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Abatract

Computer-based models of medical decision makirg account for a large proportion
of clinical computing efforts. This article revi:ws representative examples
from each of several majcr medical computing pacadigms. These include (1)
clinical algorithms, (2) clinical dstabanks that include analytic functions, (3)
mathematical models of physical processes, (4) pattern recognition, (5) Bayesian
statistics, (6) decision analysis, and (7) symbolic ressoning or artificial
intelligence. Bccause the techniques used in the various systems cannot be
examined exhaustively, the case studies in each category are used as a basis for
studying general strengths and limitations. It is noted that no one method is
best for all applications. However, emphasis 1s given to the limications of
errly work that have made artificial intelligence techniques and Imovledge
engineering research partfcularly attractive. We stress that counsiderable basic
research 1in wmedical romputing =:remains to ove done and that powerful new

approaches 3ay lie in the melding of two or more established techniques.
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KNOWLEDGE FNGINEERING FOR MEDICAL DECISION MAYING:
A Review of Computer-Based Clinical Decision Aids

I Introduction

As early as the 1950°s, physicians and computer scientists recognized
that computers could assist w.th clinical decision making [63] and began to
analyze medical diagnosis with a view to the potential role of automated
decision aids in that domain [611. Since that time a varicty of techniques have
been applied, accounting frr at least 800 references in the clinical and
computing literature (112'. 1In this article we review several medical cecision
making paradigms and discuss some issues that account for both the multipliciey
of approaches and the limited clinical success of most systems developed to
date. Because other authors have reviewed computer-aided diagnosis
(471,192],([114] and the potential impact of computers in medical care [23], our
emphasis here 1is somevhat differecnt. We will focus on the symbolic
representation and use of knowledge, termed "knowledge engineering,” and the
inadequacies of data-intensive techniques which have led to the exploration of

novel symbc!ic reasoning approaches during the last decade.

1.1 Reasons For Attempting Computer-Aided Medical Decision Making

Because of the accelerated growth in medicel knowledge, physicians have
tended to specialize and to become more dependent upon asslstance from other
experts vhen a patient presents with a complex problem outside one’s own area of
axpertise. The primary care physician who first s~es a patient has thousands of
tests available with a wide range of costs (both fiscal and physical) and
potential benefits (i.e., arrival at a correct diagnosis or optimal therapeutic
management). Even the experts in a srecialized field may reach very different
decisions regarding the sanagement of a specific case [131]. Diagnoses that are
made, and upon which therapeutic decisions ate based, have been shown to vary
widely in their accuracy (261,(83]1,([89]). Furthermore, medical students usually
learn about Jecivion making in an unstructured way, largely through ohservation
and by emulating the thought processes they perceive t. be used by their
clinical mentors [53!.

Thus the sotivations for attempts to understand and automate the process
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of clinical decision makiag have been numerous [114]. They are directed both at
diagnostic models and at assisting with patient management decisions. Among the

reasons for introducing computers into such work are the following:

(1) To improve the accuracy of clinical diagnosis through approaches that are
systematic, compvlete, and ablec to ‘acegrate data from diverse sources;

(2) To improve the reliability of clinical decisions by avoiiing unwarranted
influences of similar but not identical cases (a common source of bias among
physicians), and by making the criteria for decisions explicit, and hence
reproducible;

(3) To improve the cost efficiency of tests and therapies by balancing the

expenses of time, inconvenience, or funds against benefits and risks of

definitive actions:

(4) To improve our understanding of the structure of medical knowledge, with the
associated development of techniques for identifying inconsistencies and
inadequacies in that knowledge; and

(5) To improve our understanding of clinical decision making, in order to

improve medical teaching and to make computer programs more effective and

easier to understand.

1.2 The Distinction Between Data And Knowledge

The models on which computer systems base their clinical advice range
from data~intensive to knowledge-Intensive approaches. There are at least four
types of knowledge that may be distinguished from pure stutistical data:

(1) knovledge derived from data analysis (largely numerical);

(2) judgmental or subjective knowledge;

(3) scientific or theoreticsl kncwledge; and

(4) high-level strategic knowledge or "self-knowledge."

If there is a chronology to the field over the last 20 years, it 1{s that
there has been progressively less dependence om "pure" observationsl data and
more emphasis on higher-level svabolic knowledge inferred from primary data. We
include with domain knowledge the category of 'judgmental knowledge" which
reflects the experience and opinicns cf an expert regarding an issue about which
the formal data may be fragmentary or nonexistent. Since many decisions made in
clinical wedicine depend ugon this kind of judgmental expertise, it 1is not
surprising that investigators should begin to look for ways to capture and use
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the knowledge of experts in decision making programs. Another reason to move
away from purely data-intensive programs is that in medicine the primary data
available to decision makers are far from objective [(20],(57]. They include
subjective reports from patients, and error-prone observations [27]). Also, the
terminology used in the reports is not standardized (7] and the classifications
often overlap. Thus decision making aids must be knowledgeable about the
unreliability of the data [57) as well as the uncertainty of the inference.

For example, data-intensive programs include medical record aystems which
accumulate large databanks to assist with decision making. There 1is little
knowledge per se in the databank, but there are large amounts of data which can
help with decisions and be analyzed to provide nev knowledge. A progranm that
retrieves a patient’s record for review, or even ome that 1dentifies and
retrieves the records of similar patients (matching some set of descriptors), is
performing a data management task with little reasoning involved [26],([86].
Although there is statistical "knowledge" contained in the conditional
probabilities generated from such a databank and utilized for Bayesian analysis,
{t is all numeric. At the other extreme are systems that encode and use the kind
of expert knowledge which cannot be easily gleaned from databanks or literature
reviews [75],[102]. Systems that model human reasoning or emphasize education of
users tend to fall towards this end of the data-knovledge continuum.

In addition to judgmeatal ind statistical knowledge, there are other
forms of information that can play an important role in computer-based clinical
decision aids. For example, underlying scientific theories and relationships
are often ignored by diagnostic programs but provide the foundation for
decisions made by human experts. Coasider, for example, the potential vtility
of techniques that could effectively represent and use the basic knovledge of
biochemistry, biophysics, or detailed human physiology- Biomedical modeling
research offers some mathematical techanlques for encoding such knowledge in
certain domains, but symbolic apnroaches and clinically useful applications are
still largely unrealized.

Finally, there 1is another kind of knovledge used by human decisiocu
makers — an understanding of reasoning processes and strategies themselves.
This kind of "high-level” or '"meta-lcvel™ kinowledge, 1if incorporated into
computer programs, may not only heighten their decision making performance but
also augment their acceptability to users by making them appear mor: aware of
their own power, strategies, and limitatious.
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We use the term "knowledge engineering,”

then, to refer to computer-based
synbolic reasoning issues such as knowledge representation, acquisitior,
explanation, and "self-awareness'" or self-modification [19]. It is along these
dimensions that knowledge-based programs differ most sharply from conventional
calculations. For example, they can solve problems by pursuing a line of
reasoning; the individuzl inference steps and che whole chain of reason.ng may
also form the basis for explanations of decisions. A major concern in knowledge
engineering is clear separation of the medical knowledge in a program from the
inference mechanism that applies that knowledge to the data of individual cases.
One goal of this paper is to identify, in the strengths and weaknesses of
earlier work, ti:ose issues which have motivated several current researchers to
investigate the automation of clinical decision aids through knowledge

engineering.

1.3 Parameters For Assessing Work In The Field

Barriers to successful implementation of computer-based diagnostic
systems have been analyzed on several occasions (7),{23),[106] and need not be
reviewed here. However, in assessing programs it 1s pertinent to examine
several parameters that affect the success and scope of a particular system in
light of its intended users and application. Unfortunately, the medical
computing literaturs has few descriptions of systems for which all the following

issues can be assessed.

(1) How accurate is the program?!

(2) What 1is the nature of the knowledge in the sysiem and how is it generated or
acquired?

(3) How 1is the clinical knowledge rapresented, and how does it facilitate the
performance goals of the system described?

(4) Bow are knowledge and clinical data used and how does this impact on systea
performance?

(5) Is the system accepted by the users for whom it is intended? Is the
interface with the user sdequate? Does the system function outside of a
research setting and {s it suitable for dissemination?

(6) What are the limitations of the approach?

IAlthough this is impor-ant it is not the only wmeasure of clinical
effectiveness. For example, the effects on morbidity, mortality, and leagth of
hospital stay Il{ also be imrortant parameters. As we shall s few systeams
have reached a stage of impleaentation vhere these parameters could be assassed.
Moreover, because of the complexity of the interacting influences that affect
the usual measures of outcome, it may be difficult ever to define the margiual
benefit of such systems.
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An issue we have chosen not to address {3 the cost of a system, including
the 3ize of the required computing resource. Not only 1s information on this
question scanty for most of the programs, but expenses generated in a research
and development environment do not realistically reflect the costs one expects

from a system once it is operating for service use.

1.4 Overview Of This Paper

An exhaustive review of computer-aided diagncsis will not be attempted in
11ght of the vastness of the field, and we have ther=fore chose:. to present the
prominent paradigms by discussing representative examples. In separate sections
we give au overview, example, and discussion of (1) clinical algcrithms, (2)
databank analysis, (3) mathematical models, (4) pattern recognition, (5)
Bayesian analysis, (6) decision theory, and (7) symbolic reasca’'ng. We close
each section by identifying the range of applications for which the approu~h
appears most appropriate, the limitations of the approach, and the ways in which
symbolic reasoning techniques may strengthen the approach by improving its
performance or acceptability.

The seven principal examples we have selected are not necessarily the
best nor the most successful; hovever, they illustrate the issues we wish to
discuss within the wajor paradigms. We have also referenced other closely
related systems, 80 the tibliography should guide the reader to more details on
particular topics. Any attempt to categorize programs In this way {s inherently
fraught with problems in that saveral systems draw upon more than one paradigm.
Thus we hsave occasionally felt obligated to simplify a topic for clarity in
light of the overall purposes of this review and the limitations of the space
available to us.

Because wa are only interested here in decision msking tools for use bdy
clinicians, we have chosen to disregard systems that are designed primarily for
use by researchers (39],(50), [65],{90]. PFurthermore, we shall not discuss
biomedical engineering applications of computerc, such ss advanced automated
instrumentation techniquas (e.g., computeriszed to-o;nphyz) or sijnal processing
techniques (e.g., programs for IEXC analysis (79] or patient wmonitoring [116])).
Because they do not explicitly wake inferences, we have also omitted programs
designed largely for data storage and retrieval with the actusal anslysis aud
dacision making left to the clinician [36),(58),[124). We have also chosen to

55.- Kak’s article in chis issue of the PROCEEDINGS.
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discuss working computer programs rather than unimplemented theories or early

reports of work in progress.

2 Clinical Algorithms and Automation

2.1 Overview

Clinical algorithus, or protocols, are flowcharts to which a
diagnostician or therapist can refer when deciding how to manage a patient with
a specific clinical problem [97]. Such protocols usually allow decisions to be
made by carefully following the simple branching logic, although there are
buile-in safeguards whereby referrals to experts are wmade if a patient is
unusually complex. The value of a protocol depends upon the infrequen.y with
which such referrals are made, so it 1s important to design algorittm: that
reflect an appropriate balance between safety and efficiency. In general,
algorithms have been designed by expert physicians for use by paramedical
personnel who have been entrusted with the performance of cerft:ain routine
clinical-care tasks3. The methodology has been developed in part tecause of a
desire to define basic medical logic concisely so that detailed training in
pathophysiology would not be necessary for ancillary practitioners. Experience
has shown that intelligent high school graduates, selected in large part because
of poise and warmth of personality, can provide excellent car: guided by
protocols after only four to eight weeks of training. This care has been shown
tc be equivalent to that given by physicians for the same limited problems, and
to be accepted by physicians and patients alike for such diverse clinical
situstions as diabetes management (56],(66]1, pharyngitis (38], headache [37],
and other disease categorias {104),{110].

The role of the computer in such applications has been limited, however.
In fact, several groups 1initially experimented with computer representatiom of
the algorithms but have since abandoned the efforts and resorted to prepared
paper forms [56],([110). 1In these cases the computer had originally guided the
physician assistant’s collection of data and had specified precisely what
decisions should be made or actions taken, 1in accordance with the clinical
algori:hm. However, since the algorithwic logic is generally simple, and can

3clinical algorithms have alsc been prepared for use by physicians
themselves, but Grimm has found that thez are generally less well-accepted by
doctors [3‘]- He showed, however, t'iat physician performance couid improve vwhen
protocols were used in certain settings.
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often be repiesented on a g9ingle sheet of paper, the advantages of an autcmated

approach over a manual system Lhave not been clearly demonstrated. In one study

Vickery showed that suapervising ohysicians could detect no significant

difference between the performance of physicians® assistants wusi‘3 automated

versus manual systems, although the computer system entirely eliwinated errors

in data collection (since it demanded all relevant data at the appropriate time)

[110). Furthermore, the computer could not, of course, decide whether the actual
observations entered by the pu.vsicians® assistant were ccrrect; yet this kind of

inaccuracy was one of the most common reasons that supervisors found an

assistant’s performance unsatisfactory.

There are two other ways in vwhich the computer has been used in the
setting of clinical algorithms. First, mathematical techniques have been ussd
to analyze signs and symptoms of diseases and thereby to identify those that
should most appropriately be referenced 1in corresponding c¢linical algorithms
{30],(55],(113]. Tne process for distilling expert knowledge in the form of a
cliuical algorithm can be an arduous and imperfect one [97]); formal techniques
to assist with this task may prove to be very valuable.

Some researchers in this area also use computers to assist with clinical
care audit by comparing actual actions taken by a physicians® assistant with
those recommended by the algorittim itself. Sox et al. [104] have described a
system in which the assistant’s checklist for a patient encounter was sent to a
central computer and analyzed for evidence of deviation frum the accepted
protocol. Computer—generated reports then served as feedback to the physicians’
assistant and to the supervising physician.

2.2 Exauple

We have selected for discussion a gproject that differs from those
previcusly cited in that (1) computer techniques are still being used, and (2)
the clinical algorithms are designed for use by primary care physicians
themselves. This 1s the cancer chemotherapy system developed in Alabama by
Mesel et al. [70]. The algorithms were developed to allow private
practitioners, at a distance from the regional tertiary-care center, to manage
the complex chemotherapy for their cancer patients without routinely referring
them to the central oncologists. Mesel et al. have described a "consultant-
extender system" that ensbles the primary physician to treat patients with
Hodgkin‘s Disease under the supervision of a regional speclalist. Five
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oncologists developed a care protocol for the treatment of Hodgkin’s Disease,
and this algorithm was placed on-line. Once patients had agreed tc participste
in the study, their private physici-ns wuld prepare "encounter forms" act the
time of each office visit. These forms would document pertinent interval
history, phyjsical findings, and lab data, as well as chemotherapy administered.
The form would then be sent to the regional center where it was aaalyzed by the
computer and a customized clinical algorithm was produced to assist the private
physician with the management of that patient during the next appointment. Thus
the computer program would take into account the ways in which the individual
patient’s disease might progress or improve and would prepare an appropriate
clinical algorithm. This protnzol was sent back te the physician in time for {t
to be available at the next office visit. The private practitioner was
encouraged to call the regional specialist directly 1{f the protocol seemed in
some way inadequate or additional juestions arose. The authors present data
suggesting that their system was well-accepted by physicians and patients, and
that excellent care was delivered®. Retrospective review of cases that were
treated at the referral center {itself, but without the use of the grutocols,
show:d a2 162 rate of variance from the management guidelines specified in the
algorithms; there was no such variance vhen the protocols were follcwed. Thus
algorithms may be effective tools for the administration of complex specialized

therapy in circumstances such as those describedS.

2.3 Discussion of the Methodology

Although clinical algorithms are smong the most widespread and best
accepted of the decision sids described in this article, the simplicity of their
logic makes it clear why the technique cam.s¢ be effectively appiied in wost
medical domains. Decision points in the algerithms are generally binary (i.e.,
a given sign or symptom is either present or sbsent), and there tend to be many
circumstances that can arise for which the user 1is advised to coansult the
supervising physicisn (or specialist). Thus the difficult decision tasks are
left to experts, and there is gemerally no formal algorithm for wanaging the
case from that point on. It ts precisely the simplicity of che algortthmic

4This 1s an interesting result im light of Grimm’s experience mentioned
in footnote 3. One possible explanstion is thar physicians were wmore accepting
of the algorithmic nsproach in Mesel’s case because it allowed thes to perform
taska that they would previously not have “~een sble to undertake.

More recently the Alabama group has reported similar success
mlmtin! a consultant-extender system for adjuvant chemc*horipy 1in breast
carcinoma (129).
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logic, and the safeguard of the supervising expert, which has permitted many
algorithms to be represented on one or two sheets of paper and has obviated the
need for direct computer use in most of "he systems. The contributions of
clinical algorithms to the distribution and delivery of health care, to the
training of paramedics, and to quality care audit, have been Iimpressive and
substantial. However, the approach {s not suicable for extensfon to the complex

dacision tasks to be discussed in the following sections.

3 Databank Analysie {or Prognosis and Therapy Selection

3.1 Overview

Automation of wmedical record keeping znd the development of computer-
bassed patient databanks have been msjor research concerns since the earliest
days of medical computing. Most such systems have atcempted to avoid direct
interaction betweer the computer and the physician recording the data, witi, the
systems of Weed [123'.(124) and Greenes [)6] being notable exceptions. Although
the earliest systems were designed merely as record-keep!1p devices, there have
been several recant atrtempts to creste programs that could also provide analyses
of the information stored in the computer databank. Scwe early systems {28],152)
had retrieval wmodules that identified all patient records ma=tching a Boolean
combination of descriptors; however, {urther analyses of these records fcr
decision making purposes was left to the i‘nvestigator. Ueed hzis not strezsed an
analytica! component in his automated problem—oriented racord {(124], but others
have developed decision aids which use mnedical record systems fashioned after
his [103).

The systems for datebank analysis all depend on the development of a
complete and accurste medical record system. Ouce such a system is developed, a
number of additional capsbilities canm bde provided: (1) correlstions smong
variables cam te calculated, (2) prognostic iedicstors can Ss wessured, and (J)
the response to various therapies can be compered. A physiciss faced with o
complex uanagement decision can look to such a system for assistance in
identilying patients in the past who had similer clinical problems and can then
see hov those patiemts responded to various tharapies. A ciimical imvestigator
keeping the records of his study pstients on such a system can use the program’s
statistical capsbilities for dats analysis. HNence, although these applicatioas
are inherently data-intensive, the kinds of "knovledge” geserated by specialiszed
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retrieval and statistical routines can provide valuable assistance for clinical
decision makers. For example, they help avoid the inherant biases of anecdotal
experience, such as occur vhen an {individual practitioner bases decisions
Primarily on personal encounters with one or two patients having a rare disease
or complex of symptoms.

There are many excellent programs in this category, one of which (s
discussed {n some detail in the next section. Several others warrant mention,
however. The HELP System at the University of Utah [117),(119],[120] uses a large
data file on patients 1n the Latter-Day Saints Hospital. Clinical experts
formulate specialized "HELP sectors” which are collections of logical rules that
define the criteria for a particular wmedical decision. These sectors are
developed by an interactive process; the expert proposes important criteria for
a given decision and is provided vith actual data regarding that criterion
(based on relevant patients and controls from the computer databank). The
criteria in the sector are thus adjusted by the expert until adequate
discrimination is made to justify using the sector’s logic as a decision tool®.
The sectors are then used for a variety of tasks throughout the hospital.

Another syvcem of interest is that of Peinstein et al. at Yale ([21], in
wvhich physicians interact with the system to request assistance in estimating
progrosis and guiding managsment for patients with lung cancer. Simflarly,
Rossti et a2l. have developed a system at Duke University which usts a large
databank on patients who have undergone coronary arteriography (88]). Rey
pa:ients can be matched against those in the datasbank to help determine patient
prognosis under a variety of management alternatives.

3.2 Exsmple _

One of the most successful projects in this category is the ARAMIS systea
of Fries at Staaford University (24). The approach was designed originally for
use 1in an outpatient rheumstology climic, bdut then broadened to s general
clinical dacabase system, the Time-Orieated Databamk (TOD) [126),[127], so that it
could be tramsferred to clinics in omncology, metabolic disease, cardiology,
endozrinology, and certaia pediatric subspecislties. All clinic records are
kept in a tabular format ia which a columm in a large table indicates a specific
clintic visit and the rows indicate the releveat climical parameters that are

‘Thl..!tGCCII uight be seen as s techaique to assist wvith the formulation
of clinical algorithms ss discwssed ia the previous section. Asother approach
using dstsbank amalysis for algorithm development is described in [¥0].
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being fcllowed over time. These charts are saintained by the physicians seeing
the patient in clinir, and the newv column of data is later transferred to the
computer databank by a transcriptiomist; in this way time-oriented data on all
patierts are kept current. The defined database (clinical parameters to te
followad) is determined by clinical experts, and in the case of rheumatic
diseases has nov been standardized on a national scale [41].

The information in the databank can be used to create a prose summary of
the patient’s curreut sctatus, add there are graphical capabilities wvhich can
plot specific psrameters for a patient over time [126). Howaver, it is 1o the
snalysis of stored clinical exnerience that the system has {ts greatest
potential wutilicy ([25]. In addition to performing search and statistical
functions such as those developed in databank systems for clinical investigation
{50),(65), ARAMIS offers a prognostic analysis for a nev patient when a
mansgement decision is to be made. Using the consultative services of the
Stanford Ismunology Division, an individual practitioner may select clinical
indices for his patient that he would like matched against other patients in the
databank. It is imperative that such indices be seiscted wisely and hence with
expert advice; the Stanford immunologists have found that the best descriptors
for characterizing patients are often different from those that a novice chooses
to use. Based on two to five such descriptors, the computer locates relevant
prior patients and prepares a report nautlining their prognosis with respect to a
variety of endpoints (e.g., death, development of renal failure, arthritic
status, pleurisy). Therapy recommendations are slso generated on the basis of a
response index that {is calculated for the matched patients. A prose case
analysis for the physiclan’s patient can also be gsusrated; this readable
document summarizes the relevant data from the databavrk and explains the basis
for the therapeutic recommendation.

The rheumatologic databank generated under ARAMIS has now been expanded
to iovolve a national netwvork of {mmunologists who are accumulating time-
oriented data on their pstienta. This natiomal project seeks in part to obtain
enough data so that groups of retrieved patients will be sizable, thereby
controlling fur scue observer variability and making the system’s
recommendations more statistically defensible.

3.3 Discussion of the Methodology
Datsbank anslysis systems have powerful capabilities to offc. to the
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individua!l clinical decision maker. Furthermore, medical cowputing researchers
recognize the potential value of large databanks in supporting many of che other
decision waking approaches discussed in subseque.. sectiomns. Thete are

{mportant additional issues regarding databank systems:

(1) Data acquisition remains a major problem. Many systems have avoided direct
physician-compute. interaction but have then been faced with the expense and
errors of transcription. The developers _f one well-accepted record system
still erxpress their desire to implement a direct interface with the
physician for these reasons, although they recognize the difficulties
enccuntered in ercouraging direct use of a computer system by doctors (1071.

(2) Analysis of data in the system can te complicated by missing values that
{requently occur, outlying values, and poor reproducibility of data across
time and among physicisns. Conversely, the system can itself be used to
identify questionahble values of tests or observations.

(1) The decision aids provided tend to emphssize patient management rather than
diagnosis. Feinstein’s aystem [21] is only useful for patients vith lung
cancer, for example, and the ARAMIS prognostic routines, which are designed
for patient management, assume that the patieat’s rheumatologic d* agnosis 1is
already known.

(4) There is no formal correlation between the way expert physiclans spproach
patient management decisions and the way the _ vograms arrive at
recommendations. PFeinstein and Koss felt that the acceptadbility of their
system would be limited by a purely statistical approach, and they therefore
chose to mimic human reasoning processes to a large extemt [59], but their
approach appears to be an exceptiom.

(5) Data storage space requirements can be large since the decision aids ot
course require a comprehensive medical record system as a basic compdnent.

Slamecka has distinguished berwaen structured end empirical spproaches to
clinical consulting systems (103], pointing out taat datsbanks provide a largely
empirical basis for advice whereas structured spproaches tely o judgmental
knovledge elicited frow the litersture or from experts. It s importaat to
note, however, that judgmental knowledge 1s itself based on empirical
information. Even cn axpert’s "intuitions” are based om observatious and "dats
celisctivn” over yaars of experience. Thus ome umight argue that large,
coxplets, and flexib.e dJatabanks could form the basis for large smowmts of
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judgmental knowledge that we now have to elicit from other sources. Some
researchers have {ndicated a desire to experiment with methods for the automatic
generation of medical decision rules from databanks, and one compouent of the
research on Slamecke’s MARIS system 1is apparently pointed ic that direction
{103]. Indead, some of the most exciting and practical uses of large databanks
may be found precisely at the interface with those knovledge engineering tasks

that have mont confounded researchers in medical symbolic reasoning (S].

4 Mathematical Models of Physical Processes

4.1 O-erview

Pathophyniclogic pracesses can be well-described by mathemati.al formulae
in a limited number of clinical problems areas. Such domains tave lent
themselves wall to the development of computer-based decision aids since the
issues are generally well-defined. The actual techniques used by <cguch programs
tend to reflect the details of the individual applications, the wmost celebrated
of vhich have been in pharmacokinetics (specifically digitalis dosing), acid-
base/electrolyte 4isorders, and respiratory care [69].

It is important that cooperating experts assist with the definitiom of
pertinent variables and the mathematicsl characterization of the relationships
smong them. The computer program requests the releviunt data, msakas the
appropriate cowputations, and provides a clinical analysis or recommendation for
therapy. Some of the programs have also involved branched-chain logic to guide
deciaions sbout what further data are needed for adequate mly.iﬂ.

Programe to aseist wvith digitalis dosing hsve graduslly ir.croduced
broader medical knowledge over the last ten Yyears. The earliest wvork was
Jalliffe‘s (48) snd was bsvsed upon his counsidersble experience otudying the
pharwacokinetics of the cardiac glycosides. His computer program used
mathematical forwuvlations based on perameters such as therspeutic gosals (e.g.,
desired predicted blood levels), body weight, reasl function, and route of
administration. In oune study he showed that computer rvecommsndations reduced
the frequemcy of adverse digitalis res:tions from 3I5% to 122 [49). |later,

""l:nclnd-cluu" '.oﬁc refers to wmecheniswe ty which portioms of a
decision network cem bde convidered or ignored depandiag upoun the dats on 8 givea
cass. Yor example, in an acid-base program the asaion uut;ht ba calculated
and & branch-poiat could the. determine whether the pathway for mly:iaou
slevated sniom P would be rr.quired. If the gap ware not e¢levated, that le
portion of the logic metwork could be skipped.
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auother group revised the Jelliffe model to permit a feedback loop in which the
digitalis blood levels cbtained with initial doses of the drug were considered
in subsequent therapy recommendations [78),[96). More recently, a third group
{n Boston, noting the insensitivity of the first two approaches to the kinds of
nonnumerical observations that experts tend to use in modifying digitalis
therapy, augmentad the pharmacokinetic model with a patient-specific model of
clinical status {35]). Running their system in a monitoring mode, 1in parallel
with actual clinical practice on a cardinlogy service, they found that each
patieit in the trial in whom toxicity developed had received more digitalis than

would have been recommended by their program.

4.2 Example
Perhaps the best known program in this category is the interactive system

developed at BJoston’s Beth Tsrael Hospital by Bleich. Originally designed as a
program for assessment of acid-base disorders (2], it was later expanded to
cmsider electrolyte abnormalities as well [3},[4]. The knowledge 1in Bleich’s
program 1s a distillation of his own expertise regarding acid-base and
electrolyte disorders. The system begins by collecting initial laborstory data
from the physician seeking asdvice on a patient’s management. Branched-chain
logic s triggevred by asbnormalities in the initial daca so that only the
pertineat sections of the extensive decision pathways created by Bleich are
explored. The approach is therefore similar to the flowcharting techniques used
by the clinical algorithms of Sectfon 2, but 1t iaovolves aore complex
mathematical relutiocnships than algorithms typically do. Essentially all
questions asked by the program sre numerical laboratory values or "yes-no"
questions (e.g., "Does the patient have pitting edema?”). Depending upom the
complexity and ssverity Jf the case, the program eventually generates an
evalustion note that may vary ia lcnggh from a few lines to several pages.
Included are suggestions regarding possible ceuses of the observed abnormalities
and suggestions for correcting thea. Literature re’nrences are also provided
with -he recommendations.

Although the program was made available at several East Coast
institutions, few physicisas accepted it as an ongoing clinical tool. Bleich
points out that part of the reason for this was the system’s inherent
educaticual impact; physiciass simply began to anticipate its sualysis after
they had used 1t a fow times (318,

_—Inoto receatly he has been ll:ﬂtillltl with the prograa opcra:in' as a
mcaitoriag system, theveby avoiding direct interactiom with the physician.
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The system’s lack of sustained acceptance by physicians is probably due
to mcre than its educational impact, howvever. For example, there is no feedback
in ths system; every patient is seen as a nev case and the program has no
concept of following a patient’s reaponse to prior therapy. Furthermore, the
program generates differential diagnosis lists but does not pursue specific
etiologies; this can be particularly bothersome when there are wmultirle
coexistent disturbances in a patient and the program sizply siuggests parallel
lists of etiologies without noting or pursuing the possible interrelationships.

Finally, the system is “iighly individualizad in that it contalns only the
parsmeters and relationships that Bleich specifically thought were important to
include in the 1logic network. Of course human consultants also give
personalized advice which may differ from that obtained from other experts.
However, a group of researchers in Britain ({85] who compared Bleich’s program %o
four other acid-base/electrolyte systems, found total agreement among the
programe in only 207 of test cases vhen the;e systems vere askad to define the
acid~base disturbance and the degree of compensation presemt. Their analysis
does not reveal which of the programs reached the correct decision, however, and
it may be that the results are more an indictment of the other four programs

than a valid criticism of the advice from Bleich’s acid-base component.

4.5 Discussion of the Methodologies

The programs mentioned in this section differ from one another in several
respects, and each tends to overlap with cther paradigess we have discussed.
Bleich’s program, for example, 1s essentially a complicated clinical algoritim
incerfaced with rmathematical forwulations of electrolyte and acid-base
pathophysiology. As such 1t suffers from the wesknesses of all algorithmic
approaches, most importantly its highly structured and inflexible logic which is
unable to contend with circumstances not specifically anticipated 1in the
aigoritim. The digitalis dosing programs all drav on wmathematicsl techniques
from the field of biomedical wodeling (40), but have recently shown more
reliance on methods from other areas as well. In particular these have included
symbolic reasoning methods that allowv clinical expertise to be encoded and used
in conjunction with mathemstical techniques [35]. The Boston group that
developed this wmost recent digitalis program 1is <{aterested in similarly
developing an acid-base/slectrolyte system so that judgmental knowledge of
expsrts can be interfaced with the mathematical models of pathophyuiolo.y’.

grhil project vas dascribed by Prof. Peter Sszolovits, of MIT’s clinical
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There is al'so a large research community of mathematicians who attempt to
understand and characterize physical processes by devising simulation models
[40]. Although such models are largely empirical and have generally not found
direct application in clinical medicine, their research role may eventually be
broadened to provide practical decision aids through interfaces with the other
paradigms described in this review.

The major strength of mathematical models is their ability to capture
mathematically sound relationships in a concise and efficient computer program.
However, the major limitation, ar ~ith moet of the paradigas discussed here, is
that {ew areas of medicine are anmenable to firm, quantitative description.
Because the accuracy of the results depend on correct identification of relevant
parameters, the precision and certainty of the relationships among them, and the
accuracy of the technigques for measuring them, mathematical models have limited
ipplicabiity at present. Furthermore, those domains that do lend themselves to
mathematical description may still benefit from 1interactions with symbolic
reasoning techniques, ss has been demonstrated in the digitalis therapy adviser
(351.

5 Stat{stical Pattzrn Recognition Techniques

Sel Overview

Pattern recognition techniques define the mathematical relatioaship
between wmeasurable features and ciassifications of obtjects [151,(51). 1Ia
medicine, the presence or absence of each of several signs and symptoms 1in a
patient may be definitive for the classification of the patient as "sbnormal” or
into the category of a specific disease. They are also used for prognosis [l],
or predicting disease duration, time course, and outcomss. These techniques
have been applied to a variety of medical domains, such as image proceseing and
signal analysis, in addition to computer-sssisted diagnosis.

In order to find the diagnostic pettern, or discriminant function, the
sethod requires a training set of objects, for which the correct classification
is already known, as well as reliable values for their measured features. If
the form and parsmeters are not known for the statistical distributioms
underlying the festures, them they sust be estimated. Parametric techmniques

decision maki roup, dur a worhshop om artificial incelligence 1im medicine
at the Univot:!t; of *bkyo‘tg November !97!.
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focus on learning the parameters of the probability density functions, while

non-parametric (or "distribtution-free") techniques make no assumptions about the

form of the distributions. After training, them, the pattern can be compared to
new, unclassified objects to aid 1in deciding the category to which the new
object belongllo.

There are numerous variations on this general approach, most notably in
the mathematical technijues used to extract characteristic measurements (the
features) and to find and refine the pattern classifier during training. For
exsuple, linear regression analysis is a commonly used techmique for finding the
coefficients of an equation that defines a recurring pattern or category of
diagnostic or prognosti: interest. A class of patients can be described ty »
feature vector X = [x), X3, e+, Xp] (vhere xy i3 one of n descriptive
variables). The goal 1is to produce an equation relating the posterior
ptobabilitiul1 of each diagnostic class to the feature vector through a set of

n coefficients (11)12:
P(DyIX) = a)x] + a3x3 + <o + apxy

Recent work emphasizes structural relatioaships among sets of [eatures more than
statistical ones.
Three of the best known training criteria for the discriminant function

are:

(1) least-squared-error criterion: choose the function that winimizes the
squared differences between predicted and observed measurement values;

(b) clustering criterion: choose the function that produces the tightest
ciusters;

(c) Bayes’ criterion: choose the function that has the minimum cost associated
with iancorrect dia'uolall3-

I01¢ 1o possible to detect patterns, even without a known claasification
for objects in the trninia% set, with so-called "unsupervised” learni
techniques. Also, it i{s poasible to worx with both numerical and non-numerica
measurements .

llthe posterior probability of a diagoostic class, represented as
(D Iia; 1s the probability that a patient falls in diagnostic category Dg given
that t! feature vector X has been observed.

l2gqq¢ [62] for a study in which the coefficients are reporisd becsuse of
their medical import.

13Mis is one of many uses of Bayes’ Theorem, a definitional rule that
relates posterior and prior probabilities. PFor an overview of its use as a
diagnostic rule (ss opposed to a training criterion) and a dafinition of the
formula, see Sectiom 6.
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Ten commonly used mathematical models based on these criteria have been shown to

produce remarkably similar diagnestic results for the same data (7).

5.2 Example

There are numerous papers on uses of pattern recognition methods in
medicine. Armitage [1] discurses three examples of prognostic studies, with an
emphasis on regression methods. Goldwyn et al. [31) discuss uses of cluster
analysis. One recent diagnostic application by Patrick (73] wuses Bayes’
criterion to classify patients having chest pains {nto three categories: Dj:
acute wmyocardial infarction (MI); Dj: coronary insufficiency; and Dj3: non-
cardisc causes of chest pain. The need for early diagnosis of heart attacks
without laboratory tests is a prevalent problem, yet physicians are known to
misclassify about one third of the patients in categories D) and D7 and about
80% of those 1in D3. In order to determine the correct classification, eacn
patient in the training set was clasaified after 3 days, based or laboratory
data including electrocardiogram (ECG) and blood data (cardiac enzymes). There
remained some uncertainty about several patienrs with "probable MI." Seventeen
varizbles were selected from wmany: 9 features vrith continuous values (including
age, heart rates, wvhite blood count, and hemoglobin) and 8 features with
discrete values (sex and 7 ECG features).

The training data were wmeasurements on 247 patients. The decision rule
was chosen using Bayes’ theorem to compute the posterior probabilities of each
diaguostic class given the feature vector X (X = [x;, X3, +++ , X]7]. Then a
decision tule was chosen to minimize the probability of error by adjusting the

coefficients on the feature vector X such that for the correct class Dy:

P(D4IX) = MAX[P(D;IX), P(D3IX), P(D3iX);

The class conditional probability density functions must be estimated
initially, and the perforsance of the decision rule depends on the accuracy of
the assumed model.

Using the same 247 patients for testing the approach, the trained
classif’er sveraged 8507 correct diaguoses over the three classes, usiag only
data available at the time of admizaion. Physicians, using wore data than the
computer, averaged only 50.5X correct over these three categories for the same
patients. Training the classifier with a subset of the patients, and using the
remainder for testing, produced nearly as good results.
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5.3 Discusgion of the Methodology

The number of reported wmedical applications of pattern recognition
techniques is large, but there are also numerous problems associated with the
approsch. The most obvious difficulties sre choosing the set of features in the
first place, collecting reliable measurements on a large sample, and verifying
the initial classifications among the training data. Current techniques are
inadequate for problems in which trenda or wmovement of features are {mportant
characteristics of the categories. Also the problems for which existing
techniques are accurate are those that are well characterized by a small armber
of featvres ("dimensions of the space”).

As with all techniques based on statistics, the size of the sampie used
to define the categories 1s an important consideration. As the number of
important fea:ures and the number of relevant categories increase, the required
si:: of the training set also increases. In one test (7], pattern classifiers
trained to discriminate among 20 disease categories from 50 symptoas were
correct 51X ~ 64% of the l(ime. The same methods were used to train classifiers
to discriminate between 2 of the diseases, from the same 50 symptoms, and
produced correct diagnoses 92% - 98% of the time.

The context 1in vhich a 1local pattern 1is 1identified raisss problems
related to the 1issue of utilizing medical koowledge. It 1is difficult to find
and use classifiers that are best for a small decisioan, such as vhether an area
of an X-ray is 1iunside or outside the heart, and integrate those into a global
classif!er, such as one for abnormal heart volume.

Accurate application of a classifier in a hospital setting also requires
that the measurements in that clinical environment are consisteant with the
seasurements used to train the classifier initially. Por example, 1if disecases
and symptoas are defined differently in the nev setting, or if lab test values
are reported in different ranges, or different 1lab tests used, then decisiouns
based on the classification are not relisble.

Pattern recognition techniques are often misapplied in wedical domains in
vhich the assumptions are violated. Some of the difficulties noted above are
avoided in systems that integrate structural knowledge into the numerical
methods and 1in systems that integrate numan and machine capabilities into
single, interactive systems. These modifications will overcome one of the major
difficulties seen in complstely automated systems, that of providing the systea
with good "intuitions" based on an expert’s a priori kxnowledge and experience
{sil.
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6 Bayesian Statistical Approaches

6.1 Overview

More work has been done on Bayesian approaches to computer-based medical
dectsion making than on any of the other paradigms we have discussed. The
appeal of Bayes’ Theorem!4 1s clear: it potentially oifers an exact method for
computing the probability of a disease based on observations and data regarding
the frequency with which these ohservations are known to occur for specified
diseases. In several domains :he technique has beer shown to be exceedingly
accurate, but there are alsc several limitations to the approach which we
discuss below.

In its simplest formulation, Bayes’ Theorem can be seen as a mechanism to
calculate the probability of a disease, in 1lignt of specified evidence, from the
a priori probability of the disease and the conditional probabilities relating
the observations to the diseases in which they may occur. For example, suppose
disease Dy is one of n mutually exclusive diagnoses under consideration and E is
the evidence or obser:atioms supporting that diagnosis. Then if P(Dj) is the a
priori probability of the itii disease 15,

P(Dy) P(E|Dy)

P(D4IE) =
z P{Dy) “”uj,
g

The theorem can also be represenied or derived in a variety of other forms,
including an odds/likelihood ratio formulation. We cannot include a full
discussion here, but any introductory statistics book or Lusted’s vclume [64]
presents the subject in considerable detail.

Among the most commonly recognized problems with the utilization of a
Bayesian approach is the large amount of data required to determine all the
conditional probabilities nseded in the rigorous application of the formula.
Chart reviev or computer-based analysis of large databanks occasionally allows
most of the necessary conditional probabilities to be obtained. A variety of
additional assusptions wust be made. FYor example: (1) the diseases under
concideration are sssumed mutuslly exclusive and exhaustive (i.e., the patient

1s assumed to have one of the n diseases), (2) the clinical observations are

144180 often referred to as Bayes’ rule, discriminant, or criterion

15fere P(Dilt) is th- g:oblbilit of the ith disease given that evidence
E has been observ the probability that evidence E will be observed
TIn the settiing of the 1th
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assumed to be conditionslly {ndependent over a given diseasel6, and (3) the
incidence of the symptoms of a disease is assumed to be stationary (i.e., the
model does not allew for changes in disease patterns over time).

One of the earliest Bayesian programs was Warner’'s system for the
diagnosis of congenital heart disease [115]). He compiled data on 83 patients and
generated a symptom-disease matrix consistiag of 53 syuptoms (atrributes) and 35
disease entities. The diagnostic performance of t'e computer, based on the
presence or absence of the 53 symptoms in a new pat-:.mnt, was tnen compared to
that of two experienced physicians. The program was shown to reach diagnoses
with an accuracy equal to that of the experts. Furitermore, system parformance
was shown to improve as the statistics in the symptcin-disease matrix stabilized
with the addition of increasing numb rs of patients.

In 1968 Gorry and Barmett point 4 out that Warmer’e program had required
making all 53 observations for every patient to be diagnosed, a situation which
would not be realistic for many clinical applicatione. They therefore used a
modification of Bayes® Theorem in which ot¢ervations are considered
sequentially17- Their computer program analyzed ~observations one at a time,
suggested which test would be most wuseful 1if performed next, and included
termination criteria so that a diagnosis conld be reached, when appropriate,
without needing to make all the observations [32]. Decisious regarding tests
and termination were made on the basis of calculations cf expected costs and
benefits at each step i{n the logical proaesals. Using the same symptom-disease
matrix developed by Warner, they were able to attaian =zequivalent diagnostic
performance using only 6.9 tests on average19. They pointed out that, because
the costs of medical tests may be significant (in terwms of pa%ient discomfort,
time expended, and financial expense), the use of inefficient testing sequences
should be regarded as ineffective diagncsic. Warner has also more recently
included Gorry and Barnett’s sequential diagnosis approach in an application

regarding structured patiemnt history-taking [118].

16rhe purest form of Bayes’ Theorem aliows conditional dependencies, and
the order in which evidence is obtained, to be exglicitly considered in the
analysis. However, the number of required conditional robabilities is so
unvieldy that conditional independence of observations, and non-dependence on
the order of observations, is generally assumed [{108].

175 similar approach was devised in Russia at approximately the same time
by Vishnevskiy and associates. Their analyses, and a suu-ari of the impressive
amount of statistical data chey have amassed, are contained in (lll1].

1854e the decision theory discussion in Sectiom 7.
197egts for determining attributes were defined somevhat differently than

they had Seen by Wstnar. Thus the maximum number of tests was 31 rather than
the 53 observations vsed in the original study.
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The medical computing literature nov includes many examples of Bayesian
diagnosis programs, most ot which have used the nousequential approach, in
addition to the necessary assumptions of symptom independence and mutual
exclusiveness of disease as discussed above. Jne particularly successful

research effort has been chosen for discussion.

6.2 Example

Since the late 1960°s deDombal and asscciates, a* the University of Leeds
(England), have teen studying the diagnostic prccess and developing computer-
based decision aids using Bayesian probability theory- Their area of
iovestigation has been gastrointestinal diseases, origiually acute abdominal
pain [l2) with more recent analyses of dyspepsia [44] and gaxtric carcinoma
f1341.

Their program for assessment of acute abdominal pain was evaluated in the
emergency room of their affiliated hospital [12]. Emergency physicians filled
out data sheets summarizi~g clinical and laboratory findings on 304 patients
presenting with abdominal pain of acute onset. The data from these sheets
became the attributes that were subjected to Bayesian analysis; the required
conditional probabilities had been previously compiled from a large group of
patients with one of seven possible diagnoseszo. Thus the Bayesian formulation
assumed each patient had one of these diseases and would select the most likely
on the basis of recorded observations. Diagnostic suggestions were obtained in
batch mode and did not require direct interaction between physician and
computer; the program could generate results in from 30 seconds to 15 ainutes
depending upon the level of system use at the time of analysis [43]. Thus the
computer output could have been made available to the emergency room physician,
on average, within 5 minutes after the data form was completed and handed to the
technician assisting with the study.

During the study [(12], however, these computer-generated diagncses were
simply sav'd and later compared to (a) the diagnoses reached by the attending
clinicians, and (b) the ultimate disgnosis verified at surgery or through
appropriate tests. Although the clinicians reached the correct djagnosis in
only 652-80% of the 304 canel- (with sccuracy depending upon an individual’s
training and experience}. the program was correct in 91.8% of cases.

Furthermore, in 6 of the 7 disease categories the computer was proved more

za;ppcndicitis. diverticulitis, perforated ulcer, cholecystitis, smsall
bowel obstruction, psncreatitis, and non-specific abdominal pain.
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likely than the senior clinician in charge of a case to assign the patient to
the correct disease category. Of particular {nterest was the progcam’s accuracy
regarding appendicitis, a diagnosis which 1s often wmade incorrectly. In no
cases of appendicitis did the ccmputer fail to make the correct diagnosis, and
in only six cases were patients with non-specific abdominal pain incorrectly
classified as having appendicitis. Based om iz actual clinical decisions,
however, over 20 patients with non-specific abdominal pain were unnecessarily
taken to surgery for appendicitis, aud in six casas patiencts wvith appeundicitis
wvere "watched" for over eight hours before they were finally taken to the
operating room.

These investigators also performed a fascinating experiment in vhich they
compared tne program’s performance based on data derived from 600 resl patients,
with the accuracy the system achieved using "estimates” of conditioval
probabilities obtained from experts 160121, As discussed above, the program vas
significantly more effective than the unaided clinician vhen real-iife data were
used. However, it performed significantly less well thar clinicisns when expert
estimates were used. The results supported what several other observers have
found, namely that physicians often have very little idea of the "true"
probabilities for symptom-disease relationships.

Another Leeds study of note was an analysis of the effect of the systea
on the performance of clinicians ({13]. The trial we have mentioned that
{nvolved 304 pat.ients was eventually extended to 552 before terminstion.
Although the computer’s accuracy remained in the range of 912 throughout this
period, the performance of clinicians was noted to improve markedly over tiwe.
Fewer negative laparotomies vere performed, for exsmple, aod the number of acute
appendices that perforsted (ruptured) also declined. UWowever, these data slowly
returned towards baseline after the study wvas terminated, suggesting that the
constant awareness of computer monitoriag and feedback regarding systea
performance had temporarily generated a heightened awareness of intellectual

processes smoung the hosp’tal’s surgeons.

6.3 Discussion of the Msthodology
The ideal matching of the problsm of acute abdomainal pain and Bayesian

anslysis mst be emphasized; the technique cammot necessarily be as effectively

2igycnr estimates are referred to s “"subjective” or '‘persomal”
robabilities, and some investigators have argued that tl;:z should de used ia
yodm l(n%m when formally derived comditiomsl probabilities are wsot
ava e .
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applied in other medical domains where the following limitations of the Bayesian

approach may have a greater impact.

(1) The assumption of conditional independence of symptoms usually does not
apply and can lead to substantial errors in certain settings (72]. This has
led some investigators to seek new numerical techniques that avoid the
independence assumption (3]. If a pure Bayesiar formulation 1is used
without making the independence assumption, hcwever, the number of reguired
conditional probabilities becomes prohibitive for complex real world
problezs (108).

(2) The assumption of mutual exclusiveness and exhaustiveness of disease
categories is ususzlly falme. In actual practice concurrent and overlapping
disease categories are common. In deDombal’s system, for example, many of
the abdominal pesin diagnoses missed were outside the seven "recognized”
possibilitics; if a program starts with an assumption tha: it need only
cousider a small number of defined likely diagnoses, it will inevitably miss
the rare or unexpected cases (precisely tiie omes with which the clinician is
wost apt to need sssistance).

(3) Ir wemy domains it may be inaccurate to assume that relevant conditional
probabilities are stable over time (e.g., the likelihood that a particular
bacterium will be sensitive to a specific aatibiotic). Furthermsore,
diagnostic categoriss asnd definitions are coustantly chaneing, as are
physicians’ observational techaigues, theredy invalidating data previously
accumulated??. A similar problem results from variations in a priori
probabilities dependiag wpon the population from whizh a patient is draw?3.
Some observers feel that these are major limitations to the use of Bayesian
techmiques [16].

In general, thea, & purely Beyesian approsch cam so coustrain prodlem
formulation as to meke & perticular aspplicatioa uarealistic and hence
unworkable. Purthermore, even vhes diagmostic performsmce is excellemt such as
in deDombal’s approach to shdominsl pais evalustion, clinical implementatiomn and
system acceptamce vwill generally be difficult. Porms of representation that
allov explasation of system perforusece is familisr terss (i.e., a wore

=!!ut h graduwal ¢ ia definitioas or observational techmiques ma
be ouuaucm dgucublomdm enslynis, a Bayesfan analysis tﬁq:: ....’.'
such datas is imevitably proee to error.

2l4obembsl hes examimed such raphic ead populstioan-based variations
in probabilities snd has reperted o.t!;‘gmtu of his smalysis [(14]).
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congenial interface with physician users) will heighten clinical acceptance; it

i{s at this level that Bayesian statistics and symbolic reasoning techniques may

most beneficially interact.

7 Decision Theoretical Approaches

7.1 Overview

Bayes’ Theorem is only one of several techniques used in the larger field
of decision analysis, and there has recently been increasing interest in the
ways in which decision theory might be applied to medicine and adapted for
sutomation. Saveral excellent reviews of the field are available in basic
reviews {45), textbooks 184), and medically-oriented journal articles
{67),(94],(109). In general terms, decision analysis can be seen as any attempt
to conslder values associated with choices, 2s vell as probabilities, in order
to analyze the processes by which decisions are cade or should be made.
Schwartz identifies the calculation of "expected value" as central to formal
decision analysis [94]. Ginsberg contrasts medical classificatien problens
(e.g., diagnosis) vith broader decision problems (e.g., "What should 1 do for
this patient?”"), and asserts that most important medical decisions fall 1in the
latter category and are best approached through decision analysis (29].

The following topics are among the central issues in the field:

(1) Decision Trees. The decision making process can be seen as a sequence of

steps in which the clinician selects a path through a network of piausible
events and actions. Nodes in this tree-shaped network are of two kinds:
decision oodes, where the clinicfan must choose from a set of actions, and

chance nodes, where the outcome is not directly comtrolled by the clinician

but is a probabilistic response of the patient to some action takeu. For
erample, a phyiician may choose to perfors a certain test (decision node)
but the occurrence or nomoccurrence of complications may be largely a matter
of statistical likelihood (chance node). By snalyzing a difficult decision
process before taking any actions, it wmay be possible to delineate in
advance all pertinent chance and decision nodes, all plsusible outcomes,
plus the paths by which these ouccomes might be reached. Furthermore, data
may exist to allow specific probadilities to be associated with each chance
node in the tree.
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(2) Expected Values. In actual practice physicians make sequential decisions

based on more than the probabilities assnciated with the chance node that
follows. For example, the best possible outcome is not necessarily sought
if the costs associated with that "path” far ocutweigh those along alternate
pathways (e.g., a definitive diagnosis may not be sought if the required
testing procedure 1is expensive or painful and patient management will be
unaffected; similarly, some patients prefer to "live with" an inquinal
hernia rather thaa undergo a surgical repair procedure). Thus, anticipated
"costs" (financia.., complications, discomfort, pacient preference) can be
associated with the decision nodes. Using the probabilities at chance
nodes, the costs at decision nodes, and the "value' of the various outcomes,
an "expected value" for each pattway through the tree (and in turn each
node) can be calculated. The ideal pathway, then, is the one which

mzximizes the expected value.

(3) Eliciting Values. Obtaining from physicians and patients the costs and

values they associate with various tests and outcomes can be a formidable
problem, particularly since formal analysis requires expressing the various
costs in standardized units. Ome approach has been simply to ask for value
ratings on a hypothetical scale, but it can be difficult to get the
physician or patient to keep the values24 separate from their knowledge of
the probabiliries 1linked to the associated chance nodes. An alterrate
approach has been the development of lcttery games. Inferences regarding
values can be made by identifying the odds, in a hypothetical lottery, at
wvhich the physician or patient 1is indifferent regarding taking a course of
action with certain outcome and betting om a course with preterable ocutcome
but with a finite chance of significant negative costs if the "bet" 1is lost.
In certain settings this approach may be accepted and provide important
guidelines in decision making (77].

(4) Test Evaluation. Since the tests which lie at decision nodes are central to

clinical decision analysis, it 1s crucial to know the predictive value of
tests that are available. This leads tc consideration of test sensitivity,
specificity, receiver operator characveristic curves, and sensitivity
analysis. Such issues are discussed by FKomaroff in this issue of the
Proceedings [57] and have also been summirized elsevhere in the clinical
literature [68].

24,190 termed M"utilities" in some refurences; hence the term "utility

theory" (84].
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Many of the w=ejor studies of clinical decision analysis have not
specifically involved computer implementations. Schwartz et al. examined the
workup of renal vasculsr hypertension, developing arguments to show that for
certain kinds of cases a purely qusalitative theoretical approach was feasible
and useful [94]). However, they showed that for wmore compler clinically
challenging cases thz decisions could not be adequately sorted out withour the
introduction of numerical techniques. Since it was impractical to assume that
clinicians would ever take the time to carry out a detajled quantitative
decision analysis by hand- they pointed out the logical role for the computer in
assisting with such tasks and accordingly developed the systea we discuss as an
example below ([33].

Other colleagues of Schwartz at Tufts have been similarly active in
applying decision theory to clinical problems. Pauker and Kassirer have
examined applications of formal cost-benefit snalysis to therapy selection [74]
and Pauker has also looked at possible applications of the theory to the
management of patients with coronary artery disease {76]. An entire issue of
the Nev England Journal of Medicine has also been devoted to papers on this
methodology [46].

7.2 Example
Computer implementations of clinical decision analysis have appeared with

increasing frequency since the m1d-1960°s. Perhaps the esarliest major wvork vasz
that of Ginsberg at Rand Corporation [28], with more recent systems reported by
Pliskin and Beck [80] and Safran et al. [91].

We will briefly describe here the program of Gorry et al., developed for
the management of acute renal failure (33). Drawing upon Gorry’s experience
with the sequential Bayesian approach previously sentioned [32), the
investigators recognized the need to incorporate some way of balancing the
dangers and discomforts of a procedure sgainst the value of the informatiom to
be gained. They divided their program into two parts: phase I comsidered ounly
tests with minimal risk (e.g., history, examination, blood tests) and phase II
considered procedures involving wore risk and inconvenience. The phase I
program considered 14 of the a20st common causes of renal failure and used a
sequential test selection wurocess based on Bayes’ Theorea and omitting more
advanced decisfion theoretic:al techuiques [32]. The conditional probabilities
used were subjective estinates obtained from an expert nephrologisct and were
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therefore potentially as problematic as those discussed by leaper et =zl. [60]
aee Section 6.2). The researchers found that they had ro choice but to use
expert estimates, however, since detailed quantitative data were not available
either {n databanks or the lliterature.

It {s in the phase II program that the methods of decision theory were
employed because it was in this portion of the decisiou process that the risks
of rrocedures becam~ important considerations. At each step in the decision
process this program comsiders whethor 1t 1{s best to treat the patient
‘mmediately or to first carry out an additional diagnostic test. To make this
lecision the progras identifies the treatment with the highest current expected
value (in the absence of further testing), and compares this with the expected
values of trestments that could b2 fnscicuted 1if another diagnostic test wvere
perforsed. Comparison of the expected values are made in light of the risk of
the test in order to determine whather the overall expected value of the test is
greater than that of ismediate treatment. The relevant values and probabilities
of outcomes of treatment were obtsined as subjective estimates from
nephrologisats in the same way that symptom-disease data had been obtained. All
estinates were gradually refined as they gained exparience using the program,
however .

The program vas evaluated ou |8 test cases in vhich the true diagrosis
wvas uncertain bnt two expert nephrologists were willing to make management
decisfons. In 14 of the cases the program selected the same therapeutic plan or
diagncstic test as was chosem by the expsrts. For ihiee <f ths fowr remaining
csses the program’s decision was the physicians’ second choice and was, they
felt, a reascusble slternative plan of actiocn. In the last case the physicians
alsn accepted rha progrsa’s decision os reasonsble although it was not among

their first twe choices.

7.3 Discussioa of the Mpthodology

The excelleat performance of fory “'s program, despite i{ts relisnce on

subjective estimstes from umperts, may serve to emphasize the importance of the
clinical smalysis cthat underlies the decisioa theoretical approsch. The
reasoning stepe in wussaging climical cases have bLesa dissected in such detaii
that smsall errors {. the probebility eetimates are appareatly wmuch less
importaat tham they w<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>