distinctively, because
THOMAS uses 1t as the point of reference with the user. The three major components

of Figure 7.1 are outlined by medium-intensity borders.
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7.4.1 Protocol Departures

The user adds protocol departures to the study description in the sequence comfort-

able to her, but following Metarule 7.3. As she does so, the system recursively splits

the cohorts of the patient-flow diagram into components whose semantics depend

on the specific protocol departure. The root cohort of the patient-flow diagram is

the cohort of patients admitted to the study. There is always a subcohort which

experienced the protocol departure {the Yes cohort) and one that did not (the No

cohort). |

When the system creates a subcohort, it names the new cohort on the basis of its

parental cohort and of the protocol departure invoked. Each protocol departure is

associated with a name fragment. Because the fragment may depend on dynamically

collected information (such as the name of the control drug), the fragment is not static

text, but is a function of other components of the consultation. The new cohort’s

| name is a concatenation of the name of its parental cohort (e.g., Patients who were

assigned to metoprolol) and the fragment of the protocol departure (e.g.,who received

placebo instead.)

Modification of the statistical-model involves three steps: the creation of new

outcome and subset parameters, the addition of parameters specific to the protocol

departure, and the addition of domain knowledge to the statistical model.
New outcome parameters are created in the population, study, and efiective levels;

the patient level is never altered. The new parameters are named on the basis of

the type of the parameter (e.g., population mortality rate), a prepositional connector

(generally in), and the name of the new cohort. To represent the relationship between

the new parameters and the parameters of the parental stratum, THOMAS creates

methodological subset parameters; one subset parameter is made the deterministic

complement of the other (an, = 1 — ayes), 50 only one new basic parameter 1s created

(Cys) at each level. For both outcome and subset parameters, the effective parameters
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are initially identically dependent on the study parameters,® and the study parameters

are initially identically dependent on the population parameters.

The linkages between the new outcome parameters and the parental parameters

differ at the three levels. Because the purpose of the effective layer is to allow repre-

sentation of errors of measurement, no connection is made between the new and old

effective parameters.

The purpose of the study level is precisely to allow representation of errors that

arise in the course of the study. Here, the old parameter is made a determims-

tic mixing function of the two outcome and the two subset parameters (65; = |

yen"9 + ain6).7 If the old parameter had had a previous dependency (e.g.
on its corresponding parameter at the population level), that dependency is severed

before the new dependencies are put in place. The avoidance of upward arcs and the

hierarchical relationship between the old and new parameters prevents this process

from producing cycles in the statistical model.

| The main purpose of the population level is to represent domain knowledge. Ini-

tially, the new population parameters are left isolated.

After the initial creation of outcome and subset parameters at each level, extra

parameters are added as needed by the protocol departure. For instance, for non-

compliance, a parameter must be added at each level representing the proportion of

time noncomphant patients were initially compliant.

Finally, domain knowledge is added, primarily through modification of the popu-

lation level. For instance, because the cohort of patients who do not experience the

protocol departure continues to receive the assigned drug, the population parameter

corresponding to this cohort is made identically dependent on the population param-

eter corresponding to the cohort of patients assigned to the drug; 6,; = fined If

" 6That is, an effective parameter is made deterministically dependent on a study parameter, and
the deterministic function is the identity function.

78 refers to. an outcome parameter.
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the system builder or the user wishes to represent the notion that patients who do

not depart from protocol are, in general, less severely affected than patients who do,

the relationship between 6, and 0.54 should be altered to reflect that domain

knowledge: THOMAS does not currently include such a model.

7.4.2 Measurement Reliability

THOMAS uses classification error as its model of measurement reliability for rates.

The patient-flow diagram need not be modified structurally. Modification of the |

statistical model takes place through changing the interlevel arc between the study

and the effective levels. Specifically, the effective outcome parameter, which 1s initially

identically dependent on the study outcome parameter, becomes dependent on the

basis of the calibration function: fire = Goreme 56+ (1 —bon2) + (1 — sp). Thus,

two new parameters are created: the sensitivity (se) and the specificity (sp}. The

same outcome in different cohorts can have different sensitivities and specificities,

unless the domain knowledge that they are the same 1s added to the model.

7.4.3 Prior Beliefs

As in any influence diagram, the assessment of prior belief is limited to nodes that

have no parents—basic parameters. Only population parameters and methodological

parameters may be basic parameters, because patient parameters and study param-

eters are always dependent on population parameters, and effective parameters are

always dependent on study parameters, by definition of THOMAS’s levels. After tak-

ing a construction step, the system locates new basic parameters by searching for all

basic-parameter ancestors of the effective parameter of the target cohort whose prior

belief is unknown. Parameters thus found are presented to the user for assessment

(see Section 6.3.3).
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Subset parameters should be assessed differently. Prior belief specified in a popu- |

lation subset parameter should have the population-referred semantics, whereas prior

belief specified in a study subset parameter should refer to belief about the particu-

| lar investigators or the particular study setup. THOMAS does not currently use this
scheme.

7.4.4 Evidence

THOMAS allows evidence only for effective parameters. Making study data update

belief in the effective parameters enables the system to add in models of measure-

ment reliability at any point during the interaction with the user, and preserves the

semantics of the effective layer.

Before incorporating study data into the statistical model, the system ensures that

the new data are consistent with any previously entered information. Consistency

here means that the number of patients in subcohorts must add up to the number |

of patients in the cohort of which the subcohorts are components. The consistency

check 1s made by constraint propagation through the patient-flow diagram.

7.5 Example of Metadata-Driven Construction

To clarify how the data structures and algorithms work together, we shall inspect the

metoprolol problem in greater detail, by examining the system’s response to the user’s

initiatives; these initiatives are sent by the interface as LISP forms to the top-level

| | processor. We shall assume that the scene has already been set by the user: She has
defined the pragmatic difference, the identity of the control and experimental drugs,

the name of the experimental design, and the identity of the outcome of interest. At

this point, the patient-flow diagram consists of a single cohort, Patients. This cohort

points to the first state of the metadata-state diagram. We shall now view a series of
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metadata directives and their effects.®

(thomas-command '(initialize))

The function thomas-command signals a directive to the metadata-

state diagram, and the list (initialize) is a metadatum that refers to a

transition that, as its construction step, initializes the statistical model.

The initial model appears as in Figure 7.6: Only the baseline population

and patient parameters are created, with the latter identical to the former, |

and the four levels are laid out. The topology of the hierarchy follows

Figure 7.4.

(thomas-command ‘(assign to placebo))

(thomas-command (assign to metoprolol))

As Figure 7.3 shows, assign is a transition permitted after initialize.

The assignment construction step creates a cohort for the indicated ther-

apy in the patient-flow diagram, and creates a population, a study, and

an effective outcome parameter for the therapy. These parameters are

identically deterministically dependent on one another in a chain, so the

study and effective parameters are initially assumed to be equivalent to

the ancestor population parameter. This state of affairs is depicted in

Figure 7.7. When the system returns to the user, it locates the new |

basic parameters—the placebo and the metoprolol mortality rates—and

requests prior knowledge about these parameters (not shown).

(thomas-command "(number for patients assigned to placebo is 698)) |

(thomas-command ‘(number for patients assigned to metoprolol is 697)) |

" 3The directives are taken from an actual session with THOMAS, where the directives are generated
by the system’s interaction with the user; hence their LISP format.
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The metadata directive number—not shown in Figure 7.3—is one form
of evidence available from the study. Patients who were assigned to placebo

and Patients who were assigned to metoprolol are the target cohorts for

the directives.

(thomas-command ‘(withdrawal from metoprolol))

This metadata directive 1s less specific than that for number, and the

system has to find any and all cohorts that might be relevant. Usually,

only one cohort is relevant; in this case, the single relevant cohort com-

prises those patients who were assigned to metoprolol and who received

the drug.

The effect of the withdrawal construction step on the patient-flow dia-

gram is the creation of two new cohorts. In this case, the cohorts represent

Patients who were assigned to metoprolol who continued to receive meto-

prolol (the No cohort) and patients assigned to metoprolol who withdrew

from therapy (the Yes cohort).

The effect of the construction step on the statistical model is shown

in Figure 7.8. This figure shows the mixture model created at the study

level (the arcs labeled 1), the encoded domain knowledge that patients

who withdraw from therapy receive baseline care (arc 2), and the user’s |

prior belief that the population mortality rate in patients who withdraw

is the same as the population mortality rate in patients who are assigned

to baseline care (arc 3). Note that population parameters are created for |
each column within the study-level hierarchy. These population parame-

ters allow for different domain assumptions by different system builders or

| for different domain assumptions in different protocol departures. For in-

stance, the belief that a patient who withdraws from the assigned-placebo



7.5. Example of Metadata-Driven Construction 199

cohort has more severe iliness than does the average placebo-assigned pa-

tient would introduce a nonidentity function between the nodes §;; and

Octlwitha- Modeling the subset parameter aca wima as having components

in each level allows the system builder to differentiate withdrawal rates

observed in the study from those expected in general.

The result of this construction step, for the statistical model, then, is

that the direction of dependencies among the study parameters is bottom-

up—from specific subcohorts to the most general-—whereas the direction

of dependencies among the population parameters is top-down; both are |

data-driven directions. The direction from population parameters to effec-

tive parameters is model-driven. The data- and model-driven directions

are quite literally orthogonal to each other.

When the system returns to the user, it first seeks new parentless

nodes; in this case, the proportion of patients who withdrew is such a node.

THOMAS therefore asks the user (not shown) for her prior belief about

this parameter, pointing out that such a prior belief gives the system

the user’s sense of the credibility of the researchers, as well as of the

attrition expected of patients in studies such as the one under review. The |

parameter (the population mortality rate in patients assigned to baseline

care) also has had no prior belief specified, and has now been incorporated

into the model. The result of the user’s choice of making that parameter |

equivalent to the population mortality rate in patients assigned to placebo

is indicated by the arc labeled 3 in Figure 7.8. |

(thomas-command ‘(number for patients assigned to metoprolol who withdrew

is 40)) |

| This datum 1s the only evidence regarding patients who withdrew, be-

cause the study did not give more specific information regarding outcomes
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in this group.

(thomas-command ‘(evidence for patients assigned to metoprolol

outcome mortality type count numbers 12))

This metadata directive is the transition referred to as outcome ev-

idence in Figure 7.3. Note that the evidence is, in fact, a count of pa-

tients, because the corresponding outcome parameter 1s a binomial suc-

cess rate. The numerical evidence incorporated into the system, in this

| case, is 12/698; that is, the system must combine information from the |
number and evidence directives.

(thomas-command (classification error for mortality

in patients assigned to metoprolol}))

The effect of this directive on the statistical model is shown in Fig-

ure 7.9.

We can make three of points about the final statistical model. First, the method-

ological concerns are clearly visible as well-defined structures within the model. The

mixture model for withdrawals and the calibration model for classification error stand

out. Furthermore, domain knowledge and even prior knowledge can be gleaned from

the structure. Second, the structure of the changes that occur to the statistical model

changes at the different levels. At the population level, the changes to the statistical

model reflect mostly domain and prior knowledge. The internal structure of the pop-

ulation level is from general to specific: from patient assignment to specific cohort

histories. At the study level, the changes reflect protocol departures, and the internal

structure follows a specific-to-general direction. At the effective level, the changes

reflect measurement reliability, and the internal structure is dictated by the outcomes

of the study. Third, notions of credibility are distributed throughout the model: in
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determining prior-probability distributions for the basic parameters in the popula-

tion level, in assessing prior belief in subset parameters in the study level, and in

appraising prior belief in the classification-error parameters. Credibility assessments

are involved, as well, in the user’s choice of concerns to model.
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Figure 7.6: THOMAS’s initial statistical model. The symbol 6 refers to outcome

parameters; the superscripts refer to the level of a parameter, and the subscripts

refer to the history. Thus, 8... is the patient mortality rate in patients who receive
baseline care. The patient baseline node will not be shown in subsequent figures,
because of space considerations.



7.5. Example of Metadata-Driven Construction 203

Population

4) po

TT

tud tud t

Effective

>

Figure 7.7: THOMAS’s statistical mode] after assignment. Outcome parameters are
created for each of the hierarchy’s levels, and for each of the two treatments (ex-
perimental and control). All functional dependencies are set initially to identity,
so evidence directly updates population parameters, even though evidence must be
dependent on effective parameters (see Section 7.4.4). The patient level will not
be shown in subsequent figures, because of space considerations; it is not modified
further.
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Figure 7.8: Inclusion of withdrawals in THOMAS. Because not all patients assigned to
the experimental treatment received the therapy, evidence for the effective parameter
does not update the belief in the population parameter directly, as it did in the initial
model. The creation of component population and study parameters implements
the indirection. The numbered arcs are discussed in the text. The symbol a refers
to a subset parameter; withd and withd indicate withdrew and did not withdraw,

respectively. Thus, 6 —— refers to the population outcome parameter in patients
assigned to the experimental drug who did not withdraw from therapy.
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Figure 7.9: Inclusion of classification error in THOMAS. The model of Figure 7.8 1s

modified only in the effective layer. The symbol se refers to a sensitivity parameter;

sp refers to a specificity parameter. These methodological parameters are indexed by
the outcome to which they refer (as the superscript) and by the cohort to which they
refer (as the subscript).
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7.6 Probabilistic Updating

Once the statistical model is constructed, THOMAS proceeds with probabilistic up-

dating. This process entails computing the posterior probability distributions of all |

parameters in the statistical model. THOMAS uses Shachter’s posterior-mode anal-

ysis (Shachter, 1990), a modification of the approach used by Berndt et al. (1974).

This approach involves estimating the posterior mean of the multivariate joint dis-

tribution of all parameters by the mode of a multivariate normal distribution that

| approximates the true posterior joint distribution. |

| The algorithm approximates all distributions as normal distributions. It then

searches for the posterior mode via a modified Newton—Raphson steepest ascent in a

multivariate space spanned by the basic parameters. Assumptions in the algorithm

used are that the basic parameters are marginally independent and that the pieces

of evidence are each conditionally independent of one another, given a parameter.

To find the posterior mode, the algorithm searches in a direction in multivariate,

basic-parameter space given by

d(b) = —H(b)V,a(b) (7.1)

where b is a vector, of length b, of basic-parameter values, d 1s the direction vector
(also of length b), a(b) is the vector, of length a, of values of all parameters, basic

and deterministic, V,a(b) is the gradient of that vector with respect to the basic

parameters, and H~ (b) is the inverse of an approximation for the Hessian matrix

of the posterior joint probability function (of basic parameters). The approximation

for the Hessian, of dimension 4 x b, is

| Hb) = (Va(b))"K V,a(b), (7.2)
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where K, the Cramer matrix, of dimension a X a, 1s

VILP(b) © n T
| K= —>_ VaLlL; (X; | a(b)) (VaLL; (X; | a(b})) (7.3)

0 0 1=1

where LP (b) is the log prior probability of the basic parameters (a b-to-1 function),

V2LP (b) is the Hessian of the prior (and whose dimensions are b x b), and the 0s

are matrices of zeroes used to fill in the dimensions of that Hessian to those of K.

The index, n, 1s the number of pieces of evidence, X; is the jth piece of evidence,

and LL; (X; | a(b)) is the primary log-likelihood function for each datum (an a-to-1

function); V, represents the gradient with respect to all the parameters.

The search concludes whena set of values of the basic parameters—b—maximizes

the posterior log likelihood. The posterior mean of the true posterior distribution is

then estimated as the value of all the parameters at the calculated maximum,

| E(a(b) |X) ~a(b), (7.4)

where X 1s the vector of evidence. The variance of the true posterior distribution is

estimated as

~ PPR AN T
Var(a(b) |X) # -V, (a(b) |X) A (b) (W.{a(b)|X)) . (7.5)

Because, in THOMAS, many of the deterministic parameters are identical to other

parameters, THOMAS first strips away those redundant parameters before proceeding

with the search, and attaches to the nonredundant parameters any evidence that

was dependent on a stripped-away parameter. When the search is completed, the

posterior means and variances of the relevant parameters are copied back, along with

the original evidence, into the stripped-away deterministic parameters.

Once the posterior means and variances have been found, the parameters for the

distributions of the basic parameters can be found. For instance, if a rate is beta
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distributed, its a- and fS-parameter values can be calculated from the calculated

mean m and variance s* from the following equations (compare with Equations 4.1): |

Vv = niin) - 1,
a = vm, (7.6)

Bg = v(l-m). |

If the algorithm fails to converge within a reasonable time limit (or iteration limit),

| it returns the last point visited in multivariate space. However, the semantics of such |

a failure are that the model 1s underspecified. Such underspecification arises when

there are parameters with diffuse priors and minimal evidence. These conditions are

likely to arise, for instance, in classification-error models, where the sensitivity and

specificity are low and there 1s no evidence from the study. Metarule 7.3 works against

this eventuality.

7.7 Utility Maximization

| Finally, the system arrives at its recommendation by maximizing utility. The gen-

eral equation for utility maximization was given in Equation 4.4. THOMAS takes

advantage of the fact that, for the limited model currently used by the system, one

level of expectation computation can be avoided. The utility equation, Equation 5.1,

specialized to the case of the exponential distribution for lifespan, is

. 1 oo rl
§ = max [*[ (L = seed) P(L| 3) P(X) dd, (7.7)

where the 4 is the set of decision alternatives (experimental or control) and A is the

pragmatic difference. If we switch the order of the integrands, then, by virtue of the
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expectation of an exponentially distributed variable,

5 = max”?/P (A) /N (L = Iipeexp)A) P (LIA) dL dX
(7.8)

= max]/P(N) (2 — IpmexpyA) dX.SEA 0

The chosen alternative is

1 .

) perimental.

Now, the posterior-probability distribution that 1s calculated from the probabilistic-

updating step is the beta distribution for 6—the timed mortality rate. Therefore, to

calculate the utilities under each therapy, the system needs to calculate —At (7) :
There 1s no closed form for this calculation; THOMAS calculates the expectation using

numerical integration.

7.8 Comments

In addressing the problem of helping relatively naive users to create influence dia-

grams, we may come to the following conclusion on the basis of the work presented in

this chapter: Such aid is highly domain-dependent, so the sequence and strategy must

be crafted carefully, with the domain in mind. The domain of randomized clinical

trials is large, encompassing many areas that would be called “domains” in and of

themselves (e.g., cardiology), but it remains a particular domain nonetheless.

Other researchers have come to similar conclusions. Goldman (1990) has devel-

oped a language for constructing influence diagrams that represent natural-language

stories. His construction language is more general than the one described here, in that

a user is able to create any arbitrary influence diagram using the primitives of the

language. Much of the language is specific, being limited to a circumscribed vocabu-

lary. Yet the language deals, as well, with the domain-dependent problem of relating
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symbols—subgraphs of an influence diagram—to a particular class of tasks-—natural-

language understanding. In particular, he uses a “skeletal belief network” (p. 51)

| that is a hierarchical and typed influence diagram, as is THOMAS’s statistical model.

Goldman’s levels refer to tasks in natural-language understanding: plan explanations

ofplans, plan explanation of words, determine type of word denotation, and determine

word-type of words. Furthermore, the response to the user is guided by rules that are

triggered by metadata about inputs and that make metadata-type conclusions. For

instance, if the input phrase 1s a prepositional phrase then the system 1s instructed to

establish arcs between nodes representing specific classes of word tokens (Goldman,

1990, p. 90).

| Goldman's approach is model-driven in the sense that the system has a strong sense |
of what types of information to expect and how they interact. Other investigators

use a model-driven approach as well in automating influence-diagram construction.

Breese’s (1987) approach is similar to mine in that the final influence diagram

| 15 built from components provided by the system builder. Because his approach 15
general, Breese requires the user to have more knowledge of influence diagrams.

Another sense of model-driven construction is where the system builder provides

the system with an initial large model which the system shrinks during run time. Well-

| man (1988) and Holtzman (Holtzman, 1989) take this approach in building medical-

therapy advisory systems.

There are numerous examples of implicitly typed influence diagrams, like the

one that THOMAS uses, in the Al and uncertainty literature. QMR-DT (Shwe et al.,

to appear) has nodes of the types disease and finding, with arcs of the type has.

Pathfinder (Heckerman, 1990) has nodes of the type distinguished and feature, with

arcs {or sets of arcs) of type subset independence and hypothesis-specific independence. |

Agosta (Agosta, 1988) has nodes of types corresponding to the hierarchy of objects

in vision systems, where the different levels have the semantics of abstraction of a
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percept, as opposed to THOMAS’s semantics of difference between cohorts.

I discussed the Confidence Profile Method of Eddy and colleagues (1991) in Sec-

tion 4.7. The software distributed with CPM the book—FAST*PRO—allows a user

to assemble an evidence table and to derive posterior belief curves. As currently imple- |

mented, influence diagrams are not used. Rather, the system uses normal-distribution

approximations that allow the program to use adjustment formulae for each arm and

to perform the calculations in the evidence-to-parameter direction. As an approxi-

mation, this method is useful;in large models, however, it may be unpredictable, as

we discussed in Section 7.1. |

Because model selection or construction is difficult to effect in the proper Bayesian

manner {Section 4.4), the Al approaches used by these investigators are all appropri-
ate. The system designer must simply be careful that an approach 1s not inconsistent

with the Bayesian paradigm.
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Chapter 8

Current and Future Status

The claim of this dissertation is that decision analysis and the Bayesian paradigm can

form the foundation of a computer-based environment to aid physicians in making

clinical decisions on the basis of scientific data from the clinical research literature.

THOMAS was created to test this claim. In this chapter, Ishall describe, in Section 8.1,

the experience physician readers have had in using THOMAS. Then I shall compare,

in Section 8.2, the current version of THOMAS to the specifications of decision analysis

and the Bayesian paradigm. In Section 8.3, I shall suggest future directions in ex-

| panding THOMAS, showing how the framework developed in this dissertation can be

used to represent methodological concepts that have, heretofore, not received formal

attention.

8.1 Usability | |

I have evaluated the usability of THOMAS in a semiformal manner, judging the ability

of individual users to interact with the system. Three clinicians—a general internist,

a general pediatrician, and a pediatric hematologist—oncologist, the first two of whom

were familiar with decision theory—and a statistician used THOMAS in the intended

213
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way. Each reader was asked to choose an article reporting an RCT comparing two

drugs, with the endpoint of mortality.! He perused the article before a session with

THOMAS. I ran each session, taking command of the physical interaction with the

system, explaining concepts (when THOMAS had no help text for the concept), audio-

taping the session, and taking notes. The users read the study reports carefully in

response to interrogatives from the program, which directed the analysis. At the end

of the session, the users were asked for their reactions to the system, and, particularly,

for their criticisms of the concepts and implementation. Each session lasted approxi-

mately 45 minutes, most of which was spent in reading the article and in discussing |

the concepts.

The task was conceptually familiar to each user. The subjects understood the

cliccklist interface (“This looks pretty nice”), but found that navigating it was, at

times, confusing. The users found the patient-flow diagram, on the other hand (and

| as predicted), to be self-evident.

Each user reacted to the request for a decision model with surprise, but reported

that the request to be the most useful —and difficult—part of the interaction. All

subjects understood the notion of the pragmatic difference, although each found it

difficult to make the global assessment, preferring to make the judgments piecemeal,

in terms of component objectives.

All users felt comfortable specifying prior beliefs, and recognized the difference

between making the assumption of “total ignorance” and specifying such belief. Two

users would have preferred to make the experimental mortality rate dependent on the

control mortality rate and a relative risk, instead of making the two mortality rates

" IThe reports analyzed were the metoprolol study by Hjalmarson, et al. (1981), a study testing
the efficacy of sclerotherapy in patients with esophageal varices (Veteran Affairs, 1991), and a study |
comparing aspirin and sulfinpyrazone in the prevention of stroke (Canadian Cooperative Study
Group, 1978). Note that the second study evaluated a nondrug treatment and that the third study
evaluated an outcome other than mortality. These articles were used at the users’ requests.

2The program was implemented on a Macintosh IIfx with 8 MB of RAM for these sessions.
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independent.

The users thought that the system's use of life expectancy as the basis for its

recommendation was intuitive. It was much easier to understand than the Bayesian

graphical equivalent of the p value (see page 108).

When asked specifically what deficits they perceived in the program, the two

users knowledgeable in decision theory stated that they thought that the system

would be too difficult for use by clinicians who had not had theoretical training in

the decision sciences. The single “naive” user, on the other hand, spotted all the

statistical assumptions and limitations of the program. She noted problems such as

the questionable propriety of the constant-hazard probability model for lifespan. She

also found frustrating the mability to use the system to specify the role of patients’
pre-existing conditions in possibly confounding the conclusion (see Section 8.3.3).°

Thus, the experience with the naive user suggests that an academic clinician has

+ precisely the level of methodological knowledge necessary fo use THOMAS, and that

THOMAS is written at the proper level of abstraction. :

The statistician found the process statistically sound, given the constraining as-

sumptions. |

We should note that this evaluation is limited in that it demonstrates that the

system could function as intended. Assessing the system's use by a wide range of

clinicians, or determining its potential impact on clinical care, must await future

work.

8.2 Satisfaction of Specifications

The internal validity of THOMAS depends on the system’s meeting all the specifi-

cations we have set for the program. There are four sets of specifications: (1) the

| " 3She was also frustrated by the lack of data in the study report to furnish the details of such a
model, had it been available. |
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claims made in the thesis statement (Section 1.5); (2) , the claims of THOMAS’s pro-

posed behaviors (Section 1.6.1); (3) the high-level desiderata for solving the literature

problem based on a knowledge-level analysis of the problem (Section 2.3); and (4) the

specifications implied by the strategy inherent in the decision-analytic approach (Sec-

tion 4.4). Points 3 and 4 were evaluated in Section 4.6. In Sections 8.2.1 and 8.2.2,

we shall briefly examine points 1 and 2.

Internal validity also demands demonstration that the system can produce a rich

array of meaningful statistical models. Such a demonstration shall be made in Sec-

tion 8.2.3.

| 8.2.1 Thesis Statement

We recall the thesis statement: Decision analysis and the Bayesian paradigm can form

the basis of a computer-based environment to aid physicians making clinical decisions

on the basis of scientific data from the clinical research literature. The system’s use of

| a utility model to make recommendations satisfies the conditions of the clinical focus

of decision making and the applicability of decision analysis. THOMAS’s interface

being designed for the physician user, satisfies the stipulation of the physician reader

as the target user. The nature of the checklist, the patient-flow diagram, and the

knowledge assumed of the user all depend on the physician as user. THOMAS is a

dynamic computer-based environment, and assumes that published scientific data are

the primary source. Finally, the system extends the Bayesian paredigm by having the

user express her prior belief about model structure, not just parameter values. Thus,

the system fulfills the desiderata.
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8.2.2 Behavior-Based Desiderata

Section 1.6.1 presented more specific design goals. The checklist implements the

requirement to analyze a study in a structured way. The ability to examine a series

of analyses (Section 6.4.4) fulfills the requirement fo examine a study in multiple
ways and to examine the sensitivity of any posterior belief or decision to different

prior beliefs. The use of prior belief (Section 6.3.3) allows the system to incorporate

domain knowledge into an analysis. The construction steps of the metadata-state

diagram {Section 7.4) enable the system to incorporate methodological knowledge into

an analysis. THOMAS’s probability plots (Section 6.4.2) allow the user to ezamine the

change in belief in any parameter and to compare the beliefs in any two parameters,

whereas the plots of life expectancy (Section 6.4.1) enable to system to determine the

optimal therapy.

8.2.3 Variety of Models

To demonstrate THOMAS’s ability to build, assess, and evaluate a wide range of mod-

els, I performed a modified sensitivity analysis along a number of dimensions. The

model dimensions examined are prior belief, certainty of the data, single protocol de-

parture, two protocol departures, and classification error. Table 8.1 summarizes the

descriptions of the models. Model Baseline includes the raw data from the metoprolol

study and the withdrawals from both treatment groups. The next three models vary

some of the values for evidence or prior belief. Model RealPrior uses for the popula-

tion parameters a prior behef stated by two of the users in the usability evaluation.

The model Low(Cert examines the effect of fewer data than were in the metoprolol

study (an imagined total of 75 patients, rather than 1595 patients). Model LowWD

examines the effect of low withdrawal rates.
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The next four models evaluate the effect of enlarging the structure of model Base-

line. Model GoodCFE adds classification error for patients in the metoprolol cohort,

with a prior belief in the sensitivity of 0.94 and a prior belief in the specificity of

0.94. Model BadCFE has a prior belief in the sensitivity of 0.85, lower than in model

GoodCE. Model WDNC adds noncompliance to both treatment arms. Model WD-

NCCE adds classification error for metoprolol deaths to model WDNC, with a prior

belief in the sensitivity of 0.94.

Table 8.1: Description of the sensitivity-analysis models.

Model Prior! Mortality Cohort | Protocol Classification
Label Belief Rate? Size® | Departure? Error®

Baseline 0.5, 0.5 0.05 697 0.2 —"
RealPrior | 10, 115 0.05 697 0.2 —_—

LowCert 0.5, 0.9 0.05 100 0.2 —
LowWD 0.5, 0.5 -0.05 697 0.05 —

GoodCE | 0.5, 0.5 0.05 697 0.2 0.94,0.94

BadCE 0.5, 0.5 0.05 697 0.2 0.85,0.94

WDNC 0.5, 0.5 0.05 697 0.2, 0.2 —

| WDNCCE | 0.5, 0.5 0.05 697 0.2, 0.2 0.94,0.94
! Belief in the parameters of the prior beta distribution for the two mortality rates.

2 Observed mortality rate in patients assigned to metoprolol.
3 Number of patients assigned to metoprolol.

4 Observed rate of withdrawal from both metoprolol and placebo cohorts.

> Prior belief in sensitivity and specificity, respectively.
5 Not applicable.

Table 8.2 summarizes THOMAS’s structuring of these models and its performance

in evaluating them. The basic parameters are the marginally independent variables

in each model. The identity parameters are the number of parameters identically

deterministic to some other parameter in the model and reflect the overhead of model |

construction in THOMAS. The ratio of the number of identity parameters to the total

number of parameters gives a sense of that overhead. The listed performance figures
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indicate how long the probabilistic-update step takes.

We can draw several conclusions on the basis of the information in Table 8.2.

First, the model-construction overhead is high, with up to one-half of the structure

"not contributing to the calculations or to the system’s recommendation. However,

the large number of parameters currently superfluous gives us a sense of the number

of methodological concerns that could be included in the model, if the user so wished.

Second, the performance 1s a function of both the number of parameters in the model,
and the degree of posterior certainty in the model. The degradation of performance
with Increase in model size 1s obvious; the relationship to posterior certainty is less |
apparent. If the slower performance were due just to the increase in the number of

parameters, then the degradation from model Baseline to model GoodCFE would be

similar to the degradation from model WDNC to WDNCCE. Yet we find that model

WDNCCE has a disproportional increase in execution time. The slower performance

1s due to the broadening of the posterior mode of the posterior joint distribution in the

latter model; the broader the mode, the longer the posterior-mode-analysis algorithm

takes to converge to a single answer.

Table 8.3 lists the posterior beliefs calculated by THOMAS for each model. We can
draw some conclusions from these values.

1. The posterior mean for the mortality rate in patients treated with metoprolol 1s

intermediate between the observed mortality rate in the metoprolol cohort and

the mortality rate in patients treated with placebo. This behavior was codified

by Rennels (1986) as a heuristic. We find, in contrast, that THOMAS implicitly

derives this heuristic from its knowledge of statistical theory.

2. Because the posterior beliefs for model Baseline and model RealPrior are the

same, we see that adding a prior belief that is less certain than the data does

not necessarily affect the posterior beliefs.
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Table 8.2: Sensitivity-analysis results.

Model Basic! Deter- Identity | Total | Overhead? | Performance

Label ministic (sec)
Basehne 5 3 17 26.08

RealPrior 5 3 17 25 0.68 27.66
LowCert 5 3 17 25 0.68 23.48

LowWD 5 3 17 25 0.68 24.65

GoodCE 7 4 16 27 0.59 37.23

| BadCE T 4 16 27 0.59 40.6
WDNC 9 10 24 43 0.56 140.95

WDNCCE | 11 12 22 45 0.49 224.5

1 Number of basic parameters.

? Ratio of number of identity parameters to total number of parameters.

3 Tested on a Macintosh Ilsi with SMB RAM, a math coprocessor, and System 6.0.7. |

3. We would expect that less certain evidence, as in model LowCert, would lead

- to less certain conclusions; we see, however, that the posterior beliefs, in model

LowCert in the mortality rates each has a lower variance. The reason for this

conflict with intuition is that the posterior means for model LowCert are lower

than in model Baseline. The more extreme rate parameters are, the smaller

their variances will be, simply because we know that they cannot take on lower

values (when close to zero).

4. Model LowWD gives a more certain posterior mean to the two mortality rates

of interest. This behavior is what we should expect: The more certain we are

that patients actually received the medication to which they were assigned, the

more certain we should be about the inference about the medication’s effects.

5. The improvement in uncertainty in model GoodCFE over model Baseline has

the same reason as in model LowCert: The posterior mean for metoprolol (the

cohort potentially misclassified) is closer to zero than in model Baseline.
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Table 8.3: Sensitivity-analysis posterior values.

Evidence Posterior Belief
| Model Metoprolol Placebo o." 0 ac

Label Mean (Var?) | Mean (Var) [| Mean (Var) [| Mean (Var)

Baseline 0.057 (0.7776) | 0.089 (2.32) |} 0.0449 (10.5) | 0.0833 11.4)
RealPrior® | 0.057 (0.7776) | 0.089 (2.32) | 0.0449 (10.5) { 00833 (11.4)
Low(Cert 0.020 (3.92) | 0.040 (15.4) | 0.0211 (4.57) | 0.0438 (8.51)
LowWD 0.057 (0.7776) | 0.089 (2.32) [| 0.047 (4.08) | 0.0784 (4.57)
GoodCE 0.057 (0.7776) | 0.089 (2.32) || 0.0143 (2.79) | 0.0981 (3.97)
BadCE 0.067 (0.7776) | 0.089 (2.32) || 0.0945 (1.54) | 0.102 (3.03)
WDNC 0.057 (0.7776) | 0.089 (2.32) || 0.0584 (19.2) { 0.113 (33.3)
WDNCCE | 0.057 (0.7776) { 0.089 (2.32) {| 0.0177 (4.33) { 0.141 (48.6) |
The parameter symbols follow the convention in this dissertation: 8.,,, is the population parameter

for patients treated with metoprolol.
Z Variance x 10%.

® The prior belief in each of the parameters 8,7, and 67,7 in all models {except in model RealPrior)
is a mean of 0.50, with a variance of 1250 x 10%, a very uncertain behef.
* The prior belief in each of the parameters 6, and 8.) in this model is 0.10 (6.89), a belief whose
mean is closer to the posterior and more certain than that of the other models.

6. The even greater improvement in model BadCF is unclear.

7. The degradation in posterior certainty due to the incorporation of a second

protocol departure indicates that the model’s uncertainty is much more sensitive

to protocol departures than it is to classification error. This sensitivity is a result

of the system’s interpolation of mortality rates for the unobserved subcohorts.

8. The further dissipation of certainty in 8... is the result of the classification error

applying to only the metoprolol cohort.

Thus, THOMAS can build and evaluate a variety of statistical models. An expla-

nation facility for the system’s output would be helpful, and is an area for future

research.
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8.3 Representational Richness

Throughout this dissertation, I have alluded to the ability of the framework to rep-

resent methodological issues beyond those of protocol departures and measurement

| reliability (see, for instance, the introduction to Chapter5). In this section, I shall
show how issues such as correlated prior belief, baseline characteristics, and random-

ization. The implementation of these issues is left to future work.

8.3.1 Correlated Prior Belief |

THOMAS’s current model assumes that the control-cohort and experimental-cohort

mortality rates are independent. Yet, often, an analyst or a reader beheves that

the two rates are related to each other—for instance, through a relative risk. This

state of affairs 1s depicted in Figure 8.1. Note that the model adds structure to the

relationship between the outcome parameters at the population level. This model

allows the user to express how much she expects the experimental drug to improve

mortality as compared to the control drug, regardless of the actual value of the latter

rate, rather than to specify each expected mortality rate separately.

8.3.2 Component Effects |

A second set of models allows the user to specify that observed outcomes are the

result of component effects, much as in models for analysis of variance (ANOVA) and

for linear regression. In this section, we examine the use of this approach.

Study observations always reflect interventions beyond the treatments of interest

| alone; Figure 8.2 presents a model for this state of affairs. In this model, the study

parameters are each the sum of two component parameters: the population parameter

of interest and the nuisance study parameter that reflects the contribution of ancillary

factors in the particular study. In the case of rate outcomes, it 1s inappropriate to
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Population

E—
Figure 8.1: Correlated prior beliefs. This influence diagram depicts the belief that
the experimental mortality rate 1s equal to the product of the control mortality rate

and a relative risk: 0, = po,explet]

model a rate as the sum of other rates, because the sum may be greater than 1. Thus,

statisticians routinely transform rates into log odds: w = In rd Log odds range over

the entire number line and have the semantics of component risks. We can obtain

a rate from log odds by the formula 8 = =. Thus, an analyst can specify a prior

belief for either entity, and derive a distribution for the other. I shall use log odds in

the ensuing models. |

Therefore, 1n the case of rate outcomes, the component model is Wary, = Wee +
Wrncillary or, Wer = Weng —- Wonillary] that 1s, the population parameter of interest
1s the excess risk the experimental drug has over the risk embodied in the details

of the study execution. This risk is the quantity most investigators presume to be

invariant across studies, and therefore belongs in the population level. For a specific

patient, the excess risk is added to the baseline parameter for that patient, much as

m a log-odds model.

In the case of placebo studies, wy; would be considered to offer no benefit beyond

the care received in the course of the study,* so it would not be included in the model.

| "The placebo effect is a well-known phenomenon, but this effect is identical to that of ancillary
treatment given in the course of a known study. This effect is common to both treatment cohorts.



224 Current and Future Status

Population

| pop

©
| ——

NT
study |

\

Figure 8.2: Basic component model. The study parameters are sums of a within-

study component (wy...) and a population (between-study) component (ws, or
we). The patient parameter is the sum of the baseline and the treatment-specific
components.

Therefore, if evidence were available for both Wenn"and wy“there would be enough |
evidence to update belief in the population experimental parameter.

If the control treatment were thought to have a benefit beyond the ancillary ther-

apy, the analyst would face the prospect of having three parameters, but only two

sources of data (see Metarule 7.3). Such a situation results in uncertain posterior

means for all three parameters. To arrive at a moderately certain conclusion for

the experimental-treatment effect, the analyst would require either more evidence,

or more prior information; otherwise, the posterior belief in Why would be uncertain.
Alternatively, if a second study of the two drugs were available, there would be enough
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evidence to supply meaningful posterior beliefs on the population parameters. This

state of affairs is shown in Figure 8.3.

Population

fe N AEE

Vv;
study 1 X study 2

y — pyvd
) |\ \

_

Figure 8.3: The use of two studies. If the study parameters are modeled as sums of
population parameters and within-study effects, then, with two studies, the number |

of basic parameters 1s equal to the potential number of pieces of evidence. The
population baseline parameter is omitted in the interests of space.

In any of these models, the population baseline parameter can play a number of

roles. As in THOMAS’s models, it may stand in for the default natural history of the

disease. In this case, the population parameters supply the addends or diminuends

that modify the natural course of an illness. Or, we can model Wneillary as explicitly
dependent on the baseline population effect. In this case, any difference between the
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ancillary and baseline parameters has the semantics of the effect of study participa-
tion.

8.3.3 Baseline Characteristics

Investigators and clinicians often are interested in knowing which patient character-

istics predict the patient’s course of health or the patient’s response to therapy. In

either case, we model the study outcome as dependent on parameters representing |

patient characteristics. The form is the same as in modeling the effect of ancillary

therapy. For instance, the contribution of disease severity in predicting prognosis may

be to add a constant amount to the mortality rate. However, the semantics of these

models 1s not the same as those of ancillary-therapy models, because ancillary therapy

represents what the medical community is doing to the patients, not what the patients

bring to the study. Figure 8.4 gives an example of modeling severity. A characteris-

tic, such as severity, is called a covariate. The model shown applies to dichotomous

covariates, and introduces a new parameter, 4, which I shall call a gamma parameter.

The oro parameters are defined as the proportion of patients within the cohort

who have the stated covariate. The algebraic model is wy, = why + Toon Wheverity
The gamma parameters do not have the same semantics as coefficients in a regression

model; rather, they attenuate the w parameters, which do have those semantics. If

the analyst wishes to represent a series of covariates, he may use a like number of

gamma and log-odd parameters. :

A major difficulty with baseline-characteristic models is that they require individ-

ual data on each patient; these analyses are akin to logistic regression. Thus, studies,

as currently reported, would be inadequate for the task of providing an analyst-reader

with the information needed to make a rational decision in this context. However,

with such data, a number of important methodological concerns can be represented.
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| Figure 8.4: Modeling baseline characteristics. The 5p" parameters are defined as
the proportion of patients within the cohort who have the stated covariate.

| In particular, we can represent the issues of asymmetric cohorts. These issues com-

prise problems of randomization, of masking, and of asymmetric protocol departure.

I shall describe only the use of asymmetric cohorts in modeling randomization.

8.3.4 Randomization

The goals of randomization are to prevent cheating, so that the investigator does not

know the prospective assigned treatment before recruiting a patient into the study,

and to make the treatment groups comparable, so that differences in outcomes can

be attributed to the differences in the treatments, and not to differences in group
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composition.’ There are numerous sources of information that the reader can use to

assess the effectiveness of the randomization and the equivalence of group composi-

tion, including the method of randomization, the identity of the investigators, and

the table of baseline characteristics describing the treatment groups (usually “Ta-

ble 1” in reports of RCTs). Our model of randomization must incorporate all these

components.

Figure 8.5 shows one possible model: it demonstrates a use of hierarchical model-

ing, a methodological modeling technique that allows representation of methodologi-

cal concerns, as does likelihood debiasing (see page 95). Specifically, our beliefs in the

gamma parameters are parameterized as beta distributions, with different parameters

for the experimental and control cohorts. In general, parameters that parameterize

belief in other parameters are called hyperparameters. | have modeled the hyper-

parameters for 75,= as uncertain, but the hyperparameters for the control-cohort
gamma parameter as certain, if we know the value of the experimental-cohort gamma

parameter and the values of two new methodological parameters, Ac and Af, which

I shall call the delta parameters.

The delta parameters represent the degree to which the distributions of the two |

gamma parameters are the same. If they are the same (both delta parameters being

zero), then we will conclude that the two cohorts were randomized the same way;

if they are different, we will conclude otherwise. The definition of the criterion for

being the same may be similar to the probability criterion used in the Bayesian

hypothesis test (see Figure 4.11). Furthermore, the delta parameters give us a location

to represent in a prior-probability distribution subjective notions such as the expected

quality of randomization, due, for instance, to the reader’s knowledge about the

investigators’ integrity. The delta parameters may also provide the site for updating

“ln classical statistics, randomization is a prerequisite for the use of classical-statistical tests, aswell.
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belief about randomization, given qualitative statements in the report, such as the

method of treatment assignment.

The gamma parameters, in contrast, provide a location to incorporate observed

data, such as the table of baseline characteristics of patients in the study.

Use of the model in interpreting a written report proceeds as follows. First, as in

other additive models, we assess our knowledge about the population-level parame-

ters. This knowledge 1s domain dependent.

Next, we assess our prior belief in [a, Ble~. We might consider the number of
patients with severe disease expected from the outset of the study to be admitted to

the study on the basis of our knowledge of the domain and of the projected sample

size stated by the authors. We also consider the method of randomization. Thus,

if the investigators expected to enroll 200 patients, of whom 50 would be expected

to have severe disease on the basis of our knowledge of the disease in question, and

the patients were supposed to be completely randomized (one-half to each treatment

group), then the prior belief in Yoon would be BE(25,75); The a-parameter value

of 25 represents the mean of our prior belief in aly,~. Because this parameter is
bounded on one side, we might represent our belief in this parameter with a log-

normal distribution. The mean of that distribution would be 25, and the variance

would depend on how certain we are before getting details that the randomization

protocol was executed as described by the authors; this variance measures our trust

in these particular authors.

Next, we consider whether we think there might have been uneven assignment:

Would patients be assigned preferentially to the control group? If so, we would set

the mean of our beliefs in Aa and AS to numbers reflecting the expected deviation

from assignment protocol. Because the differences are potentially unbounded, we

could represent the belief in each difference with a normal distribution. Again, the

variance of the distribution reflects our trust in the investigators.
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Finally, we incorporate evidence from the study. The distribution of severity status

in patients actually enrolled in the study updates belief in the gamma parameters,

whereas the patient outcomes update belief in the log-odds parameters. With the |

prior beliefs and evidence collected, we can generate the posterior beliefs in the seven

basic parameters.

This model, then, represents the different aspects of randomization that I raised

as concerns at the beginning of this section. The power of the model is that it |

separates a number of functions that have traditionally been lumped together in

classical analyses. Specifically, the hypothesis-testing analysis of the table of baseline |
characteristics has borne the burden of verifying the following: (1) that the patients

were indeed randomized as the authors claimed, (2) that the distribution of baseline |
characteristics between the two treatment cohorts was the same, and (3) that the

distribution of characteristics was a fair portrayal of the population of patients. The

| model for randomization presented here separates these issues. First, the degree of

randomization is assessed by examining the posterior-probability distribution for the

delta parameters. Second, the distribution of baseline characteristics does not need

to be identical for the analysis to proceed. The model does require, however, data

or prior beliefs in the log-odds parameters, if the gamma parameters are not close

enough. Third, the representativeness of the study cohorts can be embodied in an

additive model between the population and study levels; I shall not discuss this model

here.
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Figure 8.5: Randomization. This model represents the belief in the gamma param- |
eters as a hierarchical model: The belief in the parameter is further parameterized

by a beta distribution, about whose parameters we may be uncertain. The uncer-

tain beta hyperparameters are denoted by the vectors, [o, fl. and [a,Bla-
The differences between the experimental and contro] hyperparameters are the delta
parameters, [Aa, AS). If we were to find that the latter two parameters were zero—
analagously to the Bayesian hypothesis test in Figure 4.11—then we could conclude
that the control cohort and the experimental cohort were randomly composed in the
same way. Evidence is typically available for the two gamma parameters and the

| study mortality rates.
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Chapter 9

®

Conclusion

In this final chapter, I shall answer potential criticisms of this work and shall suggest

future directions. Criticisms regarding internal validity are discussed in Section 9.1,

and those concerning external validity are covered in Section 9.2. I shall discuss

the contributions of this dissertation in Section 9.3, and I shall outline planned future

work in Section 9.4. Ishall close the dissertation, in Section 9.5, with final comments.

9.1 Internal Validity |

The question of internal validity asks whether the thesis 1s defensible on its own

terms. One minor methodological issue is the propriety of acquiring knowledge from a

biostatistician in this project, where physicians are the goal users (see Section 2.1). In

response, we note that the core knowledge garnered from Professor Brown is consistent

with such knowledge found in many other sources of information for this domain (see

Section 2.2.3.2).

A more forceful criticism is that THOMAS may be too difficult to use (Section 8.1).

There are three components to the difficulty: the physical appearance, the need for

primary data, and the conceptual complexity of the system. The thesis depends

233 |
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least on the physical appearance of the interface, which can be improved. What 1

have demonstrated with three physician subjects 1s that the conceptual interface has

meaning for clinicians: Physicians can create proper statistical models without having

to know mathematical statistics. |

THOMAS’s need for primary data derives from the fact that the proper analysis of

survival data requires the history of each patient and not a summary statistic {such as

the rate of deaths in the cohort of patients assigned to a treatment). This is a problem |

as much with the published literature—which does not present this information to the

reader—as with the computer artifact. A future version of THOMAS should be able

to read automatically the data directly from an electronic article that would contain

the needed data. Yet, the necessity will always remain for the physician manually to

direct the system, deciding which data should be read in and assigning the proper |

label to a datum.

As for the conceptual complexity, the experience with clinician users has suggested

that physicians can relate to the novel concepts inherent in the approach. However,

the approach clearly needs the ability to explain its results to the user. It is not

enough to say that the life expectancy is greater for patients who receive one drug,

or to say that the posterior belief in one mortality rate has a mean that is lower than

the posterior belief in another mortality rate. The system must answer questions

such as these: Which data contributed most heavily to the differences? What model

components led to the calculated uncertainty in the posterior beliefs? If the system

cannot arrive at a single answer, what model components are responsible? (See

page 167.) Currently, a statistician reviewing an analysis can give the answers to

these questions; it is not clear how to use the influence-diagram representation to

provide the same answers.
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9.2 External Validity

There are two classes of concerns regarding the external validity of the thesis. First,

would the approach scale up? Second, would the biomedical community use the

approach?

9.2.1 Scaling Up |

For the approach of this dissertation to scale up for larger problems, an implemented

system must be able fo deal with larger statistical models, and the system must be

able to construct more complex models.

In terms of calculation, posterior-mode analysis is a matrix-based algorithm that

calculates approximate solutions. The performance bounds, therefore, should be poly-

nomial. In the discussion related to Table 8.2, we saw, however, that performance

+ also depends on the shape of the posterior distribution. Better algorithms are needed.

| In terms of complexity, there are two questions. Can the framework be enlarged

to include more complicated concepts? Section 8.3 has answered this question in

the affirmative. Can physicians use more complex systems? The resolution of this

| question depends on system builders’ abilities to build different conceptual interfaces

to different methodological issues and to enable systems to access primary data.

9.2.2 Use by the Biomedical Community |

Two major obstacles will deter the biomedical community from putting the conclu-

sions of this dissertation into use. One is the concern with cheating (Hamaker, 1977),

another is the possible superfluity of the approach, and the third is the novelty of the

approach (Weaver, 1991). |

The bottom-line argument against the use of Bayesian methods in interpreting

clinical research data is that it is too easy for users to claim a prior belief that results
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In a desired posterior belief. Thus, if a given reader wants the data to support a

conclusion she has, she can simply fabricate the prior belief that, combined with the

primary likelihood function for the data from the study, results in the supporting

posterior belief.

One response to the concern regarding cheating is that a system such as THOMAS

forces a user to maintain an audit {rail of her beliefs (see Section 4.6.2). A second

response is that cheating can occur, regardless of our probabilistic philosophy. In

classical statistics, the process is vulnerable during the choice of statistical model,’

and during the combination of statistical-test results with prior beliefs, where, be-

cause there is no quantification of the prior belief and because there are no commonly

accepted rules for combining qualitative prior belief with p values, the posterior con- |

clusion is relatively arbitrary (see Section 3.5.1).

A second obstacle suggests itself from our examination of Table 8.3, where we

found that real prior beliefs potentially have little impact on conclusions of the anal-

ysis. We may gather from this observation that the entire enterprise of worrying

about prior beliefs is superfluous and unnecessary. There are two answers to this
criticism. First, this observation explains one reason why frequentist analyses, which

essentially assume noninformative priors, are successful: In the presence of copious

data, the prior belief does not matter. However, where there are few data available,

the prior belief does become important, and must be represented in the analysis. Sec-

ond, a goal of this dissertation is to provide a tool for adjudicating arguments between

readers (see Section 2.2.1). If two readers initially were to disagree as to the decision

implications of a study, but then were to use a system like THOMAS—which elicits

their prior beliefs—to analyze the study, and were to find that they would reach the

same conclusion, then the system would be successful.

"There is subjectivity in matching the study that was executed to a statistical model for which a
test is available, and there is no assurance that the test was not chosen after data “dredging,” when

the authors might have made sure that the resulting p value would be “significant.”
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Regarding the novelty of the approach, we can expect fundamental change to

occur through persuasion, demonstration of improved benefits (Avorn and Soumerai,

1983; Kanouse and Jacoby, 1988; Greer, 1988; Hill and Weisman, 1991), and, in this

case, with improvements in the software that simphfy the work.

9.3 Contributions

Because 1t 1s interdisciplinary, this work makes contributions mn a number of fields:

medical informatics, biostatistics, Bayesian biostatistics, artificial intelligence, and |

medical education.

9.3.1 Medical Informatics

I maintain that the analysis and evaluation of biomedical research is an important |

component of medical informatics. Few tools have been built for physicians to help

them to perform these tasks. The Bayesian methodological formulation developed

in Chapter 7 provides an example of the type of semantic layer needed between the

physician and the statistical analysis. The result of incorporating this layer into
statistical systems is that the physician is able to take control of the interaction with

the system, and, therefore, is able to take charge of an important source of information

at her disposal. Potentiating such control is one goal of medical-informatics research.

There are implications from this work for the storage of, and access to, the biomed-

ical hiterature—another concern of medical informatics. In the age of the electronic

article, we need to think about the appropriate format for creating and storing the

new “literature.” The format I propose for the Literature is that articles be interac-

tive documents, allowing the reader to investigate the study’s methodology in ways

I have suggested in creating THOMAS. For instance, the reader should be able to

combine her prior knowledge with the data from the study, taking methodological
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concerns into account. This capability has implications for how the electronic jour-

nal article should be stored, and even for what information electronic-journal editors

should request from potential contributors. Specifically, electronic articles should

contain the probabilistic and statistical models the investigators think are appropri-

ate and relevant to the study, and should contain the authors’ prior beliefs in basic

parameters. Statistical models should be represented as influence diagrams, so that

a reader’s system like THOMAS could tailor the conclusions of the article, using the |

reader’s methodological knowledge. This format further implies that articles might

| be indexed by the parameters for which the articles supply evidence. Both of these

implications provide suggestions for future medical-informatics research.

9.3.2 Biostatistics

This dissertation participates in the discourse within the biostatistical community

regarding the propriety of Bayesian methods for interpreting clinical studies. Specifi-

cally, I have provided a novel argument for the use of Bayesian statistics—an argument |

based on a knowledge-level analysis of the use of research results for making clinical

decisions (see Sections 3.5 and 4.6). I have shown that the classical approach to data

analysis leads to a decision-making process that is heuristic in a way that violates

| cherished aims of the biomedical scientific community; the p value, I showed in Sec-

tion 3.5.1, acts as such a heuristic. I have also shown that the Bayesian approach
does not violate these ideals.

In addition, this dissertation speaks to a problem of great importance to the |

biostatistical community: How should research results be reported? Statisticians

are often frustrated by the small amount of space journal editors give them and by

the degree to which they must simplify their analyses. The format I suggested in |

Section 9.3.1 allows for statisticians to report analyses that are more complex, at the

same time that it allows for the reader to modify the conclusions of the study to take
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into account domain knowledge and local experience. My approach thus allows the

reader to participate actively in the reporting and interpretation processes.

Furthermore, my use of influence diagrams in describing statistical models suggests

that these structures may be useful in the teaching and communication of statistical

concepts.

Finally, this dissertation creates no new statistical knowledge, but, rather, at-

tempts to synthesize knowledge from many sources, without reinventing concepts

| that classical statisticians have already shown to be useful. In fact, a strength of the |

approach is its use of typical statistical models that obviates the need to resort to |

| ad hoc heuristics. My approach to credibility is a case in point, where this concept

1s represented through the distribution of prior beliefs in methodological parameters

throughout the statistical model (see Section 5.8 and page 199).

9.3.3 Bayesian Biostatistics |

Biostatisticians have been interested in Bayesian methods for many years, but the

approach is only now being put into practice in the course of biostatistical analy-

ses (Spiegelhalter and Freedman, 1988; Breslow, 1989). This dissertation contributes

to a number of areas within Bayesian biostatistics.

One Bayesian concern has been how to report the primary likelihood function

so that users can combine their prior belief with that likelihood function, and can

calculate the corresponding posterior belief. The solution in the past has been to

provide a variety of graphs and nomograms (Hildreth, 1963; Dickey, 1973), where the

user can find the posterior belief that corresponds to her prior knowledge. THOMAS

extends this approach by providing the reader the ability to modify the primary

likelihood function itself, and to view the results of that modification.

Another Bayesian concern is how to construct the statistical model appropriate to
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a reported study. Eddy and colleagues (Eddy et al., 1991) have provided such an ap-

proach, in their Confidence Profile Method. I discussed this approach in Sections 4.7

and 7.8. :

The notion of model construction, as we saw in Section 4.4, is a heuristic re-

placement for the proper Bayesian task of assigning prior beliefs to all models in the

universe of models. Thus, in asking the user to supply the statistical structure, we

are enlarging the scope of the notion of assessing clients’ prior beliefs.

A more global Bayesian concern is how to modify the planning and execution

of clinical studies to take decision-theoretical concerns into account. Hilden (1987) |

and Hilden and Habemma (1990) have considered the implications of a decision-

theoretic approach to clinical trials. Spiegelhalter (1986), Spiegelhalter and Freed-
~ man (1986) and Spiegelhalter, Freedman and Blackburn (1986) have suggested ways

of resolving classical concerns, using Bayesian approaches, in sample-size calculation,

in power calculation, and in clinical-trial monitoring. The approach I take provides a

technological solution to this problem: If software were available for easy, but mean-

igful, calculation of Bayesian statistics at the conclusion of a study, then perhaps

trials would be designed at the outset to produce the appropriate inputs to those |

calculations; this design would alter current design practice.

9.3.4 Artificial Intelligence

An important problem in developing Al systems for statistics is the coordination of

the various typesof knowledge needed by the system: probabilistic, methodological,

statistical, frequency, and domain. The framework for THOMAS provides a knowledge

representation that isolates each of these categories of knowledge, making system

development amenable to a novel type of modular design, as we saw in Chapter 7.

The design also enables the system to create names for new entities, on the basis of

this knowledge (see Section 7.4.1).
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This dissertation extends the use of influence diagrams as a knowledge represen-

tation in solving knowledge-based problems, and examines statistical modeling as a

domain appropriate for Al (but see Gale and Pregibon (1985)). In the process, I intro- |

duce the notion of hierarchical and typed influence diagrams. Such diagrams might

be used in systems where many entities fall into strictly defined classes. Further-

more, the use of the metadata-state diagram represents a new strategy for dynamic

construction of influence diagrams (see Section 7.2).

Finally, this dissertation takes a more complex view of statistics than may be gen-

erally acknowledged in Al research. For instance, some researchers view statistics as

referring simply to observed frequencies (Bacchus, 1989). Furthermore, investigators

of machine learning often do not incorporate knowledge about the methodological

relationship between the ideals they wish to infer and the data they are given.

9.3.5 Medical Education

By examining physicians’ use of research data from a systemic pont of view, I have

developed an approach that suggests the skills and knowledge physicians should have

when using the clinical research literature for taking clinical action. Specifically, we

should teach physicians probabilistic thinking, utility assessment, and the elements

of good research design and methodology. This approach is obviously of importance |

in teaching critical appraisal of literature, in general.

9.4 Future Work

This dissertation only scratches the surface of making Bayesian techniques accessible

to the practicing physician (see the introduction to Chapter 5). THOMAS’s capabilities

need to be expanded along a number of dimensions. In each extension, there is a

conceptual problem and a programming problem involved.
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We need a greater variety of physical interfaces for physicians to use (see Sec-

tion 6.1.1). Conceptually, we need to determine the interfaces to which physicians re-

spond the best. Once we know that, we can improve a system by giving the user more

choices at each step, or perhaps by developing a more detailed—and customizable—

user model.

We need to extend THOMAS's current utility model (see Sections 4.3.2, 5.3 and 7.7,

and Equation 5.1), to provide a richer set of models, especially those taking morbid-

ity into account. Conceptually, we must either develop a library of utility models or

decide on the primitive components of such models. With a library of models, a sys- |

tem can enumerate more models than just the pragmatic-difference model when the

program seeks the definition of clinical significance. With primitive components, the

system can provide tools to assist the user in constructing a wide variety of decision

models. Because utility models are subsets of influence diagrams, the capability to

help users to construct utility models 1s similar to that of THOMAS itself—dynamic

construction of influence diagrams; we would hope that the insights derived from

building THOMAS could be used in this solution. The domain problem with this

extension is that, for any study where morbidity is the outcome under considera-

tion, belief about mortality must be included in the decision model. Assessing the

morbidity-mortality balance when morbidity is the central issue is not trivial.

Another type of extention of THOMAS’s utility model] is that of making the model |

represent the objectives of decision makers other than the patient. For physicians, this

extention may involve medicolegal notions. For editors, this extention may include

notions of newsworthiness. For students, this extention may concern educational

objectives.

We need a wider selection of probabilistic models, beyond the exponential model

for mortality (see Section 5.4). Conceptually, we need to develop a knowledge base

for diagnosing when to use such models, or to insist that the appropriate model be
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reported by study investigators. This model-selection subsystem could be incorpo-

rated into THOMAS at the step of establishing the study design (step IL.A.2.b.i.1 in |

| Table 6.1). Such a reasoner is allowed to be heuristic in this Bayesian system, because

it is performing model selection (see Section 4.4); therefore, a traditional rule-based

system may be used (see the concluding comments of Chapter 7). Regardless of the

diagnosing system used, we are left with the conceptual problem of translating the

semantics of a model's parameterto the user. For instance, the shape parameter of a

Weibull distribution does not have straightforward verbal semantics; we might best

communicate them by displaying the distributions determined by different values, |

and might have the user choose the curve (or set of curves) closest to her belief.

We need to represent a wider spectrum of methodological concerns. Conceptu-

ally, we need models appropriate to issues such as randomization, and the influence

of pre-existing conditions (see Section 8.3). The construction of such models is an

| open area of research. In implementation, we need to construct a visual metaphor

| consistent with each particular model and with the Bayesian paradigm. We have

no assurance that the patient-flow diagram is the appropriate metaphor for baseline

characteristics, for instance. In fact, the appreciation for the link between the form of

the methodological model and the user interface is a key theme of this dissertation.

The probability-updating algorithm must be broader based. Extending the al-

gorithm beyond beta-distributed variables is conceptually straightforward. The one

caveat is that the assumption may be invalid that the form of the prior distribution

depends solely on the limits of the variable {e.g., relative risks would be distributed

log-normally simply because one limit is finite (zero) and the other is infinite). This

assumption properly should be superseded by specific domain knowledge. However,

such domain knowledge may lead to nonconjugate forms, which lead to pragmati-

cally intractable calculations, because of the system’s need to perform numerical in-

tegrations over high-dimensional spaces; Gibbs sampling (Hrycej, 1990) shows some
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promise in this respect.

Extending the probabilistic-updating algorithm to allow for dependence among

basic parameters is conceptually simple. Again, however, system performance would

degrade, because the matrix calculations used in the approximation algorithm would

take longer. Specifically, the Cramer matrix (see Equation 7.3) is diagonal when the

basic parameters are marginally independent; with dependencies added among basic

parameters, the structure becomes arbitrary, and more difficult to use.

Extending the algorithm to allow for dependence among pieces of evidence is |

precisely what THOMAS was created to avoid; the entire likelihood debiasing-approach

taken here (see Section 4.2.3} is one of modeling any interaction among pieces of
evidence in terms of parameters, leaving the evidence to be conditionally independent, |
given some effective parameter, of all other pieces of evidence.

Moving beyond the domain of the single research report brings us to the field of

Bayesian meta-analysis {Eddy et al., 1991). Creating a system to house meta-analysis

| requires incorporating notions of relationships between studies. A straightforward

model is that two studies provide evidence for the same population parameter (Fig-

ure 8.3). More difficult notions to represent are the dependence of the design of one

| study on the results of a previous study, or the dependence of outcomes of two studies

| that results from their having examined the same set of patients.

Thus, we can make certain improvements to THOMAS simply through more pro-

gramming. Other improvements require research. Still others require changes in the

biomedical research literature itself.

9.5 Concluding Remarks

Changes in quantity often lead to changes in quality. Recent innovations in computer

software and greater computer availability have given physicians increased access to



9.5. Concluding Remarks 245

the biomedical research literature. This quantitatively increased access will lead,

inevitably, to qualitative changes in the way the biomedical community reasons with,

and about, research data. The work presented in this dissertation may play a part in

preparing for those fundamental changes.
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Appendix A

Glossary

A.1 Abbreviations

Al artificial intelligence (page 11)

ANOVA analysis of variance (page 220)

CCT controlled clinical trial (page 21)

CPM Confidence Profile Method (page 120)

| 1d independent and identically distributed (page 56)

MI myocardial infarction (page 3)

pdf probability distribution (page 53)

RCT randomized clinical trials (page 21)

A.2 Notation

| A a set of decision alternatives {page 103)

247
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o first parameter of a beta distribution (page 54); a methodological pa- |

rameter for the proportion of patients who violated study protocol

(page 134)

Bg second parameter of a beta distribution (page 54)

B(p) Bernoulli distribution with success probability parameter, p (page 54)

Bf(a,B) beta distribution with parameters o and # (page 54)

BI(x,n) binomial distribution with success probability, 7, and sample size, n

(page 54)

4) decision alternative (page 103) |

E(N) exponential model with instantaneous rate parameter (page 54)

L lifespan (page 126) |

e(-1) likelihood of the first argument, given the second argument (page 53)

A instantaneous failure (mortality) rate for the exponential model

(page 54)

N(pg,0*) normal distribution with mean, x, and variance, o® (page 54)

T methodological parameter for the proportion of time patients were com-

pliant with therapy (page 138)

6 a generic parameter, or a timed-mortality-rate parameter, e.g., the mor-

tality rate (within 3 months) of patients assigned to metoprolol

0 eesigned the population outcome parameter in patients assigned to therapy—
superscript denotes level, subscript denotes history

u(-) utility of the argument (page 103)

xz or X; single observation (page 53)

X random variable (page 53)

(X) the mean of the pdf for X (page 87)

X column vector of observations (page 53)

~ is distributed as
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A.3 Graphical Conventions

(a) (b)

(c) (d) (e)

Figure A.1: Influence-diagram nodes. (a) Utility node, representing the overall utility
to the decision maker of a state of the world; the node’s value 1s a function of its

predecessors. (b) Decision node, which contains the decision alternatives (not shown).
(c) Chance node, which represents a random variable, whose belief is a function of its
predecessors. (d) Deterministic node, whose value is a function of its predecessors.
(e) Evidence node, a chance node whose value can be, or has been, observed.

If two nodes are connected by a directed (arrowed) arc, then the source node is the
predecessor and the destination node is the successor.
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Fame of Ticket ( \
Singer Availability \

(a) (b) _
Go to Met ¢a A\

Fame of —_— Hi

Singer Dont Go Nice we
d© @

|

e)

Figure A.2: Influence-diagram arcs. All arcs in an influence diagram are directed
and denote the dependence of the value of the destination node on the value of the
source node. The exact nature of the arc depends on the types of nodes involved.
(a) Probabilistic arc. This figure denotes the model that my belief in how many tickets
remain available for a particular opera depends on the fame of the singer, about which

I am also uncertain. (b) Deterministic arc. This figure shows that the value of z* can
be found with certainty, if 1 know the value of z. (¢) Informational arc. This figure
indicates that, at the time that 1 am deciding whether to go to the Metropolitan
Opera House on the evening of a performance, I know how famous the singer 1s.

(d) Likelihood arc. This figure shows that the number of heads I observe in tossing a
coin depends on the probability of that coin falling heads. {e) Derived-likelihood arc.
This figure expands Figure d: The coin 1s tossed twice, and the observed outcomes
are added deterministically (H = T; + T;). By virtue of certain properties of the
Bernoulli distribution (the basis of the likelihood arcs impinging on each toss node),
the probabilistic dependence on p of the calculated value—the number of heads—is
known to be binomial distributed. The arc is superfluous in defining the relationships

among the nodes in this diagram.



259 Glossary



LJ

Appendix B

L

Influence Diagrams

Influence diagrams represent decision problems under uncertainty. There are two

components to an influence diagram: the uncertainty component, and the decision

component. The uncertainty component is represented by a belief network—an acyclic

directed graph' whose nodes represent variables and whose arcs represent probabilistic

dependencies. Given any set of consistent probability statements about a set of

domain variables representing a full joint-probability space, a belief network can be

constructed corresponding exactly to the joint-probability distribution, and the joint-

probability can be calculated directly from the diagram. Because the graph 1s acyclic,

the nodes can be placed in an order where children precede parents. (Given this order,

the joint-probability distribution for n vanables is factored as follows:

Tm n n

P(A4)=117 Al) 4). (B.1)1=1 1=1 j=i+1

For instance, with only three propositions,

P(A, B,C)= P(A | B,C)- P(BiC)- P(C). (B.2)

1That is, all arcs are directed and it is impossible to return to any node by following a path of
arcs beginning from that node.

253
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If we know that P(A | B,C) = P(A | B), then we are saying that our knowledge

about A depends only on B, and is independent of C; we draw the diagram shown in

Figure B.1b. The knowledge engineer constructs the belief network by representing

{conditional} independence as the absence of an arc between nodes deemed irrelevant

to each other. Given such a network, any dependency or independency statement

derived from the graph is present in the original probability statements, or is implied

by them (Geiger and Pearl, 1988). Belief networks are special cases of graph-theoretic |

objects called semigraphoids, which satisfy the properties of symmetry, decomposi-

tion, weak union, and contraction (Pearl, 1988).

(a) (b)

~ Figure B.1: Influence-diagram example. This diagram depicts the joint probability
of A, B,and C. (a) The joint distribution is represented as a fully connected graph.
(b) The knowledge about conditional independence that P(A | B,C) = P(A | B)
allows the deletion of the arc between B and C : P(A, B,C) = P(A | B)- P(B |

A belief network 1s fully specified when (1) the possible values of each variable

are defined, (2) the dependency of each variable on its parent variables is specified

(probability distributions and functions), and (3) the prior beliefs are encoded. Thus,

the belief network in Figure B.1b may be specified by stating that (1) each variable

is dichotomous, (2) P(B | C) = 0.9, P(B | not C) = 0.7, P(A | B) = 0.5,and P(A |
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not B) = 0.6, and (3) P(C) = 0.5. A fully specified belief network induces beliefs

in all its constituents. If variables have been observed, then the network implicitly

contains the updated beliefs in all variables related to the observed variables. The

task of making explicit those implicit beliefs is the job of probabilistic-updating al-

gorithms. The creation of these algorithms has been a focus of research in the past

ten years (Pearl, 1986; Lauritzen and Spiegelhalter, 1988)

The decision component of an influence diagram is represented by decision and

utility nodes. An influence diagram is fully specified when (1) its uncertainty compo-

nent is fully specified, and (2) its utility model is specified. Algorithms for arriving

at the optimal decision using an influence diagram are given by Shachter (1988b) and

| Cooper (1988).
Lehmann (1990) provides a broad introduction to representations of uncertainty in

Al, and Heckerman (1990) gives a more specific introduction to influence diagrams. A

| recent issue of the journal Networks® and the conference proceedings edited by Oliver

and Smith (1990) provide an introduction to specific research areas, along with useful
references.
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