COMPUTER SYSTEMS LABORATORY

I

STANFCRD HECTRONICS LABCRATCRIES
DEPARTMENT OF ELECTRICAL ENGINEERING

STANFCRD UNIVERSITY * STANFCRD. CA 94305 STAN-B-79-7 15

S—1 ARCHITECTUREMANUAL

Brent T. Hailpern and Bruce L. Hitson

TECHNICALREPORTNO.161

January 1979

This report was prepared in order to document the S-1 multiprocessor architecture.
the central project of the Advanced Digital Processor Technology Base Development
for Navy Applications, under subcontract from Lawrence Livermore Laboratory to
Stanford University, Computer Science Department, Principal Investigator Professor
Gio Wiederhold, Contract No. LLL P09083403. Other Lawrence Livermore Labora-
tory as well as Advanced Research Projects Agency contracts have supported the
facilities at the Stanford Artificial Intelligence Laboratory, which was used in the
execution of this work. The S-1 project is supported at Lawrence Livermore Labora-
tory of the University of California by the Department of the Navy via ONR Order

No. N00O14-78-F0023.

N

2
52

AN

"-‘:::ih,us ﬂ‘ :

7
N
LN

4

STAN- CS-79-715

S-i ARCHITECTURE MANUAL

Brent T. Hailpern-and Bruce L. Hitson

TECHNI CAL REPORT NO. 161

January 1979

COMPUTER SYSTEMS LABORATORY
Departnents of Electrical Engineering and Conputer Science
Stanford University
Stanford, California 94305

This report was prepared in order to docunent the S-1 nultiprocessor
architecture, the central project of the Advanced Digital Processor
Technology Base Developnent for Navy Applications, under subcontract
from Lawrence Livernore Laboratory to Stanford University, Conputer
Science Departnent, Principal Investigator Professor G o Wederhold,
Contract No. LLL P09083403. Other Lawence Livernore Laboratory as
well as Advanced Research Projects Agency contracts have supported
the facilities at the Stanford Artificial intelligence Laboratory,
which was used in the execution of this work. The S-1 project is
supported at Lawrence Livernore Laboratory of the University of
California by the Departnent of the Navy via ONR Order No. NOOOT4-
78-F0023.

S-1 Architecture Manual
(SMA - 3)

Brent T. Hailpern, Bruce L. Hitson

TECHNICAL REPORT NO. 161
January 1979

Computer Systems Laboratory
Departments of Electrical Engineering and Computer Science
Stanford University
Stanford, California 94305

ABSTRACT

This manual provides a complete description of the instruction-set architecture of the S-1
Uniprocessor (Mark IIA), exclusive of vector operations. It is assumed that the reader has a general
knowledge of computer architecture. The manual was designed to be both a detailed introduction to
the S-1 and an architecture reference manual. Also included are user manuals for the FASM

Assembler and the S-1 Formal Description Syntax.

KEY WORDS: S- 1, architecture description, instruction set description, addressing modes, trapping
mechanisms, high-speed architecture.

Table of Contents

1 Introduction

L1

Notation and Conventions

2 Memory and Registers . . , , . . , . . . ,

2.1
2.2

2.3

24

25

3 Data

31
32
33
34
35
3.6
37
3.8

Memory

Registers .

2.2.1 Register Flles

2.22 General-Purpose Reglsters

2.2.3 Dedicated-Function Registers
2.2.3.1 Program-Counter

2232 Stack-Pointer (SP) and Stack- lelt (SL)

2.2.3.3 RTA and RTB e,
2.2.4 Summary .o
Address Transformation e e
2.3.1 Flag Bits: The FLC-field .
2.32 Access Modes .
2.32.1 Access Modes and Absolute Addressmg
2.3.2.2 Summary
Address Contexts
2.4.1 Shadow Memory .o
Status Words . , ,
2.5.1 Processor
2.5.2 User

Types . , , . ,

Boolean

Integer

Floating-point

Indirect Address Pointer
Byte

Byte Pointer

Block

Flag

4 Instruction Formats and Addressing Modes

4.1 Instruction Classes

4.1.1 Two-Address (XOP)
4.1.2 Three-Address (TOP)
4.1.3 Skig (SOP)

Page i

O 00 I ~J W O O O O\ B~

[e e T S ey S
O o0 OO0 N O\ WD B~ O o

22

22
23
24
28
29
29
30
30

31

31
32
33
35

Page ii

Table of Contents

4.1.4 Jump (JOP)
4.1.5 Hop (HOP)

4.2 Addressing Modes

42.1 Operand Descriptor Format
4.2.2 Extended Addressing Formats
4.22.1 Long-Constant Format
4.2.2.2 Fixed-Based Format
42.2.3 Variable-Based Format
4.2.3 Short-Operand Addressing
4.2.3.1 Register-Direct
4.2.3.2 Short-Constant
4.2.3.3 Short-Indexed
4.2.3.4 Summary
4.24 Extended Addressing
42.4.1 Long Constant . .
424.1.1 Immediate Long- Constant
4.2.4.1.2 Indexed Long Constant
42.4.1.3 Summary
4242 Fixed-based Addressing
42.4.3 Variable-based Addressing .
4.2.4.4 Indexing Into Data Structures: The S- ﬁeld (EW S)
4.2.5 Indirect Addressing Ce e
4.2.5.1 Summary
4.2.6 Address Space Switching: The P b1t
4.2.7 Addressing Restrictions and Exceptions
4.2.8 Addressing Summary .
429 FASM Addressing Summary

5 Instruction Descriptions

5.1
52

53

54

Instruction-Execution ~ Sequence

Integer .

5.2.1 Signed Integer

5.2.2 Unsigned Integer

5.2.3 Instruction Side Effects
52.3.1 CARRY
5.2.3.2 INT_OVFL
523.3 INT_Z_DIV

Floating Point .

5.3.1 Rounding Modes

5.3.2 Instruction Side Effects .
5321 FLT_OVFL and FLT._ UNFL
5322 FLT_NAN e
5.3.2.3 Exception Propagation Ce e e e

Move

36
37
38
38
38
39
39
39
39
40
40
40
)
43
43
43
44
45
46
46
47
48
50
51
52
53
55

57

57
60
60
96
101
101
102
102
102
103
104
104
105
106
126

Table of Contents Page iii

55 Flag Ce e s 135
5.6 Boolean s 138
5.7 Shift and Rotate 150
58 Skip and Jump L. 159
59 Routine Linkage L. 174
510 Stack L. 186
511 Byte « o . ..o 190
5.12 Bit e s 198
5.13 Block e e e 205
5.14 Status e e e e e e e 212
5.15 Cache and Map Ce e 230
5.16 Interrupt C e e 237
517 Input/Output C e e e e e 249
5.18 Performance Evaluation e 254
5.19 Miscellaneous e s 259

6 Traps and Interruptso 266

6.1 Soft Traps C e e e e e 266
6.2 Hard Traps« . .« 266
6.3 Trace-Traps« . .« L 267
6.4 Interrupts 267
6.5 Vector Locations and Formats 268
6.6 Save Area Formats e e 270

7 Acknowledgments 275
8 Appendix: Instruction Summary ,) e 276
9 Appendix: S- 1 Formal Description e e e 299
10 Appendix: The S-1 Assembler (FASM) 305

10.1 Preliminaries e s 305
10.1.1 Instruction and Data Spaces 305
10.1.2 Passes e 305
10.1.3 Character Set 305

10.2 FASM Formats 306
10.2.1 Expressions e e e e 306

10.2.1.1 Operators 306
10212 Terms 307
10.2.1.2.1 Numbers 307
102.1.22 Symbols L L. 307
10.2.1.2.3 Literals e e 307
10.2.1.2.4 Text Constants . . - . « « . . .« . . 308

Page iv Table of Contents

10.2.1.2.5 Value-returning Pseudo-ops
10.2.2 Statements - .o
10.2.2.1 Statement Terminators
10.2.2.2 Symbol Definition
10.2.2.3 S-1 Instructions
10.2.2.3.1 Operands
10.2.2.3.2 Opcodes and Mbdlﬁers
10.2.2.3.3 Instruction Types
10.2.2.4 Data Words
10.3 Absolute and Relocatable Assemblies
10.4 The Location Counter
10.5 Pseudo-ops
10.6 Macros
106.1 Macro Deflmtlon
10.6.1.1 The Argument Llst
10.6.1.2 The Macro Body
106.2 Macro Calls .
10.6.2.1 Argument Scannmg
10.6.2.2 Macro Argument Syntax

10.6.2.3 Special Processing in Macro Arguments

11 Appendix: S-1 Formal Description Syntax

11.1 The S- 1 Architecture Notation

112 Symbols

1.3 Forms . .
114 Primitive Functlons and Other Identlflers
1.5 Special Forms .
11.6 Global Register and Memory Declaratlons
117 Macros and Substitution Variables

1.8 Comments .

119 Standard Programmmg Techmques

12 Index

308
309
309
309
310
310
311
312
314
315
316
317
325
325
325
326
328
328
328
329

332

332
333
334
336
340
342
343
346
347

350

Page 1

1 Introduction

This manual provides a complete description of the instruction-set architecture of the S-I
Uniprocessor (Mark IIA), exclusive of vector operations. It is assumed that the reader has a general
knowledge of computer architecture. The manual was designed to be both a detailed introduction to
the S-1 and an architecture reference manual.

This manual does not describe the S-1 performance architecture, or any other
implementation-related aspects of the S-1 Uniprocessor, except as is necessary to make the S-1
instruction-set architecture understandable.

The remainder of this chapter discusses the notation used throughout the manual. Chapter 2
describes the structure of the S-1's memory and registers, including the status words and the concept
of address contexts. Chapter 3 defines various conceptual data types used in the discussion of the
S- 1 instructions. Chapter 4 describes the formats of the S-1 instructions and how operands are
addressed. Chapter 5 describes the individual instructions in detail. Chapter 6 describes the
architecture of traps and interrupts in the S-1. The remaining chapters provide examples and
summaries. The two appendices summarize the FASM Assembler (because examples throughout
the manual uses the FASM syntax) and the S-1 Formal Notation (which is used to precisely define
the instruction set).

Page 2 Introduction §1.1

1.1 Notation and Conventions

This section describes the notation used in the text of this manual. Many of the
abbreviations used in this section may not be understood until later sections of the manual are read,
but they are presented here for the sake of completeness. Most of the examples in the manual are
stated in the syntax of the FASM assembler. That syntax is summarized in Section 10 with various
aspects of it introduced at appropriate points in the main text as well. The syntax used to formally
describe the S-1 and its instructions is summarized in Section 11.

The notation "A..B" (borrowed from PASCAL-like programming languages) means the
range of integers from A to B inclusive, or the set of the elements of that range, depending on
context.

The term fi e/ d means a series of consecutive bits within memory or a register. The bits in a
field are always numbered from left to right, starting at zero. Subfields of a field are specified by
the notation X<m:n>. Here X is the name of the field, and the subfield being referenced is the bits
of X whose numbers within X are in the range m,n... A reference to a single bit (X <m:m>) can
be abbreviated to X<m>. The selection of a named subfield is indicated as X. SUB (X is the name
of the field, SUB is the name of the subfield within X). Subfields, like like all fields, always have
their bits numbered from left to right starting from zero, and so the bits of a subfield may not have
the same bit numbers as those same bits within the superfield.

The term word is intended to mean a field of any of the four standard precisions
(quarter-word, single-word, half-word, and double-word, which are 9, 18, 36, and 72 bits wide
respectively). It is intended that if word is not modified then no specific precision is being described,
or rather what is being said applies to words of all four precisions. Not every field 9 bits long is a
quarter-word; the term word also implies alignment of the field to a word boundary (see Section 2.1).
Words, like all fields, may have subfields.

For example, Figure 2-4 is reproduced below as Figure 1-1. This picture of a single-word
‘shows the format of a page-table entry.

| F6 | AccEss PGNO [

0 67 12 13 35

Figure 1-1
PTE or STE

This single-word could have the name PTE (for reasons described in Section 2.3). In that case,
PTE. FLG would be the same as PTE<0:6>, and PTE.ACCESS the same as PTE<7:12>. The
second through fourth bits of PTE.ACCESS could be described as either PTE<8:10> or
PTE. ACCESS< 1:3>.

A byteis a subfield of a single-word or double-word which is specified by a byte pointer. A

§1.1 Introduction Page 3

byte may be of any length (not just eight bits, for example). The term byte bears no relation in this
manual to the amount of memory used to contain a character code. (See Sections 3.5 and 3.6.)

The notation used to describe the concatenation of fields into a larger unit is
cfield 1 || field2 || field33 (i.e., field 1, field2, and field3 are concatenated to form one unit). For
example, figure 1-1 could be described as cFLG<0:6> || ACCESS<0:5> || PGNO<0:22>>. Unless
otherwise stated, this new conglomerate is treated as a single unit (e.g., the concatenation of two
quarter-words is a half-word, not merely two quarter-words). This distinction becomes important
when considering alignment issues. If a field is repeated in the conglomerate then that may be
specified using the notation nxfield, where n is the number of times the field is repeated. For
example, cfield 1 ||5%0]| field23 would be the same as cfield 1 OO0} 00}l field2>.

The contents of register number n is R[n). The contents of memory location A is M[A]). The
terms OP 1, OP2, S 1, S2, and DEST refer to the conrents of the appropriate locations. Some
instructions operate on a pair of memory locations. If X is the first object of such a pair, then
NEXT(X) is the second object of the pair. X and NEXT(X) are contiguous and have the same
precision. The address of NEXT(X) is greater than the address of X by the length of X (which is
the same as the length of NEXT(X)). As with OP1,NEXT(OP1) refers to the contents of the
appropriate location (the same applies to the other terms given above). ADDRESS(OP 1) refers the
the quarter-word (virtual) address of OPI. The term JUMPDEST represents an address. The
terms SO (short operand), LO (long operand), and ILO (indirect long operand) also refer to the
contents of the appropriate locations (or to the values of immediate constants, if appropriate).

If a field X is to be interpreted as a two’s-complement number, then the notation SIGNED(X)
is used. When only part of a word (or the result of a computation), X, is to be used, the terms
LOW-ORDER(X) and HIGH-ORDER(X) designate the least-significant and most-significant
portion of X, respectively. When used informally, it should be obvious from the context how much
of X is included; otherwise the precision will be stated explicitly. Unless otherwise stated, when
moving a smaller field, X, into a larger field, Y, it is the case that X is right-justified into Y. The
bits in Y that were not in X are specified by the moving operation. If ZERO-EXTEND(X) is used,
then these extra bits are zero-bits. If SIGN-EXTEND(X) is used, then these extra bits are ueqla to
the sign-bit of X. (The sign-bit of X is X<0>).

Text appearing within four corner-brackets is intended as an illustrative example rather than
part of the main discussion. Typically an example will give sample data formats or sample
Estruction sequences. This text, on the other hand, is an example of an example. |

Page 4 Memory and Registers §2

2 Memory and Registers

The S-1 architecture provides for a very large 2% single-word) virtual address space.
Virtual-to-physical address transformation is handled by the hardware. Single-words are 36-bits
long but the architecture allows for the accessing of memory in any of four different precisions
(quarter-word, half-word, single-word, and double-word). Thirty-two general purpose register
words are provided which can be accessed via special register operations or as memory locations.
Separate address spaces and register-files are maintained for the user and the executive. The
following sections in Chapter 2 describe these features in detail.

Each S-1 processor has two private caches to reduce memory access times for those sections of
memory that are frequently accessed. One cache is for instructions and the other is for data. The

caches are described in Section 5.15.

2.1 Mewm ory

The S-1 architecture provides 228 single-words of virtual address space. Each single-word is
thirty-six bits long. The bits are numbered O . . 35 from most significant to least significant.

Figure 2- 1
Single-Word

Memory may be accessed in any of four precisions: quarter-word (nine bits numbered
0..8) half-word (eighteen bits numbered O .. 17), single-word (thirty-six bits numbered
0 .. 35), or double-word (seventy-two bits numbered O . . 71). Therefore, the single-word above
could be considered to be two half-words, four quarter-words, or half of a double-word.
Instructions are designed to access and operate on words of all four precisions with equal ease.

0 17 18 35

Figure 2-2
Two Half-Words

0 89 17 18 26 27 35

Figure 2-3
Four Quarter-Words

§2.1 Memory and Registers Page 5

Quarter-words within a half-word, single-word, or double-word have increasing addresses
from left to right. Thus if a quarter-word and a single-word have the same address, then the
quarter-word is the high-order (most significant, or leftmost) quarter-word of the single-word.
Similarly, the more significant single-word in a double-word has the lower address.

Unless otherwise stated, all addresses mentioned are quarter-word addresses. Therefore, the
range of S- 1 addressesis O .. 2%0_1 . Half-words must be aligned on half-word boundaries, that
is, the most-significant quarter-word of a half-word must have an even address. Similarly,
single-words must be aligned on single-word boundaries (the most-significant quarter-word must
have an address that is a multiple of four). Double-words must begin on single-word boundaries,
but they need nor begin on double-word boundaries. Depending upon the implementation,
however, access to double-words beginning on double-word boundaries may be more efficient than
those not so aligned.

References to the first 128 quarter-words of memory are interpreted as references to the
thirty-two (single-word) registers. Registers are discussed in Section 2.2.

Page 6 Mernory and Registers §2.2

2.2 Registers

Registers can be used to hold information that must be accessed quickly or concisely. They
are addressable by the use of register addressing modes, or as the first 128 quarter-words of
memory. Some registers are dedicated to special-purpose applications, while others are available for
general-purpose use. The instruction set has been designed to deal efficiently with registers and
with memory locations addressed by a small offset from aregister. In addition, special instructions
are provided for saving and restoring registers during interrupts, traps, and subroutine calls. The
registers and their uses are described in the following sections.

2.2.1 Register Files

There are sixteen register files (REG_FILES) in the S-1 architecture. Each consists of
thirty-two single-word registers. REG_FILE[0] is reserved for use by the hardware and microcode.
The other fifteen register files may be put to any use by software.

The processor status word selects which register files are being used by the current context
and the previous context (one register file for each context). The user may access only the
thirty-two registers in the register file associated with the current context. The executive, however,
may access either context, and so which register file is used depends on which context is being
accessed. The processor status word is discussed in Section 2.5.1. Contexts are discussed in Section

24,

The organization of registers into register files facilitates context switching. Each of several
users may have his own register file that the executive can specify simply by changing a field in the
processor status word. Similarly, each of several trap or interrupt handlers within the executive can
have a dedicated register file and need not save the registers of the previous context.

22.2 General-Purpose Registers

The contents of the first single-word of the current register file is called REOJ, the second R[1],
and so forth. When not otherwise modified, the term register will hereafter be used to mean one of
the thirty-two registers in the current register file. Other registers (e.g., PC or STP) will be referred
to specifically by name,

Many instruction formats can make special use of registers. Some registers have restrictions
on, or extensions of, these special uses. Registers addressed as memory have no special properties.

Registers 8 through 31 can be used as general-purpose registers in all instructions that make
special use of registers. Registers 0 through 7 have certain special-purpose uses but they can also be
used as general-purpose registers, with some restrictions. Registers 0 through 3, for example, cannot
be used in short-indexed mode (see Section 4.2.3.3). Other restrictions concerning references to
register 3 are discussed in Section 2.2.3.1 and Section 2.2.3.2. Register uses and restrictions are

summarized in Section 2.2.4.

§2.2.3 Memory and Registers Page 7

2.2.3 Dedicated-Function Registers

Certain general-purpose registers in the S-1 have special functions associated with them. One
register serves as a stack pointer, while others may serve as operands in three operand instructions.
These registers and their uses are described below. They are summarized in Section 2.2.4.

2.2.3.1 Program-Counter

The program-counter (PC) is a 30-bit register that points to (contains the address of) the
instruction in memory that is currently being executed. Because instructions consist of single-words
and so are aligned on single-word boundaries, the contents of the PC must always be a multiple of
four. The PC always points to the beginning of the instruction being executed (that is, it is not
advanced when the extended words of a multi-word instruction are fetched).

References to register 3 are interpreted as references to the PC in certain circumstances. PC is
used instead of R[3] whenever register 3 is specified as an index register within an address
calculation. This includes indexing in indirect address pointers (see Section 4.2.5). In all other cases,
R[3] is treated as a general-purpose register. All non-indexing references to register 3 use R[3]. It
should be emphasized that PC itself is nor a general-purpose register, and does not reside in any
register file.

2.2.3.2 Stack-Pointer (SP) and Stack-Limit (SL)

The S-1 maintains a stack for saving values during traps, interrupts, and subroutine calls.
The location and extent of the stack in memory is specified by the contents of two registers: the
stack-pointer (SP) and the stack-limit (SL). SP points to the first free location on that
(upward-growing) stack and SL points to the first location past the end of the area reserved for

stack growth.

The five-bit SP_ID field in the user status word (see Section 2.5.2) specifies which
general-purpose register will be used as SP. The register immediately following SP is interpreted as
the SL register. Hence SP =R[SP_ID] and SL =R[SP_ID + 1] The values 3 and 31 for SP-ID
are illegal; an attempt to set SP-ID to either value will cause a hard trap.

The SP-ID can be set by special instructions (see Section 5.14). The usual practice is to use
the two highest-address registers (registers 30 and 31) as the SP and SL respectively.

2.2.3.3 RTA and RTB

Registers 4 and 6 are given the special names RTA and RTB respectively. They are of
special interest in three-address instructions, When double-word quantities are involved, then RTA
is considered to be registers 4 and 5 together, and RTB is considered to be registers 6 and ‘7
together. Registers 5 and 7 also have the names RTA 1 and RTB 1 respectively. See Section 4.1.2
for a description of the uses of RTA and RTB.

Page 8 Memory and Registers §2.24

2.2.4 Summary

The tables below summarize the uses of the registers that have been discussed in the previous
sections.

Register Primary Use Other Uses/Restrictions Pertinent Sections
R[0] General-Purpose Restricted indexing 222,4233
R[1..2] General-Purpose ~ No short indexing 222,4233

R([3] General-Purpose Indexing uses PC instead 222,223.1

R[4] General-Purpose ~ RTA 222,2233

R[5] General-Purpose ~ Low-order half of RTA DW 222, 2233

R[6] General-Purpose ~ RTB 222,2233

R(7] General-Purpose ~ Low-order half of RTB DW 222, 2233
R[8..31] General-Purpose --- 222

Table 2-1

Registers and their Uses

Register ~ Primary Use Other Uses/Restrictions Pertinent Sections
PC Program-Counter Indexing uses PC for R[3] 223.1,222
SP Stack-Pointer Cannot be R[3] or R[31] 2232, 222
SL Stack-Limit Always register after SP 2232,222
RTA Third Operand Same as R[4] (or cR[4]]|R[5]2) 2233, 222
RTB Third Operand Same as R[6] (or eR[6]||R[7}2) 2233, 222
Table 2-2

Dedicated-Function Registers and their Uses

§2.3 Memory and Registers Page 9

2.3 Address Transformation

The S-1 maps 30-bit, virtual, quarter-word addresses into 34-bit, physical, quarter-word
addresses. The address transformation uses two levels of paging, specified by a segment table and
up to 1024 page tables. A page is made up of 512 single-words (27 quarter-words). There are up

23 : .) : o o34
to 27 physical pages in memory; hence the physical address space contains 2°° quarter-words. A
virtual address space contains up to 1024 segments (specified by the segment table). Each segment
contains 512 pages (specified by one of the page tables). This gives a virtual address space of up to
2°%0 quarter-words.

The location of the current segment table is specified by two 34-bit registers: the segment table
pointer (STP) and the segment table limit (STL). If the content of the STP is in the range 0 . . 127
(a register address), then absolute addressing is in effect; the mapping from virtual addresses to
physical addresses is the identity mapping. Otherwise, the STP contains the physical address of the
segment table, and the STL contains the physical address of the first location beyond the end of the
segment table. STP<32:33> and STL<32:33> must equal zero, because table entries are single-words
and therefore must-be aligned on single-word boundaries.

Each segment table consists of a contiguous list of segment table entries (STE) (also called page
table pointers). Each page table consists of a contiguous list of 512 page table entries (PTE). Both
segment table entries and page table entries have the following format:
cFLG<06> || ACCESS<0:5> || PGNO<0:22>>. FEither may be null (FLG<0>=0), indicating that the
entry specifies no page. FLG contains flag bits. ACCESS indicates the access bits and is used only
in page table entries. PGNO is the physical page number (page number x oll. page address). (See
Sections 2.3.1 and 23.2 for further discussion of the FLG and ACCESS fields.)

FLG ACCESS PGNO I

0 67 12 13 35

Figure 2-4
PTE or STE

Each STE specifies the physical address of a page table, or is null. A null STE indicates that
the page table does not exist. STE. PGNO is used as the most-significant 23 bits of the physical
address of the page table (the least-significant 11 bits are zero). page tables fill exactly one page (of
5 12 single-words). Each PTE specifies the physical address of a page, or is null. A null PTE
indicates that the page does not exist. As with the STE, PTE.PGNO is used as the
most-significant 23 bits of the physical address of the page (and the least-significant 11 bits are
Zero).

The segment tables and page tables are indexed by the 30-bit, virtual address (VA). The
physical address (PA) is calculated as follows; VA<0:9> is interpreted as a single-word offset from
the address contained in the STP. The physical address of the STE is STP+cV A <0:9> || 2x0>. If

Page 10 Memory and Registers §2.3

absolute addressing is not selected and the address of the STE is greater than or equal to the
contents of STL then a hard trap occurs. If the selected STE is null then a hard trap occurs.
STE. PGNO specifies the physical page number of the desired page table, that is, the desired page
table starts at physical address €STE. PGNO || 1 1x02. VA < 10: 18> is interpreted as a single-word
offset from the beginning of the page table. The. physical address of the PTE is, therefore,
cSTE. PGNO || VA<10:18>] 2x0>. If the selected PTE is null then a hard trap occurs.
PTE. PGNO specifies the physical page number of the desired page (i.e., the page starts at physical
address cPTE. PGNO || 11x02). VA <19:29> specifies the quarter-word offset from the beginning
of the page. The physical address is, finally, PA=cPTE. PGNO || VA <19:29>>.

In general, an address transformation involves two memory references, the first to the segment
table, the second to the page table. No memory reference is needed for the STP or STL since they
are hardware registers inside the processor. Two page map caches inside each processor contain (for
the most recently used pages) the complete translation from virtual page address to physical page
address. One page map is for addresses of instructions, the other for addresses of data. Whenever
a necessary translation is not resident in a page map, the necessary entry is fetched from memory
and placed in the page map. Another page map entry may be evicted in the process. The evicted
entry is not written out to memory (because it cannot have changed).

The processor hardware actually contains two sets of segment table pointer/limit registers, one
set for the executive (EXECSTP and EXECSTL) and the other set for the user (USERSTP and

USERSTL). A pointer/limit pair specifies an address space (i.e., a segment table/page table/page
mapping). The address space specified by EXEC_STP and EXECSTL registers is called the
executive address space. Similarly, the USER_STP and USERSTL registers specify the user
address space. The CRNT_MODE and PREV_MODE fields of the PROCSTATUS word
determine which address space is referenced during an address calculation (see Sections 2.5.1 and
2.4). Each hardware page map entry contains a base-bit which identifies which of the two address
spaces (executive or user) the entry is associated with.

§23

Memory and Registers

Virtual Address (VA)

Virtual-to-Physical Address Translation

10 bits | d bits I 11 b ts
STP) l 910" 18 19 29
KK
B |33
‘ 1
. (x4
|
° f
] %
i %]
. 0 31 32 33
I L r J
| | segment table
L.—.—l—l—.—.+.-’8
. (STE)
l——b PGNO
13 35
0-1023 (SW})
STL fi—e—tmtmn s i
8 33 M. *
%]
0 22 23 31 32 33
% = Physical Address ¢
*x = The 18 bits are .
considered to be a | page table
single word offset . —
—— = Contents of a word] @
or field being .
used in another | (PTE)
locat ion .
~s—~ = Physical addressing b— PGNO
Note that in STE and PTE 13 35
the FLG and ACCESS fields
have been omi t ted. 511 (SIJ)I
Page
%
8
lB 22 23 33l
Nord ﬂo—-—o—--.—n—-—-—.—o—.]
2047 (QW)
Figure 2-5

Page 11

Page 12 Memory and Registers §2.3.1

2.3.1 Flag Bits: The FIX-field

Each STE and PTE has a 7-bit FLG field. This field is used to indicate whether the table
entry is valid and to record software flags. FLG<0> is called the VALID bit. If VALID=0 then the
STE (or PTE) is considered to be a null entry; that is, it specifies no page. If VALID=1 then the
STE (or PTE) is not null and is interpreted as a pointer to a physical page as described in Section
2.3.

The bits of FLG<1:6> are reserved for software flags . They can be used by programs (e.g.,
an operating system) to record information concerning the STE or PTE. They have no defined
function within the architecture.

2.3.2 Access Modes

Both STEs and PTEs contain an ACCESS field. STE.ACCESS is unused. PTE. ACCESS,
however, specifies any restrictions on accessing the page pointed to by the PTE. PTE. ACCESS can
distinguish pages used for instructions and those used for data. It also controls when data cache
entries are allocated and when changes to the data cache go through to physical memory. (The
cache is discussed in Section 5.15). Many different high-level access modes (e.g., “local data” and
“static code”) can be specified using combinations of the ACCESS bits.

It should be noted that absolute addressing (see Section 2.3) does not utilize the access modes
in the standard way. This is because absolute addressing bypasses the segment table/page table
address transformation. The approach to access modes for absolute addressing is discussed in

Section 2.3.2.1.

INSTRUCTIONS PTE.ACCESS<0> specifies whether a word on the indicated page
may be used as an instruction. If INSTRUCTIONS=0 then a hard
trap will occur when a location from the indicated page is accessed as
an instruction.

DATA PTE. ACCESS& specifies whether a word on the indicated page
may be used as data. If DATA-O then a hard trap will occur when
a location from the indicated page is accessed as an operand of an
instruction (except as noted in the instruction descriptions, Section 5).

READALLOCATE PTE.ACCESS<2> indicates the course of action after encountering a
read miss. If READ_ALLOCATE=1 then any read miss will
allocate and fill a data cache entry. f READ_ALLOCATE=0 then
a read miss will not allocate a data cache entry, but will cause data to
be read directly from memory.

WRITEALLOCATE PTE.ACCESS<3> indicates the course of action after encountering a
write miss. If WRITE_ALLOCATE=1 then any write miss will
allocate and update a data cache entry. If WRITE_ALLOCATE=0

§2.32 Memory and Registers Page 13

then a write miss will not allocate a data cache entry. All write hits
will simply update the data cache entry.

WRITE-ONLY PTE.ACCESS<4> is used to prohibit reading from a page that is
write-only. Reading of an operand from a page marked with
WRITE-ONLY-1 will cause a hard trap. (Note that
WRITE_ONLY=1 does not necessarily mean that the page in
question can be written into; that is controlled by the
WRITEALLOCATE and WRITE-THROUGH bits.)

WRITE_THROUGH PTE.ACCESS<5> controls the updating of memory upon a write to
the data cache. If WRITE_.THROUGH-=1 then any write will
update memory. If the write is a data cache hit then the data cache
will be updated as well. If the write is a data cache miss, then a data
cache entry will be allocated and written if and only if
WRITE_ALLOCATE=1.

Certain combinations of access bits are given special meanings by the hardware. The
combination WRITE_ALLOCATE=0 and WRITE_THROUGH=0 specifies that a page is
read-only. An attempted write to a read-only page will cause a hard trap. The combination of
INSTRUCTIONS=0 and DATA=0 specifies an 1/0 page. If an instruction other than an I/O
instruction operates on an I/O page then a hard trap will occur.

Various combinations of the above six bits provide useful, high-level access modes. A page
may be specified to be for local data with the combination DATA=1, WRITE_ALLOCATE-=1, and
READ_ALLOCATE-=1. A data cache miss caused by reading an operand from a local-data page
causes the missed word to be read from memory and placed in the data cache. Writes to local-data
pages do not necessarily write through to main memory. Whenever it is important that the memory
shadow of a local-data page be made identical to the cache, cache control instructions must be
executed to update memory, It is intended that the private variables of a process be identified as
local-data pages. (All other access bits are zero.)

Cached read data may be specified by DATA=1 and READ_ALLOCATE= 1. A data cache
miss in a cached-read-data page causes the missed word to be read from memory and placed In the
. data cache. No writes are allowed to a cached-read-data page because WRITE_ALLOCATE=0
and WRITE-THROUGH-O. Instructions cannot be fetched from a cached-read-data page. (All
other access bits are zero.)

Static code is specified by INSTRUCTION&I, DATA=1, and READ_ALLOCATE=1. A
static-code page is similar to a cached-read-data page; however, locations on a static-code page can
be accessed as instructions. It is intended that shared routines will be identified as static-code. (All

other access bits are zero.)

Shared data is indicated by DATA=]1 and WRITE_THROUGH-=1. Words from shared-data
pages are never placed in the data cache. A write to a shared-data page writes through to main

Page 14 Memory and Registers §2.3.2

memory without writing in the data cache (WRITE_ALLOCATE-=0), and a read from a shared
page reads directly from main memory (provided that the data cache does not already contain the
word). Locations that are heavily shared by multiple processors are intended to be on shared-data
pages, eliminating the necessity to perform repeated cache sweeps when passing small amounts of
data between processors. (All other access bits are zero..)

The S-1 hardware does not check for illegal combinations of access bits. Such checking
should be performed by operating system software when setting up PTEs.

2.3.2.1 Access Modes and Absolute Addressing

When absolute addressing is selected (STP < 128) no choice is given for the access bits.
Instead, the bits INSTRUCTIONS= 1, DATA=1, READALLOCATE= 1,
WRITE-ALLOCATE=], WRITE_ONLY=0, and WRITE_.THROUGH=0 are always used.
However, no trap will occur due to a violation of these bits while in absolute addressing mode (e.g.,
I/O can be done to a page even though it is not an I/O page). The bits are used only to indicate
the caching algorithm for-absolute addressing.

§2322

2.3.2.2 Summary

o

B LD — O

Name

INSTRUCTIONS
DATA
READALLOCATE
WRITEALLOCATE
WRITE-ONLY
WRITE-THROUGH

Memory and Registers Page 15

Description

If= O then cannot access locations on this page as instructions.
If = 0 then cannot access locations on this page as data.

If= 1 then a read miss will allocate a cache entry.

If= 1 then a write miss will allocate a cache entry.

If « 1 then cannot read an operand from this page.

If= 1 then any write will update memory.

Table 2-3

Bits of STE.ACCESS and PTE.ACCESS

Combination (Bits specified = ()

WRITEALLOCATE, WRITE-THROUGH
INSTRUCTIONS, DATA

Table 2-4

Special Defined Combinations of ACCESS bits

Use
Read Only
1/O Page
Use
Local Data

Cached Read Data
Static Code
Shared Data

Combination (Bits specified =1)

DATA, WRITEALLOCATE, READALLOCATE
DATA, READALLOCATE

INSTRUCTIONS, DATA, READALLOCATE
DATA, WRITE-THROUGH

Table 2-5

Useful Combinations of ACCESS bits

Page 16 Memory and Registers §2.4

2.4 Address Contexts

Section 2.3 describes the existence of the two address spaces maintained in the S-I
architecture, executive and user. Instructions, however, do not refer directly to either the user or
executive address space. They refer to the current or previous address space.

When a program (either executive or user) refers to itself or its data (Le., its own address
space), it refers to the current address space. Access to the current address space is controlled by
PROC-STATUS. CRNT-MODE. (See Section 2.5.1 for a description of PROCSTATUS.) If
CRNT_MODE-=0 then the current address space is the user address space. If CRNT_MODE=1
then the current address space is the executive address space. User programs operate exclusively in
the current address space with CRNT_MODE-=0.

Executive programs may be called by other programs (both user and executive) as the result
of any one of various traps (see Section 6). In this situation the executive program is able to refer to
the address space of the program that called it. The calling program’s address space is called the
previous address space. Access to the previous address space is con trolled by
PROC-STATUS. PREV_MODE in the same way that PROCSTATUS. CRNT-MODE controls
the access to the current address space (PREV_MODE=0 gives user address space,
PREV_MODE-=1 gives executive address space). User programs cannot access the previous address
sp ace.

Instruction operands select between the current and previous address space by means of the
P-bit in extended operands and indirect address pointers. The P-bit is discussed in Section 4.2.6.

Current (previous) context includes both the current (previous) address and the current
(previous) register file. PROC-STATUS, CRNT_FILE (PROC-STATUS, PREV_FILE) specifies
which register file should be accessed when an addressing calculation specifies the current (previous)
address space.

2.4.1 Shadow Memory

The first thirty-two single-words of an address space are called shadow memory. This term is
derived from the fact that they overlap or are shadowed by the currently selected register file
(because references to the first 128 quarter-words of an address space are normally interpreted as
references to the current register file instead). Shadow memory cannot be accessed by the user, but
is accessible to the executive (when accessing the previous address space).

The use of shadow memory is controlled by the USE-SHADOW-PREV bit in the processor
status word (See Section 2.5.1). When USE_SHADOW_PREV= 1, all references to addresses
0 .. 127 in the previous context will cause the shadow memory of the previous context to be
accessed. When USE_SHADOW_PREV=0, the previous register file is accessed instead.

Assume the USE-SHADOW-PREV bit in the processor status word is set. The followin-*
instruction loads the second shadow memory word from the previous context into the location

§24.1 Memory and Registers Page 17

whose (hypothetical) symbolic name is SECOND.

MOV SECOND,c!P 4> ;"!P" means access previous context l

Page 18 Memory and Registers §2.5

2.5 Status Words

Status words partially define the current state of aprogram’s execution. They contain
information about current and previous contexts, and about conditions such as arithmetic overflow
and trace modes. There are two types of status: processor status and user status. As a general rule,
processor status contains privileged information which the user may not modify, and user status
contains per-user information which the user program may modify at will. (The user status does
not apply just to user mode programs, Programs running in executive mode are also affected by the
user status. However, the user status is automatically changed whenever a switch from user mode to
executive mode occurs, and so the executive may be thought of as a distinct “user” so far as user
status is concerned.)

2.5.1 Processor

The processor status word (PROCSTATUS) contains information about the current state of
a process. This includes information such as the extent of the stack and the currently accessible
address space. The fields in their order of occurrence from most-significant bit to least-significant
bit are shown below.

CRNT_FILE<0:3> Current register file. This is the number of the register file that will be
accessed in all references to the current context. Note that REG_FILE[0]
is reserved for use by hardware and microcode, and so CRNT_FILE will
normally have a non-zero value.

PREV_FILE<0:3> Previous register file. This is the number of the register file that will be
accessed in all references to the previous context. (Such references may be
additionally controlled by the USE-SHADOW-PREV bit, however.)
Note that REG_FILE[0] is reserved for use by hardware and microcode,
and so PREV_FILE will normally have a non-zero value.

USE_SHADOW_PREYV Use shadow memory. When set to one, this bit causes references to
memory locations O . . 127 in the previous context to reference shadow
memory instead of registers. The user is not allowed to access the
previous context (P-bit=1 will cause a hard trap to occur), and therefore
the user cannot access shadow memory. See Section 2.4.1 for more on
shadow memory. Address spaces and the P-bit are discussed in Section
4.2.6.

PRIO<0:2> Processor priority level. Interrupts with INTUPT_AT_LVL<i>=1 where
i < PRIO will cause the S-1 to be interrupted. See Section 5.16 for a
description of the interrupt architecture.

EMULATION<O:1> Emulation mode. When equal to zero, causes the S-1 native instruction
set to be executed. When non-zero, specifies the emulation of one of
three other instruction sets.

§25.1 Memory and Registers Page 19

TRACE_ENB Trace-trap enable. Used to enable trace-traps after each instruction. See
Section 6.3 for a description of the trace feature.

TRACE_PEND Trace-trap pending.. Used to indicate that a trace-trap is pending. See
Section 6.3 for a description of the trace feature.

CRNT_MODE Current mode. Specifies whether the current context is executive or user.
Zero means user, one means executive.

PREV-MODE Previous mode. Specifies whether the previous context is executive or
user. Zero means user, one means executive.

UNUSED<O: 1 7> Reserved for future use.

Changing the processor status word causes a change in state for the currently executing
process. This change of state often involves changing the current context (see Section 2.4). In order
to make this change of context correctly, PROCSTATUS cannot be loaded in its entirity from an
arbitrary 36-bit word. If the execution of an instruction causes the loading of a new
PROC-STATUS (e.g., traps, interrupts), then the new PREV-MODE must be loaded from the old
CRNT-MODE. Similarly, the new PREVFILE must be loaded from the old CRNT_FILE. The
PREV-MODE and PREV _FILE fields of the word which is being loaded into PROCSTATUS
are ignored. This operation is called loading partial processor status. PROCSTATUS is always
loaded in this way unless specifically mentioned otherwise. The only instructions that load the entire
PROC-STATUS word are RETFS and WFSIMP (see Sections 5.9 and 5.14).

A similar process is involved when loading a new PROCSTATUS while checking for
trace-traps (see Section 6.3). In this case a change in state occurs when the TRACE-.PEND bit of
PROC-STATUS is updated during the instruction-execution sequence.

2.5.2 User

User status is contained in a single register named USER-STATUS. It contains a large
. number of subfields, each of which is described below. CARRY and the error-bits FLT_OVFL,
FLT_UNFL,FLT_NAN, INT-OVFL, and INTZDIV are described as being not sticky. This
means that they are either set or cleared by any instruction that can affect them. As an example, if
an ADD instruction produces an integer overflow while trapping is disabled
(INT_OVFL_MODE-=1), the INT-OVFL bit of PROCSTATUS will be set to one. If a MULT
instruction is then executed and no integer overflow occurs during the multiplication, INT-OVFL
will be reset to zero. Each error bit is also reset when the appropriate trap is initiated, before a copy
of USER-STATUS is saved on the stack. The conditions that affect CARRY and the error-bits
for both integer and floating-point instructions are described in Section 5.2.3 and Section 5.3.2. The
fields of USER-STATUS are shown below in order of occurrence from most significant to least
significant.

Page 20

SP_ID<0:4>

CARRY

FLT_OVFL

FLT_UNFL

FLTNA N

INT_OVFL

INTZDIV

FLT-OVFL_MODE<O0:1>

Memory and Registers §2.5.2

Stack-pointer identity. Specifies the register that will be used in all
references to the stack-pointer (SP). The stack-limit register (SL) is
considered to be the next contiguous register. SP_ID=3 or SP_ID=311s
illegal. See Section 2.2.3.2. for details.

Carry-out of arithmetic operations. Set to zero or one by the most
recently executed integer arithmetic instruction. Note that CARRY is
not sticky. See Section 5.2.3.1.

Floating overflow. Always set by floating-point arithmetic instructions.
Set to one if the result of the most recently executed floating-point
instruction was greater than or equal to MAXNUM (i.e. MOVF). This

bit is not sticky. See Section 5.3.2.1.

Floating-underflow. Always set by floating-point arithmetic
instructions. ~ Set to one if the result of the most recently executed
floating-point instruction was less than or equal to MINNUM+ 1 (ie.
MUNF). This bit not sticky. See Section 5.3.2.1.

Floating-point result is “Not A Number” (NAN). Always set by
floating-point arithmetic instructions. Set to one whenever NAN is the
result of a floating-point operation. This bit is not sticky. See Section
5.3.2.

Integer overflow. Set to one when the result of the most recently
executed integer arithmetic instruction is greater than or equal to
MAXNUM. This bit is not sticky. See Section 5.2.3.2.

Integer-zero-divide. Set to one when a divide-by-zero has occurred in
the most recently executed integer instruction . This bit is not sticky.
See Section 5.2.3.3.

Determines the action that is taken when floating overflow occurs.
FLT_OVFL_MODE=0 causes the instruction to soft-trap without
storing a result. FLT_OVFL_MODE= 1 causes the floating point
infinity of correct sign (either OVF or MOVF) to be stored as the
result. FLT_OVFL_MODE=2 causes a floating-point number of
correct mantissa and sign, but with wrapped-around exponent to be
stored as the result. FLT_OVFL_MODE-=3 is undefined (an attempt
to set FLT_OVFL_MODE to 3 will cause a hard trap).

FLT_UNFL_MODE<0:1> Determines the action that is taken when floating underflow occurs.

FLT_UNFL_MODE=0 causes the instruction to soft-trap without
storing aresult. FLT_UNFL_MODE= 1 causes the floating point

§252

FLT_NAN_MODE<0: I>

INT_OVFL_MODE

INT_Z_DIV_MODE

RND_MODE<0:4>

UNUSED«<0:7>

FLAGS<0:3>

Memory and Registers Page 21

infinitesimal of correct sign (either UNF or MUNF) to be stored as the
result. FLT_UNFL_MODE=2 causes a floating-point number of
correct mantissa and sign, but with wrapped-around exponent to be
stored as the r<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>