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20 ABSTRACT (Continued)

Mechanical procedures for the manipulation of formal proofs have played a central role in
proof theory for more than fifty years. However, such procedures have not been widely applied
to computational problems. One reason for this is that work in computer science to do with
formal proof systems has emphasized th. use of formal proofs as evidence — as tools for
automatically establishing the truth of propositions. As a consequence of this emphasis, the
problem for mchanizing the construction of proofs has received much attention, whereas the
manipulation of proofs — that is, the conersion of one form of evidence into another — has not. -

However, formal proofs can serve purposes other than the presentation of evidence. In
particular, a formal proof of a proposition having the form, “for each x there is a y such that the 1
relation R holds between x and y" provides, under the right conditions, a method for computing
values of y from values of x. That is, such a proof describes an algorighm 4 where A satisfies Ex
the specification R in the sense that for each x, R(x,A(x}) holds. Thus formal proof systems can i
serve as programming languages — languages for the formal description of algorithms. A proof h
which describes an: algorithm may be “executed” by use of any of a variety of procedures 3
developed in proof theory. ,

A proof differs from more conventional descriptions of the same algorithm in that it 5
formalizes additional information about the algorithm beyond that formalized in the i
conventional description. This information expands the class of transformations on the :
algorithm which are amenabel to automation. For example, there is a class of “pruning” k.
transformations which improve the computational efficiency of a natural deduction proof
regarded as a program by removing unneeded case analyses. These transforations make essential |
use of dependency information which finds formal expression in a proof, but not in a
conventional program. Pruning is particularly useful for removing redundancies which arise |

Ler a general purpose algorithm is adapted to a special situation by symbolic execution.
This thesis concerns frcomputational uses of the additional information contained in proofs, g

| and (& efficient methods for the representation and transformation of proofs. An extended
| lambda-calculus is presented which allows compact expression of the computationally significant I
| part of the information contained in proofs. Terms of the calculus preserve dependency data, 1
| but can be efficiently executed by an interpreter of the kind used for lambda-calculus based

languages such as LISP. The calculus has been implemented on the Stanford Artificial
Intelligence Laboratory PDP-10 computer. Results of experiments on the use of pruning
transformations in the specialization of a bin-packing algorithm are reported.
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COMPUTATIONAL USES OF THE MANIPULATION |

OF FORMAL PROOFS |

| Christopher Alan Goad

oo ABSTRACT

I ; Mechanical procedures for the manipulation of formal proofs have played a central role in
bd proof theory for more than fifty years. However, such procedures have not been widely applied

; to computational problems. One reason for this is that work in computer science to do with
LC formal proof systems has emphasized the use of formal proofs as evidence — as tools for

automatically establishing the truth of propositions. As a consequence of this emphasis, the |
1 problem for mchanizing the construction of proofs has received much attention, whereas the
: manipulation of proofs — that is, the conersion of one form of evidence into another — has not. |

| However, formal proofs can serve purposes other than the presentation of evidence. In
! particular, a formal proof of a proposition having the form, “for each x there is a y such that the

relation R holds between x and y" provides, under the right conditions, a method for computing |
| . | values of y from values of x. That is, such a proof describes an algorighm 4 where 4 satisfies i

| by the specification R in the sense that for each x, R(x,4(x)) holds. Thus formal proof systems can
| serve as programming languages — languages for the formal description of algorithms. A proof
jf which describes an algorithm may be “executed” by use of any of a variety of procedures

| y developed in proof theory.
“ A proof differs from more conventional descriptions of the same algorithm in that it
4 formalizes additional information about the algorithm beyond that formalized in the3 conventional description. This information expands the class of transformations on the

gx algorithm which are amenabel to automation. For example, there is a class of “pruning”
3 transformations which improve the computational efficiency of a natural deduction proof |

i. regarded as a program by removing unneeded case analyses. These transforations make essential ]
a use of dependency information which finds formal expression in a proof, but not in a

| a conventional program. Pruning is particularly useful for removing redundancies which arise
i § when a general purpose algorithm is adapted to a special situation by symbolic execution.

| A This thesis concerns (1) computational uses of the additional information contained in proofs,
a T and (2) efficient methods for the representation and transformation of proofs. An extended |

lambda-calculus is presented which allows compact expression of the computationally significant
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part of the information contained in proofs. Terms of the cakulus preserve dependency data,
but can be efficiently executed by an interpreter of the kind used for lambda-calculus based
languages such as LISP. The calculus has been implemented on the Stanford Artificial vi
Intelligence Laboratory PDP-10 computer. Results of experiments on the use of pruning
transformations in the specialization of a bin-packing algorithm are reported. o |

| This thesis was submitted to the Department of Computer Science and the Committees on
Graduate Studies of Stanford University in partial fulfillment of the requirements for the degree of

| Doctor of Philosophy._..

"This research was supported by the Advanced Research Projects Agency of the Department of
Defense under ARPA Order No. 2494, Contract MDA903-80-C-0102. T Ae views and conclusions |
contained in this document are those of the authors and should not be interpreted as necessarily

Fo representing the official policies, either expressed or implied, of Stanford University, or any agency
of the U. S. Government.
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) Abstract

| Mechanical procedures for the manipulation of formal proofs have played a central role
in proof theory for more than fifty years. However, such procedures have not been widely

applicd to computational problems. One reason for this is that work in computer science to |

i do with formal proof systems has emphasized the use of formal proofs as evidence - as tools |

; ! for automatically establishing the truth of propositions. As a consequence of this emphasis,
pd the problem of mechanizing the construction of proofs has received much attention, whereas | |
: : the manipulation of proofs - that is, the conversion of one form of evidence into another - has

| not.
|
! However, formal proofs can serve purposes other than the presentation of evidence. In
] particular, a formal proof of a proposition having the form, "for each x there is a y such that
SE the relation R holds between x and y" provides, under the right conditions, a methnd for
| | computing values of y from values of x. That is, such a proof describes an algorithm A where |

A satisfies the specification R in the sense that for each x, R(x,A(x)) holds. Thus formal proof

systems can serve as programming languages - languages for the formal description of |
| algorithms, A proof which describes an algorithm may be "executed" by use of any of a

varicty of procedures developed in proof theory.

| A proof differs from more conventional descriptions of the samc algorithm in that it
boo formalizes additional information about the algorithm beyond that formalized in the |

| EY conventional description. This information expands the class of transformations on the |
: {a algorithm which arc amenable to automation. For example, there is a class of "pruning"

| 4 transformations which improve thc computational efficiency of a natural deduction proof
: ¥ regarded as a program by removing unncceded case analyses. These transformations make |
| ] essential use of dependency information which finds formal expression in a proof, but not in a
| x i conventional program. Pruning is particularly useful for removing redundancies which arise
| hot when a gencral purpose algorithm is adapted to a special situation by symbolic execution. |

| ; ‘This thesis concerns (1) computational uses of the additional information contained in |
| | t proofs, and (2) cfficient methods for the representation and transformation of proofs. An

| io extended lambda-calculus is presented which allows compact expression of the computationally
ef significant part of thc information contained in proofs. Terms of the calculus preserve

’ : dependency data, but can be cfficiently executed by an interpreter of the kind used for ;
SH & lambda-calculus based languages such as LISP. The calculus has been implemented on the

| i pi! Stanford Artificial Intelligence Laboratory PDP-10 computer. Results of experiments on the

), Ee usc of pruning transformations in the specialization of a bin-packing algorithm arc reported.
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| Chapter 1

; Introduction

! The most obvious purpose of a proof is to convince - to provide compelling evidence for

i the truth of a proposition. A formal proof provides cvidence of a kind that can be
3 : mechanically recognized, and it is in the capacity of evidence that formal proofs have most |

4 often been used in computation, as for cxample in automatic theorem proving and in
automatic program verification of the usual kind.

x As a consequence of the emphasis on the use of proofs as evidence, only two of the
various operations which pcople commonly perform on informal proofs have played a

| significant role in computations involving f~rmal proofs. These opcrations are the

construction of proofs, and the checking or recognition of proofs. Operations which involve

} the actual manipulation of cxisting proofs, as opposed to the manipulation of formulas, are |
not much used.

EL However, mechanical procedures for proof manipulation have played a central role in the :

subfield of mathematical logic known as proof theory for morc than fifty years. This thesis

concerns applications of proof theoretic methods to computational problems. In particular,

3 i | our subject matter is the use of formal proofs for the description of algorithms, and the |
| oo transformations on algorithms which are made possible by this mode of description. Thus the
i LL work differs from most work in computer science to do with formal proofs both in the use to

i ' | on which proofs arc put, and in the emphasis placed on the manipulation - in contrast to the
x construction - of proofs.

" | 4 The manner in which proofs may be used to express algorithms is as follows. Suppose
; * that onc has a proof that an object with given propertics exists. Then the proof can

3 | | ’ sometimes be used to discover the identity of a particular object with those properties. If
Ki restrictions are made on the forms of inference used, then it is possible to guarantee that the

proof will (in one sense or another) provide this additional information. For example, a

4 constructive proof of Ixe(x) always “provides” a value v with @(v) in the sense of indicating a |
od . method for computing v; the computation may or may not be feasible in practice. However, {
: |! the restriction to constructivity is too strong. For onc thing, a proof of dx¢p(x) may exhibit a
: 4 value v which satisfics ¢, but show that g(v) holds by non-constructive methods. Also, if onc

/ 3 restricts the complexity of @ (for example, if ¢ is a quantifier free formula of first order
| EF arithmetic), then any classical proof of 3xe(x) will provide a realization in the same sense and



by the same formal methods as a constructive proof. (By a "realization" of an cxistential i.

statement Ixg(x) is meant simply a value which satisfies the predicate ¢.)

| If an existence proof is given in a formal way - in a way which makes it suitable for *)
mechanical manipulation - then onc might hope to mechanize the passage from the proof to

! | the valuc realizing thc existential statement. Work in proof theory has shown that the
extraction of realizations from proofs can in fact he mechanized for a variety of formal |

1 systems and in a varicty of ways. For example, Prawitz’s normalization procedurc may be
uscd to transform a natural deduction proof of an existential formula into a direct proof of the |

| same formula which will - under rather general conditions - explicitly mention a realization. |

] Now, if onc has a proof of a formula of the form Vx3yg(x.y), the methods from proof

| | | theory mentioned just above can evidently be used to compute a function f with Vxe(x,f(x)). |
r To do this, simply apply the general result Vx3dye(x,y) to the input value, and then use

| normalization (or whatever method one has in hand) to extract a realization. Thus a proof of

| a formula VYx3ye(x,y) serves the role of a program which computes a function satisfying the

| “specification”  @.

| Given that proofs can be used as programs, what is the interest of this fact for computer
Co scicnce and for practical computing? One answer is as follows.

; «

] | Existing programming languages arc for the most part designed with cconomy of
expression in mind; a program in such a language formalizes exactly the information needed .

| for carrying out the task at hand. A proof, on the other hand, formalizes a great deal of

i information which is not essential for the simple cxccution of a computation - such as a
; : ’ description of the task being performed, a verification of the method, and an account of the j

3 ) ] dependencies between facts involved in the computation. ‘The additional information
| contained in proofs is useful in the transformation of computing methods - for example in

| | adapting methods to new situations. ‘This should not be surprising, since onc expects that the
; | data relevant to the transformation of algorithms will be different and more extensive than the

: Poor data nceded for simple execution. :

3 We shall be concerned with a particular set of transformations on algorithms - called the :
LL. "pruning transformations”. These transtormations remove redundant chunks of computation

; : by making usc of a kind of dependency information which does not appear in ordinary
| ' programs. or the most part, the redundancies removed by pruning are not to be found in :

proofs generated by people. Thus the pruning transformations will not be of much use when

I applied to algorithms as originally presented. However, proofs which result from automatic .
y 1 processes tend to include such redundancies.
¢ 2



| For example, suppose that one has an algorithm A(x) which is to be used in a situation

where it is known in advance that all inputs will have a special form given by the term |

| yy... - Yp) Then A may be automatically adapted to perform efficiently in this special
situation by symbolically cxecuting the code for A on the term tt, and then applying

optimizing transformations to the result. (Ershov[{1977] and Sandewall{Beckeman, Haraldsson,

| Oskarsson, and Sandewall, 1976], among others, have studied this method of specialization as
it applics to ordinary programs.) If A is expressed by a proof 1, then the result of

symbolically executing Tl on the term t will often contain redundancies of the kind removed

by pruning cven if Il as originally given contained no such redundancies. Thus, the

cffectiveness of automatic specialization can be increased by adding pruning to the arsenal of

optimizations used in the course of specialization,

As they stand, the standard methods of proof theory are not adequate for carrying out the

: specialization of algorithms in a feasibly efficient way. However, we have devised methods for

the exeention and pruning of proofs which overcome this problem. ‘The methods have been

implemented in a proof manipulation system running on the Stanford Artificial Intelligence

: Laboratory PDP-10 computer. As a preliminary empirical investigation of the usefulness of

| pruning in the specialization of algorithms, cxpermiments on the specialization of a bin-
packing algorithm have been carried out.

; | The following topics are treated in this thesis, listed in order of decreasing gencrality. i
| (I) the use of proofs for the formalization of algorithms,

E | (2) optimizing transformations on proofs, in particular, the pruning transformations, |

4 (3) efficient implementation of operations on proofs,
| E (4) the use of pruning in the specialization of algorithms, and

| Cu (5) the specialization of a bin-packing algorithm.
}.

| | pr The general objective of the work is the development of an improved technology for the :
} manipulation of algorithms. “The usc of enriched formal descriptions of algorithms -

| : . specifically, formal proofs - is a means to this cand.

| b The contents of the thesis are as follows. Chapter 2 serves to introduce some material |
of trom prool” theory which will be needed in the course of the thesis. [n particular, we define

; 1d the notion of a natural deduction proof system, and explain Prawitz’s normalization procedure. |

) A Also, we present a very simple example of the use of pruning in specializing algorithms, The |
i] example is intended to illustrate the central features of the pruning transformations in a

ag 3 3
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} setting of minimal technical complexity. Chapter 3 describes the methods which we have

i devised for the cfficient execution and pruning of proofs. In chapter 4, results of the bin- “|
packing experiments arc reported. Chapter 5 sketches additional uses which might be made

3 | of the proof technology described in chapter 3. There are two appendices, cach of which is "
intended primarily for readers with an interest in traditional proof theory. ‘The first concerns |

i the relationship between our methods and the functional and realizability interpretations of
Kleene, Gode., and Kreisel. The sccond appendix presents an example which demonstrates ’

$ that the features of proof systems which are of interest for traditional proof theory are |
different from those which are most directly relevant to the computational use of proofs. |

3 | The remainder of this chapter is devoted to a collection of general remarks about the ]
TE work, and to previews of matters which arc discussed in detail later on. |

; ° Manipulation vs. construction |

| | It should be emphasized again that the work described in this paper concerns the
| automatic manipulation of existing proofs, and not thc automatic construction of ncw proofs.

The bin packing proof used in the experiments was devised "by hand”, and was cntered by

: hand into the proof checking component of the proof manipulation system. If one is able to
: | automate, fully or partially, the construction of proofs which describe computational methods,

then so much the better. But such matters lic outside the scope of this thesis. « |

1 ° Differences between proofs used to describe computation and proofs used as evidence 3

: It is neccessary to keep computational considerations explicitly in mind when constructing 'y

1 : proofs which arc intended as descriptions of computation. I'he best proof of a formula i
3 | Vx3yp(x,y) according to such standard criteria as brevity, clegance or comprehensibility, will 8

\ often embody a very bad algorithm. Conversely, a proof of Vx3ye(x.y) which formalizes a :

: | good algorithm will generally constitute a rather unnatural way of cstablishing the simple truth
j of the formula. For the purposes of this thesis, proofs are to be regarded as a means of

| | formulating algorithmic ideas. In writing a proof to be used for solving a computational |
: Po problem, one follows the same procedure as is used in writing an ordinary program. Namncly,

| Co one first devises a reasonable algorithm, and afterwards formalizes that algorithm (as a proof).

: | If a proof is given in complete detail, then it includes a jusiification for the correctness of thealgorithin which it formalizes. As an immediate consequence, formalization of algorithms by

| proofs provides a means for the mechanical verification of algorithms.

. ; | However, if onc wishes only to implement an algorithm, and not to verify it, then the |
| . proof describing the algorithm need not be fuliy formalized. In particular, proofs of so-called '

"Harrop formulas” can be left out. The Harrop formulas include for example all formulas bv H

| l 4

{ 1



4

: which lack occurences of the positive logical symbols V and 3. Any proof of a Harrop |
formula may be omitted without destroying the computational uscfulness of a proof in which

' that axiom appears. |
| |

; Such “non-computational” formulas do not even need to be true. A proof which uscs |
incorrect Harrop formulas as axioms can be executed and pruned in the same manner as a |

i proof which is valid throughout. Howcver, the function computed by the incorrect proof may
! not satisfy the specification embodied in its end-formula. | i
3 ;

: A formal proof which is constructed for the purpose of describing an algorithm and |
which makes free use of Harrop formulas as axioms will in general contain only a part of the |

I information needed to establish the truth of its end-formula. Thus the formal proofs which |
will concern us here are not proofs in the ordinary sense at all; they do not supply - and are |

; not intended to supply - the cvidence necessary to verify a proposition. We are bending the |
| machinery of formal proofs to a different end than that for which it was originally intended,

: and so can discard the part of that machinery which is irrclevant to our new purposes. |

| ® The role of constructive methods
: We restrict our attention in this thesis to proofs which arc built up using constructively

valid inferences. The particular formal proof system uscd is the natural deduction formulation

of first order logic as originally developed by Gentzen[1969] and later studied by

: Prawitz]1965]. To arrive at the constructive (or "intuitionistic™) variant of natural deduction

! from the standard or classical natural deduction system for first order logic , one simply

| ji removes one of the inference rules, namely the rule which expresses the principle of the ]
| SE excluded middle.

| - Note for the reader who is unfamiliar with intuitionistic logic: ‘The approach to the: foundations of mathematics which is known as “intuitionism” or “constructivism” was |

{ | ) originated by Brouwer. According to this approach, the subject matter of mathematics is not
fl an external world of mathematical objects, but rather the world of mental constructions carried

\ L. out by mathematicians. This point of view leads to a reinterpretation of the meanings of the

| | logical symbols, and to restrictions on the modes of inference which can be employed.
5 Heyting and later Gentzen developed formal systems for representing contructive reasoning. |
\ It is not our intention here to give an exposition of intuitionism as a philosophical standpoint;

| y the interested reader is referred to van Dalen [1973] |

oo | ' We have chosen to use the the constructive instead of the standard system not because of
| ; any distrust of classical reasoning, nor because non-constructive proofs cannot be uscd to

, oo describe algorithms, Indeed, the proofs which we use to describe algorithms will in any case



|

J make use of complicated axioms (as explained in the last section), and there is no reason |
; whatever to require that these axioms be constructively valid. Thus the formulas which ) |

appear in our proofs will not in gencral be constructively valid; it is only the inference rules i
| used for manipulating those formulas which must be constructive. But further, even proofs : |

which make cssential usc of non-constructive inferences in connection with non-Harrop

: formulas can be exccuted by methods similar to those used for constructive proofs. In

| ! particular, many of the methods of proof theory, including Prawitz's normalization method, |
apply to classical proofs as well as to constructive proofs, and under certain conditions are ;

3 guaranteed to provide the samc kind of information. For cxample, normalization may be |
g | used to exceute any (classical) proof of a formula Vx 3ye(x.y) of arithmetic whose matrix ¢ is i

| | quantifier free; a value for y will always be supplicd by normalization when any input value
! for x is given. Thus the distinction between a proof which describes an algorithm and a proof

F | which does not is quite different from the distinction between a constructive and a non- |
| ; constructive proof.

: However, the process of fleshing out an algorithm into a proof from (possibly complex)
Harrop axioms appears to Icad naturally to a proof in which only constructive inferences are

i used. This at lcast is our expericnce so far. So for the moment, there is no need to look at

SE classical systems, and by the restriction to constructive systems we arc able to avoid a certain

: amount of technical complication, |
-

° The p-calculus

: °

Traditional proof thcory provides two kinds of methods for the exccution of proofs. |

. First, there arc the normalization and cut-climination methods which carry out the

| 3 computation indicated by a proof by transformation of the proof itself, Sccond, there arc the
L functional and realizability interpretations which extract “code” of onc kind or another from ]

! | : proofs; it is then the code which is executed, and not the proof itself. |
| LC Fach of these two approaches is inadequate for the purposes which we have in mind here. |

i) ‘The normalization methods are unsatisfactory because they are too slow. On the other hand, |
I 1 § the methods which involve extraction of code from proofs retain only the information which is

| 3 needed for the computation inuncdiately at hand; the additional data needed for the pruning

| transformations is lost. ‘This would not be a problem if we only intended to apply pruning
ai transformations to proofs .as they are originally given, However, the use of proofs for the

y specialization of algorithms requires that the additional data be preserved by symbolic
. execution.

) i Our solution to these difficulties involves the use of an extended A-calculus, which we

| J K shall refer to as the p-calculus. ‘The p-calculus is designed to provide expression for just that |
| 6
3 ! :



information contained in natural deduction proofs which is needed for execution and for the

pruning operations. P-calculus terms can be extracted from ordinary natural deduction proofs

| . in a straight-forward manner, and exccuted efficiently by an interpreter of the kind used for
| A-calculus based languages such as LISP and SCHEME. Chapter 3 describes the p-calculus in |

| detail.

® Related wetk in computer science

| ‘The work described in this thesis is related in a general way to work in a variety of areas

i of computer science. In particular, there are clear connections to code optimization, program
synthesis and transformation, and to dependency directed reasoning in the sense of [London

¥ 1978] and [Stallman & Sussman 1977]. ‘The relation between the current work and the topics

i just mentioned is discussed in chapter 5. In what follows, we give a brief catalog of work
| within computer science which is directly concerned with the extraction of information from |

: proofs. |

| Green [1969] considered the problem of extracting information from resolution proofs. |
| Bishop[1970], Constablcf1971], and Martin-1.61{1979] - among others - have suggested using i

constructive proof systems as programming languages. Goto[1979] has implemented Godel's |
Dialectica interpretation for intuitionistic first-order arithmetic. Takasu [1978] discusses

computational uses of proofs in the same system by use of Gentzen's [1969] cut-climination |
| procedure. Migholi and Ornaghi [1980} describe a method for executing sequent calculus

: proofs which differs from cut-climination. In [Manna and Waldinger, 1979), a method for |

| automatic synthesis of programs 1s described which involves the simultancous construction ofa

i natural deduction proof of the goal formula and of a program which realizes that formula (in

i : un a suitable sense). Bates [1979] develops a constructive “refinement logic”, and shows how
1 programs can be extracted from proofs of this logic. A Prolog program [Kowalski 1974] is a

| K collection of axioms in Horn clause form. An execution of a Prolog program consists of a| J search tor a proof in a restricted resolution system. ‘The output is a term extracted from the |
! .g proof. In practice, the output term is constructed during the scarch for the proof. (See

| | chapter 5 for further comments concerning the work of Bates and of Kowalski.)
Co [t should be emphasized that the aims of the work described just above differ
Po fundamentally from the aims of the work presented in this thesis. In the former, formal |

proofs serve as vessels from which computational contents of a standard kind are extracted.

A In contrast, our concern 1s to exploit the differences between proofs and conventional |
yi descriptions of computation. Specifically, we will show how new operations on algorithms can |

| . : be mechanized by making usc of the additional information to be found in proofs. |

X 7



Chapter 2

Normalization and Pruning of Natural Deduction Proofs

| In this chapter, we describe the natural deduction formalism (section 2.1), and the

| normalization and pruning operations (sections 2.2, 2.7). A very simple example of the use of |

| pruning in specializing algorithms is given in section 2.8. Our presentation of natural ’
deduction and of normalization follows standard lines (cg Prawitz[1965])., cxcept in the

g treatment of lemmas” (section 2.5). Certain formal details concerning normalization are left |
i out, and alt results arc stated without proof. Also, no treatment of principles of induction is

| given until Chapter 3, where normalization and pruning arc described in formal detail as they

] apply to a computationally cfficient representation of natural deduction proofs.
4 ,

: 2.1 Nat: ral deduction |
| Systems of natural deduction were originally developed by Gentzen]1969). ‘The notation |

used here is that of Prawit/[1965]. The reader is referred to Prawit/]1965] for a more |
discursive presentation of natural deduction and of a normalization procedure for natural |
deduction  prools. |

| In what follows, we describe the natural deduction formalism for intuitionistic first order |

logic. The formalism is defined with a first order language 1. as a parameter; the class of .

formulas which may appear in a proot is given by 1. It should be noted that natural

deduction difters from other proof systems for intuitionistic first order logic in the kind of |

| | structure which it provides tor representing proofs, and not, for example, in the set of
theorems which it proves. It is possible to translate back and forth between proofs otf natural ’

: deduction and proofs of, say. the sequent calculus in a mechanical way. The advantages of |

| natural deduction are the advantages of a good data structure - a data structure whichrepresents human reasoning in a comparatively direct way, and to which the various

| operations in which we are interested can be casily applied.
| The notion of a first order Language is defined in the standard manner, as follows. We

i start with (1) an (infinite) list of variable symbols, Viva +o (2) a list of constant symbols

: \ Cpl om (3) a list of relation symbols RR, c.oaoand (4) a dist of tunction symbols
: f.f, . oo The arities of the relation symbols and function symbols arc to be specified as

| | part of the definition of I. Terms of [. are built up from variable and constant symbols by

means of function application in the standard manner. ‘Fhe set of formulas of 1. is defined .

, by the following inductive clauses. (1) The propositional constant FAISE is a formula.

. i
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(2) If t, ...t arc terms, and R is a rclation symbol of arity n then R(t, . . . t,) isa
formula. (3) If P,Q arc formulas, and x is a variable, then (a) PAQ, (b) PVQ, (c) P DO Q,

! ] (d) 3xP are formulas. It is convenient for our purposes to allow universal quantification to
| apply to a vector of variables; thus we have (¢) Vx, . . . x P is a formula for any formula P |

and vector of distinct variables x, . . . x. (Vx, ...xP is nor an abbreviation for
| Vx, Vx, ... Vx P. We shall sometimes usc underlined characters to refer to vectors - for

example x wi" refer to a vector of variables, and t to a vector of terms. We regard negation

; as a defined notion; specifically, TP is to be rcad as an abbreviation for the formula

P DO FALSE. ‘The notion of a free occurence of a variable in a fortnula is defined in the |

i standard manner,

| A natural deduction proof takes the form of a tree whose nodes are labeled by formulas,

by the names of inference rules, and by other information. This tree represents the history of

| | a logical argument - in particular it records a series of applications of inference rules which
lcad from the hypotheses of the argument (represented by leaf nodes of the tree) to its

conclusion (represented by the root).

] The leaves of a natural deduction proof tree are of two kinds: axioms and assumptions.
The truth of the conclusion of a natural deduction proof will in general depend on the truth

of the formulas which appear as axiom leaves, but may not depend on the truth of all of the

| tormulas which appear as assumption leaves. The reason for this is that the inference rules

of natural deduction can have the cffect of "discharging assumptions”. For example, consider

. the implication introduction rule:

| (A)
| B

EL ADB

This rule specifies that ADB can be inferred from B. In addition, the rule indicates that

: the set af assumptions upon which ADB depends is to be computed by removing the formula

| A from the sct of assumptions on which B depends. (I'he appearance of A in parentheses is |

} what specifics that the assumption A is to be discharged. ) Informally, the rule states that if BiV can be proved using the assumption A, then ADB can be concluded, and this conclusion does |

Co K not depend on A being true. ‘Thus the inference rules of natural deduction operate not just |
| Pood on end-formulas of the subproofs to which they are applied, but on additional information |

| | vj contained in those subproofs, namcly, sets of assumptions.
: ’

‘J In general, the formula attached to any node in a natural deduction proof tree depends |

K $i on sone (possibly empty) subcollection of the formulas attached to assumption leaves of the |
1 subtree rooted at that node. The members of this subcollection are referred to as the “open

i K ca ° assumptions” of the node. The inference rules specify what conclusions may be drawn from



premiscs of a given form, and in addition indicatc how the open assumptions of the _
conclusion arc computed from the open assumptions of the premiscs.

! The set of open assumptions of cach node in a proof tree is computed recursively as °

follows. First of all, the sct of opcn assumptions of a leaf node is the empty set if the node

is an axiom, and the singleton set containing the node itself if the node is an assumption. The

sct of open assumptions of any non-lcaf node can be computed from open assumptions of its

sons simply by appying thc inference rule associated with that node.

: Note that we use the phrase "open assumptions” to refer to a set of nodes on a proof
) tree, and not to the sect of formulas attached to those nodes.

| Each of the inference rules of natural deduction has the following form:

AD (A)... (Ap
Sa: Pp Py ... Pg

C |

| In the above, some (or all) of the P; may lack associated appearances of parenthesized
formulas (A;). Thc meaning of such a rule is that a conclusion of form C can be derived

from premise formulas of forms Py... P,. The sct of open assumptions of “he conclusion is ]
computed as follows. l.ct S; be the set of open assumptions of premise P;. For cach i,

remove from S; all nodes whose attached formula is A, and call the result Si’. (If there is no il
| | A; associated with P;, then let §;' = S,) The set of open assumptions of the conclusion is

| just the union of the S;. ‘ihe A; arc called the assumptions discharged by the rule,

Each of the inference rules of natural deduction is devoted to the treatment of a

1 particular logical symbol or quantifier. Conversely, for cach logical symbol and quantifier, |
| | there is a rule (or pair of rules) which has the effect of introducing that symbol, and another |
1 Co rule (or pair of rules) which has the cffect of climinating that symbol. The rules are

| | » designated by the symbol which they treat, and by their function, whether it be introduction
» or elimination. For example, the two rules which treat implication are referred to as the "2O-

Lo | introduction rule” and the "D-climination rule” ("2I1" and "DE" for short).

| A The inference rules of natural deduction are given below. We use the following notation |
k ) for substitution: Ae or Alx«t] denotes the result of replacing all occurences of the variable |

: : x by the term tin the formula A. If x and t are vectors of variables of the same length, then i

| | . Alx«t] denotes the result of substituting the termst for the variables x in parallel. As usual, )

‘ 1 substitution may require that bound variables be renamed.
EEN
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A-introduction: |

! A B ;

i AAB |

A-¢limination:

AAB AAB i

A B

| V-introduction:

(I. A B |

AVB AVB |

| V -climiuation:

Lo (A) (B) | |

| AVE C C |C 1

D-introduction:

: (A) |
i ]

| | ADB
{ to

SEE | J-climination: |

| A ADB

| » B| i;

¥ V-introduction:

po , ] VxA condition: none of the variables x may appear free in any
i assumption on which the premise A depends. |

’ i! ' |
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V-climination: .

VxA |

| Alx«t] where t is any vector of terms of L )

1 3-introduction: |

Po Axe]
: i

: AxA where t is any term of L |

Lo. 3-climination: |

| ; dxA
2 ——ee ——

! C conditions: the variable x may not appear free in A, nor in C, nor in
| any assumption on which the second premise C depends

other than thc assumption A.

| The above rules are cssentially Prawitz’s rules for the intuitionistic predicate calculus.
i However, we have left out the FALSIi-elimination rule:

FALSE-elimination: .

oo FALSE |

) The effect of this rule can be obtained by the usc of axioms of the form FALSE OD A for

atomic formulas A. (Any formula can be derived from FALSE by means of such axioms and |

the use of introduction rules. For example, AVB with A atomic may bec derived from |

: FALSE by using the axiom FALSE OD A, and then applying V-introduction.) As will be scen
| (section 2.3), we shall allow such "falsc-climination” axioms to appear in proofs uscd for

| x computation; in fact, the restriction that the consequent A be atomic may be weakened - A
, may bc any “Harrop” formula (section 2.3).
|

. / |
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. The classical first order predicate calculus is arrived at by adding the following inference |

rule expressing the principle of the excluded middle (recall that TA abbreviates A OD FALSE). i

| J-climination: |

(A) | |
: FAI SE.

; Notice that free variables which appear in axioms are in cffect universally quantified; the

; same conclusions can be drawn from an axiom A(x, . . . x) in which the x; appear free as ]

. | from the axiom Vx; x, . .. x, A(x, . .. X,)-
¥ ‘The V-introduction and 3-climination inferences bind variables in a proof in the same

| : sense that the quantifiers V and 3 bind variables in a formula. Specifically, the variables x in - )
| i the above presentation of the V-introduction rule are to be regarded as bound wherever they :

| occur in the proof of the premise of the rule. Similarly, the variable x in the 3-introauction

| rule is to be regarded as bound in the proof of the rule's second premise. In both formuias
| | and proofs, a bound variable serves as a local name which is meaningful only inside the scope
| of the binding; such bound variables may be renamed at will without changing the meaning
| of a formula or proof (as long as conflicts with other variable names arc avoided). A precise

| detinition of the notion of a bound variable in a proof will be given in chapter 3.

| . By a "closed proof” we mean a proof in which no variables occur free, and in which the

cnd-formula depends on no assumption. Formulas which are not closed may appear in a }

ot closed proof, as long as the free variables in those formulas are bound by onc of the inference

| b q rules V-introduction and 3-climination. | ||

| 3 The following is a simple example of a natural deduction proof, The proof makes use ofk J no axioms. Assumption leaves of the proof tree appear in brackets. The reader can verify
CL that cach of the assumptions is discharged in the course of the proof. ‘The result is an |

| by assumption free derivation of the predicate caluclus theorem, |

FT Vy(P(y)VQ(y)) DO Vx(Q(x)VP(x)).

io, Vy(P(y)VQIN)I [P(x)] [Q(x)]
j NGS vVi——mm—————— V——— ViI——

| rl VE P(x)VQ(x) Q(x)VP(x) Q(x) V P(x)
| § Q(x)VP(x)

' i, | vi——————

. E 51 Vx(Q(x)VP(x)) :
1A Vy(P(HVQY) OD YXQX)VPX) | |
| i 13 |
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2.2 Normalization

In the course of this thesis we will have occasion to consider several procedures for the B

step-by-step reduction of objects to a “normal” form. These "normalization procedures share . | |
certain general features. ‘This scction introduces the basic notions and terminology which

apply to normalization in cach of its various forms. | j

| The two standard normalization procedures which are most directly relevant to our 1current purposes are the proof normalization procedure of Prawitz, and the normalization

procedure for Church’s[1941] A-calculus. ‘The methods described in chapter 3 make cssential :
use of the close connection between these two procedures. :

Let 'I' be a class of terms (of whatever kind). A normalization procedure for 1 is (partly) |

given by a collection R of "small" transformations, called "reduction rules”. The |
| normalization of a term t consists of repeated application of the reduction rules until no 3

further application of a rule is possible. The result of this process (if it terminates) 1s called a i
| "normal form of t", and is designated by tl.

More precisely given a term t and a reduction rule r, r may or may not be applicable to t. s

If r is applicable to t, it may be applicable in various ways (in the case of proofs and A-tcrms, _

: the reduction rule may be applicable at several places within the proof or term). ‘The result of j

| | applying a reduction rule in a particular way to a term tis a modified term t'. A term to j
which no reduction rule is applicable is said to be in normal form. A pair <TR> where 1 is a

sct of terms and R a set of redution rules on those terms will be referred to as a “reduction - 3

| system”. 4
| We use the notation t; —t, to signify that t, results from an application of one of the

reduction rules to t,. Any procedure for selecting a particular order (and "way™) in which C3

; | reductions are to be applied to a term is called a "normalization procedure”. Thus a 3
| notalization procedure, when applied to any particular term t generates a (possibly infinite) | 3
: sequence of terms ty.t.t, oo. where tis arrived at from t. by the application of one of the | ]

reduction rules. A theorem which states that a given normalization procedure always yields a 3

finite sequence of terms ty t,t where tis in normal form, regardless of the initial 9
term t;, is referred to as a "normalization theorem”. Other standard terminology concerning 3

| normalization is as follows, | E

? A system CFR has the "termination™ property if every sequence of reductions t,t, . LL is 3
| finite.

° We use the notation t —=* t' to signify that t' results from t by some finite sequence

} (===... tof applications of reduction rules. A system <I'R> has the "uniqueness
: '} ) .
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: i property” if every sequence of reductions of a term to a normal form yields the same result. |
That is, <TR> has the uniqueness property if, whenever t —=* t, and t =* t,, and t, and t,

i | arc both normal, then t; = t,.

i | ° A system which has both the termination and the uniqueness properties is said to have
: the "strong normalization” property. Evidently, if a system has the strong normalization :

i | property, then the normal form |t] of cach term exists and is unique. |
: Each of the computation procedures to be considered in the course of this thesis takes the |

1 | form of a normalization procedure of onc kind or another. Of course, normalization |
procedures need not be implemented in a literal minded way. Normalization for A-calculus

3 based languages can be sped up by using environments instcad of literal substitution for |
| carrying out A-conversions. The implemented p-calculus interpreter on which the !

experiments were carried out makes use of this idea. |

2.3 Computing using proof normalization

This scction concerns the manner in which proof normalization may be used for |
| a computing, and not the internal workings of the normalization procedure uself.

1 The usefulness of proof normalization for computational purposes derives from the special

| properties possessed by proofs which are in normal form. Roughly speaking, the reductions |
1 used in proof normalization have the effect of removing certain kinds of indirect arguments

| N from a proof. A normal proof contains nonc of these indirect forms of argument, and
Co computationally useful information can be rcad off a proof which is direct in this sensc. :

| | Evidently, some restriction must be made on the axioms which appear in a proof if it is 3
; | to be of any computational usc. The appropriate restriction for our purposes is that all axioms

| i . be "Harrop formulas”. The Harrop formulas are those which do not contain the positive

| Rt logical symbols V and 3 except in the hypotheses of implications. More formally, the class of
| ay Harrop formulas is defined by the following inductive clauses: (a) atomic formulas are Harrop

p formulas, (b) if A and B are Harrop formulas, then so are AAB, VxA, (¢) if Bis a Harrop :
: i & formula, then so is A DB. regardless of the form of A. A proof which contains only Harrop

vs formulas as axioms will be referred to as a Harrop proof. i
: RY }

. (‘The notion of a Harrop formula was introduced by Harrop{1960]. Harrop showed that if

| q: ‘ A and IxB(x) are closed formulas, and if A is Harrop, then AD3xB(x) is provable in
| y ‘. intuitionistic arithmetic iff I(ADB(x)) is provable in intuitionistic arithmetic. This

| K - . generalized the following result of Kreiscl[ 1958): if AB lack occurences of the positive
, J

“on 1S
J Py



connectives "VV" and "3", and if A, IxB(x) are closed, then - again - AD3xB(x) is provable | 1
; | in intuitionistic arithmetic iff Ix(ADB(x)) is provable in the same system. As it happens, the .
§ | examples presented in chapter 4 effectively rely only on Kreisel's result and not on Harrop's

i generalization, since all axioms used arc intuitionistically equivalent to formulas in which oo

ncither "V" nor "3" appear.) |

| | The following properties of normal proofs make it possible to use normalization to "run
| proofs. |

(1) Since each of the reduction rules prescrves the cnd-formula of the proof to which it is i

] applied, the end-formuia of the normal form of a proof will always be the same as the cnd- ;

; formula of the original proof.

(2) A normal, Harrop proof of an cxistential formula 3IxA(x) has the form: |

A(t) i

dx A(x) |
i : ‘Thus, a normal, Harrop proof of the existence of an object with a certain property |

contains a proof that a particular object has that property, and a term denoting that object can |
| be easily extracted from the proof. _

| (3) A normal, Harrop proof of a formula of the form AVB has one of the following forms:
uu | I I co

! A B |

FC AVB AVB ]

Now, it is evident that normalization allows onc to pass mechanically from a Harrop B

proof of ¥x3yA(x.y) and a term t; to a term t, together with a proof of A(t,.t,). To do this, ;
ong simply applies the theorem Vx3dyA(x,y) to the value t (by usc of the V - climination ]

V rule), and normalizes the resulting proof. By (2) above, the output value t, can be extracted :
I from the next to last step of the normal proof. Similarly, a closed Harrop proof of 1

i Vx(A(x)V B(x) provides a uniform way of deciding which of AB holds for any particular ¢
oo value of x. :

EEE 16
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; : 2.4 Proof normalization

{ ‘The reduction rules used in Prawitz’s normalization procedure for natural deduction proofs
: | arc given below. The rules may be applied at any position in a proof tree. ‘That is to say, any

| picce of the proof tree which matches the template given on the eft hand side of a rule may
] | be replaced by the appropriate instantiation of the right hand side of the rule, and this |

| replacement constitutes an application of the rule. Notice that each rule removes -
3 configuration in which an introduction rule is followed iminediately by an climination rule.

3 The following notation is uscd: [1[x«(] denotes the result of replacing all free occurences

of the variables x by the terms t in the proof Il. ‘The figure

| : denotes a proof P which has A as its end-formula. The figure |

I,

,

1 | denotes the result of replacing cach open occurence of the assumption A by the proof T1,
: " which has A as its end-formula. In both the substitution of terms for variables, and the

| substitution of proofs for assumptions, it may be neccessary to change the names of variables
bound by the V-introduction and 3-climination inferences; in this respect, substitution into

; | proofs is similar to substitution into formulas or into A-expressions.

, A-reduction:

: A in, Il,
| - A B

| oy ~AAB => A
: Y AV———-
L 5 a} A

Cfi [

| il n, Ii,
AB

SE NA l———- I, |
: AAD => B

Ali——
¥

*] a
i }

] ¥
¢ )

fe) |

| ' Fa



: V-reduction: |

Eo Vi— nn, I [A] aE

| AVE C C = fl, | |CO VE—o C §

. BAD mn, |
] VI—— n, Im, [B] |

oC AVB CC = Il, |
| vimema™ ————Mm8 C :

| J-reduction: .

| (A) |In,
FE B mn, |

: ! A ADB => 1, :i JJdbH—r—— B ;

] V-reduction: iy

2 1! | at

| VxA wh Alx«t

Alx «4

: J-reduction:

Alx+t] [A] nm,

| Co IxA C => N(x
ty | C

C

The reduction system given by the above reduction rules has the strong normalization 2
i property(Prawitz]1969). We have left out the permutation rules, because they are not

| necessary for the execution of proofs. |
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: | 25 Proof procedures j

[et A = Vxg(x) be a closed non-Harrop formula. Suppose that onc has a mechanical

| ) procedure y which, when given a vector of closed terms t, supplies a closed Harrop proof y(t)

| of the formula @(t). Such a procedure will be called a “proof procedure for A". It turns out 1i that the availability of such a proof procedure makes it possible to execute proofs in which A :

1 | is stated as a lemma, That is to say, it is not necessry for the purposes of proof execution to| have a particular closed Harrop proof of a non-Harrop universal formula VYxe(x); it is

sufficient to have a method for generating closed Harrop proofs of each closed instance ¢ft) of ;

We require a proof procedure y for Vxe(x) to supply a proof of ¢(t) only under the

| condition that t is closed. Nonetheless, it is convenient to allow a proof procedure to supply

(not necessarily closed) proofs of @(t) for some vectors t of terms which arc not closed, i
‘ depending on circumstances. ‘Thus we formally define a proof procedure for ¥xe(x) to be a

mechanical procedure y with the following properties. (1) When y is applied to any vector of

| terms , it returns cither the atomic message "FAIL", or a Harrop proof of (1). (2) If tis

| | composed of closed terms, then y(t) must be a closed proof, and not the message "FAIL". |

| | ‘The use of proof procedures may be integrated into the normalization process by adding
i the following rule to the class of reduction rules for proofs given above.

{ | . lemma-reduction:
lemma: Vg

Vl => y(V |
SE, 0) |

y condition: y is the proof procedure for Ve,
” and y()=FAIL |

| We shall henceforth use the word "lemma" as a techaical term which denotes a universal |
| E | formula for which a proof procedure has been supplied. ‘The set of lemmas together with their

3 associated proot procedures is - like the language [. - a parameter of the definition of the class

| bog of proofs, and of the class of normalization reductions. We assume that the proofs generated |
| ; by proof procedures do not themselves make use of lemmas.

1 | op The addition of lemma-reduction to the set of reduction rules docs not interfere with the

oo ( : strong normalization property. Also, the various properties of normal proofs which were given |
| ] 3 in section 2.3 continue to hold if we add the restriction that the normal proofs in question be

[3
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closed. Since reductions on proofs pass from closed proofs to closed proofs (section 2.9), it

follows that closed proofs continue to have all of the computationally uscful properties BER

remarked on in section 2.3. .

] : In the example to be given in section 2.8, only onc lemma is used, namely the lemma Vx
y (x<yVx>y) which states the decidability of numerical inequalities. "The proof procedure for _

: this lemma simply provides the proof -

2 Vi— §
: -

i L<t,V tt g

3 if t; and t, arc closed and the formula t;<t, is true, and the proof | -

| if ty and ty are closed and the formula tt, is true; if t, or t, contains a free variable, then
] "FAIL" is returned. Proof procedures for formulas of the form Vx(R(x) V TR(x)) with R

atomic play a role in normalization which corresponds to the role played by primitive 3

predicates in programming languages. Lod

; 2.6 Reductions on terms of I. 3

| Suppose that one has a reduction system <T,R> for the terms of a first order language I.
| ‘Then the reductions R can be incorporated into proof normalization simply by by allowing :

them to be applied at will to terms which appear in the formulas of proofs. In such a hybrid 3

| reduction system there is little interaction between the reductions on terms and the reductions1 on proofs. If both the reduction system for terms and the reduction system for proofs have ]
1 Io the termination property, then so will the hybrid reduction system. ‘This holds for the 2

uniqueness property as well, so long as the proof procedures for non-tHarrop formulas 4

commute with term reductions. {

. As an example, consider a formulation of first order arithmetic in which terms are built up

’ from variables, decimal (or binary) notations for natural numbers. and function symbols for |

| successor, addition and multiplication. Consider also the reduction system consisting of the :

| single rule which replaces closed numerical terms by decimal notations for their values. In . NH
EH computing numerical functions by mcans of proof normalization, the use of this term reduction |

¥ . AS a Sopur-< sar and } | |



rule allows the addition and multiplication of numbers to be carried out by cfficient

machinery external to the normalization procedure. In particular, the rule can be implemented

I - in such a way as to takc advantage of the arithmetic hardware possessed by most computers.

/ Reductions on terms will receive little explicit attention in the rest of this thesis. However,

i the presence of a well-behaved reduction system for terms will not affect any of the results

! about proof rormalization presented in this chapter or in chapter 3. By "well-bchaved”, we
f ' mcan (1) terminating, and (2) valuc-preserving with respect to the model (if any) currently

Cd under consideration Whenever reductions on terms are mentioned, the reader is to assume |

3 | that properties (1) and (2) hold. |

: 2.7 Pruning |

| |

The pruning operations are as follows. |

mn, mn, I,
AVE C Cc => I, if A docs not appear as an

E Vb—m—m————m——— C open assumption in 1, |
C

Cd mn, I, I;
AV HB C C => I, if B docs not appcar as an |

vi—o—-r-r—amrrron— C open assumption in T1,.

Co

| i There is also a pruning operation: |
: } Ix A C i
| EN EE => (1, if A docs not appcar as an

| | oy C C open assumptioon in 1,
: ‘ for the Jd-climination inference, but it will play no role in the work described in this thesis. |

i 2 Henceforth when we speak of a "pruning operation” we mean onc of the two pruning

] vy operations for V-climination.

. {
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| It should now be clear why the pruning operations arc unlikely to be useful when applied |
to proofs as originally given by pcople. The inferences removed by pruning are redundant, NE

i ; and one does not expect to find them in proofs which have been constructed in a purposeful

way. However, the example given in the next section demonstrates that proofs which result « |

i from simple automatic processes may contain such rcdundancies; in particular the process of
] specializing a proof by nommalization may introduce redundancics where none had at first |
; appeared. g

! : The pruning operations may be adjoined to the set of reductions used in normalization.

i : The resulting reduction system retains the termination property, although the uniqueness
1 property is lost. ‘This loss of uniqueness is an advantage and not a defect of pruning. Pruning

3 allows us to reduce proofs to a variety of equally satisfactory normal forms, some of which can |
+ be arrived at more quickly than the normal form which results from normalization without

% | pruning. Thus, by dropping the uniquencess requirement, we gain cfficiency. |

| 2.8 An cxample "

| ‘The simplest algorithms to which the pruning operations arc usefully applicable are pure 3
case analysis algorithms - algorithms which can be expressed by “plain” conditional

expressions. In what follows, we present a very small case analysis algorithm which is ,
| nonctheless sufficient to illustrate the main points which we wish to make about pruning. 1

These points are: (1) pruning may be used to increase the efficiency of specializations of _

algorithms, and (2) conventional descriptions of algorithms do not contain the data necessary

for the improvements in efficiency realized by pruning. Consider, then, the following :

algorithm - given as a conditional expression - for computing an upper bound for both the E

| sum and the product of two positive rational numbers x and vy: E

| u(x,y)=if x<1 then y-+1 cise (if y<I then x41 clse 2xy) :
| We will use the bold faced letter uw to refer both to the algorithm, considered as an 1
| abstract method which can be formalized in various ways, and to the above concrete

conditional term. 3

Now, supposc that the value .5 is given for y in advance, and that we wish to optimize u :

| given this additional information. The best we can do, if supplied only with the conditional i
, expression as a description of the algorithm, is to symbolically execute the expression on the

arguments x, 3. The result is: ]
)

wx,.5)=if x<t then 1.5 clse x +1 ¥

SE Ps 2 |
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; ) As will be scen below, the formalization of this upper bound algorithm as a proof allows

| u(x,.5) to be automatically simplified, by use of normalization and pruning, to the expression

| i x+1. The fact that x+1 is an upper bound for both x+.5 and .5x does not depend on x |
being less than or cqual to one; this dependency information is contained in the proof, and

| allows the automatic removal of the unnccessary case split according to the size of x. Note that 1

the pruning optimization has the unusual quality that it modifies the function computed by the

expression to which it is applied. However, pruning is guaranteed to preserve the validity c.

# ¢ an algorithm for the specification embodied in the end-formula of the proof describing the }

j : algorithm. Also note that no transformation on conventional computational descriptions can
have the same effect as pruning. Conventional descriptions contain information only about

5 | the function to be computed, and not about the purpose of the computation, and therefore
: valid transformations on such descriptions must - unlike pruning - preserve extensional

oo meaning.

| : The following natural deduction proof formalizes the upper bound algorithm u. In the |
proof and clscwhere W(x,y,z) is used to abbreviate the formula (z > x+y) A (z > xy).
Leaves of the proof tree which are not surrounded by brackets designate axioms or lemmas.

| Three Harrop axioms ("x <1D¥{(x,y,y+1)", "y<1D¥(x,y,x +1)", and i
"ODA(y>1)D¥(x,y,2xy)") and onc lemma Vx y(x<y V y<x), appear in the proof. We |

| assume that the proof procedure described in section 2.5 above has been provided for the

lemma. Also, reduction rules for numerical terms, which will, for example, reduce 2+1 to 3, i
are assumed to be present. (The details of the notation used for rational numbers and of the ’

| reductions which apply to numerical terms arc unimportant for the purposes of the current 3

| discussion.) We will use the capital letter U to designate the proof. | :

; |

[ J -

. . :
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| [1] [>]

Al————

: [y<1] y<1D¥(x,y.x+1) xX>1AYL ODA 1DDY(x,y. 2xy)
| ED > vo

: Y(x,yx+1)
: Vxy(x <yV yx) ¥(x,y.2xy)

VB —— 3I[-—---—— p- |

- y<1Vy>l 32¥(x,y,2) I¥(x,y,2) | |

i Jz¥ (x,y,z)

| | [x1] x<LID¥(xy,y+1)

W(xyy+1)
| Vxy(x<yVy<x)

VE—7——— —-—-

x<1Vx>l Az (x.,y.7)

3:¥(x.y,2)

Note that we have neglected to universally quantify the variables x,y so as to arrive at a -

| proof in the standard V3 form. [In the current simple context it is more convenient for

, purposcs of cxposition to Icave the quantification implicit, and to specify that input values to

3 the proof viewed as an algorithm be substituted for the free variables. More precisely, in

: ’ order to compute an upper bound for the sum and product of two input values v, and v, by

| means of normalization, v, and v, arc first substituted for x,y throughout the proof U, and] then the proof is normalized.

] | Normalization of simple case analysis proofs such as U makes use only of the V-reduction |
| { y rules (section 2.2) and pcrhaps of proof procedures for lemmas. [In this restricted case,

1 a normalization of proofs corresponds closely to the execution of conditional terms by means of j
\ repeated applications of the reduction rules:

EF C;: (if TRUE then t, cle t) => t,

B C,: (if FALSE then t; clse t,) =>



Ap RQ t) => TRUE if R is an atomic relation, t,t, . . . t, arc closed
| | ground terms, and R(t,t, ... t) holds i

| | ’ Ay: R(t... 8) => FALSE if R is an atomic relation, t,t, . . . t are closed |
| ground terms, and R(t..t, . .. t)) does not hold

) The two V-reduction rules correspond in their effect to C, and C,, while proof-procedures

¢ for lemmas of the form Vx x, . . . x (R(xpx, . .. x) V AR(x;x, . . . x.)) correspond to

I the rules A; and A,. | |

3 More specifically, the V-reduction rule takes an V-climination inference

, I, i, I, |
AVE C C

in which the proof 11, of the first premise indicates which onc of A and B is true; depending |
on whether itis A or B that holds, cither the second “branch” Tl, or the third “branch” I1; of

} the inference is selected. This corresponds to making use of a binary decision between TRUE |
| and FALSE in a conditional expression to select a branch of the conditional. |

| As an example, the reader may wish to carry out the normalization of U when inputs 2
and .5 arc substituted for x and y, respectively. The normalization of the proof will parallel
the normalization of the term

3

| | if 2<1 then S+1 else (if .S<I then 2+1 clse 2(2).5)) |

\ © with respect to the reduction rules CCoAAy given above. ‘The final result of the
i normalization will be: |

: | s S<1 S<I DJ ¥(2, S, 3)
3 : EDES |
} Y(2, 5, 3)

V, 722, 5, 7)

The value returned by this proof is "3".

: 3 In order to specialize the algorithm expressed by U to the case where y is fixed at 5, Sis
# substituted for y throughout the proof, and the result is normalized. This process yields the |

NY following “specialized” proof: |

(
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:

| [x<1] x<1DW¥(x, .5, 1.5) S<1 SII(x, 5, x +1)
bP >r———— — a

| Vxy(x<yVy<x) Y(x, .5, 1.5) v(x, .5, x+1)
' VE————— I il

VB—oo—: Jv(x, .5, 7)

1 This proof corresponds to the specialized conditional term, "if x<I then 1.5 clsc x +1". A

: further optimization is applicable to the specialized proof which is not applicable to the
conditional term, namcly pruning. The sccond minor premise of the V-climination inference

§ in the specialized proof above does not depend on the assumption x>1. Tt is this fact about the

dependency structure of the computation that the proof U, but not the conditional term wu,

formalizes, and which allows pruning to take place. ‘The result of applying pruning is:

S< SKIDW(x, 5 x +1) :
. DS —
: W(x, .5, x+1) !

Ij :

dz(x, .5, 7) |

¢ gay = : Hr. ”" re :

| | This represents the same algorithm as the conditional term "x +1". i
A Note that, if comparison 1s a very cheap operation, and adding is very ¢xpensive, then it ;

might happen that "x4 1" has an average case efficiency which is worse than "if x<1 then 1.5 a

| clse x+ 17". “This illustrates the general point that pruning is not guaranteed to increase ;
ctficicncy. However, pruning often improves the efficiency of an algorithm, and always - :

| | reduces its size. (Size reduction is an important effect of pruning in the experiments on bin-

| | packing; sec chapter 4) |

| 2.9 Summary: conditions for the computational usefulness of proofs
[3

ro In what follows, we collect together the various results and conditions which are relevant

| to the usctulness of proofs for computation, and explicitly describe the relationships between
them. First of all, we have the results about the reduction rules involved in normalization:

SE (1a) Syntactic validity of the reduction rules for proofs (given in section 2.4) and of pruning:

| | cach of these operations yields a well-formed proof when applied to a well-formed proof,

(1b) Preservation of the end-formula: the reduction rules do not modify the end-formula of a

K | proof. .
i.

. h .
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| : (Ic) Termination: every sequence of applications of reduction rules to a proof terminates.

| (1d) Preservation of "closedness™: a reduction rule yiclds a closed proof when applied to a |
| closed proof.

| Sccond there is the result concerning the normal form (scctions 2.3, 2.5):
(2) A normal, closed, Harrop proof of 3IxA has the form,

| AD) |

Ix A(x) :

All of the above results are purely syntactic in nature. No mention is made of the

meaning of the formulas which appear in proofs. However, we have, i

| (3) The inference rules of natural deduction ie sound with respect to the usual Tarskian |

scmantics. |

| ‘The inference rules are also sound for the intuitionistic notion of validity. As a
Bn consequence, cach of the remarks made below will continue to hold if the words truth and ]

. validity arc taken to refer to the intuitionistic rather than the classical notions.

The final result which guarantees the possibility of exccuting proofs of V3 formulas is: )

| (4) 1 11 is a proof of IxA(x) meeting certain conditions, then the normalization procedure
| . terminates when applied to Tl, and results in a proof having the form,

:

H— :

Ax A(x)
| : :

| ! \ . where A(t) is true (in some intended model).
| by |

i The conditions for the result (4) are: (a) the proof must be closed, (b) all axioms
| 5

appearing in the proof must be Harrop formulas, (¢) all axioms appearing in the proof must

| Po v be true, and (d) the axioms which appear in proofs generated by proof procedures must be
bg true.

| . The proof of result (4) from the various results under (1), (2). (3) above is as follows: If IT is a ]

oo 4: : proof of IxA(x) meeting the conditions (a)-(d) of (4), then
’ a py °

bE ° normalization terminates on Il by (lo),
| s

, { a
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° and yiclds a proof in the form,

bo Ix A(x) i |

by conditions (a)(b) and results (la),(1b),(1d).(2);

§ ° finally A(t) is true by result (3) and conditions (c) anc (d).

We wish to emphasize the degree to which the various results and conditions which come £
| into the proof of (4) arc independent. In particular, none of the results under (1) and (2) :

| depends in any way on the truth of the axioms which appear in proofs. Thus syntactic and :semantic considerations do not interact and can be cxamined scparately. !

j

b A

i '
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; | Chapter 3

| Efficient Implementation of Operations on Proofs

| ‘The normalization and pruning operations described in the last chapter are quite
| inefficient if implemented in a literal minded way. The problem is not so much that the

asymptotic cfficiency of an algorithm is degraded if it is formalized as a proof, but rather that

: the clementary operations which are used in normalization are computationally expensive. |
| : lor example, the substitution of a proof for occurences of an assumption is an expensive

| operation, both in time and space. |
! ;

However, as we will show in this chapter, normalization and pruning can be implemented
in an cificient manner if an appropriate data structure for proofs is used. Specifically, we

will represent natural deduction proofs by terms of an extended A-calculus. The

| normalization of such A-caluclus terms can be implemented efficiently by using environments
| instead of literal substitutions, as is done in interpreters for A-calculus based languages such as :

| [.ISP. | :
i

| In section 3.1, we describe the connection between the natural deduction formalism and
Co the typed A-calculus. Dmphasis is placed on pure implicational logic, where the connection is

, | . most direct. In sections 3.2 - 34 we present a A-caleulus based representation for natural
| | deduction proofs of full predicate logic. Sections 3.5 and 3.6 concern the manner in which

| normalization and pruning operations apply to this representation. In section 3.7 we describe
| an additional reduction rule used in the experiments of chapter 4 - namely, the permutation }

| rule for V-climination. In section 3.8, schematic examples are presented which illustrate the
j a. cticct that pruning can have on the computational efficiency of proofs.

| | | 3.1 Natural deduction and the typed A-calculus |
; Cd The close structural correspondence between natural deduction proofs and terms of the |

Eg typed A-calculus has been known for some time, and forms the basis for the calculi ofRN constructions developed by Scot([1970], Howard[1980], DeBrujin[1970], Martin-1.0f[1979], and i
Lo others. (The calculus which 1s closest to our own "p-calculus”™ [section 3.2] is Martin-

: oo LoS 1979] theory of types.) The central dea here is that the same elementary operations may 1
: pt be used in (1) constructing and applying general methods of computation, and in (2)
| / establishing and applying general truths, As an example, consider (a) a term (x) of the typed

i A-calculus in which (only) the variable x appears free, (b) a proof Tl of a formula B in which
) Y. (only) the formula A appears as an open assumption. In both the cases (a) and (b), one has an

J if incompletely given construct; t does not denote any particular object, but will do so once a |
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h concrete value has been supplied for x and substituted into t; similarly, I'l does not establish 1

| the truth of B, but will do so when any proof of A is given and substituted for occurences of *

: the assumption. Thus, in both cases, the incomplete construct in question supplies a general

3 method for passing from a value (for the variable x or the assumption A) to a result (of -

substitution). Onc may apply the operation of abstraction to the incomplete construct so as to

| arrive at a term or proof which describes this general method. In case (a) the abstraction is
| written, "Ax..', while in casc (b) thc abstraction is the proof,

SE A}
I

: B

| dN

| ADB 1

Onc also has the converse operation at one’s disposal, namely, application. If onc has a

term t; which describes a general method, and a term t, of the appropriate type, then one |
: may form the term "t,(t,)", which denotes the result of applying the general method t) to the

input t,. Similarly, if one has a proof 1, of A D B - that is to say, a general method for
getting from proofs of A to proofs of B - and also a particular proof Tl, of A, then one may
form a proof which denotes the result of applying IT, to [f1,. That proof is: |

| A ADB |
| ! B

i Thus, the constructor "A" which is used in building up A-terms corresponds to the

inference rule DI, while the constructor for application: t,(t,) corresponds to the inference |
rule JE.

In both the A-calculus and the formalism of natural deduction proofs, normalization 4

| involves applying general methods (as described by abstractions) to given inputs. Specifically, 3

| the f-conversion rule for the A-caleulus reduces an application (Ax.t))(t,) of an abstraction |

I (Ax.t) to an input ty to the term (yx ety]. The corresponding reduction for proofs is just
! . implication reduction:

| I, |
: B I, 1

. nm  DJl—— [A]
SE T A ADB = 1, )
ER 5 | LE — B

: : Ie -
a
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; For natural deduction proofs of purc implicational logic, the correspondence to the typed |
: | A-calculus is exact; any such proof may rewritten as a A-calculus term by (1) replacing i
: | assumptions by variables, (2) replacing cach D-introduction inference by a A-abstraction of |

the variable corresponding to the assumption discharged by the inference, and (3) replacing

D-climinations by applications. This change of notation from proof to A-caluclus language

| results in no loss of information, and furthermore, the  J-reduction operation on proofs is

thereby mapped directly onto the fB-conversion operi.ion on A-calculus terms. ‘The particulars
: of this "change of notation” are as follows. |

| First we present a formal definition of the typed A-calcutus. We start with a collection of

symbols 7... . r_ called the "base types”. Complex types are built up from the base types |

{ 71. + - T, by the binary constructor "—"; the inductive definition is: (1) cach = is a type; (2) |
if 7, p are types then so is "vr — p" . The base types are intended to denote scts of

“primitive” objects, while 7 — p is intended to denote the set of mappings from objects of |

: type 1 to objects of type p. Next, we assume that an infinite set Vv. of variables is given for |

cach type 7. the clements of V_ are called "variables of type 7. V_ and Vo are assumed to
| be disjomt for distinct types 7 and p. ‘The following inductive clauses define the notion ofa :

| term of type r.

| a (1} cach variable v of type 7 is a term of type 7.

| (2) If tis of type 7 and x Is a variable of type p then Ax.tis a term of type p = 71.
{ (3) tt is of type 7 = p and t, is of type 7, then ((t,) is a term of type p.

i By "pure implicational logic” is meant the restricted natural deduction system in which
Lo formulas are built up from propositional constants by use of implication alone, and in whose |

| 4 proofs only the DE and DI inferences appear. The formulas which appear in proofs 1
| correspond to the types of A-terms; a propositional constant P corresponds to a base type 7p,

: | while a formula A 2 B corresponds o a type 7, = r,,. More precisely, we assign to cach
. oo implicational formula A a type 7, according to the following rules. (1) Each propositional

| constant P is assigned a base type Tp. (2) IE the formula A has been assigned the type 7,,| ‘ y and the formula B has been assigned the type 75 then the formula A OD Bis assigned the
: type 7, = Th

: | We now define the map I" which rewrites proofs as A-terms. [Cis assumed to start with
ny that variables of appropriate types have been selected for labeling formulas; we assume, that is |

| ! to say, that a vnique variable v, of type 7, has been assigned to cach formula A. Tis
- d : defined hy induction on the structure of proofs. We use the notation I: [1 => t to indicate |
| y ’ that the value of T' applied to 1 is t. |

i
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: (1) Base case: I: [A] = v, |

(That is, T when applied to a proof which consists simply of an assumption [A] yields the |

variable v, which labels the formula A) NE

| @

] A |
B 5

| I' ——- => Av,. ['(IT)
ADB

| | (3)

| I, I,
A ADB :

I: ob = (COX) £
B {

| For cxample, the proof J

Co [Al [AD(ADB) J

SY |
FE [A] ADB

fp p) E—— ERE
| ADB 1

(AD(ADB)YDMADB)

|

h when written in A-colculus notation yields the term

i AVA Ava LVAD AD (YADA :

of type (1,1 =r) =) —- TUADAD BDA DB} | :
J : . *

Notice that, for amy prool IT with endformula A, the type of the A-caluclus notation [°(IT)

| for that prool is 7. Similarly, the types of the subterms of (11) correspond to the ;
cndformulas of the subprools from which those subterms arise. Bk

'] What we have done so far is to show that natural deduction proofs of a restricted system i
¥ n



J can be represented as A-calculus terms. It is possible to represent any natural deduction
. proof in the samc style, under the condition that appropriate additional contructors arc

i : adjoined to the A-calculus. But before going on to describe the A-calculus formulation of full

] | predicate calculus, it worthwhile looking more closely at the differences between the proof
notation and the A-calculus notation for proofs of pure implicational logic.

3 Both profs and A-terms may be regarded as labeled trees: proof trees are labeled by

3 : tormulas and inference rule names, and “"A-trees” by variables (at leaves) and construction
| rule names (at interior nodes). rom this point of view the difference between proof notation

| and A-calulcus notation lies in the choice of information which is explicitly stored on the tree.

3 In proofs, a formula is stored at every node. In a A-term, the corresponding type information

1s associated only with the variables which appear at the leaves of the tree, and must be

computed for other nodes. In proofs. the connection between inference rules and the sets of

j | assumptions which they discharge must be derived from "type information” (ic formulas on
the tree). In A-terms, this information is “~presented more explicitly: the discharged

asshmptions are labeled by a bound variable.
1

| Suppose that all type information is dropped from a A-tcrm - that the typed variables are
: | replaced one for once by variables with which no type information is associated. Then the

| resulting untyped A-term represents the "logical structure” of a proof, in the following sense.

| | The underlying tree of the untyped term records a sequence of applications of inference rules

| (in A-calculus notation), and also describes the graph of connections between inference rules

| | and the assumptions (represented by variables) which they discharge. Thus if once were to |

i. take a proof tree, and strip off the formulas which appear on the tree, while retaining a record

| co of the "logical structure” of the proof, then the result would contain the same information as

4 an untyped A-cxpression. (The logical structure of proofs in the current sense is exactly the
| structure preserved by isomorphisms between proofs in the sense of Statman[1974).)

J | y Now, notice that the normalization reductions of the A-caluclus make no use of type
| K formation; it one wishes to normalize a typed A-calulcus term, onc is free to throw away the

| | types before doing the normalization, and the result will be no different. Correspondingly,
the sequence of steps taken in the normalization of a proof depends only on the "logical

Co structure” of the proof in the sense of the last paragraph. ‘F'wo proof trees on which different

| of, formulas appear will be subjected to the same sequence of reduction steps by normalization,

' so long as the inference rules and the structure of discharges of assumptions on the two trees |

i are the same. |
| ] 'f When we consider A-calculus notation tor arbitrary natural deduction proofs, it will be
| be seen that once again type information is nol neccessary for normalization. Furthermore, |

) untyped terms contain the desired output of computations, and can be subjected to pruning.

| (3



1 | That is to say, the "logical structure” of a proof as cxpresscd by an untyped A-term is |
4 sufficient not only to determine the form of the normalization sequence, but also to determine
3 | the output valuc which is extracted from a normal proof, and to allow pruning to take place.
g | Thus, for practical purposcs, it is always sufficient to deal with the untyped variants of proofs. )

} The following remarks summarize the interest of using a A-calculus based notation for

3 | proofs.
(1) The untyped variunt of the A-calculus notation for a proof contains exactly that

| information which is relevant to the execution and pruning of the proof.

(2) An efficient technology exists for normalization of (proofs expressed as) A-calculus

a terms.

| | 3.2 The p-calculus |

| | In order to arrive at a notation of the kind discussed in the last section which is adequate
; for arbitrary natural deduction proofs, new constructors for the inference rules other than D- :
| introduction and D-climination arc added to the A-celculus, namely : (1) pairing (for A-

] introduction), (2) unpairing (for A-climination), (3) Ol, and Ol, (for V-introduction), (3) OK ln)
3 (for V-climination), (4) El (for Jd-introduction), and (5) ElL (tor 3J-climination). V-

; introduction and V-climination are treated using the “old” constructors A-abstraction and ©

; application. The extended system just described will be referred to as the "p-calculus”. |

’ : We will have occasion to deal with both a typed and an untyped variant of the p-calculus. :

The relationship between proofs, typed terms, and untyped terms is the same for the p- :

| | calculus as it is for the “plain” A-calculus. Namely, a typed term of the p-calculus constitutes
| \ a complete representation of a proof, while an untyped term serves to express only that

! ; information in a proof which is nceded for execution and pruning.
—

: Co Fhe “types” which will be assigned to terms of the typed p-calculus will not be types in

| Co the ordinary sense; rather, they will be formulas of first order logic. The connection between
J fo formulas and types given in the last section for implicational logic can be extended to the p-

calculus treatment of full first order logic; 1U is possible to assign types of the ordinary kind

: (ic classes of functions) to arbitrary first order formulas, and to assign functions to p-calculus

| terms, in such a way that the two assighments are consistent. Specifically, a term of “type” ¢
| | will denote a function which actually belongs to the type assigned wo @. However, none of )

| ¥ the results which will concern us here depend on the details of such assignments, or indeed on

$ 4
|

|



such assignments being possible at all. The rcader will find further information on formulas |

as types in Scott[1970], and Howard[1980]. |

J Wc define the untyped variant of the p-calculus as follows. The starting point for the
definition is (1) an infinite set V of variables, (2) a first order language L, as described in

| scction 2.1, (3) the special symbol #, and (4) a sct ID of "defined symbols” with associated ]

| aritics. It is assumed that the variables V and the variables of 1. are distinct. The variables of |
y I. arc called "object variables”, while the variables in V are called "proof variables”. The :

defined symbols 1D will be used as labels of proof procedures for lemmas, and in recursive

definitions (section 3.4) as well. The letters "a, 8”, "f, g, h" and "x, y, z" will be used to

| designate proof variables, defined symbols, and object variables, respectively, The p-calculus

P, over I, then, is defined by the following inductive clauses. ‘The phrase "p-term” is taken

| | to designate an clement of Py.

(1) The terms and atomic formulas of I. arc p-tecrms (sce scction 2.1). i

(2) The proof variables V arc p-terms, ]

| (3) The special constant # is a p-term.
SE (4) The defined symbols D arc p-terms. :

| (4) If tt, arc p-terms, then so is <t,ty» [pairing].
; (5) If t is a p-terms then so are a (1), 7 (1) [unpairing].

| . (6) If a is a variable, and t is a p-term, then Aa.t is a p-term. [proof-abstraction] |

: FE (7) It x, Xy . . . X, arc variables, and tis a p-term, then AX, Xy ooo Xt IS a p-term. i
: | [object-abstraction] i

j . (8) If t;.ty arc p-terms then so is ty(t,). [Application] :

: | b (9) If a is a proof variable, and t,t; arc p-terms then so is OE(a.f.ty.ty) §
i

| i aR | (10) If a is a proof variable, x an object variable, and t.ty arc p-terms, then EE(x,a.t.t,) |
Co is a p-term.

2
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Note that, in the case ot object variables, we have chosen to introduce A-abstraction of

: arbitrary arity as a primitive constructor rather than using "Currying”. This simplifies the |

; correspondence between A-abstraction and V-introduction. Note that Ax x, . .. x Lis not

| an abbreviation for Ax, Ax,. . . Ax... . |] ; ]

4 | The above definition is given in terms of ordinary syntax suitable for written

| | presentation. However, in our discussions of formal operations on terms, we will treat p- |
’ calculus terms as labeled trees, as was done in the discussion of the A-calculus in the last |

section, |
There arc several ways in which one can go about representing terms by labeled trees, )

and the details of how this is done are not of any fundamental importance. However, in order |
3 | to avoid confusion later, it is worthwhile deciding here on a specific representation. That |

representation is as follows, ‘The relationship between a term and its unmediate subterms is q

coded directly in the structure of the tree - cach node represents a term, and the sons of the

| node represent the immediate subterms of that term. Leal nodes are labeled by atomic

| symbols - proof variables, #. and symbols of 1. Fach non-leal node is labeled by the

constructor used for arriving at the current term from its immediate subterms, and by the :
vanables which are bound by that constructor. "The constructor which appears at the root |

: node of any term is referred to as the "main constructor” of that term. “The constructors are: t

3 PAIR, APPLY, Te To O1,. Ol,, OF, A. IL EE In the typed variant of the p-calenlus, . H
nodes may be labeled by formulas as well, Note that the variables bound by a coastructor - i

| for example the "x" in Ax.t or the "a and "x" in EE(x.at,) - are not regarded as
! subterms, but as a part of the information with which nodes of the tree are labeled. |

In what follows, the notation "A(B)” for application is used in three different ways, (1)

! When A and Bare p-calealus terms, AB) denotes the p-term whose main constructor is

; | APPLY and whose immediate subterms are A and B. (2) When A is a constructor (such as :
| . a) and Bis a p-term, then AB) designates the reside of applying the constructor to the term

B, that is to say, A(B) designates the p-term whose nin constructor 1s A and whose

: : \ immediate subterm is B. (3) IF A as an operation on p-terms and Bis a p-term, then AB) will
; denote the result of applying A to B. Thus the notation A(B) serves both as an external

; syntax for a formal p-tern whose main constructor is APPLY, and to denote the actual”

| Co application of an operation to an object. This is an ambiguity of the mention/Zuse kind.

[ Lo However, in cach of the cases (1)-(3) context is sufficient to resohve the ambiguity.

3 In defining the typed varant of the p-caleulus, it is most convenient to proceed by

| assigning types (ic formulas) not to vanables, but rather to the nodes of p-terms. In
i | particular, a typed p-term is a p-term sone of whose nodes have been Labeled by formulas ) :

| | y according to certain rules. The formula assigned to a given node represents the type of the ,
| toy - :



subterm rooted at that node (or, in proof language, the end-formula of the subproof rooted at
| the node). We follow traditional terminology, and refer to a typed p-term as a construction,

: The words “term” and "p-term” will be used to denote untyped p-terms.

i Before describing the rules by which constructions are to be built up, we nced to define
f the notions of bound and free occurences of variables, and of substitution, as they apply to if | constructions. We usc the phrase “labeled p-term” to refer to a p-term to whose nodes
X formulas have been assigned in an arbitrary manner (in constrast to a typed p-term or

: construction, whose labeling must follow certain rules).

Let t be an labeled p-term. An occurence of a variable in 1 is an occurence of the variable

3 | either as a leaf of the p-term, or an occurence of the variable in one of the formulas assigned

| to the nodes of t. The notion of a bound occurence of a variable in a labeled p-term is

defined below. ‘The definition follows standard lines, but includes new clauses for the j

] : constructorsEE and OF. (I'he new clauses cxpress the fact that OF and EE, like A, V and 3,
| have the effect of binding variables.)

| \ (1) Each occurence of the variable a in t, or t; (but not in t1) is a bound occurence of a
in the terms (a) Ola. t,t), (b) ERE(x, at) t,), (c) Aa.t,. |

1 , (2) Each occurence of the variable x in ty 1s a bound occurence of x in (a) EE(x,a.t.t,),
and in (b) Ay.t, it x is among the variables y.

} (2) Each occurence of the variable x in the formula ¢ is a bound occurence of x in (a) j
| xp, and in (b) Vy.p if x is ainong the variables vy.

_— n (4) Itt; is a subterm of t,, cach occurence of a variable in t;, which is bound in t, is also
4 bound in {,

| | | Any variable occurence which ts not specified as bound by the above three rules is a free :
1 occurence of the variable.

| i Cd The clementary operations on terms - notably the renaming of bound variables and

substitution - arc defined in exactly the same way for the p-calculus (typed or untyped) as |

they are for the plain A-calculus. One only has to take the new variable-binding constructors |

| ' OF and LE into account in the obvious way.

| § For example, the definition of a-conversion (renaming of one bound variable) includes

= J . the following clause for OF: Suppose that the terms ty result from the terms tty by the-. replacement of all free occurences of the variable a by the variable 8. Suppose further that 8 1

‘ if does not itself” occur free in either ty or ty. ‘then one may replace the term Of(a.t.L.t4) by |
¢

g
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: the term OE(a,t.t, 5). The other clauses for a-conversion are the standard clause for A, and
i two clauses for EE - onc for renaming the object variable, and onc for renaming the proof

d variable.

: The operation of substitution may be defined as follows: in order to substitute the term t,
: for the variable x in t,, first rename all bound variables which appear in t; in such a way that |
3 no free variable of ty has a bound occurence in t,. (This can be done by a series of a-

conversions.) ‘Then replace all free occurences of x int; by t,. The result of this operation

| : will be denoted by, "fx « L,I". Evidently the above definition does not fully specify the
i term which results from substitution because it leaves open the particular choice of variables

which arc used in renaming. However, the result is uniquely defined modulo renaming of

| bound variables. We shall henceforth regard as identical terms which differ only in the names |
of their bound variables (ie, terms which can be transformed into cach other by means of a-

CONVCIsions).

The notation Gina) designates the result of substituting t, for some occurences ty in

| | t;. Whenever this notation is used, it is assumed that no bound variable of ty appears free in
' t;. (Thus, no free variable of an occurence of ty within t; is bound by a constructor of t;.)

As in the case of substitution of icrms for variables, the substitution of terms for terms

] Cl imvolves changing of bound variable names in t; so as to avoid conflicts with the variables
which appear fice in t,. Finally, tfx«t,] denotes the result of substituting the terms ty for
the variables x in parallel. Co

We are now in a position to define the notion of a typed p-term, or construction. A .

} construction is a labeled p-term which is built up according to the rules given below and

:. which in addition satisfies the following general restrictions: (1) Every occurence of a proof

| § variable in a construction t must be labeled by a formula. (2) Suppose that tis any subterm
| | of the construction t, and that a is a proof vartable which occurs free in t'. Then every free |) occurence of a in tC must be labeled by the same formula,

! a. The rules for building up constructions given below correspond exactly to the inference |
| rules of naturas deduction. The name of the inference rule corresponding to cach rule is

| given in brackets next to the rule. We make use of the notation CH to indicate a construction i

: Co whose root is labeled by the tormula I. (Other nodes of C1 than the root may be labeled by |
: Co! | formulas as well). Most of the rules are given in the notation LSTRIPON PS ESP UH Ct
: . meaning that if tb, Gil, oo Gil are constructions then so is tl :

| As a parameter of the definition given below, we assume that a collection of proof ;

= 4 procedures yy, . . . y, has been given for lemmas E15, oF In the current context - . |
) E that is to say. in the context of a discussion of constructions = a proof procedure y for a

| \ 5 formuia VX |X Ca X, F(x .x, c+. XP) Is a procedure which, when given terms toby oo ty of 1, .

: 38 |
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: | either returns “FAIL”, or clse supplies a construction tF(t,.¢, . . . t,), where the construction t
; | does not itsclf make usc of any lemmas. Further, we require that y(t,.¢, . . . ,) be a closed

construction whenever t,t, ... t are closed. Thus a proof procedure in the context of
{ constructions plays the same role as the proof procedures for natural deduction proofs

co discussed in section 2.5. We assume also that names f,.f,, . . . f, of appropriate arities from

| the set D of defined symbols (sce page 34) have been assigned as labels of the proof
| procedures v,,Yy . +. Yq |

| The clauses of the inductive definition of the notion of a construction arc as follows,
| Note that we have required that the axioms which appear in constructions be Harrop formulas

(clause 2 below). Henccforward, we will also assume that the proofs which we consider

| contain only Harrop axioms, since proofs which do not satisfy this requirement arc not in any

| casc of much computational interest.

(1) a:A is a construction for any proof variable a and any formula A [assumption].

| | (2) If F is any Harrop formula, then #:F is a construction. [axiom]

(3) If f labels a proof procedure for the lemma A = Vx;x, ... x, 9, then fiA is a
ol construction. [lemma]

i | | 4) 4A, HB = <t1Lt2>:AAB [A-introduction]
{

| : (5) (@) LAAB = #()A (b) CLAAB = 7,1): [A -climination)

(6) (a) tA = Ol(t):AVE (b) uB = Ol():AVB [V-introduction] |
an

(7) Let t;:AVB, t,:C, ;:C be constructions, and ct a be a proof variable. Suppose that

| . free occurences of a in t, arc assigned the formula A, and that free occurences of a in4 ty arc assigned the formula B. ‘Then Ob(a.t;.t,,t3):C is a construction. [V -climination]

| . (8) Let t:B be a construction in which free occurences of the proof variable a are
| f assigned the formula A. Then (Aa.t):ADB is a construction. [D-introduction]

vy

Co 9 (9) t:ADB, tA = ((h):B  [D-climination]

) (10) lect tA bc a construction with the property that no variable of the vector of :
| variables x appears free in any of the formulas assigned to the free proof variables of t.

| ‘ Then (Ax.t):VxA is a construction. [V-introduction]

y i (11) t:VxA(x) => L(L)Axet] where t, is any vector of terms of I. [V-climination}]
¢« I

ir mdma - "RELEErr Co



| (12) tyAlxet] = El(t,t,):3xA  [3-introduction]

! (13) Let ¢;:3xA, and t,:C be constructions satisfying the following restrictions. (a) Free
| occurences of the proof variable a in t, are assigned the formula A. (b) Let F be any C

] formula which is assigned to a free proof variable of t, other than a. Then x may not
| appear free in F. (c) The variable x may not appear free in C. Then EE(x,a,t;.t,):C is a

| construction.  [3-climination] |
& Note that, since we do not distinguish between formulas which differ only in the names

: of their bound variables, the identity of the variables bound by A and the variables bound by

V in "(Ax.t):VxA" of rule (9) is a matter notational convenience and not a requirement.

That is to say, for any ncw tuple of variables y, "Ay.(tx+yl):VxA" and "(Ax.t):VxA" are |

| equivalent labeled p-terms and have cqual standing as well formed constructions. A similar |

remark applies to thc construction of rule (11).

Arbitrary natural deduction proofs can be r written as constructions by a straight-forward |
: extension of the methods which apply to proofs of pure implicational logic. Specifically, one

| starts out with an assignment of proof variables a, to formulas A. Then the map I' from |
| proofs to constructions is defined by induction on the structure of proofs just as it was in |

section 3.1. What I does is (1) replace cach assumption [A] by the variable a, assigned to A,
Cd (2) replace axioms by the special constant #, (3) replace lemmas by the defined symbols

which label their proof procedures, (3) replace cach inference rule by the corresponding «|

constructor, and finally (4) label each node of the p-term by the formula which occurs at the |

: | corresponding node of the proof tree. The passage in the other direction is cven more .
: | straight-pforward: to go from a construction to a natural deduction proof one kceps the

formulas and constructors which label the tree, but the proof variables are thrown away. The

- clauses of the inductive definition of "are given below, using the notation I': IT = GF to

: indicate that the valuc of I' applicd to IT is the construction t:F.

| _- (1) Base case: IT: [A] = a,:A
(That is, ' when applied to a proof which consists simply of an assumption [A] yiclds the

Ca construction a,:A.)

Ca (2) Basc case: I'm A => #:A, where A is an axiom.

| . (T when applicd to a proof which consists of an axiom A yields thc construction #:A.)

ba |
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(3) Base case: I': A => {, where A is a lemma, and where f labels a proof procedure for the |
formula F. (Evidently, it is possible - by virtue of the cffective character of I itself - to

convert any natural deduction style proof procedure into a construction style proof procedure.) ]

| 4)

| mn nn |
A B

FE I: ANl———— => <I(I).I'I,)>:AAB

(Sa)

In

| AAB
| Ir: ANF——— mm => wn (F(1)):A
| A |

| | (Sb) |
AAB

I AF——— = w,(F(11)):B
B

Lo (6a)
oo I

A

| | I: VIi——m = Ol (I(M)):AVB
| : AVE

. (6b) |

yo rr Vi——— = Ol(T(M):AVB |
AVE

HE M

| boo mn, nm, Mm |
bo AVB CC

I vi——/—m—m— @ @ => OE(8, (1), I(T)a, +B). F(T)ay+B):C
’ C

where the "new" variable 8 docs not occur
‘ free in [(I1,) or in I(T).
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LO) ®)

I: N————- => Av,. T(IT:A DB |
| ADB B
| 9) |

yo In, mn,
A ADB |

rr DF————— => (I'(M)HXT(1,)):B
| B

| (10) | a

n »
A

I Vi——— => Ax.C(T): VxA
VxA

(11) |
Lo :

n

VxA 3
| I: VE—— => (FADD: Alx +t] .

Alx+d

| (12) Co

Alx et] 3
' I —— => EIT): AxA i:

(13) §

SE LIL!

I. I => EE(x.a, UIT)T(11,)):.C 1
C

The construction notation U,. for the upper bound proot U of section 2.8 is given below | i
as an cxample, |
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OF(a.l ESSIXx,1), |
: Elly +1,#(a)) |

| i i OF(B,L.LESSI(y.1),
| El(x +1,#(8)),

| | El2xy, #(Ka.O))): A2¥(x.y,7)
| |

| : In the above presentation of Ue. only the root node is explicitly labeled by a formula; we
have neglected to specify the formulas which are attached to the various subterms of the 1

construction. A complete description of the construction is as follows, where the formula F

which labels cach subterm t is specified using the notation "GF".

| OE(a, { LESSD: Vxy(x <yVy<x) Hx, 1):x<1V Ol,
El(y + 1.{#:x<1DW¥(x,y,y+ DIB: x <1): W¥(x,yy + 1)):3z¥(x,y,z)

| OE(B.{LESSD: Vxy(x <yVy<) Hy. D:y<1Vydl,

| El(x+1.{ #:y<IDW¥(x.yx+D}B:y<1): (x,y.x +1): 32¥(x,y,2), :

BIQxy(#:(x>DA(y>1) DW¥(x,y,2xy))

| Ka: {x1B:{ITA YI: W(x,y,2xy)))):Tz ¥(x,y,2)

| 3.3 Substitution

| ’ The effect of the principle of "substitution of equals for equals” can be obtained by the
use of a scheme of Harrop axioms (as was done for I'ALSE - climination; sce section 2.1).

| | = However, it is more convenient for our purposes to include the following inference rule which 1
: | expresses this principle directly. |
| i |

. Substitution: :

| EE ————— and ——

_ : Alt, Alt, 2a]}

| 2 On the p-calculus side, a new constructor: SB(t,.t,) is added, and the clauses |

od mn, 1m,

i | I": Sb——Mm8M8M— => SBC).1,):Al Bg)

J Alt, art) :

J |
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I, II,
Co] h=hL A

I: SB———MM— => SB(T"(TT)).[(I,)):Alt, Ba)
Aly, at] .

| are added to the definition of the map I' from natural deduction proofs to constructions.

3.4 Recursive constructions | |

Recursive definitions of functions are commonly uscd for describing computational

| methods, both in mathematics, and in automatic computation. Most programming languages
allow defintion by recursion, and in purcly applicative languages, such as pure LISP

[McCarthy et al, 1962), the principal constructors used in building up programs are just

function application, and recursive definition. : :

1 We too will make usc of definition by recursion. Specifically, we will allow (mu:aally)

recursive definitions of the form:

f, « LA,

4 . [3 .

fa © Gedy

where the {f} arc defined symbols, and the {t} arc constructions in which f, . .. f may

appear, and the {A} are universal formulas. ‘Ihe following restrictions apply: (1) cach

) construction t:A, must be closed, and (2) cach occurence of a detined name fin any t; must |
| } have A, as its attached formula.

Putting the matter more formally, we implement definitions by recursion in the following |

| way. A paramcter of the dctinition of the class of constructions is the sct of assignments

made to defined symbols. Until now, those assignments have been proof procedures with
i

i appropriate charactersistics. Henceforth, we will allow constructions as well as proof

| procedures to be assigned as values of defined symbols, subject to the restrictions described in

: the fast paragraph. Of course, cach defined symbol may be assigned only onc value, whether

3 a proof procedure or a construction. We will refer to a set of assignments of constructions

A and proof procedures to defined symbols as a "system of definitions” or a "system of

lemmas”. The system of definitions which is in effect for the purposes of any particular

dy ¥ discussion will be referred to as the "current system of definitions”. .
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| If onc switches back from the terminology of constructions to that of natural deduction

: proofs, then the “recursive proofs” which correspond to recursive constructions are proofs |

which use their own cnd-formulas as lemmas. An example of a computationally useful |

recursive proof is as follows.

| L.et pred denote the predecessor function on natural numbers (it does not matter what

| value is chosen for pred(0)). Then onc formulation of the induction principle for the formula |

| @(x) is as follows: |

IND: Vx({@(0) A Vy (y#0 A g(pred y)) I (y)} 2 @(x))

| The following is a a recursive proof of IND - a proof in which IND itself is used as a

lemma. We will nced an abbreviation, let H be the formula: |

| Vy (y20 A (pred y)) D gy)

Then IND, is just Vx(p(0) A H DO @(x)). The proof, then, is as follows. :

| IND@:Vx( (OAH D g(x)

| [p(MAH]  @(OOAHD (pred x) [¢(0) A H]
| br AF

; | [@(0) AH] [x20] (pred x) H |
| ANtV———ao Al————— vibeooo--!»+---.

Vxy(x=yVx=y) [x=0] (0) xz0Ag@(pred x) x#0Ap(pred x) DI g(x)

| vbo—oS83-———-—- Offbi—-—

| x=0V x#0 p(x) p(x) i
| i REA...

: BD JBE |
| (OAH ID p(x) |

F | Vi(@0) A H D g()!

i In the notation of constructions, the above proof of IND, looks like (his: |

| Co IND, = AxAa.Ol(B.EQD(xD), |
p SB(B.m (a).

REE EA {(7(a))pred xHLB.(ND (pred x))a)>))

; AE where QD is a proof procedure for the formula Vxy(x=yVx#y); EQD rcturns the
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|

construction, "OI(#:t,=t,):t,=, Vt,#4," if t, and 1, are closed terms with t,=t, and
"OL (#:4, #0) =, Vy #4" if t; and t, are closed terms with t,#t,

The usefulness of this construction derives from the fact that the value to which the ‘

lemma IND is applicd is the predecessor of the value to which the theorem IND is applied. |

: The construction may be cxccuted when applied to a particular numeral in the same way that |

a recursively defined function is run: by repeated replacements of the defined name IND by

| its definition. As a consequence of the fact that the value passed to succesive recursive calls |
to IND is constantly decreasing, this mode of cxecution will terminate (under the right

| | reduction order), yielding a construction in which no reference to INI) any longer appears.

: The details of this process will bc discussed later (section 3.5). |

A somewhat simpler way of achicving the cffect of induction by the use of recursive

proofs is as follows. Supposc that one has a proof I1; of ¢(0), and a proof [1, of Vy (y#0 A |

| @(pred y)) DO ¢@(y)). Then the following recursive proof Po of Vxe(x) is adequate to the !
same computational purposes as is the above proof of IND,

] Pp: Vx( p(x)
| | | VE——mM I, |
| [x20] (pred x) Vy(y=0 A @(pred y) D o(y)) |

| nm Al——m—— Vbbmm—roron—+—— —
| : Vxy(x=yVx=y) [x=0] (0) x70 Ag(pred x) x#£0 Ag(pred x) DJ @(x) )

vVbbii— S———— Jb —— ——— ——

| : x=0V x#0 p(x) p(x) ‘

| p(x)

| Vi—————

| oo Vxe(x) t

‘The construction notation for Po is as follows, where t; is the construction notation for
. [1,, and , the construction notation for IT,

Po = ALOE(aLEQI(x.0),
SB(at,),
(t,(x)) (Ka,Po (pred x))) |

Supposc that a system § of lemmas has the property that cvery axiom in sight is true in a

| | particular model M. That is to say, we suppose that all the axioms which appear in

y constructions of S, and all axioms which appear in the constructions gencrated by proof ) ;
A procedures of §, are true in M. Note that these conditions are still not sufficient to guarantee
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that constructions built up from lemmas of S will have end-fonnulas which arc truc in M.

| The reason for this is that constructions can take the form of circular arguments. Consider,
for example, recursively defined construction : "f:VxA « f:¥xA", which of course provides

| ! no cvidence at all for the truth of VxA. In order to verify the truth of the end-formula of a
1

| : construction, or the correctness of the computation described by the construction, it is not

sutficicnt to verify the axioms which are used (directly or indirectly) by the construction. It is

| also neccessary to verify the truth of the lemmas vvhich are uscd, even though (recursive)
constructions for those lemmas have been supplied.

3.5 Operations on constructions

in this section, the various clementary operations which are involved in the computational

usc of constructions arc described. "These operations arc: (a) the normalization reductions, and -

(b) the pruning operations, ‘These operations are arrived at by direct translation into

construction notation of the operations on natural deduction proofs given in sections 2.4, 2.7.

{ A-reduction:

} oo 7 (GALE AAB)A => tA

| 7 (KLIALIBYAAB)YR => t,:B
V-reduction:

N OF(a,O1 (1: A): AV BLIC tO). C => Lla«t ):C

| | A Ola. O11: BY:AV BL, Cit:C):.C => laet,):C
|

| | -reduction:
: it

: y {Aa (ti B)):ADBY(1,:A) 1B = tlaet,):B

| 1 V-reduction:

oo {AXA VAL) CA => Lx cLAx-L]

| . d-reduction:

i EEE A): 3xA)LO) = (4x et Dlaet,):C*

“ |
1 47

(2

PDEA mrs 4-43 vw» - A - - -— Cee ——— mr a — i Pg . Tt gy gy SRA cc beeetCRD, WEA Cv Teal TY

: o 1° Ean gph. PEA To LL meWH
. ea a” * onl :



Lemma-reduction:

{(£VXADY:Alx+] = y(D:Alx+

3 condition: f has been assigned the proof procedure y, and y()*= FAIL.

| (EVXAYD} AL 1 = {©:Ax 1 i
3 condition: t is closed, and f has becn assigned the construction t. |

1 : . In addition, a reduction rule for the ncw substitution inference of section 3.3 is needed:

SB(t;:(t;=t).t: Alt]: Alx «t,] => iA et] | |
| condition: t, may not contain free proof variables. |

| The effect of SB-reduction is to take the construction t, and simply replace the formula |
Alx+t,] attached to its root by Afxe«t,), and thus dispensing with the SB inference rule.

1 | Evidently, if ty and t, arc distinct terms, then the result of applying SB-reduction to a
: construction will be a labeled p-term which is no longer a construction. However, if the |

axioms which appear in t, arc correct (in some particular modcl) then t; and t, will denote the |
oo same object in the model, and in this sense the formulas A and A have the same meaning. In

1 fact, nothing will go wrong if we fail to distinguish between formulas which differ only by
: . . | .: | substitution of one term of I. by another which denotes the same object. More formally, | 3

| | relative to any particular model, we may expand the class of constructions to include all of ) 3
1 those labeled p-terms which can be arrived at by substitution of “cquals for equals” in :
1 formulas. ‘This mars the uniformity of our trcatment in that introduces model-theoretic :

| : considerations into the defintion of the notion of a construction, whereas that notion has been :

| purcly syntactic until now. However, as we have said, nonce of our results are affected. 3

| | The pruning reductions are as follows: 1

OE(a,t;:AVBL,:Cty:C) :C => LC 3

Condition: a docs not appear free in (2. 3

OF(a,t :AVBL,:Ct;:€) :C => t,:C | :

Condition: a does not appear free in t,. |

LATER NR a
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j | Notc that each of the operations described in this section applics to the untyped part of a

construction independently of the attached formulas, in the following sense. let t.:F be a

3 | construction, and let t:F be the result of applying one of the operations listed above to t:F.
'

Further, let untyp(r) for any construction r denote the untyped p-term which forms the

“skeleton” of r - that is to say, untyp(r) is arrived at from r by removing the formulas which |

label the nodes of r. Then untyp(t) can be computed from untyp(t) alone. As was |

mentioned ea..icr in the context of the typed A-calculus, the consequence of this observation |
: for computational purposes is that the execution and pruning of a construction may be carried

out by treating only its untyped part; the attached formulas need not be carried around in the |

course of the computation. In order to clarify the manner in which the various operations

apply to untyped p-tcrms, we list those operations below with the type information left out. i

A-reduction: |

7 (<t,.,0) = t

| V-reduction:

| | OF(a,01 (t)).t,.t5) => blac] |
| OFi(a,01,(1)).t.t5) = tLlaet)
j 1

| D-reduction:

Lo. (Aat Xt) => {leet

: | 4 Y-reduction: |
; ' (Ax) = tx+t) |

4 3-reduction:
SE EE(x.a, EI) ) => (t,x et Dat] |

3 l.cmma-reduction:
v
‘

fv) => ¥(© |
R4

| ud | condition: t is closed, and f has been assigned the proof procedure vy.
| |

‘¢
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SPIREa =u + CE Tm TTT SS ee p= or JP — pay$C SVS pms c——— CS Tad



]

condition: t is closed, and f has been assigned the construction t',

} .

| SB-rcduction:

5 condition: t, docs not contain free proof variables. :

| Pruning:

OE(aty.tpt;) = 2
a |

Condition: a docs not appear free in t,. | i
'

| Condition: a docs not appear free int; !
|

: 3.6 Results about constructions
©

' - = . - - - - ¢
As was emphasized in section 2.9 in the context of natural deduction proofs, the results i

}
and conditions which arc relevant to the computational use of proof normalization are of -

| several independent kinds. Specifically, there are results concerning

| Lo (1) the syntactic soundness of the normalization reductions,

A

: (2) the semantic soundness of proofs,

(3) special properties of proofs in normal form, and finally,

| (4) the termination of reduction sequences.

The conditions upon which the results in one catagory depend, and the proofs of those

Co results, are for the most part unrelated to the conditions and proofs which come up in the

other catagories. In sections 2.3 and 2.9, results about normalization were stated without proof |

| as they apply to natural deduction proofs. In this section, we will prove or sketch proofs of :

the corresponding results which apply to constructions.
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Let R be the sect of all the clementary operations on constructions which were described

in the last section. We have:

| Proposition 1: Each of the operations of R yields a construction when applied to a |
| construction.

! Proposition 2: Each of the operations of R yiclds a closed construction when applied to a
Co closed construction,

Proposition 3: Each of the operations R preserves the end-formula of the construction to

which it is applicd.

The above propositions can be verified by inspection.

| | Definition: A construction t:F is a valid construction relative to a model M if the

universa! closure of cach axiom and each lemma which appears in t is true in M

| Definition: A system of lemmas is valid relative to M if each construction which appears i

] in the system is valid relative to M, and if cach proof procedure y which appears in the

system returns only valid constructions.

] | Proposition 4 (Soundness): Suppose that t:F is a construction with frce proof variables |
| a; ...a, and free object variables x, . .. x. Suppose further that tF is valid relative to M.
| . fet Aj... A be the formulas which are attached to the free proof variables a, . . . a.

| Then Vx; x5 «Lox (C(Ap A Ayo LC A) DF) is true in M. |

CL Proof: Induction on the structure of constructions; cach of the rules by which i

i constructions arc built up preserves soundncss. |

: Proposition 5: Suppose that (a) t:F is valid relative to M, and (b) thc current system of

{ lemmas is valid relative to M. Then the result of applying any of the operations of section

| | x 3.5 to tFF is a valid construction.

| Proof: Obscrve that, with the exception of the lemma-reduction operation, all operations
SE 4 in R modify thc axioms appcaring in constructions only by instantiating free variables which

¥ appear in those axioms. The proposition follows.

i f Detinition: We classify constructors as cither “introduction constructors” or "climination 4

q constructors” according to their correspondence to the introduction rules and elimination rules
y ‘ of natural deduction. The introduction constructors arc PAIR, OI, OI,, A-ABSTRACTION,

§ . and El, and the climination constructors arc wl, #2, OE, APPLY, EE, and SB. (SB
yt "eliminates" an equation.)

j



: ‘Theorem 3.1: Let t:F be a closed construction in normal form where F is not a Harrop |
formula. Then cither LF is a lemma (ic has the form f:F where f is a defined symbol), or the

main constructor of t is an introduction constructor.

] | Proof: By induction on the structure of proofs. Suppose that t:F is a normal closed

| construction where F is not Harrop. Base case: If t is an “atomic” construction consisting of3 | onc node, then it must be either (1) an assumption, (2) a Harrop axiom, (3) a lemma fF.

Cases (1) and (2) arc impossible: (1) because t is closed, (2) because is F not a Harrop

i : formula. Thus case (3) must hold, and so the base of the induction is verified. Furthermore

we have verified that any t:F which is not a lemma (and which satisfies the hypotheses of the |

| theorem) must have a "main" constructor, whether it be an introduction contructor or an

climination constructor, since t cannot be atomic. For the induction step, we assume that the

proposition holds for cach sub-construction of t:F, and then derive a contradiction from the

| supposition that the main constructor of t is an climination constructor. ‘There are 6 cases to
consider. Suppose that the main constructor of 11s (1) #7, (2) m,, (3) OF, (4) APPLY, (5) EE,

(6) SB. ‘Then t:FF has one of the forms (1) w(t; :FAG):¥ (2) 75(1:GAF)F (3)
OF(atAV BLE GF) (4) (1:GDFX1,:G):F or (4 VXAXL):Al et] (5) EE:3xA LFF

| (6) SB(t,.t,):F. In case (6) t, is closed, and therefore SB reduction can be applied, contrary to
; the hypothesis that t is in normal form. In all other cases, ( 18 closed and has a non-Harrop |

end-formula, so the induction hypothesis applies. Thus t; is cither » lemma, or ¢lse has an
introduction constructor as its main constructor. If t; 18 a lemma, then t must have the form . |

| | tL). where t, is closed, and thus lemma-reduction could have been applied, contrary to the
hypothesis that t is normal. If t, has an introduction constructor as its main constructor, then, |
by virtue of the form of the end-formula of t,. that main constructor must be (1) PAIR, (2)

| PAIR, (3) Ol, or Ol, (4) A-ABSTRACTION, (5) EL. But then one of the reduction rules |
| (I) A-reduction, (2) A-reduction, (3) V-reduction, (4) D-reduction or ¥-reduction, (5) 3-

| i reduction, can be applied to t, again contrary to the hypothesis that t is in normal form.

| Corollary 1: If t:3xA is closed and nocmal, then t has the form FIG Ae Di 3xA. If,
: | in addition, t is valid relative to M, then A(t) holds in M.

RY Corollary 2: If CAV is closed, and normal, then t has one of the forms Ol,(t;:A):AVB, |
\ or OLy(t,:BY:AVBE. If, in addition, t is valid relative to M, then, in the first case, A holds in

4 M, and in the second case B holds in M.

\ ‘The tollowing corollary of the various results given above establishes the usctulness of Co
normalization for computational purposes, and the conditions for the partial correctness of a |

| , construction regarded as a computational description, |

} ) Corollary 3: lect :Vx3dygp(x.y) be a closed construction and let ty be a closed term of L.
x Suppose that some sequence of applications of operations of R to the construction .

=



t, (ty): 3yep(t,.y) yiclds a normal construction t'. ‘Then t' has the form El(t;.t):3yep(t,.y).

k Further, if t is valid relative to a model M, and the current system of lemmas is valid relative |
i | to M, then @(tyty) is truc in M.

Corollary 3 shows that normalization constitutes a satisfactory means for executing a

construction ,:Vx3yp(x,y) in the sense that if one "puts in" a value t, for x, and if
| normalization terminates, then a value ty for y comes out. In addition, the corollary shows

that t; regarded as a program is partially correct with respect to the input-output specification
@, under the condition that all lemmas and axioms in sight are true. Thus the verification of |

the partial correctness of an algorithm expressed by a construction is a matter of establishing j
the truth of formulas which appear explicitly in the construction and in its system of lemmas. {

| As a consequence, the passage from a construction to its “verfication conditions” is simpler for |
constructions than for computational descriptions of a more conventional Kind.

Wc turn now to the question of termination, |

Definttion: A construction UF has the "termination property” if cvery sequence of

: applications of operations in R to t is finite. ‘That is, there is no infinite sequence of terms

ty, ty... such that t;=t, and such that t, , arises from t by the application of onc of the
| - reductions of R.

| | Theorem 3.2 (ernminaton): Suppose that 1} is a recursion-free construction in in the }
| sense that all defined symbols which appear in t are assigned proof procedures and not

constructions. ‘Then t has the termination property. :

| | - The standard proof of the termination of normalization tor the predicate calculus (sec cg

F Prawitz{1969]) or cquivalently for the typed A-calculus (sce ‘Troclstra [1973A)) applies to the i
| calculus of constructions with only minor technical modifications. ‘Therefore, we omit the

| ; | proof of theorem 3.2 here.

EE 3 Evidently, if recursively defined symbols appear in a construction, the termination ;H theorem no fonger applies. Indeed, there are recursive definitions of a symbol f (such as the
looping definition "f:VxA « F.VxA™) which have the property that no finite sequence of

| . reductions of H{t) where t 1s closed can lead to a normal form.

| ' Consider the formulation of first order arithmetic which is arrived at by taking the

Bg members of the schema IND, as the only recursive constructions, Even here the termination

{ property fails. The reason for this is that one is free to repeatedly apply lemma-reduction to| ‘| INDg(t), with t closed, without performing any other reductions, and this process will not
i . L} LIL] . » -

“{ terminate. However, termination can be guaranteed if an additional restriction is made on :} | SE -

‘“« |
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; lemma-reduction as it applies to the induction schema. Namely, we require that if lemma-

! reduction is applied to IND,(t) yiclding

| t' =  Ax.Aa.OFE(B,EQD(x,0), -]

| {(ma))pred x)}KB(INDg (pred x))Na)>)) (1) |

then t' must be brought immediately into one of the two forms | |

| | Aa.(7 (a) |

or :

| Aa. ({(my(a))(pred OHH (IND (pred )a)>)) :

(depending on whether the value of t is zero) before any other reductions are applied. (This

immediate reduction of t' will involve onc application of D-reduction, one application of

| lemma-reduction to EQD, one application of V-reduction, and perhpas one application of SB-
reduction.) When this restriction is made, the effect of lemma-reduction together with the

immediately succeeding reduction steps is very much like that of the induction-reduction rule

in the usual formulation of normalization for first order arithemtic (sce Prawitz[1965]). The

| CL restriction results in a system with the strong normalization property - a fact which can be :

| demonstrated by minor modification of the standard proof of strong normalization for
arithmetic  (lroelstra[1973B]). Further, theorem 3.1 continues to apply, since we have 8

: restricted only the order in which reductions may be applied, and have not thereby modified
the notion of a construction in normal form.

l.caving aside the special case of arithmetic, the situation is this. One may take any |
algorithm which is cxpressed by an (ordinary) recursive definition and reformulate it as a

| recursive construction; the form of the recursions in the construction will be identical to the

: . form of the recursions in the original definition. (A concrete example is given in chapter 4.)

Lo If the ordinary recursive definition terminates under some particular order of evaluation (cg {
| call-by-valuc or call-by-namec), then so will the recursive construction under a corresponding i

reduction order for normalization. We do not propose to investigate here the general question i
Co of the termination of the normalization of recursive constructions. [It is sufficient for the ¢

| | current purposes to observe that the particular reduction order which we use in the t
implementation (namely, the call-by-value order) terminates on the particular proof which :

| concerns us (namcly, the bin-packing proof of chapter 4).

RS
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| 3.7 Another reduction rule

i An additional reduction rule beyond those so far mentioned is used in the normalization
| | of the bin-packing proof of chapter 4 - namely, the permutation rule for the V-climination

| inference:

(Al (B]

| AVB CvD CVD [C] (D]

} vVf/———m7 —0—7————M —  ——— I, I;
CVD E E |

V7=—

E

| =

[Al [C] [OD] B] [Cl [D]

| mn, no, Mm mn, Mm, I
| CVD EE CVD EE

‘AVE E E

. 4 — |

| |
| In construction notation, this is:

| bo OE(a,OE(B. AV BL: CV DLCVD) LEE) E = |

: OF(B.L :AV BOE a.ty: CVD EGE) EOF(a.t:CV DL EL: FE). E)E |

| b where it is assumed (without loss of generality) that # docs not appear
| | . free in cither ty ort.

a | 4 None of the results concerning constructions given in section 3.6 is affected by the
| ! addition of this rule. This is immediate for all results concerning the properties of |

TN LE constructions in normal form, since any construction which is in normal form with respect to
4}
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| the reduction system which includes the new permutation rule is a fortiori in normal form a! F

] with respect to the reduction system without this rule. The only result which needs checking |
is the termination theorem (theorem 3.2). But, as it happens, standard proofs of this theorem, Cf

such as that given in Prawitz[1969), treat reduction systems in which permutation reductions :

| are included. ;
|

:

38 Effects of pruning on efficiency

To avoid misunderstanding: The principal evidence which we will provide concerning the

wiility of pruning in improving efficiency is the bin-packing cxample of chapter 4. But to help

in choosing other examples where pruning is likely to be of use, it is desirable to illustrate the

features on which the behaviour of pruning depends in a simple and abstract setting. With

this in mind, we make the following formal points by means of schematic examples.

(1) Pruning can lead to a very large increase in the efficiency of an algorithm which has |

; been specialized.

Ed
' (2) Pruning can lead to a very large decrease in the efficiency of an algorithm,

) (3) The inclusion of proofs of Harrop tormulas can improve the effectiveness of pruning.
|

|

Consider, then, the following proof: .

J

!

.

\
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] P=

: [B(x)] [G(y)]
ANl——mMmM

[Fy] Ky)OICk.y.ry) BOOAG(y)  (B(X)AG(y))IC(x.y.r;) i

| C(x.y.r,) C(x.y.ry) |
FE n, E | FS I |

Fy) /G(y) 32C(x.y.7) 32C(x.y.2) 1
vVbbrh--—--+———— i _ —— — ——

37C(x.y.z) 1

[AG A()DIC(x.y.r)) |
rr 1

C(x..y.ry)
I, IN—

i A(X)V B(x) 3/.C(x.y.7)
vVbiio——n ——————rmnnn i 4 oo —_— — — —— — —— ——

3/C(x.y.7) j

V———- |
Vxy3/C(x.y.7) 4

| | where the “results” ry, ry, ry are distinet terms of 1. Note that the above schematic proof Py
| has the proot U of section 28 as an instance; take AX) = "x1", B(x) = "1°, |

FOO ="v <1" GOI =", Cy) ="way "rp ="y +1" r,="x+1", r;="2xy". P, when j
written as a construction is: [

0 t= Axy. OB(aut Er. # (a) |
| OLBLLEIr, #(B)), ]

EI(ry # (<a BON) 37C(x y. 7)

| Vo where ty, are the construction notations lor Th, Tl, |

| J Now, consider the result of specializing the construction {to a particular value for y; say ;

| k vor, where 1, is a closed term of 1. The specialized construction may be written, :

| tL Avr = Av OF Flr # (a)
| ! OF(B.Gly «rl EHC, # (8), |

B y Flr, # (<a f))):3/C(x.15.2) 1

| Suppose that the normal form of [yer] is OL (t;) where ty does not contain a free - :
: . Co that is to say. suppose that ty when normalized returns the decision that Fry) and not G(r)
4 |
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| | holds, and also that the proof of this decision docs not use the assumption B(x). Then the
[ result of normalizing Ax.{f(x,ry)} without pruning is,

| (a) Ax. OE(a.t,EI(r),# (a)),El(ry, #(t,))): 32C(x,1,2), a |

Pruning can be applied to the above expression, yielding |

| | (b) El(ry, #(t):32C(x,50,2)

Now, suppose that t, represents an extremely slow algorithm, so that t applied to any |
particular argument takes a long time to normalize. ‘Then the passage from (a) to (b) !

represents a large incrcase in efficiency: the normalization (without pruning) of the

construction (a) on an input r requires that t;[x<r] be normalized, whereas the construction (b) |
supplies the output "r," for all inputs, and so requires no reduction steps at all. :

{|

| | How slow can be t; be? The answer, for all practical purposes, is, arbitrarily slow, since

recursive constructions can “run” as slowly as any recursive function. Even if (| is a || recursion-free construction, normalization can still take so long as to be completely infeasible. }

In particular, there is no clementary recursive function in n which bounds the numer of :

i : reduction steps required to normalize non-recursive constructions of size n [Statman 1977). |
Co (In other words, there is no such bound of the form 2%, or of the form 220: or of the form |

; 22 ) and so on). | |

| | So, we have demonstrated point (1) above. Point (2) can be demonstrated using a similar - 14

schematic example. Consider the following proof. 1

' )
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| Fy)  F(y)2Ck.y.ry) [G(y)] G(y)2C(x.y.ry)
BD Em SE

| 1, I No

! F(y)VG(y) 32C(x.y,z) 3zC(x,y,z)

| 3zC(x,y,2) |

| [AG] ACDIC(xy.r)

I, If—
A(x)V B(x) - 3zC(x.y.2)

: VlI—————

Vxy32C(x.y,z) |

| The above proof differs from the first proof P| only in that "C(x.y,r;)" no longer depends
| upon "B(x)". The construction notation for P, 8:

| p g = Axy. OK(a.t,.El(r,, #(a))

CY OF(B.tPl(ry, # (A), |
: El(r,, # (BM): 3eC(x.y,2)

| oo If pruning is applied to g one gots

1 Ax y. OK(B.t,.El(r,, #(B)),
SE El(ry, # (£))):32C(x,y,2)

oo Now, suppose in this casc that t, is a fast algorithm, that is, that tfx«r] can be
| normalized in just a few steps for cach input r. Suppose further that t, is very slow. Then we:

have the following situation: whenever A(x) holds, r) may be immediately returned as the
| : output, but when B(x) holds a long computation must be undertaken to determine which of

‘SE [i F(y) and G(y) holds. However, the correctness of the "long computation” does not depend on
¥ 1 whether B(x) holds. Thus we have a fast way (t)) of discriminating between two ways of

i computing a satisfactory output, onc of which is very fast (the simple return of ry), and the
MEL 59
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| other of which is very slow ("Ax vy. OE(B,ty. El(ry, #(B)).EI(r, #(B))): 32C(x,y,2)"). Further,
the slow way always works. Pruning has the effect of throwing away the discrimination (t,)
and choosing the slow way every time. Evidently, if A(x) holds for many values of x, then

| | pruning degrades the average efficiency of the algorithm. In the extreme case where A(x) ’

1 | holds for all x, pruning takes a very fast algorithm and replaces it by a very slow one.

| Point (2) has now been demonstrated, and we turn to point (3). As we have scen, all
proofs of Harrop formulas may be omitted without interfering with the possibility of |

“running” a proof or construction. However, we will show here that the inclusion of a proof

| of a Harrop formula can cxtend the possiblities for pruning. As a consequence, the inclusion

: of proofs of Harrop formulas can in some cases improve the cffectiveness of pruning in

i optimizing algorithms. We consider a third minor variant of the original schematic proof Pi

(BX) {Fy [B(x)] [G(y)]

| N\f———— I, N——m———
BOOAL(Y)  (BOOAF(Y)NDC(x,y.1,) BAG)  (BEOAG()IC(x,y,ry)

| dD dobre

| I, l— jl
FE F(y)VG(y) 32C(x,y,z) 32C(x,y,z)
] vimmror--———————

; A2C(x,y,2) «

SE [AG] AG)DClx.y.ry) x

| Clx..y.r))
: oo mn, —- i

i A(x)V B(x) 37C(x,y,7) |
vVbo0-———+——w———— 1

: 37C(x,y,7)
| | VI—————
| | Vxy3dzC(x.y,7) [

Rh In this case the change from P| is that C(x,y,r,) now appears to depend on both B(x) and
: > F(y). ‘The contruction notation tor this proof is, |

z |

. h = Axy. O(a.t, EN(r, # (a)

y A OE(B.4,. L(y.t4(Ka. 83),
: Ei(ry, # (<a, BON): 37C(x,y.7)
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J | ! ' ) *

| We assume for the current discusion that C is a Harrop formula. Thus

"( B(x)A L(y) DC(x.y.ry)" ts a Harrop formula, and could have been given simply as an axiom, |
Suppose however that the proof Il; of "(B)AK(Y)IC(xy.r;)" has the form: |

[F(y)] (Uy) |
Nf—m7—— |

| [EI [Hy] Bl EAL)
NANl——— ANl——oo—

FWA) (FOAR(YNDC(x.y.ry)  BOOAFWAIY)  (BEOAFWAI(Y))IC(x.y.ry)
| Jdeomo’nmn--——no—— frooo——-—-~——~— |

I, j
| H(y)VI(y) C(x.y.1)) C(x,Y.F,)

vViborino—o— — — er 1 + teroo-f-—mE mm -FFmF - |

Cry.) | |
Thus C(x.y.r,) may or may not actually depend on B(x): if Hy) holds it doesn’t, and if I(y) |
holds it does. The construction notation t3 for the above proof is,

| OF(y.t,, # ($B). # (Ka By): C(r.y.1,) |

| So. h has the form:

| h = AXy. Ola ir, # (a)

OBB. EL, OF. # (SBD), # (KaBy), |

| | Ld(r,, # (<a, 32)N): AC (x.y.2)

| ‘ Suppose that his specialized to Ax.h(x.r,), where Hr) and F(r) hold (according to

| B normalization of t, and t;, which yield OI (t,) and Oly(tg) respectively: we assume that

| . neither tp nor tg contains « free). Then of Ax.h(x.ry) is normalized without pruning the
) following construction results.

SE Ax. OF(atEI(r,. # (a)

Co {\ BI(r,,# (<tt>)
Finally, pruning yields,

oo \ I(r,# (<tt>)
| 2

: ! Evidently, if the proof I", for Cx.y.ry) had not been given, there would have been no
k py possiblility of applying this List pruning operation, By the same argument given above for

, i -Ri ; point (1), this pruning can lead to a large increase of cfficiency.

d+ 4}
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| Thus, although proofs of Harrop formulas are not required for the execution of a proof,

g they can be used to improve the analysis of dependencies upon which pruning relies. :

‘ .

. : | :
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| Chapter 4

i Specialization of a Bin-Packing Algorithm

The experiments described in this chapter demonstrate that prunable redundancies occur |
| in the "real" computational world. The cxperiments concern the specialization of the first-fit |

backtracking algorithm for one-dimensional bin-packing. This algorithm takes a list Ly of |

block sizes and a list [9 of bin sizcs as input. Each block and bin is “one-dimensional” in
the sense that its size is given by a single positive number. The algorithm performs a depth-

| first scarch for a packing of the blocks into the bins - that is, for an assignment of the blocks
to the bins with the property that the sum of the sizes of the blocks assigned to any given bin

is less than the size of that bin. If such an assignment is found, the algorithm returns that |
assignment as its result, and otherwise it returns an indication that no packing exists. The

| algorithm is referred to as a "first fit" algorithm because, in the course of search, it attempts
i to place a block in the first bin in which it fits as its initial try. The bin-packing problem is |

well known to be NP-complete [Garey and Johnson, 1979], and this particular algorithm has a |
worst case running, time which is exponential in the size of the input. However, the problem |

) is tractable for small inputs. It is of interest to sce how much the algorithm can be sped up in

the cases where the inputs are of feasible size. |

| The bin-packing algorithm was formalized as a natural deduction proof in the first order
: theory of lists and numbers, and an untyped p-calculus term was cxtracted from this proof. |

The proof was constructed "by hand”, but the extraction of the p-term from the proof, and all i
other phases of the experiments, were carried out automatically by a system of proof |

manipulation programs running on the Stanford Artificial Intelligence [Laboratory PDP-10 |
SE computer. Several experiments were carried out, cach of which involved specializing the

3 algorithm to handle problems of a particular size and structure. bor example, a specialized |
| | . algorithm for packing six blocks given in order of descending size into three bins of cqual size |
| | was derived from the general bin-packing algorithm by the following steps. (1) The p- |

; g calculus term which describes the general algorithm was executed (normalized without |

| hd pruning) on the symbolic inputs LL; = <ipisizigisig>, lp =<nnn>, where the F and n
| £p arc numeric variables, and where it was assumed further that ij2>iy2> . . . 2ig. The resulting

: p-calculus term had the form of a decision tree. (2) The decision tree was subjected to an
Co optimization involving the climination of case analyses whose outcome was decided by

\ formulas alrcady assumed on the branch so far taken in the tree. ‘The optimization was
carried out by usc of the simplex algorithm (all the case analysis predicates in bin-packing

i have the form of incqualitics between sums). The process so far could as casity have been |

: y carticd out on an ordinary program as on a proof or p-calculus term. However, at stage (3) :
| K 3 pruning was applied. The question of central interest was this: what increase in speed and

, { . reduction in size would be obtained by the application of pruning?
4 1
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; | In practice, it was not feasible to carry out steps 1 and 2 separately, since the decision tree .
resulting from step 1 would have been extremely large. Instead, normalization and

optimization werc applied "in parallel” - the decision tree was optimized in the course of its

i | construction.
Experiments of the kind just described were carried out for all combinations of numbers

ny of blocks and numbers ny of bins with 2<n,<n;76. In all cases, pruning turned out to be |

| : a useful optimization. As an example, we consider again the case where ny=6 and ny=3. |
| The decision tree which results from steps (1) and (2) has 87 decision nodes and a depth of j

| 14. When pruning is applied, the tree shrinks to 15 decision nodes with a depth of 8. Thus !
more than 4/5 of the decision nodes in the decision tree resulting from steps (1) and (2) are :

5 | redundant in the sense recognized by pruning. [If one measures the running time of a bin- :
! packing algorithm by the number of comparisons which it makes, then the worst case running

time of the original algorithm on inputs of the special form currently under consideration is |
174. The worst casc running time of a dccision tree algorithm according to this measure js

| simply the depth of the tree. Thus the simplex optimization and pruning taken together |
J : produce a factor of improvement of nearly 22 in worst case running time (from 174 to 8). |

| As mentioned in scction 2.8, pruning may have the effect of changing the function ]
: : computed by a proof. Pruning docs in fact have this cffect in cach of the experiments 4

| described in this chapter. Furthermore, this effect is essential to the success of pruning in NFimproving cfficiency. For 2<n,<n;<4, the algorithm produced by pruning (in combination
with symbolic execution and the simplex optimization) is both smaller and faster than any .

| decision tree algorithm which computes the same function as the original algorithm. (This is
may be truce for n,=35 and n;=6 as wcll, although this has not been checked.) Thus, no t
collection of conventional optimizations could have produced specialized algorithins for bin- ;

packing which are as efficient as those produced by pruning, since conventional optimizations :
preserve the cxtensional meaning of the programs to which they are applied.

: ¢

; The following conclusions can bce drawn from the cxperiments. (1) The simplex J
| optimization with or without pruning yields a large speed-up of the algorithm. (2) Pruning
i dramatically dccreases the size of the specialized decsion tree algorithm, and produces a )

Co modcrate improvement in its speed (ie depth). (3) The improvements produced by pruning

: | could not have been produced by conventional optimizations. In the largest experiments .
| co (where ny =6 and ny2>4), it was not feasible to produce a decision tree algorithm at all

| without the use of pruning; pruning had to be run in parallel with the simplex optimization
and normalization in order to avoid running out of memory space. ‘Thus in this application, [
the main practical cffect of pruning was to make possible the production of fast specialized |!

k algorithms which arc of a reasonable size. In devising combinatorial algorithms for handling a :
i
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: finitc number of cases, speed is not the only problem, since onc can often make use of table
look-up to get a very fast but very large algorithm. What is difficult is to produce an

| algorithm which is both small and fast.
)

| In what follows, we describe the experiments in detail. Section 4.1 concerns the system of
i programs uscd for doing the cxperiments. In scction 4.2, we describe the proof which |

1 | implements the bin-packing algorithm. Section 4.3 concerns the reductions on object terme
| used in normalization. Section 4.4 gives the results of the experiments. Conclusions based on

4 the results arc given briefly in scction 4.5.

F 4.1 The implementation |

| The system of programs used for the experiments was written in Mach ISP, and runs on
the Stanford Artificial Intelligence | aboratory PDP-10 computer. The system consists of three }

i components: (1) a proof checker for natural deduction, (2) a mechanism for extracting 1

untyped p-calculus terms from proofs, and (3) a normalizer (with pruning) for the p-calculus.

The proof checker is interactive, and allows the user to specify the first-order language in 3

which a proof is to be given. In these respects, it resembles the FOIL. proof checker i

[Weyhrauch 1974]. |

] The normalizer, both ia internal design and in funcuon, is very much like interpreters for {

| : A-calculus based languages such as LISP[McCarthy ct al, 1962] and SCHEME[Sussman and
Steele, 1975). I'he execution of a LISP or SCHEME program is essentially a matter of

normalizing a closed A-calculus term which ends up with an object term as its normal form.

a In the case of SCHEME, where the static binding convention is observed, the interpreter has

i exactly the effect of a A-calculus normalizer when applied to a closed term having a "concrete
value”, whereas in most standard dialects of LISP (cg 1.ISP 1.6. Macl ISP, Interl ISP),

| : | dynamic binding holds sway, leading to a somewhat different behavior than normalization,
To i In any case, there exists a well developed technology for efficient normalization of some kinds i

; 1 of A-terms, and this technology is casily adapted to the task of normalization in the p-calculus.
3 A central clement of this technology is the use of environments for implementing 1

| Lo | substitutions. The idca here is this, An cnvironment is an association| 13 {00 00G0) LL (ut) of terms with variable names. If onc wishes to evaluate (or |
: | ' normalize) a term which is given as the result of tx «t,] of a substitution, then, instead of

| y doing the substituion first and the normalization afterwards, one normalizes the term t, in the
4 environment {xt} The normalization of a term t in an environment ¢ is like normalization

) e of the usual kind, except that variables which have been assigned values in the environment i
SE LE arc regarded as temporary names for those values, Most reduction rules applied tn the course :

»
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of normalizing t do not make usc of the internal structure of the subterm which a temporary

F name designates; on occasions when this internal structure is relevant, the value assigned to Co
the name is looked up. We won't go into further detail about how environments are used; i

: the rcader who is unfamiliar with these techniques should see [McCarthy et al, 1962). _

Our normalizer uses environments in the implementation of V-reduction, D-reduction,

| V-reduction, nd 3-reduction. ‘The normalizer resembles traditional interpreters in the
i | additional respect that a "call-by-valuc” reduction order is used. ‘That is to say, except for |
lL terms whose main constructor is APPLY, OE or EE, a term t with immediate subterms

{ . ..t 1s normalized by first normalizing cach t. and then applying reductions to the

result. In the case of (1) APPI Y(t, ooo) (2) OF(a.t;.L,.1). and (3) EE(x.a tt), Ly is
5 normalized first. If t; has the form (DAy.t, (2) Ol (1) or Ol,(1), (3) EI(L), then (1) ot, (2) , |

or t;, (3) t, is normalized in the extension of the current environment which associates (1)

PRE with Vib se Vy (2) t with a, (3) x with t and a with t'. If t does not have the
| appropriate form to allow a reduction rule to be applied, then ty . . . t, arc normalized in

sequence.

| The normalizer 1s an iterative program in the style of the SCHEME interpreter {Sussman

& Steele 1975). A collection of (software) switches controls the mode in which the normalizer

operates. For example, the pruning reductions and the permutation operations can be turned

| on and off at will. Proof procedures (section 2.5) arc implemented by calls from the
Co normualizer to ordinery LISP functions. The entire system, including the proof checker, the

] | extractor, the normalizer, and a top level, constitutes about 900 lines of Mact ISP code, and
| | when compliled occupies 70,000 words 36-bit words of memory. ‘The former figure includes :

| only the code which was written by the current author specifically for the proof manipulation

| system. It docs not include the code contained in the two “packages” which were imported
| : into system, namely a general purpose pretty-printer written by Derek Oppen (see [Oppen,

' 1979]) and a simplex algorithm written by Greg Nelson. ‘The figure of 70,000 words, however,

| measures the total amount by which the size of the proof manipulation system exceeds that of
| “bare” Macl ISP.

|
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; 4.2 ‘The proof |

: The bin-packing proof uscd in the experiments is formulated in a first order language 1,
| for numbers and lists of numbers. There are two sorts of variables: variables which range

i J - L] -» Ll - Ld -

; over non-negative integers, and variables which range over lists of non-negative integers. j
4 i

| (Note that the use of sorted variables where the sorts are disjoint has no effect whatever on
! the treatment of proofs as computational descriptions; in normalization and the extraction of :

p-terms, the sort information may be simply ignored.) In what follows, lower case letters are

| used for numeric variables, while capital letters are used for variables which range over lists. :

The function and relation symbols of 1,4 are listed below, together with their intended :

| meanings. Note that some of the symbols are given as infix operators. Any language :
definition supplied to the proof checker includes information as to which binary function and |

relation symbols are to be treated as infix operators by the parser for formulas and terms.

| Our usage below directly reflects this syntactic part of the formal defintion of 1, |

symbol intended meaning |
| + n+m is the sum of n and m, |

—- n-m is the result of subtracting m (rom un, :

| | < n<m holds If n 5 less than m.

| < n<m holds if n is less than or equal to m.

| | nth Inth(A) is the length of the list A

| 4 @ n @ A is the list which results from adding n to the front of A
| :
\ '

| : A:n is the nth element of A (it makes no difference for our purposes }
. [ how A:n is defined for n=0 or n > Inth(A))

i ,!
| t “. © an i . |

| ! tl tA) (read "tail of A") is the result of removing the first clement |
| from the list A; the tail of the empty list is the empty list. |

, sct sct(A.nm) is the list which results from replacing the ath clement of |
£3 A by mi. If n=0 or n > Inti(A) then sct(Anm) is A.
‘ |

. . . . . . " ”" - 1
It is most convenient to think of 1, as having just one list constant, namely "<>" for the

| empty list, and infinitely many numeric constant symbols: one for cach number. The numeric i
}

; p t constants (numerals) arc represented in a direct fashion in the implementation, namely by :

‘ a 67 !
,

i

{ # Sanghi GP sh ~ We BEV Fs a ps FAATE573) Wo RAIS©: x me ie WF

yo



| | LISP numbers. The parser and the programs which print out proofs and p-terms use .
| ordinary decimal notation for numerals.

Co We will abbreviate a term having the fom "t, @ +, @ t; @ ...t @ <>" by
| "Ltt, LLL >" Thus tin <i, LL. t> denotes the ith clement of the list denoted by
| <t.ty, ... t. >. The parser and the output programs also usc this notation (in fact, the same
| kind of abbreviation is used in the internal representation of terms). Also, "null(X)" will

serve as an abbreviation for "X=<>".

We can state the one-dimensional bin-packing problem in the following way. Suppose

| that we have n blocks and m bins. Each block and each bin has a particular size given by a

positive integer. fet X = <i, ... i> be a list of the sizes of the blocks, and let B = <j,
Ce i> be a list of the sizes of the bins. An assignment of the blocks X to the bins B will be |

| | represented by a list ki... Ky? where k_ is the number of the bin to which the mth -
block is assigned. For example, {2,1,1} represents an assignment of three blocks to two bins,

where the first block is assigned to the second bin, and the remaining two blocks are assigned |

to the first bin. :

| Now, an assignment A = <k,, . .. k,> of blocks X to bins B is legal if cach block of X
© is assigned to some bin of B (ic if Inth(A)=1Inth(X), and k . < Inth(B) for each m), and if the

sum of the sizes of the blocks assigned to any one bin is less than or cqual to the size of that . B

| bin. The one-dimensional bin-packing problem is this: given lists of block sizes X and bin
| sizes Y, determine whether there is a legal assignment A of the blocks to the bins, and if there |

| Is, give it.

| | The algorithm for bin-packing which is used in the experiments is as follows, expressed as

an ordinary definition by mutual recursion.
] {

i

pack(X.B) « if null(X) then <> clse packd(X.B.1)

| packX.Bn) « if n<Inth(B) then
| it X:1<B:n then

: tf pack(ti(X).sct(B.n.B:(n - X:1))=FAIL then

: | (n @ pack(t(X).set(B.n,B:(n - X:1)))
| else packi(X,B,n+1)

clse FAIL

| | cise 1-All.

A

: J An informal explanation of the workings of this algorithm is as follows. .
| | 68
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} The function pack takes a hist of blocks NX and bins B and returns either a legal

| assignment of the blocks to the bins, or "FAIL”, meaning that there is no packing. Pack first

] cheeks whether there are any blocks (ic whether X is null). If not, then the null assignment

will do. Otherwise, the function pack is called with the bound n set to 1 In pacAXX 13,0) it

may be assumed that X is non-empty.

| The “bounded” packing function packd attempts to find a packing ot the blocks X inte
the bins B subject to a restriction on where the first block in X may be put; namely, the first

block must be asstened to a bin whose index is nor greater. Pachd first cheeks whether nis

| greater than the leagth off By af thas is the case then no packing which satisfies (he given
restriction is possible. Otherwise, packhb cheeks whether the first block tits in the nh bin (1c
whether N:1<Bin) IF the block fits, then an attempt is made to pack the rest of the blocks

| into the space which remains in the bins: specitically pacA((N)LBY) is called, where
BoseB.n Bin - N:D). BS ditters trom Bin that the size of the nth bin has been reduced

| to reflect the assignment of the first block to that bin, such a packing A of (EN) into Bis
found, then no @ A evidently suthices as a packing of NX omto Bo Finally, if no packing of tl(X)

| mto Bas possible, or of Xo did not fit into Bonin the ist place, then packBN.B.o+ 1) is

: called, Thus, the ond effect executing pacAONCBD as that the fist block Notas placed
suceesnely in the test bin which at fis, the second bin ino winch it fis, and so on, untif a

] placement of XT is tound which can be extended to a complete packing of Xointo B, or until |

| no bins are left.
!

| | : Note that there are two identical calls to pack in the body of pack? This duplication of
ctlort could casily have been chimmuated by the use of a A-abstraction, but this was not done i

1 for the sake of simplicity of presentation. The dupheation does not appear in the bun-packing

proof,

The biepacking proof has two parts: a "mam theorem” PACK, and a lemma PACKB.

: Formally, "PACK™ and "PACKB" aie to be regarded as defined symbols of the language 1, ;
| ) to which recursive” proots have been assigned according to the rules given in section 34, |

| : j hese proofs correspond closely in stracture to the recursive detimitions pack and packd; the
‘ | proofs embody the same analysis of cases, and the same pattern of recursive calls - in short,

the same algonthin = as do pack and pachb. Tistings of PACK and PACK are given below

| | | i the form am which (wey were printed out by the proot checker, Fhe notation used by the

) prool checker is somewhat unusual and will be explained shortly, Bat fest, here is the Listing |
of PACK. |

!
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1 NULLIXX) null(N)V (nuli(X))

| 2 AS(null(X)) null(X) 2
3 AX(VB(legal(€3.<3 B)))  VB(legal(€>,<> B))

| 4 EV(*2) X=<p 2

| 5 SB(*4.*3(B).2) legal(<€>.X.1) 2

6 EI(<3.*5. 3Alegal( AX. BY) IA(legal(ALX.B)) 2

| 7 AS( Tn A(X) Toull(X) 7
| 8 PACKB(X,BIX*T) JAB AA XB INWVAOIAMBIAAXBLDY 7

9 AS(IABLAA XB.) IA(BL AA XB.) 9

| 10 EV(*9) IAA NDADA( (A:T) 9
i 1 AS(legal(AX. BACIulNNA(L L(A: 1D)

| fegall ACNCBYA(TOU INA (I SAL) 11

12 [*11$1] legal( AX B) 11

13 BEAL.3A egal(AN BY) A(legallAX B)) 11

14  EE(*10.*13.A) JA(legal(\.> BY) 9

15 OCIA egal(AX BY) 3AUegadd(AXBIV(IIA legal AX.B))) 9 |
| 1 ASCTIADI AANBLY) TIAMBL AGANXBD) |

| 17 AN(VYN BOInallEOT3ABEAN XB.I= T3A egal Aa. XN BIN.BY*T.*1)

| T3AUezal( Aad. XB) 7.1

| 18 Ol 3AUezal( ANB) AA legal ANBDV AIA egal A NX.BY) 7.1
| 19 OF(*R.*15.%18) FA{egalA XN BNV II egal( AX BY) 7 ;

20 OIE 3A(legal(AXB) FAA AN BIVOIIAegal(ANB) 2 :

| 2 OF(L®0.%19) AURABDV TTA Tegal. XB)
22 AN BUD VN BIA (AN BIVI3IA (legal (ANB)

Fist we comment on two predicate svibols which appear in the above listing, The

: formula legal ANB) holds if A is a legal assignment of the blocks X to the bins B. With a

| | bit of work, “legal” can be defined from the primitive operators and predicates of 1, which
wore given above, but there is no reason to do so here, For the current purposes, “legal” is

treated as primitive. The tormula BEACALNX. B.D) holds if Ais a "legal bounded assignment”

of the kind that packd might generate - that is to say a legal assignment of 3 non-empty list X

Co of blocks to bins B which assigns the first block to a bin whose index is at least no BLA is :

used as a defined predicate: us delinition is

BEAGAN BR) = legal ALNBACTllNA<A:1D)
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| :
| | The above listing should be regarded as a "linear" notation for a natural deduction proof

tree of the kind discussed in chapter 2. Bach line of the listing designates a node of the

| tree. A line has four pieces of information associated with it. Reading from right to left,
| these are (1) the line number, (2) a term, (3) a formula, and (4) a list of dependencies. The

| line numbers serve simply as unique labels which are used to identify the line in question. |

| The erm indicates the the sequence of inferences by which the current line was arrtved at :
| from previous lines ot the proof. The tormula is sin. ply the formula associated with the node

in the proof tree which the line designates; it is the conclusion of the inferences which have |

been completed thus tar. Finally, the List of dependencies is a list of the line numbers of the 1

assumptions upon which the conclusion of the current line depends. In the interactive

construction of a proot, the user types a term of the Kind suitable for the term part (2) of a

: proot line; the proof checker then assigns a new line number and computes the formula and |
dependencies of the new line.

} This method of Laving out a proof tree in hincar fashion as of course quite standard. The

| only unusual aspect of’ the notation ix the manoner in which the apphcation otf mierence rules |

| is described. This mtormation, as we have said, appears in the form of the term which is the

second part of every proot step or ling; this term resembles a p-term in several ways, and will

i be called a "g-term™. A eter as baile up trom avioms and assumptions and trom references

to previous lines by the application of operators which represent inference rules, An axtom ts

is piven by a geterit of the torm "AN(@)” where ¢ is the formula being asserted as an axiom |

| (see line ND, while an assumption has the forme AS(g) (see line 2). References to previous :
| proof steps take the ton of an asterisk followed by the line number of the step. The :

operators which represent inference rules are: PAIR tor A-introduction, UNPAIR tor A-
chimination, OL tor V-introduction, OF tor V-climination, 1 tor D-introduction, APPLY for |

Co J-climination and Y-chinmnation, \ abstraction tor V-introducaon, FL tor I-mtroduction, and

4 nally SB tor substitution (of "right tor Ie”). The syatan of g-terms as largely borrowed
: trom the syntax which we have been using for peterms: tor example "PAIR(GG)7 1s written
| CGM Qrterms diter from perms an the significant aspect that no proof variables are ]

| | used: a geterm is ne more than a tragment of an ordinary natural deduction proof written in
a applicative syntax.

il

| \ As a sunple example of a term, consider the term part of line 19 of the proot PACK,
| ' which reads "ORC 20* IN Thies designates the result of apphing V-chinunation to the |

of premises represented by hes 120 and 19 epectinely more complicated example is the

| term part of bine 80 A stall we use the syntany "(G7 tor APPLY LG) APPEY in turn is

| | "a used to desiznate both the Vo climmation and D-clinnnaton inference rules. Thus a g-term of |
’ { the fon Wt. 0) desienates cither an V chimmation or an J-chmination rule, under the

‘ condition that © not assed an antarence tate name. Now, the term part of line 8 is

J ]

4 | 7
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| |
| "PACKB(X,B,1)*7)*. PACKS is the lemma which corresponds to the bounded packing |

| [ function "packb”. The endformula of PACKB is | |

| | VX B o(Tnull(X)2D IABLAAX.B.))VIIABLAAX.B.1H) a.

| : The tormula PACKB(X,B,1) designates the result of an V-climinution with PACKB as

the premise, followed by an J-climination with line 7 as the minor premise. Thus two

| inference rule applications are described by line 8 of the proof. In general, one can record as x
many inferences as one desires in a single line of proof by the use of a suitably complicated q-

term; the decision as to how much information is to be included in cach line is a matter of |

{ convenience,

What we have said so far should make at least a rough understanding of the proof PACK |

possible. An informal outline of the proot is as follows. First of all. the proof takes the form

of a case analysis according to whether X ois null (see steps 1 and 20). Steps 2 through 6, and

step 20, take care of the case where X is null. If X is not null, the lemma PACKB 15 used |
(step 8). Steps 9 through 19 arc devoted to showing that

| IAC (AN BD V(TIAegal(A,X.B)) |
can be derived trom i

| FABLANNB.D)VOIABI AAN.B.DY)

Thisis done by a case analysis (step 19) according to whether IABTAANBD) is true.

‘The outer case analysis of PACK - namely the case analysis according to whether Nis null - is

| reflected directly by the conditional expression "if null{\) then €> ¢lse pachkHN.B.1)" in the

: ordinary recursive detintion pack. However, the inner case analysis which has just been

mentioned is necessary only in order to demonstrate that the value returned by pack X,B.1)

| 15 also a valid output for pack; no counterpart of this case analysis is present in the ordinary
| : recursive defintion.

| | |
: Further information concerning the notation used by the proof checker, and concerning

the proofs PACK and PACKB, is given below. None of this information is of any general

| | sienificance: our current purpose is to provide the detail necessary for a full step-by-step
understanding of the proots PACK and PACKB.

X ® One lemma other than PACK appears in PACK, namely NUH TD dine 1). ‘The

- ! endformuta” of NULTD is VX(ulitN)V TnullX)). A proof procedure for NULTD is
|! X supplicd as part of the normatizer; NUTT DO returns OF (#) if Cis Td and OL #) if t

: | has the form "<t, ...( ®" where n 21,0 Also, the emma TED appears in PACKB. The
y

4 E 7
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|
| endformula of LTED is "Vn m(n<mVm<n)"; the proof procedure LTEIXt,t,) returns| Of (#) if t,t, arc numerals with {;<t,, and OI (#) if tt, arc numerals with t,<t,.

| ® The operator "EV has thc effect of removing abbreviations in the endformula of a

| proof - that is, of replacing defined predicates by their definitions. Two defined predicate

| symbols appcar in PACK, namely "null" and "BI.A". These symbols arc removed by EV in
lines 4 and 10, respectively. EV should not be thought of as an inference rule, but rather as

part of a facility in the proof checker which allows formulas to be given in an abbreviated

notation; from this point of view, EV has the effect of changing the external form in which a

formula is presented to the user without changing the formula itself. Evidently, uses of EV

could be dispensed with in any proof simply by replacing all abbreviations by their definitions

throughout the proof. The procedure which extracts p-terms from proofs ignores uses of EV;

that is to say, the term which is extracted from "EV(IT)" is the just the term extracted from

"IT". Similarly, the operator "EVQ", which appears in PACKB but not in PACK, is used in

conjunction with SB to introduce abbreviations. EVQ is applied to a formula rather than a

proof. EVQ(g) produces a proof step whose "formula™ part is "p=y", where ¢ is the

| formula which results from removing the abbreviations from. However, “"p=y" should

not be regarded as a formula but rather as another artifact of the abbreviation facility. ‘The

| operator SB may be used with "e=y¢" as its first premise in order to substitute the
| abbreviated form @ for the expanded form ¢ in the enformula of its second premise. EVQ

and SB arc used together in this manner in steps 14 and 135, and steps 28 and 29, of PACK.

| Again, these steps could be removed by replacing all abbreviations by their definitions

| throughout the proof.

. ? There are two variants of the V-introduction inference - one puts the "new" disjunct

a on the right, and the other puts it on the left. The corresponding forms of an application of

A the "OI" operator are: (1) OKTLE), and (b) OI(111), where IT is a proof, and F is a formula
: (bis the "new™ disjunct). More explicitly, let us suppose that the endformula of IT is A.

| k Then the endformulas of the proofs which result from the two forms (a) and (b) of Ol will be

| N AVE, and FV A, respectively. |

| 3 ® An application of the "LI" operator for 3-introduction has the form "EI(t,I1,3xeg),

| 3 where tis a term of 1, Tis a proof, and Ix is (of course) a formula. It is assumed that the
¢ endformula of IT has the torm glx «t]: otherwise the proof checker will reject this application |
v of El. xg is the endformula of the result of the application. |
} f

Cn i ® In PACK and PACKB we make use of the connectives "A" and "2D" as operators of i
g h arbitrary arity. “That is to say, just as we have allowed "VY" to quantify over not just onc, but

4 arbitranly many variables, we allow formulas of the forms AL Ayo A, 2 BJ, and of the

a. 7



|

| form [AAA oA] where cach of these is to be regarded as the result of applying asingle high arity connective "2" or "A" to A, . .. A and in the first case B. The meaning
of [AL Ay. A, D Blis just (AAA... A D B). The inference rules which treat A
and OD are modificd in a suitable way. Namely, A-introduction now takes as many premises 1

: as desired and produces the conjunction of all the premises as its conclusion.

| Correspondingly, once nceds a separate variant of A-climination for selecting cach of the |
| conjuncts of a high arity conjunction. The g-term notation for A-introduction is |

| "CM, ... I>". For A-climination, we have "[IT41]" to select the first conjunct, "[[T42]"
| to sclect the second, “[T143]" to select the third, and so forth. ("[I1k]" corresponds to "ar" |

in the notation which we have been using for p-terms).  D-climination also takes as many

| arguments as arc appropriate to ils major premise; In g-lerm notation we write |

"II, I, . oT)" to designate the application of D-climination to the the major premise
IT, and minor premises TT, T1,. .. 1. Tt is assumed here that the endformula of IT has the
form A. Ay... AD Bf where A A, 00 A are the endformulas of 11, 11, T1, |
respectively. ‘The conclusion of this D-climination inference is 88. For an example of the use

| of D-climination of arity 2, sce step 17 of PACK. The use of arbitrary arity connectives
constitutes an incssential but convenient extension of notation. |

A listing of the proof PACKB is as follows.

1 AS(Tnull(X)) Touli(X) ]

2 I TED(n,Inth(13)) (n<Inth(B))V(Inth(B)<n) .

| R) AS(n<Inth(B)) n<inth(B) 3

4 I TEI(X:1.B:n) (X:1<(B:a)VB:n<(X:1))

5 ASX: 1<(B:n)) X:1<(B:n) 5

| 0 PACK X).set(B.n Bin—(X:1)))

AA (egal(AtX) set(B,n,Bin—- (X:1NHV

(TAAegalfA (X) sc(B.n Bin—(X:1)))

| 7 AS(TA(legallA(X), set(B.n Bin —(X:1)))))

FA(legal(A,t(X).set(B,n,B:n—(X:1))) 7

8 AS(legal( AUX).set(B.n,B:n--(X:1))))

oo] legalA IOX).set( Bn, Bin — (X: 1) :
9 AX(VA X B n([Tnull{X).n<Inth(B),X:1 <(B:n),

legal(A U(X).set(Bon Bin = (X: 1)

DD legal(n@AX. BR)

VA X Bo Tuli X).n<Inth(B),X:1 <(B:n),

. Tegal ALEX)set(Ban Bin —(X:1)))

SE J legal(n@A X.B)})
FE 10 *AANXBCLAI*SE)  legal(n@A.X.B) 1,3.5.8

y 1 AX(Vn A(n<(n@A:D)) Vi A(n<(nerAzl))
| 4 K 74
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|
! | 12 *1(nA) n<(nEA:1)
! | 13 CLOALAD legal(nECA XDA CIulNNA( < (n@A:1)). 8,5.3.1 |

14 EVQ(BIA(ME@A.N.B.n)) ;

| BI A(n@AX,Bn) = |

| | (legal(@ AX BAIN PA (<< (n@A:1)))
1S SBE(*I4*LD) Bl A(n@A XB. 3.5.3.1 j

16 EIn@AD1S IAB AAN Ba) |
p JABL A(AN.B.0)) 8.5.3.1 |

17 FECT FAB AAX.B.W) 5.3.1.7 i

| 18 OIC TIABE AGALN.B)Y)

FABLE ANNBOVOIABE AAX, BY)

19 ASIAN (eral ONLse Ban Bn (NX:DM)Y)
FAA eal AUN) se (Ban Bin (NT) 19

MN PACKIN.Ba +)

Tnull\)2D |

; AABEAAN BDF DWVOTIABE AWN 1) |

| | AEST) TABLA BE IDVEIIABE AN Ba 1D) i

| Pr ASCTAME AGAR EDD
TAME AGAN BE 1) )

| AR AS(BE ACA NB I) REAGAN Bot DD) AR

] ASSEE CAVIAR eaatCLNUIDA CTIA DA TAD) 23
| ANY mnt Tm In<m))
| 3 Vin mnt 1<m2Dn<m)

; MT PLSADDD

| \ lepal GAN IDACTUNN AM (A: 1D) 23

oo M0 EVO AGAR.) BE AGA. Bn) -

A (epall ANIA (TRUlEOIA MSA: 1) y
MSHS) BLACANLB.0) 2 |

WFO TAME ACL IAB AGLN RY) 23 |

| ; A EEC 0) FABLE AAN BY) 2 |

1 3 OIC ILTIAWBE AN Ba) |
i IAREACLN BV AIABE ACN BY) |

Lo 1 3 ASCTIAE AGA Ba 1 TY)
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| TIA(BLA(A X,B,n+1)) 35
| | 36 LEMO(X,B.n)*19,*35) 13A(BLA(A X,B,n)) 19,35

| 37 OL(IA(BLA(A,X.B,n)),*36)

FE JA(BLA(A X,B,n)) V(1IA(BLA(A.X,B,n)))

19,35

| 38 OFE(*21,*32,*37) JA(BLA(A,X,B.n))V(TIA(BI.A(A.X,B.n)))
| 1,19

. 39 OFE(*6,*18,*38) AA(BLA(A,X,B,n)) V(T1IABLA(A,X,B,n)))
| | 53,1

| 40  AS(B:n<(X:1)) B:n<(X:1) 40

41 PACKB(X,B.n+1) :

Tnull(X)D

| IABLAAX,B,n+ 1)V(I1IA(BLA(AX,B,n +1)))

| 42 *1(*1) IABLAAX,B.a+1)VIIABLAAX.B.n+ 1)
i 1

: 43  AS(TIA(BLA(AX.B.n+ 1)
TIABLA(AX,B,n+1)) 43

yb 44 LEMI(X.B.n)*1*40,%43)  13A(BLA(AX.B,n)) 1.40.43

yO 45 OI(AA(BLA(A X.B.n)),*44) |

JA(BLA(AX.B.n)) V(1IABLAA.X.B.n))) - i
| | 1,40,43

46  OF(*42,*32,*45) JABLAA,X, B1)V(IIABLAA,X.B.n))) a
| 1,40 =

; | 47 OF(*4.*39,*46) FABLAAXBn) V(TIABLAA,X,B.n))) |

3,1

48 AS(Inth(B)<n) Inth(B)<n 43

| 49  LEM2(X.B.n)(*48) TIABLA(AX,B,n)) 48

50  OI(IA(BLA(A,X.B.n)),*49)

Co JABLAAX, Bn) V(1IABLAA XB.)
48

| SI OF(*2,*47,*50) IABLAAX,Bn) V(TIABLA(A.X,B.n)))
| 1

| 52 1I(Tnall(X).*51) Tnull(X)DIA(BLAA.XB.) V(1IABLA(A.X,B.n)))
| 53 AX B n(*S2) VX B n(Tnull(X)D

| IABLAAXB)VTIABLAAX.B.0)))
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: 43 Reduction rules for terms of I,

1 The following special purpose reduction rules for terms of L, are provided as part of the
3 | normalizer (reductions on object terms were discussed in scction 2.6). We will not belabor the |
§ distinction between numerals and numbers; for example we will allow ourselves to use the i

| phrase, "the sum of t; and t,", instcad of the more precise phrase "the numeral which denotes
the sum of the numbers which t; and t, denote” in the case where t; and t, are numerals. |

| However, special variables, namely, a,b and c¢, will be used for numerals.

] : "a + b" => "c", where c¢ is the sum of a and b.

"a — b” = "c¢", where ¢ is the result of the indicated subtraction. :

| "Inth(<€tt,, . . . t>)" = t' wherc t is the numeral for n.

SE Ltt, o>) = Lt, LLL LD :

| <ul, oo. t>:a = t, under the condition that 1<a<n.

set(<tt,, . .. t>bl;) = t’, where onc of the following conditions holds: (a) 1<b<n
oo and t is the result of replacing tp In Ltt, Lt > byt, (bY b=0orb>n, and t is

! For cxample, these reduction rules would have the cffect of reducing the term
: | "<€3,4+5>:2" to the term "9". It is not hard to sce that normalization of any term of L [

with respect to these rules will terminate, and that the normalization of any closed term will

| | : yicld cither a numeral, or a term of the form <UL, « - L > where the ¢t; arc numcrals.

: 4.4 Results

. . The results of the experiments will be presented in several stages. The p-terms which
were cxtracted from the proofs PACK and PACKB will be given in section 4.4.1. In scction

IEE 4.4.2, the results of the smallest of the experiments arc given in full detail, and the simplex

3 - ¥ optimizations arc described.  Scction 4.4.3 presents the optimized algorithm for packing six

oo R4 blocks into three bins. : IFinally, scction 4.4.4 tabulates the results of the remaining
ho cxperiments. |

/
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ot 44.1 P-terms

i The following p-term was extracted from PACK:

| ppack=

: | AXB

(OE (a2
NULLIXX)
OI(1,EI(SB(a2,#(B)), <>))
(OE (a4)

: PACKB(X,B.1)}a2)
] OI(LEL (a6 A) a4 El(Ja6{4 1],A))
] O12, #(X, 3)a2,ad))))

The notation used for p-terms in the implementation differs in several minor ways from

3 the notation which we have found it convenient to use in our exposition of the p-calculus in |

chapter 3. (1) In the implementation, we write "OI(1,0)" and "OI(2,0)" instcad of "OL (t)" and
: "O10". (2) As cxplained in the last section, we now allow “pairing” operators of cach

positive arity; arbitrarily many terms t, . . . t, can be "tupled” together into the term
: <t, ...t> Correspondingly, there is a projection operator 7, for cach positive integer k.

- Instead of writing "ar ()" we write "[t4k]". Note that k must be a numeral; [t31), [142], . . .

; arc to be regarded as notations for separate clementary operators of the p-calculus.  ("4" is )

3 | not a function symbol!) We remark once more that the use of arbitrary arity tupling instead
of iterated pairing is no more than a notational convenience. (3) The order in which .

arguments to the operator "EI" appear is reversed; a p-term "LI(t,,)" as expressed in the |
} notation of chapter 3 is written as "EI(t,,t;)" in the notation of the implementation. ‘Thus, in

a construction "EI(t),t;):Ix@™ in the new notation, t, is the construction for @(t,). and not the
| other way around. (4) The numbers which play the role of subscripts to variables appear

simply to the right of the variable name rather than to the right and below the variable name.

: Thus, we write "il", "i2", "al", "a2" and so forth, instcad of 1) UL Tay”, "ay". (The
a. rcason for this change is that the text of the various p-terms given below was derived directly

from the output of the proof checking system; such output, for practical reasons, docs not

Yo make usc of subscripts. ‘The output was produced in indented form by use of Derek
Oppen'sf1979] pretty-printer.)

|
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3 The p-term extracted from PACKB is: |

3 | ppackb = |

oo AXBn
- | (A a2
{ (OE (a4)

3 | L.TED(n,Inth(B)) | |
pb (OE (ab) |
bo. LTED(X:1,8:n) |

PACK(tI(X),set(B,n,B:n—(X:1))) i
| Ol(1,

EE (al0 A)
al

| EI(SB(#,
CHAX Bn)a2,a4,a6,a10),a2, |

j #(nAD),n @ A))
| (OE (al2)

PACKB(X,B,n + I)(a2)

Ol(1,
| EE (al4 A)

al?
BEISB(#,

{ [aldi1][al4$2], |
| ZnA 1D){[a1443])0),A))
SE O12. #(X.B.n)(a8,al2)))) |

(OF (a 16) |
| PACKB(X,B,n + 1)(a2)

j oll, |

| EE (al8 A)
; : al6 .

i EI(SB(#, | 5
Jal83 1] [a 1842], # (n, A) [184 3])),

: A))
CL O12, 2 (X.B.nXa2,a6,al0)))) 2
i Ol(2. #(X.B.n)}a4))))

| i | The system of lemmas ppack and ppackb has the termination property with respect to our
| Co call-by-valuc normalizer; this can be established by exactly the same kind of argument as

| ! would be uscd to establish the termination of the ordinary recursive functions pack and packb. i
h

Cy Let t; and t, be closed terms for lists. By theorem 3.1 of chapter 3, the result of
\, normalizing "ppack(t,.1,)" has onc of the two forms, "OILED", and "Ol(2,t)". A
; result of the form "ONL ENN" may be read as the term part of a construction

"i '. OI(LEI(t3:legal(t,.t,.t,).04): 3A(egal(t,.t,,A))): JA (legal(t;.t,, A) V AI A(legal(t, .t,,A))) |
i. K

y .

i
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This result indicates that a legal assignment of blocks t; into bins t, docs indeed exist, and
: that t, is such an assignment. If on the other hand the result has the form "Ol(2,)", then
; no legal packing is possible.

| 44.2 Two small experiments

1 : As indicated in the introduction to this chapter, the experiments consist of specializing
: ppack to handle inputs of a particular size and structure by mcans of the following steps. (1)

| The term "ppack(t,.t,)" is normalized. Here t and t, are open terns having the form of the
special inputs to be treated: namely, <i, ... 4, >, and €n.n.. n>, where "iy", LL "1", and
"n" are numeric variables. (2) The normal form of “ppack(t,.t,)” is subjected to the
“simplex” optimization, which makes use of an additional assumption about the structure of

| the inputs; in particular, it is assumed that i, > 1, > iy... >i. (3) Pruning is applied. The
| result of all this is a decision tree algorithm (given by a p-term) for the special task of packing

| k blocks into some particular number of bins of equal size, under the assumption that the

| blocks have been given in decreasing order of size.

CL To begin with, we will describe the results of this process for the simplest case which is |

i | not absolutely trivial, namely the case where t= <ili2>, and ,=<n.n®. First of all, the BN; result of normalizing ppack(<€il,i2>» <on>) is: |

| |
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| OF (a7)
| : [.TED(il,n)

(OE (a9)

| LTEIXi2.n—il)
i OW LEI(# (a7.a9),€1,1>))

| ; (OE (all)
: 1.TELXi2,n)

OI(L.EI(#(a7,al11),€1,2>))
(OE (all)

1.TED(1,n)
: (OF (al))

LTED(i2.n)
Ol(1.EI( #(al3,al5),€2,15))
(OF (al?)

LTED(12,n—i1)
: OLE #(al3.al7),€2,2>))

| Ot. (all, ax9,«l5.al?))))
Ol. #(al l.a9.al3))))

(OE (a19)
i 1'VEDG)n)

(OF (21)
! 1 TED@{2.0)

OLE #(a19,a21),<€2,1>))

(OF (ald)
LTED(i2.n—il)

| ONL EFI #(«19,a23),42.2>))
| Qi(2,# (a7.a21,a23))) |

| O12.# (a7.a19)))

| 3 This p-term, if written as an ordinary conditional expression, would read: 1

! | it il<n then |
. - if i142 <n then £11»

| ; clse i

| , if i2<nthen <€1,2»
{, else
"J if 11<n then

if R<nthen <€2,1%

iil +12 <n then €2.2> clse €»

J clse €>»
Y clse

SE if i1<n then
. if 12<n then X21»

3 if 1Il+12 <n then €2.2> clse £3»

| 4 i 81
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§ The above conditional cxpression would also result from normalizing the ordinary |

recursive function definition pack on the symbolic inputs <il,i2» and <n,n> using the |

reduction rules mentioned in scction 2.8, and in addition the permutation rule:

)

if (if t; then ty else ty) then t, else (115

=> if 1, then (if t, then ty clse tr!5) clse (if t; then ty clse tt!5)

Now, the "simplex optimization” consists of removing “"pre-decided” case analyses.

Another transformation is applied at this stage, namely the replacement of occurences of

assumptions when possible by “proofs” of those assumptions from other available information,

This last transformation improves the effectiveness of pruning, since it removes apparent but

in fact unnecessary dependencies between the facts involved in the computation, Since all of

| the decision predicates which appear in bin-packing take the form of incqualitics © tween

lincar terms, the simplex algorithm may be used to perform these transformations.

The "simplex transformations” are instances of the following general replacement

: transformation on proofs. First of all, we define the set of active assumptions at a node of a
proof tree to be the set of assumptions discharged along the path from the node in question to .

| | the root node of the proof. More formally, a formula A is active at a node N if N lics in
{ fusing q-term notation}: (1) 11, of OL( AVE TLL UT), (2) 11, of OF(IT FV ATLL) (3) TI ,

| | of (AIT), (4) IT, of EEC IXA[L,). A replacement transformation is a transformation
| | which replaces a subproof TA rooted at node N of a proof [1 by another proof 117:A of the

. same formula A, subject to the condition that the open assumptions of II” are among those
| active at N.

od
: The simplex transformations arc replacement transformations of a special kind. Consider

| : a subterm of the form "LTED(t.t,)" which appears in a bin-packing p-term. Suppose that

; one of tL <t, or t,<L, follows from the active assumptions at the node at which LTED(.L,)
i appears (all of the active assumptions will themselves be linear inequalities). ‘That is to say,

| suppose that the outcome of executing T'TED(L,) is pre-decided by the linear inequalities
+ which have alrcady been assumed at the current node in the decision tree. Then the

invocation of the lemma LTED can be removed in favor of a small proof of "t; St,VL," by |

means of an V-introduction from one or the other of the results "ty <t,", or "t,<¢",
Specifically, that proof will have the form i

RE



/ | OlkAX([F.Fy FO Fo MASE )AS(E,) ... AS(F)))
where k is either 1 or 2, where Fj is cither t;<t, or (Kt, and where 1. F,, . .. Fare the

! various inequalities which are active assumptions at this point in the decision tree, and which |

| are needed to conclude that Fy holds. This is exactly the replacement which is performed by ]

| the first simplex transformation - except that the replacement is carried out in the language of
untyped p-terms; thus the replacing term has the torm Ol(k,# (ay. . . .«)). where the a are

| proof variables.

: Now, let us consider the second transtormation - the dependency removal transformation.

Suppose that an assumption: AS(E,) in a specialized bin-packing proof follows from other
| assumptions which are active at the node where the assumption appears. ‘Then the various :

results which are derived using the assumption have the appearance of depending on that

assumpton, but the dependency 1s in a sense unreal - it could be dispensed with, If we wish

to make the best use of pruning, then apparent dependencies of this kind should be

climindted. So we use the simplex method to replace assumptions ASE) by proofs of those
| assumptions from other assumptions which are currently in etfect. The form of the proofs

with which assumptions are replaced 1s

: | ANFLE, FD EASE ASE) ASE)

| where F000 Fare the formulas needed to establish Fy. Ta p-term notation, this has the |
; form # (ap... a). Note that the formulas which are associated with proot variables in the

| bin-packing p-terms can be determined by finding the OF operator which binds the variable,

| 4 and looking at ats fast argument “FUFED(G LG) 1 the variable in question appears in the
second premise to this OF operator then the associated formula is "i <4" and otherwise it is

| "1<L, |

| : | One more picce of information remains to be specified about the simplex transformations.
| p It may happen that several distinct proofs can be used to replace a single assumption or 3

{ "T FED” invocation: the inequality in question might follow from several ditterent subsets ofA the the currently active set of assumed inequalities. We have not said how a choice among
v several such possibilities as to be made. In fact only one possibility, namely the one generated ]

| . by the following algorithm, is considered. Tet Fb, 000 F be a list of all the assumptions
SE active at a given nade in the order of “innermost” to “outermost”; that is, Fis the i

| : '. assumption discharged nearest the current node, while Fis the assumption discharged nearest
EE } the root of the proof. In attempting to find a minimal subset of LT | trom which a

: $ y
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3 | formula Fo can be derived, our algorithm proceeds in the following way. First it checks |
] | (using the simplex method) whether Fy follows from {F,}. If not then it checks {th

{FFE and so on, until it finds a leastj such that F, follows from {F... Fh or until it |
is determined that Fy does not follow from the entire set {t.... FE }. In the latter case, we -
arc done, and return a negative answer. In the former case, we scan through the set again, in

| the order |, . . Fin which itis given. For cach clement b; considered, an attempt is made
| ! to remove BF from the set; the attempt is deemed successtul if the reduced set still implies ko

| After removing or attempting to remove cach | in turn, we evidently have a mininimal set of
inequalities with the desired property. It is this set which is returned by the algorithm. "This |

algorithm was the first that came to mind. and, because it produced good results, we did not

try another.

In cach of the simplex transformations, the inequalities 1p > yo By 2 dy od (20, are |
| assumed as “background” information. That is to say, whenever we used the phrase "F,

tollows rom {IF . . . F }" in the above, we meant "ly follows from {t-, . .. I} and |
{yy 2 00 dy 2 ip Li 20 |

Note that the only property of the bin-packing proofs of which simplex transformations

| | make special use is the fact that the decision predicates have the form of lincar inequalities.
| , Transformations of the same kind - namely, replacemends of case analyses and replacement of .

assumptions - can be applied 0 any proof aader the condition that a decision procedure is |

| : available for the case predicates which appear in the proof. Thus, the special purpose part of i

| the simplex transformations is just the simplex algorithm itself.

: | As mentioned earlier, the simplex algorithm used in the implementation was not written

i by the current author. Rather, a “canned” simplex package, written (in Macl ASP) by Greg i
Nelson, was imported into the proof manipulation system.

| , ol The result of applving the simplex transformations to the normal form of
: , Tpack(€iL2> nan>)” given cardier, and then normalizing again is:

L]

|

Co

| | | 4 1
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; Pp, =

| | OF (a25) |
L.TED(il,n) J

j (OF (a27)
| [.TEIXi2.n—i1)
| OI(1.EI(#(a27).€1,1>))

OI( LEN #(a25).€1,2>)) |
: Ol? #(a25)) |

j i

| Written as an ordinary conditional expression, this is:

¢, = if i1<n then (if i14+i2<n then <1, 1» clse <1.2>») cise FAIL

Note that the first of the two simplex optimizations - namely, the one which removes pre-

decided case analyses - could as casily have been applied the conditional term ¢,, and the
result would have been cy. Thus, so far, no use has been made of the additional dependency

| mformation which the p-term contains, but which the conditional term does not. However,

| pruning is applicable 0 p,, yielding:

Py = OE (a9) LTEDGLR)OLEH# (a29).<€1.23))O12,# (a29))

] | Written as a conditional expression, this is:

| ¢, = if il<n then <12>» else FAIL

. \ Thus py tries only one packing, namely <1.2>». If any packing works, then this one
| must. This tact is "automatically realized” by the dependency analysis involved in pruning,

) p
A,

»

pt Note that p, computes a different function from that computed by p,. Also note that p,
x 18 the optimal (ie smallest and fastest) conditional expression for computing the function Ail i2

{ Nn, pack(<KLR2> <noan™) with 11202. Thus, tas only by using a transformation (such as
| \ pruning) which modifies the extensional meaning of computational descriptions that we are
| ’ able to achieve the improvement which py represents over Py.

| .

[| § As mentioned in the introduction to this chapter, it is not feasible to perform stages (1)
| and (2) of the specialization separately tor the Larger examples. The reason for this is that the

SI
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t p-terms which result trom stage (1) alone are too large to fit in memory in the current
implementation. Thus the simplex transformations and normalization were run in parallel; the

normalizer was modified so as to apply the case analysis removal procedure when called upon

| to “normalize” an expression of the form "LTED(t.t,)". Assumption replacement was
implemented in a similar manner.

|

| We now present the results of another small experiment, namely, the experiment in which

pack(<€i1.1213>,<n.n>) 1s specialized. First of all, the worst case running time of the original

| version of pack (or equivalently of ppack with our call-by-value normalizer) with i123 is

10. where running time is measured in number of comparisons. More precisely, there are

numerals ab.e.d with a2b>c¢ such that the number of comparisons made in the course of the

execution of pack(<Kabe> <dd>) by a standard call-by-value evaluator for conditional

expressions is 10, and tucthermore this is the largest number of comparisons which will be

made in any execution of pack applied to an input with this form. The worst case running

| umes for pack reported here and below were computed using a program which searches

through all possible execution paths (ic sequences of comparisons) of pack when applied to an

: input ot the special form under consideration: the length of the longest such path is returned.

The simplex algorithm is used to determine which execution paths are possible, and which are
not.

4 -

| The result of normaliving and applying the simplex transformations to

] pack( iLiad» «nn>) is

i

] i

J Oo

;

|

| - j

hd
%
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} OE (all) |
| . LTED(il,n)

(OE (13)
: LTEIXi2,n—il)

LTED(i3,n—il—i2)
OI(LEI(#(al5),<1,1,1>)) |

; Ol(1L,El(#{(al3),€1,1,25>))) |
; ¢ (OE (al7) |
i LTED(i3,n—il)
§ | OI(LEI(#(all,al7),<1,2,1>»)) |
E (OF (al9) i
1 : LTED(i3,n~-i2) : |
# OI(1,.El(#(all,a19),€1,2,2>))
pe OI(2, #(al9)))) |
- Ol(2, #(all))

Pruning when applied to the above p-term yields |

OE (a21) I
[.TED(il,n)

| (OE (a29)
j I.TEIXi3,n—i2)
i . OI(1,EI(# (a2]1,a29),€1,2,2>))

Ol(2, #(a29)))

O12, #(a2l)) |

| ] Written as an ordinary conditional expression, this is:

¥ } ] '-

| 4 if il < n then i

| y if i2+i3 < n then €1,2,2> else FAIL
\ i else FAIL

{ g Note that pruning again yiclds an optimal algorithm for thc special casc considered - an
i ; y algorithm which computes a different funticon from that originally computed by pack.

34
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| 443 An algorithm for packing six blocks into three bins

| The results of the experiment concerning the packing of six blocks into three bins were

| described in general terms in the introduction to this chapter. The end product of that ’
experiment - that is to say, the algorithm produced at the last stage of the three stages of

optimization - is given below as an ordinary conditional expression.

-. if il < n then
co if 2+i3 < n then

| | if il+i6 < n then <€122331> |
HE else
oo if i4+iS+i6 < n then <122,33.3>

od else FAIL
else

oo if 2+i4 < n then
if il+i6 < n then <€1,2,323,1>

else |

FE if 3+i5+i6 < n then <123233%

clse FAIL .

else

: if i3+i4 < n then

EI if i24i5 < 'n then

LC | if il+i6 < n then <€1233.21>

| if 2+4i5+i6 < n then <12332.2»

| elseod if 3+i4+i6 < n then <1,2,3,3,2,3>

i | elsc FAIL.: else

| | if i34+i4+i5 < n then
SE. if i6+i2 < n then <123332>

| clse
if 3+i4+iS+i6 < n then €123333>

clse FAIL

cise FAIL

else FAIL
| | else FAIL

| 88



44.4 Table of other results

Ed ] The following table summarizes the results of the remaining experiments. Six numbers i

arc associated with each experiment. These quantities are: |

i (1) P. This is the worst case running timc of pick applied to inputs of the form under

consideration. | : |

J (2) EP. The performance of the general purpose algorithm pack in treating special cases

| where the bins are all of the same size is very bad. One reason for this is that no use is made |

| of symmetries introduced by thc cqual sizes of the bins; cach of various packings which are |

x cquivalent under renaming of bins is considered separately. It was of interest to compare the |
] ‘ performace of our optimized special purpose algorithms with the performance of an algorithm !

| with the samc design as pack, but which takes the symmetries introduced by equal bin sizes |
into account. That algorithm is as follows:

| epack(X.s,k) « epackl(X,<» 15k) |
|

|
epack1(X.B.nsk) « |

| if n<Inth(B) then

| a if X:1<B:n then |

v7 {Az
, 4 (if 27#FAIL then n @ z |

| | clse epackl(X.B.n+ 1s5k))}

: (cpack 1(ti(X).sct(B,n,B:(n — X:1)),1,5,k)
. cise cpack I(X,B,n+ 1,5,k)

| | else
I if k>1 A (X:1<s) then |
, | {A 2. if z#FAIlL then (Inth(B)+1) @ z

; | cise FAIL} (cpack1(tl(X),B=<X:1», 1.5k-1))
cise FAIL

| ‘The algorithm cpack(X.s,k) scarches for a packing of the blocks in the list X into k bins

bs 89
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| each of size s. The subprogram epackl(X,B,n,s,k) scarches for a packing of the blocks X into ;

| a collection of bins described by the inputs B,s, and k. ‘lhe initial elements of this collection C

are just the bins whose sizes are given in B, while the remainder of the collection consists of k ]
bins each of size 5. As in packb, the first block X:1 must be placed in a bin whose index is at .

| least n. The behavior of epackl resembles that of packb, except that it keeps track of which

bins are still empty. A block is placed in an empty bin only if the attempt to place it in a

| non-empty bin leads to failure. In contrast to packb, epackl attempts at most one placemen.

of any block into an cmpty bin. The term "B+<X:1®" in epackl denotes the result of |
: appending the list "<X:1>" onto the end of the list B.

: The number EP represents the worst case running time of epack. |
Note that, even if it had turncd out that the "hand-optimized” algorithm was more |

efficient than the specialized algorithms which we produce by automatic methods, it would |

| not follow that the automatic methods are not of use. An automatic specialization method

such as the one currently under discussion starts with a general algorithm and with a :

description of the special form of the inputs to be considered; the output of the method is |

| then a specialized algorithm which decals with inputs of that special form. The most direct
measure of the cffectiveness of the specialization method is given by a comparison of the

output of the method with the original algorithm, and not with some third algorithm (such as .
| epack) produced by a person to handle inputs of the special form. A separate matier of

interest is to compare human and automatic performance in this regard as we arc doing at the

; moment. As it happens, and as will be seen, our automatically specialized algorithms are in ] :
| fact faster than the algorithm cpack given above.

| y (3) 1D is the depth of the decision tree produced by applying normalization and the

simplex transformations to pack(<€il, . . . in> <n,n, . . .n>»). Equivalently, D is the number

| of comparisons made along the longest path down the decision tree; that is to say, the ]

. "running time" of the decision tree. 1

SE. (4) Dp is the depth of the decision tree produced by applying pruning to the tree of (3)
immediately above.

| (5) S is the size of the decision tree of (3) measured as the number of decision points; }
: cquivalently, S§ is the number of occurences of "L'TED" in the p-term.

2) : -

y (6) Sp is the size of the pruncd decision tree of (4).
. .



In the table, the above quantitics are arrayed in the form:

D S

| Dp Sp

i ; The effectiveness of pruning is indicated by the differcnces between D and Dp, and between |

i ; S and Sp. The table of results is as follows. Occurences of "*" in the table indicate that the i
| : relevant decision trees could not be constructed because of lack of memory space.

i 10 | |

SE 314 5 i

: 14 43 |

4 1 6 10 7 13

Voy C 38 66 260

| 4 K 17 10 11
S 5 7 27 10 33 11 37 |

6 12 4 4 2 2

1 3 58 174 356 1630

Po 27 27 15 16 |

JE 6 | 17 a2 14 87 + +t
El 12 40 8 1S 4 4 2 2 |

SEE 2 3 4 5

oN I BINS
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4.5 Summary .

The results of the experiment show that prunable redundancies can indeed arise in the .

i specialization of a simple combinatorial algorithm, and consequently that pruning can be of

use in specialization. It is of course possible that equally good specialized algorithms for the

| particular problem treated - namcly, bin-packing - could have been arrived at by a head on

| attack. For example, one such attack would involve manipulating the propositional formulas

; which result from unwinding the definition of a legal packing as applicd to inputs of restricted

J sizc. However, as has been remarked earlier, the methods by which the specialization was |
| donc arc for the most part completely general in their applicability; the only special property
{ of the bin-packing problem which was used was the dccidability of linear incqualitics. The |

\ machinery of normalization, and pruning, and proof replacement may be applied to any proof |

: whatever. The experiments should be seen as a first test of the utility of this general |
iE machinery. Our purpose was not to develop fast special purpose bin-packing algorithms, but |
i to investigate pruning in a sciting where its cffects could be easily isolated. |

|

|

i

|

HE
|

|
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Chapter§

| Other Applications |

Until now, we have restricted attention to the use of proof manipulation in specializing

algorithms. The purpose of this chapter is to briefly indicate other computational applications

| of the proof manipulation technology which has becn described in the course of this thesis,

: and at the same time to outline some connections between our work and other traditions of

work within computer science. Applications to two kinds of computational problems other

than specialization will be considered, namcly, applications to the automatic construction of

: proofs (from proof fragments; scction 5.1), and to the analysis of change (scction 5.2). |L, '

¢ ;

i 5.1 Automatic construction of proofs |
|

| As emphasized in the introduction to this thesis, most work in computer science to do |
with formal proof systems has concerned the automatic construction of proofs, and not their |

| manipulation. Generally speaking, the aim of such work has been to provide automatic means |
| - for determining the truth values of propositions; a proof of a proposition is constructed in !

| order to determine that it is valid. Automatic proof construction (or "automatic deduction”) i
. in its most pure and ambitious form involves starting with an arbitrary formula of an

| expressive language (cg the predicate calculus) as the only input data; the output is cither an

- indication that a proof has been found. or an indication of failure. Other forms of automatic |
) deduction make use of additional input data beyond the formula to be proved; for example

| | A scts of of “rules” for backward chaining [Shortliffc 1974), or sets of programs which indicate i
| ; in explicit algorithmic terms how certain problems arc to be reduced to subproblems [Hewitt |i 1971]. It is traditional within artificial intelligence to refer to this additional input data as

A "knowledge".

| Normalization constitutes, in a certain sense, a method for automatically constructing

proofs; a normal proof of a proposition is automatically constructed from an arbitrary proof

of that same proposition. In this case, the "additional input data” in the sense of the last |
i R paragraph consists of the original proof. Irom the point of view of automatic deduction,

| H normalization is of no use, since the additional input data with which it starts is alrcady
4 satisfactory cvidence for the truth of the proposition in question. However, by liberalizing ;

KE 4 ° the requirements which apply to proof procedures and lemmas (section 2.5) it is possible to
use the machinery of normalization as developed in chapters 2 and 3 for constructing a :

93
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normal and complete proof of a proposition starting from an incomplete proof of the same J

proposition. Under these conditions, the normalization of the incomplete proof includes a

| | search for evidence for propositions, and thus constitutes a form of automatic deduction in the
traditional sense. |

Specifically, let us drop the following requirements concerning lemmas: (1) the

| | requirement that lemmas must be true formulas, (2) the requirement that lemmas may not

| ; appear in the proofs constructed by proof procedures, and (3) the requirement that a proof |
J procedure may not return "FAIL" when applicd to closed arguments. Also, we will now

allow proof procedures to produce proofs which make use of assumptions which are active at :
i the point where a lemma appears. (The notion of an active assumption is defined in section
| 44.2.) We rctain the requirement that all axioms be true. As a result of the removal of 3
: | requirements 1 - 3, it is now possible to construct incomplete “proofs” of incorrect formulas -
Cd proofs which procced from false lemmas to false conclusions. However, the main point here

is that the process of normalization - exactly as described in chapters 2 and 3 - may have the 1

5 effect of removing appearances of lemmas - thus converting an incomplete proof of a formula [
whose truth is in doubt into a complete and reliable proof of that same formula.

|

If normalization is implemented in a call-by-value manner as described in section 4.1,

| then the normalization of an incomplete proof corresponds in a direct way to proof scarch by
| backward-chaining through implications - in other words to "s bgoaling”. Specifically, in the

coursc of normalizing a proof Tl:g containing lemmas [.:VxW¥ (x), [.:Vx¥,(x) . . .
Es Vx (x), the proof procedures for some or all of the lemmas arc invoked. (The invocation ;
of a proof procedure corresponds roughly to an attempt to "match™ a subgoal.) When the |

| | fo proof procedure for, say, L; is called with input t, the procedure will cither fail

]i (corresponding the failure of a subgoal in backward chaining), or return a proof TL. of g(t).
| | In the latter case, [1 is then normalized. Since IT, may itsclf contain lemmas, the :| normalization of IL will in general involve further backchaining. If the end result of

A normalization is a proof in which no lemmas any longer appear, then the endformula ¢ has

| | : been “proved”; this corresponds to a successful scarch for a proof by backward chaining. (In || particular, this corresponds to backward-chaining without backtracking; however, the addition i

; 3 of backtracking to the mechanism of normalization is a straight-forward matter.) 1

i | | y Let TT be an incomplete proof of a universal formula Vxg(x). Then it will often happen
: W. that the normalization of TI fails to yicld a complete proof of Vxe(x), but at the same time, ]
: normalization of the proof

8 e(t) | 1

| 04 |
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for a particular term t does yicld a complete proof. This can come about in the following

. way. The normalization of I(t) will in general select a smaller and more specialized sct of

"subgoals” (that is, lemmas for which proof procedures arc invoked) than the normalization of

] 1; in thcorem proving language, thc normalization of I1 determines the particular set of

subgoals needed to verify cach instance @(t) of the gencral formula Vxe(x) - different sets of

| subgoals will be generated for different instances. The subgoals generated by normalizing

I1(t) may be satisfyable cven though those generated by normalizing Il are not. In this cask,

IT docs not provide cvidence for the truth of the general statement Vxe(x) (indeed, Vxe(x)

1 ; may not be true), but does indicate a method for attempting to construct evidence for

po instances ¢(t) of the general statement.

; In the case where ¢ is cxistential, that is, where @(x)=3yy(x,y) for some ¥, a successful
LE normalization of

: Vxyd(x,y) |
; VE———MmMM

| yields a value for y; thus Il describes an algorithm for computing a partial function satisfying |

| the specification . The computation in question involves a mixture of ordinary computation |
(normalization), and proof scarch by backward chaining. In this respect, normalization of |

. partial proofs resembles the behavior of "pattern matching languages” such as PlannefHewitt

1971] and its successors, where ordinary computation is mingled with subgoaling. Mowe will be

said about this resemblance later. |
! ] ]

| The correspondence between normalization and familiar kinds of backward chaining is |

! " cnhanced if the proof procedures for lemmas proceed by scarching for a “match” between the

| ) J lemma to be proved and the endformulas of proofs in a pre-existing data base. For cxample,
: suppose that one starts with a data basc {I1, ... Il1,} of incomplete proofs of universal |

formulas. Supposc further that all lemmas which appcar in proofs of the data base are V3

| | ! formulas. Finally, suppose that the following uniform proof procedure is supplied for all
| lemmas: the procedure, when given inputt for a lemma L:Vx3yy(x,y), scans the data base

| ! {f,,.... TI} looking for a proof I1;:Vze(z) such that the formulas ¥(ty) and @(z) unify in
: the sense that there is vector of terms folly «+ + Tk with ¥(t.ry) = @(r,ry... ry): If such a

: proof Tl. is found, then the procedure returns the proof

vraia :
| (rey... 1g)

| % Ayg(Ly) |
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If no such proof can be found, the procedure returns "FAIL". The similaritics to Planner and
its successors, and also to the "logic programming language” PROLOG [Kowalski 1974], )

! should now be evident. In particular, the behaviour of both MicroPlanner, and of PROLOG
programs, can be closely matched by the machinery just described. The proofs {1} y

} correspond to conscquent thcorems of MicroPlanner, and to the horn clauses of PROLOG.
The value returned by a successful execution of a PROLOG program corresponds to the

: realization wi-ich may be extracted from a normal proof of an cxistential theorem.

Lo As has been convincingly demonstrated by work with PROLOG, a person who knows in
} general terms how backward-chaining works is in practice able to express an arbitrary

| algorithm as a sct of implicational formulas; the exccution of the algorithm takes place when a
: backward-chaining theorem prover (cg, the PROLOG interpreter) is given those formulas as

| | axioms, and a goal which cncodes the input to the computation. (One also nceds a

i mechanism for cxtracting an output value from a proof, in PROLOG, this output is
} constructed in the course of the scarch for the nroof) It is of course essential that sets of

implications be constructed with an algorithm explicitly in mind; a sct of implicational

| formulas which are chosen solely according to the criteria of Tarskian truth and completeness
| arc exceedingly unlikely to be of any computational use, regardless of the thcorem prover

used. (This is analogous to thc obscrvation that a proof of an V3 thcorem which is

¥ constructed soley according to “mathematical” criteria such as validity and clegance is unlikely
} to bc of much computational use when executed by normalization.)  Kowalski[1974] has :

discussed the advantages of describing algorithms by scts of formulas and executing them by

usc of a bhackward-chaining theorem prover. As wc have shown, it is possible to mix .

normalization with backward chaining; presumably, this should allow the benefits of the two

forms of computation to be realized simultancously.

| b ;

| We remark on two additional aspects of automatic proof construction using normalization:

oo
| : (1) Note that what Stalhman and Sussmanf[1977] have called dependency directed

J backtracking "comes for free” in normalization with pruning. Supposc that onc wishes to
; normalize a proof

|

FL [Al (BI

| | i, I, I,; AVE C C

| vi——m> —
C

| . | whose main inference is V-climination. Suppose further that C is a Harrop formula, and that
normalization of IT, docs not decide between A and B. (Evidently, the requirement that only

‘ 0



non-Harrop axioms appear in proofs may be dropped in the case where the endformula is a |
Harrop formula; conscquently the normal form of Il; may fail to decide between A and B - |

: for cxample, Ti; might consist simply of the axiom, "AVB".) Then, in the usual case, it will |
y | be neccessary to normalize both I1, and I1,. However, if the normal form IL,’ of I1, does not

| make usc of the assumption A, pruning allows us to produce n, as the end result, and

: | thereby to dispense with the treatment of 11, Thus dependency information can be used to: reduce the amount of scarch or "backtracking", ju<t as it does in the various systems for

: "dependency based reasoning” which have been developed by workers in Artificial
£ Intelligence (see London[1978], Doylc{1978], Shrobe[1979]). Also note that in normalization,

| dependency directed backtracking docs not rely on "non-hicrarchical contexts” or non-

monotonic inferences.

§ (2) A complete proof of a formula Vx3ye(x,y) provides cvidence for the truth of

| Vx3yeg(x,y), and in addition describes a method for computing a function f with ¥xe(x,f{x)). -

: : As a consequence, the normalization of an incomplete proof [1:Vx3ye(x,y) consitutes both a
j scarch for cvidence, and a scarch for an algorithm with certain properties; in the terminology

of computer science, normalization can serve as a method for the synthesis of complete

' programs from program fragments. (For comparison with program synthesis for PROLOG

| sce [Clark and Sickel, 1977]). Notes: (a) If normalization is implemented as a semi-automatic
procedure - a procedure in which a human user has the option of interactively constructing

| proofs of lemmas - then we arrive at a “refinement” method for constructing programs very
| much like that developed by Bates[1979). (b) A single proof transformation, namely pruning,
! . can have the cffect of improving the efficiency of a computation at "run-time" (as explained

in the last paragragh), or of optimizing an algorithm, depending on whether the

: transformation is applied in the course of computing a value, or to a proof of an V3 formula.

' d [t is also worth considering the case where normalization of Vx3ye(x,y) produces a proof
I" which is not complete. Here, TT" may still be used to compute values of y with g(x,y)

| from values of x in the manner described carlier; the computation will not consist of “pure”
; normalization, but will involve backward-chaining through lemmas as well. What, then, is the

1 significance of the passage from IT to IT’? In the scheme for the execution of incomplete
EN proofs with which we are currently concerned, the burden of computation is shared between
oo automatic deduction (perhaps in the form of "maltching”), and pure normalization. When

| : | [1:¥x3dyep(x.y) is exccuted, all computation (including both pure normalization and automaticI deduction) which is possible in the abscence of a concrete value for x is carried out. When a

i | | concrete value for x is supplied, the remainder of the computation is performed. Thus the
| f passage from IT to [1° constitutes a kind of optimization; all work which can be done without

» y knowing the value of x is carried out first, and, as a consequence, this work does not have to
ot I be repeated each time TT is run, |
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: 5.2 Analysis of change |

i | Consider a situation in which onc is obliged to solve a scrics of problems P|, P,, . . . Pp,
where P. is only "slightly different” from P,. Then it may happen that the same solution ]

5 | works for many consecutive problems. It is useful in this situation to determine conditions
. under which a small change in a problem leaves the correctness of a solution intact; if the

1 : difficulty of cvaluating such conditions is small compared to the cffort involved in
constructing a new solution, then the total effort needed for solving Py, Py, . . . Py can be

reduced.

FE In Artificial Intelligence, the task of determing the effects of small changes is referred to
as the "frame problem” [McCarthy 1969]. The use of proofs as descriptions of algorithms can ;
provide aid in attacking the frame problem, in the following way. Suppose that when a

problem P is solved, one constructs not only a solution S, but also a proof Il that S really is a ]

| solution of P. ‘Then Il provides an explicit description of the features of the problem upon |
; which the success of S depends. If P is changed slightly, one is able to sce, by inspecting the

; | proof T1, whether any feature relevant to the success of S has been modified. Now, if one
- uses a proof to describe a method for solving a problem, then the execution (ic normalization) i

| | of the proof when applied to a particular problem yields not only a solution, but also a -
| | specialized proof that the solution is correct; and, as we have said, this proof can be used in

| the analysis of change. ]
This idea is illustrated by the following schematic example. Consider the problem of of

3 Co computing an output value v with ¢f(t.v) when given a vector t = STR of inputs. 1
| i Suppose that an algorithm for doing the computation is given by a proof Tl of Vx3Iye(x.y) ;

| | : and that the result of executing 11(t) is a proof {1° of Jye(t.y) which provides v as a value for
| y. In the general case, [T° will make use of properties of some but not all of the inputs

i t;, -.. ty. Suppose then that a “slightly different problem” is presented - namely the j
| oo ; problem of computing v with @(U,v"), where the vector t' differs from t in only a few entries.

| 3 If the entries in which t' differs from t do not include any of the entries whose properties are
! mentioned by IT°, then @(t,v) holds, and the computation docs not need to be repeated.

| Co R The same kind of analysis of change can be carried out without using proofs. Suppose,
| " that, in the above schematic example, the computation of v from t is carried out by the |
| | execution of an ordinary program p(x. . . . x) rather than hy the normalization of a proof.

x | q Then a trace of the execution of pa. ty) will indicate which among thc valucs to «+» ty .
| “| ‘ have been used in the computation and which have not, thus providing the same kind of |

| x dependency data as is supplied by the normal proof 11: 3ye(ty). However, the normal |

|
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J proof IT" in general provides a morc thorough and more uscful analysis of dependencies that
; the corresponding program trace. ‘To sce how this can come about, compare the execution of
3 a conditional expression

| if r, then r, clse ry

. with the normalization of the corresponding proof:

F [A] [B] |
1 I, n, Il i

AvB CC C

3 vi

Suppose that (1) r, evaluates to "TRUE", (2) the normal form of I1, docs not contain the
assumption A, and (3) an input t, appears in r, “nd in [1)) but not in r, (nor in [1,). Then,

: in a trace of the execution of "if ry then r, else ry", the outcome will appear to depend on t;, |
but the corresponding normal proof will reveal that the correctness of the outcome is

| independent of tg.

Thus, in the analysis of change as in the specialization of algorithms, proofs provide

| additional data about the dependencies between facts involved in a computation, and this
| | additional data can be exploited to avoid redundant computation.

| Analysis of change of the kind which we have been discussing - based however on the !

{ 0 use of programs, and not proofs, as descriptions of algorithins - has been used in a number of
' in settings within computer science. To take a simple example, the conventional program

\ \ optimization which is known as code motion [Aho and Ullman 1973] involves analysis of |
| f change in the context of iterative computation. In the typical kind of code motion, an

| } i assignment statement "v + tis moved out of an inner loop when it is determined that the
¥ variables appearing in t do not change in the loop. By using a proof for describing the

i : computation of the value to be assigned to v, this analysis of change might be improved - |
‘X specifically by determination of the conditions under which the correctness of the value

rt computed depends on variables which change in the loop. A related idea is worked out in a |

a paper of Katz{1978] concerning the use of proofs of invariant assertions in optimizing iterative

| / descriptions of computation,

u : y Other examples are provided by constraint systems such as those developed by Stallman !
. 5 | and Sussman[1977], and Borning [1979], and by "dependency based reasoning systems” such |
| £ as those of Shrobe[1979], London[1978] and Doyle[1978]. In these systems, situations - such as
é § the state of an electrical circuit [Stallman and Sussman 1977] - are represented in such a way



that the dependencies among the facts and valucs which describe the situation are explicitly |

recorded. When the situation changes, or when an assumption about the situation is added or |
| withdrawn in the course of automatic deduction, the dependency information is used to

| determine what aspects of the situation have been affected, and what computation has to be

done to update the representation. For the reasons given above, the use of proofs as

descriptions of algorithms may be cxpected to improve the analysis of dependencies upon

} which these systems rely.
§ ¢

!
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Appendix A

Comparison to Extraction Methods from Proof Theory

4 Traditional proof theory provides two kinds of methods for the execution of proofs. First
there are the methods which operate by transformation of the proofs themselves. ‘The

| normalization procedure of Prawitz[1965)] described in chapter 2 belongs to this class, as does
the cut-climination procedure of Gentzen [1969] for the calculus of sequents. Second, there

$ are methods which involve extracting “programs” of one kind or another from proofs; it is
F then the program which is exccuted, and not the proof itself. Examples of methods of the

] latter kind arc (he recursive realizability interpretation of  Kleene[1945], the Dialectica
| interpretation of Godel[1958), and the modified realizability interpretation of Kreisel[1959] for

analysis.

| | The normalization method, and the modifications to it which we have made in order to
| | increase efficiency, have of course been discussed at fength in this thesis. The purpose of this

appendix is to compare the methods which we usc to the other family of exccution methods

| from proof theory - namely, the functional and realizability interpretations. ‘The account

which follows is intended for the reader who is familiar with these interpretations. |

It general terms, the situation is this. The “programs” extracted by the three |
mterpretations mentioned above are Godel numbers of partial recursive functions in the case |

] of recursive realizability, and typed A-calculus terms in the other two cases. As shown by

Mints[1977), the various programs extracted by these interpretations from a proof of

Ry Vx3yg(x,y) all compute the same function as does normalization. I‘'urthermore, the |

] | convertability results of Mints, and the commutativity results of Diller [1979] show that it is
| | not only the function computed which remains fixed under these interpretations, but also the |3 f form of the computation sequences which arise when the function is applied to a particular

} : argument,

| ! The programs cxtracted by the functional and realizability interpretations mentioned
: x above resemble the untyped p-terms which we extract from proofs in that both the p-tcrms

| and the programs contain the inforatation in a proof which is relevant to exccution but leave i

’ out most of the rest of the data in the proof. "Fhe interpretations differ among themselves in

H the cfficiency of the programs which they extract, but, in one case - namely modified |
| of realizability - the extracted programs are as consise and computationally cfficient as p-terms.

x | . The Dialectica interpretaion also produces "good code”, but to a somewhat lesser extent. In

| | ¢ the case of recursive realizability, cfficiency depends on the particular godel numbering and :
SNE interpreter used.

y {



| |

| For our purposes the differences between p-terms and programs are crucial, since p- )

| terms contain the dependency data needed for pruning, whereas the programs do not. In

order to specialize algorithms by symbolic execution and pruning as we have done in the bin-

| | packing cxpcriments of chapter 4, we need a form of computational description which meets
both of thc following requirements: (1) Symbolic cxccution of the description must be

tolcrably efficient. (2) The dependency data needed by pruning must be present in the

description, and further, this dependency data must be preserved in the course of symbolic

cxccution. Now, nonnalization as described by Prawitz[1965] meets the second requirement

] : but not the first, whereas, from what we have just said, the programs extracted by the
: functional and realizability interpretations meet the first requirement but not the second.
3 | Thus none of the tools from traditional proof theory is adequate for performing the kinds of |

g : manipulations on algorithms which have been the central concern of this thesis, and for this |

reason it was nccessary to use a new form of computational description - the p-term,

For a more cxplicit formulation of the relationship between p-terms and the programs

extracted by the interpretations, we will need the following notation. I.et Y, be the procedure
1 | which extracts untyped p-terms from proofs, and let y, be the extraction procedure for any

} onc of the interpretations. The modified realizability and Dialectica interpretations extract
typed A-calculus terms from proofs; however, it is convenient here to regard the terms

BE extracted by y, as terms of the ordinary untyped A-calculus. This is an incssential
| madification, since the type information contained by A-terms is not needed for normalization

and cannot help in pruning. With this taken into account, there is a procedure Y; for
| extracting programs from p-terms such that the diagram, .

i

Fo "i
‘ 3

| 12 73

] commutes.

| Thus, p-terms lic "on the way” from proofs to programs. Furthermore, the map Ys iS
; many-to-ong¢; there is no way of getting the p-term back from the program extracted trom it.

) In part (a) of section Al, we will describe y; in general terms for the modified !
) realizability interpretation, and show in part (8) that pruning cannot be used in connection :

é | 102 :!



with programs produced by this interprewation. The treatment of recursive realizability is

essentially identical. In section A.2, the Dialectica interpretation is discussed. ‘The example

which shows that pruning docs not apply for modified realizability interpretation or for

recursive realizability also works for the Dialectica interpretation.

For the current purposes, it IS convenient to restrict our attention to a theory which,

roughly speaking, represents the intersection of the theories trcated by the various

interpretations - namely, the formulation of arithmetic given in section 3.6. ‘The language of

this theory is just the standard language of arithmetic; the set of available lcmmas consists of

the induction schema IND, Wc have not said what axioms arc used, and we don’t need
to, since the choice of axioms makes no difference to what we have to say. (Note that the

£ standard system for intuitionistic arithemnctic arises from one such choice of axioins.)

Al Mc ified realizability and recursive realizability

(a) First we describe the map y,; which takes a p-term and rewrites it as a modified

| realization. What yy docs 1s to replace the special operators Oly, Ol, OF, El, EE of the p-
calculus by constructs of the ordinary A-calculus. Specifically, we use the replacements:

SEN

# => (where ¢ is a constant symbol; a different constant symbol is

| assigned to cach occurence of "#".)

: O1,(t) = <0,

| : J OL) = <L©

| ) O(a, byt) => if w(t) then Glam (t)] else tfarm,()) |
FI.) = <td

SENAY BE.) = tixem (acm)
UN

| oo IND(D) = {Rr(0. Ay 2.({7(NHN (x)

| In the above, R is a conventional recursion operator, to which the reduction rules
. R(t,.1,)succ x) = LIR(LHXNX)KX)

[ R(t LXO) = t,
] apply. |

at |
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|

The conditional operator “if t, then t, clse ty" is assumed to take the numeral 0 as .
TRUE, and the numeral 1 as FALSE. The conditional operator can of course be defined by

“if 1, then t, else t; = R(t,Ax y. ty)". Pairing can also be defined in the typed A-calculus |
over arithmetic, but since the types of terms are not available in the current context, we take )

pairing and projection as primitive. (There is no definable operator in the untyped A-calculus

which has the characteristics of a pairing operator, as shown by Barendregt[1972].) |

These replacements preserve the behavior of terms under normalization, as shown by the

propositions (1) - (4) below.

(1) If t; reduces to t, by the application of a single reduction rule of the p-calculus, then
(ty) reduces to Y(t) by the application of a single reduction rule of the A-calculus.

(2) If tis in normal form (for the p-calculus), then y(t) is also in normal form (for the
: A-calculus).

| (3) Let t be a p-term which has been extracted from a proof (of arithmetic). ‘Then t and

; Y,(t) both have the uniqueness property. By (1), (2) immediately above, we have ly; =
v(t). where |i designates the normal form of

|

| (4) let t be a p-term which has been extracted (rom a proof in arithmetic all of whose
axioms are true. ‘Then there is an assignment of types to the variables and constants of y(t) .
such that the resulting typed A-calculus term realizes the endformula of the proof in the sense

of maoditied realizability.

Thus, from the point of view of cxecution as opposed to pruning, there is not much

difterence between the term extracted from a proof tor modified realizability, and the p-term

! which we extract from proofs,

| | (8) However, y, destroys the dependency information which is needed by pruning. The
problem is that in replacing "OF(a.t 4,4)" by "it @ (1) then Glasa(1))] else tla em (1)]",
one looses track of the usc, if any, which is made in t, and 1; of the assumption represented |

vo by a.
:

| In what follows, we demonstrate this point in a formal way by exhibiting a pair of proofs

| IT and {1 such that (a) 20 AUNESTEAUR) and (h) pruning can be applied to I1, but not
to IT. Thus the information which distinguishes between proofs which can be pruned and

those which cannot is lost by y,. A fortiori, the data needed to determine the outcome of
: pruning operations is not p escent in the ordinary A-terms produced by Ys

r k .
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In order to construct Tl, IT’, we first need proofs IT :AVB, [1,:A"VB, [,:4(0), T,":4(0),
| I,:9(0), I5:9(1) such that (a) A and A’ are distinct, (b) Y,(IT))=y,(I1,) (c) the sct of open
BR assumptions of 11, is {A’}, (d) the set of open assumptions of Mn, is {AA}, (0) v(ITy) = |

; (v,(IM;Na « B]) where a is the proof variable assigned to the assumption A, and 8 the
proof variable assigned to the assumption A’, (f) the sct of open assumptions of [14+ is {B}, (8)
the set of open assumptions of I is {B}. It is not difficult to construct proofs with these
propertics. For example, we can take A=@V(0==1), A'=9pV(1=2), and (using the q-

notation explained in scction 4.2), |
: ‘

; {

: OI(Ol(AS(9).0=1),B),

| Ole V(0=1),AS8(B)))" . |

{ : |

OKOI(AS(p),1 =2),B),

Lo Ol(e V(1=2)AS(B))".

| where I, is any proof of @VB. Then, as desired, y (I) = y(11) =
OF(a,y,(113).G1,(O1,(a)).0l (a). By the requirement (c) above, I; and In,’ must be |
identical in form except that uses of the assumption A in In, arc replaced by uses of the |
assumption A'in Tl 3+ This can be achieved by a trick similar to the one used for IT 11, |
above.

| ]

EN | |
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Now, we take

nm =

| on, no, nm
A'VB $0) (0)

} AYDE — JP
¥(0) ¥(1)

: n, -— N—-
‘ AVE Axx) Axx)

} vVbkpk—m—m—m—m—m———————™——— 0—— — ———— |

IT’ is just the sane as 1, except that IT," appears in the place of [1,. The p-term notation
EE for [1 is:

Cd t = Oat,EIO0.0KB.Ltt) EI)

Nn
Lo where t, =v ,([1)=v,(I1,). t; =y,(T,). t,=y,(I1,). and t;=y,(I1)). The p-term notation o
| for I is

t= ORa.tEI(0.OE(B.t,tt). EI(1L)) |

, where ty =v ,(M). The only difference between t and tis that (y= lavB). As a
| 4 consequence, t can be pruned 0 "ENOOE(B.LLL))", whereas © cannot. However, the

| difference between t and tis lost in the course of translation from the p-calculus into the A-i calculus; in passing from {; to y,(t,) and from ;" to y(t}), @ and B arc replaced by the same

| _. term, namely ar,(y,(t,)). Specifically, |
J y;(t) = v5(t) =

i | , 3 if ar (y(t) then
oo! y 0. if 7 (v(t) then yy (UB «m5(y (1) else y (NB «7 (vy (1D

\ cise <Ly (tac (v,(1))P
'

to As desired, this example demonstrates that pruning cannot be applied to the A-terms

B ] 4 extracted by the modified realizability interpretation. The same example works in the same
; }

ii
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| way for the recursive realizability interpretation. The only difference is that “if then else” and

the pairing operator are regarded as operators not on A-terms but on godel numbers of partial

recursive functions. |

A.2 The Dialectica interpretation
|

The Dialectica interpretation {Godel 1958] extracts somewhat more information from a

So proof than cither the recursive realizability interpretation or the modified realizability

| interpretation; consequently, it requires separate treatment. In part (a), we describe the map

y; from p-terms to bhalectica realizations, and in part (8), we show that pruning is not
| applicable to the terms extracted by the Dialectica interpretation,

| (a) For cach formula A of arithmetic, the predicate “f Dialectica interprets A” is

expressed by a formula Vx (fx) in the theory of functionals of finite type over the natural

numbers, where DA is quantifier free. (In the standard treatments of the Dialectica

i interpretation, the single universal variable x in VxI)4 (fx) is replaced by a vector of variables| x. However, it is convenient for our purposes to use a single universal variable which may

| range over pairs.)
| The ditterence between the modified realizability interpretation and the Dialectica
| interpretation may be summarized as tollows, In the modified realizability interpretation, a
oo functional which realizes a formula ADB as required to produce a realization for B whenever

itis supphicd with a realization of A. In the Dialectica interpretation, a realization for ADB

, must provide not only a way of getting trom realizations of A to realizations of B, but also,

SE roughly speaking, a way of getting from refutations of B to refutations of A. Specifically, a

| Phaalectica realizaton of ADB is a pair <X.Y> of functionals such that
I VEY. (DA(LY(CEyD) D DpR(X(D.y))
Co

i holds. The functional X takes realizations of A onto realizations of B, just as the

| corresponding functional for the modified realizability interpretation docs. ‘The role of the

: functional Y is this. Suppose that fis proposed as a realization for A but that, in actuality, f

oh docs not realize A. Also suppose that a functional y is given such that Dp(X(0.y) docs not
hold. Then y constitutes a refutation of the proposition that X(F) is a realization of B. What

Rr Y does is to take the refutation y, and the functional tf, and produce a functional Y(<fy>)

! which constitutes a refutation of the proposition that £ is a realization of A.*

J In the definition given below, it is convenient to write the realization predicate Dy in the
¥ 107

TeeIN aE er CL



form "Af x." , where @ is a quantifier free formula; this allows us to explicitly indicate

occurences of the variables {x which represent the arguments to the predicate. The definition

of Dy by induction on the structure of A is as follows.
{

; (1) Base case. For A atomic, Dy = Af x.A (where f and x arc new variables not appearing
in A)

(2) DAAR = Af x(Dp(7 (Dr, (NAD g(r (0,7 5(x))) |
{

3) Dayp = AM xm (D=0 D D(z,(Dw, ()) A (m(D=0 D Dm. (x)))
: []

| (4) Day A = AF X(Dp(7,(0.x)]y«a (1)

hoo (5) Dyya = Af XDA (a, xy +7 ()]D |

| 6) Dap = Af x. (Dp(m (x).7x)) DO Dgla (Oa (x)),7,(x)) y
: ;

The map vy, for the Dialectica interpretation yiclds not one but several A-terms when

| applicd to a p-term t. Namely, it produces (1) a realization X, ang, (2) a term Y, for cach J
proof variable a which appears free in t. The term X is a Dialectica realization for the ;

! endformula of the proof IT from which t was cxtracted, while for cach «, the term Y,
|. computes refutations (in the sense described cartier) of the open assumption of IT which )

corresponds to the proof variable a. More precisely, if a. . . . a arc the proot variables for
assumptions A, . . . A in a proof Il with endformula C, then the formula

Va,, . .. a, X.

(Dp (0. Yq (6) A Dp (ay Yo (x) EAN DA (an Ye (x) 2 De(X.x) :

| ' holds in the theory of functionals of finite type for some assignment of types to the variables
| and constants of the Y_ and of X. We will designate the realization X which is extracted

i

| from a term t by "X(t)", and the refutation maps Y, by "Y (©). Some of the clauses of
the inductive definition of the extraction map y; arc as follows. ‘The remaining clauses have a

| similar character; the interested reader should have no trouble working them out for himself.}

* (1) Base case

X: a = a;

Yo! a = Axx

| ; X: # =c {where ¢ is a new constant symbol]
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od | (2) X: OILY = <0.X()>

| X: O12) = <LX(1) |
| |

| Y,: OILY) = Ax{(Y (OX (x)}

Yq: O20 = A{(Y (Om ()} |

(3) X:OE(aty t,t) = if m(X(t) then X(t)a«m (X(t) else X(t) am (X(t)

3 | Yg:OF(a,t).t).ty) => if #(X(t) then Ax(Y g(t UY 5 (15)(x)) clse Ax.(Y g(t XY 5 (£3)(x))
A (if B appears free in t); Bay |

: Yg:OF(a.t;, 5) => Yg(ty) (if B appears free in t,, B+*a)

| Y g:0k(aty,t,.15) => Yg(ty) (if B appears frce in t;; Ba) |
| (if B appears frec in more than one of t;, t,, t;, then any of the applicable clauses |

for Yg may be uscd) |

4) X:Aat = QAaX(t)Aa X.Y (7,(x))P> | |

| Yg:Aat => AxY g(t)(m (x) (where B#a) :

S) X:Elt) =< Xe» |

A r| YEl) = Y(4) i
p |

| 4 (B) Now, to show that pruning is not applicable to the terms extracted by the Dialectica |
| A interpretations, we only need to verify that the p-terms t and t* of the last section yield the |

same term when given to yy. This is straight-forward, since, as we have scen, the Dialectica
{ y interpretation and the modified realizability interpretation behave in the same way so long as

implication ("2") is not involved. In particular, we have,

| }

BE XM = X(t) =
SE if @ (X(t) then

y 0, if a (X(t) then X(IB mo (X(t else XB « my (X(t DP
. J else <EX(taemy(XP

| 5
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Appendix B 1

Content and Form in Proof Manipulation - An Example

‘There is a sharp contrast between the uses which we have made of proof manipulation

methods and the aims for which those methods were originally devised. Namely,

normalization, and its predecessor, cut climination, were developed as tools for use in the :

b mathematical analysis of proofs and provability, whereas we have used them here for the

: : execution and transformation of algorithms. With this shift in aims comes a change in the
features of proof systems which are significant. ‘The purpose of this appendix is to illustrate

. this change by means of an example. In particular, it will be shown in section B.1 that the
E complexity of the theorems which can be expressed and proved in a formal system - if you

: like, the "power™ or "inferential content” of the system - is not correlated with the complexity

. of the computations which its proofs can describe. "Thus a central feature of proot systems

from the point of view of most of proof theory is demonstrably unrelated to the central

| : feature of proof systems tor the purposes of computation. In section B.2, the analysis given in

section B.1 is extended to normalization with pruning. We begin with a brief discussion of

| the aims for which prool transformations were developed.

oo Most work in proof theory has addressed itselt to questions which are formulated in terms ;

of provability and which do not make direct tetercnce to proofs themselves or to their |

| properties. Questions and results of this kind have a certain generality in that they are
independent of the details of how proofs are represented; the differences between the familiar |

| proof systems (such as natural deduction, the calculus of sequents, "Hilbert-style™ systems, and

| : . so forth) arc immaterial from the standpoint of provability - anything that can be proved from
| | 3 given axioms in one system can also be proved in the others. Examples of central notions in |

: | proof theory which refer only to provability are (1) the consistency of a theory, (2) the relative

| | “power” of logical principles, and (3) the "proof theoretic strength” of a theory as measured |
| j by its ordinal. Of course, the study of questions to do with provability often requires
: | Ho investigation of the details of particular proof systems. Cut-climination, the ancestor of

| \ ! normalization, was developed as part of just such an investigation; namely the investigation |
| which led Gentzen to his consistency proof for arithmetic from the principle of (quantifier

| | oA free) induction on the ordinal €o- :
However, formal prools can also be studied as mathematical objects whose properties are |

3 of interest in their own right. For example, the strong normalization theorem for natural

\ deduction [Prawitz 1969] (see chapter 3), and the theorems of [Mints 1977} about the :

! . ! relationships between the “programs” extracted by the various realizability interpretations (see
y appendix A) are of interest primarily tor the theory of proofs (as objects of mathematical A

1 .

|
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study), and not so much for the theory of provability. “These results have the common effect
| of showing that the notion of the computation described by a proof is relatively stable under

| changes of technical formulation. This should be compared to the stability under change of

: | formulation of the notion of a computable function; a stability which constitutes the evidence
for Church’s thesis.

i Kreisel[1049], and Statman[1974] havc cmphasized that a shift in attention from the
) theory of provability to the theory proofs leads to a change in the sclection of notions and

distinctions which arc important. As we have said, this appendix is intended to make a |

similar point in regard to another view of proofs - namely the view of proofs as computational

descriptions. The example to be given shortly illustrates the differences between the aims of

computation, and the aims of the theory of provability. An cxample of the conflict between

| thc aim of constructing a smooth theory of proofs, and the aim of making effective |

, computational usc of proofs, has alrcady been scen. Namely, it is essential for the purposes |

| of the stability results mentioned in the last paragraph that attention be restricted to

1 transformations which preserve the extensional incaning of proofs. On the other hand, if onc |
wishes to maximize the computational efficiency of proofs by means of mechanical |

| transformations, then one must use transformations - such as pruning - which change |

extensional behavior; this was shown by the cxamples given in chapter 4. Thus the |
| i selection of transformations which make for a smooth theory is difterent from the selection |

; winch is best for practical applications. This kind of conflict hetween the aims of theory and |
practice is of course common. In the one case general results arc what is wanted, and in the

: other useful techniques - techniques which may or may not have interesting gencral

propertics, but which can be profitably applied by the use of human judgement. ]

| : B.1 Normalization in successor arithmetic
} od We proceed now to the example. Let Tg be the the theory which results from
y restricting the formulation of arithmetic given in section 3.6 to the language which has }

1 4 symbols for successor and predecessor as its only function symbols. Thus the formulas which :

) N appear in proofs of Tg will contain (a) zero, (b) “predecessor” and “successor”, and (c)
1 IE "equals" as their only constant, function, and relation symbols, repectively. The lemmas |

which may appear in proots of ‘1 are those of the scheme [IND of induction, where @ is a j
. Bp formula of the restricted language. From the point of view of the sct of provable theorems, |
Cu Ts is equivalent - modulo a simple translation - to the usual formulation of successor

B . oo arithmetic. (Predecessor is included as a primitive function because it simplifies the recursive |
3 proofs of the induction lemmas). Thus what we have called the "inferential content” of I
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is exceedingly small. Indeed, from the point of view of the theory of provability, Tg is wholly RN
! trivial; it has an clementary decision method by quantifier climination and a finitist

consistency proof. Nonetheless, the computational content of T, in the sense of the sct of :

{ functions which are computed by proofs of V3 formulas, is just thc same as that of full ]
oo arithmetic. This is shown by the following theorem.

| | Theorem: Let f be a function on the natural numbers which is definable in Godel’s
1 system [of primitive recursive functionals of finite type [Godel 1958]. ‘Then there is a proof |

: [Te in Tg of Vx3Jy(x=y) such that normalization of ITg computes the function f.

Proof: We will show how to reverse Kreisel's modified realizability interpretation; a map

3 | I" from terms of the typed A-calculus to proofs of Tg will be described which has the property
1 that the modified realizability interpertation extracts t from I(t). The map makes usc of the 1

correspondence between proofs and A-terms which was explained at the begining of chapter

1 3. The end-formula of thc proof gotten from a functional f of type "0—0" will be }

x(x =x) Ix(x =x); this proof can be casily transformed into a proof of Vx3y(x =y) which,

| in the natural sense, computes the same function. The theorem follows since normalization 3

| | and moditicd rcalizability yield the same computations. (Scc appendix Al)
1

; First of all, we define a map 8 from types (of functionals) to formulas by induction on

| the structure of types. If 7 is a type, then 8(r) will be the end-formula of proofs representing °
| functionals of type r. |

(I) Base case: 8: 0 = Ix(x=x) 1

a (2) &: 1—p = 8(r)D(p).

{ | | Fhe map Tis defined by induction on the structure of terms of the typed A-calculus. For
‘ the base case we nced to define I's behavior on variables and the constant zero. let ]

] , | {xg xXx; . . .} be an enumeration of the variables of type ». Then I' assigns the proof: i
x J i

BR [B(r)AG=i}
: N—m—m-orono———— |

| Co 8(r) |

:

. to the variable a. The second conjunct "i=i" (where i is a numeral) serves to label the

» | 4 assumption "8§(T)A(i=1)" among all of the other assumptions "8(7)A(=j)" representing i
) ‘ variables Xj of type 7. Next, TN assigns the proof
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|

to the constant zero. ‘The remaining clauses of the inductive defintion are as follows.

3 (1) succ(t) = succ(x) =succ(x) |
E Ix(x =x) Ix(x =x) |

x(x =x) |
i {

| (2) Ax. => L(t)
&6(r)

1 |

} | (8(HA=1)) D 8(7) where 7 is the type of the term t

Lo Gry) = re) (ty

o(p) where 7—p is the type of t,,

i | and 7 is the type of t,

J | . (4) R(t,.ty) - The types of t,t, will have the forms 7 and 0 = (r — 7), respectively. Let F
a be the formula 8(r). ‘Then the end-formula of T'(t)) is F, and the end-formula of (ty) is
4 x(x =x)D(F 2D F). The proof F(R(t,.1,)) uses the induction principle applied to the formula

| , p(x) = "(x=x)AF". {t will be convenient to usc the simpler of the two formulations of
{ : 4 induction for ¢ given in scction 34, namely, the recursive proof: |

y |



{| Yo =
| Po:Vx( p(x)
: : VE—— I,
: [x20] (pred x) Vx(x20 A ¢(pred x) D ¢(x))

: nn Al——m—— v(bi—oo A ——m7m———
Vxy(x=yVx#y) [x=0] ¢(0) x20 Ag(pred x) x#0 Ag(pred x) I (x)

bo v¢——o S———n— fon —
X x=0V x20 p(x) P(x)

, V‘brrm——D——D———7»——mm—4

| @(x)
Vi———

z Vx g(x)

We take I, in the above to be:

I(t)
| | 0=0 I

| Al

| (0=0)AF

| and TI, is,
[x£0 A ((pred(x)=pred(x)) A F)] pred(x) = pred(x)

. Nbpoonm-n-—-o-oom—on— :|— [(t,)
| (pred(x)=pred(x)) A F Ix(x =x) Ix(x=x) I (F IF)

| NC— I
; F FOF

| } Ee
} X x—=X b

4 ; (x=x) AF

I

x#£0 A (pred(x)=pred(x) A 1) D ((x=x) AF) |
i |

| Vx.(x#£0 A (pred(x)=pred(x) A 1) D ((x=x) A IY) .
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| This completes the inductive definition of T'. It is a routine matter to check that :

| YT) ~ t

| where y is the modified realizability interpretation as described in appendix A, and where "~"
represents interconvertability in the A-calculus. Thus for cach function f of type 0—0 which :

§ is definable in Godel's system I, there is a proof IT of Ix(x=x) DO Ix(x =x), such that, for all
! . |

i! numerals n, the result of normalizing |

I— n |

Ix(x =x) Ix(x =x) I Ix(x =x) :

Ix(x =x) |

| has the form |
Cy no

m=m :

| | A——— |
x(x =x)

where m is the numeral for fn). In order to get a proof IT" of a formula of the form

Vx3y(y=y) which computes f, simply take 3

| 3 nSE SE yy=y)  Wly=y)DIy=y) |
IE Moo
| [0 |

CS 3y(y=y)
| J VIi—— |

SE Vx3y(y=y) |
| § This completes the proof of the theorem. |

{

| ! ‘The theoren: shows that the proofs of successor arithmetic, despite their limited inferential
i | content, arc just as computationally expressive as those of full arithmetic. ‘The general reason
| . % for this is evident - namely, the behavior of normalization depends chiefly on the structure ofLE 3 ]

, ik the applications of induction principles in a proof, and is insensitive to the mathematical |
| Cs “se
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| content of the formulas to which induction is applied; this is a sense in which normalization ’
depends on the form rather than the content of proofs.

: | As an alternative way of expressing the significance of the theorem, one might say that it
i | demonstrates that normalization is a very bad method for treatment of successor arithmetic
: proofs. There arc after all computation procedures for proofs in this theory which are more
: efficient in the general case than normalization. For example, since all predicates definable
: : in successor arithmetic are decidable, onc can take a proof of Vx3ye(x,y) and an input n
: and produce an output m with @(n,m) by simple lincar scarch: @(n,0), @(n,1), ¢(n2)... arc
3 tested in turn until a number with the desired property is found. In this case, the proof serves

| only as a guarantee that the scarch process will terminate. “Thus it may happen that the best

: computational results in proof manipulation are gotten by making use not just of the form of

proofs in the way that normalization does, but also of the mathematical content of the

: formulas which appcar in proofs. (We have already seen an example of this; in chapter 4, the

| | mathematical content of the bin-packing proofs was used in the simplex transformations.)
| Successor arithmetic is an cxtreme case, since onc docs quite well by ignoring the proof

i altogether except in its role as cvidence for the truth its end-formula.

|

B.2 Pruning in successor arithmetic | )

In the last section we were concerned with normalization without pruning. The question ,

| which we address in this section is: how does the addition of pruning to the set of reduction

: | rutes used in normalization affect its behavior in the context of successor arithmetic?
: Certainly, pruning can make a large difference in the computational cfficiency of some proofs.

In particular, cach application of induction in proofs produced by the map I' of the last

| section constitutes a redundancy of the kind that pruning removes; in order to verity this, the

| reader need only note that pruning is directly applicable to the normal form of Po for any ¢.
| As a consequence, pruning in this case reduces the complexity of the functions computed by

proofs in a drastic way: the functions computed by pruned proofs are describable by use of

: conditional expressions and the successor function alone,

| | However, it is possible to modify the proofs produced by Tin such a way that pruning is
| no longer of any usc. It follows that pruning does not reduce the computational complexity-

i of successor arithmetic proofs in the general case. To start with, consider the clause

- I

’ . :
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(Dsucc(t) = succ(x) =succ(x)

I(t) | EE — |
Ix(x=x) Ix.(x=x)

| Ix.(x =x)

|

} !

| in the inductive definition of T'. Now, since the assumption "x =x" is not used in the second |
: premise of the above proof, the pruning rule for 3I-climination given in section 2.7 is |
3 | applicable. However, we may take I'(succ(t)) to be |

2 : Ix=x] succ(x)=succ(x) |
| ‘ sr

succ(x) = succ(x) |

I’(1) Ir |

i Ix (x =x) Ix(x =x)

| | SAE |Ix.(x =x) J

| Instead, and in this case pruning is not applicable. By the same kind of trickery, it is possible

| to modify Po in such a way that pruning is no longer of any use. We will show how this is

done in a moment, but first we wish to draw some general conclusions about pruning. |

| SN ‘ The use which is made of the assumption "x=x" in the proof above is incssential. |

| i Further, the fact that it is incssential would be immediately recognized by any person who
| 3 inspected the proof. (For that matter, any person would recognize with cqual case that

"Axx =x) OD Ix.(x=x)" is a truc formula, and consequently perceive the usclessness of the

| NY elaborate proofs generated by [.) {t follows that an analysis of dependencies which is routine

| | "y for a person may of may not lic within the powers of the formal pruning operations with
: - which we have been concerned. "The pruning operations are very sensitive to the formal

| \ , details of the proofs to which they are applied; two proofs which appear to be essentially :
: identical to a person may nonetheless behave very differently ander pruning. Nor is pruning |

| | \ | in any sense universal among formal operations for the removal of redundant parts of proofs.
! Onc can invent a variety of mechanical transformations on proofs which remove redundancies 1

, i of one kind or another, but which are uscful in circumstances where pruning fails. To take
. y just one cxampie, consider the following operation on proofs of arithmetic: |

7 1
. i & ”

| | , 8
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| I [1x «0] ’

dye yp

Vi—— = Vi
Vx3Iyg Vx3dyg :

: ‘ where the condition for the operation is that x not anpear free in @. This operation, which in
f a certain weak scnsc is sensitive to the content of proofs, is cffective in reducing the

| computational complexity of the proofs produced by the new version of the map I' which we
arc currently constructing - a map which produces proofs to which pruning is not applicable.

: Now, in order to complete the definition of the new version of T', we need to modify the

proof 1, which appcars as part of the proof Pe given in clause (4) of the definition of T.
The proof TI, appears as part of the proof of the third premise of an V-climination inference:

| whose first premise reads "x=0 V x#0". However, in the normal form of Pe, no use is

made of the assumption "x0" in the proof of the third premise. ‘The reason for this is that

no use is made of "x#0" in establishing the formula "(x =x)AF" in Il,. However, in the
following slightly modified version of I1,, "x#0” is used, and consequently pruning is no
longer applicable toPe.

[x20 A ((pred(x)=pred(x)) A )] pred(x)=pred(x)

| Nbr——1--—mooi Ef I'(t,) )
; ) (pred(x)=pred(x)) A F Ix(x =x) Ix(x=x) DIF D1)

2 Nf— ————— J )Ba

| I FOF

bbe

| I,| X=X F

| Nf—7—H—w-oveono

hi (x=x) AF | |

Co , x20 A (pred(x)=pred(x) A F) D (x=x) A F)
ob —

Co Vx.(x#0 A (pred(x) =pred(x) A F) D ((x=x) A I)

) where Tl is
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| [x#0A((pred(x)=pred(x))AF)]

Ld NE——
(pred(x) = pred(x))AF

: Mn, N——————rornr——————
| x#0 pred(x)=pred(x)

i n, \r—mmmm——m—-—"""
x#0 x#20A (pred(x) = pred(x)) Vx y(x#0Ay#0Apred(x)=pred(y)Ix=y

Co A—Vv |
| x#0Ax#0A(pred(x) =pred(x)) x#0Ax#0A(pred(x)=pred(x)) Ix =x

and finally, where TI, is |

[x#0A((pred(x)=pred(x)) AF)] |

b x=0

]  &

5 {
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