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Abstract

Computer-based models of medical decision makirg account for a large proportion

of clinical computing efforts. This article revi.ws representative examples

from each of several major medical computing pacadigms. These include (1)

clinical algorithms, (2) clinical databanks that include analytic functions, (3)

mathematical models of physical processes, (4) pattern recognition, (5) Bayesian

statistics, (6) decision analysis, and (7) symbolic ressoning or artificial

intelligence. B¢cause the techniques used in the various systems cannot be

examined exhaustively, the case studies in each category are used as a basis for

studying general strengths and limitations. It is noted that no one method is

best for all applications. However, emphasis 1s given to the limications of

errly work that have made artificial intelligence techniques and knowledge

engineering research particularly attractive. We stress that considerable basic

research in woedical computing remains to ove done and that powerful new

approaches 3ay lie in the melding of two or more established techniques.
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| Introduction

As early as the 1950°s, physicians and computer scientists recognized

that computers could assist w.th clinical decision making [63] and began to

analyze medical diagnosis with a view to the potential role of automated

decision aids in that domain [6l). Since that time a varicty of techniques have

been applied, accounting frr at least 800 references in the clinical and

computing literature (112'. In this article we review several medical cecision

making paradigms and discuss some issues that account for both the multiplicity

of approaches and the limited clinical success of most systems developed to

date. Because other authors have reviewed computer-aided diagnosis

[471,192] ,(114] and the potential impact of computers in medical care [23], our

emphasis here is somevhat different. We will focus on the symbolic

representation and use of knowledge, termed "knowledge engineering,” and the

inadequacies of data-intensive techniques which have led to the exploration of

novel symbolic reasoning approaches during the last decade.

1.1 Reasons For Attempting Computer-Aided Medical Decision Making

Because of the accelerated growth in medical knowledge, physicians have

tended to specialize and to become more dependent upon assistance from other

experts when a patient presents with a complex problem outside one’s own area of

axpertise. The primary care physician who first s-es a patient has thousands of

tests available with a wide range of costs (both fiscal and physical) and

potential benefits (i.e., arrival at a correct diagnosis or optimal therapeutic

management). Even the experts in a sheclalized field may reach very different

decisions regarding the smaragement of a specific case [131]. Diagnoses that are

made, and upon which therapeutic decisions ate based, have been shown to vary

widely in their accuracy (261,(83]1,(89). Furthermore, medical students usually

learn about decision making in an unstructured way, largely through ohservation

and by omulating the thought processes they perceive t. be used by their

clinical mentors ([S53!.

Thus the sotivations for attempts to understand and automate the process
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of clinical decision making have been numerous [114]. They are directed both at

diagnostic models und at assisting with patient management decisions. Among the

reasons for introducing computers into such work are the following:

(1) To improve the accuracy of clinical diagnosis through approaches that are

systematic, comvlete, and able to incegrate data from diverse sources;

(2) To improve the reliability of clinical decisions by avoiding unwarranted

influences of similar but not identical cases (a common source of bias among

physicians), and by making the criteria for decisions explicit, and hence

reproducible;

(J) To improve the cost efficiency of tests and therapies by balancing the

expenses of time, inconvenience, or funds against benefits and risks of

definitive 2ctions:

(4) To improve our understanding of the structure ofmedical knowledge, with the

associated development of techniques for identifying inconsistencies and

inadequacies in that knowledge; and

(5) To improve our understanding of clinical decision waking, in order to

improve medical teaching and to make computer programs more effective and

easier to understand.

1.2 TheDistinction Between Data AndKnowledge

The models on which computer systems base their clinical advice range

from data~-intensive to knowledge-intensive approaches. There are at least four

types of knowledge that may be distinguished from pure stutistical data:

(1) knowledge derived from data analysis (largely numerical);

(2) judgmental or subjective knowledge;

(3) scientific or theoreticsl knowledge; and

(4) high-level strategic knowledge or "self-knowledge."

If there is a chronology to the field over the last 20 years, it {is that

there has been progressively less dependence on "pure" observational data and

more emphasis on higher-level swvabolic knowledge inferred from primary data. We

include with domain knowledge the category of "judgmental knowledge" which

reflects the experience and opinions cf an expert regarding an issue about which

the formal data may be fragmentary or nonexistent. Since many decisions made in

clinical medicine depend upon this kiad of judgmental expertise, it 1s not

surprising that investigators should begin to look for ways to capture and use
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the knowledge of experts in decision making programs. Another reason to move

away from purely data-intensive programs is that in medicine the primary data
available to decision makers are far from objective (20]},(57]. They include

subjective reports from patients, and error-prone observations [27]. Also, the

terminology used in the reports is not standardized (7] and the classifications

often overlap. Thus decision making aids must be knowledgeable about the

unreliability of the data [57] as well as the uncertainty of the inference.

For example, data-intensive programs include medical record aystems which

accumulate large databanks to assist with decision making. There 1s little

knowledge per se in the databank, but there are large amounts of data which can

help with decisions and be analyzed to provide new knowledge. A program that
retrieves a patient's record for review, or even oue that identifies and
retrieves the records of similar patients (matching some set of descriptors), is

performing a data management task with little reasoning involved [26], [86].
Although there 1s statistical "knowledge" contained in the conditional
probabilities generated from such a databank and utilized for Bayesian analysis,
{t is all numeric. At the other extreme are systems that encode and use the kind

of expert knowledge which cannot be easily gleaned from databanks or literature
reviews [75],[102]. Systems that model human reasoning or emphasize education of

users tend ro fall towards this end of the data-knovledge continuum.

In addition to judgmecatal and statistical knowledge, there are other

forms of information that can play an important role in computer-based clinical

decision aids. For example, underlying scientific theories and relationships

are often ignored by diagnostic programs Dut provide the foundation for
decisions made by human experts. Couasider, for example, the potential utility

of techniques that could effectively represent and use the basic knowledge of
biochemistry, biophysics, or detailed human physiology. Biomedical modeling
research offers some mathematical techniques for encoding such knowledge in

certain domains, but symbolic apnroac'es and clinically useful applications are

still largely unrealized.

Finally, there is another kind of knowledge used by human decisiou

oakers — an understanding of reasoning processes and strategies themselves.

“his kind of "high-level" or "meta-lcvel™ knowledge, 1if incorporated into

computer programs, may not only heighten their decision making performance but

also augment their acceptability to users by making them appear mor: aware of
their own power, strategies, and limitations.



1 Introduction Page 4

We use the term "knowledge engineering,” then, to refer to computer-based

symbolic reasoning issues such as knowledge representation, acquisitior,

explanation, and "self-awareness' or self-modification [19]. It is along these

dimensions that knowledge-based programs differ most sharply from conventional

calculations. For example, they can solve problems by pursuing a line of

reasoning; the individuzl inference steps and che whole chain of reasoning may

also form the basis for explanations of decisions. A major concern in knowledge

engineering is clear separation of the medical knowledge in a program from the

inference mechanism that applies that knowledge to the data of individual cases.

One goal of this paper is to identify, in the strengths and weaknesses of

earlier work, tiose issues which have motivated several current researchers to

investigate the automation of clinical decision aids through knowledge

engineering.

1.3 Parameters ForAssessing WorkIn The Field

Barriers to successful implementation of computer-based dlagnostic

systems have been analyzed on several occasions [(7},{23),([106] and need not be

reviewed here. flowever, in assessing programs it 1s pertinent to examine

several parameters that affect the success and scope of a particular system in

light of its intended users and application. Unfortunately, the medical

computing literatura has fewdescriptions of systems for which all the following

issues can be assessed.

(1) How accurate is the program?l

(2) What is the nature of the knowledge in the system and how is it generated or

acquired?

(3) How is the clinical knowledge rapresented, and how does it facilitate the

performance goals of the system described?

(4) Bow are knowledge and clinical data used and how does this impact on system

performance?

(5) Is the system accepted by the users for whom it is intended? Is the

interface with the user adequate? Does the system function outside of a

research setting and {s it suitable for dissemination?

(6) What are the limitations of the approach?

T IAlthough thisis importantit is nor the only measure of clinical
Eear 1 ea fur recat ooramatons. A bu shail show, fev syecaemshave ched { e of leaentation where the ters could be assassed.
Noreover because of the Complexity of the interacting influences that affect
the usual measures of outcome, it may be difficult ever to define the margfual
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An issue we have chosen not to address is the cost of a system, including

the 3i2e of the required computing resource. Not only is information on this

question scanty for most of the programs, but expenses generated in a research

and development environment do not realistically reflect the costs one expects

from a system once it is operating for service use. |

1.4 Overview Of This Paper

An exhaustive review of computer-aided diagncsis will not be attempted in

light of the vastness of the field, and we have ther=fore chose: to present the

prominent paradigms by discussing representative examples. In separate sections

we give au overview, example, and discussion of (1) clinical algozitams, (2)

databank analysis, (3) mathematical models, (4) pattern recognition, (5)

Bayesian analysis, (6) decision theory, and (7) symbolic reascn’'ng. We close

each section by identifying the range of applications for which the approu~h

appears most appropriate, the limitations of the approach, and the ways in which

symbolic reasoning techniques may strengthen the approach by improving its

performance or acceptability.

The seven principal examples we have selected are not necessarily the

best nor the most successful; however, they illustrate the issues we wish to

discuss within the uajor paradigms. We have also referenced other closely

related systems, 80 the k{bliography should guide the reader to more details on

particular topics. Any attempt to categorize programs in this way 1s inherently

fraught with problems in that s<veral systems draw upon more than one paradignm.

Thus we have occasionally felt obligated to simplify a topic for clarity in

light of the overall purposes of this review and the limitations of the space

available to us.

Because we are only interested here in decision masking tools for use dy

clinicians, we have chosen to disregard systems that are designed primarily for

use by researchers (39],(50]), [(65],(90]. Furthermore, we shall not discuss

biomedical engineering applications of computerc, such as advanced automated

instrumentation techniques (e.g., computerized tomography?) or si;nal processing

techniques (e.g., programs for EJGC analysis [79] or patient monitoring [(116]}).

Because they do not explicitly wake inferences, we have also omitted programs

designed largely for data storage and retrieval with the actual analysis aud

decision making left to the clinician [36),(58),(124). We have also chosen to

TT 23aKak'sarticle in chis issue of the PROCEEDINGS.
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discuss working computer programs rather than unimplemented theories or early

reports of work in progress.

2 Clinical Algorithms andAutomation

2.1 Overview

Clinical algorithzus, or protocols, are flowcharts to which a

diagnostician or therapist can refer when deciding how to manage a patient with

a specific clinical problem [97]. Such protocols usually allow decisions to be

made by carefully following the simple branching logic, although there are

built-in safeguards whereby referrals to experts are wade if a patient is

unusually complex. The value of a protocol depends upon the infrequea.y with

which such referrals are made, so it 1s important tou design algorithm: that

reflect an appropriate balance between safety and efficiency. In general,

algorithms have been designed by expert physicians for use by paramedical

personnel who have been entrusted with the performance of certain routine

clinical-care tasks3. The methodology has been developed in part tecause of a

desire to define basic medical logic concisely so that detailed training in

pathophysiology would not be necessary for ancillary practitioners. Experience

has shown that intelligent high school graduatea, selected in large part because

of poise and warmth of personality, can provide excellent care guided by

protocols after only four to eight weeks of training. This care has been shown

tc be equivalent to that given by physicians for the same limited problems, and

to be accepted by physicians and patients alike for such diverse clinical

situations as diabetes management [56], (66], pharyngitis [38], headache [37],

and other disease categorias [104]),{110).

The role of the computer in such applications has been limited, however.

In fact, several groups initially experimented with computer representation of

the algorithms but have since abandoned the efforts and resorted to prepared

paper forms ([56],(110). In these cases the computer had originally guided the

physician assistant’s collection of data and had specified precisely what

decisions should be made or actions taken, 1in accordance with the clinical

algori:hm. However, since the algoritheic logic is generally simple, and can

"clinical algorithms have alsc been “prepared for use by physicians
doctors. 1381 Ba showed, however, fiat physician performance contd lapeone’ hon
protocols were used in certain settings.
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often be repiescnted on a g9ingle sheet of paper, the advantages of an autcmated

approach over a manual system have not been clearly demonstrated. In one study

Vickery showed that sapervising ohysicians could detect no significant

difference between the performance of physicians’ assistants wusi:z automated

versus manual systems, although the computer system entirely eliwuinated errors

in data collection (since it demanded all relevant data at the appropriate time)

110). Furthermore, the computer could not, of course, decide whether the actual

observations entered by the pivsicians® assistant were ccrrect; yet this kind of

inaccuracy was one of the most common reasons that supervisors found an

assistants performance unsatisfactory.

There are two other ways in which the computer has been used in the

setting of clinical algorithms. First, mathematical techniques have been usd

to analyze signs and symptoms of diseases and thereby to identify those that

should most appropriately be referenced in corresponding c¢linical algorithms

(30),[55],(113]. Tne process for distilling expert knowledge in the form of a

clinical algorithm can be an arduous and imperfect one [97]; formal techniques

to assist with this task may prove to be very valuable.

Some researchers in this area also use computers to assist with clinical

care audit by comparing actual actions taken by a physicians” assistant with

those recommended by the algorithm itself. Sox et al. [104] have described a

system in which the assistant®s checklist for a patient encounter was sent to a

central computer and analyzed for evidence of deviation frum the accepted

protocol. Computer—-generated reports then served as feedback to the physicians’

assistant and to the supervising physician.

2.2 Example

We have selected for discussion a project that differs from those

previcusly cited in that (1) computer techniques are still being used, and (2)

the clinical algorithas are designed for use by primary care physicians

themselves. This is the cancer chemotherapy system developed in Alabama by

Mesel et al. [70]. The algorithms were developed to allow private

practitioners, at a distance from the regional tertiary-care center, to manage

the complex chemotherapy for their cancer patients without routinely referring

them te the central oncologists. Mesel et al. have described a "consultant-

extender system" that enables the primary physician to treat patients with

Hodgkin‘’s Disease under the supervision of a regional specialist. Five
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oncologists developed a care protocol for the treatment of Hodgkin's Disease,

and this algorithm was placed on-line. Once patients had agreed tc participate

in the study, their private physici-ns would prepare "encounter forms" at the

time of each office visit. These forms would document pertinent interval

history, physical findings, and lab data, as well as chemotherapy administered.

The form would then be sent to the regional center where it was analyzed by the

computer and a customized clinical algorithm was produced to assist the private

physician with the management of that patient during the next appointment. Thus

the computer program would take into account the ways {n which the individual

patient's disease might progress or improve and would prepare an appropriate
clinical algorithm. This protncol was sect back te the physician in time for f(t

to be available at the next office visit. The private practitioner was

encouraged tn call the regional specialist directly 1f the protocol seemed in

some way inadequate or additional ruestions arose. The authors present data

suggesting that their system was well-accepted by physicians and patients, and

that excellent care was delivered®. Retrospective review of cases that were

treated at the referral center itself, but without the use of the grutocols,

show:d 2 162 rate of variance from the sanageaent guidelines specified in the

algorithms; there was no such variance vhen the protocols were folloewed. Thus

algorithms may be effective tools for the administration of complex specialized
therapy in circumstances such as those described’.

2.3 Discussion of the Methodology

Although clinical algorithms are among the most videspread and best

accepted of the decision aids described in this article, the simplicity of their

logic makes it clear why the technique camu.ac be effectively applied in most

medical domains. Decision points in the algerithms are generally binary (1.e.,

a given sign or symptom is either present or absent), and there tend to be aany
circumstances that can arise for which the user is advised to coasult the

supervising physician (or specizlist). Thus the difficult decision tasks are

left to experts, and there is generally no formal algorithm for managing the

case from that point om. It is precisely the simplicity of the algorithmic

 Srhis is an interesting result io light of Grimm's experience mentionedin footnote 3. One possible explanation is that physicians were more accepting
of the algorithmic approach in Mesel’s case because it allowed thea to performtasks that they would previously not have “een able to umdertaks.

More recently the Alsbama group has ceported siailar successsplement ing a4 consultant-extender system for adjuvant cheme*horipy in breastcarcinoma (129).
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logic, and the safeguard of the supervising expert, which has permitted many

algorithms to be represented on one or two sheets of paper and has obviated the

need for direct computer use in most of "he systems. The contributions of

clinical algorithms to the distribution and delivery of health care, to the

training of paramedics, and to quality care audit, have heen impressive and

substantial. However, the approach {is not suitable for extension to the complex

dacision tasks to be discussed in the following sections.

3 Databank Analysie {or Prognosis and Therapy Selection

3.1 Overview

Automation of medical record keeping znd the development of computer-

based patient databanks have Deen major research concerns since the earliest

days of medical computing. Most such systems have atcempted to avoid direct

interaction betweer the computer and the physician recording the data, witli, the

systems of Weed (123'.(124) and Greenec [36] being notable exceptions. Although

the earliest systems were designed merely as record-keep!iy devices, there have

been several recant attempts to create programs that could also provide analyses

of the information stored in the computer databank. Sowse early systems (38],152)

had retrieval modules that identified all patient records a=tching a Boolean

combination of descriptors; however, {urther analyses of these records for

decision making purposes was left to the i‘nvestigator. Ueed his not stressed an

analytical! component in his automated problem—oriented racord [124], but others

have developed decision aids which use mnadical record systems fashioned after

his [103].

The systems for databank analysis all depend on the development of a

complete and accurate medical record system. Ounce such a system is developed, a

number of additional capabilities can bde provided: (1) correlations among

variables cam te calculated, (2) prognostic ilerdicators can Ys seassured, and (J)

the response tO various therapies can be compared. A phywiciass faced with a

complex uanagement decision can look to such a system for assistance in

identilying patients in the past who had similer clinical problems and can then

see hov those patients responded to various therapies. A ciinical imvestigator

keeping the records of his study patients on such a system can use the program's

statistical capabilities for data analysis. Hence, slthough these applications

are inherently dsta-intensive, the kinds of “knovliedge” generated dy specialized
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retrieval and statistical routines can provide valuable assistance for clinical

decision makers. For example, they help avoid the inherant biases of anecdotal

experience, such as occur vhen an {(ndividual practitioner bases decisions

primarily on personal encounters with one or two patients having a rare disease

or complex of symptoms.

There are many excellent programs in this category, one of which {s

discussed in soue detail in the next section. Several others warrant mention,

however. The HELP System at the University of Utah [117],([119],[120] uses a large

data file on patients in the Latter-Day Saints Hospital. Clinical experts

formulate specialized "HELP sectors” which are collections of logical rules that

define the criteria for a particular medical decision. These sectors are

developed by an interactive process; the expert proposes important criteria for

3 given decision and is provided with actual data regarding that criterion

(based on relevant patients and controls from the computer databank). The

criteria in che sector are thus adjusted by the expert until adequate

discrimination is made to justify using the sector’s logic as a decision tool”.

The sectors are then used for a variety of tasks throughout the hospital.

Another syvcem of interest is that of Feinstein et al. at Yale (21), (nn

vhich physicians interact with the system to request assistance in estimating

progrosis and guiding managsment for patients with lung cancer. Similarly,

Roszcti et al. have developed a system at Duke University which uses a large
databank on patients who have undergone coronary arteriography (88). Ney

patients can be matched against those in the databank to help determine patient
prognosis under a variety of management alternatives.

3.2 Example

One of the most successful projects in this category is the ARAMIS systema

of Fries at Stanford University [24]. The approach was designed originally for

use in aa outpatient rheumatology clinic, bdut then brosdened to a general

clinical database system, the Time-Orieated Databank (TOD) (126) ,[127), so that {it

could be tramsferred to clinics in omcology, metabolic disease, cardiology,
endocrinology, and certaia pediatric subspecislties. All clinic records sre

kept im a tabular format ta which a columm in a large table indicates a specific

clinic visit and the rows indicate the relevent climical parameters that are

Shia rocess might be seen as a techaique to assist vith the formulation
of clinical algorithms 88 discussed ia the previous section. Amother approach
using databank smalysis for algorithm development is described in [30].
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being fcllowed over time. These charts are saintained by the physicians seeing
the patient in clinic, and the nev column of data is later transferred to the
computer databank by a transcriptiomnist; in this way time-oriented data on all
patients are kept current. The defined database (clinical parameters to te
followad) is determined by clinical experts, and in the case of rheumatic

diseases has now been standardized on a national scale [41].

The information in the databank can be used to create a prose SUmRSry of

the patient’s curreut status, and there are graphical capabilities which can
plot specific parameters for a patient over time [126]. Howsver, it is 1in the
analysies of stored clinical exnerience that the system has {ts greatest

potential utility [25]. In addition to perforsing search and statistical
functions such as those developed in databank systeme for clinical investigation

(50), (65), ARAMIS offers a prognostic analysis for a nev patient vhen a

management decision is to be nade. Using the consultative services of the
Stanford Immunology Division, an individual practitioner may select clinical
indices for his patient that he would like matched against other patients in the
databank. It is imperative that such indices be sei=cted wisely and hence with

expert advice; the Stanford immunologists have found that the best descriptors
for characterizing patients are often different from those that a novice chooses
¢o use. Based on two to five such descriptors, the computer locates relevant

prior patients and prepares a report sutlining their prognosis with respect to sa
variety of endpoints (e.g., death, development of renal failure, arthritic
status, pleurisy). Therapy recommendations are also generated on the basis of a
response index that is calculated for the matched patients. A prose case
analysis for the physician's patient can also be gnucrated; this readable
document summsrizes the relevant data from the databack and explains the basis

for the therapeutic recommendation.

The rheumatologic databank generated under ARAMIS has nov been expanded
to 4iovolve a national network of i{mmunologists who are accumulating time-

oriented data on their patienta. This national project seeks in part to obtain

enough data so that groups of retrieved patients will be sizable, thereby
controlling fur scue observer variability and making the systea’s
recommendations more statistically defensible.

3.3 Discussion of theMethodology

Databank analysis systems have powerful capabilities to offs. to the
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individual! clinical decision maker. Furthermore, medical computing researchers

recognize the potential value of large databanks in supporting many of che other

decision waking approaches discussed in subseque.. sections. There are

{mportant additional issues regarding databank systems:

(1) Data acquisition remains a major problem. Many systems have avoided direct

physician-compute.. interaction but have then been faced with tlie expense and

errors of transcription. The developers .f one well-accepted record system

still express their desire to implement a direct interface with the

physician for these reasons, although they recognize the difficulties

encountered in ercouraging direct use of a computer system by doctors [107].

(2) Analysis of data in the system csn te complicated by missing values that

frequently occur, outlying values, and poor reproducibility of data across

time and among physicians. Conversely, the system can {itself be used to

identify questionable values of tests or observations.

(3) The decision aids provided tend to emphasize patient management rather than

diagnosis. Feinstein’s aystem [21] is only useful for patients vith lung

cancer, for example, and the ARAMIS prognostic routines, which are 4esigned

for patient management, assume that the patient's rheumatologic diagnosis 1s

already known.

(4) There is no formal correlation between the way expert physicians approach

patient management decisions and the way the ,vograms arrive at

recommendations. Feinstein and Koss felt that the acceptability of their

system would be limited by a purely statistical approach, and they therefore

chose to mimic human ressoning processes to a large extent [39], tut their

approach appears to be an exception.

(5) Data storage space requirements can be large since the decision aids ot

course require a comprehensive medical record system as a basic compdnent.

Slamecka has distinguished belweaen structured snd empirical spproaches to

clinical consulting systems (103). pointing out that datsbanks provide a largely

empirical basis for advice whereas structured approaches rtely ca judgmental

knovledge elicited from the litersture or from experts. It is important to

note, however, that judgmental knowledge is itself based on empirical

information. FPEven cn expert’s "intuitions" are based on observations and "data

coliscticn” over years of experience. Thus one aight argue that large,

coxpiets, and flexib.e Jacshsnks gould form the basis for large smowmts of



3 Databark Analysis for Prognosis and Therapy Selection Page 13

judgmental knowledge that we now have to elicit from other sources. Some

researchers have indicated a desire to experiment with methods for the automatic

generation of medical decision rules from databanks, and one compouent of the

research on Slamecke’s MARIS system is apparently pointed ic that direction

[103]. Indeed, some of the most exciting and practical uses of large databanks

may be found precisely at the interface with those knowledge engineering tasks

that have mont confounded researchers in medical symbolic reasoning (5].

4 Mathematical Models of Physical Processes

b.1 O~erview

Pathophyniclogic processes can be well-described by mathemati_al formulae

in a limited number of clinical problems areas. Such domains tave lent

themselves well to the development of computer-based decision aids since the

issues are generally well-defined. The actual techniques used by guch programs

tend to reflect the details of the individual applications, the most celebrated

of which have been in pharmacokinetics (specifically digitalis dosing), acid-

base/electrolyta 4isorders, and respiratory care [69].

It is important that cooperating experts assist with the definition of

pertinent variables and the mathematical characterization of the relationships

among them. The computer programs requests the relevunt data, makas the

appropriate computations, and provides a clinical analysis or recommendation for

therapy. Some of the programs have also involved branched-chain logic to guide

decisions sbout what further data are needed for adequate analysis’.

Programe to aseist vith digitalis dosing have gradually ir.croduced

broader medical knowledge over the last ten years. The earliest work was

Jelliffe’s [48) and was desed upon his comsiderable experience studying the

pharuacokineatics of the cardiac glycosides. His computer program used

mathematical formwlatioms based on perameters such as therspeutic goals (e.g.,

desired predicted blood levels), body weight, reasl function, and routs of

administration. In one study he showed that computer recommendations reduced

the frequency of adverse digitalis res:tions from 135% to 127 (49). Later,

soc T*Branched-chain® Logic refers to sechaniswe ty which portioms of aecision network cam de cond ered or ignored depsandiag upon the dats om e fives
cts, omommrin: comin erarbiny achat thepickesyior “sasivsing. aslevated sniom would be rr.quired. If the gap were not elevated, that vhole
portion of the Poeic network could be skipped.
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auother group revised the Jelliffe model to permit a feedback loop in which the

digitalis blood levels obtained with initial doses of the drug were considered

in subsequent therapy recommendations [78],[96]). More recently, a third group

{n Boston, noting the insensitivity of the first two approaches to the kinds of

nonnumerical observations that experts tend to use in modifying digitalis

therapy, augmeatad the pharmacokinetic model with a patient-specific model of

clinical status (35). Running their system in a monitoring mode, in parallel

with actual clinical practice on a cardinlogy service, they found that each

patieit in the trial in whom toxicity developed had received more digitalis than

would have been recommended by their program.

4.2 Example

Perhaps the best known program in this category is the interactive system

developed at Boston's Beth Tsrael Hospital by Bleich. Originally designed as a

program for assessment of acid-base disorders [2], it was later expanded to

comsider electrolyte abnormalities as well ([3],[4]). The knowledge in Bleich’s

program 1s a distillation of his own expertise regarding acid-base and

electrolyte disorders. The system begins by collecting initial laboratory data

from the physician seeking sdvice on a patient's management. Branched-chain

logic 4s triggered by abnormalities im the initial data so that only the

pertinent sections of the extensive decision pathways created by Bleich are

explored. The approach is therefore similar to the flowcharting techniques used

by the clinical algorithms of Section 2, but {it {iavolves amore complex

mathematical relutionships than algorithms typically do. Essentially all

questions asked b; the program are numerical laboratory values or “"yeas-no"

questions (e.g., "Doss the patient have pitting edems?”). Depending upon the

complexity and ssverity of the case, the programs eventually generates an

evaluation note that may vary in length from a fev lines to several pages.
Included are suggestions regarding possible causes of the observed abnormalities

and suggestions for correcting them. Literature re’nrences are also provided

with “he recommendations.

Although the program was wuade available at several [East Coast

institutions, few physicisas accepted it as an ongoing clinical tool. Bleich

points cut that part of the reason for this was the system's inherent

educaticual impact; physiciams simply began to anticipate its sunalysis after

they had used it a fou times (3)8.
coret A STSLteln
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The system's lack of sustained acceptance by physicians is probably due

to mcre than its educational impact, hovever. For example, there is no feedback

in ths system; every patient is seen as a new case and the program has no

concept of following a patient's response to prior therapy. Furthermore, the

program generates differential diagnosis lists but does not pursue specific

etiologies; this can be particularly bothersome when there are =aultirle

coexistent disturbances in a patient and the program simply suggests parallel

lists of etiologies without noting or pursuing the possible interrelationships.

Finally, the system i» “1{ghly individualized in that it contains only the

parameters and relationships that Bleich specifically thought were important to
include in the logic network. Of course human consultants also give

personalized advice which may differ from that obtained from other experts.

However, a group of researchers in Britain [85] who compared Bleich’s programs zo

four other acid-base/electrolyte systems, found total agreement among the

programe in only 20% of test cases vhen these systems vere askad to define the
acid-base disturbance and the degree of compensation presemt. Their analysis

does not reveal which of the programs reached the correct decision, however, and

it may be that the results are more an indictment of the other four programs

than a valid criticism of the advice from Bleich’s acid-base component.

6.5 Discussion of the Methodologies

The programs mentioned in this section differ from one another in several

respects, and each tends to overlap with cther paradiges we have discussed.

Bleich’s program, for example, 1s essentially a complicated clinical algorithm

interfaced with mathematical formulations of electrolyte and acid-base

pathophysiology. As such 1t suffers from the weaknesses of all algorithmic

approaches, most importantly its highly structured and inflexible logic which is

unable to contend with circumstances not specifically anticipated in the

aigoritnm. The digitalis dosing programs all drav on mathematical techniques

from the field of biomedical wmodeling (40), but have recently shown more

reliance on methods from other areas as well. In particular these have included

symbolic reasoning methods that allow clinical expertise to be encoded and used

in conjunction with mathematical techniques [35]. The Boston group that

developed this most recent digitalis programa 1s {aterested in similarly

developing an acid-base/electrolyte system so that judgmental knowledge of

expsTts can be interfaced with the mathematical models of pathophysiology?.

" Srhis project Zan described by Prof. Peter Ssolovits, of MIT’s clinical
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There is also a large research community of mathematicians who attempt to

understand and characterize physical processes by devising simulation models

[40]. Although such models are largely empirical and have generally not found

direct application in clinical medicine, their research role may eventually be

broadened to provide practical decision aids through interfaces with the other

paradigms described in this review.

The major strength of mathematical models is their ability to capture

mathematically sound relationships in a concise and efficient computer program.

However, the major limitation, a: ith moet of the paradigms discussed here, is

that {ew areas of medicine are amenable to firm, quantitative description.

Because the accuracy of the results depend on correct identification of relevant

parameters, the precision and certainty of the relationships among them, and the

accuracy of the techniques for measuring them, mathematical models have limited

applicabiity at present. Furthermore, those domains that do lend themselves to

mathematical description may still benefit from interactions with symbolic

reasoning techniques, ss has been demonstrated in the digitalis therapy adviser

[35].

5 Statistical Pattzrn Recognition Techniques

5.1 Overview

Pattern recognition techniques define the mathematical relatioaship

between measurable features and ciassificastions of objects [15],(51). Ia

medicine, the presence or absence of each of several signs and symptoms in a

patient may be definitive for the classification of the patient as "sbnormal” or

into the category of a specific disease. They are also used for prognosis [1],

or predicting disease duration, time course, and outcomes. These techniques

have been applied to a variety of medical domains, such as image processing and

signal analysis, in addition to computer-assisted diagnosis.

In order to find the diagnostic pettern, or discriminant function, the

method requires a training set of objects, for which the correct classification

is already known, as well as reliable values for their measured features. If

the form and parsseters are not known for the statistical distributions

underlying the features, them they sust be estimated. Parametric techniques

eo ee or dois 1 3 Wwrishop on artificial intelligence in medicine
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focus on learning the parameters of the probability density functions, while

non-parametric (or "distribution-free") techniques make no assumptions about the

form of the distributions. After training, then, the pattern can be compared to

new, unclassified objects to aid in deciding the category to which the new

object belongs 10.

There are numerous variations on this general approach, most notably in

the mathematical techniques used to extract characteristic measurements (the

features) and to find and refine the pattern classifier during training. For

exsuple, linear regression analysis is a commonly used technique for finding the

coefficients of an equation that defines a recurring pattern or category of

diagnostic or prognosti: interest. A class of patients can be described ty =»

feature vector X = [x;, X23, <+s¢, Xg] (where xq 13 one of ndescriptive

variables). The goal is to produce an equation relating the posterior

probabilitiesll of each diagnostic class to the feature vector through a set of

n coefficients (ag)!2:

P(MDyIX) = ax; + azxg + «ec + apxy

Recent work emphasizes structural relationships among sets of features more than

statistical ones.

Three of the best known training criteria for the discriminant function

are:

(x) least-squared-error criterion: choose the function that =minimizes the

squared differences between predicted and observed measurement values;

(b) clustering criterion: choose the function that produces the tightest

ciusters;

(c) Bayes’ criterion: choose the function that has the minimum cost associated

with {incorrect diagnosasld.

181 is possible to detect patterns, even without a known classification
Or nies aln, the TO Ot tors with both numer call and aon-ouserical
measuresents.

lithe posterior probability of a diagnostic class, represented as

F0HR dothTroehINES Racine, fells tn dismnontic catcfory by gives
l2gqq [62] for a study in which the coefficients are reporisd because of

their medical import.

12'his is one of many uses of Bayes’ Theorem, a definitional rule that
relates posterior and prior probabilities. For an overview of its use as a
diagnostic rule (as opposed to a training criterion) and a definition of the
formula, see Section 6.
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Ten commonly used mathematical models based on these criteria have been shown to

produce remarkably similar diagncstic results for the same data [7].

5.2 Example

There are numerous papers on uses of pattern recognition methods in

medicine. Armitage [1] discusses three examples of prognostic studies, with an

emphasis on regression methods. Goldwyn et al. [31] discuss uses of cluster

analysis. One recent diagnostic application by Patrick [73] uses Bayes’

criterion to classify patirnts having chest pains into three categories: Dj:

acute myocardial infarction (MI); Dj: coronary insufficiency; and Dj: nomn-

cardiac causes of chest pain. The need for early diagnosis of heart attacks

without laboratory tests is a prevalent problem, yet physicians are known to

misclassify about one third of the patients in categories DU; and Dy and about

80% of those in D3. In order to determine the correct classification, eacn

patient in the training set was claszified after 3 days, based on laboratory

data including electrocardiogram (ECG) and blood data (cardiac enzymes). There

remained some uncertainty about several patients with "probable MI." Seventeen

variables were selected from many: 9 features vith continuous values (including

age, heart rates, vhite blood count, and hemoglobin) and 8 features with

discrete values (sex and 7 ECG features).

The training data were measurements on 247 patients. The decision rule

was chosen using Bayes’ theorem to compute the posterior probabilities of each

diagnostic class given the festure vector X (X = [x;, x3, ++¢ , X17]. Then a

decision tule was chosen to uinimize the probability of error by adjusting the

coefficients on the feature vector X such that for the correct class Dy:

P(Dy |X) = MAX[P(D; IX), P(D2IX), P(D3iX)]

The class conditional probability density functions must be estimated

initially, and the performance of the decision rule depends on the accuracy of

the assumed model.

Using the same 247 patients for testing the approach, the trained

clagsif‘er sveraged 807 correct diagnoses over the three classes, usiag only

data available at the time of admission. Physicians, using more data than the

computer, averaged only 50.5% correct over these three categories for the same

patients. Training the classifier with a subset of the patients, and using the

remainder for testing, produced nearly as good results.
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5.3 Discusgion of the Methodology

The number of reported medical applications of pattern recognition

techniques is large, but there are also numerous problems associated with the

approsch. The most obvious difficulties are choosing the set of features in the

first place, collecting reliable measurements on a large sample, and verifying

the initial classifications among the training data. Current techniques are

inadequate for problems in which trends or movement of features are {important

characteristics of the categories. Also the problems for which existing

techniques are accurate are those that are well characterized by a small amber

of features ("dimensions of the space").

As with all techniques based on statistics, the size of the sanmpie used

to define the categories 1s an important consideration. As the number of

important fea:ures and the number of relevant categories increase, the required

si:: of the training set also increases. In one test (7], pattern classifiers

trained to discriminate among 20 disease categories from 50 symptoms were

correct 51% ~ 64% of the (ime. The same methods were used to train classifiers

to discriminate between 2 of the diseases, from the same 50 symptoms, and

produced correct diagnoses 922% - 98% of the time.

The context in which a local pattern is identified raisas problems

related to the issue of utilizing medical koowledge. It is difficult to find

and use classifiers that are best for a smell decision, such as vhether an area

of an X-ray is inside or outside the heart, and integrate those into a global

classif'!er, such as one for abnormal heart volume.

Accurate application of a classifier in a hospital setting also requires

that the measurements in that clinical environment are consistent with the

measurements used to train the classifier initially. For example, {if diseases

and symptoas are defined differently in the new setting, or if lab test values

are reported in different ranges, or different lab tests used, then decisions

based on the classification are not reliable.

Pattern recognition techniques are often misapplied in wedical domains in

vhich the assumptions are violated. Some of the difficulties noted above are

avoided in systems that integrate structural knowledge into the numerical

methods and in systems that integrate numan and machine capabilities into

single, interactive systems. These modifications will overcome one of the major

difficulties seen in complstely automated systems, that of providing the system

with good "intuitions" based on an expert's a priori knowledge and experience

(511.
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6 Bayesian Statistical Approaches

6.1 Overview

More work has been done on Bayesian approaches to computer-based medical

dectsion making than on any of the other paradigms we have discussed. The

appeal of Bayes’ Theorem!4 1s clear: it potentially oifers an exact method for

computing the probability of a disease based on observations and data regarding

the frequency with which these ohservations are known to occur for specified

diseases. In several domains the technique has beer shown to be exceedingly

accurate, but there are als: several limitations to the approach which we

discuss below.

In {ts simplest formulation, Bayes’ Theorem can be seen as a mechanism to

calculate the probability of a4 disease, in lignt of specified evidence, from the

apriori probability of the disease and the conditional probabilities relating

the observations to the diseases in which they may occur. For example, suppose

disease Dy is one of nmutually exclusive diagnoses under consideration andE 1s

the evidence or obser-ations supporting that diagnosis. Then if P(Dy) i= thea

priori probability of the iti disease 15,

PIE) = P(D4) P(EIDy)
& roy) FELT
J

The theorem can also be represented or derived in a variety of other forms,

including an odds/likelihood ratio formulation. We cannot include a full

discussion here, but any introductory statistics book or Lusted’s vclume [64]

presents the subject in considerable detail.

Among the most commonly recognized problems with the utilization of a

Bayesian approach is the large amount of data required to determine all the

conditional probabilities neseded in the rigorous application of the formula.

Chart reviev or computer-based analysis of large databanks occasionally allows

most of the necessary conditional probabilities to be obtained. A variety of

additional assuaptions wust be made. For example: (1) the diseases under

consideration are sssumed mutually exclusive and exhaustive (i.e., the patient

is assumed to have one of the ndiseases), (2) the clinical observations are

TT lage often referred to as Bayes’ rule, discriminant, or ciiterion

nas been shen odl Tp te 507 (EoLIETL00hy HER iv TateAERINE Sain
In the setting of the ith discese. =
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assumed to be conditionslly independent over a given disease 16, and (3) the

incidence of the symptoms of a disease is assumed to be stationary (l.e., the

model does not allow for changes in disease patterns over time).

One of the earliest Bayesian programs was Warner's system for the

diagnosis of congenital heart disease [115]. He compiled data on 83 patients and

generated a symptom-disease matrix consistiag of 53 syuptous (attributes) and 35

disease entities. The diagnostic performance of te computer, based on the

presence or absence of the 53 symptoms in a new pat~: nt, was then compared to

that of two experienced physicians. The program wis shown to reach diagnoses

with an accuracy equal to that of the experts. Furitermore, system parformance

was shown to improve as the statistics in the symptcir-disease matrix stabilized

with the addition of increasing numb rs of patients.

In 1968 Gorry and Barnett point 4 out that Warmer’e program had required

making all 53 observations for every patient to be diagnosed, a situation which

would not be realistic for many clinical applicatione. They therefore used a

modification of Bayes’ Theorem in which otrervations are considered

sequentiallvl’. Their computer program analyzed observations one at a time,

suggested which test would be most useful if performed next, and included

termination criteria so that a diagnosis conld be reached, when appropriate,

vithout needing to make all the observations [32]. Decisious regarding tests

and termination were made on the basis of calculations cf expected costs and

benefits at each step in the logical pro-essli8, Using the same symptom-disease
matrix developed by Warner, they were able to attain =z2quivalent diagnostic

performance using only 6.9 tests on averagel9. They pointed out that, because

the costs of medical tests may be significant (in terms of pa“ient discomfort,

time expended, and financial expense), the use of inefficient testing sequences

should be regarded as ineffective diagncsic. Warner has also more recently

included Gorry and Barnett’s sequential diagnosis approach in an application

regarding structured patient history-taking [118].

~ Téme purest form of Bayes’ Theorem aliows conditional dependencies, and
the order in vhich evidence {a obtained, to be explicicly considered in the
analysis. However, the number of required conditional probabilities is so
Ere ora hEobeorvations. io sonerally sssuned (1087. 7 *nd nosTdependence on

17 similar approach was devised in Russia at approximately the same time
by Vishnevakiy and associates. Their analyses, and a suumary of the impressiveamount of statistical data chey have amassed, are contained in (lll].

1854e¢ the decision theory discussion in Section 7.

19%Tegts for determining attributes were defined somevhat differently than

eyaerationaed 1a the original study. OF fests vas 31 rather than
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The medical computing literature nov includes many examples of Bayesian

diagnosis programs, most ot which have used the nousequential approach, in

addition to the necessary assumptions of symptom independence and mutual

exclusiveness of disease as discussed above. one particularly successful

research effort has been chosen for discussion.

6.2 Example

Since the late 1960°s deDombal and associates, a* the University of Leeds

(England), have teen studying the diagnostic proccess and developing computer-

based decision aids using Bayesian nrobability theory. Their area of

investigation has been gastrointestinal diseases, originally acute abdominal

pain (12) with more recent analyses of dyspepsia [44] and gaxtric carcinoma

[134].

Their program for assessment of acute abdominal pain was evaluated in the

emergency room of their affiliated hospital [l2). Emergency physicians filled

out data sheets summarizi~q clinical and laboratory findings on 304 patients

presenting with abdominal pain of acute onset. The data from these sheets

became the attributes that were subjected to Bayesian analysis; the required

conditional probabilities had been previously compiled from a large group of

patients with one of seven possible diagnoses20, Thus the Bayesian formulation

assumed each patient had one of these diseases and would select the most likely

on the basis of recorded observations. Diagnostic suggestions were obtained in

batch mode and did not require direct interaction between physician and

computer; the program could generate results in from 30 seconds to 15 ainutes

depending upon the level of system use at the time of analysis [43]. Thus the

computer output could have been made available to the emergency room physician,

on average, within 5 minutes after the data form was completed and handed to the

technician assisting with the study.

During the study (121, however, these computer-generated diagnoses were

simply sav'd and later compared to (a) the diagnoses reached by the attending

clinicians, and (b) the ultimate diagnosis verified at surgery or through

appropriate tests. Although the clinicians reached the correct djagnosis in

only 652-802 of the 304 cases (with sccuracy depending upon an individual’s
training and experience}. the program was correct in 91.81 of cases.

Furthermore, in 6 of the 7 disease categories the computer was proved more

mr me = mtr
bowel ober Ee rey and RonPepecific. abdominal pata. rity Rel
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likely than the senior clinician in charge of a case to assign the patient to

the correct disease category. Of particular interest was the progcam’s accuracy

regarding appendicitis, a diagnosis which 1s often wade incorrectly. In no

cases of appendicitis did the computer fail to make the correct diagnosis, and

{in only six cases were patients with non-specific abdominal pain incorrectly

classified as having appendicitis. Based om ii: actusl clinical decisions,

however, over 20 patients with non-specific abdominal pain were unnecessarily

taken to surgery for appendicitis, aud in six cases patients vith appendicitis

vere "watched" for over eight hours before they were finally taken to the

operating room.

These investigators also performed a fascinating experiment in which they

compared tne program's performance based on data derived from 600 res] patients,
with the accuracy the system achieved using “estimates” of cond itioval

probabilities obtained from experts 160]21. As discussed above, the program vas
significantly more effective than the unaided clinician vhen real-iife data were

used. Rowever, it performed significantly less well than clinicisas vhen expert

estimates were used. The results supported what several other observers have

found, namely that physicians often have very little idea of the “true”

probabilities for symptom-disease relationships.

Another Leeds study of note was an analysis of the effect of the systema

on the performance of clinicians (13]. The trial we have mentioned that

{nvolved 304 patients was eventually extended to 3352 before termination.

Although the computer's accuracy remained in the range of 91 throughout this

period, the performance of clinicians was noted to improve markedly over time.

Fewer negative laparotomies were performed, for example, sod the number of acute

appendices that perforated (ruptured) also declined. However, these data slowly
returned towards baseline after the study vas terminated, suggesting that the

constant awareness of computer monitoring and feedback regarding systea

performance had temporarily generated a heightened awareness of intellectual

processes smong the hosp’tal’s surgeons.

6.3 Discussionof the Methodology

The ideal matching of the problem of acute abdominal pain and Bayesian

analysis mst be emphasized; the technique cannot necessarily be as effectively

TT 2lgyen estimates are referred to as “subjective” or 'persomal”

psipnpda SRAava e .
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applied in other medical domains where the following limitations of the Bayesian

approach may have a greater impact.

(1) The assumption of conditional independence of symptoms usually does not

apply and can lead to substantial errors in certain settings [72]. This has

led some investigators to seek new numerical techniques that avoid the

independence assumption [8]. If a pure Bayesian formulation {ss used

without making the independence assumption, hcwever, the number of required

conditional probabilities becomes prohibitive for complex real world

probl=as (108).

(2) The assumption of mutual exclusiveness and exhaustiveness of disease

categories is usually falme. In actual practice concurrent and overlapping

disease categories are common. In deDombal‘s system, for example, many of

the abdominal psin diagnoses missed were outside the seven "recognized"

possibilitiocs; if a program starts with an assumption tha: it need only

consider a small number of defined likely diagnoses, it will inevitably miss

the rare or unexpected cases (precisely tiie omes with which che clinician is

wost apt to need assistance).

(3) Ir wmemy domains it may be inaccurate to assume that relevant conditional

probabilities are stable over time (e.g., the likelihood that a particular

bacterium will be sensitive to a specific antibiotic). TPurthersore,

diagnostic categoriss and definitions are constantly chaneing, as are

physicians’ observational techniques, theredy {nvalidating data previously

accumulated??. A similar problem results from variations in a priori
probabilities depending won the population from which a patient is drawa?3.

Some observers feel that these are major limitatioms to the use of Bayesian

techmiques [16].

In general, thea, a purely Bayesian approsch cam so coustrsin prodlems

formslation as to wake 8 particular application warealistic and hence

unworkable. Purthermore, even vhea diagmoetic performsmce is excellent such as

in deDombal’s approach to abdominal pais evaluation, clinical implementation and

system acceptance will generally be difficult. Pores of representation that

allov explasstion of system perforummce ia familiar teres (i.e., a wore

2251 thowgh gradual changes ia definitions or observational techniques say
be statistically detectable by 4atabase anclynis, a Bayesfan analysis that uses
such dats is inevitably proese to error.

1a proven {Tiries seni Toporead Sl IESHE SPLITNIEYY vertarione
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congenial interface with physician users) will heighten clinical acceptance; it

{is at this level that Bayesian statistics and symbolic reasoning techniques may

most beneficially interact.

7 Decision Theoretical Approaches

7.1 Overview

Bayes’ Theorem is only one of several techniques used in the larger fiela

of decision analysis, and there has recently been increasing interest in the

ways in which decision theory might be applied to medicine and adapted for

automation. Several excellent reviews of the field are available in basic

reviews {45), textbooks (84), and wmedically-oriented journal articles

(67), (94],(109). In general terms, decision analysis can be seen as any attempt

to consider values associated with choices, as well as probabilities, in order

to analyze the processes by which decisions are cade or should be made.

Schwartz identifies the calculation of "expected value" as central to formal

decision analysis [94]. Ginsberg contrasts medical classificaticen problens

(e.g., diagnosis) with broader decision problems (e.g., "What should 1 do for

this patient?"), and asserts that most important medical decisions fall in the

latter category and are best approached through decision analysis (29].

Ths following topics are among the central issues in the field:

(1) Decision Trees. The decision making process can be seen as a sequence of

steps in vhich the clinician selects a path through a network of piausible

events and actions. Nodes in this tree-shaped network are of two kinds:

decision oodss, where the clinicf{an must choose from a set of actions, and

chance nodes, where the outcome is not directly controlled by the clinician

but is a probabilistic response of the patient to some action taken. For

eyample, a physician may choose to performs a certain test (decision node)
but the occurrence or nomoccurrence of complicationsmay be largely a matter

of statistical likelihood (chance node). By analyzing a difficult decision

process before taking any actions, it ma” be possidle to delineate in

advance all pertinent chance and decision nodes, all plausible outcomes,

plus the paths by which these ouccomes might be reached. Furthermore, data

may exist to allow specific probabilities to be associated with each chance

node in the tree.
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(2) Expected Values. In actual practice physicians make sequential decisions

pased on more than the probabilities associated with the chance node that

follows. For example, the best possible outcome is not necessarily sought

1f the costs associated with that "path" far cutweigh those along alternate

pathways (e.g., a definitive diagnosis may not be sought if the required

testing procedure is expensive or painful and patient management will be

unaffected; similarly, some patients prefer to "live with” an inquinal

hernia rather thaa undergo a surgical repair procedure). Thus, anticipated

"costs" (financia., complications, discomfort, pacient preference) can be

associated with the decision nodes. Using the probabilities at chance

nodes, the costs at decision nodes, and the "value' of the various outcomes,

an "expected value" for each pattway through the tree (and in turn each

node) can be calculated. The ideal pathway, then, 1s the one which

m2zximizes the expected value.

(3) Eliciting Values. Obtaining from physicians and patients the costs and

values they associate with various tests and outcomes can be a formidable

problem, particularly since formal analysis requires expressing the various

costs in standardized units. Ome approach has been simply to ask for value

ratings on a hypothetical scale, but it can be difficult to get the

physician or patient to keep the values2é separate from their knowledge of

the probabilities linked to the associated chance nodes. An alterrate

approach has been the development of lcttery games. Inferences regarding

values can be made by identifying the odds, in a hypothetical lottery, at

which the physician or patient is indifferent regarding taking a course of

action with certain outcome and betting om a course with preferable outcome

but with a finite chance of significant negative costs if the "bet" is lost.

In certain settings this approach may be accepted and provide important

guidelines in decision making (77].

(4) Test Evaluation. Since the tests which lie at decision nodes are central to

clinical decision analysis, it is crucial to know the predictive value of

tests that are available. This leads tc consideration of test sensitivity,

specificity, receiver operator characteristic curves, and sensitivity

analysis. Such issues are discussed by FKomaroff in this issue of the

Proceedings [S57] and have also been summirized elsevheres in the clinical
literature [68].

244190 termed "utilities" in some refareaces; hence the term "utility
theory" [84].
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Many of the wmrjor studies of clinical decision analysis have not

specifically involved computer implementations. Schwartz et al. examined the

workup of renal vascular hypertension, developing arguments to show that for
certain kinds of cases a purely qualitative theoretical approach was feasidlc

and useful [94]. However, they showed that for more complex clinically

challenging cases the decisions could not be adequately sorted out withour the
{ntroduction of numerical techniques. Since it was {impractical to assume that

clinicians would ever take the time to carry out a detailed quantitative

decision analysis by hand. they pointed out the logical role for the computer fin

assisting with such tasks and accordingly developed the system we discuss as an

example below [33].

Other colleagues of Schwartz at Tufts have been similarly active in

applying decision theory to clinical problems. Pauker and Kassirer have
examined applications of formal cost-benefit analysis to therapy selection [74]
and Pauker has also looked at possible applications of the theory to the

management of patients with coronary artery disease (76). An entire {issue of

the New England Journal of Medicine has also been devoted to papers on this
methodology [46].

7.2 Example

Computer implementations of clinical decision analysis have appeared with

{increasing frequency since the mid-1960°s. Perhaps tne sarliest major work vas
that of Ginsberg at Rand Corporation [28], with more recent systems reported by
Pliskin and Beck [80] and Safran et al. [91].

We will briefly describe here the program of Gorry et al., developed for

the management of acute renal failure [33]. Drawing upon Gorry’s experience
with the sequential Bayesian approach previously asentioned (32), the

investigators recognized the need to incorporate some vay of balancing the

dangers and discomforts of a procedure against the value of the information to

be gained. They divided their program into two parts: phase I considered ounly
tests with minimal risk (e.g., history, examination, blood tests) and phase II

considered procedures involving wore risk and inconvenience. The phase I

program considered 1& of the 30st common causes of renal failure and used a
sequential test selection wurocess based om Bayes’ Theorem and omitting more
advanced decision theoretical techniques (32]. The conditional probabilities

used vere subjective estinates obtained from an expert nephrologist and were
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therefore potentially as problematic as those discussed by Leaper et zl. [60]

‘see Section 6.2). The researchers found that they had ro choice but to use

expert estimates, however, since detailed quantitative data were not available

either {in databanks or the literature.

It {is in the phase II program that the methods of decision theory were

employed because it was in this portion of the decision process that the risks

of rrocedures baecam~ important considerations. At each step in the decision

process this program considers whether {it {is best to treat the patient

‘mmediately or to first carry out an additional diagnostic test. To make this

lecision the programs identifies the treatment with the highest current expected

value (in the absence of further testing), and compares this with the expected

values of treatments that could bz instituted if another diagnostic test were

performed. Comparison of the expected values are made in light of the risk of

the test in order to determine wheather the overall expected value of the test is

greater than that of ismediate treatment. The relevant values and probabilities

of outcomes of treatment were obtained as subjective estimates from

nephrologisats in the same way that symptom-disease data had been obtained. All

estinates were gradually refined as they gained exparience using the program,

however.

The program vas evaluated ou 18 test cases in vhich the true diagnosis

was uncertain bat two expert nephrologists were willing to make management

decisions. In 14 of the cases the program selected the same therapeutic plan or

diagncstic test as was chosen by the experts. For ihiee cf the fonr remaining

cases the program’s decision was the physicians’ second choice and was, they

felt, a reasousble slternative plan of action. Io the last case the physicians

alsn accepted the prograsa’s decision os ressonable although it was not among

their first two choices.

7.3 Discussioa of the Ngthodology

The excellent performance of fGorr “'s program, despite {ts reliance on

subjective estimates from umperts, may serve to emphasize the importance of the

clinical omalysis that underlies the decisioa theoretical approsch. The

reasoning steps in usaaging climical cases have besa dissected in such detail

that small errors 1. the probability eetimates are appareatly much less

important thaa they were for deDoubal’s purely Bayesian approach (860). Corry

suggests this sey be sinply because the decisions meade by the program are based
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on the coubination of large aggregates of such numbers, bur this argument should

apply equally for a Bayesian system. [t seems to us more likely that

distillation of the clinical domain in a formal decision tree gives the program

so auch more knowledge of the clinical problem that the quantitative details

become somewhat less critical to overall system operation. The explicit

decision network is a powerful knowledge structure; the "knowledge" in

deDowbal’s system lies in conditional probabilities alone and there is n> larger

scheme to override the propagation of error as these probabilities are

mathematically manipulated by the Bayeaiaa routines.

The decision theory approach is not without problems, however. Perhaps

the most dffficult problem is assigning numerical values (e.g., dollars) to a

human life or a day of health, etc. Some critics feel this is a najor

limitation to the methodology (120). Overlapping or coincident diseases are also

not well-managed, unless specifically included in the analysis, and the Bayesian

foundation for many of che calculations still assumes mutually exclusive and

exhaustive disease categories. Problems of symptom conditional dependence still

remain, and there is no easy way to include knowledge regarding the time course

of diseases. Gorry points out that his program was also incapable of

recognizing circumstances in which two or more actions should be carried out

concurrently. Furthermore, decision theory per se does not provide the kind of

focusing mechanisms that clinicians tend to use when they assume an initial

diagnostic hypothesis in dealing with a patient and discard it only if

subsequent data make that hypothesis no longer tenable. Other similar

strategies of clinical reasoning are becoming increasingly well-recognized [53]

and account in large part for the applications of symbolic reasoning techniques

to be discussed in the next section.

8 Symbolic Reasoning Approaches

8.1 Overview

In the early 1970°s researchers at several institutions simultanecuely

bagrn to investizate potential clinical applications of symbolic zeasoning

techniques drawn from the branch of computer science known as artificial

intelligence (Al). The field is well-reviewed in a recent book by Wiaston [128].

The term "artificial intelligence" is generally accepted to include those

computer applications that involve symbolic inference rather than strictly
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numerical calculations. Examples 1includz programs that reason about mineral

2xploration, organic chemistry, or molecular biology; programs that converse in

English and understand spoken sentences; and programs that generate cheories

from observations.

Such programs gain their power from qualitative, experiential judgments,

codified in so-called ".ules-of-thumb"” or "heuristics", in contrast to numerical

calculation programs whose power derives from the analytical equations used.

The heuristics focus the attention of the reasoning program on parts of the

problem that sz2em most critical and parts of the knowledge base that seen most

relevant. They also guide the application of the domain knowledge to an

individual case by deleling items from consideration as well as focusing on

items. The result is that these programs pursue a line of reasoning as opposed

to following a sequence of steps in a calculation. Among the earlies’ symbolic

inference programs in medicine was the diagnostic Interviewing system of

Kleinmuntz [54]. Other early work included Wortman’s {information processing

system, the performance of which was largely motivated by a desire to understand

and simulate the psychological processes of neurologists reaching diagnoses

[130].

It vas a landmark paper by Gorry in 1973, however, thet first critically

analyzed conventional approaches to computer-based clinical decision making and

outlined his motivation for turning to newer symbolic techmiques [34]. He used

the acute renal failure program discussed in Section 7.2 [33] 2s an example of

the problems arising when decision avalysis is used alone. In particular, he

analyzed some of the cases on which the progrsa had failed but the physicians

considering the cases had performed well. His conclusions from ‘hese

observations include the following four points.

(1) Clinical judgment is based less on detailed knowledge of pathophysiology

than it {is on gross chunks of knowledge and a good deal ot detailed

experience from vhich rules of thumb are derived.

(2) Clinicians kuow facts, of course, but their knowledge 1s also largely

judgmental. The rules they learn sllow them to focus attention and generate

hypotheses quickly. Such heuristics permit them to avoid detailed search

through the entire problem spzce.

(3) Clinicians recognize levels of belief or certainty associated with many of

the rules they use, but they do not routinely quantitate or use these

certainty concepts in any formal statistical manner.
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(4) It 1s easier for experts to state their rules in response to perceived

misconceptions in others than it ({s for them to generate such decision

criteria apriori.

In the renal failure program medical knowledge had been embedded in the

structure of the decision tree. This knowledge was never explicit, and

additions to the experts’ judgmental rules had generally required changes to the

tree {tself.

Based on observations such as those above, Gorry identified at least

three important problems for investigacion:

(1) Mcdical Concepts. Clinical decision aids had traditionally had no true

"understsnding" of medicine. Although explicit decision trees had given the

decision theory programs a greater sense of the pertinent associations,

medical knovledgqe and the heuristics for problem solving in the field had

never been expiicitly represented nor used. So-called “commen sense” vas

often clearly lacking vhen the programs failed, and this was often vhat most

alienated potential physician users.

(2) Conversational Capabilities. Both for capturing knovledge from

collaborating experts, and for communicating with physician users, Gorry

argued that further research on the development of comp.ter-based linguistic

capabilities was crucial.

(3) Explanation. Diagnostic programs had seldom ecmphesized an abiiity to

explain the basis for their decisions {a terms urderstandable to the

physician- System acceptability was therefore in:.itably limited; the

physician would often have no basis for deciding wviether to accept the

program’s advice, and might therefore resent wha: Could be perceived as an

attempt to dictate the practice of medicine.

Gorry’s group at MIT and Tufts d/wveloped nev approaches to examining the rensl

failure problem in light of thes: observations [75].

Due to the limitations cf the older techniques, i: was perhaps inevitable

that some medical researchers would turn to the AI field for new techniques.

Major research areas in Al include knowledge representation, heuristic search,

natural language understanding and generation, and models of thought processes

-— all topics clearly pertinent to the problems w: have been discussing.

Furthermore, AI researchers were beginning to look for applications to which

they could apply some of the techniques they “ad developed 1in theoretical
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domains. This community of researchers has grown in recent years, and a recent

fssue of Artificial Intelligence was devoted entirely to applications of AI to |
biology, medicine, and chewnistry [105)23.

Among the programs using symbolic reasoning techniques are several

systems that have been particularly novel and successful. At the University of
Pittsburgh, Pople and Myers have developed a system called INTERNIST that
assists with test selection for the diagnosis of all d4isesses in internal

medicine [°1]. This awesome task has been remarkably successful to date, with

the program correctly diagnosing a large percentage of complex cases selected
from clinical pathologic conferences in the major medical journals?6. The
program uses a hierarchic disease categorization, an ad hoc scoring system for

quantifying symptom-disease relationships, plus sowe clever heuristics for
focusing attention, discriminating between competing hypotheses, and diagnosing
concurrent diseases [821]. The system currently has an {inadequate human

interface, however, and is not yet implemented for clinical trials.

Weiss, Kulikowski, and Amarel (Rutgers University) and Safir (Mt. Sinai

Rospital, New York City) have developed a mcdel of reasoning regarding disease

processes in the eye, specifically glaucoma [125]. in this specialized
application area it has been possible to map relationships between observatioms,

pathophysiologic atates, and disease categories. The resulting causal
associational network (termed CASNET) forms the basis for a reasoning programs

that gives advice regarding disease states in glaucoma patients and generates

management recommendations. The system is undergoing evaluation by a nationwide
netwerk of ophtholomologists but is not yet offered for routine clinical use.

Por the Al researchers the question of how best to manage uncertainty in

medical reasoning remains a central issue. The programs mentioned have

developed ad hoc weighting systems and avoided formal statistical approaches.
Others have turned to the work of statisticians and philosophers of science ho

have devised theories of approximate or inexact reasoning. For example,

Wechsler {122) describes a program that is based upon Zadeh’s fuzzy set theory

(133), and Shortliffe and Buchanan [101] have turned to confirmation theory for
their model of inexact reasoning.

TTT I%ny of the systems which use Al techaiques for medical decision making
guredevelopedon the EI PLoS Ihe piowst)cal sciencas. The SOREL-
AB Computer” To prptlcally Toctred ar Stintord Vaiierslty Bt leecurcs i
funded by the Division of Research Resources, Biotechnology Branch, National
institutes of Health.

26pats commmicated by Drs. Pople and Myers at the Fourth Annual A.I.M.
Workshop, Rutgers Univer: ity, June 1978.
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8.2 Example

The symbolic reasoning program selected for discussion is the MYCIN

System at Stanford University (102). The researchers cited a variety of design

considerations which motivated the selection of AI techniques for the

consultation system they were developing [99]. They primarily wanted it to be

useful to physicians and therefore emphasized the selection of a problem domain

{n which physicians had been shown to err frequently, namely the selection of

antibiotics for patients with infections. They also cited human issues that

they felt were crucial to make the system acceptable to physicians:

(1) 1t should be able to explain its decisions in terms of a line of reasoning

that a physician can understand;

(2) it should be able to justify its performance by responding to questions

expressed in simple English;

(3) {it should be able to "learn" new information rapidly by interacting directly

with experts;

(4) its knowledge should be easily modifiable so that perceived errors can te

corrected rapidly before they recur in another case; and

(5) the interaction should be engineered with the user in mind (in terms of

prompts, answers, and information volunteered by the system as well as by

the uscvs).

All these design goals were based on the observation that previcus computer

decision aids had generally been poorly accepted by physicians, even when they

were shown to perform well on the tasks for which they were designed. MYCIN’s

developers felt that barriers to acceptance were largely conceptual and could be

counteracted in large part if a system were perceived as a clinical tool rather

than a dogmatic replacement for the primary physician's own reasoning.

Fnovledge of infectious diseases is represenied in MNYCIN as production

rules, each containing a "packet" of knowledge obtained from collaborating

experts (102)27. a production rule 1s simply a conditional statemen: which
relates observations to associated inferences that may be drawn. For example, a

MYCIN rule might state that "if a bacterium is a gram positive coccus growing in

chains, then it is apt to be a streptococcus.” MYCIN’s power is derived from

auch rules in a variety of ways:

~ I'production rules are a technique frequently employed in AI research
[9] and effectively applied to other scientific problem domains [6].
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(1) it 1s the program that determines which rules to use and how they should be

chained together t> make decisions about a specific case?®; |

(2) the rules can be stored in a machine-readable format but translated into

English for display to physicians;

(3) by removing, altering, or adding rules, the systca’s knowledge structures

can be rapidly modified without explicitly restructuring the entire

knowledge base; and

(4) the rules themselves can often form a coherent explanation of system

reasoning if the relevant ones are translated into English and displayed in

response to a user's question.

Associated with all rules and infereuces are numerical weights reflecting

the degree of certainty associated with them. These numbers, termed certainty

factors, form the basis for the system's inexact reasoning [101]. They allow the

judgmental knowledge of experts to be captured in rule form and then used ir a

consistent fashion.

The MYCIN System has been evaluated regarding its performance at therapy

selection for patients with either septicemia (132) or meningitis [131]. The

program performs comparably with experts in these two task domains, but as yet

it has no rules regarding the other infectious disease problem areas. Further

knowledge base development will ctherefore be required before MYCIN is made

available for clinical use; hence questions regarding its acceotability to

physicians cannot yet be assessed. However, the required implementation stages

have been delineated [100], attention has been paid to all the desig: criteria

mentioned above, and the program does have a powerful explanation capability

(9S].

8.3 Discussion of the Methodology

Whereas the computations used by the other paradigm: wostly involve

straightforward application of well-developed computing techniques, artificial

intelligence methods are largely experimental; anew approaches to knowledge

repressatation, language understanding, heuristic search, and the other symbolic

reasoning problems we have meationed are still needed. Thus the Al programs

tend to be developed in resesrch erviionments where short term practical results

are unlikely to be found. However, out of this research are emerging techniques

~ 18me coatrol structure weed is termed "soegosl-orieated” asd 1- stailar tothe consequent-theorems used in Hewitt’s 42].
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for coping with many of the problems encountered by the other paradigms we have

discussed. Al researchers have developed promising methods for handling

concurrent diseases [82],(125), assessing the time course of disease [18], and

acquiring adequate structured knowledge from experts [ll]. Furthermore, inexact

reasoning techniques have been developed and implemented [101] (although they

tend tc be justified largely on intuitive grounds). Ir addition, the techniques

of artificial intelligence provide a way to respond to many of Gorry’s

observitions regarding the three major inadequacies of prior paradigms as

described in Section 8.1: (1) the medical AI programs all tend to stress the

representation of nedical knowledge and a sense of understanding the underlying

concepts; (2) many of them have conversational capabilities which draw on

language processing research; and (3) explanation capabilities have been a

primary focue cf systems such as MYCIN.

Qzolovits and Pauker have rccently reviewed some applications of AI to

medicine and have attempted to weigh the successes of this young field against

the very real problems thar lie ahead (108). They identify several deficiencies

of current systems. For example, termination criteria are still poorly

understood . Altnough INTERNIST can diagnose simultaneous diseases, it alsc |

pursues all abnormal findings to completion, even though a clinician often

ignores minor unexplained abnormalities if the rest of a patient's clinical

status !. well understood. In addition, although snme of theses programs now

cleverly mimic the reasoning styles observed in experts (17],(53], it is less

clear how to keep the systems from abandening one hypothesis and turning to

another one as soon as new information suggests another possibility. Programs

that operate this way appear to digress from one topic to another — a

characteristic that decidedly alienates a user regardless of the velidity of the

final diagnosis or advice.

St.11l largely untapped is the power of an Al program to understand its

own knovliedge base, i.e., the structure and content of the reasoning mechanisms

as well as of the medical facts. In effect, AI programs have the ability to

"know what rhey know", the best working example of which can be found in the

prototype system named Teiresias [10]. Because such programs can reason about

their own knowledge, they have the power to encode knowledge about strategies,

e.g., vhen to use and vhen to ignore specific items of medical knowledge and

which leads to follow up on. Such "meta-level” knowledge offers a new dimension

to the design of "intelligent assistant” programs which we predict will be

exploited in mr:.lcal decision making systems of the future.
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9 Conclusions

This reviow has shown that there are two recurring questions regarding

computer-based clinical decision making:

(1) Performance: How can we design systems that reach better, more reliab’e

decisions in a broad range of applications, and

(2) Acceptability: Row can we more effectively encourage the use of such systems

by physicians or other intended users?

We shall summarize these points separately by reviewing many of the

fssues common to all the paradigms discussed in this paper.

9.1 Performance Issues

Central to assuring a program’s adequate performance is a matching of the

most appropriate technique with the problem domain. We have seer that the

structured logic of clinical algorithms can be effectively applied to triage

functions and other primary care problems, but they would be less naturally

matched with complex tasks such as the diagnosis and management of acute renal

failure. Good statistical data may support an effective Bayesian program in

sett ings vhere diagnostic categories are small in number, non-overlapping, and
wel: defined, but the inability to use qualitative medical knowledge limits the

effectiveness of the Bayesian approach in more difficult patient management or

diagnostic enviromments. Similarly, mathematical models may support decision

making in certain well-described fields in which observations are typically

quantified, and related by functional expressions, but in which the knowledge is

typically limited to numerical encoding. These examples, and others,

demonstrate the need for thoughtful coasiderstion of the technique wost

appropriate for managing a c.!uical problema. In general the simplest effective

approach is to be preferred? but acceptability issues must also be considered
as discussed belosr.

As researchers have ventured into more complex clinical domains, a number

of difficult problems have tended to degrade the quality of performance of

computer-based decision aids. Significant clinical problems require large

knowledge bases that contaia complex iaterrelaciocnships including time and

ou -

wee eedid L8 “HE ELITE JEECOP ILE, Te ak he The nat
complex clinical algorithms, for exsmple, the developers have tended to discard

Snalyses cin Sten be e115 arconplishad 1a Bo tative er using
paper and pencil [94].
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functional dependencies. The knowledge of such domains is inevitably open-ended

and incomplete, so the knowledge base must be easily extensible. Not only does

this require a flexible representatior of knowledge, but (t encourages the

development of novel techniques for the acquisition and integration of new facts

and judgments. Similarly, the lnexactness of medical inference must somehow be

represented and manipulated within effective consultation systems. As we have

discussed, all these performance {issues are important knowledg~ engineering

research problems for which artificial intelligence already offers promising new

methods.

It 1s also important to consider the extent to which a program’s

"understandirg" of its task domain will heighten its performance, particularly

in settings where knowledge of the field tends to be highly judgmeatal and

poorly quantified. We use the term “understanding” here to refer to a program’s

ability to reason about, as well as reason with, its medical knowledge base. -

This implies a substantial amount of judgmental or structural kiovledge (in

addition to data) contained within the program. Analyres of human clinical

decision making [17], [53] suggest that as decisions move from simple to complex,

a physician's reasoning style becomes less algorithmic and more heuristic, with

qualitative judgmental knowledge and the conditions for 1iavoking it coming

increasingly into play. Purthermore, the performance of complex decision aids

will also be heightened by the representation and utilization of high level

"mer a-knowledge" that permits programs to understand their ow limitations and

reasouing strategies. In order to design medical ~omputing programs with these

canahil ities, the designers themselves will have to become cognizant of

"knot!- ige engineering” issues. It 1s especially important that they find

effective ways to match the knowledge structures they use to the complexi:y of

the tasks their programs are cCesigned to undertake.

9.2 Acceptability Issues

A recurring observaticn as one reviews the literature of compute--based

medical decision making is that essentially none of the systems has deen

effectively used outside of a research environment, even when its performence

has been shown to be excellent! This suggests that it 1s aa error to
concentrate research primarily on mssthods for improviag the compute:’s decision

making performance when clinical impact depends cn sclving other problems of

acceptance as well. Thera are some data [106] to suppozt the extreme view that
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the btases of medical personne. against computers are so strong that syutems

wil: {inevitably be rejected. regardless of performance. However, we are

beginning to see examples of applications in which initial resistance to

automated techniques has gradually been overcome through the incorporation of

adequate =ystem benefits [121].

Perhaps one of the most revealing lessons on this subject Is ar

~bservation regarding the system of “ese! et al. [70] described in Section 2.2.

Despite documented physician resistance to clinical slgorithms in other settings

‘381, the physicians in Mesel’s study accepted the guidance of protocols for the

aanagement of chemotherapy in their cancer patients. It {ss likely that the key

ro acceptance in this instance {s the fact that these physicians had previously

wad no choice but to refer their patients with cencer to the tertiary care

center in Biraingham where all complex chemotherspy was administered. The

introduction of the protocols permitted these physicians to undertake tasks that

they had previously been unable to do. It simul tanecusly 3ilowed maintenance of
close doctor-patient relationships aud helped the pstlents avoid frequent long

trips to the ceunter. The motivation for the physician to use rhe system {is

clear in this case. It {s reminiscent of Rosati’s assertiom that physicians

vill first welcome computer decision aids when they become aware that colleagues

who are using thes have a clear advaatags ia their practice 87).

A heightened aweresess of “humana emgineering™ {ssues among med ical

computing researchers will aiso make computers more scceptable to physicians by

making the programe easier and more pleasant to use. Fox has recently reviewed

this field {un detail [22]. The {sswes range from the mechanics of {(mteractior

vith the computer (e.g.. 28ing display terminals vith such features as light

peas. special keyboards, cclor, amd graphics) to the festures of the programs

that sake it sppear as a helpful tool rather them a complicating burdea. Al0

iavolved, from both the mechamical and global design sides, is the development

of flexible interfaces that tailor the style of the iatersctioa ©. he needs and

desires of individual physiclass.

Adoqu:te atteatiom mmst 180 be gives to the severe time coastraints

perceived by physiciens. Ideally they would likes programs to take oo more time

: than they currently spond hea accomplishing the same tssk om their owm. Time

and schedule pressures are similarly likely to explaia the grester resistaace to

sstomstios smcag iaterwn asad residents thas amsag wndical studeats or practicisg

physicians {a Startsmes’'s study [106].
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The issue of a program's "self-knowledge" impacts on the acceptance of

consultation systems in much the same way as it does upon program performance.

Decision makers in general, and physicians in particular, will place more trust

in systems that appear to understand their own limitations and capabilities, and

that know when to admit ignorance of a problem area or inability to support any

conclusion regarding an individual patient. Moreover, physicians will have a

means for checking up on these automated assistants if the programs have an

ability to explain not only the reasoning chain leading to their decisions but

also their problem solving strategies. High-level. knowledge, including a sense

of scope and limitations, say thus allow a programs to know enough about itsclf

to prevent its own aisuse. Furthermore, since systems that are not easily

modifiable tend not to be accepted, meta-level kniwledge about representation

and interconnections within the knowledge base may lLelp overcome the problem of

programs becoming tied too closely to a store of knovledge that is regionally or

temporally specific. It is therefore {mportant to stress that considerations

such as those we have mentioned here may argue in favor of using symbolic

reasoning techniques even when a somevhat less complex approach might have been

adequate for the decision task itself.

9.3 Summary

In summary, the trend towards increased use of knowledge engineering

techniques for clinical decision programs stems from the cual goals of laproving

the performance and increasing the acceptance of uch systems. 8oth

acceptability and performance issues sust be considered from the outset {n a

system's design because they dictate the choice of methodology as much as the

task domain itself does. As greater experience is gained wiih these techniques,

and as they becomes better known “hroughout the medical computing community, it

{s likely that ws will see 1increasimgly powerful unions between symbolic

reasoning and the alternate paradigms ve have discussed. One lesson to be drawn

lies ia the recognition that much basic research remains to be done {in medical

computing, and that the field is wore than the application of established

comput ing techniques to medical problems.
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