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Abstract

Physicians need to understand the clinical research literature if they are to make
informed clinical decisions; yet the techniques required for using the literature in this
way are difficult for many clinicians to acquire and to use. I call this dilemma of
needing information yet being unable to extract it the literature problem. To date,
automated statistical methods used to solve the literature problern have been limited
in the degree to which they can represent methodological and domain concepts that
are crucial to the physician who must take clinical action. In this dissertation, I
consider the thesis that Bayesian decision theory can provide the foundation for a
computer-based environment that helps physicians to use the research literature.

As a basis for evaluating approaches to solving the literature problem, I develop
a knowledge-level analysis of the problem. On the basis of this analysis, I argue for
the use of Bayesian statistics over classical statistics. The shift to Bayesian statistics
requires a change in the paradigm within which research data are evaluated.

To show that the new paradigm can be implemented in a functioning computer
system, I have developed a prototype system, called THOMAS, that gives the physician
reader a number of capabilities: (1) to analyze a study in a structured way, (2) to
examine a study in multiple ways, (3) to incorporate domain knowledge and prior
belief into an analysis, (4) to incorporate methodological knowledge into an analysis,
(5) to determine the optimal therapy, (6) to examine the change in belief in any

parameter of the underlying statistical model, (7) to compare the beliefs in any two

v



parameters, and (8) to examine the sensitivity of any posterior belief or decision to
different prior beliefs. THOMAS operates in the domain of randomized clinical trials
that compare the effects of different drugs on a patients’ survival.

To incorporate any methodological concern, THOMAS (1) requires a statistical sub-
mode! for the concern, and (2) requires a visual metaphor though which the physi-
clan can communicate the particular concern. THOMAS contains submodels for the
methodological concerns of loss to followup, withdrawal, noncompliance, crossing-
over, and measurement unreliability. The system uses the visual metaphor of the
patient-flow diagram for physician input.

In the course of each consultation, the user implicitly constructs a statistical model
appropriate to the study and to the user’s reading of that study. The construction
prucess is based on representing the statistical models as hierarchical, typed influence
diagrams, a structure that limits the interactions among parameters in a statisti-
cal model. Prespecified construction steps dictate how the primitive methodological
submodels are pieced together. A metadata-state diagram, containing basic method-
ological knowledge assessed from a statistical expert and from the methodological
literature, limits the sequence of construction steps the user is allowed.

The system has been evaluated positively by a small number of its intended users.
The representational framework can be extended to deal with methodological concerns
beyond THOMAS’s current abilities.

This dissertation extends the Confidence Profile Method of Eddy, Hasselblad, and
Shachter (1991) by automating its use. In addition, this dissertation puts on the
medical-informatics agenda the question of how physicians should act on the basis
of research data, and suggests novel methods for storing, using, and retrieving the

contents of the biomedical research literature.
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Chapter 1

The Literature Problem

The clinical research literature provides important information for physicians making
clinical decisions, yet chnicians generally have limited skills for appraising such studies
critically. In addition, they have difficulty using statistical tools to help in analyzing
such literature. In this chapter, I introduce this problem, which I call the literature
problem, and 1 present my thesis, that the problem can be solved within a computer-

based decision-analytic framework, specially tailored for the problem.

Section 1.1 introduces the literature problem. Section 1.2 provides a specific ex-
ample, which I then use as an illustration throughout the dissertation. Section 1.3
places the litex;ature problem in the context of medical informatics and Section 1.4
explains the need for a novel solution to the problem. My research was developed
in response to this need, and in Section 1.5, I summarize my thesis, discussing its
conceptual components and the representational structure of the solution I propose.
This section also introduces the domain within which I evaluate the thesis, the do-
main of randomized clinical trials. Section 1.6 introduces the program, THOMAS, that
embodies the solution, and presents a demonstration of the program in use. Finally,

Section 1.7 provides a reader’s guide for the remainder of the dissertation.

1



2 The Literature Problem .

1.1 The Clinical Scientific Literature and Biostatis-

tics

Physicians appeal to the clinical research literature when they want to rationalize,
justify, or explain their actions. The clinical research literature is important in this re-
gard, because research papers provide the medical community with its higﬁest-quality
information for making clinical decisions. These decisions may involve individual
patients,! and classes of patients (Yusuf et al., 1985). The federal government (Field
and Lohr, 1990) and other third-party reimbursers are increasingly demanding justifi-
cations of specific medical practices (Eddy, 1990), and they, too, look to the research

literature.

The medical scientific community uses biostatistics as its formal framework for
interpreting clinically derived, scientific information. Members of the community
use statistical methods to arbitrate questions of scientific validity. The techniques
involve qualitative understanding of methodology and quantitative analysis of data.
Among the methods most relevant to clinicians are those used in studies that compare

treatment alternatives,

Despite basic biostatistics courses in most preclinical curricula, physicians tend
to lack statistical knowledge and need help in a,pplj;ing statistical methods. Current
strategies for providing such help include seeking ways to reinforce the statistical con-
cepts taught in medical school, offering postgraduate continuing education in statis-
tics, publishing reviews articles, and providing a variety of metho&ology checklists

and guidelines.

A novel strategy for providing such help is the introduction of computer-based

1For example, the patient-specific problems analyzed in Dr. S. Pauker’s series entitled “Clinical
Decision Making Rounds” in the journal Medical Decision Making.



1.2. The Metoprolol Example 3

expert systems. Ezpert systems constitute a class of computer program that pro-
vide users with expert-level advice in domains where such expertise tends to be ill-
structured and judgmental (Hayes-Roth et al., 1983). Experience over the past 15
years shows that such programs can indeed perform at a high level of expertise (Smith
et al., 1985; Heckerman et al., 1989).

In this dissertation, I shall explore the literature problem: How should we judge
clinical action and reach patient-specific management decisions on the basis of results
in the clinical research literature. My goal is to formulate a framework for helping
physicians to solve the literature problem, and to describe an implementation of that

formulation in a working computer program.

1.2 The Metoprolol Example

As a concrete example of the literature problem, imagine you are a physician treating
a 55-year-old white man who has just had a heart attack (myocardial infarction,
MI) and who has been brought into the hospital almost immediately after symptoms
began. Besides needing to stabilize his acute cardiovascular status, you want to
prevent worsening of his general cardiac condition. You have heard that a drug,
metoprolol, which belongs to the beta-blocker class of medications, might improve
his cardiac status. It has, however, serious known side effects. Should you administer
the drug?

You have access to a paper by Hjalmarson and colleagues (1981) (see Figure 1.1)
that reports that acute administration of metoprolol is associated with subsequent
fewer deaths than placebo administration over the first three months after the acute
heart attack. The observed mortality rates were 8.9 percent in the placebo group
and 5.7 percent in the metoprolol group. The strength of the conclusion is suggested

by the classical statistical measure, the p value, of 0.012, which is less than the



4 The Literature Problem
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Figure 1.1: The metoprolol study. This patient-flow diagram for patients enrolled in
the study shows the sequence of states study patients experienced: the initial state
of suffering a myocardial infarction, the assignment state to metoprolol or placebo,
and the endpoint state of surviving or not. The terminal state contains a statistical
summary of the study results—the p value. (Source: adapted from Hjalmarson, A,
Herlitz, J., et al., Effect on mortality of metoprolol in acute myocardial infarction,
Lancet 2(9251):823-827 (1981).)

traditional threshold of 0.05, suggesting the superiority of metoprolol. This suggestion
does not answer definitively an important question: Does the observed difference in
mortality rates offset the possible side effects? A further piece of information raises a
methodological concern: In a close reading of the article, you find that fully 19 percent
of the patients assigned to receive metoprolol in fact were not treated with the test
medication. How much should this departure from protocol affect your assessment of
the study’s validity and your decision to give metoprolol to your own patient?

I shall use this example throughout this dissertation for clarifying the issues in-
volved in solving the literature problem. The particular report by Hjalmarson and

colleagues (Hjalmarson et al., 1981) has played an important role in the practice of
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cardiology. For instance, Yusuf and colleagues (Yusuf et al., 1985) included this study
in their meta-analysis of the use of beta-blockers after acute myocardial infarction.
By the end of the 1980s, the use of such drugs became the standard of care (Antman
and Braunwald, 1990).

1.3 Medical Informatics and the Literature Prob-
lem

The field of medical informatics has given relatively little attention to statistical
issues. An informal review of the proceedings of MEDINFO and the Symposium on
Medical Applications in Medical Care between the years 1984 and 1990 shows that
about 50 articles out of 1200 (4 percent) could be related to issues of data analysis
of scientifically collected data; even fewer refer to the problem of using the published
scientific literature. Rennels (1987), whose work is based on classical statistics, comes
closest to tackling the literature problem, and I shall refer to it several times in the
course of this dissertation.

We can presume that the medical informatics community’s general indifference
- to statistics derives from physicians’ belief that statistics is best left to statisticians.
Statisticians have, in fact, built systems to help statisticians of different levels of pro-
ficiency to perform data analyses (Gale, 1986a; Nugent, 1986; Oldford and Peters,
1988; Tierney, 1990), and even to help in the design of clinical studies (Weiner et al.
1987). I shall argue, however, that such systems are inappropriate for use by physi-
cians in light of the demonstrated limited knowledge physicians have of sophisticated
statistics. I claim that for decision making by end users (such as physicians), an ad-
ditional layer of interface and semantics is needed beyond those supplied by existing
programs and by classical statistics itself.

An important consequence of this indifference to statistics is that physicians
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have lost control of an important source of information—clinical research data—
with the result that this information—ostensibly collected to aid practitioners in
their ministrations—has had less effect on daily practice than investigators have ex-
pected (Gelband, 1983). Because an important goal of medical informatics is to give
physicians control over the mass of information deluging them today, this dissertation
demonstrates that improving physicians’ statistical reasoning and their evaluation of
the clinical research literature should be on the agenda of the medical informatics

comrmunity.

1.4 Problems with Classical Statistics

I propose that a novel type of computer system is needed to help solve the literature
problem. Although I shall discuss the full argument for this proposal in Chapter 2, I
shall discuss two important issues here: physicians have difficulty with statistics, and

classical biostatistics is unable to deliver important services needed by physicians.

1.4.1 Physicians’ Difficulty with Statistics

Familiarity with a minimal fund of knowledge—descriptive statistics and elementary
statistical tests—would give a physician access to two-thirds of clinical research ar-
ticles, according to a review by Emerson and Colditz (1983) of published reports.
As shown in Table 1.1, investigators have surveyed whether physicians possess that
minimal fund of knowledge. Wulff and colleagues (Wulff et al., 1987) sent a ques-
tionnaire of nine biostatistical problems to 250 subjects randomly selected from the
national registry of Danish physicians. The questions covered the basic concepts to
which Emerson and Colditz refer. The median score on this questionnaire was 2.4,
out of a maximum of 9. Among physicians who said they did “understand all the

expressions” (Wulff et al., 1987, p. 4) in the survey, the median score was 4.1. This
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well-designed and executed study suggests that average clinicians are not familiar
with basic statistical concepts, even if they think they are. Weiss and Samet (1980)
sent a 10-item questionnaire to 141 internal-medicine house staff and attending physi-
cians at an academic institution. This instrument garnered a mean score of 7.4, out
of a maximum of 10. In a separate study, two questions were sent by Friedman and
Phillips (1981) to 685 pediatric residents nationwide. Twenty percent answered the

correlation question correctly; 50 percent answered the p-value question correctly.

Table 1.1: Data documenting physician statistical fund of knowledge.

Source Subjects Sample Number of Summary Score
Size  Questions (Method)

Wulff et al., 1987 Random 250 9 2.4
Physicians (Median)

Weiss and Samet, 1980 Academic 141 10 7.4
Internists (Mean)

Friedman and Phillips, 1981 Pediatric 684 1 . 20
Residents (Percent)

1 50
(Percent)

A possible cause of the difficulty encountered when physicians use statistics is the
numerical nature of the domain. The relatively better scores obtained by Weiss and
Samet (1980) may result from the fact that many of the questions dealt with method-
ological concepts, whose qualitative nature physicians found more within their ken
than the number-based items of the other investigators. Another source of difficulty,
however, is the counterintuitive nature of certain constructs in classical statistics.

Pocock, Hughes, and Lee {(1987) document problems investigators have with clas-
sical statistics. Their review of published reports of controlled clinical trials from

major journals (see Section 1.6.2) discloses problems in a number of areas: multiple
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analyses of data, misuse of p values as measures of strength of evidence, misapplication
of hypothesis testing for arriving at conclusions, inappropriate analyses of subgroups
of patients, and improper examination of data before the formal conclusion of the
study. Note that each goal (e.g., to analyze the data in different ways) desired by the
different investigators is reasonable, and that their errors lay in their misapplication
of classical statistics due to their misconstrual of classical statistical notions.

The now-classical example that demonstrates the counterintuitivity of the classical
statistical approach is the controversy over the University Group Diabetes Program
study of oral hypoglycemic medication (UGDP, 1970). In this study, the medication,
intended to help in the management of diabetes, apparently caused some patients to
die: 26 of 204 patients died in the experimental group and 10 of 205 patients died in
the placebo group, an apparent double death rate. The study was not designed to de-
tect differences in mortality rates, and the trial was terminated earlier than originally
intended, as a result of the examination of these data before the formal conclusion
~of the study. The departure from the initial protocol and the altered focus in the
results both cast doubt on the validity of the statistical conclusions. Meinert and
Tonascia (1986) review the history of the controversy. By its conclusion, the debate
had involved several universities and national institutions. Diamond (1983) shows
how the confusion and controversy resulted primarily from a basic misunderstanding
of the p value. I shall explore the difficulties with the p value more extensively in
Section 3.5.

1.4.2 Limitations of the Classical Paradigm

Over the past 80 years, the classical paradigm has been successful in helping physi-
cians to distingﬁish useful from useless—and even harmful—therapy. The paradigm
has been a linchpin in the biomedical community’s drive to promote a scientific ap-

proach to medical care (Feinstein, 1985). Nevertheless, there are profound difficulties
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with classical statistics. I shall discuss them extensively in Section 3.5; here, I shall
preview an important problem: classical statistics does not offer capabilities that
physicians need. Two such functions are the ability to express uncertainty and the

ability to recommend a decision for a specific individual.

Readers have uncertainty about a domain both before and after they have read
an article. The degree of readers’ uncertainty plays heavily in their decision whether
to act or to seek further information. Classical statistics’ primary locution for ex-
pressing uncertainty is the confidence interval (see page 67). A study may be faulted
simply for not reporting these intervals (Gardner and Bond, 1990) and some method-
ologists see the confidence interval as a solution to the problem of overreliance on
the p value as a measure of the strength of evidence (Felson et al., 1990). Yet, it is
commonly understood within the statistical community that consumers of statistical
reports misconstrue the true semantics of the confidence interval (Rubin, 1984). As
properly understood, confidence intervals communicate uncertainty in an estimate of
the parameter involved (e.g., mortality rate); the true value may still be any num-
ber (Armitage, 1983, p.109). As commonly misunderstood, they express how likely

it is that the true value of the parameter lies within the reported interval.

Readers also want to make decisions. The statistical subspecialty of statistical
decision theory (Wald, 1950) has been developed over the past 40 years for this pur-
pose. Its focus, however, is on making policy decisions that affect many people (or
studies) over time, rather than on making an individually tailored choice. Modifying
the derived global policies for individual cases involves nonobjective, heuristic pro-
cedures, as both statisticians (Brown, 1984) and expert-system designers (Rennels,

1987) know.
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1.5 Thesis: An Alternative Paradigm

Would it be possible to modify classical statistics so that we could obtain the bene-
fits, yet correct the problems? Bayesian statistics (de Finetti, 1974; DeGroot, 1970;
Lindley, 1972; Savage, 1972; Box and Tiao, 1973; Berger, 1985) is an approach that is
designed to do just that. Specifically, Bayesian statistics? allows for the expression of
uncertainty, through subjective probability, and for the recommendation of individual
action, through decision analysis (Howard and Matheson, 1981), a formal discipline

concerned primarily with helping decision makers to take action in individual cases.

The thesis of this dissertation is that, decision enalysis and the Bayesian paradigm
can form the basis of a computer-based environment to aid physicians making clinical
decisions on the basis of scientific data from the clinical research literature. 1 shall
explore the components of this thesis in the following six subsections, I shall out-
line the representational structure needed in the seventh, and I shall summarize the

evaluation of the thesis in the eighth.

1.5.1 Clinical Focus of Decision Making

There are many uses physicians make of scientific data from the research literature.
One is to guide further reading, using an article to decide what is important to learn.
Another is to take clinical action. Qur concern with clinical decision making implies
that our methods will be grounded in the clinical significance of any conclusion from

a study, as opposed to the strictly statistical significance of the results.

?Named after the Reverend Thomas Bayes (1702-1761)
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1.5.2 Published Scientific Data as Primary Source

There are many sources of information physicians can use for making decisions. A
database of past observations and therapeutic actions is one; when such data are rigor-
ously collected, they may form the basis for formal statistical analysis or for matching
a current situation with similar circumstances that have occurred in the past. Nonsci-
entifically collected, published observations, such as case histories, constitute another
source, for which statistical methods are inapplicable. We shall narrow the scope of
this dissertation to scientific studies as they are published. Rennels (1987) and Eddy
and colleagues (1991) have done work in this narrowed scope that comes closest in
spirit and in detail to the work presented in this dissertation. I shall discuss Rennels’

work in Section 3.6, and Eddy’s work in Section 4.7.

1.5.3 Applicability of Decision Analysis

The primary requirements of decision analysis are that any uncertainty of the decision
maker is represented by probability, that any preference of the decision maker is
represented by utility, and that the optimum decision for the decision maker is the
action that maximizes the expected utility (Howard and Matheson, 1981; Berger,
1985).

Decision analysis is appropriate in domains where (1) uncertainty is a major con-
cern, (2) the stakes are high enough that a formal analysis is worth the effort, and
(3) there is an individual decision maker. My definition of the literature problem sat-
isfies these conditions: (1) Biostatistics is, by its nature, concerned with uncertainty.
(2) The stakes involved are often life and death, as well as unpleasant outcomes and
substantial monetary expense. (3) The focus is the individual clinician who must
take action on behalf of a particular patient. In building artificial-intelligence (AI)

systems, knowledge engineers have taken a decision-analytic approach in a variety
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of domains, inclﬁding diagnosis (Heckerman et al., 1990), learning (Star, 1987; Bun-
tine, 1989), vision (Levitt, 1988), and control of inference (Breese and Fehling, 1988;
Horvitz et al., 1989), but not, to date, in statistical consulting.

Some underlying assumptions of decision analysis violate basic principles held by
classical statisticians. Chapter 2 provides my arguments to justify violating these
principles in my solution to the literature problem. I shall summarize-the line of
argument here. Recent approaches to knowledge acquisition in expert systems pay
attention to the differentiation between the goals of interest in the domain and the
procedures by which the goals are met. As difficult as it is to achieve this separation
in many domains, it is even more difficult in statistics. In most domains, there is no
articulation or theory of the procedures used by domain experts to achieve the desired
goals. Statistics, however, seems to contain just such an articulation—the body of
statistical methods we are enjoined to use—which blurs the separation between the
goals and the implementation of the domain. The basic principles of classical statistics
constitute the foundation of this body of methods. I have found that, to achieve the
differentiation between goals and procedures necessary to solve the literature problem,
we must tease apart those principles necessary for the solution from those which make

it difficult to solve.

1.5.4 Extending the Bayesian Paradigm

The kernel of the Bayesian solution to the literature problem is as follows. The
investigators summarize their results in a form called the likelihood function (see
page 53). The reader then combines her® prior knowledge of the domain with the
likelihood function to arrive at her posterior belief. This belief can then be used by

3As a convention throughout this dissertation, the physician is female; the patient, the statistician,
the investigator, and the system builder are male; and the machine is neuter. The term analyst refers
either to the statistician or to the reader, depending on context. These conventions allow the reader
to follow the discussion more clearly.
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the decision-analytic engine to arrive at the optimal recommendation for action.
Various approaches to Bayesian reporting (Hildreth, 1963; Dickey, 1973; Berger,
1985; Hilden, 1987) combine the likelihood functions conveyed by investigators and
the prior beliefs expressed by readers to arrive at depictions of the corresponding pos-
terior beliefs. These approaches assume a single likelihood function for each study,
which corresponds to a single way of analyzing the data or of examining the study.
This assumption makes sense if we characterize the relationship between the investiga-
tor and the reader as a separation of labor: The investigator reports what happened,
the reader updates her beliefs. This premise does not, however, empower the reader to
apply her knowledge of methodology (what can go wrong in a study) or of pathophys-
iology (how the specific medical context affects the study) in arriving at a conclusion.
Therefore, the concept of representing prior knowledge must be broadened. This
extension is a contribution of this dissertation. I justify my heuristic approach in

Section 4.4 and describe it fully in Sections 6.3.2 and 6.3.3.

1.5.5 Dynamic Computer-Based Environment

Computers have generally been necessary for any practical application of Bayesian
statistics, because solutions need numerical integration and other computation-intensive
procedures (Goel, 1988). Knowledge-based methods would appear to offer a solution
to the literature problem because there are multiple sources of knowledge (statistical,
methodological, domain, and clinical) needed to solve the problem, and because they
can provide structure to the precarious act of building a solution (Efron, 1986).

To clarify the process of structuring a Bayesian statistical analysis, I shall con-
trast it with the approach of classical statistics (see Section 3.5 for a more complete
examination). The classical procedure calls for the statistician first to choose a sta-
tistical model appropriate for the problem, then to choose the best test suited to that

model and to the data available, and then to execute the test. The final inference



14 The Literature Problem

is a result of the test chosen and the result of the test. Expert systems founded
on this approach are diagnosing systems, because their primary task is to select the
appropriate model and its corresponding test. Selection is the central task, because
creating a new test for any given statistical model is too difficult an activity (worthy

of a doctoral dissertation in its own right).

The Bayesian approach, however, allows the analyst to construct an arbitrary
model that he feels is appropriate. Regardless of the model constructed, the approach
calls for a single inference procedure applied to all statistical models—probabilistic
updating (see Section 4.3.1). The final inference uses the result of that calculation in
a well defined (and uniform) way to arrive at a recommendation. Thus, the central
task of a Bayesian system is the construction of the appropriate model, and the
system must create a model anew for each problem, doing so on demand. A Bayesian
system is, therefore, primarily a planning, or even a knowledge-acquiring, system. The

contrast between the two approaches is discussed more fully in Sections 3.5 and 4.6.

My solution to the problem of dynamic Bayesian statistical-mode] construction

depends on two knowledge representations:

o Influence diagrams are data structures that have been used increasingly over the
past 10 years for representing uncertainty in probability-based expert systems.
The use I shall make of influence diagrams for creating statistical models is a

novel application of this representation (see Section 7.3).

o Metadata-state diagrams are state-transition networks I have created specifi-
cally for this dissertation (see Section 7.2). They comprise two sets of knowl-
edge: what can happen to patients at different stages of a study, and how those

circumstances affect the growing statistical model.
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1.5.6 Physicians Readers as the Target Users

We wish to empower physician readers to apply their knowledge of methodology and
of pathophysiology to solving the literature problem within a computer-based envi-
ronment. The interface between the physician and the decision-analytic approach
therefore must be a major concern in this dissertation. The interface must be based
on semantics familiar to physicians; the challenge is to find interactive metaphors that
such users find intuitive and that have operations that can be translated into proce-
dures consistent with the decision-analytic approach. I shall use two such metaphors:

checklists and patient-flow diagrams.

Checklists are used by many methodologists (Warren, 1981; Gehlbach, 1982; Fein-
stein, 1985; Haynes et al., 1986; Sacks et al., 1987; L’Abbé et al., 1987; Reisch et al.,
1989) for organizing information in studies. Physicians find intuitive the action of
checking which problems need attention or of choosing among possible choices. In a
computer-based environment, a checklist can be made dynamic in that different ques-
tions come into view depending on the choice made by the user. Such an environment
has the advantage that the sequence of actions can be guided by the machine. My

use of checklists is discussed in Section 6.2.

Patient-flow diagrams are used by many journal-article authors to communicate
to readers what happened to patients over the course of a study. These diagrams
group together patients who are similar in some way; I call these groups cohorts.
Figure 1.1 showed an example of such a diagram for the metoprolol study. In a
computer-based environment, these diagrams can made dynarmic, allowing the reader
to communicate to the machine attributes of each patient group, such as the total
number of patients in the group and the methodological problems experienced by

those patients. I describe these diagrams fully in Section 6.3.2.



16 The Literature Problem

1.5.7 Representational Structure

With this background of the components of my proposed solution to the literature
problem, we shall construct the representation structure needed to solve the problem
by examining the information needed for a decision-analytic solution. I shall build
up the resulting framework from its components. Technical terms will be defined in
Chapter 4.

We begin with the decision analysis (Figure 1.2). This process uses a decision
model (not shown) which consists of the outcomes of interest, their utilities (reflecting
mortality-morbidity tradeoffs), and the parameters that determine their likelihoods.
The analysis takes as one if its inputs probability distributions for the beliefs in the
values of those parameters. Since the distributions are based on observed data, they
are distributions posterior to the reading of the study. The analysis also takes as its
input preferences of the patient that reflect his mortality-morbidity tradeoffs. The
decision analysis produces, as its output, the optimal decision. In the metoprolol
study, the outcome of interest is the death of a patient, whose likelihood is parame-
terized by a single number, the mortality rate, and the decision is whether to treat
with metoprolol.

There are two ways to produce the posterior probabilities, once the reader has
read the paper. She could assess her posterior beliefs directly. However, this method
ignores the limited statistical sophistication of the reader, leaving implicit all the
methodological considerations we want to make explicit, and ignores the known prob-
abilistic processes that generated the data. The second way is to help the reader with
this complex task by performing an analysis that takes the probabilistic processes and
methodological considerations explicitly into account: a Bayestian statistical analysis

(Figure 1.3). This analysis takes as its input a statistical model that includes the

“For purposes of this dissertation, financial costs of treatments or outcomes will not be considered
in the utility models. The approach used could be extended, however, to handle multiattribute
models.
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Figure 1.2: Decision analysis. This information-flow diagram depicts the data needed
by the process to produce the optimal decision. The structure of the decision model
(not shown) is fixed by the knowledge engineer.

parameters of interest and parameters relating to biases and errors perceived by the
reader as relevant to the un;ierstanding of the report. The analysis also needs as its
input the prior beliefs about every parameter. Bayesian statisticians have expended
much effort in developing ways to compute the posterior distribution from a given

" model (Eddy, 1989).
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Figure 1.3: Bayesian statistical analysis. This information-flow diagram depicts the
data needed by the statistical analysis to produce the posterior probabilities required
as input items by the process in Figure 1.2.

The statistical model required for the Bayesian analysis (Figure 1.3) must be
constructed on the basis of the methodological concerns (Figure 1.4). The structural
element responsible for this task is the Bayesian methodological formulation. The

structure and function of this element are major contributions of this dissertation,
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and are the subjects of Chapter 7.

Methodological Bayesian

Concerns . Methodological

Statistical
Model

Formulation

Figure 1.4: Bayesian methodological formulation.

The fundamental input into the system is information from the research report
itself (see Figure 1.5). The contents of the clinical research report include numerical
and text data. Because computer-based processing of the text in an article would be
an unrealistic demand on current natural-language processing abilities, my approach
expects the reader to interpret the contents of the paper for the machine, arriving at
the appropriate numerical input and the appropriate methodological concerns, such
as the identity of the central quantitative elements of the study and of threats to

internal validity.

Methodologjical
Reader’s Concerns
Abstraction
Data
of Report >

Figure 1.5: Reader’s abstraction of report. The numerical and text information from
the written report of the study must be transformed by the reader into numerical data
and methodological concerns. The data are required by the Bayesian statistical anal-
ysis (Figure 1.3), whereas the methodologic concerns are required for the computer’s
formulation of the statistical model (Figure 1.4).
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The entire model is given in Figure 1.6. In this completed model I have made
explicit the reader’s background knowledge as the source for the prior probabilities
for parameters in the statistical model, and her posterior knowledge as being the net
output and goal of the entire process. Her prior knowledge in fact enters everywhere -
in the framework: in choosing methodological concerns, in choosing parameters of

interest, and 1n establishing the decision model.

Statistical Posterior
Bayesian Model Bayesian Probabilities
Pati Decision
ical tatistical atient
Methodologica Data Statistica Preferences Analysis
ralhobtdvikels/
Formulation Analysis

Methodological Prior
Concemns Probab ﬂiﬁes
Reader’s Reader's - Reader’s
Abstraction Background Posterior
of Report Knowledge Knowledge

Figure 1.6: The Bayesian strategy. This diagram is a composite information-flow
diagram, constructed from Figures 1.2,1.3, 1.4 and 1.5, depicting the Bayesian model
to assist with using a clinical research article for clinical decision making.

1.5.8 Ewvaluation

The evaluation of the thesis has two components: evaluating the representational
integrity of the framework I propose, and evaluating the prototype system built to
implement the framework. The representational integrity will be demonstrated in

the course of this dissertation, as I show the various specifications the framework is
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designed to meet. The evaluation of the prototype system has two parts: demon-
strating that it meets its specifications, and that a physician can use the system for
its intended purpose. 1 shall discuss these evaluations in Chapter 8.

The thesis, as I have presented it, encompasses large areas of medical research. In
this dissertation, I shall focus on one particular domain (randomized clinical trials),
and I shall demonstrate the thesis with a computer program that helps physicians to

apply the results of that class of research to clinical decision making.

1.6 THOMAS

In this section, I shall describe the prototype system I have built to demonstrate the
concepts of the thesis. I shall first describe the program in general terms, and then 1
shall present a demonstration of using the program in the context of the metoprolol

example.

1.6.1 The Program

THOMAS?® is my prototype computer system® that embodies the concepts in this thesis.

The system provides the physician user with the following abilities:

¢ To analyze a study in a structured way
o To examine a study in multiple ways

¢ To incorporate domain knowledge into an analysis

5Named in honor of Reverend Thomas Bayes. Blackford Middleton made me aware of the res-
onance with the concept of deubting Thomas, which is appropriate in this context of uncertain
information and high-stakes decisions.

$The system is implemented on the Macintosh computer, with Allegro Common Lisp as the lan-
guage for the inference engine, and HyperTalk as the language for the user interface. The occasional
crowded computer screens result from the window-size limitations of the version of HyperCard used.
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¢ To incorporate methodological knowledge into an analysis
¢ To determine the optimal therapy

¢ To examine the change in belief in any parameter

e To compare the beliefs in any two parameters

¢ To examine the sensitivity of any posterior belief or decision to different prior

beliefs

I shall describe, in Chapter 5, how the system delivers these services. The out-
put comes closest in spirit to the 2-fest for proportions in classical statistics. Thus,
THOMAS is a prototype for helping physicians perform Bayesian statistical analyses,
obviating the need to use classical-statistical tests. The following sections give a flavor

of the interaction; Chapter 6 goes into more detail.

1.6.2 Methodological Domain

Physicians can use THOMAS when reading a study report of a particular research
design—the randomized clinical trial (RCT), a type of controlled clinical trial (CCT).
CCTs are prospective studies in which patients are assignéd to one of two or more
interventions, such as drug and placebo, and are followed over time for the occurrence
of some endpoint, such as mortality or a specific morbidity. RCTs are studies where
the assignment to therapy is made randomly. The I-Jurpose of randomization is to
limit possible biases in the study. RCTs are the current gold standard for clinical
research (Feinstein, 1985) and, although they represent only about 1 percent of the
articles published each year (Meinert et al., 1984), their influence in academic and
public discourse is proportionally much greater (Gelband, 1983). RCTs are the par-
ticular domain that we shall examine. In particular, we will be concerned with RCTs

that compare the effects of drug therapy on patient mortality.
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1.6.3 A Sample Interactive Session

THOMAS’s interaction with the user is divided into five tasks, as indicated by the
master checklist in Figure 1.7: defining the problem, describing the study, examin-
ing the statistical results, examining the recommended decision, and finishing the

consultation.

1.6.3.1 Definition of the Problem

THOMAS needs two pieces of information to define the problem. First is the identity
of the medications involved in the study. Figure 1.8a shows the user telling THOMAS
that metoprolol is the experimental drug; not shown is the user informing the machine
that placebo is the control drug.

The second piece of information conveys the physician user’s judgment about the
mortality-morbidity tradeoff. In Figure 1.8b, the user tells the machine that, in her
judgment, 6 months of increased life expectancy for the patient would be required to
justify using the drug, to balance the implicit morbidities: side effects of arrhythmias,
added cost, and added hassle of taking metoprolol. The input value of this pragmatic
difference is where the physician encodes her prior knowledge about the domain as it

applies to the patient at hand.”

1.6.3.2 Describe the Study

The process of describing the study entails selecting the study to be examined, speci-
fying the design, communicating current knowledge about the drugs and methodology

involved, and describing the study execution.

"Note that this evaluation is a composite indicator of utilities of the possible morbidities and
other risks. Although this assessment could be approached with a formal decision analysis, for
purposes of this research, 1 have chosen simply to request a single utility measure. This measure is
discussed more fully in Section 5.3.
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Figure 1.7: THOMAS’s top level checklist. This screen image from the program shows
the five tasks the user completes in performing an analysis. The first four tasks
correspond to parts of the overall design of Figure 1.6: The task Define the clinical
problem includes the task of giving the system patient preferences. The task De-
scribe the study corresponds to the task in inputting methodological concerns, prior
probabilities, and study data. The task Get the treatment recommendation comprises
the system’s performing the Bayesian statistical analysis and decision analysis and
displaying the optimal decision. The task Fzamine the statistical analysis allows the
user to examine the posterior probabilities generated by the system.

The panel of rectangles at the top of the screen helps users to keep track of their
progress through the tasks in the course of completing an analysis. The icons on
the right side of the screen refer to ancillary functions. Users begin their traversal
through the dynamic checklist by clicking on the indicated button.
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Figure 1.8: Definition of the problem in THOMAS. (a) Specification of the experimen-
tal drug. This screen image is an overlay of two images. In the first, the user indicates
the choice of selecting the Ezperimental drug. A pop-down menu (not shown) allows
the user to select a previously known choice or to enter a new drug name. The sec-
ond image shows the name the user has typed in (Metoprolol). (b) Specification of
the pragmatic difference. The graphic on the screen suggests the meaning of this
difference.

1.6.3.2.1 Selection of the Study There are two parts to the task of study
selection: specification of the citation and commencement of the analysis of the study
(Figure 1.9). To specify the citation, THOMAS allows the user to select from a list of
citations that grows as new citations are typed in. THOMAS does not have access to
the contents of the chosen article except through information entered by the user.
The machine enables the user to create a sequence of analyses. The initial anal-
ysis is called the baseline description, by default. The user may return several times
to modify this and subsequent descriptions by dividing groups of patients initially
lumped together (see Figure 1.15). The sequence of analyses creates a tree of analy-
ses, where a descendent analysis is a modification of its ancestor. These alternative
analyses enable the user to answer questions regarding the effects of different method-

ological concerns, either alone or in concert.
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1.6.3.2.2 Specification of the Design Before getting the details about the
study, THOMAS must know basic information about the general design of the study.
The details of the statistical-construction algorithm depend on what design is used.

There are two components to the design: the architecture of the study (Fig-
ure 1.10a) and the outcome of the study (Figure 1.10b). THOMAS at present knows
about only one design, the two-arm randomized clinical trial (depicted in Figure 1.1),

and about only one outcome, mortality.

1.6.3.2.3 Communication of Current Knowledge The Bayesian paradigm
demands that an agent assess her prior beliefs before viewing information that could
update those beliefs. In the statistical domain, this assessment translates into eval-
uating beliefs about parameters, such as mortality rates. THOMAS requests such

information before allowing the user to input data from the study.
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Figure 1.9: Selection of the study in THOMAS. (a) Specification of the citation. This
image is an overlay similar to Figure 1.8a. (b) Specification of the name of the
analysis. Another image overlay, this screen image shows the user choosing to define
a new analysis with the name Baseline description. If she so wished, the user could
return to this screen to define other analyses that modify the baseline description or
each other, and thereby generate a tree of analyses.
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Figure 1.10: Specification of the study design in THOMAS. (a) Specification of the
architecture. Using the recurrent interface of the pull-down menu, the machine as-
certains the study architecture. THOMAS currently knows about only the 2-Arm
Randomized Clinical Trial. Hence, the New option is greyed out on the screen and
disabled. (b) Specification of the study outcome. THOMAS currently allows only the
outcome Mortality. Issues of morbidity were previously addressed in defining the
required pragmatic difference (Figure 1.8b).

The user must first select the parameter she wishes to consider from a list gener-
ated by the machine. In this example, this list comprises two names (Figure 1.11a):
the population mortality rate in patients assigned to placebo and the population mor-
tality rate in patients assigned to metoprolol. THOMAS assembles the names from
information already input by the user and from knowledge it has about RCTs. The
names of the medications come from information input by the user (Figure 1.8a). The
parameter type (mortality rate) derives from the name of the outcome (Figure 1.10b)
and that outcome’s method of assessment (count of death events).

Having chosen to consider the placebo mortality rate, the user requests help in
understanding the assessment task. Figure 1.11b shows the machine’s response to her
request: Prior knowledge about placebo gives THOMAS domain knowledge.

In Figure 1.11(:,- the user has selected to claim total ignorance about mortality
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rates in patients with acute myocardial infarctions treated with placebo. Note that,
although this choice will result in an analysis most comparable to the classical sta-
tistical analysis (see Figure 1.11b), it is probably an inaccurate assessment of the
physician user’s prior knowledge. This disparity between the mathematical demand
for presumed objectivity and the domain reality of intersubject variation in knowl-
edge and disagreement is at the heart of the contrast between classical and Bayesian
approaches.

Not shown in the figures is the user’s similar choice to assume total ignorance of

the mortality rate in patients treated with metoprolol.

1.6.3.2.4 Description of Study Execution Figure 1.12 shows the patient-flow
diagram used to inform the machine about what happened to patients in the meto-
prolol study; this approach is unique to THOMAS, and is a major distinguishing fea-
ture with respect to programs such as that implemented for the Confidence Profile
Method (Eddy, 1989) (see Section 4.7). Figure 1.12a shows the diagram at the start
of the description, before the user has entered any information, and Figure 1.12b
displays the diagram at the end of the description, after all the information from
the study (see Figure 1.1) has been input. The diagrams are dynamic in that the
name of each patient cohort depends on how the cohort was formed, and in that the
user can specify a cohort’s history in any order she wishes. Figure 1.12a shows the
user informing THOMAS via a keypad interface about the total number of patients
assigned to placebo. In Figure 1.12b the machine gives the user an opportunity to
change her description before continuing on to the statistical analysis (Figure 1.15
shows such a change). When the user indicates that she is finished, the statistical
mode! is complete; the machine automatically performs the probabilistic-updating

procedure.
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Figure 1.11: Specification of prior knowledge in THOMAS. This task is labeled Specify
Current Knowledge to encourage the user to think about her personal experience and
knowledge of the domain. (a) Choice of a parameter. An overlay of two images,
this figure shows the user selecting a parameter (Population mortality rate in patients
assigned to placebo) from a set constrained and generated by THOMAS. (b) Acquisition
of help. The user has asked for an explanation of the task (note the highlighted help
icon in the upper right). (c) Specification of the actual knowledge. The user has
a choice of numerical and qualitative types of specification; see Section 6.3.3 for
a full discussion. Once a choice is made, the machine requests information about
other parameters (hence, the Select Parameter box), until all needed parameters are
accounted for.
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Figure 1.12: Specification of the study execution in THOMAS. Both of these screens
contain a patient-flow diagram. The boxes refer to cohorts of patients in the study.
Each line of a cohort’s box is active. Placing the mouse icon over the first line induces
the machine to present a choice of actions for the cohort (see Figure 1.15a). Placing
the icon over the second line makes the program request input about the total number
of patients in the cohort. Placing the icon over the third line makes the system ask for
the number of patients who experienced the endpoint of the study. (a) Specification
of the number of patients in a cohort. A keypad interface pops up for mouse-based
entry. (b) Completion of the description. This image shows the patient-flow diagram
for the baseline description of the metoprolol study (see Figure 1.1), with all numbers
entered in the appropriate lines. The machine computes the sums, and displays them
in the root cohort.

1.6.3.3 Examination of the Decision

To place the results of the analysis into clinically meaningful terms, THOMAS com-
putes the life expectancy contingent on the belief distributions calculated from the
probabilistic update. Figure 1.13a depicts the graphs of these computed life expectan-
cies. Figure 1.13b shows the results of such a computation, taking into account the
threshold for clinical significance the user made when she defined the clinical probiem
(see Figure 1.8b). In this case, the increase in life expectancy for metoprolol over

that for placebo is greater than the minimum demanded by the physician user, so the
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machine recommends that she administer metoprolol.

ol A .
Exemine Decision
. : i ) et A

The difference In life enpectancy belween
Metoprolol and Placebo is 1.04 yeers, which is
greater than & months. Metaprosol Is the
preferred treatment,

P ] 4
e ——— [y Click here 1o bide thit text, Lk

Sove Annlysis
Re-puamine Rnnlysis

(a) -

Figure 1.13: Examination of THOMAS’s recommendation. (a) Life expectancy. This
screen displays a bar graph of a patient’s life expectancy, given each therapy, based on
the belief distributions THOMAS has calculated (Figure 1.14d). (b) Recommendation.
This verbal statement is based on the threshold set by the user in Figure 1.8b.

1.6.3.4 Examination of Statistical Results

The user’s third major task is to review the results of the probabilistic updating,
although this task is optional if she is interested in only the clinical implications.
Two aspects of this examination are the review of the results and a performance of a

sensitivity analysis.

1.6.3.4.1 Review of Results The user has the option of allowing the machine
to guide the examination (see Figure 1.14a). During the study-description task (see
Section 1.6.3.2.4), not only does the machine create the appropriate statistical model,
but it applies canonical questions in which the user would probably be interested, and

it associates with every question a pair of parameters to be compared. In completing
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the task of examining the statistical analysis, the user can choose to pose the ques-
tions the machine has formulated for her (see Figure 1.14b). For instance, in every
consultation, the user is likely to ask if the mortality rate in the treatment group is sta-
tistically significantly different from the mortality rate in the control group. THOMAS
answers this question by comparing the difference in beliefs (see Figure 1.14c) in the
corresponding parameters (see Figure 1.14d). This report is the Bayesian measure
closest to the notion of a p value, although this measure is irrelevant in arriving at a

decision.

1.6.3.4.2 Performance of Sensitivity Analysis Although it is not a formal
part of the decision-analytic sequence of Figure 1.6, sensitivity analysis plays an
important part in decision analysis. THOMAS allows the user to perform two types of
sensitivity analysis: varying prior belief and varying the structure of the statistical
- model.

The user may reanalyze the study, using different prior beliefs. Such reanalysis
might, for instance, show the effect on the final conclusion of the assumption of total
ignorance.

The user may also reanalyze the study, taking into account different method-
ological problems. Figure 1.15a shows how the user would deal with the issue of
the 19 percent of patients in the metoprolol study who withdrew from therapy (see
page 4). The figure shows that THOMAS knows that patients assigned to the experi-
mental treatment can undergo four types of protocol departures: They might be lost

to followup, they might be withdrawn from the study, they might not comply with
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Figure 1.14: Examination of statistical results, guided by THOMAS. These screen
images indicate the sequence of events. (a) When the user chooses to examine the
statistical analysis, she is shown this screen, which gives her a number of options. The
user has chosen to seek answers to questions posed by the machine. (b) An overlay of
two images, this figure shows the user choosing the first of two questions suggested by
THOMAS. (c) To answer the question, the machine presents a report at the top of the
screen, containing the question selected, the parameters concerned, the probability
that the difference is positive, and the conclusion (in this case, yes, the mortality
rates are statistically significantly different). The examination of the difference is
presented in several ways: the verbal report just described; the numerical summary,
giving the mean and standard deviation of the posterior belief in the difference; and
the graph, showing the distributions of the posterior belief in each parameter. (d) The
user may examine the belief in each of the mortality rates individually, and may ask
to review the report about the difference between them. The belief distributions
shown are centered at their respective mean posterior beliefs, 0.089 (placebo) and
0.058 (metoprolol).
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therapy, or they might be given the control treatment instead. The metadata-state
diagram, set by the knowledge engineer but not shown, determines what protocol

departures are possible for patients in different cohorts.

Figure 1.15b displays a comparison between the belief in the metoprolol mortality
rate taking the withdrawals into account (the debiased population mortality rate in
patients assigned to metoprolol) and not taking them into account (the raw observed
mortality rate in patients assigned to metoprolol). The value of the debiased mor-
tality rate is lower than that of the observed mortality rate, but is more uncertain.
These adjustments makes sense on two accounts. First, we examine the value. The
observed metoprolo]l mortality rate is a mixture of two debiased mortality rates: the
debiased metoprolol mortality rate (patients who were assigned to metoprolol and
who received it) and the debiased baseline-care mortality rate (patients who were as-
signed to metoprolol but who received baseline care, which is equivalent to receiving
placebo). The previous analysis regarding the placebo mortality rate told us that
patients not treated with metoprolol have a higher ‘mortality rate. The debiased
metoprolol mortality rate therefore must be lower than the mixture mortality rate of
5.7 percent, which indeed it is (4.5 percent). Second, we examine the uncertainty.
We note that the uncertainty of the debiased mortality rate (standard deviation of
0.03) is larger than that of the observed mortality rate (standard deviation 0.009).
The increase in uncertainty between the observed and debiased mortality rates makes
intuitive sense, because the inference regarding the debiased mortality rate is further

removed from the actual data.

Rennels’ ROUNDSMAN program {Rennels, 1987) produces the same behavior, but
resorts to potentially subjective heuristics to do so. THOMAS generates this behavior

from a principled and formal basis.
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1.7 Guide to the Reader

The remainder of the dissertation develops and fills out the concepts introduced in
this chapter. The next three chapters justify the approach taken in this dissertation to
solving the literature problem: In Chapter 2, I present a framework for constructing
an expert system to solve the problem, based on recent approaches to knowledge
acquisition. In Chapter 3, I examine the classical-statistical domain in li-ght of that
framework, demonstrating weaknesses of classical procedures for achieving desired
goals. Readers acquainted with the contents of the statistical domain may wish to
skip this chapter, except for those portions describing the use of influence diagrams
in representing statistical models, scattered throughout the chapter, and the critique
of the classical approach presented in Section 3.5. In Chapter 4, I present Bayesian
concepts in more detail and demonstrate how the Bayesian paradigm is expected to
solve the problems of classical statistics. Readers familiar with Bayesian notions can
bypass this chapter, except, perhaps, for Section 4.6, which presents a critique of the
Bayesian approach in light of the knowledge-acquisition principles developed earlier.

The subsequent three chapters present my approach to implementing the Bayesian
approach: Chapter 5 delineates the design of the prototype system, including the
system’s intended user, restricted domain, utility model, probabilistic models, and
approach to statistical parameters. Chapter 6 discusses the interface problems and
solutions particular to a Bayesian statistical system intended for nonstatisticians.
Chapter 7 presents the novel data structures and algorithms needed for allowing the
system to perform dynamic statistical-model construction.

In Chapter 8, I discuss the evaluation of the thesis with respect to its meeting
the various specifications laid out in the early chapters of the dissertation and with
respect to use of THOMAS by physicians. I close the dissertation with my conclusions,

in Chapter 9.
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Figure 1.15: Examination of a modified model in THOMAS. In this analysis, the user is
examining the effect of incorporating the methodological issue of patient withdrawals.
(a) Specification of the model. The choice of modifications may be different for each
cohort and is constrained by THOMAS. Not shown in this figure is the growth of the
patient-flow diagram to account for patients who were assigned to metoprolol but who
did not receive the drug, and for patients who were assigned to placebo but who did
not continue the study. There were 131 patients in each of these withdrawal cohorts.
(b) Examination of the statistical results. The two parameters of interest are the
observed metoprolo! mortality rate (thin line), which takes at face value the observed
deaths, and the population metoprolo! mortality rate (thick line), which removes bias
in the observed mortality rate, taking into account the fact that patients who were
included in the observed rate did not, indeed, receive metoprolol. Note that the user
should believe the debiased mortality rate to be lower than the observed rate, but that
the user should be more uncertain about the debiased rate than about the observed
rate.
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Chapter 2

Knowledge Acquisition for the

Literature Problem

In building any decision-support system, the system builder must have an understand-
ing, or a model, of the domain of interest. There are at least two strategies for building
such a model (Musen, 1989). Using the eztractive strategy (Breuker et al., 1987, p.
13), the knowledge engineer assembles a model that copies as accurately as possible
the concepts, methods, and strategies used by domain experts. Rennels (1987), for

instance, built the ROUNDSMAN system applying this strategy.

Using the constructive strategy (Anjewierden, 1987), system designers divide
their task into the construction of three models (see Figure 2.1). The conceptual
model encodes the designer’s comprehension of domain concepts. The knowledge-
level model (Newell, 1981) abstracts desired domain goals. The design mode! contains

specifications for a working system.

In Section 2.1, I shall summarize the sources of knowledge I have used in assem-
bling the different models needed to develop the framework and to build THOMAS. In'

Section 2.2, I shall develop the knowledge-level speciﬁcationé to be used for creating

37
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the conceptual and design models for the literature problem. The use of such a cas-
cade of models is recommended by the Knowledge- Analysis and Design-Structuring
(KADS) methodology (Anjewierden, 1987).

The knowledge-level specifications, summarized in Section 2.3, are the major con-
tribution of this chapter. The central insight is that the guidelines offered by method-
ologists for solving the literature problem properly belong to the knowledge-level
model (see especially Section 2.2.3.2). This insight gives the knowledge engineer an
extra degree of freedom in building the design model.

Although Figure 2.1 suggests that the knowledge engineer proceed along the se-
quence of conceptual to knowledge-level to design models, in the biostatistical domain,
different approaches within the domain lead to different conceptual models for the
same problem. Therefore, I shall present the knowledge level in this chapter, and
the conceptual and design models together for each approach in the subsequent two
chapters, where I shall describe the classical and the Bayesian models, examining

them in terms of these specifications.

2.1 Sources of Domain Knowledge

I have used three sources of knowledge for this dissertation: knowledge acquisition
from a domain expert, reading in the biomedical literature, and personal experience.’
Although this chapter and the two following it present a logical progression, achieving
that linear sequence required several cycles of testing and refinement.

Much of the knowledge acquisition for this dissertation grew out of research done
for the REFEREE project (Lehmann, 1988). The purpose of that project was to
build an expert system that would help a reader to evaluate the credibility of a
report of a randomized clinical trial. Knowledge acquisition in that project comprised

observations of and interviews with a biostatistician, Byron Wm. Brown, Jr., by
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Diana Forsythe (an anthropologist) and myself as he read reports of randomized
clinical trials. We spent 45 hours on this process over a period of 1 year. Our analysis
was concurrently reviewed by other members of the project: Bruce G. Buchanan, Dan
E. Feldman, and R. Martin Chavez. The detailed results of the knowledge acquisition
sessions are not used explicitly in THOMAS, but the interviews helped me to develop

the specifications for the program.

Phenomena Models
- Observatio
Problem SErvanen Conceptual
Solving >
. Model
Behavior

Knowledge-Level Knowledge
Model Specification

System
Behavior

Design
Model

System
Implementation

Figure 2.1: Knowledge-analysis and design-structuring (KADS) methodology. Do-
main problem-solving behavior is transformed into system behavior via three tasks
(observation, knowledge specification, and system implementation). Knowledge en-
gineering requires the construction of three models: the conceptual model, the
knowledge-level model, and the design model. These models are explained in the
text. (Source: Adapted from Akkermanns, G.S.H. and Wielinga, B., On problems
with the knowledge-level perspective, in Proceedings of the fifth knowledge acquisition
for knowledge-based systems workshop, Gaines, B.R and Boose, J.H. eds., University
of Calgary, 1990, pp. 30/1-30/20.)
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The subdomain of statistical inference (see Section 3.3.2) comprises the tools bio-
statisticians employ in offering suggestions for clinical decision making based on
research data, and supplies the instruments academic physicians use in construct-
ing decision criteria. 1 accordingly drew on a large body of literature in this do-
main, including contributions by statisticians (Peto et al., 1976; Brown and Hollan-
der, 1977; Armitage, 1983; Meinert and Tonascia, 1986), epidemiologists (Feinstein,
1985), clinicians (Sackett, 1979; Sackett et al., 1991; Haynes et al., 1986), and meta-
analysts (L'Abbé et al., 1987; Sacks et al., 1987; Eddy et al., 1990). These sources
present quantitative and qualitative methods for interpreting the scientific biomedical
literature. The variety of approaches available provides the knowledge engineer with
the challenge of integrating them.

Finally, my background in epidemiology, statistics, and clinical medicine, including
discussions with colleagues, has allowed me to serve as my own “expert,” especially
for the purposes of considering what notions physicians find difficult to comprehend

and what forms of information physicians find manageable.

2.2 Knowledge-Level Analysis

Clancey (1989) presents a manifesto for knowledge acquisition for “second generation
expert systems” (p. 285). His research programme! includes the following notions

regarding knowledge acquisition (adapted from pages 288-289 Clancey, 1989)):

1. Expert systems are situated systems.

2. Data gathering for problem solving represents a social interaction rather than

a problem solver’s internal process.

}Following philosophers of science (e.g., Kuhn (1962) and Radnitzky (1973)), I shall denote a
long-term research agenda by the British spelling. This orthographic convention is especially needed
in a dissertation where computer software is a major topic of discussion.
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3. Knowledge-level descriptions abstract sequences of (expert) behaviors.

)

4. Domain models are not the expert’s “mental model.”

I shall explain and use these dicta as an outline for a knowledge-level description
of the domain of the literature problem. Our consideration of each point will lead to

desiderata for a potential design model.

2.2.1 Situated System

The act of solving the literature problem occurs in a context comprising basic scien-

tists, clinical researchers, statisticians, funding agencies, editors, librarians, lawyers,
judges, juries, and clinicians. There are three components to this context: (1) re-
search, (2) publication, and (3) interpretation.

The research component depends on the biomedical scientific community main-
taining a research programme for scientific research, the agenda (Radnitzky, 1973)
for which is made explicit by funding agencies and is kept implicit in the theories,
methods, and aims of the scientific community (Laudan, 1984). Theories ate the con-
cepts (such as the relative merits of metoprolol and placebo in treating patients who
have had heart attacks) that scientific studies are attempting to establish. Methods
are the agreed-on techniques (such as randomized clinical trials) scientists employ in
arriving at conclusions about theories. Aims are the criteria upon which different
methods are judged.

Objectivity is the primary aim of the biomedical scientific community: Individual
studies and whole methodologies are judged on this basis. A defining aspect of objec-
tivity is that disagreement between two scientists over the implications of study results
for a particular theory must be accessible to ezternal review and, therefore, must be
expressed in ezplicit terms. Methods that employ numerical reasoning appear ob-

jective, as do methods that apply coherent and consistent procedures for evaluating
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the resulting numbers. Thus, biostatistics provides an attractive framework for, and
toolbox of, methods in biomedicine.

Reproducibility is an important component of objectivity; if a study’s results can-
not be reproduced on the basis of information provided by its investigators, it has
low credibility (Lehmann, 1988). The information provided lays out the study’s audit
trail. Thus, the auditability of a study’s design and execution plays an important part
in assessment of a study’s reproducibility. The use of formal models is one way of
ensuring auditability.

The report component of the literature problem’s context comprises the publication
of results in the scientific literature, which depends on peer reviewers’ judgment of
acceptability, and on editors’ assessment of newsworthiness (Goffman, 1981). Opinion
leaders in the clinical community publish secondary articles, reviewing the primary
research (Williamson et al., 1989). These evaluations often contain the commentators’
opinions regarding the applicability of the researchers’ conclusions to clinical practice.

The interpretation component involves the individual clinician’s reading of the
article. Her decision to change her actions on the basis of the article depends on her
personal reading of the article, on her regard for the opinion leaders, on the opinions
of her day-to-day colleagues, and on her assessment of her legal risk in taking the
action suggested by the article (Williamson et al., 1989).

An expert system that aids the clinician reading a research paper sheds light on
only one aspect of this multifaceted context. While the construction of a system
capable of hosting all the agents described above remains a futuristic fantasy, we
need now a design model that supports the interactions among those agents. We
need systems that allow for the intersubjective differences among readers such that

the sources of, and reasons for, the variation are apparent.

Thus, we need a system that is grounded on the community-shared aim of objec-

tivity and audita.bility, but that allows for intersubjective differences among readers.
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2.2.2 Social Aspects of Data Gathering

There are two social features we observed in the course of our knowledge acquisition
for the REFEREE project. They are the consequence of the expert’s own position in
the scientific community, and the importance of the social context of the problem at

hand.

A statistician functions in a community of statisticians, and is, of necessity, aware
of who is trustworthy and who is not. Thus, one of the first queries our expert
made in reviewing every paper concerned the identity of the study’s investigators and
statisticians, or the level of statistical expertise available to the study investigators.
Rather than being the product of simple parochial interest, this concern provided the
basis for our expert’s evaluation of information not available in the written report.
If he considered the study statistician to be trustworthy, he would give the study
the “benefit of the doubt”; if not, he would assume that any missing information
meant that the corresponding methodological concern was implemented by the study
investigators in the least credible way. Such knowledge of the community is difficult
to include in an expert system; it is the most private, idiosyncratic, and mutable of

information. I decided not to attempt to represent it explicitly in THOMAS.

The context of the problem at hand is a social issue in that different questions
are raised by different user communities. Clinicians will be most concerned with
questions of clinical, practical effectiveness, whereas clinical researchers will be most
concerned with biological, ideal efficacy. These different concerns lead to different
strategies of analysis. The ability to deal with both strategies—effectiveness and

efficacy (Feinstein, 1985);—shall be part of the specification for the design model.
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2.2.3 Sequence of Behaviors

Methodologists (Sackett, 1981; Feinstein, 1985; Meinert and Tonascia, 1986) provide
various prescriptions for clinicians’ reading of the scientific literature. I shall show, in
this section, how these prescriptions serve as ready-made knowledge-level analyses,
but do not supply the details necessary to implement those analyses.

These authorities view the clinician as solving the literature problem in the fol-
lowing steps. (1) The physician articulates a particular clinical problem related to a
single patient or to a class of patients. (2) She then seeks and finds an article relevant
to this problem (Scura and Davidoff, 1981). (3) In reading the paper, the physician
keeps in mind concerns about the credibility of the report, the validity of the study,
and the applicability of the authors’ conclusions to the problem at hand (Sackett,
1981; Mosteller, 1981). (4) The physician offers the therapy suggested by the con-
clusions of the study, if the conclusions support that action, and if the conclusions
meet a variety of criteria (Rennels, 1987). I shall first discuss the limitations of this
idealization, and then shall concentrate on the currently available prescriptions for

step 3.

2.2.3.1 Limitations of the Idealization

The ideal reader presumed by the methodological literature differs from a real person
in important ways. (1) Physicians often do not articulate their clinical problems
in as structured a way as is required by formal systems, such as online literature-
retrieval programs (Walker et al., 1989). (2) Finding a relevant article is made easier
by literature-retrieval programs, but they are not 100 percent sensitive in finding all
relevant articles. (3) Clinicians often use methodological and numerical techniques
incorrectly (see Section 1.4.1). (4) An individual’s conclusions, after she has read a
paper, are not the sole determinants of her subsequent behavior (Williamson et al,,

1989).
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In this dissertation, I shall make the following assumptions. (1) Because problem
formulation 1s currently too difficult to automate, I shall presume that the reader can
articulate the clinical problem formally. The machine will help the user to refine the
clinical question, if necessary. (2) Because the retrieval and understanding of texts
recovered by online literature-retrieval programs are difficult problems in their own
right, I shall assume that the physician-user of the system selects the article on her
own and informs the machine of its contents. (3) Because statistical difficulty is the
major reason why naive users employ statistical software, I shall expect the system
to ease the clinician’s difficulty with statistics and methodology. (4) Because of the
narrowed focus we chose in Section 2.2.1, I shall assurﬁe that the physician makes her
decision in isolation from the biomedical community. I shall, however, expect her to
take the opinions of statisticians, investigators, and other physicians into account; for
instance, such opinions will influence her answer to the systems’s questions regarding

" domain and methodological knowledge.
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