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~ _ _ UNCLASSIFIED

Those of us involved in the creation of the Handbook of Ar *iiial intelligence, hoth |
writers and editors, have attempted to make the concepts, methods, tools, and main results
of artificial intelligence research accessible to a broad scientific and engineering audience.
Currently, Al work is familiar mainly to its practicing specialists and other interested
computer scientists. Yet the field is of growing interdisciplinary interest and practical
importance. With this book we are trying to build bridges that are easily crossed by
engine ars, scientists In other fields, aiid our own computer science colleagues.

in the Handbook we intend to cover the breadth and depth of Al presenting general
overviews of the scientific issues, as well as detailed discussions of particular techniques
and important Ai systems. Throughout we have tried to keep in mind the reader who is not a
specialist in Al.

As the cost of computation continues to fali, new areas of computer applications
become potentially viable. For many of these areas, there do not exist mathematical “cores
to structure calculational use of the computer. Such areas will inevitably be scrved by
symbolic model; and symbolic inference techniques. Yet those who understand symbolic
computation have been speaking largely to themselves for twenty years. We feel that it is
urgent tor Al to "go public” In the manner intended by the Handbook.

Several other writers have recognized a need for more widespread knowledge of Al
and have attempted to help fill the vacuum. Lay reviews, in particular Margaret Boden's
Artificial Intelligence and Natural Man, have tried to explain what is important and
interesting about Al, and how research in Al progresses through our programs. ir addition,
there are a few textbooks that attempt to present a more detailed view of selected areas
of Al, for the serious student of computer science. But no textbook can hope to describe ali
of the sub-areas, to present brief explanations of the important ideas and techniques, and to
review the forty or fifty most important Al systems.

~ The Handbook contains several different types of articles. Key Al ideas and techniques
are described in core articles (e.g., basic concepts in heuristic search, semantic nets).
important individual Al programs (e.g. SHROLU) are described in separate articies that

"indicate, among other things, the designer's goal, the techniques employed, and the reasons
why the program is important. Overview articles discuss the problems and approaches in
each major area. The overview articles should be particularly useful to those who seek a
srmmary of the underlying Issues that motivate Al research. |

Eventually the Handbook w.:! contain approximately two hundred articles. We hope thet
.Yhe appearance of this material will stimulate interaction and cooperation with othar Al
research sites. We look forward to belag advised of errors of omission and commission. For a
field as fast moving as Al, it 's important that its practitioners alert us to important
devalopments, so that future editions will reflect this new material. We intend that the
Handbook of Artificial intelligence be a living and changing reference work.

The articles in this edition of the Handbook were written primarily by graduate students
in Al at Stanford University, with assistance from graduate students and Al professionals at
other institutions. We wish particularly to acknow!adga the help from those at Rutgers
University, SRI International, Xerox Palo Alto Research Center, MIT, and the RAND
Corporation.

The authors of this report, which contains the section of the Handbook describing
research on applying Al techniques to systems in science and mathematics, are James
Bennett, Bruce Buchanan, Paul Cohen, and Fritz Fisher. Others who contributed to or
commented on earlier versions of this section include Randall Davis, Daniel Dolata, Richard
Duda, Robert Engeimore, Peter Friedland, Michael Genesereth, Douglas Lenat, and Glen Ouchi.
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Foreword

Those of us involved in the creation of tte Handbook of Artificial intelligence, both

writers and editors, have attempted to make tie concepts, methods, tools, and main results

of artificial intelligence research accessibls t, a broad scientific and engineering audience.
Currently, Al work is famihar mainly to itt practicitiy specialists and other interested
computer scientists. Yet the fieid is of «rowing interdisciplinary interest and practical
importance. With this book we are tryinc to bulld bridges that are easily crossed by
angineers, scientists in other fields, and ou: own computer science collee jues.

in the Handbook we intend to cover the breadth and depth of Al, presenting general

overviews of the =cientific issues, as voll as detailed discussions of particular techniques

and important Al systems. Throughout w 3 have tried to keep in mind the reader who is not a
specialist in Al.

As the cost of computation con inues to fall, now areas of computer applications

become potentially viable. For many of ti:ese arses, ther: do not exist mathematica! “cores”
to structure calculational use of the cumputer. Such areas will inevitably be served by

symbolic models and symbolic inference tecnniques. Yet those who understand symbolic
computation have been speaking largely to themselves for twenty years. We feel that it is ‘
urgent for Al to "go public” in the manner intended by the Handbook.

Severt! other writers have recognized a need for more widespread knowledge of Al
and have attempted to help fil the vacuum. Lay reviews in particular Margaret Boden's
Artificial Intelligence and Natural Man, have tried to explain what is important and
interesting about Al, and how research in Al progresses through our programs. in addition,
there are a few textbooks that attempt to present a more detailed view of selected areas
of Al, for the serious student of computer science. But no textbook can hope to describe all
of the sub-areas, to present brief explanations of the important idsas and techniques, and to
review the forty or fifty most important Al systems.

The Handbook contains several different types of articles. Key Al ideas and techniques
are described in core articles (e.g., basic concepts in heuristic searca, semantic nets).

Important individual Al programs (e.g., SHRDLU) are dascribed in separate articles that
_ "indicate, among other things, the designer's goal, the techniques emp!oyed, and the reasons
why the program is important. Overview articles discuss the problems and approaches in
each major area. The overview articles should be perticulerly usaful to those who seek a
summary of tho underlying issues that motivate Al research.



Eventually the Handbook will contain approximately two hundred art.cles. We hope that |
_the appearance of this mateiial will <timulate interaction and cooperation with other Al
research sites. We look forward to being advised of errors of omission and commission. For a
field as fast moving as #l, it is important that its practitiorers alert us to important
developments, so that future editions will reflect this new material. We intend that the
Handbook of Artificial intelligence be a living and changing reference work.

The articles in this edition of the Handbook were written primarily by graduate students
in Al at Stanford University, with assistance from graduate students and Al professiorals at
other institutions. We wish particularly to acknowledge the help from those at Rutgcrs
University, SRI International, Xerox Palo Aito Research Center, MIT, and the RAND
Corporation.

The authois of this report, which contains the section of the Handbook describing
research on applying Al techniques to systems in science and mathematics, are James
Bennett, Bruce Buc.ianan, Paul Cohen, and Fritz Fisher. Cthers who contributed to or
commented on earlier versicns of this section include Randall Davis, Daniel Dolate, Richard

Duda, Robert Engeimore, Peter Friedland, Michael Geneserath, Douglas Lenat, and Glen Ouchi.

Avron Barr Stanford University :
Edward Feigenbaum July, “979
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fa. Overview

| Within the past decade, Artificial Intelligence (Al) techniques have been arplied to the
development of expers systems, computer systems intended to assist researchers solve
complex protlems in their scientific or medical speciality. These systems are most strongly
characterized by their use of domain knowledge, gleaned from experts, in the problem-solving
tasks.

The systems described hera were originally designed to be evpplied in thelr intended
communities, and ali but a few are in consistent use. Most of the systems are still being
researched and developed. The emphasis in this chapter is on a description of the
applications and research of Al techniques on real-world problems.

A layman or general researcher is distinguished from a specialist in a scientific or
technical domain hy the vast amount of empirical knowledge that the expert has amassed
during the course of his profession. This task-spacitic knowledge Is, of course, based on any
conceptual or theoretical knowledge that underlies problem solving in the domain. Any so-
called knowledge-based system designed to assist users in the domain at this expert level
requires both the empirical and the theoretical .nowiedge. Developing representational
vehicles that are able to encode this partly public, partly private knowledge of the domain
has occupled the Al researchers during the construction of all these systems.

Using representations of domain-specific knowledge, artificial intelligence research has
yielded systems with significant problem-solving abilities, at times better than the abilities of
the human experts. In addition to developing adequate representations of this domain-
specific knowledge, research has emphasized the development of various reasoning and
explanation procedures that manipulate this knowledge. In particular, much emphasis has
been placed on the development of methods of inexact reasoning since for many of these
domains, notably medicine, the experts’ appraisal of the problem situstion cannot always be
certain.

The major domains of expertise that have been developed as applications systems
include: the diagnosis and treatment of various diesses (see ssction Medicine.C1), the design
of computer assisitants for both the analytic and synthetic aspects of organic chemistry
(see section C1), interactive tutoring systems in cducation (see section Educstion.Overvisw),
and assistants for performing advanced mat.ematics (see article D2). A number of other
notable applications have been developed including applications of Al to database information
retrieval problems (see article E4) and a geciogicel assistant (ses article EQ). There ure a
host of recent epplications as well that do not have articles in this chapter, such as SACON,
a system for advising structure! engineers in the use of a large finite-element analysis
program used to model various mechanical structures (Bennett et sl. 1978); PUFF, a system
for diagnosing a patient with various pulmonary dysfunctions Feigenbaum, 1977); and
HEADMED, a system for diagnosis end treatment of psychiatric patients (Heiser, 1977,
1978).

Typically, these systems are considered intelligent if they meet the following criteria:
The system gives correct answers or useful advice, and the concepts ard reasoning
processes that the system uses to solve the probler: resemble those that the user might
employ. This last concern has motivated the design of systems capable of explaining their
reasoning about a case, capable of maintaining a focused dialogue with a user when pursuing
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relevant facts and inferences about the user's case, and capabla of using knowledge at the :

conceptual level of the usar wher solving end exp'aining both the problem and the system's

solution. Achieving these primarily Auman-engineering concerns has required many advances
in artificial intelligence. Theas abilities and deveilopmnants are detailed for each system in the
following articles.

Evolution of Expert Systems

Work in Al during the 1960s identified and explored general-purpose problem-solving
techniques that woud be applicable in a large number of problem-solving situations. This
research Introduced and retined the concept of heuristic search (see Search) as a

mechanism of problem solving. These ideas and developments were embodied in such
systems as GPS, REF-ARF, GQA4, PLANNER, etc. Thess systems dealt with problems in domains
such as chess, yobot planning, and blocks-worid manipulations, as well as the classic
problem-solving situations found In puzzles such as the Tower of Hanot and The Missonaries
and Cannibals.

During the mid- 1860s, the firs: axpert systems were developed, including DENDRAL and
MACSYMA. In 1965, the Heuristic Programming Project at Stanford University began to apply
these search techniques to the design of an Intelligent assistant to aii chemists in
elucidating the structure of unknown chemical compounds. Motivated by interest in modeling
the thought process of research scientists, Edward Feigenbaum and Joshua Lederberg of the
DENDRAL project began to emphasize and use larg amounts of domain-specific knowledge in
the solution of this major real-world problem. :

These systems were drsigned to manipulate and explore large, symbolically expressed
problems that were known to be difficult for human researchers to solve. These problems

were characterized by the fact that as the's ;pacifications grew n ccrulexity, so did the
number of solution possibilites that had to be examined. The larger the size of the problem |
specificaticn (e.g., size of the molecule in atoms/bonds or complexity of the expression to be
intergrated), the more difficult it was for human researchers to discover solutions or be
confident that all valid solutions had bean found. This combinatorial explosion in the solution
saarch space easily outstripped the abilities of most human researchers. The ability of these
applications systems to deal with the larger solution spaces extended the limit on the types
of problems capable of solution with the present conceptual tools. .

More recently, the motivation for constructing these knowledge-based systems
includes a number of other factors. These expert systems promise to have significant
economic snd social impact. (See especlally the articles on Synthesis and PROSPECTOR).
For example, the organic synthesis systems are used actively by drug and chemical
manufacturing companies to uncover Inexpensive methods of synthesizing various
compounds. In medicine, these systems have the capability to examine all possible diseases
that might be afflicting a patient. in addition, the ability to codify the expertise in a domain
makes these systems potentially available for tutoring and assessment purposes.

For a system to achieve broad applicability within a speciality and to remain complete
and correct in its searcn for problem solutions, large amounts of domain-specific knowladge
have had to be represented and handied. Thus, while heuristic search management is stil a |
major concern in the construction of any expert system, the large amounts of expert
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knowledge required to achieve an adequate, efficient solution to these problems have
fostered problems in the construction and maintainence of these knowledge bases. The
concerns of effective representation and management of the large, domain-specific
knowlecige bases have shifte:} attentiun away trom development of programs designed to
solve inrge combinatorial problems, such as those that prompted the DENDRAL programs, to
those that require more empirical knowledge for their solution. Current research emphasizes
not only the representational adequacy of the existing formalisms but also such issues as
the appropriate grain size of the knowledge (see article ReprssarmtionB) and improved
explanation, inference, and acquisition abilities (8).

Dimensions of Applications

Most of the application systems described in this chapter can be viewed as consultant;

that formulate opinions or as models about cases that give advice to their users. The tasks
these consultants are designed to perform are typically repetitive and somet.mes beyond
human abllities--problems that require knowledge of facts and relationships known only hy
specialists. A consultation system interacts with the user during the problem-solving task.
The current systems emphasize the cognitiva abilities that support this inceraction such as
the abliities to explain lines of reasoning or to interactively acquire new domain knowledge.
This is especially true for the medical and educational systeins where much research haa
gone into the design of well-engineered, responsive, user interfaces.

The Ai research conducted for these application systems is different from other
mainstream Al research such as that on speech or vision. Applications research does not
concentrate on developing models of the various physiological functions that are of interest
in these other areas. The cogiitive abilities required by the current applications are primarily
conceptual! in nature and do not depend on sophisticated perceptual capabilities in order to
be performed. Research cuncentrates instead on the requirements for systems to utilize
developed hurian expertise. This expertise is typically at a high conceptual level and is easily
encodeble in the symbolic representational formalisms that have been developed.

Representational adequacy. Applications research has proved a valuable testing
grouna for the techniques developed in other areas of Al research. In addition to the

augmentation ot heuristic search methods by domain-specific knowledge, representation
form: lisms developed for modeling psychologicel aspects of cognition--such as semantic nets
(see article Representation.CZ) and production systems (see article Representation.C3)--
have been used ubiquitously in the applications described in this chapter. Techniques
developed in the course of natural language research (see chapter Nature! Language, Natural
Language) have been used to achieve the effective man-machine interface required of
these interactive consultant systems.

Domain-independence of the systems. As part of the resesrch on the adequacy of
these representational formalisms, a number of these systems have attempted to maintain a
strict separation between the domain-specific knowledge supplied by the expert and the
domain-independent knowledge and capebiiities of problem solving that the systems
intrinsically possess. The task of determining what abilities and what knowledge constitutes
an effective domain-independent system occupies much of the Al research in applications.
For example, the EMYCIN system consists of the basic control structure found in the MYCIN
system (see article Medicine.CQ) with the infectious disease knowledge base removed; this
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"empty MYCIN" system retali's the capability to interact with the user during a case, to
axplain its reasoning, and to answer questions about a case in a new domain of expertise. :
This system has been used successfully to develop the applications in puimonary
dysfunction, structural anaiysis, and psychiatric diagncsis mentioned in the beginning of this
overview. Numerou . other systems similar to the EMYCIN system ais being developed, such
as the IRIS system (so. article Medicing.C?); thase domain-independent consultation
systems are a major product of this applications recearch.

Explanation and the opacity of knowledge. As mentioned previously, a major design
Issue for some of these systems, for the consultants in particutar, is whether the system
needs tc explain its reasoning to a user. 1his capability Is implemented primarily in the effort
to convince users that the system's reasoning Is appropriate and that its conciusions about a
case are easonecble. In some cases, however, the prcblem-solving expertise used by the
system is in a form that is nut at all similar to the expertise that an expert user would use to
obtain the solution. For example, in the case of the DENDRAL programs, the generator of
chemical structure solutions uses a procedure for exhaustively producing solutions based on
various graph theoretic notions that the average organic chemist using the system is unlikely
to know or care about. Thus a major portion of the GCENDRAL expertise resides in a procedure
that Is conceptually opaque to the normal user. The genera. r was developed because it was
discovered that the method used by the chemist to generate solutions is incomplete and the
method used by the DENDRAL program hés been mathematically proven complete. A similar
situation exists in the MACSYMA system, which uses the Risch algorithm for evaluating
various types of integrals. While mathematically correct, it is rarely employed by human
mathematicians becausn of its complexity. The correctness and continued success of tha
programs serve as their primary form of explanation: Te user community is thus convinced
that the performing systam is bo'h acceptuble and useable.

Kk. contrast, systems such as MYCIN and PROSPECTOR have been designed to represent
and explain the reascning process used by the system in & manner that is understandable to
the knowledgeable user. These systems require a representational formalism capable of
supporting the reasoning snd explanation abilities that would closely approximate the
conceptual structure of expert and user. Since most of these scientific and technical
domains have a well-defined set of concepts that their practitioners use consistently, the
systems designers have capitalized on this consistency and have designed the programs to
accept and reason with knowledge using these concepts.

Assuming a system has an explanation facility, the system designer faces another
issue: Should the system reason and apply the expertise in & manner that resembles the
methods employed by the human expert? in MYCIN, for example, no claim is made by the
designars that the simple backward chaining reasoning methodology has any strong
resemblance to the methods actually employed by human physicians performing Infectious
diseasa diagnosis. Although the madical concepts employed by the system are famillar to
most physicians, the method of inferring the infections and causal :',anisme, while
understandable by a physician, oears little resembiance to a doctor's normal diagnostic
reasoning. B, contrast, the PIP and INTERNIST systems emphasize the similarities of their

| diagnostic procedures to those used by physicians.

Knowledge acquisition. During the development of the knowledge base, the expert is
unlikely to present ail of the relevant facts and relationships that are required for expert i
performance in tre domain. Being human, experts tend to forget or simplify details about their



A Overview 6

know!edge, requiring the system to be able to augment its knowledge at a later time. Since
the knowledge imparted to the system is largely empirical and the domains are themselves
rapidly developing, it is necessary that the system be able to perform these changes easily
and In an incremental or modular fashion. Thus, most of the recent applications systems have
emphasized the use of representation vehicles that allow for the incremental construction of
the knowledge base.

Many researchers use production rules to perform this incremental construction. Each
rule and rule set represents a "chunk" of domain expertise that is communicable to the user
and that can be added or extructed with relative ease. Thus the performance of the system
can be improved by modifying the knowledge base with new ruie sets that deal with new
domains or subdomains. Furthermore, the production rule formalism can directly accommodate
the concepts of the domain expert and thus is more easily communicable to both the user
and the expert.

The Future

A primary research activity in the near future will be the development of facilities for
acquiring the domain concepts and the empirical knowledge that these systems require. At
present this is a painfu! process involving many individuals, including both domain experts and
computer scientists who together construct the knowledge base. More efficient interfaces
tor acquiring this domain-specific knowledge, along the tines of the TEIRESIAS system (see
article B) and the methods used by the Meta-DENDRAL system (see article Cc), nead to be
developed before significantly larger expert systems can be constructed

While the domains and methods that have been developed are interesting and
challenging in their own right, they represent only a small fraction of the total cognitive or
even conceptually cognitive sbilities that a human possesses. These abilities are for the
most part as yet undefined in current cognitive research; if they were, they would probably
be the subjects of further Al research.

The size oF current systems is typically given in terms of som? convenient
measurement of the domain-specific knowledge contained by the aystem. For example, the
MYCIN system contains approximately 450 rules and a similar number of clinical parameters
that it uses to diagnose and prescribe treatments for patients with bacteremia, cystitis, and
meningitis. The SYNCHEM system contains approximately 390 transforms that it uses to

| construct plaus'ble organic synthesis routes. The order of magnitude of expert knowledge
has been primarily a function of expert involvement and effort. These systems can
potentially support larger knowledge bases but there has been no effort yet to construct
these more comprehensive systems. At present, only selected subdomains are actually
represented and used.

It is clear that Al and computer science will have to develop new techniques for
handling the truly large-scale knowledge bases that will exist In the future. A step in this
direction has been taken with the development by Davis (19768) on a representation for

| knowledge about domain knowledge or meta-knowledge. This domain-specific knowledge is
used to determine the consistency and appropriateness of various knowledge sources
davelopard and used by the system. The use of meta-knowledge is one of the ways
kyowledge can be organized both dynamically and statically so that it is comprehensible not
oiwy to the machine but also to the human user and expert.
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An Application Article

An article on the individual applications systems in this chapter will attempt to cover
the following topics:

A description of the problem domain (e.g., chemistry, infectious disease,
etr.), the particular task the application system was designed to perform
(e.g., elucidate chemical structures, diagnose and treat a patient with an
infectious disease, etc.), and the major motiviations behind the system's :
design, both for Al and for the task domain.

A description of the task-specific knowledge used by the cystem to
perform the problem-solving task (e.g., knowledge about probable hond
breaks for a compound in a mass-spectrometer, knowledge about possible
infections and their causal organisr.s, atc.).

A description of the particular Al methods that were used to represent this
knowledge and a description of how the reprasented knowledge is used to
reason about a particular case. This description sometimes includes an
ar.jotated sample interaction between a user and the system.

An Indication of the current level of expertise of these systems and an
indic ation of thelr present status and possible future development.

Throughout these articles, emphasis is placed on llluminating the major issues dealt with, and
contributions made to Artificial intelligence by the design of these systems.

References
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B. TEIRESIAS--issues in Exr art Systems Design

TEIRESIAS Is a system for facilitating automatic acquisition and maintenance of the
large knowledge bases used by expert systems. Aithough TEIRESIAS Is not itself an
application of Al to some domain, It desls with many important issues in expert systems

design that are relevant to all of the programs described in this chapter. The system was
developed by Randall Davis as part of his doctoral reasearch at the MYCIN project at
Stanford, and this article assumes some familiarity with MYCIN's rule-based knowledge

representation scheme and its backward-cAaining control structure (see Article Medicine.C2).
However, the ideas and techniques that TEIRESIAS uses are not necessarily limited to
MYCIN's domain of infectious diseases or to the production-rule formalism used by MYCIN.

Knowledge-based Programs

As discussed in the Overview, systems that achieve expert-level performance In

problem-solving tasks derive their power from a large store of task-specific knowledge. As a
result, the creation and management of large knowledge bases and the development of
techniques for the informed use of knowledge are now central problems of Al research.

" TEIRESIAS was written to explore some of the issues involved in solving these problems.

Most expei: programs embody the knowledge of one or more experts in a field, like
infectious diseases, and are constructed in consultation with these experts. Typically, the

computer scientist mediates between the experts and the piogram he is building to model
) their expertise. This is a difficult and time-consuming task, because the computer scientist

must learn the basics of the field in order to ask good questions about what the program is
supposed to do.

TEIRESIAS's goa! is to reduce the role of the human intermediary in this task of
knowledge acquisition, by assisting In the construction and modification of the system's
database. The human expert communicates, via TEIRESIAS, with the performance program
(e.g., MYCIN), so that he can discover, with TEIRESIAS's help, what the performance program
is doing and why. TEIRESIAS offers facilities for modifying or adding to the knowledge base
to correct errors: Using TEIRESIAS, the human expert can “educate” the program just as he
would tutor a human novice who makes mistakes. Ideas about how this “debugging” process
is best carried out are at the core of TEIRESIAS's success.

TEIRESIAS also recognizes the inexact, experiential character of the knowledge that is
' often required for knowledge-based systems and (as examples below will illustrate) offers
the expert some assistance in formulating new "chunks of knowledge” of this sort. Another
major aim of the system was to provide a mechanism for embodying strategic information.
Meta ules (discussed below) are used to direct the use of object-level rules in the
knowledge base and to provide a mechanism for encoding problem-solving strategies.

interactive Transfer of Expertise.

it is an established result that an expert knows more about a field than he Is aware, or

capable of articulating completely. Thus, asking him a broad question ike "Tell me everything
you know about staph-infections® will yield only a fraction of his knowledge. TEIRESIAS's
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approach is to present the experi with some errors made by an already established, tu® still
incomplete, knowledge-based prugram and to ask a focused question: "What do you know that
the program doesn't know, which makes your expert diagnosis different in this case?”

This Interaction is called transfer of expertise: TEIRESIAS incorporates (nto the
performance program the capabilities of the human expert. TEIRESIAS does not attempt to
derive new Information on its own but, instead, tries to “listen” as attentively and
intelligently as possible, to help the expert augment or modify the knowledge base.

interactive transfer of expertise between on expert and an expert program begins
when the expert identifies an error in the performance of the program and invokes TEIRESIAS
to help track down and correct the error. Errors are manifest as program responses that (he
expert would not have made or as "lines of reasoning” that the expert finds odd,
superfluous, or otherwize Inappropriate. The first kind of error might be, for example, a
wrong conclusion about the identity of a bacteria. Or the other hand, the performance
program may just ask the expert, during a consultation, a question that, in the expert's
opinion, does nothing to resolve the identity of the bacteria. This Is an example of the “line
of reasoning” type of error.

Both kinds of error are assumed, by TEIRESIAS, to be indicative of a deficit, or "bug," in
the performance program's knowiedge base. Transfer of expertise begins when TZIRESIAS Is
called upon to correct the deficit. TEIRESIAS fixes bugs in the knowledge base by:

1. Stopping the performance program when the human expert identifies an error.

2. Working backwards through the steps in the performance program that led to
the error, until the bug is found.

3. Helping the expert fix the bug by adding or mcditying knowledge.

To identify faulty reasoning steps in the performance program, the expert can use the WHY
and HOW commands to ask TEIRESIAS to back up through previous steps, explaining why they
were taken. The same explanatory abilities can also be used when there is no bug, to help
the user follow the system's line of reasoning. Since many large performance programs carry
out very complex inferences that are ossentially "hidden" from the person using the program,
this is a valuable facllity.

Meta-leval Knowledge

One of the principal problems of At is the question of appropriate representation and
| use of knowledge about the world (see Representstion). Numerous techniques have been

used to represent domain knowledge in various applications programs. A central theme of the
research on TEIRESIAS Is exploring the use of mefa-knowledge. Meta-level knowledge is
simply the representation in the program of knowledge about the program itself--about how
much it knows and how It reasons. This knowledge is represented using the same
representation techniques used to represent the domain knowledge, yielding a program
containing object-level representations describing the external world and meta-level
representations that describe the internal world of the program, its self-knowledge. For
example, many Al programs use the notion of aframe to represent the knowledge used by the
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B. TEIRESIAS~--Issues In Expert Systems Design

TEIRESIAS is a system for facilitating automatic acquisition and maintenance of the
large knowledge bases used by expert systoms. Although TEIRESIAS Is not itself an
application of Al to some comain, it deals with many important issues in expert systems
design that are relevant to all of the programs described in this chapter. The system was
deveioped by Randall Davis as part of his coctoral research at the MYCIN project at
Stanford, and this article assumes some familiarity with MYCIN's rule-based knowledge
representation scheme and its backward-chaining control structure (see Article Medicine.C2).
However, the ideas and techniques that TEIRESIAS use< are not necessarily limited to
MYCIN's domain of infectious discases or 1 the production-ruie formalism used by MYCIN.

Knowledge-based Programs

As discussed In the Overview, systems that achieve expert-leve' performance in
problem-solving tasks derive their power from a large store of task-specific knowledge. As a
result, the creation and management of large knowledge bases and the development of
techniques for the informed use of knowledge are now central problems of Al research.

' TEIRESIAS was written to explore some of the issues involved in solving these problems.

Most expert programs embody the knowledge of one or more experts in a field, like
infectious diseases, and are constructed in consultation with these experts. Typically, the
computar scientist mediates between the experts and the program he is building to model
thelr expertise. This is a difficult and time-consuming task, because the computer scientist
must learn the basics of the field in order to ask good questions about what the program is
supposed to do.

TEIRESIAS's goal is to reduce the role of the human intermediary in this task of
knowledge acquisition, by assisting in the construction and modification of the system's
database. The human expert communicates, via TEIRESIAS, with the performance program
(e.g., MYCIN), so that he can discover, with TEIRESIAS's help, what the performance program
is doing and why. TEIRESIAS offers facilities for modifying or adding to the knowledge base
to correct errors: Using TEIRESIAS, the human expert can “educate” the program just as he
would tutor a human novice who makes mistakes. Ideas about how this “debugging” process
is best carried out are at the core of TEIRESIAS's success.

TEIRESIAS also recognizes the inexact experiential character of the knowledge that is
* often required for knowledge-based systems ad (as examples buiow will illustrate) offers
the expert some assistance in formulating new "chunks of knowledge" of this sort. Another
major aim of the system was to provide a machanism for embodying strategic information.
Meta-rules (discussed below) are used to direct the use of object-level rules in the
knowledge base and to provids a mechanism for encoding problem-solving strategies.

interactive Transfer of Expertise.

it Is an estabilshed result that ar expert knows more about a field than he Is aware, or

capable of articulating completely. Thus, asking him a broad question like "Tell mg everything
you know about staph-infections” will yield only & fracticn of his knowledge. TEIRESIAS's
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approach is to present the expert with some errors made by an already established, but still

incomplete, knowledge-based program and to ask a focused question: "What do you know that
the program doesnt know, which makes your expert diagnosis different in this case?"

This interaction Is called transfer of expertise: TEIRESIAS incorporates into the
performance program the capabilities of the human expert. TEIRESIAS does not attempt to
derive new Information on its own but, Instead, tries to "listen" as attentively and
Intelligently as possible, to help the expert augment or modify the knowledge base.

Interr.ctive transfer of expertise between an expert and an expert program begins
when the axpert identifies an error in the performance of the program and invokes TEIRESIAS
to help track down and correct the arror. Errors are manifest as program responses that the
expert would not have made 0” as "lines of reasoning" that the expert finds odd,
superfluous, or otherwise inappropriate. The first kind of error might be, for example, a
wrong conclusion about the identity of a bacteria. On the other hand, the performance
program may Just ask the expert, during a consultation, a question that, in the expert's
opinion, does nothing to resolve the iduntity of the bacteria. This is an example of the "line
of reasoning" type of error.

Both kinds of error are assumed, by TEIRESIAS, to be indicative of a deficit, or "bug," in
the performance program's knowledge base. Transfer of expertise begins when TEIRESIAS is
called upon to correct the deficit. TEIRESIAS fixes bugs in the knowledge base by:

1. Stopping the performance program when the humar expert identities an error.

2. Working backwards through the steps in the performance program that led to
the error, until the bug is found.

3. Helping the expert fix the bug by adding or modifying knowledge.

To identify faulty reasoning steps in the performance program, the expert can use the WHY

and HOW commands to ask TEIRESIAS to back up through previous steps, explaining why they
were taken. The same explanatory abilities can also be used when there is no bug, to help
the user follow the system's line of reasonirig. Since many I. ‘ge performance programs carry
out very complex inferences that are essentially "hidden" from the person using the program,
this is a valuable facility.

Meta-level Knowledge

One of the principal problems of Al is the question of appropriate representation and
use of knowledge about the worid (see Rspresentstion). Numerous techniques have been
used to represent domain knowledge in various applications programs. A central theme of the
research on TEIRESIAS is expioriig the use of meta-knowledge. Meta-level knowledge Is
simply the representation in the program of knowledge about the program itsel?--about how
much it knows and how It reasons. This knowledge is represented using tnc same
representation techniques used to represent the domsin knowledge, ylaiding a prcgram
containing object-level representations describing the external world and meta-level
representations that describe the internal world of the program, its self-knowledge. For :

example, many Al programs use the notion of a freme to represent the knowledge used by the
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| system (see Article Representation.C7?). One can imagine a meta-level frame that describes
the structure of oll frames in the sister or one that denotes the different classes of frames
used in the system. One of TEIRESIAS's representations is very close to this notion, the
schema described below.

Meta-level knowledge has taken several different forms as its uses have been
explored, but it can be summed up as "knowing about what you know." In general, it allows
the system both to use its knowledge directly and to examine it, abstract it, and direct its
application. The capabilities for explanation, knowledge acquisition, and strategic reasoning
In TEIRESIAS inspired the incorporation of explicit meta-level xnowledge, and these
capabilities are based on the use of that knowledge.

Explanation

There are two important classes of situations where expert systems should be able to
explain their behaviour and results. For the usr of the system who needs clarification or

reassurance about the system's output, the explanation can contribute to the transparency
and thus the accejtance of the system. The second major need for explanation is In the
debugging process described above, where a human expert uses the system's explanations
of why it has done what it hza done, in order to locate some error in the database. The first
of these applications of explanation has been explored in the qQuestion-answering facility of
the MYCIN system; the explanation capability in TEIRESIAS has explored both uses but has
concentrated on the latter.

The techniques used in TEIRESIAS for generating explanations ere based on two
assumptions about the performance program being examined, namely, (a) that a
recapitulation of program actions can be an effectivu explanation, as long as theo ccrrect
level of detail is chosen, and (2) that there is some shared jramework for viewing the
program's actions that vill make tham comprehensible to the user. In the MYCIN-like expert
systems that use productivn-rule knowledge bases, these assumptions are valid, but it is
easy to imagine uxpert systems where one or both are violated. For example, the first
assumption simplifies the e..planation task considerably, since It means that the solution
requires only the ubility to record and play back a history of events. This assumption rules
out, in particular, any need to simplify those events. However, it is not obvious, for instance,
that an appropriate level of detail can always be found. Furthermore, it is not obvious how
this approach of recapitulation, which often offers an easily understood explanatién in |
programs that reason aymbolically, wouid be applied to expert systems that perform primarily
numeric computations.

. A simple recapitulation will be an effective explanation only if the level of descriptive
detall is constrained. It must be detailed enough that the operations the system cites are
comprehensibie; thie conceptual leve! must be Aigh enough that the operations are meaningful
to the observer, so that unnecessary detail is suppressed; and it must be complete enough so
that the operations cited are sufficient to account for all behavior.

The second assumption concerns the user's comprehension of the expert system's
activity, which depends on the fundamental mechanism used by the program and the level at
which it is examined. Consider a rnrogram that does medica! diagnosis using a statistical
approach based on Bayes's Theorem. it is difficult to imagine what explanation of its actions
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the program could give If it were queried about computed probabilities. No matter what tevel
ot detail is chosen, such a program's actions are not (nor were they intended to be) a model
of the reasoning process typically employed by physicians. Although they may be an
effective way for the computer to solve the diagnosis problems, there is no easy way to

interpret these actions ir terms that will make them comprehsnsiblc to humans unacquainted

with tha program.

Thus, the lack of mechanisms for sinwilifying or reinterpreting computation means that
TEIRESIAS's approach is basically a first-order soiution to the generat problem of explanation.
But, in the context of a MYCIN-like expert system, for which TEIRESIAS was designed, the
simple AND/OR goa! tree control structure offers a basis for explanations that typically
needs little adJitional clarification. (The operation of TEIRESIAS's explanation facility is

fllustrated in the sample protocol at the end of th. . article.) The invocation of a rule is taken
as the fundamental action of the system. This action, within the framework of the goal tree,
accounts for enough of the sys'‘em's operation to make a recapitulation of such actions an
acceptable explanation. in terms of the constraints noted earlier, it is sufficiently detailed--
the actions performed by a rule in making & conclusion, for instance, correspond closely
enough to the normal connotaton of that word--that no more detailed explanation Is
necessary. The explanation is still at a high enough concentual ievel that the operations are
meaningful and the explanation is complete enougn--there are no other mechanisms or
sources of information that the obsetver needs to know In order to understand how the

program reached its conclusions.

Knowledge-acquisition: Rule Models and Schemata |

When the expert has identified a deficit in the knowledge base of the performance

program, TEIRESIAS questions him in order to correct the deficit. This process relies heavily
on meta-level knowledge about the performance progra.’, encoded in rule-models and
schemata. In other words, TEIRESIAS knows about what the performance program knows.

The meta-level knowledge about objects in the domain includes both structural and
organizational information and is specified in date structure schemata. Acquisition of knowledge
about new objects proceeds as a process of instantiating a schema--creating the required
structural components to bulld the new data structure and then attending to its interrelations

with other data structures. By making inquiries in a simple form of English ebout the values
of the schema's components, this knowledge acquisition process 1s made to appear to the
expert as a natural, high-level inquiry about the new concept. The process is, of ccurse,
more complex, but the key component is the system's description of its own representation.

TEIRESIAS's rule models are empirical generalizations of subsets of rules, indicating

commonalities among the rules in tha. «1:bset. For example, in MYCIN there is a rule mode! for
the subset of rules that conclude affir..atively about organism category, indicating that most
such rules mention the concepts of culture site and infection type in their premise. Another rule
model notes that those rules that mention site and infection type in the premise also tend to

mention the portal of entry of the organism. :

This knowledge about the contents of the domain rules is used by TEIRESIAS to build
expectations about the dialogue. These expectations are used to facilitate the process of :
translating the English statements into the performance program's internal representation
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and to identify information missing from t*.e expert's entry. An example of TEIRESIAS's use
of rule models in its knowledge acquisition dialogue is given in the sample protocol below.

Melta-rules and Peformance Strategies

In performance programs with sutficiently small knowledge bases (like MYCIN's),
exhaustive invocation of the relevant parts of the knowledge base during a consultation is
atil computationally, feasible, In time, however, with the inevitable construction of larger
knowledge bares, exhaustive invocation will prove too slow. in anticipation of this
eventuality, meta-rules are implemented in TEIRESIAS as a means of encoding strategies that
can direct the program's actions more selectively than can exhaustive invocation. The
following meta-rule is from MYCIN's infectious disease domain:

METARULE 6860)

If 1) the infection is a pelvic-abscess, and :
2) there are rules which mention in their

premise entsrcbacteriaceas, and
3) there are rules which mention in their

premise gram positive rods,

Then Thers is suggestive svidence (.4) that the rules
dealing with enterobacteriaceas should be evoked
before thosa dealing with cram positive rods.

This rule suggests that since enterobacteriaceae are commonly associated with a pelvic
abscass, it is a good idea to try rules about them first, before the less likely rules mentioning
gram positive rods. Note that this meta-ruie does not refer to specific object-level rules.
Instead it specifies certain attributes of the rules it refers to, for example, that they mention
in their premise enterobacteriacess.

An Example: TEIRESIAS in the Context of MYCIN

We will now Mustrate TEIRESIAS's operation in affiliation witn the MYCIN system (see
Article Medicine.C2), paying particular attention to TEIRESIAS's explanetion and knowledge
acquisition facilities. MYCIN provides the physician with advice about the diagnosis and drug
therapy for bacterial infections. The system asks questions about the patient, the infection,
the cultures grown from specimens from the patient, and any organisms (bacterium) growing
in the culture. (Typically, of course, the exact identity of the organism is not yet known.)

MYCIN's database is composed of rul~s that sjeci’y a situation (involving information
about the patient, culture, and organism) and the conclusions that can be drawn in that
situation. For example, to conclude whether a patiant sutfers from a bacteria In the
snterobacteriaceas category, MYCIN invokes Rule 05 of its knowledge base:
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Rule 995 |

IF the site of the culture is blood, and
the gram stain ts positive, and
the portal of entry is gastrointestinal tract, and
[A-the abdomen is the locus of infection, or
B-the pelvis is the Jocus of infection]

THEN there 1s strongly suggestive evidence that
enterobacteriaceae is the class of organisms for
which therapy should cover.

MYCIN asks questions of the physician to determine which rules are applicable Irn the current
case--l.e., to determine the "situation" To determine if the organism Is of type
enterobacteriaceae, MYCIN would inquire whether each clause in Rule 05 were true.

The procedure of working backwards from the conclusion to the situation that would
make the conclusion true is called backward chaining and is MYCIN's fundamentai control
structure. cackward chaining can go "several levels deep," meaning that the clauses in a
situation that must be true (for the conclusion to be true) might themselves be conclusions of
other rules, For example, a condition on the ideutification of enterobacteriaceae {3 that the
infection be localized in the abdomen or the pelvis; but this condition Is itself a conclusion,
and It is only true If its conditions (that the culture from these places is recent, and is |
therapeutically significant) are true. Furthermore, the condition of therapeutic significance
has its own -onditions, and so on. Here is a protocol showing MYCIN's basic style of
interaction, the human expert's responses sre prefixed with **:

m=eee-c--Patiant 28 1 -~=ccceccc-

1) Patient's name:
xx Albert Hall

2) Sex:
xx Male

3) Age:
3 34

4) Have you been able to obtain positive microbiological
Information about a possible infection ot Albert Hall?

*% Yes

~ewesesvinfaction {---cvccccnan

5) What is the infection?

xx Primary-Bacteremia
6) Please state when signs and symptoms of infection-1 first appeared:
xx 15-Dec-7565 12:00

~mee=ese=CUUI@ | ~v=cocevmvaces

7) From what site was the specimen for cuiture-1 taken
31 Blood i

8) Please give the date and time when this blood cuiture wus obtained:
"t 16-Dec-76 12:00

The Hirst significant organism from this blood culture will be :
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referred to as:

comcanaaOrganisme{ecceccnncccess
9) Enter the identity of ORGANISM-1
=r Unknown

10) Is ORGANISM-1 a rou, or coccus, (etc.):
AN Rod

11) The gram-stain of ORGAN!5SM-1:
»x Gram negative
12) Did ORGANISM-1 grow in the aserokic bottle?
=% Yeas

13) Did ORGANISM-* Jrow in the enaerobic bottle?
"RX Ves

My therapy recommendations will be based on the following probable
infection(s) and potential causative organism(s):

INFECTION-1 is PRIMARY-BACTEREMIA
Citem=1> E.COLI [ORGANISM-1]
Citem-2> PSEUDOMONAS-AERUGINOSA [ORGANISM-1])

FIGURE 1. PART OF A DIALOGUE WITH MYCIN.

In sum, MYCIN constructs a goal tre: (see Article SearchA@) of questions that must be
resolved in the course of the consultation to conclude the identity of a bacteria. When it
cannot resolve a question by inference from what it knows already, it asks the respondent to
provide an answer. Each node of the goal tree has subnodes that result from the application
of a rule: | .

crtorobecher acess
/ / \ \ Ruie 899

sites orans portals Jocuss
blood positive g.i1.tract sbdomen or

. pelvis
/

Rule 021 / \recent culiwre therapsuticallys1onircant

Rule 054 / / \
sterile significant non-

method of number of sterile
collection organisms site

Figure 1. A MYCIN Goal Tree
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Expianation: HOW and WHY. Suppose that during a consultation with MYCIN the
clinician wants an explanation of the reasoning behind some question that MYCIN has asked
him. The explanation given by TEIRESIAS in response to the physician's question, WHY,
involves backing up the goa! tree to the previous node and presenting the rule used to
derive the subnode from (ts ancestor:

MYCIN: What is tha suspected portal of entry of ORGANISM-1 into
this sterile site?

Doctor: WHY .

TEIRESIAS: [i.e. why is It Important to determine the suspected
potAl of entry of ORGANISM-1 into this sterile site?]}

[3.9]...In order to find out about an organism or class
of organisms for which therapy should cover.

It has already been established that
[3.1] the site of the culture is blood
[3.2] the stain of the organism is gram positive

Therefore if:

[3.3] the portal of entry of the organism is g..
[3.4] [Abdomen is the locus of infection, or

Pelvis is the locus of infection]
Then

There is strongly suggestive evidence (.9) that
enterobacteriaceae is the class of organisms for

which therapy should cover.
[Rule 085]

in contrast to WHY, which spells out "higher" nodes in the goal tree, the HOW command
asks TEIRESIAS to explain the nodes that have been or will be expanded lower down the
tree. For example, in the following exchange, the expert asks how MYCIN will determine
whether the abdomen or pelvis is the locus of infection:

Doctor: HOW[3.4] note: 3.4 is the prefix of the statement
of interest in the exchange above

TEIRESIAS: [L.e. how were you determining that the Abdomen is the
locus of infection, or that the Pelvis is the locus of infection?)

[4.0] At that point Rule 021 was being uted.

if the doctor now wants to see Rule 021, he asks TEIRESIAS to explain HOW it was used,
referring to the prefix (4.0) of the statement in which it was mentioned:

TEIRESIAS: [l.e. how was Rule 021 used?]

[6.0] It has already been established that |
[6.1] the culture is recent.
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Therefore If:

[6.2] there is therapeutically significant disease
associated with the occurrence of this organism

then

it Is definite (1.0) that the site of the cuiture is
the locus of infection in the patient.

Tre explanation facilities of TEIRESIAS involve climbing up and down MYCiN's goal tree
explaining WHY questions are asked and HOW they are answered. If MYCIN makes a
misdiagnosis, these same facilities are used (2ither by the expert or TEIRESIAS, at the
choice of the expert) to back up through ‘he rules that achieved the diagnosis untit the
expert has found the faulty one or determined that one is missing. TEIRESIAS is then used to
expedite the alteration or construction of rules by the expert.

Knowledge scquisiiion. TEIRESIAS is acie to help an expert formulate rules in English
because it has expectations about what rules “look like." The expectations are stored
internally in the form of rule models that are tormed automatically by examining all the rules in
the knowledge base. TEIRESIAS knows, for example, that there is a class of rules that have
as their corciusions the probable identity of a bacteria and that these rules typically have
as conditions (a) ihe site of the culture, (b) the stain of the culture, and (c) the probable
portal of antry ot the bacteria. These rule models help TEIRESIAS translate English versions
of new rules Into a machine representation accepiable to MYCIN.

To Illustrate TEIRESIAS's debugging and correction facilities, we will continue with the
consultation from Figure 1. Suppose that after MYCIN presents the expert with its diagnosis,
TEIRESIAS steps in and checks whether the expert agrees:

MYCIN: My therapy recommendation wil be based on the following
probable infection(s) and potentiai causative organism(s):

INFECTION-1 is PRIMARY BACTEREMIA

Citem-1> E.COLI [ORGANISM-i]
(item-2)> PSEUDOMONAS-AERUGINOSA [ORGANISM-1]

Now TEIRESIAS steps in. i

Are all these identities correct?

T Ae expert's response, marked with #%, is No.

=% No.

Ars there any idsntities missing?
2% Yas.

Which ones?

22 KLEBSIELLA-PNEUMOMIAE, PROTEUS-NON-MIRABILIS
Are there any ldentitins which shouldn't have appeared?
KR

yes
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Which one(s)?
tx PSUEDOMONAS-AERUGINOSA

Do you want to
1] track down the problem yourself. or
2] allow me tc guide the debugging, or
a1 ignore it for now and fix it another time.

Tyne 1,2, 0r 3.

x: 2

If the expert Aad typed I, he would Adve used the HOW and WHY commands to debug
the problem, as discussed above.

We'll start with PSEUDOMONAS-AERUGINOSA first:

TEIRESIAS starts debugging by trying to find sut why an inappropriate diagnosis
occurred. Frequently solving a problem will make others “go away” as well

The following rules were used in deducing that t.s identity of :
ORGANISM 1 is PSEUDOMONAS-AERUGINOSA:

Rule 184

Since

[1.1] the category of ORGANISM-1 is not known
[1.2] the gram stain of ORGANISM-1 is gram negative
{1.3] the morphology of ORGANISM-1 is rod
[1.4] the aerobicity of ORGANISM-1 is facuitative |

There is weakly suggestive vidence (.3) that the identity of
ORGANISM-1 ls PSEUDOMONAS -AERUGINOSA.

Is this rule correct

Note that thiz rule, which resulted in tAe wrong conclusion, is nor necessarily an incorrect
rule. It might de (and in fact is) she case that it was incorrectly invoked because one or
more of ‘ts conditions are true when they should be false.

Rt Yes

T Ae expert says the rule is correct.

Should its premise have failed for this case?
2 Yea
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Which clause of the vremise should have falled?
*% Clause 1,

TAe expert believes that MYCIN should Aave known the category of ORGANISM-I.
MYCIN failed to establish the category, causing Rule 184 to be used.

Should it have been possibile to conclude a category?
*2 Yes

Which one?

*%* Enterobacteriaceas |

Our old friend. But recall that MYCIN's rule 095 about enterobacteriaceae requires a
positive gram stain, but ii can be seen from Fig. | that it Aas a negative gram stain. T hus,
Rule 93 was never evoked. In the course of move debugging, it transpires that MYCIN
Ass a couple other rules dealing with tAis category of bacteria, but they weren't evoked
either. The expert decides tha! another rule is required, and we pick up the dialogue
where Ae Is proposing one to TEIRESIAS:

If: 1 %% THE PATIENT'S INFECTION IS PRIMARY-BACTEREMIA

2 ** THE SITE IS ONE OF THE STERILE SITES

Then: ** THERE IS EVIDENCE (.8) THAT THE CATEGORY I8 ENTEROBACTERIACEAE

TEL"."SIAS parses this rule into its internal representation and then transiaies it back
into English, so the expert can check it. We pick up the dialogue after the expert 4.5
agreed on the parse. TEIRESIAS is applying ts rule model,

| hate to criticize, Dr. Davis, but did you know that most rules about
what the category of an organism might be, that mention-

the site of a culture

the infection

ALSO mention-

[A]- the portal uf entry of the organism
Shall | try to write a clause to account for [A]?
R% Yes.

Here we see one of the utilities of the rule model. TEIRESIAS prompts the expert to add
a Yt of Anowledge that is typcially found in rules like these and offers to fix the rule
itself. This completion is accomplished by looking at other rules that fit the seme rule
model, to find the riost likely portal cf entry clause.
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how about -

[A] The portal of entry is gastrointestinal. Ok?
** Yes.

TEIRESIAS now does some finishing up: checking the complete rule with the expert for
final approval and asking the expert to write a brief description (for bookkeeping
purposes) of why the rule was needed. Finally, tt reruns the consultation internally, using
the responses from Fig. I, which it has stored. {t turns out that adding the rule above did,
in fact, cure the other problems with the first consultation, and this time the diagnosis is
satisfactory to the expert.

Summary: TEIRESIAS and Expert Systems

TEIRESIAS aids a human expert in monitoring the performance of a knowledge-based
system. When the human expert spots an error in the program's performance, either In the
program's conclusions or its "line of reasoning," TEIRESIAS assists in finding the source of
the error in the database by explaining the program's conclusions--retracing the reasoning
steps until the faulty (or missing) rule is identified. At this point, TEIRESIAS assists In
knowledge acquisition, modifying faulty rules or adding new rutes to the database. Meta-level
knowledge about the kinds of rules and concepts in the database is used to build
expectaiions in TEIRESIAS's model-based understanding process. Meta-level knowledge is also
aed to en:sode problem-solving strategies, in particular, to order the invocation of rules so
that those that are most likely to be useful (given the current knowledge of the program) are
tried first. |

References
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C. Applications in Chemistry

C1. Chemical Analysis

Computer programs have been developed to aid in almost every aspect of chemistry.
As evidenced by recent articles in two journals devoted to uses of computers for chemical
problems, Computers and Chemistry and Journal of Chemical information and Computer
Science, most of the computer programs have focused on numeric problems of data
acquisition, data reduction, comp.ex electronic energy calculations, and the like. By contrast,
A) methods have found application in two major classes of nonnumeric chemical reasoning
problems: (a) dstermining the molecular structure of an unknown organic compound, the
“analysis” or "structure determination” problems; and (b) plenning a sequence of reactions
in order to synthesize organic chemical compounds, the "synthesis® problems (see Article
C4).

Structure Elucidation

The elucidation o* mulecular structures is fundamental to the application of chemical
knowledge to important problems in oiology and medicine. Some of the areas in which
chemists maintain active interest include: (a) identification of naturally occurring chemical
compounds isolated from terrestrial or marine organisms; (b) verification of the identity of
new synthetic materials; (c) identification of drugs and their metabolites in clinical studies;
and (Gd) detection of metabolic disorders of genetic, developmental, toxic, or infectious
origins through the identification of organic conatituents excreted in abnormal quantities in
human body fluids.

in many circumstances, especially in the areas of Interest mentioned above, the
powarful techniques of x-ray crystaliogrephty and x-ray fine-structure analysis may not be
applicable (sme article C3), and chemists must resort to structure elucidation based on data
obtained from a variety of other methods. Foremost among them historically is mass
spectrometry (discussed in detail in the next section). if a chemist wants to determine the
molecular structure of an unknown chemical compound, he first isolates a sample of the
compound that is pure--i.e., contains no other compounds. Two questions must then be
answered:

1. What are the atoms in the compound?

2. How are the atoms arranged (joined together) in a three-dimensional
structure?

The latter question is addressed by structure siucidation programs. itis relatively simple to
determine the constituents of the molecule (the first question), but the enormous number of
possible three-dimesnional arrangements makes the second question especially difficult to
answer. If the unknown substance is a crystal, or can be crystalized, then x-ray
crystallography can be used to determine the exact locations and connections of atoms in a
molecule In space. If this technique cannot be used and x-ray fine-structure analysis
techniques cannot be applied, then the chemist must take a more complicated approach to
structure elucidation. No other tests are avaliable to tell the chemist the ¢xact structure of
his molecule; at bast he can use tests that help him discover small connected clusters of
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atoms, called mo’ecular fragments, which are either present or absent in the compound.
Therefore, although the chemist may not know the structure of the molecule, he does know
som2 of its subparts. From the fragments identified as present in the compound and those
known to be absent, the chemist can derive a set of constraints. A constraint can be thought
of as a piece of a graph that either must occur or must not occur in the final graph of the
molecule. This is how constraints are represerted in the structure elucidation programs that
we will discuss.

Using the known constraints about a given molecule, it is often possible to generate the
graphs of all molecules that adhere to those constraints. An algorithm was developed by :
Lederberg (1964) to generate all possible acyclic molecular structures from a set of atoms;
and Brown, et al. (1974) developed an algorithm without the acyclic constraint. Thus it is
now theoretically possible to generate every possible molecular structure containing known
subparts, but it is often prohibitively expensive to do so. However, the exhaustive
generation algorithm can often be constrained to produce a relatively small set of mociecular
structuras, one of which is the unknown molecule.

If the number of atoms in an unknown molecule is relatively small and the number of

known constraints is larga, a chemist can figure out the molecular structure by hand.
However, the manual approach has bec: significantly augmented by computer programs

developed in the DENDRAL project at Stanford University. These programs do not generate
all the possible moelcular structures and then discard structures according to the
constraints; rather, they use the constraints to insure that only a small subset of the
theoretically possible structures are evar actually generated.

Structure Elucidation with Constraints from Mass Spectrometry

As we mentioned above, structure elucidation programs are designed to help organic
chemists determine the molecular structure of unknown compounds. Experimental data from

the unknown may be gathered from many different analytic techniques including mass
spectrometry (MS), nuclear magnetic resonance spectroscopy (NMR), infrared spectroscopy
(IR), uitraviolet spectroscopy (UV), and “wet chemistry" analysis. Mass spectrometry 's still
a new and developing technique. It is particularly useful when the quantity of the sample to
be identified is very small; mass spectrometry reyuires onhiy micrograms of sample.

A mass spectrometer bombards the chemical sample with electrons, causing

fragmentotions and rearrangements of the molecules. Charged fragments are collected by |
mass. The data from the instrument, recorded in a histogram known as a mass spectrum,

show the masses of charged fragments plotted against the relative abundance of the
fragments at a given mass. Although ths mass spectrum for each molecule may be nearly
unique, it Is still a difficult task to infer the molecular structure from the 100-300 data points
in the mass spectrum; not only does a spectrum contain "noise peaks" and overlapping peaks
originating from many parts of the molecule, but the theory of mass spectrometry is not

complete. |

Throughout this section the following terms will be used to describe the actions of
molecules in the mass spectrometer:

Fragmentation--the breaking of a connected graph (molecule) into fragments by
breaking one or more edges (bonds) within the graph.



C1 Chemical Analysis 21

Atom migration--the detachment of nodes (s*oms) from one fragment and their
reattachment to other fragments. This process alters the masses cof all of
the fragments.

Mass spectral proceas--a fragmentation followed by zero or ore atom
migrations.

Other analytic techniques are commonly used in conjunction with, or instead of, mass
spectrometry. Some rudimentary capabilities exist in structure elucidation programs to
interpret proton NMR and Carbon 13 (13C) NMR spectra. For the most part, however,
interpretation of other spectroscopic and chemical data has been left to the chemist. The
programs stil need the capability to integrate the chemist's partial knowledge into the
generation of structural alternatives.

We will now consider two programs that utilize mass spectrometry constraints in the
elucidation of organic compound structures: DENDRAL and Meta-DENDRAL.
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C2. The DENDRAL Programs

C2a. DENDRAL

in 1064 Joshur tederberg developed the DENDRAL algorithm, which produces all
possible acyclic (urcinged) molecular structures, given a set of atoms. This algorithm
enabled an exhaustive approach to structure elucidation. in 1965 the DENDRAL project
started at Stanford. One intent of the project was to show that algorithmic programs that
produce resuits exhaustively and at enormous expense could ba augmented by some of the
heuristic knowledge used by experts to produce much the same results with a fraction of the
effort. The Heuristic DENDRAL Program achieved this objective by augmentirg the DENDRAL
algorithm with a set of rules, those used by expert chemists to infer constraints on molecular
structures from mass spectrographic information about the molecule. Unfortunately, pressing
expert chemists to formulate rules about mess spectrometry was an arduous process. The
theory of mass spectrometry was incomplete, and the rules about it were inexact and
heuristic. In 1970, the Meta-DENDRAL project addressed the problem of Inferring the rules
of mass spectrometry from two sources of information: molecular structures, and their mass
spectra. Meta-DENDRAL is a continuing project.

in 1976, the CONGEN program becams the center of attention in the DENDRAL project.
This program replaced Lederberg's origina Heuristic DENDRAL acyclic structure generator
with a generator without its limitation. CONGEN is discussed in a separate article (C2L)
because it has been used as a stand-alone system by research chemists.

DENDRAL

The Heuristic DENDRAL program was designed to tind a relatively small set ot possible
molecular structures, given the atoms in the molecule and the mass spectrum of the molecule.
The limitations of the DENDRAL algorithm were such that Heuristic DENDRAL could generate
only acyclic (unringed) structures: Ketones, alcohols, ethers, thiols, thioathers, and amines.

The program has three functional parts: Plan, generate, and test.

1. PLAN: Pianning in this context means redefining the problem in terms that will reduce
the effort of the problem solver--e.g.redetine the problem of finding ail possible
combinations of a set of atoms to the problem of finding all such combinations

: consistent with constraints derived from mass-spectrometry. Automatic inference
of thease constraints Is the planning part of Heuristic DENDRAL. The list of
constraints has two parts: a list of molecular fragments (clusters of atoms) that
mus: be In “h3 final molecular structure and a list of fragments that are forbidden

: to appear in the final structure.

| 2. GENERATE: This part ures thesa constraints to prevent the DENDRAL algorithm from
generating structures that include torbidden subparts or that exclude mandatory
subparts. The generator was origineily derived from Lederberg's algorithm. When
CONGEN was implemented us a sta:.d-alone system, these constraints were
provided by the chemists using the program, not by the planning part.

3. TEST: This part ranks the resulting Hat of candidate structures by simulating its

}
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behavior 'n a mass spectrometer. The structures resuiting in simulated spectra
close ‘o tha empirical one are ranked high.

| Heuristic DENDRAL thus has two sets of rules that encode the mass spectrometry

knowledge: a) rules used during planning that interpret mass spectral data and infer
molecular fragments, and, b) rules used during testing that simulate the action of the mass
spectrome’er on the structure(s) proposed by CONGEN and that predict peaks which should
be observed in the spectrum of the molecule.

Pizaning: Inferring Constraints From The Mass Spectrum

Heuristic DENDRAL has available to it the mass spectrum and the atomic constituents of

a molecule. From the latte it can infer the molecular weight, M, of the molecule. Many of the
rules for interpreting mass spectra include M; for example, the following rule:

If the spectrum for the molecule has 2 peaks at masses
x1 and x2 such that

a. x! + x2 = M+ 28, and

b. x1 - 28 is a high peak, and

Cc. x2 - 28 is a high peak, and
d. at least one of x1 or x2 is high, and

Then the molecule contains a ketone group.

R1 Rl (x1) R1

0s ! fraoments into O = : and/or 0=¢
\; R2 1. (x2)

Intensity | |
o/m

This piece of knowledge about mass spectrometry allows Heuristic DENDRAL to constrain its
structure-generating algorithm to produce molecules with a ketone group as a mandatory
constituent. This rule, in addition to many similar rulez, significently constrains the number of
mclacules generated by the structure generator. Fcr example, given the spectrum for a
moiecule containing 8 carbuns, 18 hydrogens, and 1 oxygen, the constraint-generating
program can eliminate from consideration (i.e., place on a list of forbidden structures calied
BADLIST) al possible structures except those containing ethyl ketone 3, which reduces the
number of generated molecular structures from the topologically possible 749C to a
constrained set of 3 (called the GOODLIST).



24 Applications~-oriented Al Research: Scisncs and Mathematics

The Generator

The algorithm for generating molecular structures is complicated and has no A} content;
we will discuss it only In general terms and refer the reader to Buchanan, Sutherland,
Felgenbaum, 1969, for a detailed discussion. The following article (C2b) discusses the
current CONGEN generator.

There are seveial design characteristics of the generator that are related to the
enormous number of molecules combinatorially possible in an analysis problem. First, the

generator must be proved to be complete--it must te able to generate ail topologically
possible molecular structuras. It should also be non redundant, that is, it should generate
each structure only once. Redundancy was a problem for structures with rings, because
Lederberg's algorithm treated symmetrical molecules as unique structures. A third
characteristic is that the generator should be flexible enough to be focused by constraints
from the planning part. it should not blindly generate all possible structures, but only those

"fulfilling the constraints. If GOODLIST and BADLIST are empty, it should generate all isomers
(structural variants) of the given composition.

Some simple checks are made by the generator. The composition should be compatible
with the constraints inferred from the spectrum, and the structures generated should have
only the types and amounts of atoms specified in the composition. Finally, the generator
should not produce a structure known by DENDRAL to be unstable. :

The structure generator essentially "grows" molecules, starting with a small fragment
of the molecule and adding pieces of the composition to it. At any point in the growing
process, there are numerous atoms or molecular fragments that can be added to the growing
structure, and there are many places where these parts can be attached. But generally the
constraints offered by GOODLIST and BADLIST limit the number of possible structures that
might be grown at any point In the growing process.

The Testing and Ranking Programs

The programs MSPRUNE and MSRANK (Varkony, Carhart, and Smith, 1877) use a large
amount of knowledge about the process of molecular fragmentation in @ mass spectrometer
to make testable predictions from each plausible candidate molecule. Predicted dats are
cenpared to the data from the unknown compound, and some candidates are thrown out,
while others are ranked.

MSPRUNE works with: (a) a list of candidate structures from the structure generator,

| and (b) {:2 mass spectrum of the unknown molecules. It uses a fairly simpie model of mass
spectrometry (encoded (n rules) to predict commonly expected fragmentations for sach
candidate structure. Pradictions that deviate greatly from the observed spectrum are

considered prima facie evidence of incorrectness, and the corresponding structures are
prungd from the ist. MSRANK then uses mors subtle rules of mass spectrometry to rank the
remaining structures according to the number of predicted peaks found (and not found) in the
observed data, weighted by measures of importance of the processes producing those
peaks.
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Ressarch Results

The Heuristic DENDRAL project, frou 988 to the present, and including CONGEN, has
produced a number of resuits of significance to chemista. The effort has shown that it is
possible tc write a computer program that equals the performance of experts in some very
specializeg arsas of science. Published papers on the program's analysis of aliphatic
ketones, amines, ethers, alcohols, thiols, and thioethers (Duftielc et al.,, 1868; Schroll et zi,
1869; Suchs et al, 1870) make the point that aithough the program does not know more than
an axpert (and in fact knowa far less), it performs well bece'ise of its systematic search
through the space of possibilities and its systematic use of wha? i does know. A paper on
the program's analysis of estrogenic steroids notes that the program can solve structure
elucidation problems for complex organic molecules (Smith et al, 1872). Another paper, on
the analysis of mass spectra of mixtures of sstrogenic steroids (without prior purification),
establishes the program's ability to do better than experts on some problems (Smith et al,
1973). With mixtures, the program succeeds where people fail; the task of correlating data
points with each possibla fragmentatior of zach possible component of the mixture is too
difficult for people to do. Severe! articies baz_.41 on results from CONGEN demonstrate its
power and utliity for solving problems of medical and blochemice! Importance (Smith, 1875;
Smith and Carhart, 19786; Buchanan, 1870; Mitchell, 1078; and Varkony, Carhart, and Smith,
1077).

DENDRAL programs have bean used to aid in structure determination problems of the
following kinds:

terpenoid natural products from plant and marine animal sources,

marine sterols,

organic acids in human urine and other body fluids,
photochemical rearrangement products,

impurities in manufactured chemicals,

conjugates of pesticides with sugars and amino acids, :
antibiotics,

metabolites of microorganisms, and

insect hormones and pheremones.

CONGEN (discussed next) has also been applied to published structure elucidation problems

by students in organic chemistry classes to check the accuracy and completeness of
published solutions. in several cases, the program found structurcs that were plausible
alternativas to the published structures (based on problem constraints that appeared in the
article). This kind of information served es a valuable check on conclusions drawn from
experimental data.

References

See Lindsay, Buchanan, Feigenbaum, and Lederberg (forthcoming) for a thorough and
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and Lederberg (10644).



26 Applications-orientad Al Research: Science and Mathematics

C2b. CONGEN and its Extensions

CONGEN: Interpretation of Coustraints

CONGEN (for CONstrained GENerator) is a program that was designed in 1976 to
replace the old DENDRAL generator of acyclic structures. It has proved a powerful stand-
alone program to assist the chemist in dotermining tne molectitar structure of unknown
compounds. its objective was twofold: (a) to aliow the user tc interactively specify certain
types of structural! information determined from any of several sources (e.g., spectroscopy,
chemical degradation, method of isolation, etc.); and (b) to generate an exhaustive and
nonredundant list of structures consistent with this information. Unlike the original Heuristic
DENDRAL program, it does not infer constraints from mass spectra, but allows the chemist to
specify them. Another difference between CONGEN and Heuristic DENDRAL is that the former
can generate cyclic as well as acyclic molecular structures. The generation is a stepwise
process, and the program allows Interaction at every stage. Based upon partial results, the
chemist may be reminded ot additional information that he can specify, thus limiting further
the number of structural! possibilities.

CONGEN breaks down the problem statement given by the chemist in several different
ways, for example: (a) hydrogen atoms are omitted until the final steps of processing:
(b) parts of the graph containing no cycles arc generated separately rom cyclic parts (and
combined at the end); (c) cycles con“aining only unlabeled nodes are generated before the
nodes are labeled with the names of ~hemical atoms (e.g., carbon or nitrogen); and (d) cycles
containing only threa-connected nodes (e.g., nitrogen or tertiary carbon) are generated
before two-connected nodes (e.g., axygen or secondary carbon) are mapped onto the edges.
At each step, several constraints may be applied to limit the number of emerging chemical
graphs (Carhart et ai., 1875).

There ara two algorithms at the hear of CONGEN whose validity producing
nonredundant structures has been mathematically proven (Brown & Masinter, 1974; ihasinter
et al., 1974) and whose computer implementation has been well tested. Combined, they are
designed to determine all *opoiogically unique ways of assembling n given set of atoms, each
with an associated valence, into molecular structures. The atoms may be chemical atoms
with standard chemical valences, or they may be names representing molecular fragments
(superatoms) of any desired complexity, where the valence corresponds to the total number
of bonding sites avaliable within the superatom. The algorithms can be thought of as
performing problem reduction, and reconstruction of subproblem recomposition on molecular
structures. The first, partitioning, algorithm breaks down the problem of finding a complete
molecular structure into subproblems; for example, to find the structures of the ringed and
non-ringed components of the molecule. The second, embedding, algorithm combines the
substructures, found by partitioning, into complete molecular structures. Clearly, neither
partitioning nor reconstruction can be unconstrained processes because of the combinatorics
involved: There are simply too many possible subproblems to solve, and each of them may
have many solutions. Consequently, combining subproblem solutions exhaustively is not
feasible. in both algorithms, constraints are brought to bear to Hmit the size of the piobiem. |
Three types of constraints are:
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1. Graph theoretic: Symmetric structures are not considered unique.

2. Syntactic: Structures are constrained by the valences of the constituent
atoms; for example,

C

,

. Impossible because oxygen is bivalent, i.e. has only two bonding sites.

3. <Semantic>: The chemist provides additional information about the molecule
that will help to determine its structure.

Substantial effort has buen devoted to modifying the two basic procedu-as, particularly
the structure generation algorithm--allowing it to accept a variety of uther structural
information (constraints) and using it to prune the list of structural possibilities. Current
capabilities include specification of good and bad substructural features, good and bad ring
sizes, proton distributions and connectivities of isoprene units (Carhart and Smith, 1976).
Usually the chemis( has additional Information (if only some general rules about chemical
stability) of which the program has little knowtedge. which he can use to limit the number of
structural possiblities. For example, he may know that the chemical procedures used to
isolate the compound would change organic acids to esters; thus, the program would not

| need to consider structures with unchanged acid groups. in CONGEN, he is given the
facilities to impart this knowledge interactively to the program.

To make CONGEN easy for research chemists to use, the program has been provided
with an interactive "front end." This interface contains EDITSTRUC, an interactive structure
editor; DRAW, a teletype-oriented structure display program; and the CONGEN “executive"
program, which ties together the individual subprograms and aids the user with various tasks
such as defining superatoms and substructures, creating and editing lists of constraints or
superatoms, and saving and restoring superatoms, constraints, and structures from
secondary storage (disc). Recently CONGEN was rewritten to aearch depth first so that
examples could be proguced right from the beginning of the computation. This often allows
the chemist to see that a particulai problem has been poorly or incorrectly constrained and
to stop the computation early, saving large amounts of expensive computer time.

The current system is running on the SUMEX computing facility at Stanford and is
available nationwide over the TYMNET network. it has recently been completely re-written in
the BCPL programming language to run on a variety of other machine.

Limitations and Extensions

Although computer programs, including CONGEN, now exist to assist chemists in
constructing structural isomers based on information about partial structures, the programs
have one serious, common Hmitation. Each program must use non-overlapping structural

. fragments as buliding blocks. This Amitation leads to at least two important problems. First,
the chemist using such a program must select non-overlapping partial structures; otherwise
an Incomplete set of atructures will result. This procedure, done manually, is time-consuming
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~ and prone to error. Second, as a consequence of the first step, problems are solved iess
efficiently by the prugrams because a detailed environment of fewer atoms has been
specified--to ensure the absence of overlaps.

The GOODLIST INTERPRETER is a first attempt to remove this limitation by simulating the
manual procedure that the chemist uses to arrive at a set of non-overlapping constraints. it
is designed to make more efficient use of information about required (GOODLIST plus
superatoms) structural features of an unknown. Some early successes have demons'rated
that new problems are brought within the reaim of solution by the GOODLIST INTERPRETER
that are impossible in CONGEN alone, due to the constraints on computational resnurces.

Stereochemistry

One of the most important new additions to CONGEN deals with the problem of
enumerating all the stereoisomers of a given compound.

The mathematical problem of enumerating stereoisomers was solved by Jim Nourse.
Considerations of symmetry as embodied in the mathematical theory of groups played a
decisive role in the solution. Coupled with the stereoisomer generator, and given an empiric=l
formula and a number of constraints, CONGEN can generate a! the stereoisomers that are
possible solutions to the unknown target molecule to be elucidated.

While tha solution to the enumeration of stereoisomers uses very little, if any, Al
techniques, it solves a problem that numan beings find very difficult to solve. Chemists
usually learn to solve this problem by using visual intuition. The mathematics involved are
deep enough so that the average chemist will not have the patience necessary to learn
enough about the algorithm to use its Insights in enumerating stereoisomers. One of central
problems for Al work in chemistry now is how to use this new facility in structure elucidation.

EXAMINE

Often in the course of a structure elucidation problem, a large number of candidate
structures, perhaps a hundred or more, are generated; and additional constraints must be
derived, either from further data analysis or from new experiments. The EXAMINE function
written by Nell Gray is used from within CONGEN to survey, classify, display, or discard
structures. This function is very useful to the chemist who is searching for features common
to a large number of the structures or for features that are unique to certain structures. The
insights gained from usitig EXAMINE can be used In planning new experiments or in further
data analysis. in pursuit of these objectives, the chemist can define functional groups and
other structural features, or he can work with a predefined library of them. The EXAMINE
function is then called, and it axamines the lst of candidate structures for the presence or
absence of these features.

For example, the chemist can ask EXAMINE to look for all structures with exactly one
labile proton. (A labile proton is a hydrogen atom attached to a nitrogen atom or a hydrogen
atom attached to an oxygen atom.) The chemist can represent this structure in EXAMINE as
an exclusive OR statement: exactly one hydrogen attached to an oxyger: atom in the
structure OR (exclusive) exactly one hydrogen attached to a nitrogen atom in the structure.
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The user can then request cXAMINE to draw tose structures that have this
characteristic and those that do not, In order to produce summary statistics on its frequency
of occurrence or to discard those structures with or without it. White CONGEN is always able
to discard or prune away structures that do not satisfy certain constraints, EXAMINE
provides the interactive ability to develop boolean combinations of constraints for pruning,
substructure search, or subsequent classification.

REACT

Before spectroscopy became a major tool of the structural chemist, ali structure
elucidation had to be done by means of reaction chemistry. and it Is still a major tool in
solving structures. REACT is an interactive program written by Tomas Varkony, Dennis Smith,
and Cari Djerassi (Varkony, Smith, and Djerassi, 1978). Although it Is a cicse relative to the
synthetic programs described below (see article C4), its purpose is to aid chemists in the
structure elucidation task rather than to ald them in finding new synthetic routes.

To show how REACT can be used to reduce the number of candidate structures found
by CONGEN, consider the following example. A dehydrajon reaction can be erpressed as a
production rule of the form: "If you see the pattern < 2-0, convert it 10 the pattern c:C."
We ‘now suppose that a dehydration reaction was applied to the unkoown in question and
yielded three distinct structures, which happened because the pattern C-C-0O occurred in
the molacule in three different places. This information can be used to eliminate structures :
from those under consideration: The structura list generated by CONGEN is passed to REACT;
the aehydration reaction is defined by the user and then applied to all the candidate
structures; those that do not yield s<actly three products cen be eliminated from
consideration as candidate structures. :

Although REACT does not contain stereochemical information, conformational information,
or electronic information (the electro-negativities of its atoms and groups), it still can be
used reliably in its structure elucidation function. Reactions used for structure determination
tend to have high yield, to be reliable, and to Involve simple separations. The re~ctions
operate under a wide variety of conditions and usually involve rather simple changes to the
unknown molecule. Thus, the perception routines do not need the sophisticated
stereochemical, conformational, and electronic information of the orgenic synthesis programs
discussed above.

Summary

Research in the DENDRAL project has followed two themes: To build a performance
program for analysis of moleculer structures, and to explore some problems of scientific
inference using Al methods. The performance o Heuristic DENDRAL has been evaluated in the
same way as that of a research chemist: by publications. (See the conclusion of the article
C2s on DENDRAL for references.) In addition, CONGEN is used dally by chemists to aid in
solvi:.g structure elucidation problems.

Because of the combinatonc size of analysis problems, exhaustive problem-soiving
methods were not an option, and much thought was giver. to the knowledge that enabled

| chemists to solve these problems. DENDRAL was one of the first programs to demonstrate
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the power of encoding domain-specific. heuristic expertise, and was therefore one of the
first projects to recognize knowledge acquisition as a mejor problem in Al (Buchanan,
Sutherland, and Feigenbaum, 1060; Davis, 1976). The next article (C2c) discusses
automatic inferance of rules as one solution to the knowledge acquisition problem.

Refer>nces

In addition to the DENDRAL references in the previous article, the following may be of

interest: Brown, Masinter, and Hjeimeland (1974), Brown and Masinter (1974), Carhart et al.
(1976), Carhart and Smith {1978). Masintar et al. (1974), Shelkh et al. (1970), and Smith
and Carhart (1978).
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C2c. Meta-DENDRAL

The domain-specific rules ti;at constitute DENDRAL's krowludge about mass
spectrometry were derived from consultation with experts in that field. Since the
consultation process is time consuming, two alternatives to "handcrafting® knowledge bases
were explored. One is interactive transfer of expertise (sue article B). The other is
automatic theory formation. Meta-DENDRAL is a program of the latter type. The rule formation
task that Meta-DENDRAL performs is similar to the task o grammatical inference, sequence
extrapolation, and concept formation (Hunt, 1976; Hedrick, 1974; Winston, 1970). Programs
that perform these tasks can all be thought of as "induction" programs because they
formulate general rules (or concepts, or patterns) from examples.

Meta-DENDRAL is designed to infer theories (rulesets) for the Heuristic DENDRAL
program (see article C2a), which represents knowledge about mass-spectrometry as
production rules. Automatic rule formation was chosen as a [-aredigm for Meta-DENDRAL for
two general reasons. First, this design poses interesting epistemological questions, and,
second, it is an arduous task to derive nies from human consultants, especially whan the
task-domain has only a small number of experts (as is the case in mass-spectrometry).

Representation of Knowledge about Mass spectrometry

In DENDRAL, knowledge about the fragmentation processes in a mass spectrometer is
represented in the form of production rules. Each rule specifies a bond fragmentation in a
particular context in a molecule. These rules are used by DENDRAL during its test phase to
predict mass spectral data points, given a certein molecular structure. For example, one
simple rule !'s:

(R1) N-C-C=-C =e) N-C*C-¢

Rules are interpreted for each molecule in the following way: |

(1) Find all places in the molecule that match the subgraph expressed by the left-
hand side of the rule.

(2) For nach match, break the molecule at the bond marked with an asterisk in the
right-i:and side of the rule and save the fragment assoclaied with the atoms to the
left of the asterisk.

(3) Record the mass of all saved fragments.

Note that no migration of atoms between fragments Is predicted by (R1).

The language of processes (right-hand sides of rules) is relatively simple: One or more
bonds from the left-hand side may break and Zero, one, or more, atoms may migrate between
fragments. The interpretation of rule R1 in the above example is straightforward: If a
molecule contains a nitrogen atom and three carbon atoms bonded as N-C-C-C, then it will
fragment in the mass spectrometer between the middie two carbon atoms, and the N-C
fragment will be recorded In the spectrometer as a peak at the point in the spectrum
corresponding to the molecular weight of this fragment.
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Formation of Mass Spectra! Rules

The task of Meta-DENDRAL is to infer rules (like R1 above) from empirical data. Meta-
DENDRAL is provided with descriptions of the structures of a related set of molecules, and
with the set of peaks produced by the fragmentation of each molecule in the mass
spectrometer. From these data it infers a small and fairly general set of mass-spectral rules
to account for the frapymentations of the molecules and the coresronding spectral peaks.

Training Instances. In order to learn rules, the Meta-DENDNAL vrogram is presented
with many examples of actual 1/0 pairs from the mass spectrometer. tach 1/0 pair
represents a molecular graph r*-ucture, together with a single data point from the mass
spectrum for that structure. The rules to be learned constituic s representation of the
relevant fragmentations in the mass spectrometer. Typically, the program starts with a
training set of six to ten related molecules and their associated spectra, each containing
60-160 data pointz--peaks marking the masses of recorded fragments (and the relative
abundance of fragments at those masses).

in a large molecule, rule (R1) may apply more than once. For example, the spectrum of
CH3-CH2-CH2-NH-CH2-CH2-CH2-CH3 will contain data points at masses 72 and 86
corresponding to the two fragments derived from the application of this rule:

CHI3-CH2-CH2-NH-CH2 :

| and

CHZ2-NH-CH2-CH2-CH2-CH3 .

For a number or reasons, data points are not associated uniquely with a eingta -oc—cntation
and atom Migraticn pivcess (rue). For sxample, a single process may occur more than once
in a molecule (as above), or more then one process may produce identical fragments,
producing peaks at the same mass points in the spectra.

Spectral Data Points and Mass-spectral Processes:
Statistical and Semantically Constrained Associations

Purely statisticel learning programs (Jurs, 1974) find associations indicated by the
data without judging the meaningfuiness of these associations. This feature cen be
advantageous; at times an investigator's bias inhibits his seeing associations, or an
investigator may be looking for all possible associations. But it is a disadvantage when the
number of associations Is so large that the meaningful ones, unmarked, get lost in the crowd.

in contrast to statistical approaches, Meta-DENDRAL utilizes a semantic mode! of the
domain. This model has been included for two important reasons. First, it provides guidance
for the rule formation program in a space of rules that is much too large to search
exhaustively and in a domain of input data that is often ambiguous. Second, it provides a
check for the meaningfuiness of associations produced by the program, in a domain where
the trivial or meaningless associations far outnumber ths important ones.



C2c Meta-DENDRAL 33

Semantic mode! of the domain. The base-level, or zero-order, theory of mass

spectrometry states that every subset of bonds within a molecuie may break and that the
resulting fragments, plus or minus migrating atoms, will all be recorded. This zerc-crder model
of mass spectromatry Is not specific enough to effectively constrain the rule search. :
Therefore, some general guidelines have been imposed on It, the so-called Aalf-order theory.

The half-order theory asserts that bonds will break and atoms will migrate to produce
data points. This theory orders the break-and-migrate process according to the following
constraints:

Constiaints on fragmentations:
Double bonds and triple bonds do not break.
No aromatic bonds break.

Only fragments larger than 2 carbon atoms show up in the data.
Two bonds to the same carbon atom cannot break together.

No more than 3 bonds break in any one fragmentation.
No more than 2 cninplete fragmentations occur in one procass.

At most 2 rings fragment in a muitiple-step process.

Constraints on atom migration:

At most 2 hydrogen atoms can migrate after a fragmentation.
At most 1 H20 unit is lost after any fragmentation.
At most 1 CO unit is lost after any fragmentation.

One of the most helpful features of this model is its flexibility: Any of the parameters can be
easily changed by a chemist with other preconceptions; any of these assumptions can be
removed and, as discussed in the following section, additional statements be substituted or
added. This power to guide rule formation results in the program's discovering only rules
within a well-known framework; on the other hand, it aiso results autometically in rules

meaningful to the domain.

A chemist will often know more about the mass spectrometry of a class of mo/ecuies
than is embodied in the half-order theory. It is important then to be able to augment the

program's model by specifying class-specific knowledge to the program. This capability
provides a way of forming new rules in the context of additional intuitions or biases about
mass spectrometry. A chemist can thus see the "most interesting” rules (as defined by the
augmentations) bef-re the other rules. For exampie, one might be interested first in res
that mention at least one nitrogen atom before the numerous (and genarally less interesting)
rules that mantion only carbon and hydrogen substructures.

Learning strategy. The Meta-DENDRAL program is based on a gencrator of production
rules that uses predetermined syntax operating under the constraints of a samantic world
model. The operation of Meta-DENDRAL can be summarized as follows:

Input

a. the structure of sach of a set of related molecules (recall thet Meta-DENDRAIL
is not a structure elucidation program but infers ruies of mass spectrometry, which
associate molecular structures and their mass spectra),

b. the spectral data points (peaks) f=r each of the molecules, end
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¢. the half-order theory (or some semantic theory to constrain the generation of
rules).

Step 1. (INTSUM)

For each molecule, explain each peak In Its spectrum by finding one or more
fragmentation processes that would account for the peak. The number of plausible
fragmentation processes is limited by:

a. considering only the fragmentations which are allowed by the hailf-order theory
(e.g., no spectral peak can be explained by a fragmentation process that involves
breaking a double bond), and

b. considering only fragmentations which produce fragments with a molecular
weight corresponding 10 the weight represented by the peak. (Recall that each peak in
a mace enactrum ropresenis a number of molecular fragments of a given mass.) For
example, if the total weight of the molecule under inspection is M, and the spectrum
has a large peak associated with a molecular weight of M-47 mass units, then the only
fragmentation processes considered as explanations for this point would be those that
produce a fragment with a molecular weight of M-47. The tens, or hundreds, of Gis .
processes that fragmentations are consistent with the hal{-order theory, like cleaving
off a hydrogen atom, are not even considered.

After each data point in the spectrum for each molecule has been explained by a
plausible fragmentation process, the list $f processes is summarized, since the same
fragmentation processes will often be found to account for many spectral data points.
The final product of INTSUM is a (ist of fragmentation processes with the total evidence
for each such process.

Step 2. (RULEGEN)

The rules provided by INTSUM each account for a single fragmentation process in
the context of s single molecule. As such, they are not general. The problem with
general rules, on the other hand, is that a single one mey subsume several of INTSUM's
very specific fragmentations, but also fragmentations not represented in the set
produced by INTSUM. That is, & general rule may correctly explain many data points in
mass spectra, {positive evidences), but may also predict points that do not occur in any
of the spectra (negative evidence). The purpose of RULEGEN is to find a set of rules
which are more general than those of INTSUM, using positive evidence as a criterion of
success. Negative evidence introduced by these rules is handled by a later step,
calied RULEMOD,

RULEGEN works by “growing” = tree of fragmentation rules, starting with one that |
Is overly general and adding feriures to it so that it becomes more constrained. The
rule that RULEGEN starts with i; X * X, that is, the bond between any atoms will break,

and the mass of fragment X will be recorded in the mass spectrometer as a peak.
Obviously, every fragmentaticn ruie is a specialization of this one, and it is too genera!
to be intere<ting. But by specifying values for four features--the identity of X, the
number of non-hydrogen neighbours X has, the number of hydrogen neighbors X has,
and the number of doubly bonded neighbors X has--the general rule X * X cen be
"grown" into something more interesting.
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Step 3. (RULEMOD)

RULEGEN can generate rules that predict nonexistent data points in the mass-
spectral data. This negative evidence Is the cost of the coarse method used by
RULEGEN to find general rules. RULEMOD "tidies up" the rules produced by RULEGEN by
marging rules, eliminating redundancies, and making rules more specific or general. In
addition, if a rule has been used succesfully for a time, but an instance is found in
which it is inappropriate, RULEMOD can modity the rule accordingly.

Output.

Output is a set of mass spectral fragmentation rules which are specialized enough |
to be Interesting, but gereral enough to be efficient and nonredundant.

The Meta-DENDRAL program

The program itself is organized as a series of plan-generate-t:st steps, as found in many
Al systems (Feigenbaum, Buchanan, and Lederberg, 1871). After pre-scanning a set of
Several hundred molecular structure/spectral data-point pairs, the program searches the
Space of fragmentation rules for plausible explanations end then modifies its rules on the
tess of detailed tesiing. When rules generated from a training set are added to the mode!
and another block of data is examined, the rule set Is extended and modified further to
axplain the new data. The program iteratively modifies rules formed from the initial training
set (adding to them); but it is currently unable to "undo” rules.

Integrating Subsequent Data. A requirement for any practical learnliig program is the
ability to integrate newly acquired data in an evolving knowledge base. New data may
dictate that additional rules be added to the knowledge base or that existing rules be

~ modified or eliminated. New rules may be added to the rule base by running RULEGEN on the
new data and then running RULEMOD on the combined set of new and praviously generated
rules.

When an existing rule is modified, it is important to maintain the integrity of the modified
rule over past training instances. Consider the following example: A new training Instance is
acquired and, after credit assignment questions are resolved, it is decided that rule R was
Incorrectly “triggered” by some situation S. The left-hand side of rule R must be modified se
that it will no longer match S. In general, there would be many changes possible to F that
would kill the match to S, but some are better then others. The correct changes to R are
those that do not alter past sorrect applications of R. Of course there is no way of knowing
which of the possible changes to R will turn out to be correct for future data; and once a
change is selected, the possibility still exists for backtracking at some future point.

A method has been developed for representing all versions of the left-hand side of a
rule that are consistent with the observed data for all iterations thus far (Mitchell, 1977).
This representation Is referred to as the version space of the rule. By examining the version
space of R, one can answer the question "Which of the recommended changes to R will
preserve its performance on past instances?” The answer is simply "Any changes that yle'd
a version of the rule contained in the version space.” Using version spaces avoids the

| problem of selecting a single unretractable modification to R and therefore eliminates the
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need for backtracking. For example, all the elements of the version space that match some
negative instance S are eliminated. Similarly, when new data are encountered in which a
situation S*' is found to correctly trigger R, only those elements of the version space that
match S' are retained.

Resuits

One measure of the proficiency of Meta-CFNDRAL is the ability of a DENDRAL program
using the learned rules to predict correct spectra of new molecules. One of the DENDRAL
performance programs ranks a list of plausible hypotheses (candidate molecules) according
to the similarity of their predictions (predicted spectra) to observed data. The rank of the
correct hypothesis (l.e., the molecule actually associated with the observed spectrum)
provides a quantitative measure of the “discriminatory power" of the rule set.

The Meta-OENDRAL program has successfully rediscovered known, published rules of
mass spectrometry for two classes of molecules, including the aliphatic amines used as
examples above. More importantly, it has discovered new rules for three closely related
families of structures for which rules had not previously been reported. These are the

mono-, di-, and tri-keto androstanes which share the common structurai skeleton shown in
Figure 1.

R”

Ry R™

HO

Figure 1. Structural Skeleton for Three Classes of Androstases.

Mata-DENDRAL's rules for these clarses have beasn published in the chemistry iterature

(Buchanan et al., 1976). Evaluations of all five sets of rules are discussed in that publication.
This work demonstrates the utility of Meta-DENDRAL for rule formation in mess spectrometry
for clasxes of structures.

The recent application of Meta-DENDRAL has been to a second spectroscopic
technique: 13C-nuclea; magnetic resonance spectroscopy (Mitchell, 1978). This new version
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provides the opportunity to direct the induction machinery of Meta-DENDRAL under a model of
13C-NMR spectroscopy. It generates rules that associate the resonance frequency of a
carbon atom in a magnetic field with the local structural environment of the atom. Note that
for 13C-NMR spec‘roscopy there Is no requirement for a haif-order theory since there is no
equivalent to the fragmentation processes which occur In mass spectroscopy. Each date
point is essigned to a unique atom in the molecule prior to the Meta-DENDRAL run. Thus there
is n> analog of the INTSUM phase which is required by the mass speciroscopy version.
Instead, an assigned spectrum (atoms to data points) Is given directly to RULEGEN.

13C-NMR rules have been generated and used in a candidate molecule-ranking program
similar to the one described above. 13C-NMR rules formulated by the program for two

classes of structures have been successfully used to identify the spectra of additional
molecules (of the same classes, but outside the set of training data used in generating the
rules). The rule-based molecule-ranking program performs at the level of a well-educated
chem.st in both the mass spectral and 13C-NMR domains.

References

See Lindsay, Buchanan, Feigenbaum, and Lederberg (forthcoming) for a thorcugh and
current treatment of the DENDRAL programs. Buchanan and Feigenbeum (1878) is a recent,
short description of the programs. The thesis by Mitchell (1978) is also recommended.
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C3. CRYSALIS

The CRYSALIS system, which is sti} in the development stages, is an attempt to apply
Artificial intelligence methodology to the task domain of protein crystallography. Although the
computer has been an essential tool in x-ray crystatiograpivy res arch for many years, nearly
all its applications have been in the areas of data ccllection, data reduction, Fourier analysis,
graphics, and other essantially numerical tasks (Feigenbaum, Engelmore, and Johnson, 1977).
Those aspects.of molecular structure inference that require symbolic reasoning or that use a
significant amount of judgmental knowledge have traditionally been performed manually. A
prime example is the task of electron density map interpretation.

In the course of deriving a protein structure, the crystaliographer generates an
clectron density map, a three-dimensional description of the electron density distribution of a
molecules. Due to the resolution imposed by the experimental conditions, the electron density
map Is an indistinct image of the structure that does not reveal the positions of individual
atoms. The crystallographer must interpret the map in light of auxiiary data and general
principles of protein chemistry in order to derive a complete description uf the molecular
structure. The goal of the CRYSALIS system is to integrate these diverse sources ot
knowledge and data to iry and match the crystallographer's level of performance in electron
density map interpretation. Automation of this task would shorten the time taken for protein
structure determination by several weeks, to months, and would fill in a major gap in the
construction of a fully automated system for protein crystallography.

Description of the p-oblem

When crystallographers use the term "electron density map,” they usually have 'n mind
some pictorial representation of the electron density defined over a certain region of space.
The most commonly used representation is a three-dimensional contour map, const ucted by
stacking lavers of conventional two-dimensional contour maps drawn on transparent sheets.
By carefully studying the map, the experienced protein crystallographer can find features
that allow him to infer approximate atomic locatinns, moiecular boundaries, groups of atoins,
the backbone of the polymer, etc. After several weeks {or months), he has built a model of
the molecular structure that conforms to the electron density map and is also consistent with
his knowladge of protein chemistry, stereochemical constraints, and other available cien:ical
and physical data (e.g., the amino acid sequence). Figure 1 shows a portion of a protein
structure and the associated electron density map from which it was inferred.
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The automation of this task would require a computational system that could generate
its own structural hypotheses, as well as display and verify them. This capability requires:
(a) a representation of the elactron density function suitable to machine Interpretation, (b) a
substantial chemical and stereochemical knowledge base, (c) 2 wide assortment of model-
building algorithins and heuristics, (d) a collection of rules and associeted proceduies for
using this knowledge to make inferences from the experiments data, and (e) a problem-
solving strategy for applying the knowledge sources (KSs) effectively, so that the
appropriate procedures are executed at the times that they are most productive.

Protein crystaliographers who build r.ocels move continually across a large field of
basic facts, special features of the data and Implications of the partial modei(s) already
built, looking for any and all opportunities to add another piece to their structure. There are
several desidereta to working in this "cpportunistic® mede of hypothesis formation: (a) The
inference-zensrating rules and the strategies for their deployment should be separate,
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(b) the rules should be separate from he mechanics of the program in which they are
embedded, and (c) the representation of the hypothesis spac? should be compatible with the
kinds of hypothesis-generating rules available. The modularity of such a system would allow
users to add or change rules for manipulating the database, as well as to investigate
different solution strategies without having to make ma jor modifications to the system.

The CRYSALIS Architecture: The Blackboard

A problem-solving paradigm that meets the above specifications, to a large degree, is
that of HEARSAY-Il (see article Speech.D2)--specifically with respect to the issues of
knowledge integration and focus of attention. In Hearsay-ll, an “iterative guess-building"
process takes place: A number of different knowledge sources (facts, algorithms, heuristics)
cooperate when working on various descriptions of the hypothesis. In order to use the
knowledge sources efficiently, a global database--the "blackboard"--is constructed that
contains the currently active hypothesis elements at all levels of current description. The
decision to activate a particular knowledge source is not preestablished but depends on the
current state of the solution anc what available knowledge source is most likely to make
further progress. The control is, to a large extent, determined by what has just been
learned: A small change in the state of the "blackboard" may provide the preconditions to
instantiate further knowledge sources (an illustration of this process in the context of
electron density map Interpretation Is given below).

. Figure 2 shows the types of data and hypotheses that are used in CRYSALIS. As in
Hearsay-|l, the hypotheses are represented In a hierarchical data structure. In our case the
different information lavels can be partitioned into three, distinctly different “paneis,” hut
the concept of a globally accessible space of hypotheses is essentially the same for both
Systems. Figure 2 also 'llustrates how knowledge sources (only a small subset Is shown)
play the same role as In Hearsay-Il: adding, changing, or testing hypothesis alements on the
blackboard. Further explanation of thes diagrams is given in Engeimore and Nii, 1877. The
processes of generating or modifying hypotheses and of Invoking knowledge sources is
nearly identical to those described for the AGE system (Nil and Alello, 1978).

Representation of Knowledge in the System

As mentioned above, there are many diverse sources of information use: in protein
structure inference. The problem of representing ait the knowledge in a form that allows its
cooperative and efficient use in the search for plausible hypotheses is of central concern to
the developers of CRYSALIS. The system currently under development draws upon many
concepts that have emergad In the design of other large knowledge-based systems--e.g.,
the use of production rules and blackboards. We describe hers how these concepts have
been adapted to our particular task.
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Knowledge consists of facts, algorithms, and heuristics (rules of good gucssing). Facts
required for protein structura inference are general physical. chemical, stereochemical, and
crystallographic constraints. {ypical factual knowledge stored in the system includes physical
properties of the elements commonly found in proteins, the molecular structure and chemicai
properties of the twenty amino acids, the bond lengths, and the symmetry properties of
various crystal structures. These facts are encoded as tables or as property lists attached
to specific structural entities.

Algorithms and heuristics comprise both the formal and informal knowledge that
generates or verifies hypothesis elements. The representation of this type of knowledge in
CRYSALIS follows two general principles:

1) Decompose identifiable areas of knowledge into elementary
units, where each unit increments the hypothesis when specitied
preccnditions are met.

2) Represent the elementary units as situation-action rules.

To lllustrate:

IF: the name of the current-residue is GLU, and
the shape of the subgraph is forked, and
the length of the subgraph is between 40 and 75, and
the number of assoclated peaks of the subgraph is :

greater than 1

THEN: conclude that the subgraph is matched, and
generate a new superatom on the blackboard,
with the following properties:

Type is 'side-chain
Belongs to current-residue
Data-link to subgraph with certainty factor 500

Note that several actions may be performed for a given situation. Not shown here, but
present in the LISP implementation of these rules, is a position in the rule for variable
bindings, to avoid repetitious calculation of parameters appearing in several situation-action

: clauses. Also nots that at least ons of the actions of sach rule is to place a token on an
event list. In the actual Implementation, ths syntax of the "action" clause is represented as a
single function. An example follows:

syntax: (Cinference type) (siament being changed’ {att-vaiue pairs?)

example: (SUBGRAPH.MATCHED (GENSUPATOM)((TYPE *SIDECHAINNBELONGSTO
CURRENT.RESIDUE }OATALINK (SUBGRAPH . 500))))

In this example, an event, SUBGRAPH.MATCHED, will be generated and queued on the svent
list. The event-list is used by the interpreter (discussed in the next section) to determine
what to do next, that is, which set of knowledge sources to invoke after the current event
has been processed.
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Event-driven control

The CRYSALIS system uses an event-driven control structure. 'a this scheme, the current
state of the hypothesis space determines what to do next. Th~ monitor continualiy refers to
a list of current events--the event-list--that Is used to tr'yger those knowledge sources
most likely to make further headway. As a knowledge source makes a change in the current
hypothesis, it also places an item on the event-list to signify the type of change made.
Tnus, as events are drawn from the evant-list for processing, new events are added, so that
under normal conditions the monitor aiways has a means for choosing its next move.

The normal iterative cycle of problem solving uses the event-list to trigger knowledge
sources, which create or change hypothesis clements and place new events on the event-
lists. The system's behavior is opportunistic: It is guided primarily by what has been most
recently discovered, rather than by the requirement to satisfy subgoals. An event-d.iven
control structure was chosen partly to be efficient In selecting appropriate knowiedge
sources, and partly to conform with the structure-modaling process normally employed by
protein crystallographers.

Rules

The formal and informal procedures that comprise our knowledge sources are
expressed as rules, as discussed above. These rules are collected into sets, each set
being judged appropriate to use when particular types of events occur. The events
generally reflect the level at which the inference is being made, which In turn reflects the
model's level of detail. The correspondence between event classes and rule sets is established
by another set of rules, the rask rules. The task rules are used to decide which KS or
sequence of KSs to cail in order to perform one of the typical tasks in building the structure-
-e.g., tracing the protein backbone between two anchor points. The decision is based on the
state of the blackboard and the items on the event list. The task rules thus form a second
layer of rules, which directs the system's choice of knowledge sources for a given event,
reflecting the system's knowledge of what it knows.

Once a task is either completed or fails, the system looks to a highe! level of control to
determine what to do next. At this higher level--the strategy level--the structure-building
process can either try to solve the current subproblem by another method or shift attention
to another region of the structure. Strategy level decisions are aiso expressed as rules and
make use of the current state of the blackboard and event list. For exampie, one strategy
rule Is:

IF: the initialization task is complete, and
the locations of two or more atoms are known

(also called 'tochoids’), and
these toeholds are separated by less than 6 residues

. in the amino acid sequence, and
none of the intervening residues are identified from the data,

THEN: select the two-point chain-tracing task and focus on the
subsequence bounded by the toehoids.
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The part of the monitor that interprets and obeys the event rules may be likened to a
middle-level! project manager who knaws which specialists to call in as new, partial solutions
to a particular problem are discovered. Continuing the analogy, the middie-level manager
occasionally gets stuck and needs help from higher leve! managsment. As mentioned earlier,
some high-level decision (such as merging two or more gvanis to produce a new event or
shifting attention to another part of the biackboard), is required. This level of decision making
is embodied In a set of strategy rules which are used to direct the top-level flow of control.
We tnus have a completely rule-based controi structure that employs three distinct levels of
rules (ofr knowledge): the specialists, commonly called the knowledge sources; the task
rules, representing knowledge about the capabilities ot the specialists; and the strategy
rules, which know when to use all avaiable knowledge to solve the prcolem. Aithough this
pyramidal structure of rules and meta-rules could continue indefinitely, the flexibility of
knowladge deployment offered by our three-tiered system appears sufficient for this
problem-solving system. Similar id3as in a simpler context have been explored by Davis,
1976 for the MYCIN system.

System Performance -- An Example

To give some Indication of the system's current level of performance, we present an
annotated typescript in which a typical hypothesis formation task is completed. The example
is the subprobiem of extending the model from an “island of certainty,” or anchor point, by
using the crytallographic data to determine where to extend the model in space and by using
the amino acid sequence to generate expectations of features that ought to be present in
that region. The knowledge sources invoked in this example use an abstraction of the
density map called a subgraph. A subgraph is a collection of segments obtained from a
skeletouzed density map, which hopefully matches an identifiable substructure in the
protein--e.g., a side chain. The amino acid sequence assumed here Is METhionine, LYSine,
t YSine, TYRosine, etc. (the example uses data from the protein Rubredoxin). The example
starts after passing control to a knowledge source called ANCHOR.TOEHOLD. The toehold ot
interest (1 this case is the sulphur atom in the methionine sidechain. This toehoid is just a
vont In space and must be connected iS the skeleton.

INFERENCE: EVENT-1 BY RULE 1 IN RULESET ANCHOR. TOEHOLD

EVENT NAME: TOEHOLD.ANCHORED
CURRENT HYPOTHESIS ELEMENT: SA2

NEW PROPERTIES: ((TYPE SIDcCHAIN) (BELONGSTO (MET . 1))
(SEGS (((1 SEG240) . 100) ((1 SEG238) . 100))) (MEMBERS (A3)))

The ANCHOR.TOEHOLD knowledge source has found subgraphs of the skeleton, but its
limited knowledge cannot assign much certainty to the inference. The “real” matching of
skeleton parts with expected residue is accomplished by MATCH.SDCHN. This knowledge
source uses the shape of the subgraph, its length, the number of peaks associated with the
candidate subgraph, and their heights. if a certainty factor (CF) of 600 or more is assigned,

| the sidechain is considered located (CF's have a range of -1000 to 1000; the CF combining
tunction being the same as that used by MYCIN; see article Madicine.C2).

INFERENCE: EVENT-2 BY RULE 3 IN RULESET MATCH.SDCHN
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EVENT NAME: TOEHOLD

CURRENT HYPOTHESIS ELEMENT: SA3
NEW PROPERTIES: (SEGS ({(1 CEG238). 823) ((1 SEG240) . 666))))

If a sidechain is found, the trace tries to find the alpha carbon location by finding a peak of a
certain type near the root of the sidechain. The KS us~<d to propose an alpha carbon position
is called POSSIBLE.CALPHA. The system assumes that the location of this peak is a more
accurate guide than the skeleton for locating this class of atom.

INFERENCE: EVENT-3 BY RULE 6 IN RULESET POSSIBLE.CALPHA

| EVENT NAME: C.ALPHA

CURRENT HYPOTHESIS ELEMENT: A4
NEW PROPERTIES: ((TYPE C) (NAME CA) (BELONGSTO (MET . 1))
(D.PEAKS ((PKD78 . 600))))

Once the toeicid has been anchored, this trace becomes essentially a generate-and-
test search, heavily consirained by the sequence. The basic control cycle for the trace Is:
Propose a sidechain, match it; propose a paptide, match that; and loop until a match fails.
Sometimes the carbonyl! group present in each peptide will appear as a small sidechain. if
this happens, the proposed peptide wil extend only from the last sidechain up to this
pseudo-sidechain, and the peptide will fail to match. This failure prompts the system to try
matching the “sidechain” as a carbonyl. Success of this match would mean that only half of
the peptide has been found; the system can then propose a larger peptide, which contains
the old one, and proceed as before. |

INFERENCE: EVENT-4 BY RULE 4 IN RULESET MATCH.PEPTIDE

EVENT NAME: PEPTIDE
CURRENT HYPOTHESIS ELEMENT: SA4
NEW PROPERTIES: ((TYPE PEPTIDE) (BELONGSTO (MET . 1))
(SEGS (((SEGS SEGS) . 84))) (PEAKS (PKO78 PKO78)))

INFERENCE: EVENT-5 BY RULE 5 IN RULESET MATCH.CARBONYL.SC

EVENT NAME: CARBONYL.FOUND

CURRENT HYPOTHESIS ELEMENT: AS
NEW PROPERTIES: ((TYPE CO) (NAME CARBONYL) (BELONGSTO (MET . 1),
(SEGS (((1 SEGS) . 681))) (PEAKS (PK030)))

INFERENCE: EVENT-6 BY RULE 4 (IN RULESET MATCH.PEPTIDE

EVENT NAME: PEPTIDE

CURRENT HYPOTHESIS ELEMENT: SA4
NEW PROPERTIES: ((SEGS (((SEGO SEGS SEG10) . 420)))
(PEAKS (PKO76 PKO78 PK030)))

INFERENCE: EVENT-7 BY RULE 7 IN RULESET MATCH.SOCHN



406 Applications-oriented Al Research: Science end Mathsmatics

EVENT NAME: SIDECH

CURRENT HYPOTHE .N7:. SAG
NEW PROPERTIES: ODECHAIN) (BELONGSTO (LYS . 2))
(SEGS (((1 SEGz. we)

INFERENCE: EVENT-8 By RULE 6 IN RULESET POSSIBLE.CALPHA

EVENT NAME: C.ALPHA

CURRENT HYPOTHESIS ELEMENT: AG
NEW PROPERTIES: ((TYPE C) (NAME CA) (BELONGSTO (LYS . 2))

(D.PEAKS ((PKD78 . 500))))

INFERENCE: EVENT-8 3Y FULE 4 IN RULESET MATCH.PEPTIDE

EVENT NAME: PEPTIDE

CURRENT HYPOTHESIS ELEMENT: SAB |
NEW PROPERTIES: ({(TYPE PEPTIDE) (BELONGSTO (LYS . 2))
(SEGS (((SEG232 SEG16) . 600))) (PEAKS (PKO17 PK126)))

(TAree more events, similar to those preceding, Aave been omitted.)

INFERENCE: EVENT-13 BY RULE 6 IN RULESET MATCH.SOCHN

EVENT NAME: SIDECHAIN

CURRENT HYPOTHESIS ELEMEILT: SAB
NEW PROPERTIES: ((TYPF SIDECHAIN) (BELONGSTO (TYR . 4))
(SEGS (((8 SEG212 SEGA0 SEGI6 SEGI6 SEG228) . 602))))

The matching cycle terminates in one of two ways. if the skeleton becomes so
overconnected that the access function cannot propose the next subgraph (sidechain or
peptide), the trace fails; or if the certainty of a match is too low and there are no rules to
save the situation, the trace falis. Upon termination, one tinal knowledge source is called to
link together hypothesis slements belonging to the same residue, creating an organizing
"backbone.*

INFERENCE: EVENT-14 BY RULE 3 IN RULESET TRACE.CLEANUP

EVENT NAME: LINK-CA-TO-PEPT!DE
CURRENT HYPOTHESIS ELEMC!T: SA4
NEW PROPERTIES: ((MEMBERS (A4)))

(Two more events, like the preceding one are omitted Aere.)

INFERENCE: EVENT-17 BYRULE 7 IN RULSSET TRACE.CLEANUP

EVENT NAME: BACYSONE

CURRENT HYPOTHESIS ELEMENT: ST?
NEW PROPERTIES: ((TYPE BACKBONE) (CF 6511) (DIRECTION 1)
(RANGE (1 . 4)) (MEMBERS (SA1 SA2 SA3 SAL SAS SAG SA7 NiL))
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Summary

| At the presant time, CRYSALIS is capable of performing only a small portion of the total
task of e'ectron density map interpretation. The deveippment and implementation of all the
know!c2ge sources required for the complete task is a long-term effort. CRYSALIS currently
contains a relatively small knowledge base that permits the interpretation of portions ot high-
quality, high-resolution (2.0 Angetromns or better) electron density maps. The system is
expected to evolve toward an extensive knowledge-based problem soiver capable of
complete interpretation nt medium-quality, medium-resolution (2 to 2.6 Ang.) slactron density
maps. Although CRYSALIS is not yet worthy of serious attention by the protein-
crystallographic community, its defects lie primarily in its relatively meager knowledge base
and not in its deaign. As new knowledge sources are added to the system, its level of
performance is expected to rise to the point where its use will be 8 significant ald in the
determination of new protein structures.

References

Sea Engelmore and Nii (1977), Engeimore end Terry (1078), and Feigenbaum,
Engeimore, and Johnson (1077).



473 Applications-oriented Al Rescarch: Sciences and Mathematics

Ca. Organic Synthesis

The synthesis of organic compounds is central! to the creation of new chemical products
and more efficient processes for manufacturing old products. However, the synthesis
process for a particular product Is typicaily very expensive to run and very hard to design.
Therefore, ‘here 's great interest among both academic and Industrial chemists in new tools
to aid in finding new synthetic routes.

A synthesis problem bagins with the structural description of a compound that someone
wants synthesized, often because the compound has useful properties (e.g., a drug or a
vitamin). Synthesis can also be a definitive confirmation of a postuiatea structure for an
unknown compound in an analysis problem, since the synthesized compound and the unknown
compound will, If identical, produce identical test results.

Chemists use the computer and Al techniques to systematically explore the synthesis
tree and to help organize the immense body of available knowledge about chemical reactions.
This approach of exhaustively expioring the interesting branches of the synthesis tree was
celled the logic-centered approach by Corey and Wipke, who first explored computer-aided
organic synthesis. "Interesting" branches are those most likely to produce the desired
result. "interesting" is an axtremely difficult concept tc define and to cast into an algorithm,
therefore, for now, the search must be guided interactively by the chemist. Some of the
relevant considerations are: the efficiency of a reaction, the cost of materials, and the
difficulty of meeting the experimental conditions that support a reaction.

The chemist represents the “target” structure graphically and relates it to simpler
chemicals via known chemical reactions. He relates those to still simpler ones, until he
reaches a set of commands, comparable tv starting materials reedily available from chemical
supply houses or which can be easily synthesized in a few steps in the fabcratory. One plan
for synthesizing the compound, called a “synthetic route,” may involve dozens of separate
reactions. If the molecule is at all complicated there are an immense nunber of distinct
synthetic routes. For example, a simple steroid composed of about 20 aioms has over
2.4 x 10'® possible direct routes .

Synthetic routes can be visualized using an AND/OR tree (see section Seerch.A2). The
tree descends from the goal node, the target molecule, to the terminal nodes, equivalent to
the starting materials. The branches connecting the nodes are chemical reactions. Since a
synthesis plan involves combining compounds in reactions, the AND-links of the trea are
present in any one synthesis route; alternative ways of making a compound anywhere within
the plan are represented by OR-nodes.

he Three Major Programs

There are three major programs in computer-aided organic synthesis. The earliest is
LHASA (Logic and Heuristics Applied to Synthetic Analysis), which was written by Corey and
Wipke at Harvard and Is maintained at Harverd by Corey and his research group. SECS
(Simulation and Evaluation of Chemical Synthesis) is an outgrowth of LHASA, written by Wipke
and maintained by Wipke and his research group at the University of California at Santa Cruz.

| it extended the LHASA paradigm by the inclusion of stereochemical and conformational
information into &l! aspects of the computer program. The third major program ia SYNCHEM
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(Synthetic "hemistry), wriiten and maintained by H. L. Gelernter and his research group at
the S$ ate University of New York at Stony Brook. The main features of these three programs
are summarized In Table 1.

Table 1

Chemical Synth-sis Programs

Principel
Program Designer Main Features

LHASA €. J. Corey Large procedural knowledge bass of "transforms.®
Interactive, high-performance.

SECS W. T. Wipke Separate knowledge base of many "transforms®
with special interactive languages for defining
new ones (ALCHEM). Interactive graphics, snd
high-performance.

SYNCHEM HN. Gelernter Motivated by AI search problems. Evaluation
during search done by the program, not by a chemist.

Since SECS was designed to extend the methods in LHASA, much of the discuasion of
SECS Is true of LHASA. However, SECS has additional features that are of interest to
computer scientists. Of the thres, only SECS is demonstrably machine independent.

Two Differs: t Approaches

A major distinction between SECS (and LHASA) and SYNCHEM is that the former is
oriented to high performance, while SYNCHEM is oriented more to Al issues. AS a
consequence of this fact and the fact that chemists’ intuitions about “interesting” pathways
are hard to define, SECS relies on a chemist's interacting with the program. SYNCHEM, on
the other hand, searches the space without interactive guidance from a chemist. (This is not
to say that SECS and LHASA lack interest or that SYNCHEM Is incapable of high
performance.)

in operational terms, the main difference is whether the evaluation function for the
search procedure ia explicitly given to the program and used without guidance from the
chemist {SYNCHEM) or whether the evaluation function is not explicitly \iven to the program
(SECS and LHASA). These are called the noninteractive and interactive approaches below.
SECS car be reconfigured to run nowlatsractively, although a chemist’'s guidance tends to
give bettur results.
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The Chemical Knowledge Base

The primary item of knowledge in chemical synthesis is the chemical reaction--a rula
describing a situation in which a change can occur (to a molecular structure) plus a
description of that changa. For example, the reaction shown In Figure 1 describes a change
to a molecule containing the substructure O=C-C-Cs0 in the presence of the reagent oxalyl
chioride.

0=C-C-C=0 + Oxaly! Chloride =----> 0=C-C=C-CL

Figure 1. Graphical representation of a chemical reaction. .

To design a synthesis route from starting materials to target molecule, knowledge of
reactions can be used in either of two ways:

1. Forward direction: Apply known reactions to starting materials, then to the
products of those reactions, the products of products, etc., until the target is
reached. The combinatorics of this spproach make it impossible in practice
because there are thousands of possibile starting compounds and only one target.

2. Reverse direction: Starting with the target molecule, determine which
reactions might produce it. Then look for ways to make the precursors, and the
precursors of precursors, eic., until starting materials are reached. Storing the
reactions in the reverse direction makes it easier to search the trec of possible

, pathways.

All three programs have a large knowledge base of reverse chemical reactions called
transforms--production rules of the condition-action form, with the left-hand sida being a
substructure pattern to be matched in the target structure (or intermediate structure) and
the right-hand side being a description of precursors that will produce the goal structure
under specified reaction conditions. Each of the three projects have dealt with the problems
of constructing a knowledge base in very different ways.

1. The LHASA knowledge base is a set of procedures. Although it contains very
| sophisticated chamistry knowledge, it is difficult to modify.

2. The SECS knowledge base contains about 400 separate transforms. New
transforms can be defined by users and entered into the kiowiedge base
without changes to the program. Because of its clarity, it is used for
ustration and is discussad in detail below.

3. The SYNCHEM knowledge base is a library of reactions that can be updated by
chemists without reprogramming. Each reaction is automatically compiled into
a reverse reaction. in addition, the knowledge base contains a large Hbrary of
starting compounds t:irt are available commercially.

Each of the SECS transforms is stored on external storage indepsndent of the SECS
program; this feature sneoies the knowledge buse to be tailored to a specific problem
domain. Further, the number and complexity of transtorms is not limited by the size of core
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memory. A simple, flexible language, :alled ALCHEM, Is provided in which chemists can entar
new transforms into the knowledge lase.

ALCHEM embodies a model of what information is needed in order to adequately
describe a reaction. According to this model, a transiorm consists of the following six
sections:

(1) Transform name.

| (2) Substructure key or pattern to be matched.

{3) Character--used to help judge the relevance to strategic planning. |

(4) Scope and limitations.

(5) Reaction conditions--which must not be vivliated by the remainder of
the molecule containing the substructure key.

(6) Manipulation statements--describing the graph transformations to be
performed. ]

This wili be clarified below with an example.

In the reaction shown in Figura 1, one of the Oxygens double-bonded to Carbon is |
replaced by a single bond to a Chlorine. To go from a graphical representation of a synthetic
reaction tc the graphical representation of a SECS transform, we reverse the left- and
right-hand sides and specify additional important conditions. Using the ALCHEM language, the
Chemist could ints actively enter the following representation of this transform.

Comment: Chioroenones, OsC-C=C-CL goes to O=C-C=C-CL |
Reagent: Oxalyl Chloride
Ref: Heathcock and Clark (1970).

Transform name: CHLOR-ENONE

Substructure key: O=C-C=sC-CL €122-3=4-5)
Priority: 100

Character: CHARACTER ALTERS GROUP

Scope IF ACID IS OFF PATH THEN KILL
and Limitations: IF ESTER IS OFF PATH THEN KILL

IF HYDROGEN IS ALPHA TO ATOM 4 THEN
BEGIN

IF HYDROGEN IS ALPHA TO ATOM2
THEN SUBTRACT 76 FROM PRIORITY
DONE

Manipulation: BREAK BOND 3
Stetements: DELETE ATOM 6

ADD O OF ORDER2 to ATCM4
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In the actual reaction, of course, the chlorinated compound
come: from the precursor.

Referring to the manipulation statements, "BREAK BOND 3" refers to the third bond from the
left in the substructure key; the double bond between the two carbong is reduced to a single
bond. Similarly, "DELETE ATOM 5" refers to the Chlorine atom CL, the fifth atom from the left.
When the program is actually run, a complier called SYNCOM translates the ALCHEM
statements into machine readable form before the program is run.

A Brief Description of SECS

. SECS and LHASA have been designed to divide the work between the chemist and the
computer in the most optimal way. In a recent paper Wipke et al. (1977), explain their
philosophy.

Our perfcrmance goal for the program was that the program should be
able to help a chemist find many more good and innovative syntheses
than the chemist could working alone. Because of the compiexity of
the problem domain, we felt the chemist and computer working
together with each assigned tasks for which they are best suited, and
with efficient interaction between the two, would be more effective
than either working alone. Qur goal was not to replace the chemist,
but to augment the chemist's problem solving capabilities.

Graphics. The chemist communicates with the SECS program using a graphics terminal
with a CRT, a mini-computer, a keyboard, and a light pen. Using the pen, the chemist draws
on the screen the graphical structure of the “target” molecule to be synthesized. Much
effort has gone into human engineering. The SECS graphics routines are dasigned to be as
near as possible to the chemists’ normal modes of thought, which is the structure diagram or
the molecular model. There are similar facHities in LHASA. By convention, hydroge:: atoms are
suppressed, as discussed above. Another convention Is that only noncarbon atoms (calied
"heteroatoms"”) are labeled. This convention is useful since the majority of nonhydrogen
atoms in organic molecules are carbon.

Application of a Transform. Applying a transform is not simply a matter of matching
the substructure kev to a molecule and, if the subgraph fits, executing the graph
manipulation statements. The scope and limitations detarmine much of the context In which

| the transform will be applicable. Also, it is necessary to check three-dimensional information
and electronic environment information (that is, the tendency of the atoms in the molecule to
be positively or negatively charged) in order to make an accurate assessmant about whether
a transform Is applicable. A common situation in synthetic chemistry is that we have a

| functional group to modify and a reagent to change it, but the functional group is hindered
(spatially) by another functional group or another portion of the molecule. in such cases, the
reagent molecules cannot react with the group and change it; atthough they might in other
spatial contexts. |

Without the three-dimeisional information given by the so-called "modei-building™
routines, the program has no way of knowing that the transform cannot apply. After the
spatial modeling has been done, the program can perceive that sven thouch the required
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functional group is present, the transform cannot be applied directly beca:se it is
inaccessible to the reagent molecules. If the transform Is very high priority, a meas -and
analysis can be done to find ways of altering the molecule, so that the given functional group
is accessible.

A Brief Description of SYNCHEM

The aims of Gelernter's group on SYNCHEM ere stated very clearly in Gelernter et ai,
1077:

Extraordinarily rapid progress during the early stages ¢f an attack on
a new problem area is a rather common occurrence In Al research; (it
merely signifies that the test cases with which the system has been
challenged are below the level of difficulty where combinatorial
explosion of the number of pathways in the problem space sets in....It
is the goal of Al research to move that threshold higher and higher on
the scale of problem complexity through the introduction of heuristics-
-heuristics to reduce the rate of growth of the solution tree,
heuristics to guide the development of the tree so that it will be rich
in pathways leading to satisfactory problem solutions, and heuristics
to direct the search to the "best" of these pathways.

SYNCHEM is noninteractive. The molecule to be synthesized is input, and the program uses
heuristic search to look for the best Lyathetic route. The program dec.des which node of the
tree to develop further, by estimating the "cost® of reaching the goal from that node plus the
estimated “cost” of reaching that node from starting materials. One of the interesting Al
issues Is that the program's definition of "cost" depends on the context of the prcbiem as
well as on static features such as efficiency of reactions, the monetary cost of materials,

etc. For example, costs are measured differently in an exploratory research context than in
an industrial production context.

The long-range hope of the SYNCHEM group Is that the study of Al in this domain will
lead to new insights in Al and also eventually to a noninteractive system that will be of use
to chemists.

1

SYNCHEM Solution Evaluation. The following quotation (Gelernter et al, 1977)
Hiustrates the difference between organic synthesis and a more familiar domain such as
theorsm proving.

Unlike much of the sariier work in problem-solving...where any valid
sequence of transformations from premises to goal provided an
acceptable solution, we were not to be satisfied by an indicated

| synthesis route of very low yield, or one requiring difficult or
inefficient separations of goal molecules from by-products along the
way, at least not before the machine had tried and failed to find &
more efficient procedures of higher yield....It is the question of relative
merit of proposed solutions under the constraints of the problem that
represents a substantial departure from most of the work reported in
the literature of artificial intelligence.
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The complexities of the domain are highlighted by the fate of one of the most
significant results produced by the program. SYNCHEM proposed a synthetic route for a
naturally occurring antibiotic that was at that time under development by A. R. Rinehart's
group at the University of (llinols. The route was considered interesting enough to merit a
laboratory investigation. However, the laboratory attempt failed. One of the crucial steps in
the synthesis route could not be accomplished in the laboratory and the proposed route had
to be reluctantly abandoned. No successful routes to the molecule have yet been found. All
synthetic routes, whether proposed by a computer program like SYNCHEM or by a person, are
provisional until they can be verified by experiment.

SYNCHEM Search Strategy

SYNCHEM'S search strategy algorithm first expands the goal node to find ail its
precursors. Next it computes the cost of reaching the target molecule from the precursors,

taking into account the efficiency and difficulty of the reactions. it also estimates the
difficulty of synthesizing the precursor nodes from the available starting materials. Subgoal
selection criteria are a function of both the accumulated heuristic estimates of reaction merit

and yield along the path from subgoal to goal, and of a prediction of the probable reaction
merit and yield along the best path from starting materials to the subgoal. SYNCHEM updates
the merit ratings with information associated with each intermediate structure. Merit, as
mentioned above, is based on most recent esumates of compound complexity (i.e., difficulty
in synthesizing it) and reaction path merit (yield, cost, etc.) after each cycle of subgoal
generation. The seleclion of a new subgoal always begins with a new scan of the tree from
the top. Thus the search is performed in 3 best-first manner: If newly acquired information

changes the ratings for subg.als, the next subgoal selected can lie on a completely different
. branch of the tree. In this way, the program w'l never deveiop an unfortunate choice
(pathway down to starting materiels) before backtracking and exploring more fruitful
brancues.

Summary

Computer-aided chemical synthesis is a potentially powerful new tool for both research
and industrial chemists. The utility of any of the programs discussed here cr'tically dzpends
on the size and accuracy of their knowledge base of organic chemical reactions. Although
far from complete, the knowledge bases now contain highly detalied descriptions of numerous
synthetic reactions. All of the programs have convincingly demonstrated their ability to find
plausible synthetic routes for important organic materials, often in less time than chemists
working alone. The SECS program has a user community of chemists in Europe and Na-th
American, who add new transforms as well as use the program for synthesis planning. The
effort spent on human engineering for chemists has made it possible for chemists to use the
program affectively (and want to use it) and independently of the program's designers. One
of the long-range hopes of chemists and computer scientists working in computer-aided
organic synthesis is that this work on knowledge bases will lead to an improved classification
of chsmical reactions.

Because the heuristic search paradigm fits the synthesis planning problem well, Al
research has had much to offer. in addition, current Al work on knowledge-based expert

systems provides concepts and tools for representation and management of thre large,
ever changing sets of chemical facts and relations.
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D. Applications in Mathematics

D1. AM

AM is a computer program written by Douglas Lenat (1978) that explores the field of .
elementary mathematics, enlarging its vocabulary ci ghjects and operators by defining new
ones, gathering empirical data about the concepts it pussesses, and making conjectures to
connect some of these mathematical entities.

The program began initially with a collection of one hundred concepts selected from
finite set theory, and in a couple hours it had defined about three hundred new concepts,
half of which were quite well known in mathematica. One of the synthesized concepts was
equivalent to natural numbers. AM rated this highly and spent much time developing
elementary number theory, including conjecturing the fundamental theorem of arithmetic
(each number has a unique prime factorization). This is of course much better behavior than
one could expect from biind search through th: space of legal mathematical definitions and
propositions. In AM search Is not blind; At any moment it can justify its current efforts merely |
by printing out the symbolic reasons for the task it is working on.

The design of AM is a blend of four powerful methods: frame representation, heuristic
- search, production systems, and best-flrst search. The concepts that AM discovers and

explores are represented as frames (see article Reprssentstion.C7), each containing slots
that are appropriate to the type of concept. For example, mathematical operations such as
Addition have a Domain/Range slot that would be absent in frames that represent

mathematical objects like Sets or Bags. The goal of AM is to develop its knowledge of
mathematics by filling in amply slots in a concept and, occasionally, by defining new

| concepts. These tasks are suggested and performed by heuristic rules, represented as
productions (see articie RepresentistionC3). AM is constrained by these rules to explore
potentially intercsting concepts and aspects (slots) ot concepts. After a heuristic has
suggestad that a slot be filled or a concept created, the suggested task must compete with
others on an agenda, a job-list of plausible tasks. Each task is supported by a sat of symbolic
reasons &nd has a numeric weight representing its “interestingness." At each moment, AM
directs its attention to the task with the highest weight.

The significance of the project Hea both in the architecture of the program and in the
fact that the program behaves well: AM is an existence pruof that open-ended math
research--theorem proposing not theorem proving--can be adequately represented (and
automated) as a heuristic search. It is worth noting that the uitimate impediment to AM's
progress was its inability to discover new heuristic rules, as it had discovered new
mathematical concepts. By constructing and experimenting with the program it became clear
where the next research thrust should be: along the direction of automating the discovery
and evaluation of heuristics.

in the rest of this article, the nature of mathematical discovery is discussed. These
ideas are then carried over into a description of the design of AM. The methods of knowledge

representation and control are covered in depth, and special attention is given to the tasks
that AM performs. An excerpt from a sample run of AM is given Hustrating its discovery of
prime numbers and perfect squaras. Finally, AM is evaluated as a mathematician, and its
limitations are noted.
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A Model of Mathematical Research

"  Lenat's thesis was concerned with he mechanization of a particular type of

mathematical activity (apart from theorem proving): the definition of new concepts and the
recognition of plausible conjectures. The AM system has no proof capabilities. Below is the
model of math research that AM was based upon, pieced together from the writings of

Poincare, Polya, Lakatos, Hadamard, and others:

1. The order in which a math textbook presents a theory is almost the exact opposite

of the order in which it was actually discovered and developed. In such a text, new
definitions are presented as they are needed, with little or no motivation to state the

next big theorem, whose proof then magiceaily appears. In contrast, a mathematician
doing research examines some already known concepts and tries to find some
regularity in experimental data involving them. The patterns that he notices are the

conje-tures that he must investigate further, and these relations ips directly
motivate him to make new definitions.

2. Each step that the researcher takes while developing a new theory involves choices
from a large set of "legal alternatives. The key to keeping the search from

becoming blind and explosive is the proper use of evaluation criteria. Each
mathematician uses his own personal heuristics to choose the "best" alternative
available at each moment.

3. Non-formal criteria (aesthetic interestingness, inductive inrerence from empirical

evidence, analogy, &nd utility) are much more Important than formal deductive
methods in developing mathematically worthwhile theories, and in avoiding barren
diversions.

4. It is sufficient, and pragmatically necessary, to have and use a large set of informal
heuristic rules tnat direct the sequence of the researcher's activities, depending on
the current situation. In addition, these rules can be assumed to superimpose: The

combined effect of several rules is just the sum of the individual effects.

86. The necessary heuristic rules are virtually the same in all branches of mathematics
and at all laveis of sophistication. Each specialized field will have some of its own

heuristics; those are normally much more powerful than the general-purpose
heuristics.

8. For true understanding, the researcher should grasp--that is, have access to, relate
to, store, be able to manipulate, be eble to answer questions about, etc.--each
concept inseveral ways, deciaratively, abstractly, and operationally, and should
know its relevance and examples of it.

Discovery in Mathematics

Before discussing the synilesis a new mathematical theory, we consider briefly its
analysis, or how to construct a plusible chain of reasoning that stretches from a given
discovery all the way back to well-known concepts.



68 Applications-oriented Al Research: Science and Mathematics

One can rationalize a given discovery by working backwards, by reducing the creative
act to simpler and simpler creative acts. For example, consider the concept of prime
numbers. How might one be led to define such a notion if one had never heard of it before?
Consider the following plausible strategy:

If f is a function which transforms elements of A into elements of B,

and B is ordered, then consider just those members of A which are
transformed into extremal ciements of B. This set is an interesting

subset of A. Name it and study it.

When f(x) means "divisors of x" and the ordering is "by length," this heuristic directs
one to consider those numbers that have a minimal number of factors--ihat is, the primes. So

this rule actually reduces our task from proposing the concept of prime numbers to two more
elementary problems: (a) discovering ore ~ring-by-length and (b) inventing divisors-of.

Now suppose we know this general rule: "If f is an interesting function, conside: its
inverse." 't reduces the task of discovering divisors-of to the simpler task of discovering
multiplication. Eventually, if followed far enough, this task reduces to the discovery of very
basic notions like substitution, set-union, and equality. To explain how a given researcher

might have made a given discovery, such an analysis must be continued until the inductive
task Is reduced to “discovering™ the notic.;s that the researcher started with, which were
his conceptual priiitives.

Syntheses of Discoveries

: Suppose a large collection of these heuristic strategies has been assembled (e.g., by
analyzing a great many discoveries and writing down new heuristic rules whenever
necessary). Instead of using them to explain how a given idea might have evcived, one can
imagine starting from a basic core of knowledge and “running” the heuristics to generate new
concepts. It is simply the reversal of the process described in the last section: not
explanation, but generation.

Notice that this forward search is much "bushier”--i.e., more branches or paths to follow-
-and much more explosive than the backwards analysis previously described. It is a much
harder task to actually meke a discovery than to rationalize--by hindsight--one already
made.

Unconstrained forward search Is too explosive (see Combinatorial Explosion in article
Search.Overview); thus, we can hypothesize that the scientist employs some kind of informal
rutes-of-thumb or heuristics to constrain it. That is, he doesn't really follow rules like "Look at

the inverse of each known function f*, because that would take up too much time. Rather, his
heuristic rules might be more naturally stated as productions (condition/action rules) like: "Jf
f is 1-1 and Range(f) << Domain(f), Then look at f-inverse.” Henceforth, heuristic rule will mean
such a conditional rule-of-thumb. In any particular situation some subset of these rules will
"trigger" and suggest a manageable space of plausible activities to perform. After exploring
that space for a while, the situation will have changed and the cycle will begin anew.



D1 AM 58

Design of the AM Program

| Mathematical inductive syntheses are precisely what AM does. The program consists
of a large corpus of primitive mathematical concepts, sach with a few associated heuristics.

Each such heuristic is & situation-action rule that functions as a local plausible move

generator. Some suggest tasks for the system to carry out, some suggest ways of

satisfying a given task, etc. AM's activities all serve to expand AM Itself, to enlarge upon a

given bady of mathematical knowledge. AM uses its heuristics as judgmental criteria to guide

development in the most promising direction.

Representation. Each concept is represented as a frame-like data structure with 25

different facets or slots. The types of facets include: EXAMPLES, DEFINITIONS,
GENERALIZATIONS. DOMAIN/RANGE, ANALOGIES, INTERESTINGNESS, CONJECTURES and many
others. Modular representation of concepts provides a convenient scheme for organizing the

heuristics; for example, ‘he following strategy fits Into the EXAMPLES facet of the
PREDICATE concept:

If, empirically, 10 times as many elements FAIL some predicate P, as .
SATISFY it, then some generalization (weakened version) of P might be
more interesting than P.

AM considers this suggestion after trying to fill in examples of each predicate. in fact,

after AM attempts to find examples of SET-EQUALITY, so few are found that AM decides to
generalize that predicate. The result is *ne creation of several new predicates, one of which

happens to mean "Has-the-same-length-as," that is, a rudimentary precursor to natural
numbers.

Below is part of a typical concept, PRIMES, in a state long after AM defined and
explored it.
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NAME: Prime Numbers

DEFINITIONS:

ORIGIN: Number-of-divisors-vf(x) = 2
PREDICATE-CALCULUS: Prime(x) s (Vz)(z]x > z=1 lj 2=x)
ITERATIVE: (for x>1): For 1 from 2 to Sqrt(x}, \ (1x)

EXAMPLES: 2, 3, 5, 7, 11, 13, 17
BOUNDARY: 2, 3
BOUNDARY-FAILURES: &, 1
FAILURES: 12

GENERALIZATIONS: Nos., Nos. with an even no. of divisors, Nos. with a
prime no. of divisors

SPECIALIZATIONS: Odd Primes, Prime Pairs, Prime Uniguely-addables

CONJECS: Unique factorization, Goldbach's conjecture, Extremes of
Number-of-divisors-of

ANALOGIES:

Maximally divisible numbers are converse extremes of
Number -of-divisors-of

Factor a non-simple group into simple groups

INTEREST: Conjectures associating Primes with TIMES, and with Divisors-of

WORTH: 808

Creating a new concept is a well-defined activity: It involves setting up a new data
structure like the one above and filling in en -‘es for some of its slots. Filling in a particu.ar
siot of a particular concept is also quite wei. defined and is accomplished by executing a
collection of relevant heuristic rules.

Control. AM is initially given a collection of 115 core concepts, with only a few slots
filed in for each. Its sole activity is to choose some slot of some concept and fill in that
particular slot. In so doing, new notions will often emerge. Uninteresting ones are forgotten,
mildly interesting ones are kept as parts of one siot of one concept, and very interesting
ones are granted full concepti-module status. Each of these new modules has dozens of blank
slots, hence the space of possible actions (blank slots to fill in) grows rapidly. The seme
heuristics are used both to suggest new directions for investigation and to limit attention,
that is, both to sprout and to prune tasks on the agenda. |

The fundamental kind of task that AM performs, Is filling in a given facet of a given
concept. To decides which such task to work on next, AM maintains an agenda of tasks, a
global job-list ordered by priority. A typical task Is "Fill-in examples of Primes®. The agenda
may contain hundreds of entries such as this one. AM repeatedly selects the top task from
the agenda and tries to carry it out. ‘i addition, AM croates plausible new tasks to place on
the agenda and decides which task will be the best to execute next and how to carry it out.
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If the task is "Fiil in new AlgoritAms for Set-union”, then satisfying it would mean actually
synthesizing some new procedures, some new LISP code capable of forming the union of any
two sets. A heuristic rule is relevant to a task if and only if executing that rule brings AM
closer to satisfying that task. Relevance is determined a priori by where the rule is stored.
A rule stored with the Domain/Range facet of the Compose concept would be presumed
relevant to the task "CAeck the Domain/Range of Insert-o-Delete”.

Once a task is chosen from the agenda, AM gathers some heuristic rules that might be
retevant to satisfying that task. They are exancuted, and then AM picks a new task. While a
rule Is executing, three kinds of actions or effects can occur:

§

1. Facets of some concepts are filled in (e.g., examples of primes may actually be
found and added to the “Examplgs® facet of the "Primes" concept). A typical ueuristic rule
that might ave this etfect is:

To fill in examples of X, where X is a kind of Y (for some more general
concept Y), check the examples of Y; some of them may be examples
of X as well.

For the task of filling in ¢ <amples o! Primes, this rule would have AM notice that Primes is a
kind of Number and therefore have it look over el the known examples of Number. Some of
those would be primes and would be transferred to the Examples facet of Primes.

2. New concepts can be created (e.g, the concept "primes which are uniquely
representable as the sum of two other primes™ may somehow be deemed worth studying). A
typical hauristic ruie that might result in this new concept is:

If some (but not most) examples of X are aiso examples of Y (for some
concept Y), create a new concept defined as the intersection of
thuse 2 concepts (X and Y). |

Suppose AM has alrear’’ !solated the concept of being representable as the sum of two
. primes in only one way (AM actually cals such numbars "Uniquely-prime-addable numbers").

when AM notices that some primes are in this set, the above rule will create a brand new
concept defined as the set of numbers that are both prime and uniquely prime addable.

3. New tasks can be added tc the agenda (e.g. the current activity may sugries!
that the following task is worth considering: “Generalize the concept of prime numbers”). A
typical hauristic rule that might have this effect is:

If very few examples of X are found, then add the following task to
the agenda: "Generalize the concept X."

Of course, AM contains a precise meaning for the phrase "very few." When AM looks
for primes among examples of already known kinds of numbers, it will find dozens of
nonexamples for every example of a prime that it uncovers. *wery few" is thus naturally
implemented as a statistical confidence level.

The concept of an agenda i, certainly not new. Scheduler: utilizing this concept have
been around for a long time. But one important feature of AM's agenda scheme is a new
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idea: attaching to each task a list of quasi-symbolic reasons that explain why the task is
worth considering, why it's plausible. /t is the responsibility of the Meuristic rules to include
reasons for any tasks they propose. For example, reconsider the heuristic rule mentioned in (3)
above. It actually looks more like the following:

If very few examples of X are found, then add the foliowing task to
the agenda: "Generalize the concept X," for the following reason--
"X's are quite rare; a slightly iess restrictive concept might be more
Interesting."

if the same task is proposed by several rules, then several different reasons for it may
be present. In addition, one ephemeral reason also exists: Focus of attention. Any tasks
that are similar to the one last executed get "Focus of attention” as a bonus reason. AM
uses all these reasons to decide how to rank the tasks on the agenda. The "intelligence"
AM exhibits Is not so much "what it does" as the order in which it arranges its agenda. For
example, in an experiment carried out with AM in which a randomly chosen task was
alternated with the "best" task (the one AM chose to do), the system was only slowed down
by a factor of 2; yet this behavior totally destroys its credibility as a rational researcher, as
judged by the human user of AM.

AM uses the list of reasons in another way: Once a task has been selected, the
quality of the reasons is v. ed to decide how much time and space the task will be permitted
to absorb, before AM qu'ts and moves on to a new task.

A crucial heritability property holds: Any method for filling in facet Jf of concept ¢
also work for filling in facet f of any specialization of C. Thus, when the task "Fill in examples
of SET-EQUALITY" is chosen, AM asks each generali=ation of SET-EQUALITY tor help. it
asks for ways to fill in examples of any Predicate, any Activity, any Concept, and finally of
Anything. One such heuristic rule known to the Activity concept says: "Actually execute the
activity on some random members of its domain.” Hence, to fill in examples of SET-
EQUALITY, its domain iscet Is inspected, and AM sees that it takes a pair of objects as its
arguments. Then AM accesses the Examples facet of the concept CBJECT, where it finds a
large list of objects. Obeying the heuristic rule, AM repeatedly picks a pair of objects at
random and sees if they satisfy SET-EQUALITY (by actually running the LISP function
stored in the Algorithms facet of SET-EQUALITY). While this step will typically return False,
it will occasionally locets--by random chance--a pair of equal sets.
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Anything

AY
AN
/ Object

Predicate Relation \
/ Conjectures

Set-tquality (example)

Figure 1. Partial path of property inheritence for Concepts in AM

Other heuristics, added to other generalizations of SET-EQUALITY, provide additional |
methods for executing the task "Fill in examples of SET-LQUALITY." A heuristic stored on
the concept ANY-CONCEPT says {0 symbolically instantiate the definition. A bag of tricks
is provided for this purpose, one of which (“instantiate the base step of the recursion”)

works nicely on the recursive definition provided for SET-EQUALITY. Notice that, as one
might expect, the more general the concept is, the weeker (more time-consuming) its
heuristics are. For this reason, AM consult. sach concept's rules in order of increasing

generalization.

Executing a task is achieved by locating relevant rules-of-thumb and evaluating them.
The location Is performed efficiently because all tne concepts are related by

generalization/specialization links and because the above "heritabliity® property holds.

Notice the omnipresent reliance upon heuristic guidance. Heuristics propo: e the tasks
(and associate reasons for them) for the agenda; they propose new concepts to be defined;
they discover (by search, synthesis, or analysis) entries that can be put into specific facets
of specific concepts. There are sven heuristics for naming new concepts (based on how
they were formed).

An Excerpt

To convey a bit of AM's flavor, we present a briaf excerpt of it in action. After reading
through it, the reader should be convinced that AM is neither proving theorems nor randomly
manipulating entries in a knowledge base, nor Is It exAausiively manipulating or searching. AM
Is carefully growing a network of data structures represe:.ting mathematical concepts, by
repeatedly using heuristics ooth (a) to guide the choice of what task to work on next and
(b) to provide methods to satisfy the chosen task.

Although AM appears to have reasonable natural language abilities, very little affort
wes sxpended in this area. Al text was generated using simple, stored patterns associated
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with the heuristic rules. A few of the lines have been anglicised (e.g., the addition of "e.g."),
and some of the concepts had previously been renamed by the user (the human observor of
the system). Otherwise, the excerpt is just as AM typed it:

TASK 65: Fill in Examples of the concept Divisors-of.

3 Reasons: (1) No known examples of Divisors-of so tar.
(2) TIMES, which is related to Divisors-of, is now very

interesting.
(3) Focus of attention: AM recently defined Divisors-of.

26 examples found, in 9.2 seconds. E.3., Divisors-of(8)={1 2 3 6).

TASK 88: Consider numbers having small sets of Divisors-of,

2 Reasons: (1) Worthwhile to look for extreme cases.

(2) Focus of attention: AM recently worked on Divisors-of.

Filling In examples of numbers with O divisors. |
0 examples found, in 4.0 seconds.

Ccnjecture; no numbers have precisely 0 divisors.

Filling In examples of numbers with 1 divisors.

1 examples found, in 4.0 seconds. e.g., Divisors-of(1) = {1}.
Conjecture: 1 is the only number with precisely 1 divisor.

Filling in examples of numbers with 2 divisors.
24 examples found, In 4.0 seconds. e.g., Divisors-of(13) = {1 13).
No obvious conjecture. May merit more study.
Creating a new concept: “Numbers-with-2-divisors®™.

Filiing in examples of numbers with 3 divisors.
11 examples found, in 4.0 seconds. e.g., Divisors-of(49] = (1 7 40}.
All numbers with 3 divisors are also Squares.

Definitely merits moras study.

Creating a new concept: "Numbers-with-3-divisors®.

TASK 687: Consider the square-roots of Numbers-with-3-divisors.

2 Reasons:

(1) Numbers-with-3-divisors are unexpectedly aiso Perfect Squares.
(2) Focus of attention: AM recently worked on Nos-with-3-divisors.

All square-roots of Numbers-with-3-divisors seem to be
Numbaers-with-2-divisors.

E.g., Divisors-of(Square-root(169)) = Divisors-of(13) = {1 13).

Even the converse of this seems empirically to be true.
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l.e., the square of each No-with-2-divisors seems to be a :
No-\vitn-3-divisors.

The chance of coincidence is below acceptable limits.

Boosting the interestingness rating of sach of the concepts involved. |

USER: Rename Numbers-with-2-divisors as Primes

TASK 68: Consider the squares of Numbers-with-3-divisors.

3 Reasons: (1) Squares of Numbers-with-2-divisors were interesting.
(2) Squara-roots of Numbers-with-3-divisors were interesting.
(3) Focus of attention: AM recently worked on

Nos-with-3-divisors.

Results: AM as a Mathematiclan

Here we will review the mathematics that AM explored. Thoughout, AM acted alone.

with a human user watching it and occasionally renaming some concepts for his or her own
benefit. Like a contemporary historian summarizing the work of the Babylonian
mathematicians, current terms are used and criticism is by currant standards.

AM began its Investigations with scanty knowledge of a few set-theoretic concepts.
Most of the obvious set-theory relations (e.g., de Morgan's laws) were eventually
uncovered; since AM never fully understood abstract algebra, the statement and verification
of each of these was quite obscure. AM never derived a formal notion of Infinity, but it
naively established conjectures like "a set can never be a member of itself," and procedures
for making chains of new sets (“insert a set into itself"). No sophisticated set theory (e.g.,
diagonalization) was ever done.

After this initial period of exploration, AM decided that "equality" was worth
generalizing and thereby discovered the relation "same-size-as.”" Natural numbers were
based on this discovery, and, soon after, most simple arithmetic Jperations were defined.

Since addition arose as an analog to union, and multiplication as a repeated
substitution, it came as quite a surprise when AM noticed that they were related (namely,
N+N=2xN). AM later rediscovered multiplication in three other ways: as repeated
addition, as the numeric an: log of tha Cartesian product of sets, and using the cardinality of
the power set of the union of two sets.

Raising to fourth-powers and fourth-rooting were discovered at this time. Perfect
squares and perfect fourth-powers were isolated. Many other numeric operations and kinds
of numbers wera found to be of interest: Odds, Evens, Doubling, Halving, integer-square-root,
atc. Although It isolated the ..t of numbers that hed no squares root, AM was never close to
discovering rationals, let &'=ne krationals. No notion of "closure" was provided to--or
discovered by--AM.
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The associativity and commutativity of multiplication indicated to AM that it could
accept a BAG of numbers as its argument. When AM defined the Inverse operation
coiresponding to "Times", this property allowed the definition to be: “Any bag of numbers
(>1) whose product is x." This was just the notion of tactoring a number x. Minimally
factorable numbers turned out to be what we cail primes. Maximally tactorable numbers
were also thought to be interesting.

Prime pairs were discovered in a bizarre way: by restricting the domain and range of
addition to primes (l.e., solutions of p + q = r in primes).

AM conjectured the fundamental theorem of arithmetic (unique factorization into primes)
and Goldbach's conjecture (every even number >2 is the sum of two primes) in a surprisingly
symmetric way. The unary representation of numbers gave way to a representation as a bag
of primes (based on unique factorization), but AM never thought of exponential notation.
Since the key concepts of remainder, greater-than, gcd, and exponentiation were never
mastered, progress in number theory was arrested.

When a new base of geometric concepts was added, AM began finding some more
general associations. In place of the strict definitions for the equality of lines, angles, and
triangles came new definitions of concepts comparable to Parallel, Equai-measure, Similar,
Congruent, Translation, Rotation; togethes with many that have no common name (e.g., the
relationship of two triangles sharing a common angle). A cute geometric interpretation of
Goldbach's conjecture was found: Given ali angles of a prime number of degrees,
(0,1,2,3,6,7,11,..,170 degrees), then any angle between O and 180 degrees can be
approximated (to within 1 degree) as the sum of two of those angles. Lacking a geometry
"model" (an analogic representation like the one Gelernter, 1063 employed), AM was doomed
to propose many implausible geometric conjectures (see Artiice Representation.C6).

it is important to ask how generel the program is: is the knowledge base "just right”
(l.e., finely tuned to elicit this one chain of behaviors)? The answer is no: The whole point of
this project was to show that a relatively small set of goneral heuristics can guide a
nontrivial discovery proccess. Keeping the program general and not finely tuned was a key
objective. Each activity or task was proposed by some heuristic rule (like “look for extreme
cases of X") that was used time and time again, in many situations. It was not considered |
fair to insert heuristic guidance that could only “guide” in a single situation. For example,
the same heuristics that lead AM to decompose numbers (using TIMES-inverse) and thereby
discover unique factorization, aiso lead to decomposing numbers (using ADD-Inverse) and the
discovery of Goldbach's conjecture. :

Results: Limitations of AM

Although AM fared well according to several dirferent measures of performance, users
of this handbook may better utilize knowledge of its limitations.

As AM ran longer and longer, the concepts it defined were further and further from the
primitives it began with, and the efficacy of its fixed set of 260 heuristics gradually
declined. The key deficiency was the lack of adequate meta-rules (Davis, 1876, Lenat, 1976,
Laing, 1871): heuristics that could cause the creation and modification of new heuristics. |
This tack is strongly felt in a bnot-strapping, open-ended task environment such as math
research.
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Many concepts that one might consider "primitive" are missing from AM: proof, tricks
for finding counterexamples, numbers, etc. Very few of them are ever discoverad by AM,
and even those that are discovered will not have any powerful heuristics filled in for them.

The limitations of a small knowledge base can bs overcome only by investing additional time
to enlarge It. With a learning system like AM, one can spend a couple man-hours wrestling

| with each new concept or let the program squander a greater amount of its time until it has
discovered and mustered that concept to the same level of proficiency. It is a trade-off
that almost alweys argues for the system-builder to spend more time enlarging the

| knowledge base by hand.

Analogies in general were underutilized. Specifically, analogies between heuristics were
never even considered. If one characterizes an analogy as a (partial) correspondence

between two collections of objects and operators, then it is a small conceptual step to

imagine heuristic rules that look for and develop such mappings: The image of partial
matching comes immediately to mind. AM possessed a few such domain-independent rules,

and they managed to produce some analogies (e.g., betwean multiplication and addition;
between sets/union/same-size and numbers/add/equality), but the overall results were
quite meager in this area.

Conclusions

The AM project stands as a working demonstration that a few hundred general heuristic
rules suffice to guide a searcher--an automated math researcher--as it explores and
expands a large but incomplete base of math concepts. AM shows that creative theoretical

research can be effectively modeled as heuristic search, just as Meta-Dendral (see article |
Cac) established a similar hypothesis for the more constrained, real-world field of mass
spectroscopy.

The main successes were the few relatively novel ideas it came up with (including a
result in number theory, dealing with numbers having very many divisors), the ease with
which new domains were discovered (e.g., number theory) or introduced by hand (plane
geometry), and the apparently rational sequences of behavior that AM exhibited.

The continuation of this line of research by Lenat is the EURISKO program. The
hypothesis being explored is that the meta-level knowledge required to synthesize and
reason about heuristics Is a subset of the knowledge already in AM about synthesizing and
reasoning about concepts. That is, EURISKO's meta-rules are merely some of the very
general rules that AM already had. The only real change, then, from AM to EURISKO is to
recode each heuristic from LISP code as a full-fledged concept with facets. The heuristics,
which deal with facets of concepts, will then ba capable of dealing with each other. This
work is currently in progress at Stanford University.

Future AM-like programs may serve as assistants to scientists and engineers,
synergetically collaborating with them in the conception, planning, and execution of their

research and developmant activities.
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02. MACSYMA

IMACSYMA is a large, interactive computer system designed to assist mathematicians,
scientists, and engineers in solving mathematical problems. It has a wide range of algebraic
manipulation capabilities, all working on symboiic inputs and yielding symbolic results, as well
as an extensive numerical subroutine library (IMSL) and plotting package.

MACSYMA Is used extensively by hundreds of researchers from government
laboratories, universities, and private companies throughout the United States. Many of
these users spend a substantial portion of every day logged in. Currently, the system runs
exclusively on a Digital Equipment Corporation KL-10 at MIT and is accessed through the
ARPA Network: however, there are plans to distribute it to other sites in the near future
MACSYMA's funding is supplied almost exclusively by its user community.

The original design for MACSYMA was laid out by Carl Engleman, Bill Martin, and Joel
Moses in 1968. They bulit on their previous experience with the Mathlab 68 system and the
theses of Martin and Moses. Martin had constructed an algebraic manipulation system to
solve certain problems in applied mathematics. Mnses had produced a program that was able
to do indefinite integration about as well as a typical graduate student. The system had its
first users in 1971 ard has undergone continucus development since then, a total of about
45 man-years of effort.

The implementation of MACSYMA is based on the belief that the way to produce a high-
performance program for general mathematics is to "build in" a large amount of knowledge.
This approach to system construction Is often called "knowledge-based programming.”
MACSYMA Is an extremely large system, as algebraic inanipulation systems go; at present, it
can perform at least 600 distinct mathematical operations, including differentiation,

"integration, solution of equations and of systems of equations, Taylor series expansions,
matrix operations. vector algebra, order analys:s, etc. The current system consists of about
230,000 words of compiled LISP code and an equal amount of code written in the MACSYMA
programming language. About half of this code was written by MACSYMA staff members; the
rest was contributed by various users.

The primary goal of algebraic manipulation research has been the invention and analysis
of new mathematical algorithms and the extension of previously kn: numerical algorithms
to symbolic manipulation.

While most of the a!gorithms incorporated In MACSYMA wero known to mathematicians
prior to its construction, a substantial number came about us & result of this research. The
last decade has brought the discovery of new algorithms for finding the greatest common
divisors of polynomials (Brown and Traub, 1971; Moses and Yun, 1873), factoring rational
expressions (Musser, 1876; Wenq and Rothschild, 19765), sum simplification (Gosper, 1977),
symbolic integration (Moses, 1671; Norman, 19735; Risch, 1860; Rothstein, 1977; Trager,
1978), and asymptotic analysis (Fateman, 1976; Norman, 1075; Zippel, 18786). The nature
of this work has been largely mathematical; end, eithough Artificial intelligence was
instrumental in providing the environment in which MACSYMA was created, it has made little
direct contribution since then.

Knowledge-basad programming docs, however, engender a number of difficulties for
| which Al techniques offer partial answers. Two general types of difficuities are discussed



70 Applications-oriented Al Research: Science and Mathematics

here, namely, user education and the handling of mathematical problems not amenable to
algorithmic solution.

Non-algorithmic procedures is MACSYMA

One of the most pressing problems in algebraic manipulation is simplification. Symbolic |
algorithms often generate large, unwieldy expressions that must be simplified into smaller,
more meaningful forms. (Generally, the size )f expressions is the most important criterion for
simplicity, with standard formats and particutarly revealing forms taking precedence.) To help
users simplify their results, MACSYMA provides a variety of explicit expression
transformation commands (such as expansion, factorization, partial fraction decomposition,
eic.) and a simplifier that automatically applies a set of mathematical “rules” to every new
expression as it is constructed. Examples of these rules are:

x*x + x?
sin{x+n/2) » cos(x)

log(a*b) + tog(a)+iog(b) .

The user can, oi course, define new commands and new rules.

Ssmantic Pattern Matching

in appiying a simplification rule, MACSYMA utilizes a "semar.tic pattern matcher" to find
instances of the rule's pattern. The matcher is “semantic” in ‘hat it uses knvwiedge about

the operators and constants in an expression to find nonsyncactic matches. For example,
the pattern atx2 + bx + c, where a, b, and c are pattern variables free of x, will match the

expressions 4*x2 + 4%*x + 1, x2 +x + 1 x2, and (x ¢ 1)2. in defining a rule, tho user may
specify arbitrary conditions (in the form of procedural predicates) on the pattern variables.
For example, determining whether an expression matches the above pattern, MACSYMA
would call a user-specified function to check that any tentative assignments for a, b, and ©

are free of x. As a result, the pattern would not match 4*x2 + 3%x + sin(x).

One problem with this pattern matcher is that the user is unable to control how much
"semantics" the system uses in finding a match. in the very near future, a new pattern
matcher will be release in which the user will be /.ble to specify a set of identities to use in

attempting to identify instances of patterns. For sxample, while it is often desirable that the
matcher use inverses, in some situations a user might prefer a simpler matcher, lest the rule
ab -> c apply to every lone a and b, as in b =) c/a. With the new paitern matcher, the user
will be able to specify when he wants the inverse axioms to be used.

Simplification by Hiliclimbing |

While siza of an expressiuas is rot the sole criterion for its simplicity, it is a useful
guideline. For those applications in which the user desires the smallest possible form for an
exprassion, MACSYMA provides a search-oriented simplifier called SCSIMP. Given an
expression and a set of rules, STSIMP applies sach of the rules to the expression, in turn,
and retains the smallest result. if any such substitution leads to an expression smaller than
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| the original, the process is repeated. Far example, given the identities below, SCSIMP will
convert the first expression into the last.

| 2 2 2 2
K +L =] N -H =]

2 2 2 2 2 e 2 ? ¢ 2 2 2
First expression:K N «+K HM N -K L N -K I. HM N

4 2 2 4 2

Intermediate: K KN ¢K N substituting for L

4 4

Final Expression: K N substituting for M

Note, however, that because SCSIMP is a hiliclimbing algorithm it is not guaranteed to
produce the smallest answer. For example, it would not perform the simplification shown

|  ¢ 2 2
First expression: K N +L H

2 2 2 2 2

Intermediate form: K § -K HK + NM substituting for L

2 2

Simplest form: K +N substituting for N

The reason for not performing this simplification is that in order to arrive at the simplest
form, a larger intermediate expression would have to be generated. Due to the
combinatorics involved in generating arbitrarily large intermediate forms, this technique has
not been incorporated In the current version of SCSIMP.

The Relational Database and inference

in certain problems, the symbois in mathematical expressions have restrictions on their
ranges or on other properties that are useful in simplification. In order to allow the user to
specify such properties, MACSYMA maintains a relational database of facts about symbols,
stored in the form of a semantic network. For example, a user can declare (via the DECLARE

: command) that the symbol n is restricted to integer values, and MACSYMA can then simplify
cos((2*n + 1)*n) to 0. Similarly, one can specify (via the ASSUME command) that x (= y,
y<=2 and z <= x; and MACSYMA can then deduce that x = y = 2 (using the algorithm
described below).

The database retrieval rcutines are suppiemented by a fast but limited inference
algorithm called CPM (Genesercth, 1076), which performs taxonomic deductions. property
inheritances, set Intersections, ana other simple inferences. For example, given the facts
that X is an integer, that integers are rational, and that the real numbers are partitioned into
rationals and irrationals, CPM automatically deduces that X is not an irrational. Given the
fact that a rational can be written as an integral numerator over an integral denominator,
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CPM autometically deduces that X can be so written. The CPM inference glgorithm was
devaloped to enhance the retrieval capabilities of a high-level database system organized
as a semantic network. it Is an elaboration of Grossman's work (Grossman, 1876) on
constraint expressions but has been carefully restricted so as to be susceptible to
implementation on parallel hardware. The algorithm is a highly “romplled" form of doma'n-
independent constraint propagation In which constraints, represented by “labels” on the nodes
of the network, propagate across links to other nndes according to the laws of logic. It can
perform certui hiferences much more efficiently ‘..an their straightforward implementation in
procedural problem-solving languages lke CONNIVER. For furthcr details on the CPM
algorithm, the reader should consult Genasereth, 1976. In additicy, Fahiman (1977) has
described how such a constraint propagation algorithm can be implemented in paraliei
hardware for even greater efficiency.

Heuristic Problem Solving

MACSYMA also includes a number of specialized procedural problem solvers; for
example, the first phase of the integration routine (Moses, 1971), the commands for
perforining root contraction and logarithmic contraction, the inequality theorem prover, and
others.

User Education :

The advantage of a large knowledge-based system like MACSYMA over a smaller,
sparer sysiem like “EDUCE (Hearn, 1973) is that MACSYMA has more mathematical
knowledge built in {i.e., it is larger and can do mora). As a consequence, the user is not
forced to communicate as much mathematical knowledge to the system. The disadvantage is
that MECSYMA can be more difficult to understand and to use. The user might, for example,
be unaware of the capabilities available or not know the commands, or he might get an
unexpected result that he cannot explain.

To minimize these difficulties, MACSYMA offers a wide range of on-line user aids
(Genesereth, 1077; Lewis, 1977), including a frame-oriented interactive primer (similar to
PLATO), an information network, and an auiomatic progrem for searching the reference
manual. In addition, some of MACSYMA's commands are able to expiain their progress in a
fashion that can be comprehended by the user. For example, i the VERBOSE option is,
selected, the POWERSERIES command prints out the goals and subgoals that it generates
while working on an axpansion.

Even with these provisions, users occasionally encounter difficulties due to their lack
of knowledge of the system. Furthermore, such users are often unwilling tc learn more about
MACSYMA than is necessary to solve an immediate problem. The simplest way for such a
user to acquire just the information he needs is to ask a consultant for help. Then, armed
with the consultant's advice, he can surmount the difficuity and solve the problem.

Consultation. is a method widely used in computer centers as well as in domains like
business, law, and medicine; and, as computer technology becomes more pervasive and
computer systems become more complex, the need for consultation grows. Unfortunately,
human Consultants are a SCATCe resource and quits expensive. Currently, work is un.erway



D2 MACSYMA 73

on an automated consultant for MACSYMA novices, called the Advisor. It is a program distinct
from MACSYMA, with Its own database and expertise. The Advisor accepts a description of &
difticulty from its user and tries to reconstruct the user's "plan* for solving his problem.
Based on this vlan and its knowledge of MACSYMA, the Advisor then generates advice
tailored to the user's specific need. For a description of the Advisor's operation, the user
shouid see Gensosrereth, 1978.

Future Plans

In addition to \he features described above, several other Al-related capabilities are
under development in MACSYMA. Two of these are mentioned here. namely a new
representations for algebraic expressions using data abstractions and a knowledge-based,
plan-based mathematiclan's (or physicist's or engineer's) "appreuitice ”

Recertiy, David Barton has designed a radically new scheme for representing algebraic
expressions. MACSYMA has two ma or representations, the general representation that uses

" LISP's traditional prefix format and the rational representaticn that uses a canonical form for
polynomials and rational functions. The rational representation has become unwieidy over the
years, as extensions to the system have changed Its specifications. For example,
coefficients of polynomials were originally assumed to be integers and were later generalized
to include floating point numbers. A new representation was desired to handie "Taylor
series,” which conteins rational number exponents, since the former representation, while
relatively close to the rational representation, could not be retrofitted onto the rational
representation. Barton's approsch alleviates these difficulties and provides a capability for
future generalization. The approach used is, furthermore, a natural one for abstract algebra.

Consider, for example, 8 2 X 2 matrix whose elements are Laurent series in y

(truncated at y2), whose coefficients are polynomials in x, whose coefficients are ratior.al
numbers. In order to add such a 2 X 2 matrix to another 2 X 2 matrix, one needs to know
how to add the elements. One approach would be to design a general addition routine that
would check the types of each argument and finally perform the appropriate addition. This
approach is similar to the one previously taken by the rational function representation. In a
symbolic system, and, in fact, in most applications, the type of object is intimately related to
a set of operations that can be performed on it. In the MACSYMA context, these operations
include addition, subtraction, multiplication, division, differentiation, substitution, coefficient
extraction, and GCD computation. Barton's approach is to attach a tree of vectors to each
expression. The tree corresponds to the gross structure of the expression. For example,
each subexpression, an element in the matrix, has a vector corresponding to it. The vecto-'s
elements are in a fixed order and contain pointers to the procedures that perform the
corresponding operation on the type of the subexpression.

Barton's approach permits expressions to be composed of arbitr2-'y nested types.
This is a critical requirement In an interactive symbolic system. Preliminary tests cf

| exprassions represented in this manner indicate that common manipulations are noi much
slower and often fastar than In the former implementation. The reason tor e speed-up Is that

| less type-testing is neecied in this approach.

Work hes elso begun on the design of an “apprentice” for the MACSYMA user. At
present, MACSYMA is used mostly as a "symbolic caiculator,” with the user directing its
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actions line by line and keeping track of the meaning of each resuit. The goal of the
apprentice is to relieve the user of much of this drudgery. The approach being taken

involves two components, namely knowledge at out the user's domain and the use of a high-
level problem-solving plan formalism.

Currently, most symbols in MACSYMA have no special meaning, and they can take on
arbitrary vaiuves. In particular problem areas, however, certain symbols have particular
interpretations and range restrictions. For example, the symbol MASS has a very special
meaning to physicists and an obvious range restriction (nonnegative). A physicist's
apprentice should know this range restriction and be able to use it; for example, ‘n discarding
negative roots or performing integrations. Similany, practitiorers in certain fields like to see
their expressions written in standard formats, determined by the interpretation of the
constituent symbols. For exampie, electrical engineers usually prefer resistance (Ri) and
capacitance (Ci) expressions written as f(R1, 2, ..., Rn)*g(C1, C2, ..., Cn) rather than having
the Ri and Ci intermixed.

Another way that an apprentice could be of use in MACSYMA is by keeping track of the

user's plan for solving his problem. If the apprentice knows the steps involved and the
significance of various results, it could inform the user of potential errors, make suggestions,
and in many cases carry out steps by itself. The apprentice can gain familiarity with the
user's plan in various ways: it may be a well-known mathematical procedure (e.g., some
standard technir.e for solving partial differential equations or perturbation problems), the
user may have described his intentions before beginning his MACSYMA session, or the user
may re-apply some previous rlan. It is expected that this notion of a problam-solving pian
will play an extremely important role in the next generation of algebraic manipulation
systems.

References
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3



E Other Scientific Applications 78

E. Other Scientific Applications

E1. The SRI Camputer=-based Consultant

A Computer-Lased Consultant (CBC) is a computer system that contains a body of
specialized knowledge atout a particuiar task domain and which makes that knowledge
conveniently available to users working in the domain. This article describes some research
done at SR! on a computer-based consultant designed to help a novice mechanic work with
electromechanica! cauipment. The goal of this research is to bullc a system that
approximates a human consultant in its communication, perceptual, and reasoning skills.

The consultant was designed to answer spoken English questions from _he user and to
monitor the user's progress on the task, offering advice and reminders where necessary. To
fit the needs of individual users, it is essential that the system be able to provide advice
about the task at several levels of detail. In order to determine the appropriate level of
detail, the CBC must form a modei of the user, monitor his performance as he executes the
task, and update internal models to reflect the current state of the task environment.

Design of the Computer-based Consultant.

The task of the SR! computer-based consultant is to help an inexperienced mechanic
repair and modify complex electromechanical aquipment. The mechanic works on a piece of
equipment in a special "work station" where he is provided with a headset that enables him
to talk to the system and to receive spoken replies, both in natural language. A commercially
available phoneme synthesizer is used by the system to give usr. oken" responses to the
user, and a commercially available phrase recognizer Is used to “understand” his speech.
There Is a television camera and a laser rangefinder that provide the visual component for
the system. The laser rangefinder can also be used as eo visual pointer so that the system
can answer questions such as "Show me the pressure switch” by lliuminating the pressure
switch with the laser beam.

Requests for information by the user are translated into an internal representation or
“model” by the natural language ana visual components of the system. These models are
used to structure communications with the user as he performs the task. For example, a
question about the iocation of a part ("Where is the pump brace) is answered by reference
to a stored geometric model that keeps track of the spatial relations between the parts.
Other models are necessary for the natural language components of the system; for
instance, a discourse mode! is neuded to understand a spoken utterance.

Plannins, a sequence of constructions

The user of the CBC can ask it to plan a sequence of assembly steps and relate this
sequence to him for execution. The CBC has a planning component for composing assembly
and disassembly sequences. it has received much attention in recent research efforts.
There are several types of knowiedge that are important in the planning process. First,
there is the model of the air compressor itself, which is essentially a graph whose nodes
correspond to the parts of the compressor and whose arcs correspond ta the mechanical
connection between the parts. Second. each type of connection has associated with it a
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set of procedures that tells how that connection is physically established. Third, each of
these procedures may contain calls to other procedures that elaborate, in more detail, how a
job is done. This Aierarchy of procedural knowledge torms the basis for producing plans that can
be given to the user at savera! levels of detail. This procedural model is used by the
planning program 10 determine the order In which parts should be assembled. The planning
program Initially assumes that the parts cen be connected in any orcer. By checking
preconditions and the effects of performing each step, it reorders the steps in the plan to
eliminate conflicts. For example, the pump can be installed only if there is no pulley on its
shaft. The planner recognizes this fact and imposes an order on the plan so that the pump
will be installed before its pulley Is placed on the shaft. When all the conflicts have been
resolved, the remaining steps of the plan can be solved in any order. This ability, to
recagnize alternative orderings in a plan, Is important fur a computer-based consultant: The
user may take the Initiative and proceed with certain steps ot the assembly on his own, and

- the planner must recognize If the steps being taken are valid.

The plan is represented as a structure called a procedural net; a sample net is shown
in Figure 1 (Hart, 1975). Each node corresponds to an assembly step at some level of detail.
The procedural net is actually a hierarchy of plans, ail of which accomplish the same task,
but at varying levels of detail. The ith row in the net corresponds to a plan specified at the
ith level of detail. Notice that the plan splits ‘nto two paths at level 2, indicating that the
two subplans can be performed in either order. The branching verticle lines indicate the
expansion of a step into a more detailed subplan.
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assemble

LEVEL ¢ air| Compressor |

install

LEVEL 1 pumprace

connect connect |
LEVEL 2 pump to pump pulley

platform to pump

connect install
motor to motor

platform pulley

connsct

/ \ / \ + after-cooler elbow| to pump

Fira 1. A fragment of a procedural) net.

The procedural net is useful for the specification of plans at the various levels of detall
required by the user. Tne net is also used during planning to represent partially formed
plans, sO that the planner can be restarted during execution to modify an existing plan if
new information requiring replanning is discovered as the assembly proceeds.

: The system keeps an internal model of the "connectedness” of the different
components of the air compressor as it is being ssssmbied or disassembled. 't also ~ontains
a graphical model of the locations of tha different components of the air compre~sor. For
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example, the graphical model knows about the pump, motor, pressure switch, atc.; and the
connectivity model knows about aii the visible components.

interfacing to the real world: Vision and Dialogue

Vision is a difficult problem in the domain of electromechanical machinery because the
equipment and its components usually have only a limited range ot color and texture for a
great variety ot possible shapes. Shadows and highlights also depend on the stage of the
assembly process. For these reasons, an approach has been taken that capitalizes on prior
knowledge of visual appearances and geometric relations: There is a "tool recognizer” that
ascepts a limited semantic description of a tool, builds a model of the tool from this
dascription, and uses this model to differentiate the tool m the set of probable
allernatives.

There are two other visual modules, both of which rely on stored geometric models of
the ecuipment. The first module allows the CBC to answer user questions cof the form “Show
me the X.* it points at X with the laser rangetinder, which is accomplished by locating the
outline of the visible surface of X. The second module allows the user to ask "What part is
this?" while he is pointing at the unknown part with a wand equipped with a smal light at the
tip. A ray in space is defined by the wand tip and the camera lens. The ray intersects a
geometric model of the equipment, providing the answer to the question.

The following Is a portion of a dialogue between a novice mechanic and the CBC on the
task "Assemble the alr comprassor.” The example is taken from Hart, 1976.

Try to achieve assembled aircompressor.
"How?

The top tevel plan is ... install pump ...
install pumpbrace ... install pumppuliey ...
install belt ... install beithousingcover ...

Ready for quastions.
x2Show me the pump.

Laser beam moves to point at pump.

Ready for questions.

=*What is this?

User points with wand at tank platform.

Tank platiorm.

| Ready for quastions.
t*None.

install pump.

r~-How?

Connect pump to platform.
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*rHow?

Get 4 1&1/4-inch 65/16 hexagonal bolts and
4 9/18 fiat washers and 4 size 5/18 hexagonal nuts.
=2OK.

Summary

The main goal of the research on the SRI computer-based consultant was to create the
fundamental technology needed to build such consultant systems. Much of this technology Is
independent of the particular consultant system being built or of the details of the task
environment. Work on the electromechanical CBC described here was stopped in April, 1976.
Since then a new consultant project has been begun at SRI extending many of the ideas
trom the 1975 system and adding new features.
The new consultant system. is being used in two entirely different domains: mineral
exploration (see article £2) and agricultural pest management. it sppears that computer
consultants are likely to remain both a fruitful area for Artificial intelligence research and a
practical means of deploying knowledge to peopie working in the specific task domains.

References

See Hart (1976) and Nilsson (1878).
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E2. ~ROSPECTOR

PROSPECTOR (Duda et al., 1978) is a computer-based consultation system that is being

developed to aid geologists working on certain problems in hard-rock minerai exploration.
Like other expert systems, such as INTERNIST (see article Madicine.C4) and MYCIN (see
article Medicine.C2), PROSPECTOR attempts to represent a significant portion of the
knowledge and the reasoning processes used by experts working in a speciahzed domain.
The interded user of this program is an exploration geologist who is in the early stages of
investigating an exploration site or prospect. We assume that he or she has a professional
understanding of geology but, nevertheless, wants the assistance of a spucialist in
evaluating the findings.

in an attempt to keep tha PROSPECTOR system fairly domain independent, the system
maintains a clear separation between the geological knowledge base and the mechanisms
that use this knowledge. Nevertheless, characteristics of the problem domain have certainly
influenced the design of the system.

Expressed abstractly, the main function of PROSPECTOR is tu match data from a
particular situation against "models" that describe a moderately large number of disjoint
classes of situations. In PROSPECTOR's domain, the models are formal descriptions of the

most important types of ore deposits, and the data are primarily surface geological
observations. The available data are assumed to be uncertain and incomplete, so that the

conclusion Is ¢ probability or a degree of match. In addition, the program alerts the user to
different possible interpretations of the data and identifies additional observations that
would be most valuable for reaching a more definite conclusion.

A typical consultation sess.on with PROSPECTOR begins ./ith the user giving the system
the information about the most significant features of his prospect: the major rock types,
minerals, and alteration products. The program matches these observations against its

models and, when the user is finished volunteering information, proceeds to ask the user for
additional information that will he'p confirm the best matching model. At any time during the
consultation, the user can interrupt to volunteer new information, change previous

stotements, or request a: avel:ation. Thus, PROSPECTOR operates as a mixed-initiative
system.

The following edited excerpt frcm a PROSPECTOR run illustrates many oi these ideas.
The data for the run describe a fictitious porphyry copper deposit that has some, but not all,
of the desired characteristics. We begin at the point where the user siarts volunteering
information to the system. In this excerpt, the user's answers are always given in
emboldened upper cese, the system's comments are In regular type, and explanatory
comments are in italics.

1: THERE IS QUARTZ MONZONITE

QUARTZ MONZONITE (6)

| 2: THERE IS A CRETACEOUS DIKE

CRETACEOUS DIKE (6)

3: THERE 18 SERICITE AND PYRITE
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SERICITE (6)

PYRITE (5)

5: THERE MAY BE BIOTITE

BIOTITE (2)

6: DONE

These simple assertions describe the most prominent rocks, minerals, and alteration
products in the target area. TA¢ system indicates its recognition of each statement by
echoing the stcrement and appending an assigned certainty. Certainty factors range from
-5 (positive that a situation does NOT Aold) to 5 (positive that it does hold). All
assertions made by PROSPECTOR Aave associated certainty factors. T Ae program now
enters the consequent mode of reasoning.

Presently. the models in PROSPECTOR and their scores are:

1 Komatlitic nickel sulfide deposit -- KNSD (0.0)

2 Typa-A porphyry copper deposit -- PCOA (0.0) **current hypothasis**
3 Kuroko-type massive suifide deposit -- MSD (.001009)
4 Western-states-type sandstone sranium deposit -- WSSU (0.0)
6 Mississippl-Valley-type laac/ dnc deposit -- MVTD (-4.8)

Which of the above wauid you like to rule out? NONE

T he uolunicered information was sufficient to rule out one of the models, but was not
nearly specific enough to establish any of the others. The choice of the second model as the
current hypothesis was dased mot om its certainty, but on the number and types of
connections between it and the volunteered statements. To avoid a possibly fruitless
investigation of unpromising models, the system gives the user the op portunity to exclude
models of lesser interest. In this case, the user allows all of the models to de explored, and
the system begins with the current RypotAssis.

| am considering the possibility of a

( Type-A porrhyry copper deposit == PCDA)
in the terget area.

The following questions are intexded to establish the nature of the
pstrotectonic setting. |

1--To what degree co you believe that: &
( the target area is in a continental margin mobile belt ) 7 -2

This is a discouraging answer for the PCDA model, and it removes a context needed for
the investigation of other properties of the continental margin mobile belt. |

The following questions are intended to determine the nature of the
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regional environment.

2--To what degree do you believe that:
( there are granitic intrusives in the region) ? &

3--To what degree do you belisve that:
( the region contains an abundance of small stocks ) 7 ~3

8--To what degree do you believe that:
( igneous rocks in the region have porphyritic texture ) 7 WHY

| am trying to establish whether some of the intrusive rocks in your
area have textures suggestive of a hypabyssal to subvolcanic environment.
Porphyry textures resulting from the rapid cooling and crystailization
of a silicate melt which contains large mineral grains are suggestive
of relatively shaliow levels of emplacement.

Like MYCIN, PROSPECTOR provides a variety of comands for doing such things as
requesting a summary, changing previous answers, or volunteering additional formation.
The above response to a WHY commend is not automatically generated from the rule dut
is merely stored text associated with the space.

8--To what degree do you believe that:
( igneous rocks in the region have porphyritic texture } ? 5

My certainty in (the texture and morphology of the intrusive system
suggest a subvolcanic (hypabyssal) regional environment ) Is now: 4.824

Do you want to pursue this further? NO

At this point the systens noted that the certainty for the hypothesis about a Aypabyssal
environment was above 4.5, and it also noted (Rat if the remaining rules were answered in
the most unfavorable way possible, the certainty could nol fall below 4.5. To save time, it
let the user decide vihether or not to continue working on this subgoal.

T he questioning continues as above until it becomes necessary to consider properties tAct
vary within the target area. TAus, for the first time it becomes necessary io be able to use
the rules more than once, and & communication convention must be established to
distinJuish different spatial locations.

Porphyry copper deposits are often composed of characteristic zones of
alteration and mineralization. (In some cases these can be looked upon as
different stages superimposed pon one another.) | shall cad the most
prominent such zone Zone 1. Even though you may have already identified
this zone as, say, the propylitic zone or the sericitic zone, | need to

. consider other possibilities as well. Thus, the following questions are
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intended to determine the possibilities for Zone 1.

25--To what degree do you believe that:
( there are fresh-looking teidspars in Zone 1) 7 =8

Questioning continues in this manner. Eventually, PROSPECTOR establishes that two
zones exist in tAe region of interest, and after examining each in detall, it concludes that
their geologic makeup supports the hypothesis that Type-A porphyry copper exists in the
region.

On a scele from -6 to 5, my certainty that( thers «re alteration zones
that are tavorabie for a Type-~A porphyry coppe’ deposit ) is now 4.833

There are two favorable factors; in order of importance:

2.3.1: 1. there is a sericitic zone in Zone 1 (4.834)
** gstablishes 2.3.1 **

2.3.1: 2. there is a potassic zone in Zone 2 (4.499)

There are many factors that would have been unfavorable, had no favorable
factor existed to override them; in order of importance:

2.3.1: 3. there is a barren-core zone in Zone 1 (-5.0)

2.3.1: 4. there is a potassic zone in Zone 1 (-5.0)

2.3.1: 6. there is a propylitic zone in Zone 1 (-5.0)

2.3.1: 6. there is a sericitic zone in Zone 2 (-5.0)

| 2.3.1: 7. there is a propylitic zone in Zone 2 (-4.989)

2.3.1: 8. there is a barren-core zone in Zone 2 (-4.408)

For whichof the above do you winh to sec additional information?
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Knowledge representaiion

The network structure tha. Is used to represent the geological knowledge embodied in
PROSPECTOR is called the Inference network, which guides the plausible reasoning
performed by the system. The nodes in this network correspond to various assertions, such
as "There is pervasively blotized hornblende* or "There is alteration favorable for the
potassic zone of a porphyry copper deposit.” In a particular run, any asser Jon may be known
to be true, known to be false, or suspected to be true with some probability.

Most of the arcs in the inference natwork define inference rules that specify how the
probability of one assertion affects the probability of another assertion. For example, the
presence of pervasively biotized hornblende .uggests the potacsic zone of a porphyry
copper deposit, and the absence of any biotized ho'nbiende is very discouraging for that
conclusion. These inference rules correspond to the production rules used in MYCIN. The

remaining arcs indicate that an assertion is the “context” for another assertion, preventing
conclusions from being drawn until the right contexts are established. For example, one
should establish that hornblende has baen altered to biotite before asking about the degree
of alteration.

The primary task confronting a geologist who wants to prepare a new model for
PROLPECTOR is the representation of his or her mody: es an inference network. The current
system containa models of five different types of deposits, developed in cooperation with
five differant consulting geclogists. The following statistics give a rough indication of the
size and complexity of these models.

| Mode) hssertions Rules

Koroko—type massive sulfide 39 34
Mississippi-Valley-type lead/zinc od 29

Type=A porphyry copper 187 91Komatiitic nickel sulfide 75 49
Rol)-front sandstone uranium 212 133

Total: 541 327

To allow certain kinds of logical reasoning by the system, each assertion is
represented as a “space” in a partitioned semantic network (Hendrix, 1376a). A typical
space esserts the hypothetical existence of physical entities having spectiic properties
(suck as being composed of biotite) and participating in specific relations (such as an
alters ‘ion relation). In addition, a large taxonomic network dJeccribes Important
element/subset relations among the terms mentioned, such as the fact thet uiotite is a mica,
whici iis turn is a silicate, which in turn is a mineral.

The articulation of assertions as a set of relations allows the system tc recognize
subsot/superset connections between pairs of assertions. For example, the assertion that
“Therc is pervasively biotized hornblende” is clearly related to the assertion that “There is
mica”; assertion of the first also asserts the second, and denial of the second denies the
first. This kind of recognition is used in two man ways. First, ‘t provides important intarmodel
and intramodel connections beyond those given explicitly t- the inference fuies. Second, it
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aliows the system to recognize connections between information volunteered by the user and
the coded models.

Probabilistic reasoning

some of the logical constraints that exist between spaces have probabilistic
implications. in particular, If A is an instance of (subset of) B, then the probability of A can
never exceed the probabliity of B. We maiitain this constraint by automatically generating
certain inference rules. For example, if evidence E could raise the probability of A above the
probability of B, then we generate a rule from E to B that will increase the probability of B
sufficlently to just satisfy the constraint. The exact procedure used here is described in
Duda et al., 1977.

Since the various inference rules interconnect to form an inference network, when the
user provides some evidence this information can change the probabilities of several
hypotheses, which in turn can change the probabilities of hypotheses that d:spend upon
them. The probability formulas determine exactly how these probability changes propagate
through the inference net. (The reader might also refer to the handbook articles on IRIS and
CASNET for other discussions of propagation.)

Control

As mentioned earlier, PROSPECTOR is a mixed-initiative system that begins by allowing
the user to volunteer information about the prospect. This volunteered information is
currently limited to simple statements in constrained English about the names, ages and
forms of the rocks and the types o! minerals present. These statements are parsed by
LIFER--a natural language interface facility developed by Hendrix (1877)--and represented
ss partitioned semantic networks. A network matching program compares each of these
volunteered spaces against the spaces in the models, noting any subset, superset, or
equality relations that occur.

if a volunteered space is exactly equal to a space in a modal, the probability of the
model space Is updated and that change is propagated through the inference network. If a
volurnteersd space is a subset of a space in a model and if it has a higher probability than
the model space, then once again the prubability of the model space is updated and that
change |s propagated through the inference network.

Unfortunately, if the volunteered space matches a superset of a model space (which
usually occurs), no protatility change can be made unless the user expresses doubt abcut
the situation. For example, if the user mentions biotite, the probability of the space that
asserts that there is pervasively biotized hornblende is unchanged, uniess the user has said
that he or she doubts that there is any biotite. However, it is obvious that the system may
want to follow up this observation, and the axistence of the connection to the model is
recorded.

When the user has finished the initial volunteering, PROSPECTOR scores the various
models on the basis of the number and types of connections that have occurred and selects
the “est matching model for further investigation. He e the basic control strategy is MYCIN-
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like backward chaining or consequent reasoning. At any given time there is a current goal space
whose existence Is to be determined. The initial goal space is the one that corresponds to

the best matching model. The various spaces in the models either represent evidence that
can be sought from the user (are “askable”) or internal hypotheses that are to be deduced
from evidence (are “unaskabie®). Naturally, the initial goa! space Is always unaskable. If the
current goal space has any unestablished context spaces, they are pushed on the goal
stack and one of them becomes the new current goal.

If the current goal is askable and has not heen asked before, the user is asked aocout
it; the effects of the answer are propagated through the inference network; and the process
is repeated. If It Is unaskabie, it must be either the consequence of one or more Inference
rules or a logical combination of one or more other spaces. in the former case, the rules are
scored to determine their potential effectiveness in influencing H, and the antecedent of the
Lost scoring rule becomes the next goal. in the latter case a predetermined supporting
space becomes the next goal. in either case the same procedure is repeated until either:
(a) The top-level goal becomes so unlikely that another top-level goal is se!scted, (b) all of
the askable spaces have been asked, or (2) the user interrupts with new volunteered
information.

Summary

This brief overview covers the basic knowledge representation and inference
mechanisms used in PROSPECTOR. Many aspects of the systum have not been mentioned,
such as the treatment of quantitative evidence, the matching procedure, the use of graphical
input, the infarence network complier, the explanation system, model acquisition aids, and
the test and evaluation effort.

The five *sodels i the current system are but a fraction of what is needed for
comprehensive coverage, and even these models have only recently achieved the degree of
completeness required for doing meaningful evaluations. Limited initial tests have shown very
close agreement between the evaluations provided by the system and the evaluations of the
model! designers, using data from actual deposits of the types modeled. More information on
the system, the extent of its geological knowledge, its performance on known deposits, and
its possible applications can be found in Duda et al., 1878.
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