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“This dissertation describes research involving vision techniques which would be

useful in an autonemous exploring vehicle, such as a Mars rover. These techniques
procuce a description of the surroundings of the vehicle in terms of the position, size, and
zoproximate shape of ob jects, and can match sucht scene descriptions with others previously
n:ocuced. The informatien produced is thus useful both for navigation and obstacie
avoidance. The techniques operate by using three-dimensional data which they can
pro2uce by means of stereo vision from sterso picture pairs or which can be obtained from
a laser rangefinder. The research thus divides conveniently into two portions: stereo |
mapping and three-dimensional mocelling and matching.

The stereo mapping techniques are designed lo be suitable for the kind of pictures
that a Mars rover might obtain and to produce the kind of data that the modelling
techniques need. These stereo techniques are based upon area correlation and produce a |
depth map of the scene. Emphasis is placed upon extraction of useful data from noisy
pictures and upen the estimation of the accuracy of the data produced. Included are the
following: a self-calibration method for computing the stereo camera model (the relative
cosition and orientation of the two camera positions); a high-resolution stereo correlator for
cooducing accu aie matches with accuracy znd confidence estimates, which includes the |
zbility to compensate for brightness and contrast changes between the pictures; a search
technique for using the correlator to produce 2 dense sampling of matched points for a pair
of pictures; and the computation of the distances to the matched paints, including the
crepzgaticn of the accuracy estimates.

The three-dimensional modelling and matching techniques zre designed to be
teierant of the errors that stereo mapping techniques often produce. First, 2 ground surface

| finder tries to find a set of points that form a weil-defined smooth surface that lies below
mos: of the other points. Then, by using this knowledge of the ground surface and |
rinoviiedge of the camera viewpoint that produced the peints in the scene, an ob ject finder
zpproximates-the objects that are above the ground by ellipsoids. Finzlly, a scene matcher
cen use the descriptions of scenes in terms of ellipsoidal objects. By using a search pruned
by using probabilities obtained by means of Bayes’ theorem, it determines the probability
that two scene descriptions refer to the same scene and the linear transformation needed to
bring the two scenes into alignment.

These techniques have been tried on stereo pictures of the Martian surface taken by
tne wining Lander 1. The object finder was zble to locate rocks fairly successfully, and the .
scenz matcher was able to match successfully the resulting scene descriptions. Examples of
these results are shown. |
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| ABSTRACT

This dissertation describes research involving vision techniques which would be
useful in an autonomous exploring vehicle, such as a Mars rover. These techniques
produce a description of the surroundings of the vehicle in terms of the position, size, and
approximate shape of objects, and can match such scene descriptions with others previously
produced. The information produced is thus useful both for navigation and obstacle
avoidance. The techniques operate by using three-dimensional data which they can
produce by means of stereo vision from stereo picture pairs or which can be obtained from
a laser rangefinder. The research thus divides conveniently into two portions: stereo
mapping and three-dimensional modelling and matching.

The stereo mapping techniques are designed to be suitable for the kind of pictures
that a Mars rover might obtain and to produce the kind of data that the modelling
techniques need. These stereo techniques are based upon area correlation and produce a
depth map of the scene. Emphasis is placed upon extraction of useful data from noisy
pictures and upon the estimation of the accuracy of the data produced. Included are the
following: a self-calibration method for computing the stereo camera model (the relative
position and orientation of the two camera positions); a high-resolution stereo correlator for
producing accurate matches with accuracy and confidence estimates, which includes the
ability to compensate for brightness and contrast changes between the pictures; a search
technique for using the correlator to produce a dense sampling of matched points for a pair
of pictures; and the computation of the distances to the matched points, including the
propagation of the accuracy estimates.

The three-dimensional modelling and matching techniques are designed to be
tolerant of the errors that stereo mapping techniques often produce. First, a ground surface
finder tries to find a set of points that form a well-defined smooth surface that lies below
most of the other points. Then, by using this knowledge of the ground surface and
knowledge of the camera viewpoint that produced the points in the scene, an object finder
approximatesthe objects that are above the ground by ellipsoids. Finally, a scene matcher
can use the descriptions of scenes in terms of ellipsoidal objects. By using a search pruned
by using probabilities obtained by means of Bayes’ theorem, it determines the probability
that two scene descriptions refer to the same scene and the linear transformation needed to
bring the two scenes into alignment.

T hese techniques have been tried on stereo pictures of the Martian surface taken by
the Viking Lander I. The object finder was able to locate rocks fairly successfully, and the
scene matcher was able to match successfully the resulting scene descriptions. Examples of
these results are shown.
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| Chapter 1

| INTRODUCTION

This chapter describes the types of problems attacked in the current work, provides

an overview of the system which was produced, and describes the notation used herein.

1.1 Motivation and Scope

An important capability possessed by all higher animals is the ability to find their

way around in the world. This ability includes both obstacle detection and navigation.

Although some insects rely mostly on touch and chemical sensors for this purpose, the more

intelligent animals rely largely on vision, which has the advantages of long range, speed in

determining shape information, and the ability to determine the reflectance of surfaces to
aid in identification.

It will become increasingly important for machines to have similar capabilities. For

example, a robot vehicle for planetary exploration, such as a Mars rover, should have some

such ability. Because of the long radio propagation times involved (between 6 minutes and
45 minutes from Earth to Mars or between 133 minutes and 184 minutes from Earth to

Titan, round trip), and because of the fact that radio transmissions may be interrupted
when the vehicle is on the other side of the planet, it is highly desirable that the vehicle be

largely on its own, with instructions being sent occasionally from Earth.

As with animals, so also with machines it seems desirable to rely heavily on vision. A

robot vehicle may have other navigation devices which are far superior to those of any
animal, such as an inertial navigator, radio navigation equipment, a wheel-revolution

counter for dead reckoning, or even celestial navigation equipment, but each of these has

inherent limitations (and of course is useless for obstacle detection). For example, dead
reckoning can be very accurate over short distances, but as the vehicle travels errors build

up without bound, and thus the position information must be corrected with occasional
fixes from another source. Thus, determining the vehicle position by inspection of its

surroundings when it is in a familiar area can be very important.

As a vehicle explores, it can build up a description of its environment from visual
data. The vehicle position information that it needs for this purpose may come primarily
from dead reckoning, perhaps supplemented by other navigation systems. However, when

the vehicle enters a previously explored area, a considerable position error may have
| occured since its previous time there. By visual inspection of its environment it should be

able to recognize the area and correct its position data. |
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Several types of vision systems are possible. In the most common type, one or more
cameras simply passively view a scene. Although three-dimensional information can be

deduced from such pictures in many cases, more direct, active means of measuring range to
the points in a scene are sometimes used. One possibility is to illuminate the scene with a
light source at one position and view the result with a camera at a different position. By
triangulation, distance can be unambiguously determined. By scanning, the entire scene can
be measured in this manner. Such a system is described by Agin and Binford [1973]

Another possibility is to measure range by the round trip time of flight of a beam of light
which illuminates the scene. (The term “lidar” is sometimes used for such a device) A

raster scan can cover the entire scene. Such a system is described by Lewis and Johnston

[1977]. Although not absolutely necessary, lasers are very convenient for the light source
for both types of rangefinder systems and are used in the existing systems. Thus the term

“laser rangefinder” is used to describe both types of system. It is a moot point whether such
systems should even be called vision. It might be argued that such a laser rangefinder

system is really using touch; its feelers are merely made of photons instead of solid matter.

Be that as it may, the term “vision” will be used here to include such a system, not only

because it uses light, but also because of the similarity of the data that it produces to the
data which can be extracted from other types of vision systems, as described below. (No

animal has a system exactly like this, although the sonar of porpoises and bats may come
close.)

A vision system used for navigation can measure various properties of the scenes
being viewed. Reflectivity patternson objects can be used to identify them as particular

landmarks, or the scene can be identified by the three-dimensional shape of its contents,
regardless of their coloring. Animals use both of these methods, and so should a good robot
vision system. However, the research in this thesis is restricted to the latter method.

There are basically three ways in which the desired three-dimensional information

can be obtained by vision. First, a passive monocular view can be used, from which depth

information can be deduced by various clues, such as perspective, shading, shadows, texture

variation, and knowledge about the objects in the scene. Some of the recent work on vision

systems of this type is described in Hanson and Riseman {1978) and Shirai [1978] Second,

| stereo vision can be used, in which two or more views from different locations can be
compared to deduce the distances to points in the scene by triangulation. This can be

accomplished either by binocular vision, in which two eyes or cameras mounted in fixed

positions obtain simultaneous views, or by motion parallax, in which similar information

can be derived from a single moving sensor. These are equivalent if nothing moves in the
scene, so they are both refered to here as “stereo.” Third, a scanning laser rangefinder can
be used. Animals use both monocular clues and motion parallax, and some use binocular
vision also. The easiest method to use in a robot from the viewpoint of computational

difficulty is the laser rangefinder. The most difficult is monocular vision, because of the

inherent ambiguities in a monocular view, which must be resolved by various heuristics.
Therefore, although an intelligent robot should use a combination of these methods, the use
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of monocular cues will not be discussed in this thesis.

If stereo vision is used, each stereo pair of pictures can be processed to produce a

depth map consisting of the distances to points densely spaced over the scene. This is

similar to the data that a scanning laser rangefinder produces. (The stereo method usually

produces less reliable ranges and more blank areas than would the laser rangefinder
method, but the latter may be limited in range and in some cases is not available)
Therefore, the further processing needed is fairly independent of which method was used.

This further processing, which can be called “modelling”, consists of the reduction of the
information from one or more views to an abstract or symbolic form in order to save

storage, to facilitate recognition upon encountering the same area in the future, and to detect
obstacles.

Vision tasks may be discussed in terms of three types: description, recognition, and

verification, as described by Baumgart [1974] and Bolles [1976] The type considered in

this thesis is mainly description. An unknown scene is viewed and the task is to describe it

in suitable form for the data base. There will be no a priori knowledge of the precise
shapes of objects in the scene, which may consist of rocks scattered around on the surface of

Mars, for example. Thus the system works primarily in a bottom-up fashion, extracting

from the raw data the information needed to describe the scene in terms of the approximate

size, shape, and position of objects. However, some similarity to recognition and

verification vision occurs when a current scene is compared to the data base.

An important issue in navigating by visual means is how, in the recognition phase,

the information obtained from a view or views of the current scene is to be matched with

the information previously accumulated in the data base. Should the current data be

transformed into the same kind of data that is in the data base and be compared in that

form, or should a portion of the data base be transformed back into a more primitive form

and compared to the current scene in this low-level form? For example, if monocular vision

Is used, an extreme form of the second possibility would be to assume a viewing position

and to project the scene into a two-dimensional picture to be compared to the actual current

picture. ~~ With stereo vision or a scanning laser rangefinder, the same kind of
transformation could be made, except that range pictures would be compared instead of

brightness pictures. | |

It is an important assumption of this thesis that the best choice for the kind of scenes
described above is the first of the above two possibilities. That is, the same kind of

description process should be used on the current scene as was used in generating the data

base. There are two principal reasons for this. First, the search needed in order to deduce

position is less when the matching process operates on symbolic data. If the data were to be

matched in the form of numerical values of distance or height at some dense sampling,

values of vehicle position spaced at some fine increment would have to be tried in order to

determine the best matching position. Second, in order to save storage and to make the

3



stored data as independent as possible of viewing conditions, the representation used must

discard a good deal of information about the scene and abstract only the significant :

features. It then becomes impossible to reconstruct exactly what would be seen from any
particular point. Note that this conclusion might be quite different if the data base

consisted of accurate models of objects, such as known manmade objects, in which case a |
top-down recognition process might be more appropriate.

One purpose of the research described herein is to develop a way of representing

scenes so that they can be matched in this manner and a technique for matching them, and

to see how well these methods work on typical outdoor scenes such as might be seen by a

Mars rover. This problem will be discussed further in Section 1.3. Another purpose is to

develop stereo vision techniques which produce the kind of data that these methods need.

The rationale behind these techniques and their general outline will be discussed in Section
1.2.

| 1.2 Stereo Processing

Several different types of stereo vision systems are possible, depending on the level at

which the matching of the two (or more) pictures occurs. Area correlation operates on the
brightness levels in the actual pictures, attempting to match a small window in one picture

to some area of the same size in the other picture. (Hannah [1974] and many others have
used this method.) Edge correlation first applies an edge operator to the pictures to detect :

brightness edge elements and then attempts to match the edges in one picture to those in the

other picture, as in Arnold [1978]. Other techniques match even higher features extracted

from the pictures {for example Ganapathy [1975]). Each of these methods has advantages

and disadvantages, and for different types of pictures different methods may be most

suitable. (Stereo vision systems also can differ in the number of views used to extract the

depth information. For example, Moravec {1979 and 1980) uses nine-eyed stereo to aid in
resolving ambiguities. However, only two-eyed stereo is used in the system described in this
thesis.)

Scenes of manmade objects often contain smooth lines of high contrast separating

regions that may be fairly uniform in brightness. In this case a system based on edges or

lines would be appropriate. The edge detector would be able to locate the boundaries in

the scene accurately. An area correlator might not be able to match at an edge produced by

a depth discontinuity if the background side of the edge is textured, and if the foreground

object is untextured the edges might be the only information about it that can be seen.

On the other hand, natural outdoor scenes often are highly textured. An edge

detector might produce an enormous number of edges to deal with, and the boundaries of

objects may be very rough and thus not produce edges that can be easily matched. |
However, area correlation should work well in this case. The presence of texture within the
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windows being matched should produce good matches over most of the scene. Trouble may
| still exists at edges of objects because of depth discontinuities, but if matches are found over

the rest of each object, these may suffice. |

The use of area correlation produces a loss in resolution, because the match represents
an average over the match window. Typicallythe match window may be eight pixels by

eight pixels. in which case there would by a loss of resolution of a factor of eight. If

highly detailed information about the shape of objects is desired, this would be a drawback.
However, the application in mind here is to produce data for the modelling process, which

will discard fine details anyway in order to represent the scene economically in a partially

symbolic form. Therefore, the loss of resolution is not very harmful here. |

For these reasons area correlation will be used in this thesis. It should produce points

for which the distance can be calculated spread over the ground and over the surface of

each large object in the scene. From this information the objects can be detected and their

approximate size and shape can be measured in the modelling process.

The particular type of correlator used in this research, which includes some

improvements over usual cross correlation, is described in Chapter 2. It produces a match

when applied locally to a small area by some higher-level procedure, which must perform
the more global search. In addition to the computed most probable position of match in the

image plane, it computes a two-by-two covariance matrix which represents the estimated

accuracy of the match, and a probability estimate which indicates the goodness of the

match. The correlator includes the ability to aliow for various amounts of brightness and

contrast change between the pictures, depending on the available knowledge about the

pictures.

In some cases the stereo camera model (the relative position and orientation of the

cameras which produced the stereo views) is accurately known before the pictures are
obtained. For example, two cameras may be rigidly mounted on a vehicle and their

positions and orientations may have been accurately measured in the laboratory. In other

cases, the stereo camera model may be unknown or inaccurately known. For example,

flexure in a vehicle may cause slight variations from the previously measured values, or a

one-camera vehicle may move to separate, poorly known, locations for the individual

pictures. In such cases the information to calibrate the stereo camera model can come from

the pictures themselves, although the distance between the cameras cannot be so determined.

Such a self-calibration method is described in Chapter 3. This involves finding a set of

matching points sparsely scattered over the picture, applying the correlator to these points,

and using the resulting information to solve for the parameters that define the position and
orientation of one camera relative to the other.

In any case, once the stereo camera model is known it is easier to produce a dense

: sampling of matched points over the pictures, because the necessary search is

5



one-dimensional instead of two-dimensional. A search procedure for doing this, which

applies the correlator locally as needed, is described in Chapter 4. It decides whether or not

to accept matches by using the probability values produced by the correlator and the

agreement of matches with neighboring matches.

| From each matched pair of points found by this search procedure, the distance to the
corresponding point in the scene (and thus the coordinates of a point in three-dimensional

space) can be computed by using the stereo camera model. The computations for doing this,
including the use of the accuracy estimates, are described in Chapter 5.

The mathematics derived in this thesis for the above computations assume that the

relationship between points in three-dimensionai space and points in the image plane is the

central projection. (See, for example, Duda and Hart [1973]) Where this is not the case,

distortion corrections can be included in the computations to convert between the central

projection and the actual projection used, insofar as it is known. The places where this

occur in the processing are pointed out in the subsequent chapters. Two types of distortion

correction are available in the implemented programs. One of these assumes that the image
pixel coordinates, together with range, form a spherical coordinate system, as is the case

with the Viking Lander pictures. The other uses a two-dimensional polynomial to describe

the distortion. It is used with pictures taken with the Stanford AI Lab Cart, and a way of
calibrating this distortion is described by Moravec [1979 and 1980].

1.3 Three-Dimensional Modelling and Matching

Regardless of whether a scanning laser rangefinder or stereo vision has been used,

the result is the three-dimensional coordinates of a set of points in the scene. This must be

converted into a suitable form for storing in the data base of an exploring vehicle and for

comparing to previously accumulated information in the data base.

One possibility would be simply to express each point in terms of height as a function

of horizontal position, relative to a nominally horizontal reference plane. Points gathered

from several observations would simply be combined. When a scene described in this

fashion is compared to similar data in the data base, the heights would be correlated using

something similar to the ordinary two-dimensional correlation coefficient, except that it

would have to take into account the fact that the points are not equally spaced (there even
may be large blank areas). There are several disadvantages to this method. The data base

would require a large amount of storage, and a search to find the correct match would

require a large amount of computing. Therefore, the scene should be represented in a more

compact, abstract way.

The way that has been chosen here represents a scene in terms of ellipsoidal objects

and a ground surface. A scene represented in this way is in the form needed for obstacle
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avoidance, in addition to being suitable for storing and comparison with the data base. It

| is not necessary that the actual objects in the scene (for example, rocks on the surface of
Mars) be ellipsoids. Approximating them by ellipsoids, while throwing away a good deal of

- information about their shape, retains the important information needed for obstacle
avoidance (unless it is desired to pass very close to obstacles), and, if there are many objects
in a scene, sufficient information is retained for recognition. (Of course, some types of
obstacles, such as cliffs, could not very well be represented as objects in this way. However,

they could be included as part of the ground surface.)

Thus, information from one or more stereo pairs or scanning laser rangefinder views

is transformed into coordinate system aligned with a nominally horizontal plane. A ground

surface finder is then used to find the ground for portions of the scene, which may be tilted

slightly relative to the assumed horizontal coordinate system. In addition, the computed

ground surface may be curved and may have other complications, depending on the exact

method used, as described in Chapter 6. The ground surface finder operates by trying to

find a set of points that form a well-defined smooth surface that lies below most of the

other points. It allows a few points below this surface, such as might be caused by errors in

the stereo processing, and it allows a fairly large number of points above the surface, such

as might occur on objects.

The next step in the three-dimensional modelling consists of the application of an

object finder, described in Chapter 7. Points that are sufficiently far above the ground

surface are clustered into objects approximated by ellipsoids. Each ellipsoid is adjusted in

such a way so as not only to fit the points which seem to lie on this object but also to avoid

: hiding other paints as seen from the camera position.

The representation of the scenes used in the data base could use both the ellipsoid

information (their positions, sizes, and shapes) and some characteristics of the ground

computed by the ground surface finder (perhaps slope, curvature, and discontinuities).

However, only the use of the ellipsoid information has been implemented in a scene
matcher. For fairly flat ground covered with many objects such as rocks, this is the most

important information. |

The scene matcher compares the descriptions of two scenes in terms of ellipsoidal

objects, as described in Chapter 8. By using Bayes’ theorem it determines the probability
that two scene descriptions refer to the same scene and the translation needed to bring the

two scenes into alignment. It also can adjust for small rotations and scale factor changes.

The techniques described in this thesis have been tested on pictures primarily from

two sources. One of these is the old version of the Stanford AI Lab Cart described by

| Moravec [1977). The object finder was able to locate cars in a parking lot using pictures
digitized from the television camera on the Cart. The other source is the Viking Lander |

: on the surface of Mars. Sample resuits using these Mars pictures are given in appropriate
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places in this thesis. The Mars pictures used for this purpose are described in Appendix C.

1.4 Notation

Matrix notation is used heavily in this thesis. A reader who is unfamiliar with

matrix algebra can find the necessary background information in Hohn [1973]

Matrices are denoted here by capital letters and scalars by lower-case letters, with the

exceptions mentioned below. The transpose of a matrix A is denoted by AT, and the
inverse of A is denoted by A”'. The trace of a square matrix A (sum of the diagonal
elements, which is equal to the sum of the eigenvalues) is denoted by tr(A4), and the

determinant of A is denoted by det{A). The identity matrix of any size is denoted by I.

The term “vector” is used here in general to denote any column matrix. -

In the special case of a physical vector in three-dimensional space, the vector is

represented by a 3-by-1 matrix containing the components in a particular rectangular

coordinate system. However, in this case the symbol for the vector will be a boldface

lower-case letter instead of a capital letter, to emphasize its nature. The cross product of

two physical vectors a and b is denoted by a x b. The magnitude (=aa) of a vector a is
denoted by a or [a A unit vector is denoted by the symbol 1 with an appropriate

subscript. (Thus, a =al,, where a represents any vector, provided that a and 1, are
expressed in the same coordinate system.)

It sometimes will be needed to deal with derivatives involving matrices. The

derivative of a matrix (including the case of a vector) with respect to a scalar is defined to
mean the matrix whose elements are the derivatives of the elements of the original matrix

with respect to the scalar. The derivative of a scalar with respect to a vector (column

matrix) is defined to mean the row matrix whose elements are the partial derivatives of the
scalar with respect to the elements of the vector. The derivative of a vector with respect to

another vector is defined to mean the matrix composed of the partial derivatives of the

individual elements, such that the rows correspond to the elements of the first vector and

the columns correspond to the elements of the second vector. (That is, the {,] element ofdA .  ©9

oF iS — .) Other combinations are not defined.
J

Standard mathematical symbols are used. Thus the use of the symbol I" to denote the
gamma function and the references to the F test in statistics represent exceptions to the

above rule about capital letters being used for matrices.

Symbols for individual quantities differ from chapter to chapter and will be defined
as needed. |
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Chapter 2

| STEREO CORRELATOR

This chapter describes the correlator (called the high-resolution correlator in Gennery
(1977)) which refines local matches between a pair of pictures. It is the basic low-level
component which operates on raw picture data and produces the information used by all
the higher-level components of the system described in this thesis (except in the camera

model solution, if done, where Moravec’s interest operator and binary-search correlator also
operate on raw data, as described in Chapter 3).

2.1 Statementof Problem

Consider the following problem. A pair of stereo pictures is available. For a given
point in Picture I, it is desired to find the corresponding point in Picture 2. It will be

assumed here that a higher-level process has found a tentative approximate matching point
in Picture 2, and that there is an area surrounding this point, called the search window, in

which the correct matching point can be assumed to lie. A certain area surrounding the
given point in Picture 1, called the match window, will be used to match against

corresponding areas in Picture 2, with their centers displaced by various amounts within the
] search window in order to obtain the best match.

Let a(x,y) represent the measured brightness values in Picture |, a.(x,y) represent
the measured brightness values in Picture 2, x,y, represent the point in Picture | that we
desire to match, x,, y, represent the center of the search window in Picture 2, w,, represent
the width of the match window (assumed to be square), and w, represent the width of the
search window (assumed to be square), where x and y take on only integer values
representing individual pixels.

The following assumptions are made. The pixel values ¢, and a, consist of true
brightness values linearly related to each other, translated by an unknown amount in x and

3, and having normally distributed random errors added. The errors are uncorrelated with

each other, both within a picture (autocorrelation) and between pictures (cross correlation),

and the errors are uncorrelated with the true brightness values. (The assumptions

concerning errors hold fairly accurately for the usual noise content of pictures. However,

another type of change is perspective distortion, which can be important with large match

windows, but it will not be discussed here.) No assumptions about the nature of the true

picture content are made, except briefly when discussing interpolation in Section 2.5.

Thus the assumed relationship between the measured brightness values in the two
. pictures is
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a(x+x,=%,, J+3,-9,) + T(x, 5) = 014? + cax,y) + 1x9) (2.1-1)

where x,,9, is the true matching point in Picture 2 corresponding to x,,%, in Picture I,
r(x.y and r(x,y) are independent normally distributed random variables (noise), and &
and ¢ are the brightness and contrast changes (bias and scale factor) between the pictures.

(The factor J I+¢? is included in the bias term so that the bias represents the perpendicular
distance from the origin in a,, 6, space to the straight line with slope of ¢ which represents
the relationship between a, and a,. This makes the relationship symmetrical with respect to
interchanging a, and a)

It is further assumed that a priori values of bias and scale factor _ and ¢, and their
standard deviations 0p, and 0, are available. There may also be some information

0 0

available about the standard deviation of the noise, as described in Section 2.3.

The correlator should use the information in the pictures (the portions specified by
the windows) and whatever information is available about bias, scale factor, and noise in

order to arrive at an estimate of the matching point x, y,, suppressing the noise as much as
possible based on the statistics of the noise. It also should produce an estimate of the

accuracy of the match in the form of the variances and covariance of the x and ¥%

coordinates of the matching point in the second picture, and an estimate of the probability
that the match is consistent with the statistics of the noise in the pictures, rather than being

an erroneous match. The subsequent sections explain how these goals are achieved.

2.2 Basic Correlator

It is assumed in this section that the standard deviation of the noise is known for

every point in each picture, that the bias and scale factor are known to be zero and unity,

respectively, and that x, and y,, are integers (that is, no fractional-pixel shifts have occured).

Thus we now wish to find the matching point x,y, which will produce the best

match of a,(x+x,-x,, y+3,-9,) to a,(x,y) in some sense. Traditionally the match which
maximized the correlation coefficient between a, and a, has been used (as in Hannah
[1974]). Indeed, this is optimum when the bias and scale factor are completely unknown, if
one of the two functions has no noise. However, here both functions have noise. This fact

introduces fluctuations in the cross-correlation function which may cause its peak to differ

from the expected value. Ad hoc smoothing techniques could be used to reduce this effect,

but an optimum solution can be derived from the assumed statistics of the noise.

Let £ represent the w?-vector of the differences a (x+x, —x,, 3+3..-%,) — ¢ (x, y) over :
the w, -by-w, match window, for a given trial value of x,.,9,,, and let x_,y, represent
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the true (unknown) value of x_,9,,. Let p represent a probability and 0 represent a
probability density with respect to the vector E. Then by Bayes’ theorem

(Xps Yn=%er Je) BCE | Xp Yn=%cs Ic)
Pps Im=¥es Je | E) = pp I rd Seeme Joe: Je fo ros (22-1)Po mrIm=%er Ye) PAE | X11 I=%e1Je

If we assume that the a priori probability p{x,.,¥,=%.. J.) is constant over the search
window and is zero elsewhere, this reduces to

PX Im=%er Ye | E) oc P(E | Xp: Im=%er Ve) (22-2)

Since E consists of uncorrelated normally distributed random variables,

(2.2-3)

= ex (- —_—P\"2 02+ 72)
where ¢; denotes the components of E, 0", and 0, are the standard deviations of a, and a,,
and the product and sum are taken over the match window. (Very often, the variances 0-2
and 02 can be considered to be constant. In this case, the summation can be reduced to the

| sum of the squares of the differences over the match window, with the sum of the two

variances factored out.) Thus, defining w to be

of
w = ex (- em 2.2-4P\"2 ) 0+ i)

produces |

px I=%or9 | E) = Rw (2.2-5)

where k is a constant of proportionality.

So far, the derivation is quite usual. If we simply wanted to maximize p (for the

maximum likelihood solution), we would minimize the above sum (that is, use a weighted
least-squares solution). However, because of the fluctuations in w caused by the presence of
noise in both images, the peak of p in general differs from the center of the distribution of

p in a random way due to the random nature of the errors.

Therefore, we define the optimum estimate of the matching position to be the

mathematical expectation of x, ,y, according to the above probabiiity distribution. Thus,
letting (x,, y) represent this optimum estimate, we have
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oo wx,
Xp = —gvo—

(2.2-6)
Z wy,

2° Tw

where the sums are taken over the search window. The variances and covariance of x, and
J, are given by the second moments of the distribution around the expected values:

| L wx?
2 m2

O%, ) w %q

Z wy?
2 m _ 2 -

Z wx, Yn,
a, © "Tw

i 2 2

The covariance matrix of x, and jy, consists of Os, and Oy, on the main diagonal and
ry, on both sides off the diagonal.

Because of the finite search window size, the covariance matrix computed by (2.2-7)

may be an under-estimate. It is possible to apply an approximate correction for this effect
(and the implemented correlator does so), but as long as the width of the correlation peak
represented by (2.2-5) is considerably less than the width of the search window, the effect is |

negligible.

| It might appear that the above analysis is not correct because of the fact that certain

combinations of errors at each point of each picture are possible for more than one match

position, and the probability of these combinations is split up among these match positions.

However, this fact does not influence the results, as can be seen from the following

reasoning. The possible errors at each point of each picture form a multidimensional space.
When a particular match position is chosen, a lower-dimensioned subspace of this space is

selected, in order to be consistent with the measured brightness values. When another

match is chosen, a different subspace is selected. These two subspaces in general intersect, if
at all, in a subspace of an even lower number of dimensions. Thus the hypervolume (in the

higher subspace) of this lower subspace is zero. Therefore, the fact that the two subspaces

intersect does not change the computed probabilities. |

The computation of the output probability estimate depends on some quantities

computed in the variance estimation portion of the computations, so it will be discussed in
the next section.
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| 2.3 Variance Estimation

If the amount of noise in the pictures is not known, it is possible to estimate it from
the pictures themselves, provided that some assumptions are made about the way in which
the variance (square of the standard deviation) of the noise varies over the pictures. In
some cases, the variance may be a function of brightness. For example, shot noise variance,

which is the primary source of noise with some photodiodes, is proportional to the
amplitude of the signal (and thus the standard deviation is proportional to the square root

of the signal). For some solid-state cameras the noise might need to be calibrated for each

pixel in the picture. (If it can be completely calibrated, then it can be used in the equations

in Section 2.2, and no variance adjustment is needed.) It is assumed in this section that the

noise variance is constant over each picture. (If it actually varies with brightness in a
known way, the data can be transformed by a nonlinear function to make the variance

constant. For example, taking the square root of each pixel brightness value will cause shot

noise to become constant.) |

Let v represent the total variance in both pictures. Thus

v = 07+07 (2.3-1) |

The task at hand is to estimate v, since this is the quantity that is needed in (2.2-4).

Often some knowledge is available about the noise variance, even if it is not known

exactly. It is assumed here that this knowledge can be represented by a chi-square

distribution. Let the a priori value of v be denoted by ».. Then it is assumed that uv has
the chi-square distribution with n_ degrees of freedom. This assumption is made both for
its convenience in the subsequent calculations and because of the fact that, if the variance

has been estimated by squaring n, samples from a normal distribution and averaging them,
it will have this distribution. Thus n, can be considered to be the weight of the
observation v,. (See Hogg and Craig (1965) for this and other information about the
chi-square distribution.) If the variance is completely unknown, n, = 0. If it is known
exactly, n, = =.

An estimate of the variance can be obtained from the goodness of fit between the two

pictures when matched. This computed estimate is denoted v.. If the correct matching
point x_,y, were known, it could be used for x,y to compute the vector of differences

between the two pictures £, and then a good value for v, would be the mean square value
of these differences, Zef/w?. However, the correct match is not known. However, w from
(2.2-4) is proportional to the probability that each x,y match is correct, according to
(2.2-5). Therefore, a weighted average over the search window, with w as the weight, of the

| mean (over the match window) squared value of the differences is used as a preliminary
vaiue for v,. That is,
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, ZTwZXe) (25-2)v, = ——— :

€ w? Tw |

where the outer sums are taken over the search window and the inner sum in the

numerator is taken over the match window. (Remember that @ and the differences e; are
implicit functions of the position of Xs9m Within the search window, in addition to e;
being a function of the position within the match window as indicated explicitly by the

subscript i) Since the computation of w requires the value of v in (22-4), the process is
iterative, and v from the previous iteration is used to compute # in this iteration.

The estimate given by (2.3-2) is called “preliminary” because the process of averaging

over the search window, weighted by w, introduces a bias. The mean squared residuals

fluctuate over the search window because of the random nature of the noise in the pictures.

The weights are computed from this value according to (22-4), and thus there is a

statistical tendency for the smaller values to have the greater weights. This causes u, to be
an underestimate of the variance by varying amounts depending on the sharpness of the

correlation peak. At one extreme, the correlation peak is very sharp, one value of w is

much larger than all of the others, and thus only one term has any appreciable effect in the
summation over the search window, and since this is almost certainly the correct matching

point there is no bias in v, At the other extreme, when the correlation peak is very broad,
there are many roughly equal terms in the summation, with fluctuations from noise greater

than their difference from the peak caused by true brightness differences across the

pictures. In this case »_ approaches being an underestimate by some constant factor.

| To see how much of an underestimate is produced in the limiting case of a very
broad correlation peak, first note that the sum of the squares of the differences has the

chi-square distribution with w? degrees of freedom (because the noise has the normal
distribution). Specifically, if we define

Ze
U =  —

| v

(2.3-3)

n= wl

where v is the true total variance, then the probability density function of u is

Cb. lL un/2-texp( 5) | | (2.3-4)
T( 3 )2"/2

| | 2

Now assume that the variance is known exactly, so that the correct variance is used in
(2.2-4), which becomes

u

w = exp{- 5) (2.3-5)
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(The variance may not be known at the start, of course, but as the method iterates to a final

solution for variance, a good estimate of the variance will become available to compute w.)
Then (2.3-2) can be rewritten as

, v2 wu

In the limit as the search window over which the summations are taken increases without

limit, the ratio in (2.3-6) approaches a constant that is the ratio of the expected values of
the quantities wu and u. Thus,

0

0) Pwudu
ve = —e (2.3-7)

nf pPwdu
Substituting (2.3-4) and (2.3-5) into (2.3-6) produces

©
v[ —o— uh/2-Yex p(-u)udu

° T(z
Ve = cc, n/2-1 -nf —Es w=" lexp(-u)du

T(5)2
(2.3-8)

© 2u
of ——— (2u)"/ >lexp(— = X2u)d(2u)

O (2 yon/2 2 |
2 |

onI —_(2u)2=lexp(~ £2 Yd(2u)
° T(z)? ‘

| 2

But the integrand in the last denominator is the probability density function of the

chi-square distribution with n degrees of freedom and 2u as the variable, which integrates N
to unity, and the integral in the numerator similarly is the expected value of the chi-square

distribution with n degrees of freedom, which is n. Thus (2.3-8) simplifies to

, /

This means that in this extreme case the variance computed by (2.3-2) is only half as large
as it should be.

Thus vis too small by a factor that can be anywhere from 0.5 to 1. Since this range
is so small and since variances are seldom known very accurately anyway, it is possible to
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adequately correct for this bias by an empirical formula. A way of determining

approximately where we are between these extremes is to examine the minimum value of

Zef/w? over the search window, denoted by v, Because this is the quantity which is
averaged to produce u,, if the correlation peak is sharp v,, is approximately equal to oz.
But v_ tends to become smaller and smaller relative to v, as the correlation peak becomes
broader, because of the statistical fluctuations. By simulating a variety of cases with

pseudo-random numbers, an approximate correction factor based on the ratio v/v, was
determined. It is applied to the variance estimate as follows:

Ye
Vp = —— (2.3-10)

1-0.5(1- =)
Ve

where v_, is the minimum value of Zef/w? over the search window, as defined above.

A weight, or accuracy estimate, must be assigned to the above variance estimate so

that it can be combined with the other sources of information. The exactly correct weight

to use would be difficult to determine. A conservative approximation which is adopted is

to consider v, to have the chi-square distribution with n_ degrees of freedom, where n_ is
w? -2 or 200, whichever is less. (Thus n_ is the weight) The reasons for this choice are
that the mean squared differences would have the chi-square distribution with w? degrees
of freedom at the correct matching point, two degrees of freedom are subtracted to allow for |
the two degrees of freedom that are involved in adjusting the position in the image plane,

the averaging over the search window increases the weight somewhat but in a way that is

hard to estimate (because of the duplication of data influencing the average), and the
approximate nature of the correction factor introduces some additional uncertainty, for
which the limit of 200 is included.

A third source of information about the noise in the pictures can be obtained from

their high-frequency content. This produces only an estimate of an upper limit to the

variance, because the high-frequencies may contain true picture information in addition to

noise. However, the high spatial frequencies are better to use for this purpose than any

other frequency band, because picture content usually tends to be concentrated at the lower

frequencies. First, the square of the output of a simple two-dimensional high-pass filter is

computed as follows for each picture:

yo [aG=1,9) + afer],9) + ax, 3-1) + alx, y+ 1) — 4 alx, HF 2.311)
20

Then VU is averaged over the match window in each picture and the results for the two

pictures are added together to form the estimate of the upper limit of », denoted v,. The

weight assigned to this estimate is n, = 202, because this is the number of observations
which are averaged to produce the estimate. |
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Thus there are three estimates of noise variance, v,, v,, and v_, with weights n_, n_,

and n,, which result from the a priori values, goodness of fit, and high-frequency content,
respectively. These must be combined to produce an overall estimate of variance », and

: must be compared to produce the probability estimate. (Some of the above formulas for
these quantities will be altered slightly in subsequent sections.)

If the estimate of v on the current iteration is less than VU, the value of v, does not
matter, since it is only an upper limit. Therefore, in this case the new estimate of v is the

weighted average of v, and v,, as follows:

RU + NY |
) 2 —m—tr (2.3-12)

| n, +7,

On the other hand, if the current estimate of v is greater than vu, all three values are
averaged, as follows:

ny, +n uv + ny |

U = 00 uu ct (2.3-19)
| n, +n, +n,

The iterative process for v as described above undergoes linear convergence, and in

some cases it converges rather slowly. Therefore, convergence acceleration is applied to it,

using a one-dimensional special case of the acceleration method described in Appendix A,

| which is equivalent to Aitken’s extrapolation (see Acton [1970]).

The probability estimate is derived by comparing the estimate of noise variance
obtained from the goodness of fit (s,) to the other estimates. Since it is assumed here that
each of these estimates has a chi-square distribution, the Snedecor-Fisher F test is the

appropriate way to do this. (See Hogg and Craig [1965])). If the value of v_ on the last
iteration is less than v , the value of v, does not matter, approximately. Therefore, in this
case the quantity computed is the probability that the ratio of the variance of a sample with

n. degrees of freedom to the variance of a sample with n, degrees of freedom, both from
the same distribution, will exceed v/v, On the other hand, if the final value of v, is
greater than »,, both », and and v, must be considered. However, in this case the
distribution of the combined v, and ov, values is not chi-square because of the fact that »,
is only an upper limit. As an approximation, the lesser of two F-test probabilities is used,

one as above using v,, and the other using 7, instead, with n,, degrees of freedom.

24 Brightness and Contrast Adjustment

| In many cases changes in the brightness of each point in a scene may occur between

| the two pictures of a stereo pair. Some causes are differences in the cameras that took the
two pictures, directional reflectivity of the surfaces, and changes in illumination if the
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pictures were taken at different times. It is assumed here that these changes can be

approximated within the search window of the correlator by a linear function. Thus the

changes can be represented by brightness bias and contrast change (scale factor) between the
two pictures. -

In order to allow for change in brightness and contrast between pictures in area

correlation when using ordinary cross correlation, a common approach has been to use the

correlation coefficient as the quantity to be maximized, as in Hannah [1974] The
correlation coefficient is normalized so that it is invariant under a linear transformation of

the brightness values. However, using such a criterion throws away a lot of information

about the pictures unless the brightness and contrast changes are completely unknown,
which is seldom the case. The correlator described here has the ability to incorporate the a

priori knowledge about these changes in the form of the standard deviations Op, and Oe.
If these are infinity, the changes are completely unknown, and the correlator is free to

adjust them in order to obtain a good fit, as with the ordinary correlation coefficient. At

the other extreme, if these standard deviations are zero, the changes are constrained

completely, and the correlator accepts only an exact match between the pictures, except for
noise.

The equations derived below include a weight equal to the reciprocal of the variance

for each point, so that they can be used in the general case where the noise variance is not
constant over the picture. If the variance is constant, it can be factored out of the

summations. If the variance adjustment described in Section 2.3 is done, the variance must |

be assumed to be constant, and factoring out the variance avoids having to recompute

things as the variance changes during the iterations. (The implemented version makes this
assumption always.) The variance 0% to be used here is the variance in each picture, if the
variances are equal in the two pictures, which is 9/2. If the variances are not equal, what is

wanted is the the component of variance perpendicular to the line with slope ¢ in a, a,
space. Letting & = arctan ¢, we have

0? = o?sin?0 + 02 cos® 0 (2.4-1)

(In general, this equation would also include the term -20,, sin € cos 8, but, since we have
assumed that the noise in the two pictures is uncorrelated, 0, is zero.) However, the |
eigenvector method described below assumes that 0° = 0, (that is, the amount of noise in
the two pictures is equal). If they are widely unequal, large departures from optimality may
occur. If this is the case, one of the pictures can be rescaled to make the variances at least

approximately equal. Note that equation (2.4-1) requires the use of ¢ (to obtain @), which
has not been computed yet. In general, this could be solved by iteration, but if the

variances are approximately equal, using ¢, for ¢ here should suffice. (If 0, = 0", exactly, 0
drops out of (2.4-1).) | :
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First consider 0, and 0, to be infinity. Then at any tentative matching position
0 a

X..,9, What is desired instead of the sum of the squares of the differences in (2.2-4) and
(2.3-2) is a measure of dispersion about a linear fit between the values in ¢, and a, taken

: over the match windows. This is equivalent to fitting a straight line to points in two

dimensions, where the errors occur in both coordinates of each point. As discussed by

Duda and Hart [1973], the appropriate method to use in such a case is the eigenvector

method. In the unweighted case, this method minimizes the sum of the squares of the

perpendicular distances from the points to the fitted line, the minimum value achieved is
the smaller eigenvalue of the distribution about its mean, and the direction of the line is the

eigenvector corresponding to the larger eigenvalue. The measure of dispersion that is

desired here is this minimized sum. (Actually, twice this is equivalent to the sum of squares

of differences, because the difference between an a, value and an a, value is J2 times the
distance from the corresponding point to a 45? line through the origin in a,, a, space.)

In order to compute the eigenvalue desired above, the weighted moments of the

distribution about the mean are first computed, as follows: |

I l 4 \2

n © 2 = (a - = 2 =3

Sp = 2 L(a-13 2) e- 1 3 2) (24-2)12 g2 | n 02 (22 n 02 ]
I I ds \2

CRI 1CEE PE)
where

1

n= >, 02

and where the summations are taken over all points in the match window, with a, and a,
aligned according to the current value of Xm and Ym {that is, a (x+x—%,, 9-7) is
paired with a (x, y)). Then the smaller eigenvalue is

1 Jogms, P+ 452) (24-3)| Sm om Spt Sym JUS + HY 4-

This eigenvalue replaces Lel(oi+02) in (2.2-4), so that instead of (2.2-4) the
following is used to compute w:

Ww = expl- 35) (2.4-4)

If variance is being adjusted, s is multiplied by the current value of 20 (assumed to be
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constant over the picture), which cancels out the effect of 0 in these equations, to obtain the
value which replaces Ee? in (2.3-2). Thus, instead of (2.3-2), |

, 202 ws

we, & W

Now consider the effect of the a priori knowledge about brightness bias. This
knowledge can be incorporated into the solution by introducing a fictitious point into the

summations in (2.4-2), which represents a point through which the fitted line would have to

pass if b = b exactly. The coordinates of this fictitious point are ¢, = “bot 1+¢? and

a,=b,/J 1+¢%. (The value of c to be used here can be ¢, as a reasonable approximation, or
the solution can be iterated using improved computed values of ¢ on each iteration. The

implemented version assumes that b, = 0, in which case a, and a, are both zero for this
fictitious point.) In order for this fictitious point to have the proper amount of effect

according to the assumed accuracy of &, it must be weighted by the reciprocal of its
variance. Since the variance of this fictitious point in each dimension is 0°§ ,

0 :

| ny = —— (24-6)
0 of

0

The extra values of a, and a, are multiplied by n; and added into the summations in
0

(2.4-2), and n is increased by ny in (2.4-2). :
0

| The a priori knowledge about contrast change can be incorporated into the solution |

in the following way. Consider the effect of adding two fictitious points to the solution,

each at a distance r from the origin in opposite directions from the origin on a line with

slope ¢, in a,,a, space. Let the angle between this line and the a, axis be 0, so that ¢, =
tan 0, (In the implemented version c, is assumed to be unity, and thus 0, = 45%) Then a
= +r cos 0, and a, = +r sin 0, for these points. The a priori accuracy can be expressed in
terms of the standard deviation of the angie,

oy = 0, 0s, (2.4-7)

Let 0, be the assumed standard deviation of the fictitious points in each dimension. If
these two fictitious points were the only points in the solution, Oy would represent the

0

accuracy of the direction of the line connecting them. Since the distance between the points

is 2r, each point contributes (0°/2r)? to the variance of the angle, so that the effect of both
points produces

02 a | 2.4-8
i," (24-8)
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T he weight that each fictitious point should have is the reciprocal of its variance:

ng = — (24-9)
| 0 02

. 0

Solving (2.4-8) for 02 and substituting into (2.4-9) produces

l

fo 2%}
0

When the two fictitious points are included in the summations in (2.42), their contribution
to the outer summations (considering the means to be constant) are

| 2 cos?

As, = 2n, 7 cos* 0,

As, = 2n, 1° sin 8 cos 8, (24-11)
2 cin?

| Asy, = 2m, 1 sin® 0,

Substituting (2.4-10) into (2.4-11) produces |

l
As, = — cos?

11 0} 0
. 0

1.

Ds, = 3 sin 0, cos 8, (2.4-12)
0

| As, = 2 sin? 0,
of

0

Note that r has canceled out of (2.4-12). However, in the inner summations in (2.4-2)
(computing the means) it will not cancel out. Here r will appear in the first power in the
denominator. Therefore, in the limit as r goes to infinity, these terms drop out and

equation (2.4-12) correctly gives the entire effect of the fictitious points. It was considered

above that 0p represented the accuracy of the direction of the a priori line if only the
0

effect of the fictitious points were considered. However, again in the limit as r goes to

infinity, the effect of the fictitious points interacting with the real points to affect the

direction becomes zero, because the centroid of the fictitious points is constant (at the origin)
and their weight becomes zero, according to ((2.4-10). Therefore, equation (2.4-12) correctly

gives the effect of the a priori contrast knowledge.

The brightness and contrast adjustment can now be summarized as follows. For each

position x,,,%,,, equation (2.4-2) is used, including the fictitious point for b, with weight
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given by (2.4-6), the results are augmented by (2.4-12) and are then used in (2.4-3), and the
resulting value of s is used in (2.4-4) and (2.4-5).

Although the above computations correct for brightness bias and contrast changes
between the pictures, explicit values for the changes (b and ¢) are not produced. These may

be desirable, however. Values resulting from the application of the correlator to some parts

of the pictures may be used to improve the estimates b, and ¢, given to the correlator when
it is operating on other parts of the pictures. The above computations are done for all

tentative matching positions within the search window, but single values of and ¢ are

desired, computed from the apparently correct match.

Thus the adjusted values of b and ¢ are computed in the following way. First, the
matching point computed by (2.2-6) is rounded to the nearest pixel. Then the values of

Sir Si and Son computed as described above for this Xm Im position (including the
fictitious point and the A terms) are selected. The eigenvector of this distribution

corresponding to the larger eigenvalue determines the scale factor ¢. (The eigenvector

makes an angle § with the a, axis, and ¢ = tan 8, as previously described.) The direction of
“this eigenvector can be found from the following relationship:

Sop = S11 + fis -5. 2 + 452
¢c =tanf = RC Ul.+ 2 1 12 (2.4-13)S12

Then b is the perpendicular distance from the origin to this eigenvector, where the line :

representing the eigenvector is assumed to pass through the mean of the distribution.
Therefore,

a a
2 |

cos 0 > p= —sin0 3
bom — 20 (24-14)

n

where the summations include the fictitious point for b , and n similarly includes ER

2.5 Interpolation

The computations described in the previous sections assume that the shift between

the two pictures is always an integer number of pixels. In this section that assumption is

removed, and the effects of noninteger values for x, and jy, and how to deal with them are
discussed. First will be discussed how to obtain satisfactory performance from the correlator

in spite of these effects, without any particular attempt to produce subpixel accuracy in the

x, and y, matching position estimates. Then a way of interpolating to produce this subpixel
accuracy will be discussed briefly.
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In cases where the correlation peak is broad (caused by a low signal-to-noise ratio),

the smoothing process inherent in the moment computation for x,, J,0 Oy, and 0°,7s
cause a reasonable interpolation to be performed if the correct answer lies between pixels.

: However, when the correlation peak is sharp (caused by a high signal-to noise ratio), this
will not happen, and the answer wiil tend towards the nearest pixel to the correct best
match. This is not particularly serious insofar as it affects the position estimate, but it can

have a serious effect on the variance estimate v, and thus on the probability estimate also.
This is because the E vector should be much smaller at the correctly interpolated point than

it is at the nearest pixel, because of the sharp peak. Therefore, », may come out much too
large, causing the probability estimate to be much too small, indicating a bad match,

whereas the match actually is good but lies between pixels. To overcome this deficiency, the

previously described computations are slightly modified.

Because of the tendency for x, and y, to tend towards the nearest pixel, the

covariance matrix is augmented by adding n to 02 and ol (Unity pixel spacing in x and
y is assumed here, as before.) This is done because the variance of a uniform distribution

with unity width is =. This in general overestimates the variance, since it assumes no
inherent interpolation ability in the correlator.

The effect on the variance estimate will now be discussed. Without knowing

something about the nature of the pictures, it is impossible to accurately correct for this

phenomenon. However, a crude approximate correction can be made to Y., and its weight
) n, can be decreased by a liberal amount to allow for the uncertainty in this estimate.

. Consider the various estimates of » which can be obtained from Xe3/w?, or 20%s/w?2,
for each position within the search window. The minimum value of this quantity,
previously denoted v_, occurs at some particular position within the search window. Now
consider the two such estimates for v obtained at one pixel displacements in the +x direction

from this minimum. Let Av, denote the difference between these two values. Similarly let

Qv, denote the difference between the two values displaced one pixel in the ty directions.
A sort of worst case assumption, which assumes that the true function wanted here is a
V-shaped function in each dimension, leads to the conclusion that the true minimum of the

function is less that v, by (1Qv +A D2. However, if the corrected weighted-average
value v, from (2.3-10) is appreciably greater than »_, the averaging process is doing some
interpolation, and thus there is less need for a correction term. Therefore, the quantity

V.—¥,, Is subtracted from this quantity. Furthermore, if z_ is greater than the v estimates at
neighboring pixels, the corresponding values are replaced by v_ in the computation of Av

and Av, for similar reasons. Since the resulting correction ({Qv Av, 2 -v, + VU
represents sort of a worst case, it is divided by 2 to obtain an actual correction (net to be

less than zero), which is subtracted from v,, and the uncertainty in this correction is about
the same magnitude. Thus, let
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Ay, = max (0, + 80] + Poy ~v, + 2) (2.5-1)
The corrected value of »_ is then

v, = max(0, v, - Ov) (2.5-2)

The weight n, must be adjusted to reflect the uncertainty in the correction. This can
be done by using the fact that the mean of the chi-square distribution with n degrees of

freedom is n and its variance about the mean is 2n. Thus, if it is assumed that the

additional uncertainty in ¥, caused by the uncertainty in this correction has a standard
deviation equal to Av, the corrected weight can be found from

2

4 = 1 + Avg (2.5-3)
LLP Re 202

The corrected quantities 7, and 7, are used in place of v, and n, in the equations in the
previous sections.

If the information in the pictures could actually be interpolated to produce interpixel
values, not only could a better corrected variance and weight be produced than by using the

above crude corrections, but the position estimates x, and y, could perhaps be refined to

subpixel accuracy, with their variances becoming considerably less than the J values used -
above. Ways of doing this will now be discussed.

In order to interpolate, some assumption must be made about the nature of the

pictures. For example, if the pictures consisted of white noise, and they were sampled
without any filtering to produce the digitized versions, there would be no way that any
useful interpolation could be done (other than just setting all interpixel values to zero),

because the interpixel values would be completely independent of the pixel values. At the

other extreme, suppose that any content that the pictures contain at higher spatial

frequencies than ; (the Nyquist frequency) in each dimension has been removed by
filtering before the pictures are sampled. Then in the absence of noise it is possible to

_ reconstruct the unsampled filtered pictures exactly by Fourier interpolation. Ordinarily the

situation is between these extremes. There will be some content above the Nyquist

frequency before sampling, and the sampling process folds this content into the frequencies

below the Nyquist frequency. This process, known as “aliasing”, contaminates these lower
frequencies with this extraneous information, so that when interpolation is done based upon
the information in these lower frequencies, errors are produced. In order to know how to
interpolate the data to keep these errors small, some statistical knowledge about the amount

of aliased content must be available.
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If a certain power spectrum of true picture content could be assumed, the amount of

| aliasing could be computed at each frequency, and thus a weighting function of frequency
could be derived, based on the accuracy of each spatial frequency as deduced from its

amount of contamination. Then a Fourier interpolation could be done, but instead of

cutting off precisely at the the Nyquist frequency, the computed frequency components

would be multiplied by the weighting function, causing a gradual cutoff as the Nyquist

frequency is passed. The result could then be transformed back to the space domain to

obtain interpolated data. Also, an additional variance component representing the
uncertainty in the interpolation would be computed, as a function of the interpolation

position. (The variance due to noise usually is less for the interpolated points because of

the averaging that occurs in the interpolating process, but the additional variance caused by

the aliased picture content usually causes the total variance to increase.)

An interpolating version of the correlator has been produced based on the above

reasoning. It interpolates g, to a finer sampling interval in both dimensions, with the
option of two different assumptions about the nature of the power spectrum, one of which

produces linear interpolation. Then a, is compared to the interpolated a, at the original
sampling interval as required for (2.2-4) or (2.4-2), with 0; augmented for the interpolating
error, but this is done for every position within the search window at the interpolated

sampling interval to produce the summations in (2.2-6) and (22-7). Then the approximate

interpolation corrections described above are applied at this interpolated sampling interval
instead of at the original sampling interval. (If the interpolation is done at a fine enough

sampling interval, this last step is not necessary, but it is usually not known beforehand how
fine an interval is needed.)

Although this interpolating version of the correlator can produce greater accuracy in

some cases, it is very slow. It was developed for a special application while the author was

at Lockheed, and it has not been used in any of the other research described in this thesis.
Therefore, it will not be described in further detail here. (The usual version of the

correlator does use the approximate interpolation corrections previously described, however.)

2.6 Color |

The description of the correlator in the previous sections assumes that the pictures
are monochromatic, and this is the case in the implemented version of the correlator.

However, most of these computations generalize readily to handle color pictures.

If color pictures are used, then for each pixel the scalar a, or a, is replaced by the
vector A, or A,, with one component for each primary color being used. Of course, it is not

: necessary to use three primary colors, as with human vision. In designing a vision system to

perform a particular task, the number of primary colors and the bands of wavelengths to

which they correspond would be chosen according to how the content of typical scenes
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varies at different wavelengths. Thus the 4, and A, vectors might well have more than
three components. (It is not even necessary that all of these components be obtained from |

brightness at certain wavelengths of light. Some might come from other information, such
as parameters describing texture obtained at extra high resolution, or sonar data.)

In equation (2.2-4), where the square of a difference ef is used with monochromatic
pictures, the sum of the squares of the components of the difference of the two vectors could

be used instead for color pictures, if all components of the vector were equally accurate.

However, in general the noise in each primary color will be different, and thus the square

of the difference of each component must be divided by the variance of that component

individually, and these results summed to replace e}(03+02) in (22-4). A more general
form to use when the noise in the different primary colors is correlated would be to use the

quadratic form produced from the vector and the inverse of the covariance matrix which

describes the noise. Equation (2.2-4) would then be replaced by

w = exp(-3 2 (A,-A4)7(5+5.)(A4,~4,) (26-1)

where §, and 5, are the covariance matrices of the vectors 4, and A,, these quantities are
to be aligned according to the current position within the match window as described in
Section 2.2, and the summation is over ali positions in the match window. (The subscript i

has now been dropped, and the dependence upon position within the match window is now
implicit) However, ordinarily the noise in the different channels is uncorrelated, and thus

S, and S, are diagonal matrices, and (2.6-1) reduces to the simpier form described above.

In the variance estimation, there will now be a separate component of variance to

estimate for each primary color. Equations (2.3-2), (2.3-10), (2.3-11), (2.3-12), and (2.3-13) :
can be applied independently for each component. However, a more general form is

possible, as with (26-1), in which a complete covariance matrix is estimated. To do this,

instead of squaring each single component ‘in (2.3-2) and (2.3-11), the outer product of a
vector with itself is taken (that is, the matrix product of the vector times the transpose of

the vector) to produce a square matrix. As stated above, this would seldom be necessary.

In order to obtain the probability estimate, a separate F test could be computed for

each primary color. The product of the resulting probabilities could be used as the result.

If brightness bias and contrast change are to be adjusted, there are several

possibilities, depending on exactly what is wanted. If a separate adjustment for each

primary color is wanted, the equations in Section 2.4 can be used separately on each

component. However, if a single adjustment affecting all channels equally is desired, these

computations would have to modified slightly to include this constraint. The most general

linear relationship between the two vectors 4, and A, would be to premultiply one of them
by a square matrix of contrast coefficients and then to add a vector of bias coefficients.

Haw all of these coefficients could be determined is beyond the scope of this thesis, and it is
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hard to imagine how such a relationship (including nonzero off-diagonal elements in the
) matrix) would be produced by a reasonable vision device.

| 2.7 Speed

In processing a typical stereo pair of pictures by the technique to be described in

Chapter 4, the correlator is applied thousands of times. More than half of the total

computing time through ail of the computations described in this thesis can be spent in the
correlator. Therefore, considerable effort was put into making the correlator efficient.

It might appear that most of the time in the correlator would be spent in computing
the sum of squares of differences needed in (2.2-4) or the sum of products needed in (2.4-2).

(For example, if w, = 8 and w, = 8, there would be 8%=4096 total terms in all of the
summations needed in (2.2-4) over the search window.) If the code for these computations
were written in a straightforward way using nested FOR loops, this would be the case.

(Fourier-transform methods are faster only with large windows) However, a special
method for computing the needed sum of squares of differences developed by Moravec

[1977] is used in the implemented correlator. This utilizes the fact that the pixel brightness
values can be represented by small integers. It does the difference by indexing with a

register and does the squaring by a table lookup. The machine code for this is compiled in

line for the entire match window by the program. Then the main program uses this code

for each position within the search window. The entire inner loop of this code (each term

of the summation) consists of one Move Negative instruction and one fixed-point Add

) instruction and requires about one microsecond on the PDP KL10.

When the bias and contrast adjustment is done, a sum of products is needed in

(24-2). Since 2a,a, = al+a2-(a-a,), this is computed from the sum of squares of
differences and two sum of squares. The sum of af over the match window is constant, and
the sum of a> over the match window is computed quickly for each position within the
search window by the usual moving-average technique of adding new points and

subtracting old points as the match window moves. Alternatively, this latter sum of squares

could be computed by specially compiled code similar to that for the sum of squares of
differences.

Various other techniques are used to speed up the computations. For example, the

exponential function needed in (2.2-4) is computed by a table lookup, and, if the argument
is so large that w will be negligibly small, the computations using w are bypassed for this

position within the search window. Also, in computing the moments according to (2.2-6)

and (2.2-7), symmetry is utilized, so that the number of multiplications is cut almost by a
: factor of four.

The actual amount of time used by the correlator depends upon the sizes of the
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search window and match window, the signal-to-noise ratio, whether brightness bias and
contrast are adjusted, whether the variance upper limit from high frequencies is used, and

the accuracy of the a priori variance estimate. If w, = 8 and w_, = 8, the CPU time on the
PDP KL10 ranges from about 14 milliseconds to about 70 milliseconds.
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Chapter 3

STEREO CAMERA CALIBRATION

In order to do the computations to be described in Chapters 4 and 5, the stereo

camera model (the relative position and orientation of the two cameras which produced the
stereo views) must be known. In some cases this is known beforehand. If it is not, the

information to calibrate the stereo camera model can come from the pictures themselves.

This chapter describes such a self-calibration method. This problem is known as the

relative orientation problem in photogrammetry. (For example, see Schut [1957 and 1959].
However, the data for the adjustment is obtained in a different way here, as described in
Section 3.1, the additional features described in Section 3.2 are used, and the basic

formulation of the problem here is somewhat different from the usual approaches in

photogrammetry, as pointed out in Section 33. (Some of these solutions used in

photogrammetry allow the use of many cameras, instead of just two, however, as in Davis

[1967]) An equivalent problem occurs when a single fixed camera views a moving object

at different times. Such a problem is treated by Ullman [1976], although he considers

mainly the case of three views of only four points. Here, only two views are used, and thus

at least five points are required for a solution if there is no other information.

3.1 Points for Self-Calibration |

In order to extract the necessary information from the pictures themselves, some

features or points must be matched between the two pictures. Since the camera model is not
yet known, this requires a two-dimensional search. However, the number of matches

required is not large. It should be at least as great as the number of camera model

parameters being adjusted, and preferably considerably greater in order to improve the

accuracy and to detect errors. From 20 to 50 matches scattered over the picture is
reasonable.

The implemented program uses Moravec's interest operator and binary-search

correlator to perform this matching (Moravec {1977 and 1980). First, the interest operator

is applied to Picture | and finds small features with high information content. It

discriminates against features with low contrast or with primarily one-dimensional
information. Then the binary-search correlator finds the corresponding points in Picture 2.

It uses a coarse-to-fine method, starting with the whole picture and rapidly homing in on

the matching point. However, some of the matches that it makes are incorrect. |

| These matched points are then refined by the correlator described in Chapter 2.
There are three reasons for this step. The positional accuracy of a match may be improved,

its accuracy can be estimated in order to provide appropriate weight in the camera model
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adjustment, and the probability value computed by the correlator can be used to reject some

of the incorrect matches. Actually, since the interest operator detects only high-contrast
features, the accuracy of the matches is usuaily very good (limited primarily by the pixel

spacing). Thus usually there is not much improvement to be made in their accuracy (unless
the interpolating version of the correlator is used), and the standard deviations are usually |

near the minimum of 1/J12 of the pixel spacing. Therefore, the first two reasons are not
important for most points. However, the third reason (rejection of bad points) is quite
useful. The implemented program rejects any point with a probability less than 0.1. This

rejects a few good points (about 10% of them if the probability value is correct), and it still

lets a few bad points through, but by reducing the number of bad points it helps the
camera model adjustment significantly, both in speed and in likelihood of success.

Finally, the image-~plane coordinates of the points are corrected for camera distortion
to make them equivalent to those produced by a central projection.

The result for each remaining matched point consists of the image coordinates x, and
3, for the point in Picture 1, the image coordinates x, and y, for the point in Picture 2, and

the variances 02 and a? and the covariance 0°, of the image coordinates of the point in
Picture 2. (The subscript "2" is dropped from the subscripts of "0" in order to avoid

confusion with other subscripts to come. This should cause no ambiguity, since x, and y,
are considered to be known exactly and thus have no variances and covariances associated
with them.) |

3.2 Additional Error

The errors indicated by the accuracy estimates produced by the correlator are
presumably independent for each point. However, there may be other sources of error

which the correlator cannot estimate, and some of these may be correlated between different

points. For example, there may be some residual distortion in the pictures that has not been

corrected. If this is different in the two pictures or if the pair of matching points are in

different portions of the two pictures where this residual distortion is different, an error is

produced. For different point pairs in widely different positions in the pictures, the

residual distortion may be quite different, but, since distortion usually varies slowly across a

picture, the effect on nearby points may be quite similar. These additional errors and their

correlations, if any, must be taken into account in order to produce the correct weights for

the camera model adjustment and the correct error propagation into the results.

One way to obtain the necessary information is from the distortion correction

measurement. By analyzing the residuals of the distortion adjustment, the magnitude of the

errors and how rapidly they vary across the picture can be estimated. Experience with
previous distortion measurements and the variation of distortion with time on the camera |
or cameras of the same type may be helpful. Also, the camera model adjustment itself can
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estimate the variance of the additional error (but not the precise way in which it varies

| across the picture).

Ideally, what we would like to have is a complete covariance matrix for this

additional error for all of the points. In practice, such complete information usually is not
available. However, if the magnitude of the error is known and the approximate

image-plane distance over which it is highly correlated is known (called here the
“correlation distance”), a reasonable approximation is possible. The implemented program
assumes that the correlation coefficient of the additional error is a Gaussian function of the

distance between the points in the image plane. Thus the covariance of the additional error

for points i and f is assumed to be 1y exp(-d};/2¢%), where vy is the variance of the additional
error, ¢ is the correlation distance, and d;j is the distance between the two points. (This
distance may be different in the two pictures. The average of the two results can be used.)
It is assumed here that the additional error is uncorrelated between x and 9 and has the

same variance in x and 3. Thus the elements of the covariance matrix for total error

(denoted by a tilde) are assumed to be as follows:

5%; - OF +
2 . go?
5% 0%. +

: | Tui = Tuy;
(3.2-1)

¥ i £= yexpl-—=), if i+

i] = ex (-%i) if injiY; P 2¢2 /'

Pn « 0, if ivf

where { and § denote any two points.

The correlation distance ¢ is considered to be a given quantity. However, the

additional variance ry can be adjusted by the program according to the method described in
Appendix A.

‘The covariance matrix, whether obtained from precise knowledge of the individual

correlations or from (3.2-1), couldbe used as Sy in Appendix A, which is inverted to
obtain the weight matrix W to be used in (A.1-17). However, in order to save computation

time, the implemented program uses the solution according to (A.1-23), partitioned into the

separate points. Strictly speaking, this would require that the correlations between different

| points be zero. However, because of the fact that the effect of a point on the solution varies
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slowly as the point is moved across the picture, and because of the fact that with the
approximation of (3.2-1) the correlations are negligible for far-apart points and the

additional variance is equal for ali points, the approximation in Section A.2 can be and is

used in the implemented program, and this permits the solution to be partitioned by points.
The specially augmented variances and covariances produced by this approximation will be
used to obtain the weights for the solution.

3.3 Criterion for Adjustment

This section will describe how the image plane measurements described in the

previous two sections are used to obtain the discrepancies and their weights so that the
adjustment for the camera model parameters can be performed. (The adjustment will be
performed according to the method described in Appendix A, which is basically a weighted

least-squares adjustment with some modifications. Its particular form for this problem will
be outlined in the next section.) |

There are many possible ways of formulating the problem, according to what are
defined to be the discrepancies whose weighted sum of squares is to be minimized. Some of

the other methods that have been used are discussed by Schut (1957 and 1959) The

method used here defines the discrepancies as distances in the image plane, closely related to

the actual measured quantities. All of these methods are approximately equivalent as long

as the appropriate partial derivatives relating the observations to the discrepancies are

included in the formulation, according to the method described by Brown [1955 and 1957],
and as long as no points appear to be beyond an infinite distance. (A more readily

accessible description can be found in Mikhail {1976])) However, the method used here

avoids the need to do this, and permits the use of the simpler formulation described in

Appendix A. It also permits the use of points that appear to be beyond infinity. This is

important in some cases, because observation errors may cause a distant point to appear to

be beyond infinity. (The complete method, described in the next section, also includes the

features of variance adjustment and automatic editing.)

As formulated in Appendix A, the general solution method requires measurements to

be made directly on quantities that are functions of the parameters. However, this is not

quite the situation that we have. Here the directly observable quantities are x, y,, x,
and y,. The method used by Brown mentioned in the previous paragraph can handle such
situations within the general formulation. However, this is not necessary for our purposes

here. We will merely propagate the error estimates of the actual observations into the

quantity that we use as the discrepancy, in order to obtain the correct weights, and will

consider the observations to be measurements directly on the discrepancy on any one

iteration. Since the discrepancy that we will use will be some distance in the Camera 2 film

plane, and since we wiil consider the measurements to be made in this plane, the |

transformation between them is linear and thus this error propagation will be exact,
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although the fact that the propagation depends upon the camera model parameters that are
being adjusted causes a slight departure from optimality.

Consider the point x,y, in the Camera 1 image plane projected as a ray in space
from the Camera 1 center of projection and then consider this ray projected back into the
Camera 2 image plane. The result is a line segment, because a point at an infinite distance

on this ray projects into a specific point in the Camera 2 film plane (unless the ray is
parallel to the film plane). The coordinates of this infinity point {in the Camera 2 film
plane) which defines the end of the line segment are denoted by x,,y,. The direction of

the line segment (away from the infinity point) is given by the direction cosines ¢_ and Cy
relative to the x and y axes, respectively. (These quantities Xg1 Jor Cos and Cy and their
partial derivatives relative to the camera model parameters are computed from x, y,, and
the stereo camera model. The details of this computation for the camera model formulation
used in the current work are given in Appendix B.)

The discrepancy e consists of a component of the distance from the measured point

X,,y, in the Camera 2 image plane to the nearest point of the line segment defined by x,

Yo» C+ and Cy If the point x,,y, is beyond the infinity point x,y, there are two
components of the distance between these two points, and thus there are two observations

for this point (two components of the vector E). Otherwise, ¢ consists of the perpendicular

distance from x,, y, to the line, and there is only one observation for this point.

It remains to define precisely what is meant by "beyond the infinity point." If the
perpendicular projection onto the line were used, the projected point would be considered to

| be beyond the end of the line segment if (x, - XX, + , — Yok < 0. However, because of
the nature of the errors in x, and jy,, a different projection should be used. If a normal
distribution of errors is assumed, the correct projected point is the tangent point of the line

to an error ellipse about x,y, This will be discussed further in Chapter 5. Using (5.1-5),
substituting (5.1-3), ignoring the denominator (since it is always positive and only the sign

of the resulting quantity needs to be considered here), and recognizing that total error (as

from (3.2-1)) should be used here produces the quantity (cy 5c, Fy X¥y=xp) +
(c0 2—c, 0.205-90)

If (c0%-c,0, Nxymx)) + (c,F2—c,0, Xy,-9,) 2 0. then the point x,,3, as projected
according to the above description does not lie beyond the the end of the line segment

defined by x, y,, ¢,, and ¢,» and the discrepancy ¢ is the perpendicular distance from the
point to the line. Therefore,

e = (p= 9p)y = (x, - X)y
3 d 3 3 (33-1Se Cy Cy Yo xX,

TAR REEriRlrlvi 7

where g represents any of the camera model parameters. (The way in which the polarity of
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¢ is defined does not matter, as long as the polarity of its derivatives is consistent with this.

When the partial derivatives from (3.3-1) are assembled into the P matrix needed for the

solution described in Appendix A, their signs will be changed, because P is defined in

Section A.l as the partial derivatives of F, which appears in the equation for £ with a

minus sign.) The variance of ¢ representing errors in x, and y, is then

05 = 305 -2,00, +¢30%0 (8.3-2)

‘This equation holds whether the 0's represent only the estimates from the correlator, total
error according to (3.2-1) (in which case the symbols should be ¢f), or augmented error
according to (A.2-1) (in which case the symbols should be 0). However, since the

additional term for total error or augmented error will be the same for both 02 and 0? and
zero for Ory and since CH = |, the additional variance or augmentation variance can
just be added to 02 from (3.3-2). The reciprocal of the resulting value for augmented
variance will be used for the weight of this point in the adjustment. (This will be made
explicit in the next section.)

On the other hand, if (c,&2-¢c&, Xx,-x) + (c, #2-c,&,  X9,-9,) < O, there are
discrepancies (the two components of the vector E) which are the two components of the

distance from the point x,,%, to the end of the line segment (x,,5,). Any two orthogonal
components can be used here; for convenience we wiil use the x and y components.
Therefore,

E | Xo ~ %o |Yo ~ Jo |

| (3.3-3)

ox, |

3g 9
x

The covariance matrix of E is the same as the covariance matrix of x, and y,, for any of
the three types of error in x, and y,. The weight matrix for this point is the inverse of the
augmented covariance matrix. (Notice that in this case the problem has reduced to the

usual problem discussed in Appendix A. When the signs of the partial derivatives are
changed as mentioned above for insertion into the P matrix, the P matrix is seen to contain

the partial derivatives of x, and y, with respect to the camera model parameters. Thus the
observations in effect are directly on the quantities x, and y,. This is exactly the actual

situation, since x, and x, can be considered to be observations on x, and jy, respectively,
when the point appears to be beyond infinity.) |
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| 3.4 Summary of Adjustment |

The previous sections in this chapter have described how the data for the stereo
camera model adjustment are obtained and the particular way in which they are used in the

adjustment. Appendix A describes the general methods that are used in the adjustment.

Appendix B describes the way in which various quantities used in the adjustment are

related to the camera model parameters. This section gives a summary of the stereo camera

model adjustment, showing how these pieces tie together and filling in a few details, more
or less as it is currently implemented.

The given quantities are as follows: a priori values of the five camera model

parameters azimuth, elevation, pan, tilt, and roll described in Appendix B, denoted by the

vector G; the covariance matrix of these a priori values, denoted by §. ; the principal

distances of the two cameras, denoted by f, and f,, described in Appendix B (considered to
be known exactly), the a priori value of the additional variance, denoted by + the

standard deviation of vy, denoted by 05; the correlation distance of the additional error,
denoted by ¢; the maximum number of points to edit, denoted by n_; and for each matched

point the values x,, y,, x,, ¥,, 02, 02. and 0, determined by the correlator, as described
in Section 3.1. The following quantities are to be computed: adjusted values of the five

camera model parameters, denoted by the vector G; the covariance matrix of these adjusted

values, denoted by Sy; and the adjusted value of the additional variance, denoted by +.
The steps in the computation are as follows.

I. (Begin edit loop.) Correction factors for correlated errors are computed for each
point { as follows: |

k; = 2 ex =)
di; 2

derived from (3.2-1), (A.2-1), and the approximation following (A.3-4). (The quantity k; is
the sum of the correlations of the additional error between this point and every point and

will be used in obtaining weights for the main adjustment. The quantity «; is the sum of
the squares of these correlations and will be used in obtaining weights for the variance

adjustment.) After the first time through this step, the above summations are updated by
simply subtracting the terms for the rejected points. If ¢ = 0, then k; = 1 and x; = 1 for all
points.

2. As initial approximations, G is set equal to G, and # is set equal to Yo Initially,
r; = 1 for all points.
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3. (Begin inner iteration loop.) The a priori values of the parameters are used as
follows:

| H, = 5g
0 Co

C, = HG, - CG)

4. For each point the quantities x, 3,, ¢,, and ¢y and their partial derivatives are
computed as described in Appendix B. (The subscripti is omitted from these and from the

input values x,, ¥,, %,, 3%, ol, 02 and Oy for each point for simplicity, but all other
quantities that depend on the point carry this subscript.) Then, if [e (03+) ec, 0p Kxy,)
+ [ec(O547)-c,0,,Ky,~9,) 2 0 the following is done for this point:

n; = |

¢; = 0g = Joy — (x, - XX,

ae; dc dc ay ox8 x y 0 0

Pirordtm a3 SSE

20-2 |

oe. = 0 — 20, + 0%

o l :
0s +k
6; + iY

Ci = Plug | |

| Hy = Plup,

© I I 1
2 (5+) + (k— 1? Ao, + 2v0e. + xv)

X; = wre

U. = wo?
} } es

On the other hand, if [c,(O249)-c,0, Key) + le, (O3+7)~€,0  X3,-3,) < 0 the
following is done for this point:
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n; =- 2

Xo = X

E; - 2” To |
bh = Yo

ax,

po oF; _ 3C
i 36 3,

Ye]

“1

W, - O2+hey C=
Oy, oy rhey

C; = PIWE;

H = PTW,P,

a 044270 24 py? oz, |
J 4 2 pony? |

Oey 0 +270 KY

| 7pi{%g = x)?
| X; = L1 118; 21" (,,;+ Wi) 5%, - xf + (+ Wa 3) y £95 ob Na

Ty i, = 30)

iF:

vy = [1 1]8, | (05+ Wp 02 + (5; + Wy J2
y

[1 1a,
w; - ; : - Wy; + 20,5 + Wop;

However, if n, for this point changed from the previous iteration, X; = U; = w; = 0. |

5. The quantities C, H, X, V, and W are computed by summing over all points
(currently being used) the corresponding quantities with the subscript i, as computed in step
4. For C and H,C_ and Hj are included in the summations.
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6. Then | |

Sc = H- |

D=H'C

(from A.1-23)), but the elements of D are limited so that their absolute value does not

exceed 0.5 radians (thus limiting wild excursions that may take place on early iterations if
the initial approximation is poor).

7. For each point the following is done. If n; = |,

03.PScPl
02 = 02 +o- min(P SPT, v + —)v; e; 3 } g2 + Ky5%

og?

TY: = et?
3 02

Yi

(from (A.1-22), (A.2-2), and (A.3-2).) If n; = 2, the same thing is done to compute 7_i and
LO? except that for the former the first element of E; is used instead of 7 ol, is used
instead of 02, and the first row of P; is used for P, and for the latter the second element

;

of £; is used instead of ¢;, 154 is used instead of 02, and the second row of P; is used for & |

P..

8. If the solution has started to converge (indicated by the maximum absolute value |
of an element of D being less on some iteration than on the previous iteration), the variance
adjustment is done as follows:

X-V

Ye = rr
| i

2 a =

Toe 1)
Y 14

| 02 0? 02
Yo Ye Yo

TT w + iN ) 1 + —
2 2 2

oYo Oy, oR

(from (A.3-5)), but + is not to be less than zero.

9. If the solution has started to converge (as indicated in step 7), the convergence
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acceleration procedure described in Section A.4 is applied to G and D. For this purpose,
the variance vy is considered to be a sixth parameter (sixth element of G), scaled by dividing

it by 13 (with its difference from the preceding iteration being a sixth element of D.)
However, if for any point the condition of being beyond infinity changes from the previous

iteration (that is, n; changes), the acceleration procedure is restarted. Whether D has been
changed by the acceleration procedure or not, it is added to G from the previous iteration to
produce the new G.

10. If the greatest absolute value of an element of D (before acceleration) is is less

than 107% radian, and the change in 4 from the previous iteration is less than 10°Yy +
U/w), then go to step 11 (exit from the inner iteration loop). Otherwise, if too many

iterations have occurred, give up. Otherwise, go to step 3. (End inner iteration loop.)

il. If n, = 0, finish successfully. Otherwise, if there is no tentatively rejected point
(this is the first time through the edit oop), go to step 16. |

12. For the last point tentatively rejected, the quadratic form of its residuals with the

inverse of their covariance matrix is computed according to (A.5-2). (If n; = 1, this reduces
to the ratio of the square of its residual to the variance of the residual, where the variance

of the residual is computed as in step 7 but with a plus sign instead of the minus sign.) If

the result is greater than 9 if n; = 1 or 16 if n; = 2, go to step 15.

13. If the total number of rejected points equals n, go to step 17 (exit from the edit
loop).

14. The following F test is computed:

Tetd Avia) Ay+aly 7

ie a a) on
| 0 Ye Yo

where a = U/w, and where pgifin, ny) is the probability that the ratio of a chi-square
estimate of a variance with n, degrees of freedom to another chi-square estimate of the
same variance with n, degrees of freedom will exceed f. (The above use of this test is a
crude approximation based upon the assumption that the sum of the additional variance

and the input point variance weighted over all points with weight 0); has the chi-square
distribution.) If this test passes (the above inequality is true), go to step 17 (exit from the
edit loop). Otherwise, go to step 16. |

15. Reject all of the tentatively rejected points. If the total number of rejected points

equals n,, give up.

16. For each current point, the quadratic form of its residuals with the inverse of

their covariance matrix is computed according to (A.5-1). (If n»; = I, this reduces to the
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ratio of the square of its residual to the variance of the residual, where the variance of the

residual is computed as in step 7.) This quadratic form is divided by 9 if n; = | or by 16 if x
n; = 2. The current point with the largest resulting value is tentatively rejected. Then go
to step 1. (End edit loop.)

17. All tentatively rejected points are reinstated, the solution backs up to the one
computed using these points, and the problem is finished successfully.

Both intuition from the nature of the problem and experience with the program |

indicate that there are no other local minima of the total quadratic form of the solution

near the absolute minimum. Therefore, if the initial approximation is near the correct

solution, the solution should converge to it, if it converges at all. However, there is another

minimum in cases where one camera is roughly in front of or in back of the other (azimuth

= 0 or n). This local minimum occurs when the front-back positions of the cameras are
reversed, for then most of the points appear to be beyond infinity. Tests could be put into

the program to detect this condition and to change to the other solution, but this has not

been done. If the initial approximation is reasonable, there should be no problem with this
phenomenon.

As mentioned in Section A.l, if the iterative solution converges to the absolute

minimum, it produces the exact weighted least-squares solution. Other properties, such as
the estimates of accuracy of the adjusted parameters, are approximately correct as long as

the problem is approximately linear. This is the case as long as no points are near infinity.

However, if a point x,y, is near the infinity point x,y, (compared to its standard
deviation), a large nonlinearity is introduced. This will cause, among other things, the error

estimates represented by 5. to be underestimates if the point x,, %, lies beyond the infinity
point or overestimates if the point appears to be closer than infinity. Furthermore, this

nonlinearity is caused by a discontinuity. Thus using the second derivatives (as described
in Section A.l) probably would not help. That is, equation (A.1-19) may be no better than
(A.1-20) in this case. This effect also affects the convergence, especiaily of Newton's
method, which uses the second derivatives. This is the reason for restarting the acceleration

convergence procedure when a point moves across an infinity point.
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Chapter 4

a STEREO MATCHING

This chapter describes a method of matching points densely over an entire scene, so

that when the distances to these points are computed as described in the next chapter a

dense depth map will be produced.

In Chapter 2 a stereo correlator was discussed which can refine a local tentative

match between a stereo pair of pictures. However, it is necessary to have a means of

deciding where to apply the correlator and to have a decision criterion for deciding which

matches to accept. This could be done independently for each point to be matched.

Another possibility is to use continuity constraints to force a smooth surface to be produced,

with only a very local search used. Some form of region growing as in Hannah [1974]

might be used in the latter case. The approach adopted here lies between these two

extremes. The stereo disparities are allowed to vary in an arbitrary way over the picture,

subject to some mild local continuity constraints discussed later, which eliminate some

incorrect matches that otherwise would be made. Furthermore, by first trying a match with

approximately the same stereo disparity as neighboring points that already have been

matched, the search can be eliminated for many points. The acceptance of matches is
guided by the probability values returned by the correlator and by agreement with

| neighboring matches. No claim is made that this approach is optimum for any particular

type of scene, but it seems to work well for the type of scene considered in this research

. (outdoor scenes with various objects strewn about). (The method of Levine ef al. (1973) has

some features that perhaps should be included in an operational system, such as the use of

an adaptive correlation window size.)

Because the stereo camera model is known at this point, the search that needs to be

performed is only one-dimensional. A point in Picture | corresponds to a ray in space,

which, when projected into Picture 2, becomes a line segment terminating at the point

corresponding to an infinite distance along the ray. Therefore, a search along this line
segment suffices.

Because the approach used here is based upon area correlation, the first step in the

matching process is to divide the master picture (here called picture I) into small areas

equal in size to the match window of the correlator, for each of which a matching area in

the other picture (picture 2) is desired. (It usually is desirable to have these windows to be

adjacent and nonoverlapping. Since the correlator match window is square, this results in a

square tesselation of Picture 1.) These areas must be selected in some order to be matched.

One possibility for ordering areas to be matched would be to start with the points

. which were produced by the interest operator and binary-search correlator and were not
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rejected by the camera model solver and then to work outwards in all directions from these
points, since these points are very likely to be correctly matched. However, there may be :

regions separated from all of these points by disparity discontinuities or unmatchable

regions, so this method does not alleviate the search procedure from the necessity to be

seif-starting. (A similar method that may produce denser starting points is the tie-point
method of Levine, et al. [1973)) The method that actually is used simply starts with a

column at the left edge of the picture and works to the right a column of areas at a time. In

addition to simplicity, this method has the following advantage when, as is customary,

Camera 2 is to the right of Camera I. The line segment in Picture 2 corresponding to a
point in Picture | then is directed to the left from the infinity point. Thus, once a few
columns in Picture | have been matched, if a search is made starting at the infinity point

and proceeding leftward, eventually areas will be encountered in Picture 2 that already have

been matched. If it can be assumed that there are. no foreground ob jects that can be seen

around so that the left camera sees some background points to the left of the object and the

right camera sees these same points to the right of the object, then once a sufficient number

(unlikely to be incorrect matches) of previously matched areas have been encountered in
this manner, the search can be terminated, as there is no need to look at closer distances. In
this way considerable time can be saved.

The implemented method allows several other ways of restricting the search, by using

a priori information about the scene. A minimum distance and a maximum distance can be

specified, and the search will occur only on the portion of the line segments corresponding

to this distance range (and within Picture 2, of course). Also, an approximate ground plane |
can be specified, and the search will be inhibited for disparities that correspond to points

that are below this plane by more than a specified height. If desired, a match will not be

attempted for any point in Picture 1 which, if on this plane or both above this plane and at

an infinite distance, would project outside of Picture 2. All of these restrictions save

computation time and tend to prevent incorrect matches, but of course they may also cause

correct matches to be missed if the a priori assumptions are not correct.

‘In areas of low information content, the noise suppression ability of the

high-resolution correlator often allows useful resuits to be obtained. However, if the

information content of the picture in certain areas is too low, the correlator indicates this

fact by producing very large values for the standard deviations of the two position

coordinates. In such a case, it might have been desirable to inhibit the searching to save

computer time, but even if this is not done, the results are still as good as the standard

deviations indicate. (Actually, the correct test to indicate no useful information is to
propagate the match accuracy as indicated by its covariance matrix into the computed stereo

disparity for this point, as described in Chapter 5, and to check the size of the resulting

standard deviation relative ta the magnitude of the disparity. Both standard deviations in

the film plane might be large, but if only one eigenvalue of the covariance matrix is large,

an accurate disparity, and hence distance, can still be computed for this point unless the
corresponding eigenvector is almost parallel to the projected line segment.)

42



The implemented version of the method contains a way of inhibiting (if desired) the
search where it is unlikely that useful information will be obtained. It operates as follows.
The standard deviation about the mean of the Picture | data within the current match

window area for which a match might be searched is computed. Then the F test that is

performed in the correlator, as described in Chapter 2 is performed, except that instead of

the variance based upon the residuals that is used in the correlator, this standard deviation

about the mean isused. This F test gives the probability that the noise level in the data

could have given rise to the observed variation in the data to be matched. If this

probability is low, then there must be considerable variation above the noise level, and thus

the correlator should be able ta match this point. If the probability is high, the data may

be lost in the noise, and thus a search for a match can be inhibited. A probability

threshold of 0.1 perhaps is appropriate.

In deciding whether to accept matches as described below, a tolerance is used in

checking the agreement of disparity in adjacent matched areas. Ideally, the tolerance should
also take into account the accuracy of the difference in the matches as given by the sum of

the two covariance matrices from the correlator (perhaps accepting anything within three
standard deviations in addition to a given tolerance) However, this has not been

implemented, and currently a constant tolerance is used.

When a window-sized area in Picture 1 has been selected for an attempted match, the

first thing to do is to try to avoid a search by seeing if a good match agreeing

approximately with neighboring points aiready matched can be made. To do this, the three

adjacent areas in the previous column just to the left (the last column processed) are

inspected. (These are the areas directly to the left and diagonally to the left both up and
down.) If at least two of these have been successfuily matched and if their relative
matching positions in Picture 2 all agree within the tolerance described above (or twice this
tolerance when comparing the top and bottom of the three areas), then the correlator is
applied to the area in question, with the search window in Picture 2 centered on the

position corresponding to the average matching position of these two or three neighbors

(suitably displaced according to the shift to the right and up or down from the position of

the neighboring areas in Picture 1). If the probability computed by the correlator is greater

than some threshold (0.1 is used currently), this match is accepted and no search is done.

However, if the computed matching point in Picture 2 has already been matched, the

current match is accepted only if its probability is greater than that of the old match, in

which case the old match is deleted. The tolerance used for checking whether these

matched points in Picture 2 coincide is half of the minimum of the match window width

and the step size in Picture | (which normally are equal).

: If the above trial match is not accepted, the search is done in the following manner.

The point at the center of the match window in Picture 1 is corrected for distortion as

: described in Chapter | and is projected into a line segment in Picture 2 as described in
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Appendix B. Working from the infinity point towards lesser distances, points are chosen

along this line and are distorted to represent points in the actual picture instead of in a ]
central projection. Previously successfully matched points within the tolerance described
above are skipped, and the correlator is applied with its search window centered on the
remaining points. A good spacing to use for these points would be half of the search

window width, which would produce sufficient overlap so that the computed matched point

will not be forced to be near the edge of the search window. However, in order to speed up
the program a main step size equal to the search window width is used. But if the

probability computed by the correlator for one of these trials is greater than 0.05 or greater

than half of the greatest probability found so far in this search, then another trial is made a

half step ahead if the computed position was in the front quarter of the search window, or

a half step behind if it was in the back quarter. In this way, if the correct matching

position occurs approximately on the boundary between two successive search windows

(without overlap), it will be found more nearly centered within an overlapping search

window produced in this manner, thus avoiding the loss of accuracy from the truncation at

the edge of the search window.

Of all of the matches produced by the correlator in the above search, the one with

the highest probability is tentatively selected. This is checked for agreement within the

specified disparity tolerance with neighboring matched areas, including all three

neighboring areas in the previous column, which may have accepted matches, and the two

areas directly above and below in this column, which may have an accepted match or

tentative matches produced in this manner. If there is agreement with at least one of these

neighbors, and if of the two matches consisting of this neighbor and the current match
under consideration both probabilities are at least 0.01 and either probability is at least 0.1,

the current match is accepted. Otherwise, this area is left unmatched.

It was originally intended to have the method try further in case no match was

accepted above, by comparing the results from those points in the search for which the

correlator produced less then maximum probability with those from the adjacent search

(above or below), as mentioned in Gennery [1977). If an adjacent pair could be found
which agreed closely in disparity and both of which had reasonably high probability, this

pair of matches could be accepted. This additional feature was tried, but using it

considerably increased the number of incorrect matches. Therefore, it was not adopted.

Also, in order to try to reduce the number of incorrect matches, a feature was tried which

accepted the best match in a search only if its probability was at least twice as great as the

second best. But this resuited in the loss of a great number of correct matches in

low-contrast areas, so it too was re jected.

One more refinement in the above method remains to be discussed. Because of

perspective distortion, a match window in one picture will not match exactly the

corresponding match window in the other picture. In many outdoor scenes a large portion

of the points are on the ground, and these points may be very important in finding the
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ground surface, as described in Chapter 6. Also, because the ground makes a large angle
with the camera focal plane in a roughly horizontal camera, areas on the ground often

suffer a large amount of perspective distortion. Furthermore, not only does this distortion
; affect the correlator, but it also may cause adjacent matches (above and below each other) to

disagree by more than the disparity tolerance, unless this tolerance is made very generous.

Therefore, provision has been made for using the correlator both straight and with a

predistorted match window corresponding to the distortion that would occur if the point is

on the a priori approximate ground plane, and for compensating the check of agreement of
neighbors correspondingly for this distortion. Of course, the correlator could include a

general search over distortion, but this would be very time-consuming. Including a special

distortion correction for the ground at a cost of about doubling the computation time is

justified in some cases by the importance of the ground and the large distortion that it may

undergo. (Clark Thompson [1975] also has suggested such a distortion correction. Mori ef

al. [1973] use a more elaborate prediction-correction technique to handle general perspective
distortion.) | |

| If the ground is a plane, the perspective distortion of the match window between
pictures is a constant skew distortion, for all paints on the ground. Only a special case has

been implemented, in which it is assumed that all angles of the camera model except

azimuth are zero (that is, the two cameras have the same orientation, and the stereo axis

projects into the film plane as a line parallel to the x axis) and that the ground plane is
parallel to the x axis. In this case the amount of this skew is given by (r sin «, cos A)/A,

] where a, is the azimuth from camera | to camera 2 relative to the camera axis, A is the tiit
of the ground relative to the axis, r is the distance between the cameras, and # is the height

of camera | above the ground plane. The skew given by this formula is the tangent of the

angle that a straight line on the ground would make with the y axis when projected into the

camera 1 film plane, if it is parallel to the 9 axis when projected into the camera 2 film

plane. |

Thus the algorithm as described above has been modified so that the following
computations are included, when desired. When the correlator is applied to a portion of the

picture which could be on the a priori ground plane (that is, the point is not above the a

priori horizon in Picture 1), it is applied both with a normal match window and with a

match window which has been distorted into a parallelogram in picture | to correspond to

the square match window in picture 2, according to the skew as computed above. (The
values used within this skewed window are obtained by linear interpolation from the

original picture values, although if the interpolating version of the correlator were used, it

could do this interpolation itself.) In checking for agreement with neighboring areas, the x

coordinates of the points are shifted according to the skew when results from the skewed

window are used, but are used unchanged when the normal window is used. In the

preliminary match to avoid a search (trying a match with approximately the same disparity

as neighbors already matched), the result with the greater probability of the two is used. In

the search along the projected line segment, the two results for each trial position simply
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double the effective number of trials, and the best result is selected as before (based on the

probability and agreement with neighbors). |

Figures 4-1 and 4-2 show the results of applying the matching algorithm to the Mars

pictures described in Appendix C. Match windows and search windows were both 8 pixels
by 8 pixels. Each dot superimposed on the left picture (Figure 4-1) is at the center of an
8-by-8 area that was successfully matched. An error ellipse is shown centered on the point

in the right picture (Figure 4-2) to which each of these points was matched. The ellipses

shown represent the three-standard deviation limits. If a normal distribution of position

errors is assumed (actually not a good assumption for this kind of error), about one out of

ninety points would be expected to have the true matching position outside of the ellipse.

Lines connect points in Figure 4-2 which match points forming a vertical column in Figure

4-1. Dashed lines bridge gaps caused by unmatched areas in the left picture. It can be seen

that three obviously incorrect matches were made (in the lower right fourth of the picture),

but the rest appear to be more or less reasonable.
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Chapter 5

DISTANCE COMPUTATION

Once a pair of matching stereo points has been found, it is usually considered to be
fairly trivial to compute the distance to the corresponding point in three-dimensional space,
if the stereo camera model is known, as in Hannah [1974]. However, here this process is

complicated by two facts. First, the available information about the accuracy of each point

(obtained from the correlator) implies that the optimum matching point in the film plane in
general is not the point on the projection line (of the Picture 1 point into Picture 2) that is
nearest to the matching point found by the correlator. Computing the stereo disparity

corresponding to the optimum matching point requires the use of the two-by-two

covariance matrix produced by the correlator. (The nearest point is optimum only if this

matrix is a scalar matrix or one of its eigenvectors is perpendicular to the line) Second, it
is desired not only to compute the distance but alsa to compute its accuracy, by propagating

the accuracy estimates of the matching point and of the camera model into the distance. As

is usually the case, this error propagation computation involves considerably more effort

than the distance computation itself. It is complicated further here by the fact that more

than one type of accuracy estimate may be desired, depending on to what extent the effects
of camera model error are to be included.

5.1 Matching Point

The computations described in the previous chapters have produced, for some point

x,,%, (corrected for distortion) in the Camera 1 image plane, an estimate x, and jy,
(corrected for distortion) of the matching position in the Camera 2 image plane and its

accuracy represented by 02, ol, and Oy The accuracy estimates may contain both a
random component, obtained from the correlator or other information independently for

each point, and a systematic component, which might be obtained from the additional

variance adjustment in the camera model solution or from other information. From the

camera mode! information, the projection of the Camera | point into the Camera 2 film
plane can be computed as described in Appendix B to produce a line segment represented

by the infinity point x_, y, and the direction cosines ¢, and c,. It is now desired to use this
information to compute the optimum matching position Xp Jp 10 the Camera 2 image
plane, considering both the estimate x,,y, from the correlator and the projection of x,, 9,
according to the camera model information.

First consider the camera model to be known exactly, so that there is no uncertainty

In X,, Jor Cy» and c¢,. The relationships are shown in Figure 5-1. The ellipses are contours
of equal probability density from the distribution given by 02, ol and 0°, (including both
random and systematic error), assuming a normal distribution. The quantity V is the same
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Figure 5-1. Determination of optimum matching point, neglecting camera model error.
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) as the discrepancy used in the camera model adjustment. The quantity & is the stereo
disparity (defined here as being relative to the infinity point) usually used, as in Hannah

[1974]. However, T' is the quantity used here for the disparity. It is the distance in the
Camera 2 image plane from the infinity point to the tangent point of one of the ellipses and

the projection line of x,9,. (The prime is used because there may be a correction to be
applied to this quantity when the effects of the uncertain camera model are considered.)

Since ¢, and c,, are the cosines of the angles of the projection line with the x and y
axes, the following relationships hold:

¢ = Cx {¥y=%,) + £33)
(5.1-1)

| vu = £50270) - €,{¥y=%,)

Also,

X, = Xo +, T
(5.1-2)

Ip = Jot byt

where the prime has been dropped, since (5.1-2) holds for both corrected and uncorrected
values.

Now the value of T' must be determined. One way to do this is to consider x, and y,
: to be observations on the quantities x, and y,, which are functions of the parameter T

according to (5.1-2). A generalized least-squares solution can be done for 7, with weights

derived from the values 02, os and 0,. Since (5.1-2) is linear in 7, equation (A.1-17)
can be used exactly, and no iteration is required. As described in Appendix A, the proper
weight matrix to use is the inverse of the covariance matrix of observations. Thus the

unique elements of the weight matrix are

2

Wey = _
0305 - 0%,
-0

xy

| Wey = —5=5—— (5.1-3)
0303-02,

Ww = _
yy 22

0305-03,

where the variances and covariance include both random and systematic error. Upon
making the appropriate substitutions derived from (5.1-2), equation {(A.1-20) becomes
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w,, Ww, |e. }\- |

ol, = (fe ‘yl xx xy * ) : .Nw, w]e
xy CYYJLY

-— (5.1-4) |
Urs + 2,0Wy + CSW,

and equation (A.1-17) becomes

| LIT PR i a
r'esl'x Cy " " _zy Yyy[ {72 do

] Coll, (XX) + CeWyy Tyo) + Col x05) + CRRA G.1-5)—_—
Cxlpy + 20,00, + CW,

(The subscript "rs" indicates that this estimate of accuracy of T' includes random and

systematic error from the point x,, y, but does not include camera model error.)

This equation for T' needs to be in a form more convenient for error propagation.
By using the fact that Cates = |], some algebraic manipulation can transform (5.1-5) into

cc (w —w_ )+ (ezyyy "xx x xy

T' = €, (xoxo +cy92730) + Rw 4% cm scl lc,$9,-9,) - €,{%,=%,Xb.1-6)x TX ry X¥y yZ@yy

Now let

Cul JW =U) + (C50p = SX ¥y FTX ¥ YI (5.1-7)
Cillyy + 20CW, + COW,

Then, by using (5.1-1) and (5.1-7), equation (5.1-6) can be rewritten as

T' = £4 pU (5.1-8)

These results can be expressed in terms of the variances and covariance instead of

the weights. Substituting (5.1-3) into (5.1-4) and (5.1-7) produces

0202 - 0?

02 = eee (5.1-9)
C03 = 20,60, +0,

and |

52



| 0 €, (05-03) + (c2-c2)o,,, (51-10)
€203 — 2,60, +07

Thus using (5.1-1), (5.1-10), (5.1-8), and (5.1-2) produces the desired matching point.

The accuracy estimate of T' from (5.1-9) can be propagated through (5.1-2) as shown
in the next section to produce the effect of combined random and systematic point error on

the results. However, if only the effect of random error is desired, the value of 07, . must
be computed to be used instead. In order to do this, first (5.1-6) is rewritten as follows by

substituting (5.1-7) and rearranging:

T' = (c, - pe Xx, - x) + (c, + Pc. Ky = 3) (5.1-11)

Then, since 0 is independent of x, and jy, the error propagation from x, and y, to T°
produces

02_ (c, - pe ol + Ae, — pcey, + Pc Io + (c, + pc Yo? (5.1-12)

where the subscript "r" denotes that only random error is included. (If both random and
systematic error were included here, substituting (5.1-10) into (5.1-12) and simplifying would

produce (5.1-9). However, this simplification does not occur for the random error, because

| P is always computed from the total point error according to (5.1-10).)

Now consider the effect of uncertainty in the camera model, represented by Sg, the
covariance matrix of the camera model parameters defined in Appendix B. There are two

cases to consider, according to whether the point in question (x,,9,) was used in a camera
model adjustment which produced the camera model being used.

If this point was used in determining the camera model, then the values x, y,, c,,

and ¢,, used above take into account the information in this point, as represented by x,, 3,,
02, 0% and 0,,. Thus the matching point x,y, computed above represents the best
compromise between the information in this point and the other information which went
into the camera model determination. Therefore,

T = 7 |

2 2

Oer = Torr (5.1-13)

2

Oe rs - 0? ‘TS

However, the fact that there is uncertainty in the camera model solution causes components
of uncertainty in the disparity in addition to that represented by 02-
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Since both systematic point error and camera model error will affect nearby points in

related ways, causing correlated errors in these points, the component of error which affects :

points independently is due to oi. Thus propagating this error from T into the final
results will produce what is called here "independent error.”

To compute the total error, the partial derivatives of the the various above quantities

relative to the camera model parameters must be computed, so that by a linear
approximation the accuracy estimates can be propagated. However, because of the different

shapes and orientations that the error ellipses for different points can have, certain changes

in the camera model parameters can cause changes in nearby points that are different but
correlated. These effects occur by the effects of the camera model parameters on the

quantities 0 and VU. (The effects of the camera model parameters on £ and on x, and Ip
through their functional dependence of x, y,, ¢,, and ¢,, explicitly indicated in (5.1-2)
produce practically the same effect on nearby points.) Combining this type of error (from 0
and U) with the random point error produces what is called here “relative error,” denoted by
the subscript "rel".

By differentiating (5.1-1), (5.1-2), (5.1-8), and (5.1-10) the desired partial derivatives

can be obtained. These can be expressed as follows in terms of the partial derivatives of

Xgs Jor C4» and ¢, obtained as described in Appendix B:

ot oc, ac, ax, I,
Sg" Clog UNS Tey yy
SU ac, oc, 39, ax, |
rR riCave TR a 73

30
Ye

4 | dc, oc,
le (03-03) = 2,04, + 2p,0,y C0) 5 + lc, (03-02) +20, + 2ple, 0, —¢,03)] 3

202 - 2c. ¢. 0, +202
ry oEy EYE (5.114)

oT ok ov U op
TEE TAR TRE
oT ov ap

(Farm
ox ox oC

id J JPRS LA i.
3g og Tog of

d d oc
“Ip = “Yo + oT + T 4
og ag Yog of

where g denotes any one of the camera model parameters defined in Appendix B. The

partial derivatives from the last three equations of (5.1-14) will be used in the error ]
propagation in the next section.
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If this point was not used in determining the camera model, there is no unequivocally
best thing to do. (The only optimum thing to have done would have been to have included
all of the points in the camera model} solution. However, this may have been impractical

because of the time required. For example, after the dense matching of points have been

computed as described in Chapter 4, all of these points could be used in a new camera

model solution. But if the camera model is already known sufficiently accurately, the

additional computing may not be worthwhile) One thing to do would be simply to use the

same solution described above. This has the advantage that the solution for each point is

based on the same camera model, and thus the independent error is mimimum. However, it

may be desired to produce the best compromise between the information in this point and

the information in the camera model (as far as this point is concerned, without considering

| any other points). This approach reduces the total error but increases the independent

error, compared to the previous method. Depending on the circumstances, it may either

increase or decrease the relative error. (We are speaking here of the variances, that is the

expected squares of the errors, not the actual values of the errors for a given point) A
compromise is possible which reduces both the relative error and total error compared to

the first method (although it does not reduce the total error as much as the second method)

and is simpler than the second method. This third method includes the effects of changing

the camera model only insofar as it affects the point Xp Jp but does not consider the effects
of moving the infinity point x.y, closer to or further from point Xp Ip (along the
back-prajection line). (Because of correlation between the camera model errors parallel and
perpendicular to this line, shifting the line sideways to improve agreement with the point

x,.y, would cause such movement parallel to the line. Since this movement would be
: different for every point, it would make the relative error worse.) Since relative error is

usually the most important error, this third method is used in the implemented program,
and it will now be described.

Consider the quantity U, which is the perpendicular distance from the point x, y, to
the back-projection line. Two variances of this quantity will be considered. First, ors
includes only the effect of error in the point x,,y, (both random and systematic). It is
shown in Figure 5-1, and its equation can be easily derived from the equation for V in
(5.1-1) to be

Obes = C205 — 20,60, +07 (5.1-15)

Second, Ose includes only the effect of camera model error. It can be computed from the
covariance matrix of camera model error § by using the partial derivatives of U with

respect to the camera model computed according to (5.1-14). If these partial derivatives are

assembled into the row matrix or then

02, = 32 5(55) (5.1-16)
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Note that V is the amount by which this point disagrees with the camera model.
Thus a compromise position of agreement between these two pieces of information can be

obtained by performing a weighted average of them, with the weights inversely

proportional to these two variances. (This is correct under a linear approximation only,

since the actual variance due to the camera model varies with the position in the image

plane) Therefore, the compromise point is moved from point x,,y, by a fraction k of the
distance towards the back-projection line computed from the camera model, and thus it is at
a perpendicular distance of (1-k)V from this line, where

02

k= i (5.1-17)
Tors + Tye |

Shifting the point by the distance &V in the direction perpendicular to the line causes it to
shift by the distance pkU parallel to the line, because of the correlation in the errors in the

point, according to (5.1-8). Also, the back projection line moves a distance (1-k)V towards
the point, so that the compromise point lies on the compromise line. However, as stated

above, in this method we do not want to change the camera model. Instead, the compromise
point will be projected perpendicularly onto the line computed from the given camera

model. Doing this does not affect the stereo disparity or the distance, under a linear

approximation. |

Therefore, the stereo disparity used is | | |

T = E+ Ahpu
(5.1-18)

« T' = (I-k)pu

instead of (5.1-13). The partial derivatives of the disparity with respect to the camera

model parameters are

dl = + ro 5 + kV a |
’ | ; (5.1-19)T u fo
— = RO — + kU —(55 a Ps **V 3g

instead of the corresponding equations in (5.1-14). (The partial derivatives of & do not

have to be included. Their effects are negligible compared to the other effects.)

| The equation for the variance of T due to point error can be derived from the second

form of (5.1-18) in a straightforward way in terms of the variance of T° (obtained from

(5.1-9) or (5.1-12)), the variance of U {obtained from (5.1-15) or its equivalent for random
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error), and the covariance of 7° and V. (Note that po is not a function of the point x,, y,,
The effect of the point on k is neglected as being negligible.) The equation for the random
covariance can be derived from (5.1-12) and (5.1-1) to be

Oprgr = —(c, ~ pce 0%, +c, - PCL 0 pyr - c, + pee,0,yr (c, + pe, Je, o3.1-20)

A corresponding equation for the covariance from total point error exists, but substituting

the expression for P from (5.1-10) into it causes it to reduce to zero. Therefore, the

‘variance of disparity from point error in this case {point not used in computing the camera
model) is

2 on? —k)2 2 _ -02 = 0%, +(I-k)p%2 - Al-k)p0,.,
| (5.1-21)

2 2 20292

Ors ™ Tops t (1-k) p07

5.2 Distance

We now have a point x,,y, in Picture 1, point x, Jp in Picture 2, and the camera
model which relates the two pictures. It is desired to compute the point in
three-dimensional space corresponding to these points. This will be the point at which the

| projections of the two picture points intersect in three-dimensional space. (The projections

are guaranteed to intersect, because Xp Jp Was forced to be on the back projection of x,y,
: into Picture 2.)

Let wu be the vector from the Camera | origin (center of projection) to point x,y, in
the image plane (assumed to be in front of the lens, as explained in Appendix B), let v be

the vector from the Camera 2 origin to point Xp¥p iN the Camera 2 image plane in the
same manner, let r be the vector from the Camera 1 origin to the Camera 2 origin, and let

5 be the vector from the Camera | origin to the desired point in three-dimensional space.

All of these vectors are coplanar, because of the fact that the two projections intersect, as
stated above. It is desired to compute s; all other of these vectors are known. Furthermore,

let 6 be the angle between r and v, let ¢ be the angle between u and v, and let f, and f,
denote the principal distances defined in Appendix B. Figure 5-2, which for simplicity

assumes that the axes of the cameras lie in the plane of these vectors, illustrates these
quantities.

From the law of sines for plane triangles,

in §
s= 22 (5.2-1)

| sin ¢

But the sine of the angle between two vectors is the magnitude of the cross product of the
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Figure 5-2. Triangulation to compute distance (two-dimensional version).
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unit vectors in the same directions. Thus (5.2-1) is equivalent to

ir x vi uv Ir x vi

Since u and s are colinear,

Ir x vi
- ————a——— 5. -3$= xv © (5.2-3)

| Because r, u, and wv are coplanar, the two cross products in (5.2-3) produce parallel vectors.
Thus the absolute value operation can be dropped in this equation, and it can be expressed
in terms of the ratio of two vectors, as follows:

$ = mr u (5.2-4)
uxv

Even though the ratio of two vectors is usually not defined, in the case of parallel vectors it

is taken to mean the ratio of corresponding components of the two vectors (all of which
have the same ratio).

* All that we need to compute here is the component of s parallel to the principal axis
of Camera |, which we denote zz. The other two components in the Camera | coordinate

system can then be easily computed as x,z/f, and y,z/f,. Thus, taking this component of
both sides of (5.2-3) produces

rXV

which will be called the “distance” here, rather than using this term for the slant range s.

The vectors needed in (5.2-5) can be expressed in any particular coordinate system
for computational purposes; the Camera 2 coordinate system is chosen here. The

components of these vectors can be computed by using the unit vector 1_ and the rotation
matrix B defined in Appendix B. Thus, in the Camera 2 coordinate system,

x, Xp

r = Bi, u = Bly, v= 1, (5.2-6)

The partial derivatives of these vectors relative to the camera model parameters are then
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ax, |

x X, ogor 1, a8 du JB av dy= —_— ~— = - p -32 rB 57 V3 1, 3% 3% ¥, 57 Se (5.2-7) |
/;

0

assuming that f, andf, are not included in the camera parameters. (If uncertainty in the
principal distances is to be propagated also, additional partial derivatives relative to f, and
[, are computed in the obvious way.) The partial derivatives of 1_ and B needed above
are obtained as described in Appendix B. |

In order to compute the distance z by (5.2-5), where a ratio of two paraliel vectors is
called for we could use the ratio of the absolute values of the vectors, as in (52-3).

However, in order to keep the computations simple, which is especially important when
computing the partial derivatives for the error propagation, the ratio of one of the

components is used. The question then is which component to use. In principle, it could be
any nonzero component. However, in order to avoid numerical loss of significance, a small

component should be avoided. Since the point in the scene always is in front of the image

planes of both cameras, the cross products in (5.2-5) never produce vectors perpendicular to
the image plane, and the cross product in the numerator is never zero. Therefore, it is

guaranteed that either the x or y components must be significantly large, at least in the

numerator. Thus what is done in the implemented program is to compute both the x and y

components of the numerator, to select whichever is greater in magnitude, and to select the

corresponding component of the denominator. Letting # and ¢ be the components of the

numerator and denominator actually used, letting the subscripts x, y, and z denote the

components of the vectors, noting that the components of v are x, 3, and f,, and writing
out the cross products in terms of the individual components produce the following

relationships. If Ir fy ~ ry| > Iryx, - 7.f))

| p= of2” "Ip
(5.2-8)

7 = Uyfy= dp

Otherwise, |

Pp = Tp = Tofo
(5.2-9)

g = UXp = uf,

Then the distance is
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| z= Ph (52-10)
| q

In order to do the error propagation, the partial derivatives of p and ¢ relative to the

camera model parameters, and relative to T with the camera model parameters held

constant, need to be computed. These can be obtained by differentiating (5.1-2), (5.2-8),

and (5.2-9). If ref = Tp] > Xp = ufo

2
ri Tals

9.
31 TT Hy

(52-11)

3 or or, 3p,
St sh mTg gr '% 3g

ou ou ay

o - ~> fy — ~~) -— u, ~&§ § g§ °F §

Otherwise,

| 3
2 = Tx

: 3

i = Ugly
| (52-12)

| 3 or, ox ar,
x i ESR - fg dg Prog 2

ou ax ou

ou - eX + U, ml — f.
og og P ¥ og og 72

Also needed are partial derivatives of the distance z, as follows:

oo 2 Sip hy
oT § oT 72 OT

(5.2-13)

of g of ¢ °F

where the needed partial derivatives of p and ¢ are available from (52-11) or (52-12).
The partial derivatives of z relative to the g's are assembled into the I-by-b matrix 7
(It is assumed above that the principal distances are known exactly. Otherwise, additional

partial derivatives relative to f, and f, would be computed and would be used as additional

elements in uid , which would be I-by-7 instead of I-by-5.)
Then, by using the description of the three different types of error in Section 5.1, and
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by using the linear approximation rule for the propagation of covariance matrices

(premultiplying by the matrix of partial derivatives and postmultiplying by its transpose), :
the independent, relative, and total variances of the distance z are

| oz \2 .
2 2

Oxind = (5) Orr

dz \2 aT ( oT ) )2 om | = 2 -

dz \2 dz 8z \T 2°
2 = {— 0? — Lo?0 z.tot (5 ) Oss + LYS S¢ (s5) + y2 0;

where the fast term for the total variance is for the uncertainty in the inter-camera distance

(assumed to be independent of the other camera model parameters), and where Sc is the
covariance matrix of the camera model parameters, as previously described.

Note that in (5.2-14) the error propagation from the camera model to the distance is

done in a different way for relative error and total error. The error propagation for

relative error could have been done in the same way as for total error, by defining partial

derivatives (02/3g) However, this would have reduced to the form used above. This

simplification does not occur for total error, because of the additional effects considered in

the partial derivatives of Xpr Ip» P and gq for total error.

The linear approximation for error propagation used in (52-14) is very poor when

0, is nearly as great as or greater than z. This condition indicates that the point actually
could be at an infinite distance. (If z from (5.2-10) is negative, the point appears to be

beyond infinity) When the true z is considerably greater than r, it is more accurate to

consider 07,/z* (using the values computed as above) to be the standard deviation of the
errors in I/z (neglecting the fact that the point cannot actually be beyond infinity).
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Chapter 6

GROUND SURFACE FINDER

Once the three-dimensional positions of a large number of points in an outdoor scene

have been determined, it is desired to determine which points are on the ground and which

are on objects above the ground. This chapter discusses means of computing the ground
surface.

6.1 Basic Ground Finder

By taking a sufficiently small portion of the scene the ground can be approximated

by- a simple surface whose equation can be determined. The procedure which has been

implemented assumes in general that the ground surface is a two-dimensional

second-degree polynomial (a paraboloid). However, weights can be given to a priori values
of the polynomial coefficients, to incorporate any existing knowledge about the ground

surface into the solution. For example, the second degree terms can be weighted out of the

solution altogether, so that the ground surface reduces to a plane. It usually is wise to use at

least a small amount of weight on zero values of the second-degree terms in order to
constrain them to reasonably small values. (The next section discusses how the method

could be changed to handle large areas.)

: To determine a ground surface from a given set of data, a set of criteria which define

what is meant by a good ground surface is needed. These include the number of points

within tolerance of the surface {the more the better), the number of points which lie beyond
tolerance below the surface (the fewer the better, since these would be due to errors such as

mismatched points in a stereo pair), and the closeness of the surface coefficients to the a
priori values. Note that the number of points above the surface does not matter (other than

that it detracts from the number within the surface), because many points can be on objects
above the ground. A score for any tentative solution is computed based on these criteria,

and the solution with the highest score is assumed to be correct, although a solution with a

lower score could be selected by a higher level procedure using more global criteria. The
scoring function currently used is

n-m k? € ~ i \2

vo n+v-2m “Tom % (557) 6.1-1
where n is the number of points within tolerance of the surface (these points were used to

- determine the surface by a least-squares fit), ¥ is the a priori expected number of points in

the surface, k is the number of points below the surface by more than the tolerance, « is the
a priori approximate maximum number of points below the surface, the ¢; are the
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coefficients of the fitted surface, ¢; are their a priori values, 0; are the standard deviations
of these a priori values, and m is the number of these coefficients which were adjusted.

The numerical value of the score can range from approximately +1 to arbitrarily large
negative numbers. Any positive value is considered to represent a satisfactory fit. i

Finding the best solution out of all of the possible solutions is a search problem.
What is needed is a method which will be likely to find the correct solution without

requiring huge amounts of computer time.

One possibility would work as follows. Take all combinations of the points three at a

time for the special case of a plane surface {or six at a time for the more general case), fit
the surface to each combination, see what points lie within tolerance of the resulting surface,

include these in the solution by a least-squares adjustment, and iterate in this manner until

-a stable set of points is reached for each tentative solution. However, the number of

tentative solutions would be approximately proportional to the cube of the number of points
for the plane case (or the sixth power for the general case). Therefore, this method would
usually be impractical.

The method actually used uses some heuristics to lead the search to the desired

solution. It can be divided into two portions.

First, a least-squares solution is done using all of the points. This fit is saved for

refinement leading to one tentative solution. Then all points below this fit, but not less

than half of the points used in this fit, are selected, and another least-squares fit is done on

these points and saved. This process repeats until there are too few points left. (This
portion of the algorithm drives downward to find the low surfaces, even though there may

a large amount of clutter above them.)

Second, a refinement of each of the above fits is done, rejecting erroneous points and

some clutter, in order to find well-defined surfaces. This refinement process is basically an

editing process as described in Appendix A. However, to remove points one at a time as is
done with the camera model adjustment may be too time consuming because of the large

number of points (many of which may need removing). Therefore, at each step, all points

lying outside of the criterion are rejected, and all other points are included, for the next fit.

However, in order to avoid rejecting too many points at once (which may include the good
points), the standard deviation of the points used in the fit about the fitted surface is
computed to obtain a threshold for rejecting points. This wholesale selection of points is

permissible because the solution does not need to be rechecked after rejecting each point as

is done with the camera model, because the adjustment (as described in this section and in
most of the alternatives in the next section) Is linear. However, the computed standard

deviation will change after the points are rejected. Therefore, instead of using a
three-standard-deviation limit as is done with the camera model, a one-standard deviation

limit is used (but not less than three times the given standard deviation for each point), in
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order to avoid rejecting too many points at once. (If a few good points are rejected, they
will be reinstated on later iterations as long as the process converges to the correct solution.)

This process continues until it stabilizes, in which case the score of the result is computed,
- or until there are too few points in the solution.

The above algorithm can be summarized as follows:

0. Select all of the given points. |

1. Save the next fit done according to step 2.

2. Perform a least-squares fit of the surface to the currently selected points.

3. If all current points (and no others) are within tolerance of the fit, save the fit and go to
7.

4. Compute the standard deviation of the current points from the residuals of the fit.

5. Select all points that are within one computed standard deviation or the original

tolerance, whichever is greater.

If n > m (that is, the number of current points is greater than the number of coefficients to

be adjusted), go to 2.

: 7. Using the last fit saved according to step 1, select all points that are below that fit, but

not less than half of the points used in that fit. (To avoid rejecting more than half, a limit
above the fit is increased from zero by an appropriate amount as indicated by a histogram
of the residuals.)

8. If n > m and there is a change in the selected points from the last fit saved according to

step I, goto 1.

9. Of those fits saved according to step 3, the one with the greatest score is the preferred

solution, with others ranked in order of decreasing score.

In the general case of a paraboloid mentioned above, the height of the ground
surface is

Ah = a+bx+cy+desexy+fy’ (6.1-2)

where x and y are the horizontal coordinates, and a, 4, ¢, d, ¢, and f are the coefficients

defining the surface, which are to be determined. Since this equation is linear in these

| coefficients, the iterations required for the nonlinear solution in Appendix A are not
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Figure 6-1. Side view of ground fit.
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needed, and equation (A.1-23) can be used directly to obtain each fit needed in the above

algorithm, with the following substitutions:

P=1I1x9xxy) |

E = [1] (6.1-3)

D=I[abecde fl

where z is the vertical coordinate, and where x, 3, z, P, and E are evaluated for each

point used in this fit (corresponding to the subscript i in equation (A.1-23)).

Figure 6-1 shows a ground surface (constrained to be a plane) fit to the data from the

Mars pictures shown in Chapter 4. This is a horizontal view in a direction chosen so that

the plane projects as a line. The vertical scale is exaggerated. Each point that was used in

the final accepted fit is shown as a solid circle. The rejected points are shown as open

circles. The number 1 in the upper left corner indicates that this was the first fit found

according to step 3, the asterisk indicates that this was accepted as the final solution, the

number 0.1503056 is the score for this solution, and the arrow in the upper right corner

indicates the direction of the view in the horizontal plane (in this case about 45° to the left
of the plane perpendicular to the baseline connecting the two cameras).

Figures 6-2 and 6-3 show the same data projected into the left picture in a “before” )
and “after” presentation. The head of each arrow is at one of the points used

(corresponding to the dots in Figure 4-1), and the base of the arrow is on a reference plane i
1.3 meters below the camera in Figure 6-2 or on the computed ground plane in Figure 6-3.

The arrows are perpendicular to the reference plane in either case. The fact that most of

the arrows point down in Figure 6-2 indicates that the ground is below the reference plane.
The fact that most of the arrows in Figure 6-3 are very short where there are no large

rocks indicates that a reasonable fit to the ground was obtained. Figure 6-4 is the same as

Figure 6-3 except that only points at least five centimeters above the computed ground
plane are shown.

6.2 Extension to Large Areas

If it is desired to fit a large ground area, a single paraboloid may not be a reasonable

approximation, and some modification of the method in the previous section is needed.

However, whatever method is used, some assumption about the smoothness of the ground is

needed. Otherwise, the distinction between ground and objects disappears without more

information other than the three-dimensional positions of points. Several possible -

approaches are discussed in this section. However, none of these have been implemented.
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The simplest approach is to divide the area into small sections in a predetermined
i manner and to perform the solution of the previous section independently on each section,

either with a plane or paraboloid fit. This will cause discontinuities in the ground to
appear- at the boundaries, but this effect is not troublesome if the only purpose of

| computing the ground is for thresholding heights for object detection. However, allowing
these discontinuities to occur means that the constraint of smoothness has been disregarded

at these boundaries, resulting in a less than optimum solution. This can be especially bad if
some of the sections do not have enough points to determine the ground well. A possible
refinement of this method is to take for each section not necessarily the best solution found,

but the one which agrees best with the solutions for neighboring sections, if there are a few

almost equally good solutions.

Some methods will now be discussed which utilize the constraint of smoothness and

by meansof a single fit produce a ground surface which varies smoothly but in a more or

less arbitrary way over a large area. Because the surface in one part of the scene is almost
independent of the surface in a distant part of the scene, the part of the algorithm which

drives downward to eliminate clutter (steps |, 2, 3, 7, and 8) cannot be used as part of this

solution. Otherwise, a good solution in one part of the scene might be coupled with a bad

solution in another part. Therefore, with these methods an initial approximation to the

ground should be computed first using the method in the previous paragraph (separate

solutions for predetermined sections) with fairly large sections, and then this solution should

be refined using steps 4, 5, 6, and 9 on all of the data, with one of the methods discussed
) below.

One approach is to partition the area as above, but to perform a single solution

which includes continuity constraints at the boundaries. For example, a tesselation into

equilateral triangles can be used, with a separate plane fit in each triangle, but constrained

so that the heights are continuous at the boundaries, whereas the derivatives may be

discontinuous. (This works because three points determine a plane.) The coefficients to be

computed could then be the heights at the corners of the triangles. (These would form the
D vector.) The solution is linear in these heights, so apart from a different P matrix, the

same method as in the previous section can be used. However, in order to produce a

smooth surface, a priori weights would be used to minimize the change in slopes at the

boundaries. Thus, the area can be divided into very small triangles, but this weight causes

a smooth surface to be produced. The change in slope at a boundary is proportional to

A—h,~h th, where A, and A, are the heights of the surface at the two vertices on this
boundary, and #4, and A, are the two vertices at the opposite corners of these two triangles
from this boundary. The elements of the P matrix for these a priori observations are then

1, -1, -1, and 1, respectively. Thus the terms of the PTP matrix corresponding to h, and
fy, hk, and hq, hy, and A, and A, and Ry are alt -1, and the term corresponding to hk, and

_ hy, A, and Ag and all four diagonal terms are all 1. These would be multiplied by an
appropriate weight and added into the A matrix at the correct positions for these terms, in

order to constrain the change in slope at this boundary to be close to zero. This would be
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done for every boundary. (A approach similar to this method is to represent the ground by

means of splines, discussed by Schultz [1973] .

Suppose that it is desired that the ground surface be smooth in most places but be
allowed to have occasional discontinuites in slope, which would correspond to such things as -

banks and cliffs in the scene. This might be accomplished by modifying the above method
as follows. The weights on the zero values in change in slope would be a function of the

change in slope: perhaps a large constant value up to a certain small value of slope and a

small value beyond. However, this causes the problem to be nonlinear, and it might require

an inner loop of iterations in addition to the iterations which determine which points to use.

Furthermore, on early iterations the large weights should be fairly small and the threshold

for changing weights should be fairly high. These would gradually increase and decrease

respectively as the iterations progress. This process would cause the creases in the surface

to occur at approximately the right places. The precise initial values used would determine

at about what size threshold the distinction between discontinuities in the slope of the

ground and objects which are above the ground is made. It would also be possible to make

the position of the vertices at which these discontinuites occur (in addition to their heights)

parameters to be adjusted in the solution, but this would introduce even more

nonlinearities. (Note that even without this additional adjustment, which vertices get the

discontinuites is variable, but the solution is limited to the arbitrarily predetermined

position of vertices.) It is not clear how well this would really work.

Another approach is to let the ground surface be the sum of a set of overlapping
two-dimensional Gaussian functions (normal curves). The width (standard deviation) of

these functions would be predetermined according to the desired smoothness of the ground
surface, and the positions of the centers of the functions would be at a set of equally spaced

points covering the area to be fit. The spacing would be sufficiently small so that

insignificant ripple would be produced by the finite spacing. The parameters to be

adjusted would then be the amplitudes of the Gaussian functions. The Gaussian function

is chosen because of its smoothness and the rapidity with which it approaches zero in both

directions. In some rough sense it has the optimum combination of these properties. |

In order to keep the amount of computing within reasonable bounds, instead of using

the actual Gaussian function (which extends to infinity in both directions), an

approximation to the Gaussian function obtained by truncating it at a finite span would be

preferred. Three or four standard deviations in each direction is a reasonable choice, since

the value of the function at these points is only 0.011 or 0.00034 of its peak value.

Furthermore, the approximation can be improved by subtracting the value of the Gaussian

function at the truncation point from all of the values, in order to remove the discontinuity

from the approximation function. (This function has been used previously in digital filters,
for similar reasons, by Gennery [1966].

Therefore, the equation for the ground surface would be
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: | hoe DQ, au; (6.2-1)
;

where

—x.)2 )2

w; = exp(-a -exp(- 7) if (xx)? + (9-9; < 1°
w; = 0, otherwise

where r is the number of standard deviations at which to truncate the Gaussian function.

The quantities x; and y; are the centers of the Gaussian functions and are constant. The
only quantities to adjust are the coefficients ¢;. Thus the problem is linear. The elements
of the P matrix in Appendix A for each data point would just be the Ww; quantities above.

There should be included in the solution a small amount of weight on the equality of

adjacent a;'s, so that the surface will continue with a reasonable interpolation through areas
where there are not many points being used to determine the surface. (This is also
desirable to prevent the H matrix from becoming nearly singular if the spacing of the

functions is small compared to 0.) This is done by adding | on the main diagonal of the H

matrix at the position corresponding to each a; of an adjacent pair, and -1 at the two
off-diagonal positions corresponding to these two terms, all times the appropriate weight.

- This is done for all ad jacent pairs. A large weight should not be used here, for this would
introduce additional smoothing in the computed surface, and, if this is what is wanted, it
would be more efficient to increase the width of the Gaussian functions (0) and their

spacing, and thus to decrease their number.

In order to decide what spacing to use for the w,'s, equation (6.2-1) can be used with
all a; = 1, to see how much variation is produced in the values of £ as a function of x and y
with a given spacing. For example, if r = = and the centers are on a square grid with

spacing 20, the maximum ripple relativeto the mean value is about 0.03; with spacing 0 it

is only about 107% (With finite values of r, the former value would not change much unless
r < 3, but in order to achieve a value as small as the latter would require a larger value of

r.) A ripple of around one percent is probably tolerable unless the heights being fit are
very large, in which case this would represent a large absolute error. In such a case the

mean and perhaps the trend could be removed from the data first before it is used in the

above method in order to reduce the size of the quantities being handled, and then the

corresponding values would be added to the results. (This could be done by using the

single-fit ground finder described in the previous section on the original data.)

. It should be noticed that in both of the methods described above (plane triangles fit
with smoothness constraints, and overlapping Gaussian functions) the H matrix which must

be computed increases in size with increasing ground area covered, and it thus may be quite
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large. However, in both methods this matrix will be rather sparse. In the Gaussian case
the matrix will be less sparse than in the other case (because the functions overlap), but .
because the spacing of the functions can be so large relative to the amount of smoothing
produced, the size of the matrix can be considerably smaller than in the plane triangle case.

Of the two methods, the Gaussian method would appear to be superior because of

the extremely smooth surfaces that can so easily be produced. However, there is no obvious

way of adding the ability to fit discontinuities in slope, as can be done with the other
method.
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Chapter 7 | |

OBJECT FINDER

This chapter describes the use of three-dimensional data for the detection of objects

and the measurement of their position, size, and approximate shape. Although the

three-dimensional data could be obtained from a scanning laser rangefinder, the object

detector is designed to be tolerant of errors in this data, such as mistakes produced by
incorrect matches in stereo vision data and poor accuracy of distances from stereo.

7.1 General Description

Many approaches are possible in describing the shapes of objects. At the extreme of

simplicity each object could be represented by a sphere. Since a sphere can be specified by

four parameters, this is economical, and, if the sphere encloses the actual object, it could

suffice for obstacle avoidance, in a conservative way. Furthermore, this crude sort of

information for each object in a large scene containing many objects amounts to fairly
detailed information concerning the whole scene, and thus it would be useful for navigation.

On the other hand, more elaborate descriptions that represent the object in more detail

could be used. One possibility is the use of generalized cylinders or generalized cones, as by

Nevatia and Binford [1977]. (In the simplest case, the generalized cylinder would reduce to
an ordinary cylinder, which can be represented by seven parameters) For man-made

objects of regular form or elongated objects with well-defined axes, such a representation is

very useful. However, for irregular objects such as rocks, the choice of how many

parameters to use to describe the object and even the choice of direction of the axis of the

generalized cylinder or cone may become almost indeterminate and thus may be greatly

influenced by noise in the data. This would make the comparison of two object

descriptions difficult.

A sort of compromise approach is used here, in which objects are represented by

ellipsoids. Since objects can be approximated more closely this way than by spheres, in
obstacle avoidance the vehicle may be able to pass more closely to the objects, and in

navigation the shape information may aid in recognition of a scene. This is done at the

; cost of using nine parameters to describe an ellipsoid instead of four for a sphere, but the

convenient mathematical properties of the sphere are mostly retained. The nine parameters

could be the three coordinates of the center, three angles defining the orientation, and the

semi-lengths of the three principal axes to define the size and shape. In this way the size
and shape parameters would be independent of the choice of coordinate systems. However,

. for computational convenience the orientation, size, and shape are represented here by the

six unique elements of a symmetrical 3-by-3 matrix (as in equation (7.3-1)), which are

closely related to the second-degree coefficients in the general form of the equation of a
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quadric.

By “object” we do not necessarily mean here an actual physical object, but merely a

portion of the scene that can be reasonably approximated by an ellipsoid. Thus, if we use
as an example a vehicle exploring Mars, an object may be a single rock on the Martian

surface, two or more adjacent rocks, or merely a bump in the ground. Also, an L-shaped

physical object might be represented as two objects. |

This ellipsoidal representation should be quite appropriate for representing rocks on

Mars, because rocks probably tend to resemble more nearly ellipsoids than any other simple

shape. However, it could also be used to represent cars in a parking lot or trees in a field,

for example, especially in aerial photographs where the resolution may be poor compared to

the size of the objects, and in other cases where precise object description or recognition is
not necessary but rather an overall description of the scene is desired.

The stereo vision processing or laser rangefinder results in data representing the

three-dimensional position of a large number of points distributed over the scene. The first

step in the processing of this three-dimensional data is to find the ground surface, as

described in Chapter 6. Then points which are above the ground by a sufficient amount

(depending on the computed accuracy of the points, the roughness of the ground, and the
minimum size of object that is of interest) are candidates for points on objects.

These above-ground points are clustered to produce preliminary groupings of points .

which correspond roughly to objects. An ellipsoid is fit to each cluster by first computing

an initial approximation based upon the moments of the points in the cluster and then

iterating a weighted nonlinear least-squares adjustment to fit the ellipsoids to these points

and to avoid obscuring other points. Then, according to the relative positions of the

ellipsoids and points, clusters can be broken or merged, and the process repeats until the

apparently best segmentation is found. Each of these steps will be described in the

foliowing sections.

The object detection and measurement process as described here uses only
three-dimensional position information. Brightness information is discarded after the

stereo processing. However, a more complete system would use both types of information.

Perhaps an edge detector could be applied to the brightness data in the regions near the

outlines of the ellipsoids in order to refine the boundaries of the objects, for example. |

12 Preliminary Clustering

Once the ground surface has been determined, all points that are above this surface
by more than a threshold are clustered to form an initial approximation to the segmentation |
of the scene into objects. - |
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: | Yarious clustering techniques could be used here. One possibility is a relaxation
method, such as Zucker’s [1976] However, at present, the clustering is done by using the

minimal spanning tree of the points. (The minimal spanning tree is the tree connecting all
of the points such that the sum of the edges is minimum.) This is computed by using the
nearest neighbor algorithm, as described in Duda and Hart (19731 (The length of the
edges of the tree is defined here as the three-dimensional Euclidean distance between the

points.) Then the tree is broken at every edge whose length is greater than twice the

average length of the adjacent edges, as suggested by Duda and Hart [1973] However, a
minimum length for an edge to be broken (related to the resolution of the data) is specified,

so that the method will not be overly sensitive to local fluctuations in the data. Also, a
maximum can be specified, beyond which all edges are broken.

7.3 Initial Approximations to Ellipsoids

Since each ellipsoid will be fit to a cluster of points by an iterative process, an initial
approximation is needed. A good approximation increases the likelihood of convergence,

decreases the number of iterations required, and can be used as the result in case the

iterations do not converge. This initial approximation is obtained from the

three-dimensional moments, through the second order, of the points in the cluster.

An ellipsoid can be represented by the following matrix equation:

(r-c)TWi(r-¢) = | (7.3-1)

where r is a vector of the three-dimensional rectangular coordinates of any point on the
surface of the ellipsoid, ¢ similarly is the position of the center of the ellipsoid, and W is a

positive-definite symmetrical 3-by-3 matrix. (See, for example, Hohn [1973]) Let M
denote the inverse of W. (The square roots of the eigenvalues of M are the lengths of the

semi-axes of the ellipsoid.) The relationship between the computed moments and the
matrices ¢ and M depends on the distribution of pdints over the ellipsoid. If the points are

distributed uniformly over the ellipsoid, the vector ¢ consists of simply the normalized first

moments of the points. The matrix of normalized second moments about c of the points is

+ M if the points are distributed uniformly through the body of the ellipsoid, or . M if the
points are distributed uniformly over the surface of the ellipsoid. If we have viewed the

object from all sides, we might have an approximation to the latter case. However, if we

have viewed it from a single point, we will have points distributed nonuniformly over half

of the surface. (Actually slightly less than half will be seen because of perspective. Also, in
stereo vision, both cameras must see each point, so that with a single pair of cameras only

the common area seen from both camera positions will appear. These two effects will be
neglected below, however.) |
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We assume here that the object is seen from a single viewpoint by a raster scanning
device which produces points distributed uniformly in the image plane. Such a device :
might be a scanning laser rangefinder or an area-based stereo system. Actually, because of

missing points, the distribution will not be uniform. It would be possible to estimate the

actual distribution by computing higher-order moments, but this might be overly sensitive |
to randomness in the distribution or an inadequate density of points, so it is not attempted

here. As an approximation, we assume an orthogonal projection instead of a central

projection. Let s denote the vector of normalized first moments (centroid) and M, denote
the matrix of second moments about s obtained with this distribution, and let o denote the

position of the camera.

The relationship connecting s and M, to ¢ and M can be derived by first considering
the case of a sphere of radius 0. A little integration shows that in this case the eigenvalue

of M, corresponding to the eigenvector o-c is =~ p%, the other two eigenvalues are both
5 PZ and s is ¢ plus zp times the unit vector in the o-c direction. All three eigenvalues
of M should be p? in this case. An ellipsoid can be considered to be a distorted sphere
(using stretching and skew distortions). Thus the ellipsoid can be considered to be stretched
in the various directions by the amount given by the square roots of the ratios of the above

eigenvalues, but in computing the displacement of the center, instead of O the distance from

c towards © to the ellipsoid surface must be used. Thus the displacement of the center is

the vector 2 (o-c) divided by the scalar Jio-e)TW(o-c) Since the points represented by e,
s, and o are colinear, c can be replaced by s without changing the value of this ratio. Also,

W (=M"') can be replaced by = M1 in this expression, because of the stretching discussed
above. Thus ¢ can be computed from s by transiating by this amount. To compute M, we

can take 4 times M, to account for the factor of 4 in two dimensions, but this leaves 14 out |
of the factor of 18 by which we need to stretch the moments in the direction toward the

camera. This extra amount can be introduced by adding 14 times the moment produced by

a fictitious point at the intersection of the s-to-o line and the surface of the ellipsoid

corresponding to M_. In order to keep the ellipsoid to a reasonable shape when there are
not enough points to determine it well, M as obtained above is averaged with a scalar

matrix whose diagonal elements are #2 (which represents a sphere of radius Jh), with the
average weighted so that the sphere represents four additional points in the moment

computation. The value of 4 is determined so that it is the average of the two components

of the second moments at right angles to o-s, but limited by the average of all three

components (the three eigenvalues), includingthe effect of 14 times the effect of the

fictitious point, as above, as an upper limit, and excluding this effect, as a lower limit. This

avoids putting undue weight on the o-s dimension when the ellipsoid is long in this

direction, since this dimension is less reliable because of the factor of 18 compression.

By combining the above information, the computation of the initial approximation

can be expressed as follows: |
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[0-97 M; (0-3)
) (1.3-2)

h = min| max 3 tr(M,),
(0-s)"M(0-5)

2uiM,)—2 oo HO
: (o-3)7(0-5)
gtriM))
n 4

| w= M"' |

where p is the position of any point in the cluster, n is the number of points in the cluster,
the summations are over these points, and / is the 3-by-3 identity matrix.

| 14 Iterative Solution for Ellipsoids

The adjustment of the ellipsoids is done by a modified least-squares approach. Each
ellipsoid is adjusted so as to minimize the weighted sum of the squares of two kinds of

discrepancies: the amounts by which the points (usually points in the cluster being fit) miss
lying in the surface of the ellipsoid, and the amounts by which the ellipsoid hides any

points as seen from the camera position. (In the latter case, the discrepancies actually
should be considered separately for each camera that sees the point in question. However,

for narrow-angle stereo we use as a reasonable approximation the assumption that the
“camera” is at the midpoint of the stereo baseline) Including the second kind of
discrepancy is useful in helping to determine the size and shape of the object when the

points on the object itself do not contain sufficient information. Also included in the

weighted sum of squares to be minimized are a priori terms which tend to force the

ellipsoid by default to become a sphere near the ground when the points do not constrain it
well.

| The first kind of discrepancy above optimally should be defined as the length of the

normal from the point in question to the surface of the ellipsoid. However, computing this
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requires solving a sixth-degree equation. Therefore, as an expedient the distance between

the point and the surface along a straight line from the center of the ellipsoid to the point is

used instead. In order to be consistent with this definition, the second kind of discrepancy

is defined as follows. The midpoint of the two intersections of the surface of the ellipsoid
with a line from the camera to the point is first found. Then the discrepancy of the first

kind is computed for this midpoint. (Note that if the main source of departure of the
points from true ellipsoids is error in the measured position of the points, this is not the

proper definition to use for the second kind. The normal distance from the point to the

cone tangent to the ellipsoid with its vertex at the camera would be better. However, we

- assume that the major source of departure is the fact that the objects are not really

ellipsoids, and thus the adopted definition is appropriate, because it is a measure of how far

the ellipsoid juts out into the line of sight to the point.) Both kinds of discrepancies are

illustrated in Figures 7-1 and 7-2.

Now we must consider exactly for which points which kind of discrepancy is

computed. There are five regions of space to consider, according to whether the point is to

the side of the ellipsoid as seen from the camera (that is, the line through the camera

position and the point does not intersect the ellipsoid), is in front of the ellipsoid as seen
from the camera, is inside the front portion of the ellipsoid (in front of the surface of

midpoints as defined above), is inside the back portion of the ellipsoid, or is behind the

ellipsoid. Also, there are two kinds of points to consider, according to whether or not the

paint is in the cluster which is assumed to correspond to this object. This produces ten

combinations in all, which are illustrated in Figures 7-1 and 7-2. They divide into four
categories.

First, if the point is not in the cluster and is either in front of the ellipsoid or is to the

side, there is no discrepancy and this point is not included in the computations.

Second, if the point is in the cluster and is either in front, inside the front half, or to

the side, or if the point is not in the cluster and is inside the front half, the first kind of

discrepancy is used.

Third, if the point is not in the cluster and is behind the ellipsoid, or if either kind of

point is inside the back half, the second kind of discrepancy is used.

Fourth, if the point is in the cluster and is behind the the ellipsoid, both kinds of
discrepancies are used, and the point acts as two points in the computations. This is
because there are two separate components of error in this case: the object does not extend

‘enough on the side to hide the point, but it apparently bulges out in back (relative to the
ellipsoid) to include the point.

In order to derive the mathematics for dividing space into the above five regions,

consider the equation for the ellipsoid, as stated in (7.3-1), and the equation of a straight
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line through the camera position 0 and the point in question p, in parametric form,

| | (r-o0) = u(p-o) | (14-1)

These can be combined to produce

(u(p-o}+o-c)*Wlu(p-o)+o-c] = | (1.4-2)

the roots of which determine the intersections of the line and ellipsoid. Equation (7.4-2) is
equivalent to

| aul+PBu+y=0 (7.4-3%)

where |

| a = (p-o)'W(p-o)

| 8 = 2Ap-0)'W(o-c)

y = (0-c)TW(o~c) - |

The roots of equation (7.4-3) in u determine the region of space in which p lies. If the
roots are imaginary (8%-4avy < 0), the point is to the side of the ellipsoid. If the average of
the two roots {(-f3/2a) is positive, the point is in front of the midpoint surface, if negative, it
is behind the surface. If the roots are real, the point is in front of, behind, or inside the

ellipsoid according to whether both roots are greater than unity, both roots are less than

unity, or unity lies between the roots, respectively. Alternatively, we can use the fact that
the point is outside of the ellipsoid if and only if (p—c)TW (pc) > 1.

The discrepancy of the first kind is

l

¢ = Jo-oe-ol - —=) (7.4-4)
Jip-o)TW (pc)

In order to compute the discrepancy of the second kind, the midpoint of the intersections of

the camera-point line with the ellipsoid is first obtained as follows:

b = - 8 oo) +0 ('7.4-5)
2a

Then the discrepancy of the second kind is
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| e = Jo-oTe-ol - ——D—) (7.4-6)
Jio-0TW(v-c)

Because there may be erroneous points in the data, points which have large

discrepancies relative to the size of the ellipsoid are given less weight in the solution. The

weighting function used is

W = - (7.4-7)
1+ 2AJe-c)TW(z-c) - 1? 2

+0
tr(W)

where r represents p or b for discrepancies of the first or second kinds, respectively, and O

is the component of standard deviation of measurement errors in p propagated into the

discrepancy. (If these are unknown, 0 can be zero.) Thus the dimensionless quantity to be

minimized (by adjusting ¢ and W) is Z0)¢? plus some additional terms for a priori values
yet to be discussed. However, this quantity is minimized only with respect to the effects of ¢

and W acting through € and not their effects through .

in order to solve the above nonlinear problem, the Gauss method described in

Appendix A is used. This method is equivalent to using the partial derivatives of the

discrepancies to approximate the nonlinear problem by a linear statistical model, solving the

: linear problem, and iterating this process until it converges.

On any one iteration the following is done. The current values of ¢ and W are used

| to compute for each point the value of € as defined above and the 1-by-9 matrix P, which
consists of the partial derivatives of € with respect to the three elements of ¢ and the six

unique elements of W. (W is symmetrical) The following summations over all of the

points are computed, in which each point in the first category above is not used, each point

in the second or third categories appears once, and each point in the fourth category
appears twice:

H « H + ), PTwp oo
(7.4-8)

C=C,+ DQ, PTwe

(H, and C are used for the a priori values yet to be discussed.) Then the 9-by-1 matrix
of corrections is

| D = sH-'C (7.4-9)

where v is a factor used to improve convergence because of the very nonlinear nature of the

problem. (Currently » = 0.5 on early iterations, but v = | after a test indicates that this will
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produce more rapid convergence) The elements of D are subtracted from the
corresponding elements of ¢ and W to obtain the improved approximations for the next

iteration. H~! from the last iteration is the covariance matrix of the ellipsoid parameters,
although it may need to be adjusted by a scale factor according to the size of the residuals -

of the final fit, as described in Appendix A.

Now the a priori values will be discussed. In some cases the points affecting the
ellipsoid will be insufficient in number or insufficiently distributed to determine all

parameters of the ellipsoid very well. It is therefore desirable to havea priori values for

some of the parameters with appropriate weight in the solution to constrain them to
reasonable default values when the points do not contain sufficient information. When

there is ample information in the points, the a priori values will have very little effect

because of their small weight. The a priori values currently used are the ground surface

height directly under c for the vertical component of ¢, with weight 0.1/tr(M), equality for

the diagonal elements of W, with weight tr{M)%10, and zero for the off-diagonal elements
of W, with weight tr(M)?/10, where M = WL. (Including tr(M) as shown scales things
correctly so that the solution is invariant under a scale factor change) The effect of the W

terms is to try to force the ellipsoid into a spherical shape. (It would be better to apply the

a priori weights to the principal semi-axes of the ellipsoid, trying to force them to equality,

so that the effect of the a priori values would be independent of the coordinate system

being used. This would require propagating these values into the elements of W on each

iteration, so the implemented program uses the method described here instead.) These a

priori terms are put into the solution in the following way. The diagonal element of H
corresponding to the vertical component of c is 0.1/tr(M), the three diagonal elements

corresponding to the off-diagonal elements of W are each tr(M)*10, and the 3-by-3 :
submatrix on the diagonal of H_ in the position corresponding to the diagonal elements of

W consists of : on its main diagonal and = elsewhere multiplied by tr(M)%10. All other
elements of the 9-by-9 matrix H_ are zero. Then

Cc, = HG (7.4-10)

where G is a column matrix of the current values of ¢ and W, arranged as in D, with the

height of the ground directly under the center of the ellipsoid subtracted from the element

of G corresponding to the vertical component of ¢. Hand Cj are used in the summations
for H and C as previously shown.

7.5 Breaking and Merging Clusters

Because the preliminary clustering is dependent on local information, it may not
produce the best segmentation based on more global information. Therefore, after ellipsoids

have been fit to all of the preliminary clusters, these clusters may be tentatively broken into

smaller clusters and merged into larger clusters, new ellipsoids are fit to these clusters by the :
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same process previously described, and a decision on whether to keep or reject each of these

actions is made based on the goodness of fit of the ellipsoids to the points.

In order to decide where to break a cluster, for each edge in the portion of the
original minimal spanning tree which connects this cluster the quantity A(1-a) is computed,

where A is the length of the edge and a is the minimum of Jip-o)TW(p-c) for the two
points connected by the edge. Then the cluster is tentatively broken at the edge for which
this quantity is maximum, of all such edges such that each new cluster formed has at least

four points at least one of which has (p-¢)’W(p-c) > 1 (that is, it is outside the old
ellipsoid). This process tends to break the cluster at places furthest inside the ellipsoid, but

connecting points that are outside the ellipsoid. If this new clustering is accepted by the

criteria described below, the process repeats on the new clusters. |

After the above breaking process is finished, any two clusters are tentatively merged

if (e’-c)TW(e’-c) < 4 for either cluster, where ¢’ is ¢ for the other cluster, provided that
these two clusters were not previously one cluster before breaking. If there is competition

for the merging, the cluster pair with the minimum value for this quantity is merged first.

If a merger is accepted, further mergers can take place on these clusters by this same

process.

The criteria for accepting two clusters or one after a tentative break or merger are as
follows. If (c’~¢)TW(c’~¢c) < | for either small cluster, where ¢’ is ¢ for the other small

. cluster (that is, the center of one ellipsoid is inside the other ellipsoid), the single cluster is
chosen. Otherwise, the following quantity is computed for each of the three ellipsoids: :

Zwe2 mm (15-1)I= 237 10

where € and are the discrepancies and weights from the last iteration, as defined in the
previous section, n is the number of points in the cluster corresponding to this ellipsoid, and

m is the number of points below the height threshold but directly above the ellipsoid. If

the initial approximation is used as the result, € and 0 are obtained from the first iteration,

and the first denominator is n instead of n-3. (The second term, containing m, is included

to penalize solutions which lie mostly below the ground, with the ellipsoid reaching above
the ground in a small area to meet the points in its cluster.) Then the two small clusters are

chosen if the sum of their two values of ¢ is less than the value of ¢ for the single cluster.

Otherwise, the single cluster is chosen.

16 Example

Figure 7-3 shows the points in the Mars picture previously shawn in Figures 6-2 and

6-3, but this time in a nominally vertical orthogonal projection (perpendicular to the
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reference plane). The figure covers an area 1.6 meters by 1.2 meters in the reference plane.

The lower left corner is 0.6 meters to the right of the plane through the left camera and

perpendicular to the baseline connecting the cameras, and it is 29 meters in front of the

baseline connecting the cameras. The similar coordinates for the upper right corner are 1.8

meters and 4.5 meters. The symbol for each point represents height in centimeters above

the computed ground plane, with the letters "A", "B", "C", etc. representing the values 10,
11, 12, etc.

A b-centimeter height threshold was used for selecting the points to cluster in the

object finder. The minimum distance for breaking the minimal spanning tree to form the

initial clusters was also 5 centimeters, and the maximum distance for connecting points was
20 centimeters. (Using zero and infinity for this minimum and maximum distance

produced an identical clustering in this case.)

Figure 7-4 shows the points that passed the height threshold. These points are

connected to show the minimal spanning trees that were computed. Solid lines connect
points within each initial cluster. | |

Figure 7-5 shows the ellipsoids that were fit to the initial clusters. Each ellipsoid is

represented by two ellipses. One ellipse is the orthogonal projection of the ellipsoid onto

the reference plane. The other ellipse is the intersection of the ellipsoid with a plane

through the center of the ellipsoid and parallel to the reference plane. (In most cases the

two ellipses almost coincide and thus cannot be distinguished in the figure.) Only the |
clustered points are shown here, as in Figure 7-4. However, as previously described, any of
the points shown in Figure 7-3 may have been involved in the adjustment of the ellipsoids.

Remember that the fit is done in three dimensions, whereas Figure 7-5 shows a

two-dimensional projection.

Figure 7-6 shows in the same way the results of the breaking and merging operations.
The two clusters in the center (corresponding to the large rock in the center of the pictures)
were merged into one, and a new ellipsoid is shown for this cluster. The other clusters were

not changed.

These results were projected into the left picture to produce Figure 7-7. The outline

of the eilipsoids as they would be seen from the left camera are superimposed on the

picture. The lengths of the principal axes of the large ellipsoid in the center are 30.8, 26.2,
and 16.6 centimeters.

Natice that the ellipsoid fit to the rock in the upper right corner is much too large.

This is because the only points found on this rock were on its fairly flat face, and no points

were found in the background behind the rock to help to constrain its size, as can be seen
in Figure 6-3. This lack of points was caused by the fact that most of the desired region is

outside of the right picture, as can be seen in Figure 4-2. (In such a case the covariance
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Figure 7-4. Minimal spanning trees connecting points above 5 cm. Solid lines show initial
clusters. :
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matrix of the ellipsoid parameters indicates the large uncertainty in its size and shape.)

Figure 7-8 shows the results of processing the data slightly differently. A height
threshold of 3 centimeters instead of 5 centimeters was used. Some of the smaller rocks are

detected in this case.
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| Chapter 8

MATCHING OF SCENES

The previous chapter described a means of modelling three-dimensional scenes in

terms of ellipsoidal objects. A method of matching such scene descriptions will now be

described. This method uses the covariance matrices generated by the object finder, which

indicates the accuracy of the object parameters, to determine the goodness of match for each
object match. This is a special case of a more general problem, in which there is a set of

features in each scene, with each feature being represented by a vector of feature
parameters and the covariance matrix of these parameters. The method to be described

applies to this general case, but it will be described in terms of the special case at hand. In

this special case, the vector of feature parameters consists of the parameters describing the

position, size, and shape of an ellipsoid (the ¢ vector and the W matrix in Chapter 7).

There are nine of these parameters in the complete case (three elements of ¢ and six
elements of WW). However, it may be desired to eliminate the vertical component of position

(third element of ¢), because this component is less reliable due to uncertainties in the
vertical position of a roving vehicle, and this is done in the implemented version of the
program, leaving eight parameters actually used. Also, a completely general program would
allow for translations and rotations in three dimensions, whereas the method described

below allows only translations and rotations in the horizontal plane. This is suitable for a

roving vehicle, since it should be able to obtain an accurate vertical from gravity. (In fact,

with reasonable instrumentation the direction in the horizontal plane should be determined

also, leaving only translation to determine.) |

8.1 Optimum Match

The problem at hand can now be described fully. Given are two scene descriptions.

Scene | consists of n objects and Scene 2 consists of n’ objects. Each object is described by
a vector X and its covariance matrix §, with primes denoting objects in Scene 2. Also

available for each object is a probability b that this object will be present in the other scene,
if the two scenes actually refer to the same physical scene. (These probabilities could be

estimated from statistics gathered from experience with the system that produced the data,

and might be a function of the size of the object, since the larger ob jects would be more

likely to be detected in the other scene and would be less likely to be spurious.) Other

general information that is available includes the a priori probability p that the two scenes

match (that is, refer to the same physical scene), the a priori value of the rotation 0 of

Scene 2 relative to Scene | and its standard deviation Tg» and the a priori value of the
scale factor f, of Scene 2 relative to Scene | and its standard deviation 0/, [t is desired to :
find the translation Ax and Oy of Scene 2 relative to Scene 1, the rotation 8, the scale
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factor f, the standard deviations of these quantities, and the probability p that the two
scenes actually match.

The approach used here uses Bayes' theorem, which in general states the following:

n;P;
bi = we (8.1-1)

p) nib
¢

where n; is the a priori probability of event i occurring, p, is the probability that the
observed result would occur given that event i occurs, and $; is the a posteriori probability
that event i has occurred, given that the observed result has occurred.

For the present purposes, an event will be considered to be the fact that the two

scenes match and the occurrence of a particular set of matches between the objects in Scene

I and the objects in Scene 2. The above terminology is altered slightly to include the fact

that the scenes actually match in these events, with an extra event being the scenes not
matching. Then Bayes' theorem can be restated as follows:

PoP
py = o kk (8.1-2)

Po 2 0g + (1-p)R,
where p is the a priori probability that the scenes match, as previously defined, n; is now
the a priori probability that the kth combination of object matches would occur, given that

the scenes match, O, is the probability density of the observed set of object parameters
: occurring, given that the kth match is correct, p_ is the a priori probability density of the

observed set of object parameters, and p, is the a posteriori probability of the kth set of

matches being correct. Thus the term pn, is the a priori probability of the kth event, and
the term (i-p) is the a priori probability of the scenes not matching.

If the combination of object matches for which p, is maximum is found, and if this
value of p is large (near unity), then this combination can be assumed to be correct, and it
can be used to determine the desired parameters describing the translation, rotation, and

scale factor by a process to be described. (It would appear that all combinations of object

matches would have to be used in this computation, but a way of avoiding this will be

described in the next section.) However, the computation of ny and Py needed in (8.1-2)
will be described first.

The n; quantities can be found by the following reasoning. The probability that
object i in scene | will be matched to some object in Scene 2 is b,, the probability that it will

be unmatched is 1-b; and similarly for b; and I-b; for object j in Scene 2. Thus the
probability of a particular subset of m objects from Scene | and m objects from Scene 2

being matched, and no others, is the product of these terms over all objects, chosen
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according to whether each object is matched or not. However, there are m! ways of

matching a set of m objects to another set of m objects. Therefore, this product is divided

by m! to obtain the a priori probability of an individual matching combination. Thus,

l , ’

me = ar Lo IL 0-09IT 0; TL 0-8). (8.1-3) |
ie ig je" jel

where MM is the set of objects that are matched in this combination (containing m objects
from each scene).

Now the p, quantities will be considered. They can be obtained from the
discrepancies between object parameters for a particular matching, provided that the

probability distribution of the measurements of these parameters is known. It is assumed
here that these have the Gaussian (normal) distribution.

In order to make the problem less nonlinear, instead of using d and f as the
parameters in the adjustment, the quantities ¢ and 5, defined as follows, are used:

| ¢ = feos @

$s = fsin@ |
(8.1-4)

6 - arctan = |
¢ .

feds s?

Now the transformation between object parameters in the two scenes for the special

case under consideration can be expressed as follows:

x’ ¢ sl|x Ax
= +

yy se) (&

(8.1-5)

Wen Wey Wes ¢ 5 0 Wy Wyy Wygllc $s Or
A FJ rd l

Wey Woy Wool = 7 -s ¢ Of lw, ow, Ww 1|-5¢c0
Wy Woy Wey 0 0 f|Wex Wyo Wee |10 OS

From this a rotation and scale factor matrix R can be derived to be
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| fefs 000 0 00

-fsf« 0 00 0 0 ©

0 0 ¢* s20 25 0 O

0 0 5s ¢20 -2s5 0 O
R= J (8.1-6)

ffloo oop o oo
0 0 —cs¢es 0 c®>52 0 0

0 0 00 0 0 fc fs |

| 0 0 000 0 fs fe

where it is assumed that X = [x y w,, w_, w,, w,, w,, w,]J. (The horizontal
components of ¢ are denoted here by x and %, and the elements of W are denoted by w with

appropriate subscripts.) In other cases using different features than the object descriptions
used here, R would be defined differently. But in any case, it would be used as foliows to

compute a discrepancy vector = and its covariance matrix W¥ for each matching of object {
in Scene | with ob ject { in Scene 2: |

(8.1-7)
T +

| Now the partial derivatives of &;j With respect to the parameters c, s, -x’, and -9’
can be obtained from the above equation {by using the fact that f2 = ¢2 + 52) and are

assembled into the matrix B;. (8 by 4 here). (The derivatives relative to -x’ and -y'
produce the effects relative to Ax and Ay, according to (8.1-5)) Then, using the general

| solution in Appendix A produces

o} 0!
T -1

3 ijelt
(8.1-8)

oj o0}|'0,-0
C., = BT| Yo 1+ > BLE.k o . TRY AS

where R is the set of objects making up the kth combination, the first terms contain the a
priori information, and |
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5s ¢
-—~ = 00 |

B,- | ff (8.1-9)
| L200

ff |

which consists of the partial derivatives of 6 and f with respect to ¢, s, Ax, and Ay,
according to (8.1-4). Then the solution is obtained by replacing the values of ¢, 5, Ax, and
Ay by values obtained from the old values, as follows:

c ¢

| | + Hye (8.1-10)- + Hg A-

Ax 0 kk

Dy 0 |

Hi! is the covariance matrix of [c s Ax Ay]T. Because of the nonlinear terms in (8.1-6)
with respect to ¢ and s, this process may need to be iterated. (Since the problem is linear
with respect to Ax and Ay, these quantities did not have to be included in (8.1-7), and
thus in (8.1-10) their old values are in effect zero.) Note that the nonlinearity with respect
to ¢ and s occurs in R only in the terms involving the w's. When the objects are

considerably smaller than their separation or are nearly spherical, these terms have very

little effect in the solution in (8.1-10). In such a case, if ¢ and s are fairly accurately known,

it would be a reasonable approximation to neglect their variation in B;;, and thus only the
terms involving B,_ in (8.1-8) (containing the a priori information) would have to be
recomputed in the iterations. |

Now the probability density for this particular matching combination can be obtained
as follows for use in (8.1-2). First, the residuals are

io -1

Then the multivariate normal distribution produces

pi; = ——————— expl-2VTW;W,) (8.1-12)

where r is the number of parameters in the feature vector (size of ¥), here assumed to be 8.
If object { is unmatched in this combination, the a priori distribution of parameter values is

used for pO;j instead of (8.1-12). Finally, the probability density function for the complete
match is the product of all of the p;j values in this combination times the probability
density functions corresponding to the a priori values, as follows:
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0-02  (f-f,¢ |

Py = a exp(~ El— - reII Pj (8.1-13)

| 82 Search Procedure

With a large number of objects, it would be impractical to use all combinations in

(8.1-2). However, because of the exponential function in (8.1-12), most of the po; values will
be negligibly small, and these terms can be ignored. The problem is to determine which

combinations will produce significant magnitude in 0,, without having to compute them all.

The approach used is to select the objects in Scene | one at a time and to tentatively

match these to all objects in Scene 2. The a posteriori probability of each of these partial

combinations is computed, and those with negligibly small probability are not pursued

further. In order to have a high likelihood of unambiguous matching, the larger objects in

Scene 1 are selected first, although a more complicated ordering using the covariance

matrices also could be devised. This successive matching of features in order to refine a

transformation between scenes is similar in some respects to other scene-matching methods,

for example Price [1978] and Milgram and Bjorklund [1979] However, these did not use a

full search, matching features one at a time, and did not use probabilities to prune the
search.

| Because, when a tentative partial match is made, it is not known which objects in
Scene 2 will remain unmatched, there is no obvious way to use all of the information in

: (8.1-3). Instead, n, is computed by the following method for the purposes of the search.
(After the process has used all of the objects in Scene i, the remaining complete
combinations with significant probability can be used in the full computation described in

the previous section.) The value of n, is obtained recursively, as follows:

Me = |

| 6, N 2, b;
J

bd, if dj hed (8.2-1)Wp = MW, be if { and f are matc 2
k k-1"s FT"Og.

Te = Ti(1-4), if iis not matched

| | Bg = By. —b; ifiand jare matched

B, = Bi, if iis not matched
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where k denotes the number of objects in Scene | that have been selected for matching so
far. In this way a search tree is built up, branching out as different objects in Scene 2

(including no object) are matched with the current object in Scene | at each level. The
values from (8.2-1) can be used in (8.1-2) as before, and the resulting probabilities are used |
to prune the search tree.

The criterion used for pruning ideally should not use a constant probability

threshold, but should take into account the fact that, if a large number of nodes have small

probability each but sum to a large probability, there is a good chance that one of them will

turn out to be part of the correct solution. An appropriate method would be to sort by

probability ali of the nodes at a given level in the search and to reject all of the ones with
smallest probabilities that sum to less than some threshold. The implemented version is

simpler than this (and more tolerant); it rejects any node whose probability times the
number of nodes at this level is less than the threshold. The threshold currently used is

0.001. This also is quite tolerant. However, once about two object matches are included in

a combination, new matches usually do not agree very well unless they are correct, and thus

the probability drops rapidly for incorrect combinations.

As the bottom level of the search tree is reached, not all of the available information

will have been used in computing ny by the above method. Thus ng from (8.2-1) will act
as an upper limit to the value that would have been obtained from (8.1-3). This effect

causes less pruning to occur than the optimum computation would produce, but it should

not result in the rejection of good solutions.

At each level of the search, the complete computation according to (8.1-8) and

(8.1-10) can be computed, including the iterations. However, the result from the previous
level in the search tree can be used as the initial approximation at this level, so that fewer

iterations (perhaps only one) would be needed at each level. Also, as pointed out in section

8.1, under some conditions the variation in the elements of B;; with respect to ¢ and s can
be ignored. In such a case the summations involving B;j in (8.1-8) can be computed
recursively by adding the terms for a new i,j combination to the total accumulated at a

higher level in the search, thus saving time. If the a priori values of ¢ and s were known so

accurately that the variation in B_ could also be ignored, then the entire computation of Hg
and Cp could be done recursively, and it would be possible to reformulate the solution by
using a mathematically equivalent Kalman [1960] recursive estimation technique {called

sequential adjustment by Mikhail [1976]), with slight additional time savings.

It would aiso be desirable to save time by recursively computing the product of po;j
used to obtain Py in (8.1-13). However, as formulated in section 8.1, the residuals V;i vary
with the current solution as more combinations are added. It is possible to reformulate

things so that when a new combination is introduced, it is compared to the previously :

accumulated solution for the purposes of computing 0;.;. When p; ; is defined in this way,
its valuesdo not change as more combinations are added, but its product with a given set
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of combinations is the same as with the other definition. Thus, its product can be

accumulated recursively. However, this method would involve including the current
estimate of translation in (8.1-7) and doing the entire error propagation from the current

estimates of ¢, §, Ax, and Ay in (8.1-7) for these purposes. This would be rather

complicated and time consuming, so it is not considered further here. However, it is
described in the next section for an approximate method.

In any case, the solution at the bottom level can be used as an initial approximation

for one or more iterations with the full computation described in the previous section, using

those combinations that have not been pruned because of small probability. (However, this
is not done in the implemented version.)

8.3 Approximations

The computations previously described, especially (8.1-8), would be quite
time-consuming. Therefore, it is desirable to make some time-saving approximations,

especially in the search phase where the computations wilt be repeated many times. The

approximations that will be considered are mainly those that discard some of the

information about the objects. The fact that such a process does not use ali of the available

information about the objects will result in less effective pruning. Thus, although less

computation has to be done at each node in the search tree, there are more nodes to

- compute. (This is similar to the effect of using the approximate value of ny in the previous
section.) If desired, the full computation can be done with the nodes remaining at the
bottom level, so that the approximations affect only the computation time and not the final
result.

The approximation that is made in the search portion of the implemented version is

to use only the position and size of each object and to disregard its shape and orientation.

Also, the size is used only in computing the probability density for a given fit, and not in

adjusting the parameters of the fit. (This latter change usually has little effect, because the

scale factor is determined mainlyby the distance between objects) The quantity used to
represent size is the trace of the W matrix, denoted here by t. (Actually ¢ is inversely
proportional to the square of a linear dimension of the ellipsoid.) The trace is chosen to

represent size because it is easy to compute from the W matrix and it is invariant under
rotations. Thus,

te wy, tw, tu,
(8.3-1)

oi - Tory * Toy * Toys * Tio, pia, + io, yy * 20 i010,

Because none of the orientation information about the objects is being used, the only
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portion of the X vector in (8.i-7) that will contribute information to the solution in (8.1-8)

is the position information. If only the horizontal position is used, then only the first two

components of X need to be used in (8.1-7).

Thus the nonlinear terms in ¢ and s have been eliminated from R, and B;j is now |
independent of these parameters. Therefore, the recursive approach suggested in section 8.2

can be used in order to save time in the search phase. This involves updating the old

probabilities when a new match is introduced into the combination. Thus the probability

density of the new match is computed by comparing the new match to the previously

computed solution, instead of examining the residuals of the overalit solution as in (8.1-12).

Therefore, for the purposes of computing the probability density only, the discrepancies are
redefined to included the current estimates of translation (Ax and Ay), and the accuracy

estimates of the discrepancies include the current uncertainty in the translation and rotation.

Making the above changes to Z in (8.1-7) and multiplying out the matrices produces

E = xc+95+ Dx-x'
| (8.3-2)

U=gc-xs+Dy-y'

The full error propagation associated with this produces

of - 0c? + x07 M 20 4 y£$ + 2xy0 y+ 035% + yo; + 20 opy + D0 5px + dx + oz
2 2 2

Of = 0224502 - 20, 05 2090, + 025% + x07 + 2905, - 20, + OF, + 0%,
(8.3-3)

Op = Op 2+ 090% — 02s - x%0, + 0%s + 970, - 0,57 - x30] |
+ Oarayt ¥0cay + 30x + Wsay = *T ax + Tyryr

The corresponding quantities for size are

T = 2 ~t
(8.3-4)

of 40%! 2

0% = al + ra i+ 02,

Then the probability density is computed as follows, derived from (8.1-12):

0 I 1 £0? - 2kvog, + Vo 72TH ——————— exp(- . - —)ij 2 2 _ 2 |

(2m), fo302 - ot, Tio] of, 20%
(8.3-5)
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However, if no objects have been matched at previous levels, no values of Ax and Oy
would have been computed for the above computation, so only the size information would
be used, as follows:

aft for 0, 20

where a is the a priori area over which the objects might lie in Scene 1. In any case, the

overall probabiltiy density for the match so far accumulated is the product of these:

Pi = IT Pij (8.9-7)
hjeR

‘These values are used in (8.1-2), as before. In the search phase, if the resulting probability

is small, the combination just produced is deleted. Otherwise, a new adjustment for the
parameters is done.

Since the portion of (8.1-7) dealing with W is not used in the parameter adjustment

in this approximation, the adjustment is linear except for the a priori vaiues. The B
matrix is

x y 10
B = (8.3-8)

- | y-x 0 1 |

The error propagation from the position values according to (8.1-7) is as follows, which
differs from (8.3-3) in that it does not inciude the uncertainty in the parameters being
adjusted {c, 5, Ox, and Ly):

| Of = 03% +20, 05+ 03% + 02,

0) = 0%?-20,cs+03s%+ 0%, (8.3-9)

Ofy = Op)’ — ORs +025 ~ 0, 5% + Oyryr

Then the covariance matrix of the observations is

os O

v. |" % (8.3-10)
Ot, Op

| B and WU are used in (8.1-8). Note that B now is not a function of the parameters being
adjusted (c, 5, Ax, and Ay); however, ¥ is a function of ¢ and 5. The effect of ¥ changing
slightly is only to change the weights of the observations slightly. Therefore, as long as ¢
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and s do not change very much, there should be no need to recompute the summations

involving these matrices when iterating. In the search phase, these summations can be |

accumulated recursively as more matches are added to the combination. The implemented

program currently does it this way. Therefore, the a priori values @, and f_ must be fairly
accurate, so that ¢ and s will not change very much. (The implemented program also uses

these a priori values in a less optimum way than is described in Section 8.1, and this has

the same result of requiring the a priori values to be fairly accurate.)

| Other approximations are possible that use more information than the above but less
than the full information available. One possibility is to use the position, size, and shape of

each object but to ignore its orientation. (If the a priori orientation is completely unknown,

when only one object match exists in a combination this is all the information that is useful

anyway, but as more objects are matched in a search, the orientation information may

become useful) This approximation would be used in a similar manner to the above
approximation, except that there would be three size and shape quantities instead of ¢, with

a 3-by-3 covariance matrix instead of 07 Like ¢, these quantities affect the probability of a
match, but their effect on the adjustment for ¢, s, Ax, and Ay for a particular match is

small and can be ignored. |

The size and shape of an ellipsoid are determined by the semi-lengths of its principal

axes. These are equal to the reciprocal of the square roots of the eigenvalues of the W

matrix. The eigenvalues of the W matrix can be found by solving the following equation
for A (see Hohn [1973)): :

det(W - Al) = © 8.3-11)

where / is the 3-by-3 identity matrix. Since W is 3-by-3, (8.3-11) is a cubic in A, and the

three roots are the three eigenvalues. The most difficult part is not computing the

eigenvalues themselves, but computing the error propagation from the elements of W to the

eigenvalues. For a linear approximation error propagation it is necessary to compute (either

analyticaly or numerically) the partial derivarives of the eigenvalues with respect to the six

unique elements of W. Then the error propagation is done in the usual way by forming

~ these partial derivatives into a 3-by-6 matrix, premultiplying the 6-by-6 covariance matrix

of the ws by this matrix, and postmultiplying by its transpose to produce the covariance

matrix of the eigenvalues.

84 Example

The only pictures used to test the scene matcher were the Mars pictures described in

Appendix C. Ideally, different stereo pairs taken under different lighting conditions and
from different directions should have been used to obtain the scene descriptions to be

matched, in order to have a more impressive test. However, the Viking could take pictures
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from only one position, and because of a lack of time pictures taken under different

conditions were not transferred to our computer system. However, in order to simulate the
differences that might occur from these causes, the pictures used were processed in different

ways. The small portions {about 10° by 10°) were processed with 8-by-8 match windows in
the stereo program and with height thresholds of 3, 5, 6, and 7 centimeters in the object

finder; the small portions were also processed with 5-by-5 match windows and a
b-centimeter threshold; and the large portions were processed with 8-by-8 match windows

and a 6-centimeter threshold. The results were compared to each other successfully by the
scene matcher. One of these matches is shown here. |

Figure 8-1 and Figure 8-2 repeat Figures 7-7 and 7-8, except that the ob jects have

been identified with arbitrary numbers. (These scene descriptions were obtained with
height thresholds of 5 centimeters and 3 centimeters, respectively, in the object finder. The

match window in the stereo processing was 8 pixels wide in both cases.) These two scene

descriptions were given to the scene matcher. The a priori rotation was given as zero with

“a standard deviation of 1°, and thea priori scale factor was given as unity with a standard
deviation of 0.01. (The translation was completely free to be adjusted.)

Figure 8-3 shows the results of using the data in Figure 8-1 as Scene | and the data

in Figure 8-2 as Scene 2. The search tree is shown. The numbers at the left followed by

colons are the object numbers in Scene 1. The other numbers on the same line are the

object numbers in Scene 2 for the objects being matched to this object in Scene I. Zero

means that this object in Scene | is left unmatched. The numbers just below the Scene 2

object numbers represent the probabilities computed for this match so far. To save space

the negative of the common logarithm of the probability, truncated to an integer, is shown.

| ~ Below the search tree the final results are shown for the most probable match. Shown are
the pairings of objects, the probability, the translation in x and ¥, the rotation, and the scale

factor. The values after the plus-or-minus signs are the computed standard deviations.

Note that the standard deviation of the scale factor is not much less than the input value of
0.01, which means that the solution was not able to add much information about the scale

factor. (Since the two scenes were both from the same actual scene and same camera

position, the true values of translation and rotation are zero, and the true value of scale
factor is unity.)

Figure 8-4 similarly shows the results of doing the match with the scenes

interchanged, so that the data in Figure 8-2 is now Scene | and the data in Figure 8-1 is

Scene 2. Even though the search tree is quite different, the final results are almost the
same. (The final results would be exactly the same if a complete solution as described in

Section 8.1 were done at the bottom level of the search tree, since the same objects were

matched.) Of course, since the scenes have been interchanged, the translation and rotation

} have changed sign and the scale factor has been inverted. |
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Figure 8-3. Match of scene in Figure 8-1 to scene in Figure 8-2.
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‘Figure 8-4. Match of scene in Figure 8-2 to scene in Figure 8-1.
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Appendix A

NONLINEAR PARAMETER ADJUSTMENTS

In several parts of this thesis, problems have been discussed that involved solving for

some parameters by using observed values of some quantities that are nonlinear functions
of these parameters. The observed values may contain occasional mistakes (wild points),

and the accuracy of the remaining values may not be entirely known. For example, in the
stereo camera model solution, measured values of film plane coordinates of some points are

obtained, and it is desired to compute the relative position and orientation of the cameras.

A general method for solving problems of this type will be discussed in this appendix.

| A.l1 Basic Method

In this section a method of performing nonlinear generalized least-squares

adjustments will be described. This method uses partial derivatives to linearize the

problem and iterates to achieve the exact solution. It is assumed in this section that the

accuracy of the observations is known and that there are no wild points that should be
removed from the solution.

Very little in this section is original. However, this method apparently is not well

known in Artificial Intelligence circles. Even in circles where the basic method is often

used, some of its properties are not well known. For example, the linearized solution |

represented by (A.1-17) is often described (as in Mikhail [1976]) without any apparent
awareness of the effects of the second derivatives. Bard [1974] mentions the second

derivatives but does not cover the related matters dealt with here in the following sections.
For these reasons it is desirable to describe here in a unified manner the method as it is

used in this thesis. Of course, the two references just cited also deal with other aspects of

this problem and similar problems not needed here. Also, more information about the

statistical properties of the linear problem is given by Graybill [19611 Therefore, the
reader who is interested in these matters is urged to consult these references for further
information.

Suppose we have a set of m unknown parameters for which values are desired,

denoted by the vector G (m-by-1 matrix). (In the stereo camera model solution, these would

be the quantities defining the camera calibration.) Suppose further that there are a set of n

quantities (n 2 m) denoted by the vector F, which can be measured with some error and

which are functions of G. Let U denote the measured value of F (containing some error).

(In the stereo camera model solution, the elements of U would be related to the film plane .

measurements in a way explained in Section 3.3) Let V be the vector of the n residual

errors in the fit to the observations using a particular set of values for the parameters.
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That is,

| . U = F(G)+V (A.1-1)

with the functional dependence on G explicitly indicated. The problem is to use U to

compute G such that V is minimized in some sense. (The n scalar equations represented by
(A.1-1) are called the condition equations.)

For the criterion of optimization we will minimize the quadratic form

where W denotes an n-by-n weight matrix. W should be the inverse of the covariance
matrix of the errors in the observations. This will result in the maximum-likelihood (in the

F space) solution if the errors have the multivariate Gaussian (normal) distribution, and it
will result in the minimum-variance (of the g's) unbiased solution of all solutions that are

linear functions of the U, for any distribution in linear problems. (Proofs of these

statements can be found in Graybill [196i]) Note that if W is a diagonal matrix

(indicating no correlation between errors in different observations) the quadratic form
reduces to a weighted sum of the squares of the elements of V. Thus the problem as stated

here can be said to be a generalized least-squares adjustment.

> Solving (A.1-1) for ¥ and substituting in (A.]1-2) produces

| g = [U-FGITWIU - F(G)] (A.1-3)

The problem then is to find G such that q is minimum.

The difficulty in obtaining a solution to the above problem lies in the fact that F in
(A.1-1) is a nonlinear function, and thus in general there is no closed form solution. One

way of solving the problem is to use some type of general numerical minimization

technique, in which on various iterations new values of G are tried, ¢ is recomputed each

time, and gq is driven to a minimum. However, such methods tend to converge rather slowly.
Also, numerical problems may occur if ¢ has a very broad minimum, for round-off errors

may give rise to spurious local minima. Instead of such an approach, to find the minimum

of ¢, we will differentiate (A.l1-3) with respect to G, set the result to zero, and solve for G

iteratively. (A numerical value of ¢ then never needs to be computed to obtain G.)

In order to follow the steps of this process, we rewrite (A.I-3) in terms of the elements

of the matrices, as follows (where a particular element of a matrix is represented by the

. corresponding lower-case letter with appropriate integer subscripts).
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| q = 2 l= f6wylu; - £46) (A.1-4)
J -

Differentiating this produces

3 oi
| = -2 > w. fu. ~ fAG)] (A.1-5)SE oy ogy 1 i

Since (A.1-5) is a nonlinear equation, to solve it for G when 3¢/dg; is set to zero, we will
use Newton's method. To do this, the partial derivatives of d¢/dg; are needed. These are

3? oi of %
i - 2 We: mt — 2 30 ijl; - .] (A.1-6)

The corrections d; needed to g; are related to the above by |

.
AER TR (A.1-7)

(These corrections would be exactly correct if F were linear.) We can now revert to matrix
notation, by defining the n~by-m matrix P to be composed of the partial derivatives of the
function F, such that

of; |

pi - SE; (A.1-8) ;
and the n-by-m-by-m matrix R to be composed of the second derivatives of F, such that

8%f;'
Fig = (A.1-9)
CLR TAT

Substituting (A.1-5) and (A.1-6) into (A.1-7), using these definitions, and dividing through
by 2 produces

| [PTWP - RTW({U - F)ID = PTW({U - F) (A.1-10)

where F, P, and R are all implicit functions of G. (An approximate value of G used to
obtain F, P, and R in (A.1-10) defines the correction D needed to obtain a more accurate

value) Notice that R is a strange creature, a three-dimensional matrix. These are not
usually defined in matrix algebra, but the usual definitions can be generalized to handle

them. In particular, a product of the form A = RTWB, where 4, R, W, and B have

respectively two, three, two, and one dimensions, is given by ap = > TikifiIz where the
summation is over all values of i and j. (Of the five possible ways of rearranging the three
indices, the transpose of a three-dimensional matrix is defined here as reversing the order
of the three indices.)
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: The solution for D can expressed in terms of the matrix inverse as follows: |

D = [PTWP - RTW(U - F)I''PTW({U - F) (A.1-11)

or equivalently

D = U-(PTWPY'RTW({U - PI) PTWP)'PTW({U - F) (A.1-12)

where [ denotes the identity matrix (in this case m-by-m). D as obtained above using an

approximate value of G would be added to this value of G to obtain a more accurate value,

and this process would repeat until it converged.

The worst part of the above solution is the necessity to compute the partial

derivatives. Often they are difficult to derive analytically and difficult to compute

accurately numerically. In either case they are time-consuming to compute. These
difficulties are usually much worse for the second derivatives R than for the first

derivatives P. Furthermore, there are nm? second derivatives to compute and only nm first
derivatives. Therefore, it is highly desirable to be able to omit the second derivatives from

the computation. We will now consider the effect of neglecting them.

With a reasonable first approximation, and especially on later iterations, the

. discrepancies U~F are small. Also, if the function F is reasonably smooth, the second
derivatives RK are small. Of course, what is considered small is relative. In this case

smallness depends on the magnitude of the first derivatives P. If U-F and R are small

| enough so that the relative change in P is small when G changes enough to cause F to vary
by amounts on the order of U-F, then the nonlinearities are not having much effect, and

the elements of RTW(U-F) are small compared to the elements of PTWP, Thus a good
approximation in such cases can be obtained by setting R to zero in (A.1-11) or (A.1-12),
which produces

D = (PTWPY'PTW(U - F) (A.1-13)

The use of this approximation is known as the Gauss method, because Gauss originally

used it on ordinary least-squares problems. |

It is important to realize that only the second derivatives of F are neglected in the
Gauss method. The second derivatives of ¢ depend not only on these but also on the first
derivatives according to (A.1-6). Under the assumptions in the previous paragraph the
first term on the right of (A.1-6) usually is considerably larger than the second term, and

thus the second derivatives of ¢ will be fairly accurate.

The approximate (Gauss) corrections given by (A.1-13) are just the accurate (Newton)
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corrections given by (A.1-11) or (A.1-12) premultiplied by 7 - (PTWP) 'RTW(U-F). The
accurate corrections given by (A.1-11) or (A.1-12) attempt to nullify an error in G which
Newton's method has estimated to be -D, since -D+D = 0. But, if the Gauss method is used

instead, we have in effect —D+ (/-A)D = —AD, so that the vector of errors in G on each
iteration is premultiplied by A = (PTWP) 'RTW(U-F), neglecting the higher order effects
neglected in Newton's method. Therefore, using the approximation (A.1-13) cannot effect
the final solution, unless it destroys the convergence. The matrix (PTW P) I RTW(U-F) will
tend to become constant as the solution convergences, as the discrepancies U-F converge to

the final value of the residuals ¥. Thus the Gauss method changes the quadratic
convergence of Newton's method to linear convergence, if convergence is achieved. If all of

the eigenvalues of (PTW P)"'RTW(U-F) have an absolute value less than one, convergence
will be preserved, and the smaller the eigenvalues are, the faster convergence will be. (After
several iterations, the error will tend to decrease by a factor equal to the absolute value of

the largest eigenvalue.) From the arguments in the previous paragraph, the eigenvalues
should be small, except when the initial approximation is very wrong (causing U~F to be

large) or when F is very nonlinear (causing R to be large). Thus, except in these cases, the
solution should converge rapidly. (A way of converting the linear convergence of the Gauss
method into quadratic convergence without computing R will be discussed in a later

section.) Some of these matters are discussed further by Bard [1974].

The solution using (A.1-13) is usually obtained by a different approach (as in Brown
[1955 and 1957] and Mikhail [i1976])). This approach approximates (A.1-1) by a
linearization based on the partial derivatives of F, solves the resulting linear problem, and -

iterates this process to obtain the solution to the nonlinear problem. Thus let G, denote an
approximation to G. Then equation (A.l-1) can be approximated as follows:

U = F(G)+PGXG-G)+V | (A.I-14)

where P is defined by (A.1-8) and its functional dependence on G has been explicitly
indicated. We now define

E « U-F(@G,) (A.1-15)
D = G-6G,

Then (A.1-14) can be rewritten as

E = PD+V (A.1-16)

Thus we have replaced the nonlinear equation (A.l1-1) by the linear equation (A.1-16), in

which E represents the discrepancy between the observations and their computed values

using the current approximations of the parameters, and D represents the corrections
needed to the parameters. Therefore, we now wish to solve for D in (A.1-16) so as to

minimize ¢ in (A.1-2). This is a standard problem in linear statistical models. (See, for
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example, Graybiil {1961]) The solution for D is |

D = (PTWP)'PTWE (A.1-17)

which is the same as (A.1-13).

The covariance matrix Sg of the errors in the converged values of the parameters G
can be obtained from the covariance matrix S; of the errors in the observations U by the
usual linear approximation of premultiplying by the matrix of partial derivatives of the

transformation and postmultiplying by the transpose of this matrix. In this case the

transformation from U to G in the neighborhood of the converged values is given by

approximately (A.1-13) or more accurately by (A.1-12). (Regardless of which method was

used to produce the converged values of G, the answer is the same. Thus the use of

(A.1-12) will produce a more accurate error propagation than (A.1-13), although (A.1-12) is

still only an approximation in this regard if higher-order terms are considered.)

If the accurate transformation (A.I-12) is used, the matrix of partial derivatives will

contain terms produced when (A.1-12) is differentiated relative to both occurrences of U in
(A.1-12). However, when the derivatives are evaluated at the converged values, the effect

of the first term drops out, since PTW(U-F) is then zero (because D is then zero). Thus we
have

UU - (PTWP)Y'RTWU-F)INPTWPY'PTWSWP(PTWP) I- (PTWP)'RTW(U-F)I"T
(A.1-18)

IfW = Si), as it should for the optimum solution, this reduces to

Sc = U-(PTWP)Y'RTW(U - F)I(PTWP)I- (PTWP)'RTW({U - F)I'HT  (A.1-19)

Using the approximation of neglecting the second derivatives, as in (A.1-13), reduces this to

| Sc = (Twp)! (A.1-20)

(Remember that (A.1-19) and (A.1-20) are correct only if W is the inverse of the covariance
matrix of the observation errors.)

Note that even though (A.1-19) was derived using the linear approximation for
covariance propagation, it contains the second derivatives of F. An even more accurate

result could be obtained by considering second-order effects in the propagation, although

this would require knowledge of moments of the error distribution of higher order than the

second. This result would contain squares and cross products of the second derivatives,

whereas they occur to the first power in (A.1-19). Therefore, if the second derivatives are
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small, (A.1-20) and (A.1-19) can be considered the first two members of an infinite

sequence of better approximations, accurate to higher powers of the second derivatives. In }

most cases (A.1-20) is quite adequate, since the error estimates usually are not known very
accurately anyway.

It often is desired to know the covariance matrix of the residuals. (It is useful to

compare the magnitude of the residuals to the square roots of the diagonal elements of their

covariance matrix, for editing purposes, as will be described in a Section A.5) For the
approximate (Gauss) case, this can be derived by first obtaining the equation for the

residuals by solving (A.i-16) for ¥, substituting (A.1-17) for D, and factoring out E, to

produce

V = U-P(PTWP)Y'PTWIE (A. 1-21)

Then, since the covariance matrix of E is the same as that of U, the covariance matrix of V

can be obtained by premultiplying 5; by the coefficient of E (in brackets) in (A.1-21) and
postmultiplying it by the transpose of this coefficient. If W = Sf}, the resulting expression
simplifies to

Sy = Sy- P(PTWP)Y'PT (A.1-22)

Note that by using (A.1-20) the second term in this equation is seen to be the covariance

matrix of the adjusted parameters propagated into the observations; thus it is the ]

covariance matrix of the adjusted observations. ‘Therefore, (A.1-22) says that the

covariance matrix of the residuals is equal to the covariance matrix of the observations

minus the covariance matrix of the adjusted observations. This may seem appropriate,

because the residuals are the observations minus the adjusted observations. However, this
should be considered a coincidence, because the covariance matrix of the difference or sum

of two vectors is the sum of their covariance matrices, not the difference, if the vectors are

uncorrelated with each other. Here, the particular way in which the observations and the

adjusted observations are correlated produces the above result. Turning this around and

expressing. the observations as the sum of the adjusted observations and the residuals (and

similarly for their covariance matrices) produces the somewhat surprising result that the

residuals are uncorrelated with the adjusted observations. (Remember that these results

holds only in the Gauss approximation and only if the weight matrix is the inverse of the
covariance matrix of the observations.)

In many cases W can be partitioned into a diagonal matrix of matrices. Let each of

these submatrices on the main diagonal of W be denoted by W. In the corresponding

manner £ and P are partitioned by rows into E; and P;. (What we have done is to group
the observations into sets so that there is no correlation of errors between members of

different sets.) Then (A.1-17) and (A.1-20) can be rewritten as
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H = 2, PIwP,

C= 2 PIWE
| y (A.1-23)

D = HC

Sg = H!

Note that, if the errors in all of the observations are uncorrelated, W, and E; are l-by-1|
matrices, which can be represented as the scalars w; and ¢; and P; is a 1 by m matrix.
Furthermore, if all of the w; are equal, they cancel out of the equation for D, and we have
an unweighted solution (ordinary least-squares).

Several other quantities of interest can be derived from the solution. We will present

these for the general partitioned Gauss case, with W; = S;}. The adjusted value of E; is
:

P:D. The residuals are

The quadratic form is

: g= 2 VIWy, (A.1-25)
i

| The expected value of ¢ is n—m. If the scale factor of the covariance matrix of observation

errors is unknown, W can be adjusted by the ratio (n~-m)/g and 5 by the ratio g/(n-m).
Otherwise, ¢ can be used as a test on the adjustment; for, if the observation errors have the

Gaussian distribution, then ¢ has the chi-square distribution with n-m degrees of freedom.

(Proofs of these properties of ¢ can be found in Graybill [1961)) So represents the
covariance matrix of errors in the ad justed parameters. The square roots of the diagonal

elements of So are the standard deviations of the adjusted parameters. The correlation
matrix of the parameters can be obtained from So by dividing the i, element by the
product of the standard deviations of the ith and jth parameters, for all i and j. Other

resuits which follow directly from the results for the unpartitioned case are the covariance

matrix of the adjusted observations P;S-P] and the covariance matrix of the residuals
Su. - PScPl. (Some of these matters are discussed further by Brown [1955 and 1957])

2

The solution of the nonlinear problem can now be described as follows. An initial

approximation is used to compute the discrepancies £; and the partial derivatives P,.
Then D is computed from (A.1-23) and is added to the current approximation for G to

obtain a better approximation. This process repeats until there is no further appreciable

change in G. Then the final values from the last iteration can be used to obtain Sg, V,,
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¢, and the other derived quantities described above. Of course, for convergence to the

absotute minimum of ¢ rather than convergence to some local minimum or divergence, it is

necessary that the initial approximation be sufficiently close to the true solution. In most

practical problems this is not critical; in fact, often there is only one minimum.

As previously discussed, the above solution for G, when converged, produces the true
generalized least-squares adjustment regardless of the nonlinearity. However, the properties

that the solution for G is minimum-variance and unbiased are only approximate in the

nonlinear case. Also, as previously discussed, So as computed above is only approximately
the covariance matrix of the errors in the final value of G in the nonlinear case. However,

if the amount of nonlinearity over the range of the measurement errors is small, these

results will be fairly accurate.

Often it is desired to have observations directly on the parameters. There are several

possible reasons for this. There may be some a priori information about the parameters

that one wants to combine into the solution. Also, it may be desired to give the initial

approximations a very small amount of weight in the solution, so that in case one of the

parameters would otherwise be indeterminate, it will be constrained sufficiently to prevent

the H matrix from being singular and thus to allow a solution for the other parameters to

be obtained. Finally, it may be desired to remove a parameter from the adjustment and to

constrain it to a fixed value. This can be done by assigning a very large weight to the
given value (although it would save computer time to delete this quantity from the

parameters in the program instead). In any of these cases the desired effect can be achieved J

by creating an additional m-by-m P; matrix, say P_, equal to the identity matrix.
Corresponding to this there is E_, equal to the given a priori value of G minus the current
approximation of G, and an m-by-m matrix W , the desired a priori weight matrix. These
are included in the summations for H and C just like any other observations.

A few comments should be made about the numerical aspects of performing the

computations. The H matrix is always non-negative definite; that is, if it is not singular it

is positive definite. The best strategy to use when inverting a positive-definite matrix by

‘an elimination technique is to pivot on the main diagonal. (See Forsythe and Moler [1967])

Therefore, a simple matrix inverter without any pivoting can be used to obtain H~'. H is
also symmetrical; therefore, some computation time can be saved if an inverter which makes

‘use of this fact is used. However, if n is considerably larger than m, much more time is

spent in computing A than in inverting it, so this may be hardly worth the trouble. In

problems where the solution is nearly indeterminate, H will be nearly singular, and much

accuracy can be lost because of numerical roundoff error. In such cases it may be necessary

to use double precision in the computations for H, C, D, and Sg according to (A.1-23),
including the inversion of H. (If a good inverter is used, there is usually not much point in

having it in double precision unless a double-precision H is available to invert, as

explained by Forsythe and Moler [1967)) However, high precision is not needed in

computing the discrepancies E; and the partial derivatives P;, as long as consistent values
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are used throughout the computations for A and C.

| A.2 Correlated Errors

The solution presented in the previous section allows the observation errors to be

correlated in an arbitrary way, as represented by the covariance matrix S;; However, in
order to partition the solution correctly according to A.1-23, the errors in the different

groups must be uncorrelated. But because of the great savings of time and storage that the

partitioned solution allows, it sometimes is desirable to approximate the complete solution by

means of the partitioned solution, even though the errors are correlated. This section

describes a way in which this can be done under some circumstances.

it sometimes is the case that the observations are performed at points distributed

throughout some space, with the covariance of different points always being less than the

variance of any point and being negligible for points so far apart that their effects on the

solution are significantly different (that is, have significantly different P; matrices). For
example, in the stereo camera model solution described in Chapter 3, the covariance

between points is caused by the additional errors described in Section 3.2, whose covariance
is a function of the distance between the points in the image plane and is assumed to be

negligible for far-apart points.

In such a case the following approximation can be made. The covariance matrix §,,

is partitioned into the covariance matrices J;j of each pair of points { and j. (In the case of
the camera model adjustment, each individual covariance matrix §;j for points i and | is
then 2-by-2.) Then an artificial covariance matrix for each point is computed as follows:

| Si = 2 Sij © (A.2-1)
] .

and atl 5;j are assumed to be zero for ivf. The results from (A.2-1) are inverted to produce
W, for each point.

To see why this approximation works, consider the following extreme case, where the

assumptions apply either to the entire covariance matrix Si; or to each of its submatrices
partitioned (in the usual way for (A.i-23)) into groups of points with no correlation between
groups. Assume that when the covariance matrix is partitioned further into submatrices

corresponding to the points, all of the these submatrices on the diagonal are equal, all of the

off-diagonal submatrices are equal, and all of the corresponding submatrices of P are equal

(within a given group).

Under the above assumptions, the covariance matrix of each group can be considered

to be made up of submatrices corresponding to the points such that the main-diagonal
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submatrices are A + B and the off-diagonal submatrices are B. Then by muliplying the

matrices it is easily verified that the inverse of the covariance matrix of the group of points

contains A! (A+n B)'BA™' everywhere on the diagonal and -(4+n B)'BA™
everywhere off the diagonal, where n is the number of points in the group. |

Because of the assumption about P, the constant submatrices of P (denoted here by

P,) allow the terms for this group in the summations for H and C in (A.1-23) (or the
corresponding portions of the unpartitioned solution in (A.1-17)) to be factored into

PI(EW,Po and PIEW,jEi respectively, where the summations are over all values of {
and §. (The index i here should not be confused with i in (A.1-23), which is for the

higher-level of partitioning, if any.) Thus it can be seen that the group of points is

equivalent to one point which is the weighted average of the points, where the weight

matrix for each group is the sum of the row (or column, since the matrix is symmetrical) of
weight submatrices corresponding to this point. From the previous paragraph the sum of a
row of submatrices of the inverse of the covariance matrix is seen to be

A - n(A+n B)'BA™, which simplifies to (4+n B)". Under the approximation of
(A 2-1) the artificial covariance matrix for this group consists of submatrices An B on the
diagonal and zero elsewhere. Inverting this and summing over the row produces (A+n B)!
(since there is only one term in the summation). This is equal to the exact result just

produced. Therefore, in this special case the approximation is exact.

For another limiting case in which the approximation is exact, consider the points to

be equally spaced in a Euclidean space of an arbitrary number of dimensions, with the :

covariance between a pair of points a function only of the coordinates of one paint relative
to the other. Thus, in the nomenclature of time series analysis, the errors are said to be

stationary, and the covariances form the autocovariance function. Summing the

autocovariance according to (A.2-1) over all of the space produces the zero-frequency value

of the Fourier transform of the autocovariance function, which is the power spectrum of the

errors. (See Blackman and Tukey [1958])) Therefore, what we have done is to use the
value of the power spectrum at zero frequency. Grenander {1954} and Watson [1967] have
shown that the component of correlated errors that affects a least-squares adjustment is the

portion of the power spectrum at the frequencies contained in the P matrix. Since we have

assumed here that the P matrix varies very slowly, the important frequency components are

all near zero frequency. Therefore, using the power spectrum at zero frequency, as the

approximation does, is the correct thing to do in this case.

When the above approximation is used, the adjusted parameters and their covariance

matrix (computed from the solution using the artificial covariance matrix according to

(A.2-1)) are correct within the limitations of the approximation. However, the quadratic

form computed from (A.1-25) using the inverse of the artificial covariance matrix for W
does not agree with that from (A.1-2) and thus does not have the usual properties described |

in Section A.l. (Its expected value and degrees of freedom are in general less than n-m.)
The quadratic form computed from (A.I-2) using the true covariance matrix would be
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correct, but it would be time-consuming to compute. It is possible to approximate the actual

distribution of ¢ from (A.1-25) under this approximation, but that will not be discussed
here.

One problem remains. When the covariance matrix of residuals is computed

according to (A.1-22) (or the corresponding partitioned form), the true covariance matrix of

the observations must be used for S;;, whereas the artificially augmented covariance matrix
was used to obtain the covariance matrix of the adjusted observations. Because the
covariance matrix of residuals is the difference between the two, if for some observation the

variance of the adjusted observation is nearly as large as the variance of the observation,

any error in the former caused by the inaccuracy of the approximation will cause a

relatively large error in the variance of the residual. The main problem occurs when the

conditions of the approximation are not met well, in that the extent of the correlation in

observation space exceeds the extent of the similar P matrices. In this case the variance of |
the adjusted observation will be overestimated, and the computed variance of the residual

can actually become negative. The problem can be avoided by using the fact that a

reasonable upper limit for the variance of an adjusted observation is as follows:

| 0% Ji
0% < y+ —— (A.2-2)

' ii

where Oe = PSP} is the computed variance of the adjusted observation, s;; = og. is
the variance of the observation, f;; is the augmented variance of the observation according

to (A.2-1), and # is the greatest s,; Tor iv} (largest covariance between this observation and
any other). Thus the minimum of ox and the limit from (A.2-2) can be used for ol
and the variance of the residual is then obtained by 0%: - CuO, instead of by using
(A.1-22).

A.3 Variance Adjustment

The solution in Section A.l assumes that the covariance matrix S;; is known, so that
it can be inverted to obtain the weight matrix. Often this is not the case, and some

information about it must be obtained from the solution itself. Of course, if nothing at all

is known about §;, there is not much hope. However, if some information is available
about it, the solution may be able to estimate the rest by utilizing information contained in

the residuals. (An accurate estimate can be obtained only if the number of observations n

is sufficiently greater than the number of parameters m so that there is enough information

in the residuals. If n = m, the residuals are zero) One example of this was mentioned in

Section A.l, concerningthe well-known use of the quadratic form to adjust the scale factor
of Sur A more elaborate case is discussed in this section, which is used in the implemented
version of the stereo camera model ad justment.
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Suppose that the covariance matrix can be expressed as the sum of two

positive-definite symmetrical matrices, as foliows:

Sy = A+B | (A3-1)

such that A is known exactly, B is known exactly, and the scale factor 4 is unknown except

for an a priori value 7 and its variance ol . {In the camera model adjustment, A0

corresponds to errors estimated by the correlator, y corresponds to the additional error

discussed in Section 3.2, and B is its correlation matrix.) }

In order to estimate vy, one approach that might be tried is to use the fact that the

expected value of the quadratic form is the number of degrees of freedom of the

adjustment (the number of observations minus the number of parameters), as mentioned in

the previous section. Thus substituting (A.3-1) into (A.1-2) and setting the quadratic form

equal to n-m produces the equation VT(4+yB)'V = n-m. This could be solved for v.
(The residuals would be obtained from a solution using the old value of +, from the
previous iteration.) However, this equation is equivalent to an nth-degree polynomial in +,

and solving it would be very time-consuming. Therefore, a different approach is used.

Let r; be the ratio of the variance of the ith observation to the variance of the ith
residual. Thus

0.
02

Yi

where 07 is a diagonal element of Sy; obtained from (A.1-22). By definition, 02 is the
} 3

expected value of v7 (since the expected value of u; is zero). Therefore, using the diagonal
elements of (A.3-1) to obtain 02, in (A.3-2) and rearranging produces

3

where the symbol £ represents the mathematical expectation operator. Now, v7 can be
considered to be an estimate of Ev} based on one sample. Thus, if the squared residual
(obtained from a solution using the old value of vv from the previous iteration) is used in

(A.3-3) in place of its expected value (and r; from the previous iteration is used), (A.3-3)
can be solved for 4. Of course, one sample of a squared residual does not produce a good
estimate for the variance, but there are n equations (A.3-3), one for each observation in the

adjustment. Thus an adjustment can be done for vy with n observations, using (A.3-3) as

the condition equations. These observations will be called "variance observations” to

distinguish them from the observations i; in the main adjustment. (If the covariances were |
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used also, there would be 5 ant) variance observations. However, using this many
observations would be time-consuming and would complicate the analysis below, with little

added benefit, since the main-diagonal elements contain most of the information except in

the case of highly correlated errors. In such a case it may be desirable to perform a rotation

to diagonalize A in order to utilize more fully the available information, but this is not done
in the implemented stereo camera model adjustment.)

Because the variance of the adjusted observations is usually much smaller than the

variance of the observations (assuming that n>>m), r; for most observations is only slightly
greater than 1. Thus its effect usually is only a slight correction, and using the value from
the previous iteration is satisfactory. In any case, when convergence is achieved, the value

will be correct. (In fact, the value of l/r; averaged over all observations is usually close to

(n—m)/n, although when the approximation in Section A.2 is used this value must be
altered. Thus in many cases it is a reasonable approximation to use a constant value of

nf{n-m) for alii rs.)

In order to combine the above measurements of vy correctly, the covariance matrix of

the variance observations must be known in order to obtain the weight matrix. The

variance observations according to (A.3-3) correspond to the right side of the equation.

Since a;; is known, the covariance matrix of the variance observations is the same as the

covariance matrix of r;vf. As an approximation, it is assumed here that r; is known. Thus,

the covariance of the ith and jth variance observations is r;r; times the covariance of v;*
and 75 In general, the variances and covariances of the squares of variables cannot be

- obtained if only the variances and covariances of the variables are known. However, if the
variables have the normal distribution with zero mean, then the variances and covariances

(about the mean) of the squares of the variables are twice the squares of the respective
variances and covariances of the variables. Under this assumption, which is valid if the
original observations have the normal distribution, the covariance of the ith and jth
variance observations is

Sij = 2 Top; (A.3-4)

where Ooi; is the i, j element of Sy which can be obtained by using (A.3-1) and (A.1-22)
from the previous iteration. (When n>>m, a fair approximation for 5;j would be 20h ; -
2a; +b), using the value of «4 from the previous iteration. This is exact for the
diagonal elements but neglects the correlations that the solution has introduced into the

adjusted observations. This approximation is used in the camera model adjustment, since it

avoids having to compute the entire covariance matrix of residuals) Then these values of

$i; are assembled into the matrix Sy, the covariance matrix of the variance observations.
| (To avoid confusion with the symbols U, W, and P in the main adjustment, the Greek

letters T, RN, and II are used here for the corresponding matrices in the variance
adjustment.) Then {I = 53! produces the weight matrix for the variance observations. (It
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might be pointed out here that the covariance matrix of residuals is singular. However, the

matrix composed of the squares of its elements in general is not singular if n is sufficiently

large. Even if it is singular, the method in Section A.2 can recover the needed information
in many cases.)

Then the variance adjustment can be done using (A.1-17). The II matrix
(corresponding to P there) is a column matrix containing the b; values, and T
{corresponding to both U and E in the main adjustment, since (A.3-3) is linear in 7) is a

column matrix containing the values ro} — a; {Do not confuse the symbol II with the
larger symbol used to denote products.) Then

| QT + >
To

Li
nm + —

02
Yo

(A.3-5)

"IAs
02
Yo

where the a priori value ¥, and its weight ios, have been introduced in the proper way.
(Since IT and T each have only one column, the matrix products in (A.3-5) produce 1-by-1
matrices, which are equivalent to scalars.) However, because of random fluctuations it is

possible for «y from (A.3-5) to be negative. If this happens, it should be set to zero instead.

Because vy is used in obtaining the weights to be used for computing v, the above
process is iterative. A complete iterative solution for «vy couid be done on each iteration of

the main solution. However, this is not necessary. One iteration of the variance adjustment

can be done on each iteration of the main adjustment, and the variance and the main

parameters will converge together. Note that, since the main adjustment has not yet

converged, it is actually the discrepancies instead of the residuals that are used in T in
(A.3-5). This will cause vy to be an overestimate on the early iterations. But as the

discrepancies converge to the residuals, y will converge to the proper value.

Instead of using (A.3-5) as is, it can be partitioned in the same manner as (A.1-17)
was partitioned to obtain (A.1-23), if the appropriate off-diagonal terms of {} are negligible.
But even if certain off-diagonal terms in the main observation covariance matrix §;; are
zero, they won't be zero in Sq because of the correlations introduced by the main
adjustment into the residuals. Of course, if the approximation of using twice the squares of

the elements of Sy for the elements of Sy is used, then the variance solution can be
partitioned in the same way as the main solution. In any event, the approximate way of

handling correlated errors described in Section A.2 can be used, and this would allow the

same partitioning to be used in the two solutions.
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A4 Convergence Acceleration

In Section A.l it was pointed out that the solution described there using the Gauss

method undergoes linear convergence. In many cases this is adequate, but sometimes the

convergence is quite slow. This section describes a way of accelerating the convergence of

the Gauss method, which converts it into quadratic convergence. This method is used in

the stereo camera model adjustment. (In the case where there is only one parameter being
adjusted, this method, except for the acceptance test described below, is equivalent to

Aitken’s extrapolation, described in Acton [1970])

Let the true (unknown) values of the parameters be represented by the vector G, let
G; represent the current values of the parameters used on iteration i (before the correction),
and let D; represent the corrections computed to the parameters by the Gauss method on
iteration i. Then ideally D; = G,-G;. However, more accurately

D; = AG, - G,) (A.4-1)

where A is a constant square matrix. The fact that A differs from the identity matrix

causes the linear convergence. (A here corresponds to /~A in the discussion following

(A.1-138).) Even more accurately, (A.4-1) would also contain higher-order terms in G,-G;,
which are neglected here. If A could be computed, it could be used to obtain a more

accurate correction by solving (A.4-1) for G,~G;.

Suppose that two different sets of parameter values (corresponding, say, to iterations i
and j) are used in the solution and the resulting equations (A.4-1) are differenced. The
result is

| D;-D; = AG; -G,) (A 4-2)

Everything in this equation is known except A4, but it cannot be solved for A because it

represents m scalar equations in m2 unknowns, where m is the number of parameters.
‘However, if m pairs of values are used to obtain m equations (A.4-2), they can be solved.

Let C be an m-by-m matrix each of whose columns consists of one DDj vector, and let B
be an m-by-m matrix each of whose columns consists of one GCi vector. Then the m
different equations (A.4-2) are all represented by the one equation

C = AB (A 4-3)

_ In the actual procedure, (D;-DNs and (GjG are used to form a column of C and B,
respectively, where s is the magnitude of the vector Gi Ci (square root of the sum of
squares of its elements). Dividing by s in this way normalizes things to avoid numerical
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problems caused by the rapidly diminishing size of these vectors during convergence, but
the resulting equation (A.4-3) is mathematically equivalent to the above description, since

the same factor is applied to corresponding columns of C and B.

Now let D be the desired more accurate vector of corrections. From (A.4-1) it can be

seen that D; = A™'D;. Equation (A.4-3) can be solved to produce 4°! = BC™'. Substituting
the latter into the former produces

D; = BCD; (A 4-4)

Adding the results of (A.4-4) to G; produces the more accurate values of the parameters.

In order for (A.4-4) to be computed, C must be nonsingular. This requires that all of

its columns (D;,~-Dj pairs) be linearly independent, which requires that m+1 different G's be
used to obtain the m pairs used in (A.4-2). Different values of G could be chosen

deliberately to produce linearly independent columns, but this would require m+1 complete

computations of D for each iteration, which would defeat the purpose of the acceleration.
Instead, values of G and D from m+1 successive iterations are used to obtain B and C in

(A 4-3).

Therefore, the procedure starts by going through m normal iterations. Then iteration
m+] is computed. Values of G and D from iterations 1 through m are each differenced
against those of iteration m+1 to obtain B and C in (A.4-3). These are used in (A.4-4) to

obtain a more accurate correction for iteration m+l. Then iteration m+2 is computed, and

iterations 2 through m+1 are each differenced against iteration m+2 to obtain an accelerated

iteration m+2. This process repeats in this manner, always comparing iterations i-m

through i-1 to iteration i when correcting iteration i, until the convergence tolerance is
achieved. | |

A problem remains, however. As the solution converges, the direction of the error

vector G-G, will tend to approach the constant direction given by the eigenvector
corresponding to the largest eigenvalue of /- A, with only its magnitude changing. This will

result in the columns of B and C becoming nearly proportional to each other, which causes |

C to become nearly singular. (Indeed, if by accident the error vector started exactly in this

direction, C would be singular from the start.) But the eigenvalue of C corresponding to the

eigenvector in this direction will not become zero, andit is this eigenvalue that contains the

information needed to compute D in this case, since D is in this direction also. In general,

those eigenvalues of C that are zero correspond to directions orthogonal to D, and thus do

not matter. Therefore, even though C may be singular, it contains the needed information.
In order to extract this information, some type of generalized inverse might be used instead
of the inverse indicated in {(A.4-4).

However, in the implemented procedure the following is done to get around this -
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problem. First, if possible, C is inverted in the usual way, and a test is made to determine if

| there was excessive loss of significance. If the test is passed, the result is used. However, if

the matrix was singular or the test was failed, a small positive quantity is added to the

diagonal elements of C and another try is made. Adding this quantity to the diagonal

elements increases each eigenvalue by this amount. A large eigenvalue will not be

appreciably affected by this small change, but a zero eigenvalue will no longer be zero. If

ail eigenvalues differ from zero by significant amounts, the matrix can be inverted

accurately. But there may have been a negative eigenvalue which becomes close to zero by

the addition. Therefore, the same test is made on the second try, and if it also fails, another

try is made. The implemented procedure subtracts the same quantity from the diagonal

elements of the original C matrix and tries again. If this doesn't work either, it gives up

and does not accelerate on this iteration. (Using up to m tries with a good matrix inverter

would practically guarantee success, because there are only m eigenvalues) The
implemented procedure does these computations in double precision, and the quantity

added is 107% Since C has been normalized, this changes its largest eigenvalue by roughly
one part in 10% If eight significant decimal digits were used in the computations, an
appropriate quantity to add or subtract would be 107%,

Before the convergence acceleration computed above is accepted on any particular

iteration, one more test needs to be made. If the higher-order terms which were neglected

above are large, applying the acceleration might make things worse instead of better. The

test that is made involves seeing whether the normal or the accelerated solution is more

consistent on two successive iterations. Whichever one was used to produce G on the

previous iteration, the other value of G is remembered. Both values of G are obtained for

this iteration. Then the magnitude of the difference of the G vectors produced by the

normal solution on the two iterations is computed, and the magnitude of the difference of

the G vectors produced by the accelerated solution on the two iterations is computed. For

this iteration, the solution for which this magnitude is less is accepted. If there was no

accelerated solution computed for the previous iteration (because of insufficient iterations or
failure of the matrix inversion), the normal solution is used for this iteration. (Thus the

accelerated solution will never be used until iteration m+2 at the earliest, since the first

accelerated solution isn’t computed until iteration m+1.)

The magnitude of a vector used above is defined as the square root of the sum of the

squares of‘the elements of the vector. In order for this to be a meaningful representation of

the distance between two solutions, the elements of the vector should be comparable

quantities, with their important effects being the same order of magnitude. If necessary, the

actual parameters in the adjustment should be scaled in order to achieve this condition.

(This is also desirable to avoid numerical loss of significance.)

If the variance adjustment described in Section A.3 is used, the variance estimate «y

can be considered te be one of the parameters for the purposes of convergence acceleration.

Then m here corresponds to m+1 in the main solution. However, the variance must be
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scaled appropriately, as described in the previous paragraph.

Because the method described here requires at least m+2 iterations in order to

accelerate the convergence, it would not be of much use when the number of parameters is

large. However, when m is small and convergence is slow, it can be quite useful. The

computation time it requires (consisting mostly of an m-by-m matrix inversion) is usually
much less than that of the main solution, so a large cost is not paid for its use, even if it
turns out not to be needed.

| A.5 Automatic Editing

It was mentioned in Section A.l that the solution there is the maximum-likelihood

solution if the errors have the Gaussian (normal) distribution. However, suppose that the

errors are from two causes. There are small random errors on every observation

approximately normally distributed, called “noise,” and there are occasional very large

errors, called “wild points.” The combined distribution for the total error departs greatly
from the normal distribution. It consists of an approximately normal curve added to a

function with a very small amplitude but a large width. The use of the unmodified

solution in Section A.l would result in large errors because of the wild points. Some

nonlinear solution adapted to the actual total error distribution is needed.

One approach would be to assume a particular total error distribution, and derive the ‘

exact maximum-likelihood solution for it. Compared to the ordinary weighted

least-squares solution this would have the effect of giving less weight to the points with

large errors on the current iteration, since they would lie on the further parts of the error

distribution where the curve flattens out instead of following the normal curve. In general

this would be quite complicated, and it would add a great deal of nonlinearity to the

solution, adversely affecting the convergence. (A crude approximation to this sort of thing

is used in the ob ject finder in Chapter 7.)

One reasonable way to approximate the above ideal in many cases can be derived

from the following reasoning. Because the amplitude of the probability distribution of the
wild points is so small (caused by their infrequence and wide range of values), the total

error distribution curve is very nearly the normal curve for small errors (if the noise is

normally distributed). But for some value of error the two probability densities are equal,

and for errors greater than this the normal curve rapidly becomes negligible, resulting in a

flat distribution from there on. Thus the total curve can be approximated by a normal
curve out to some threshold value and by a constant beyond there. The

maximum-likelihood solution that results from this approximation is to use the points with

errors less than the threshold in the usual way and to ignore all other points. Such a

process of rejecting outlying points is called “editing.”
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~~ The correct threshold to use for the editing process depends upon the error

distributions. For example, suppose that the wild points occur 10% of the time and have a

distribution that is 100 times wider than that of the noise. (Both are assmed to be normally

distributed for. convenience, but a uniform distribution for the wild points with a width
100/2n times the standard deviation of the noise would produce the same results.) Then
the height of the wild point distribution at the center is only 1/1000 of that of the noise.

Thus the two distributions become equal when the noise distribution is at 1/1000 of its

peak, since the wild point distribution is practically flat in this region. This occurs at an
error of 3.7 standard deviations for the normal curve, and this would be the correct

threshold in this case. In practice the exact wild point distribution is seldom known, but

using a threshold of three standard deviations for one-dimensional data is usually

reasonable and is somewhat customary in editing problems. (Cutting the normal curve off

at both sides at three standard deviations results in rejecting only 0.0027 of its area.) The

ratio of the threshold to the standard deviation is denoted here by ¢. (In order to take into
account the fact that the standard deviation is not known exactly, it would be better to use a

threshold based on Student's t distribution instead of a constant a priori threshold, but if

the variance estimate is reasonably accurate this will make little difference.)

Of course, the errors are not known. However, after performing an adjustment the

“residuals are known, and their covariance matrix can be computed from (A.1-22), with the

correction discussed in connection with (A 2-2) imposed when the approximation in Section
A 2 is used. Therefore, the editing process used here basically checks to see whether for any

: observations the absolute value of the residual is greater than ¢ times the standard

deviation of the residual. Several refinements are needed to this basic process, however.

Some subsets of observations may be so closely related that, if one of the observations

in a subset is wrong because of a wild point, the others probably are wrong also. For
example, in the stereo camera model adjustment, if a point seems to be beyond infinity,

there are two observations associated with this point, as explained in Chapter 3, and the
two observations should be accepted or rejected together because they both came from the

same correlator measurement. The optimum way in which to do this is to compute the

quadratic form of the vector of residuals for this point with the inverse of its covariance
matrix, as foilows:

a = VISy. - PScPITY; (A.5-1)
:

(subject to the limit given by (A .2-2) when the approximation in Section A.2 is used), where

Sc is the covariance matrix of the adjusted parameters, Su; is the covariance matrix of the
observations in this point, FP; is the matrix of partial derivatives of the observations in this
point relative to the parameters, and V; is the vector of residuals for this point (observations
minus adjusted observations). The square root of this quadratic form would correspond to
the ratio of the absolute value of a residual to its standard deviation in the case of one
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observation per point. Thus a limit of ¢* on ¢; would produce a cutoff at the same
probability density value of the normal curve. However, because of the greater number of

dimensions in the space over which the wild points are distributed, their probability density

will be less, and thus the value of the threshold ¢ perhaps should be greater than in the

one-dimensional case. (In the implemented stereo camera model adjustment, ¢ = 3 in the
one-dimensional case and ¢ = 4 in the two-dimensional case.)

The presence of one wild point may perturb the solution so that it approximately

agrees with another wild point. Therefore, a single check for all wild points cannot be

completed in one step. After one or more points are rejected, the test must be made again

on the remaining points. The most likely candidate for rejection is the observation with the

largest ratio of absolute value of residual to standard deviation of residual, or the point

with the largest quadratic form from (A.5-1) in the multidimensional generalization.

(However, if ¢ is different for different points, this value should be scaled before comparing
by dividing the residual by ¢ or the quadratic form by 2) As implemented in the stereo
camera model adjustment, this point is rejected first if it is beyond the limit. Then the

solution is recomputed and the process repeats until no more points seem to need rejecting.

Previously rejected points could be retested at each step and reinstated if they are now

within the limit, but this is not done in the camera model adjustment. Note that if the basic

problem is nonlinear it must be iterated to convergence on each one of these steps so that
true residuals will be obtained. Therefore, the editing process consists of outer iterations,
each one of which contains the inner iterations of the basic solution.

If the probiem is linear and the variance of the observations is known, then the

process of comparing a residual to its standard deviation computed from the solution using

this observation suffices to indicate whether or not this observation should be rejected.
However, if the problem is nonlinear, removing a point from the solution may change

things so much that the decision might be different. Also, if the variance is being adjusted

(as in Section A.3), the presence of this wild point will cause the variance to be
overestimated. Therefore, the residual may be less than ¢ times its overestimated standard

deviation but more than f times its true standard deviation. For these reasons, the point

with the largest ratio compared to ? is tentatively rejected regardless of the size of the ratio,

the solution is recomputed (including the variance adjustment) without this point, the
residual and its standard deviation are recomputed, and a definite decision on this point is
made based on the size of the new ratio. The standard deviation of the residual in this last

step must be computed in a different way than usual. Since this observation is not used in
the solution, (A.1-22) cannot be used. There will be no correlation between this unused

observation and the solution, provided that this observation is not correlated with the
observations used in the solution. Therefore, since this residual is the observation minus

the adjusted observation computed from the solution, the variance of the residual is the
sum of the variance of the observation and the variance of the adjusted observation. For

multidimensional observations this generalizes to the sum of the covariance matrices. Thus

the quadratic form which is actually compared to ¢? to determine whether a tentatively
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rejected point should really be rejected is computed as follows (using values from the
solution computed without using this point).

4 = VIsy + PSPIIY, (A.5-2)

(The limit given by (A.2-2) can be applied here also, but with an addition instead of a

~ subtraction it is less important.)

The possibility still remains that the presence of many wild points (all about equally
bad) may cause such an overestimate of the variance that none of them would be rejected.

This possibility can be guarded against in the following way. The computed variance (not
including the a priori estimate) is compared to the a priori variance, and, if the ratio is

large enough to cause some confidence level to be exceeded, the most suspect point on this

outer iteration will not be reinstated yet if it passes the usual test above. Points successively

tentatively rejected in this way are accumulated until they fail the usual test, in which case

they are rejected, or until the confidence level is no longer exceeded or a given limit on the

number of points to remove is reached, in which case they are reinstated. (Thus if the
solution does not reach a set of retained points that indicate that the rejected points are

actually bad, the likelihood is that by chance the confidence level was exceeded with good
data, and the points should be reinstated. An earlier form of the stereo camera model

adjustment reported in Gennery [1977] did not include this last step and thus ran the risk

of once in a while rejecting many good points.) The implemented stereo camera model
adjustment uses an F test for this purpose, with a confidence level of 0.98, although the
presence of the two components of error according to (A.3-1) makes this nonrigorous.

| An additional explanation perhaps is in order concerning one matter. Suppose that

there is a wild point with no other points in the same region of observation space and that

the nature of the problem is such that this point thereby forces the solution into near
agreement with it. (For example, consider the simple case of fitting a linear
one-dimensional function to some data. If most of the points are clustered in a fairly

narrow interval of the independent variable, but there is one point at a distant value of the

independent variable with an erroneous value of the dependent variable, this one wild

point will tilt the straight-line fit so that it nearly passes through this point) This wild
point will have a very small residual when it is used in the solution, and thus it might

appear that it would not be the prime candidate for rejection. However, in such a case

almost all of the information in the adjusted value of this observation is coming from this

observation itself, and thus the variance of this ad justed observation is nearly as great as
the variance of the observation. Since the variance of the residual is the difference of these

quantities, it will be very small. As a result, it turns out that, even though the residual is

small, its standard deviation is even smaller. Therefore, taking the ratio of these quantities

(or using the more general result from (A.5-1)) identifies this point as the one to be
removed.
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The basic idea of examining the residuals for editing purposes is fairly common.

(See, for example, Davis [1967)) However, the method described above contains some
refinements, such as the use of the F test.
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| Appendix B

STEREO CAMERA MODEL

In this appendix the particular set of parameters that constitute the stereo camera

model used in this work is defined, and a method is described for computing the quantities

needed in Chapters 3, 4, and 5 that are functions of these parameters.

The stereo camera model might most reasonably be defined to consist of six

parameters defining the relative position and orientation of the two cameras. Many

different sets of six quantities are possible; those that are used in the present work are

described below. However, the magnitude of the distance between the cameras is sometimes

considered separately (because it cannot be determined by the self-calibration method

described in Chapter 3), leaving five quantities in the camera model proper. In addition, a

scale factor for the pictures, related to the principal distance or focal length, may be

included here (and can be adjusted in the same self-calibration procedure, although it

usually is better adjusted with the distortion calibration for the individual cameras). There

may be separate scale factors for each picture or a single one for both. Therefore, the total

number of parameters considered to constitute the stereo camera model may be five, six,

seven, or eight. The implemented version of the stereo camera model self-calibration

ad justs for only the basic five parameters, although the necessary information is included in

this appendix to enable the principal distances to be included in the adjustment also.

: If a full set of six parameters defining the relative position and orientation were to be

considered to constitute the stereo camera model, a reasonable choice for the parameters

might be the three Cartesian components of the vector from Camera | to Camera 2 and
three angles defining the orientation of Camera 2. These all would be expressed in the

Camera | coordinate system, since we are concerned here only with relative (not absolute)

position and orientation. However, since the magnitude of the vector between cameras is

considered separately here, only the direction of the unit vector pointing towards Camera 2
is considered, which can be specified by two quantities. Depending on what two quantities

are chosen, a degeneracy occurs in some position. Here, the direction of the unit vector is

specified by an azimuth angle and an elevation angle, as in Hannah [1974). The
degenerate position then occurs when one camera is directly above the other, a situation not

usually encountered in stereo work and one which can be defined away by rotating the

Camera | coordinate system about its principal axis. These azimuth and elevation angles,

and the pan, tilt, and roll angles (also as in Hannah [1974]) which specify the orientation of

Camera 2 are the five quantities which constitute the stereo camera model that is adjusted

| in Chapter 3. However, the two principal distances are also used in the following

computations and could be considered to be camera model parameters. The magnitude of

the vector from Camera 1 to Camera 2 does not enter into the computations in this

appendix, but is used in the computations in Chapters 4 and 5. x
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Definitions of the above quantities and others will now be given. The picture-taking

process in each camera is idealized as a central projection from the real world onto an

image plane perpendicular to the lens axis at a distance f, or f, (for Camera | or Camera 2,
respectively) in front of the center of projection. (The quantity f, or f, is sometimes
referred to as “focal length,” which is not the correct term if the camera is not focused at
infinity. The term “principal distance” is also used, and it will be used here for want of a

better term. The center of projection is often called the "lens center,” which is correct only

in the thin-lens approximation. For thick lenses it is actually the primary principal point.)

Each camera has a Cartesian coordinate system with the origin at the center of projection, x

to the right in the image plane, up in the image plane, and 2 outwards along the lens axis.

Thus the coordinate system is left-handed. Measured values of x and y for a corresponding

point in the two image planes will have a subscript 1 or 2 to denote Camera | or 2,

respectively. The azimuth and elevation of the Camera 2 origin relative to the Camera 1

coordinate system are denoted by «, and «, (positive to the right from the z axis and up),
respectively. The pan, tilt, and roll of the Camera 2 coordinate system relative to the

Camera | coordinate system are denoted by Bs By. and By {positive right, up, and right),
respectively.

If the ray from the Camera 1 origin through the point x,y, in the Camera | image
plane is back-projected into the Camera 2 image plane, a line segment is produced. Let x_
and y, denote the Camera 2 image-plane coordinates of the end point of this line segment :

(corresponding to a point at an infinite distance on the ray), and let ¢, and ¢ denote the
direction cosines of the line segment (in the direction away from x_, 9.) relative to the x,
and y, axes, respectively. Then the problem at hand is to use the quantities x, and y, and

the camera model parameters previously defined to compute x, y,, ¢., and Cyr Also
needed for the computations in Chapter 5 (and needed in order to compute the above

quantities) are the unit vector 1_ pointing from the Camera | origin to the Camera 2 origin
(in Camera 1 coordinates), and the rotation matrix B for transforming Camera |

coordinates into Camera 2 coordinates, which are functions of the camera model parameters
only. The partial derivatives of all of these quantities with respect to the camera model
parameters are also needed.

Two vectors that will be needed later are defined as follows:

| x, 0

P= | 1, = | 0 (B-1)

fy

The first step in deriving the needed mathematics consists of defining the rotation
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matrices associated with the angles a, «,, B,, #,, and 8, Notice that A, and 4, are
defined with the opposite direction of rotation from B, and B, This is because the A's will
be used to rotate a vector whereas the B's will be used to rotate the coordinate system.

cosa, 0 sin «, -sine, 0 cos a

A 0 0 4 0 0 0
1 da;

-sina, 0 cos of —-cosa, O -sin a,

l 0 0 0 0 0

y 0 : aA, 0 :- cos sin o = sin cos «o2 % 2 dw, % 2
0 -sina, cosa, 0 -cosa, -sina,

cosp, O -sin 8, -sing, 0 -COoS 8,
dB

B, =| © 0 — =| 0 0 0 (B-2)
1 dg,

sin 8, 0 cos B, cos 3, 0 -sin 3,

| 0 0 0 0 0

dB,
B, = 0 cos 8, -sin 8, vr 0 -sin 3, -cos 8,2

0 sin B, cos B, 0 cos 8, ~-sin B,

- cos By -sin 8, 0 iB -sin By —cos f, 0
B, = | sin B, cos, 0 7 = | cos 8, -sing@, 03

0 0 l 0 0 0 |

The unit vector pointing from the Camera 1 origin to the Camera 2 origin is just the
unit z vector rotated through the elevation and azimuth angles:

1, = 44,1, (B-3)

To convert a vector from being expressed in the Camera | coordinate system to being

expressed in the Camera 2 coordinate system, the coordinate system must be rotated through

the pan, tilt, and roll angles (in addition to being translated). Thus the rotation matrix by
which the vector must be premuitiplied is

| B = B,B,B, (B-4)
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The partial derivatives of 1, and B with respect to the camera model parameters are as
follows:

oa, do, “27% ou, | da, %
(B-5)

aB dB dB

38 - BB —. Ld = By-=B, 8. —= BB
ob, Y2dp, ob, ap, ob, ap,

with all others equal to zero.

Now the infinity point x , 5, will be derived. An image point in the Camera 1 image
plane has a three-dimensional position in the Camera | coordinate system given by the

vector p = [x 3, f,]T. Since we are concerned at the moment about the infinity point we
can ignore the translation between the camera coordinate systems and consider only the

rotation. To express the vector p in a coordinate system aligned with Camera 2 the

coordinate system is rotated by premuitiplying by the B matrix defined above. Let the
resulting vector be denoted by uw. Thus

Lu,

u, | = Bp (B-6)

u,

The projection of the point given by the above vector into the Camera 2 image plane is

given by a vector in the same direction as the above vector but having a 2 component equal

to f,. Therefore,

fatty

Xo = u,
(B-7)

foty

The partial derivatives of u with respect to 8,, B,, and f, can be obtained by replacing B
in (B-6) by the corresponding derivatives of B from (B-5). If the partial derivatives with

respect to f, are desired, they can be obtained by replacing p by 1, in (B-6), since
| | oplaf, = 1,. Equations (B-7) then can be differentiated to obtain the partial derivatives of

x, and jy, as follows:
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| ox, i fa ou, _ Solty ou,
"4% uw %

| | 3, ] 2 ou, : [ity ou,
Tu, % Tw %

(B-8)

7, " &

of, Uy

where g denotes B,. By 8,, or fy (The partial derivatives of Xq and ¥, With respect to «,
and a, are zero.)

The point x, y, is the end of the desired line segment. The direction cosines ¢,, and
¢, can be found by using the fact that the desired line is the intersection of the Camera 2
image plane with the plane defined by the Camera 2 center of projection and the ray
corresponding to the Camera | image point x, y,.

Thus we proceed as follows. The ray which corresponds to the image point x, 3, in

the Camera | image plane is given by the direction of the vector p = [x, y, InN in Camera
I coordinates. First we must determine the plane containing this ray and the Camera 2

| center of projection. The normal to this plane is given by the direction of the vector cross

product of p and the vector 1_ from (B-3) giving the direction of the Camera 2 center of
projection from Camera | center of projection. Therefore, the normal to the desired plane

is p x 1, in Camera | coordinates. To express this normal in Camera 2 coordinates we

must rotate the coordinate system by the pan, tilt, and roll angles. The result is B{p x 1).
The normal to the Camera 2 image plane in Camera 2 coordinates is 1,. The vector along
the intersection of these two planes is the cross product of the normals to the two planes,

namely 1, x B(p x 1). This is the desired line which is the projection of the ray into the
Camera 2 image plane, expressed in Camera 2 coordinates, and thus its x and y components

are proportional to the desired direction cosines. Since the vector lies in the Camera 2

image plane, its z component is zero. Thus, if we call this vector v, we have

| v,

vy, | = 1X Bpx1) (B-9)
0 |

Application of either the right-hand rule or the left-hand rule consistently to the above two

cross products will verify that the above vector has the correct polarity, that is, it points

away from x,y, along the line segment. The direction cosines ¢, and ¢, can now be
computed simply as follows from the results of (B-9):
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Uv,

u, + V |
x

d (B-10)
124 8

2 4 42

Uy + Uy

| The partial derivatives of v with respect to the o's and g's can be obtained by
replacing in turn 1_ and B in (B-9) by the corresponding derivatives from (B-5). The
partial derivatives with respect to f, can be obtained by replacing p in (B-9) by 1,. Then

‘the partial derivatives of ¢_ and ¢, are obtained as follows, where g denotes any of the
parameters («s, 8's, or f):

oY G1
2.2 _ ~~

oc, vy A Urly ao
3 s/ |
§ (v3 + 02/2

(B-11)

, ov, ov,
oc, Vz SF ely EY3
35 IRIE
§ (vg + vy)

The results are 1_ and B for a given camera model; x, 3,, ¢,, and ¢ for a given |
point and a given camera model; and the partial derivatives of these quantities.

The above computations were expressed in terms of matrices and vectors as much as

possible, so that the partial derivatives were easy to obtain. In the implemented computer

program the matrix operations are performed numerically by standard procedures.

Therefore, there is no need to expand these equations to scalar form analytically, except in

a few cases where considerable computation time can be saved. In particular, the product of

AA, times 1, reduces to just taking the third column of A A, The cross products are
written out in the code for the program; this reduces the cross product of 1_ times another
vector to just picking two appropriate terms of the vector, with an appropriate sign change.
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Appendix C

MARS PICTURES

The Mars pictures used in this research were extracted from a pair of large mosaics

produced by the Viking Lander Imaging Team from pictures taken by the two cameras on
the Viking Lander I. The pictures form a stereo pair of the Martian landscape in front of
the lander, covering about 173% in azimuth and about 66° in elevation. However, much of

these pictures do not contain corresponding areas in the two pictures because of occlusion

by parts of the lander. Also, the portions in the extreme distance probably would not allow

accurate information to be obtained about small objects such as rocks. A suitable portion

was chosen to test the methods in this thesis, consisting of an area about 16° in elevation by

20° in azimuth in the left picture and 18% in elevation by 28° in azimuth in the right
picture. Smaller portions of these were used to generate the examples in this thesis, each

about 10° by 10° These are shown in Figure C-1.

The brightness value of each pixel in the pictures is represented by an eight-bit

integer. The pixel spacing of the pictures is 0.04 in azimuth and elevation. (Azimuth and
elevation form a spherical coordinate system. Therefore, the central angle subtended by a

one-pixel shift in azimuth is 0.04% times the cosine of the elevation angle) The two
cameras are 0.8187 meters apart. The height of the cameras is 1.3 meters above the
reference plane (nominal ground surface).

The principal noise source in the pictures supposedly is shot noise from the
photodiode sensor. This causes the standard deviation to be proportional to the square root

of the pixel values. In order to produce a constant standard deviation, the square root of

each pixel value was taken and the result was multiplied by 16 to rescale it to be suitable

for an eight-bit picture. The standard deviation of the noise in the resulting pictures was
estimated to be about 3. These modified pictures were used by the programs described in

this thesis. However, to produce the figures shown herein, the original pictures were

changed by a different nonlinear function to enhance their contrast, in order to compensate

partially for the inadequacies of the printing device.

Each picture shown in Figure C-1 is 256 pixels by 256 pixels. The azimuth and
elevation from the left camera to the center of the picture are about 18° and -20°,

respectively, relative to the perpendicular to the camera baseline and relative to the

reference plane. The distances to the points in the scene range from about 3 meters to
about 4.5 meters.

| The white blob in the left picture is an out-of-focus part of the lander’s arm, which

was present when this part of the mosaic was taken but was in a different position for other
portions and for the other picture. It represents erroneous data to the stereo program.
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Figure C-1. Stereo pair of Martian surface.
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