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SEE Chapter 1 1

BE INTRODUCTION

2) This research aims to advance the science of computer stereo vision - reconstruc-
|

: tion of 3-dimensional scenes from 2-dimensional images. ‘The problem is to establish a
[ ) -

| correspondence between features or regions in two or more images from which we can
his Fhe author

i calculate positions in 3-space. In-eous research, we chooaejto match features, rather than

; ¢ | use the traditional methods of area correlation. The features-weusegpre extended edges, or
A SSipa dd , x

. more precisely, the iinage curves which are the projections of edges in the scene. -We-as-

| | _s--surmea preprocessing stage which can extract such edges by first applying an edge operator

| - and then linking edge elements into extended image curves. The choice of feature-based |
sterco over area-bascd stereo offers advantages in speed and accuracy, as well as avoiding

| some fundamental problems.
J —— I——

| In an edge-based system, computation effort can be concentrated on the edges.
[ :

3 | Depth information about surfaces can be inferred from surface boundaries, which are :

| visible as edges. If high speed, specialized processors are uscd for edge operators [Nudd ;

| 1977], overall computation can be cut significantly. i
; Co |

: | ! Typically, edge-based techniques offer a factor of 13 improvement in accuracy ;
| : over correlation methods. In correlation. accuracy near a boundary is limited to a fraction |

) of the width of the correlation window (typically 8x8). An edge operator, however, can }

} ; provide measurements to a fraction of a pixel, Edge-based systems also have an advantage 1
| with small objects whose tolal size is smaller than a correlation window. Similarly,
i }

NE [ long, thin objects such as poles arc prominent fealures, but are too sinall for correlation

| [ windows. |

Luandacobdling I SOT CTO: Ion i ta BI err——Edna=
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\ ;

| Arca correlation systems depend ultimately on image intensity, which can be
b : ] LL] ] * 4 3

affected by several factors. Film and camera sensitivity may vary over an image or i

from one image to the next and scene illumination may change for images taken ut i

| | different times. The reflectivity of objects may depend strongly on viewer position, as in |
| |

1 | specular reflections, Many correlators automatically compensate for constant gain and |
i

| bias differences in the images, but edge position and orientation are much more stable i

| | than photometric quantitics because the conditions listed above will not significantly affect |

| § A scrious deficiency of area correlation is failure at surface discontinuities. Simple |
; area correlation techniques inherently fail in the vicinity of surface discontinuities because

| the edge of an object appears against a different background area in each view of the sterco :

| pair. It is important to locate surface discontinuities, since it is precisely the boundaries ;
t » » . . v

| of objects where accurate measurements are most important. Surface discontinuities are |
| * | LJ] 1] :

: ! typical of most scenes containing man-made objects such as buildings and vehicles.
:

: | Fine textures and smooth surface slopes are typical of natural surfaces such as :
rock, grass and vegetation. In such regions, area correlation can be quite effective. On the

‘ other hand, regions of totally uniform intensity provide no signal for an area correlator,

and the only hope is to locate the boundaries and interpolate the interior, |

| | Stereo vision aysterns have applications in mapping, aircraft and missile guidance, |
autonomous itobut vehicles [Moraver 1980], planetary exploration [Gennery 1980], and

| industrial inspection and assembly. Some applications favor arca-bascd systems and some ]
i favor edge-based systems. Thus, edge-based and area-correlation approaches are in a 1

| sensc complementary. A general purpose stereo vision system should include both. 1
|

i i

1
{

8 |

|
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| This thesis approaches the stereo problem in two steps. We first use epipolar i

: | geometry to reduce the problem to a one-dimensional matching. Given the geometry of oo

| | the two cameras, a point in one image may be projected to a line in an image from a 1

| different viewpoint. Any corresponding point must lie on that epspolar line. We then || demonstrate the use of edge continuity «nd context in combining matches along adjacent

| | epipolar lines to produce a match over an entire image. !
We derive a series of important geometric constraints for matching edges in the | |

| onc-dimensional problem. However, cdges are not matched in isolation - they must fit a |

| & global interpretation. Occlusion constraints require an explanation for each occluded edge |
| or surface and ensure a consistency across the whole epipolar line. If an edge is occluded, Ci

| Co there must be a surface in a position to block the view of one camera. Conversely, if an |

| edge is not occluded, there must be no surface blocking the view of either camera. We |
| | have modified a dynainic programming algorithm, the Viterbi algorithm, to incorporate | |

| these constraints and the special conditions of stereo matching. The algorithm determines

| the highest scoring one-dimensional match that satisfies these occlusion constraints. | |

g We have derived two analytic results concerning constraints on terval length and
edge angle for stereo matching [Arnold 1980]. The interval length, or distance between | |

| adjacent edges on an epipolar line, is a function of surface orientation, The projected |
| dimensions of a surface will vary in two views according to the orientation of that surface. |
| Similarly, edge orientation in the scene determines the projection of different edge angles Bn

: | in the two views. | |

| | These results allow a distribution function in the object space to be translated | |
. to a distribution function in the image space. In the simplest case, we can assume edges

| | and surfaces to be uniforinly distributed over all orientalions in the object space. We |
! can then calculate the likelihood that an arbitrary pair of edges or intervals from the two }
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| | images correspond. The functions are sharply peaked even for the 60 degree vergence
| angles used in aerial photography. When baselines corresponding to human vision are |

; | used, the conditions arc extremely strong. We have used the results of these functions as Co
components of an evaluation function for sterco matching.

| | While the usual purpose of the Viterui algorithm is to find an optimal match, it ;| is a good strategy not to discard options too early. A globally optimal matcl may be ;
suboptimal in the limited context of a single epipolar line. It is an advantage vo keep

a list of several of the best matches of each line to be filtered later by two-dimensional |

| consistency relations. For this reason we have developed a significant extension to the

| | Viterbi algorithin that produces a list of all matches scoring within a preselected range
| of the optimal match. This list is then filtered by an iterative process that enforces

| consistency among adjacent cpipolar lines. =.

In 1978 we introduced an edge-based stereo system that used the concept of edge . |
: | conitnuity and context Lo reduce ambiguity |Arnold 1978]. Fdge matches based on simple :

| local measures such as contrast and angle were filtered by requiring matched edges to :

| be continuous in 3-space. If an edge extended continuously in one view, its match was | |
| required to have a continuous extension in the other. This system used unlinked edgr i

f clements {edgels), and succeeded in correctly correlating about 90% of the eugels in an ;
J image. |

! | Our most recent system operates on linked edgels, or extended edges, and makes |
use of more powerful techniques to do the one-dimensional matching. It then applies the

constraint of edge continuity iteratively with the epipolar matching to derive a globally

| consistent match.

The principal contributions of this research are the first usc of edge continuity

| in the context of adjacent epipolar lines for determining matches; the use of occlusion |

| constraints; the analytical functions for interval and angle constraints; and the modified i

j | : Viterbi algorithm that includes subeptitnal matches.
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: This section briefly describes some recent work on stereo vision systems by
1 others that have influenced this thesis. Some of these systems use techniques that we 4

: | | have adopted in our work, while others provide interesting alternatives. This survey 3
: | concentrates on feature-based stereo.

| | Moravec’s vision system [Moravec 1980] is the input to a navigation and nbstsacle ;

! avoidance system for a computer controlled-vehicle. The stereo ccrreiation in this system |
: | | is area-based, but the initial correlation is driven by a collection of feature points resulting 3

| 3 | from an interest operetor. The interest operator selects points with a locally maximal
| | | value of an interest measure. The interest measure is the minimal directional variance |

| | taken in four directions over a small square window. Thus “interesting” points are those

: whose position is easy to determine in more than one direction (e.g., interseciing edges).

| . The points from the interest operator are matched with a binary correlator that uses an |
| | | iterative technique with increasing resolution to narrow the search at each step. Stereo

| im.ges ave taken from nine camera locations along a common baseline, and correlztinng |
from all possible pairs of images are combined to determine the final depth map.

¥ oo | Gennery's stereo system [Gennery 1980] is also designed to pravide input to an |
i | autonomous vehicle. This system uses Moravec’s inferest operator and binary correlator as
| | inputs to a camera model solver and ground plane finder. With an accurate camera model,

| the system then applies 2 high resolution (area-bascd) correlator capable of subpixel |
positioning. Obstacles are defined relative to the ground plana. | ;

: | Control Data Corporation has developed a Broken Segment Maicher [Henderson || | 1979] thav is designed to produce structural models of buildings and other cultural scenes i
| , from aerial imagery. Their approach combined edge- and area-based techniques, with k

: edges serving to bound regions in which correiation is based on image intensities. The

J | i images are transformedto niake use of a simplified epipolar geometry, and one epipolar |
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| | line pair is ‘seeded’ by providing a manual matching of edges crossing that line pair. All
| | matching is done in ore dimension, along epipolar line pairs proceeding outward from the A

initial line. Edge match information is propagated from line to line and edited sutomati- ;

| cally as some edges end and others begin. In a later version, the system assumes that |

: i scenes are c¢¢ posed of rectilinear siructures; surfaces must have one of-three orthogonal Pl

| orientations, and all edges are straight. | i

| Co More recently, Control Data Corporation has developed algorithms for stereo :
| | matching that employ a structural syntaz for symbolic matching of geometric units

| | | [Panton 1981). This system works from line drawings, and matches edges or figures com-

t | | posed of edges. Knowledge of scene geometry is built into the algorithm or entered by ;
| | hand and serves to filter ambigucus edge matches. Scenes are restricted to right paral- ]

| lelepipeds (simulated urban structures) and matching is restricted to the horizontal tups |
| of these objects (roofs). The geometric knowledge ured includes clustering of parallel J
| lines on opposing figure boundaries, known allowable edge orientation (vanishing points : 4-

| entered manually) and a priers limits on stereo disparity (based on building heights). | :
Researchers ai MIT have developed a computational algorithm for human stereo

| ’

Lo vision [Marr 1977] which has been implemented by Grimson [Grimson 1980]. This sys-

.- | tem convolves the image with spatial frequency filters (an edge operator), and bases its |
| matching on the zero crossings of these filters, together "ith contrast and edge corienta-

| tion estimates. The filters used have varying resolution, and matching proceeds generally |

Co from low to high frequency. An initial vergence or disparity is set manually, and the low

| frequency filter output is used to drive fine adjustments to this vergence until a match is

3 | achieved with the high frequency [ilters over a significant loca! region. The depth infor-
; a nation froin each region of correspondence is then interpolated and smoothed into a full
1 lo |

{ depth map. |

| | Baker's stereo system [Baker 1981| combines several of the techniques used by
olER A . 5

| earlier systems and uscs both feature- and intensity-bascd matching. This system begins

2 ! SM,TEE AEE ator Pree eet ee, ee rer, et ee eee eee. IAM A Sc ome + = meen - EE wom— VE
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with low resolution images and matches linked edges to get a rough disparity limit for :

| | 3 subsequent higher resolution matchings. The matching process uses a Viterbi dynamic

} | | programing algorithm applied to individual epipolar line pairs. It maximizes a metric |
| | | based on local edge properties including contrast and angie, and uses the edge angle 4| : and edge interval measures described in this thesis. Some edges are allowed to remain 1

i : 3

3 | | -uninterpreted in this step. A cocperative process then removes edge correspondences 4
| | that violate a three-dimensional continuity constraint across epipolar lines. Another edge i

matching process is applied to attempt to match unassigred edges bounded by pairs of 3

\ | | matched edges. A final dynamic programming process matches intensity data bounded 1

; | by matched edges and results in a full disparity map of the image pair. ;

: | | :

| RB

|
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| bl 4| | This research touches on many disciplines; for the reader who wishes to pursue
| some of these further or to develop a background for reading this thesis, we provide a

| | short lict of references. 1

| Many of the images processed by stereo vision programs originate in aerial photog- 3

| v raphy, where stereo images have been used for years in making topographic maps. The |

f | textbook by Burnside [Burnside 1979] provides an introduction to the main theoretical

i elements of photogrammetry, while the more massive reference from the American Society !
| of Photogrammetry [Slama 1980] covers the subject in mare detail. Both books cover the |

¢ | geometry of aerial photographs, from the principles of central perspective projection to j
: | corrections for typical aircraft alignment and tilt problems. They also include information j
. og

: that is of practical use to a researcher seeking images from &- aerial survey company.

- | For a theoretical treatment of perspective transformations and coordinat= systems, an NE
| :

| intreductory text in projective geometry such as Wylie [Wylie 1970] is recommended. :
N : - 4

| | | A central algorithm in this thesis is the Viterbi algorithm, which is one result from
| a field of research called dynamic programming. The first complete text in this area was }

» | by Bellman [Bellman 1957]. Dynamic programming has since become a well established 1)

| discipline with many textbooks following [White 1968, White 1978, Viterbi 1979, Denardo 4

: | 1982]. The first published account of the Viterbi algorithm was in 1987 [Viterbi 1967] as : |

lL a deceding algorithm for convolutional codes, but the algorithm has since been used in a ;

] variety of applications. Yorney [Forney i973] gives a good tutorial and survey. E
<= [ #

i The psychology of human stereo vision is an interesting area because the 3

| phenomena can be personally experienced. Many experiments and unusual examples of 3

] | | sterco effects are described by Julesz [Julesz 1971, Julesz 1975}. His experiments in random :
rt | dot stercograms have been used as test cases for computer stereo programs. -
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| | Computer vision is a much m re recently developed discipline, and until recently i 4
: | : there have been few books on the subject. Ballard and Brown Ballard 1982] have just Ei bh.

: | published a comprehensive book on compute: visicn that is designed as a textbook and 1
| | | provides a good survey of this field. David Marr {*4zrr 1982) has taken a different approach

| | and believes the “overall goal is to understand vision completely”. Marr presents his | 4
: group's research efforts to model human visto computationally. Both books provide {

| | good bibliographies. 2

. 1 3

| ;

A.

| nT ERIN §:
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| | Chapter 2 1 A

| ~ THEORY =

. 2 1 Profi | I !

| | This sectior introduces the subproblem of one-dimensional stereo matching. We {
- describe the geometry and develop a notation that will be used later in the presentation j

| | | of the dynamic programming algorithm. 3

3 | 2.1.1 — Geometry

: | | We will use the stereo camera geometry of Figure 2-1. The projective center of :

; i the lett camera is the origin and the projective center of the right camera lies on the = .

| aris. The baseline, B, is the distance between the projective centers. The two image :
planes are coplanar and are perpendicular to the 2 axis. The image distance, f, is the

i | distance from the projective center to the image plane, and is the same in both cameras.
| This normal camera model is for side-by-side cameras. 1

| | CPIPOLAR, 0BI6C b. 3

AE | SAROLAR 3
} y ~ . (WTY y

I.SE SE

| : Figure 2-1: Sterco Cameras Geometry, | |
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If an actual stereo image pair were taken with a slightly different geometry, ‘we {

| , could use a few simple transformations on the images to produce a pair consistent with | :
| | this model. Alternatively, we could access the images through a coordinate transform

| that accounted for these differences. Gennery describes a camera model program that :
| can avtomatically compute such a transform if given a collection of corresponding stereo i

| points [Gennery 1080), and has separately produced a version specifically for the camera ;
rnodel we present here.

| This model corresponds to the usual examples of stereo, such as human vision, |
| where the baseline is roughly perpendicular to the line of sight. It is also a good model

for aerial photography where a single camera is used; the line of sight is perpendicular

: | + to ‘he flight path, which determines the baseline. It does not cover the case where the
| | line of sight «nd the baseline are approximately collicear. This could arise from a moving | |

| vehicle taking successive pictures looking forward along its path (sce [Moravec 1980). |
| Such geornetry is a degenerate case of our model. Our camera model is also not suited H

| | tc panoramic sensors where there is no projective certer (e.g., the stereo cameras used in
| the Viking Lander (see [Licbes 1977). |

| | Given an arbitrary camera orientation and a point on any object visible to both i
N cameras, we can define an epipolar plane as that plane determined by the object point and |

the two projective centers. The epipolar plane intersects the image planes, defining an

| | epipolar line in each. It follows by projection that the image of the object point must lie

| on the epipolar line. Furthermore, the image of the same object point from the other view {

| | oo must lie on the corresponding epipolar line. This reduces the correspondence problem to {|
| one dimension. In our normal camera model, epipolar lines are always parallel to the x

axis, thus corresponding image points must have the samc y-coordinate in both left and i
| right images. ]

| ; - In the discussion that follows, we will be concerned with matching features in 3
: ; a given left cpipolar line with features in the corresponding right epipolar line. The 1

| | ol mr eer : CL TT e— h
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| | : features of interest are scene edges, which project ascurves in the image planes. For th. || one dimensional case, we . - ¢ interested in the points at which image curves intersect the Al

| epipolar line. These intersection points serve to segment the epipolar line into intervals,
which are ordered by their occurrence in the image from left to right. The matching

i | problem is one of mapping between a sequence ¢f intervals or intersection points from one

| | view and a similar sequence in the other. - |

| Consider a pair of corresponding epipolar lines from a stereo image pair. We ;

locate intersesiion points of image curves with the epipolar lines and want to match these

| points to reconstruct the original scene. If we back-project these points we get for each

g | view a set of rays from the camera’s projective center, through the intersection points,

| | Every ray from each image lies in the epipolar plane. If we view this ; {ane trom the side, |
} } . :

i | we see that the rays fron the left and right cameras int’ sect to form a grid or lattice. This
| | 1;

lattice is bounded by a region obiained by projecting rays through the image boundaries. |.

| We will refer to this region as the stereo zone, for only objects within this zone can be seen | 1
in stereo. (See Figure 2-2a). In general, the image boundaries need not be symmetric with t!

| respect to the projective center. Although this is true for most cameras, it is common to

| digitize the film off-center in order to improve the stereo overlap (see Figure 2-2b). Thus, |

. | the stereo zone may extend to infinity or may be a closed quadrilateral, depending on how i

; | the imag: boundaries are defined in the film plane. i

| Each lattice point corresponds to a potential match between a feature in the left, i

oo and a feature in the right. If such a match were correct, then the object must have £

| | been at the point in space represented by that lattice point. We will use this lattice as 3

our coordinate system and attempt to reconstruct the original scene within it. The two 3
| axes of the grid are labeled with the left and right feature sequences. The reconstructed 3

| | | surfaces of the scene, or rather their intersection with the cpipolar plane, will be called a E

; ‘Ny profile. 2
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,

,

‘



¥ Tmmdr.rh am Horm rg ra Emi ET TRA i ee SLT. Spd Ar 0 NB em J MMI, | = 13 rors Ae Am ral SS ME TT 1 Fw-rtrai 4  A Bd ETTESy mARV ef FL TIA Ser Fra 3 or mien ak USA yoy =f 7 A VARS 311 1: rie eh. = mm A de rant AAR rpm. 5 mm ?

| 8

| | Automata Stereo Perception ~~ Theory §8.1.28 14 4

| | 2.1.2 — Basic Assumptions 3
| We now make some limiting assumptions in order to precisely define the problem | {

| od we intend to solve. First, we make the general assumption that the scene is independent 3
| of the viewer, While the stereo camera model and the objects in the scene may be sligned | | i

: | : with respect to a common reference such as gravity, individual features in the scene should | 4
f | E have no dependence on camera angie. That is, small shifts in camera position should not bo]

| : cause significant changes in the image. 4

i | We assume that surfaces ace bounded by visible edges. That is, if a surface or | 1
t slope discontinuity exists, it will produce a curve in the image which will be detected by HE

’ boy

1 | our edge operator. This ensures that the reconstrucied profile will have all its boundaries J
| at lattice points. There may alse be edge curves in the image that do not result from

| | discontinuities but from surface markings. Note that this does not mean that every feature }
i in one view must match some feature in the other. Occlusion by intervening surfaces can |

| | block features from one or both cameras. We merely require that a feature is detected Po
| }

. | if and only if it is not occluded. This assumption is equivalent to perfect edge detection; -
3 performance with imperfect data is discussed in a later section.| |

ro We assume that the profile consisis of straight line segments. A sufficient condi- |

| 3 tion for this is that in the o.iginal scene all surfaces are planes. This restriction is not

| | a severe one in cultural scenes, where man-made surfaces usually are planar, In fact, |

| : the interpretation of a curved surface as flat may still allow an accurate estimation of
i | its boundary (see Figure 2-3). However, with curved surfaces, tangent discontinuities are

; | possible (see Figure 2-4). Since such features zre dependent on camera position, it is |
; | ! possible for a surface boundary in one view to have no counterpart in the other view. pi

| TT eee
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| :

| |

| Figure 2.3: The distance, d, between the true boundary and the apparent j
| | boundsry of a circle in the epipolar plane is small for most vergence angles. i
| | Its value may be calculated from d = R(sec(a/2) — 1) where R is the radius :

| of the circle and o is the stereo vergence angle. For angles of 60°, 12° and

| | | 4°, Lhe crrors are ASR, 006R and .0006R, respectively.

] | Finally, it will be a necessary condition of the dynamic programming methods toH ; 1

3

| | be introduced later, that the two image sequences match monotonically: :

| Let ay and b; be elements of the left sequence and a, and b, be elements of

| : the right.
| Assume a; matches a, and b; matches b,. |
1 i 3

| If a; occurs tu the left of b; then a, must occur to the left of b,.

Ce : In other words, there can be no order reversal in mapping one sequence to the other. |

|
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| LEFT RIGHT

|

| Figure 2-4: Tangent discontinuities are viewer-dependent “features” that :
| h: ve no stereo correspondence even though there may be no occlusion. i
! i

J j

| Order reversals may occur wheneve. there is an overhang, which we define as a : |
i Li

| disconnected profile. Figure 2-5 illustrates the classic case, where an overhanging surface
is far enough above the background surface that the cameras can “see under it”. Not

| all overhangs produce order reversals. It ia necessary for there to be a feature within the :

: | wedge-shaped sone (cross-hatched area in Figure 2-5) bencath the overhanging surface.
The geometry of this zone depends on the cameia model and the width and altitude of

| the upper surfacz. Overhangs usually result from something like a wire stretched across |
| the scene, or from oblique views of thin objects. Figure 2-6 shows how an aerial view of |
| a building can cause an overhang. While overhangs are common in many scenes, they do :

: |
| not usually result in order reversals. |

| i

| |
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: HR Figure 2-8: Even a simple blick can produce an overhang and an ord.r
reversal, but most overhangs do not result in order reversals.
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| In summary, we assume that the profile resulting from the intersection of the |

Co epipolar plane with the scere consists of one co ii‘ous, connected path of straight

| line segments representing s:irface intvrvais, The bounding edges and possible intercr 3

| markings of these surfaces are detecled in each camera except when oc_iuded by an

| | intervening surface. Any sich intervening surface must be another part of the same
. ! b -

| profile. :
b

§ | We now introduce; some notion and conventions hat wll be used later in the
discussion of profiles. Fir:ft, we cla sly the su-face fnierve!s whict coinpose a profile. A

3 H H H ’ 1 . » » . ' i
| given interval will fall in one of threo classes iwccordingg to whether it is visible to the ]

| y ;
| left. camera only, to th~ ight can» a only or to hoth can eras. Tae class Visible to both oo

. - * - ] vo [BL
can further be divided into four gi ups according to the + isikility of the edges that form i

1 1

| its endpoints, Thus we “ave six ty ges of profile inlervain: ;
1) The surface ;nd both ecges nre visible to boll camerns.

| 2) The surface and its left edge are vi ible to both cameras, but its right ;
, \ ’ |

2 " f :

| | edge is occluded.
[ J Ll - y i

| 3) The surfac! is visible uniy to the le: t carnera

: 4) The surface is visible on:y to the right came a. :

. ¥| 5) The surface and its right edge ate visible ty both cameras, but its left ]

| eage is cccluded. ]
| 6) The su:"ace is visible t¢ both ctyeras, buy ite let and right edges are | {

8 | occluded. IE

) | Ve ame a eete tn, hemit4% 3 = bE Levanae bee maA 1 Te him meri SERN errant as! | PAAR err.treet - im gp . 8 i
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; | } Figure 2-7 illustrates the coordinate system for proiiles, showing a 'attice for a ]
| 3 profile with three edges visible to the left. and three edges visible to the right. Lattice | 3

; | points are identified by ordered pairs, (a, b), where a is the right camera ray number and 4
: | b is the left camera ray number. The intervals are identified by ordered triples, (a,b, c), :

| defined as:

| | a) Right camera ray at right end of interval. 3
b) Left camera ray at rizht end of interval. 3

| | c) Type of interval (one of the six described above).

| Notice that type 3 intervals are aligned with rays from the right camera, thus are invisible :

| to it. Similarly, type 4 intervals are aligned with left camera rays. Types 1, 2, 5 and 6 p

{ | are aligned so as to be visible to both cameras. E
r

| The stereo zone in Figure 2-7 includes only nine lattice points, the intersections
: | of L1, i.2, L3 with R1, RR2, R3. In general, a profile starts somewhere to the left of L1 :

| and R1 and ends somewhere to the right of L3 and 23. It may enter the stereo zone at |

| any voint on the left and leave at any point on the right, or, if the images don’t overlap, |
| it may not enter at all. In effect, the edge of the image serves as a surface which can

| occlude features in the scene. We term this effect windowing and have added rays LO, |
} : L4, RO, and R4 to represent it. The mechanism of expanding the lattice by une in each | |

| | + direction allows us to describe all the windowing effects in a convenient way. Intervals
which are occluded by windowing effects simply appear along one of the four added rays.

: | Thus, we may assume all profiles begin and end at special intervals (0,0,1) and (5, 5,1), |
: | | which are not themselves visible to either camera. |

So far, we have discussed profile intervals whose edges are always on lattice points.

! | | This is actually true only for intervals whose edges have no degrees of freedom, 1.¢., are
| : visible to both cawneras and thus must be fixed in space. If an edge is visible to only one

] § | ; camera, it has one degree of freedom; it is free to slide along the ray from the camera
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Fo ] that can see it. Usually its range is bounded by a ray from the other camera, above which | 4

| i it would cease to be occluded.

] | ~~ Some edges, due to windowing effects, are free to slide in either direction

| indefinitely. Finally, an edge may have two degrees of freedom if it is visible to neither :

} | | camera. This happens at the start or end of the whole profile, or in the case where an in- i
| visible joint must occur between two adjacent intervals that are required to have different !

j | oo slopes. (See the valley transition in next section), Usually, the two degrees of freedom are :

: | bounded by left and right rays with the result that the point may occur anywhere within

| | an infinite wedge defined by those rays.

| Thus, profiles which contain degrees of freedom are actually families of profiles, |
| |

| all of which have identical interval types and which produce identical images. We present |
oo the following notation for representing such a family of equivalent profiles. See Figure
{ .

]

Lo 2-8 for some examples.

| A fully constrained point is indicated by a dot. A point with one degree of freedom |

oo is drawn at the limiting position with an arrow pointed in the direction in which the point

| may slide. If the point’s range is unbounded, two opposing arrows are used. If a point |
3 has two degrees of freedom, the arrows are drawn to define the wedge in which it may be |

located, and the point is drawn at the vertex of the wedge. Finally, it may occur that two |

I different edges are drawn at the same position, one with a dot and one with an arrow. 8

| | In this case, the direction oi the arrow will make it clear which edge belongs to which 3

| | oo surface. In visualizing these profiles, you should imagine an elastic string tied to the fixed  ;| | | B

3 | dots, but {rec to be pulled along any of the arrows. The result will be a continuous proiile !
A which when viewed by the two cameras will produce the original sequences. i

| |
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; | Figure 2-7: The coordinate system used for profiles is based on rays from :
each of the camcras, passing through features (edges) in the scene, and 1

1 | through image boundaries. The rays form s lattice of intersection points
| that cover the stereo zone. Profile intervals join lattice points from left to |

: right, with most points having three nearest neighbors on each side.
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| that can see it. Usually its range is bounded by a ray from the other camera, above which 3

| J it would cease to be occluded. i
|

| Some edges, due to windowing effects, are free to slide in either direction
: indefinitely. Finally, an edge may have two degrees of freedom if it is visible to neither

camera. This happens at the start or end of the whole profile, or in the case where an in- |

| | visible joint must occur between two adjacent intervals that are required to have different |

| Co slopes. (See the valley transition in next section). Usually, the two degrees of freedom are || | bounded by left and right rays with the result that the point may occur anywhere within
: | an infinite wedge defined by those rays.

¢ | Thus, profiles which contain degrees of freedom are actually families of profiles,
| | all of which have identical interval types and which produce identical images. We present |

; the following notation for representing such a family of equivalent profiles. See Figure |

| 2-8 for some examples.

i j A fully constrained point is indicated by a dot. A point with one degree of freedom |

is drawn at the limiting position with an arrow pointed in the direction in which the point :

may slide. If the point’s range is unbounded, two opposing arrows are used. If a point 1

OE has two degrees of freedom, the arrows are drawn to define the wedge in which it may be 1

| i located, and the point is drawn at the vertex of the wedge. Finally, it may occur that two 3

| | | different cdges are drawn at the same position, one with a dot and one with an arrow. ;| :

: | In this case, the direction of the arrow will make it clear which edge belongs to which 3
i | | surface. In visualizing these profiles, you should imagine an elastic string tied to the fixed ;

3 | oo

: | | dots, but free to be pulled along any of the arrows. The result will be a continuous profile
: | which when viewed by the two camerae will ¢.~¢  :& the original sequences. :

I Re
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: Figure 2-9 ia an exaiaple of reconstructing a profile from epipolar lines. The | 2

: To dotted lincs at the top of the figure represent epipolar linzs in the left and right views of | 3
Lo a stereo image. If we extract these lines, together with the image line intersections, we | £

] | » can then back-project to get our grid. The task then is to reconstruct a profile passing 2

| : through the lattice points of the grid. The particular profile shown is the one we had 1
Co ]

8 in mind when drawing the original images, but in general we must identify the correct |
; match from all possible matches. At this point gecmetric constraints enter the discussion. | p
p | a

Lo Some matches imply unlikely geometry in the scene; others are simply impossible | |
: 3 under our basic assumptions. Several useful constraints are suggested by this example. i

| | The length of the intervals between intersection points can be used, as short intervals are |

| more likely matches for other short intervals. A good match criterion is edge angles, i.e,

the angle of the image lines where they intersect the epipolar line. On this basis alone, :

| L4 should match R3. The length of the extended edges would help distinguish L3 from ;
£ | ' i

1.2 a8 a match for R2. {

: | In this section we discuss several of these constraints and attempt to quantify ]
] | them for use in evaluating a match. The evaluation nction thus developed will be used 1

i .

2 in the dynamic programming algorithin to provide solutions to one-dimensional stereo !

8 | { matching problems. £



Fi Po EE Ce mpeegee ] } 3

aT SO,ng

{ | Automatal Stereo Perception Theory $2.2.1 24 3

SE 1. I
: hs

SE Ll a U3 4 Ls RI RX R3 RY |
SE \ “oo \ Ned ’ veri
{ a. \ \ \ \ vo / Sy 7 i

by \ \ \ h / \ / :

: Co \ \ » / \ Vo

] { \ \ / TE
| \ | V / |Lo \ \ \ / / /i \ / :

| \ A 7 \ / \ ' / SE
| \ ’ am NY \ PF 3

| | \ \/ \ / | | ]
SEE \ /\ \ ; \ / | 3

| | | 7, \/ \ rs Poahy \ 3 |

. 0 vO \ / A |Co | 7 YY { 5 \
) | 7 \ / \ / \ WCPPTR. TED ) | |
he | / / \ \y \ Pere : :

b | / / A \ !
i | RJ 4 / \ A IR \ 1

| Figure 2-9: Two epipolar lines are indicated in the sample stereo image
i } . . * I

| ; at the top. Below the image, and to the same scale, these lines are stripped A
| | of ail information but the edge intersection points and the angles of those 'y
Cl intersections. The profile shown is one of many possible reconstructions

ob from this data. i

&
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| The profile in Figure 2-9 has been labeled with the ordered triples we use to .

identify intervals. These labels cannot be assigned arbitrarily. In particular, consider L2, 5
}

: | the second edge in the left image. We are interpreting that edge as visible only to the 3

| left camera; there is no edge in the right image to match it. In order to block this edge 3

: | | from view, the surface extending from it toward the right, (2, 3,3), must have a slope 3
: | greater than or equal to the slope of ray R2 (type 3). On the left side of that same edge, ]

j | the interval (2,2, 2), which is in part visible to both cameras, must have its right edge 3
| | occluded (type 2). Thus the premise that edge L2 is occluded has placed constraints on :

: | its adjacent surfaces or intervals. :

1 We now consider all possible joints or transitions between two intervals. If we ]

; | look at only the part of an interval next to the transition, we find that our six interval

| | i types lead to four possibilities: | |

| | 1) surface visible to both, edge visible lo both, .
| ¢) surface visible to both, edge visible to only one,

3) surface visible to right only, |

| 4) surface visible to left only. i
; ! ]

| If we made these choices independently on each side of a edge, there would be
3 sixteen transition types. However, occlusion constraints make five of these types impossible ~~ 1;

; y under our assumptions. They are excluded because either there would be no surface to E}

: | occlude an edge which shouldn’t be visible, or there would be a surface that must occlude |
| | a edge that should be visible. The remaining eleven transitions are illustrated in Figure !
=

| 2-10. Again, the dots indicate edges visible in both views, and arrows indicate degrees of |

| iwwcedom, Note the two degrees of freedom in a valley, where a joint must be present, but
’ is visible to neither camera. Also, in a right cliff, for example, the interpretation is that

| the visible edge belongs to the left surface, while the right surface is free to slide along ]
| the arrow. We hypothesize an invisible surface and joint connecting the two to preserve A

‘| , profile continuity. 3
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| | 2.2.2 -- Edge Intervals 44

| | Given an object surface, its image at a particula. epipolar line will generally 13

| | consist of two bounding edges and the interval between them. If the object surface is
| | visible to both cameras, there will be a corresponding interval in each image. The lengths ]
| | of these intervals are related to the angle of the surface and to the camera geometry. : ;
| | | The lengths can takz on any values, but for moderate or small baselines they are usually i]
| | | | comparable. In this section we describe a method for quantifying this relation; the next |
| | section presents the detailed mathematics. : :

| Under our assumptions, each epipolar plane cuts a continuous profile in the scene. i

| 3 Now consider the case where the profile consists of a central small surface flanked by two N
| : larger ones extending off to the left and right (see Figure 2-11). We want to vary the | |
| | orientation of the small surface and see what happens to its image. In general, the left |

| and right images will show an interval between two edges. The length of the interval will | |
| | depend on the orientation of the surface and its position with respect to the cameras. For {
| | some orientations, one of the edges may be occluded and the small surface may not be |

visible, |

| | We see immediately that there is a simple fuiiction mapping orientation, 1, to |

| | projected interval lengths, p; and p,.. Since ‘ve are working to reconstruct the scene from {
| the image, we need an inverse function mapping some image parameter to 9. To do this, A

Lo we define a ratio, R == p,./p;. This has the advantage of reducing the information {rom the 1
i | image interval lengths into a single number while ~liminating the dependency on segment | i

length, d. (The derivation is presented in the next section.) Now we can easily invert the ]
: function and take the derivative. The resulting d¥/dR is a scale factor which indicates |
| how much a unit length in “R-space” is stretched in mapping to “d-space”. This allows 3

| | us to translate probabilily densities. I'or example, suppose an interval ratio a maps to an E
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orientation A, the derivative of the mapping at a is D(a), and the probability density at E

| orientation A is P(A). Then the probability density for ratio a is D(a)P(A). :

The derivative D is normalized and plotted against R in Figure 2-12a. 9 ranges

| from -90 to +90 degrees while the domain of 2 extends from —oo to +00. A ratio 3
|

J of zero corresponds to a surface exactly in line with the right camera, while a ratio of §

: +00 corresponds to alignment with the left camera. Negative ratios result when the |
: | : surface presents a different face to each camera. If the surfaces arc opaque, this condition

| : corresponds to occlusion,
| :

| : Given this mapping, we are now able to translate probability disttibutions in one |
¢ | | | domain to probability distributions in the other. For example, we are interested in the

: ;

| following problem: assuming a particular distribution of surface angles in the scene, what

! a

| ;

Re ~. * ;| : / /’ N \ ) , ]
- ! / / *. \ »

: 4 h \ ;

| | Fr & / / BN \ :. / J ha A 1
] gl /, “ \ 3

| + ow! ww \ ;
f Rd RW . 1

: oO bp >» © i
1

| —B | |

| |
i | : Figure 2-11: The calculation of the Iidge Interval Constraint is based on :
Co : the camera geometry shown here, viewed along the y-axie. The ratio of

Ea | | projected image intervals, p,/pi, is a function of surface orientation, +. |
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|
} -

| | disiribution of interval length ratios can be expected in the image? Knowing the answer
| to this question will help to discriminate among potential stereo matches.

| | | If we assume that the small segment in Figure 2-11 takes on all orientations |
uniformly, then D exactly equals the probability density for interval ratios. The peak near

R = 1 indicates that under such an assumption, most inte vals tend to have comparable

| lengths. This peak becomes much sharper for narrower baselines (see Figure 2-12). Human
|

: | stereo at a range of 1 meter uses a baseline of F/z == 0.07. With that geometry, half of all
| | ratios lie between 0.93 and 1.07. Note that integrating the probability function between

| —o00 and 0 gives the range of angles for which occlusion may occur. When norraalixed, |
Co this is the probability of occlusion. |

: ]

_

- i : 8

So 10 Ce +o w

| i Figure 2-12: Probability density is plotted against interval length ratio to | §
| show which ratios are most likely to occur. The curves peak near R = 1, f |
| indicating that the lengths in the (wo images are most likely to be very hi

| similar. The shape of the curves varies with the camera geometry. In 3
| | \ | this Figure, the morc sharply peaked curve results from a narrow baseline |

| (B/z = .07), while the broader curve is for a wide baseline (Bz = .2). The |
oo : same two curves have been scaled in b to satisfy the symrnetry condilion
gp ] that requires identical values for ratios that are inverses, 1
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| | There is one problem with using the results of Figure 2-12a directly. While the )

function gives the true probability density per unit R, dR is a nonuniform unit varying in
| length from 0 to oo. Consequently, orientations which are simple reflections, i.e., ¥ and

ol ST ivative by a factor of R

4 —¢, yield different values. To adjust for this, we scale the deriva oY ) ]
| | ) yielding the function in Figure 2-12b. This function satisfies the conditions of symmetry,

in that symmetric orientations now have :dentical values. Another way to get this same §
| result is to use logR as the image parameter and take the derivative of J with respect to |

| | log RR.

| | B. d. and 9 are given. The 1]
| Lo Referring to Figure 2-11, we assume that =z, 2, 1, 4,

projected interval lengths, pi and p, are determined: it

: | dcos? + x dsind + 2 |

fd =zcosY— z sin ¥ (2 — 1) |
p= dsin?d + 2

| | pz/f—(B—3%)2

J | J+ (B— z)sind 1JE _ fd zcosd +(B-zjelny (2-2) i
Cd r=" dsind + z 1

bE EERE TRI Ca EEN
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Letting R =p, /p;, a = B'2 and § = z/a: | |

| | R = zcosd + .,3sint -- zsind || ~ zcosd —maind

| cot? —z/z

a :
—  m————— 2 — 3 ]

Now we nced 9 as a function of R:

| | g=cot~ tS_ 4 5) 2= cot, BT 1 ) (2-4) |; |

Co This gives a function mapping the image parameter R = p,/p; to the object ;

| | space parameter ¥. The mapping of probability densities requires the derivative of this odN Cd

| | function. Using:

d ._, du ;

. we substitute to find: .

do « !
: | DR) = — =5 cmmeee—me 2-0 !
! (R) dR (a +bR-1))2+ (R—1)? ( )

! As noted in the text, DD is not symmetrical in is use of R for the case where the a

object is halfway between the two cameras (b == .5a). By noting that dK/dlogR = R, | i
we have: Bu

oo “9 R |
| DR)= em 2-6
| (2) dlogi2 (a+bR-1))2+(R~1)2 ( )

|

{ 1
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: | This function is symmetrical in RE (D'(1/R) === D'(R)) whenever b = .ba, as shown by: | 3

a/R : _ aR 2

3 : (a+ .5a(1/R—-1))2+(1/R-1)2 (aR — 5a(R—1))2 + (R—1)? || aR
| | "(a+ .5a(R—-1)2 + (R -1)% 3

| 1
: Finally, we locate the extrema of this function by taking the first derivative:

{

¢ dD’ a
SR RE 5 = ————————————————(—(b* + 1)R* + (a — 5) + 1).

(6+ BR ~ 1) + (R = 1)9 J

| Setting this equal to zero and solving for R gives the values for which D/(R) reaches a | |

maximum and minimum: | |

[1+ (a:-b)? 1: R = —— 2-7

| : : 2.2.4 — Edge Angles :

| Given a corresponding pair of edge curves, one in the left image and one in the 4

i right image, we are interested in how their angles are related (or mere precisely, the angle 4

5 of intersection with a given epipolar liae). In general, the two angles may take on any 3

Co values, but we intuitively expect them usually to be similar, especially for moderate or 3

| BH small baselines. This is in fact the case, as we will now show. (The next section will give 2

! ¥ the detailed derivation.) ;
x ¢

R 4 Consider an object edge passing through a scene point (z,y,z). The edge at j

| | ; that point has an orientation in three dimensions which can be characleiized as a point k
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| | on the surface of a unit sphere, whose origin is (z,y, 2). This is known as the gaussian

| | sphere, and points are located on its surface in terms of spherical coordinates @ and ¢
(ree Figure 2-13). The spherical coordinate axis is parallel to the z axis and 0 corresponds

| to longitude, measured counter-clockwise from the z axis when viewed from the cameras. |
¢ corresponds to latstude and is measured from the sphere’s axis. |

| The object edge projects to a line intersecting the epipolar lines in the two images

| determined by (z.y,2). Let the angle of the image curve in the left image be 8; and in
the right image be 9,, measured counter-clockwise frorn the z axis. A continuous function i
maps poinis on the gaussian sphere to pairs of image angles, (6, 0,). Similarly, there is an |

& | inverae function which maps points in the space 8; X 0, to points on the gaussian sphere. :
| | | This inverse function is defined everywhere except at (0,0). This is because the great :

| circle of points on the sphere for which § = 0 all map to (0,0), and the function is not 1

| invertible at that point. |
This inverse function allows us to translate probability distributions in one

domain to probability distributions in the other. If, for example, there is a uniform 1

| distribution on the gaussian sphere, we could calculate the expected distribution of image {

} angles. In other words, if all object edges are randomly and uniformly distributed in 3
| orientation, are some combinations of (6;,8,) more likely than others? ]

| We know the mapping from 0; X 0, to 8 X ©. The determinart of the matrix

| | of partial derivatives (Jacobian matrix) is the scale factor for area under the mapping, A
| and thus is the scale factor for probability density. Suppose point (a,b) in 0; X 8, maps

: | to (A,B) in 0 X ¢, and thal the deterruinant of the Jacobian at (a,b) is D(a, b). Then a :
| small patch around (a, b) maps to a patch around (A, B) with D(a, b) sin © times the area. i

| The sin ¢ term compensates for the area distortion of the spherical coordinates. If the 3

| probability density at (A, B) is P(A, B), then the probability density at (a,b) is :

oo D(a, b)P(A, B) sin p
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{ | Figures 2-14a and 2-14b show the function D plotted for a stereo baseline typical | 3
| of aerial photographs, B/z = 0.7, For the uniform distribution assumption, this surface | ]

! corresponds directly to probability distribution over 0; X 0,. The surface forms a high, | 3
| | narrow saddle along the line 8; = 0,, with a singularity at (0,0). This corresponds to | E

| | | | the intuitive notion that left and right angles are usually similar, but the sharpness is | 1
| | surprising. Hall width at half m ximum (HWHM) at the center is 30°. As Figures 2- | 1

| | 14c and 2-14d show, probability functions for narrower baselines are even sharper. For | 3
| B/z = 0.07, which corresponds to human vision at a range of about 1 meter, the HWHM | 1

¢ Co at the center is 3°. |

| Another way of looking at the data is to consider the distribution of “wrong || i matches”. Suppose we choose an edge at random from the left and from the right, and try |
: | to interpret them as corresponding. if we do this for a large set of edges we will produce

a distribution of cdges in 3 dimensions, i.e., on the surface of the gaussian sphere. The :
nature of the distribution will depend on the distributions of #; and 4,. |

| We originally assumed a uniform distribution over the gaussian sphere. For this | |
3 | case, it is easy to show that 0; and 6, are also uniformly distributed. For each value of |
; 0; in the image, there is a corresponding set of points on the gaussian sphere. This set of |
| | | points forms a great circle, that is, a circle of unit radius. The probability of a particular |

Co value of 8; occuring depends on the integral of the gaussian sphere probability distribution

| over that circle. If we assume a uniform distribution on the sphere, then all circles will
3 | | yield identical integrals. Similarly, 0, will be uniformly distributed. | |

| If we choose unrelated left and right edges from these uniform distributions and

; | project back to the gaussian sphere, we get the distributions shown in Figure 2-15. The |
| R | distributions, which are actually on the surface of the sphere, have been cut in half and

: | | projected onto the plane of the image for display. The result is a sharply double peakad :
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j Figure 2-14: Probability density is plotied against image angles to show | :
which combinations of angles are most likely to occur. The curves peak 1

| near the line 0; = 0,, indicating that the angles in the two images are most 3
; | likely to be very similar. The shape of Lhe curves varies with the camera )

| geomevry. Graphs a and b are tive views of the function for a wide bascline 4
| (B/z = .7). Graphs ¢ and d show the much sharper function for a narrow 3

| : baseline (Bz = .07). 1
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IE X Y 0X Y s

gq | A) B)

| Figure 3-15: If edges from the left and right images we.e matched at ;
| random, the 3-dimensional orientations of the reconstructed scene edges |
| | would be distinctly non-uniform. A uniform distribution of image edge |
i angles maps to a distribution on the gausssan sphere that is strongly peaked
| along the line of sight of tlie two cameras. Surfaces ¢ and b result from

baselines of B/z = .7T and B[z = .07, respectively.

| distribution, with each peak oriented toward (and the missing half away from) a camera.

“ This violates the assumption that the scene should be independent of the observer. Such |

| a distribution could be used to identify wrong matches. 3

a | Figure 2-15a results from a wide baseline of B/z = .7. The twin peaks are quite

| | | clear in this graph; each contains a singularity at p = 19.29° (tan = .35) and 0 = 0°
: or @ = 180° that has becn clipped to limit the height of the graph. The distribution has oO
; |

| a value of zero along the “equator” where 0 = 0° or 180°, and a value of .7 at the “poles”

| | where @ = £90°. This rises to a value of 5.6 at the saddle between the peaks. i
; | Figure 2-15b, based on B/z = .07, is similar in shape but more extreme in value. :

3 " It is graphed at the same scale as I'igure 2-152 {or comparison. The singularities are o.. |

Cl
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| the equator at ¢ = 2.00° (tan¢ = .035) and the poles have a value of .07. The peaks
are not separated at this scale since the saddle between them has a value of 525. 3

SE 2.2.5 — Angle Constraint Derivation | 3
Co \ i

1 | | Refer to Figure 2-13 for geometry of this derivation. We wish to derive the 1

| : function mapping 6; X 0, — 0 X ¢, where 3

| | 0<0< }

Co 0<p<m !

| The approach is to convert to rectangular coordinates, do the stereo projections, and {
: | convert to spherical coordinates. The stereo projecticns are given by

SE | ff

f f

| (z, Yr) z,) = (Les = B), PL / ’ :

| and the inverse projections are given by :

oo y= u="12y: = = = — F

SE F1 zd _ x __*

| 3 L Fi ld + B, 3
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Eb where: 1

i f is the image length, | | 3
RE B is the base line, 5

| | (z,y,2) is a point on the object, | ]

4 ; (z¢, y1, 21) is a point in the left image, and | 3
J (z,, yr, 2r) is a point in the right image. | 1

| Now consider a unit vector in the left image, centered at (z;, 1), at angle 6;. The |

| Lo tip of the vector has coordinates

q zp == 2; + cos fy |

| | Yi = i + sind. |
FE | P

i From epipolar geometry, we know the points in the right image corresponding to the | i
endpoints of the vector will have the same y-coordinates. Thus, the length of the vector | J

| in the right image must be sin 8;/ sin 0,, and | | |
| | j

Eo 7" tan, 2

| / |]
Y Lo Y, = Yr + 8in0;, 5

-] | where 0; is the angle in the left image plane and 0, is the angle in the right image plane. i

| ; We now ‘nvere: - ‘ect to get the points (x,y, 2) and (z',9, 2’) in object space,

] | : the origin and tip of the vector respectively. Note thal this vector will not have unit |
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yo length, but its orientation will supply the correct value for § and p. The values 2’ — z, |

| Ly vy’ —y, and 2’ — z will be needed: ! 1
SE : |

4 _ |

| : T —%= (21+ cost) Fo bo

| | B z; + cos 0, T i| == —_—ee — ———— Lo
Zy— ZT, + cosy — nah = Tr |

J —y=2D yi + sin 0; lb
| _ | Ty — Ty + cos; — male Ty — Ty oo

SE 1 i
d—-z2=fB —-ouo————— |. Lo

| Zz, — xz, + cos; — poh T= Tr
7

| To simplify further calculations, we use the following substitutions: :

| B |

Lo] EE| “ sin #
ro (x4 — x, )(21 — 2, + 2080; —~ gtL)
. .
! Sin 0, :
| U=|(zy—z,)co80;— xy] cosy— ——— Cd| (21 — =) l ( ban 0, |

! . rod
| sin 0; Lo

¢ Cd V=(z;—z,)8n0;— y;| cos)— ——- po

too {1
Ld sin @
Lo W=—flcosby— ——— |. :
| : / tan 0, |

SE 5

2 | £ Then z/ —2 = QU, y'—y = QV, and 2/ — z = QW and we can easily convert to spherical |

= Co _— empeen — tam rem ea eePA ee oi pt meme. +m J
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;

coordinates:

! ‘wr . i
Pe i ¥N _,. afV

0 = tan (£4) = tan (7) (2-8)
| —1 ZZ —z
| | © = co8I———

Co Va =a) +{y — 9) + (2 — 2)?

Lo Ww

| == ccs”! (cores) (2-9)| VUT + VIL WI, |

This completes the derivation of a function mapping image parameters 6; and 8,
]

| | to object space parameters 6 and p. The mapping of probability densities requires the

] derivative of this function, or more precisely, the determinant of the Jacobian matrix. 3

| | The Jacobian matrix is given by:

|

| J = ; I, ) ;
: To calculate these values, we will need the partial derivatives of U, VV, and W: g

ou cos 0; !
Yl —_— = -_— I 0 i 0 |a0, (z( — z,)sin 0; + a sin | + tard.>)
| ov . cos 0;: | 30; = (x; — z,) cos 0; + win 0; + or)

— == fl 8inl; +—— :| J9, f( tan>)
OU _ —msind | :

d | g ao, sin? 0,
i

| OW _ —[uin,
SEE 3,  sin?0, |

a RE SS RT CO. me aEre NS IVad —— | a ) — : — Raaai Fra
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| : Now we have E |

SEE 9% 8. ,V _UsK-V§&
SN dz ~ Oz U  Ut+vi

i | Substituting d = VU? + V? + W%, we have | |

dz VUT+VE + W3 |oo Op_ 0 WWE dE |
| dz Oz d  dJVdi—Ww3 | i

al WU + VEL + WY) — SEU? + V+ WR)
so (UR + VI + WI)WUT HV?

SE

We can calculate the components of the Jacobian matrix by substituting 6; or 8, for z. | |

Toe determinant is then g

J 30 dp 80 dp 5

| Finally, this probability scale factor must be corrected for the area distortion of the |
| i spherical coordinates: |

i scale factor = D(0y, 0.) sin op. (2-11) | |
1 This function is plotted in Figure 2-14 for different camera parameters. The I

i resulting saddle-shaped surfaces have been numerically integrated to give a volume of [;
| | about 2x, or an average value for the function of 2/x. 4

] 1 ;
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| The extent of an image curve can be useful in evaluating matches, subject to 3

i | certain limitations. We define extent as the difference in y-coordinates of the two end | i\¥ |

| pointe of 2 curve. This measure, even more than edge angle, involves two-dimensional | :

k | information, but we believe in using constraints as early in the processing as possible, | 1

; provided there is a clear way to apply them. Ideally, image features in isolation should | :

| | have identical extents. This is due to the normal camera model we have chosen, where |
i |

stereo disparity occurs in the z direction only. Several things can modify this, however.
| :

1 8 Inaccuracics in the sterco camera model can cause deviations in the projected position {
| | | of the endpoints. If the images differ by a scale-factor, the difference in extents for a |

matched edge pair will aiso depend on the magnitude of the extent. ;

i | Fdge extent can be measured only where both end points are visible to both |

i | cameras. liowever, for some occlusions, we can derive an inequality condition, which '

still may be used to discredit & match. We assume occlusions from the presence of

a T-junction, which Binford and Lowe [Binford 1981, Lowe 1981] have shown may be i

considered a necessary condition for occlusion of a curve. Figure 2-16 illustrates four

| | potential matches, two of which satisfy the inequality and two of which don’t. |' {

3 | Finally, image curve segmentation can cause problems. Segmentation means

| breaking a long complex curve into simpler pieces, connected end to end. Since cor-
| | |

. responding curves in the two views are segmented independently, corresponding pieces |

; | may have different extents. This may be compensated or at least recognized by examin- at

| ing the junctions at the ends of an image curve. A 2-junction with similar curve may |

| suggest a scgmentation problem, especially if the tangents or curvatures are similar at |

EL # Co that point.
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bi

FL A) 8) |

8
| Co

| | Ci D)
SE LEFT RIGHT LEFT RIGHT

; | Figure 2-16: Slanted T-junctions can mean that an edge’s extent is known oo
only to an inequality, but this is suflicieit lo reject some matches. The

h stereo pairs shown in b and d are possible matches; those in a and ¢ are |

| not.

!

| Image intensities can be used as a match criterion, although they have many
! { | LJ [ J + * LJ Ld
| | drawbacks, as discussed in the introduction. Still, with a proper allowance for error, they |

can help to resolve some ambiguities. We have used a simple measure based on average
:

! brightness across the interval, but a more sophisticated approach might use arca-based
| k

correlation with image curves as boundaries.
o | “

' . : Other geometric constraints may be taken from the vertices of image curves. For

; example, if a curve terminates in a 3-vertex in the left image, there are only certain types {

| 3
.

| A
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of 2- or 3-vertices in the right image that could match it. ‘This type of constraint can !
| » ' L * | 1
| be very strong in certain restricted scene domains, like right parallelepipeds, but some .

| | | | is type of measure, || eral scenes. We have not yet made use of this typ |constraints apply also to gener BE

|]

| |

!

| :

|

4 | )

| ’ $ ee il ! "a 3 HP EE Yin i X i
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| : 2.3 Dynamic Programming : | |
| | : Dynamic programming is a technique useful for matching two sequences. A

typical application is in speech recognition, wliere one of the sequences is the model of

: a spoken word, and the other is the encecded signal derived from a microphone. Various

~ portions or phonemes may be stretched or compressed, but the continuous flow of { ne ;

: | guarantees that no two components will be out of order in one sequence relative to the
other. Dynamic programming attempts to map one sequence onto the other, subject to

these constraints.

§ 2.3.1 — Introduction to the Viterbi Algorithm

The Viterbi algorithm is a dynamic programming algorithm which finds a “best” ;

match from among all the allowable matches. Figure 2-17 illustrates this algorithm :
applied to a simple problem. The sequences to be matched, {L;} and {R;}, define the two |

| dimensions of a matrix; each entry is determined by a pair of elements, one from each
sequence. A function is defined on this matrix such that each euiry represents the cost ;

| of matching that pair of elements. This function measures the dissimilarity cf the two |
elements. A path will consist of a sequence of nodes, each of which corresponds ic one

- entry in the matrix. The goal is to find a path through the cost matrix such that the sum .
of the costs along the path is a minimum. :

| | | To do this ve need to define a set of transition rules that specify the allowable :
| | successors to a given node on a path. These rules may be derived from constraints on the |

: | original problem. For example, assume the following constraints: |
| e The sequences must be matched monotonically.

| ¢ livery element of each sequence must be used atl least once. |

| | These constraints are equivalent to assuming that the path musi start in the lower left
Cy | | corner and end in the upper right, and tha’ from cuch node, a transition may only be
: | made one unit vertically, horizontally, or diagonally.
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1 Figure 2-17: The Viterbi algorithin finds the best path through a cost
] | matrix such as the onc illustrated in a. Itac% transition of the path may §

F. be up one unit, right one unit or both. A second malrix (shown partially
J | completed in b) is constructed giving for each clement the lowest cost of |
3 | : a path from the start (1,1) to Lhat element. When the second matrix is
i | complete (as in d), the entry in the top right corner gives the minimum cost, 1

; and the corresponding path can be traced backward.
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| The Viterbi algorithm proceeds by constructing a second matrix, of the same | ]
| | dimensions as the first, each of whose entries is defined as: | :

The accumulated cost of the lowest cost path from the starting §

i node to the node corresponding to this entry. 1

The matrix values are filled in ascending crder, left to right and bottom to top, beginning ]

| at the lower left. The transition rules guarantee that when it comes time to fill an entry its .| | three predecessors will already have been assigned values. The algorithm simply examines g
cach of these predecessors, adds the cost for the current position (from the cost matrix),

and selects the lowest sum, This sum becomes the value for the current entry, and a

i % | pointer is stored to indicate which predecessor was selected. |

Figure 2-17b shows w partially filled matrix. The filling began with entry (1,1), ;

which, having no predecessors is simply assigned the corresponding cost matrix value of 1

| 5. Tor the rest of row 1 and column 1, two transition types don't apply, so only horizontal | J

| or vertical transitions, respectively, are used. In Figure 2-17b, the next entry to be filled |
| is {3, 4), whose cost is 5. The algorithm compares 14+ 5, 6 + 5, and 14 + 5, corresponding

| to vertical, horizontal, and diagonal transitions, and selects the second, filling in value 11 |

] and a pointer back to (3,3). Note that two or more predecessors may produce the same
minimal score. If our purpose is only to discover an optimal path, we may choose any one |

: of them to store as cur pointer. The case of more than one optimal path is best handled |
by the Viterbi extension described later. |

|

| | After the last position has been filled, the stored pointers are followed backward |
| | to the slarting node, tracing out the optimum path from the upper right to the lower left. | |

| | Figures 2-17¢ and 2-17d show the final path. !
i | In applications dealing with very long or infinite sequences, it is pousible to 1

. | truncate the best paths to some depth ¢ [Forney 1973]. This corresponds to choosing i
- | : a single node to represent the previous history of the sequence, and continuing to explore §
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. all possible paths out from that node. In most cases, & may be chosen such that the best :

| | path fer cach node under current consideration passes through the same node o steps

| | ] back. Thus, the graph may be truncated and no information will be lost. This technique (
| | | limits the working matrix to a manageable size. However, our application has used only

i | relatively short sequences, and we do not use a truncating Viterbi algorithm. 3

2.3.2 — Modifications for Stereo |

| We now discuss some modifications to the Viterbi algorithm to make it more || suitable for the stereo matching problem. Because we must allow for occlusion, it is i

i possible that certain sequence elements may have no match in the other sequence. Thus, |
| | . we will use an algorithm with the following cuastraints:

: e The sequences must be matched monotonically.
: e Each element of a sequence is used at most once.

| y The question arises of how to assign a cost to an unmatcheu element. It certainly
should not be zero, or the optimal path would be one where none of the elements of |

| either sequence were matched. Instead of assigning an arbitrary high cost to unmatched

| clements, we have redefined the problem slightly, We replace the cost matrix with a
similarity matrix and look for a path of maximum similarity, rather than minimum |

=. | dissimilarity. Each matrix entry is a measure of how well two elements match, and |
unmatched elements may be assigned a zerc score. A set of transition rules which |

; | | implements this {cllows: |
| e Vertical or horizontal transitions of one unit indicate occlusion I

3 | | of the element whose row or column is being entered. |
e Diagonal transitions of one unit indicate a normal match associat- |
ing the elements belonging to the newly entered row and column. |

| Note thal with these definitions an isolaled node no longer represents a match; the type |
BN | : of transition leading Lo the node is part of the representation, i
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| | The algorithm is modified to select the maximum rather than minimum value | 3
| | | for filling a new entry, and the cost for the current position is only added for diagonal | 3
] i 2

: | transitions. We will illustrate this with an example shortly. | :

| Finally, it is desirable to eliminate the restriction that the path always runs from <
| . I 3

the lower left to the upper right. It is possible that the first or last few elements of a Bn

| | sequence are unmatched. This corresponds to allowing paths to begin at any point in the 4

i first row or column and end at any point in the last row or column. We already have a §

¢ | mechanism for skipping unmatched elements (vertical and horizontal transitions), which ¥
| is equivalent to the ending condition. The simple trick of adding a zeroth row and column

: allows the same mechanism to provide the beginning condition as well. Any entry in the |
!

3} | : At 3

first row or column may now be the effective start of the path since it may be entered on | |
the diagonal from the zeroth row or column. The algorithm proceeds from the lower left i

to the upper right as before.

: | Figure 2-18 illustrates the modified Viterbi algorithm, finding the maximum :
f .

| scoring path subject to the above constraints. Figure 2-18b shows a partially filled matrix, :

| where the next entry to be filled is (3, 4), whose similarity score is 5. The comparisons to

be made are 13+0, 16 +0, and 13 +5, corresponding to vertical, horizontal, and diagonal 4

| | transitions respectively. The maximum value, 18, is stored with a pointer back to (2, 3). 1
!

Figure 2-18c and 2-18d show the optimal path, traced back from the pointers. Note that | 4

L # the clements corresponding to row 1 and column 3 are not assigned a match.
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| | Figure 2-18: The stereo Vilerbi algorithm differs from that in Figure 2-17 |
: | : in three ways. The cost matrix is replaced by a similarity matrix and the

path of highest sitnilarity measure is found. The same three transition types ;

| | ; are allowed, but only diagonal transitions accumulate a score. A special row
3 i and column are added so that (1,1) need not be on the path. The partially

| | : and fully complele second matrices are shown in b and d. The atrix at ¢ i| ; shows the four clements thal were assigned stereo matches. ;
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| | 2.3.3 — Extension to the Viterbi Algorithm |: | In the dynamic programming literature there arc several algorithms for deter- d
| mining the “best” paths through an arbitrary directed graph. Hoffman and Pauley !

: [Hoffman 1959] first published an algorithm whose application was finding the k shorvest :
| routes through the streets of Detroit. A conventional shortest path algorithm was run
| | first to determine the best path to the terminal node from all other nodes in the graph. |

f | Alternate paths were calculated as deviations from this path. In other words, an optimal j
path was followed up to some node A, at which point a non-optimal branch (deviation) ;

; to B was taken. From B, the best path to the terminal node was followed. This process 1
g was repeated, as the third best path must be some deviation of the best or second best. :

| | An improvement to this algorithm was published as part of a survey by Dreyfus

| [Dreyfus 1969), and this algorithm was itself subsequently improved by Fox [Fox 1973].
| | All of these algorithms produce one new oath per iteration, each iteration requiring

computation proportional to the number of nodes in the graph. ;

: | Any of these algorithms could be applied to the 1nodified Viterbi algorithm just i
presented, since the Viterbi operates on what may be considered a directed graph, where

- | each node has no more than three branches leading in and three leading out (vertical, |
| horizontal, and diagonal). However, we have developed a more efficient algorithm that

| | allows determination of all paths scoring within € of the optimum, where € is a threshold :
that may be chosen after the optimun. 1s known. As discussed, the principal idea is to

| | explore the allernate paths in addition to following the back pointers of the optimal path. 3

To permit this, the choices at every decision point in the algorithm are stored. || The choices are represented by the partial path similarity scores for each of the possible |
predecessors at a node. These sums may be stored explicitly or they may be recalculated j

3 . | during the search. In the examples presented above, recalculation is easy rom the matrix ;
| | of partial paths. Similarly, the back pointer that selects the maximum choice at cach §
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} | : node may be stored or recomputed, since ail the original information is present. The |
tradeoff is simply one of storage against time, since the recalculation may have to be done |
several times for each node. |

] | Figure 2-19 illustrates the search algorithm. We assume that the modified Viterbi |
i | algorithm of the previous section has run on the data of Figure 2-18, and filled in the |

| | "matrix of partial path scores. We require & stack with enough storage to hold all of the
| | paths that score within ¢ of the optimal. This amount of storage will be the sum of the

] | lengths of such paths, where length is in nodes, and a node is represented by an ordered I
- pair, (row, column). One prs’!:. :3 i ddressea here is estimating the number of paths |

q | expected and lence the storage * ;:ir¢cinent.

| The example has an optimal path score of 31, and we choose € equal lo 5; we

want to find all paths meeting our constraints that score 26 or more. The stack will use

4 | three pointers: one, TS, is the usual top of stack, used for adding paths to the stack; the
| 3 other two, SB and SP, are search pointers which will gradually work from the bottom of

the stack to the top. Initially, the three pointers are at the bottom of the empty stack.

: | | We initialize the stack by storing the optimal path, in reverse order. This path
3 | is determined in-the usual manner by following the matrix back pointers. Along with the |
] path are stored some additional data (actually stored in a separate index):

i i | o The relative score of this path.
3 | e A marker at the end of the path.
3 | | eo A marker at the first node yet to be explored.

3 | | In Figure 2-19, these are represented respectively by a number next to the first node, a |
bracket, and an asterisk next to the appropriate node. For the first path in the example |

4 | (the optimum), the relative score is 0, the path is seven nodes long, and the first node
{ | to be explored is (5,5). After storing this initial path, pointers SB and SP are at node |

4 : : (5,5), and pointer TS is one location beyond node (0, 0). |
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: |

| The main loop of the algorithm is: |
[ &

Examine ihe choices at the node indicated by SP. -
;

| Increment SP.

: | If SP encounters the end of path marker, then

| if this is top of stack, then done. |
| | | else move SB to first node of next path and move SP to| P

; Po marked node of next path.

| Continue. 3

| | _Patn Score Path Score ;
A | | $8-> (6,6) * 0 (5,8) 4
! | (4.4) (4.4)
; ! 3f-> (3.3) 13,3)
t ‘ (3,2) (3.2) : i

(2.1) (2.1)
| (1.0) (1,1) * :

| (0.0) (0.0)
« vee mse-eee

; | (6.5) 4 (6,6) ®: (4,8) * (4.4) y ;

: | (3,4) (3.3) | |: (2.9) (2,9)
| | | (1.2) (1.2)
: i (1.1) (0.1) * : q

1 9) L00,
| | (8.8) 2
: (4.4) 4
: (4.3) ° 3

- (2.1) !

SE (1.0) | 3
i { (0,0) 3
: (5.5) 4 i
; i (4.4) XN
2 } (3.4) ° 3
1 | (1.2) |
: ! (1,1) 1

9.0) 3
! = (8.5) 3 :

! (4,4) :
(3.3) 2

| (2.3) * 3

(3.1) |

i * (0.0) 3

| : Figure 2-19: Thc extension to the stereo Viterbi algorithm finds subop-
| ; timal paths. Shown here is the data structure used for the data in Figure 1

: | : 2-18. In a the stack is shown al a point part way through execution. The 1
| remaining entries are shown in b. i
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g Choices are examined in a loop, checking cach predecessor, ignoring the one marked with i

| a back pointer as the maximum. The procedure followed for cach predecessor is: |
| Recalculate the threshold by which this predecessor was rejected (the }

| | difference between this partial path score and the score chosen A3 MAax- 3

| | Add that amount to the relative score of the path pointed to by SB, g
| If that sum exceeds ¢, then done. i

| Else store this suboptimal path.
| The procedure to store a suboptimal path is: | | 1

| Copy the path from SB to and including SP onto the tcp of the stack. i
| | | Store the predecessor currently being considered onto the stack. ]
] | Mark this node with an asierisk. !

| | Continue storing nodes on the stack by following the back pointers of the |
matrix until node (0,0) has been stored. ]

Store an end of path marker.

Record the relative path score as the sum determined above (the one < ¢). |

In Figure 2-19, the full stack is shown, i.e., after all 7 paths are found, but

3 | | the pointers are shown for the state where the 5th path has just been pushed on the
| stack. Figure 2-20 shows the 7 paths and Lheir scores. After the search is complete, the :

| | | suboptimal paths on the stack may easily be sorted by relative score.
| | Note that each path pushed onto the stack consists of three party: the back end
| (higher coordinates) which is always identical to some previous subpath; the alternate

| choice transition, or deviation; and the front end, which is given by the matrix pointers.

| | The back end carries a penalty given by the relative score stored with the path from which
| | it was copied. The alternate choice transition carries its own penalty, just calculated. 1

\ The front end is an unexplored subpath, but ils score is optimal because it is determined



| | Automatel Stereo Perception Theory §2.3.8 56
|

| | \ 23 vw 5 JE SEE SEYI )

me ofJIT TIE AREER
ro 3A | HEEGIEEE alo] 111° HEC HE

| | WORE H\ wow A

lL ofJ 0) |
= J TIP REE |
= | Oe
. 1 {| HNO
a | SE EEEN Oo| 1

| CORE AY SCORE 177

bo I) TITER
- TTTI80 BENGE |
] [TI1] [EPL] oo
FE ATR es= fo:
| Scone 28 scone 27 |

s| 111] I®
Fo «L11 e |

oo AHERN
= Oe TT
SE Scone 26

1 | Figure 2-20: I'rom the data in Figure 2-18, seven paths can be found with |
| scores of 26 or greater,

SE

|
| I a TTTT ee



’ | Automata Sterco Perception Theory §2.9.4 57

| a by the back pointers in the pariial path matrix. Thus, the sum of the back end score ]
| and the current alternate choice transition gives the relative score of the new path. The

| mark represented by the asterisk ensures that only the front end of the new path will be :

| subsequently explored.

The algorithin finds all paths whose score differences are less than or equal to

| | ¢, and because it examines only those paths, it is efficient. All copying of paths is done ]

| with a destination pointer of T'S, which is incremented after cach node is copied. Thus, |
the total storage required is cqual to the total length of all the paths found. Also, the

examination of cach node requires a constant number of comparisons, and for cach node |
examined an entry is made on the stack, so the computation time will be proportions} to

| the total length of all paths found. This is of order kN, where k is the number of paths :

8 | found and NN is the shortest path length, |
| Although our algorithm has only been applied to the results of a Viterbi algo- |
| | rithm, it could be extended to work on a generalized directed graph. The principal |
| difference between our algorithm and published “k-best” algorithms is that ours finds all
| paths within ¢ of the best. There is no way of predicting how many paths will be found :

when ¢ is chosen; there is also no guarantee as to the order in which paths will be found.

| However, if a given ¢ results in k paths, computation proportional to kN will have been

| done, rather than kN? asin the other algorithms. Note that we use IN here to represent |
the length of an input sequence, rather than the number of nodes in the graph, which is

| N? by our definition,

| | Our algorithm produces suboptimal paths only between the terminal node and

| an initial node, whereas A-best algorithms generally produce paths between the terminal |
node and all other nodes, Bolh algorithms require per node storage proportional to the

maximum number of branches into any node. For our Vilerbi this is only 3, but in general, |
| it would be equal to the number of nodes, NZ. Finally, the k-best algorithms all have

| | probleins dealing with ties, s.¢. disjoint paths having the same score. This is usually |
solved by perturbing each branch value with a small random number. Qur algorithm has

| no such difliculty since it is not attempting to order the paths found.
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| | | 2.3.4 - Application to Stereo 1
| ‘Te discuss the application of the extended Viterbi algorithm to stereo matching,

| | | we nced to introduce the data structure, the evaluation function that computes the i
[ similarity measure, and the transition rules for stereo. j

| There are two choices for data structure: surface-based and edge-based. Since |
surfaces (intervals) and edges occur alternately within a sequence, they are essentially

| equivalent for one-dimensional matching. For our implementation, we have chosen to ]
| represent the nodes as intervals; surface descriptions are the ultimate goal, and intervals

| are closer to that than cdges. As we will explain later, we have not yet, been able to

| d produce a good surface-based data structure for two-dimensional matching, so the choice E
| of intervals in the short term may not be best. |

| ~~ Each row of the matrix will be assigned to each interval in the right image

sequence and each column will be assigiied to an interval from the left image. As discussed

in a previous section, intervals may be classified into six groups according lo visibility |
conditions. Ifach entry in the dynamic programming matrix, will be broken down into six |

| subnodes, cach carrying a different interpretation for that portion of the path. Subnodes

- | are identified by an ordered triple: (row, column, subnode type). |

| : The transitions between subnodes are limited to those allowed by the occlusion : |
| | constraints defined previously. These, together with the coordinate system based on edge :
| | rays, define a space of allowable paths. Subject to the original assumptions, only physically
| realizable profiles are allowed. That is, for every allowable path, there is a continuous,

| | connected profile of straight line segments that will result in the observed left and right

| projections.

| Figure 2-21 illustrates this space of allowable paths. In the diagram, each hexagon

8 | represents a node; the numbers within the circle represent the allowable subnodes at that
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| | positioin. Some subnodes are disallowed due to windowing effects. he basic transitions

proceed up, down, and horizontally to the right, corresponding te vertically, horizontally
i : i
! a . » . . LE 1

; and diagorally in previous rectangular grids, Given a subnode, a transition out of that i
j . . ;

; | | node is allowed only across a hex side labeled on the left with the current subnode number.
: | A transition across a hex side must terminate in a subnode whose number appears in a

|

| corresponding place on the right side of the hex side. For example, (1,2,4) may precede |

(1,3,3) or (2,3,5) but not (1,3,4) or (2,3,1).

| Thus, occlusion constraints serve to reduce the search space from what it would |

| | be if transitions were allowed between all subnode types. The rest of the constraints
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! are incorporated into the evaluation function, which serves as the similarity function in y
the previous examples, We do not understand exactly how to construct this function, J

3 but from experiments, the performance of the dynamic programming algorithm on real Po

| stereo data seems to be fairly insensitive to minor changes in the function. The principal :| 4

components of the function are the edge measures, angle and length, and the surface |

measures, brightness and interval ratio, discussed in & previous section. Each component : i
| Ld

| is normalized to a range of 0 to 1, weighted and combined to give a score {or each node. ;

The strongest constraint get the highest weight. The dynamic programming algorithm !

| maximizes the su.n of the individual node scores. |

| We have used both additive and multiplicative combinations of constraint -

| g measures at each node, and have had success with both types. The addition of linear
] | measures gives a low score only if all the components are lew, while multiplication gives oo

| a low score if any component is low. We currently multiply related measures (e.g., edge |

| angle and extent) and add independent groups (e.g., edges and intervals). The evaluation oo
functivn is discussed in a later section. ;

| The evaluation function depends also on the transition and subnode types. For ! :
| subnodes corresponding to occluded surfaces (visible only to one camera), a defauit :

3 measure must be used, since there are not two intervals to calculate a ratio or brightness |

} comparison. The default value is currently the approximate probability of a surface being .
» |

j | self-occluded, which is a function of the camera model. Similarly, a default is used for |

: | edges visible to only one camera,

| Some ad hoc measures have been used experimentally to favor profiles that are

; | globally simpler. Long intervals of types 3 or 4 correspond to drastic altitude changes in

| Co the profile. Two different methods have been tried to penalize profiles containing these
; a. types of intervals. One mcthod is to simply subtract an amount proportional to the

1 1 13
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| interval length for these types. Another is to calculate ezcess length. This last has the

; | advantage of being applicable to matched intervals as well. It is defined as follows: }

Sum the interval lengths, both if a match (types 1,2,5,6), otherwise just the

one (type 3,4). | ;

| l Calculate the minimal length surface in a profile wheze projected lengths :
| add to the above sum. |

Subtract this minimal surface length from the profile length calculated from |
the actual projections. |

| Thus we try to minimize the length of the profile, compared to its projected length. This

3 | favors smooth scenes over jagged ones [sce Figure 2-22). ;
Lo |

| A second ad hoc measure is a penalty for surface breaks. Whenever a node is

: | chosen for : »ath, we arc constraining the slope of the underlying profile surface in some ;
j

: a :

| ! ;

| A) B) | |I

i Figure 2-22: A lypical profile is jagged as in u. A minimal lal surface, b,
F | can be found whose total projected lengsh in the images is equal to that of
| profile a. The difference between the total length of all the surface intervals
tb in a and the length of the surface in b is excess length. !
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| way. Some nodes constrain it rully (type 1), others allow some freedom. Each time a || rode is evaluated, the slope constraints are checked. If the new constraints require a slope |

| | | discontinuity in the profile, a penalty is added. If the constraints allow the underlying
‘ | | profile segment vo have a continuation of the previous segment’s slope, no penalty occurs.
: | : This favors surface markings over surface discontinuities, and profiles with fewer surfaces |

over profiles with many. :

i | 2.3.5 — Conclusion |

| The principal advantage of the dynamic programming stereo matching is its |

: | ability to combine most of the geometric constraints we have investigated with a strong
| global consistency - at least global in the sense of the one-dimensional problem. The

resulting profiles are guaranteed to inake geometric sense over the entire epipolar line.

That is, they can be constructed from a connected sequence of line segments and an edge |

: is present in an image if and only if a corresponding junction of two segments is not | |

occluded from that camera. We rely on the the evaluation function to select only the best |
: nmiatches from among the many possible profiles. |
| |

The modified Viterbi algorithm is also efficient. If n is the average number of |

- | elements in the sequence, the average path length is of order n. Since there are a constant |
number of choices at each node of a path, the total number of possible paths will be

: | exponential in n. The Viterbi algorithm, however, evaluates these in time and space
| proportional to n%. As noted, the time and space corplexity of the search for suboptimal

: paths is linear in the total length of output paths, |

| The algorithm is required to “explain” every clement in each sequence; an eleinent |

| either matches another, or il is occluded. Tlowever, this can be a disadvantage when
[ | the input data have missed or extraneous fealures. These may result from edges near

® | threshold, movement in the scene between successive views, or inaccurate camera modes.

Cl e——— TTT
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SE : This algorithm does not account for such imperfect data. For example, instead of ignoring 1

11

| : an extrancous edge, it tries to distort the profile to occlude it from the other view (see |

| Figure 3-11). Similarly, distortions arc introduced to explain missing edges by providing |
] :

[ | an occluding surface. l

| | We have made some attempts to develop an algorithm which could automatically {

| edit out obvious errors. The number of subnode types could be increased to represent 8

| erroneous data points. This would allow the dynamic programming algorithm to addi- i
| | tionally assign paths that interpret features as missing or extraneous. However, this weuid

require a more complex evaluation function and would increase the number of transition :

8 | types belween subrniodes. The storage required to retain all the decision points then in- ;
3 creases as the square of the number of subnodes. This added complexity would have made

| it impractical to retain the feature of recovering suboptimal paths. ;

|

: We note that the most common source of errorsin an epipolar line match has been

i alignment failures near the terminations of extended edges. The epipolar line in one view

: | may just miss a corner that intersects in the other. In such cases, the error disappears 1

: in 2djacent epipolar lines. Also, experiments show that the effect of errors tends to be ]

| localized. Rather severe profile distortions may be required to “occlude” an extra edge, 4

¥ I but one or two elements farther along in the sequence, the profile is undisturbed. This b
i is because any radical distortions caused by the error tend to be the same in all paths, 1

3 | so all paths are equally penalized and their relative ranking is unchanged. For these i
reasons we have decided to postpone the problem of missing or exlraneous edges to the ]

| | two-dimensional matching stage, and to try to filter il out there. j
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| 1 2.4 Continuity and Consistency a §

| Except fur accidental alignments and occlusions, continuous edges in a scene will i

| project to continuous edge curves in an image. We define edge curves A and B in an image 1

: to be continuous if there is a sequence of edge curves beginning with A and ending with B I

| | where each adjacent pair of edge curves meet at a vertex which is not a “1-junction” (see 3
| . :

| Figure 2-23). The continuity constraint, then, is that edge curves which are continuous 9H if:

| in one image cannot match discontinuous edge curves in another image. This constraint k |

: can be used to resolve matches that are ambiguous in a small context (see IMigure 2-24) 3
3 | and has been used in earlier stereo systems. 3

| In 1978 we reported [Arnold 1978] results of a stereo system using what we 2. 1 =

: | then termed local context to resolve ambiguitics. This system worked from the unlinked 3
: ;

A | edgel output of the Hueckel edge operator and used constraints based on edge angle and :

| brightness measures from the operator. The search space was limited by measuring the i

A !

| / i

A Figure 2-23: Continuity in the image implies continuily in the scene. “T- i
Ec] junctions”, however, usually imply a discontinuity in the scene. Thus, A 4

2 and C are continuous while D and I are not. t
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Co camera model as described earlier, and using epipolar geometry. IFor each edgel, a list | |

| of possible matching edgels was produced (ccclusions were not considered). This list was 3

| filtered by a ccntinuity constraint. Continuity was calculated in each image by linking 1

| edgels that were approximately collinear; the constraint required the stereo disparities of 3
[ |

| two linked edgels to agree. : 4

| This early system suffered from some serious problems, many of which resulted
| from the quality of data produced by the edge operator. However, continuity turned out i
| to be a surprisingly strong constraint, and the system produced some stereo maps that to

: | clearly separated scene objects from the ground and showed structure within the objects. {

: | A more detailed suminary of this work has been included as an appendix to this thesis.

While continuity is a strong constraint, it does not always apply in its simple

| form. For example, Figure 2-25 shows a case where edge curves on two epipolar slices are ;
continuous in onc view, but do not have a corresponding pair of continuous curves in the

2 | .

] | » 1
] | k = :
; Lo —/~ = “= = = = —- = = —_— - - |
. | C \ D i

| :

3 | 4
: !

Figure 2-24: Scenc edges will not appear continuous in one sterev image j

: and discontinuous in another. In this example, edge curves A and I? on 3
| the first epipolar line match unambiguously. On the sccond epipolar line, !
| C may match with cither D or [£. The continuity constraint resolves this
oo ambiguity, since A — C and BB — If are coulinuous while 3 — D is not. :

vii IPU EE I. Lr TCiveSy
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& igure 2-25: The continuity constraint provides negative evidence forthe match of C with D. To express this positively, we say Lhal the stereo | i
{ . ] [] + Ls . [] [J

interpretation ofC occluded by D is consistent with a match of A with B. ! |
other view. The failure to find a match for edge C should not reduce our certainty for |

: the match of A with B. On the other hand, an attempted match of C' with D may make

: sense locally (i.c., on the lower slice), but should be rejected by the continuity constraint, |
| since B and D are not continuous. Thus, the interpretation of C as occiuded by D is I! :

consistent with the interpretation of a match for A — B,

) Co The problem comes in recognizing consistency conditions. Continuity is easily |
! | checked, but more analysis is needed to characterize consistency. We make use of some 3,

! . ;
- simple cases in our implementation, but leave a complete analysis to future work.
t I 1

|
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: | IMPLEMENTATION 5

| 3.1 Producing the Data 1

| The stereo system we describe here operates on an input file consisting of edge 3
3

and intensity data. The intensity data are taken from digitized photographs while the ;

| cdges arc produced interactively with a computer drawing program. It is anticipated that i
: ! )

| advances in edge-finding and segmentation techniques will allow this process to be fully §

automated soon, :

2 3.1.1 — The Images |

| : In each of thc examples, we begin with a black and white stereo image pair: two !
k i

| digitized images of the same scene from different viewpoints. The images are from 128 to

| 512 pixels on a side, and from 6 to 8 bits per pixel. Typically, the overlap permits 60%

] | or more of each image to be viewed in stereo. The camera model is known imprccisely

or not at all and must be calculated from the images. Part of this calculation is done hy

| hand and part with computer aid.

The digitized images we use include actual aerial photographs with subjects such
X

as aircraft at a terminal, and artificial data, where the subject is a simple block model

| of a city (see Figure 3-1). In aerial photographs, the camera is typically mounted in an |

' aircraft to look straight down and the two photographs are taken at different points in

oC time; the flight path of the aircraft determines the stereo baseline. |

| | | Except for the artificial data, the two images are usually not in perfect |
| : registration, and must be adjusted before processing. Furthermore, professional aerial :

| |

| | photographic film is very large (nine inches on a side} and only a small portion can be |
: digitized for our experiments. The selection of a digitization window in cach image is ;
f :

R | : done by hand, usually with the goal of maximizing overlap in an interesting portion of ;
i the scene. This process introduces further uncertainties in image registration. _

| |

3 i * :
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: Figure 3-1: Artificial images of a block model city were provided by :
Control Data Corporation. i

: 4

| 3.1.2 — Determining the Camera Model
: TT TT TT TTTTTT

‘ In the aircraft images, the registration of the two images was only approximate.
: [3 . . tt. h 1

: | We used a technique described in an earlier paper [Arnold 1978] (and in the appendix) to :

TR calculate the parameters required for more precise registration: /
‘4

he
9

| | » orientation of the stereo axis ;
| J
bo | : |

| eo relative rotation

| ; e rclalive scale factor ;

: s relative translation perpendicular to the stereo axis i

: The choice of these four image-based parameters is more suitable than cainera-based |

parameters (e.g., pan and Lilt) for aerial photographs, where the depth range of the subject |i i

HE is very much smaller than the altitude of the camera.

1
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| 3

. i . H . -. il

L The parameters arc calculated by cstatlishing wteree correspondence on a non- {

| coplanar set of four or more points, and executing a least squares algorithm. Programs 3

| | by Moravec [Moravec i980] and Gennery [Gcennery 1980] are used to choose the set of 1
b t .

| points automatically, to do the sterco correlation and to solve for the parameters. Once .

| the images are registered, the remaining camera parameters are calculated (see Figure 3

| 3-2). X., Yr, Xr and Yg are calcuiated from the digitization window location, and B :
| : !

k and f are calculated as explained below. ;

| Bh

For example, consider the images of the blocks scene, which were obtained from

| L] LY AJ - L]
Control Data Corporation. These data are artificially produced, so the images are already

| registered. There is no relative rotation, translation or scale [actor between the two images |‘ , . ial —

O%IgC,T || A !

] | ke 2

i .

1

i 3

| 5 LJ | 3 LJ L 3
| Figure 3-2: The normal camera model lor our sterco calculations is based i

: | on data taken from acrial photographs. We assume the cameras are aligned

. | : as shown and that only parl of cach image iw digitized {or processing. :

: : :
: g

: |
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| and the stereo axis is parallel to the z-axis in the image plane, The optical axes of the 3

| cameras pass through the center of each image, so Xp = Yp, == Xp = Yr = 0. Ilowever, | !
| the image distance, f, and stereo baseline, B, are not known in advance, .

I'irst, we looscly define a ground plane as a plane in the scene parallel to the | 3
film plane, in or before which many features lie but beyond which few if any features 1

HP : . . . 3
| | are visible. In the case of acrial photographs over flat terrain, this corresponds with the F.

actual ground surface. If A and I} arc ground plane features in the scene with actual z- ¥

| coordinates X 4 and X pg, then their corresponding image coordinates are zl4 and zlg in ; ;
the left image and zr4 and zrg in the right image (sce Figure 3-3). Since the gound plane

k

8 | is parallel to the image plane, oly —zlg = zra—2zrg. If from “ground truth” information 1
| we know the actual distance between A and B in meters, then we can determine a mapping 4

| scale factor, m: i 3

ely —xlp i
i $3

i

| where:

| m is in meters per pixel. |

| This mapping scale factor may be calculated from either the left or the right image. It |

. will convert any distance in the chosen ground plane to a distance in the image plane. |
| From Lhe camera geometry and similar triangles we can see that m = Z/f, so

Po we can solve for the bascline I? |

! ;
SE B _ da

3 i

I ’

| | p |: 7 )

8 | B= Fda = mda (3 —2)

| : ; } ] ) — (AANA ALBA TE SAPS YP srr fsb 5 +55 8 Th tan cheat ean P14 PA A rr +o er nsJ ~ m2 :
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Do where:

: | da = (Xr +xla)— (Xgr + zr4) is the stereo disparity in pixels, and

| | . B is the baseline in meters.
i

| Note that knowledge of both zl4 and zr4 requires a correspondence between a left image

A. . . » . . . . k |
: point and a right image point representing a feature in the ground plane. This, together
3 |

| |

i;

|
’ }

to | vot r

: xla Xrg
| | Zz xlp X€ pn i

. | !

A B

|

: Figure 3-3: These projections ean be used to determine stereo baseline :
: { . . . ” . .

| (13) from ground truth information (X4 and Xp) and image distance (f) |
, vt from camera altitude (7). |

Co ¥4 ;

] ; j
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| 3 J )
J with the mapping scale factor, allows calculation of the sterco baseline. (If m were not p §

: : known, the baseline could be expressed in pixels.) ;

q | * A] . * . * * » * » X |
| : The image distance, f, will often be known, since it is a simple function of 2

| | x the camera lens and film size, but it is interesting to note the conditions required to J
| : -

: | | calculate it. Just as horizontal ground truth is required to calculate the baseline, vertical 1
| . . . : .

| | information is necessary to calculate f. If the distance from the camera to the ground |
plane, Z, is known then: 1

| | Z
AE == (3-3) }

: g where: i
f is in pixels, and |

|

m is the mapping scale factor defined above. {

| | Thus f can be determined from the “altitude” of the camera, 7, plus horizontal ground ii

: | truth, {More commonly, Z and f are known and are used to determine m.) ¥

| If Z is not known, then the height of a known object in the scene can be used

: | 1. » . . . » - - » A *

(sce I'igure 3-4). If two points A and B in the scence differ in their distance from the image
m ]

| plane by h = z4 — zp meters, and sterco correspondence can be established for both

b points, then: k
k ¥ M

3 | 3

|

| h dadpg , E
, i J = 5 7 (3-4) :

ID\dg — dx :

i 3

| where: ]

B is the stereo baseline, 3

| da = (Xp + xls) — (Xr + zra) is the stereo disparity for object A, aud ]

| dg = (Xr + zig) — (Xr + orp) is the stereo disparity for object B. 4

! | x ou
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|

H bi

bo i | E

‘ !

F- iTo ]

© /

\ |

Lo
i ' b

| AN

3 Figure 3-4: These projeclions can be used to delermine image distance
: (f) from vertical ground truth (h).

| 3.1.3 - Edge Detection

Research on edge detection, linking and segmentation is proceeding at Stanford

| [Marimont 1982] and clsewhere and promises to supply fairly clean line drawings from |
: real scenes in the future. In the meantime, we have chosen to derive our edge information |

by hand with a computer's aid. The technique is to superimpose straight line drawings

| | from the DESIGN [Lowe 1982] program on a grey scale display of the image data. The

drawing is adjusted by hand until the superposition of all prominent edges tooks accurate, |
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Figure 3-5: Iidge data is derived by hand from digitized images with the |
: heip ofa line drawing program. These edges are ‘ntentionally imperfect. :

! : x

3 1) - L L]
- Since these data are intended to refiect the expected performance of futuce edge :

bo : segmentation programs, care is taken to avoid using high r level human visual functions. :

] idges are nol, extended into anibiguous or low contrast areas. Left and right images are i

derived indepenacntly, £0 some edges are “detected” in one view, but not in the other. |

| |!
1 The information in the vicinity of corners or intersections is often omitted, so surface »

;

| M 8 h 1 . . A
bonrdaries need not be closed. Even edge data from the blocks scene, while derived from ]

i | }i
) LA) a + L] L] - 4 3

2 noiseless artificial images, is not a perfect line drawing (sce Figure 3-5). iA A q

at 5) Ah bh aA LTVTE, Mame, Emme -- =. ee. eeeeere
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| 3.1.4 — Preprocessing |

| The edge data are read by a program that takes Lhe edge information together |
i with the original images and writes a file containing structured input data for the stereo |

| system. Figure 3-6 illustrates this data structure.
1

VETYPE |
oo VEBGE |
: VEPTR |

| " UX, LX !: uy, LY | VETYPE
| UTERM, LTERM VEDGE |

Co UPTR VEPTR
: LPTR |

LSLEN,RSLEN |
| LSID |

Co RSID ES3R) |

| NL ESBOT |
ESPOS

| | ESPTR

¢ | FSBR |g
Lo iFC ESBOT :
Lo ES POS I
SE ESPTR }

] _ |]
E a 1

] : Figure 3-6: Line drawing data are read into a structure thet relates each I
oo. edge to its neighbors. I[nformalion on the edge cndpoints includes their i

| | coordinates, the type of vertex and a list of other edges belonging Lo that I
vertex. Information on the sides of the ~dge includes a list of T-junctions i

b, that segment Lhe side, their positions, and the average image brightness I
: adjacent to each segment, :
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i Edge data consist of pairs of endpoints, each with an z- and y-coordinale in theJ | transformed sterco coordinate system. This system has units of pixels, a right handed 1
| coordinate system with its origin at the inage center and a stercc axis running left to 1

: i right along the z-axis. A record is created in the data structure for cach edge segment.
| This is done separately for left and right images. J

An edge record comprises the following: |i UX, LX z-coordinate of the upper and lower endpoints !

| UY,LY y-coordinate of the upper and lower endpoints :
UTERM,LTEKRM number of edges in upper and lower vertices

ye A

UPTR,LPTER pointers lo upper and lower vertex record lists

8 LSLEN,RSLEN length of left and right side record lists

LSID,RSID pointers to left and right side lists ;

| Ilach edge record is compared with every other edge record to determine the ]

| vertices in the image. A vertex is the intersection of two or more edge segments in the |
image. When checking for interseclions, each line is extended by a given amount in order i

to compensate for data lost near corners. Thus, edge segments that approach within a |
| threshold but don’t touch in the input data will be analyzed in subsequent steps as if they |

: | intersected.

3 : As each vertex is examined, it 1s classified as a termination if it is within a
threshold ¢f the end point of both lines, or as a “T” if it is near the end point of only |

|

3 ong dine. “X” interscclions, that are not near any end points, are rare and are ignored at |b

| present. (They may be handled by breaking onc or both edge segments into two picces.)
| |

; The information from each vertex is stored in the data structure as a vertex record, linked |
: | to either the upper or lower end point of the edge segment. A vertex record comprises the |

| following: |
: VETYPE type of termination

ob ER
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| | VEDGE pointer to edge record
| VEPTR, pointer to next vertex record | |
| | In addition, “T” junctions generate side descriptor records linked to either the left |

| or right side of the cdge segment (see below). It is important to note that the classification

| | of up and down or left and right depends on knowing an accurate camera raodel.- This can i
| be a disadvantage if the camera model is subsequently refined. For example, if an edge is
| nearly horizontal, a small rotation of the coordinate axes could change the up-down sense !

of its endpoints and require a restructuring of the data. |

| | Two steps are now taken to “clean up” the data. For a vertex that involves only :

5 two lines, the coordinates of the intersection arc used to replace the coordinates of the |
| endpoint of the edge(s) involved. This has the effect of lengthening cdges that “almost”

touch and shortening edges that cross “slightly”. These judgments are determined by a

| | distance threshold that is governed by the accuracy of the original edge finder. If a vertex | |
| involves the endpoints of more than two lines, there is a good chance that not all pairwise -

intersections will occur at the same point. In such cases, an average position is taken, and

| the endpoints are adjusted to agree with it. |

| Ifach line that serves as the top of a “T” junction will have its corresponding |

! side (left or right) divided into two or more parts depending on the number of “T” i
| | junctions involved. These parts are stored as side descriptors in the data structure and

| are clagsified as either left or right depending on their relative positions. A side descrivtor |
record comprises the following: |

| ESBRI average brightness |
| | ESBOT edge whose “I junction forms bottoin of this side |
7 ESPOS position of botlom “T” ;

| ESPTR pointer to nex! side descriptor
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e After the side descriptors have all been found, they are sorted from top to bottom 5

SE y on cach side of each edge. Ilach edge record has at least one left and onc right side y

: descriptor. ;

: | ) The side descriptor of an edge record corresponds to a surface which is adjacent to 9

: : that edge. While much of the data structure is oriented toward representing the geometric ;

| relations on cdge segments, side descriptors provide a place to store surface properties.

! . a. [3 * 3 . A . i
Brightness is stored as a single value in each side descriptor. Thus it must represent less i

: information that the original image, since there are fewer side descriptors than pixels. A ]
: region in the image corresponding to a surface will be represented by mn side descriptors,

where nn is Lhe number of edge segments in the boundary of the region. ;

To calculate these brightness values, we generate for each side descriptor an ;

: epipolar line along which brightness values are sampled and averaged. The line intersects |
the edge segment midway between the two verlices that define this side descriptor. |

: Intensity values are sampled at 1/4 pixel intervals along this line either Lo the left or j

right {depending on which side descriptor) until another edge or the edge of the image is |

| encountered. Fach sample comprises a bilinear interpolation of the four pixel intensities

| nearcst the sample point. The samples are averaged to preduce a single value representing :
- a h * » + i

the brightness of the surface. This very simple measuremcat, repeated for each side i

: descriptor, is the only form in which the original intensity information is retained for
2 "

3 subsequent processing,
4 :
: 4
; f ]

| |
| . ,

|

. ' a ;

’ / |

. i | |
i. | NS } , FA Ce : — si” J his ee EE IR IR 7 © |
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| The stereo problem is divided into a serics of one-dimensional problems along i

epipolar lines and the dynamic programming algorithm discussed in the last chapter

| is applied to each onc independently. This section describes the data structures and

| procedures of the implementation. |

4 | The dynamic programming match is applied to a selected set of slices through |
| the images. A slice consists of an epipolar line pair together with information about each :
| edge curve in the image that crosses the epipolar line. We define a slice to be two lists of |

{ ; intersection records, one for the left, image, one for the right image. Lach list is sorted on |
| the valuc in LOC. An intersection record comprises the following:

EDG pointer to cdge record whose edge curve intersects |

LOC z-coordinate of the intersection

| ANG angle of the edge at the intersection
| | BRI average brightness of the interval to the left of this |

! | edge |
TOP y-coordinate of top end point of this edge |

| : BOT y-coordinate of bottom end point of this cdge
| TV type of vertex at top |

| | BY type of vertex at botlom |

This record supplies all the information for computing the constraints used by the Viterbi j
| matching,

| The procedure for generating a slice is straightforward, Given the equation of an |
3 | epipolar line in cach image, search through all edge records and make a list of inlerseetion
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: records, onc for cach edge thal intersects the epipolar line. Sort the lists by the value

SE in LOC, producing a left to right ordering. Calculate the average brightness, BRI, by | :
; SE inspecting the side descriptor records for each edge in the list. For each interval, there :

f k . . - . . * » :
| | will be typically two side descriptors from which we simply take the average of their :

: brighlness values.

| It is uscful if each slice can be processed independently, making use of no in-

formation from adjacent slices, This properly allows Lhe computation over the whole

: | image to be casily nrogrammed for parallel computation. Thus, in our single processor

implementation, the order of choosing slices does not matter. However, the particular set

of slices chosen does matter.

| |
| One technique is to gererate slices every 8 pixels for the firsy iteration over images

of about 206 x 2066 pixels. The second iteration uses another set of slices at an 8 pixel

: ) spacing, but phased to lie half way between those of Lhe first seb. This interlacing covers |' . . . » » . J
the image with a resolution of 4 pixels. A second method is to double the nutaber of slices 1

| | 14

al each iteration until the final resolution is reached. IFor example, on a 2566 pixel image, [
: {

* ) [ »

| slice at 128, then at 64 and 192, then at 32, 96, 160, and 224, ete. ]

We have also experimented with data-dependent choices, usually for the final
;

f v i

£ iteration. Yor example, the 4 pixel interlace provides no direct data for some edge curves
|4 - L L Td hk] LJ L ] » H

| with an extent of less than 4, but the rumber of missed edges is small. Thus, it is practical |

» : to choose a final set of slices that pass through the centers of each missed edge. ;
:

: Por cach slice chosen, we apply the modified Viterbi algorithm to mateh the list of
|

left intersection records with the list of right intersection records. (The implementation is
|

|

| actually organized around the intervals between intersections, rather than the intersections

: themselves.) The dynamie programming array is inilialized and the best path calculated |

| using the evaluation function described below. Then a threshold is set and all paths whose |b | scores are within that threshold of the best path are identified. ;

= a oT } —— aA. — _ J a r—— x
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| At this point, there is more information available about cach of the paths than ]
| is necded in the next step. The data structures are simplified by preserving only a

| limited amount of data for each slice: a list for each edge (intersection) of all the match ;
interpretations given it by any of the collection of suboptimal paths. 3

An edge match interpretation consists of a match type and a pointer to an edge :
| in the other image. The match type may be visible to both, in which case the pointer is |

to a corresponding edge in the other image, or occluded, in which case the pointer is to

] sn edge of the occluding surface in the other image. This list is considered as a list of

possible interpretations, where an edge interpretation is possible if and only if it occurs

| within a hgh scoring path. No attempt is made to assign weights to the edge maten ;
| tg interpretations based on path scores; all paths selected by the threshold are considered

equally likely. :

| It should also be noled that while a context spanning the image was used in

selecting each edge match interpretation, this context is not passed back with the match.

Although this represents a loss of some information, it serves to make the output of the

Viterbi algorithm more manageable. |

| 3.2.2— Evaluation Function

3 | We have carlier described the modified Viterbi algorithm for determining the |
optimal and sub-optimal paths. This scelion describes the evaluation function used in

that algorithm. The function consists of four terms, each with an ad hoc weight, combined

| 3 (Kili + Kali + Kal + Ky X3) (3 — 5) |: i iEpath i

: | where: |
R | nq, Ky, (3 and K4 arc the ad hoc weights, ;

: . _ a EE CC
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and for each path element, i,: 4

I; is the composite interval measure,

4 Ii; is the composite edge measure, :

| | D3; is the surface breaks penalty, and
| X; is the excess length penalty. i

| | This sum gives the score for each ¢f the paths which satisfies the geometric occlusion p
| constraints outlined earlier. The paths for which the sum is a minimum is the optimal or 1
| “best” path referred to above, k

| i The suming of interval and edge measures is a simplification. These measures :

are no! in fact independent, since they are related to one another by the geometry ;

of the scene. llowever, we do not yet know the proper function for combining them. |
| | Experimentally, adding them with a 60:40 weight favoring intervals has worked best. The

| last two measures, surface breaks and excess length, are ad hoc measures that are given low

| weights. Their primary purpose is to distinguish paths where there are many occlusions,

: | and hence little information from the interval and edge measures. |
| Interval Measure |

\- The interval measure consists of two components, brightness and interval length

: ratio. These measures apply to a common object, the surface represented by the matched |
| intervals, so these two components are treated as probabilities and arc multiplied to :

: nroduce a composite measure: :

| I; = BRI; RATIO; (3 — 6).

| | In the ease where the interval is occluded (visible in one image only) the value for I; is
! sel Lo zero. A

y

¥ |
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. 3

The brightness measure approximates the probability that the brightucsscs from 3

| the left and right images represent two measurements of the same physical property with | i
: gaussian noise added. Note that reflectivity of a surface is not, in general, independent of 3

! Co]

| angle; thus the two cameras will not in fact measure the same physical property. However, L
the effect of this simplification should be small in most scenes. Thus we use the following: Co

| |

BL;— BR: \? od
1 BRI; = exp| -| ———— 3 ~ Po

| | BL; and BR; are the average brightnesses of the left and right intervals, | :
respectively, and 1

| NS is an estimate of noise in the brightness value. ! i

g Equal left and right brightness valucs always produce BRI; = 1, while values that differ :

] ; by NS produce BRI; == exp(—1/4) and so on. »

| The snterval length ratio measure has been described earlier, in the section on

| constraints. It is normalized to lic between 0 and 1, by dividing by MAXRATIOQ, the i1
maximum value of the ratio function. Thus the ratio of the interval lenglhs from the §

two images is mapped to a value between zero snd one which we treat as a likelihood of 1

f match. ;

i |: LT .Etec ebb een, et em.ei set mn. my rn. | tettpt:edie irr: oa
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| Edge Measure -

: The edge measure consists of three components, edge angle, edge extent and | ;

endpoint posstion. As in the interval measure, these components represent measurements

oo of a common object, i.e., the cdge crossing the slice. Thus the components are normalized i
| :

I to lie between zero and one and are multiplied to give the edge measure: po

E! = BANG; ELEN, EPOS; (3 — 8).
Fo | ;
!

| In the case where the edge is occluded (visible in one image only) the value for FE is sct to k
: 1

zero. This measure will later be adjusted according to previous information (see below). |
BR | |]
3 A] . . » v 2] ! 4
: The edge angle measure is based on the calculation described carlier. The saddle- -

shaped probability density surface takes on values between zerc and pesitive infinity. We ! ;
|

: normalize it to have an average value of one (volume under the surface == «?) and then i

| apply the following function to map its values to a range of zero to one: Lo
i | {

: f(z) = 1 — exp{—2). 2

3 | Thus the two angles at which the edge curves cross the slice in the left and right images |
i ' . ‘0% ' » .

3 | are mapped to a single value between zero and one which represents the likelibood that |
the edge curves match. This edge angle measure is the strongest component contributing

t ll

| Lo the overall edge measure,

The use of edge extent as a constraint was discussed earlier. In this function,

the difference in extent lengths is normalized by the average of the two extents, and then |

treated as two measurements subject to gaussian noise, Expected d:fferences are due to |

differences in y-axis scale faclors between the left and right images. The normalization | 4

x

¢ removes dependeney on absolute differences, and this is alse the reason for using the
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| derivative of camera model position error. Errors from image misregistration are to be :

| handled by the endpoint position measure. | 3
t i The extent of each edge segment is calculated from the following: |
oo |
Lo LEXT = LTOP; -- LBOT; |

REXT = RTOP; — RBOT; |
i B From the left and right extents, we calculate:

| | LEXT — REXT : |
; SLEN; = | r——————— 1- J —| | BELEN, worn (xr +TG) ) tlow (3-9) |
: where:

w is a weighting constant, currently 0.5, and

| | DYNS is an estimate ol the derivative of camera model and segmentation

accuracy, in pixels/pixel,

The weighting (actor allows the contribution of this measure to be adjusted in
|

overall edge measure. A weight of 1 results in values ranging from zero to one, a weight

s of 0.5 results in values between 0.5 aad 1.0 and so on. Equal left and right extents always
F

| | produce a value of 1.
| | In calculating this measure, a very simple form of monocular shape cue is used. If

i the shorter of the two extents has a “T” junction at cither end, we assure scene geometry

| has occluded part of that edge curve and return a value of 1 for this measure.
The cdge endpoint position measure is similar to the extent measure, but is per-

| formed separately for Lop and bottom, and depeads on zbsolule y-coordinate positioning
| rather than y-scale factor. The measure is calculated as follows:

: (L TOY; — RTO, \?
TVAL, = exp | ———————

| of ( YNS ) )
]
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[.BOT; — RBOT;\" )| BVAIL; = cap ~| ————o——
: YNS 5

| |

| PU —

| w =1-vV1-w |8 |t : DM) 3 Ir } ! / ' i

| EPOS;= (w'TVAL;+ 1 — w')(w'BVAL+ 1 — w') (3 — 10) |F

i

: where:

| w is a weighting constant, currently 0.5, and 1:

: L L] » - - b - L - ;
YNS is an estimate of noise in y-position, in pixels.

\
. !

"

: In this function, the difference in y-position is compared directly to an expected |

4 error in y-position, YNS, assumed to be gaussian distributed. The values for wop and

i ) bottom are multiplied and weighted to give a final value. A weight of 1 results in values
| ranging from 0 to 1 and a weight of 0.5 results in values ranging from 0.5 to 1, Equal top

| and bottom positions will produce the maximure value of 1. |
As in cxtente, the end points are examined for “T" ju .ctions. In this case,

however, the slope of the crossing edge is also considered. Four ¢7 vs are considered

explainable by occlusion, and receive a maximum value (see Figure 3-7).

| ix [Fv -x _ Akin | B 2
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|
:

| | 2) L.arr |DI b) Leer Rint |

k ;

he Fr Riou
r g <) err Rieur d) LeF
; |

a]
: Figure 3-7. These are [our types of T-junclions that inay shorlen an edge
| | in one view. ;

Previous Information | ;

| Finally, there is a mechanisin for incorporating external knowledre of an edge i

match into the measure. This is used wo weca ino mation from provious iterations into i

|

| the current evaluation, as will be described in a section below. The function used is a {- |

siinpie one: _
Re |

3

E, = if PRE; > 0.5 hen 1 — 21 - PRE) — EY) else 2 PRE,E] (3 — 11)

whore:

P’it1, is the bias of previous iormiaiion bebween 9 and 1, and

| ' Low the current meas Leven § and
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x If there is no previous information about this particular edge match, PRE is set 3

; SE to 0.5 and this function is the identity. If previous information is stcong, PRE; is > 6.5 A |

! and the result is scaled to lie between (2PRE; — 1) and 1. If PRE; < 0.5 then the result |

A lies between 0 and 2PRE;. For PRE; == 0 or 1, the result is constrained to be 0 or 1 1
Lo |

| : respectively. |

: Thus the measure for edges is taken as a combination of edge angle, extent and |

| : endpoint position, modified by previous information. The result is a value between § andi p P ) p |

{ i | 1 which we treat as a likelihood of match. 3

| t | Surface Breaks ;
h ! * . . py

] | The surface breaks measure is an ad hoc measure of surface continuity and

| smoothness. Its value is 1 for an edge which represents a discontinuity and 0 for a smooth

continuous surface where the edge is a surface mark. The surface breaks measure is given

* * . + Ld Ll + |
3 a small negative weight (-0.05) in the evaluation function, and serves to bias the results :

i toward smooth surfaces when there is no other strong information. |

| The measure is determined as follows (sce Figure 2-10 for terminology): 3

3 e 0 for edges which are interpreted to be out of the field of view of J
, | ;

| | one camera, since nothing can be deduced about such edges. :
v | e U for edges on a left or right face, since these could lie on a smooth ;

k | surface. 3

¥ e 0.5 for edges on left or right Lops or bases since these represent a

k transition from a visible surface to an occluded one or vice versa.

* | L J LJ L J L]

3 There must be at least a slope discontinuity at these points.

+4 |] - . yg B
4 | ¢ 0.5 for peaks and valleys, since these must be slope discontinuities.

+] | e 1 for left or right cliffs, which can be caused either by discon- :

3 H hiuitics or two or more slope changes involving unscen edges.

ahd ! :

dm. ~ . : aee a tod in ior eaeri 3
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| If there is no previous infermation about this particular edge match, PRE; is set {:

g on to 0.5 and this function is the identity. If previous information is strong, PRE; is > 6.5 . |
¢ , N . . :

SE and the result is scaled to lie between (2PRE; —~ 1) and 1. If PRE; < 0.5 then the result |

; lies between 0 and 2PRE;. For PRE; = 0 or 1, the result is constrained to be 0 or 1 b

| respectively.

| - Thus the measure for edges is taken as a combination of edge angle, extent and 3
: | : endpoint position, modified by previous information. The result is a value between 0 and :
i | : 1 which we treat as a likelihood of match.

| Surface Breaks :

x ! » . * A

3 The surface breaks measure is an ad hoc measure of surface continuity and

‘ | smoothness. Its value is 1 for an edge which represents a discontinuity and 0 for a smooth
continuous surface where the edge is a surface mark. The surface breaks measure is given

HN + ] * » * L] .

: | a small negative weight (-0.05) in the evaluation function, and serves fo bias the results :

| toward smooth surfaces when there is no other strong information.
j | The measure is determined as follows (sce Figure 2-10 for terminology); N
g o 0 for edges which are interpreted to be out of the ficld of view of ;

: one camera, since nothing can be deduced about such edges.

. | e U for edges on a left or right face, since these could lie on a smooth 3
| ;

3 surface. |!
y e 0.5 for edges on left or right Lops or bases since these represent a i

k transition from a vis'ble surface to an occluded one or vice versa.

3 | There must be at least a slope discontinuity at these points. :

4 | ¢ 0.5 for peaks and valleys, since these must be slope discontinuities.

gE e 1 for left or right cliffs, which can be caused either by discon-

5 : tinaitics or two or more slope changes involving unseen cdges.
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| es 0 or 0.5 for {lat edges. I'or each of these intervals to left and I
| . right both represent visible surfaces. From the detailed profile |
| information, the slopes of these surfaces can be calculated, cither

! exactly or to an incquality. For the exact caiculations, slopes ;

whose ratio is between 0.9 and [.1 are considered part of a smooth :

| surface, and score 0. For the inequalities, if slope values can be PH

chosen which satisfy the inequalities and produce a ratio between

| 0.9 and 1.1, a score of 0 is returned. For all other cases, a slope |

discontinuity is indicated and the va! : returned is 0.5.

| Ezcess Length

i Excess length is a measure of profile irregularity. It is calculated by taking the

| length of a profile segment, measured i1. the epipolar plan= of the slice, and subtracting
|

; | the minimum segment !cngth that could have produced the same total projected intervals

} | | in the left and right views. This minimum length segment is generally one whose normal

intersects the bascline of the two cameras. Thus, a flat surface of this orientation would

| have the minimum profile length, while still filling the field of view. (Refer to I'igure

2-22.) On the other hand, an irregular surface in which every part was visible to only one

ct | camera would have the maximum value according to this measure. By giving this measure |
a small negative weight {(-0.1) in the evaluation function, we bias the results toward nearly |

] | planar profiles in the absence of other strong information. :

2 | 3.2.3 — Results |

4 i | The results of one-dimensional processing are a sect of profiles for each epipolar :

: | | slice; each sct includes the optinum and those suboptimal profiles that met the score

1 | ; threshold ¢. Tne paths produced by the Viterbi algorithm together witn the camera |
2 : | model parameters allow profiles to be reconstructed in the original scene geometry. We ;

NW. wid Ca de ded banice re Sa Dea athe, as a taal e ntisii EY GR Poeon ST : : iE RE A
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3 present several such profiles heie, using the notation developed in a previous section, to 3

| e illustrate the results of one-dimensional processing. 3

: The primary advantage of the extended algorithm is that it produces alternative r

interpretations in addition to the local optimum. It is possible for one of these suboptimal 1

: N profiles to be preferred when a wider context is examined. 3

| In Figure 3-8 we have selected a slice from an image of an L-1011 aircraft. The 4

slice passes near a corner in the wing, and the optimum profile found by the Viterbi ]
1

: algorithm misinterpreted the profile at that point. In Figure 3-9a the notation (2,2,2) 3

& | | indicates that the surface corresponding to that interval has been interpreted as visible to
both cameras. This is an erroncous natch of the wing shadow in the left view with the

| aft portion of the wing in the right view. Interval (2,3,2) indicates that the aft portion of
| the wing in the left view is interpreted as occluded. The forward porti~n of the wing in

both views is correctly matched, as are all other intervals in the profile.

The evaluation function for the profile in Figure 3-9a cqualled 4.4283. The

| profile in Figure 3-9b scored 4.1964, out correctly interpreted the wing shadow, (1,2,3), as

N occluded and the aft portion of the wing, (2,3,1) as matched. These matck interpretations,

| while locally suboptimal, were ultimately selected by the two-dimensional processing. : |

eeeee
| |

! J

: ee ee rm 2 ee oA te Feet re Pe © At etm AeSAP 1 ote ee eeemr em mee rr 43 + = 3m as emt sem} i

; | | Figure 3-8: A slice taken through the aircralt scene at row --37 is used to
| | demonstrable a “correct” profile that is locally suboptimal.
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| : In addition to the coarse distinction between matched and occluded surfaces, the |

4 o Viterbi algorithm also distinguishes surface discontinuities from slope changes or surface | |

| markings. Thus, we see that Figure 3-9b has incorrectly interpreted the ground surface, !

| | (4,5,1), as being continuous with the wing surface, (3,4,1). The profile illustrated in
| :

| | Figure 3-9c correctly shows the discontinuity. This last profile scored 4.0964, and was
| 72nd in the list of suboptimal profiles. The main reason for this large number of paths | }

is that surface discontinuities and surface markings are only weakly distinguished in the :

1 | evaluation function and the number of combinations over seven surfaces is lo.rge.

Most errors in computing profiles are caused by imperfect data. Naturally, a Lo
Lo bo
§ system based on real images cannot expect to have perfect data, so it is important that | ]po

| the effects of extra or missing edges on the Viterbi algorithm are localized. Figure 3-10 :

- \ \Wa/ \/ / g
i | ; tim fF ‘ 561 eT2 too

| zo : Poo
Co V Lo

! 1 ,

" , 116 123 28 sa «72 ( |g ' Cg

| / /\ \ / \
u \ y, / |

I Figure 3-8: Three selecled profiles computed from the slice in Figure |
8 | | | 3-8 are shown in a, b and e£, These paths scored Isl, 34th and 72nd | y

: respectively, in the list of paths within 0.35 of Lhe optimum score. The
3 | | “correct” interpretation is Lhe last.

| |
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I. shows the same aircraft images with slices selected at rows —16 and —17, one pixel apart.
| | 8

| L In row —18, the slice misses the small box near the tail in the right image and also misses §

| : one houndary of the taxiway mark near thc nose. The same slice misses an edge of the

: boarding ramp near the nose in the leit image. 3

| | : Figure 3-11a shows the locally optimal profile generated from the slice at row

| ~16. The most obvious problem is caused by the box, which has been depressed below

Lo : the ground level to make it occluded by the wing. This severe distortion is due to the

| : fact that no other intervals were nearby to seve as an occluding surface. Near the nose, :
{ EY

| missing edges from the right and left cancelled; there was no occlusion introduced, only
+ . . * 1 - 3

g an incorrect and distorted match. In each case, the effects of the missing edges did not ;
: i

? : ;

extend beyond the adjacent intervals. From the wing shadow, (1,3,3), to the fusclage, :

| (5,8,1), all matci.»s are correctly interpreted.
’ . % . 3

| Only onc pixel away at row —17, the optimum profile correctly interprets all sur- |
faces (see Figure 3-11b). There are no missing edges and the occlusions are all legitimate,

| Errors isolated to a single slice is a common effect of misregistration of images and il-
3

lustrates the value of using adjacent slices and continuity constraints to overcorne local

| | errors,

| j

—— = —

LI ’ Figure 3-10: T'wo siices taken through the aircraft scene at rows —16 and |

| —17 are used to demonstrate She effect of missing edges.

| EE, = TT R | TT RT
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Cob 361 ,/ 47 710 / :

Lo 116 / / 3
|

\ ast CY 4 0111

oo vA AAV A /{ !

| Figure 3-11: Profiles computed from the slices —16 and —17 in Figure
! 3-10 are shown in a and b, respectively. In a, the profile is distorted to

y explain missing cdges, but the effect is limited to intervals adjacent to the |
| missing edges. In b, there are no missing edges, and the profile is essentially :

| correct, ;

: | 3.3 Two Dimensional Processing }

= The processing in two dimensions consisis primarily of computing a value to be {

: | assigned Lo each edge match interpretation and feeding this value back into subsequent !
: iterations of the Viterbi algorithm. This computation involves the final constraints, 1

| continusly and conaistency. Lg

3.3.1 — Match Lists :

3 ' F

| The results of the Viterbi algorithm acting, on each slice must be incorporated 3
| into the data structure in such a way that consistency between slices can be cc puted. 3

oo [Four additional fields are added to the edge record that was described above. They are: {

: '. | EMAT pointer to edge match list 3
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| : ESAMP number of samples supporting edge natch list 1

: M2MAT pointer to sccondary cdge match list {

M2SAMP number of samples supporting MiZMAT

| An edge match list is a list of edge match records, each of which comprises the following {
fields:

| | EMCLS pointer to match class list

| EMCNF confidence measure for this match class
EMNUM "number of supporting samples 3

| EMPTR pointer to next edge mateh record

i
| A match class list is a list of match class records, each of which comprises the following i

¥

} | i

| ficlds:

| ECLRB match type (visible to left, right or both) ;
,

} | ECEDG pointer to match or occluding edge ]
| ECPTR pointer Lo neal match cless record

| The secondary structure (M2MAT) uses two similar record types with fields named :
| M2CLS, M2CNF, M2NUM, M2PTR and C2LRB, C2EDG, C2PTR. Figure 3-12 ;

shows the relationship of these structures to the edge record.

| The Viterhi algorithm processes a slice consisting of left and right parts. For each ;
| edge in the left, EMSAMP is incremented and the list of edge match records is scarched |

| | for each interpretation found in the Viterbi algorithm. For exact matches (down to the |
3 | match class record), EMNUM is incremented in the corresponding edge match record. If :
5 | ;

| the interpretation is equivalent (see definition below) to an interpretation already present, |
| i

K | then a new match claas record is added to the existing maich class list and EMNUM is

fo | incremented. If the interpretation is a totally ne, it is added to the data structure ]
h | Nn as a new edge match record with a single maéch ctass record, and EMNUM is sel to 1.

E 3 |
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The same procedure is then followed for edges in the right part of the slice, Figure 3-13 oO

- illustrates this data structure for a sample image.

A refinement to this procedurc is to ignore the interpretations for slices that are 1

too close to an edge's endpoint. “Too close” is defined here as within YNS/2 pixels in the oo

| y-direction, where YNS is the estimated uncertainty in the camera model (see Equation | i

| | 7-10), This improves performance by preventing misregistration crrors from propagating. |

: ECLRB
ECEDG | .

I. Ux, LX EMCLS ECPTR 1.

I LSD, RD | EMA D
| ESAMP EMPTR -> |
| EMAT : 3

MLO AMD l

oo MAMAT N
2 EN | CARB | ; |
F of CALEDG  ]

MAILS CLPTR i.

Eo MANUM oo 2

Cd

: !

| Figure 3-12: The J.ta structure used in the two dimensienal processing
] | includes a list of potential matches for each edge. Each potential match may
3 A comprise a list of consistent mach interpretations. This primary mutch hist :
; Co is rebuilt on cach iteration and is used to update the secondary structure, :

SEF which holds the final results. ;
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SE ee
| ; LEFT RIGHT 3

Co | 2 107 |

: | A| * 1-7 A A
\ 108 |

SE 4 :

| A) 5 I

| VEDGE 2 “g

EDGE {: + _

UPTR VEDGE 4 EDGE & |
: | LPTR VEPTR veEPTR

SE CAT ol Sr) !
| ESAME 2h 0
Lo | ESBRI 26 ESBRI 70

- EMCLS EELS hy | || EME 61 EMRE 6
EMNUM 2 EMNUM 2 |
EMPTR EVPOTR eo :

- {

ECLRB B :

| ee |
3 | Figure 3-13: A sample left ai 1 «hl image pair is shown in a with the
| ! corresponding sterco analysis illuse. ated in the dala structure in b. The y
: | primary match structure is shown based on two samples, and indicates that
] edge 1 has two polential match classes: a maleh with edge 106 or a match i
: | with cdge 108. Note that edge 1 may be occluded by edge 107 on one of {

the epipolar lines but that this match interpretation is consistent with the

3 | malch lo edge 108, so they appear in the same match class. In this examnle,

A 3 the stereo interpretation for edge 1 =emains ambiguous. |

HS } , :

I 1 a aI mm eeae——ee
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| In this procedure a simple notion of edge match equivalence is used. The intent is

: to make the matching procedure ‘ndependent of edge segmentation. Therefore, two edge 2

matches are considered equivalent if: :

| e the matches are of the same type (i.c.,, both visible to both 3

| cameras, or both occluded in the same view), and 5

/ e the cdges pointed to are connected in the sense that the top

| endpoint of one iacels the bottom endpoint of the other at a 3
} jo

\ vertex, and no other edges meet at that vertex. a.

The result of the procedure just described is to ensure that every edge match | :
§ i 3

| interpretation, whether a match in both views or an occlusion, is incorporated into the data |
a | structure. The frequency of occurrence of each interpretation is also recorded (i.e., how |

! many samples or slices support a given interpretation). Equivalence classes are formed for 4
! [ » * L] - [ ] * Ld

| matches which are not identical in our representation, but which are potentially idendcal i
{

: in the scene, |
; 1 EF

3.3.2 —- Consistency
9.9.4 — Lonsiitency

’ } 11 1 » . . . [3 . :
The results From applying the Viterbi algorithm independently to each slice are i

[ .

| [ . . - |
| recorded in the dat- structure as described above, The n.atches listed are those which ;
| were calculated to be possible based only on the information in the particular slice taken. i

| The next step in the program is to tilter these polential 1aatches by looking for consisiency |
1 | across slices.) i

1 \

| It is quite possible for a given match interpretation to be in error because of :

» 1 3 L 3 [] LJ L L J 1

| noise or imperfect data on a particular slice. Such interpretations will generally not be :
! :
, 1

| supported by adjacent slices. Interpretations which are consistent with a context including
i :

: | multiple slices arc copied into a parallel data structure in preparation for subsequent |

| iteration. |

J :

| || .

ev! . - eo psy vi meme een-.- ; ) — CN ae) a—————— TT TERETE mT py
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| IFor each edge, new potential matches are hypothesized from adjacent connected
:

. edges. The intent of this procedure is shown in Figure 3-14, If edge A is connected at top 3

or bottom to a second edge B, and the second edge continues in the same direction (up or

. | . + » » L] » bd A]
: | down respectively) then the edge mateh list for this neighboring edge is examined. The
F '

connectivity of cach edge in this mateh list (e.g, edge C in the figure) is examined for

connectivity similar to that of the second edge, B. Tidges that have a position analogous |
to the original edge (c.g., D in the figure) are hypothesized as matches, and are added to 3

| the primary mateh list without incrementing EMSAMP. This procedure allows match |
information to be propagated along segmented scene edees from ane segment to the next,

Q . L] “gn 1] . . + ] §
without the overhead of selecting additional slices and executing the Viterbi algorithm.

The continuity of edges across epipolar lines is a sufliciently strong constraint to justify

this.

? |

oo

| de /.a
{ 7

| LEFT RIGHT

| Figure 3-14: Some matches may be hypothesized without actually running J
| the sterco Viterbi algorithm, Similar connectivity allow us to assume a }

R | maltceh belween A 2nd D based on a known match between 13 and C. Such :
| a match is added Lo the data structure with zero evidence so it will not |

‘ initially allect other mnatches.

£
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}

d ]
;

The remainder of the consistency checking procedure builds the secondary data |

structure. While the primary structure, (EMAT), is cumulative, this secondary match

list, (M2MAT), is initialized on each iteration by copying for each edge the values of the|

| primary match list. After this initialization, the continuity constraint is used to extend

the secondary match lists as described below.
| |

i Information on potential matches is propagated to adjacent edges based on con-
| tinusly. llere we define two edges as connected il they meet in a vertex that includes no !

| | other edges, and if one edge extends upward from the vertex and the other downward. |

Two edges that are joined by a sequence of connected edges arc continuous. For each

cdge, a search is made along such connected edges for matches which are equivalent to |

: any match in the current match list. Any such equivalent matches are tallied in the |

| M2NUM field of the secondary match list. |
Thus the evidence in the secondary match list includes information from two

SOUrces: i

e Iividence derived from slices passing through the edge. :
3 i

\ ¢ lividence gathered from connected edges.

| | This evidence is evaluated based on the number of samples that support a given match :|

interpretation, and the total number of samples contributing to any interpretation for the |

¥ edge. For the primary match list, the total number of samples is just the number of slices

| intersecting the edge. The secondary match list adds to this the number of samples from ;

connected edges. Note that an edge match that was hypothesized in the previous step :

} | may now accumulate evidence from connected edges. (This constitutes a very crude use

| ol inference rules of the type discussed by Binford [Binford 1981).) |

| The function used to nroduce a confidence measure for each cdge match inter- i

: pretation is:
;

| GNI == 0.5 + ~ oe i (3 — 12); | JN = 00+ -—r por — 3 —12
SE | SAMDP + 2 oH

4 : {
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: CE where: | i
: | ; CNI is the confidence measure, ;

NUM is the nuinber of supporting samples, and ;

: SAMP is the total number of samples. |

4 | | This function has the property of yielding a value of 0.5 if no samples are available. If every 3

| : sample supports the match interpretation (NUM = SAMD), the function approaches 1.0[ Co as the number of samples increases (1/2,2/3,3/4,...). If none cf the samples supports

| the interpretation (NUM = 0), the value of the function approaches zero as the number

] ‘ of samples increases (1/2, 1/3,1/4,...). This function is designed to yield a number which
i can feed directiy into the Vitarbi evaluation function as “previous information” (sce edge

; | measure and Equation 3-11.) :
| |

2.3.3 — Rasults

| This section reports some of the results of applying the stereo system to test i
| 1

| . data. A system has been written in the SAIL language and has been run on a Digital i

Equipment Corporation PDP-10 computer with a model KL-10 processor. The examples

in this section were computed by doubling the number of slices per iteration until slices :

3 had been obtair.d at uniform 4 pixel intervals. This required six iterations, beginning :

with one slice through a 256 by 256 pixel image, and ending with 32 slices. For the jet d

| | | aircraft scene, lotal computation was 287 scconds, comprising about 4.5 seconds per slice

: | for the one-dimensional processing, and | sccond per iteration for the two-dimensional

consistancy checking. | ;
: |

\ | It is difficult to show the total output of the sterco system; some edges have j
i .

Ep! been mutched in stereo, some have been classified as occluded and some have not been :

: | successfully classified. Perhaps the simplest and most direct way Lo display resulis is to :

a a DIS OEE SE|
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3 display just those edges which have been given an unambiguous stereo correspondence. :

1 | oo Therefcre, before an edge can be displayed, it must satisfy the lollcwing conditions: ¥

| e There is a unique match class that had the highest number of i

supporting samples; i.e., it was consistent with the most slices | |
: intersecting it. : 3

: | eo That match class did not interpret the edge as totally occluded; |1 | i.e., some part of it was visible to both cameras.

| eo The edge and its matching edge are zach longer than four pixels |
| | and overlap, when projected normal to ihe y-axis, at least 50%. |

eo The edge and its match have angles that are greater than 0.2 |

1 | radian from the stereo axis. {

Thus, ambigous matches and known occlusions are noi graphed. The position of an |

| occluded edge is bounded but not known exactly. The diagrams show only edges whose
-

: | | position in 3-space has been completely determined by the system. i
The edges are mapped to 3-dimensions and are scaled to fit in a convenient volume

| of space. This results in a cluster of edges which are then reprojected onto the image 1

planes of two cameras that can be positioned interactively. The resulting images show the :

- | | edge curves from viewpoints other than those of the original cameras. The sterecograms 3
| | may also be viewed in stereo by the practiced reader. 1
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| | Figure 3-17: These stereograms show overhead (90 degree) and 30 degree |
| | . views of cdges whose 3-dimensional posilions nave been determined. a:
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Figure 3.18: These stereograms show the same edges as Figure 3-17, but ;

| Po from ground level (0 degrees). :
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1 Figure 3-19: Images from San Francisco Airport show an L-1011 at a

boarding ramp. ;. i vl
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i Figure 3-20: IKdges arc produced and the images are registered for sterco
| processing. :| :
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| | Figure 3-21: These stereograms show overhead (90 degree) and 30 degree
views of edges whose 3-dimensional posilions have been determined.
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Figure 3-22: These stereograms show the same edges as Figure 3-21, but Dy 1}
from ground level (0 degrees). 4
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: The most common type of errors occur from slight, misregistration of the images, J

| | | or errors in edge detection. Thus we require edges to overlap significantly before accepting i
: their interpretation. Another common form of error is the detection of short edges in one 4

: i & . . . . . + . . . :

: | ; view but nov in the other. Filtering out short edges avoids this “noise” without deleting E1 ¥ 9
, A large objects. With the current scheme of applying slices at uniform intervals, these two 3

: : conditions are approximately equivalent to requiring a minimum number of samples or i

| | L slices on both edges. y
\ .

| : Another major source of error is due to positional inaccuracy on edges that are

4 N . . . . . * 3

4 ; | nearly parallel to the stereo axis. The error in stereo disparity, eq, is approximately: ;

| eq = —P- (3-13)
: : sin @ {

| where: :
! - . . wg, . 4

j ep is the error in edge position (perpendicular to the edge}, and

| 0 is the angle the edge makes with the epipolar line. {

| Matched edges whose angles arc close to zero tend to have wild dispavities, so these are |
| i

i omitted from the display. i

: Finally, due to alignment errors, the endpoints of the edge curves will generally
i

| not have identical y-coordinates. One or both edges are shortened to make this condition :

- | | true, i.c., to give 100% overlap.
i

I |

} : :

: | I"

1

Iai- cess - eee: -—

| | | Ca IER StIE 3
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I | FUTURE DIRECTIONS 3

! | It is often true that rescarch raises more questions than it answers. There are a i
| |

| number of directions future work could follow from the state reported in this thesis. Some
| of these extensions fit in easily to the framework developed; some require restructuring,

g

|

| The data structure used by our Viterbi algorithm allows for the relating of
| | edges and surlaces. For example, an edge that lies “on” a surface is given a different
|

| representation than an edge that is separated from a surface by a spatial discontinuity.

| | In the current implementation, these states are distinguished only by weak constraints

. | (surface breaks and excess length), and none of this information is preserved in the main

] | data structure or checked for consistency across slices. ;

| | To make use of this surface-edge information, more work needs to be done on the 3

| | | | constraints that affect it. For example, “T" junctions usually imply spatial discontinuities, i
| with the surface ajong the top of the T “in front of” the two surfaces along the stem of 1

| the T. Such information can be incorporatea into the stereo system as it is developed,
| : and the data structures rcorganized to preserve and use it. Some of this work in the area

. | of “shape from shape” is being done by Binford and Lowe [lowe 1981] and Licbes [Licbes

| | 1081). ooA
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| | t .A

} bis

! | % 4.1.2 — Equivalent Match Relations

| | Another problem that needs work is the classification of match interpretations
: g across epipolar slices. We have defined only simple equivalence relations, and the consis-

i 5 tency checking will find no information if the adjacent cpipolar slices generate match :

a { | » [3 + . . . =

pairs that are not in one of the simple equivalence relations we have defined. A more

| : complete analysis of line drawings in stereo would yield a larger and more complex sect of

| | } relations,
i

4.1.3— Viterbi Extensions 1

; 8 L Ll 1] L] » L] [ LJ |
: | More work is possible or the Viterbi algorithm itself, In particular, ils greatest

shortcoming is the cequiremant that every edge crossing an epipolar line be explained !
: a

: {
’ ! - - . . . . B 3

geometrically. llowcver, extraneous or missing cdges due to noise or misregistration i

| cannot be explained this way. It would be useful if the Viterbi algorithm could be -

h ' - » » . 3

| | extended to edit such edges out. All of ous -fforts to accomplish this have resulted in an |i .

i » - Ld LJ] 7

| | unmanageable increase in complexity of both tim: and space. ]i
| 4.1.4 — Evaluation Function

] | There should also be mora theoretical work on the evaluation function, “While

" [] . ) j

| the most important components Lave resulted from analytical work, others are ad hoe,

| and there is no unifying theory for combining the various components.

| | The two most important numeric constraints, edge intervals and edge angles,
| have been derived Lo map between distributions in object space and distributions in image :

:

| | space. Ilowever, the implementation has assumed uniform distributions in both cases. It ]
| | should be possible to use a priors knowledge of the scene to estimate a more accurate :

no feature distribution, e.g., many vertical and horizontal surfaces and edges. This would !
| |

| | translate into even stronger constraints on the image parameters, !

: 3

Cd Come §
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4.1.5 - Area-based Stereo 1

| One component in particular that has been greatly oversimplified is the use of |
| Cd

| brightness information. We have intentionally limited our use of this source in order

| to better study the problems of edge-based stereo. In the man-made scenes we were |

| concerned with, edges were dominant, and intensities could often be misleading. In any x
»

| stereo system that hopes to be general, however, intensity-based (arca-based) techniques | i; will be required. An obvious compromise is to use both, since there are places, often in a p

: single. scene, where each is superior, Certainly, the use of brightness in our system could i
F

| be extended beyond a single value per surface. b
 §&
SE
} )

3 | 4.1.6 — Edge Curves |

Our implementation has concentrated on edges, and to simplify the problem
| : i

| we have assuined edge curves comprise straight line segments. This assumption is not ¥

| | essential, and could be relaxed to include curved segments or splines. All of the essential |

| | inputs to the constraint calculations - edge length, end point position, vertex types, angle |

with respect to a given epipolar line -- arc also available with curves.

| . ~— Camera Model

| Much of the preprocessing cfforl goes to determine camera model parameters

| | and to register the images. As we noted, it is necessary in these steps to solve the stereo

| correspondence problem for a sclected number of points belore ail the pararneters can |

be determined. This leads to a circular sort of problem which is resolved only by the 1

| | fact that the stereo correspondence required for the camera model solution is much more

| limited than the full correspondence in that most parameters are known a priori to some |

approximatiorn.

' 1 :. Ka hE by
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| However, we have noted that many of the errors seen in our examples result from )

small errors in these parameters. Ideally, there should be a feedback process where a |
k + L] 1]

byproduct of the matching is a refinement of the camera parameters, which leads to a

| better match, and so forth. The use of vertex information is well suited for this feedback,

for once an edge i: matched, a correspondence is set up for any vertices to which it belongs. |
| :
i

| If two vertices corresnond, any ditference in their y-coordinales is one error measure for

; the camera model rarameters at that location in the image. This can lead to a correction

matrix capable of accounting for and correcting many types of geometric distortion.

ls .
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|

| \ , i;| *PIENDIX |

> .

| 5.1 Local Context System {

This section summarizes an carlier stereo system that was reported in 1978 4

a) [Arnold 1978]. This system represents the first use of edge continuily as a constraint 1

; in feature-based stereo. The initial processing steps, through the ground plane findes, are :

used in the current system to determine camera model parameters. |

Stereo images were digitized from small regions of 9x9 inch black and white |

» acrial photograph negatives. Fo reduce processing and memory requirements, these were
: Eo]

b ! M . h | » » . » . §
; normally reduced to 128x128 pixels. Subjects included commercial aircraft at a terminal i,

. | . v » . . [] hs

i in San Francise: urport, cars in a parking lot, and an apartment building complex. |
n | H 1) . . i i

A camera model and ground plane were caleulabed from the dats in the images in bq

v | a process which was entirely automated. An Interest Operator [Moravee 1977] was applied |]

: ' » . : . * NT any « ~~ . AA EEE LIRR Yi Wl )
a ! IT a ] 0 hd : Re . - ) J SAR ™ ’ 2 4

| We BY ed ER ® CU Saad |

ORRIN. WERE INE, PRIN hb WLTRIL ali |i
i SO opOR Cw Tee Co MEE Ra

’ att ~. JH i» . ! 3 ' Ps & E i wT 3 Rita ~ i Lee g AN | -) I. Lo . rE 3

[4 . ‘ ft ' .. vt R . "5 ‘0 hr - - “oe . A Lot i ] N i : hg |] 3 ' i . .

a oy es... A[ , Ta a \ ‘i. Law A] tT on } - J Se

= t Le os ot mm I as mn. + imo = came A © ro raiment 2 mn = Trreb +4 me mare em 82 + 8 Apter arr 8 A a Si Sp tm am om rms Sm©
od |

EE | | Figure 5-1: A 128x128x8 bil image paic was used, showing an 1-10! at

= | | San Iraneisco Airport. :
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3 i 3 v . . . . » . * [] i
i to the left vic to select approximavsly 50 “interesting” point... A point was “interesting” 3

3 ». . . N * . » . [] . . .
: ¥ if it promised to be casily locatable in two dimensions (i.e., corners and interscctions). pi

| :, A fast binary search correlator [Moravec 1977! produced an initial match for each point: : y Pp :
i 3 searching the entire right image cach time. :

i : These matches were refined with a high resolution area correlator [Gennery 1977] :

1 and passed to a camera mv del soiver [Gennery 1977]. This camera model prograin solved 4

4 R for four parameters:
: ] . or , T . E

| 1) direction o! uc stereo axis || 2) relative rotation between left and right views
3

| 3 | »  ] 3
3 | 3) scale factor between left and right views i

y 4) translation perpendicular to the stereo axis
| i

| The usual camera solver determines 5 parameters. The special form we used is

: useful in the degenerate case in which scene heights are cmall with resy.cct to distance :
J [ -

from the film plane.

EE — |

]

3 Stereo xis 3.71 degrees ;
| Relative rotation: -1.06 degrees i
= Scale factor: . 980 i

R : Transtationt 8.4] pixels 1

k Ground planet 2 = 6.80 - ,80325x -.0125y

- -Y }
2 Figure 5-2: The camera model and ground plane solvers produced four

| image p.orameters and the equation for a plane. ;

_— — . Co, & Nee a - 3
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SE : The relative positions (disparities) of each matched pair along the sterco axis -

| provided information on heights relative to the film plane. At this stage, about half the

: | | original 50 poii:ts had been automatically rejected for various reasons, and we relied on :

J the remainder to be evenly distributed in the scene. The points and their heights were ||

given to a ground plane finder [Gennery 1977] which attempted to fit a plane to a subset | |
: | of them such that a few points were assigned heights above the plane, fewer below the

| L
: | plane, and as many as possible on the plane. The total processing for the camera model |k |
| | and the ground plane was about 8 seconds on a PDP-10. |

| The next step was to raster-scan an edge operator over the two pictures to extract

3 8 all usable edges. We uscd the Hueckel operator [[{ueckel 1973], witt an operator radius |
: of 3.19 (32 pixels area). The Hueckel operator produces several accurate measurements

3 | which can be useful in discriminating matches, including a measurement of angle that is
] L - 1 [J

more accurate than other operators. Of this information, we retained for each edgel the
-, |

. a x-y position, angle of edge, and brightness of minus and plus sides, About 1200 edgels | |
| were produced from a 128x128 pixel picture in about 18 seconds. |

; | - - er” ‘ © mrt % “\ a |
i - . - . h
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| Cd each view.
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| At this point, all information was contained in the c¢dge files, and the original 3

; images were sct aside. The edges from the left and right pictures were then adjusted with 2

) tne camera model and ground plane parameters to a standard coordinate system with 3
| f the stereo axis in the x direction and disparity shifts due to the tilt of the ground plane 4

- cancelled. Thus all points lying on the ground plane had identical z and y coordinates in i

| : the two views. 3

| : We then proceeded to match edges in the left (master) image with those in the

| right, and extract a local context for each edge in the left. A grid of 8x8 pixel cells was set, || up for the left and right pictures, each cell being the head of a linked list. Edge records

& | were read in and linked to an appropriate ccll based on the 2 and y coordinates of the |
edgel. For these pictures, the linked lists had an average length of about 4.

For each edgel in the left picture, we wanted to find a list of possible matching ;

edgels in the right picture. The search was constrained to those edgels within a narrow 1
band, about 6 pixels wide in the y direction. The band started at the 2 coordinate of the :

left edgel (zero disparity) and extended to an a priors disparity limit in the x direction. {

| For cdgel pairs within the band, differences in brightness and angle were |

thresholded to determine whether to accept or reject a potential match. If the match ;

: was accepted, a disparity was calculated by cxtending the right edgel to intercept the y i
| | coordinate of the left cdgel. On the average, this search produced 8 ambiguous matches :

| for each edgel, that is, 8 edgels that agree in position, angle and brightness. Most of :

| | these ambiguous matches were actually multiple edgels from the same scene edge, with ]
| : slight deviations in disparity due to noise. From this point on, no further information was ]

| : obtained from the right edge file.

| ‘ For local context, we wanted a list of edgels in the left picture that probably lay {
; 4 on the same physical edge of the object. Again, a scan ran through all cdgels on the left, i
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Cd and a search was made for each one, this time in the left grid. Two edgels were linked if :

| Lo certain loose conditions were met: |
| | 1) x and y coordinates matched within 3 pixels, :

J 2) their angles matched within 90 degrees, 3

| | 3) the angle of a line connecting edgel centers lay between 4

: | the individual edgel angles, {

| | | 4) hrightnesses were consistent on at least one side of the 3
| | | edgels. 1

| | Typically, this produced 3 or 4 links per edgel, and linked edgels tended to follow :
|

| | edges of low to moderate curvature (see Figure 5-4.) The time for the matching and

¢ | linking was 33 seconds. |: i ;

We then had for each edgel in the left picture 2 list of possible disparities and a |

| | list of neighboring edgels which were linked to it. The problem was to choose a disparity

| for each edgel in such a way that disparities were consistent along linked edges. We
| | implemented an ad hoc “voting” scheme whereby each disparity on the edgel’s list was a

| | candidate, and only those neighbors which were linked could vote (see Figure 5-5). |

| The voting proceeded as follows: Let E be an edgel and L an edgel linked to E. |
3 Let dj, be a disparity on L's disparity list and dg a disparity on E's disparity list. If d, |

3 ; and dy werc equal or nearly equal (within .125 pixel disparity) then dg got two votes. If

| dr, and dg were close (within .375 pixel disparity) then dg got 1 vote. Otherwise, there |
3 | . ‘were no votes.

i This loose condition for voting compensated for quantization error in the record-

: | | ing of disparities and allowed multiple edgels from a single edge to reinforce. After all |

{ | : the voting, a bell-shaped distribution usually resulted about the best disparity, with wild |
SE or inconsistent matches out on the tails of the curve. The maximum of the distribution |
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| | was taken as the disparity for I. This processing took 8 seconds. We ¢ruld then output 1; | : 3

4 b a file of edgels with their three dimensional locations. E

| | | The system outlined above suffered {rom some serious problems. It relied heavily 3

| ! on the edge operator, which was deficient in several respects. It was susceptible to slow k:
: gradients, at whicn il found a multitude of parallel edges that tended to match at every 3

| possible disparity. Because it was a least squares process, it was easily led astray, for :

| example, ncar corners. This system also made very weak use of constraints other thanK . . B

| | continuity (c.g., brightness and edge angle).

: | ‘Asa |

! y

I | x

} j = 1

Lo Tor Xe |
- ' WY ;

/ i= i |
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: \ \ i
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1 ~~ 4 4

k- i EX Re

| =, LO
33 53 |

H

|

; Figure 5-4: This plot of edgels is [tom the left view of the aircralt images,

| near * left stabilizer and its shadow. X and Y axes are in units of pixels ;
ol J (octal), and dotted lines represent the links between edgels used for local ;

; context,
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| Nevertheless, the system produced some useful dapth maps and the results were A

| y encouraging in many respects. Although there were many edgels, over 90% of them were 4

| correctly matched. The depth map for the aircraft images provided clear separation of 5
- the ground from the plane, and resolved different parts of the plane according to their 1

I height above the ground: wings, fuselage, stabilizer and boarding ramp. Even the dihedral
| 3

| | angle of the main wings was apparent; edgels at the wing tips had greater disparity than ]

| | | edgels near the fuselage. A

! ;

| | Edget 345; Disparities: 3a, 48,54,68 ]

i Edger 365; Disparities: 40,44,46.5%,76; x
| Linke: 333,345,412:

| Edge: 412: Disparities: 41,41,42,45,75,;
. | Links: 345,365,474; :

EE Edger 454; Gieperities: 42,42,42,46,68,64,112; |
N Linke: 412;

| | |

| | Voting tally for 412s |
: | | Disp. 345 365 454 Total
AEE SO [I [TR TTTTR TU |

| 42 | I Hie 9
Po. 45 Hit THIN

Fo | Figure 5-5: A portion of the data structure produced by the matching |
1 A Lo ; program shows a sample voting. The edgels are selected from those in figure

5-4. (All numbers arc in oclal), |
4 |
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