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) This research aims to advance the science of computer stereo vision

-

Chapter 1 | | 1

INTRODUCTION

1.1 The Problem Domain

- reconstruc-
tion of 3-dimensional scenes from 2-dimensional images. ‘The problem is to establish a
correspondence between features or regions in two (;{ more images from which we can
calculate positions iq 3-space. In-«ﬁlk:- researchf,—}\:;'e(::;w;a;ﬁto match features, rather than
use the traditional methods of area correlation. The featumsm&’usexare extended edges, or
more precisely, the image curves which are ihe projections of cdges in the scene. -\ﬁzr”

_#--summmera preprocessing stage which can extract such edges by first applying an edge operator
and then linking edge elements into extended image cucves. The choice of feature-based

stereo over area-bascd stereo offers advantages in speed and accuracy, as well as avoiding

some fundamental problems.

& -
In an edge-based system, computation effort can be concentrated on the edges.
Depth information about surfaces can be inferred from surface boundaries, which are

visible as edges. If high speed, specialized processors are uscd for edge operators [Nudd

1977|, overall computation.can be cut significantly.

Typically, cdge-based techniques offer a faclor of 10 improvement in accui:acy
over correlation methods. In correlation. accuracy near a boundary is limited to a fraction
of the width of the correlation window (typically 8x8). An edge operator, however, can
provide measurements to a fraction of a pixel, Edge-base_d systems alse have an advantage
with small objects whose tolal size is smaller than a eorrclation window. Similarly,
long, thin objects such as poles arc promineut fealures, but are too small for corrolation

windows.

1
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Area correlation systems depend ultimately on image intensity, which can be

' affected by several factors. Film and camera sensitivity may vary over an image or P
from one image to the next and scene illumination may change for images taken ut
E different times. The reflectivity of objects may depend strongly on viewer position, as in
E[ specular reflections. Many correlators automatically compensate for constant gain and
i ' bias differences in the images, but edge posilion and orientation are much more stable

than photometric quantitics because the conditions listed above will not significantly affect

i them.

A scrious deficiency of arca correlation is failure at surface discontinuities. Simple

area correlation techniques inherently {ail in the vicinity of surface discontinuities because
: ' the edge of an object appears against a different background area in each view of the sterco

pair. It is important to locate surface discontinuities, since it is precisely the boundaries

PRSI CPRINE U

|
1
lI of objects where accurate measurements are most important, Surface discontinuities are
i

typical of most scenes containing man-made objects such as buildings and vehicles.

! Fine textures and smooth surface slopes are typical of natural surfaces such as
i rock, grass and vegetation. In such regions, area correlation can be quite effective. On the
other hand, regions of totally uniform intensity provide no signal for an area correlator,

and the only hope is to locate the boundaries and interpolate the interior,

Sterco vision aysterns have applications in mapping, aircraft and missile guidance,

autonomous robut vehicles [Moraver 1980), planetary exploration [Gennery 1980), and
industrial inspection and assombly. Some applications favor arca-bascd systems and some ;
favor edge-brged systems. Thus, edge-based and area-correlation approaches are in a

sensc complet:entary. A gencral purpose stereo vision system should include both. j

- R g - : - —— \ d
e o MO SO b ek : - a.um_ i R e ":\‘lﬂa&&&;,ﬂ"




] B oo it L L ek . - —r o L e e T
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' | This thesis approaches the stereo problem in two steps. We first use epipolar
geometry to reduce the problem to a one-dimensional matching. Given the geometry of

the two cameras, a point in one image may be projected to a line in an image from a

[
}
| !
E : different viewpoint. Any corresponding point must lie on that epspolar line. We then
demonstrate the use of edge continuity «nd context in combining matches along adjacent L
l L epipolar lines to produce a match over an entire image. %

We derive a series of important geometric constraints for matching edges in the
: onc-dimensional problem. However, cdges are not matched in isolation - they must fit a
E 8 : global interpretation. Occlusion constraints require an explanation for each ocecluded edge
E or surface and ensure a consistency across the whole cpipolar line. If an edge is occluded,

there must be a surface in a position to block the view ol one camera. Conversely, if an

Ak

b edge is not occluded, there must be no surface blocking the view of either camera. We

have modified a dynamnic programming algerithm, the Viterbi algerithm, to incorporate

these constraints and the special conditions of stereo matching. The algorithin determines

| the highest scoring one-dimensional match that satisfies these occlusion constraints.

e o

We have derived two analytic results concerning constraints on mterval length and

o e L i . b 370 B

edge angle for sterco matching [Arnold 1980]. The interval length, or distance between
adjacent edges on an epipolar line, is a function of surface orientation, The projected
dimensions of a surface will vary in two views according to the orientation of that surface.

Similarly, edge orientation in the scene determines the projection of different edge an\glca

in the two views.

These resulls allow a distribution function in the object space to be translated

to a distribution function in the image space. In the simplest case, we can assume edges

i

!

._ ]
P and surfaces to be uniformly distributed over all oricntalions in the object space. We i
' 4
can then calculate the likelihood that an arbitrary pair of edges or intervals from the two i

Ty
- mxﬁw\» ettty o s

b
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images correspond. The functions are sharply peaked even for the 60 degree vergence
angles used in acrial pholography. When baselines corresponding to human vision are
i i

i used, the conditions are extremely strong. We have used the results of these functions as

components of an evaluation function for stereco matching.

|
{ |
S
[ i While the usual purpose of the Viterui algorithm is to find an eptimal match, it

is a good strategy not to discard options too early. A globally optimal matcl may be
f : suboptimal in the lunited context of a single epipolar line, It i= an advantage vo keep
! ; a list of several of the best matches of each line to be filtered later by two-dimensional ) '

j

; ‘ consistency relations. For this reason we have developed a significant extension to the |
[
F ‘ Viterbi algorithi that produces a list of all matches scoring within a preselected range
L

{
‘ of the optimal match. This list is then filtered by an iterative process that enforces

consistency among adjacent cpipolar lines,

' In 1978 we introduced an edge-based stereo system that used the concept of edge
coniinuity and context Lo reduce ambiguity |Arnold 1978). Fdge matches based on simple - 3
local measures such as contrast and angle were filtered by requiring matched edges to

‘ be continuous in 3-space. If an edge extended continuously in one view, its match was

required to have a continuous extension in the other. This systern used unlinked edgr

clements {edgels), and succeeded in correctly correluiing about 90% of the eugels in an {

: !

image.
Our most recent system operates on linked edgels, or extended edges, and makes

use of more powerful techniques to do the one-dimensional matching. It then applies the

; constraint of edge continuity iteratively with the epipolar matching to derive a globally

consistent match.

The principal contributions of this research are the first usc of edge continuity

in the context of adjacent epipolar lines for determining matches; the use of occlusion A

constraints; the analytical functions for interval and angle constraints; and the modified

Viterbi algorithm that includes suboptinal matches.
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1.3 State of the Art

This section briefly describes soine recent work on stereo vision systems by

others that have influenced this thesis. Some of these systems use techniques that we

ke VT

have adopted in our work, while others provide interesting alternatives. This survey

concentrates on feature-based stereo.

Moravec's vision system [Moravec 1080] is the input to a navigation and nbstacle

avoidance system for a computer controlled-vehicle. The stereo ccrreiation in this system

is area-based, but the initial correlation is driven by a collection of feature points resulting

g e

from an interest operctor. The interest operator sclects points with a lucally maximal 3

..vm._.....,,_,

{ | _ . value of an interest measure. The interest measure is the minimal directional variance
taken in four directions over a small square window. Thus “interesting” points are those
whose position is easy to determine in more than one direction (e.g., interseciing edges).
! | . The points from the interest operator are matched with a binary correlator that uses an 1

iterative technique with increasing resolution to narrow the search at each step. Siereo

im.ges ave taken from nine camera locations along a common baseline, and correlatinng

A W e e

from all possible pairs of images are combined to determine the final depth map.

4

Ml e b et Bl L L

Gennery's stereo system [Gennery 1980] is also designed to pravide input to an

AT T e

i
i

1

|

! : autonomous vehicle, This system uses Moravec's interest operator and binary correlator as ]
‘ ,
l inputs to a camera model solver and ground plane finder. With an accurate camera model,

f j : the system then applies 2 high resolution (area-bascd) correlator capable of subpixel

positio'ning. Obstacles are defined relative to the ground plane. ‘ :

Control Data Corporation has developed a Broken Segment Maicher [Henderson
197/9] tha. is designed to produce structural models of buildings and other cultural scenes

from aerial imagery. Their approach combined edge- and area-based techniques, with

. Al i

i edges serving to bound regions in which correiation is based on image intensities. The

images are transformed to niake usz of a simplified epipolar gcometry, and one epipolar

WERY we:
S it
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line pair is ‘seeded’ by providing a manual matching of edges crossing that line pair. All
matching is done in one dimension, along epipolar line pairs proceeding outward from the
initial line. Edge match information is propagated from line to line and edited automati-
cally as some edgee end and others begin. In a later version, the system assumes that
scenes are ¢t ~posed of rectilinear siructures; surfaces must have one of -three orthogonal

orientations, and all edges are straight.

More recently, Control Data Corporation has developed algorithms for stereo
matching that employ a structural syntaz for symbolic matching of geometric units
[Pantor 1981)]. This system works from line drawings, and matches edges or figures corn-
posed of edges. Knowledge of scene geometry is buill into the algorithm or entered by
hand and serves to filter ambigucus edge matches. Scenes are restrieted to right paral-
lelepipeds (simulated urban structures) and matching is restricted to the horizontal tups
of these objects (roofsj. The geometric knowledge ueed includes clustering of parallel
lines on opposing figure boundaries, known allowable edge orientation (vanishing points

entered manually) and a priers limits on stereo disparity (based on building heights).

Researchers at MIT have developed a computational algorithm for human stereo
vision [Marr 1977} which has been implemented by Grimson [Grimson 1980]. This sys-
tem convolves the image with spatial frequency filters (an edge operator), and bases its
matching on the zero crossings of these filters, together -»ith contrast and edge crienta-
tion estimates. The ﬁltcr's used have varyihg resolution, and matching proceeds generally
from low to high frequency. An initial vergence or disparity is set manually, and the low
frequency filter output is used to drive fine adjustments to this vergence until a matéh is

achieved with the high frequency [ilters over a significant ioca! region. The depth infor-

mation froin each region of correspondence is then interpolated and smoothed into a full

depth map.

Baker's stereo system [Baker 1981] combines several of the techniques used by

earlier systems and uses both feature- and intensity-bascd matching. This system begins

o R S .
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.

! i with low resolution images and matches linked edges to get a rough disparity limit for

subsequent higher resolution matchings. The matching process uses a Viterbi dynamic

programiring algorithm applied to individual epipolar line pairs. It maximizes a metric

based on local edge properties including contrast and angle, and uses the edge angle

i and edge interval measures described in this thesis. Some edges are allowed to remain

uninterpreted in this step. A cocperative process then removes edge correspondences

i that violate a three-dimensional continuity constraint across epipolar lines. Another edge

matching process is applied to attempt to match unassigred edges bounded by pairs of

Ly

match_ed edges. A final dynamic programming process matches intensity data bounded

by matched edges and results in a full disparity map of the image pair.

L e i s e <y e o f
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1.4 Other references

| This research touches on many disciplines; for the reader who wishes to pursue

some of these further or to develop .a background for reading this thesis, we provide a

short izt of references.

Many of the images processed by stereo vision programs originate in aerial photog-

o

}

|

! - raphy, where stereo images have been used for years in making topographic maps. The
! ’ :

g textbook by Burnside [Burnside 1979 provides an introduction to the main theoretical
!

elements of photogrammetry, while the more massive reference from the American Society

! of Photogrammetry [Slama 1980] covers the subject in more detail. Both books cover the

R

‘ ; ' geometry of aerial photographs, from the principles of central perspective nrojection to i

corrections for typical aircraft alignment and tilt problems, They a!so include information

that is of practical use to a researcher seeking images from - aerial survey company.
For a theoretical treatment of perspective transformations and coordinate systems, an

intreductory text in projective geometry such as Wylie [Wylie 1970] is recommended.

A central algorithm in this thesis is the Viterbi algorithm, which is one result from
a field of research called dynamic programming. The first complete text in this area was
by Bellman [Bellman 1957|. Dynamic programming has since become 1 well established
discipline with many textbooks following [White 1968, White 1978, Viterbi 1979, Denardo ~
1982]. The first published account of the Viterbi algorithm was in 1967 [Viterbi 1967} as {

a deceding algorithm for convolutional codes, but the algorithm has since been used in a

variety of applications. Yorney [Forney 1973 gives a good tutorial and survey.

The psychology of human stereo vision is an intcresting area because the
phenomena can be personally experienced. Many experiments and unusual examples of
sterco effects are described by Julesz [Julesz 1971, Julesz 1975). His experiments in random

dot stercograms have been used as test cases for computer stereo programs.
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Computer vision is a much m re recently developed discipline, and until recently
there have been few books on the subject. Ballerd and Brown Ballard 1982} have just
published a comprehensive book on computey visicn that is designed as a textbook and
provides a good survey of this field. David Marr ['4zarr 1982) has taken a different approach
and believes the “overall goal is te understand vision completely”. Marr presents his

group's research efforts to model Auman vistow computationally. Both books provide

good bibliographies.

e A vt r s bl s
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' THEORY

2.1 Profiles

This sectior. i_ntroduces the subproblem of one-dimensional stereo matching. We {
describe the geometry and develop a notation that will be used later in the presentation ‘

of the dynamic programming algorithm,

o e O B i

2.1,1 — Geometry -

RPNy

We will use the stereo camera geometry of Figure 2-1. The projective center of

the left camera is the origin and the projective center of the right camera lies on the z 1_
axis. The baseline, B, is the distance between the projective centers. The two image
planes are coplanar and are perpendicular to the z axis. The image distance, f, is the i
distance from the projective center to the image plane, and is the same in both cameras. ,

This normal camera model is for side-by-side cameras.

- : . GPIPOLAR, .

B e g 7

Y

Figure 2-1: Sterco Camers Geomeotry, : 7
E
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If an actual stereo image pair were taken with a alightly different geometry, ‘we
could use a few simple transformations on the images to produce a pair consistent with
this model. Alternatively, we could access the images through a coordinate transform
that accounted for these differences. Gennery describes a camera model program that
can avtomatically compute such a transform if given a collection of correspoading stereo

points [Gennery 1980], and has separately produced a version specifically for the camera

raodel we present here.

This model corresponds to the usual examples of stereo, such as human vision,
where the baseline is roughly perpendicular to the line of sight. It is also a good model
for aerial photography where a single camera is used; the line of sight is perpendicular
to ihe flight path, which determines the baseline. It does not cover the case wherc the
line of sight und the baseline are approximately collinear. This could arise from a mcuving
vehicle taking successive pictures looking forward along its path (sce [Moravec 1980]).
Such geornetry is a degenefate case of our model. Qur camera model is also not suited
to panoramic sensors where there is no projective certer (e.g., the sterec cameras used in

the Vixing Lander (see {Licbes 1977}).

Given an arbitrary camera orientation and a point on any object visible to both
cameras, we can define an epipolar plane as that plane determined by the object point and
the two projective centers. The epipolar plane intersects the image planes, defining an
epspolar linz in each. It follows by projection that the image of the object point must lie
on the epipolar line. Furthermore, the image of the same object point from the other view
must liec on the correspounding epipolar line. This reduces the correspondence problexil to
one dimension. In our normal camera model, epipolar lines are always parallel to Lhe z

axis, thus corresponding image points must have the same y-coordinate in both lelt and
right images.

- In the discussion that followsv, we will be concerned with matching featurecs in

a given left epipolar line with features in the corrcaponding right epipolar line. The

S i
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1

features of interest are acene edges, which project as curves in the image planes. For th..
one dimensional case, we . - ¢ interested in the points at which image curves intersect the Al
epipolar line. These intersection points serve to segment the epipolar line into intervsls, ;
which are ordered by their occurrence in the image from left to right. The matching i
problem is one of mapping between a sequence ¢f intervals or intersection points from one ]

view and a similar sequence in the other.

Consider a pair of corresponding epipolar lines from a stereo image pair. We
locate intersestion 'points of image curves with the epipolar lines and want to match these

points to reconstruct the original scene, If we back-project these points we get for each

view a set of rays from the camera’s projective center, through the intersection points, .
Every ray from each image lies in the epipolar plane. If we view this jlane trom the side,
we see that the rays fron the left‘and right cameras int' ‘sect to form a grid or lattice. This
lattice is bounded by a region obiained by projecting rays through the image boundaries.
We will refer to this region as the steres zone, for only objects within this zone can be seen

in stereo. (See Figure 2-2a). In general, the image boundaries need not be symmetric with

o remn A AR S

respect to the projective center. Although this is true for most cameras, it is common to
digitize the film off-center in order to improve the stereo overlap (see Figure 2-2b). Thus,

the stereo zone may extend to infinity or may be a closed quadrilateral, depending on how i

the imag:: boundaries are defined in the film plane.

Each lattice point corresponds to a potential match between a feature in the left,
and a feature in the right. If such a match were correct, then the object must have
been at the point in space represented by that lattice point. We will use this lattice as
our coordinate system and attempt to reconstruct the original scene within it. The two
axes of the grid are labeled with the left and right feature sequences. The reconstructed

surfaces of the scenc, or rather their intersection with the cpipolar plane, will be called a

profile.
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i Figure 2-2a: The Stereo Zone is determined by the camera geometry and
image boundaries.

B i i o i s hle v 487 i e ikl

Figure 2-2b: Image boundaries may be restricted for better overlap und
a linite Sterco Zone.
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2.1.2 — Basic Assumpticns

We now make some limiting assumptions in order to precisely define the problem

£ o we intend to solve. First, we make the general assumption that the scene is independent
of the viewer, While the stereo camera model and the objects in the scene may be aligned
with respect to a common refercnce such as gravity, individual {catures in the scene should

have no dependence on camera angie. That is, small shifts in camera posi‘tion should not

cause significant changes in the image.

We assume that surfaces ace bounded by visible edges. Thst is, if a surface or

slope discontinuity exists, it will produce a curve in the image which will be detected by

oo

our edge operator. This ensures that the reconstrucied profile wil! have all its boundaries

[ v

at lattice points. There may alsc be edge curves in the image that do not result from
discontinuities but from surface markings. Note that this does not mean that every leature
in one view must match some feature in the other. Occlusion by intervening surfaces can
block features from one or both cameras. We merely require that a feature is detected

if and only if it is not occluded. This assumption is equivalent to perfect edge detection;

performance with imperfect data is discussed in a later section.

We assume that the profile consisis of straight line segments. A sufficient condi-

P
et e o itk

o tion for this is that in the o'iginal scene all surfaces are planes. This restriction is not ;
a severe one in cultural scenes, where man-made surfaces usually are planar, In fact,
: the interpretation of a curved surface as fiat may still;, allow an accurate estimation of
: its boundary (see Figure 2-3). However, with curved surfaces, tangent discontinuities are
possible (see Figure 2-4). Since such features zre dependent on camera position, it is

possible for a surface boundary in one view to have no counterpart in the other view.
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APPAREVY
BOVWPARY

i Figure 2.3: The distance, d, between the true boundary and the apparent
i boundsry of a circle in the epipolar plane is small for most vergence angles.
| ' Its value may be calculated from d = R(sec(a/2) — 1) where R is the radius
of the circle and o is the stereo vergence angle. For angles of 60°, 12° and
4°, the crrors are 15R, .006R and .0006R, respectively,

[ S SV P IS W - -F P

Finally, it will be a necessary condition of the dynamic programming methods to 1

be introduced later, that the two image sequences match monotonically: i

i Let ¢y and b; be clements of the lefl sequence and a, and b, be elements of

Assume a; matches a, and b; matches b,.

I

|

|

5

| :

i the right.
‘ H

‘]

| If a; occurs tu the left of b; then a, must occur to the left of b,.
|

|

|

TR T ¢ e

In other words, there can be no order reversal in mapping one scquence to the other,
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Figure 2-4: Tangent discontinuiiies are viewer-dependent “features” that
h: ve no stereo correspondence even though there may be no occlusion.
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Order reversals may occur wheneve. there is an overhang, which we define as a

|

]

disconnected profile. Figure 2-5 illustrates the classic case, where an overhanging surface
is far enough above the background surface that the cameras can “see under it”. Not

all overhangs produce order reversals. It ia nccessary for there to be a feature within the

TR e T e

wedge-shaped sone (cross-hatched area in Figure 2-5) bencath the overhanging surface.
The geometry of this zone depends on the cameia model and the width and altitude of
the upper surfacz. Overhangs usually result from something like a wire stretched across

~ the scene, or from oblique views of thin objects. Figure 2-6 shows how an aerial view of

a building can cause an overhang. While overhangs are common in many scenes, they do

, not usually result in order reversals.
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‘ Figure 2-5: A classic case of order reversa] caused by an overhang. Any C
: ‘ scene feature falling vithin the cross-hatched sone will generate an order Coy
4 i 3
; ; reversal, : i
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b Figure 2-8: Even a simplc blick can produce an overhang and an ord.r
j reverssl, but most overhangs do not result in order reversals.
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In summary, we assume that the profile resulting from the intersection of the
epipolar plane with the scere consists of one co ii»vous, connected path of straight
line negments representing sarface inturvals, The bounding edges and possible intere
markings of these surfaces are detecied in each camera except when oc.wuded by an

intervening surface. Any s ich intervening surface must be another part of the same
A R

PP

profile.

+
We now introduc(‘_; some notition and coventions hat w.ll be used later in the
discussion of profiles, Fir:fh, we cla 8.y the su-face snierves whick comnpost a profile. A

given interval will fall in% one of three classes iccordingg to whether it is visible to the

-

[
3,
left camera only, to th~ ight camr a only or to hoth camreras. Tae class Visible to both

L]
can further be divided into four g ups nceording to the v isibility of the edges that form

its endpoints. Thus we fnave six ty ses of profi'e inlervain:
1) Tlle surface :nd both ec ges nre visible to boll eamerns,
2) The surface;and its left, edge are vi.ible to both cameras, but its right
edge is occ‘{uded
3) The surfac'l.'. is visiblc unly to the le:t carera

14

3
4) The surfac’z is visible on'y to the right carce a.
5) The surfzce and its vight edge ate visible ty both cameras, but its left
ecge is cccluded.
6) The su:“ace is visible t¢ both ceyeras, bui ite let and right cdges are

.

occluded.

e v e

b st L e
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A | : Figure 2-7 illustrates the coordinate system for proiles, showing a 'attice for a
" : profile with three edges visible to the left and three edges visible to the right. Lattice
| points are identified by ordered pairs, (a, b), where a is the right camera ray number and
} : b is the left camera ray number. The intervals are identified by ordered triples, (a, b, c),
| ! : defined as:

aj Right camera ray at right end of interval.

b) Left camera ray at rizht end of interval.

c) Type of interval (one of the six described above).

Notice that type 3 intervals are aligned with rays from the right camera, thus are invisible
to it. Similarly, type 4 intervals are aligned with left camera rays. Types 1, 2, 5 and 6

are aligned so as to be visible to both cameras.

i e e e

The stereo zone in Figure 2-7 includes only nine lattice points, the intersections

of L1, L2, L3 with R1, R2, R3. In general, a profile starts somewhere to the left of L1

and R1 and ends somewhere to the right of L3 and R3. It may enter the stereo gone at
any voint on the left and leave at any point on the right, or, if the images don't overlap,
it may not enter at all. In effecet, the edge of the image serves as a surface which can
occlude features in the scene. We term this effect windowing and have added rays L0,
L4, RO, and R4 to represent it. The mechanismn of expanding the lattice by une in each

direction allows us to describe all the windowing effects in a convenient way. Intervals

which are occluded by windowing effects simply appear aleng one of the four added rays.

Thus, we may assume all profiles begin and end at special intervals (0,0,1) and (5,5, 1),

which are not themselves visible to either camera.

So far, we have discussed profile intervals whose edges are always on lattice pointe.
This is actually true only for intervals whose edges have no degrees of freedom, i.e., are

visible to both camneras and thus must be fixed in space. If an edge is visible to only one

e el

. camera, it has one degree ol frecdom; it is free to siide along the ray from the camera

o m—

IR e e
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i that can see it. Usually its range is bounded by a ray from the other camera, above which

it e

‘ it would cease to be occluded.

Some edges, due %o windowing effects, are free to slide in either direction
| : indefinitely. Finally, an edge may have two degrees of freedom if it is visible to neither

i camera. This happens at the start or end of the whole profile, or in the case where an in-

visible joint must occur between two adjacent intervals that are required to have different

slopes. (See the valley tranasition in next section). Usually, the two degrees of freedom are

] L bounded by left and right rays with the result that the point may occur anywhere within

an infinite wedge defined by those rays.

g _ Thus, profiles which contain degrees of freedom are actually families of profiles,
all of which have identical interval types and which produce identical images. We present
the following notation for representing such a family of equivalent profiles. See Figure

2-8 for some examples.

A fully constrained point is indicated by a dot. A point with one degree of freedom

is drawn at the limiting position with an arrow pointed in the direction in which the point

may slide. If the point’s rarge is unbounded, two oppusing arrows are used. If a point

has two degrees of freedom, the arrows are drawn to define the wedge in which it may be
i located, and the point is drawn at the vertex of the wedge. Finally, it may occur that two
different edges are drawn at the same position, one with a dot and one with an arrow.

In this case, the direction of the arrow will make it clear which edge belongs to which

kbl R

surface. In visualizing these profiles, you should imagine an elastic string tied to the fixed

which when viewed by the two cameras will produce the original sequences.

[T

|

l

|

|

!

g ' dots, but frec to be pulled along any of the arrows. The result will be a continuous proiile
i

|

|

{




. i Automatal Stereo Perception ‘ Theory §2.1.3 20
3 . .
3
!
f i
g ]
00\ $51\
» 3
]
!
|
f Figure 2-7: The coordinate systcin used for profiles is bascd on rays from
| each of the camncras, passing through features (edges) in the scene, and 3
i through image boundaries, The rays form s lattice of intersection points ]
; that cover the stereo zone. Profile intervals join lattice points from lefi to ‘
right, with most points baving three nearest neighbors on each side. 3
]
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] that can see it. Usually its range is bounded by a ray from the other camera, above which

it would ccase to be occluded.

Some edges, due to windowing effects, are free to slide in either direction
indefinitely. Finally, an edge may have two degrees of freedom if it is visible to neither

camera. This happens at the start or end of the whole profile, or in the case where an in-

visible joint must occur between two adjacent intervals that are required to have different

slopes. (See the valley transition in next section). Usually, the two degrees of freedom are

bounded by left and right rays with the result tha¢ the point may occur anywhere within

i ' an infinite wedge defined by those rays. '1

f i .
’ ‘ 5 ‘ Thus, profiles which contain degrees of freedom are actuaily familics of profiles,

: ‘ all of which have identical interval types and which produce identical images. We present

i ; the following notation for representing such a family of equivalent profiles. See Figure

: 2-8 for some examples.

! A fully constrained point is indicated by a dot. A point with one degree of freedom
is drawn at the limiting position with an arrow pointed in the direction in which the point

may slide. If the point’s range is unbounded, two opposing arrows are used. If a point

: has two degrees of freedom, the arrows are drawn to define the wedge in which it may be
3 located, and the point is drawn at the vertex of the wedge. Finally, it may occur that two
different edges are drawn at the same position, one with a dot and one with an arrow.
% In this case, the direction of the arrow will meake it clear which edge belongs to which
surface. In visualizing these profiles, you should imagine an elastic string tied to the fixed

dots, but free to be pulled along any of the arrows. "The result will be a continuous profile

T T T i T TS i) T s e

which when viewed by the two camerae will .27 ;¢ the original sequences.
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D Figure 2-8: T'wo examples of profiles indicating the nolation for various i
1 interval types. The dots represent fully constrained feature points that are 3
A fixed in space. The arrows represent degrees of freedom - a fealure may )
z “slide” in the dircction indicated without changing the projected image. ‘
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2.2 Copstraints

Figure 2-8 is an exaiauple of reconstructing a profile from epipolar lines. The
dotted lincs at the top of the figure ;epresent epipolar linzs in the left and right views of
a stereo image. If we extract these lines, together with the image line intersections, we
can then back-project to get our grid. The task then is to reconstruct a profile passing
through the lattice points of the grid. The particular profile shown is the one we had
in mind when drawing the original images, but in general we must identify the correct

match from all passible matches, At this point geemetric constraints enter the discussion.

Some matches imply unlikeiy geemetry in the scene; others are simply impossible
under our basic assumpticns. Several useful constraints are suggested by this exaruple.
The length of the intervals between intersection points can be used, as short intervals are
more likely matches for other short intervals. A good match criterion is edge angles, i.e.,
the angle of the image lines where they intersect the epipolar line. On this basis alone,

L4 should match R3. The length of the extended edges would help distinguish L3 from
1.2 as a match for R2.

In this section we discuss several of these constraints and attempt to quantifly

them for use in evaluating a match. The evaluation inction thus developed will be used

in the dynamic programming algorithmn to provide solutions to one-dimensional stereo

matching problems.
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Figure 2-9: Two epipolar lines are indicated in the sample stereo image
at the top. DBelow the image, and to the same scale, these lines are stripped
of ail information but the edge intersection points and the angles of those
intersections. The profiie shown is one of many possible reconstructions

from this data.
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2:2.1 - Occlusion

The profile in Figure 2-9 has been labeled with the ordered triples we use to
identify intervals. These labels cannot be assigned arbitrarily. In particular, consider L2,
the second edge in the left image. We are interpreting that edge as visible only to the
left camera; there is no edge in the right image to match it. In order to block this edge
from view, the surface extending from it toward the right, (2,3,3), must have a slope
greater than or equal to the slope of ray R2 (type 3). On the left side of that same edge,
the interval (2,2,2), which is in part visible to both csameras, must have its right edge
occluded (type 2). Thus the premise that edge L2 is occluded has placed constraints on

its adjacent surfacee or intervals.

We now com‘aider all possible joints or transitions between two intervals. If we
look at only the part of an interval next to the transition, we find that our six interval
types lead to four possibilities: '

1) surface visible to both, edge visible Lo both,
%) surface visible to both, edge visible to only one,
3) surface visible to right only,

4) surface visible to left only.

If we made these choices independently on each side of a edge, there would be
sixteen transition types. However, occlusion constraints xﬁake’ five of these types impossible
under our assumptions. They are excluded because either there would be no surface to
occlude an edge which shouldn’t be visible, or there would be a surface that must occlude
a edge that shoufd be visible. The remaining eleven transitions are illustratéd in Figure
2-10. Again, the dots indicate edges visible in both views, and arrows indicate degrees of
weedom. Note the two degrees of freedom in a valley, where a joint mhst be present, bﬁt
is visible to neither carﬁera. Also, in a right cliff, for example, the interpretation is that
the visible edge belongs to the left surface, while the right surface ié free to slide along

the arrow. We hypothesize an invisible surface and joint connecting the two to preserve

profile continuity.

et s et
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Figure 2-10: Lleven transition types satisfly the occlusion constraint. In
our notation, these are the only interval types that may be adjacent in a
profile.
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2.202 - Ed!‘i Intel'V&ll

Given an object surlace, its image at a particula. epipolar line will generally 1
consist of two bounding edges and the interval between them. If the object surface is
visible to both cameras, there will be a corresponding interval in each image. The lengths

_ of these intervals are related to the angle of the surface and to the camera geometry. 1
The lengths can tak= on any values, but for moderate or small baselines they are usually ?
comparable. In this section we describe a method for quantifying this relation; the next

section presents the detailed mathematics.

Under our assumptions, each epipolar plane cuts a continuous profile in the scene. o
Now consider the case where the profile consists of a central small surface flanked by two
larger ones extending off to the left and right (see Figure 2-11). We want to vary the , 1
orientation of the small surface and see what happens to its image. In general, the left {
and right images will show an interval between two edges. The length of the interval will
depend on the orientation of the surface and its position with respect to the cameras. For
some orientations, one of the edges may be occluded and the small surface may not be .]

visible.

4
We see immediately that there is a simple fuiiction mapping orientation, ¥, to g;
b |l

projected interval lengths, p; and p,. Since we are working to reconstruct the scene from o

the image, we need an inverse function mapping some image parameter to 9. To do this,
we define a ratio, R == p,./p;. This has the advantage of reducing the informetion f rom.\the
image interval lengths into a single number while 2liminating the dependency on segment
length, d. (The derivation is presented in the next section.) Now we can easily invert the
function and take the derivative. The resulting d9/dR is a scale factor which indicates
how much a unit length in “R-space” is stre‘ched in mapping te "d-space”. This allows

us to translate probabilily densities. For exarnple, suppose an interval ratio @ maps to an
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orientation A, the derivative of the mapping at a is D(a), and the probability density at
orientation A is P(A). Then the probability density for ratio a is D(a)P(A).

The derivative D is normalized and plotted against R in Figure 2-12a. ¥ ranges
from -90 to +90 degrees while the domain of 12 extends from —oo to +o0. A ratio
of zero corresponds to a surface exactly in line with the right camera, while a ratio of
+00 corresponds to alignment with the left camera. Negative ratios result, when the
surface presents a different face to cach camera. If the surfaces arc opaque, this condition

corresponds to occlusion,

Given this mapping, we are now able to translate probability disttibutions in one
domain to probability distributions in the other. For example, we are interested in the

following problem: assuming a particular distribution of surface angles in the scene, what

— "t ’l [Y
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Figure 2-11: The calculation of the Iidge Interval Constraint is based on
the camera gcometry shown here, viewed along the y-axis. The ratio of
projected image intervals, p,/p, is a funclion of surlace orientation, 4.
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disiributior of interval length ratios can be expected in the image? Knowing the answer

to this question will help to discriminate among potential stereo matches.

If we assume that the small segment in Figure 2-11 takes on all oricntations i
k : uniformly, then D exactly equals the probability density for interval ratios. The pcak near
R = 1 indicates that under such an assumption, most inte vals tend to have comparable
lengths. This peak becomes much sharper for narrower baselines (see Figure 2-12). Human

|

i .

L stereo at a range of 1 meter uses a baseline of F/z = 0.07, With that geometry, half of all
E ratios lie between 0.93 and 1.07. Note that integrating the probability function between

—oo and 0 gives the range of angles for which occlusion may occur. When norraalized,

this is the probability of occlusion. i
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Figure 2-12: ’robability density is plotted against interval lIength ratio to
show which ratios are most likely to occur. The curves peak near R = 1,
indicating that the lengths in the lwo images are most likely to be very
similar, The shape of the curves varies with the camera geometry. In
this Figure, the morc sharply peaked curve results from a narrow baseline
(B/z = .07), while the broader curve is for a wide baseline (B/z = .2). The
| ! same two curves have been scaled in b to satisly the symrmelry condilion
! ) that requires identical values lor ralios that are inverses,
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There is one problem with using the results of Figure 2-12a directly. While the

function gives the true probability density per unit R, dR is a nonuniform unit varying In

length from 0 to oo. Consequently, oricntations which are simple reflections, ie., ¢ and

—9, yield different values. To adjust for this, we scale the derivative by a factor of R,

yielding the function in Figure 2-12b. This funstion satisfies the conditions of symmetry,

in that symmetric oricntations now have identical yalues. Another way to get this same

i ! result is to use log R as the image parameter and take the derivative of ¥ with respect to

tog I¢.

2-11, we assume that z, 2, B, d, and 9 are given. The i}

Referring to Figure

projected interval lengths, pt and p, are determined: ‘
1

|
|

| ; pz[f+T _ z
| dcos¥+ dsind + 2

dcosd — (B—1x) dsind+ 2

_Jd zcosd —xsind .
E* i = dsind + 2 (2 1)
|
|
| pa/f—(B=2) _ __*
|
1

i ande b

: l 'f ' fd zcosd + (B — z)sind
e dsind + z ) (2-2)
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Letting R = p,/p;, a = B'z and b = z/u:
1' '
| R= zcosd + Fsin -- xsind
T zcosd —aaind
13 ’ 71'
[ Y I'/l 1
| =1+ 9 e/ g
i a \
: = - ——, 2~
] i 14 cotd' — b ( 3)
Now we nced ¢ as a function of R: ;
E g ‘
PN | —cot—t [ ) -
| ‘} 9 = cot, (R—l-‘b,' (2-4)
! |
| This gives a function mapping the image parameter R = p,/p; to the object
space parameter 9. The mapping of probability densities requires the derivative of this 3
Iy ! k]
| functicn. Using: ’
! du
' — ot ™y = e T
‘. R T o 2
t we substitute to find: J
F i
{ : do ¢ !
' ' DR = — == — . 2-5 i
b B) =3k = wro@ =174 B=1) (2-5)
* As noted in the text, D is not symmetrical in is use of R for the case where the :
1 ‘ object is halfway between the two cameras (b == .5a). By noting that dk/dlog R = R, |
' i we have: ,
I L R
| P(R)= - = 2 , 9 -.
| (1) dlog  (a+b(R-1)2+(R-1) (2--8) i
. i
_‘ !
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This function is symmetrical in R (D'(1/R) = D'(R)) whenever b = .5a, as shown by:

a/R . _ aR
(a+ 5a(1/R-1))2+(1/R-1)2 ~ (aR — 5a¢(R—1))2 + (R —1)?
aRR

T e+ SaR-1)V+(R-1)"

Iinally, we locate the extrema of this fuuction by taking the first derivative:

D’ .
- —(b* + )R? + (a — b)" +1).
dR ((a+b(R_1))2+(R__l)2)2(( + )R +(a—8)? + 1)

vt trimaan ks

Setting this cqual to zero and solving for R gives the values for which D/(R) reaches a I

maximum and minimuin: 4
i

1+ (a--5)2

= L i 2 -7 _

B=\[ @2 -7 q

2.2.4 — Edge Angles l

Given a corresponding pair of edge curves, one in the left image and one in the

: right imagc, we are interested in how their angles are related (or mcre precisely, the angle

of intersection with a given epipolar liae). In general, the two angles may take on Aany

T e,

gy

values, bul we intuitively expect them usually to be similar, especially for moderate or

Ry smail baselines. This is in lact the case, as we will now show. (The next section will give

the detailed derivation.)

Consider an objecl cdge passing through a scene point (z,y,2). The edge at

that point has an orientation in three dimensions which can be charactoiized as a point

e o ot o ot e o v et Y s i 4 8
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on the surface of a unit sphere, whose origin is (z,y, 2). This is known as the gaussian
sphere, and points are located on its surface in terms of spherical coordinates @ and
(ree Figure 2-13). The spherical coordinate axis is parallel to the z axis and 0 corresponds
to longitude, measured counter-clockwise from the z axis when viewed from the cameras.

¢ corresponds to latttude and is measured from the sphere’s axia.

The object edge projects to a line intersecting the epipolar lines in the two images
determined by (z.y,z). Let the angle of the image curve in the left image be 6; and in
the right image be ?,, measured counter-clockwise from the z axis, A continuous function
maps poinis on the gaussian sphere to pairs of image angles, (6, 0,). Similarly, there is an
inverae function which inaps points in the space 8; X 6, to points on the gaussian sphere.
This inverse function is defined everywhere except at (0,0). This is because the great
circle of points on the sphere for which = 0 all map to (0,0), and the function is not

invertible at that point.

This inverse function allows us to translate probability distributions in one
domain to probability distributions in the other. If, for example, there is a uniform
distribution on the gaussian sphere, we could calculate the expected distribution of image
angles. In other words, if all object edges are randomly and uniformly distributed in

orientation, are some combinations of (0;,8,) more likely than others?

We know the mapping from 8; X 0, to @ X ¢. The determinart of the matrix
of partial derivatives (Jacobian matrix) is the scale factor for area under the mapping,
and thus is the scale factor for probability density. Suppose point (a,b) in 0; X 8, maps
to (A, B) in 0 X p, and thal the determinant of the Jacobian at (a,b) is D(a,b). Then a
small patch around (a, b)) maps to a patch around (A, 8) with D(a, b)sin ¢ times the area.
The sin p term compensates for the area distortion of the spherical coordinates. If the

probability density at (A, B) is P(A, B), then the probability density at (a, b) is

D(a,b)P(A, B)sinp

abtid gl
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Figure 2-13: The calculation of the edge angie constraint is based on the
camera geomelry shown here. The inage angles, 0, and 0,, are functions of
the edge orientation given by spherical coordinales 0 and p.
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B
J' Figures 2-14a and 2-14b show the function D plotted for a stereo baseline typical
o of aerial photographs, B/z = 0.7. For the uniform distribution assumption, this surface

corresponds directly to probability distribution over 0; X 0,. The surface forms a high,

|

(o

! narrow saddle along the line 6; = 0,, with a singularity at (0,0). This corresponds to
! the intuitive notion that left and right angles are usually similar, but the sharpness is
f

surprising. Half width at half m ximum (HWHM) at the center is 30°. As Figures 2-

i b 14c and 2-14d show, probability functions for narrower baselines are even sharper. For

b B[z = 0.07, which corresponds to human vision at a range of about 1 meter, the HWHM

at the center is 3°.

T v s
_n

Another way of looking at the data is to consider the distribution of “wrong

matches”. Suppose we choose an edge at random from the left and from the right, and try

to interpret them as corresponding. if we do this for a large set of edges we will produce

a distribution of cdges in 3 dimensions, i.e., on the surface of the gaussian sphere. The

nature of the distribution will depend on the distributions of 4; and 4,.

!
case, it is easy to show that ; and 6, are also uniformly distributed. For each value of |

T g s e

i

i

;

| i
‘ We originally assumed a uniform distribution over the gaussian sphere. For this é
{

| i
; 0; in the image, there is a corresponding set of points on the gaussian sphere. This set of ]
i

points forms a great circle, that is, a circle of unit radius. The probability of a particular

value of 6; occuring depends on the integral of the gaussian sphere probability distribution

R

over that circle. If we assume a uniform distribution on the sphere, then all circles .\will

yield identical integrals. Similarly, 0, will be uniformly distributed.

If we choose unrelated left and right edges from these uniform distributions and
project back to the gaussian sphere, we get the distributions shown in Figure 2-15. The

distributions, which are actually on the surface of the sphere, have been cut in half and

projected onto the plane of the image for display. The result is a sharply double peakad
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s ! near the line 6; = 0,, indicating that the angles in the two images are most
' f likcly to be very similar. The shape of the curves varies with the camera
; E geomeury. Graphs a and b are tive views of the function for a wide bascline
| (B/z = .7). Graphs ¢ and d show the much sharper function for a narrow
! j : baseline (B/z = .07).
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Figure 2-15: If edges from the left and right images we e matched at
random, the 3-dimensional orientations of the reconstructed scene edges
would be distinctly non-uniform. A uniform distribution of image edge
angles maps to a distribution on the gaussian sphere that is strongly peaked g
along the line of sighi of the two cameras. Surfaces ¢ and b result from
baselines of B/z = .7 and B[z = .07, respectively.

distribution, with each peak oriented toward (and the missing half away from) a camera.
This violates the assumption that the scene should be independent of the observer. Such

a distribution could be used to identify wrong matches.

Figure 2-15a results from a wide baseline of B/z = .7. The twin peaks are quite
clear in this graph; each contains a singularity at p = 19.29° (tanyp = .35) and 6 = 0°
or @ = 180° that has becn clipped to limil the height of the graph. The distribution has
a value of zero along the “equator” where 0 = 0° or 180°, and a value of .7 at the “poles”

where @ = +90°. This rises to a value of 5.6 al the saddle between the peaks.

Figure 2-15b, based on B/z = .07, is similar in shape but more extreme in value.

It is graphed at the same scale as WWigure 2-15a for comparison. The singularities are o:.

. it . .
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| f
. ; the equator at p = 2.00° (tan p = .035) and the poles have a value of .07. The peaks
\
: are not separated at this scale since the saddle between them has a value of 525.
i 5
|
] ( 2.2.5 — Angle Constraint Derivation
o
, ' Refer to Figure 2-13 for geometry of this derivation. We wish to derive the
i ; function mapping 6; X 0, — 0 X ¢, where
l
i
i
' 06,0, <=
l
E 0<0<~
f 0<p < ;.
| o
| The approach is to convert to rectangular coordinates, do the stereo projections, and i
lf convert Lo spherical coordinates, The stereo projecticns are given by ‘
|
| Z
!
| I [ !
! ’ (zbyl:zl) = ('z'zs ;y)f _
! / g‘
{ (zn Yr» zr) = (_(x - B), Y, f)r é
A z z :
! F
!
l and the inverse projections are given by
|
i
|
| L

Zz =

2 :L‘( — Ty
o v="2u=12y
| t / e
- =2, =%
I § T f:m f:l:, + B,
-
b
b
' FOIRR s P TTTTTTTT T -
!
|
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Lo
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where:

[ is the image length,

l B is the base line,

(=, ¥, 2) is a point on the object,

|

|

4

L (%1, 91, z1) is a point in the left image, and
b

i (%4, ur, 2) is a point in the right image.

|
|

Now consider a unit vector in the left image, centered at (z;, 1), at angle ;. The

tip of the vector has coordinates

S oo il

T} = 1y + cos b 3

Y1 = +sind;.

From epipolar geometry, we know the points in the right image corresponding to the

BTN RS

endpoints of the vector will have the same y-coordinates. Thus, the length of the vector

in the right image must be sin 0:/ sin 0,, and 1
!
i ]
; ‘
‘ o —z + sin 0; |
' *T 7T tand, H

Yr = Y, +sindy,

where 6 is the angle in the left image plane and 0, is the angle in the right image plane. 4

We now fnvers: - ‘ecl to get the points (x,y,2) and (2,9, 2') in object space,

the origin and tip of the vector respectively. Note that this vector will not have unit i

e v
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length, but its orientation will supply the correct value for @ and . The values 2’ — z,

v’ —y, and 2’ — z will be needed:

!
, F z
g —z= —(z1+cosl)— -z
f( ) /

—B z; + cos Oy Ty
z --z,+cos0;—£',‘\—%"- Ty — Ty

'y =D Y1 +8inf, W
y y - r; — — ain‘ Ty — :c
, { — T, + cosd EI:TJ‘,‘ ] r

1 i
z’——z--fB - — .
T — T, +cosfy — Mo T T

To simplify further calculations, we use the following substitutions:

'B
(¢ — z M2 — 2, + 2086, — ;"-;—“n—;"-)

sin 0[
U =(z;—z,)cos0; — :v‘(cos 0, — an 0')

' . sin 0
V = (z; — z,)sin 0 — y;(cos 0, — o o’-)
r

sin 4
W= —j(cosﬂ; - tan0,)'

Then 2’ —z = QU, y'—y = QV, and 2/ —z = QW and we can easily convert to spherical

contbraid

A Sy it

b b o L7 i, VRS e sy 3




{ o " s A ——
o
v
] | Automatel Sterco Perception Theory §2.25 41
|
i
|
| | coordinates: ]
| |
|
i , x . ]
Y £t D Uy 8
' 0 = tan (z’ el tan (U) (2—8)
| p = cos
; G-+ -+ (7o
|
,L : == ¢ccs™! ( ud ) (2-9)
f ! VU VI We,
! This completes the derivation of a function mapping image parameters 6; and 4,
i
‘ ‘ : to object space parameters # and ¢. The mapping of probability densities requires the
] ! derivative of this function, or more precisely, the determinant of the Jacobian matrix. 1
; The Jacobian matrix is given by: 4
i i
| i i
. s 0 3%! 2
! ] r 3
; J = (a a ) !
; ah 5,
; ’ To calculate these values, we will need the partial derivatives of U, V, and W: j
k : 1
E | au 0 :
. ) cos 3
E‘v ‘; o= —(z¢ — z,)sin O + :m(sm 0 + ton 0:) i
| v ) cos 0; i‘
! E 57); = (z‘ - :L',-) costy + y((sm o+ tan 07) ;
i ow cos 0; ’
| ow __ in0 ;
! a0, (sm ‘t tan 0,.)
. ! U _ —xzisinl
E? i a0, sin? 0,
!
. _ 8V —yisinl; ;
' [ ) : o0, sin? 0, :
| W _ —[sin0,
| 00, sin?9, [
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Now we have

Substituting d = vU? + V7 + W7, we have

8d _UFL+vEE +wit
oz VUT+VE+ W

9z = 3z d T a/d-wW?

_ WU +VE+WEE) - LU+ V4 W)
T WV wUTE e -

We can calculate the components of the Jacobian matrix by substituting §; or 8, for z.

The determinant is then

80 dp 30 dp
86, 00, ~ 30, 80,

D(0,,0,) = det J = (2 - 10)

Finally, this probability scale factor must be corrected for the area distortion of the

spherical coordinates:

scale factor = D(0, 6,) sin . (2—-11)

This function is plotted in Figure 2-14 for different camera parameters. The
resulting saddle-shaped surfaces have been numerically integrated to give a volume of

about 27, or an average value for the function of 2/x.

A A s dp——— s = raad
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2.2.0 — Edge tixtent

The extent of an image curve can be useful in evaluating matches, subject to

certain limitations. We define extent as the difference in y-coordinates of the two end

pointe of 2 curve. This measure, even more than edge angle, involves two-dimensional

information, but we believe in using constraints as early in the processing as possible,
provided there is a clear way to apply them. Ideally, image features in isolation should ;
have identical extents. This is due to the normal camera model we have chosen, where
sterep disparity occurs in the z direction only. Several things can modify this, however.

Inaccuracies in the sterco camera model can cause deviations in the projected position

; ' of the endpoints. If the images differ by a scale-factor, the difference in extents for a

matched edge pair will aiso depend on the magnitude of the extent. i

1 Fdge extent can be measured only where both end points are visible to both

cameras. liowever, for some occlusions, we can derive an inequality condition, which

still may be used to discredit & match. We assume occlusions from the presence of
§ a T-junction, which Binford and Lowe [Binford 1981, Lowe 1981] have shown may be
considered a necessary condition for occlusion of a curve. Figure 2-18 illustrates {our

potential matches, two of which satisfy the inequality and two of which don’t.

Finally, image curve segmentation can cause problems. Segmentation means

e s e At it b o b

breaking a long complex curve into simpler pieces, connected end to end. Since cor-
responding curves in the two views are segmented independently, corresponding pieces

may have different extents. This may be compensated or at least recognized by examin-

I

ing the junctions at the ends of an image curve. A 2-junction with similar curve may

suggest a scgmentation problem, especially if the tangents or curvatures are similar at

that point.

PN T SR ENN A S - & - u"‘-‘ et e - Tz




e e e

S R R P e Y.

e et A

o e

T —

R

Automatel Stereo Perception

L s

Theory §2.2.7 {4

//

A) 8)

_ e

/

C) 0)
LEFT RIGHT LEFT RIGHT

Figure 2-16: Slanted T-junctions can mean that an edge's extent is known
only to an inequality, but this is sufticiewt lo reject some matches. The
stereo pairs shown in b and d are possibic matches; those in a and ¢ are

not.

Image intensities can be used as a match criterion, although they have many
drawbacks, as discussed in the introduction. Still, with a proper allowance for errvor, they
can help to resolve some ambiguities. We have used a simple measure based on average

brightness across the interval, but a more sophisticated approach might use arca-based

correlation with image curves as boundaries.

Other geometric constraints may be taken from the vertices of image curves. For

example, if a curve terminates in a 3-vertex in the left image, there are only certain types
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‘ of 2- or 3-vertices in the righi image that could match it. ‘This type of constraint can
i H
" ‘ be very strong in certain restricted scene domains, iike right parallelepipeds, but some
' ; constraints apply also to general scencs. We have not yet made use of this type of measure, 1 f
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2.3 Dynamic Programming

Dynamic programming is a technique useful for matching two sequences. A
typical application is in speech recognition, where one of the sequences is the model of
a spoken word, and the other is the enceded signal derived from a microphone. Varicus
portions or phonemes may be stretched or compressed, but the continuous flow of { ne
guarantees that no two components will be out of order in one sequence relative to the

other. Dynamic programming attempts to map one sequence onto the other, subject to

these constraints.

2.3.1 — Introduction to the Viterbi Algorithm

The Viterbi algorithm is a dynamic programming algorithm which finds a “best”
match from among all the allowable matches. Figure 2-17 illusirates this algorithm
applied to a simple problem. The sequences to be matched, {L;} and {R;}, define the two
dimensions of a matrix; each enlry is determined by a pair of elements, one from each
sequence. A function is defined on this matrix such that each euiry represents the cost
of matching that pair of elements. This function measures the dissimilarity cf the two
elements. A path will consist of a sequence of nodes, each of which corresponds tc one

entry in the matrix. The goal is to find a path through the cost matrix such that the sum

of the costs along the path is a mininum.

To do this we need to define & set of transition rules that specify the allowable
successors to a given node on a path. These rules may be derived from constraints on the
original problem. For example, assume the following constraints:

# The sequences musl be matched monotonically.

e Lvery element of each sequence must be used al least once.

These constraints are equivalent to assuming that the path must start in the lower left

corner and end in the upper right, and tha’ from cach node, a transition may only be

made one unit vertically, horizoutally, or diagonally.
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Figure 2-17: The Viterbi algorithun finds the best path through a cost

matrix such as the one illustrated in a@. FEac* transition of the path may

be up one unit, right one unit or both. A second matrix (shown partially

completed in b) is constructed giving for each clement the lowest cost of

a path from the start (1,1) to that element. When the second matrix is
; complete (as in d), the entry in the top right corner gives the minimum cost,
: and the corresponding path can be traced backward.
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The Viterbi algorithm proceeds by constructing a second matrix, of the same
dimensions as the firat, each of whose entries is defined as:
The accumulated cost of the lowest cost path from the starting

node to the node corresponding to this entry.

The matrix values are filled in ascending crder, left to right and bottom to top, beginning
at the lower left. The transition rules guarantee that when it comes time to fill an entry its
three predecessors will already have been assigned values. The algorithm simply examines
each of these predecessors, adds the cost for the current position (from the cost matrix),
and selects the lowest sum, This sum becomes the value for the current entry, and a

pointer is stored to indicate which predecessor was selected.

Figure 2-17b shows w partially filled matrix. The filling began with entry (1,1),
which, having no predecessors is simply assigned the corresponding cost matrix value of
5. Tor the resi of row 1 and column 1, two transition types don’t apply, so only horizontal
or vertical transitions, respectively, are used. In Figure 2-17b, the next entry to be filled
is {3, 4), whose cost is 5. The algorithm compares 14 + 5, 6+ 5, and 14 + 5, corresponding
to vertical, horizontal, and diagonal transitions, and selects the second, filling in value 11
and a pointer back to (3,3). Note that two or more predecessors may produce the same
minimal score. If our purpose is only to discover an optimal path, we may choose any one
of them to store as cur pointer. The case of more than one optimal path is best handled

by the Viterbi cxtension described later.

Alter the last position has been filled, the stored pointers are followed backward
to the slarting node, tracing out the optimum path from the upper right to the lower left,.

Figures 2-17¢ and 2-17d show the final path.

In applications dealing with very long or infinite sequences, it is powsible to
truncatc the best paths to some depth o [Forncy 1973]. This corresponds to choosing

a single node to represent the previous history of the sequence, and continuing to explore
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-all possible paths out from that node. In most cases, 0 may be chosen such that the best

path fer cach node under current consideration passes through the same node o steps
back. Thus, the graph may be truncated and no information will be lost. This technique
limits the working matrix to a manageable size. However, our application has used only

relatively short sequences, and we do not use a truncating Viterbi algorithm.

2.3.2 — Modifications for Stereo

We now discuss some modifications to the Viterbi algorithm to make it more
suitable for the stereo matching problem. Because we must ailow for occlusion, it is
possible that certain sequence elements may have no match in the other sequence. Thus,
we will use an algorithm with the following covastraints:

e The sequences must be matched monotonically.

o Each element of a sequence is used at most onrce.

The question arises of how to assign a cost to an unmatcheu element. It certainly
should not be zero, or the optimal path would be one where none of the elements of
either sequence were matched. Instead of assigning an arbitrary high cost to unmatehed
clements, we have redefined the problem slightly., We replace the cost matrix with a
similarity matrix and look for a path of maximum similarity, rather than minimum
dissimilarity. Each matrix entry is a measure of how well two elements match, and
unmatched elements may be assigned a zerc score. A set of transition rules which
implements thic fcllows:

e Vertical or horizontal transitions of one unit indicate occlusion
of the element whose row or column is being entered.
o Diagonal transitions of one unit indicate a normal match associat-

ing the elcments belonging to the newly entered row and column.

Note thal with these definitions an isolaled node no longer represents a match; the type

of transition leading o the node is parl of the representation.

nenl e Arpimacy ot SHME e o
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The algorithm is modified to select the maximum rather than minimum value

I

for filling a new entry, and the cost for the current position is only added for diagonal

transitions. We will illustrate this with an example shortly.

g

Finaliy, it is desirable to eliminate the restriction that the path always runs from

the lower left to the upper right. It is possible that the first or last few elements of a

sequence are unmatched. This corresponds to allowing paths to begin at any point in the

first row or column and end at any point in the last row or column. We already have a

i
& mechanism for skipping unmatched elements (vertical and horizontal transitions), which L

; is equivalent to the ending condition. The simple trick of adding a zeroth row and column

allows the same mechanism to provide the beginning condition as well. Any entry in the
first row or column may now be the effective start of the path since it may be entered on

3 the diagonal from the zeroth row or column. The algorithm proceeds from the lower left

:F f to the upper right as before.

Figure 2-18 illustrates the modified Viterbi algorithm, finding the maximum

scoring path subject to the above constraints. Figure 2-18b shows a partially filled matrix,

where the next entry to be filled is (3, 4), whose similarity score is 5. The comparisons to

transitions respectively. The maximum value, 18, is stored with a pointer back to (2, 3).

t

|

|

»

|

{‘ be made are 13+0, 16+ 0, and 13 + 5, corresponding to vertical, horizontal, and diagonal
i

|

i

: Figure 2-18¢ and 2-18d show the optimal path, traced back [romn the pointers. Note that
|

. the clements corresponding to row 1 and column 3 are not assigned a match.
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f

3 % Figure 2-18: The stereo Vilerhi algorithm differs from that in Pigure 2-17 _

y : in three ways. The cost matrix is replaced by a similarity matrix and the i
L path of highest similarity measure is found. The same three transition types 3

1 : are allowed, but only diagonal transitions accutnulate a score. A special row _

i ; and column are added so that (1,1) need not be on the path. The partially ]

and fully complete sccond matrices are shown in b and d. The hatrix at ¢
shows the four clements thal were assigned stereo matches,
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2.3.3 — Extension to the Viterbi Algorithm

In the dynamic programming litcrature there are several algorithms for deter-
mining the “k-best” paths through an arbitrary directed graph. Hoffman and Pauley
[Hoffman 1959 first published an algorithm whose application was finding the k shorvest
routes through the streets of Detroit. A conventional shortest path algorithm was run
first to determine the best path to the terminal node from all other nodes in the graph.
Alternate paths were calculated as deviations from this path. In other words, an optimal
path was followed up to some node A, at which point a non-optimal branch (deviation)
to B was taken. From B, the best path to the terminal node was followed. This process

was repeated, as the third best path must be some deviation of the best or second best.

An imnprovement to this algorithm was published as part of a survey by Dreyfus

[Dreyfus 1969), and this algorithm was itself subsequently improved by Fox [Fox 1973).
All of these algorithms produce one new vath per iteration, each iteration requiring

computation proportional to the number of nodes in the graph.

Any of these algorithms could be applied to the 1aodified Viterbi algorithm just
presented, since the Viterbi operates on what may be considered a directed graph, where
each node has no more than three branches leading in and three leading out (vertical,
horizontal, and diagonal). However, we have developed a more efficient algorithm that ‘

allows determination of all paths scoring within € of the optimum, where ¢ is a threshold

that may be chosen after the optimun. 18 known. As discussed, the principal idea is to

exploré the alicrnate paths in addition to following the back pointers of the optimal path.

To permit this, the choices at every decision point in the algorithm are stored.
The choices are represented by the partial path stmilarity scores for each of the possible

predecessors at a node. These sums may be stored explicitly or they may be recalculated

during the search. In the examples presented above, recalcuiation is easy rom the matrix

of partial paths. Similarly, the back poinler that selecls the maximum choice at cach
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node may be stored or recomputed, since ail the original information is present. The
j tradeoff is simply one of storage against time, since the recalculation may have to be done

several times for each node.

Figure 2-19 illustrates the search algorithm. We assume that the modified Viterbi
algorithm of the previous section has run on the data of Figure 2-18,'and filled in the
matrix of partial path scores. We require % stack with enough storage to hold all of the
paths that score within ¢ of the optimal. This amount of storage will be the surn of the
lengths of such paths, where length is in nodeé, and a node is represented by an ordered
pair, (row, column). One prs"!.u % iddressed here is estimating the number of paths

expected and lience the storage - j:iveinent,

The example has an optimal path score of 31, and we choose ¢ equal to 5; we
want to find all paths meeting our constraints that score 26 or more. The stack will use
three pointers: one, TS, is the usual top of stack, used for adding paths to the stack; the

other two, SB and SP, are search pointers whic.h will gradually work from the bottom of

the stack to the top. Initially, the three pointers are at the bottom of the empty stack.

We initialize the stack by storing the optimal path, in reverse order. This path

is determined in-the usual manner by following the matrix back pointers. Along with the
path are stored some additional data (actually stored in a separate index):

o The relative score of this path,

o A marker at the end of the path.

o A marker at the first node yet to be explored.

In Figure 2-19, these are represented respectively by a number next to the first node, a
bracket, and an asterisk next to the appropriate node. For the first path in the example
(the optimum), the relative score is 0, the path is seven nodes long, and the first node
to be explored is (5,5). After storing this initial path, pointers SB and SP are at node
(5,5), and pointer TS is one location beyond node (0, 0).
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The main loon of the algorithm is:
Examine the choices at the node indicated by SP.
Increment SP.
If SP encounters the end of path marker, then

if this is top of stack, then done.

Theory §2.8.8

else move SB to first node of next path and move SP to

marked node of next path.

Continue.
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Figure 2-19: The exteasion to the stereo Viterbi algorithm finds subop-
timal paths. Shown here is the data structure usecd for the data in Figure
2-18. In a the stack is shown al a point part way through cxecution. The
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Choices are examined in a loop, checking cach predecessor, ignoring the one marked with
a back pointer as the maximum. The procedure followed for cach predecessor is:
Recalculate the threshold by which this predecessor was rejected (the
difference between this partial path score and the score choseh a3 max-
imum).
Add that amount to the relative score of the path pointed to by 8B,
If that sum exceeds ¢, then done.

Else store this suboptimal path.

The procedure to store a sqboptimal path is:
Copy the path from SB to and including SP ontc the tcp of the stack.
Store the predecessor currently being considered onto the stack.
Mark this node with an asierisk.
Continue storing nodes on the stack by following the back pointers of the
matrix until node (0,0) has been stored.
Store an end of path marker.

Record the relative path score as the sum determined above (the one < ¢).

In Figare 2-19, the full stack is shown, i.e., after all 7 paths are found, but
the pointers are shown for the state where the 5th path has just been pushed on the
stack. Figure 2-20 shows the 7 paths and their scores. After the search is complete, the

suboptimal paths on the stack may easily be sorted by relative score.

Notc that each path pushed onto the stack consists of three parts; the back end
(higher coordinates) which is always identical to some previous subpath; the alternate
choice transition, or deviation; and the front exd, which is given by the matrix pointers.
The back end carries a penalty given by the relative score stored with the path from which
it was copied. The alternate choice transilion carries its own penalty, just calculated.

The front end is an unexplored subpath, but its score is optimal because it is determined
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by the back pointers in the pariial path matrix. Thus, the sum of the back end score
and the current alternate choice transition gives the relative score of the new path. The
mark represented by the asterisk ensures that only the front end of the new path will be

subscquently cexplored.

The algorithm finds all paths whose score differences are less than or equal to
¢, and becausc it examnines only those paths, it is cfficient. All copying of paths is done
with a destination pointer of TS, which is incremented after cach node is copied. Thus,
the total storage required is cqual to the total length of all the peths found. Also, the
examination of cach node requires a constant number of comparisons, and for cach node
examined an entry is made on the stack, so the computation time will be proportionsl to
the total length of all paths found. This is of order kN, where k& is the number of paths
found and N is the shortest path length,

Although our algorithm has only been applied to the results of a Viterbi algo-
rithm, it could be extended to work on a generalized dirccted graph. The principal
difference between our algorithm and published “k-best” algorithms is that ours finds all
paths within ¢ of the best. There is no way of predicting how many paths will be found
when € is chosen; there is also no guarantee as to the order in which paths will be found.
IHowever, if a given ¢ results in k& paths, computation proportional to kN will have been
done, rather than kN2 as in the other algorithms., Note that we use N here to represent
the length of an input sequence, rather than the number of nodes in the graph, which is

N? by our definition,

Our algorithm produces suboptimal paths only between the terminal node and
an initial node, whereas &-best algorithms generally produce paths between the terminal
node and all other nodes. Bolh algorithms require per node storage proportional to the
maximum number of branches into any node. For our Vilerbi this is only 3, but in general,
it would be equal to the number of nodes, NZ. I*‘in&lly, the k-best algorithms all have
probleins dealing with ties, s.e. disjoini paths having the same score, This is usually
solved by perturbing cach branch value with a small random number. Qur algorithm has

no such difliculty since it is not attempting to order the paths found.
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2.3.4 — Application to Stereo

‘Tr discuss the application of the extended Viterbi algorithm to stereo matching,
we nced to introduce the data structure, the cvaluation function that computes the

similarity measure, and the transition rules for sterco.

There are two choices for data structure: surface-based and edge-based. Since
surfaces (intervals) and edges occur alternately within a sequence, they are essentially
equivalent for one-dimensional matching. For our implementation, we have chosen to
represent the nodes as intervals; surface descriptions are the ultimate goal, and intervals
arc closer to that than cdges. As we will explain later, we have not yet, been able to
produce a good surface-based data structure for two-dimensional matching, so the choice

of intervals in the short term may not be best.

Each row of the matrix will be assigned to each interval in the right image
sequence and each column will be assigued to an interval from the left image. As discussed
in a previous scction, intervals may be classified into six groups according o visibility
conditions. Ifach entry in the dynamic programming matrix, will be broken down into six
subnodes, each carrying a different interpretation for that portion of the path, Subnodes

are identified by an ordered triple: (row, column, subnode type).

The transitions between subnodes are limited to those allowed by the occlusion
constraints defined previously. These, together with the coordinate system based on edge
rays, define a space of allowable paths. Subject to the original assumptions, only physically
realizable profiles are allowed. That is, for every allowable path, there is a continuous,

connccled profile of straight line scgments that will result in the observed left and right

projections.

Figure 2-21 illustrates this spacc of allowable paths. In the diagram, cach hexagon

represents a node; the numbers within the circle represent the allowable subnodes at that
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position. Some subnodes are disallowed due to windowing effects. The basic transitions
proceed up, down, and horizontally to the right, corresponding te vertically, horizontally
and diagorally in previous rectangular grids, Given a subnode, a transition out of that
node is allowed only across a hex side labeled on the left with the current subnode number.
A transition across a hex side must terminate in a subnode whose number appears in a
corresponding place on the right side of the hex side. For example, (1,2,4) may precede

(1,3,3) or (2,3,5) but not (1,3,4) or (2,3,1).

Thus, occlusion consiraints serve to reduce the search space from what it would

be if transitions were allowed between all subnode types. The rest of the constraints

LEFT

THANSITIONS

RIGHT

Figure 2-21: This diagram combines the transition rules for the sbereo
Viterbi algorithm with the stereo zone and lattice and $he occlusion con-
straints discussed earlier.
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] ', are incorporated into the evaluation function, which serves as the similarity function in
the previous examples, We do not understand exactly how to construct this function,
but from experiments, the performance of the dynamic programming algorithm on real :
stereo data seems to be fairly insensitive to minor changes in the function. The principal
components of the function are the edge measures, angle and length, and the surface ;
measures, brightness and interval ratio, discussed in & previous section. Each component
’ is normalized to a range of 0 to 1, weighted and combined to give a score for each node. f

The strongest corstraint get the highest weight. The dynamic programming algorithm

aae ¥ 1oL

maximizes the sun of the individual node scores.

We have used both additive and multiplicative combinations of constraint

measures at each node, and have had success with both types. The addition of linear

...;.,,_M......r“
I

measures gives a low score only if all the components are low, while multiplication gives

e

‘ a low score if any component is low. We currently multiply related measures (e.g., edge
1 angle and extent) and add independent groups (e.g., edges and intervals). The evaluation

functic-n is discussed in a later section.

The evaluation function depends also on the transition and subnode types. For

subnodes corresponding to occluded surfaces (visible only to one camera), a defauit

measure must be used, since there are not two intervals to calculate a ratio or brightness

comparison. The default value is currently the approximate probability of a surface being

P

self-occluded, which is a function of the camera model. Similarly, a default is used for

; edges visible to only one camera.

Some ad hoc measures have been used cxperimentally to favor profiles that are
1 : globally simpler. Long intervals of types 3 or 4 correspond to drastic altitude changes in
: _ the profile. Two different methods have been tried to penalisze profiles containing these I

P types of intervals. One mcthod is to simply subtract an amount proportional to the
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interval length for these types. Another is to calculate ezcess length. This last has the
advantage of being applicable to matched intervals as well, It is defined as follows:
Sum the interval lengths, both if a match (types 1,2,5,6), otherwise just the
one (type 3,4). |
Calculate the minimal length surface in a profile whese projected lengths
add to the above sum.
Subtract this minimal suarface length from the profile length calculated from

the actual projections.

Thus we try to minimize the length of the profile, compared to its projected length. This :

favors smooth scenes over jagged ones [sce Figure 2-22).

A second ad hoc mcasure is a penalty for surface breaks. Whenever a node is

chosen for : yath, we arc constraining the slope of the underlying profile surface in some

Figure 2-22: A typical profilc is jagged as in 4. A minimal flatl surlace, b,
can be found whose total projected lengnh in the images is cqual to that of :
profile a. The difference between the lotai length of all the surface intervals
in a and the length of Lhe surface in b is ezcess length.
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way. Some nodes constrain it rully (type 1), others allow some freedom. Each time a
rode is evaluated, the slope constraints are checked. If the new constraints require a slope
discontinuity in the profile, a penalty is added. If the constraints allow the nnderlying
profile segment 1o have a continuation of the previous segment’s slope, no penalty occurs.
This favors surface markings over surface discontinuities, and profiles with fewer surfaces

over profiles with many.

2.3.5 - Conclusic_)n

The prircipal advantage of the dynamic programming stereo matching is its
ability to combine most of the geometric constraints we have investigated with a strong
global consistency - at least global in the sense of the one-dimensional problem. The
resulting profiles are guarantee(i to make geometric sense over the entire epipolar line.
That is, they can be constructed from a connected sequence of line segments and au edge
is present in an image if and only if a corresponding junction of two segments is not
occluded from that camera. We rely on the the evaluation function to select only the best

matches from among the many possible profiles.

The modified Viterbi algorithm is also efficient. If 7 is the average number of
elements in the sequence, the average path length is of order n. Since there are a constant
number of choices at each node of a path, the total number of possible paths will be
exponential in n. The Viterbi algorithm, however, evaluates these in time and space
proportional to n?. As noted, the time and space cormplexity of the search for suboptimal

paths is linear in the total length of output paths.

The algorithm is required to “explain” every element in each sequence; an elemnent
either matches another, or il is occluded. Tlowever, this can be a disadvantage when
the input data have missed or exiraneous features. These may result from edges near

threshold, mavement in the scene between succecessive views, or inaccurate camera models.
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This algorithm does not account for such imperfect data. For example, instead of ignoring
an extrancous edge, it tries to distort the profile to occlude it from the other view (see
Figure 3-11). Similarly, distortions arc introduced to explain missing edges by providing

an occluding surface.

We have made some attempts to develop an algorithm which could autematically
edit out obvious errors. The number of subnode types could be increased to represent
erroneous data points. This would allow the dynamic programming algorithm to addi-
tionally assign paths that interpret features as missing or extraneous. However, this weuld
require a more complex evaluation function and would increase the number of transition
types belween subnodes. The storage required to retain all the decision points then in-
creases as the square of the number of subnodes. This added complexity would have made

it impractical to retain the feature of recovering suboptimal paths.

We note that the most common source of errorsin an epipolar line match has been
alignment failures near the terminations of extended edges. The epipolar line in one view
may just miss a corner that intersects in the other. In such cases, the error disappears
in 2djacent epipolar lines. Also, experiments show that the effect of errors tends to be
localized. Rather severe profile distorlions may be required to “occlude” an extra edge,
but one or two elements farther along in the sequence, the profile is undisturbed. This
is because any radical distortions caused by the error tend to be the same in all paths,
so all paths are equally penalized and their relative ranking is unchanged. For these
reasons we have decided to postpone the problem of missing or extraneous edges to the

two-dimensional matching stage, and to try to filter it oulb there,
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2.4 Continuity and Consistency

Except for accidental alignments and occlusions, continuous edges in a scene will
project to continuous edge curves in an image. We define edge curves A and B in an image
to be continuous if there is a sequence of edge curves beginning with A and ending with B
where each adjacent pair of edge curves meet at a vertex which is not a “1-junction” (see
Figure 2-23). The continuity constraint, then, is that edge curves which are continuous
in one image cannot match discontinuous edge curves in another image. This constraint
can be used to resolve matches that are ambiguous in a small context (sece Figure 2-24)

and has been used in earlier stereo systems.

In 1978 we reported [Arnold 1978] results of a stereo system using what we
then termed local context to resolve ambiguities. This system worked from the unlinked
edgel output of the Hueckel edge operator and used constraints based on edge angle and

brightness measures from the operator. The search space was limited by measuring the

Figure 2-23: Continnity in the image implies continuily in the sccue. “T-
Junctions”, however, usually imply a discontinuity in the scene. Thus, A
and C are continvous while D and I are not.
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camera model as described earlier, and using cpipolar geometry. For each edgel, a list
of possible matching edgels was produced (ccclusions were not considered). This list was
filtered by a ccntinuity constraint. Continuity was calculated in each image by linking
edgels that were approximately collinear; the constraint required the stereo disparities of

two linked edgels to agree,

This early system suffered from some serious problems, many of which resulted
from the quality of data produced by the cdge operator. However, continuity turned out
to be a surprisingly strong constraint, and the system produced some stereo maps that
clearly separated scene objects from the ground and showed structure within the objects.

A more detailed suminary of this work has been included as an appendix to this thesis.

While continuity is a strong constraint, it does not always apply in its simple
form. For example, Figure 2-25 shows a case where cdge curves on two epipolar slices are

continuous in onc view, but do not have a corresponding pair of continuous curves in the

Figure 2-24: Scenc edges will not appear continuous ia one sterev image
and discontinuous in another. In this example, edge curves A and I3 on
the first epipolar line match unambiguously. On the sccond epipolar line,
C may match with cither D or [E. The continuily constraint resolves this
ambiguity, since A — C and B — [J arc conlinuous while 3 — D is not.
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I'igure 2-25: The rontinuity constraint provides negative evidence for :
the match of C with D. To express this positively, we say Lhal the stereo ;
interpretation of C occluded by D is consistent with a match of A with B.

other view. The failure to find a match for edge C should not reduce our certainty for
the match of A with B. On the other hand, an attempted match of C with D may make
sense locally (i.c., on the lower slice), but should be rejected by the continuity constraint,

since B and D are not continuous. Thus, the interpretation of C as occiuded by D is

constatent with the interpretation of a match for A — B,

The problem comes in recognizing consistency conditions. Conlinuity is easily

i e o

checked, but more analysis is needed to characterize consistency. We make use of some

simple cases in our implementation, but leave a complete analysis to future work.
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IMPLEMENTATION

-

3.1 Producing the Data

The stereo system we describe here operates on an input file consisting of edge
and intensity data. The intensity data are taken from digitized photographs while the
cdges are produced interactively with a computer drawing program, It is anticipated that

advances in edge-finding and segmentation techniques will allow this process to be fully

automated soon.

; 3.1.1 — The Images

In each of thc examples, we begin with a black and white stereo image pair: two

digitized images of the same scene from different vicwpoints. The images are from 128 to

|
| : 512 pixels on a side, and from 6 to 8 bits pei pixel. Typically, the overlap permits 60% i
or morc of each image to be viewed in stereo. The camera model is known imprecisely

! or not at all and must be calculated from the images. Part of this calculation is done hy

hand and part with computer aid.

The digitized images we use include actual aerial photographs with subjects such
as aircralt at a terminal, and artificial data, where the subject is a simple block model
of a city (see Figure 3-1). In aerial photographs, the camera is typically mounted in an
aircralt to look straight down and the two photographs are taken at different points in 1

time; the flight path of the aircraft determines the stereo baseline.

Except for the artificial data, the two images are usually not in perfect

registration, and must be adjusted before processing. Furthermore, professional aerial

photographic film is very large (nine inches on a side} and only a small portion can be

digitized for our experiments. The selection of a digitization window in cach image is

donc by hand, usually with the goal of maximizing overlap in an intercsting poriion of

the scenc. This process introduces further uncertaintics in image registration.
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; | Figure 3-1: Artificial images of a block model city were provided by :
‘ ; Control Data Corporation. i
; t Kl
|
' 3.1.2 — Determining the Camera Model
‘ i In the aircraft images, the registration of the two images was only approximate.
‘ We used a technique described in an earlier paper [Arnold 1978} (and in the appendix) to 1
E : j calculate the parameters required for more precise registration:
! ! » orientation of the stereo axis
¥ |
¥ |
i ‘ ! e relative rotalion
i ! N e rclative scale factor ;

s relative translation perpendicular to the stereo axis

j The choice of these four image-based paramelers is morc suitable than cainera-based
parameters (e.g., pan and tilt) for aerial photographs, where the depth range of the subject

is very much smaller than the altitude of the camera.
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The parameters arc calculated by cstaklishing wterec correspondence on a non-
coplanar set of four or more points, and executing a least squares algorithm. Programs
by Moravec [Moravec i980] and Gennery [Gennery 1980] are used to choose the set of
points automatically, to do the sterco correlation and to solve for the parameters. Once
the images are regislered, the remaining camera parametlers are caleulated (see Figure
3-2). X, Y., Xgr and Yg are calcuiated from the digitization window location, and B

and f are calculated as explained below.

For example, consider the images of the blocks scene, which were obtained from
Control Data Corporation. These data are artificially produced, so the images are already

registered. There is no relative rotation, translation or scale factor between the two images
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Tigure 3-2: The normal camera model for our sterco calculations is based
on data taken from acrial photographs. Wi assume the cameras are aligned
as shown and that only parl of cach image & digilized for processing.
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and the stereo axis is parallel to the z-axis in the image plane. The optical axes ol the
camecras pass through the center of each image, so X = Y1, == X = Yr = 0. llowever,

the image distance, f, and stereo baseline, B, are not known in advance,

I'irst, we loosely define a gl.'ound plane as a plane in the scene pasallel to the
film plane, in or before which many featurcs lie but beyond which few if any features
are visible. In the case of acrial photographs over flat terrain, this corresponds with the
actual ground surface. If A and I} are ground plane features in the scene with actual -
coordinales X4 and X g, then their corresponding image coordinates are xl4 and zlg in
the left image and z7 4 and z7p in the right image (sce Figure 3-3). Since the g ound plane
is parallel to the image plane, zlg —zlg = zra—2zrg. If from “ground truth” information
we know the actual distance between A and B in meters, then we can determine a mepping

scale factor, m:

__XA--X'B 2
- m!,;—z!s ( 1)

where:

m is in meters per pixel.

This mapping scale factor may be calculated from cither the left or the right image. It

will convert any distance in the chosen ground plane to a distance in the image plane.

From the camera gcometry and similar triangles we can see that m = Z/f, so

we cah solve for the bascline B:

B _ da
z f
B = ?(IA = mdy (3-2)
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where:
da = (X +xla)— (Xg + zr4) is the stereo disparity in pixels, and

B is the bascline in mcters,

Note that knowledge of both x4 and zr4 requires a correspondence between a left image

point and a right image point representing a fcature in the ground plane. This, together

Lﬁ B N|
| |
¢
S
Z
N

Figure 3-3: These projections ean be used to determine sterco bascline
(1) from ground truth information (X 4 and Xp) and image distance (f)
from camera altitude (7).
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with the mapping scale factor, allows calculation of the sterco baseline. (If m were not

known, the baseline could be expressed in pixels.)

The image distance, f, will often be known, since il is a simple function of
the camera lens and film size, but it is interesting to note the conditions required to
calculate it. Just as horizontal ground truth is required to calculate the baseline, vertical
information is necessary to calculate f. If the distance from the camera to the ground

plane, Z, is known then:

-
1
1IN

(3-3)

-
-

where:
f is in pixels, and

m is the mapping scale factor defined above.

Thus f can be determined from the “altitude” of the camera, Z, plus horizontal ground

truth, {More commonly, Z and f are known and are used to determine m.)

If Z is not known, then the height of a known object in the scenc can be used
(sce IMigure 3-4). If two points A and B in the scene differ in their distance from the image
plane by h = z4 — 2z mecters, and stereo correspondence can be established for both

points, then:

[ = %(—d—’ﬁ‘?—) (3-4)

dB - (‘A

where:
B is the stereo baseline,
da = (X +zls) — (Xr+ z7r4) is Lthe stereo disparity for object A, and

dp = (X + zlg) — (X g + zrp) is the stereo disparity for object B,
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Figure 3-4: These projeclions can be used to delerinine image distance
from vertical ground truth (h).
g

1 3.1.3 — Edge Detection

Rescarch on edge detection, linking and segmentation is proceeding at Stanford

‘ [Marimont 1982] and clsewhere and promises to supply fairly clean line drawings [rom

real scenes in the future. In the meantime, we have chosen to derive our edge information
by hand with a computer's aid. The technique is to superimpose straight line drawings
from the DESIGN [Lowe 1982} program on a grey-scale display of the image data. The

drawing is adjusted by hand until the superposition of alt prominent edges looks accurate.
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1
A
g 4
' i
L e e e e e e e e ;
: ' Figure 3-5: Iidge data is derived by hand from Aigitized images with the
, ; help of a line drawing program. These edges are [ntentionally imperfect. 3
J
i
; . . \ .
E" Since these data are intended to refiecl the expected performance of futuve edge
; ¥
b segmentation programs, care is taken to avoid using high r level human visual functions. :
;
{
: Edgses are nol extended into anibiguous or low contrast areas. Left and right images are i
| |
' i
‘ derivad independently, =2 some edges are “delected” in one view, bul not in the other. [
A |
s i
: !
The information in the vicinily of corners or intersections is often omitted, so surface ;
i
. . . . E
bonndaries need not be closed. Even edge data from the blocks scene, while derived from i
; ¥
4 3
L noiscless artificial images, is not a perfect line drawing (sce Figure 3-5). %
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The edge data are read by a program that takes Lhe edge information together

with the original images and writes a file containing structured input data for the stereo

system. Figure 3-6 illustrates this data structure.

Figure 3-6: Line drawing data are read into a structure thet relates each

z
VETYPE
VELGE
verTR [—3
Ux , X {
vy, LY VETYPE
UTERM, LTERM VEVLGE
UPTR VEPTR [
LPTR
LSLEN,RSLEN
LSiD
RSID A ES3R)
\ ESBOT
< ESPOS
€EseTR >
:
]
ESBR i
ESBOT ;
ES POS
ESPTR [~

edge to its necighbors. [nformalion on the edge endpoints includes their
coordinales, the type of vertex and a list of other edges belonging to that
vertex. Informalion on the sides of the »dge includes a list of T-junctions
that segment the side, their posilions, and lhe average image brightness
adjacent Lo each segment,
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Edge data consist of pairs of endpoints, each with an z- and y-coordinate in the

transformed sterco coordinate system. This system has units of pixels, a right handed

il Bt

coordinate system with its origin at the image center and a sterce axis runuing lelt to
right along the z-axis. A record is created in the data structure for each edge segment.

This is done separately for left and right images.

An edge record comprises the following:

UX,LX z-coordinate of the upper and lower endpoints
UY,LY y-coordinate of the upper and lower endpoints
UTERM,LTERM number of edges in upper and lower vertices
UPTR,LPTR  pointers Lo upper and lower vertex record lists
LSLEN,RSLEN ength of left and right side record lists i
LSID,RSID pointers to left and right side lists :

Bach cedge record is compared with every other edge record to determine the

vertices in the image. A vertex is the intersection of two or more edge segments in the

L st St 321

image. When checking for interseclions, each line is extended by a given amount in order
to compensate for data lost near corners. Thus, cdge segments that approach within a

threshold but don't touch in the input data will be analyzed in subsequent steps as if they

intersected.

As each vertex is examined, it is classified as a terminalion if it is within a

threshold ¢f Lhe end point of both lines, or as a “T” if it is near the end point of only

one iine. “X” interseclions, that are notl near any enJ points, are rare and are ignored at

present. (They may be handled by breaking one or both edge segments into two pieces.) ]

The information from each verlex is stored in the data structure as a vertex record, linked
’

to either the upper or lower end point of the edge segment. A vertez record cornprises the

following:

VETYPE type of termination i

o G — ,__:g
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VEDGE pointer to edge record
VEPTR, pointer to next vertex record

In addition, “T” junctions generate side descriptor records linked to either the left
or right side of the cdge segment (see below). It is important to note that the classification
of up and down or left and right depends on knowing an accurate camera rmodel.  This can
be a disadvantage if the camera model is subsequently reﬁned..For example, if an edge is
nearly horizontal, a small rotation of the coordinate axes could change the up-down sense

of its endpoints and require a restructuring of the data.

Two steps arc now taken to “clean up” the data. For a verlex that involves only
two lines, the coordinates of the interscection arc used to replace the coordinates of the
endpoint of the edge(s) involved. This has the eflect of lengthening cdges that “almost”
touch and shortening edges that cross “slightly”. These judgments are determined by a
distance threshold that is governed by the accuracy of the original edge finder. If a vertex
involves the endpoints of more than two lines, there is a good chance that not all pairwise
intersections will occur at the same point. In such cases, an average position is taken, and

the cndpoints are adjusted to agree with it.

Ilach line that scrves as the top of a “T” junction will have its corresponding
side (left or right) divided into two or more parts depending on the number of “T”
junctions involved. These parts arc slored as side descriptors in the data structure and
are clagsified as either left or right depending on their relative positions. A side descriptor

record comptrises the following:

ESBRI average brightness

ESBOT edge whose “I™ junction forms boltoin of this side
ESPOS position of bottom “T”

ESPTR pointer to next side descriptor

man e vl etn s e A atl
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k3
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%

hal )

4 } After the side descriptors have all been found, they are sorted from top to bottom
on cach side of each edge. Ilach edge record has at least one left and onc right side

descriptor.

e s

The side descriptor of an edge record corresponds to a surface which is adjacent to
; : that edge. While much of the data structurc is oriented toward representing the geometric

1 : ' relations on cdge segments, side descriptors provide a place to store surface properties.

Sl ok -l

Brightness is storced as a single value in each side descriptor. Thus it must ropresent less :

information that the original image, since there are fewer side descriptors than pixels. A

region in the image corresponding to a surface will be represented by n side descriptors,

3
H
El
i
E

‘ where n is the aumber of edge segments in the boundary of the region.

TR T AT TR A

To caleulate these brightness values, we generate for each side descriptor an

a2 & bt

epipolar line along which brightness values are sampled and averaged. The line intersects
the cdge segment midway between the two verlices that define this side descriptor.

Intensity values are sampled at 1/4 pixel intervals along this line either Lo the left or

right (depending on which side descriptor) until another edge or the edge of the image is

encountered. Fach sample comprises a bilincar interpolation of the four pixel intensitics

nearest the sample poinl. The samples are averaged to preduce a single value representing

arer i

the brightness of the surface. This very simple measuremcat, repeated for each side

descriptor, is the only form in which the original intensity information is retained for

subsequent processing,
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3.2 One Dimensional Processing

The stereo problem is divided into a serics of one-dimensional problems along
epipolar lines and the dynamic programming algorithm discussed in the last chapter
is applied to each onc independently. This section describes the data structures and

procedures of the implementation.

.2.1 — Slices

The dynamic programming match is applied to a selected set of slices through
the images. A slice consists of an epipolar line pair together with information about each
edge curve in the image that crosscs the epipolar line. We define a slice to be two lists of
intzrsection records, one for the left image, one for the right image. Fach list is sorted on

the valuc in LOC. An intersection record comprises the following:

EDG pointer to cdge record whose edge cuive intersects

this epipolar line

LOC z-coordinate of the intersection
ANG angle of the cdge at the interseclion
BRI average brightness of the interval to the left of this
edge
TOP y-coordinate of top end point of this edge
BOT y-coordinnle of bottom end point of this cdge
TV type of vertex at top
BY type of vertex at botlom

This record supplies all the informatiou for computing the constraints used by the Vilerbi

matching,

The procedure for generating a slice is straightforward. Given the equation of an

epipolar linc in cach image, search through all edge records and make a list of inlerscetion

e Gt
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records, one for each edge thal intersects the cpipolar line. Sort the lists by the value
in LOC, producing a left to right ordering. Calculale the average brightness, BRI, by
inspecting the side deseriplor records for each edge in the list, For each interval, there
will be typically two side descriptors from which we simply take the average of their

brighlness values.

It is useful if each slice can be processed independently, making use of no in-
formation from adjacent slices. This properly allows the computation over the whole
image Lo be easily orogrammed for parallei computation. Thus, in our single processor
implementation, the order of choosing slices does not mabter. However, the particular set

of slices chosen does matter.

Oune technique is to gererate slices every 8 pixels for the firsy iteration over images
ol about 256 x 256 pixels. The second iteration uses another set of slices at an 8 pixel
spacing, but phased to lie half way between those of Lhe first sel. This interlacing covers
the image with a resolution ‘of 4 pixels. A sccond method is to double the nvtnber of slices
al cach iteration until the final resolution is recached. IFor example, on a 256 pixel image,

slice at 128, then at 64 and 192, then at 32, 96, 160, and 224, ete.

We have also experimented with data-dependent choices, usually for the final
iteration, for example, the 4 pixel interlace provides no direct datla for some edge curves
with an extent of less than 4, but the pumber of missed edges is small. Thus, it is practical

to choose a final sct of slices Lthat pass through the centers of each missed edge.

IPor each slice chosen, we apply the modified Viterbi algorithm to mateh the list of
left intersection records with the list of right interscetion records. (The implementation is
actually organized around the intervals between intersections, rather Lhan the intersections
themselves,) The dynamie programming array is inilialized and the best path calculated
using the evaluation funetion described below. Then a threshold s set and all paths whose

scores are within that threshold ol the best path are identilied.
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At this point, there is more information available about cach of the paths than
is necded in the next step. The data structures are simplified by preserving only a
limited amount of data for each slicc: a list for each edge (interscction) of all the match

interpretations given it by any of the collection of suboptimal paths.

An edge match interpretation consists of a match type and a pointer to an edge
in the other image. The match type may be visible to both, in which case the pointer is
to a corresponding cdge in the other image, or occluded, in which case the pointer is to
sn edge of the occluding surface in the other image. This list is considered as a list of
possible interpretations, where an edge interpretation is possible if and only if it occurs
within a high scoring path. No attempt is made to assign weights to the edge mateh
interpretations based on path scores; all paths selected by the threshold are considered

equally likely.

It should also be noled that while a context spanning the image was used in
selecting each edge match interpretation, this context is not passed back with the match.
Although this represents a loss of some information, it serves to make the output of the

Viterbi algorithm more manageable.

3.2.2 - Evaluation Function

We have carlier described the modified Viterbi algorithm lor determining the
optimal and sub-optimal paths. This scetion describes the evaluation function used in
that algorithm. The function consists of four terms, each with an ad hoc weighti, combined

linearly:

D (KL + Kyl + Kyl + K4 X) (3—15)
tEpath

where:

Ky, Ky, I3 and K4 are the ad hoc weights,
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and for each path element, i,:
I; is the composite interval measure,
I is the composite edge measure,
DI; is the surface breaks penalty, and

X; is the ezcess length penalty.

This sum gives the score for each ¢f the paths which satisfies the geometric occlusion

counstraints outlined earlicr. The paths for which the sum is a minimum is the optimal or

“best” path referred to above,

The summing of interval and edge measures is a simplification. These measures
are no! in fact independent, since they arc related to one another by the geometry
of the scene. However, we do not yet know the proper function for combining them.
Experimentally, adding them with a 60:40 weight favoring intervals has worked best, The
last two meastres, surface breaks and excess length, are ad hoc measures that are given low
weights, Their primary purpose is to distinguish p:aths where there are many occlusions,

and hence litUe informalion {rom the interval and edge measures.

Interval Measure

The tnterval measure consists of two components, brightness and interval length
ratio. These measures apply to a common object, the surface represented by the matched
I ) p Yy

intervals, so these two components are treated as probabilities and arc multiplied to

nroduce o composite measure:

I; = BRI; RATIO; (3 — 6).

In the ease where the interval is occluded (visible in one image only) the value for I is

sel Lo sero.
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The brightness measure approximates the probability that the brightuesses from
the left and right images represent two measurcments of the same physical property with
gaussian noise added. Note that reflectivity of a surface is not, in general, independent of
angle; thus the two cameras will not in fact measure the same physical property. However,

the effect of this simplification sheuld be small in most scenes. Thus we use the following;:

2
BRI; = exp (—-(p—————ll‘z—N‘SBR‘) ) 3-7)

where:

BL; and BR; are the average brightnesses of the left and right intervals,

respectively, and
NS is an estimate of noise in the brightness value.
Equal left and right brightness values always produce BRI; = 1, while values that differ

by NS produce BRI; == exp(~1/4) and so on.

The interval length ratso measure has been described earlier, in the section on
conslraints. 1t is normalized to lic between 0 and 1, by dividing by MAXRATIO, the
maximum value of the ratio function, Thus the ratio of the interval lenglhs from the

two images is mapped to a value between zero and one which we treat as a likelihood of

match.
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Edge Measure

The edge measurc counsists of three components, edge angle, edge extent and
endposnt posstion. As in the interval measure, these components represent measurements
of a common object, i.e,, the cdge crossing the slice. Thus the components are normalized

to lie between zero and one and are multiplied to give the edge measure:

E$ = [LANG, ELEN; EPOS; (3 —8).

In the case where the edge is occluded (visible in onc image only) the value for EY is sct to

zero. This measure will later be adjusted according to previous information (see below).

The edge angle measure is based on the calculation described earlier. The saddle-
shaped probability density surface takes on values between zerc and positive infinity. We
normalize it to have an average value of one (volume under the surface == #?) and then

apply the following funciiva to map its values to a range of zcro to one:

J(z) = 1 — exp{—x).

Thus the two angles at which the edge curves cross the slicea in the left and right images
are mapped to a single value between zero and one which represents the likelibood Lhat
the edge curves match. This edge angle mcasure is the strongest component contributing

Lo the overall cdge measure,

The use of edge extent as a constraint was discussed earlier. In this function,
the difference in extent lengths is normalized by the average of the two extents, and then
treated as two measurcments subject to gaussian noise. Expected ¢ fferences are due to
differences in y-axis scale faclors belween the left and right images. The normalization

removes dependeney on absolule differences, and this is alse the reason for using the
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derivative of camera model position error. Errors from image misregistration are to be

handled by the endpoint position measure.

The eztent of each edge segment is calculated from the following:

LEXT = LTOP; -- LBOT;

REXT = RTOP; — RBOT;

From the left and right extents, we calculate:

JEXT —~RE :
LL REXT ))+1—w (3-9)

BLEN; = wexp ("((LEXT + REXT)DYNS
where:
w is a weighting constant, currently 0.5, and
DYNS is an estimate o the derivative of camera model and segmentation

accuracy, in pixcls/pixel.,

The weighting factor allows the contribution of this measure to be adjusted in
overall edge measure. A weight of 1 results in values ranging from zero {o one, a weight
of 0.5 results in values between 0.5 aad 1.0 and so on. Equal left and right extents always

produce a value of 1.

In caleulaling this measure, a very simple form of monocular shape cue is used. If
the shorter of the two extents has a “T” junction 24 cither end, we assume scene geometry

hias occluded part of that edge curve and return a value of 1 for this measure.

The cdge endpoint position measurc i8 similar to the eztent measure, bat is per-
formed separately for top and bottom, and depeads on sbhsoiute y-coordinate positioning

rather than y-scale factor. The measure is calculated as follows:

L TOP; - RTOP,\?
TVAL, = cz;(—( NS ) )
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J . — R ,F' 2
VAL — czp(w(l BOT:YN;IBO ) )

EPOS; = (w'TVAL; + 1 — w')(w'BVAL + 1 — w') (3 — 10)

where:

w is a weighting constant, currently 0.5, and

YNS is an estimate of noise in y-position, in pixels,

In this function, the difference in y-position is compared directly to an expected
error in y-positi.on, YNS, assumed to be gaussian distributed. The values for wop and
bottom are multiplied and weighted to give a final value. A weight of 1 results in values
ranging from 0 to 1 and a weight of 0.5 recults in values ranging from (.5 to 1, Kqual top

and bottom positions will produce the maximum value of 1.

As in cxtente, the end points are examined for “T” ji .ctions. In this case,
however, the slope of the crossing odge is also considered. Four ¢ ws are counsidered

explainable by occlusion, and receive a mavimum value (see Figure 3-7).
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Figure 3-7. Theae are four types of T-junclions that may shorlen an edge

in one view.

Previous Information

Finally, there is a mechanism for incorporating external! knowledpe of an edge

match into the measure. This is used i weea 0% mation from provious iterations into

the current evaluation, as wili be described in a section below. The function used is a

sinple one:
o . hd i

E, =if PRE; > 0.0 “hen 1 — 21 - ¥REG)(1 — E7) else 2PREE]
whore:

Pitl, is the bias of previouws iformiaiion betwecn 9 and 1, and

Ly wtbe current measton Lovwien G and b

el

(3-11)
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If there is no previous infermation about this particular edge match, PRE; is set

to 0.5 and this function is the identity. If previous information is stcong, PRE; is > G.5 .

S and the result is scaled to lie between (2PRE; — 1) and 1. If PRE; < 0.5 then the result
lies between 0 and 2PRE;. For PRE; == 0 or 1, the resuli is constrained to be 0 or 1 ,

ey

respectively.

Thus the measure for edges is taken as a combination of edge angle, extent and

! : endpoint position, modified by previous information. The result is a value between 6 and %

\ ‘ 1 which we treat as a likelihood of match.

Surface Breaks

The surface breaks measure is an ad hoc measure of surface continuity and

[P

smoothness. Its value is 1 for an edge which represents a discontinuity and 0 for a smooth

i

| continuous surface where the edge is a surface mark. The surface breaks measure is given

T A PR T R e R WO S e e,

.

Gadac

' a small negative weight (-0.05) in the evaluation function, and serves to bias the results

toward smooth surfaces when there is no other strong information.

o T

! The measure is determined as follows (sce Figure 2-10 for terminology):

o 0 for edges which are interpreted to be out of the field of view of
one camera, since nothing can be deduced about such edges.

» U for edges on a left or right face, since these could lie on a smooth

surface.

¢ 0.5 for cdges on left or right Lops or bases since these represent a
transilion from a vis'ble surface to an occluded one or vice versa,
There must be at least a slope discontinuity at these points.

¢ 0.5 for peaks and valleys, since these must be slope discontinuities,

o 1 for left or right clifls, which can be causcd either by discon- 3

tinuitics or two or more slope changes involving unscen edges.
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i If there is no previous infcrmation about this particular edge match, PRE; is set ?
{ - to 0.5 and this function is the identity. If previous information is strong, PRE; is > 6.5 .
: ¥ '

{ and the result is scaled to lie between (2PRE; — 1) and 1. If PRE; < 0.5 then the result
lies between 0 and 2PRE,;. For PRE; = 0 or 1, the result is constrained to be O or 1 : :

Bolanets PR

: , respectively.

Thus the measure for edges is taken as a combination of edge angle, extent and

endpoint position, modified by previous information. The result is a value between 0 and :
1 which we treat as a likelihood of match. %

Sy . o

Surface Breaks

T

" The surface breaks measure is an ad hoc measure of surface continuity and i
smoothness, Its value is 1 for an edge which represents a discontinuity and 0 for a smooth

continuous surface where the edge is a surface mark. The surface breaks measure is given

HPRRTRT St e

; a small negative weight (-0.05) in the evaluation function, and serves to bias the results

f_ toward smooth surfaces when there is no other strong information.

The measure is determined as follows (sce Figure 2-10 for terminology): g

® 0 for edges which are interpreted to be out of the ficld of view of

one camera, since nothing can be deduced about such edges. i

¢ U for edges on a left or right face, since these could lie on a smooth

surface,

¢ 0.5 for cdges on left or right Lops or bases since these represent a
transition from a vig'ble surface to an occluded one or vice versa. a
There must be at least a slope discontinuity at these points.

¢ 0.5 for peaks and valleys, since these must be slope discontinuities,

o 1 for left or right cliffs, which can be caused either by discon- :

L . s eas . .
: tinuitics or two or more slope changes involving unscen cdges.
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e 0 or 0.5 for {lat edges. For each of these intervals to left and

right both represent visible surfaces. From the detailed profile

information, the slopes of these surfaces can be calculated, cither

exactly or to an incquality, For the exact calculations, slopes

whose ratio is between 0.9 and 1.1 are considered part of a smooth

surface, and score 0. For the inequalities, if slope values can be

chosen which satisfy the inequalities and produce a ratio between

0.9 and 1.1, a score of 0 is returned. For all other cases, a slope

discontinuity is indicated and the va! : relurned is 0.5.

Ezcess Length

Ezxcess length is a measure of profile irregularity. It is calculated by taking the
length of a profile segment, measured i1. the epipolar plan= of the slice, and subtracting
the minimum segment !'sngth that could have produced the same total projected intervals
in the left and right views. This minimum length segment is generaliy one whose normal
intersects the bascline of the two cameras. Thus, a flat surface of this orientation would
have the minimum profile length, while still filling the field of view. (Rcfer to IMigure
2-22.) On the other hand, an irregular surface in which every part was visible to only one
camera would have the maximum value according to this measure. By giving this measure
a small negative weight {-0.1) in the evaluation function, we bias the results toward nearly

planar profiles in the absence of other strong information.

3.2.3 — Results

The results of one-dimensional processing arc a sct of profiles for each cpipolar
slice; each set includes the optimum and those suboptimal profiles that met the score
threshold ¢, Tne paths produced by the Viterbi algorithm togcther wita the camera

model paramecters allow profiles to be reconstructed in the original scenc geometry. We
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[ present several such profiles hei¢, using the notation developed in a previous section, to

illustrate the results of one-dimensional processing,.

The primary advantage of the extended algorithm is that it produces alternative
interpretations in addition to the local optimum. It is possible for one of these suboptimal

profiles to be preferred when a wider context is examined.

! In Figure 3-8 we have selected a slice from an image of an L-1011 aircraft. The |
slice passes near a corner in the wing, and the optimum profile found by the Viterbi :

algorithm misinterpreted the profile at that point. In Figure 3-9a the notation (2,2,2)

' ; | indicates that the surface corresponding to that interval has been interpreted as visible to
both cameras. This is an erroncous match of the wing shadow in the left view with the

, : aft portion of the wing in the right view. Interval (2,3,2) indicates that the aft portion of
the wing in the left view is interpreted as occluded. The forward'porti'\n of the wing in

both views is correctly matched, as are all other intervals in the profile. s

The evaluation function for the profile in Figure 3-9a cqualled 4.4283. The

profile in Figure 3-9b scored 4.1964, but correctly interpreted the wing shadow, (1,2,3), as

occluded and the aft portion of the wing, (2,3,1) as matched. These matck interpretations,

L e it oo

while locally suboptimal, were ultimately selected by the two-dimensional processing,.

1

I
|

b e e v

Figure 3-8: A slice taken through the aircralt scene at row --37 is used to
demonstrale a “corrcetl” profile that is locally suboptimal.
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In addition to the coarse distinction between matched and occluded surfaces, the

Viierbi algorithm also distinguishes surface discontinuities from slope changes or surface

EA markings. Thus, we see that Figure 3-9b has incorrectly interpreted the ground surface,
:; ; (4,5,1), as being continuous with the wing surface, (3,4,1). The profile illustrated in
E ; Figure 3-9c correctly shows the discontinuity. This last profile scored 4.0964, and was
: | 72nd in the list of suboptimal profiles. The main veason for this large number of paths :
‘ ; is that surface discontinuities and surface markings are only weakly distinguished in the ‘
P ‘ evaluation function and the number of combinations over seven surfaces is lzrge. ‘ ;
o |
; , Most errors in computing profiles are caused by imperfect data. Naturally, a : ‘
| g system based on real images cannot expect to have perfect data, so it is important that

! the effects of extra or missing edges on the Viterbi algorithm are localized. Figure 3-10 :

VAL v/ _ \/
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Figure 3-8: Three selected profiles computed from the slice in Figure
3-8 are shown in a, b and £. These paths scorved Ist, 34Lh and 72nd
respectively, in the list of paths within 0.35 of the optimum score. The
“corrcel” interpretation is the last.
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shows the same aircraft images with slices selected at rows —16 and —17, one pixel apart.
In row —18, the slice misses the small box near the tail in the right image and also misses

one houndary of the taxiway mark near thc nose, The same slice misses an edge of the

hoarding ramp near the nose in the left image.

Figure 3-11a shows the locally optimal profile generated from' the slice at row
~16. The most obvious problem is caused by the box, which has been depressed below
the ground level to make it occluded by the wing. This severe distortion is due to the
fact that no other intervals were nearby to seive as an occluding surface, Near the nose,
missing edges from the right and left cancelled; there was no occlusion introduced, only
an incorrect and distorted match. In each case, the effects of the missing edges did not

extend beyond the adjacent intervals. From the wing shadow, (1,3,3), to the fusclage,

(5,8,1), all matci. s are correctly interpreted.

Only onc pixel away at row —17, the optimum profile correctly interprets all sur-
faces (see Figure 3-11b). There are no missing edges and the occlusions are all legitimate,
Errors isolated to a single slice is a common effect of misregistration of images and il-

lustrates the value of using adjacent slices and continuity constraints to overcome local

errors.

x = O

/ -

Figure 3-10: T'wo siices taken through the aircrafl sccne at rows —16 and
—17 are used to demonsirate the cffect of missing edges.
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Figure 3-11: Profiles computed from the slices —16 and —17 in Figure
3-10 are shown in a and b, respectively. In a, the profile is distorted to
explain missing cdges, but the effect is limited to intervals adjacent to the
missing edges. In b, there are no missing edges, and the profile is essentially

correct,

e e
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3.3 Two Dimensional Processing ;

The processing in two dimensions consists primarily of computing a value to be

assigned Lo each edge match interpretation and feeding this value back into subsequent

iterations of the Viterbi algorithm. This computation involves the final constraints,

continuity and consistency.

3.3.1 — Match Liste

The results of the Viterbi algorithm acting on each slice must be incorporated
inlo the data structure in such a way that consistency between slices can be ¢« ..puted.

Four additional fields are added to the edge record that was described above. They are:

EMAT pointer to edge match liat




T T T RO T AR vt W AN S YR L3 58 T Y Ao e s R, < A BT e s, 2y

RRRIAET RRISTw vepwary

Automated Stereo Perceplion Implementation §3.8.1 8§

e

ESAMP number of samples supporting cdge natch list

Ad

‘ M2ZMAT pointer to sccondary edge malch lirt
M2SAMP nurber of samples supporting MZMAT

PP

An cdge match list is a list of edge match records, each of which comprises the following

fields:

Sl o o o il il e o2

EMCLS poiuter to match class list

e

I : EMCNF confidence measure for this match class

EMNUM " number of supporting samples

EMPTR pointer to next edge match record

' A match class list is a list of match class rccords, each of which comprises the following

T a1
A ek

? ' ' ficlds:
ECLRB match type (visible to left, right or both)

boens

R e ST

|
‘: ECEDG pointer to match or occluding edge
i

ECPTR pointer Lo noal match cless record

The secondary structure (M2MAT) uses two similar recocd types with fields named ?
]

M2CLS, M2CNF, M2NUM, M2PTR and C2LRB, C2EDG, C2PTR. Figure 3-12

i
shown the relationship of these structures to the edge cecord.

The Viterhi algorithm precesses a slice consisting of left and right parts. For each

edge in the left, EMSAMP is incremented and the list of edge match records is scarched
for cach interpretation found in the Viterbi algorithm. For exact matches (down to the

matci class record), EMNUM is incremented in the corresponding edge match record, if

the interpretation is equivalent (sce definition below) to an interpretation aiready present,

then a new match class record is added to the cxisting maich clasgs list and EMNUM is

incremented. If the interpretalion is a totally ¢ -ne, it is added to the data structuce

e Tt ol o et s s sty .

a8 a new edge match record with a single match ciuss record, and EMNUM is set to 1.
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N
-

} | The same procedure is then followed for cdges in the right part of the slice, Figure 3-13

[ illustrates this data structure for a sample image.

l | A refinement to this procedurc is to ignore the interpretations for slices that are r
too close to an edge's endpoint. “Too close” is defined here as within YNS/2 pixels in the
i y-direction, where YNS is the estimated uncertainty in the camera model (see Iiquation

7-10). This improves performance by preventing misregistration crrors from propagating.

g
; ‘ ECLRB
ECEDG .
] UX, LX EMCLY ECPTR r——) i
| i EMONE
. LS, RSD |/ E MU | F
' : Esame / EMPT i
EMAT o !
‘ MLOAMD r ! :
MAMAT :
‘ ‘ A . CARB
L '* ‘ CALEDG ;
, MALILS CLPTR, |— !
i MUCNF 9
; MANUM R <
| MLPTR, P> ! |

Figure 3-12: The . .ta structure used in the two dimensienal processing
incl.des a list of potential matches for each edge. Each polential match may
comprise a list of consistent macch interpretations. This primary mulch hst
is rebuilt on cach iteration and is used to update the sccondary structlure,
which holds the final results.
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corresponding stereo analysis illuse.ated in the dala structure in b, The
| primary match structure is shown based on two samples, and indicates that
| edge 1 has two polential malch classes: a maleh with edge 106 or a match
with cdge 108. Note Lhat edge 1 may be occluded by edge 107 on one of
the epipolar lines but that this match interpretation is counsistent with the
malch o edge 108, so Lhey appear in the same malceh class. In this examnle,
3 the stereo interpretation for edge 1 =emains ambiguous.
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In this procedurc a simple notion of edge match equivalence is used. The intent is
to make the matching procedure ‘ndependent of ¢dge segmentation. Therefore, two edge
matches are considered equivalent if:

e the malchus are of thie same type (i.c.,, both visible to both
cameras, or both occluded in the same view), and

e the cdges pointed to are connected in the sense that the top
endpoint of one iacels the bottom endpoint of the other at a

vertex, and no other edges meet at that vertex.

The resull. of the procedure just described is to ensure that every edge match
interpretation, whether a match in both views or an occlusion, is incorporated into the data
structure. The frequency of occurrence of each interpretation is also recorded (i.e., how
many samples or slices support a given interpretation). Equivalence classes arce formed for

matches which are not identical in our representation, but which are potentially idendcal

in the scene,

3.3.2 - Conasistency

The results from applying the Viterbi algorithm independently to each slice are
recorded in the dat- structure as described above, The n.atches listed are those whizh
were calculated to be possible based only on the information in the particular slice taken.

The next step in the program is to lilter these potential taatches by looking for conasisiency

across slices.

It is quite possible for a given match interpretation to be in error because of
noise or impetfect data on a particular slice. Such interpretations will generally not be
supported by adjacent slices. Interpretations which are consistent with a context including

multiple slices are copied into a parallel data structure in preparation for subsequent

iteration.
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T e g e . o,

For each edge, new potential malches are hypothesized from adjacent conneeted

R

edges, The intent of this procedure is shown in Figure 3-14, If edge A is connected at top

1
or bottom to a second wdge B, and the sceond edge continues in the same direetion (up or

down respectively) then the edge mateh list for this neighboring cdge is examined. The

connectivity of cach edge in this mateh list (e.g., edge C in the figure) is examined for ;

connuebivity similar to that of the second cdge, B, Jdges that have a position analogous :

to the original edge (e.g., 1D in the figure) are hypothesized as matches, and are added to i

the primary mateh list without incrementing EMSAMP. This procedure allows mateh

information to be propagated along segmented scene edees from wne sogment to the next,

e sl

without the overhead of selecting additional slices and executing the Viterbi algorithm,

The continuity of edges across epipolar lines is a sufliciently strong constraint to jusbify

this.

i p——
2

-y

LEFT

[
Figure 3-14: Some matches may be hypothesized without actually ranning %
the sterco Viterbi algorithm.  Similar conneclivity allow us to assume a 1
maleh between A 2nd D based on a kunown mmateh belween 13 and C. Such
a mateh is added to the daba structure with zero evidence so it will not

initially aflect other inatches.
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The remainder of the consistency checking procedure builds the secondary data

structure. While the primary structure, (EMAT), is cumulative, this sccondary match
list, (M2MAT), is initialized on each iteration by copying for each edge the values of the
primary match list. After this initialization, the continuity constraint is used to extend

the secondary match lists as deseribed below.

Information on potential motcher is propagated to adjacent edges based on con-
tinusty. llere we define two edges as connected il they meet in a vertex that includes no
other edges, and if one edge extends upward from the vertex and the other downward.
Two cdges that are joined by a scquence of connected cdges arc continuous. For each
cdge, a search is made along such connected edges for matches which are equivalent to 1
any malch in the current match list. Auny such egquivalent matches are tallied in the

M2NUM field of the sccondary match list.

Thus the evidence in tie secondary match list includes information from ltwo

E

sources: i
3

e lividence derived from slices passing through the cdge. :

i

¢ Iividence gathered from connected edges. }

This evidence is evaluated based on the number of samples that support a given match j
interpretation, and the total number of samples contributing to any interpretation for the f
edge. For the primary match list, the total number of samples is just the number of slices
intersecting the edge. The secondary match list adds to this the number of samples from 'i.‘
connceted edges. Note that an edge match that was hypothesized in the previous step ;
i

may now accumnulate evidence from connected edges. (This constitutes a very crude use
ol inference rules of the type discussed by Rinford [Binford (981].) |
The function vsed to vroduce a confidence measure for cach edge match inter- 3

|

pretation is: ;
1

4

i

1

P

ONI == 0.5 4 Do = 2 (3 - 12) 3

JNK =00 + - — 3 — L :

SAMP + 2 ‘

:

i
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where:

CNF is the confidence measure,
NUM is the nuinber of supporting samples, and

SAMP is the total number of samples.

This function has the property of yielding a value of 0.5 if no samples are available. If every
sample supports the match interpretation (NUM = SAMD), the function approaches 1.0
as the number of samples increases (1/2,2/3,3/4,...). If none cf the samples supports
the interpretation {(NUM = 0), the value of the function approaches zero as the number
of samples increases (1/2, 1/3,1/4,...). This funciion is designed to yield a number which

can feed directiy into the Vitarbi evaluation function as “previous information” (sce edge

measure and Equation 3-11.)

3.3.3 — Results

This section reports some of the results of applying the stereo system to test
data. A system has been written in the SAIL language and has been run on a Digital
Equipment Corporation PDP-10 computer with a model KL-10 processor. The examples
in this section were computled by doubling the rumber of slices per iteration until slices
had becn obtain.d at uniform 4 pixel intervals. This required six iterations, beginning
with one slice through a 256 by 256 pixel image, and ending with 32 slices. For the jet
aireralt scene, lolal computation was 287 scconds, comprising about 4.5 seconds per slice

for the onc-dimensional processing, and | sccond per iteralion for the two-dinensional
consistency checking.
It is difficult to show the total output of the sterco system; some edges have

been mutched in sterco, some have been classilied as occluded and some have not been

successfully classificd. Perbaps the simplest and most direet way Lo display resulls is to

e g
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display just those edges which have been given an unambiguous stereo correspondence.

o e Gy

Therefcre, belore an edge can be displayed, it must satisly the [ollowing conditions:

i o There is a unique match clasa that had the highest number of
supporfing sumples; i.e., it was consistent with the most slices
E intersecting it. : E
; o That match class did not interpret the edge as totally occluded;
ﬁ i.e., some part of it was visible to both cameras.

e The edge and its matching edge are 2ach longer than four pixels

i
‘! and overlap, when projected normal to ihe y-axis, at least 50%.
: ' e The edge and its match have angles that are greater than 0.2

? % radian from the stereo axis.

e et

Thus, ambigous matches and known occlusions are noi graphed. The position of an

E occluded edge is bounded but not known exactly. The diagrams show only edges whose

position in 3-space has been completely determined by the system.

-

The edges are mapped to 3-dimensions and are scaled to fit in a convenient volume

of space. This results in a cluster of edges which are then reprojected onto the image 7

T e e

planes of two cameras that can be positioned interactively. The resulting images show the :
edge curves from viewpoints other than those of the original cameras. The stercograms 1

may also be viewed in stereo by the practiced rcader.
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Figure 3-15: Images from CDC show an artificial city scene.

Figure 3-16: Iidges are produced and the images are registered for stereo

processing.
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Figure 3-17: These stercograms show overhead (90 degree) and 30 degree
views of cdges whose 3-dimensional positions have been determined.
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Figure 3-18: These stereograms show the same edges as Figure 3-17, but ;
from ground level (0 degrees). :
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{ ‘; ‘ Figure 8-19: Images from San Francisco Airport show an L-1011 at a
|

boarding ramp. ;
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Figure 3-21: These stereograms show overhead (90 degrce) and 30 degree
views ol edges whose 3-dimensional positions have been determined.
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Ervors

The most common type of errors occur from slight misregistration of the images,
or errors in edge detection. Thus we require edges to overlap significantly before accepting
their interpretation. Another common form of error is the detection of short edges in one
view but nov in the other. Filtering out short edges avoids this “noise” without delcting
large objects. With the current scheme of applying slices at uniform intervals, these two
conditions are approximately equivalent to requiring a minimum number of samples or

slices on both edges.

Another major source of error is due to positional inaccuracy on edges that are

nearly parallel to the stereo axis. The error in stereo disparity, e4, is approximately:

ep ‘ '
— fr_ 3-1
¢d sind ( &)

where:

ep is the error in edge posilion (perpendicular to the edge), and

0 is the angle the edge makes with the epipolar line.

Matched edges whose angles arc close to zero tend to have wild dispavities, so these are

omitted from the display.

Finally, due to alignment errors, the endpoints of the edge curves will generally
not have identical y-coordinates. One or both edges are shortened to make this condition

true, i.e., to give 100% overlap.
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FUTURE DIRECTIONS

It is often true that rescarch raises more questions than it answers. There are a
number of directions future work could follow (rom the state reported in this thesis. Some

of thesc extensions fit in easily to the framework developed; some require restructuring,

4.1.1 — Surfaces

The data structure used by our Viterbi algorithm allows for the relating of
edges and surfaces. For exam;;le, an edge that lies “on” 2 surface is given a different
representation than an edge that is separated from a surface by a spatial discontinuity.
In the current implementation, these states are distinguished only by weak constraints
(surlace breaks and excess length), and none of this information is preserved in the main

data structure or checked for consistency across slices.

To make use of this surface-edge information, more work necds to be done. on the
constraints that affect it. For example, “T" junctions usually imply spatial discontinuities,
with the surface aiong the top of the T “in front of” the two surfaces along the stem of
the T. Such information can be incorporatca into the stereo system as it is developed,
and the data structures rcorganized to preserve and use it. Some of this work in the area

of “shape from shapc” is being done by Binford and Lowe [Lowe 1981) and Licbes [Liebes

1981).
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4.1.2 — Equivalent Match Relations

Another problem that nceds work is the classificalisn ol match interpretations
across cpipolar slices, We have defined only simple cquivalence relations, and the consis-
tency checking will find nro informwation if the adjacent cpipolar slices generate match
pairs that are not in one of the simple equivalence relations we have defined. A more

complete analysis of line drawings in stereo would yield a larger and more complex set of

celations,

%.1.3 — Viterbi Extensions

More work s possible or the Viterbi algorithm itself, In particular, its greatest
shortcoming is the cequiremant that every edge crossing an cpipolar line be explained
geometrically. llowever, cxtrancous or missing cdges due to noise or misregistration

cannot be explained this way. It would be ugeful if the Viterbi algorithm could be
extended to edit such edges out. All of ous ~fforts to accomplish this have resulted in an

unmanageable increasc in complexity of both tim: and space.

4.1.4 — Evaluation Function

There should also be more theoretical work on the evaluation function., “White

the most important components have regulted from analytical work, aihers are ad hoe,

and there is no unifying theory for combining the various components.

The two mosl important numeric constraints, edge intervals and edge angles,
have been derived Lo map between distributions in object space and distributions in image
space. Ilowever, the implementation has assumed uniform distributions in both cases. 1t
should be possible to use a priort knowledge of the scene to estimate a more accurate
featurc distribution, e.g., many vertical and lhorizontal surfaces and edges. This would

translate into even stronger consbraints on the image parameters,

i aking, sl bl
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L 4.1.5 - Area-based Stereo

One component in particular that has been greatly oversimplified is the use of
k 1
‘ ‘ brightness information. We have intentionally limited our use of this source in order

3, to better study the problems of edge-based stereo. In the man-made scenes we were

e S

concerned with, edges were dominant, and intensities could often be misleading. In any
sterco system that hopes to be general, however, intensity-based (arca-based) techniques

will be required. An obvious compromise is to use both, since there are places, oflen in a

singlc scene, where each is superior. Certainly, the use of brightness in oul system could

be extended beyond a single value per surface.

e v -

4.1,6 - Edge Curves

Our implementation has concentrated on edges, and to simplify the problem

: we have assuined edge curves comprise straight line segments. This assumption is not

‘: ' essential, and could be relaxed to include curved segments or splines. All of the essential

e Ol it bl i it

[ inputs to the constraint caleulations - edge length, end point position, vertex types, angle

L, with respect to a given epipolar line - arc also available with curves.

4.1.7 - Camera Model

| |
i
|
LE , Much of the preprocessing cfforl goes to determine camera model paramsters
k ! and fo register the images. As we noted, it is necessary in these steps to solve the stereo 3

corregpondence problem for a sclected number of points before all the parameters can

fact that the stereo correspondence required for the camera model solution is much more

|
i
Q ; be determined. This leads to a circular sort of peoblemn which is resolved only by the
] ‘( 3
|
|

limited than the full correspondence in that most parameters are known a priori to some

approximatior.
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However, we have noted thal many of the errora seen in our examples result from
small errors in these parametera, ldeally, there should be a feedback process where a
byproduct of the matching is a refincment of the camera parameters, which leads to a
better mateh, and so forth. The use of vertex information is well suited for this feedback,

for once an edge i matched, a correspondence is sel up for any vertices to-which it belongs.

If two vertices corresnond, any difference in their y-ceordinates is one error measure for
, any YV
the camera model sarameters at that location in the image. This can lead to a correction

matrix capable of accounting for and correcting many types of geometric distortion.

N y——
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APPLENDIX

5.1 Local Context System

~

This section summarizes an carlier gterco system thal was reported in 1978
[Arnold 1978]. This system represents the first use of edge continuity as a constraint
in feature-based sterco. The initial processing steps, through the ground plane findez, are

used in the current system to determine eamera model parameters.

Stereo images were digitized from small regions of 9x9 inch black and white
acrial photograph negatives. Fo reduce processing and memory requircments, these were
normally reduced to 128x128 pixels. Subjects included commercial atreraft. at a terminal

in San Francise: -urport, cars in a parking lot, and an apartment building complex.

A camera model and grouad plane were caleulabed from the data in the images in

a process which was entirely automated. An Interest Operator [Moravee 1977] was applied

L. -—— . r— s r— —_—————

Figure 5-1: A 128x128x8 bil image paic was used, showing an [-1011 at
San IFraacisco Airport,
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to the left vicw to select approximav-ly 50 “interesting” point.. A point was “interesting”
if it promised to be casily locatabie in two dimensions (i.e., corners and interscctions).

A fast binary search correlator [Moravee 1977] produced an initial mateh for each point,
searching the entire right image cach time.

These matches were refined with a high resolution area rorrelator [Gennery 1977
and passed to a cawera ﬁn‘ del soiver [Gennery 1977]. This camera model program solved
for four parameters:

1) direciion of use stereo axis
2) relative rotation between left and right views
3) scale factor between left and right views

4) translation perpendicular to the stereo axis

The usual camera solver determines 5 parameters. The special form we used is

useful in the degenerate case in which scene heights are cmall with resyect to distance

from the film: plane.

'Jr v
-—_ “+

-/

Stereo axist 3.71 dugrees
Relative rotationt -1.06 degrees
Scale factor: .988

Transtationt B8.41 pixels

G:ound planet z = 6,80 - ,00926x -.8125y

Figure 5-2: The camera model and ground planc solvers produced four
image p.orameters and the equation for a plane.
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The relative positions (disparities) of ecach matched pair along the sterco axis
provided information on heights relative to the film plane. At this stage, about half the
original 50 poiuts had been automatically rejected for various reasons, and we relied on
the remainder to be evenly distributed in the scene. The points and their heights were
given to a ground plane finder [Gennery 1977] which attempted to fit a plane to a subset
of them such that a few points were assigned heights above the plane, fewer below the
plane, and as many as possible on the plane. The total processing for the camera model

and the ground plane was about 8 seconds on a PDP-10.

The next step was to raster-scan an edge operator over the two pictures to extract
all usable edges. We uscd the Huecke! operator [[{ueckel 1973], witt an operator radius
of 3.19 (32 pixels area). The Hueckel operator produces several accurate measurements
which can be useful in discriminating matches, including a measurement of angle that is
mose accurate than other operators. Of this information, we retained for each edgel the
x-y posilion, angle of edge, and brightness of minus and plus sides, About 1200 edgels

were produced from a 128x128 pixel picture in about 18 seconds.
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Figure 5-3: The Hueckel edge operator produced about 1260 edgels in
each view,
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At this point, all information was contained in the edge files, and the original
images were sct aside. The édges from the left and right pictures were then adjusted with
the camera model and ground plane parameters to a standard coordinate system with
the stereo axis in the z direction and disparity shifts due to the tilt of the ground plane

cancelled. Thus all points lying on the ground plane had identical z and y coordinates in
the two views.

We then proceeded to match edges in the left {master) image with those in the
right, and extract a local context for each edge in the left. A grid of 8x8 pixel cells was set
up for the left and right pictures, each cell being the head of a linked list. Edge records
were read in and linked to an appropriate ccll based on the z and y coordinates of the

edgel. For these pictures, the linked lists had an average length of about 4.-

For each edgel in the left picture, we wanted to find a list of possible matching
edgels in the right picture. The search was constrained to those edgels within a narrow
band, about 6 pixels wide in the y direction. The band started at the 2 coordinate of the

left edgel (zcro disparity) and extended to an a prior: disparity limit in the z direction.

For cdgel pairs within the band, differences in brightness and angle were
thresholded to determine whether to accept or reject a potential match. If the match
was accepted, a disparity was calculated by cxtending the right edgel to intercept the y
coordinate of the left edyel. On the average, this search produced 8 ambiguous matches
for each edgel, that is, 8 edgels that agree in position, angle and brightness. Most of
these ambiguous matches were actually mulliple edgels from the same sccne edge, with

slight deviations in disparity due to noisc. From this point on, no further information was

obtained from the right edge file.

For local context, we wanled a list of edgels in the left picture that probably lay

on the same physical edge of the objecl. Again, a scan ran through all edgels on the left,
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and a search was made for each one, this time in the left grid. Two edgels were linked if
certain loose conditions were met:
1) x and y coordinates matched within 3 pixels,
2) their angles matched within 90 degrees,
3) the angle of a line connecting edgel centers lay between
the individual edgel angles,

4) brightnesses were consistent on at least one side of the

edgels.

Typically, this produced 3 or 4 links per edgel, and linked edgels tended to follow
edges of low to moderate curvature (see Figure 5-4.) The time for the matching and

linking was 33 seconds.

We then had for each edgel in the left piclure 2 list of possible disparities and a
list of neighboring edgels which were linked to it. The problem was to choose a disparity
for each edgel in such a way that disparities were consistent along linked edges. We
implemented an ad hoc “voting” scheme whereby each disparity on the edgel’s list was a

candidate, and only those ncighbors which were linked could vote (see Figure 5-5).

The voting proceeded as follows: Let £ be an edgel and L an edgel linked to E.
Let dj, be a disparity on L's disparity list and dg a disparity on E’s disparity list. If d,
and dg werc equal or nearly equal {(within .125 pixel disparity) then dg got two votes. If
dy, and dg were close (within .375 pixel disparity) then dg got 1 vote. Otherwise, there

were no votes.

This loose condition for voting compensated for quantization error in the record-
ing of disparities and allowed multiple edgels from a single edge to reinforce. After all
the voting, a bell-shaped distribution usually resulled about the best disparity, with wild

or inconsistent matches out on the tails of the curve. The maximum of the distribution

il
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was taken as the disparily for E. This processing tonk 8 seconds. We cruld then output

a file of edgels with their three dimensional locationa.

The system outlined above suffered from some serious problems. 1t relied heavily
on the edge operator, which was deficient in several respects. It was Sl}sceptible to slow
gradients, at which it found a multitude of parallel edges that tended to match at every
possible disparity. Because it was a least squares process, it‘ was easily led astray, for
example, ncar corners. This system also made very weak use of constraints other than

continuity (c.g., brightness and edge angle).
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Figure 5-4: This plol of edgels is [tom the left view of the aircrall images,
near 'y lelt stabilizer and its shadow. X and Y axes are in units ol pixels
(octul), and dotted lines represent the links between edgels used for local
contexd,
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Nevertheless, the system produced some useful dapth maps and the results were
encouraging in many respects. Although therc were many edgels, over 90% of them were
correctly matched. The depth map for the aircraft images provided clear separation of
the ground from the plane, and resolved different parts of the plane according to their
height above the ground: wings, fuselage, stabilizer and boarding ramp. Even the dihedral

angle of the main wings was apparent; edgels at the wing tips had greater disparity than

edgels near the fuselage.

Edget 345; Disperitiass 34,40,54,68

Linksr 333,365,404,412,334, 362

Edger 365; Dieperities: 40,44,48.85,76,

Linke: 333,345,414

Edge:- 4121 Disparities: 41,41,42,45,75,

Linke: 345,365,4F4;

Edger 454; Cleparitiee: 42,42,42,46,60,64,1104

Linke! 412

Yoting taily for 4121

Disp, 34b %5 454 Totail
41 H 11 1HI s
42 | N i 9
45 " Ty

7 " -

Figure 5-5: A portion of the data structure produced by the matching
program shows a sample voting. The edgels are selected from those in figure
5-4. (All numbers are in oclal),
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