
QUALIFYING EXAMINATIONS IN COMPUTER SCIENCE, 19654978

edited by

Frank M. Liang

| STAN-CS-79-730

April 1979

COMPUTER SCIENCE DEPARTMENT

| School of Humanities and Sciences
STANFORD UNIVERSITY





QUALIFYING EXAMINATIONS IN
COMPUTER SC | ENCE

1965 - 1978

by
the Stan ford Un iversity

Computer Science Department

edited by
Frank M. Liang

Abstract

Since 1965, the Stanford Computer Science Department has [periodically given “qualifyingexaminations” as one of the requirements of its graduate program. These examinations are given in
each of six subareas of computer science: Programming Languages and Systems, Artificial
Intelligence, Numerical Analysis, Computer Design, Theory of Computation, and Analysis of
Algorithms. This report presents the questions from these examinations, and also the associated
reading lists.

The preparation of this report has been supported in part by NSF grant MCS 77-23738 and in part
by IBM Corporation.





Foreword

This report complements the collection of “Comprehensive Examinations in Computer Science,
1972-1978" published last fall as Stanford Computer Science Report CS-677; it contains most of our
department’s qualifying examinations since they were first given in 1963.

Originally each student was required to pass the “Systems Qual” plus two other area quals of
his or her choice. These quals were usually written exams that lasted 3 or 4 hours. Since 1972 we
have changed the policy: now the requirement is to pass a “Comprehensive Exam” plus only one of
the area qualifying exams. Because of the fewer number of students taking each qual, they are now
often given orally; some of these exams are not included in this report.

Since these examinations go back to the earliest days of computer science education, they have
considerable historical value. Can the computer scientists of 1979 solve the problems of 1965 more
easily or less easily than the students of 19657

But besides this obvious historical value, the questions in many cases still have considerable
relevance and interest; in fact, a lot of nice results appear on these pages, heretofore unpublished.
(For example, see the 1970 Systems Qual, question 4, or the 1971 Systems Qual, question 2.) I
believe every computer scientist will gain much from browsing in this book.

Unfortunately we do not have written answers to most of these exams, so the reader 1s on his
own. We have, however, included answers to the four take-home qualifying examinations in
Analysis of Algorithms; if I may take the liberty to say so, these examinations and answers have
particular interest, since they represent subject matter that 1s taught somewhat differently at
Stanford than at most other departments of computer science.

The scope of the exams was roughly defined by reading lists that were given out periodically
in each area. The references from these lists are included at the end of the report, along with the
dates of the reading lists in which they appeared.

As with report CS-677, Frank Liang deserves enormous praise for his labors in collecting and
editing this material.

Good reading!

D. E. Knuth

March 1979
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May 1965 Systems Qualifying Exam

L. Programming.

Construct an algorithm to determine the shortest path between any two points of a network, under
the constraint that this path consists of no more than a given number of legs, where a leg 1s the
direct path between two points. Note that the direct path between two points need not be the
shortest path.

Write the algorithm as an Awrcor procedure for the B5500 computer, using the following procedure
heading:

PROCEDURE SHORTESTPATH (A, B, N, L);
VALUE N, L; INTEGER N, L; ARRAY A,B [1,1];

N denotes the number of points in the network. A is the NxN matrix such that A[ I, J] denotes the
distance of the direct path between points with indices I and J. The procedure must not alter A. B
1s to represent the resulting NxN connection matrix whose elements B[ I, J] are the shortest paths
between points I and J with a number of legs s L.

Note: Write your program on the coding paper supplied. It will be keypunched and tested on the
computer.

2. Algebraic linguistics.

LetG(V/,T,P,S) be a simple phrase structure grammar, where V 1s the vocabulary, T the terminal
vocabulary, P the set of productions, and § eV. Suppose all productions have the form

U-x

where Ue V-T, x eV* and U =x. (V* is the set of all strings composed of symbols of V, including
the empty string e.

It is always possible to construct an equivalent grammar G’(V/,T, P’, S), such that

L(G’)= L(G) - {¢}

and such that there is no production in P’ of the form

U > e.

(a) For the following two examples find equivalent grammars with the properties described
above.

(1 )S8S~-A4
A »aA

AAD

Ae



2 SYSTEMS QUALIFYING EXAM

(2)  <procedure heading> :=
<procedure identifier> <formal parameter part>;
<value part> <specification part>

<formal parameter part> ::=
<empty> | (<formal parameter list>)

<value part>::=

<empty>| value <identifier list>;
<specification part> :=

<empty> | <specifier> <identifier list>; |
<specification part> <specifier> <identifier list>

(b) Why should a compiler designer be interested in finding such equivalent grammars?

(c) Describe a general method for constructing the discussed equivalent grammar.

3. Programming systems.

Construct an algorithm in Arco 60 to translate an arithmetic expression of Arcor 60 into an
equivalent reverse-polish string of operands and operators. For input and output use the primitive

procedures “insymbol” and “outsymbol”, and assume that identifiers and numbers are represented by
the symbol A. Do not consider the occurrence of conditional expressions and function designators.

The ALrcoL report and the Report on Input-Output procedures “insymbol” and “outsymbol” are
available for consultation.

4, Switching circuit theory.

A diagram is given below of a simple sequential circuit. The input variables A and B are “pulse”
variables, that is, “no pulse” means false and “pulse” means true. Input pulses appear on only one
lead at a time and are separated by a time interval greater than the resolution time of the circuit.
The flip flops are set-reset. (A pulse on R sets r to true and s to false, and a pulse on § sets s to
true and v to false.

| Q 2

, IE ~.. output
input X

| } -
\/

/\

OO (U



MAY 1965 3

(a) Draw a state diagram (transition graph) which represents the above circuitry, showing the
relationship between mput pulses and state transitions.

(b) Give a short description of the relationship between input pulses and output pulses.

J. Storage and storage access.

(a) It 1s possible to construct a random access memory out of a variety of materials and
components. The majority of basic organizational principles and problems of random access
memories are common to this wide range of technologies.

Using diagrams of memory elements and structures (including wiring) constructed from a
technology with which you are familiar, discuss the following:

(1) The principles of operation of the memory element you have chosen.

(2) The basic organizational principles and problems of a random access memory organized
at the bit level.

(3) The basic organizational principles and problems of a random access memory organized
at the multiple-bit (word) level.

(4) The relative merits and demerits of the above two organizations.

(5) The major factors limiting memory speed.

(6) Other memory elements you know of (just list, you need not expla).

(b) There are a growing number of situations where it may not be possible or desirable to
maintain a user’s entire program in the “fast” main store of the computer and therefore it
becomes essential to make efficient use of a fast main store-secondary storage device
combination, such that machine speed 1s not degraded unnecessarily and the user can program
as 1f he had direct access to a single-storage device. Schemes to accomplish the above go
under various names, such as one-level-addressing, paging, and program segmentation.
Several such schemes have been proposed; some which you may be familiar with are the
techniques adopted by the designers of the Atlas, IBM 360, and B5000. Using appropriate
block diagrams of one of the schemes above or any other you are familiar with, discuss the
following:

(1) The basic features and problems of such a memory organization.

(2) A method of protecting the memory so that one user cannot enter another’s program.

(c) Access to the contents of a memory location may be gained from the information contained in
a data word either by special hardware or by program. If the access 1s achieved by a search
technique by hardware, the term ‘“‘content-addressable memory” is often used. Discuss the
organization of such a memory.

If the address is generated by the program as a function of the data, the term “hash coding” is
sometimes used. Discuss such a scheme and the type of situation in which it is useful.

(d) Machines such as the KDF9 and B5000 make extensive use of what 1s often called implicit or
zero-addressing (although all other machines also use such a scheme to some extent). Discuss
briefly what 1s meant by such an addressing scheme and the storage device organization of a
machine such as the BS000 or KDF9 which allow its extensive use.
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6. Machine organization.

Although there are many differences in the way in which different computers are organized, there

are, nonetheless, certain common features. In particular the central processor of a machine must

contain or have access to certain registers for holding instructions and data while carrying out its

functions. This question deals with the dynamics of moving data into and out of the registers of a

machine, called MACHINE, described below.

Although the MACHINE is not completely specified, the parts essential to the question are described.

In fact, some of the descriptive material is not needed for this question.

It is possible to carry out the following fixed-point arithmetic, fetch, and store operations with two

machine instructions:

(1 )Ac « C

2 B «+ (C + B) x A

where initially C is located at the symbolic address M(C), B is at M(6), and A is at M(A); Acis one of

the arithmetic registers described below, In executing these two instructions the MACHINE must go

through a sequence of events involving register clears and memory cycles. There are four types of

cycles through which the machine may go; these are described below.

Problem: Fill in the table on the next page showing the contents of each of the three control
registers, the three arithmetic registers, and the memory register at each stage of execution of the

operations indicated by (1) and (2) above. The table provides for all machine cycles whether called

for or not and leaves space for memory fetches. Draw a line through any of the cycles not called for.

Assume that the first instruction resides in the actual memory location ( 1818),9 and has been

fetched to the Function Register to start the operations. When filling in the address portions of the

Function Register you may use the symbolic addresses M(C), M(B), and M(A). You may use decimal

addresses where actual addresses are called for. Assume A, B, and C are full register fixed point

numbers. You may use C( XXXX);o to indicate content of memory location at decimal XXXX. Mark

irrelevant contents by a dash. Let Fpg= 8 throughout.

Control Registers: FR, DR, CC

Arithmetic Registers: Ac, Qt,P

Memory Register: MR
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6 SYSTEMS QUALIFYING EXAM

The MACHINE

BITS 18 314 7{8 11 12 15116 19/20 23124 27 28 31|32 35136 39
B-ADDRESS ORDER TAG A-ADDRESS

SIGITS S, S, | Ss | Sq] Ss | Se] S;| Ss] Se] S

SIGIT = SEXADECIMAL DIGIT (base 16)

Word structure for instructions.

When a MACHINE word is used as an instruction, it consists of two 3-sigit addresses, called the
B-address (bits O-11) and the A-address (bits 28-39), a P-sigit order portion (bits 12-19), and a
2-sigit rag portion (bits 20-27). The order and tag portions specify precisely what operations are to
be performed when this instruction is obeyed. In this sense, the order-tag portion is an operation

code. Each instruction is brought into the Function Register (FR) prior to being executed.

Consequently, the bits of an instruction are referred to as Fg through Fag.

Among the common uses of the A-address are:

(1) Specifying the memory location of the multiplicand in multiplication, the divisor in division,
or of the subtrahend in subtraction.

(2) Specifying the memory location of the addend in one type of add operation.

(3) Specifying the number of shifts in a right or left shift operation.

(4) Specifying the memory location into which results are to be stored in some types of store
operations.

(5) Specifying the memory location from which the next instruction is to be obtained in some
jump operations.

(6) Specifying the first memory location involved in the transfer of data in input-output
operations.

Among the common uses of the B-address are:

(1) Specifying the memory location of the addend in one type of add operation (preliminary add).

(2) Specifying the memory location from which the next instruction is to be obtained in one type
of jump operation (jump to 8).

(3) Specifying the memory location to be used as an index register (B-box).

(4) Specifying the memory location into which results are to be stored in one type of store

operation (results to B).
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The Control Registers

Function Register (FR)

The 40-bit Function Register contains the current instruction being executed. The FR is treated as

four registers, FRB, FRO, FRT, and FRA, holding the effective B-address, the order, the tag, and the

unindexed A-address, respectively.

Dispatch Register (DR)

The Dispatch Register is a 12-bit register used to hold the address of the most recent word
consulted in any memory cycle of an instruction.

Control Counter (CC)

The Control Counter, made up of 12 bits, holds | + the address of the instruction currently in FR.
It 8 normally increased by 1 at the end of the last cycle of an instruction, i.e. at the end of the Fetch

Cycle which brings in the next instruction. Jumps are treated specially but need not be considered
herein.

REGISTERS OF IMPORTANCE TO PROGRAMMER IN UNDERSTANDING MACHINE ARITHMETIC OPERATIONS

Memory ,, ooer ster AR) | |

| 0] Quotient

Accumulator (Ac = 0 fociaer (qt) |
Simplified Data-flow Diagram for MACHINE Arithmetic
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Memory Register (MR)

The Memory Register is a 40-bit register which acts as a buffer unit, or transfer register, between

the magnetic core storage and the arithmetic and control units.

It is always the contents of MR that are sent to the memory when a Store or Input instruction is

executed, with the word(s) to be stored always initially sent to MR (one word at a time), then to the

memory. Likewise, each word recalled from the memory for use by the control, arithmetic, or output

unit is always sent first to MR, and from there to the unit or register. This word is not addressable.
However, several instructions are available which make use of the current contents of MR.

Accumulator and Quotient Registers (Ac and Qt)

All arithmetic operations and most store orders on the MACHINE require use of either the

Accumulator, the Quotient Register, or both. These registers are symmetric in all arithmetic

operations except multiplications and division, as well as in all store orders except 8 orders (not
considered herein). In general, one or two bits in the instruction determine which register will be
used.

Ac and Qt are 41-bit registers (8,898). ..839 and QyQp . ..Ggq, respectively). As arithmetic registers,
either can be used to hold a summand and/or the sum. In multiplication, Qt holds the multiplier, MR

the multiplicand, and the product, a 79-bit number, is left in Ac Qt, with the 40 most significant bits

in Ac (ag ...8gg). Also, 2°39 times the original contents of Acis added to the product. In division,
Ac and Qt together form a 79-bit dividend (ag. ..83980. ..G38), MR holds the divisor, Qt holds the
quotient and Acthe remainder. Acor Qt may be used as a transfer register (to move a word from

one memory location to another) by adding the word to a cleared register (via the plusser) and
storing the result.

Ptusser (P)

In all MACHINE additions, the contents of MR and the contents of either Ac or Qt are added in the

Plusser and the sum returned to either Ac or Qt. The selection of Ac or Qt is determined by the
particular instruction being executed.

The Plusser is neither addressable nor usable at the programmer’s discretion, but i$ used by the

MACHINE in performing additions.
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Execution of the MACHI NE' s instructions

The execution of any MACHINE order requires from one to four memory cycles:

(1) Preliminary Cycle (possibly preceded by preliminary clear)

(2) Operand Cycle

(3) Result Cycle

(4) Fetch Cycle

Every instruction involves a Fetch Cycle. The other three cycles occur when needed to implement

the particular instruction.

Preliminary Clear (PC 1)

Bit 23 in the Tag designates either the accumulator (bit 23 = 0) or the Quotient Register (bit 23 = 1)

as R1 (the register being used). At the beginning of an instruction, it is possible to clear Rl to zero,

to 2-1, or to 2°39 if desired. (The clears to 2-1 and 2°39 are useful when it is desired to increment
by one the B or A portion of some memory location.) Which clear, if any, is to be used 18 governed

by bits 21-22 of the Tag:

Fa1 Faz

8 8 do not clear Rl

8 clear R1 to zero

8 clear R11to 2°!

clear R1 to 2739

The above table with the designated R1 may be written as follows:

Fai Faz Fag RI

8 8 8 Ac no preliminary clear

8 0 1 Qt no preliminary clear
8 1 8 Ac clear Acto zero

8 1 1 Qt clear Qt to zero

1 8 8 Ac clear Ac to 2"!

8 Qt clear Qt to 2°!
8 Ac clear Ac to 2°39

i i Qt clear Qt to 2°99
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Preliminary Cycle (PC)

A preliminary cycle occurs whenever either of the following is requested:

(1) A Preliminary Add (Fpg5= 1)

(2)  B-boxing (Fag= 1) (not needed in this discussion)

In either case, the following 40-bit number is brought into MR: the contents of memory location B,

where B is the three sigit B-address portion of the instruction. >

Preliminary Add: In the case of the preliminary add, the number which has just been brought into

MR from memory is added to the contents of Rl (Acif Fpg=8, Qt if Fpg=1), and the sum is placed
back in Rl.

Fas

8 no preliminary add

1 C(R1) + C(xyz ) to Rg, where xyz is the B address of the instruction

The table for these operations may be written as follows:

Fas Faz RI

8 8 Ac no preliminary add

8 1 Qt no preliminary add

1 8 Ac C(Ac) + C(xyz) to Ac

1 1 Qt C(Qt) + C(xyz)to Qt

Exceptions: Preliminary add with multiply: Qt « C{(R1)+ C{xyz); with divide: Ac « C(R1) +
C(xyz).

Operand Cycle (OC) (additions page 12 and multiplications page 13)

The execution of the fundamental operations of most instructions occurs during the operand cycle.

Only the Stop orders, the various Store orders, and the Jump orders omit the operand cycle, since

these operations by their nature must occur during another cycle (e.g. store order — result cycle, jump

order — fetch cycle). If the operand cycle uses the memory, the A address i$ consulted (or the

A-effective address, if B-boxing is indicated).
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Result Cycle (RC)

A result cycle writes the contents of Ac, Qt, or MR into the memory. If the contents of Acor Qt are

being stored, they are first sent to MR; then MR (all or part of it) is stored into the memory as

prescribed in the instruction.

A result cycle may be obtained in one of two ways: (1) The particular order specified by the order

portion of the instruction may involve a store into memory; or (2) the results to B option may be
invoked by bit 24 in the Tag portion of the instruction. The former case is described under the

individual orders involved.

Result to B: The Faq bit in the tag makes it possible to store the contents of one of the arithmetic

registers, Acor Qt, into the memory without using a separate instruction for this purpose.

Normally, Foq= 1 causes the contents of the register containing the result of the operation performed

to be written into the memory at the location specified by the B-address portion of the instruction

(or by the B-portion of the B-box if Fyg= 1). Fja in the order indicates where the results is to be

found, i.e. Fjg= 8 implies that the result is in Ac; F;g= 1 implies that the result is in Qt.

Fetch Cycle (FC)

During the Fetch Cycle, the next instruction is brought into FR, ready to be executed. Thus, FC

always uses the memory and must occur in each instruction. if no jump is involved, the address

consulted comes from the control counter (CC) and hence is the address of the instruction located in

the memory immediately after the current instruction.

o
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2 orders (Add, Subtract) Sg=1

S354

18 Rl1+ a = Ac

11 Rl + a =» Qt

12 Rl - a= Ac

13 Rl - a =» Qt

14 Rl + |a}l= Ac

15 Rl + |a] =» Qt

16 Rl ~-Ja}l= Ac

17 R1 - ja} =» Qt

18 RI + a =%Ac,a

19 Rl+ a »(Qt,a

1A RI =a=+ Aca

1B Rl - a »-Qt,a

1C Rl + [a] =» Ac,a

1D Rl + Ja] =» Qt,a

l1E Rl - |a} + Ac,a

IF R1 - |a] =» Qt,a

Fog Rl Fig RZ

8 Ac 8 Ac

1 Qt 1 Qt

Fai Fao Prelim Fog Prelim
Clear Add

8 8 Hold RI 8 none

8 1 8 = Rl Ri+b =» Rl

g 271 4 Rl

| {29% 4p]

Fie Fo2q Main Operation

8 8 Rl1Opa=R

8 RI Op a #» RZ,b

1 8 Rl Op a » R2,a

Rl Op a + R2,a
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n orders Sg= 2

Result to A

no yes

S3Sq S354 |

28 28  Full-precision unrounded multiply
21 29  Full-precision unrounded divide

22 2A  Full-precision rounded multiply

23 2B Full-precision rounded divide

24 2C Half-precision unrounded multiply

25 20  Half-precision unrounded divide

26 2E Half-precision rounded multiply

27 2F  Half-precision rounded divide

In full-precision multiplication, the multiplier (m) is assumed to be in Qt, the multiplicand (q) at the
A-effective address. The result in Ac Qt after multiplication is mq + 2-3%p + 277%qo where p is the
contents of Ac before multiplication and qg is the O-bit of the multiplicand. Note that the result is

in (apa; ...8390p.  - Gag) With qzq holding the sign-bit of the multiplier.

In all divide orders, the dividend is assumed to be the 79-place number in Ac Qt (=
apd] ...a390p...03g). The divisor is at the A-effective address. After the completion of a
full-precision division order, Qt holds the 40-bit quotient, and Ac holds the true remainder.

Preliminary addition with n orders: Normally, the result of a preliminary addition is sent to Rl.
Multiplication and division, however, deviate from this rule: In multiplication, the preliminary add
is c(R1) + c¢(B) to Qt. In division, it is c(R1)+c(B) to Ac.

Result to A: On 28, 2A, 2C, and 2E orders, the most significant part of the product (Ac) is stored into
memory at the A-effective address, replacing the multiplicand. On 29, 28, 2D, and 2F orders, the
quotient is stored into memory at the A-effective address, replacing the divisor.
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March 1966 Systems Qualilying Exam

1. Logic circuits and switching theory.

(a)

EEENEINA
ot EEEEINE+

P=

“TT » A B B c C Db D

Using the convention that +E = 1 and GROUND = 8, what functions are realized at fy, f;, and
for

(b)
Clock

o. | al la a | a,

NES
Cc

logic

c,| “1

The box labeled “logic” 1s logic which will, depending on the state of flip-flops FFC, and
FFCy. transfer the contents of the 3-bit flip-flop register A into the 3-bit flip-flop register B
either unchanged, complemented, left-shifted one place, or right-shifted one place when a

signal appears on clock. The transfer is controlled by flip-flops FFCy and FFC, as given in
the following table.

c, Cp transfer

8 0 unchanged
8 complemented

0 left-shifted one bit

right-shifted one bit

15
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The flip-flops of register B cannot be assumed cleared at the time of transfer and are set-reset
flip-flops. On aleft shift, flip-flop FFBy 1s reset; and on a right shift, flip-flop FFB 1s reset.

Write reasonably minimal logic equations for Rp, Sp, Ry Sy, Rp, Sg in terms of the input
variables.

(c) The symbol below produces the exclusive-or function:

X —— S aT

y —[e}— xy ¥ xy
The symbol below indicates a unit delay

Given an input train of pulses on line I as shown in sequence S;, what sequence is produced

at f relative to the pulses on §;? Assume no delay in the exclusive-or gates.

D; TY {Bl—5
ty ot, 3h tg te to tg tg

S, 0 0 1 0 0 0 0 0 0 0 0

2. Machine organization.

An algorithm for rapid binary multiplication is given below. You are hot expected to have seen it
before. Do not spend time figuring out why it works. Draw a block diagram for a multiplication
unit which would perform this algorithm. The unit must have some correspondence with a unit
that might actually be built. Show blocks for the storage registers, execution control logic. Show
lines for the data flow.

(a) Describe the function each block performs. In the case of registers, specify their length, and in
the case of blocks performing control operations, describe the control signals generated.

(b) Rewrite the algorithm in terms of the micro-operations of your unit.
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An algorithm for binary multiplication of positive numbers using uniform shifts of wo

(1) Assume the multiplier 1s divided into two-bit groups, an extra zero being added to the high
order end if necessary «produce an even number of bits.

(2) The multiplier will be scanned from the low order Co high order end.

(3) One addition or subtraction to or from the partial product will be made on each iteration for
each group and, using the low order bit in the group as reference, this addition or subtraction
will consist of either woor four times the multiplicand. These multiples of the multiplicand
may be obtained by shifting the position of entry of the multiplicand one or wobits left of
the reference position.

(4) The first cycle may require special handling as described below 1m (S).

(5) The general rule is that, following any addition or subtraction, the resulting partial product
will be either correct or smaller than it should be.

(6) The multiple of the multiplicand to add or subtract from the partial product at a given time 1s
determined by decoding the two bits of the current group and the low order bit of the next
higher order group. The multiple 1s given in the following table.

multiplier operation multiplier operation

low order current n xmultiplicand low order current n xmultiplicand

bit next group bit next group
high order high order
group group

0 0 0 0 1 0 O -4

0 0 1 +2 1 0 1 2

0 1 0 +2 1 1 0 -2

0 I 1 +4 1 1 1 0

(7) Following the addition or subtraction, the partial product 1s shifted right wopositions. This
shift 1s a 2's complement right shift, assuming subtraction 1s accomplished by adding the 2’s
complement.

(8) On the first cycle, if the low order bit 1s a 1 enter the 2’s complement of one times the
multiplicand into the adder as well as the multiple determined by the table above.

The above can present a design problem if the 2's complement is formed by bringing the 1's
complement of the operand into the adder and adding a carry co the low order bit. ris thus
possible in this first cycle to require two low order carries. To avoid this problem the
following dodge on the first cycle can be used. Always decode the low order bit as a zero and
add the correct multiple from the above table and then use the true value of the low order bit
co determine whether or not wadd the true value of the multiplicand also.

Add if the low order bit 1s a 1. Do not add it if the low order bit 1s a. 0.
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3. Supervisory programs.

(a) Describe in a few sentences the chief operating characteristics of (1) job-shop monitors, (2)
time-sharing monitors, and (3) real-time monitors.

(b) (1) Diagram a transfer table co handle branching between program segments all of which are
located in main storage. Use three segments as an example. Show how the transfer table is
changed if one segment is relocated in core. Explain what must be done if some segments are
stored on auxiliary file memory.

(2) Using diagrams, describe the paging and dynamic relocation scheme for some particular
computer such as the ATLAS, SDS 940, GE 645, IBM 360/67, or CDC 3500.

(¢) Consider a routine for scheduling tasks for processing by three resident programs, each at a
different priority level. Let HP be the program with highest priority, for example a real-time
control program. Let LP be a program with second highest priority, for example and on-line
data analysis program. Let BG be the program with lowest priority, for example a
background program. A program is permitted co complete each tasks and then it goes into a
waiting loop until the scheduler provides a new message (or data) co initiate a new task.
Construct a flow chart to show a scheduling routine for processing task sequences through
these three programs.

4, Data channels.

(a) . What 1s the function of a data channel?

(b) Early computers did not have data channels. How were the functions now performed by data
channels handled on early machines?

(c) Show schematically how a data channel is related Co other functional units of a computer.
Show data paths by solid lines and control paths by dotted lines.

(d) What are some of the scheduling problems that arise in the use of a data channel (both ends)?

(¢) What are the principal hardware features that are found in a data channel?

(f) ~~ What 1s a multiplexor channel? How does it differ from other channels?

5. Procedure parameters in programming: languages.

Describe (1) the meaning and (2) the mechanism used . implement

(a) the ForTrAN subroutine parameter
(b) the ALcoL name parameter
(¢) the ALcoL value parameter.

Compare and evaluate the three kinds of parameters in the light of their usefulness and the
complexity of the required mechanism.
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6. Syntax, ambiguity, and precedence relations.

(a) Give a formal definition of each of the following terms: (1) language, (2) phrase structure

system, and (3) ambiguity.

(b) Consider the syntax with the following production rules:

Su=A

A :=B|AXB| CXA

B:=D|DYB

C == CYD|D

D: =UAV|2

What language 1s generated? Is the system ambiguous? Give all possible parses of the
following string:

ZYZXZYZXZY2

(c) Define a phrase structure system which generates the same language and which is
unambiguous.

(d) Define your phrase structure system in part (¢) such that it 1s a simple precedence syntax.
Indicate the precedence relations between the symbol pairs in the form of a matrix.

7. “Critical reading of publications”.

In arecent issue of the Communications of the ACM the following "A LcOL" program was published:

Boolean array &0;1) integer k,i,j
comment This 1s the program for computer 1, which may be

either O or 1, computer f= is the other one;
CO: b(i) := false;

Cl: ifk=i then begin

c2: if not b(j) then go to C2;
else k := i; goto C 1 end;
else critical section

b(i) := true;

remainder of program;
£20 to Co;
end

(a) Find and correct the formal errors.

(b) It 1s claimed that if two computers execute this program concurrently, it is impossible for both
of them to enter the procedure “critical section” at the same time. Verify or disprove this
claim.

Note: The computers operate independently. It is assumed that in the procedure “remainder
of program” no reference is made to the variables k and b, nor that any other “shared”
variables exist.
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L Programming languages.

(a) Characterize the principal differences between so-called list processing languages and
algebraic languages like ALGOL and FORTRAN.

(b) Describe the LISP scheme in terms of an ALGOL program. In particular explain the basic
functions CAR, CDR, and CONS in the form of ALGOL procedures,

2. Syntax.

(a) Give a precise formal definition of a context-free phrase structure grammar. Explain the
meaning of the attribute “context-free”. Which part of your definition reflects this attribute?

(b) In connection with analysis of sentences (parsing), the term “bounded context” is often used.
What does it mean, and how 1s this bound usually specified? What is the bound on the
following two grammars?

(1) A=u=B|C D u=xy
B i= DE E = zw

C:=xFu F ie yz

(2) A:=:=B|yB|xC|C D = xy
B =D| BD E := yx
C:=E| CE

(c) Construct an alternative grammar for the language defined by the second example. This
grammar must be unambiguous and have the property that it can be analyzed from left to
right without ever looking ahead more than one symbol.

3. Machine organization.

(a) Outline the essential characteristics of a “Von Neumann machine”.

(b) Briefly explain the following statement: “The fundamental design of a Von Neumann
mache was dictated more by technological necessity than by logical necessity.”

Outline briefly (1) the areas in which these technological constraints have been relaxed since
1946, and (2) the variations in organization which are plausible as a consequence.

(¢) Since Von Neumann (with Burks and Goldstine) published the description of the proposed
Institute for Advanced Study computer in 1946, our concepts of logical organization for the

central computer have slowly evolved. This evolution is illustrated by the IBM 701-7090
series, since the 701 was very close to Von Neumann's 1946 ideas. List at least three
significant aspects of the 7090 which did not appear in Von Neumann's original conception
(or inthe 701).

20



OCTOBER 1966 21

4. Logical design..

(a) Define each of the following representations for decimal digits. Each has been used in one or

more automatic digital computers.

(1) binary coded decimal (I-2-4-8)
(2) 1-2-2-4

(3) biquinary

(4)  excess-3
(5) 2-out-of-5

(b) Design a one-decimal-digit adder for the |-2-4-8 representation. This adder should accept

two input digits A and B, and output a sum digit 8 and a carry digit C.

A

oy )
B C

Present your solution as a block diagram using any or ail of the-following elementary logical

box es:

Iv
NoT AND OR

We suggest that you introduce a binary half-adder:

A S

H.A. a+b=2C+S
B C

as an intermediate step. Be sure to give the logical design of any such building-block circuits

you use.

5. Allocation and scheduling.

Discuss in quantitative detail one of the two following questions.

(a) Give the algorithm for dynamic storage allocation in some system which you know (for

example, the B5500, 360/67, 360/91, or ATLAS). Explain what hardware features (e.g. stacks,
registers, and tables) are utilized to implement this algorithm and how they are utilized. Also

explain what special features in the software are utilized to implement this algorithm.

(b) Discuss the problem of optimization of register allocation (either index or base registers).
Describe an algorithm for optimization of register allocation at compile time. How does this

method compare with any other method you might know?
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1. Logical circuit design.

Certain instructions of the IBM 360 computer contain an address with two index fields. In order to

form the effective address, the contents of two general registers are added to the instruction address

part (called displacement).

op |[xp> |

Cer
: 5 x

0 8 16 2b
s =d+ x+Db

Problem: Design a parallel adder with three inputs yielding the required effective address.

Step 1. Consider bit positions 20-3 1. Design the adder as a series of one-bit-position adders.

Which are the inputs and which are the outputs of this circuit? Derive the Boolean expressions
defining the outputs in terms of the inputs. Explain clearly your method of derivation.

Step -2. Note that the instruction address only contributes to positions 20-31. No triple adder 1s
needed for positions 8-19. Repeat Step 1 for the design of a one-bit-position circuit to be used 1n

positions 8- 19.

Step 3. Draw a diagram showing the interconnections of the various one-bit-position circuits.

2. Languages and parsing.

(a) Give a concise formal definition of each of the following terms:

(1) phrase structure language

(2) context free language
(3) regular (or left or right linear) language

(4) ambiguity

Define precisely the symbols used in your notation, and all intermediate notions you introduce.

(b) Define an unambiguous syntax which generates expressions composed of the symbols
(denoting operands), ®,®, and & denoting binary operators. Use BNF notation. Allow for

parenthetical grouping of subexpressions using the symbols ( and ). Observe the following
rules:

® has precedence over ® and &

@ has precedence over &

22



MARCH 1967 23

(Cc) Describe a parsing method applicable to your grammar defined in part (b). Either write a

parsing algorithm, or, if your method depends on tables, describe the method and list the table

values to be used for your grammar.

(d) Is it possible to define the expressions in part (b) in terms of a linear grammar? Explain
briefly.

3. Programming.

n

It is claimed that the following program computes $= a;, if initially n is a positive integer andFL]

ay, ..., a, are real numbers.

ie1
Ss «0

S «ats i 1¢i+l
YES

Give a convincing proof of this claim.

4, Programming systems.

Describe the principles of a storage allocation scheme used to implement Algol. How are variables

addressed and accessed? Indicate the motivations and reasons for the methods you describe.

Explain which ones are essential, and which ones are merely helpful in increasing efficiency.
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I. Syntax. (35 points)

Read the whole problem before answering any part of it.

(a) Describe a parsing algorithm which will parse sentences of a subset of context-free grammars
using one of the following techniques: precedence, operator precedence, extended precedence,
bounded context, transition matrices, production language, direct reduction, LR(k).

(b) Consider the following grammar:

<P> u=1<S> 1

<IC> := IF EXP THEN

<S> = <]JC> <S>

| <S> u:=<IC>S1 ELSE <S»>

<S> :=<IC>S1 ELSE S1 UNLESS EXP

<S> = Sl

Terminals 1, IF, EXP, THEN, ELSE, UNLESS, Sl
Nonterminals <P>, <IC>, <S>

Start symbol <P>

Is this grammar acceptable to the parsing algorithm you described in part (a)? If not, change
it so that 1t 1s acceptable, without altering the language and with minimal changes in the
structure of the sentences. Then build the necessary tables and subroutines from the grammar
for your parsing algorithm.

Answer one of parts (c) and (d).

(c) Consider the problem of compiling code for the language described m part (b). The meaning
of all constructs except “UNLESS” should be clear; the conditional statement

<IC>S1, ELSE S1, UNLESS EXP

1s equivalent to

<IC>S1, ELSE IF -EXP THEN $1,

Augment your parser with “semantic routines” to generate the test and transfer instructions for
the language. (You may use the grammar produced in part (b).) Specify precisely where each
routine would be called and describe carefully what it would do. Generate only the following
instructions:

JMP A (Jump to label A)
CIMP AEXP (Jump to label A if EXP is true)
A: (the label A itself)
S1 (statement S 1)

24
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(d) (1) Give the formal definition for the class of grammars whose sentences can be parsed by
the parser described in part (a).

(2) Define ambiguity for a grammar and for a language.

(3) Exhibit a nonambiguous context-free grammar which is not in the class defined in
question (1) above.

(4) Exhibit a grammar in the class which is not a finite-state grammar.

2. Operating systems. (25 points)

(a) Consider the three stages of development of operating systems,

(1) What did the first primitive operating systems (e.g. FORTRAN MONITOR SYSTEM)
do for the user?

(2) ~~ What characterizes the functions of the next phase of operating systems (e.g. IBSYS)?

(3) What are the key features of a multiprogramming operating system (e.g. OS/360)?

Answer one of parts (b) and (c).

(b) Describe a functioning operating system, using diagrams where appropriate. Include a
discussion of both function and implementation.

(c) What analytical tools are being used to attack the problems of multiprogramming and
time-sharing operating systems? Discuss at least one such analytical study in terms of model,
technique, and conclusions of the study. You may choose one of the papers listed below or
some other study with which you are familiar.

Denning, P. J., “Memory Allocation in Multiprogrammed Computers”, MIT Project MAC
Computation Structures Group Memo 24, March 1966.

Gaver, D. P., Jr., “Probability Models for Multiprogramming Computer Systems”, JACM 14,
July 1967, p. 423.

Horwitt, L. P., Karp, R. M., Miller, R. E., and Winograd, S., “Index Register Allocation”,
JACM 13, January 1966, p. 43.

Karp, Richard M. and Miller, Raymond E., “Properties of a Model for Parallel
Computations”, SIAM Journal on Applied Mathematics 14, November 1966, p. 1390.

Kleinrock, Leonard, “Time-shared Systems: A Theoretical Treatment”, JACM 14, April 1967,
p. 242.

Krishnamoorthi, B. and Wood, Rodger C., “Time-shared Computer Operations with both
Interarrival and Service Times Exponential”, JACM 13, July 1966, p. 317.
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Nielsen, Norman R., “A Simulation of Time-Sharing Systems”, CACM 10, July 1967, p. 397.

Ramamoarthy, C. V., “The Analytical Design of a Dynamic Look-Ahead and
Program-Segmenting System for Multiprogrammed Computers”, Proceedings 21st National
Conference of the ACM, 1966.

3. Logical design. (15 points)

Answer one of the following two parts.

(a) The three most common fixed-point number representations are one’s complement, two's
complement, and sign-magnitude.

(1) Give the bit pattern in each representation of the quantities +25 and -62, assuming a
word length of 12 bits.

(2) Give a flow chart or other brief description of addition in each representation, noting
how overflow 1s detected and how the sign of the result 1s determined.

(3) State briefly the advantages and disadvantages of each representation, both from the
viewpoints of hardware design and ease of programming use.

(b) Draw a circuit diagram for a time pulse distributer. The circuit has one input which receives
a series of clock pulses. Whenever a pulse appears at the put, a pulse 1s to occur on one of

four output leads in the following fashion: output lead | should have an output pulse with
the 1 st, 5 th, 9 th,... input pulses; output lead 2 should have an output pulse with the 2nd,
6th,10th,... input pulses, and so on.

4, Stack administration. (25 points)

On a stack oriented machine (or interpreter) the stack may used as a repository for various kinds of
program information, such as those listed below.

(1) Storage for simple variables local to a scope (an Algol begin-end block, for mstance).
(2) Return address for procedure or subroutine calls.
(3) Intermediate values obtained during expression evaluation.
(4) Pointers for locating variables local to enclosing scopes.

Describe a single stack structure containing all of this information in a sufficiently general form to
be usable for an implementation of Algol 60.

Describe the action of your stack on procedure entry and procedure exit. One way to do this 1s to
draw before-and-after diagrams.
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I. Syntax. (35 points)

Read the whole problem before answering any part of it.

(a) Describe a parsing algorithm which will parse sentences of a subset of context-free grammars
using one of the following techniques: precedence, operator precedence, extended precedence,
bounded context, transition matrices, production language, direct reduction, LR(k), or some
other similarly powerful method.

(b) Consider the following grammar:

<p> = 1 <be> 1
<be> = be <be> |<ae>=<ae>

<ae> u= a « <ae> | <at>

<at> u= <ai> — <ap> | <ap>

<ap> u= a |(<ae>) | #(<be>)

where

<be> 1s a Boolean expression,
<ae> 1s an arithmetic expression,
<at> 1s an arithmetic term,

<ap> 1s an arithmetic primary,
b 18 a Boolean identifier,
a 1S an arithmetic identifier.

To evaluate a Boolean expression b « <be>, one evaluates <be> and assigns the result to b.
The value of the Boolean expression is then the value of bo. Similarly for the arithmetic
expression a «<ae>. The value of #(<be>) is 1 if <be> is true, 0 otherwise.

Is this grammar acceptable to the parsing algorithm you described in part (a)? If not, change
it so that it 1s acceptable, without altering the language and with minimal changes in the
structure of the sentences.

(¢) Construct the necessary tables, subroutines, etc. for the parsing algorithm and grammar
described in parts (a) and (b). Assume you are writing a compiler for student use and that
therefore the syntactic error detection and recovery facilities are of first importance.

(d) Write the best error message which your scheme could produce for the following invalid
programs.

(1) La) l

(2) La -#b) 1
(3) l==b:=1

(4) Lab)=a l

27
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(e) In parts (a) through (d) we assumed that there were distinct terminal symbols for arithmetic
and Boolean identifier (a and b). Suppose now that the language includes block structure and
declarations and that the following two productions were added.

b z= <identifier>

a == <identifier>

How would you incorporate data-type handling thereby implied in the formal system used in

parts (a)-(d)? What general property of formal parsing schemes does this point out?

2. Symbol table. (20 points)

Considering a symbol table to be a place where a translator stores identifiers and their associated
attributes, present three alternative methods of organizing such a table. For each method, answer
the following questions.

(a) Detail the limitations each method imposes on the language translated (does it handle block
structure, 1s there an upper bound on the length of identifiers, etc.?)

(b) Discuss the method of searching, inserting, and deleting entries in the table.

(c) Give space and time estimates for each kind of table manipulation in terms of the actual
number of identifiers in the table.

(d) What 1s the behavior of the table as it becomes full?

(e) Using one of the tables discussed above, give an explicit algorithm to discover, record, and
recover the address couple (nesting level and order number) for a block structured language.

3. Compiling. (25 points)

Consider a computer with a memory Mand a set of general registers R. M[ 1] is the ith word of
memory and R[ 1 ]1s the 1th general register. Some of the mstructions are defined below:

L R1, R2, A ifR2 = 0 then R[R1] «M[A] else R[R1]J«M[R[R2]+A]
S R1, R2, A ifR2 = 0 then M[A] « R[R1] else M[R[R2]+A]« R[R1]
A R1, R2 R[R1]« R[R1] + R[R2]

D R1, R2 R[R1] « R[R1] / R[R2]

SKIPE R1, R2 iff RLR1] = R[R2] then skip one instruction
SKIPG R1, R2 iff RER1] > R[ R2] then skip one mstruction
B A branch unconditionally to the statement labelled A
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(a) Write an assembly language program to execute statements 3-5 of the following PL/I program
fragment:

DECLARE (I, N, (A, B) (100)) FIXED; [% 1 %/
GET LIST (N, A, B); [x 2 %/
DOI= N/2TO N; /% 3 %/

A(I) = Bl) + I /%4 x/
END ; [x 5 «/

Put an appropriate comment on each line of code. You may use any reasonable format for
your assembly language.

(b) Assume the computer has one more instruction:

SKIPC ~~ R1, R2 RIR1J«R[R1]+ 1,
iff RLR1]J<R[R2] then skip one instruction

Assuming all instruction times are equal, write the fastest program you can to execute
statements 3-5. Give the run time as a function of N.

(c) Outline a code emitting algorithm which approaches your result in part (b). Point out where
it will fall short, and why.

4. Operating systems. (20 points)

Answer one of the following two questions.

(a) Describe and illustrate the important features of some time-sharing system, including such
features as

(1) dynamic relocation of programs
(2) protection
(3) program switching
(4) Interrupt structure and status preservation
(5) the algorithm for memory and processor scheduling

(b) Develop a synchronization mechanism which will (1) avoid mutual exclusion and (2) avoid
simultaneous execution of the critical sections of two otherwise parallel processes. Show a flow
chart or pseudo-Algol code which will carry out the synchronization. If you utilize any
unusual meta-instructions, describe their implementation. The synchronization is to be
independent of the speeds of the processors carrying out the two parallel processes.
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[ Programming languages. (60 minutes)

Do one of parts (a) and (b). .

(a) A number of languages have facilities for defining structures or records, that is, sequences of
components which, in some cases, may themselves have components. For example, ALGOL W,
COBOL, PL/I, the language defined in “A contribution to the development of ALGOL” by
Wirth and Hoare, and the language defined in Standish’s thesis. Discuss and compare these
facilities in three different languages. Some points you may want to consider are:

(I) how the structure 1s defined

(2) how components are referenced
(3) how pointer variables affect the implementation
(4) how much work must be done at runtime to implement the structures.

(b) Consider PL/I-like structures with the following syntax for the declaration:

<structure dec> = DECLARE <components;

<component> :=<level number> <identifier> <attribute> |
<level number> <identifier>, <component list>

<component list> z= <component> | <component list>, <component>
<level numbers == Integer
<attribute> := FIXED| FLOAT| CHARACTER

. Thus each component is a value with a simple type, or it consists of a sequence of
subcomponents. We also require the main component to have level number 1; and if a
component has level number 1 all its subcomponents must have level number i+].

Example: DECLARE 1 BOOK
2 AUTHOR

3 FIRSTNAME CHARACTER,

3 LASTNAME CHARACTER,
2 TITLE CHARACTER,

2 CALLNUMBER FIXED;

One references a component of a structure by the complete sequence of identifiers, leading
from the structure name (level 1) down to the desired component.

Example: BOOK. AUTHOR.LASTNAME ~~ or ~~ BOOK. TITLE.

Your problem is to discuss how a compiler would handle such structures.

(1) Indicate, with diagrams, the format of each symbol table element, in general, and the
symbol table for the above example.

(2) Explain what the semantic routines for the above productions (or other valid ones)
would do in order to parse a structure declaration and make up the symbol table
elements for it. Note: We are not interested in the parsing scheme, but in semantics.

(3) Give the algorithm for finding a symbol table element for a component reference (like
BOOK. AUTHOR. NAME).

30
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2. Syntax. (40 minutes)

The simple precedence relations are defined for a BNF grammar as follows:

R=S if there 1s a production U ::=...RS...

R<S if there 1s a production U ==. ..RW... where W=*S...

R>3S if (1) there 1s a production U «=. ..VS... where V »*R..., or

(2) there is a production Uz=... VW... where V=2*R... and W=>*S...

A grammar G 1s a simple precedence grammar if (1) At most one relation holds between any pair of
ordered symbols (R, S) of G; and (2) No two productions have the same right part.

(a) How does condition (1) help us parse sentences of a simple precedence grammar?

(b) How does condition (2) help us parse sentences of a simple precedence grammar?

(c) Suppose we wished to parse in a right-to-left manner instead of left-to-right. Redefine the
relations so that the rightmost simple phrase will be detected at each step as we scan the
symbols from the end to the beginning.

3. Linking and loading. (50 minutes)

An important part of any system 1s the linkage editor and loader, which accepts object modules
(binary decks) from compilers and/or assemblers, links them with necessary subprograms, and loads
the complete program for execution. Discuss the form and content of the object module of some
fairly sophisticated system. Include in your discussion: entry points, external references, relocation.
Specify briefly how the linkage editor goes about its business. Give diagrams and be concise.

4, Memory man agement. (30 minutes)

(a) Describe in no more than two pages the memory mapping scheme for one of the following:
ATLAS supervisor, SDS 940 Timesharing Monitor, IBM 360/67 TSS, or some other
timesharing machine. Include a diagram.

(b) What are the main categories of memory protection? Describe a system for providing memory
protection to physical addresses. Describe a system for applying protections to the logical
address space.

Do one of parts (c¢) and (d).

(c) Briefly describe (with diagram) the cache memory organization on the IBM 360/85. What 1s
the key feature of programs that 1s essential to the success of a cache?

(d) Describe two of the following schemes for handling collisions in hash coding: random
probing, linear probing, or direct chaining. What is the expected number of probes for
schemes you picked?
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5. Concurrency, parallelism, and scheduling. (20 minutes)

Do one of parts (a) and (b).

(a) Describe accurately but briefly the Multi-level Scheduling Algorithm used in CTSS (MIT).
How did it function?

(b) Describe with diagram one of the flow graph models of computations listed below.

Karp-Miller computation graph
Estrin-Martin-Turn directed acyclic graphs
Adams data flow graphs

What are the principal elementary components? What are the principal functional properties?
What properties of computation have been studied by the model you pick? Could you derive
any of the mathematical properties of the model in 20 minutes if you were asked to do so?
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L. General programming. (60 minutes)

(a) Consider the block labelled “MYSTERY” in the following undocumented fragment of an
ALGOL W program. What effect does the execution of this block have on the global array A?
Do the elements A(l), A(2), ..., A(n) satisfy any interesting relations when we reach FIN?

begin integer array A(1::10000); integer n;

MYSTERY:

begin integer 1, f, k;
i=1 j=m
while true do

begin
while (i <j) and (A(1) <0) do 1:=1i+ 1;
if12 j then go to FIN;
while (i <j) and (4()2 0) doj :=j- 1;
if12 j then go to FIN;

XCH: k:= AG); Af) := A(i); A(i) = k;
i= i+l j= j=l,

end;

end MYSTERY;
FIN: . ..

end.

(b) Using the following instructions for a hypothetical computer, translate the MYSTERY block
into the “best possible” machine code program. Write your program in an appropriate
symbolic assembly language, assuming that an appropriate environment for the MYSTERY
block has been set up. Give comments explaining the effect of each line of your program.
Assuming that each instruction takes one unit of time, give an approximate formula for the
running time of your program, as a function of n and the number of times the statement XCH
1s executed. (Try to produce a short program with minimum execution time.)

The hypothetical computer has memory locations M[ 8],M[1],M[2],... and integer
registers R[8],R[1],R[2], .... such that R[8] always contains 8. The computer’s
instructions are given below, where 1, J, and k are nonnegative integer constants.

SET i,j,k R[il :=R[j]+k
LOAD i,Jd,k R[il :=MIR[Jjl+k]
STORE  i,d,k  M[R[jJ+k] := R[i]
ADD i,d,k R[i] := R[i]+ (R[JI+k)
SUB i,d,k R[il = Ra] - (R[j]+k)
GEQ i,j,k 1fR[1]28 then go to location R[ j]+k
LSS i,d,k ifR[1]<8 then go to location R[j ]J+k

Instructions are executed sequentially unless GEQ or LSS causes a transfer of control. Example:
GEQ 0,8, 8 always transfers control to location 8.

(c) Describe briefly the types of code economization a compiler would have to perform if it were
clever enough to produce your program of part (b) from the source code in part (a).
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2. Language design. (30 minutes)

(a) What 1s meant by “binding time” for symbols?

(b) What are the advantages and disadvantages of early and late binding?

(c) Give examples to illustrate the possible binding times for symbols used In some programming
system with which you are familiar.

(d) What are the implications for a programming system of early and late binding?

3. Operating systems. (30 minutes)

(a) Discuss briefly the scheduling algorithm used on a time-sharing system such as CTSS, SDS
940, or IBM/360 TSS.

(b) One way to conduct research on operating systems (or many other areas!) 1s the following:

(1) Give a precise definition of a problem.
(2) Solve the problem.
(3) Prove that the problem has been solved.

Some studies of operating systems have been performed using this approach. Discuss one
such study. State carefully the problem of interest and any fundamental assumptions. How
reasonable are those assumptions? Give the essential ideas of how the problem was solved,
including a discussion of any algorithms which have been developed. What motivated the
discovery of this solution? How was it shown that the solution was correct?

4, Syntax analysis. (90 minutes)

One of the few notational conventions of mathematical logic which has not yet been widely adapted
to computer science is Peano’s parenthesis-free notation based on dots for grouping. This problem
considers the possibility of exploiting Peano’s notation.

We will define a language, called Ldot, of expressions in a single left-associative operator. The
operands are single lower-case letters and the operators are represented by concatenation; for
punctuation we use dots. We will be interested in translating expressions in Ldot into equivalent
expressions in another parenthesis-free language Lpost, which 1s Polish postfix notation with the
operators represented by "x".

The punctuating effect of dots is as follows: The largest number of consecutive dots in any
expression divides the expression into its two principal subexpressions. Each subexpression is
evaluated using the same rule. Any “ties” are broken by associating to the left. For example:
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Ldot L post

abc abxcx

a.bc abexx

a.b.c..d.ef  abkcxdefikxk
a .b. .c abxcx

(a) Write a program which translates expressions from Ldot to Lpost, by simulating a machine
with one pushdown stack. Use a dialect of Algol (specify which dialect you are using). You
may assume, 1f you like, that the input and output strings are represented as arrays of integers.

(b) Can you write a BNF description of Ldot which could be used by a syntax-directed compiler
to carry out this translation?

(c) It 1s well known that BNF is equivalent to nondeterministic pushdown-store automata
(NDPA). How do you reconcile this fact with the results of parts (a) and (b)?

(d) What are some interesting problems related to dot notation which you think would be worth
exploring if you had time to do so?
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(Take home exam -— return in 5 days.)

Problem 1.

Consider the implementation of an incremental compiler for ALGOL 60 or a similar ALGOL-like

language. Assume the programmer is able to converse with the incremental compiler, and is able to

insert, delete, or alter statements in his program dynamically. Also assume that he may initiate

program execution. Similarly, assume that he may make use of a “PAUSE” statement in his
program, which causes execution to be suspended when it is reached. Program execution can be

resumed from the point of suspension under programmer control. Thus, a programmer can create a

program, start it in execution, suspend it at any arbitrary point, modify the program, then resume

execution of the modified program at the point of suspension.

The design of the incremental compiler is such that the compiled program must be primarily, if not

entirely, executable machine code, rather than pseudo-code that is interpreted by a program.

Moreover, incremental changes in the source program must cause only incremental changes in the

compiled program.

(a) For each of the facets of a compiler mentioned below, discuss the problems of implementation
given the constraints above. For each facet listed, discuss at least one implementation

technique which in your judgment best overcomes the problems your raise. Where pertinent,

indicate one or more alternative implementations which you believe are worthy of mention.

(1) Assume that all statements are numbered by the programmer as they are entered. To

insert a statement between statement N and M, N<M, the new statement is given any

number in the interval N <x<M. To replace statement N, the new statement is

numbered N. To delete statement N, the empty statement is entered with a number N.

Consider the problem of maintaining a representation of the current state of the source

program.

(2) Consider the effects of allowing declarations to be modified dynamically.

(3) How should the ALGOL nested scope feature be treated in an incremental environment?

(4) How should memory allocation of program variables be done? Consider the effects of

arbitrary modification of array bounds after array allocation has occurred.

(b) Find some other aspect of the incremental compiler which is nontrivial to implement, and
discuss it as in part (a) above.

36
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Problem 2.

(a) The following algorithm describes a buffering scheme for an n-way merge of ordered files,
n22. Your job 1s to give an informal but convincing proof that the algorithm works.
(Alternatively, if the algorithm 1s invalid, you should present an example or examples which
make 1t fail, suggest changes which fix things up, and prove the validity of the corrected
algorithm.)

Each of the input files 1s assumed to be stored on external memory, in blocks containing m
records each. Each record contains a numerical “key” value. The value of the j th key in a
block is less than or equal to the value of the (j+1)st key, for 1 <j £m, and the value of the
m th key 1s less than or equal to the value of the first key in the next block of the file. The
final block of the file has been filled with one or more “dummy” records; the key of a dummy
record is "eo", a value which 1s greater than all of the non-dummy keys. The output file
should adhere to the same conventions as the input files, and should contain all the
non-dummy records of the imput files.

The computer 1s able to read, write, and compute simultaneously, but it can read at most one
block at a time and it can write at most one block at a time. The principal virtue of the
following algorithm 1s that, once it gets started, it maintains continuous reading and writing,
and essentially issues the read and write commands simultaneously.

The algorithm makes use of 2n input buffer areas, each one block long, denoted by /[1],
[2], ..., 1[2n]) There are two output buffer areas, denoted by O[0] and O[1]. We write

key [i,j]

for the value of the jth key in /{i], and

Olk,]« Ili,1]

for the operation of moving the jth record of /[i] to the ith position of Ok].

The following auxiliary tables are used:

Name of table ~~ Range of values Intended significance

Ali, 1 <1<2n Oorl 0 if /{i] is available for input,
| otherwise.

Blil,i<sis<n l,....n Buffer containing the last block
read so far from file i.

CliJ, 11s n I,....n Buffer currently being used for
the mput to the merge from file 1.

Li), 1<sisn key Value of last key read so far
from file 1.

Plil, 1sisn 1,..., m+] The number of the record currently
being scanned in buffer /[C[i]].

Si, 1 sis2n 1, ..., n The buffer to use when /[i]
has been completely scanned,
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Step 1. (the initialization)

1.1 Do the following for 1 <1 <n:
I.I.1 Initiate reading the first block of file 1 into buffer /[i].
1.1.2 Set Alile« 1, Ali+n)« 0, Blil« i, Clil« i, Pli)e« 1.
1.1.3 Wait for the input operation to be complete, then set L[i]e« key [i,m].
1.2 Find ¢ such that L{g]= min {L{1],L[2],..., LInl}.
1.3 Sett «0, k« nt 1. (¢ represents the current output buffer,

k the current buffer for input)
1.4 Initiate reading the next block from file ¢ into buffer /{&].

Step 2. (the merging)

2.1 do the following fori =1 ton:
2.1.1 IfP[iJ=mt 1 for some i, set Pi] « 1 and C[i] « S[C[i]] and A[C[i]]) « O.

2.1.2 Find 7 such that key [Clr], Pr]]= min {key[C[1], P[1]}, . . . , key [Cn], P[n]}}.
2.1.3 Set Ole, )« ICI],Pr]
21.4 Set PlrlePlr]t 1.

Step 3. (wait for mput/output completion)

3.1 Wait if necessary until the previously initiated input and/or output is complete.
3.2 Set Alk)«1,S[Blgll« k, Blgl « k
3.3 If Lig) = 0, set LIg) « key [k, ml.

Step 4. (the next input/output)

4.1 Find ¢ such that L{g)= min {L[1],L[2],..., L{nl}.
4.2 Find k such that A[k]=0 (such a k will exist).
4.3 Initiate writing from buffer O{t] to the output file.
4.4 If L[q] = oo, initiate reading the next block from file ¢ into buffer /[k].
4.5 If the final key in buffer O[t] is co, stop; otherwise set ¢ « 1-t and return to step 2.

(b) Assume now that the computer can do two reads and two writes simultaneously. Design a
similar algorithm which essentially doubles the rate of input/output of the method in part (a),
by having two reads and two writes in progress most of the time (assuming very fast processor
speed and very large files). Your algorithm should not use more buffers than necessary to
ensure continuous operation; for example, the algorithm in part (a) would fail if there were
only 2n-1 buffers, so 2n are necessary in that case.

One solution to this problem would be simply to have 4n input buffers and 4 output buffers,
grouped in pairs, and to carry out the algorithm of part (a) almost as if m were 2m. But this
is not satisfactory | Arrange instead to have only three output buffers; at a typical instant the
algorithm will be storing into one output buffer, doing the second half of a write from
another, and doing the first half of a write from the third. A similar technique should be
used for the input files, initiating each read when the previously initiated read 1s half
finished.

Give an informal but convincing proof that your algorithm 1s correct, and that it doesn’t
require too many buffers.
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Problem 3.

You are to design a system procedure, called the OPEN procedure, to initiate the processing of a
predefined user file. A file 1s a collection of records which are sequences of words. Assume a
multi-programmed environment with a single central processing unit and movable head disk
storage. When not being used, a file resides on disk storage. Files are not shared. At most one user
may be accessing a file at any instant. In this system, when a routine initiates a transfer to or from
the disk, the routine loses control of the central central processing unit until the disk transfer 1s
complete.

The following information must be maintained for each user file.

(1) File identifier — a unique identifier 1s associated with each file.

(2) File access control list — a list of all authorized users of the file. Each entry consists of (a) the
user identifier and (b) the access type. Examples of access types are read only, read/write only,
append only, delete only, execute only, or perhaps a combination of these such as “read and
append” access.

(3) File access history — a list of all successful and unsuccessful file access requests. For each
access request the user identifier, access type, file identifier, time of request, and success or
failure must be recorded.

(4) File status and location — an indication of whether the file is active, i.e. some user has
successfully called the OPEN procedure and the file is either wholly or partially in main
memory; or inactive, 1.e. the file 1s disk resident and not currently in use.

As stated below, part of this problem is to decide where (disk or main memory) and how this
information should be stored. The file system maintains a file directory, which is at the minimum a
record of all files currently known to the system and an indication of the file location and status.
The file directory always resides in main memory. The file system maintains a file header as the
first record of each file on disk storage. The file header contents will be specified by you as part of
the solution of this problem. For each active file, a file control block 1s maintained. This control
block contains all information necessary to use the file data (location of file buffers, numbers of
records currently in main memory, efc.).

(a) Give a pseudo-ALGOL description of the OPEN procedure. This procedure has as input
parameters the file identifier, user identifier, and user access type. Assume all parameters are
of type INTEGER. The OPEN procedure checks the validity of the access request and if the
request is valid defines a file control block for the file. The OPEN procedure is responsible
for the maintenance of the file access history. In designing this procedure, keep in mind the
fact that disk transfers are slow and it 1s undesirable to require many transfers to open a file.
Also, use of main memory by the file system should not be excessive. Assume all disk
input/output is performed by system routines READDISK and WRITEDISK which return
when the transfer is completed. Assume all disk transfers are error-free.

(b)  Specity the contents of the file directory and file header required to implement the OPEN
procedure described above and describe the data structures you have selected. Justify briefly
your reasons for the selection of each data structure. Assume that individual entries may be
added and deleted from the access control list and that individual entries are added to but

never deleted from the access history.
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(¢) Give formulas for

(1) Mam memory required for each file directory entry.
(2) Disk memory required for each file header.
(3) Any additional storage requirements (disk or main).
(4) Execution time, ignoring disk transfer time, to open a file.

Show how (1)—(4) depend on the size of the access control list and the access history.

(d) Consider the following two file access methods.

(1) Sequential access method — file records must be accessed one after the other.
(2) Random access method — file records may be accessed in any order.

What, if any, would be the effect on your answers to parts (a) through (c) if all accesses were
sequential? Random?
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Problem }. (50 minutes)

Let G be a context-free grammar with initial symbol S, nonterminal alphabet {S, A, B}, terminal
alphabet {l, a, 6, 4}, and the production rules shown below:

S -» FA

A-a

A =» aAB

Bob

B + bA

(a) Give a parse tree for the string I-aabaabi.

(b) For what values of n, m 2 0 is the string Fa™*1ba™*Ib"*"-14 in L(G)?

(¢) Is this grammar ambiguous? Justify your answer.

(d) Is this grammar LR(1)? Why or why not?

Problem 2.(25 minutes)

Consider a hypothetical computer with the following characteristics.

1. The computer can support multiprogramming and shared re-entrant programs.

2. The computer has a relocation register and a program length register. The contents of the

relocation register are added to every memory address generated by the program, and every
valid address must be in the region delimited by the relocation register and the program

length register.

3. Programs other than the operation system operate ina “user” state in which the memory

protection is delimited by the relocation and bounds registers. Thus such programs must
occupy contiguous regions of memory, and their apparent address space runs from location 0

to location L-I where L is the program length. Re-entrant, shared programs must operate in
user state.

(a) Discuss problems concerning the use of shared programs inthe computer environment
described above. Your answer should focus on the problems of communication between

programs and shared programs within the constraints placed on their address spaces and the
memory protection mechanism.

(b) Invent some reasonable hardware mechanism to facilitate the use of shared programs on this
computer system. Your invention should not be a paging mechanism.

41
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Problem 3. (50 minutes)

Discuss the problem of writing an optimizing compiler for a paging machine. The source language
can be FORTRAN (easier) or ALGOL. The main issue to be addressed is the minimization of page
faults.

Problem 4. (50 minutes)

Below are two similar procedure bodies for performing a bmary search of array A, from element
A[ 1] to element A[N ], for ITEM.

LOW == O ; 1I0W := 0;

HIGH := N+1; HIGH := N+1;

FOUND := false;

loop: if LOW + 1 2 NIGH then loop: if LOW + 1 2 HIGH then

go to notfound; go to exit;

PLACE := (LOWH+HIGH) 22; PLACE := (LOW+HIGH) +2;

if ITEM = A[PLACE] then

go to foundit;

if ITEM < A[PLACE] then if ITEM < A[PLACE] then

HIGH := PLACE HIGH s= PLACE

else LOW := PLACE; else LOW := PLACE;

go to loop; go to loop;

foundit: FOUND := true; exit: FOUND := ITEM = AlLOW] ;

PLACE := LOW;

notfound:

return; return;

PROCEDURE PROCEDURE

1 2

Note that Procedure 1 has an equality check in the loop and that Procedure 2 does not.

Under the assumption that both procedures are correct determine 1f one procedure is preferable to
the other, and under what conditions. You may assume for convenience that N 1s of the form 2"-1,
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To determine approximate timings for the procedures, assume that the language 1s compiled and
run on an IBM System 360 type of machine, and that the inner loops of the two procedures consist
of instructions selected from the set below, Each instruction takes one time unit.

Operation Description

L LOAD Load an accumulator from memory (may be indexed).

LR ~~ LOAD REGISTER Load register.

A ADD Add memory to an accumulator.

AR ADD REGISTER Add an accumulator to an accumulator.

ST ~~ STORE Store an accumulator into memory (may be indexed).

C COMPARE Compare an accumulator with memory, set the condition code
(may be indexed).

CR COMPARE REGISTER Compare an accumulator with another accumulator,
set the condition code.

B BRANCH Unconditional branch.

BE ~~ BRANCH IF EQUAL Branch if the condition code indicates that the last comparison
was an equality.

BL ~~ BRANCH IF LOW Branch if the condition code indicates that the first operand
was less than the second for the last comparison.

BH, BNL, BNH, BNE, . .. All other possible variants of conditional branches.

. SRA SHIFT RIGHT Arithmetic right shift of a specified accumulator.
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TAKE HOME PROBLEMS

Problem I.

Consider the problem of adding matrix arithmetic to ALGOL. The extensions should include the
matrix operations of addition, multiplication, equality comparison, inversion, and transposition.

(a) You might want to add a new data type marrix. Discuss the advantages and disadvantages of
doing so. Write the additional BNF syntax needed for your solution.

(b) You should be able to generate better code for matrix operations in your language than would
be possible with ordinary ALGOL. Discuss how to do it.

(c) How would the difficulty of doing this addition depend on the original implementation of
ALGOL? Choose some extensible compiler or other translator writing system and describe
how you would carry out the extension m its framework.

Problem 2.

Read Chapter 6 of the Processor Handbook for the PDP-I 1/45 computer made by Digital
Equipment Corporation. The chapter describes the Memory Segmentation Unit available on the
11/45. A partial quote from Chapter 1 is given below.

The PDP-1 1/45 1s a powerful 16-bit computer representing the large computer end of
the PDP-I1 family of computers. It is designed as a powerful computational tool for
... large multi-user, multi-task applications requiring up to 124K words of addressable
memory space.

Describe a memory management policy that an operating system might provide for a general
purpose multiprogrammed timesharing system in which a very large high-speed drum is available
as a backing store. Give attention to the main memory fragmentation problem and the management
of shared segments.
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Problem 3.

We wish to process a given sequence of integers. Processing consists of the application of one or
both of subroutines A and B iteratively. The order in which we apply subroutines A and B and
their parameters for each call are unknown ahead of time.

Subroutine A: Given an integer i, find the largest element of the first 1 elements mn the sequence.

Subroutine B: Given a integer i, and a datum »n, insert n as the i th element of the sequence,
moving the previous ith element to position i+ 1, the i+1 st element to position {+2, and so on.

You must retain the values of the entire sequence in your data structure.

It 1s possible to design a data structure for which both subroutines A and B require a time
proportional to logs N in the worst case, where N is the length of the sequence at the time of the
subroutine call.

Example: position 12345678
element value 46371258

Subroutine A returns:

1 12345678

returned value 4667777 8

Call Subroutine B with i=5, n= 9. New sequence:

position 123456789
element value 463791258

Subroutine A returns:

i 123456789

returned value 466799999

Your answer should be based on the algorithm in Example 11.9 of Stone, Introduction to Computer
Organization and Data Structures). Describe precisely what modifications to the algorithm are
necessary to perform the required task. You should indicate which lines of code have to be
changed, what additions are required to the data structure, and what additional Algol code 1s
required. Also, describe in English how your modified algorithm works.
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(This exam was given orally. The following 1s a simplified version of the questions asked.)

L. Compilers.

(a) Invent a small simple precedence language and show how to derive precedence tables for it.
What are the disadvantages of precedence languages?

(b) What are precedence functions? Do they always exist? Are they mformation lossy? How do
they hinder error protection?

(c) What problems face a language designer who must implement a one-pass compiler? What
language features cause trouble? How can some of these problems be solved?

(d) Discuss code optimization for one-pass or multi-pass compilers. What kinds of optimization
can be done?

2. Build a SW AP(A, B) procedure in ALGOL 60 (using NAME parameters) which always works.

3. . Operating systems.

(a) Describe some CPU scheduling methods and explain what each method 1s intended to
optimize.

(b) Sketch response time versus CPU service time for first-come first-served and round-robin
scheduling.

4, What data structure would you use to maintain a queue of priority tasks mm which each task
has a unique priority? You must be able to select the highest priority task for running, and
also be able to add and delete tasks quickly. Try to minimize the use of space.

J. Describe several methods of building hash tables, and especially discuss ways of resolving
collisions.

6. Describe a virtual machine and tell how it 1s implemented. What special hardware features
are needed?

46
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L. Optimization.

(a) What is interval analysis?

(b) What is dead variable analysis?

(¢c) Are recursion and iteration interchangeable?

(d) How do you do register allocation?

(e) Describe some methods of loop optimization.

(f) How could expression evaluation be optimized?

2. Language design.

(a) What control structures are needed for goto-free programming?

(b) What are the differences between typed and typeless languages? Advantages and
disadvantages?

. (c) What features do programming languages need for systems programming?

(d) What is the difference between static and dynamic execution environment in block structured
languages?

3. Formalisms.

(a) Show that {ww|w eZ*} is not a finite state language.

(b) Give a brief description of Hoare’s proof of correctness method.

4, Hashing/ Searching / Sorting.

(a) What are the worst case times for Quicksort? Heapsort?

(b) What are twin primes used for in hashing methods?

(c) What is the average insertion time in random trees? Deletion time?
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5. Data structures / Storage allocation.

(a) What is a B-tree and what is it good for? How is it used?

(b) What is a good data structure for a priority queue?

(c) How do you do minimal space garbage collection for LISP-like environments?

6. Operating systems.

(a) What are the advantages and disadvantages of virtual machines?

(b) What is dynamic linking in MULTICS?

(¢) Why do terminal users want multiple processes? Multiple cooperating processes?

(d) What is the difference between lock-unlock and P-V?

(0) What is a good job scheduler for an interactive time sharing system? For a batch system?
Give an example of a very bad time sharing job scheduling algorithm.

(f) How do you fit dismountable disk packs into a hierarchical file system?

(g) What fundamental concepts must your operating system implement for a multiprocessor system
like C.mmp?

(This exam was given orally.)
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(The following 1s an outline of the topics covered in the oral exam.)

L. Compilers.

(a)  uwvwxy theorem.

(b) Give an example of an operator precedence grammar for parenthesized arithmetic
expressions.

(¢) Compare recursive descent with LR(k).

(d) Explain heap sort.

(e) What is the basic abstract data structure needed for code optimization? What do you do with
it?

(f) Give an example of a loop invariant. Explain the notion of weakest pre-condition.

2. Data structures.

3. Sorting and searching.

4, Program design and analysis.

J. Basic operating system principles.

(a) Select a good systems programming language. What features should the language have?

(b) Discuss the pros and cons of various synchronization methods.

(¢c) Compare interrupts vs. polling as a scheduling discipline.

(d) How do you allow users to share files? In a hierarchical file system? With dismountable
packs?

(e) File mapping issues.

(f) What makes a machine “virtualizable”?

(g) Compare directly addressable scratch pad vs. cache memory.
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Operating Systems,

L. Describe the concept of capabilities in an OS.

2. What are criteria to establish the upper and lower bounds for time slices In a time sharing
system?

3. Describe the working set algorithm for paging. When is a program’s working set the largest?

4. What are the possible states of processes outside of the set of processes which are actively
using memory (the balance set).

J. When processing requests from a disk, a one-way scan has been advocated (SCAN, Teory).
Why? Sketch the queue behavior. Estimate the required ratio of arrival rate (A) to service
rate (u) to avoid long term queue buildup.

6. Describe the principal components of an indexed-sequential file.

Program Design and Analvsis,

L. Compare the advantages of macro vs. procedure call in organizing a program.

2. Are there programs that can’t be written without go to statements? How can you transform
an arbitrary program to eliminate go to’s?

3. Is the PL/I ON condition structured? Suggest a structured way of handling exceptions.

4, Define the concept of weakest pre-condition. What is wp(x:=2xx, x=9)? What is wp(if B
then §, P)?

5. What are desirable features in a high-level language for synchronization/communication
between parallel programs?

6. What are coroutines? Describe a problem where they would be useful.

Data Structures and Alnorithms.

L. (a) What are some of the different methods for organizing a table, if the operations
performed are (1) lookups and (2) mnsertions? Compare the time and space requirements
of these methods.

(b) Describe methods for resolving collisions in hashing.
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2. How does the following program work, and what is its asymptotic running time?

/* Given input N, Tistalltheprimenumbers S N.#/
integer array A(1:N); integer I, J, N;
read (N);
for I:=1 until N do A(I):=1;
for I:=2 until SQUAREROOT (N) do begin

J:=2;
while I«J € N do begin

A(IxJ):=8;
Jiz=Jd+l

end

end;
for I:=1 until N do

if A(1) = 1 thenwrite (1);

3. Describe amethod of external sorting. Estimate its speed.

Compilers.

L. Discuss theallocation of storage for arrays. What are two common methods? What are the
advantages and disadvantages of each method?

2. What is intermediate code (or internal form)? Why 1s it used? What types are there? What
are theadvantages and disadvantages of each type?

3. (a) What is a left parsable (context free) grammar? Informally describe what a LL(k)
grammar is.

(b) Consider §-Sa|b. Is it LL(k)? If so,whatiskand why? Is it left parsable? Why?

(c) Answer part (b) for the grammar § = bAba, A> b| ec.

(d) Are all LL(k) grammars left parsable? And vice versa?

4, Describe the organization of a compiler-compiler. Describe how you would use one to
produce a compiler. State some of the advantages or disadvantages of using a
compiler-compiler system as compared to writing the compiler directly.

J. Most programming languages are of what type? Is there an algorithm for determining if the
language generatedby a context-free grammar 1s empty? How and why does it work?

(This exam was given orally.)
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COMPILERS AND PROGRAMMING LANGUAGES

L. Language design.

(a) Often language features are related. What language feature should be included in a
programming language if OWN variables are part of the design?

(b) What does the term “dangling reference” refer to?

2. Optimization.

For integers A, B, C, 0, E, F, and TEMP, when 1s the following transformation not valid for
optimization?

A := BxC+D; = TEMP := BxC;
E := F+B«C; A := TEMP +0;

E := F + TEMP;

3. Parsing.

(a) Compare the power of simple precedence, SLR(1), LALR(I), and LR( 1) parsers in terms of
languages and grammars.

(b)  Qualitatively, how does the construction of SLR(1), LALR(1), and LR(1) parsers differ?

4, Garbage collection.

(a) What 1s “compactifying garbage collection”? What 1s the major implementation problem
involved in writing such a garbage collector?

(b) Explain, using pictures, how to implement a compactifying garbage collector.

J. Formal language theory.

Are the following problems decidable or undecidable? Give some argument to justify your answer
(not necessarily a formal proof).

(a) Does a PDA M accept the null string? (ee L(M))
(b) Does a PDA M accept the empty language? (L(M) = &)
(c) Does a PDA M accept an infinite language? (IL(M) | = o)
(d) Does a PDA M accept a regular language? (3R L(M) = R)
(e) Does a DPDA M accept a regular language? (3R L{M)= R)
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PROGRAMMING METHODOLOGY AND LANGUAGES

L. Explain the view of data types as demonstrated by Hoare in his axioms for data types (in
Pascal or Notes on Data Structuring).

2. (a) Explain the concept of data abstraction.

(b) How are the ideas of an object and a variable used to define the CLU abstraction
mechanism?

3. What 1s a generator? Give an example of its use. (A generator 1s a data abstraction which
computes sequences of values for an abstract type, It provides an initialization procedure and
a procedure to obtain the next value in the sequence.)

4, Explain the concepts of proving backwards (Hoare formalism) vs. proving forwards (Floyd
formalism).

J. What are guarded commands? What are they intended for? What type of formal rules are
applied to them?

EJG SYSTEMS QUAL QUESTIONS

L. The language Pascal requires all arrays to have constant dimensions. What simplifications
does this imply in the run time environment implementation? Pascal character strings are
simply linear arrays of single characters. Discuss restrictions this place on the programmer
which would be removed if arrays were dynamic. What desirable string operations would still
not be available in a straightforward implementation of dynamic arrays?

2. What 1s a “pipe” as implemented in UNIX? Discuss some advantages and disadvantages of
having this as the only communication mechanism.

3. Discuss issues in machine independence of modern programming languages. What problems
are there in seeking true independence? What are some implications of machine
independence on language design? In particular, can you think of any impacts of machine
independence on design of an imtermediate language?

4, Consider a simple binary search. Write an abstract algorithm on the blackboard (in English
or high level pseudo-Algol). What is a useful mvariant of the main loop?

J. What are some means for avoiding deadlock? From a practical standpoint, discuss deadlock
recovery.
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DATA STRUCTURES AND ALGORITHMS

1. Describe a tree search technique for searching a fixed set of data. When can you produce an
optimal search tree? What 1s it? What techniques are needed for a search tree organization
over varying data?

2. Describe a data structure for implementing a multiset with two operations: (1) add an element;
and (2) choose some element, remove it, and return its value. Is your solution best suited for
large or small data items? Give a solution for the other case.

3. Given an algorithm for computing transitive closure, how can it be used to get an algorithm
for finding path lengths in a graph?

1. Analyze the order of execution time for the following recursive function in terms of n, m

| f(m,n) = f(m,n,2)

f(m,n,i) = if m € i or n £ i then nxm
else if n mod i = 8 and m mod 1 = 8

then ixg{m/i,n/i,1)
else g(m,n,i+l)

5. Give an efficient method for finding a mod b without using division (a, b are not necessarily
integers).
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OPERATING SYSTEMS

L. Locks.

What 1s the objective of lock primitives that lock multiple resources with one invocation?

2. Queues.

(a) When is FIFO not appropriate for a timesharing scheduler?

(b) Characterize the behavior of a queue when a transient load exceeds the maximum service
rate.

3. Confinement.

What strategy 1s used by a capability-based system to confine processes? What is the critical
mechanism? Are the remaining problems in confinement?

4, Virtual memory.

Why 1s segmentation desirable mn addition to paging?

. 3. Network.

What services are required to let processes in distinct machines interact with each other?

(This exam was given orally.)





May 1965 Artilicial Intelligence Qualilying Exam

Problem 1. (50 minutes)

Suppose that the Communications of the ACM were running a series of short expository articles on
various fields in the computer sciences. Each article contains a survey of: the history of the field;
general approach, theory, and rationale underlying the work; major projects attempted, successes and
failures, and how these fitted into the stream of the research effort; major problems exposed and as
yet unsolved; and indicated paths for further research, with specific suggestions.

You are now asked to produce a resonably detailed outline of an article for each of the following
fields:

(a) Heuristic programming

(b) Mathematical theory of computation

(For problems 2-5, do one of parts (a) and (b).)

Problem 2. (40 minutes)

(a) A criticism that has often been levied against programs in advanced nonnumeric applications
areas (such as machine translation of languages, information retrieval, or problem solvers) is
that the programs behave “without understanding”, that 1s, without a sense of the “meaning”
of the problem. Not infrequently, this criticism 1s made by sensitive and astute observers of
the scene. What do you make of the above criticism? What does it mean? In particular,
what types of research efforts are indicated to overcome the criticism? In carrying out this
research, what previous work is relevant as a foundation and basis for progress, and how so?
Try to be as concrete as you can in your analysis and references.

(b) Artificial intelligence researchers have devoted a considerable amount of energy to the
problem of modeling and programming processes of deductive inference (e.g. theorem proving
programs, game playing programs). But what efforts have been made to study processes of
inductive Inference for computers? If you know of any, name them, and for each describe the
task studied, the general scheme of the program, and the results. In your answer, please state
what you mean by inductive inference (it is not the same as mathematical induction).

Problem 3. (30 minutes)

(a) One major 1ssue in the design of list processing languages and translating systems is the
erasure problem. Different list processing systems treat the problem in different ways. What
is the erasure problem? How is it handled in LISP? SLIP? IPL-V?

(b) Let a directed graph be given by a list of lists. Each sublist gives first a vertex and then the
vertices that can be reached from it in one step. For example, the graph
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A
A—>C

is described by the list ((A BC) (BAD) (C B)(D B)).

Write M-expressions for a function distancelx; y; g] which gives the number of steps required
to go from vertex x to vertex y in the graph g. It should return the atom infinity if there 1s
no path from x to yin g.

Problem 4. (30 minutes)

(a) Discuss the problem of proving the correctness of an ALGOL translator. What relevant
concepts and techniques are available? What remains to be developed? Include a discussion
of the concept of “correctness” you are using in your answer.

(b) The reverse of a list may be computed by the function

reverse(x] = rev[x; NIL]

where

rev(x; y] = if nulllx] then y else revlcdr(x]; conslear(x]; yl]

. For example, reverse[(AB C D)]=(D C B R).

Prove by recursion induction that for any list ¥,

reverse[reverse(x]] = x.

Problem 5. (30 minutes)

(a) Potentially one of the most powerful heuristic methods for problem solving programs 1s
planning. Illustrate briefly by example, in an abstract way, how planning can be a powerful
heuristic device. Under what conditions 1s planning not a useful heuristic? Describe how the
planning method of the General Problem Solver works.

(b) (1) In Feigenbaum’s article “The Simulation of Verbal Learning Behavior” (in Computers
and Thought) he reports that two types of forgetting (so-called oscillation and
retroactive inhibition) are observed in the behavior of the EPAM model in simulated

verbal learning experiments even though there 1s no information decay or destruction
postulated in the model. What gives rise to the forgetting? (Explain in some detail.)

(2) What are the major similarities and differences between EPAM and Selfridge’s
PANDEMONIUM as models of pattern recognition decision processes?
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Problem 1.

(a) You have been given two papers. Both address themselves to present-day limitations and
inadequacies in the concepts and techniques used in heuristic programming.

What are the main issues being treated? What 1s your analysis and opinion of the contentions
of the authors?

(b) Newell explicitly brings up the issue of representation. What 1s the problem of
representation? Why 1s it important? Concrete examples will help your argument. What 1s
being done to attack the problem of representation and how do you think this attack should
proceed?

Problem 2.

Write the simplest program in LISP M-expressions that you can for determining whether
3-dimensional tic-tat-toe (in a 4 x 4 x 4 cube) is a win, draw, or loss for the first player. Explain
carefully the role of each auxiliary function, giving examples if necessary.

Problem 3.

What 1s meant by an unsolvable class of problems? Give an example of such a class, and outline a
proof that it is unsolvable.

Problem 4.

Write the statements that 3-dimensional tic-tat-toe is a win, loss, or draw for the first player as
sentences of first-order logic. Give the intuitive meaning of any predicate or function letters that
you use.

Problem J.

(a) What 1s “hash addressing?

(b) How might it be used in the implementation of a list processing language?

(c) What kinds of facilities for using hash addressing capabilities at the source language level
might be made available in a symbolic computation language?
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Problem 6.

Let the concatenation x4 of two lists ¥ and y be defined by

xxy = if n % then y else ax. [daxy]

Let the length of the list x be defined by

[x)= if n x then 0 else [{[dx]]’

Let addition be defined by

m+ n=ifne0thenmelsem’+n”

Prove that

Hixxy] = Ix] + Uy]

Hint: The following alternative form of the recursive formula for addition may be useful.

plus [m; nl= it m= 0 then n else [plus (m’; nl)’

If you use this formula, prove it equivalent to the original definition.

Problem 7.

What has been achieved so far in the heuristic program area in making programs learn from their
experience? What are the limitations of the methods used? What do you think should be done
next? What will be the limitations, if any, of the programs you advocate?

Problem 8.

(a) Each of the following examples has been discussed in connection with more than one
computer program. Discuss at least two approaches to theorem-proving by computer, using in
your discussion at least one of the examples.

(1) ~Pv Qo~P

(2) (3x) (39) (Vx) (Fxy > FyzF zz) (FxyGxy > Gx2Gzz2)

(3)  Inagroup, the existence of a right verse follows from the other axioms.

(b) State (1) the completeness theorem for first-order predicate calculus and (2) Church’s theorem.
Discuss their relevance to theorem-proving by computer.



October 1966 Artificial Intelligence Qualilying Exam

Problem 1. (60 minutes)

Answer 6 of the following 8 parts.

(1) With suitable training, EPAM has no trouble recognizing TAE CAT as THE CAT and not
TAE CHT. Why?

(2) What does “static evaluation” mean as used in the literature of game-playing programs?

(3) Show by example how the alpha-beta heuristic works.

(4) What does “linear separability” mean, in the pattern recognition literature?

(5) What steps does Bobrow’s STUDENT program go through in deriving an answer to an
algebra word problem?

(6) What kinds of operators does the Uhr-Vossler pattern recognition program use? In what
ways does it get its operators?

(7) In the mechanical translation game, what in general do parsing programs do and what 1s their
interaction with dictionaries? What is a context-free phrase structure grammar?

(8) In CPS, what is the fundamental problem with applying operators that led the researchers to
organize into a distinct and separate goal the apparently straightforward job of applying a
selected operator?

Problem 2. (60 minutes)

(1) Formal logic.

(a) Transform the following schema into an equivalent one which has disjunction and
negation as its only truth-functional connectives:

~Mpe(grh) =r

(b) Determine which of the three schemata

(3x) (Fx> Gx); (Ix) Qy)(Fx>Gy); (Ix) Fx > (3y) Gy

if any, are equivalent to each other. Show your reasoning.

(c) Would it be possible to write a computer program to solve problems like part (a)? Like
part (b)? Explain briefly why or why not.

(2) The printing problem 1s the general problem of deciding for an arbitrary given Turing
machine and input tape whether or not the machine ever prints the symbol §,;. Is the
printing problem solvable? Prove your answer.
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Problem 3. (60 minutes)

(1) Itis alleged that list processing, a basic tool in artificial intelligence research, is hideously
inefficient on a “paged” virtual memory machine, such as the IBM 360/67. Why is this
alleged? Describe a method or methods for getting around the basic problem, and defend
your scheme.

(2) Contrast a list processing language such as LISP with a language not having specific list
handling capabilities for use in: language translation; character recognition; or compiling.

Problem 4. (60 minutes)

(1) Do you believe that heuristics discovered in one field of mtelligent activity, such as theorem
proving, can help us in some other field, for example language translation? Justify your belief
by specific reference to cases, choosing any two fields with which you may be familiar.

(2) In H. L. Dreyfus’ recent critique of artificial intelligence research, he asserts that there are
three fundamental forms of human information processing (fringe consciousness,
essence/accident discrimination, and ambiguity tolerance) which he maintains are
systematically excluded from all attempts to analyze intelligent behavior mm digital form. Give
evidence either to support or to deny this assertion. Pick one of these processes and outline a
method which you believe might work in order to program this form of human activity for a
computer.
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Problem /. (60 minutes)

Answer 6 of the following 9 questions.

(1) ~~ Which of the six clauses of the following formula can be dropped as redundant?

pgv qrv prv pgv prv qr

(2) Is the f 1 owing formula valid? Prove your answer.

(XXEy)Fxy v (xXEy)~Fyx

(3) Last January, Dr. Nilsson of SRI described the “robot” project of his Artificial Intelligence
Group at SRI. In designing the robot they have done a great deal of computer simulation
work. They have simulated the robot, simulated the environment, and made the simulated
robot behave in the simulated environment. Those of you who have seen the movie of the

CRT displays of this know that these simulation results are quite 1mpressive-so impressive
that they raise the question, “If you can prove out your basic ideas so handily by simulation
techniques, why bother to go through the annoying and tedious engineering work to actually
build an electromechanical robot?” From the point of view of the advancement of the art and
science of artificial intelligence, in your opinion what is the most cogent and plausible answer
that Dr. Nilsson could give to this question?

. (4) The {following are some characterizations of problem solving strategies. For each, describe
briefly what it 1s and illustrate by citing an example.

(a) breadth-first

(b) depth-first
(c) progressive deepening

(5) This question relates to the Uhr-Vossler pattern recognition program described mn Computers
and Thought.

(a) The program processes the input “retina” with “5 x 5” operators (i.e. 25 cells). Discuss
briefly the ways in which it obtains these operators.

(b) Does the Uhr-Vossler scheme represent a significant departure from or advance over
previous efforts? Answer “yes”, “no”, or “yes and no”, and justify your answer.

(6) Recall that in the experiments done by Paige and Simon on human problem solving behavior
in algebra word problem tasks (experiments undertaken in the light of Bobrow’s STUDENT
program), the experimenters designed certain “impossible” problems, for example in which the
answers were negative speeds or negative lengths. How would the STUDENT program
behave if presented with these algebra problems to solve? Justify your answer briefly.

(7) Characterize in a few sentences the major similarities and differences between the following
two stimulus-classifying systems:

EPAM (Feigenbaum and Simon)
Pandemonium (Selfridge)
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(8) In the machine learning area, whatisthe credit assignment problem? How is credit
assignment handled in the learning procedures of Samuel’s checker playing program?

(9) In heuristic programming, what is meant by the representation problem? How does McCarthy
propose to handle the representation problem for an Advice Taker?

Problem 2. (60 minutes)

Answer 2 of the following 5 questions.

(1) What do you think of the prospects of proving programs correct and checking the proofs by
computer? State relevant results and discuss what remains to be done.

(2) Give an example of a theorem and its proof by recursion induction. Make sure that there are
no gaps in the statement of the theorem or in the list of hypotheses used.

(3) Take as adomain the set of all humans that ever were or will be and suppose them all
descended from Adam and Eve. Let Dxy mean x 1s the daughter of ¥ and Sxy mean ¥ 1s the
son of y. Write a complete set of axioms for these relationships, that is, such that any domain
and predicates D and § satisfying the axioms could be the set of all humans and such that the
set of all humans 1s guaranteed to satisfy the axioms.

(4) Let L bea context-free language. Let ¥ be a terminal symbol and a be a variable over
- strings, and let

D,={a|xael]}.

Is Dy context-free? Prove your answer.

(5) Prove that a set of positive mtegers 1s recursive if and only if it 1s recursively enumerable in
increasing order without repetitions.

Problem 3. (60 minutes)

Consider the problem of inferring, from a set of strings in a language, a grammar for that language.
For example, the strings

car, cdr , caar, cadr, caddr, cddar

could be part of the language generated by the following grammar:

<string> «=¢ <middle> r
<middle> i= ald|a <middle> |d <middle>

In trying to design a program to carry out such an inference, one would encounter many of the
central questions in Artificial Intelligence. Discuss one of the following aspects of the grammatical
induction problem. Be as precise and specific as possible. You may also include a set of random
comments that occur to you while answering this question.
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(a) Representation. How would you represent the strings, the grammar, and any auxiliary
information? You have your choice of existing languages. Is the representation likely to be a
crucial factor in this problem?

(b) Generalization. A grammar may be regarded as a generalization of the set of strings. What
measures of generality would be appropriate here? Do the measures generalize?

(€) Modes of inference. To what extent do the terms

deductive, inductive, abductive, hypothetico-deductive

apply to the problem of inferring a grammar?

(d) Learning. How would you design a program which would learn a grammar through
interaction with the environment? Would you expect such a program to perform better than
a non-learning program requiring the same amount of effort to produce?
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Problem 1. (45 minutes)

Answer one of parts (a) and (b).

(a) Suppose you are writing a literature review article entitled “Artificial Intelligence: Themes in
the Second Decade”.

Choose one “theme” out of the many that can be identified in the artificial intelligence
research area. Cite the key papers of the past six years bearing on the theme, which taken
together constitute evidence that such a theme in fact exists. In approximately 500 words of
clear exposition, survey your selected theme, in the style of a literature survey article such as
might be acceptable for the CACM. For purposes of this question, only post-1962 articles are
relevant.

(b) Discuss in detail the state of accomplishment of one of the following programs and how
further progress might be made in that area.

(1) the Creenblatt chess program
(2) the Samuel checker program
(3) the Wos-Robinson work on theorem proving by resolution
(4) the Stanford Al Project block stacker
(5) the general area of question answering programs.

Problem 2.(15 minutes)

What are the prospects for using a general concept of similarity in heuristic programming (for
example: similarity of chess positions, pictures of characters, or pictures of faces)? Give examples of
your proposed uses. In this connection you may discuss Dreyfus’ complaint that machines cannot
have “ambiguity tolerance”.

Problem 3. (30 minutes)

Answer one of parts (a) and (b).

(a) Give a first-order logic axiomatization (using predicates, functions, and equality) of the
following problem:

A farmer has to cross a river with a wolf, a goat, and a cabbage in a boat that
can hold only one of them at a time besides himself. Leaving the wolf alone with
the goat or the goat alone with the cabbage 1s disastrous. How should he cross?

The axiomatization should be such that the fact that the farmer can get across with his
charges 1s a theorem. Explain any predicates and functions used.

(b) The “representation question” is a central one in artificial intelligence. Describe as many as
you can of the alternative representations of the game tic-tat-toe. For each representation,
describe the problem solving technique which seems most applicable.
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Problem 4. (30 minutes)

Using abstract syntactic and semantic definition of suitable source and object languages, define a
compiler for conditional arithmetic expressions. State formally a definition of its correctness. What
are the main ideas of the proof?

Problem 5. (15 minutes)

Answer one of parts (a) and (b).

(a) Give a grammar for the language consisting of all well-formed formulas of the first-order
predicate calculus.

(b) (1) Does each of (Ex) (Fx = Cx) and (Ex)Fx = (Ex)Gx imply the other?

(2) Are the formulas (x) (y) (Fxy > ~Fgx) and (x) (y) (~Fxy > Fyx) compatible?

In each part, show how you arrive at your answer.

Problem 6. (30 minutes)

Answer one of parts (a), (b), and (c).

(a) Let A be the set of all Godel numbers of Turing machines. Let K be the set of Godel
numbers of Turing machines which halt when given their own number as put. For each of
the three sets 4, K, and 4 - K answer the following questions and give brief proofs.

Is the set recursive?

Is the set recursively enumerable?

(b) Let G;and G, be arbitrary context-free phrase structure grammars. Is L(G) n L(Gp)= &
decidable? Prove your answer,

(c) Give two basically different formulations of the intuitive notion of effective process. Outline
a proof of their equivalence.



January 1969 Artilicial Intelligence Qualifying Exam

Problem 1. (30 minutes)

(a) The move tree in Figure 1 is to be scanned from left to right on a depth basis using
alpha-beta pruning. Whenever a node can be pruned, list the node at which the comparison
leading to the prune 1s made and the highest level node affected. For example, if a decision
at node B3 leads to the pruning of node C89, list B3-C9 and do not list node 020, nodes E28,
£29, E30 or nodes F43 through F48.

(b) The and/or tree (or sub-goal tree) illustrated in Figure 2 has been generated by a problem
solving process. The numbers adjacent to the trimmed nodes represent an estimate of the
amount of effort required to solve the problems represented by these nodes. The problem
represented by the node marked A has just been converted into two alternative sub-problems.
In order to finish the remaining part of the problem with least amount of additional effort,
which sub-problem should be processed next and why?
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Problem 2. (90 minutes)

There has been much talk in artificial intelligence about the “representation problem”.

| (a) Briefly discuss one paper on the subject.

(b) Give a specific example from the above paper to illustrate the importance of representation in
a problem solving system.

| Problem 3. (40 minutes)

(a) The paper on “State of the Art of Pattern Recognition” by Nagy purports to cover all that is
; important about pattern recognition. Most of these are 1nadequate in dealing with machine
? perception of vision and speech. Why?

(b) Discuss the merits and demerits of syntax-directed recognition schemes in vision and speech.

Problem 4. (40 minutes)

Compare the models used by Colby, Green and Raphael, and Quillian in dealing with natural
language.
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Problem 5. (50 minutes)

Answer one of parts (a) and (b).

(a) In his paper “Heuristic Programming: Ill-structured Problems”, Newell has presented a
comprehensive study of heuristic programming. Describe the current state of knowledge on
the subject, giving specific examples to illustrate as many points as possible.

(b) The “Towers of Hanoi” problem is to be axiomatized. Assume there are three pegs, P1,P2,
and P3, and three rings of decreasing size, rl, re, and r3. The three rings are originally
stacked in decreasing order of size on P1 and we want to place them in decreasing order on
Pe.

BEFORE ra | |re
rl

Pl P2 P3

AFTER r3

re 1rl

Pl P2 P3

A legal move requires moving exactly one ring to another peg, with the restriction that the
ring may not be placed on a smaller ring.

Write a set of first-order logic axioms for this problem such that the following can be proved:

holds (on(P1, list(r3,r2,r 1), on(P 2, null), on(P3, null), Sg)>
Ix holds (on(P1, null), on(P2, list(r3,r2,r 1)), on(P3, null), S)

The fourth position of the predicate “holds” 1s a state variable. You might consider axioms
mmvolving state-valued functions.

Problem 6. (30 minutes)

Extra question for students planning to do a thesis in the area of Artificial Intelligence:

What do you think are the “kernel ideas” in the field of Artificial Intelligence?
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(Time limit: 7 hours)

The Primacy of Search

The history of the study of problem solving in artificial intelligence 1s primarily a history of the
study of search. From the earliest reports of problem solving programs in the mid-fifties to the most
recent synthesis (Nilsson), the central focus has been on the generation of solution spaces and the
heuristic control of search for solutions within these spaces. Nilsson reaffirms the “primacy of
search”. Feigenbaum (/F/P 68 paper) has referred to heuristic search as the central paradigm of
artificial intelligence research.

Problems 1 through 4 all relate, in one way or another, to this paradigm.

Problem 1.

Heuristic search has been characterized as follows:

“A tree of ‘tries’ (also called subproblems, reductions, candidates, solution attempts, or
alternatives-and-consequences) is sprouted by a generator. Solutions exist at particular
depths along particular paths. To find one 1s a ‘problem’. For any task regarded as
nontrivial, the search space is very large. Rules and procedures called heuristics are
applied to direct the search, to limit the search, or to constrain the sprouting of the tree.”

Comment briefly on this characterization.

Problem2.

List and briefly characterize particular techniques and methods for heuristic control of search that
have been studied to date. As a start, here 1s a list that should trigger appropriate associations:
Logic Theorist, problem reduction, game-playing programs, MUTIPLE, evaluation, minimum-cost
analysis, bi-directional search, planning, DENDRAL.
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Problem 3.

Consider the role of task-specific information, as revealed by the following dialectic:

Thesis: The primacy of heuristic search,

Antithesis;, The power of a particular problem solving program 1s a function of the quality and
quantity of task-specific knowledge and theory employed; heuristic search is an inefficient and risky
procedure employed by the ignorant.

You are to supply the synthesis in this dialectic.

Examples: In the most recent DENDRAL work (on amines, unpublished), the spectral theory
employed in the Preliminary Inference Process is so good (i.e. powerful) that there 1s no work
remaining for the Structure Generator to do, that is, only one structural hypothesis 1s implied.

The Moses integration program differs from Slagle’s program in that the former does almost no

search-it has the right method for every problem.

Problem 4.

If one considers each set of clauses to be the node of a tree, the resolution principle 1s a “legal move
generator’ for the space of possible proofs-by-contradiction for theorems in the first-order predicate
calculus. By itself, it is of course an inefficient theorem prover in the same sense that a legal move
generator 1s, by itself, an mefficient chess or checker player. The quest for efficiency (and thereby
effectiveness in particular problems of interest) involves search strategies. Some simple ones have
been devised.

Name three such search strategies, and illustrate how they prune the tree and guide the search for a
contradiction.

What 1s not simple 1s to devise heuristic search strategies for exploiting task-specific information in
the domain of a problem that has been given a representation in first-order predicate calculus.

Present one such heuristic search strategy for some problem domain in which a resolution theorem
prover 1s to be used as a “general problem solver”, and illustrate how 1t would work to control
search.
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Problem J.

(a) Give an axiomatitation of the “Missionaries and Cannibals” problem in the formalism of
McCarthy and Hayes such that it follows from the axiomatitation that the missionaries can’
get safely across the river with the cannibals.

(b) What is the relation between this formalization of the M & C problem and that of GPS?

Problem 6.

A single monocular view of a scene 1s not, in general, sufficient to determine the position of objects
in the scene.

(a) State as precisely as possible why this 1s the case.

(b) Describe briefly at least 6 ways mn which people get complete scene descriptions.

(c) Pick one of the above methods and describe in detail how you would implement it on a
computer.

Problem 7.

The following set of strings is part of a finite-state language. Find the best finite state grammar for
this language. Explain, as precisely as possible, why your choice is the best one.

a bbaa

ba abba

bb baaa

aba aabb

aaba baba
abbb bbbba

bbba abaaa

Hint: There 1s a non-deterministic finite state grammar with three non-terminals which generates
this set of strings.

Problem 8.

Discuss the Frame problem.
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(Time limit: 7 hours)

Problem 1.

Let successors(p) be a function that gives a list of the immediate successor positions to a position p
in a tree. Let the predicate iswin(v) be true if v is a won position. Write programs in LISP or some
other well-known language for

(a) depth-first search to a maximum depth n
(b) breadth-first search.

The output of the program should be a path through the tree from an initial vertex § to a vertex
that satisfies the predicate iswin.

Problem 2.

Two blocks are on a table in front of a robot hand. The hand can move to any point in the
vicinity, and its fingers can close or open (to grasp or drop objects, respectively).

Given the following predicates:

Ax, p, s) object x 1s at position p in state $
~Hand(p, s) the hand is at position p in state $
Closed( s) the fingers are closed in state §
Opens) the fingers are open in state s
Same(p, q) positions p and gq are identical

and the following functions:

grasp(s) the state gotten to from state s by closing the fingers
drop(s) the state gotten to from state § by opening the fingers
move(p, s) the state gotten to from state s by moving the hand to position gp (from any

other position)
on(p) a position in space just above position p

We can describe these circumstances im first-order predicate calculus as follows:

The initial state:

L. At (B1,P1, SO)
2. At (B2, P2, SO)
3. Hand (P83, SO)
4, ~Same (PI, P2)A» ~Same (P2, P3) A Game (P 1, P3)

The effects of actions:

5, (Vp, s) Hand (p, move(p, 5))
6. (Vs) Closed (grasp(s))
7. (Ys) Open (drop(s))
8. (VX, p,q, 5) (Ax, p, 5)2 Hand(p, 5) a Closed(s) > Ax, g, move(q, s))
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Predicates unaffected by actions (“frame” axioms):

9. (Vx, p,q,1,5) (Ax, p, 5) A Hand(r, 5) A ~Same(p, r) > A(x, p, move(q, $)))
10. (Vx, p,s) (Aix, p, 5) > Atlx, p, grasp(s)) A Atx, p, drop(s)))
11. (Vp,s)(Hand(p,s)> Hand(p, grasp(s)) aHand(p, drop(s)))

From the above axioms, it is possible to prove that the hand can stack the blocks and then be free
for further use.

(a) Construct a proof by resolution of the following theorem:

(3s, p) (At (B11, p , 5) A At(B2, on(p), 5) A Open(s))

(b) Does your proof use any of the principal resolution strategies such as unit preference, set of
support, subsumption, or linear format? Discuss in general the role of such strategies, and
why they were or were not useful mn this problem.

(c) Axiom 10 contains an obvious oversimplification. Describe the situation that is not
appropriately handled, and propose a substitute axiomatization that corrects this deficiency.

Problem 3.

One of the key problems of Artificial Intelligence is how to represent common knowledge about the
physical world by data structures in a computer's memory. For example, consider the following
information about a well-known object:

“A chair 1s a seat with four legs and a back, for one person to sit upon. It is an article
of furniture, frequently used in front of a desk, and 1s usually made of wood or metal.”

(a) Show in detail how you could represent this information in each of the following ways:

(1) By a “semantic net” of word associations (as in the work of Quillian, Schank, or
Winston).

(2) By predicate calculus (cf. McCarthy, Green, Sandewall).

(3) By any other representation that differs from both (1) and (2) in some essential way (e.g.
PLANNER).

(b) For each of the above two representations of the concept “chair”, discuss one use for which
that representation 1s clearly better suited than the other.
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Problem 4.

Discuss as concretely as possible what a reasoning program needs to know about what it and others
(e.g. travel agents) know in order to plan a trip to Timbuktoo. How do you propose to represent
this information? What rules of inference and axioms will you provide? In this problem, you are
essentially on your own; there is hardly any relevant literature.

Problem J.

(a) Compare the search procedures, generality of techniques, task domains and goals of GPS and
Heuristic DENDRAL. What are the most severe limitations of each program?

(b) Tower of Hanoi problem.

In a temple mm Hanoi, there are three diamond needles, and in the beginning, 64 gold disks of
64 different diameters were placed on one of the needles in such away that no disk is on top
of a disk of smaller diameter. The monks must move the disks from one needle to another

using all three needles and never placing a disk on top of a smaller one. The Tower of Hanoi
problem 1s to determine their strategy for moving the disks. When they finish, the world will
come to an end.

(1) Outline mm detail a CPS-like solution for the Tower of Hanoi problem (if there is none
carefully explain why).

(2) Outline in detail a Heuristic-DENDRAL-like solution (if there 1s none carefully explain
why).

Problem 6.

Suppose that an exploratory robot vehicle 1s to be landed on Mars in 1980 with the following
characteristics:

(1) It has a suitably compact computer of approximately the performance of the Al project’s
PDP-10.

(2) It can transmit and receive 10® bits per second in communication with earth when it is facing
earth.

(3) Its landed at a time when the round trip for signals 1s 15 minutes.

(4) It has television cameras.

(5) It can move either on wheels or 6 legs provided you can program it.

With what AI vision and motion capabilities would you equip it and how would they be
programmed and used? Give as much detail as you can. What other equipment and programs
would you provide?
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(Time limit: 6 hours)

Problem 1.

(a) In terms of the quality of solutions found and the efficiency with which solutions are
produced, the Heuristic DENDRAL program 1s one of the most powerful heuristic programs in
existence. What 1s the primary source of this problem-solving power?

(b) In his paper on Heuristic Programming, subtitled “Ill-Structured Problems”, Newell introduces
concepts and terminology intended to categorize and describe heuristic programs. Use Newell's
concepts and terminology to describe Heuristic DENDRAL.

(c) What are the purposes of having a systematic generator (the DENDRAL algorithm) at the
heart of Heuristic DENDRAL?

(d) We use heuristic processes to achieve search reduction in administering the search for a
solution to a problem. How does the heuristic process known as the Planner in Heuristic
DENDRAL contribute its heuristic power to search reduction? Illustrate by making reference
to some of the results in the results tables of the DENDRAL paper you were asked to read.
From a heuristic search point of view, how does “planning” in DENDRAL differ from
“planning” as this method has been discussed elsewhere in the A. I. literature (e.g. the
Planning Method of GPS, Hewitt’s Planner, Robot Planning)?

(e) You were asked to read a paper by Amarel in which he discusses representation of knowledge
and shift of representation. How has this problem been studied in the context of the task
environment of Heuristic DENDRAL? What are the results?

Problem 2.

The unbounded unit-preference strategy is: “Compute the resolvents of all unit clauses with every
clause before computing the resolvents of any pair of non-units.”

The input clause strategy 1s: “Compute the resolvents of a pair of clauses only if one of them is a
member of the initial set of clauses (i.e. an axiom or the negation of the theorem).”

(a) Give examples showing that both of these strategies are logically incomplete.

A replacement rule of inference for equality may be defined as follows.

Let £ be the equality predicate and s,¢, u be terms. Let 4 and B be clauses with no variables in
common such that A contains a positive equality atom, either A = E(s,t) vA or A=E(t,s) VA’
and a term u occurs at least once in B. (Note: u may occur as a subterm,) Let § and 4 have a
common substitution instance, and suppose that a 1s a most general unifier such that sa = ua. Let
Bx be the result of replacing an occurrence of ua in Ba by ta. Let C be the clause A ’av Bx. Then
C may be inferred by replacement from 4 into B. Denote the set of such inferences by P(4, B).
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If A and B have common variables, these must be eliminated by a change of variables before the
rule 1s applied.

(b) For all A and B, 1s P(4, B)=P(B, A)? Prove your answer.

(c) Let A be E(flx, g(x)), ¢) and B be E(f(x,x), ¢). Compute P(4, B) aand P(B, A).

(d) Prove: For any C that can be inferred by replacement from A and B there is a C’ satisfying
(1) ¢’ implies C and (2) C’ is obtained by a sequence of resolutions from the set consisting of
A, B, and the axioms for equality.

Problem 3.

After reading the speech report for inspiration, you have accepted a consulting job with the
linguistics department to predict the feasibility of a speech understanding system. You are given the
following vocabulary and grammar. You want a computer to recognize semantically and
syntactically legal sentences. The department did not specify the semantics but any reasonable
assumptions will do.

The vocabulary is:

programs, monkeys, termites,
search, climb, eat

trees, bits, bananas

The grammar is:

S = subject | verb | object

subject = programs | monkeys | termites
verb + search | climb | eat
object = trees | bits | bananas

(a) First, assume a probability of correct recognition of one of the vocabulary words, when
isolated, to be .7. Suppose the lexical segmentation scheme is perfect. Without use of the
grammar what correct string recognition rate (all words correct) might be expected on 3-word
strings?

(b) Based on the results of the speech report, how might the probability of word-confusion error
depend on vocabulary size?

(c) Make a reasonable assumption (either your answer to part (b) or some other guess) of the
effect of vocabulary size on recognition rate. State your assumption. Now, using the
grammar, but still no semantics, what correct string recognition rate might be expected?
(Rough calculations are sufficient.)

(d) Specify your assumed semantically meaningful strings. Show precisely why the recognition
rate 1s better. For extra credit, calculate an expected correct S-word string recognition rate
using both syntax and semantics.
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Problem 4.

Consider the following variant of the missionary and cannibals problem:

“Three missionaries andthreecannibali come toariverthattheywishtocross. They
find a boat that holds two people and can be rowed by one or two. However, if one
person rows by himself, he will be too tired to row by himself again. Besides that, if the
cannibals ever outnumber the missionaries on either bank of the river, the missionaries

will be eaten. How can they all safely cross the river?”

(a) Write a LISP program to find a solution.

(b) Write a micro-PLANNER program to find a solution.

(c) Write a situation-calculus description of the situation and the effects of actions from which it
follows that there is a solution. The “result” formalism of McCarthy and Hayes 1s
recommended.

(d) Discuss the problem of making a program that could go from the above English statement of
the missionary and cannibals problem to a LISP program for doing the tree search. Would
the PLANNER formalism or the McCarthy and Hayes formalism be suitable as intermediate
steps? Why or why not? Try to divide the overall problem into sub-problems which might
be solved independently.

Problem J.

One of the central problems in the recognition of scenes involving plane-bounded objects 1s the
segmentation problem. Falk, in his thesis, suggests improvements to Guzman’s algorithm, Describe
Guzman's and Falk’s algorithms. Give an example different from those in Falk’s thesis where
Guzman’s method fails and Falk’s succeeds. Give an example where they both fail.

For extra credit:

(a) Extend Falk’s algorithm to cover the case you presented above. If the new algorithm doesn’t
cover all cases, find a counterexample.

(b) Discuss the segmentation problem for curved objects.
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(Time limit: 6 hours)

Problem 1. (60 minutes)

(a) Briefly describe each of the following concepts and discuss how it would be useful in a system
working in the blocks world. This question is intended to test your understanding of the
mechanisms and not of the blocks world. If one or another of the mechanisms is not

particularly suited to the blocks world, then you should discuss it in the context of another
domain. Also, you may want to make note of how some of the concepts are interrelated.

(1) “procedural embedding” of knowledge
(2) declarative representations (e.g. assertions, predicates)
(3) automatic backtracking
(4) alternative “worlds” of data contexts
(5) “demons”
(6) pattern matching.

(b) Define each of the following problem-solving paradigms and give a short description of the
sort of problem domain to which it 1s applicable. (For instance, “table lookup” might be
defined as the selection of data elements from an information structure by processing keys
associated with the data. It would be applicable in situations where the set of possible answers
1s explicit, there are appropriate keys and selection functions, and the number of elements is
small enough to allow the storage and retrieval to be reasonably efficient.)

(I)  alpha-beta pruning
(2) generate-and-test

(3) heuristic search (e.g. A* or branch-and-bound)
(4) hill climbing
(5) means-end analysis.

Problem2. (JO minutes)

Give brief descriptions of the Heuristic DENDRAL and Meta-DENDRAL programs. Identify the
major components and contrast the purposes of the two programs. Specifically tell how
Meta~-DENDRAL makes the “big switch” in Heuristic DENDRAL powerful.

Problem3. (JO minutes)

Describe the representation of knowledge in the MYCIN system (Shortliffe, et. al.). Describe how the
set of rules 1s organized to allow for flexibility in changing the rules. Contrast this representation
with a decision tree representation.
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Problem 4. (60 minutes)

Knowledge has been called the key to high performance of Al programs and has been suggested as
a major topic for new research in the coming years. Among the many dimensions of this research
are the representation, use, and acquisition of knowledge in Al programs.

(a) Discuss the representation of knowledge in the Carnegie-Mellon HEARSAY system. In
particular, what 1s the organization of the system, what knowledge is represented, and how

| does the system deal with multiple representation of knowledge?

(b) Discuss the use of static and dynamic world knowledge in the STRIPS robot system, especially
in planning. Be sure to mention dependency conditions in plans. How does STRIPS know if
a plan if applicable once there is a change in the world?

(¢c) One way of acquiring new knowledge is by induction. Describe the methods of acquiring
knowledge, and the types of knowledge acquired, in Meta-DENDRAL, STRIPS, and Winston’s
arch finder. (These are three programs which can be said to do induction.)

Problem 3. (45 minutes)

In natural language, words have several different aspects of meaning. Among these, we might
include reference (their connection to objects mn the real world), inference (their connections to other
information implied by their use), connotation (the other associations they provide for the hearer,
often attitudinal or emotional), and appropriateness conditions (the contextual conditions under
which they can appropriately be used). For each of the four words ‘dog”, “throw”, “angry”, and
“always”, discuss the different aspects of meaning they convey, and the way they might be handled
in different systems (particularly those of Schank, Colby, Wilks, and Winograd).

Your answer should include:

(1) A discussion of the use of primitives, as in Schank. Describe how they are applicable to some
of the four words, and what problems there are in extending the idea to handle others.
Describe how conceptual dependency might handle some of the connotative meaning of
“angry”.

(2) Different approaches to representing the “essential” meaning of “dog”. What would it look
like mn a BLOCKS-world? What components of its meaning describe its preference semantics?

(3) The various inferences that can be drawn from a use of the word ‘throw’, and how they
would be handled in the inference components of various systems.

(4) The problem of handling time adverbs like “always”, and ways they might be integrated
where not present now in various systems.

(5) The kinds of patterns which might be present in a Colby-like system containing these words,
and how they would be used. What aspects of their meaning are brought out?

For extra reinforcement, consider any of the other possible combinations of word, meaning type, and
system. Use the specific words as starting points to discuss which aspects of meaning are and are
not handled by the various programs, and to compare the ways each program deals with the same
aspect of meaning.
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Problem 6. (30 minutes)

It has often been noted that there are many similarities between the process of understanding a
spoken utterance and “understanding” a visual scene. Clearly, the acoustic wave form corresponds to
the pattern of intensities on the retina, phonemes correspond to lines, vertices, etc., and the
S-dimensional description of the scene 1s in some sense the “meaning”.

The following statements are made in an (imaginary) proposal for a new vision system. For each
statement, identify a particular natural language system which has made significant use of the same
basic idea and also tell how the idea has been applied in actual vision systems. If the idea has not
been used, suggest where it might.

(a) Many of the system’s responses do not require analyzing the entire scene, but depend on
reactions to particular features. If a furry beast is jumping at us through the air, we want to
give the appropriate response without worrying about whether it is a lion or a tiger.

(b) We expect to see objects in familiar configurations. For example, we expect to see a handset,
a body, and a dial associated in a particular relationship when we look at a telephone. The
system uses simple heuristics to group visual features into prospective objects, then applies its
vocabulary of templates for plausible objects to each of these seeing if a fit can be found. If
there 1s more than one possible match, we can weight the preference of each one by checking
whether the individual components are of the right type for the template.

(c) The system must make use of all levels of information in a flexible way. At times we may
want to use the fact that a particular object 1s hypothesized to look more carefully for some
line. At other times, a particular configuration of lines and vertices may suggest a possible
object.

(d) In order to describe complex shapes, we need a small vocabulary of basic shape-constituents,
such as “plane”, “sphere”, “rod”, etc. =~ We can then define more complex shapes as
combinations of these linked with spatial relations like “above”, “inside”, etc.

() When we walk into a room we have a set of expectations for particular elements which need
to be filled in, e.g. walls, floor, ceiling. This “frame” determines the way in which we will
interpret the elements we see.

Problem 7. (30 minutes)

Consider the game tree shown below, and let moves from any vertex be generated from top to
bottom. Subtrees are to be named by giving the letters attached to their terminal vertices. We will
use the a-@ heuristic.

(a) What subtree is visited if initially a = -w and g =»? What does it tell us about the value of
the game?

(b) What subtree is visited if initially a = 1.5 and f= 2.51

(c0 What subtree is visited if initially a = 3 and 8 =»? What does it tell us about the value of
the game?
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(d)  Re-order the subnodes so that by using an «~8 depth-first, top-to-bottom search, the smallest
number of terminal vertices 1s visited. There may be many such re-orderings; you need find
only one.
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(Do any two of problems 8, 9, and 10.)

Problem 8. (60 minutes)

Consider the interactive Program-Writing System in Floyd’s 1971 IFIP paper Toward Interactive
Design of Correct Programs”. Recall that there are two parts of the system, which are referred to
respectively as “man” and “computer” in the imaginary dialogue. In the following problems, you are
to show in some detail what “mechanizable” reasoning along with what necessary facts would lead to
each of the desired results. You may use any plausible formalism or pseudo-formalism such as
Floyd’s, first-order logic, or micro-planner. As a suggestion, first sketch out the reasoning in any
language you wish, such as conventional mathematical language and English. Then reduce it to a
formalism. You will receive most of the credit if your reasoning is complete even if you can’t
express it In a known formalism.

(a) On the second page of the paper, “computer” states that the antecedent of P, does not follow

from the antecedent of P; and the iteration-non-terminated condition. “Computer” also
implies that the iteration is not initialized. Show how these two conclusions can be reached.

(b) In the next interchange, “computer” states that the consequent of Pj with the iteration
termination condition, does not “seem” to imply the consequent of P;. Sketch out the
reasoning and information necessary to reach this conclusion. What added facts or inferences
would be necessary to “prove” that the consequent of Py is not implied by the consequent of
Py?

(¢) Just before the end of the dialogue, the computer asks the man to design the initialization of
the sub-program P,. Suppose we want “computer” to design the initialization itself. Show
how “computer” might deduce the correct initialization.
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Problem 9. (60 minutes)

Read the paper “A Semantics-Based Decision Theory Region Analyzer” by Yakimovsky and
Feldman (3rd IJCAI 1973). Consider the problem of applying their region analyzer to the blocks
world.

(a) What would you do to try it?

(b) ~~ What results would you expect?

(c) Now think about adding the vertex classification system of Waltz. What changes in the
abstract description of the Y & F system and what changes in the program organization would
be needed? How well would this system work?

(d) What does your answer suggest mn general about vision research?

Problem 10. (60 minutes)

For a position u in tic-tat-toe, winnable(u) asserts that the player whose turn it is to move can force
a win. Write sentences of predicate calculus axiomatizing winnable(u). Assume the standard
interpretation of the usual set theoretic and arithmetic predicates and operations so these don’t have
to be axiomatized. Use the following initial definitions.

Board ={1,2, 3) x {I,2, 3}

Vu u € Positions = dxyz u = <x, <9, 2>> A
x €{"x","0"} A y e Powerset(Board) A z € Powerset(Board) A 9 n z = {}

In this formula, x is the player whose turn it is, y is the set of squares occupied by "x", and z is the
set of squares occupied by "o".

Use car and cdr to extract elements of ordered pairs so that

Vxy car (<x, y>) = x A cdr(<x,y>) = 9

Hint: Use a predicate won(u) that 1s true if the player that last moved has three in a row.
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Select one of the following problems. It should nor be in your area of A. I. specialization. Spend a
few days on the problem (about 10 hours altogether), and turn in a copy of your work. Your written
work will serve as the basis for the discussion at the oral exam.

All papers referred to below are from the Proceedings of the Third International Joint Conference
on Artificial Intelligence (31 JCAI).

Problem 1.

Read Pohl (p. 12) and Harris (p. 23).

(a) Pohl doesn’t distinguish between time exhaustion and space exhaustion kinds of Type-I
catastrophes, but hints that there might be some things to say about them. Can you think of
anything? How can their frequency be minimized by more careful planning while a system 1s
being designed/ What are some ways one might detect an imminent collapse? Once detected,
how could its mmpact be minimized?

(b) Propose a simple problem which might lead to an unending search unless Pohl’s dynamic
weighting scheme 1s used. Could Harris” bandwidth constraint solve this problem as well?

(c) Harris and Pohl both use the Travelling Salesman problem to illustrate their techniques. Why
1s this an apt choice? Does it facilitate comparing the two techniques? (Warning: If it does,
then compare them!)

(c) Given a resolution theorem-prover, might these techniques be applied to advantage?

Problem 2.

Read Bledsoe (p. 56). The system described is dealing with a domain (topology) but does not seem
to possess much knowledge ina format suited to that domain. For example, humans rely on visual
intuitions about space and continuity quite frequently while attempting proofs in this field. How
might analogical models like Gelernter’s or Bundy’s (p. 130) be employed by the system?

In 1973, Bledsoe seemed to expect his system to prove new topology theorems any day. If today, two
years later, this isn’t so, how can you account for this? That 1s, how could it be that a system was
able to prove hard but known theorems, yet not a single “new” interesting one?

Problem 3.

Read Woods (p. ZOO) and a HEARSAY article. Describe how incremental simulation might have
been effectively employed for some non-speech projects (e.g. the Dendral task or a large
theorem-prover). Why are so many different experts used mn Woods’ project? How do these experts
correspond to the modules in HEARSAY (Reddy et al, p. 185, p.194)? How might you organize an
incremental simulation of a system to mamtain and draw inferences from Conceptual Dependency
nets (Schank, p. 255)? To what extent has the basic idea permeated Al research? Consider, for
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example, the “pre-processed” format for input assumed by Winston’s ARCH-learning system. Is
incremental simulation meaningful for an individual doing research? Is there a “flaw” in the idea;
can you think of a situation where it might be detrimental to a final project?

Problem 4.

Read Darlington and Burstall (p. 479) and Boyer and Moore (p. 486). Could Boyer and Moore’s
system be programmed using the transformation schemata concept of Darlington and Burstall?
Write one schema for a particular induction problem (e.g. proving that append is associative), and
indicate how it would be applied. Is this feasable for the entire range of Boyer and Moore’s system’s
abilities? Consider how one might automate the acquisition of new program transformation
schemata. For example, consider how META-Dendral automates rule acquisition for Dendral (see
Buchanan, p. 67, or Buchanan et al in the references list).

Problem J.

Read about Waltz’s work; also, look at Stefanuk (p. 612). Stefanuk and others seem to argue for the
use of local processing to solve problems. Give a few examples where this 1s essential, and a few
where only a global attack can get anywhere easily. How might one characterize the class of
problems which need a particular level of scrutiny? How does this mirror the problem of using
semantic vs. syntactic knowledge?

Draw an analogy between local/global knowledge and the use of phonetic/semantic knowledge in
speech systems. Consider how a successful speech system uses the different levels of knowledge
synergetically (e.g. HEARSAY). Using your analogy, how might one intermix local and global kinds
of knowledge of the kind used by Waltz? That 1s, use your analogy to propose a new design for
Waltz’s system.

Problem 6.

Sketch out a program to play tic-tat-toe in one of the Al languages (micro-planner, conniver, QA4).
This 1s not a programming problem. You are not expected to run the program. What 1s important
1s a discussion of the basic representations you use and the tradeoffs involved in the way the
program 1s designed. In particular discuss how your design would differ if the program were for
3-D 4 x 4 tic-tat-toe.

Problem 7.

The first paper in 31JCAI describes a method for searching “additive and/or graphs”. Find some
real Al search problem (where “real” means in a specific problem domain like game playing,
syntactic parsing, or scene analysis) to which this approach might be applied. Discuss why the
algorithm would be useful, and the tradeoffs involved in the different choices (like top-down vs.
bottom-up). If you can find two domains with different characteristics, all the better.

rr
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Problem 8.

Read Koffman & Blount, “Artificial Intelligence and Automatic Programming in CAI” (p. 86).
Assume you wanted to write a program which would take the role of the STUDENT (i.e. the other
participant in a dialog with their program). Discuss the basic issues you would need to handle, and
the ways in which your result would be the same (or different) as a general automatic programming
system.

Problem 9.

DENDRAL takes the results of a complex interactive event and tries to deduce what components
went to it. Consider applying the same techniques to a “de-compiler” which takes machine code
and tries to deduce the higher level language code which produced it. Pick your own favorite
machine and higher level language, but assume that the system will have to handle the output of
aribtrary compilers (all correct, but some involving optimitations and other such complications).
Describe what the resulting system would look like, in particular pomting out which DENDRAL
features seem useful and which don’t. Reminder: This 1s a thought problem, nor a programming

problem — don’t try to build the whole thing, but spend your time figuring out what the significant
issues are.

Problem IO.

John Seeley Brown has a paper on “Steps toward automatic theory formation” (p. 121). It discusses
a task involving learning names for kinship relations. Describe how Winston’s learning program
would have to be modified to handle the learning of kinship relation names. Discuss the problems
in designing an appropriate training sequence. Discuss the relationship between these and other
“concept formation” programs which might be set the same task.

Problem 1 1.

Harry Pople (“On the mechanization of abductive logic”, p.147) describes a formalism for abductive
reasoning in the context of medical diagnosis. Describe a production system-based method for doing
the reasoning. How could it be fit into MYCIN?

Problem 12.

Three papers in 31JCAI disucss problem solvers in the domain of moving objects from room to
room in a simple flwrplan (Siklossy & Roach, p. 383; Sacerdoti, p. 412; and Siklossy & Dreussi, p.
423). Describe the relative advantages and disadvantages of each (in particular look for things one
system advertises doing which would be difficult or impossible for the others, and analyze why).
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Be prepared to discuss the following questions orally.

One computer program says about another, “It knows I want to use the telephone line to Boston,
and it 1s deliberately holding on to it in order to prevent my using it.”

1. English aside, how would you represent such an assertion as a LISP, PLANNER, or first-order
logic data structure?

2. What semantics would you give this assertion, that is, in what states of the world would you
regard 1t as true?

3. How would you axiomatize the concepts involved, what rules of inference would you use,
and/or what MICROPLANNER “theorems” involving them would you give a program that
must generate such a statement and use it?

4, From what evidence might the computer deduce such a statement? E.g. from what external
observations?

J. When if ever would it be important for a computer program to be able to use such assertions?
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Problem 1.

In five minutes or less, state how you would go about locating the most accurate published decimal
approximation of 1/m, where n= 3.14 159... .

Problem 2.

: I 2 :

Suppose we want to numerically evaluate Js e* dx with an error provable to be less then 10-19,
We are able to generate values of e* for any x in [0,1] to any desired accuracy. We decide to use
the trapezoidal method (with no acceleration) with »n t1 abscissas. Assume ordinary rounded
floating-decimal arithmetic, with s significant decimal digits for the mantissas. We may use any
integer values of n and s that we need, but we must not waste resources with values that are much
too large.

(a) Approximately what values of n and s are large enough to do the job?

(b) For some reasonable pair of values n, 5, show that the error is indeed less than 10-19,

(c) ~~ What error would you expect to actually occur in a computation with this n and s?

Problem 3.

Suppose that the equation ¥% + a,x + a, = 0 with real coefficients possesses real roots a, 8. Show
that, if xg 1s chosen sufficiently close to a, the iteration

a,x} + a
Xho = = ———

xk

converges to aif |a}> |B}; the iteration

az
Xho) = = ——

Xk + @

converges to a if la | «|B | and the iteration

SN

Xkay © +2
al

converges to aif 2|al<|a+8}
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Problem 4.

Let X(h) be a function of A. Assume that

X(h) = X(0) + ah 3 + bh% + o(h%) ash-0,

where a and b are unknown constants. Assume further that the values of A{%) are known for A=

1/10, 1/20, ..., 1/90,1/100. Describe an extrapolation to the limit algorithm which makes use of the
| assumed information to estimate A(0).

Problem 3.

Let A be a real n xn matrix with eigenvalues |Aj|2|Asl2... 2A, Let Az;=A2;. Consider the

algorithm which generates the following sequence of vectors:

glen) - Ax)
(ie1) (isl)

xX —=)
I ire! MN

where x‘ is an arbitrary real vector with unit norm (we use the Euclidean norm).

(a) Under what conditions will ¥* converge to z,?

(by If A= pe'® Ap = ped and | As] > |Agl, describe a method for computing Aj and A, using only
real arithmetic.

(c) Describe ways of improving the rate of convergence of the above algorithm when |[A;| and
IA] are close.

(d) Briefly mention the advantages and disadvantages of the power method over other methods.

Problem 6.

The following algorithm has been used to generate circles on the CRT display of the PDP-1.
Given xg, yg, and #4, let

Xpei = Xp + Ay

Inet = In = hx.

(Note particularly that the “new” value of x is used to obtain the new value of §.) The points (x,,
yy) are displayed as they are calculated and appear to have an almost constant distance from the

center of the screen. In practice, 4 1s of the form 2°! but this is irrelevant here.
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| Express the algorithm in the form

2,.1 = A(R) z,,, where2 -( ,nel n n )
for some matrix A(h). Use this to show that the algorithm works by proving that there is a constant
c¢ so that for all n,

2 izoll < zl  ¢ liz
where ||z]| is the Euclidean vector norm. You may ignore roundoff errors.

If the original algorithm is changed to

Xnel = Xp + An

net = Yn = hxy,

then we obtain an expanding spiral instead of a circle. Why?

Make a few brief comments relating the above observations to the numerical solution of ordinary
differential equations.

Problem 7.

Consider the ordinary differential equation problem of determining y(x) so that

Defer), K0) 50. (Mm
In the Milne-Simpson method of approximately solving (1), we solve the difference equation

A

nel = In-1 + 3 Fonts In) + 40030) + fers nat) (2)
where x,, =nh and ¥,, is an approximation to (xy). The actual methods of getting y; and solving
the implicit equation (2) for yy,; are irrelevant here.

(a) In spite of the universal success enjoyed by the Milne-Simpson method with desk calculators,
it has not been popular with automatic computers, Why?

(b) As explicitly as you can, find the solutions of (2) for the two cases fix, y)=y and flix,y)=-%.
Explain the relevance to part (a).
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Problem 8.

In one hour, discuss in depth one of the following areas of numerical analysis:

(I) Numerical solution of ordinary differential equations, including discretization error and
stability.

(2) Numerical solution of elliptic partial differential equations.

(3) Numerical solution of hyperbolic partial differential equations,

(4) Numerical solution of parabolic partial differential equations.

(5)  Round-off error.

(6) Approximation of functions.

(7) Computational methods in linear algebra.

(8) Numerical integration.

(9) Monte Carlo methods.

Include in your discussions as many of the following subjects as seem to be appropriate.

(a) The important problems in the area.

(b) The most important results.

(¢) General literature which would provide an introduction to the field for a person who wanted

to learn about the area. Also some of the more recent literature in which important results are
given.

(d) The pragmatics of solving problems in the field on an automatic digital computer. Also give
sources of routines or algorithms for solving the common problems of the field;

(e) Some unsolved problems in the field.
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Problem 1.

You are required to evaulate

[7 [1__ 1 aov In DIn(X-1) (np x2 *

You may use any quadrature programs you want, and up to two minutes of time on the B5500.
Spend 20 minutes now, with closed book, to outline what you propose to do and why. Execute your
proposal this afternoon and hand in your result together with supporting documentation and an
explanation of any deviation from the plan you propose now.

Your grade will depend upon

(1) The accuracy you achieve.

(2) The strength of the evidence or argument which you supply to support your claims to
accuracy.

(3) The total amount of computer time (debug+compilet+execute) consumed. You will be
penalized for computer time consumed In excess of two minutes.

Do two of Problems 2-6 (20 minutes each).

Problem 2.

Let {x;} be a sequence of real numbers converging to a. Let 2; be a sequence defined by

7m xi — (%i41 ~ x)?
Xie2 ~ 2%, + Xi

(a) Calculate z; if

Xi, = o = K (X1=-a),

for some K, where |K |< 1.

(b) Let %;,;—a=(K+0;)(x;- a) for some |K|< 1, and where o; = 0. Prove that

CZ,-
lim —— = 0.
jac0 X; —

(c) What hypotheses on ¢; would enable you to conclude that

lim kia
190 (x{= o)?

exists? Prove your assertion.
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Problem 3.

Describe what 1s meant by “instability” in relation to the numerical solution of differential equations.

Find the greatest step length 4 such that the initial value problem

y'" + ay’ + by = 0, where 0 <a<2Vh

may be solved without instability, using

Inel®= In + Ay

to perform the integrations.

Problem 4.

Consider the following ALGOL procedure:

real procedure {g(x) value x; real x;
comment /g(x) = log, 1+x) to within a few units in its last decimal place,

provided the ALGOL function /n(y) =log,(y) to within a unit or two
in its last decimal place for all y» 0.

The simple statement

lg = In(l+x)

was rejected because it produces inaccurate results when ¥ 1s near zero.;
begin

real ¥;
Y= 14x;

ify = 1 then lg := x
else Ig :=xxin(y)/(y- 1)

end

Explain why the rejected statement produces inaccurate results and show that the procedure does
work as accurately as claimed when run on a computer, like the 85500 or IBM 7090, which
normalizes sums and differences of floating-point numbers before rounding.
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Problem &.

Consider the following ALGOL procedure:

real procedure rufsgrt (x, a, b), value x, a, b; real x, a, b;
begin

real ¢;

[:axx+ Db;

rufsqre = (xt t t) % 0.5
end

Let E(x, a, b)=(s/vX)- 1 be the relative error with which s =rufsgre(x, a, b) approximates vx. Let

E(a,b)= max |E(, ab).
1/4sxs4

Prove that

Ea, b) = Eb, a) 2 EG, 220)
2 2

and hence that the values of a and » which minimize £(g, 8) are equal.

Problem 6.

Read the paper “Note on the inversion of symmetric matrices by the Gauss-Jordan method,,, by R.
DeMeersman and L. Schotsmans (see /CC Bull 3 (1964), pp. 152-155).

The authors claim that their algorithm will work for any symmetric non-singular matrix, but it
won't. Supply a 2 x2 counter-example.
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Do two of Problems 7-12 (60 minutes each).

Problem 7.

(a) Let

« -1 0 eee 0

-1 Le { -] 0 oot 0

C= |:
0 0 -1 a -1 0

0 .., 0 ~] o« -1
0 ... 0 =1 a

be a real n x » tridiagonal matrix.

Give a simple condition on a for C(a) to be (1) non-singular and (2) positive definite, citing
reasons for your answer.

For parts (b)-(f), consider the real n x » tridiagonal matrix

[a =1 0 ceo 0
-1 ap -1 0 . . . O

A= : *.
0 0 -1 Ay.2 -1 0

0 . ve 0 -1 P| -1
0 yo * 0 -1 »

(b) Answer part (a) for the matrix A.

(c) IfA is non-singular how would you propose to solve Rx = b? Give more than one method,
giving reasons when each method 1s applicable.

(d) The inverse of A sometimes has only positive entries. When is this true for a non-singular A ?
Why is this knowledge useful?

(e) Show that if A4-! exists and has nonnegative entries then A has at least one nonnegative
eigenvalue and eigenvector with nonnegative entries.

(f) Suppose that a;2 2 and |bj-¢;}s E for é=1,2,...,n Let x and 9 be the respective
solutions of Rx = b and Ay =¢. Find an estimate for max |9;=x;]

(g) Consider the problem

(= p(x) 8x); + fix) (x) = g(x)
oa) = ¢,, #(b) = 9}

where p(x)2a>0, fix)20, asx sb.

Discuss the solution of this problem by finite-difference techniques.
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Problem 8.

(a) The coefficients a, and b, are related by Horner’s recurrence

a by = ay, and for r=n-1, n-2, ..., 1, 0,
“1 ob =xb, + a.

Show that the polynomials

n n

A(z) = > a,’ and B(z) = > bz"?
r-0 I'e1

satisfy

(b) The recurrence 8 can be implemented as an ALGOL program which, given computer numbers
n, x, and a,., generates the coefficients b,. However, rounding errors will prevent the stored
values b, from satisfying recurrence @ precisely. To appraise these errors, assume that the
ALGOL statement

S=utv

when executed, produces a number § satisfying

|u+v-s|lis| so

and that

pi=UXV

produces a number p satisfying

I wp luv I sn,

where ¢ and n are small numbers (of the order of 10°"! on the B5500). Then show that the
computed value of by satisfies the following quite close bound:

| A(x)-bg|  (0+n)eg — | bon, Where

¢,=|ayin/(e+n), and for r=n-1, n-2, .... 1, 0,
€

I e =|x]e q+ |b)

If you cannot prove this, give another reasonably close bound for | A(x) - bol.

(¢c) Now think about an ALGOL program which uses, say Newton’s iteration to compute a zero of
the polynomial A(r), and which includes both recurrences # and e¢, the latter to provide an
error-bound for the former. Discuss the suitability of the following criterion for stopping
iteration, in the light of practical considerations:

“If | bol <(o+n)eg — | bplm, then x is an acceptable approximation to a zero of A(r).”
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Problem 9.

For the solution of systems of linear equations Ax =b by Gaussian elimination, discuss the
motivation for and the consequences of various pivot-selection strategies most widely used. Explain
how these strategies can be carried out in a program for solving linear equations. Discuss any other
operations on the system which might be relevant in the pivot-selection strategies. What inferences,
if any, can be drawn from the sizes of the pivots?

You may wish to illustrate the points of your discussion’by means of numerical examples either of
your own choosing or from the following:

(1)

1 a1 a1... oe LA

0 1 -1 . . . . . -1 By, = l .

0 Q@ 1.3, . . . . = ay =-L Af 3<)

A = : ] : SRE ) a = 0 ir 3.
: ET A

© . +... «+. 0 1 eo

(11)

7 0 0 . . . . 0 1°

-1 1 oc . . . . 0 l 8,4 = 1 except

1 a1 1,0... 0 1 aggo=2

, - Ce Ce Co ayy = slr 1>g
. * To. ., . = 0 if $<) except

CT ea | Tu .- a = 31 if iK60 .

-1 <1. . . . = 1 1 1,60

-1 -1 . «1 -1 2 60x

(111)

1/2

ye O1/8

A, © . . re |
2-58

O 2=%9 Oh LIN:Y

(The last diagonal elements deviate from the geometric progressions. )
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Problem 10.

Discuss the role that the concept of the order of an iteration function plays in the theory of
root-finding. You might want to consider some of the following points in your discussion:

(1) Definition of order.

(2) Methods for generating iteration functions of arbitrary order,

(3) When order 1s mtegral and when it is not.

(4) Effects of multiple zeros on order.

(5) Derive the order of a number of iteration functions.

(6) The convergence properties of iteration functions of linear or superlinear order.

(7) The pros and cons of using high-order methods in practice.

(8) The relation between the order of an iteration function and the function evaluations it
requires.

Problem 11.

Let (x, 9) be a solution of
2 2

no = 22+ 2. fx, 96 - glx,9) , fz0
x2 dy?

for ¢ in an L-shaped region (a square with a quarter of the square removed), where the value of ¢
on the boundary 1s given. Assumef and g are smooth.

(a) Discuss the approximation of this problem by finite difference techniques.

(b) Discuss several schemes for solving the resulting approximation.

(c) What role can the maximum principle play in the analysis of this problem and the
approximation problem?

(d) Explain how an estimate for the difference between the analytic and approximate solutions
may be obtained.

Problem 12.

(a) Discuss the properties and tests relevant to a good random number generator.

(b) Propose a numerical problem for which Monte Carlo methods offer the only reasonable
approach and describe how you would use them to solve it. How do you estimate the accuracy
of your result?



October 1966 Numerical Analysis Qualifying Exam

Problem 1.

Let

Q(x) =x™ +a, x" +... +a

‘be a polynomial of degree n with leading coefficient 1. A polynomial P ,_;(x) of degree n-1 is

desired such that the maximum of the error |Q,(x) - Py.i(x)| is minimized on the closed interval

E(x) = Qplx) = Pp_y(x).

Give a characterization of E,(x) and P,,_,(x). What is the value of

max [E,(x)]?
-1sxs]

Problem 2.

In many mathematical applications it is necessary to compute the eigenvalues of matrices. Describe
an algorithm for each one of the following problems:

(1) Find all the eigenvalues of a real symmetric matrix.

(2) Find the largest three eigenvalues and associated eigenvectors of a sparse matrix of order 500.

(3) Find all the eigenvalues of an arbitrary real matrix.

Give reasons why the algorithm chosen 1s especially applicable to the corresponding problem.
Briefly, what modifications would you recommend if an auxiliary storage is to be used?

Problem 3.

Let |J+Jl be a vector norm defined in n-dimensional real vector space (n 1s finite). The least upper
bound norm lub(4) of a real n x n matrix A with respect to ||*|| is defined as

lub(4) = max L142
xso lx

(a) For which matrices A is lub(4)=0?

(b) What is lub(A4) with respect to || ]|= max {J%,l,. . . , |%,]) for

5 1

A= (3 4) ?
(c) We could define cond(4) by

00 if A 1s singular
cond(4) = lobia) lub(4-') if A is nonsingular.

100
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What range of values can cond(4) assume?

(d) Consider the system of linear equations Ax = b, where A is a known n Xx n real matrix, the real
vector b 1s known, and the vector ¥ 1s unknown. We want to check the sensitivity of the
solution ¥ to changes in b. If

A(x +AX)=b + Ab,

derive an expression for an upper bound for the relative change || Ax ||I/}|x || in ¥ (with respect
to [[+]]) in terms of cond(4) and the relative change || A6 {|/{Ib] in b.

(e) What does the phrase “to scale the matrix A” mean? How may it help the problem of
decreasing the sensitivity of the solution x to perturbations in b, as described in part (d)?

(f) Suppose we want to solve the system Ax = b for x with a particular computer algorithm. The
computer, however, works with the approximations A + AA to A and b+ Ab to b, that 1s, 1t
attempts to solve the system (A + AA)x=b + Ab. In a few sentences, describe what one means
by a backward error analysis of the algorithm in question and state when the algorithm will
produce a suitable solution.

Problem 4.

Describe the role of orthogonal polynomials in the derivation of quadrature formulas of the
Gaussian type. Determine by this method or any other method the weights and points for the
two-point formula

Jo xR fix) dx ~ w flay) + wafting)
which 1s exact for cubic polynomials.

Problem 5.

One of the calculations which arises frequently in statistics is

n no,

S =) (xj -%?, where = 5 —.
lel te]

A short manipulation shows that

NH

S => xf -nx2
i=]

Give advantages and disadvantages of these formulas for computing §, with emphasis on data
handling, number of operations, and numerical accuracy.

Suppose that the relative error in addition, subtraction, multiplication, and division is bounded by a
positive number ¢, e.g. fl(a+b) = (a+b) 1+¢,),|€,| <¢, where fl(a+b) indicates the floating-point sum

of a and 6. Determine a bound for the relative error in the computed mean fi(¥) when x;2 0.
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Problem 6.

(a) Explain what is meant by the order of a convergent iteration method.

(b) Give condions sufficient for the convergence of the iteration

Xv =flx))

‘to a real root of the equation ¥ — f{x) = 0, given x.

(c) It is proposed to use the iteration sequence

Xi = ax; + (1-c)fl(x;)

to determine a root of the above equation, where it 1s known only that the derivative off lies
in the range

-G<s (x) £0, (G> 0).

Show that a safe choice of a, considering the most unfavorable values that f(x) can attain,
minimizes the maximum value of

lo + (1a) f(x) |

and the minimum 1s achieved when

G

X= G2

Problem 7.

Consider the differential equation

y= fix, 9)

with y(a) = a. Euler’s method for the numerical solution 1s defined by

net = In + Af xp, 30)
nel = Xn + A ’

forn-0, 1, 2, . . . . with yg = a, Xp = a.

(a) Explain briefly how this algorithm is obtained.

(b) Assume

(I)  9"'(x) is continuous for asx sb

2) Ifix,y)-fx, y*|<L|y-y*| for any x ela, b).

Let A=(b-a)/N. Show that y(b) = yy = 0 as N > cw.

Problem 8.

(This problem is the same as Problem 8 of the May 1965 Exam.)
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Problem 1.

(a) Explam the fundamental ideas behind the Romberg integration method.

(b) If one tries to apply the Romberg method to the evaluation of the integral

I| vx cos x dx
one finds that the method converges slowly if at all. Explain why this difficulty arises. What
can be done to eliminate this difficulty?

(c) The ideas of the Romberg integration can be applied to the approximation of the value at A=
0 of a function of 4 which can be calculated for a set of values of A> 0. Suppose that

X(h) = X(0) +ah32 +bh2t oh?) as h- 0

where a and b are unknown constants. Assume that values of X(h) have been calculated for A

=1/10,1/20,1/40,1/80. Describe an algorithm based on the same ideas of the Romberg
integration algorithm which makes use of the calculated formation to estimate A(0).

Problem 2.

We wish to determine error bounds for some of the basic complex single precision floating-point
operations, Assume

fl(axb)=(azbXl+e,)
flax b)=ab (1 + ey)
fl(a+b)=ab(1+ey)

fl(a'/?) = all?(1 + ¢)

where

n l, lex |, les |, | € | S E€,

Let z;=x; +iy; and zp = x5 + iy, where x;, ¥3,9%;,92 are single precision floating-point numbers.

Determine a bound for each of the following quantities.

(a) [fiz + 23) = (2) + 2)|

(b) | fiz, X 25) - 2125 |

(© 1ACz}) = Iz
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Problem 3.

In the Newton-Raphson method for finding a root a of an equation f{x)=0 we start with z¢ and
calculate the sequence {zj} using the recurrence relation

Raz)

Zhey = Zk fz)

If 2; = a, the convergence 1s known to be of second order.

(a) In order to save the labor of calculating the derivative at each step, it has been proposed to
replace f(z) by f'(z0) in all steps. In this method the recurrence relation is

Rap)
Zhe) = 2h — 7

Show that if zx» a, this method has convergence of first order. Obtain a condition, mvolving

derivatives of f, which is necessary for convergence.

(b) In order to obtain more rapid convergence than in part (a) and still reduce the labor of
calculating the derivatives, it has been proposed that the derivative be calculated every other
step. This method 1s described by the recurrence relations

fzah)
Zoho) = Zk — 5

2kel = 22k f Ti)
Zokeg = Zgke| = Razak on)
2R+2 2R+ | fed) '

Assume that 2x = a and find the order of convergence of this method.

Problem 4.

Consider the following numerical integration methods for solving an ordinary differential equation
of the form y’ = flx, ).

l 1 Riot our

(D ya= on Tg Ine + 3 (Dn + Yn)
(2) Yner=9n + An = 351) (predictor)

A

Jer In + a Onet + 9) (comeeton
(3) Same as (2) but using the corrector only once for each step.

(a) What 1s meant by the condition of consistency for a numerical integration formula? Which of
the above formulas satisfy this condition?

(b) Suppose we wish to solve the differential equation problem

y +Ky=0, K>0
50) = 1

by a numerical integration method. Explain what 1s meant by the stability of such a method.
For what values of K, if any, are the methods (1), (2), (3) above stable?
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Problem J.

Let fx) be a continuous function on the closed interval [a, 4). Let p(x) be the unique polynomial
of degree n for which

-— x -— bs
max fix) = prix) | < max fix) = pul) |

where p,(x) is any polynomial of degree n. We call p(x) the Chebyshev approximation of fx).

(a) Let e(x, p)= fix)- p,(x). Characterize e(x,p*), that is, what conditions must «x, p) satisfy

when p= p*?

(b) Let g(x) = fix) +q,-(x) where g,-(x) is a polynomial of degree r and r < n. Given that p}(x) is
the Chebyshev approximation to fix), determine the Chebyshev approximation to g(x).

(c) Consider the function

Ax) = —— for x e[-1, 1}, where A> I.
The coefficients of p)(x) can be calculated explicitly so that

. n .

Pn = 2G
Let g(x) = x1 (x=) where k € n. Then using parts (a) and (b), determine the Chebyshev
approximation of degree n to g(x) for x <[- 1,1).

Problem 6.

Let A be a real m x m matrix of rank m. Consider the matrix iteration formula

Xner= Xp (21- AX,), X arbitrary.

This method can be used to compute 4™! (for an appropriate choice of Xo).

(a) Show that if AXg= XgA, then (x) AX; =X;A for all i 2 0.

In parts (b) and (c), assume that (x) holds.

(b) Let E;= A” -X;. Show that E;,, =AE;? fori=0, 1, ..., and thus E; = APE. ( YOU
must determine ¢ and¢ as functions of i.)

(c) Assume A is a real symmetric positive definite matrix with 0 <a $A;(4) $8. Furthermore, let
Xo= cl, c a scalar.

(1) For what range of values of ¢ will the iteration converge?

(2) What choice of ¢ will minimize the spectral norm ofAEg?
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Problem 7.

Let fix) be a real-valued continuous function on the closed interval [a, 8] and suppose fla) and fib)
are of opposite signs.

(a) Assuming an algorithm is known for evaluating f{x) show how the method of bisection can be
used to locate a zero in the interval [a, &). Is it necessary for f{x) to be differentiable? Does
the algorithm work if f{x) has a number of roots in [a, J?

(b) The following iterative algorithm (referred to as “successive interpolation”) is proposed for
finding a zero of fx):

Xro1 = (Xpfrog = Xr fr)(fr1 - fr) where fr=flx,).

Assuming f(x) has a continuous third derivative and that x, does indeed converge to a single
zero x = a, discuss the asymptotic behavior of ¥, - a.

Show by means of an example that even when f; and f, have opposite signs, the algorithm 1s
not necessarily satisfactory for finding a root between x; and x».

(¢c) The following algorithm r.xrepresents a combination of the bisection algorithm and
successive interpolation. Describe in general terms how it works; use diagrams if needed.
What 1s the purpose of the conditional statement labeled “iteration”?

The procedure root returns a root of fx = ( between a and 8, where fx is a real function of x
taking different signs at a and 6. Iteration continues until a zero has been found with a
tolerance s abs(xxe 1) + €2. Here el and e2 are prescribed relative and absolute errors.
Rounding errors are not considered.

real procedure root (x,28, fx, el, €2);
value a, b; real x, a, b, Ix, el, 2;

begin real c, fa, fb, fc, tol;
X= qa; fa:= fx; x:=b fb:= fx; goto initial;
iteration: 1f abs(a-b) <tol then a :=b+sign(c~b)xtol;
comment decide whether to take interpolated point or bisection point;
if sign{a—x) = sign(b-a) then x := a;
a:= bfa=fb, b = x fb = fx
comment make sure fic) and f(b) have opposite signs;
if sign(fc) = sign(fd) then
initial: begin C := a; fc =fa end;
comment make sure that |f(b) |s|fc);
if abs(fd) > abs(fc) then
begin a :=b; fa:= fb b:=¢; fb:= fc; c = a; fc := fa end;
x = (b+¢)/2;

a :=1ffb-fa » 0 then (axfd-bxfa)/(fo-fa) else x;
tol = abs(bxe 1)+e2;

if abs(x-b) > tol then go to iteration;
root =x

end root;
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Problem 1.

It is desired to evaluate fix) =log(l+x) for |x|s1/2 in t-digit (where ? is to be determined) rounded
floating-decimal arithmetic with an error less than 10°'S, using a truncated power series

n k

Uy(x) = > (=~ 1)he] T
kel

(a) What 1s the smallest value of n’ for which you can prove that the truncation error

|f(x) = u,(x) | <10°}77

(b) For the value of n found in part (a) and for any floating-decimal number x with |x |s1/2,
describe some reasonable method of evaluating F,(x) = fl(u,(x)).

(c) Give an expression for the round-off error F,(x)- uy(x) in terms of ¢.

(d) Give a reasonable bound for the total error | F,(x) =f{x)| in terms of ¢.

(e) What is the least value of + which will guarantee that | F(x) =fx)]< 10719?

. Problem 2.

The XYZ Corporation 1s designing a new line of digital computers. They seek your advice on the
needs of numerical analysts, that 1s, persons who need to get good numerical results from
mathematical algorithms easily, together with provable error bounds.

State in considerable detail what the operational characteristics of the arithmetic unit should be,
including the number representation, the mathematical nature of the arithmetic instructions, and the
high-speed registers. Point out which considerations are vital and which are debatable.

Problem 3.

A newly forming library of practical mathematical programs for the 360/67 needs algorithms.
Suggest one broadly useful algorithm for each of the following applications, either naming it or
describing it, or giving its source well enough to identify it roughly. If you can’t do better, say where
to look for a good algorithm, Justify your answer in a sentence or two.

(1) Solve a linear equation system with a dense, stored matrix.

(2) Find all the eigenvalues of a dense, stored, symmetric matrix.

(3) Find one eigenvalue largest in modulus of a dense, stored matrix.

(4) Solve a linear algebraic system with a very large, sparse matrix.
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(5) Find all the zeroes of a polynomial with real coefficients.

(6) Solve an ordinary differential equation dy/dx = f(x, y).

(7) Solve a system of ordinary differential equations.

(8) Solve a boundary-value problem for Laplace’s equation in two dimensions, with the function
values prescribed on the boundary.

(9) Integrate a smooth function of one variable over a finite real interval (a, b).

(10) Find a crude estimate of such integrals as
I plopl plop

IA IA IA IA IA fx 1, 2, %3,%X4, Xs) ax | dx odxadx dx
where 0 < flx;, ..., xg)s 1.

(11) Interpolate values of a smooth function of one variable given at equally-spaced values of the
independent variable.

(12) Find a local maximum of a smooth function of n real variables.

(13) Generate pseudo-random numbers uniformly distributed on the interval (0,1).

(14) Minimize the linear functional bo’¥, subject to inequalities of the form

x; 2 0, 1=1,2,....n;

bTx 2a; i=1,2,...,m.

Here bg, ..., b,,, ,x are column vectors in El,, with n >> m, and the «; are scalars.

(15) Find a real solution of a system of 20 nonlinear equations in 20 real unknowns, where a
reasonable estimate of the solution 1s given.

Do three of Problems 4-9.

Problem 4.

Consider the ordinary differential equation problem

d

ZL fx) 50) = 30. (1
In Milne’s method for the approximate solution of (1), the corrector formula

24

Ine ™ In-1¥ 3 SEnats nar) + 40% In) + f%n12 In-1ds (2)
where n=1,2,.... 1s used in conjunction with a suitable predictor formula. Here ¥, = nh and yy

is an approximation to %(x,). The corrector formula (2) is applied repeatedly until no further
change m ¥,,, occurs and so the particular predictor used is irrelevant.
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(a) Derive a formula for the truncation error which arises mn a single step from x, to %,,,,; when
using this formula.

(b) Suppose that this corrector formula with suitable predictor 1s used to find an approximation
to the solution of the problem p’ =p, y0)= 1. Derive an approximate formula for the
truncation error which arises in N steps. Assume that y=(0) = 1 and that y; = y(4) has been
calculated exactly by some other method (e.g. Taylor’s series).

(c) Suppose that we use as a predictor for (2) the formula

Iror =~ Wn +591 + 27 [2fxy, y,) t fxn. , Yn-1)] (3)

and that we use (2) only once (no iteration as in parts (a) and (b)). Show that for the
differential equation problem

y' = =y, 0) = 1

this scheme 1s stable. Is the predictor (3) stable?

Problem 3.

Let A be a real m x n matrix with m 2 n. Then 1t 1s known that

A=UZVT,

where U,V are orthogonal square matrices and % is the diagonal matrix of singular values a;(A). It
1s well known that

| 4 llz = omax(4).

We define

[NANAll, if A #0cond(4) = { 1, if A= 0
where A + 1s the pseudo-inverse of A.

(a) Show that if b# 0, x = 4*b, and p = A*(b+8), and rank(A) = n with JIS llo/ll ll S €, then

*-ple < € cond(A).
E37

(b) Let B= AH where His an n xk matrix and HH =I}. Show that omax(B) £ 0max{A4).

(c) Let A be am xk matrix made up of any k columns of A. Using the result of part (b), show
that 0 max(4) $ omax(4).

(d) Extending the results of parts (b) and (c), show that cond(4) s cond(4).
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Problem 6.

(a) How would you recognize that you have obtained the nth degree polynomial that 1s the
minimax (Chebyshev) approximation to a function f(x) in Cla, bJ? (Cla,8] is the class of
functions continuous on [a, b).)

(b) Use your answer to part (a) to find the straight line that is the best Chebyshev approximtion
to the function ax? t bx t c in [1,1].

(c) Find the answer to the problem in part (b) by expanding the function ax? + bx + ¢ in a series
of Chebyshev polynomials T(x)= 1, T(x) =x, T(x) = 2x% = 1. State the general theorem
you are using.

(d) Prove that

fix) = (x — x; 0x = x5) +++ (x ~ xp)

where the x; are at your disposal, is minimized in the maximum norm in [-1,1] by choosing x,
= cos [(2r = 1)n/2n].

Problem 7.

Suppose that one wishes to find a solution of the system

fle,9) =x2+ 92 4x = 0
gx, =92+ 2x -2=0

by an iterative method. It is known that there is a solution close to ¥=0.5, p= 1.

(a) It 1s proposed that the following iteration be used:

492 ~ 4x

(C) _ C") _ rs ve) (™" In ")Mel Yn 1/5 3/10 $2 +2, - 2

starting with xg = 0.5, 99= 1. Prove that this sequence converges linearly to the solution of
the system.

(b) Write down explicitly the formulas needed to solve this system by Newton’s method. What is
the order of convergence of this method? Give reasons for your answer.

(c) What is the relation of the method proposed in part (a) to Newton's method?
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Problem 8.

Let fix)bea given function and {x;}\,; be a sequence of points for which fi*;) is known. We
assume that x;<x><...<x,.

Let P(x) be an sth-degree polynomial, and let

P= {Px) | Px) 2 flxp), i=1,2,....1}

We wish to determine B(x) a ® such that

Pyx;) - fix;)2 P(x) — flx;) for all Px) e.

(a) Show that the coefficients of P(x) solve a linear programming problem.

(b) Give the dual form of the problem developed in part (a).

(c) What special computational devices may be used for solving the dual problem to take
advantage of the special form of the matrix?

Problem 9.

The well-known Horner scheme for evaluating polynomials

x" + a,x" + a,x"% + tax +ag
= ( cn ((x t ay.) t Gy.2)X t.. CX t ag

evaluates a normalized polynomial (leading coefficient = 1) in n = 1 multiplications and » additions,
and any polynomial in n multiplications and » additions. It is also known that this 1s not the best
possible method (counting operations) if one 1s willing to do some preprocessing on the coefficients.
In this case, it 1s possible to reduce significantly the number of multiplications.

(a) Illustrate a reduction in number of multiplications on a general normalized polynomial of
order 4. Devise a computation scheme that would require only 2 multiplications.

(b) Try to devise a scheme for computing a general normalized polynomial of order 5 using only
3 multiplications.

(c) Estimate the lowest number of operations required for computing a polynomial of order n.
Give a plausible argument for your estimate.

(d) What else do you know on this subject? Are you familiar with any effective algorithms for
carrying out this reduction in the general case?
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Problem 1.

For a linear programming application it is desired to compute np where n=7B"!. The components
of the column vector p =(py, Pz, . . ., Pm) TOW vector ¥=(¥;,7a,..., Ym» and m x m non-singular

matrix B = [b;;] are known without error. How accurately must the components of Bl [p;1 be
computed to guarantee that the maximum error of computing np is 10-3

Problem 2.

Consider five-point Lagrange interpolation of a function fx) based on equally spaced abscissas with
spacing A. Show that if A%[f*®(x)| does not exceed 32 units in the last place to be retained, then the
truncation error cannot exceed one unit in that place, and also that A%|f%Xx)] may be as large as 84
units 1f the interpolation 1s effected only between the second and fourth of the five successive
abscissas.

Problem 3.

(a) How would you recognize that you have obtained the nth degree polynomial that is the
minimax (Chebyshev) approximation to a function f(x) in Cla, 6]? (Cla,b] is the class of
functions continuous on [a, b).)

(b) Prove that if f{x)is an even function of ¥, then the minimax approximation on any interval
[-a,a] is an even function of x.

(c) Determine the values of a, 6, c and d in the polynomial P(x) =ax3téx% + cx + d which
minimize

max |P(x) -|x|]|.
~isxsi

Problem 4.

The matrix

1 .01 -01 .0I

4 Or 2 04 3
-02 01 8 -lI

3-2 4

has eigenvalues A; =1,A,% 2, Ag= 3, and Aq = 4.

| 112
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(a) Show that 0.97 sx;s 1.03.

(b) Itis very easy to give much tighter bounds for A;. Give the best bound you reasonably can.

(c) Give a reasonably low upper bound for the spectral norm

max || Ax ||
tlie1

where ||*|| 1s the Euclidean length.

Problem J.

Consider the system of differential equations

y =z
2’ = -69 - az

with 9(xo) = 99 and 2(xg) = 2o, and where a and 6 are real.

(a) Give the analytic solution of this system of equations in exponential form.

(b) Assume O<acx 2vb, 6 > 0. Show that the solution of the system remains bounded for all
and 2.

(c) Give Euler’s method for solving the system of equations.

(d) What 1s the largest step length 4 for which all solutions of the corresponding difference
equation are bounded?

Problem 6.

A square matrix A, a column vector c¢, and a row vector r are all given. Let B= A + ¢r, and assume
that B-! exists.

(a) Prove that

(x) Bl=A-17p,

where ¥ 1s a column vector and p 1s a row vector.

(b) Give expressions for ¥ and p.

(c) Suppose that a lower triangular matrix L and an upper triangular matrix U are also given
such that LU =A, and that a column vector d is also given. Make use of (%) to give an
efficient algorithm to solve Bx = d.
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Open Book Computing Problem.

A continuous curve p = f{x) 1s defined for x 2 0 by the differential equation

2 -x +9
and the initial condition x= 0, p = 1/2.

(a) Show that the curve p = flx) has a vertical asymptote at x = a, for some finite a> 0. (Hint:

Look at dy/dx = §°)

(b) Find f{1) as accurately as you can.

(c) Find f1.107) as accurately as you can.

(d) Find 6 such that f(b) = 28 as accurately as you can.

(e) Find the abscissa a of the vertical aymptote as accurately as you can.
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Open Book Computing Problem.

A chemist 1s studying some reactions and he knows that the concentrations of two components in his
experiment obey the ordinary differential equations

3: «ky Cholb — 29 —2)z
@,_. 29 —2)a-p -2)-D

where the k; are unknown positive constants, and « and 6 are known positive constants.

The following experiment was made:

l. Att = 0, the values of a, 6, p(O), and z(0) were set to

a= 10, 6=20, 0)=.25 20)=.50.

2. The values of p(t) and z(t) were sampled at various times. The following data was gathered.

t 5?) 2(¢)
0 .250 .500

.333 ,301 .403
672 . 324 . 362

1.012 .335 . 345

00 . 345 . 332

By t= the chemist means a sufficiently long time so that the system has become stable (i.e. dy/dt =
az/dt= 0). In this case it was certainly stable by ¢= 100.

From physical considerations the chemist knows that the k; should be close to one. What values of

k; can you calculate for him?

Your answer will be graded on the accuracy of the results, the reasonableness of the methods and
the amount of computing used,
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Computer Problem.

You have about six days to work on the following computer problem. You will be assigned an
account number and expected to use only that number when working on the problem. The total
charges accumulated will be taken mto account in the grading.

You may use any computer language you wish. You are encouraged to use any appropriate
subprograms available to you through various libraries, friends and relatives, or past projects of
your own. Please identify the source of any such programs.

It 1s hoped that you will learn something while working on this problem.

Let

N =10,

M = 20),
r(6) = 1/ max (cos 8, sin 8), 0 s 8 < n/2,

2n-2/3, n even,
n= {on 43. n Ooo n=l, o 00 N,

m mn
ne = = 1 «oo. M,. N 2 ’ m ’

Tm = r(6,n), m m= l, vase M,

J(«, x) = the a-th order Bessel function of x, scaled so that
EAJi, x) =6 for small x,

An) = Ja, vAry) sin (a,&), m=1,... M,n=1,..., N,

AA) = the M x N matrix with elements a, ,(),

I|*l = the Euclidean vector norm.

Your problem is to find a value of A between 9 and 10 so that the columns of A(h) are nearly
Imearly dependent and find the coefficients m that dependence. Specifically, find a scalar A and an
N-vector ¢ which give

min min || AM)c||
9<AS 10 ic) = |

Note: This problem is derived from two papers: Fox, Henrici and Moler, SIAM J. Numer. Anal. 4,

1967, pp. 89-102; and Moler, Stanford Report No. CS 121, 1969. You may want to refer to these
papers for background and hints, although it 1s not necessary to understand them in detail.
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Computer Problem.

For any A > 0, let (A) be the least positive zero of the function (tf) that solves the ordinary
differential equation problem

9'(t) +1p+t/10=0
5(0) - 0, 9'(0) =A

where I(t) is the zeroth order modified Bessel function (see Abramowitz and Stegun, Handbook of
Mathematical Functions, National Bureau of Standards, AMS 55, pp. 374-375).

The graph of the solution %(t) is approximately as shown below.

LY. in A

0 z(})

(a) Find Aqax the unique value of A such that z() is a maximum.

(b) Find z(Amax)-

(c) Give atable of values of y(t) for t = 0(0.1)2(Apax), for the %{t) which maximizes z(), that is,
for y(t) satisfying $’(0) = Apax.

(d) Give a discussion of the accuracy of your results.
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Computer Problem.

Consider the Fredholm integral equation of the first kind,

|

Jo Kft, 5) xs) ds = 966), Ostsl, (1)
where

2

Kt, 5) = I Ut SE
1 + v2 -2y cos (2n(t+s))

¥(¢) = cos (2n?).

The object is to find a numerical approximation to x(s), i.e., values for x(s;) for points s; € [0,1].
We decide to use the following method.

Collocation: Let ¢;=(i- 1/2)/n,i=1,2,..., n, and replace (1) by the n equations

J Kati,s) x(s)ds =9(t;), i=1,2,....n. (2)

Quadrature: Replace (2) by

n

| EF Ky(ti, sj) x(s)) wi + €t;) = We), i=1,2, ..., nm, (3)
where ¢; 1s the quadrature error, and wj are quadrature weights at pomnts sj, f= 1,2, ..., n.

This produces a matrix system

Ax + e= 9, (4)

where the vectors x, 3, and ¢ are defined by x; = x(s;), y; = 3¢;), and ¢; = €(t;), and the matrix 4 is
defined by a;j= Kt, $j)w.

(a) Solve for x from (4) assuming e= O for the following twelve combinations of parameters:

y= (0.75, 0.25)
n ={10, 20, 40)

forward rectangular (s; = (j-1)/n)

quadrature = { midpoint (sj=ti) g
Given that the true solution is x3(s) = (1/¥) cos (2ns), construct a table (with twelve entries)

n 1/2

showing the actual error (2 (%; - x7(s02)! . Also construct a table showing the residualJ

| AX = 9]l> for your calculated solutions. Comment on your results.
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(b) Suppose we are given an extra piece of information, namely that

l
| %:7() ll = ——

7/2

and that this 1s approximated by

xTx = [|x] = vn,
v2

Construct an algorithm to solve the mathematical programming problem

minimize [| Ax - yl; over all x such that [jx ||, = Jn (5)
vv2

Hint: Use Lagrange multipliers.

(¢) Use your algorithm and available matrix subroutines to calculate solutions for the twelve
parameter values of part (a). Construct tables for the error and the residual as in (a).
Comment on these solutions.

(d) Find error estimates for your solutions to (5), that is, find an expression B(c) which is a
function of the quadrature error, such that

lx = x1 il, < Ble) |

where x 1s the solution to (5) and x7 has elements with values being the true solution

evaluated at Spd =1, 2, ..., Nn.
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Problem 1.

You are to describe a system for incorporating a push-down stack store into a computer system by
utilizing a portion of the main core memory, three registers, and some logic and {flip flops as
necessary. Specify the details of a “push” operation (inseting a new word 1n the top of the stack).

Problem 2.

Design a network having as inputs w, x, y, z and as outputsf and g, where

fw, x,9,2)=2(3,7,11,12,18, 14, 15)
gw, x,y,2=2(1,2,3%,5,6,7,9, 10, 11).

Use NAND gates only. Use as few gates as you can (6 are sufficient) assuming double-rail inputs, 1.¢.
the complements of the inputs are available.

Problem 3.

Consider a computer system in which signed (algebraic) numbers are represented in memory as
signed two’s complements. Since obtaining the magnitude of a number in such a system is

non-trivial, 1t 1s desirable to be able to carry out multiplication with numbers still in signed two’s
complement form. Describe a scheme for doing this.

Problem 4.

Most digital systems have their sequencing of operations controlled by a central timing source or
“clock”. It is also possible to design systems in which the completion of an operation is explicitly
detected and this information 1s then used to initiate the next operation. One scheme for doing this
mvolves using two leads to represent each single variable and encoding the variable as follows.

Original variable Encoded version

A V4 w4
0 0 1

1 O

variable not available yet 0 O
unused combination 1 1

Initially all signals are set to 0 and then the inputs are set to the desired encoded values; completion
1s detected when the outputs each change from 00 to either 10 or Ol.

(a) Let A and Bbeinputs and let C = A+B. You are to fill in (with O’s, I's, and d's) the following
map for a circuit to have encoded versions of A and B as inputs and have an encoded version
of C as its outputs.

121



122 COMPUTER DESIGN QUALIFYING EXAM

: VW4
88 81 11 18

88

81
vgw

BWp 0

18

VcWc

(b) Write expressions for v. and we.

(c) Draw a circuit for vc and we using AND gates and OR gates.

(d) Draw a circuit with the encoded version of A as input and the encoded version of A’ as
output.

Problem 3.

An efficient technique for converting a binary integer to a BCD (8421) integer can be based on the
fact that binary "1" equals BCD "1" and shifting a binary number left one position is equivalent to
multiplying it by 2. The binary integer 1s shifted left bit by bit into a BCD register and the
contents of the BCD register are doubled after each shift.

Example:

Binary number ,1018
Shift left (binary side) 1,010
Double (BCD side) 18,010
Shift left (binary side) 19,18
Double (BCD side) 160,18

Shift left (bmary side) 101,8
Double (BCD side) 1,8008,8

Shift left (binary side) 1,8088,

BCD , binary

Design the clocked sequential circuitry necessary to perform the binary to BCD conversion as
indicated above.

(Bi [As [Aff]A
BCD Register Binary Register
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Fill in the following table and complete the design to obtain flip flop excitation equations for JK
flip flops. (That is, determine the necessary J and K inputs for the flip flops of the BCD register.)

Tims n Tine nel

Dscimal hgh) bt1 Byshghydchy Decimal

0 0

) | 2

e h

3 6

L 8

> 10

6 12

1 2%

8 16

9 18

Problem 6.

(a) Discuss briefly with the aid of sketches the characteristics (advantages and disadvantages) of
different magnetic core memory organizations (3D, 2D, 2.5D).

(b) Describe the output signal which appears on a sense line when a “zero” 1s read and when a
“one” 1s read from a core.

(c) How many drive and sense amplifiers are required for a memory of 4096 words of 16 bits per
word for: (1) 3D organization and (2) 2D organization.

(d) Design a minimal complete decoding network to address 64 lines (using 2 or 3 input gates).
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Problem 7.

One novel approach to the construction of error-correcting codes 1s through the use of geometric
notions. The simplest of these is that described here: row and column parity checks in a
rectangular array.

Suppose we define a particular binary group of n= 16 bits (9 information plus 7 parity check bits)
by insisting that any code word fits into the 4 x4 square shown below, where every row contains an
even number of ones, and every column contains an even number of ones.

alblelt
jdfelflu
oh lilv
EIEEAES

(a) Express the check digits ¢,u, v, w, ¥,%,z 1n terms of the information digits a, b,c, d,
e, f, g hi

(b) What is the minimum Hamming distance between any two distinct code words? If an error
pattern 1s undetectable with this code what 1s the smallest number of digits that could be in
error? Give an example of such a pattern.

(c) Explain how to use the code for correction of single errors.

(d). Give an example of an error pattern containing four errors that is detectable. Are any error
patterns with more than four errors detectable?

Problem 8.

This problem is about unit-distance codes. It 1s desired to encode the eight (analog) quantities: 0, 1,
2,3,4,5, 6,7 (mod 8) into binary code words of four bits each such that the following two
properties are satisfied:

Pl: Analog quantities that differ by x1 (mod 8) are to be encoded mto binary words differing in
exactly 1 bit.

P2: If an error of any one bit occurs in the transmission of a four-bit code word, then the
resulting error in the analog quantity must not exceed #1 in magnitude, or must result in
detection of the fact that an error has occurred.

(a) Does either of Pl or P2 imply the other? State which, if they are not independent. Are they
equivalent?

(b) Find an encoding that satisfies these conditions. This is called a unit-distance error-checking
code.



MAY 1968 125

Problem 9.

It 1s desired to encode an alphabet of six symbols A, B, C, D, E, and F, for transmission over a
noiseless binary channel. The code strings to be assigned to these symbols may be of different
lengths. We want the average length of the string sent over the channel to be minimized, where the
source symbols (A through F) are used with the following probabilities:

Symbol Probability Coding string

A 0.500 ?

B 0.250

C 0.125

D 0.100

E 0.015

F 0.010

_ F

(a) What is the lower bound to the average length, L = z L;P(i), where L; is the length of stringla

used to encode the i-th source symbol?

(b) Find a variable-length encoding that gets as close to this lower bound as possible. What is
the efficiency of this encoding?

(c) If we insist that this encoding be uniquely decipher&e (that is, it is assumed that the channel
carries a continuous stream of binary digits without spaces or other demarcation between the

strings representing separate consecutive symbols), what is the average length L attainable?
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Problem 1.

Design a circuit realizing

fw, %,9,2)=2(1,2,4,7,8,11,18, 14)

using threshold gates with positive and negative weights allowed, Use as few gates as you can.

Problem 2.

In a certain 4-digit mixed-radix number system, the radices (by position) of a number dqdadsd, are
5, 4, 3, and 2, respectively. A convention must be defined for representation of negative numbers in
this system, without using an extra sign bit.

(a) Define a complementation algorithm for this number system based on (B-1)’s complement
representation. What are the most positive and most negative numbers representable? What
are their representations?

(b) For the representation scheme of part (a), how can a test for positive sign be implemented?

(c) Define a complementation algorithm based on B’s complement representation. What are the
most positive and most negative numbers representable’ What are their representations?

problem 3.

In addition to its normal capabilities, a sequential machine A has an input A; which may be

connected to test a copy of itself, machine B. Machine A also has a special output Ay which is "1" if
the tested machine B is functioning properly and “0” if B has failed. If, however, machine A has
failed, the output Ay is invalid and may be "I" or “0” regardless of the condition of B.

A failure or a set of failures is “detected” if one can determine with certainty that not all machines
are functioning properly. A failure 1s “diagnosed” if one can determine that a particular machine
has failed.

(a) Assume two machines A and B are testing each other, as shown below.

Ay

1

Can single failures (failures of machine A or B but not both) be detected by observing Ar and
B;? Can single failures be diagnosed? Can double failures be detected or diagnosed? Justify

your answers.

126
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(b) Assume we have a ring of R machines, each testing the next machine in the ring, as shown
below.

Ap

A1h

Ay A) |
|

\ ar
Nn /

~~ 7”
~~ _

Is there a value of R which will allow diagnosis of single failures (assuming multiple failures
cannot occur)? If so, what 1s the mmimum such value? Explain.

Problem 4.

A mythical computer manufacturer produces systems with no "I/O wait” cycles due to their superb
I/O system architecture. Careful statistical sampling of programs executed on this machine show
that, on the average, the following distribution of memory cycles occurs for each executed

_ 1nstruction:

Memory cycles Purpose

I Instruction fetch

1/4 Indirect addressing
1/2 Operand fetch or operand store
2 Input-output

3 3/4 Total average cycles per executed mstruction

The memory architecture for this system employs a single bank of 64K words, each 16 bits, with a |
usec cycle time. The run time for a typical program would thus be estimated at 3.75 usec per
executed instruction. Cynics have noted that this memory 1s the bottleneck of the system, noting that
a speed increase in memory will be matched by a proportional increase in the throughput of the
system. A faster memory 1s, however, prohibitively expensive. Describe a scheme for substantially
increasing the throughput of the system by changing the memory architecture, but not the memory
speed. Estimate the average time per executed instruction in your scheme.
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Problem J.

The network shown below has 6 inputs A,B, C, D, E, and F. Two Internal points 6 and H are
labelled for reference. Connections to a +V voltage source, ground, and the OUTPUT point are
labelled.

A

: D

B < E

G H

- rem © QUTPUT

(a) Draw the voltage at 6 as a function of the input voltages at A, B, and C shown below.

+ 2v

R oTNav -_—

+2V

8 0 J
“Ww |

FV—— |

[=

G | 0-2V oT

(b) Assume now that inputs A through F always carry either +V or 6ND voltage and assume a
positive logic convention. What logic function is performed at G? At H? At the OUTPUT?

Problem 6.

(a) Give the mathematical definition of a regular expression.

(b) What is the relation of regular expressions to sequential machines?

(c) Show that the complement of a regular expression is a regular expression.
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Problem 7.

An n-variable switching function 1s said to be symmetric if and only if the value of the function

depends only on the number of arguments that have the value 1. ‘We use the notation Si. to
denote the n-variable function which takes the value lif i of its arguments are or if § of its
arguments are 1, etc.

(2)  Fillin the truth tables for $i, $1, and §¢}.

X; Xp Xg3 st si §'
0 0 0

0 0 I

0 0

0 1

0 0

1 0

1 I 0

I

(b) Prove that, for any n, the n-variable symmetric switching functions form a Boolean algebra
with the operations . and + (AND and OR).

(c) What are the atoms of this Boolean algebra?

Problem 8.

The IBM 1 130 uses the following code for disk recording. Each block of data consists of 20 bits, 16
information bits and 4 check bits. The encoder computes the check bits by using a rule that
guarantees that the total number of I’s in a block will be a multiple of 4. The decoder counts the
number of I's per block and signals that an error has occurred if the count is not a multiple of 4.

(a) What 1s the mmimum Hamming distance of this code? Prove your answer.

(b) What is the fewest number of check digits for 16 information digits that will yield a code of
the same minimum distance? Prove.

(c) What is the fewest number of check digits for 16 information digits that will yield a code with
minimum distance 3?

(d) Show how to construct the code of part (¢) and describe a decoding algorithm that can be used
for error correction.
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Problem 9.

(a) Find a Huffman coding for the alphabet of six symbols given below with their respective
probabilities of transmission.

Symbol Probability

$1 .20

$2 . 195

$3 175
54 Ab

5g . 14

56 14

(b) Use your code to prove or disprove the following:

Given a Huffman code H, let H* be the code formed by associating with each symbol the
reversal of its code word in H. Hence if s1s coded by 1101 in H it will be coded by 1011 in
H*. The code words of H* may not be uniquely decodable symbol by symbol, but every
coded string of symbols can be decoded by a decoder with arbitrarily large memory if the end
of the string 1s known to the decoder.

Problem 10.

An AN is a code that 1s used to check addition operations in computers. in this code the integer i 1s
represented by the integer A+ where A 1s a fixed constant.

Assume that we are to use an AN code in a computer which performs addition modulo M.

(a) Prove that the set of coded integers forms a commutative group under addition if and only if
M 1s a multiple of A.

(b) Let A4 = Ar. Show that the addition of coded integers modulo M is equivalent to the
addition of uncoded integers modulo 7.

(c) The arithmetic weight of an integer is defined to be the number of non-zero coefficients in its
binary representation. For example, weight( 16) = 1 and weight(7) = 3.

Prove that anAN code has minimum arithmetic distance 3 or greater if and only if the
residues of +2) modulo A are distinct and non-zero for all § such that 2/ <M, where M is the
modulus of arithmetic.
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Problem |.

(a) Draw a logic gate diagram for the circuit whose schematic diagram 1s shown below. Assume
+5 V 1s logical 1 and 8 V is logical 8.
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(b) Give a minimal product of sums Boolean expression for the output signal z as a function of
the input signals %;,%,,. .., X.
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Problem 2.

(a) Contrast the Quine-McCluskey method with the iterative consensus method for finding all of
the prime implicants of switching functions. In particular, contrast the initial inputs to the
algorithms and the strategies used in the computations.

(b) Give an estimate of the number of computational steps required by each algorithm in its worst
case. The growth of this number with respect to some parameter is desired; constant
coefficients are unimportant. You may wish to use the following parameters.

(1) w= the number of true minterms (weight of the function)
(2) p= the number of prime implicants
(3) t= the number of terms in an initially specified algebraic expression for the function

(4) n= the number of variables

(¢c) Which of the two methods 1s preferable from a computational point of view? State your
assumptions.

Problem 3.

A non-zero element m of a Boolean algebra is called minimal iff for every element ¥ of the algebra,
if x +m=m then x=m or x= 0.

(a) Show that m 1s minimal iff x.m=m or xm = 0 for every ¥ in the algebra.

(b) The following statement is a theorem:

All finite Boolean algebras are isomorphic iff they have the same number of elements.

It 1s also well-known that the set of switching functions of n variables forms a Boolean
algebra and the subsets of a set with n elements form a Boolean algebra. Are these algebras
isomorphic?

(c) Consider the Boolean algebra of P-variable switching functions.

(1) How many elements does this algebra have?

(2) What are the minimal elements?

(3) What 1s the 0 of this Boolean algebra?
What 1s the 1 of this Boolean algebra?
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Problem 4.

(a) Lett be the maximum number of errors correctable by a binary block code, and let d be the
minimum Hamming distance between two code words, Derive the relation between ¢ and d.

(b) A linear block code is defined as follows. Let G be a k x n matrix, n 2k. If u is a k-tuple
information vector, then it 1s encoded by the n-tuple ¥ where

v = u[G]

Show that the mmimum distance of a linear code 1s equal to the minimum Hamming weight
of a code word.

(¢) A rwo-dimensional block code 1s a linear code such that each code word 1s a &dimensional
matrix as shown below.

Information row
checks

checks

Column checks on
checks

Each row contains code vectors from a linear code and each column contains code vectors

from a linear code, not necessarily the same as the row code.

Suppose the lengths, number of information bits, and minimum distances of the row and
column codes are ny, ky, d; and ny, kp, dp, respectively. Find a formula for the minimum

distance of the two-dimensional code in terms of these parameters, and indicate the correctness
of your formula.
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Problem 5.

Let M be the machine given below. M is assumed to operate i n clock pulse mode so thata single
transition occurs in the presence of a clock.

y
8 1

SN
o [he [ra
c [Toi wi
o [or [er
TC
CTE OO

;

next state, out put

Machine M

We wish to construct M from the parallel connection of two machines Mj; and My with 2 and 4 states,

respectively. The structure of the parallel connection is shown below.

y fy
M, Co

Conbi national
function

g(f;,f2,fa,%) output

f2

X

The state table for Mj is

Y
0 1

U u,o V,1

vo, v1 v8 |

next state, f,

Machine M
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Fill in the tables below.

y
0 1

A ET
J TE EE

2 ER BET

next state, f,, fj

Machine M,

y f fo fa out put |

8 0 0 8

8 ) ) 1

) 0 | 8

) ) 1

0 1 0 8

) 1 )

8 1 0

8 1 I

1 8 J 8

1 0 8 1

1 0 8

1 ) 1 1

1 1 ) 8

1 1 8 1

1 1 8

1 1 1 1
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Problem 6.

High speed addition may be achieved by dividing an n-bit adder into n/g groups of g bits each.
One such scheme employs groups whose sum outputs are valid at time 3g, but whose carry output is
valid 3 time units after the group inputs are valid. This is the "carry by-pass” approach.

(a) Assume all group inputs, except carry inputs from previous groups, are valid at time 0. When
1s the output of such an n-bit carry by-pass adder valid (assume » 1s a multiple of g)?

(b) Derive the value of g which produces the fastest addition for a 36-bit adder.

(c) How long does this fastest addition take?

Another scheme employs groups whose sum and carry outputs are both valid at time 3 after the
group inputs are valid. This scheme is certainly more expensive than the carry by-pass scheme if
the same size groups are used.

(d) If thegroupsare A bits each, how fast is an n-bit addition (assume n is a multiple of A)?

(e) What size groups must be used for a 36-bit adder as fast as in part (c)?

(f) Give a rough cost comparison of the costs of the adders of parts (c) and (e).

Problem 7.

A computation is to be performed on »n independent sets of data. The computation is realized by
the six instruction sequence: I,,I,, Is, I4I},Io. The four distinct instructions share no hardware
in the machine. Operands generated by each instruction are used by the next. Each instruction
takes 1time unit.

(a) If parallel computation 1s possible but no hardware duplication 1s allowed, how quickly can
the computation be performed? Sketch your strategy for achieving this result.

(b) Answer part (a) allowing two copies of each of the four instruction calculators.
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Problem 1.

A certain computer uses instruction opcodes that areencoded In fields of several different widths.
Let ¢;, ¢p, ..., ¢, be the opcodes and assume that it is known that each opcode is used with

probability p;, 1 isn. Let L; be the number of bits in the code for ¢;.

We wish to find a binary encoding of opcodes that satisfies the following criteria.

(1) The encoding of any opcode cannot be the prefix of the encoding of any other opcode.

(2) The encoding must minimize L =Z}, pil; (The minimization is over all encodings that
satisfy (1).)

Prove that an encoding that satisfies properties (1) and (2) must also satisify the following properties.

(a) If pi> pj then LisLj.

(b) Let Lmax be the length of the longest opcode. Then there are at least two opcodes of length
L max that differ only in their rightmost bit.

Problem 2.

The IBM System/360 tape drives use an encoding scheme similar to the one shown in the diagram

below. Each row in the record is an eight bit character with a parity check on all eight bis. Each
column contains a column parity check at the end of the record. Information bits in the diagram
are represented as b’s and parity bits as p’s.

bbbbbbbbp first character
bbbbbbbbp second character

bbbbbbbbp last character
PPPPPPPPP column parity checks

Recall that a burst error of length L 1s an error pattern L bits long that begins and ends with a 1.
The decoding scheme for the code above is designed to correct burst errors that are contained
entirely within one column.

(a) Consider an error which is contained entirely within column 1, starts at the first character,
and is a burst of length L in that column. How many burst patterns are there of this type?
How many of these patterns are correctable with the parity checks shown above?

(b) Assume that there exists a mechanism by which we can identify the column containing a burst
error. Give a burst error decoding procedure that uses this mechanism. What is the longest
burst that 1s correctable in this case?

A37
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Problem 3.

Consider a rotating magnetic disk storage device with a large number of concentric tracks of
information and a read/write head which must be moved into position over a track in order to
access the information which the track contains.

rotating 77 ON
magnetic disk /

&—>

typical trac
of informatio

movable read/write head

One of the major considerations in evaluating the performance of such a device 1s the expected
distance which the head must move between successive track accesses.

(a) Derive an expression for this expected distance under the assumption that track accesses are
independent and uniformly distributed. Let L be the distance the head must move to go from
the outermost track to the mnermost track.

(b) Give upper and lower bounds on the average head movement for the case in which head
accesses are not distributed independently, and indicate track access distributions for which
these bounds are achieved.
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Problem 4.

Consider signed-digit number representations such that dy, d,_; . . .d,ddy represents the value

Zo dib', where the base is b 2 3 and the signed digits d; satisfy -b < d; < +b. Note that non-zero
values do not in general have a unique representation in this system. The fth stage of an adder for
signed-digit numbers can be viewed as having three inputs and two outputs:

$ Ci

d —
-S;

d;’ ——

Ci

where d; and d;” are the ith signed digits of the two numbers to be added, C;_, is the signed carry
from the previous stage of the adder, §; is the ith signed digit of the sum of the two numbers, and
C; is the signed carry out of the i-th stage. Also -1 s C; s+ 1for { 20, and C_| = 0. It is possible

to design such an adder so that the carry out C; is independent of the value of the carry in C;_,,
thus eliminating much of the carry propagation time of the adder.

(a) For b = 3 show sum and carry functions for a stage of a signed-digit adder. Make C;
independent of C;_,.

di + d;’ S;iwhenC;,=-1 | SjwhenC;; =0 | S; when Cj, = +1

-4

-3

-2

-1

8

+1

+2

+3

+4

(b) Give a general formula for the sum and carry functions of a signed-digit adder for arbitrary
base b.
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Problem J.

The partial ordering relation “divides-evenly” defines a Boolean algebra on the set {1, 2, 3, 5, 6, 10,
15, 30}.

(a) What are the operations "+" and "+" in this algebra?

(b) Identify the complement of each element in the algebra.

(c) Consider the logical operator @ defined by the Boolean function below. Prove or disprove
the following: A set of logic gates realizing this function forms a complete set.

uv uOv

© BB 1

81 1

18 8

t 11 1

Problem 6.

(a) What 1s a master-slave flip-flop?

(b) Why 1s such a flip-flop useful?

Problem 7.

(a) Define the following terms:

(1) static 0 hazard
(2) static 1 hazard

(b) State necessary and sufficient conditions for the existence of a static | hazard.

(c) Find the O sets and 1 sets of the following network.

Ww |

, | |

(d) Specify all static hazards in this network.

(¢) Draw a NAND network for the function realized by the network in part (¢) that does not
contain any static hazards.
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1 Problem 8.

: (a) Give a state transition diagram, a flow table, and an excitation table for a clocked sequential
1 circuit with clock input ¢, a level input x, and pulse output z. The circuit 1s operated in pulse
i mode and must produce a 1 output if and only if the input sequence recognized for the x

| input 1s contained in the following regular set:

(oN*11

Example:

(b) Does the excitation table of part (a) contain any critical races? Explain briefly.
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Problem 1.

Define and give an example of each of the following techniques for speeding up binary
multiplication in a parallel arithmetic unit.

(a) multiplier recoding

(b) carry save addition

Problem

(a) Define an execute instruction.

(b) What modifications would be necessary to add an execute instruction to the HP 2116
computer?

(c) Write an execute instruction microprogram for the HP 2116 with the modification of part (b).

(d) Now do parts (a)-(c) for a repeat instruction.

Problem 3.

Consider the following circuit:

B) Ba

B i

Az ra | F

142
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(a) To make this circuit act like a read-only memory, what should be connected to each of the
labelled points? Note: The connection to the C line may be present or missing at each cell.

(b) Explain your addressing scheme. Discuss polarity of address lines and associate binary
addresses with the memory cells shown.

(c) What voltage appears on the output line if the selected cell is connected? If the cell 1s not
connected?

(d) How can this memory be expanded to a 16 location, 4 bit word memory?

Problem 4.

(a) For the machine M; shown below, how many components (at most) might be useful in a
composite realization? How many states (at least) would each component have?

a -

1 |

Em)— mp)
°| © o| 0 ~~ 11 1 i

© Gloag(02 EIT0 ~

State transitions for M

(Outputs are, for the moment, unspecified, but it should be assumed that there are no
equivalent states.)

(b) Draw a logic gate diagram realizing the above machine.

(c) Machine M, is to be used to correct the output of an unreliable single output machine M,.

M, attempts to repeat each output symbol in its output string for four consecutive time

periods. At most one of these 4 will be wrong. The output of M, drives the input to M,.

Assign outputs to the transitions of M; so that the M; output accompanying every fourthM

output will be correct.

(d) For the purpose that M; serves in part (¢), can you design a better machine than M;? If so,

draw its logic gate diagram.
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Problem J.

A control timing unit for a navigation system computer 1s to be designed to generate the output
sequences on lines A, B, and C. The sequences are to repeat after the 100 clock pulse times shown
below.

Clock time Output

A B C

Loo, I
10, 11 0 0
12, ..., 21 1 0

22, 23 0 0
24, ..., 34 0 |

35, 36 0 0 0
37, ..., 48 0 0
49, 50 0 0 0
51, .... 6l l 0

62, 63 0 l 0
64, .... 72 0
13, 74 0 0
75, ..., 86 I

87, 88 0 !
89, ..., 98 |

99, 100 0 0 0

(a) Discuss the design of a clocked sequential network which will realize the desired performance
using OR gates, AND gates, and RS flip-flops. How might the minimization of gates and
flip-flops be accomplished?

(b) Obtain a solution using counters and read-only memories. Contrast the hardware complexity
of this solution with that of part (a).
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Problem 6.

In an N-valued logic (i.e. variables can take on the values 0, 1,2, ..., N-1), let

mx; , x) = minimum of x; and x,

x+1 forxe N-1,
Cl) -{ 0 forx = N-I.

Prove that m and C form a functionally complete set of operations for N 2 2.

Problem 7.

The following is a generating matrix of a linear code over GF(3).

1002

01010

0011

(a) Give a check matrix for this code.

(b) How many words are in the code?

(c) What is the minimum distance of the code?

. (d) If this cade is transmitted through a ternary symmetric channel with channel matrix

I-p  pI2 p12
p12 1p PI2
pi2 pl2 1-p

what 1s the probability that the decoder will make a mistake?

Problem 8.

Specify a sequential state machine with 2 different S. P. partitions (preserved cover partitions) mn;

and np, such that Mp,& Mp,

Note: The states of Mp, correspond to the blocks of nj.
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Problem 1.

Let S§ a denote the result of substituting the term ¢ for ail free occurrences of the variable ¥ in the
wif a.

Definition: Let K be a first order theory and let £ be a binary predicate of K. We say that K is a
first order theory with equality, with E as equality predicate, if the following are theoremsof K:

(1) Vx E(x, x)

(2) Vx Vy{E(x,y)>[(S} a) > (Sye)]}, where a is any wif such that the individual variables x and
y are free for the individual variable z in a (that 1s, no free occurrences of z in a lie within
the scope of any quantifier (x) or (y)).

Your problem is to show that the equality relation in a first order theory is unique in an
appropriate sense. That 1s, suppose there is a first order theory K with binary predicates £; and E,
such that K 1s simultaneously a first order theory with equality with £, as equality predicate and

with £, as equality predicate. Exhibit a wif or set of wifs which expresses within K the assertion
that £, and £, are the same. Then show that this wif must be provable in K.

Problem 2.

Determine whether or not the following well formed formulas of first order logic are (1) satisfiable
and (2) valid. Justify your answers by an appropriate rigorous argument.

(a) Vz3x Vw Vy (F(x, 2) A F(z, w)] 5 [F(y, 2) > F(z, 9)}}

(b) 3x Vy (F(x) m [F(y) v F(x)]}

Problem 3.

Suppose R is a regular set of symbol strings over an alphabet Z, and § is an arbitrary set of strings
over &. Define T to be the set of strings x such that for some y €§, xy belongs to R; that is,

T ={x|3y such that xy a R }.

Prove that T 1s a regular set.

Problem 4.

State (without proof) the equivalence (=), inclusion(c), and non-inclusion (¢) relations you know of
among classes of formal languages, and classes of languages defined in various ways (generation,
accept ance, recognition) by various kinds of automata, finite or infinite, deterministic or
non-deterministic. Draw a diagram using the above symbols to indicate relations. You need not
show relations which follow by transitivity from other relations.

147
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Problem J.

Consider a progamming language L defined as follows:

<variable> u= <letter>| <variable> <digit>
<expression> = (| <variable>| (<expression> + I)
<statement> = <variable>:= <expression> |

for <expression> times do <statement> |
begin <statement>; <statement> end

<program> == <statement>

The form for £ times do s means that £ is evaluated once, giving a numerical value e, and that § is
then repeated e times.

(a) Show that for any primitive recursive function flx;,x,,..., X,), there is a program of L
which sets X0= f(/,,1,,...,1y), where I, . .., I, are the initial values of X1,..., Xn.

(b) Show that for every program in L, the final value of X0 is a primitive recursive function of
the nitial values of ail the variables.

Problem 6.

Let A, B,C, D, E be ground clauses and R(A4, B) denote the set of ground resoivents of A and B.
Prove that if D is a clause in R(R(A, B), C) then there 1s a clause £ in R(R(C, B),A) u R(R(C,A), B)
uR(R(C, B), R(C, A)) such that £ ¢ D. Give an example to show that it is not always true that
there 1s an £ such that £ = D.

Problem 7.

Consider the general recursive definition

fx) = if P(x) then g(x) else A(f(k(x))),

where the predicate P and the functions g, A, and k are understood to be primitives, and total.
Express in terms of first order logic (including the ideas of validity, satisfiability, etc.) the
proposition that for ail * such that R(x) is true, fix) is defined and satisfies the relation S{x, f{x)).



June 1970 Theory of Computation Qualilying Exam

(Time limit: 41/2 hours)

Problem 1. (20 points)

Let Xx, 9) be a binary predicate symbol. Consider the two wifs A and B given by

A: Vx 3y Xx, y)

B. [Vx ((3y Qlx, 9) > Ax, x))] > Vx Kx, x).

Which of the following is true?

(a) FA>B

(by I-BoA

If true, give a proof (using any standard derived rules of inference and metatheorems desired).
Otherwise, give an interpretation as a counterexample.

Problem 2. (20 points)

For any language L c{0,1}*, let

L'={ yx |xyeL,xc (0, 1],y< (0, 17}

(a) Prove that if L is a regular language, then so isl’.

(b) Find a counterexample to show that the converse of (a) 1s not true.

Problem 3. (JO points)

Suppose P and Q are predicate symbols, § is a set of clauses, Fp denotes deducibility by resolution,
and

{Px} uv § Fp QO

Qo) v § Fp DO.

Show constructively that

(Pl) v Qo) v § Fp 0 Hh
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Problem 4. (15 points)

Consider the following LISP functions operating on lists:

xxy = if nx then y else ax.[dx xy]
reverse[x] = revlx; nil}

rev[x; 9] = if nx then y else revldx; ax.y]

Prove that for any lists x and 9,

reverse[x x y] = reversely J x reverse(x].

Problem 5. (10 points)

The following program computes the remainder m mod n.

a: if m <n then go to done;
m=m=n,

go to a,
done:

Write a wit of first order logic with one free predicate letter ¢ whose truth for all interpretations of
g 1s equivalent to the convergence of the above program.

Problem6. (25 points)

The following ALGOL 60 program 1s intended to find the smallest positive integer expressible as
the sum of two cubes of positive integers in two different ways given that there is sucha number
less than 8000.

begininteger array a[ 1: 160003;
for i:= | step I until 16000 do aii] := 0;
for i := 1 step 1 until 20 do

for j:= I step 1 untilido
alit3 + 13) = alit3 + j13] +};

for i := 1 step 1 until 8000 do
if a[i]> 1then go to done;

done:

ecrd;

We want to use Floyd’s formalism to prove this program correct (ignoring the question of
termination) but first we must replace the for statements by ordinary loops. The modified program
is shown on the next page.
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begin integer array al /: 16000];
[=

6: if 1> 16000 then go to c;
ali}:= 0;
=f +1;

g0 to b;
¢:1t= kL

gif i> 20 then go to 4;
] =;

fi if j > i then go to ¢;
alit3 + 13) :=ali?t3 + 13) + I;
fi=g+ 1

go to fi
e: i=1+ 1;

go tog;
da. i := I;

A: if i > 8000 then go to done;
if ali]l> 1 then go to done;
L=i +1;

go to A;
done:

end

In answering the following questions, attach labels pl, #2, etc. to appropriate points in the program.

(a) What assertion expresses the overall correctness of the program and to what point is it to be
attached?

(b) How does the declaration integer array a{1:16000] affect the assertion to be proved?

(¢c) Attach the appropriate Floyd assertions to the appropriate points in the program. Remember
that the truth of each assertion must follow from those that immediately precede it in the flow
of control.



October 1970 Theory of Computation Qualifying Exam

(Time limit: 7 hours)

Problem 1.

A professor of logic at Holy Smoke U. announces to the class one day that he has a new formal
system for the first order predicate calculus. The wifs are the same, the axioms consist of all
instances of tautologies, and the rules of inference are modus ponens and “p-constituent substitution”
(see below). He enthusiastically begins to prove some lemma about the system when a student
interrupts him and proves the professor’s system is incomplete.

The professor rushes from the room but returns fifteen minutes later to state that he has now
repaired the trouble. By adding a certain non-tautologous axiom he now has a complete logic
system. Before he can even write down the axiom, another student jumps up and proves that now
the system not only yields valid wifs as theorems but all wifs as theorems. (It 1s rumored the
professor now teaches Sociology in a junior college somewhere in the deep South.)

What are the proofs the two students gave? Be precise.

Definition: An occurrence of a wif B in a wif A 1s a p-constituent occurrence of B in A if this
occurrence of Bis in the scope of no quantifier of A, and B is atomic or B consists of a quantifier
and its scope.

P-constituent Substitution Rule: Let A, B, and C be wifs such that B 1s atomic or B consists of a

quantifier and its scope. Let D be the result of replacing all p-constituent occurrences of Bin A by
occurrences of C. Then from 4 one may infer D.

Problem 2.

Use the resolution method to determine whether the following wifs are valid.

(a) 3x dy[Mxy A Vra~Gxr]. Vs Vt 3z[~Mst . Gtz . [Gsz A ~Mtz]]

(b) 3x dy[Mxy AVr~Gxrlv Vs Vi 3z[~Mst v Gat v [Gsz A ~»Mtz]]
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Problem 3.

(lo)

1-1-1

Prove that the above program computes the minimum of Ay,y, An.2, . . . , A2n,1 leaving the result
in Ay, and leaving Ay, through Ay, undisturbed. Use the method of assigning predicates to
flowchart arcs.
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Problem 4.

Define

reverse{u] « revlu, nil}

where

rev(u, v] « if nu then v else revidu, au.v).

Prove that for any list u,

reverselreverse[ul] = u.

Note: The notations nx,ax, dx, and x.y stand for nulllx], car{x], cdrlx], and consix,y],
respectively.

Problem 3.

The programming languages Lo, L,,L,, Lz all permit the use of integer variables and constants,
and the operators +,-, x. They all permit assignments of expressions to variables, and combining
commands into blocks. Lg has no other operations. The other languages have the additional
commands described below.

(1) L, allows the command

forE times do S

where E 1s an expression and S 1s a command. The expression 1s first evaluated, giving a
value e, and then S 1s executed |e] times.

(2)  L, allows the command

call n

where 7 is a positive integer constant. If 8 is the block associated with the n-th begin in the
program, the call command is executed by executing g.

(3) Lj has both of the above commands.

For each pair (i, §) such that L,; can compute a function not computable by Lj» glve an example of
such a function. justify your answers.
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Problem 6.

Let 2 be a finite set of symbols and let £* denote the set of ail finite length strings of symbols from
2 including the string of zero length e. Suppose we are given A ¢Z* and C ¢ T*.

(a) Under what conditions does there exist a unique set X satisfying the equation

X=AX + C

where AX ={xy|xeA, ye X} and + 1s set union?

(b) Find all sd «ions to the equation in part (a).

Let A;; and C;,1<isn, 1< §<sn be subsets of Z* Consider the simultaneous equations
n

X; = Z4iXj + C;.
(c) Give an algorithm for finding a solution.

(d) What can be said about the solution found in part (c) when the Aij's and C;’s are regular sets,
context-free languages, recursive sets, or recursively enumerable sets? Justify your statements.

Problem 7,

Imagine that we write a “queue-processing”’ language over a set A of atoms. Think of a queue as a
{finite sequnce of atoms. The primitives are:

null(x), which tests whether a queue x 1s the empty sequence;
g(x, «), which adds the atom a at the right of the queue ¥;
h(x), which yields the leftmost atom of x; and
t(x), which yields the queue ¥ with the leftmost atom removed.

Give a set of axioms for the queues which are sufficient for proofs about queue programs, in a
manner analogous to LISP axioms (e.g. cdrcons(x, y)) = 9, car(cons(x, y)) = Xx). The only functions
and predicates you should use are the queue primitives, set membership, and equality. Justify the
appropriateness of your axioms.



April 1971 Theory of Computation Qualifying Exam

(Time limit: 7 hours)

Problem 0.

State briefly, without proofs:

(1)  Kleene’s recursion theorem (the fixed-point theorem of recursive function theory).

(2) Manuel Blum’s “speedup” theorem concerning the computational complexity of recursive
functions.

(3) The Krohn-Rhodes theorem on algebraic decomposition of finite automata.

(4) The completeness and decidability properties of second-order logic.

(5) The function of paramodulation and hyper-resolution in mechanical theorem prov ing.

(6) The meaning of “liberal” and “progressive,, as applied to schemata.

Problem 1. (20 points)

The language L is recognizable by an on-line Turing machine, that 1s, a Turing machine with
initially blank tape, connected to an input unit from which it can bring in the string to be
recognized, one character at a time, from left to right. The machine, on inputs of length n, never
uses more than fin) squares of its tape, where lim,,,,, fin)/log(n) = 0. Show that L is a regular (type
3) language. For definiteness, you may assume that the input operation writes the input character
on the current tape square.

Problem 2. (20 points)

Suppose that the predicates P and Q satisfy the verification condition ¥¢ of a command S$, so that if

we start with P true and execute §, we finish with Q true. In Hoare’s notation, P{S}Q. Floyd
asserts, in his paper “Assigning Meanings to Programs”, that one can infer

(I) (Vx P){S} (Vx Q)

(2) (3x P){S} (3x Q).

Scott pointed out an error in one of these. Give either proofs or counterexamples for (1) and (2).
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Problem 3. (15 points)

In examples of resolution, one often sees the associative law stated by the two clauses

(1.1) P(u,v,%)v Po, w,y) v P(u,y, 2) v P(x,w, 2)
(1.2)  P(u,v,x)v P(v,w,y) v P(x,w,2) v P(u,y, 2)

instead of

(2) AAu,v), w) = flu,lv, w))

in order to avoid the definition and use of the equality predicate. (In the above, P(x, ¥, 2) is
intended to signify fix, y)=2.)

We could first transform (2) into

(3) (Au, v) =x A flu, w) = 9) 2 (x, w)=25 flu,y)=2)

and thence to (1.1) and (1.2). In the following we concentrate on the second stage of this
transformation.

Suppose a set of clauses contains the usual axioms for the equality predicate (regarding x = 4% as an
abbreviation for E(x, y)), and a function symbol f occurs only in iiterais of the form

fle), €5) = €3 Or fley, €5) ¥ 63.

Systematically replace these literals by new iiterais

Pre, , ez, eg) or P(e Is €2, €3)
where Py is a new predicate symbol. What is the relation between the satistiabnity of the original
set of clauses and that of the transformed set? Justify your answer.

Problem 4. (20 points)

Define a counter-input Turing machine as a Turing machine, with an mitially blank tape, to which
1s attached a counter C containing the input to the machine.

The possible values of the counter are the non-negative imtegers, and a special value called ©. The
only operations available on C are:

(1) Test whether C = 0.

(2) Decrease Cby: Ce« C+ 1, where 0 £i= 0, 0 *j=m, and otherwise x +1 =x - 1.

Define §, as the set of counter-input machines which halt for ail possible initial values of C.

Define §; as the set of counter-input machines which halt for ail possible integer (not 0) values of
C.

Prove that (a) one of the above sets 1s recursively enumerable, and (b) that the other is not. (One

can show recursive enumerability by showing that the set of Godel numbers of machines in the
given class 1s recursively enumerable, or by describing a program which prints the descriptions of
the machines in the class.)



-

158 THEORY OF COMPUTATION QUALIFYING EXAM

Problem 3S. (25 points)

The parenthesis language P is defined by the context-free grammar §- €|(S)| SS. It consists of
strings of matched parentheses, such as

(COO)CO NO).

Consider an arbitrary grammar G which generates a language Lg ¢ P. For example, G might be

S +(A A> (0A) a-)

Define the weight of a string of parentheses by

w("(" = 1
w(")") o i

wixy) = w(x) + w(y).

Define a nest of parentheses as a string x, such that for every decomposition x = yz,w(y)= —w(z) 2 0.
The depth of such a nest is the maximum w(y) such that x = yz.

In a sentence (with accompanying derivation) of a context-free language, a phrase 1s a substring
derived from a single non-terminal symbol. Show that there 1s a number n= n(G) such that if uvw
1s a sentence of G, and v 1s a nest of parentheses of depth greater than n, then some substring of v
contains a phrase of uvw.

To summarize the above in intuitive form: If a context-free language contains only properly nested
parentheses, then every sufficiently deep nest of parentheses contains at least one phrase.

Problem 6. (21 points)

A Scott schema 1s a (Ianov schema-like) monadic functional schema which consists of one individual

variable x, monadic function variables F,, where Fg is designated as the root function, monadic

function constants g;, and monadic predicate constants p;.

For example,

Fo(x) « if p(x) then if p(x) then F,(x)
else F (g(x)

else x

F (x) «if p(x) then Fo(gy(x)) else g(x)

We use Fo, as the “divergence function”, always defined by

F(x) & F(x).

An mterpretation of a Scott schema is defined in the usual way, including assignment of an element
of the domain as the initial value of x. The definitions of termination, divergence, freedom, and
equivalence are extended in the natural way from flowchart schemas to Scott schemas.

Discuss the termination, divergence, freedom, and equivalence properties (decision problems) for
Scott schemas. If you cannot find an answer for the general class of Scott schemas, define
appropriate subclasses and discuss their decision problems. Justify your arguments.



October 1971 Theory of Computation Qualifying Exam

(Time limit: 6 hours)

Problem 1.

Consider the recursive schema P defined by

F(x) « if p(x) then x else F(KF(a(x)))) ,

where p 1s a unary predicate symbol and a and b& are unary function symbols.

It 1s an open problem whether this recursive schema can be translated to an equivalent flowchart
schema. However, it can be translated if we add extra features to our class of flowchart schemas,

such as counters, pushdown stacks, equality tests, or arrays.

Discuss clearly and in detail the translation of the recursive schema P to three such flowchart
schemas.

Problem 2.

(a) Define modified algorithms for resolution and unification, incorporating an associative law for
a particular function f of two arguments. Concretely, the new law of resolution must be such
that for any set § of clauses, {}€ R(S), i.e. the empty clause can be obtained from § by
resolution, if and only if § is not satisfiable by any interpretation for which

(b) Sketch a proof that your algorithms achieve this goal.
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Problem 3.

Ackermann’s function F(x,9) is defined recursively over the natural numbers as follows:

F(x,y) «if x=0 theny + 1
else if y= 0 then F(x~1,1)

else F(x- 1, F(x, y- 1)).

The following is an “Algol” program for computing F(M, N) for any pair of natural numbers M
and N. The value of F(M, N) is obtained in A[1]) where A is an infinitely long integer array.

start: Al 1] « M;
Al2] « N;

[«2;

a: If I =1then go to halt,
if Al/-1 1] =0 then begin All-1]« AlI}+ I; 1 «1-1; go to a end;
if Al/]= 0 then begin A[/-1]« All]}-1;1« 1; go to a end;
All+1] « All)-1;
All) « Al1-1];

All-1] « All-1]-1;
[ «141;

go to a;
halt:

(a) Attach an appropriate inductive assertion at point a and show partial correctness of the
program.

(b) Prove that the program terminates for any pair M and N of natural numbers.

Problem 4.

Suppose that the function ¢(P) is an effective measure of the computational cost of a parameterless
program P depending monotonically on the size and running time of P. We require that c(P) be
defined if P terminates, but it need not be defined if P does not terminate. Give the weakest

conditions you can on the function ¢, such that a program of least cost having given output can be
effectively constructed. Assume some fixed definite machine by which programs are executed.
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Problem J.

A lion and a Christian are released at points a and b respectively in an arena and move alternately,
the Christian first. If it 1s the Christian’s turn and she is at point x, she can go to her choice of
points cl(x), ¢2(x), and ¢3(x). If it is the lion’s turn and it is at point x, it has a choice of I(x), /2(x),
and {3(x).

Let £ be a sentence of first order logic that axiomatizes whatever properties we wish to specify of a,
b, the c’s, and the I's.

Strategies for the Christian and the lion may be specified by giving predicates pcl(x, y), pc2(x, 5)
and pli(x,y), pi2(x,y) that give the conditions for the Christian or lion to make move 1 or 2 when
the Christian and lion are at positions x and y respectively.

If the positions of the Christian and lion are ever the same, the chase terminates with the lion eating
the Christian.

Let F be a sentence of first order logic that axiomatizes whatever properties we wish to specify
about the predicates pcl, pc2, pil, and $2. (It may include a, b, the ¢’s, and the £’s.)

(a) Write a sentence of first order logic that is provable if and only if the lion will catch the
Christian 1n all interpretations of the constants, predicates, and functions satisfying £ and F.

(b) Write a sentence of first order logic that is provable if and only if there is a strategy for the
lion that will catch the Christian independently of what the Christian does in all
interpretations of the constants, predicates, and functions satisfying E.

Problem6.

Let PC stand for first order predicate calculus without equality, and let PCE stand for first order
predicate calculus with equality. In PCE we allow atomic formulas of the form ¢ =u, where ¢ and u
are any terms.

Herbrand’s theorem for PC can be stated as follows: A set § of clauses is unsatisfiable if and only if
there is a finite unsatisfiable set §’ of ground instances of clauses of §.

(a) Prove Herbrand’s theorem for PC.

(b) Give a counterexample to show that the theorem does not hold for PCE.

(c) Suggest a modified Herbrand’s theorem for PCE and prove it.

!





May 1974 Analysis of Algorithms Qualilying Exam™

Problem 1.

The following recurrence relation recently arose in connection with the analysis of a certain paging
algorithm:

2

a, nd a,, Lat nzl.
n+1 n+]

Find the asymptotic value of a,, as n=, to terms O(n?) (You need not relate constants appearing
in your answer to “known” ones, but you should at least indicate how such constants could be
computed.)

Problem 2.

When ns N, the following procedure computes a random permutation a[l]...a[n] of a random
combination of n things from 1, 2,..., N, 1.e. a random one-to-one mapping from (1, . . . , n} nto
{1,...,N):

forf« 1 step 1 until N do M[j]« J;
for j« 1 step 1 until » do begin

Y unifiy , N),;
aljl « Mir}; Mr) « Mj};

end.

Here unif(a,b) is a procedure that computes a random integer in the closed interval [a,b], each with
probability 1/(b+ 1-a).

However, when N 1s large it is desirable to do the computation in O(n) cells of memory. The two
algorithms shown on the next page have been proposed for this problem.

*All of the Analysis of Algorithms quals were take-home exams, which students had about one
week to work on.
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Program A:

for j« 1 step 1 until n do begin
rljl « unif{j, N);
k « r(f];
for 1« J-1 step - 1 until 1 do

if r(i]=kthenk ee i;

alf] « k;
end.

Program B:

forf« 1 step 1 until » do bf] « j;
for j« 1 step 1 until n do begin

rij] « unifij, N),
if r <n then begin alf] « br]; b[r]« b[j] end
else begin

alfl «- r; k « |;
whilealkJ vr do k « k+ 1;

if k ¥ j then begin alf] « b[k]; blk] « bj] end
end

end.

For example, suppose N =9, n= 7 and suppose the unif procedure returns successively the values 3
97 96 79: then all three programs will seta{1J.. .al7Jto 397261 4

The purpose of this problem is to analyze Program A and Program B. On a particular computer it
has been found that Program A takes 44n + V + 5W + 2 units of time, while Program B takes 54n +
3X +9Y + 42 + 3 units, where

V = number of times "k« i” is performed in Program A;
W = number of times “if r(iJ=k" is tested in Program A;
X = number of times "alf] « br)" is performed in Program B;
Y = number of times "alf] « 8[k)" is performed in Program B;
Z = number of times "k « k+ 1” is performed in Program B.

Determine the minimum and maximum running time of each program, and also determine the
average values of ¥, W, X,Y, and Z, as functions of n and N. Express the average values
exactly, and also find the asymptotic behavior when n/N has a fixed value a <1 as n=». Note:
when determining the maximum and minimum running times you may assume that N 2 2n.
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Problem 3.

Let n=n{1Jn(2]...n[n] be a permutation of {I,2,..., n}, and consider the following algorithm:

begin integer array A[l:n}; integer &;
(All), ...And)« (n(1], . .., nin);

loop: print (All), ..., Aln));
k « All);

if k= 1 then go to finish;
(All, ..., Alk)) « (4lR], . .., Al1));
go to loop;

finish: end.

For example, when n= 9 and n= 314592687, the algorithm will print

314592687

413592687

531492687

94 1352687

786253149

135268749

and then it will stop.

Let m = m(n) be the total number of permutations printed by the above algorithm. Prove that m
never exceeds the Fibonacci number F,,;. In particular, the algorithm always halts.

Extra credit problem.

Let M, = max (m(n) |n a permutation of (1, . .., n}. Find the best upper and lower bounds on M,,

that you can.



-_——m—--mr

(May 1975 Analysis of Algorithms Qualifying Exam

This entire exam is based on an interesting way to represent priority queues as a special kind of
linked forest. Each node of the forest contains a KEY field, and when the forest is traversed in
preorderP Po... P, we have

KEY(P,) SKEY(Py) Ss . . . SKEY(Py).

Furthermore, the rightmost member of every family will be sonless. In particular, if the forest is
nonempty its rightmost tree will consist of a root alone.

The forest 1s represented in the “natural” way as a binary tree, so that each node has two link fields
LSON (pointing to the leftmost son of this node, if any) and RBROTHER (pointing to the node’s next
brother to the right, if any).

For convenience in describing the algorithm, we shall assume that there are two header nodes,
pointed to by HEAD and HEAD’, where

KEY(HEAD) = =, KEY(HEAD’) = +0,

LSON (HEAD) = pointer to root of leftmost tree,
RBROTHER(HEAD) = HEAD’,
LSON( HEAD’) = RBROTHER(HEAD’) =A.

lp

root of leftmost tree

If the priority queue 1s empty, LSON(HEAD)= A. Actually it turns out that the algorithm never looks
at any of these fields except LSON(HEAD), so the other values (e.g. ~) need never be stored in
memory, and the HEAD’ node doesn’t need to be present at all! However, it’s easier to explain the
algorithm (see top of next page) if we assume that these two artificial nodes exist.

We shall attempt to analyze the behavior of the algorithm when it 1s applied to the successive
insertion of n distinct keys in random order. In particular, if ¢,a,...4, 1s a permutation of {1, 2,
..., n), we will consider the behavior of Algorithm I when a, is inserted, assuming thata,, ...,
ay.y have previously been inserted (in that order) into an mitially empty forest.

Let A be the number of times step I2 1s performed, and let B be the number of times step 14 1s
performed. Let (T;, T5, T5) be (1,0,0),(0,1,0), or (0,0,1) according as the algorithm terminates
because of the respective conditions Q= A in 13, or X < KEY (Q) in 13, or RBROTHER(Q) = A in 14.
Then the running time of the algorithm on most computers will be «A+ @8B + TT 1+ ToT2+T3l3

+ 4 for some constants a, 8,7, T Ta Ta
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Algorithm I (Insert into priority queue). This algorithm inserts a new node, which will contain a
given key X, into the forest. If there are other nodes with key X, the new node will precede them in
preorder.

Il. [Create new node and initialize,] Set R + AVAIL, KEY(R) « X, LSON( R) « A. Also set P «
HEAD.

I2. [Prepare to insert into family.] (At this point we have KEY(P) < X SKEY( RBROTHER( P)),
and we want to insert X among the descendants of node P preserving the preorder condition.)
Set Q « LSON( P).

13. [Insert at left of family?] If Q = A or X £ KEY (Q), set LSON{P) + R, RBROTHER(R) « Q, and
terminate the aigorithm.

14. [Loop on sons of P.J (Now KEY(Q) < X.) If RBROTHER(Q) = A, go to 16.

I5. [Correct son found?] If X £ KEY( RBROTHER(Q)), set P «Q and return to step 12. Otherwise
set Q + RBROTHER( Q) and return to step 14.

16. [Insert at right of family.] Set RBROTHER(Q) + R, RBROTHER(R) ~ A, and terminate. |

Problem 1. (IO points) Find a simple relation between the forest obtained from the permutation
a8. ..a, and the forest obtained from the permutation (n+ 1 -a Xn+l-a5)...(n+1 -q,).

Problem 2.(10 points) Find the generating function g,,(z) in which the coefficient of zk is the
probability that the forest constructed from a,a,.. .a, has exactly k trees.

Problem 3. (20 points) Let x, 9 be integers with 1 sx <y<n. Find the probability that the forest
constructed from @,a,... a,, contains the keys x and y on level 0 in the roots of adjacent trees. (For

example, let n=4, x=1,y9 = 3. Then the permutations which make 1 and 3 appear in adjacent
roots are 1324, 1342, 3124, 3142, 3412, 4312; and the probability 1s 1/4 in this case.)

Problem 4. (30 points) Determine the average values of A, B,T,T,, and T3 when a, is inserted.
(Hints: Use the results of Problems 1, 2, and 3 to deduce appropriate recurrence relations. Try to
find “closed form” expressions which solve the recurrences. It can be done.)

Problem 5. (10 points) The running time of Algorithm I on a certain computer is 74 + 6B + 2T; +
bT, + T3 + 6 units. What 1s the exact value of the maximum time 1t will take to insert a,, over all

permutations a;a,... a,,, on this computer? (Give the answer as a function of n, for all n2 1. Note
that as in problem 4 only the time to insert the one key a, is being considered here, nor the total
time to build the entire tree from aa,...a,.)

Problem 6. (10 points) Find a simple formula for the generating function

F(2) = Z fur" oe] +2 +2 +23 +42%+92°+..nz

where f,, 1s the number of forests on » elements having the “sterile rightmost” rightmost property.

Problem 7. (10 points) Continuing Problem 6, determine the asymptotic value of f", with relative
error 1/ vn, that is, find an explicit function ¢(n) such that fy, = ¢(n) + O(é(n)/vn).
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Problem 1. (20 points)

Let BY" be the set of all 2" n-tuples of O’s and I's. A k-cube or clause C over B™ is a subset of 2h
n-tupies having specified values in n-k components; for example, if n=35 and & = 2, the clause C =

0% 10x is the set (00100, 00101, 01100, 01 101}. Given a subset ¥ ¢ B™™, a prime implicant of V is a
clause C c¥ such that no clause properly containing C is contained in ¥. The purpose of this
problem is to show that an algorithm which computes prime implicants of a given set ¥ in time
proportional to the number of clauses contained in ¥ will have average running time almost, but not

quite, linear in the length of its output, when ¥ contains 2"! elements.

Suppose V is a randomly chosen subset of B® having m elements, where all such subsets are equally
likely. Let ¢(n, m) be the average number of clauses contained in ¥, and let p(n, m) be the average
number of prime implicants contained in ¥.

(a) Find exact expressions for ¢(n, m) and p(n, m). (These formulas need not be summed in
“closed form”.)

Y

(b) Prove that ¢(n,2" ')p(n, 2") +e when n=22 and v is an integer, v -» ®. Hint: Show that
almost all of the clauses contributing to ¢(n, 2"!) and p(n, 2"!) are v-cubes.

nel n-1n ; log log n
(c) Prove that the ratio ¢(n,2"')/p(n,2""") is (ing log en)
(d) Prove that there exist integers n such that the ratio ¢(n, 2" ')/p(n, 2") is arbitrarily large, in

spite of the fact that the limit in (b) exists.

Problem 2.(10 points)

Let G=(V, E) be a directed graph. G is strongly connected if, for every pair of vertices v and w,
there 1s a path in G from v to w and a path in G from w to ». Suppose G is strongly connected. A
minimum equivalent digraph G' 1s a subgraph of G which (1) contains all the vertices of G, (11) 1s
strongly connected, and (111) contains a minimum number of edges among all graphs with properties
(i) and (ii). Note that a minimum equivalent digraph need not be unique.’

Show that the following problem is NP-complete:

Input: A strongly connected graph G and an integer k.

Question: Does G have a minimum equivalent digraph containing & or fewer edges?

168
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Problem 3. (20 points) |

Let A = (a; i) be an n x n non-singular real-valued matrix. That is, A has a non-zero determinant.
We wish to permute the rows of A and independently permute the columns of A so that the
permuted matrix A’ has the form

Ay =
A' =

where the submatrices A;, Ap, ..., Ap are square and lie on the main diagonal of A ', all elements
of A’ below 4, ..., A} are zero, and the elements above Ay, ..., Ak can have any value.

Of course, the original matrix A has the desired form with k= 1, but we wish to make 2 maximum.

(a) Prove that if k is maximum, A’ 1s unique in the following sense. If

2- 2oo A" =
’ 4

is another rearrangement of A, then the set of rows in each submatrix 4; consists of the

union of the sets of rows in one or more submatrices Ajp Aip and the set of columns in
A; consists of the union of the sets of columns in Aj» a. , Aj, Thus A’ 1s unique up to
permutations of rows and columns belonging to the same submatrix A4;.

(b) Describe an efficient algorithm for finding a permuted matrix A’ with maximum value of «.
What is the worst-case running time of your algorithm?
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Problem 4. (20 points)

Consider n records with keys K;<K,<...<K,, and access frequencies py, pp, ...) py, where 2;
p; = 1. We wish to store them 1n a data structure with fast average retrieval time. The problem
calls for the study of the following scheme, which is a mixture of sequential files and search trees.

Consider any subset of I-1 keys §={Kiy <Kip<..,< Kig It divides the rest of the keys into {

subfiles; the j-th subfile consists of keys between Kiy and Ki As shown in Figure 1, a structure
called I-file can be obtained by linking these I-I keys and the { subfiles together, where each subfile
is organized as a sequential file. Note that for {> 2, several distinct I-files can be formed even for
the same § (see Figure 2). For an I-file L, the procedure to search for a key K in the file is to start
at the root, comparing keys and branching accordingly down the tree until a subfile is encountered;
then a sequential search is performed. The process halts whenever the key K is located. Let C;(K)

be the number of keys examined before locating K. The average cost for L is then C, =2, <i<n
pi*C(K;). In this problem, you are asked to design algorithms for computing Ap, pa... ., pn) the
minimum average cost for any I-file, where I 1s fixed.

(a) Give an O(n log n)-time algorithm for computing Aj.

(b) Give an O(n®)-time algorithm for computing A}.

(c) Let pi wl]ieH,, where H,= 2 1/i 1s the n-th harmonic number.Ish

(I) Prove that, for each I, the limit

A ny (n), C, (n)al po hm Alp ™, 02 Pn) exists.
nao nlin n

(2) Find a recurrence equation for determining af. Evaluate ap, a3, and a4.

Ky
1

- ©Bn

-
| HE

J HE HE
HH OF|| |

|
Figure 1. A H-Tile,
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Problem 3. (20 points)

The Stanford boxing team 1s going to meet the USC boxing team next month. Let ¥;>x5>...>

x, be the linear ranking of the » members on the Stanford team among themselves, and %;> y, >

... > 9p the ranking of members of the USC team. If the two teams had never met before, it would

be fair to assume that all(*") rankings of the 2n members taken together are equally likely. It
would then be straightforward to compute P(i, §), the probability that x; can beat J in the opening
match this year. For example, P(L,1)= 1/2. However, since the two teams have met, and in all
contests Stanford has won (the number of the contests, and the matches can be arbitrary), mtuitively

x; would have a chance greater than or equal to P(i, §) over yj- Prove it.

Remark 1. A formula for P(i,§) can be found on p. 191 of Knuth, Vol. 3, but it is not necessary to
know this.

Remark 2. First try to prove it for é= 1, j= 1. Of course, any particular method may not generalize
easily to other i and jf. Partial credit will be given to solutions of special cases.

Remark 3. Assume boxers’ skills satisfy transitivity, and do not improve or deteriorate with time.

Ns

x, \
Ny.

\[ 79
——
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Problem 1. (20 points)

Lt U, be a fully balanced binary tree of height n, and §,, its set of internal nodes. For any integer

m > 0, an m-storage hashing scheme is a function # from §,, into {1, 2, .. ., m}; let H(m,n) denote

the set of all such A’s. For any subset F ¢ §,, we can use 4 to store the elements of F by organizing
all the elements that are hashed to the same location as a balanced tree. Assuming that each element
of Fis equally likely to be retrieved, we define the retrieval cost of kh on F by

1

c(h, F) = iF] Zn lg(nj+1), where nj=|{v]veF, h(v) = {1}.
In this problem, we are interested in the efficient storage of a particular family of subsets of S,. Let

1,, be the family of n-node subtrees of U,, that contain the root (see Figure 1). The efficiency of A

is measured by its worst-case retrieval cost for any T € Ty, 1.€.,

Ah) = max ¢r,T).d TeTy
(We have identified T with its set of nodes in the above definition.)

(a) (5 points) A hashing scheme Aq €¢ H(n,n) is defined as follows. For each v € 8, let i(v) be the
binary sequence of length n-1 or less associated with v as shown in Figure 2. Let Ag(?) =
|{-k| + I, where ! and k are respectively the number of O’s and I's in i(v). Determine the
order of magnitude of f(g) for large n.

(b) (15 points) Let €> 0 be any fixed number. Prove that, if n is sufficiently large, then there
exists an he H(n, n) such that fi) s 4+. (Hint: Almost all A will do.)

Figure 1. The family Tn for n=3.

g

ROR
00 01 10 11

Figure 2. The tree U, for n = 3 . The sequence

i{v) is shown for each node v , with

i(root) = empty string .

A72
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Problem 2. (20 points)

Consider sorting networks constructed from comparator modules as discussed in Section 5.3.4 of

Knuth, where a comparator module can be represented functionally as in Figure 1(a). Let S(n) be
the minimum number of comparators needed mm any sorting network for 7 inputs.

Suppose we are given a bunch of comparators, but among them one comparator may be faulty, in
the sense that this comparator works as in Figure 1(b) instead of Figure 1(a). Our problem is to
investigate methods of constructing valid sorting networks without locating the faulty comparator.

Formally, a I-fault tolerant sorting network 1s a network of comparators such that it remains a valid

sorting network if exactly one of its comparators 1s faulty. Let § y(n) be the minimum number of
comparators needed for such a network with 7 inputs.

(a) (5 points) Determine S(9).

(b) (15 points) Show that §,(n) <8) +n -1.

(Unfortunately, the intended proof for part (b) of this problem was incorrect. Perhaps the reader
can supply a proof or disproof of this result.)

y max (x,y) y -y

(a) a comparator (vb) a faulty comparator

Figurel
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Problem 3. (20 points)

Consider the following scheduling problem. We wish to carry out a number of tasks whose memory
requirements are to be satisfied from a large block of storage consisting of m memory locations.
Each task T; requires a contiguous block of s; storage locations out of the m.

We wish to schedule the tasks into the memory in an on-line fashion using the following rule:
When a new task T'; requiring s; memory locations 1s to be carried out, it 1s assigned to the first
block of s; contiguous storage locations which are currently empty.

Note that the first tasks to be scheduled will be packed densely into the first part of the memory, but
that as tasks are completed the free memory will consist of “holes” separated by occupied areas.

(a) (10 points) Describe a data structure to implement this scheduling rule, assuming that the total
amount of available memory 1s infinite (m = 0). Your data structure should allow each of the
following operations to be executed in O(log n) time, where n is the number of tasks currently
occupying the memory.

(i) Given a new task, assign it to the first block of memory into which it will fit, and
modify the data structure accordingly.

(11) Given a task which has just been completed, modify the data structure to represent the
freeing of the storage previously occupied by the task.

(b) (10 points) Suppose the total amount of memory (m) is finite. We wish to modify the data
structure to include a waiting list of tasks still to be scheduled but which will not currently fit
into the memory. When storage becomes freed as a task 1s completed, the task which has been
waiting for the longest time and which now fits into the memory is scheduled. Modify your
data structure so that the following operations each take the indicated amount of time.

(1) Given a new task, assign it to the first block of memory into which it fits. If 1t will fit
nowhere, add it to the waiting list. (O(log n) time.)

(11) Given a completed task, free the storage it occupied previously and schedule the task
which now fits and has been waiting the longest. Continue scheduling tasks from the
waiting list until no more will fit. (O(log ») time plus O(log n) time per task scheduled)
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Problem 4. (20 points)

Suppose we aregivena collection of rectangles which we wish to put in non-overlapping fashion
into a rectangular bin which 1s open at the top. One side of each of the rectangles 1s parallel to the
bottom of the bin and the rectangles may not be rotated. The height of a packing 1s defined to be
the distance from the bottom of the bin to the top of the block which sticks up the farthest. We
wish to minimize this height. See Figure 1 below.

a _—

a C

4

B 3

packing of better packing

and 2x2

Figure 1

(a) Prove that it 1s NP-complete in general to determine whether a given collection of blocks can
be packed mto a given bin to satisfy a given upper bound on height. |

The next three parts involve heuristics for packing the bin using the following fist scheduling rule.
First, we construct a list of all the rectangles, ordered mm some fashion. Next, we pack the rectangles
one at a time from the list. To pack a rectangle, we place it into the position of lowest height in
which it fits, breaking ties by placing the block as far left as possible. Note that Figure 1 gives
packings which could have been obtained according to this rule from lists a, b,c, d and d, b, a,
c, respectively.

(b) Give a class of examples to show that if the list can be in arbitrary order, the ratio of the
height of the computed packing to that of a best packing can be arbitrarily large.

The decreasing width heuristic consists of arranging the blocks in decreasing order by width,
breaking ties arbitrarily, and applying the list scheduling rule.

(c) Show that the height of any packing generated by the decreasing width heuristic is within a
factor of 3 of the height of a best packing.

(d) Give a class of examples to show that for any e¢ the decreasing width heuristic can generate a
packing with a height at least (3-c) times the height of a best packing.

Note: In parts (c) and (d), if you can’t prove a factor of three, give the best upper and lower bounds
you can on the worst-case ratio of the height of a decreasing width packing to the height of a best
packing.
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Problem 35. (20 points)

You are using a parallel computer. You have divided your problem into N subproblems, one for
each processor. The running times for each are independent, with common mean M and variance V

(VV << M), and are (very nearly) normally distributed. The program is complete when all N
subproblems are done. Estimate the mean and variance of the running time, for large N. What
does the distribution of running times look like?

Problem 6. (20 points)

Consider (I) binary trees and (2) LISP S-expressions, with N internal nodes, and with B bits of
data stored at each external node. In each case, what 1s the information content of such a tree,

given N, and assuming all N-node trees or S-expressions are equally likely? (Note: In an
S-expression, a single copy of a sub-expression may be pointed to from several places within an
expression.) Do conventional list representations approach optimal storage efficiency as N = oo? If
not, suggest improvements.

Problem 7. (20 points)

N points are chosen uniformly from the unit cube. We say that point P dominates point Q if Py >

Qx, Py>Qy, and P,>Q,. A point is maximal if no other point dominates it. Describe an efficient
(say, polynomial time) algorithm to compute the expected number of maximal points as a function of
N. Generalize to D dimensions,



Answers

SOLUTIONS TO ALGORITHMICS QUAL PROBLEMS -- 1974.

(These solutions were prepared by the professor in charge before the test was given and are presented unchanged

from his sketched answers. Remarks in brackets [ ] are sane of the alternatives and refinements found by
students taking the exam.)

Problen1

n 1

After applying a summation factor we have a = — TT 1+ 1]b for n > 2 , wheren n-l 2 n =
J>n J

+ 1 1 \1 1 1 7?
b= Lf M{1+= = p> Ff) +H, , where f£(k)=| J] [1+ -1 =

1<k<n © §>k 3° 1<k<n J>k j |

1 - - -2 - - -

= exp| - 2 = * o(k 3 -1 = exp(-k 1. a kk + ok 3))-1 = -k 1io(x 2) . (Note that
J>k J

)) = ¢(a) 52) = = nl™® + 1 n"? 4 a Bn ths Co. , cf. ex. 6.1-8.) Thereforek>n k 2 )

- 1 1 -1 - -

2 z fk) =¢C- 2 § f(k) =C+n" + Zn ’+0(n 2 where C = 4 . f(k) is a constant;
1<k<n k >n k>1

b =H +C + =n24 o(n"?) . Now JJ [1+ 1) - exp] 2 1. o(n™>) = exp(n™t + 1a? o(n~2))n n 2 2 2 2
ECA SE

=1+4nt+n% o(n™") » SO a = (1+ on"14 307%) (1, +C + n"%) + o(n"’ log n)
- 1, 1, -2 -

= H +C + 2n + Cn “+ 3n H+ (3¢ + 5)n +0(n > log n) . [The constant C seems to be equal to = .T665... .

Another approach is to rewrite the recurrence as B= 2 “HL - 2 2 2 and to prove that a
1<k<n k™1  1<k<n k+l .

has the form 2 (cg In n+d Jn ®+0(n log n) by induction on t . Then the constants cs and ds
O0<s<t

can be evaluated for s = 12,... in terms of ¢o = 1 and dy =C+7 .]

Problem 2

Clearly W = (3) , so Program A depends only on V . The chance that r[i] = k for each i and J is
1/(N-i+1) , since k is always in the range (i,N] . Hence the average value of V is

Z 1/(N-i+1) = n - (N+1l-n) (Hy, Hy ) [Let (k_.,.. .»k,) be the respective values of k which-n n~1 1
1<i<j<n

nel -
are compared to r[l] in Program A; it can be shown that each of the (N-1) possible (n-1) -permutations

of {2,3,. . .,N} occurs equally often as (k_ _yre00K)) . Hence the generating function satisfies

‘ _ n-1 .Vo, (2) = AO 5 (2 141) , for n > 1 , and the variance of V comes to
2,..(2) (2)

(Wen+1) (HyHy) = (N-n#1)7(H "7-H" ) -

Similarly in Program B the probability that r <n is (n+1-3)/(N+1-3) , hence the average value of X

is 2. (n+1-3)/(N+1-]) = n-(N-n) (H -H_) . Let Y, be the average contribution to Y for a particular Jj ;
1<j <n J

then Ys is the probability that Ty e (a[ll,..., a[3-1}} times the probability that Ty > n , since

a[1] . . . a[j-1] is a random permutation (assuming that Progrem B is correct). Hence Y, = 1-1. Fis ,

177
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Y  =(Nen)(H.-H. )-n XB Finally zave Hy-Hy "not Ty of tna y 1 is j-1 if Xy= 7% =0;1it1s 0 if X; = 1; otherwise

Ly is equally likely to be 0,1,...,]-2 ; hence

N-n 0+ 1+ ...+ (3-2) 1
Z,=(3- —_—— —_—— = - = ;

1 N-n 1

Zawve ~§ Ww nT At 3 (N LY, ve :

2 yiom?t
If n = AN then He-Hy on = In( Ta) O(n ©) and we have

la 1 2
= - — —_— + = af 2 aVoie (2 = (gs) 0{1) na/2 + 0(a“n)

lx 1 2

X ve = (2 ra 1 2 ) +0(1) = na/2 + o(a"n)
la 1

= -_— Smtr — + =Y oe | a-1+ =; an2) 0(1) na/2 +0 (on)
2 [ 1-a n 1 1 2 2 2

= — + = —- Q +2) ve a (%)- 5a Lave O(n) (3 6 J 0(o"n”™)
as n =e and a -0 . | Xn, n(2) = Vor, n (2) .]

For the minimum running time of both programs it is easy to see that ry...r, = N2 . ..n Yields

v,X,Y,Z = 0,n-1,0,0 which has minimum time. But the maximum running time is not obvious in either program.

To maximize V we may note that Vj 1s the number of times the final value of a[j] was moved to the

right in the Marray of the original program. It can therefore be shown that if we were to continue the loop

of Program A all the way to § = N, using »[j] =j for all j >n , the total value of V would be exactly

equal to n minus the number of j < n with r{j} = j . Consequently V < n-1 ; this value is achieved,

e.g. when No ros oN

In Program B the contribution to the running time for fixed J is +9, + hz. . Whenj = 1 this

is 3 if Xx; = 1, otherwise zero; whenj = 2 it is 3 if X;, = 1 , or 4 if z, = 1 , or 9 if Y, =1 .

When j > 3 there are several cases: (a) Z = j-1 , Y; = X; = 0 , total kj-h . (b) 2; = j-2 , ¥, =1,

X, = (0, total Lj+l ; case (a) must have occurred for j-1 . (¢) %; = J-3 , Yy =1, X; = 0 , total Lkj-3 ;

case (a) must have occurred for 7-2 . (d) Z, < Jj-3 ; we can always achieve a greater total by choosing Le
to be a 'new' value, without affecting other costs. A dynamic programming approach is now suggested: Let

c, = max Lo (Xg +X 4 zy - bye 4) [2,2 51 . Then cl = 3, ¢, =53,¢5 =5,¢, =8, and for k > 5
1<j<k

we have

cy _ max(O+c y Ste, 1+ 5+¢, 3)

corresponding respectively to cases (a), (b), (c). The solution to this recurrence is easily seen to be

Cp = [2 (k-1){ , for k > 2 . The maximum running time of Program B is € 41 2 cj <n (bj-k)+ skn+ 3
= |
=n +5kn+3+ | , which is achieved by the sequence n,ntl,n+l,...,n+t,n+t for n = 2t+l and by the

1)

sequence n+l,ntl, . . .,n+tt,n+tt for n = 2t .

Further notes: To prove that Program B works, let M) be the contents of M after J iterations of the

second loop of the original program. Then after j iterations of the second loop of Program B we have

blk] = MILK] for j < k <n; and blk] = mL alk] for 1 < k <j if alk] >n | (This 'invariant' is

easily checked, once written down.)

Thus a different search method would convert Progrem B Into an n log n algorithm.

Similarly for Program A the invariant is that alj] = i(k] during the loop on 1 .
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Problem 3

If array element A[l] takes on k distinct values during the (possibly infinite) execution of the

algorithm, we will show that m < Fer (hence m is finite). This is obvious for k = 1 , since k = 1 can

occur only when x{1] = 1 .

If k >2, let the distinct values assumed by A[1l] be 4; < d, <. . .X< dy . Suppose that A[l] = dy .

occurs first on the r-th permutation, and let t = ald, ] . Then the (r+l) -st permutation will have

All] = t and Ald, ] = 4 . All subsequent permutations will also have Ald] = 4 (they leave A[j]

untouched for j > d, ), hence at most k-1 values are assumed by A[l) after the r-th permutation has been

passed; By induction, m-r < Fo , som is finite and dy = 1 .

Interchanging 4 with 1 in x produces a permutation x' such that m(x') = r , and for which the

values d, and t never appear in position A[l) unless t =1 . If t = 1 we have r < Fe , since A[l]

assumes at most k-1 values when processing =' , hence m = AY . If t>1 we have r < F, , since

A[1] assumes at most k-2 values when processing x’ (note that t = dy for j < k ) hence

m < Fr < Fierl .

Three hours of further concentration on this problem lead to the hypothesis that it is difficult either

to prove or to disprove the conjecture M = O(n) ; the upper bound Fel is exact only for n < 5 .

[The upper bound applies more generally to any algorithm that sets (A[1],...,A[k]) ~ (Alk), Alp 1, -- 5 Alp

(A[1],...,Alk]) =~ (AlkL Alp, 1s -- 5 Alp, _;1,A[1]) when Pp ++: Pp_y is an arbitrary permutation of
{2,...,k-1} .

Computer calculations show that lg = 11 , M, = 17 , Mg = 23 , M, = 31, so M1 ~My, maypossibly
increase without limit. This search is speeded up slightly by restricting consideration to permutations

without fixed points.

The long-winded permutations on 7, 8, 9 elements are 3146752 , 4762153 ; 61578324 ; 615972834 .

When n >3 and 1 <k < 3 , exactly (n-1)! permutations x satisfy m(n) = k . It is conjectured

that exactly (n-1)! permutations = will satisfy “A[1] = n at some stage.’
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ANSWERS to ANALYSIS OF ALGORITHMS QUAL, June 1975 D. Knuth

[The subject matter for this examination is based on a forthcoming paper by Arne Jonsssen and Ole-Johan Dahl,

who first proved most of the facts below, earlier this year. The following notes were written before grading

the exams.]

A forest F is either empty or has the form

xy ce Xn

I I

Fl Fn

for some m > 1 and some forests Fp,--oF The sterile-rightmost forests (SRFs) are characterized by the

additional property that STREET are SRFs and Fl is empty. For convenience we shall identify nodes and

keys, so that Xo denotes both the root of a forest and the key stored there. Since FL 1s empty we can

adopt the notation (x,Fy Co. Fo 1%) for nonempty SRFs.

Now the insertion algorithm on distinct keys can be described in the follouing recursive manner:

Insertion of x into an empty SRF produces (x) . Insertion of x into (X,Fy --- Fx) produces

(xx, Foy, F3x) if x <x1 3; or (x «ee xy FiXspq oo Xp) if x, <x <x, for some i , 1 <i <m ,
where F, is the result of inserting x into F, ; or (x.F, . ..F _x x) if x > x. This recursive

i i 11 mlm m

description of the algorithm guarantees that the keys of the SRF are always increasing in preorder; in particular

x)< x and the value of 1 is uniquely defined above.

Let «-a; ...a be a permutation of the distinct keys (a), - 58 and let F(n) denote the SRF

obtained by successive insertion of By ceed It follows easily from the above recursive definition that,

when. n >1 , we have F(n) = (x,Fy Co. F 1%) where (x) C ox} are the left-to-right extrema (LRXs) of the

permutation x , i.e., those 2 such that a; = mina, ...,a,) or a. = max (a goers) . Furthermore

Fy = Fb, . ++) where b, . ob is the permutation obtained from =n by deleting all elements Sx and

> Xr . Let us call this the permutation =f (Xr X50) . (These facts are readily proved by induction on n ).
Now we are ready to tackle the problems on the exam.

(1) If ¥ is an SR¥, letF be its "reflection" defined as follows: If F is empty, then F is empty,

if F = (x Fy Coe Fox) , then F = (x F 3 Coe Fix) . Yor example, if F = (a{b(cd)e(f)z)k) then

F = (h{g(f)e(dc)b)a) . If the nudes of F are CIPREILN the nodes of F are {a;r-- ora] .
Now let x =a, . ..a and x =a, ...&8 be permutations such that a, < a. iff a, > a. . In particular

la n i n 1 J 1 J

if 8 . ..a. is a permutation of {1,...,n} we may let 8 = ntl-a, . Then F(n) = F(n) .
Proof: The LRXs of n are the LRXs of nn, and if x. < x are consecutive LRXs of sn then X. < X.root J H+ J+ 3
are consecutive LRXs of nr and =nN{x. .,x.) = aN (xx. . The formula(300%3) (x51)

Fn) (x. Flr (xx 1) ...P(xN (x55%,))%,) = (x, F( nN (x, .12%.)) -..P( nN (xy,%,) )x,) = F(x) follows by

induction on the length of “3

(2) The number of LRXs for permutations of length n has the probability generating function defined by

22+ n-2

7,(2) =z g, (2) = m1(2) 2erne2 ) for n>1,

since a, is always an LRX, and a, 1s an LRX with probability a independently of the other 8 . Thus,

bo (z) =2(22) (2241) . .. (2z+n-2)/nt
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and the probnbility of m LRXs is the coefficient or SM ;  umely

m-1| n- ,

2 | / nt
by Eq. 1.2.9-27.

(3) Given consecutive IRs x<vy. If x was inserted after y , it must be a left-to-right minimum (not

maximum), hence y being the smallest preceding element must also be a left-to-right minimum. Conversely,

these conditions will make x < y consecutive LRXs. Considering only the elements < y , we are requiring

y to appear first (probability 1/y ) and x to appear next (probability 1/(y-1)), hence the probability

of such permutations is 1/y(y-1) . If x was inserted after y , a similar argument (or a dual one using

the correspondence of question (1)) shows that the probability for this case is 1/(nm+l-x){n-x) . The

desired probability is the sum of these two.

(4) The average cost for inserting n elements is obtained by recurrences corresponding to the recursive

formulation of the algorithm, namely the average cost on the first level plus the average cost incurred by

involving the recursion. The latter is

2 CE +a) (average cost of inserting y-x elements)1<x<y<n-1 yAy= n=) in~1-x

since a, lies between the x-th and y-th largest of 8) .ev8 with probability (y-x)/n , and they are

consecutive LRXs with probability 1/y(y-1) + 1/(n-x)(n-1-x) . The general form of recurrence that arises is

therefore

-X 1 1

C. = f(n) + o 2 ( FR) ©n 0<x<y<n n y(y-1) + (n-x)(n-x-1 y-X

= f(n) + K, C

1<d<n-2 ad
where

K. = > ex ( 1 _-d 0 <x <y <n n y(y-1) + (n—x)&—x-1) )
y—x=d

d 1

= 2 2 = (so: )0<x<y<n no yiy-i
y—x=d

by symmetry (replacing (x,y) by (n-y,n-x) ). Now

1

2 (4-3) - 3 my + for lsdsneO<x<y<n’ y

y-x =d

since it is a telescoping series, therefore the general recurrence takes the form

2 d

Cc =f(n) +% z (1-35) , for n > 1 .n n 1<d<n-1 n-1l/"d =

The first step is to eliminate the L from this recurrence:

n(n-1)¢_ = n{n-1)f{n) + 22 (n-1-d)C 4 + 2C,
1<d<n

(n+l) nC, = (Ml) nf(ml)+2 ZT (n-d) C4
1<d<n



189 ANSWERS

(+2) (nt1)C_, = (m2) (nel) £(me2) + 2 2 (nrl-d)c. nt d
l1<d<n

.n(n-1)C_ -2(m1)nC_, + (m2) (m1)C = g(n) + 2C, for n >1 ,

where g(n) = n(n«l)f(n) ~2(ntl) n f(n+l)+ (n+2) (n+1)f(n+2) .

In generating function form, with C(z) = 2 C2 and G(z) = 2 g(n)z , this is
2

(1-z) c"(z) = G(z)+2C(z)

if we let Cy = 0 and g(0) =2C, . [See exercises 5.2.2-28, 29,55 for a similar case.]

Let P be the differential operator defined by Pf(z) = (1-2)f'(z) . Then

Por(2) = (1-2) (-£' (2) + (1-2)£"(z))

2
= (1-z)°f" (2) - (1-2) (=z)

and our generating function satisfies the differential equation

G6(z) = (P+ P-2)C(z) = (2) (P-1)C(z)

We solve this in two steps, first solving

G(z) = (P+2)D(z)

for D , then solving

D(z) = (P-1)C(z)

for C . The coefficients of these equations satisfy respectively

g(n) = (n+l)D ,, -nD + 2D_

D, = (m1)C ,, -nC -C_ .

Thus gz) =3Dg , &(3) = kp, - Dy , etc.; the values D for n > 2 are independent of g(0) and g(l) .

The recurrence for Cy In terms of Dy telescopes immediately.

D D D
3 n~-1 kC = C, ++ hee = C+ 2,

n 3° & n b 3<k<n (k+1)

To solve for D, we have

(r+1)n(n-1)D_ 4 = n(n-1)(n-2)D_+ n(n-1)g(n) ,
hence

1

D = n(n1) (n-2) 2 k(k-1)g(k) for n >> .n n(n-1) (n-2 0 <k <n

Now let us particularize the equations. For Tl we have f(n) = tn , hence g(n) —— 0 3D) = 0 and

Tl =Tl, for n >3 . For T2, we have T2, = [PR by symmetry (problem 1), and TL +T2 +13 = 1 , hencei

vz LL _ _ . 2
T2 = 3) cS (1 TL) . For A, we have f(n) = 1 , hence g(n) = 2 , and D. 5

2,
AL A, bs (I, Hs) for n >3 .

Finally for B , we note that the first-level cost for 8) «oc 8 plus the first-level cost for a ca

equals m , the number of trees in F(a, . »-8) . By symmetry therefore, the average first-level cost f(n)

for B is the average value of 5m ; and this is H, - 3 , by the result of problem 2. In this cece

g(n) n(n-1)H_ - 2(n+1) nH + (+2) (mt 1H, -1 = 2H+2; hence for n 2 3
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Nn. n- -r < 7

n n‘n-1){n-C 0 <k<n < ng

by Fg. 1.0.7-1. The result cf exercise 1.2.7-1L -ives us the sum 2. H. (k+1) . hence we obtain the following
formulae: |

n TL rey >, A By

1 1 3 0 1 0

1 1 1

0 p 2 ! 2

1 1 1 lL
= = = = 1
y y 5 3

L 1 1 PJ hyd
p) > 2 12

1 1 1 2 1 [1.2 Au 1 (2) 13
bo! Z = T T + = Fy + = -z nl ==z 5 5 3 7 Hn 9 5H * gE, - 30 27

The average totel number of key comparisons to insert a=~ is A + B -Tl -T3, ; note that this is order

(log n)® . [The formula for B, s not the sort of thing one would guess easily by looking at a table of
values; in fact it isn't even easy to prove it by induction from the recurrence relation!]

(5) Clearly the. maximum time Mo is nondecreasing in n . We use 'dynamic programming' (approximate for

recursive algorithms): let f(A, B, Tyo To0 T) = TA+ 6B+ eT, + ST, + Ty + 6 ; then My, = r(1,0,1,0,0) = 15 ,

and M, = max(f(1,0,0,1,0) , £(1,1,0,0,1)) = 20 . For n >3 we have

Mo = max(£(1,0,0,1,0) , £(i,n-1,0,0,1) , £(1,n-2,0,0,0) - 6+ 1K, £(1,n-3,0,0,0) - CHM, £(1,1,0,0,0) - 6+ M_,) ;
. here the teem f(1,k,0,0,0) AS SRY is the maximum time attainable when the first-level B value is k ,

for 1 <k <n-2 . We find 35 = max(20, 26, 15+ M)) =28 , M, = max(20, 32, 19+ M; 15+ M,) = 34 ,

My = max(?) , 20, 25+ ys 19 +1, 12 + My) = 41, and by induction

M, = end | n/2 1 +8-5 , .

() The number of SRFs with n nodes and m trees is 8 = 2, {f_ ..f |n+...4n = n-m} = coef. of z=
m ny T- 1 m-1

. In m= Rk . Ss” | m-1 . . . .
in <2) Hence F(z) = +2 oq z F(z) = 1 + z/(1l-zF(z)) . The solution of this quadratic with

F(0) finite is F(z) = 5 voz Cop 1-24-32 .

(7) Now we write 1-2z- 22€ = (1-%2)(1+z) and work on the singularity nearest the origin, at z = 3 - Let
w = %2 , we want to find the coefficient of Wt in

YL) (1+ 5) = d(1mn) (1 Ly. > (1-0)>/% (1+ ERE 3) . Since 1/(1+3 + ja) = 2c
nf -

converges (ov || < 3% , we have lim sup [oy = = , and Ch is certainly 0(2 M . It follows that the

cretFicient ¢ fw in (1-w)~/? 2 cw" is 0 (( 72) = o(n~ "2 . Thus the coefficient of Win
nn I 1/0 -3/2 1/2 1 -1 1 1
Jaa 0) = (en om) pew (MP) 220" p(n + 3) / T(E) Tm) =

n-1 //7 -5/2
fA) Tem 0 Gln ) by Stir .ing's fermula. Geing back to our original problem, we have

[ 2 nf 3/2),vr, ( py ed JIESTLVS .
[Note: This oxan seems « o cover seven fundamental paradigms of algorithmic analysis.)
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SOLUTIONS to Analysis of Algorithms ual —— Spring 19/7.

Problem 1.

ny .n-k Co . ph _oK o"
(a) There are <)° k-cubes, each ot which is contained in V with probability k .m-2 m

By Inclusion-exclusion, each k-cube is a prime implicant of V with probability

nk n k n. ,k n nk _k

2 = _[ nk 2 “a2 +f BK 2 aE — ee ° , since 2 2 "Je ) is the number of
sets V containing a given k-cube together with a given set of J of its n-k "neighbors". For example,

the neighbors of 0 *10* are 1®*10%, 0700") 0 *Y1x ; a clause contained in V is prime if and

only if none of its neighbors is contained in V . Hence

| nk n
n ~kf 2 <2 2

c(n,m) = 25 (x Je" K ; (1)k m-2 m

- fn\,n-k n-k J AON ETERPL of
pm = 2 (3) T ( ; ) en ) (2)k J m-(jt1)2 m *

(b) First we make sone estimates useful later, By Stirling's approximation

2 2 L
Xi xX X x X x X

in = = XInX Tete xt - —x + Of , (3)

a formula useful when x grows more slowly than X . Now we can deduce that

oT _ok .
al mn

m-nX n! (>"-2%y mY Pk
n = x. — = Tn CXp 0 on . (M4)

2 (m-27) : 7! 0
m

There is a unique value of k , call it k =v , such that

n-1 2" Vv
=h/7 al - -y 2/3 5

— HN

It follows that

2 1

lglgn+lgy < v < lglgn+lgs (6)

We can now use {(h) to obcerve that the terms of (1) increase until k = v or vtl , then they decrease.

Let ty (n,m) be the k—th term of the sum and let x, = pt, me A 1 . Then

t (n,m t n ’ 2

z ove) oof a) oof eszem®) (7)K<v t (n,m) L (n,m) nr nt 3
n

Furthermore

r 2)

ham ney Of YY (8)
ty (n,m) o(vtl) n m

and for k > 0 we have

2. k
k -=(n"-1

ty (n,m) n

since
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. n vtk n oV'k_ov
m! 2 -2° )! mi (27-2%): m
vtk , n, -— , * n, nn(m-2¥ 7): 2°: (m-2¥): AR +)

Thus

. cin,m n-y n- n-y-1 1 1 ra= 1 + Vv Vv 0 Og n

Now let us consider (b). In this case y = x and ant, hence
n

n-y
n-1 n 2 1

cin, 2 —— + rt ——(n, ) = (3) n € o 35 log 5) y (10)
Since almost all the contribution comes from k _ v , wc concider first which v-cubes arc prime implicants.

We have

Vs.
27(j+1) EV. 412n-

oft m

: _ 2v(3+1) 2V(j*1) 2v 2

= z( "7 )en? = Tool I (7) LE 2”(J*1)”J 2" a VIAL" m

agV)
n-v 2 2 n 2

a (l-a —= n ) + or a (+a) = )Z

and the remainder term is exponentially small. The contribution From k ¢ v is negligible since it is at
n-1 - -

most  ¢(n,2 ) -t (n,2" 1 = O(c(n,2" HY /10g log n) |, hence
n-1 ny 2°°V 1

pin, 2 — —(n, ) - (3) w(t) (11)
oV

. when ne«= 2 and v 1s an integer.

(c) Similarly we have in general (cf. (9))

20,2") ce exp(-nr. ) +—rV _ ex (=n oF) + {n-v)(u-y-l P h (log log n :N (n,2""1) n 2(pr1) nM n ver) Mn exp(-n *) + 0 Ey av n

_ _c(n,2"h ro)
t (n,2"%) (12)

Case 1, nx <1ln y-1lnlny. Then consider only the k = y term of pp

n-1

pin,2_) > Hy € + of» Log *) ,t,(n,2 )

Rase , nx, >Inv-1nlny. Then consider nly the k = y+tl term,

n-1

p(n, 2 ) n-y (= v = In In ») In. > _- Vv  — 1+ o( *-2) .t (n,2" 4 2{v*t1) Ii n
In both cases we have, by (15) and (9),

n-1 n-1 n-1
e(m27) _, ez7) _ pmo)

. n-1, ° n-1 n-1 n-1
p(n,2" 7) t (mn, 27) Lyne ) ERLY 2 7)

of ——2- . 5
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hd
(d) Let n= | (In y-1n ln y)2" §. Then

p72’ _ lmy-Inlny _ (1b)
nt O(1) Tn

Wc Find, by (1°) and (15),

cn 20-1 log vme Lo 1 of 26
t (n ol v |
v

p(n, 2") In 1n log 1hol - By edn, ey)t (n, 2777) v v Vv
v

hence

ema 2 ( log log y— {~n-1 = 35 Inv Lvo log v ) . (15)t (n,2 )
Vv

Problem 2.

Show that Lhe following problem ls NP-complete:

Input: A utrongly connected graph G and an integer k .

Noegtion: G have 4 minimum equivalent digraph containing k or fewer edges?

(u) The MED problem lu in MY:

algorithm: (1) 1 I'k >»n answer ye::. Olherwi ce,

(ii) guess a set of k edger in 6G;

(111) test whether this set of edges defines a strongly connected graph containing

nll vertices of G .

(b) . The directed liamiltoniancycle problem (known Lo be Ni-complete)is reducible to the MED problem:

A dirceted graph G with n > 2 vertices contain:: a Hamilton cycle iff' the MED problem

has answer "yes" for this graph with k = n .

Proof’; (1) A lamilton cycle delines no strongly comnecled gpunnd ng subgraph with k = n edges.

(11) A strongly connected spanning subgraph containe ab least one edge into and out of each

vertex end thu: contains at least n edges, if n > 2 . A strongly connected spanning

subgraph with n edges containe exactly one edge into and out of each vertex and thus

consicts of a set of cycles, To be otrongly connected, such a subgraph must consist of

exactly one cycle, which is a Hamilton cycle.

Problem

A transversal of' A is a setol’ nn non-zero entvies, no two in the same row or the same column. Since

A iu non-vingular, it must contain al least one Lranoversnd, Let NMiyeooshy bc the Dblock:: of any decomposition.

(a) -Thm: If A; | is a non-zero clement in some trancversel, then row i and column J are in the same
block A; .

l'roof. suppose the theorem ie false, Piek 11 transversal containing a non-zero element which violates

the theorem mul let Aj be the transversal element with minimum i violating the theorem. (I assume
the numbering of rows end columns corresponds to a permulation defining the blocks Ayreees By .) Let

row i be in block N, ad column J be in block AT . Oince Aydt 0, vr<q. The columns of A'P
contain exactly n element: of the trencversndl., Only

n—-1 of theve can be inalde block A'  udince cach row in Ap .

Aj cu contain only element of the trinmsversal and the Pe 1d

element in row i (A; 4) icoutgide the block A , neThus some column ol" A’ contuing a transversal clement
Bp

out side A , This transversal clement cannol be below
block AY vince all elements below A, are zero, ad A'q
it cannot bce above A, since 1 wns chosento be winimum,
Thi ¢ contradiction proves the theorem,
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By the theorum, any transversal lien entirely withinuny set of blocks Apreeary . By row and column
permutations within the blocks As coh , wy such trunsveranl canbe placed on the mdn diogonal of

Awithout affecting the block decomposition Aseeorly . It follows that if any trunsvercal is permuted
onto the main diagonal of A , all possible block decompositions ave defined by subsequent simultaneous

row and celumn permutations.

We can thus assume without loss of gencrality that thediagonul of A iz non-zero and restrict our

attention to simultaneous row and column permutations. Lel G be the directed graph with vertex get

ve {1,2,...,n} and edge set E = {(i,J) |i # J and As; £0) . The strongly connected components of G
correspond to the blocks of a maximm-k block decomposition of ¢ , und two rows whose vertices

are in the same strongly connected component ol G must be in the tame block of any block decomposition.

(The latter fact immediately implies the former.)

To prove this, suppose that A .) Ap ic any block decomposition. ince only zero:: uppear below

the blocks, no edge in G leads from a vertex corresponding to a row in, A’ to a vertex corresponding
to a row in Aq , if p> g . It follows that no strong component of G can contain vertices corresponding
to rows in two or more blocks of Ayr-eer Mp . Farthermure, if’ the strong components of G are sorted
in topological order, they correspond to a block decomposition of A .

SN,
(b) The algorithm is:

(1) Find a transverzal of A , using the bipartitematching:dgorithmof Hoperoft aud Karp;pul Lhe

transversal on the diagonal.

(a) Find the strong components of the graph € corrcuponding to Lhe permutation of A, zort the

components topologically, and determine the corresponding blocks.

Step (1) requires on? m) time if A is nxn and hat m non-zero::. Step (2) requires O(ntm)
2time. The total time required is ou! m)

Problem 4.

: Part 1. The usual sequential file will be considered ag a 1-file. In an optimal 1-tile, it 1s well known

that the keys are arranged in the order of decreasing frequency. We shull denote by D(G) the average cost

of an optimal 1-file ¢ , then

p(G) = XL mp (1)
l1<m<t dn

where p, >p > >p are the frequencicecolkeytin Go

A 2-file F is specified by a key K, (1 <d<n);the two sublilesL, and R, consist of keys less
than Ks and greater than Ky , respectively. For F to be optimal, clearly L, nnd Ry are optimal
l1-files themselves; furthermore, in this case,

= + + palCe 1 p(L,) D(R,) . (2)

If we can compute the 2n numbers D(Ly) and p(k) for 1 -. d <11 in O(n log n) steps, then equati on (2)

enables us to compute Co for n possible FF in O(n) time. Wethen Pinndly compute A= min Cp in
[3 F

O(n) additional steps. Thiswould solve the prob em in O(nlog Nn) steps, Below we give an sdgorithm

computing D(L,) for 1 < d £ n in o(n log n) time; the computing of D(R,) iz identical, and will not
be repeated.

The obvious way to compute p(L,) is to sort I, uccording to Crequencyund compute D(r,) by its
definition. But this would take O(n log n) for cuch do , and ont’ log n) overall. To do belter, we obuerve

that Lg is obtained from ORY by deleting K; utd move all key: with dower frequencies (heneeloented
"under" Ky ) up one location. This leads to

| where A(d) is the number of § 's with (Jj < d) A (r, » ry) and

Wid) = Zp;
j<d

bs <Pq

The following algorithm first computes A(d) , W(d) for d = n,n-1,...,1 successively, then uses (3) to

comjute all the D(L,) .
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Algorithm for Computing D(u,) (1 <d=< mn) .

[Initinlization]

A. Sort {rps (UNTIERS (NY into decreasing order Py > Ps >i > Py .
1 2 n-1

B. Build a balanced tree with all leaves in the lowest two levels (or one level if n-1 is a power of 2 ).

Number the leaves from left to right as hh ' Gui 4
C. Associate to each internal node v, two fields (a(v), w(v)) where a(v) 1s initialized to be the number

of leaves descendent from v , und w(v) ic Initialized as 2p with Jj summing over all descendent-
leaves of vo. J

[An example of an initialized tree is shown in Figure 1.1

Cor Cri

Figure 1 An Initialized tree with 11 = 7 and Py > Pg > 12} > P, > 1% > p L

D. [Computing A{d) , W(d) for d = n-1 to 1.)

for d= n-1 step -1 until 1 du

[compute A(d) , W(d)]

A(d) := 0; W(d) := 0;

{let Vv, = leat d)

truce a path Ye Ykel Vien + 0 0 from leaf d up to the root vis

Ad) = 2. a(leftson(v;));
J

Viel © rightcon (v, )

Wd) := bY w(rightzon(v));J

Vil©T Leftson (vy)
update av) , wiv)]

for each vy on the path,
avy) = a(v,)-1;
wiv, ) = w(vy)-rgs

BF. Compute D(L) = 2, ip,
I Le J.

1<3< nl i

F. Use (3) Lo compute p(L;) for d = n-1,n-2,...,1 successively.

In step D, when theloop parameter i od and A(d) , W(d) are being computed, the values of a(v), w(v)

for any node v oare given hy

a(v) = |8(v)] , w (Vv) = 2 P;
jr 5(v)

when 8(v) = {Jj | i:: a descendant leat of v; jd}. It is not difficult to see that A(d) , W(d) are
correcily computed. The updatingoperotion keeps the interpretation of n(v) , w(v) valid for d-1 . The

rest of the program is obviously correct,

To count. the coul: Tnitializatlon takes: O(n log n) ; in step D, it takes O(k) = 0(log n) steps for

cach d , hence O(n log n) is Lola) time, Steps Band I" can bc done in O(n) time. Therefore, this algorithm

computes D(L,) tor 1 < d = nin O(n log n) .
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Part 2.

This part is solved by dynamic programming. For any t-file, the key: to the left form a g-file (for

some 1 < q < t-1) , and the keys to the right a (L-g)-rile. The important. vbucrvation J uo that tor the t-141e

to be optimal, the associated g-file end (L-g)-tile aloo have Lo be optimal, jet

cost of optimal t-file tor keys {K,, -eesK, };ATI LALATASTE MB
s(t,1,3) = J

(2, if no t-file exists or itj-1 > n).

The previous remark implies that, for t > 2 ,

s(t,1,j) = min min (A+ sq i,J') + c(t-qivJ',J-3')) . (4)
1<qSt-l 1<§'<J

Therefore, if s(q,i,3) are known for all g <t , curd all i, j, then t(t,i,J) can be computed in

0(t-j)= O(tn) time for each i, J . The following program computes u(t,i,j) for all 1+ t <1,

1<4i,j<n. In particular, it computes A, = s(1,1,n) ]

Algorithm for A, .

A. [compute s(1,1,J3) vi,J)

for each 1 (1 <i < n) , compute s(1,i,n),5(1,i,n-1),...,5(1,i,i) by the method in part 1 for
computing Ld (d = n-l,n-2,...,1) . (This iz possible because 1-file:: are Just cequentinl files.)

B. for t := 2 until f do

for each 1< i,j <n , compute s(%,1,J) using (3);

C. A, := s(2,1,n) ;

cost analysis: cost for A = n+0(n log n) = o(n° log n)
2 oe

cost for B = 2, n .0(tn) = ofr”) .
2<t<!

Therefore, the algorithm works in (n°) time.

Fart 3.

ny (n) (n), __ den Je: Wil
(a) We shall abbreviate A, Py »Pyseearly ) as A ,(n) . The jdea J::: With the present frequency&

distribution, the cost of an f-file is dominated by they swbfiles regarded as tequential files; thus,

we can concentrate on, instead of A, (n) , the cost of zeguential files which havs zinpler analytic
expressions. Formally, let wus define |

3 i 3
1.1 1 1 2 27)

gn;i.,1 eeesl = shte=t , , tr 4 TV Tt ee. bmryote? 2-1) (4 2 2 (on i)+e i, )
n-y

1 2 1-1 ) ;MEE tt... — (5)(20 i,.,'° n
Expression (5) is essentially no times the totulceosl of the ff vubfiles formed by breaking the set
of keys at positions 1ypdpyeeesiy . Let

f (n) = min g (ni. ,i., i,q).1 . . { ) Sa ah P|

1<i,<i,<...<1, ,<n

The following lemma shows that we can study Bs C,(n) inctead of An) }
n

Lerma 1. JA,(n) - Log (n)| <¢
=== ! TO ="

- Proof.

(A) Consider anoptimal f-file using [Ko < Ryton oo K. J wo the set of keys used in the Jntcrnal
“1 ¢ 1-1

nodes. The contribution Lo the cost fromkeyuoincequential subfiles is at least

i, -3 n-i

1 IP . 1 td r-1 he Cs .(siping) - 2-H “es = n ) _ 1 CACEESURPRFE IS EY) .a n

Therefore

1 ] ;
An) > = (r,(n)-2) . (6)

1 0 1
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(B)Letdy ~1,<. 1, | besuch that t',(n) = g,(n JESPEPYRTIYS IRD. . Choote any f-file with
Ly K, sees Ky } aus keys in internal nodes, and sort the gubfiles according to decreasing

1 2 1-1

frequency, As the internal keys andthe first record in each sequential subfile is at most

f-distance away from the root, we have an t-file with cost less than if (n) + t . Therefore,
LT my) +1 > Am) (7)
0H: [4 - :
n

Formulas (0) and (7) imply the Lemma, (OO

£, (n)
Lerma 2. For euch fixed ft , there exists ua conctant ®, such that lim — = a, .

IN —®

y

Proof. Define i; (n) = 1 + FLL. + = =n . Wcyprove the lemma by induction. The induction
hypothesic is: Yor eacht~ 1 , there exist:: a constant 0 < a, < 1 such that

t,(n) =an+o(1) . (8)

The O(1) term In (0) may depend on tf

The induction hypothesi o in obviously true tor ft = 1 Now suppose we have proved it for ¢-1 ,

we shall prove It tor ft We need the followi ng net

fact tel =n! -1)k - LL ca, <1).ac h ( k) nt(a, -1)k kn (0 @yq )
a

Then h(k) > (1-o "Jn for n >k >1 , and

~-a -u
h(rne 1) = (-e "Yn 100).

PIR
(A) FProot thal r,(n) > (1-c ym ob 0{l) Let iin WEY +k be such that- [4 -c.

rn) = 6,(n ; Ippdnseee,d, 0k) . From the det'inition of 8, ’

. ‘ 1 n-k
1 — [] . a - - ir—— "

Since IRL) = nin fn,_q + Weomst have I, (n) nf 4-1 (K) "or Pre tee Umm + Using the
Bl CAEN LC ]

induction hypothesis for ¢-1 , we oblain

tc, (n) > oa, qk ro0() I dk
k<J<n J

sa, kin-k-klng 0 (1)
-

By (1-¢ I-1y, | O(1) by [act.
“tea

(B) Yroor that r,(n)< (1-1 M101) © We need only prove it for all sufficiently large n .
-n

Suppose no satisfies the condition kz] ne £-1 | > £-1 . We choose iy, ir, Co ody such
that fq (K ; Ipsec, ) = rr, 4%) . Them

: Lo . a 1 rs n-k

hy (II) < g,(n ; dysdos col, ok) < r,1(k) + 1 | “kior . oT ——

Son gk (0k) =k ng! of) .
“8-1

By fact, thi si less than (Q-c Yao o(1)

aSRY
fet, n, = l-e , Clearly o 2 uw, 21. ‘The induclion hypothesis for ¢ is now established

Mis camplotes the proof Tor Lemma 0. 0

Now, Lemna 1 implies

to OM)an SOL, (9)
n no n | nn
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: £,(n) In n t |
Since lim —F— = 8, (Lemma 2), lim Ta 1, and lim =n n= 0, cquation (9) implies that

n-—o n-w n n oe

A, (n) ¥ (n)

lim ir = lim A = un N

(b) In (a), we have actually proved

-a

qt.

Thus,

8, = 1-71 y
-1

-1
N -

; et 1, :
8 = l-e .

Problem 5.

Let X = x, >Xy > eee >x} ond Y= {vy >¥y eee »y Jo The set of relations R between X and
Y canbe written as R={x, >y, ,X, >y . . . -3%X, >y}wherci, < 1, <<...<1_ and

4 J) ta Jo 3, I 1 ° r

3 < Jo <,.. < J. . Let p(R) denote the probability that x > Y; under R , If we can ghow that

p(R) > p(R') (1)

where R' = R-{x, >y. }» then the problem iusolved by induction.
1 "1

Let us use A, to denote the number of permutations: of XY consistent with RUDY, > x > 5)
1

and 8 the probability that xX; > Yj knowing R' U vey i yk) . Then

rz

soles,ah
p(R) = ——1 , 2)

2 A
1<k<y,

and 5 A

1ck<d, © k
p(R') = ———— (3)

L A
1<k<d,

Equations (2) and (3) will imply (1) i" we can chow Lhe I'ollowing 1 emma.

Lerma 1. 8) 28,5 >... >a. .

Indeed, (1) follows from Equations (2), (3), Icwna 1, und the Collowing simple algebrale tuct:

Monotonicity Lemma. 1f Es KE,» RRTRN are posi tive numbers, and 2 WAL IEEE Cy then the function

2, ek,
1<i<t 3

f(t) = —8 ——

LE
1<i<t

iz nen-increasing in t for 1 <t <u.

To prove Lemma 1, we first showa reluted lemnn, Consider partial m-&3- \ on X = (x4 > X, Yeas > xX)

and Y, = {v, > Yay oe me Yn} with relations R = by 2 FN ces» “i >] o (Flgure 1.) Let b, be
the probability that. x, > Ye in Q , and by 3 the probability that Xen Y j in G3 (i.e. the partial

order with the same X and KR, but an additional clement Yi 3 dominat ing, Yy )-
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Yk-1 %

1

4" 1

~-1%
-—

po
”

re

kK xm

Yn

Figure 1

Lemma 2, LIN > by .

We prove thic lemma by induction on m . For m = 1 , we have X; =X; . Let {x, > Ye} be the
relation R (t = ntl if Re§B) . From Figure 2, we uve Lhat clither b, = 1 (if t <j) o «

J-ktl 1 14 . 3 ~
b, = 3TkRrl (if t > J) . 1n cither case the lemma in true.

Yk

ye i!
Yi /

7

Yq ¥

Yn

Figure 2

Induction step: Suppose the claim 1: true for m-1 , we will prove it for m . Let

C, = the number of permutations of XUY, consistent with Q A (v,1 x > Y,) ’
and

¢, = theprobab ility that x; > Y | under QA (v,.1 > x; > y,) )

(see igure? . .

Yk

Yy.1 .
1

Vy
<< End ad

oo —_—
&

Yn mn

Pigure ?

Thrn

2. ¢,C,
k<y< }
- —="1

by nm ——— .
rc,

k<rzl,y

Similarly, Let “ wed C be the corresponding quanbitics Cor 1 » lhen
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Y

Zz Cc
k-1<1<3,

bey = — Me °

k-1<1<Jy

es ' n ' 'Clearly, c, Cy and <, c fork< 1 < iY « Therefore

Z cc
k<t<]

—_" =v]

by = —_—
L C .

k<t1<J,y

Now, consider two cases. Case 1) x; = x1 . Then c, = 1 for t< j and cp, = 0 for t » 5 . So ,

is non-increasing. Case 2) X4 # Xe Then c, for £ € j is equal to the probability that x > Y; in
the partial order of Figure Lk, hence non-increasing by induction hypotheulc. Moreover c, = O when 2 > J
Thus, in both cases, b.1 > b, by the Monotonicity Luma. Thic completes the induction step.

: y,

—_ |
&

/

v “m

Yn
Figure )

Proof of Lemma 1.

Case 1) 1 >i; . For k > j , wc have a = 0.lrl<k<\J, u, ju the zame a:: the probubility

for xg > Af under the partial order of Figure 5. By I«nma 2, a is non-increacing.

Case 2) i=1,. We have a = 1 if k<j, end o =0 if k>J.

Case 3) i < i «. If Jy < J , then a = 1 for all k , and the lemma ic true. We conslder the case

3 >J . Now, a, = 1 for k<J. For k>J, a, iz equal to the probability that x, > ff
under the partial order of Figure 6. By Lemma 2, a, 15 non-increasing.

This completes the proof of Lemma 1, and hence equation (1).

x 1,41 i! pp

, *
y rd yJ J

'd x,
1

Yk-1

Figure 5 Figurc 6
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ANALYSIS OF ALGORITHMS - SOLUTIONS - Spring 1978

Problem 1.

(a) Consider the set of n nodes T = {§,0,01,010,0101,01010,... } , ‘Then half of them arc harhed into
. 1

location 0 , and half into location 1 . ‘'lhug, forth ia: T , C(hy» T) = 2 (5s I 1) t 2 1 5 + 1) :
lg n + 0(1) . This proves f£(h,) > 1g n + 01) -

On the other hand, from the definition of ¢{h,T) , we have for any T ,

c(bpyT) < lel) © I ny = lg(wl) .
Thus, f(h,) < 1g n + O(1) .

We have proved f(h,) = lg n + 01) .

(b) Let m = ntl . We shall prove the following theorem.

Theorem. Let € > O be any fixed constant. Then a random hashing scheme he H(n,n) will, with probability

l - const. x 2 s» satisfy
HER

n n 1

f(h) < (re8)e(ae)> = 1g 17,1 +c
As 7, | = J (2%) < (Knuth, 2.3.4.4), we have for a random h , t(h) < 6 4c + 0(1/n) . This

would solve our problem.

We start the proof of the theorem with two simple lemmac.

Lemma 1. For any positive integer x , x! > e ¥(x+1)* .

Proof. We prove by induction. For x = 1 , the lemma is true az 1 > e “1, 2. For x »1 , we have by

induction hypothesis (x-1)! > e~{(%-1),x-1 . This implies x! > eXX _ oe ( + 2) > e(xr1)"
where we have used e > (2 + 2)" This completes the induction. (J
Lemma 2. Let t(myn) be the number of integer solutions (nn, 0050) to the equation )3 n, =n

1<i<m

with n, > 0 . Then t(m,n) = (Th) .
ry -

Proof. t(m,n) is the coefficient of x in the expansion of (L+x+x“+- - AT = (1-x) ™ . Therefore
n, -nm m+n-1

t(m,n) = (-1) ( n) = 57) [xuth 1.2.6.(17)]. O

Now, for any TeT, and any positive a , let ;(a,T) be the proportion of he H(m-1l,n) such that

c(h,T) > a. We are going to show that, abbreviating m/n by b ,

A(a, T) < constant x (i (1 + $7) . (1)- a b
2

Let us first show that (1) implies the theorem. We use ra, 7.) to denote the proportion of h in H(w-1, n)

such that f(h) > a . Then A (aT) < 2° a(aT) . By (1), we have
TeT

n

1 13\btl\n

x(2,7) < constant  |7_]| (% (2 b) ) (2)
When a= (+b) 1g(1 +E }+ E 1g |7 | +c, (2) impliesb n n -?

x(a,T ) < constant DEI
n’ - cn

e

But this is exactly the theorem!

It remains to prove (1). Iet glnyn,, oon) be the proyortion of he [lrm-1,n) such that

|{x | eT, h(x) = i}} = n, (1 <i < m). Clearly, when 2. n. = n ,- - 1

1 n.

8(nypn,,...,n) = n non, nnhn, ! nn! . (8)m tr m
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| Let A(a) be the set of integer m -tuples (non, con) saticlying

n, > 0 3 i= 1,7...,m ’

py ny = JI (AY
1<i<m

2 n, 1g (n;+1) > an
1<i<m

Then

Ae,1) = Zo yy. 0 G00 (%)
(n,n, .. sn) c Ala)

Jemma Ir ( on )e Ala) , then g(n n}) < no hg-anByrfpre + 2fy ’ 12Npr etal) = ou" ’
By arn

Proof, Formula (4) implies TI (n+) > 2 + This means, from Lemma 1,
i

] Zn hy nc
(ny?) > e 11 (n.+1) © > e 2%"i

i i

Thus, from (3),

n. n.-

e(nysny,...5n ) < a ellp= an . 0

Now, from (5) and Lemma 3,

n! -

AMaT) < = 27 A(a)] (6)
m

But |A(a)| < t(myn) from definitions. Using Lemma 2 and (6), we have

n! n_-an ,mn-

Ae,T) © Tel (ICL
m

< constant vf —— an (2 +2)(27)

b+1\"

< constant ( % (143) ) .- 8 b

This proves (1). [The “constant” is anabsolute constant. |

We have completed the proof of the theorem.
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Problem 3.

To solve this problem, we need a data structure with the rollowing propertics:

(1) entries consist of a value and a vize;

(31) the entries are sorted by value and can be ¥cefssed by valueeasily;

(111i) it is easy to insert or delete an entry;

(iv) it is easy to locate the smallest value of a givensize or larger.

Various kinds of balanced trees can be adapted for such a data structure; we use 2-% trees (cee Aho, Iloperoft

and Ullman, pp.l1lL6ff.). Two examples appear in Figurcl.2(. lniries are stored in order by value in the

external. nodes. Each internal node contains the largest value in its left subtree and the largest value in

its middle subtree (if it is a 3-node). In addition, each internal node contains the largest size in its subtree.

> 09

(eo bs (1:2 1:9

| OO OO OO dO OO
Fig. 4.26 2-3 tices.

Insertions and deletions work exactly as described in AHU except that we must update the vize information

on internal nodes along the path fram the root to the inserted or deleted node. The time for either an

insertion or a deletion is O(log n) , where n is the total number of values.

To carry out a locate given a size, say s , we search down from the root, always taking the leftmost

branch which leads to & node having size tc or larger. [Lventually we end up at the leftmost internal node

with size s or larger. This operation alco take: O(log n) time.

(a) Our data structure consists of the one deccribed above, with onc enilry corresponding tc each free

block of memory. The value of the entry is the starting point of the block and the size of the entry is the

size of the block. Initially the structure contains one entry corresponding to the entire memory.

To schedule a task of length s , we locatc the leftmost entry with size at least =. We delete thi

entry fram the data structure, and insert a new entry corrcuponding to what ic lelt of the memory block If

the new task does not entirely fill it. Thus scheduling one task requires a location,adcletion, and possibly

an insertion, for a total of O(log n) time.

To free the memory corresponding to a tesk, we look up the Uree block:e immediately to iL:1eiU and right,

We delete the entries corresponding to thes ce blocks and add one, two, or three new entriec depending upon

whether the freed block is contiguous with the left block or right block or both. This requires two look-ups,

two deletions, and at most three insertions, for a total of O(log n) time.

(b) To solve this part we use in addition to the data structure used in part (a), a similar data structure

to represent the set of waiting tasks. 1nthe second ctructure cach entry ic a tack,whovce value ic the time

it first became available for scheduling and whose size is the amount of memory it requires.

We schedule a task as before, except if it does not fit immediately, we insert it into the waiting list.

This tekes O(log n) time. We free memory as before, except after freeing a block of memory and updating the

data structure representing the free block:, wc check fo veeirtany taskinthownitinge list wild Fit dnto Lhe

new memory block created. If so, we choone the tack whicharrived carlicot andscheduldit. We repeat unt |

no more tasks on the waiting list can be scheduled. This operation requires onc location and one deletion in

the waiting list, and one scheduling operation in the data structure formemory, for each task scheduled, and

thus requires 0{(log n) time,

Note : To get the time bounds right, we must reinterpret n as the totalnumber of jobs currently in memory and

in the wai ting list; this point was not spelled out in the problem deseription.
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: Problem 4.

: (a) To chow thut the problem ig HP-complel® we mush firsh Jhease iL 3S 3 ye3-10 problem, Go let us

assume that a height ir given and we ask "Cun the rectangles bu packed within height h 2" To chow that tae

4 problem is in NP, suppose the dimensionsof’ all the rectangles, the widthof thc bin, wid h , are integers,
It is easy to guess a packing (by specifying, say, the coordinates of the lower left corner of w«uchblock

i and to test whether it works, in time polynomial in the mmmber ol digits needed Lo writ « down (AX thvenunbers
4

: (Note that we need only consider integer co-ordinates.)
The problem is in NP even if we allow rational numbers, since we can multiply all Lhe fraction: by the

; least cammon multiple of their denominators and thus convert everything to integers, while only getting a

polynomial blow-up in the total number of digits.

(If we allow arbitrary real numbers, then the problem isn't in NP, since we have no reasonable way of

: representing arbitrary real numbers.)
: To show that the problem is NP-camplete, we reduce the knapsack problem to it. One version ol ihe

knapsack problem known to be NP -complete-is the following. Glven k intceger:, 1150. 21 with cum §
is there a subset with sum S/2 ? We construct a corresponding packing problem with bin width 2 and k

blocks, the i-th dlock of height I and width 1 . Then the knapsack problem has a solution if and only
if there is 2 packing of height 5/2 .

Although the knepsack problem is solvable in polynomial time if th e numbers are small, the bin-packing
problem is NP-complete in the strong cense; the thrce-partition problem canbe reduced to bin-packing (see

Garey and Johnson's manuscript on NP-completeness for a definition of strong Nl'-completeness and the three-

partition problem).

(b) The basic BL (bottom-up, left-justified) algorithm, using a poorly ordered list I , can perform

arbitrarily badly relative to an optimization algorithm. A cimple example illustrating thio fact ic chown

in Figure 1. The rectangles in the list L = (Pys¥ys--- Pp) altcrnale between verticnl and horizontal slabs.
| In particular, let p, = (x55¥4) , where

(e143) if i odd ,

(w,€) if 1 even,

The height of the BL packing is [n/271 + O(n) whereas an optimum packing can @ :acily beseento havenheight

| of 1+ 0(ne) . Thus, the ratio of packing heighl: can be made as large as desired.

| {Pn
I

| I Ppa

[J] [] F

9 d 9

9 » i)

Fe
— 2

Py
ISN

£8DS

t

P,

2 v,
- ee

I I

Fy

Figure 1. A Bad Bi, lacking.
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_ ANALYSJS OF ALGORITHMS

Problem S,

without loss of generality, let the distribution have mean 0 and variance? 1 . The density function

2 2.

then n(x) = L e™™ /2 » With diztributionfuciion N(x) z. Lo Ts /2 & (Feller, pe. 178.) Vor largeNey of 21 °
x , the approximation (ibid)

x

209; - 5) < 1 - N(x) < n(x)X © - b 4

is useful. let P (not N¥ ) be the number of processors.

A running time x has chance N(x)? of being > the maximm. This is negligible if N(x)! << 1, 1.
P .

if (2 - 2x) ) <<1l, or P n(x)/x >> 1, We can find where it becomes negligible by roughly equating
P n(x)/x to 1;

) 2

. Pe /2 a 1k
X ® —— » or — = In -—me 3

Non ’ x Jin

xX = V2(In P - In x - 2 (In 2 + 1nx))

XxX = J2InP-2Inx-1n2-1nx

pe JV2InP-2my21nT ~-In2 -1ln=x

=42 InP -2In2 «1nln¥ -Ind-lux

Since the density of running times falls off faster than exponentially lor larger vidues of x , und the

likelihood of a running time being the maximum fallc ofl exponentially with muller values of x , the maximum

must with high probability be very near 42 ln P - ln ln P - constant .

We can bound the standard dcviation by concidering the rates at which tho densitice Fall ol) on cither

of the estimated mean. The dencity of running time: drops at least by a factor of @ i I” weinerensc by

le

provided that (x+ ax)? = x° = 1 3 AT +2x AX = 1 3 Ax ~ Be Es 1 . In the other direction, theJ8 in p

likelihood of a running time being the maximum drops by at lcast a factor of e if we decrease v n(x)/x

by 1 ; that is, if we increace n(x) by a factor of about 2 . This gives rise to a Ax of the same ordgv

1
Ol —/]—= .(7)

Together, this suggests:

me ane ¥Y21nP + o(ln P) ’

variance 1= Inp/ °

A more rigorous proof can probably be extracted from pp. 202- 208 of Feller. A quick and dirty one is

obtained by saying that the likely range of the maximum is around N(x) = 1/P , and alleowing N(x) to vary

by a factor of 2 or so.

Another epproach to the variance: themcan of themax for N numbers is about J2 Inn. Now tuke Lhe

max of two such sets, Sy anda & , of N numbers, the expected value ic about

V2 n(n) = V2 Inn 21n2g = of 2 In nt 2 In? —_— :. J2 1a no) v2 1
2 V2 ln un J2 J1n n

One can make a plausible argument that the extra of oe ) term Js lipearvly related Lo the viwyiance.Jin on
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Problem 6,

The number of binary trees with N internal, and Ntl cxternal, node:s, ic found by wriling names for the trees

in Polish prefix notation: the gymbol I mct appear N times, © must appear MN+1 , and the cumilative

number of I's must exceed the number of E's until the end. The latter condition is true of exactly one cyclic

permutation of any string of N E's and M1 I's. So the total number of trees ic

21 oN):

(PRE) = gen |

The information intent of the structure ic the base 2 log , which by Stirling'c approximation ie about

2N + constant, or 2 bits per internal node. Conventional list representations use (log N) bits per

internal node. The smaller rumber can be achieved by using prefix notation, where each node has cne bit to

mark jt as internal or external, followed by B data bits if external.

How many dags are there with N internal nodes? They can have at most N+1 external nodes, which we will

call vy vee V1 . To write a dag in an efficient notation, observe that each internal node except the root
must be pointed to by some other node, By ordering the nodes correctly, the first such pointer can be a short

(2 bit) address. Put the root node in location 1 . Addrescec contain 1 bit to distinguish internal fram

external nodes. External nodes have their B-bit values stored in the address field pointing to them. If an

internal node has not been referred to before, it is allocated the first free address, and a single bit pointer

suffices. If it has been referred to before, one bit says so, and is followed by a 1lg(N) bit pointer.

Of the 2N addresses, exactly N-1 are of 1 bit. The other N+l1l are of length B+l or Jg N+ 2.

Assuming B > 1g N+1 , we find the total storage is at most  N-1+ (N+1)(Btl) = N(B+2?) + B , or B+2 bitg per

internal node. Again, conventional reprccentation:s uce much more.

To show a comparable lower bound, consider dag: in which the left branches form a chain. There are more

than N! different arrangements of the right branches, 50 the total number of bits required is at least lg(N!) ,

or lg N-constant bits per node. (Thanks to Dun Sleator.)

Problem 7.

Let f(D,N) be the expected number of maximal points out of N points in D dimensions. (Consider the

points Py = (X19%55 ++ 05%) in order of dcercaving x Then ry io muximal in b dimenciong i ft it is

maximal among P,...P, , restricted to D-1 dimensions, so (DN) = [(DN-1) + L hm , with boundary
conditions f(p,1) = £f{1,N) = 1, A routine array calculation, using min(N,D) cells, computes f in time

o(N-D) .
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