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We describe in this report various methods, iterative and "almost

direct," for solving the first biharmonic problem on general two-

dimensional domains once the continuous problem has been approximated

by an appropriate mixed finite element method. Using the approach

described in this report we recover some well known methods for solving

the first biharmonic equation as a system of coupled harmonic equations,

but some of the methods discussed here are completely new, including a

conjugate gradient type algorithm. In the last part of this report we

discuss the extension of the above methods to the numerical solution of

the two dimensional Stokes problem in p- connected domains (p > 1)
through the stream function-vorticity formulation.



i m——— EEL NEere



l

CONTENTS

Acknowledgements

1. Introduction y)

2. The continuous problem 5

2.1. Functional background and notations 5

2.2, Traces properties 6

2.3. Green's formula A

2.4. Existence, uniqueness and decomposition results for (p) 7
2.5. Study of the relation between Y and Yb 7

2.6. summary 14

2.7. An explicit example : computation of A when Q is a disk 15

pI Approximation of (p) by a mixed finite element method 20
3.1. Triangulation of §, Fundamental spaces 20

3.2 Approximation of (p) 21
3.5. Convergence results (k = 2) 21

34. Decomposition of (2) 22
3D. Discrete analogue of Lemma 2.1. 25

3.6. Application of Lemma 3,1 to the solution of (p,) 27
3.7. Study of the conditioning of a, (.s.) 28
3.8. Summary 33

4, Construction and resolution of the linear system equivalent

to (3.39) 34

4.1. Generalities 34

4.2, Choice of My 34

4.3, Computation of the right members of (£,) 26
4,4. Computation of the matrix Ah 36

4.5, Resolution of (E,) 37
4.5.1. Generalities 51

4.5.2. Resolution of (Eh) by the method of Cholesky 28

4.5.3. Summary. Number of linear sub-problems with the method

of Cholesky 39

4.6. Conditioning of Ah 40

4.7. Various remarks 4.1



! C

Il

5. Remarks on the use of iterative methods, The conjugate

gradient method 42

5.1. Generalities 42

5.2. Steepest descent methods with fixed step size 47%

5.2.1. Description of the method 4%

5.2.2. Implementation of algorithm (5.5),(5.6) 44

5.2.3. Choice of s 45
5.2.4. Convergence of algorithm (5.5),(5.6) 47

5.2.5. Iterative methods in (rT) 50
5.3. Gradient method with variable step size 54

5.5.1. Orientation 54

5.3.2, Principle of the variable step size methods 55

5.5.5. Application of the method of steepest descent for the

solution of (E,) 56
5.3.4. Implementation of the minimum residual method for

solving (E,) ple
5.4. Solution of (£,) by the conjugate gradient method 58
5.4.1. Orientation 58

5.4.2. Recalls on the conjugate gradient method 59

5.4.3. Implementation of (2) 59
6. The case Q p-connected (p 2 1). (I) The continuous problem 61

6.1. Formulation of the problem 61

6.2. A stream function formulation 62

6.3. A generalized biharmonic problem 63

6.4. An equivalent formulation of (6.18),(6.20) 64

6.5. Mathematical expression of Vj and application to the
solution of (6.18),(6.20) 66

6.5.1. Computation of Vj 66

6.5. 2. Application to the solution of (6.18) ,(6.20) 67

6 6. A saddle-point property 69

7. The case { p-connected (p 21). (11) The discrete case 73

71. Formulation of the approximate problem 73

7.2. Solution of (7.1) via (7.3) 74

791. Computation of Vip 74
7.2.2. Application to the solution of (7.1)-(7.3) 75

7.2.2.1. Direct method 75

7.2.2.2. Iterative methods 76

8. Further Remarks, Comments 77

REFERENCES



-— 1 -_

ACKNOWLEDGEMENTS

A part of the results in this Report have been obtained while the

first author was wisiting the Computer Sciences Department of

Stanford University with the support of ERDA grant E(04-3) 326 PA #30.

We would like to thank Pr. P.G. CIARLET and G.H. GOLUB for their

interest in this work.



— 2? —

1. INTRODUCTION.

2
Throughout this paper { denotes an open set of R™ of boundary I. Given

three functions £,81,8,, me shall consider the Dirichlet problem for the
biharmonic operator :

Ay =f

() | vp =g
oy
on 52

This problem arises in fluid mechanics and in solid mechanics (bending

of elastic plates).

: 2

In fluid mechanics the stream functions ¥ of incompressible flows 1n R,

at low Reynolds number,i1s the solution of a problem (P ), provided that
(0 is simply connected. If { is multi-connected, y satisfies also a bihar-

monic equation but the boundary conditions are more complicated (see
3 |

Sections 6 and 7). In R, for axisymmetric flows, VY is the solution of a
2 CL

Dirichlet problem for an operator E° where E 1s an elliptic operator of

order 2, (see HAPPEL-BRENNER [29]) ; however the method to be described

can be easily adapted to this situation.

For incompressible flows at large Reynolds numbers, described by the

Navier-Stokes equations, a good code for the numerical solution of (P)
is of great practical interest because many iterative techniques for

the resolution of the Navier Stokes equation requires the numerical

solution of a cascade of biharmonic problems like (P)). This is clearly
shown in FIX [18], [19, ROACHE [41U, ROACHE-ELLIS [42] for the 2 dimensional

case. Generalization of the following ideas can also lead to codes for

solving the 3 dimensional Navier-Stokes equation (GLOWINSKI-PIRONNEAU [24])

and for multiconnected bidimensional domains (see Sections 6 and 7).

Finite difference discretization of (P) are not feasible in many cases,
namely when the geometry of {I is complicated. Standard finite element

methods for solving (P)) require rather sophisticated finite elements
such as the 2l-degree-of-freedoms of ARGYRIS (see ARGYRIS-DUNNE [ 1 1)

or non conforming elements of Hermite type.
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Recently a new class of methods, called mixed methods has been proved to

be quite appropriate to the biharmonic operator (CIARLET-RAVIART [10],

BREZZI-RAVIART [ 61, ODEN [37]). Their drawbacks lie in the fact that

they require the solution of rather large non-symmetrical linear systems.

Our method 1s closely related to the mixed methods but its implementation

is quite different and much easier. In the continuous case the underlying

idea of the method can be outlined as follow :

If v denotes the solution of

AW =f in 9, AY 0,|. —g0 > S¥o|T= 72 YolT= 8p»

then AC the solution of (P)) with f=0, g,=0,and g, replaced by
8, = — . Therefore from now on we assume that f = 0, 8 = 0.

Let Ww = - AY and suppose that A = wp is known. Then (P) splits into
two-Dirichlet problems for =- A :

- Mo = 0 in 9, - A) = w in Q,
(1.1) (1.2)

ti
Let A denote the linear operator A + - == 1s where ¥ is computed by (1.1),
(1.2). Then we shall show that the solution of (BP) is the solution of (1.1),
(1.2) with A solution of the linear problem

(E)) AX = -g,

More precisely it can be shown that the solution of (1.1), (1.2), (E) is the

solution of a mixed variational formulation of (P.). Furthermore A is symmetric
positive definite, strongly elliptic from the boundary Sobolev space a 2r)

1to the Sobolev space H /2(ry. This last property is numerically very important,

provided it is preserved by the discretization, because it insures that (E))
1s a well behaved linear system. From the theoretical point of view it means

also that (E,) is an integral formulation on [' equivalent to (P.).
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The feasibility of the method relies entirely on the ellipticity of A.

Thus beside the statement of the method, the main purpose of the paper

is to show that A is a symmetric positive definite operator on the

Sobolev space a2) and that the nice properties of A are preserved
by the finite element discretisation. The proofs use a mixed formulation

of (P) equivalent to (1.1), (1.2), (E)). Therefore (1.1), (1.2), (E))
is also a nice way of solving the mixed formulation of the biharmonic

problem. This remark provides us with an error estimate for the method

(Section 3.3).

Unless (P) 1s to be solved many times for different f and g's it 1s much
faster to use a conjugate gradient method for the resolution of the dis-

crete analogue of E,).

Historically, the decomposition of (FP) into (1.1) and (1.2) 1s known in
fluid mechanics. Quite a few paper have made use of it ; among others let ws

mention SMITH [4417,[451,[46], BOoSSAvVIT [41], EHRLICH [14]3,[15]1,[16], Mc LAURIN

[34], EHRLICH-GUPTA [7], GREENSPAN-SCHULTZ [28]. However these works are

related to finite differences approximations on rectangles and are not

using the fact that the discretized problem is equivalent to a linear system,

related to the discrete trace of = Ay, whose matrix is positive definite.

We have also the feeling that our approach answers some of the questions

arising in FIX [18, [19. Thus to our knowledge, most of the methods to be

described are new.

Numerical experimentations have been done to test the methods described

later ; the corresponding results will be published elsewhere. However

some indications will be given in Sec. 8.
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2. THE CONTINUOUS PROBLEM

2.1. Functional background and notations.

The following linear spaces play a fundamental part in the study of

the continuous problem :

2 { 2 Q ov 2 3%y 2 coH (Q) = vivel (2), Tx e LV(Q) , 3% Ox. e L7(Q) , | <i,j <2},
i i

—. 1 2
v= H (@) nH_(Q) = {ve H (vi; = 0} ,

2 2 ov :
H (2) = {ved (|v = 7~=0on I'}.

The space 1 (Q) is a Hilbert space for the scalar product :

2 2
ou av ( ou 0(u,v) = (u,v) DDE =) D> — a)? 2 ? 2 ; C0 . 2 . 0X. . 0X.H (Q) L (2) i=1,2 ox, 9%, L (QQ) 1,j=1,2 0X; 0X. 0X, 0X. L2(Q)

If © is bounded and its boundary I' is smooth one can show the following :

Proposition 2.1. : The mapping v > || av || 5 defines a norm on V
Lo (9)

equivalent to the norm induced by H(Q) .

We shall also use the following spaces :

2 2

H(Q3;A) = {ve L (QD) |Av el (D1,

H = {veH(Q;4)|Av = 0}.

The space H(Q;A) is a Hilbert space with the scalar product

(u,v) = (u,v) + (Au,Av) .
’ H . ’ ’

(8:4) 12a) L2(@)
The norm associated with it is

2 2 1/2

2.1) lla = VI? , + dav? 21%) L-@

From (2.1) it 1s easy to show the
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Proposition 2.2. : On Y the topologies induced by H({;A)and L (QR)

are identical.

2.2. Traces properties

Let Ys Yi be the following trace mappings :

= v| v = J)TeV = Vip» Yi on'T

The following results are shown in LIONS-MAGENES [32] and the references

therein

Proposition 2.3 .: The mapping ty»! is linear continuous and onto

1/2) xu3/2(r) from HOA).

Proposition 2.4. : The mapping by vy) is linear continuous and onto
1/2 2

2/2 (yx H / (I') from H (Q).

CL 1/2

Proposition 2.5. : The mapping Y is onto H '"(T) from V.

Proposition 2.6. : Restricted to} the mapping Ys 1s an isomorphism

(topological and algebraical) from H onto B12).

2.3. Green's formula

We shall denote by <*,*> (resp. <°*,® >>) the bilinear form of the
1/2 -1/2 3/2 -3/2

duality between H / (I’') and H / (I') (resp. H / (I') and H / (TY)
1/2 2

which extends (*,*) 9 , l1.e. <v,w> = J pvwdl vveH / (IT), we L°(T")
L (I) 3/2 2

(resp. <v, w» = J powdl Vve H (I), we L'(T')). Then Green's formula
(see [32)) is written

vAudx - | uAvdx = <y. u,y v> -— <y u,y.v>®»
0 QO 1 0) 0 1

(2.2)

[vue w@ JV ve H(QA)



- 7] —-

2.4. Existence, unicity and decomposition results for (PJ).

Let us assume that in (P,) one has

2 3/2 1/2
(2.3) £ <1lX@ , cu 2(ry, g, H/T).

From [32] we have the

2

Theorem 2.1. : Problem (P) has one and only one solution in H (Q). =
Then it 1s easy to show the

Proposition 2.7. +: Problem (P) is equivalent to

BR
(2.4) - N= uw,

Remark 2.1. +: The decomposition (2.4) is well known in fluid mechanics:

w 1s the vorticity and ¥ the stream function.m

In the following the trace of won I will play a key role, both

theoretically and numerically.

Proposition 2.8 +: If conditions (2.3) on £.8,,8, hold, thenWw admits
~-1/2

a trace y wel / (NH.
2 2 2

Proof : Since Ve H (R) , w=-MeL(Q) and from (2.4), = -f ¢ L°(Q).
-1/2

Therefore w e€ H(;A) and from Proposition 2.3 , YW e H / (rr).

2.5. Study of the relation between YW and Y Vv

A few iterative schemes for the numerical solution of (P) (see [9],
BOURGAT [5], GLOWINSKI [21], Sec. 5 below...) as well as the quasi-direct

method below are in fact based upon the results of this section. In this

direction Lemma 2.1. below 1s essential.
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Lemma 2.1 : Let A e€ H (I') then the following holds ;

(1) The problem

2
AY = 0

(2.5) {$|p=0
—~ —Ml

2 1

has a unique solution in V = H (2) nH (8).

(11) If¢ is the solution of (2.5) in V, the (unbounded) operator A

defined by

(2.6) AX = =yy

-1/2 1/2
is an isomorphism from H / (I') onto H / (I).

_ _ -1/2 -1/2
(111) The bilinear form a : H (I") XH (T') > R defined by

(2.7) a(A,u) = <A>

-1/2 eo.
1s continuous, symmetric and H (T)~elliptic.

Proof of (i) +: The variational problem

ov viAMAvdx = = <= , A> VveV,
Iq Jn

(2.8)

YpeV

has one and only one solution. This result is classical. Nevertheless

let us prove it : the domain § being bounded and the boundary I' of {

being regular, || Av | 5 defines on V a norm equivalent to the norm
L™ (Q)

| 2 a
induced by H (2) (see Proposition 2.1.). Therefore the bilinear form

(u,v) ~> AuAvdx
Y/
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is continuous on V XV and V-elliptic. The mapping Y, is linear continuous
2 1

from H (2)to H /21y (see Prop. 2.4), therefore

dv

(2.9) lsge, ol = Toywael <I Cp Ivpll = clad, lvl,
H (I) H (I) H (TM) H™ (3

0

Thus the mapping v + <= y A> is continuous from V to R. The conditions
of application of the Lax-Milgram theorem being fulfilled, we deduce

from it the existence and uniqueness of y solution of (2.8).

Let us show that y is also the solution of (2.5). The set of Cc (Q)-

functions with compact support, D(R), being included in V, we have

(2.10) AYpAvdx = 0 Vve DE).
Q

Therefore

(2.11) Ay = 0.

Let w= - Ay, then we L2(Q) and,from (2.11), Aw = QO,therefore

(2.12) WE H .

From Green's formula (see N° 2.3) and from (2.11)

0 = | AYAvdx + KY VY AY» - <Y VsY A> vv e HQ).Q

If veV, Y,V = 0, hence

(2.13) AYAvdx = <Y VL Y A> VveV,.
Q

: : 1/2
The mapping Yy 1s surjective from V onto H (I) therefore by comparing
(2.13) and (2.8) we find that



| -
!

- 10 -

Proof of (ii) : Obviously A 1s linear. It is also an injection since,

from Theorem 2.1, ¥ = 0 is the unique solution of

2

Ay = 0, yb =20, yb = 0.

The surjectivity of A follows directly from Theorem 2.1 (with £=0, g,=0).
-1 1/2

Therefore A is an algebraic isomorphism of H /2 (1 to H / (T).

Let us show that A is continuous ; by letting v = ¢ in (2.8) we find

that

lool, <All yp Ilvpll yp solidly, dial,
L™ (R) H (T) H (T) H (7) L™(Q)

i.e.

loll, <clall _,,
L™ (0) H (T)

-1/2 Lo.
Thus the mapping A + {y : H (I') » Vv is continuous ; then the continuity

of A follows from the continuity of Yi | HQ) + gl/2 (1. The continuity
of a! is deduced from the continuity of A by applying the Closed Graph
Theorem.

Proof of (iii) : The continuity of A yields the continuity of a(*,*).

Let us show the symmetry. Let Ash, cu 1/2 (r) and Vys¥, eV the corresponding
solutions of (2.5). From (2.8),

(2.14) AY, AY, dx = <AA,,A. > VA cu 2)
1g V1°v2 2° 118

and by permuting A, with A,

-1/2
A AY. dx= <A. ,A> VX A eH (rm,

Q 2771 1772 172

which completes the proof of thesynxnetryof a(*,?*).
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-1/2 Ce

To show the H (I')-ellipticity, let A = Ay = A in (2.14) ; then

-1

(2.15) av)2dx = <a> wae Er).
QQ

Since Ape¥H (see (2.12)), (2.15), Proposition 2.6 and the fact that

Y AU — =-A,imply that

<a> 2 cf y mpl] Cf cl|All® c>0? 0 -1/2 = -1/2 ? ’
H (T) H (T)

which completes the proof of Lemma 2.1,m

Let us g0 back to problem (P.) with f € 12), 8) cu?) 8, € 1/2.
We have seen from Theorem 2.1. that (P.) has a unique solution in 1 (Q)
and that w = - A) has a trace A = YW in V2. We shall now show
that A is the solution of a linear variational equation in 12.

Let Uv be the unique solution in V of

7

AY =0

(2.16) blr = 0
- AD _
Ml. = A.

Problem (2.16) 1s equivalent to

(2.17) wl = 3

| - AY= wFr=0.

Then let v, be the unique solution in H (Q) of
2

A bo =1f

(2.18) Vol = 8

-M| = 0
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which agaln 1s equivalent to

- dw =f

w |p = 0
(2.19) of

- a, ~ “o

\ bol p RT
Obviously { = LN + mn pws ow + w. The reader will note that v, is

| computed by solving two Dirichlet problems for —A. Similarly for V¥ ,

| so long as A is known.
|

Then one has the following theorem :

Theorem 2.2. : Let ¥ be the solution of (P) ; then the trace A of
-AY on ' is the unique solution of the linear variational equation

ay
) ~-1/2

(2.20)

eu M2.

Proof +: Prom Lemma 2.1 and from (2.16) we have

(2.21) <AA,> = =< ay u> vuer V2).

Since y = Y-y and since WM _ g, on [
0 on 2

oy
< > = «2 _ > 1/2

which shows that A is a solution of (2.20). The fact that A is the

unique solution of (2.20) follows (via the Lax-Milgram Theorem) from the

fact that {A,u} => <A\,y> is bilinear, continuous and HB /2(I)-elliptic
(see Lemma 2.1.) and from the continuity of the linear mapping

oY
0 -1/2

<— - >The a 8,» M : H (I')= R
oY

( == and g, belong to 52) .m
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Remark 2.2. : Since the bilinear form a(*,*) is symmetric,the variational

equation (2.20) is equivalent to the minimization problem

-1/2
JA) < JW) VueH (I),

(2.22)

re mH)

where

1 oY0
JW) = 7 CAUUZ = <r 8),H>

Remark 2.3 : If the condition : =p = 8, 1S treated as a constraint
-1

we can associate with (®)) the Lagrangian &£ : 1 (9) xX H /2 ry > R
defined by

2

(2.23) L(V, = 1 |v] “dx = fvdx + QV g., U>.
Q 9;

Let V = {v]v e BH: (Q) ,Vv = g, on I'} ; then one could show that
{y, - Y Mv} is the unique saddle-point of #£on ¥xu V2 and that

JW) = - Min £(v,u) .
veV

Therefore (2.22) 1s the dual problem of (P) associated to the Lagrangian #£ .

We refer to [9], [21] for a more complete study of (P) by duality methods
associated to Lagrangian of the same type of£ .

Remark 2.4 : The data f and g, come into (2.20) by means of 28 only
(see (2.18)). eo

Remark 2.5 : Let J be an extension of uy in Q. In a formal manner, from

Green's formula :

| a(A,u) = <Ar, p> = - & , U> =(2.24)

| = - Ayndx = VYeVidx = | wpdx - Vip e Vid xY! $i Y Q

where y is the solution of (2.5) and w = - AS. Similarly



SLUMS _ _
<6 cc Yu>= VVudx + AY udx =
on Ne) (0) Q 0)

(2.25)

= | Vy _ eo Viudx - Ww udx
© Q °

where {ws} is the solution of (2.19).

. _u1/2
If uy is sufficiently regular (say u €H (I')) so that there exists

v e 1 (Q) then (2.24) and (2.25) can be justified. The interest of
(2.24),(2.25) is that we can now evaluate (2.20) without calculating

oy

or and =n explicitly.

We shall take advantage of this remark in Sec. 3 and 4 when (P) and
(2.20) will be approximated by a mixed finite element method.

2.6. Summary

Let { be the solution of

Ay =f in Q

(P) blip =
0

99) = 3on 'T 2

and @w= = AS, A= wl We have shown in Sec. 2.5 that for solving

(P) it 1s equivalent to solve the following problems :

(2.26) - Buy, = f in €,
I w, |p = 0,

- A) = w in

(2.27) oo. ©% ro 8p

IY,
2.28 = =

) AX an Bos

(2.29) bo i,wl =),

(2.30) | TA = wind,| =

Je gq
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Altogether 4 Dirichlet problems for -Aplus an integral equation on I'

whose variational formulation was given in (2.20). In the following

sections we shall focus on the approximation of (2.28).

2.7. An explicit example : computation of A when {8 is a disk.

The results of this section are not at all essential for the under-

standing of the sequel ; they are given for the sake of curiosity.

In this section, we assume that

Q = {x R[x + x) < R%}.

Let (r,8) be the usual polar coordinate system in Rr.

-1/2 1/2
Theorem 2.3 : Let A be the isomorphism of H (I'Y on H (I)

defined in Sec. 2.5. The eigen functions of A are

_ > 0
(2.31) w, (0) cos nb n

= si >Ww, (8) sin nb n=l,

the corresponding eigenvalues being

(2.32) a = ——=—— (n20).
n 2(n+1)

Proof : Let Yi, respectively Vy s be solutions of

Ay = 0

(2.33) vp = 0
- by) =c os nb (n 20),

2
Ap =10

(2.34) Yl = 0
- Bp] = sin nb (n> 1).

The reader will check that

1 r.n 2 2
= T— (5 - >

(2.35) Vo (r,0) ACY R) (R"-r")cosnb V¥Yn=z20,
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_ r.n,. 2 2 :

(2.36) Y, (r,0) ACTS) ) (R"-r") sin nb Yyn>1.

Since

_ oY ay
AY = Sa lT B 3r R»0)

it is seen from (2.35), (2.36) that

Ay, = 2 cos nb Vn>0
In 2(n+l) ?

A). = =——— sin nd Vn=I2n  2(o+1) OM So

The sequence B= ATA TELS ERRREA ST FURRY. = i
= {1, cos®, sin e,.,cos n8 , sin nB ,...} is total in H (I), VseR

(i.e. the space of linear combinations of elements of $ is dense in

1° (I) and A is self-adjoint, compact from Lr) into L2(). By applying
the spectral theory of self adjoint operator in H-space (see for example

RIESZ-NAGY [(1) we conclude that Bis the set of all eigenfunctions of A.

Theorem 2.4 : Let A be a sufficiently smooth function on I' (say A € L (T))

then

(AN) (x) = A(x,y)A(y)dl'(y) VxeTl ,
IT

the kernel of A being

] | ~x|* R - | 12 2A(x,y) = =| C - 5 ) n( — ) yx (1 - rs )© x2R | y-x]| R 4R
(2.37)

~1 y—X 1
X _- — ’

where | y-x| = distance (x,y).
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Proof : In polar coordinates

2m

(2.38) (AN) (8B) = A(B,0)A(a)da
0

where

A(B8,0) = RL, > (asnfcos no + sin nf sin no) LEHT m2 n+l
n=l

(2.39) | (6-0)_ R 1 + > cos n\U=a) ) \/| or 3 n+l 6 fan= 1

which is the expansion ©f the kernel A(B,0) with respect to the

eigenfunctions of A.

19
Let ¢ = 8-a and z= e ; we may assume that ¢¢ 1-m,+m] ; then

(2.40) AGB,0) = = Re (- tn") - 1) vo # a.
? 2m z I-z 2

In (2.40) the determination of the complex logarithm is the one which

satisfies &nl=0 ., Therefore

R . ]

(2.41) A(B,0) = - 5 (cos ¢ &n|1-z|+ sin ¢ Arg(l-z)+ 5) Vo F 0.

By inspection of Figure 2.1 we have

Imz

z!

\-/ :

NE fi Re
21

Figure 2.1.
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6 = 1 sin”! Lz if ¢ > 0,
(2.42) [sin 2] 152 =

¢ - _ 7 gin”! Hezl if ¢ < 0.

Hence

2

(2.43) cos ¢ = 1-2 sin’ % - 1 zl
i) h

But sin ¢ = 2 sin 7 Cos % therefore

l1-2]° 1/2 > 0sin ¢ = |1-z] (1 = if——4)
(2.44) 5

1- 1/2

sin 6 = | 1-2] 1 = Hz) if ¢ < 0.

From Figure 2.1. we also deduce that

arg (1-2) = = = 2 if ¢> 0rg (1-2) = 5-5 if ¢> 0,

Are (1-2) br if ¢< 0

Hence from (2.42)

-1 | 1-2]
Arg (l-z) = - cos — if ¢> 0,

(2.45) Cl

Arg(1-z) = COS : Liz if ¢< 0.
I

Finally, putting back together (2.41),(2.43)-(2.45), if 0+#a

2 2 1/2
R | 1-2] [1-2]_ = — - 1- ) Xase) = 5 [0 5 EL rr i Rd A

(2.46)

X cos”! Liz] - 1
I 2 2 | .

Let x= {Rcos®, R sin 8}, vy = {R cos a, R sin a) ; (2.38), (2.46) yield

1

(A) (x) = 3 | AG are) ,
where A(x,y) is given by (2.37).m



| ||
— 19 -

Remark 2.6 : If the domain {) is the open disk (0,R) the resolution

of the Dirichlet problem on

2
Au = 0 in © (or R=)

(2.47)
u =8onT

-1/2 1/2
involves the operator B : H (I > B'°(T) defined by

(BA (x) = m= | fn += A(Y)AT(Y) VA reguiar, ¥x eT
2m r ly-x] J ’

One can show that B 1s continuous and positive semi-definite, i.e.

-1/2<Bu,u> = 0 VueH / (I).

Besides,A andB have the same eigenfunctions (see (2.31)), the

corresponding eigenvalues being 8, = 0, B = 5 ; n>1.

For the numerical solution of (2.47) by methods of integral equations
2

on [' and for more general domains of R™ pg rR we refer to NEDELEC-
PLANCHARD [35], LEROUX [30] and the bibliography therein.

Remark 2.7 : For more general domains, A will be a pseudo-differential

operator, usually not explicitly known. =
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3. APPROXIMATION OF (P.) BY A MIXTE FINITE ELEMENT METHOD.

In this section we shall use only polygonal domains §I, but what follows

can easily be extended to the case where isoparametric finite elements

(see CIARLET-RAVIART [11 1) are used.

3.1. Triangulation of {i. Fundamental spaces

Let CG, be a triangulation of § satisfying

(3.1) TC, finite, Tc VTe © , LJ T = Q ,
T € T,

T and 1'eT, , T # T' — TnT! = @ and TnT' = 9% or T arc;
(3.2)

have a side or a vertex in common only,

(3.3) h = length of the greatest side of the Te T, -

Let Pr be the space of polynomials of two variables (3 in R%) of degree
less than or equal to k ; we introduce the following finite dimensional

spaces

_ °@ V
(3.4) Vv, = {lv|v, eCo@ , Vylp eB VTE T 1

1

(3.5) Voy = vp lvy ce Vi roy = 0 on T'} = Vy, nH) ,

(3.6) | M : a complementary space (not precised for the moment)of Von nV, i.e. My = Vy and Vy = Von ® 7 ,

Woh {va | (vy hq) hh 'h h|T Ih
(3.7)

| W h 10hdx qy Hp dX N 2, H par Vu ev}.Q Q I

n (3.7) 81h is an approximation of 8 which belongs to YY and 891,

is—an approximation of 8, such that I+ Bop Hp dl is "easy" to compute

(851, = 8, possibly).
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3.2. Approximation of (P)

(P) is approximated by

Co Lo:

(P,)

where

(3.8) i ( y = 10 1g, |%dx- | fv. dxIh When) T 7 | 19 h he >
§ £

and where Ey is an approximation of f (f, = f possibly) such that

[q fv, dx is easy to compute.

Such an approximation (P,) of (P)) by finite elements is said to be
mixed (see [10],[9]). One can easily show the following proposition 4

Proposition 3.1 Problem (P,) has one and only one solution.

3.3. Convergence results (kz 2).

It 1s assumed that the angles of C. are bounded, uniformely in h,
from below by 0,” 0 and that C, is such that

(3.9) Max h(T) €T min h(T) , VTL, T independent of h,
Tel Tet

where h(T) is the length of the largest side of T. If k22 it is shown

in [10] that, under the above hypothesis, one has

| k-1
(3.10) lw, -v] 1 + oo, = (20) 1, = clu] k+2 h

H (2) L™ (Q) H “(Q)

where C 1s independent of h and V ; naturally this result supposes that

£,8,:8, have been conveniently approximated. For a discussion of the
| case k=1 we refer to [23,Ch. 4], GLOWINSKI [22].We also refer to SCHOLZ

| [437 where, under the above hypothesis on TC, it is shown that if k 23
one has the following error estimate
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2 k+1

Fo ll, Lu CI)| EPS | | I
L™ (Q) L- (Q) Ho (62)

where C is independent of h and Vy.

Remark 3.1. All what 1s said for triangular elements also holds for

quadrangular elements.

3.4. Decomposition of (Pp).

By definition of My : Vi = Von ® 7M, Let {sw} be the solution of (P,)
and let A be the component of wy in Ms i.e.

(3.11) Wy _ (wp =A) + Ay ; w "Ae Veoh , AL € My

In [9] the following theorem is shown

Theorem 3.1 : Let {Yu} be the solution of (PL); let Ay be the
component of fin ; {wo A J is also the unique element of
Vy XV UR such that

| Vo, «Vv, dx = IRS Vv, eV,
(3.12)

wy =A € Vos

| Vo, Vv, dx | vio ev is
(3.13)

[vn ev, » Yui = En’

. _ Y m_.
(3.14) Vi Vi, dx w, H, dx 8opHpdl Hyo€ My

IQ Q + ’T

Owing to the importance of this result for what follows we shall give it

a proof.
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Proof of Theorem 3.1

(1) Let Woh be

= x V I =

LIS {vypap) Von | | Vv he p VPhdx ohn \ My € v.} :
Let {0} be the solution of (®,) then

(3.15) {y +tv uw +tq, } € Woh Vt eR, Viv »q,} eW po

The following process 1s classical in the Calculus of Variations :

from (3.15) we deduce that

I :

k [3 prev op weap) 3 yoy) | > 0 Vt> og,(3.16)

[Voy ay) € Won
Now

lim — |j, (@, +tv, ,w, +tq, )=-3, (P, ,Ww | =  w,.q,dx - f.v, dx£>0 t h'"h h’ h h h "h’ h Ig hh Q hh
t>0

(then the linear mapping visa} > [| (w,q ~f Vv, )dx is the derivative
of j, at {0H
Therefore

| w, q, dX - f, v, dx > 0 VY lv sq ew,Q 9

and since Woy 1s a linear space,

(3.18) . Wig; dx - : f, vy dx =0 Vivant ew
9) 9)

Also by definition of Ws lysate implies

(3.19) | Vv, Vw, dx = 4 wy dx ,| Q h h Iq h
which, together with (3.18) implies that
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(3.20) Vw, + Vv, dx = | fv, dx Viv, aq} € Wo,IQ y

Let ve eV ; the problem

= . VY
qp My dx Wy Vi, dx Hy € Vio

Y) Q

| dy € Vy
has a unique solution and of course {visa} ew. This shows that, in

(3.20), v, can be any function of V_, i therefore it implies (3.12).

Similarly, since sw} € Woh we have

. — ar Vv Vv. .(3.21) i. Vv, dx | opps + [1 92n vy I ve Vy
Hence (3.13) is proved by choosing Vi € Von in (3.21) and vy in my
for (3.14).

(ii) Conversely, since v = Vp? m , by adding (3.12) and (3.13)
we find that

Vy, *Vv, dx = Ww vy dx vo Yh v dT Vv, eV
y) Q I

Wipebe Vy XV bpp = 8p

Therefore

(3.22) {0} Won

Let tv, sa.) € Woo then

| Vy Vipdx = | IpHpdx TE EVy’ Q

and in particular

(3.23) 0 Vv, Vw, dx = 1 ThE Y tv, >a. } € Won
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Then (3.12), (3.22), (3.23) imply

(3.24)

The functional j, being convex on V, xV., (3.24) characterizes {y, .wy
as being the solution of (P).

Remark 3.2 : Equalities (3.12)-(3.14) are the discrete analogues of

(2.29),(2.30) and of

[|] VeVudx = | wpdx + | 8, udx Yuen,Q r
(3.25) al

] 1

| : complementary of B(Q) in H (Q).
3.5 Discrete analogue of Lemma 2.1.

Let Ay € my, and let Wiss respectively bys be the solutions of the following
approximate Dirichlet problems

| Vw, Vv, dx = 0 Y vy € Von?
(3.26)

w, € vo Ww. =A € Von ,

| Vi, Vv, dx = | o Vax Vv, eV _,
(3.27)

Yh € Von

Then we define the bilinear form a My m >R by

- - |v. ”
(3.28) a, (Au) w, Wy dx Wy h Vphdx Vu, € %

Q Q

The reader will notice that to define a, we have used Remark 2.5.
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Lemma 3.1. : The bilinear form a, (*,*) is symetric, positive definite.

Proof : For j=1,2 let Ai € mn. and we We respectively be the solutions
of (3.20) and (3.27).

By definition of a, (+,+) we have

(3.29) a (A 1shy) = . W phy pdx = Tin Ppt

By letting Ao = (App ~Ws) + Wop , (3.29) becomes

: Aneto) = CinPan® Win en®E Winton
(3.30)

w,. (Ww. —-A.  )dx.
_ 1g 1h 20 2m

From (3.26) and since Yin € Von

(3.31) | vu, Wolhdx = 0Q

Similarly from (3.27) and since Wop Aon € Von

(3.32) : VU Vw, =A, dx = wip (Wy “A, )dx0 Q

and on account of (3.30)-(3.32) we have

(3.33) a, (A pshy) = | ozo VA mn, j=1,2
which shows the symmetry of ay

To show the positive definitness let Mn = Ah = A in (3.33) then

(3.34) a, (A, ,A,) = w’ dx
hhh Th

Therefore a, (AA) = 0 implies wy =0 which in turn implies A =0 since

A is the component of w_ in Mm. -
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3.6. Application of Lemma 3.1. to the resolution of (Pp).

Let fg, sw, be the solution of (Pp) and let An be the component in h
of Ww, . Let wy,» Vy be the solutions of

— _ y

| Vwy Vv, dx 0 v, © Von
(3.35)

wpeVy oAEeVoy

i VP, Vv, dx = | Wyv, dx Vv v, € Von
(3.36)

by € Von!

Let Ww, and Voy, be the solutions of »
0 _

| | Vw, Vvhdx INGE Vv € Von(3.37)

Won bn

0 _
| Vo 4 Vvhdx Wp Vy 9X Vv, € VonQ Q

(3.38)

Then Vy = by + Yoh y Wp = Wy + Wp and (3.35)-(3.38) are the discrete
analogues of (2.16)-(2.19).

We shall now show that A is the solution of a variational problem in My.
From the theorem below we shall derive a discrete analogue of Theorem 2.2.

Theorem 3.2. : Let {, yw, } be the solution of (P,) and let A be the
component in mn of Wy Then A 1s the unique solution of the linear
variational nroblem.

= [ - - pr| ap (Ayu) | Wop! pax | wpipdx Bort dx Hye Tos: Q £2 I
' (3.39)

yA
| A € 4,
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which is equivalent to a linear system with a positive definite

matrix.

Proof : Owing to Lemma 3.1., applied to 0, uw, 1, we have

A = I —_— m ® b— — -—a, ho Hp) wy Hy dx Vip Vi, dx (wy, Wp) Hy dx
9: Y £2

) (Wy) HC Vb Vu, dx Wop Hy, dX
y/ Q Q

- Vip, - v( Wp + Vi,dx wy Hy dx) TH m.,
£2 Y;

but Wy», belongs to Woh therefore (see (3.7))

Vie -| by Vu, dx WH, dx _ | 8) Hp dX v Hy € nm(2 Y; I

which, together with (3.40) proves (3.39).

The uniqueness 1s obvious since a, (*,°) is positive definite. The
equlvalence with a positive definite linear system is a classical

result on the approximation of linear variational problems. We

shall write the matrix of this system in Section 4.

Remark 3.3 : To compute the right hand side of (3.39) it is necessary

to solve two approximate Dirichlet problems ((3.37) and (3.38)).

Similarly An being known, to compute wo and by it 1s necessary to
solve the two approximate Dirichlet problems (3.12) and (3.13).

3.7. Study of the conditioning of a, (+52).
Since the linear system associated with (3.39) will be solved by direct

or iterative methods, it is important to know the conditioning of the

matrix of the system. Theorem 3.3 below will help to estimate this

conditioning. For the sake of clarity we shall assume that Lagrangian

type finite elements are used.
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Theorem 3.3 : We assume that § is convex. If Th satisfies the
hypothesis of Sec. 3.3., and if k2 1 and h is sufficiently small,

then

(3.41) ah [yA %, <a Gas Bly AIS, VA em,
L (TI) L™(T)

where a,B are two positive constants, independent of h and Aye

Proof :

(1) Proof of the second inequality. Let Ay € mM, - It follows from
(3.34) that

3.42 AA) = wid(3.42) aN LACO Q

where Ww is the solution of

A Vo*¥v,dx = 0 Vv eV|
(3.43)

Ww =A eV ie

Let wy be the solution of the Dirichlet problem

| Vid, + Vvdx = 0 Vvel (Q)),Q 0
(3.44)

1
Ww, = HWy Ay € 5)

From Sec. 2.5.

Va, Opry) = llogll 5 = [lay |l + {| & |] =h*"h’"h hl 2 h "hil2 hit 2
L™ (2) L (Q) L (Q)

(3.45)

Noll, + NB ALTA2 J)
h ~h L? (Q) oh’'o’h

Let |A| = [|All ) 5 then (7)
L(L°(I),L7(I))

*) |al = largest eigenvalue of A.
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2

[<arn,u>| < [A] [IM], lull Va,ue LUT),
L (TD) L (T)

therefore, from (3.45)

(3.46) Va, (Aa) < lwwl +A] Iv xl :h "h’"h 12 (Q) 0) £2)

To estimate ||w, ~&, || let us use the method of AUBIN-NITSCHE
hh 2 (Q)

(see [ 2 1,[36]).

Let we LEQ) and let ¢, respectively dy,» be the solutions of

| VoeVvdx =  wvdx Vv eH (Q) ,Q IQ °
(3.47)

1

de HQ),

| Vo, +Vv dx = | Vv eV ps
(3.48)

pn € Von

2 1 ~

Then - Ap = v and, § being convex, ¢ eH (Q) nH_(Q). Alsou, = By 1 =~ ]

_ AT. Therefore wy ~0y € H_(Q). From (3.47) we see that

ww, =, )dx = | Vo*V(w -© )dx =  V(¢-0,) 0 V(Wh-h)dx +
q hh . hh qh

(3.49)

+ Vo + V (wy —wy ) dx.
Q

Also wy €V yc H (©) therefore from (3.43),(3.44), we have

(3.50) V(w,=; }é, dx = 0.
2

Finally from (3.49),(3.50) we have

(3.51) ww i) dx = V(o~¢, ) Vw, ~®, )dx < ||¢, ~0]| lw, =, || :
Iq h “h Iq h h “h h B (2) h “h BL @

But it is well known (see STRANG-FIX [47]) that under the above hypothesis

on €,.
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6, =o] sc loll , mn
h H. (9) H™ (22)

where C, is a constant independent of h and ¢.

From Proposition 2.1

loll , <p lwll ,
H (2) L™(§2)

Therefore

~ ~ 2

(3.53) ww, 0 )dx < Chl wl] Iw, -&. || VweL°(R)h

gD Tre PME @
which in turn implies that

~ ~ 1 ~ ~

13.54) lo =i, | _ sup |W] | wo ydx| < Con (lw <b |h h'_2 2 h h 3 h "h" 1

L™ (2) we LEO) L™(Q) ‘0 Hy (0)
wi# 0

Thus now we must estimate [lw 8, |] | ; from (3.43),(3.44) we have
H (Q)
0

| Vw, ~0, )*V(v, -w, )dx =0 Vv, eVy , vA € Vion
Therefore

|V (w, =0 | 2dx = V@@, ~w, ) Vw, ~v, )dx +h ~h hh h h
QQ IQ

(3.55) t 1) Gn) Vp) dx = PRAT TARAS

Vv, eV , ViTAL € Von ,
I

which shows that

lw, -&. |] < lv,=, | Vv, eV. |, v.=\ €¢ V _.
h "h 1! (Q) h 'h 1 (Q) h h hh oh

0] 0]

Let m be the operator of interpolation on € associated with the method
of finite elements used, me (H (QD) n c’(Q) Vy) Then Wy € HC (Q) Vs <3
and
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. 2 :

where A is independent of A . Now © is bounded inR and its boundary
s 0,=

is Lipchitz continuous, therefore, Ys > 1, H(Q)¢ C (8) with continuous

injection. Hence m_ can be applied to wy and

(3.57) TOT = Clr = Mur

Let s'<s ; owing to the above properties and to the hypothesis on TC ,
we have (see for example BABUSKA-AZIZ 1 31)

~~ s'=1 ||~
(3.58) | mi 6 | Sco oh [18]

hh h i! (©) (s',s) HS (9)

with Cs 5) independent of h and Wy, » We deduce from (3.56),(3.58)
~ s'-1

[| = SHENA (RRoh" 1

RRR Tl) (58D) i (0)

with Kits) independent of h and A,. Therefore V3 >0, there existss',s

Cs independent of h and A such that

(3.59) |, & -&, || < Cgh |y | |
I () ° TH (ID

0

From the hypothesis on T, we have also

C

ohyly RTO RTLAM)

therefore

“on -1/2~-

(3. 60) [mi0, Il |< Cgh Troll
H_ (Q) L™(T)

where Cg is independent of h and Aye From (3.57) it is possible to take
vy = mw in (3.55) and together with (3.60) it implies that

. -1/2-6

(3.01) lw, 6, I < Cs h ly Al 2 ’
Ho (2) L (I)
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and at last from (3.46),(3.54)(3.61) we have

1/2-8
< m(3.62) Va, (A 40) (Val + Ch ) Iv20 VAe

L (I)

which completes the proof of the second inequality in (3.41).

(11) Proof of the first inequality.

Since S. satisfies the assumptions of Sec. 3.3. it is straightforward
to show that

(3.63) ly vw ll , = =v, vv, eV,
RORR EE (1)

where C 1s independent of h and Vy Recalling that

widx= a (AA) YA e TM
IQ h hh’ h h

and aT = yr we deduce the first inequality of (3.41) immediatly
from (3.63). This completes the proof of Theorem 3.3. eo

Remark 3.4. : Proceeding as in [9, Th. 10] one could show from Theorem

3.3. that

| a, (A540) a(A,\)
(3.64) lim sup — sup _ al.

- i —- = \ i =h>0 Ape =(0F lly Ag ll ™ re 12(m-fo} IH
L (T) L (1)

3.8. Summary

Let yw} be the solution of (P) and let A be the component of Wy
in mn, . The vector A is the solution of a linear system the matrix of
which issymmetric, positive definite. This system is given in variational

form in (3.39) but the bilinear form a, (+5) is not known explicitly. The
construction of the matrix and the resolution of the corresponding linear

system will be dealt with in the next section. The resolution by iterative

schemes will be considered in Section 5.
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4. CONSTRUCTION AND RESOLUTION OF THE LINEAR SYSTEM EQUIVALENT TO (3.39).

4.1. Generalities N

Let No dim(7,) and J tw. 2, a basis for MM. ; if A ,

Nh
4.1 = AW.( ) A 3. vs

Proposition 4.1. : The problem (3.39) is equivalent to the linear system

in (Ap see Ay )
h

“ a, (w.,w.)A. = Vi  *Vy.dx - Ww, w.dx -
py h "3°71 0 oh 1 qn oh1

E(E,)
- dT 1=1,... .| opie R 1=1, No u

W hall d t = Ah = Mh It is also easy to show
e sha enote 3; 3 = 3, (My 3.) , = (a...) i,3=1" y
the following

Proposition 4.2. : The matrix Ah is a N XN, positive definite symmetric
matrix.m

We shall now study the construction of Ah and of the right member of (Ep)

from a suitable basis J, .

4.2. Choice of m..
The space My should be chosen such that the computations of 3g and of
the right member of (E,) are easy. Therefore the basis functions Ww, € RB
should have a small support. It seems from [9] and [23,Chap. 4] that a

good choice is as follows

My complementary of Von in Vi

(4.2) -vp My = Van 0 VTe no @
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If in particular Vi is defined from Lagrangian finite elements (see

Figure 4.1. for k=2), My is the space of those functions which take
the value zero at all nodes of C, which do not belong to [ .

Then

N = dim( m) = Card (2)

where

— {p P <Ly {P ¢ T| P node of »

Ny
and a goodchoice for By is the canonical basis $B = tw. }. 2, , Where

. €V
wc h

(4.3)

For notational convenience we have supposed that Ly has been renumbered

from 1 to N, - With this choice of m and B the coefficients Ass in rela-
tion (4.1) , of A are precisely the values taken by A at the boundary

nodes Pd , 3=1, 0B N Thus

— . VY . % 1=1 CIC .

T.-\ Ca)
. 3 52 \

3) Ss = 5> ===

__ sb
® =

> (\ Mh, ?(B) A hi) 3
5

5 1

Figure 4.1.

(k=2 ; a small circle indicate a boundary node. The supports of W,
and We are shown).
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4.3. Computation of the right members of (E,)

Let by = by... shy } be the vector of the right member of (E,) :
h

= * . - R - w.drl = 1,...,N,(4.5) b. 1 Yoh “i 1 oni | a ar , 1 h
To compute b. we need to know wn and Yop This is done by solving (3.37),
(3.38).

Remark 4.1. +: The computation of by is faster if the support of w. is

smaller (see Sec. 4.2). Besides if ms verifies (4.2) it suffices, to
T n .compute Dy to know oy and Yoh on the triangles e%, such that T Ir+#49

This remark eventually allows to reduce the memory space allowed to Yon

and Wy 1D the computer.

| 4.4, Computation of the matrix Ah

Let wie By. For simplicity let us omit the subscript h on w and VY. Then
let Wes resp Yi be the solutions of (3.26), resp. (3.27), corresponding
to w., 1.e.

J

. = v| vo, Vi, dx 0 Hp € Vos
(4.6) ’

w. €V w.~w. eV

J h J J oh'

W, = howl, d Vu, eV

(4.7)

. €V

v. © oh'

From (3.17) we find that

a... = a, (w.,w.) = w.w.dx - V.Vw.dx
iy hj’ 1 Iq J 1 Iq Vs i

(4.8)
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. th

Thus, to find the column of Apo it 1s necessary to solve the two approximate

Dirichlet problems (4.6)(4.7) and then, Ww. describing RB, to evaluate the
integrals in (4.8). Naturally Remark 4.1 also holds for the computation of

ay It should also be noted that since Ah is symmetric,in the computation
. th . .

of the jt columns,it suffices to compute 239 such that 1 <3 <1.

We shall see in Sec. 4.5.2. how to use those remarks when (E,) is solved
by the method of CHOLESKY.m

Remark 4.2 : From (3.33) we have

4. = .w.d V1<i,j <N_.

(4.9) 244 101i" X 1,] h

Therefore it seems that Ay can be computed by solving No Dirichlet problems,

instead of 2N, when (4.8) is used. In fact this simplification is only
superficial. Indeed to use (4.9) one needs much more memory for the storage

of WoesWy It 1s always possible to use tape or disk storage but it
increases considerably the computing time. Besides this it should also

be noted that the integrals in (4.9) must be calculated over {I entirely

instead of a neighborhood of I as in (4.8). ®

4.5. Resolution of (EJ.
4.5.1. Generalities

Vv Ny,
Let A, € R be the vector {A ,...,A. } ; then (E,) is written

h 1 N h

X. = b,.(4.10) Ap h h

The matrix Ay 1s symmetric positive definite ; to solve (4.10) we can use
the method of CHOLESKY. We can also use an iterative method like S.O.R.,

S.S5.0.R. (see VARGA [48],D.M. YOUNG [49]) or like steepest descent or

conjugate gradient (see J.W. DANIEL [13], CEA [7 1, POLAK [39], CONCUS-

GOLUB [12]). We shall give more details in Sec. 4.5.2. on CHOLESKY's

method which seems particularly well adapted to the resolution of (Ep).
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In fact the methods of steepest descent and the conjugate gradient method

do not require the knowledge of A, - We shall come back to this point in
Sec. OD.

4.5.2. Resolution of E by the method of CHOLESKY.

Since A is symmetric positive definite there exists a lower triangular

matrix Ly» invertible and unique such that

t

Ap = bby
(4.1'1)

> <1 <
% 0, 1 <1 No

where Rey 1 <1sN are the elements of the diagonal of Lo

If Riv are the elements of L, then

vis = 0 if T<i <jsN.

We recall the formulae of CHOLESKY :

For j=I1,

EERO
(4.12) a:

For 2 <j] <N

2 a
L.. = (a.. - 2°.)| i] i] 2 jk

(4.13) -
! 0.2.)  Vitl<isN= — . = . . = 13> .

| his L (a, 2 ik jk J h
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It appears from (4.12), (4.13) that it is not necessary to memorize

Ay in order to construct Ly: Indeed, suppose that the (j-1)-first

columns of Ly are known ; to find the 5 th column we compute the
solution (W;5¥.) of (4.6),(4.7) and then a.. by (4.8), R.. byJJ JJ

(4.13) and 24; by (4.8), 2: 4 by (4.13) for JILIN. The same
argument also applies to the construction of the first column of Lye

Once Ly is known the determination of AL breaks down to the resolution
of two triangular systems :

LyYh = Pp
(4.14)

tv

LA = Yy-

Y

The computation of A from Ay being straightforward finally Wy, and
Vy are computed by solving the two approximate Dirichlet problems
(3.12),(3.13).

Remark 4.3 : Once L, has been determined it is very easy to solve other

problems (E,) corresponding to other values for £,8,:8,- In fact it 1s
a general statement that the most expensive phase of the resolution

of a linear system, by CHOLESKY's method is the determination of Ly
It 1s even more so in our case since the determination of Ah requires

the resolution of ZN, Dirichlet problems.

4.5.3. Summary , number of linear sub-problems with the method of CHOLESKY

The solution of (P) by (E,), solved by CHOLESKY's method, requires
the resolution of

- Two Dirichlet problems (3.37),(3.38) to compute bys

- 2N, Dirichlet problems (4.6),(4.7), 1 <j SN, to compute Lo
- Two linear triangular systems (4.14) to find A

- Two Dirichlet problems (3.12),(3.13)to compute Wy» by
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Thus IN, +4 Dirichlet problems (with the same matrix) and two triangular
systems.

4.6. Conditioning of A

We recall that the condition number Vv(M) of a square NxN invertible

matrix 1s given by

-1

(4.15) va = fmf] fe

where the matrix norm is induced by the canonical vector norm of R,
We recall also that if M 1s symmetric and positive definite

u

(4.16) v(m) = 2X
Hin

. . . llest 1 f M.where Hoo (resp Hos) is the largest (resp. smallest) eigenvalue o

The linear system (BE) is easier to solve when VA) is small. If Ty,
satisfies the assumptions of Sec. 3.3 the following theorem is fairly

easy to deduce from Theorem 3.3 and from (4.16).

Theorem 4.1 : If a Lagrangian finite element method 1s used and if

the assumptions in Theorem 3.3 hold, and k2 1, then

(4.17) VA) = 0)
h h’ °

Remark 4.4 : It should be pointed out that the classical approximations
2

by finite differences or finite elements of A (resp. A) lead to

matrices with condition number in 0(=) (resp. 0()) and are therefore
not as well conditioned as Ay b bh
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4.7. Various remarks

Remark 4.5. +: The 2N, +4 approximate Dirichlet problems found in Sec.
4.5 are of the form

(4.18) (=8), u, = ¢p

where (=8)y is a Nx NJ symmetric positive definite matrix (approximating
—_— : 1 frond :
A ) with Ny dim(V_,).

Therefore since the 2N, +4 problems differ only by their right members,
the matrix (-A), can be factorized by Cholesky's method (and by using

the fact that (-A), 1s sparse)

t

(-4) B= A A

where A is a lower triangular invertible matrix.

The matrix A being computed once and for all, the 2N, +4 problems reduce

to 4N, +8 triangular linear systems.

Remark 4.6 : If (4.18) 1s solved by an iterative method, in order to

compute (wy »¥, ), it is not unreasonnable to initialize the algorithm with
STIRIEL SA provided that the corresponding basis functions RETRRLE

are neighbors.

Remark 4.7 : All what is said above remains valid if in Sec. 3.1,3.2

numerical integration methods are used to define Veh and (P)- In
particular if k=l and for special triangulations, if q, My dx 1s

Q 5
approximated by

3

(4.19) -— > measure (T) > q (M.. Ou, (M. ),M. ,1=1,2,3 vertices of T,3 . h' 1T" h iT 1T
T ¢ © 1=1

h

then the method studied gives back the classical 13 points finite difference
2

approximation of the operator A” (see [23, ch. 41,022]).
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5. REMARKS ON THE USE OF ITERATIVE METHODS. THE CONJUGATE GRADIENT METHOD.

5.1. Generalities

We have pointed out, already in Sec. 4.5,that (E) could be solved
by iterative methods such as the method of steepest descent or the

conjugate gradient method. We shall see that in doing so it 1s pos-

sible to solve (E,) without having to compute Ah explicitly. It suf-
fices to solve, at each iteration, two approximate Dirichlet problems

for - A.

For the gradient methods we will consider in Sec. 5.2 fixed step size

methods, a general study of which was done in CIARLET-GLOWINSKI [9]

(see also [23,Ch.4], 21 and CIARLET [ 81) with numerical applications

in [5]. However the next paragraph may be viewed as an extention of [9]
-1/2

since iterative schemes in H / (I'), for solving approximatly (P), are
described. In Sec. 5.3 we shall study some of the methods considered

in Sec. 5.2. but with variable steps now. Then in Sec. 5.4 we shall

study the conjugate gradient method.

It will be useful for the following to introduce the 1somorphism
N

r, : M + RDP defined below :
h h

Ny
Let B, = tw. }. | be the basis of 7 introduced in Sec. 4.1. If We m.

N

(5.1) TRIED DERI Fa
1=1

then Ty is definedby

(5.2) rH = (Hpabgss sooty J LATE
Nh

Let (es)y be the usual euclidian scalar product inR = and +1], the
corresponding norm. Then

5. =(5.3) a, (Au) = (Ar ALT i) VALU eT

[ - — = m(5.4) Woh Vi, dx Wp Hp d% 8ypHpdT (by sTiu)y Vy € h?
JQ JQ I

where A, and by are as in Sec. 4.1, 4.3.
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5.2. Steepest descent methods with fixed step size.

5.2.1. Description of the method.

Let SH Py x, >R be a symmetric positive definite bilinear form
and let p be a positive number. In a variational formulation the

method of steepest descent with fixed step size is written as

follow :

0

(5.5) Ay € My arbitrarily chosen

n n+1

then A known, Ay is computed by

so Onn) = 5, (A%,p)- n
(5.6)

n+l

Ap, € My,

n+] n : :

Thus to compute Ay from Ay? it is necessary to solve a variational

problem in nm, i.e. to solve a linear system. We shall come back to
this point in Sec. 5.2.2., 5.2.3.

The form Sy being symmetric positive definite there exists a symmetric

positive definite matrix Sp such that

. s, (A, , =(5.7) h nbn) = Gprpdy Tripdy |

Now from (5.3),(5.7) we see that (5.5),(5.6) is equivalent to the

algorithm :

0 0 0 Ny
(5.8) ry = seedy Te R arbitrarily chosen,

h

+1 n -1 n5. arto - -(5.9) r A ro A PS, (Apr Ap by),

which corresponds to more classic notations.
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5.2.2. Implementation of algorithm (5.5),(5.6)

In view of (5.9) it appears that to implement (5.5),(5.6) we need to

(1) determinate bs

(11) determinate at each iteration AT AL (A 1s not known),
(111i) solve a linear system of matrix SI

It 1s seen from (5.4) that the determination of by requires the
resolution of the two approximate Dirichlet problems (3.37),(3.38)

to find Woh and Yon The implementation of (iii) will be discussed
in the next paragraph. As to (ii), Sec. 3.5 and (5.3) imply that

n

to find Ar Ay we must solve :

VwreVv,dx = 0 Vv, eVJ. Wp Vt= h€ oh
(5.10)

n.n

| “hh € Von

and

Vreyv. dx=  wiv.dx Vv, eV
Vp* VV = @ph h€ Von’

02 Q
(5.11)

n
|

Yh © Voh

no,

and then ALTA is such that

n n n n
= = -— I) ] »

Apr Tend n = 2p Ope by) J rns IRE Vupdx Yupe My
more precisely when Hy describe B we have

n n :
5.12 A . = =],...) ( nar? ap (A ,w.) Vi=1, Ny ,

n th n Ny
where (Ayr AL). is the i component of Ar A inR

Once A is obtained (which supposes that the process (5.5)3(5.6) converges)

wand 28 are found by solving (3.12)£3.13).
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Remark 5.1. : It 1s possible to avoid solving the four Dirichlet problems

(3.37),(3.38),(3.12),(3.13) by proceeding as follow (as in [5]) :

(5.13) Ap € nm. arbitrarily chosen,

n n+l

then A known, find A by

Vite —Je Wy Vv, dx | eqn Vv, eV ,
(5.14)

n\n

Wy A € Von?

n n
. — Vv| 2 Vv, dx J Ghvpd vy € Von

(5.15)

n n

S (ntl H,) = s (a! HU, )+D Ven dx - wi dx - ] u, dr’
hh ’"h h' h’"h Q h Q hh UH h ’(5.16)

n+l

| Vi € My, , An My, -

In view of (5.7),(5.16) the determination of nr in (5.16) requires
the resolution of a linear system of matrix She

5.2.3. Choice of Sy

In principle any symmetric positive definite bilinear form on my will

work. However the choice of Sp should be guided by the following two
seemingly contradictory properties.

(1) Choose sp (5°) such that Sy is sparse and even diagonal ; in the

former case Sh will be factorized by the Cholesky method, Sy = TT,
and I will be stored in the memory of the computer (T, 1s also sparse).
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(11) Since a, (*5°) is an approximation of a(*,*) defined over
12m and i /2(Iy-elliptic, it would seem reasonnable to take

sp (*5°) to be also an approximation of s(*,*) where s(*,*) is a
bilinear form, i 2(Ty-elliptic. Such a choice leads to a full matrix

Sy ; we shall come back to this point in Sec. 5.2.5.(See also Remark 8.1).

Let us discuss the point of view (1) : let us assume that My is
defined by (4.2) and that a Lagrangian finite element method is used.

It follows from [9], 23, Ch. 4], [5] that sp (5°) can be one of the
following

(5.17) sp (ASH) = RE

(5.18) sp (AL) = RA

(5.19) sp (AH) = J Pha Tiydx.

Such choices lead to a sparse matrix 5 ( provided that the boundary
nodes have been properly numbered).

By numerical integration it is easy to approximate (5.17),(5.18) by

bilinear forms for which Sy is diagonal. If k=1 (resp k=2) and if
the notations are as in Figure 5.1. (resp. 5.2) we may approximate

(5.17) by

LEN EA
(5.20) Sp poHp) = >) EE E——TLE
which corresponds to the trapezoidal rule of integration (resp. by

st PP \ \ A— EE — [] . t+ - * + . . ) J(5.21) 5p Ayo) io 6 ( ii 4 i+ Hind TRLIPRY

which corresponds to Simpson's rule).
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P.

P, 1-1 , P;
i+1/2

P+ | P+

I

I

Figure 5.1. Figure 5.2.

5.2.4. Convergence of algorithm (5.5),(5.6)

Theorem 5.1. : Let NSN be a sequence generated by algorithm (5.5), (5.6)
and A the solution of (Ep). Then for all choices A € my

lim AD =A,
h h

n->o

if and onlv if

2

h

: -1

where My, is the largest eigenvalue of Sy A.

£ bor Ar 9Proo : Let Yh = LAY TH AR From (5.9)

+

(5.23) yp = (I-+8&

The matrices Ap and Sh being symmetric positive definite, SA has
N. eingenvalues
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h

Ny
and Ny eigenvectors {v.}._, 8, —orthogonal il.e.

(Sp v,v.) = 0 14] ;

N N
h, h n

the set tv.) beinga basis for R , yy can be computed on 1t and
with self explanatory notations, (5.23) becomes

ntl _ n ._
(5.24) ys = (1 PAY 1=l,...,N .

Algorithm (5.5),(5.6) will converge if and only if

(5.25) |[1-pA, | <1 Vi=l,...,N_,

which is equivalent to (5.22). ®

Remark 5.2 : One could show that

(5.26) A ap (Hp Hp)
nT topSpey)

woe Mm -{0} “h*"n’"n’.
h h

Remark 5.3 : The previous demonstration, based on the spectral decompo-

sition of 5A is standard. Another method, based on inequalities of
energy can be found in [9]; this method extends to the infinite

dimension case (see [9, Sec. 21).

. — d

Remark 5.4 : If sp (AH) RA I (which 1s the most natural
choice for 5.) it is shown in T9] that under the hypothesis on T,
in Theorem 3.3 and for Lagrangian finite elements with k2 1,
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av 2 2

(5.27) Limb = max { 5 dr |Av|“dx} = A ,h-0 2 ] T Q

v € H (8) n H (5)
v#0

therefore it is possible to estimate AN for a certain number of
h

domains for which A is known (see J. SMITH [441).

Remark 5.5 : It can be shown from (5.24) that the optimal value

for p is

5.28 = +

h

in which case

Ay A
n+l h n .

(5.29) ly; | Fo ly; | Vi=l,...,N]
h

which gives a linear convergence ratio

NM
5.30 < ——

( ) Ropt i ry) ]
h

With (5.17) and according to Theorems 3.3 and 4.1,

(5.31) Ropt < l-yh , y>0 independent of h.

This result seems pessimistic at first sight. However numerical tests

show that if the solution of (FP) is smooth the speed of convergence
1s practically independent of h, (see [5]). This is because algorithm

(5.5),(5.6) is a finite dimensional approximation of the continuous

algorithm below

0 2
(5.32) A eL (I) arbitrarily chosen,

-Aw" = f,
: (5.33)

n n

Ww » = A ’
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= Ay" ="w ’

(5.34) | _r ~ Sp

n

n+l n oy
(5.35) NLA Le 5m 8)

Let ¥ be the solution of (P) ; 1f A = Ml; = wp belongs to 120)
it follows from [91,022], provided

2

(5.36) 0<p< T (A defined in (5.27)),

"that

nn | 2 2
(5.37) lim{¢ ,w } =» {Y,-AY} in H*(Q) x L"(R), strongly.

n>

However one can show that in general the convergence rate is sub-

linear (i.e. slower than any geometric sequence). This 1s due to the
2

fact that A, introduced in Sec. 2.5, is compact from L™(I') into

L3(ny.

-1/2
Now let us construct steepest descent methods in H Ir).

-1/2
5.2.5. Iterative methods in H (I).

In this section we assume that § is simply connected. Let us investigate

the point of view (ii) of Sec. 5.2.3. Among the continuous bilinear forms

s(*,*), 51/2 (I)-elliptic, the most classical one (see Remark 2.6) 1s
defined by

1 1

(5.38) s(A,H) = 5% | (C Eh pea) (x)u(y)dl (x)dl (y)
where C 1s a positive constant.

Of course if a Lagrangian finite element method is used and if my is
defined by (4.2) then s(*,°*) defines a symmetric positive definite form

sp,(*5*) by
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1 1

= = — C+2&n v= (xu, (y)dI'(x)dl'(y),
(5.39)

and we recall that Y, is the trace mapping of Sec. 2.2. In practice

s, (+, ® ) of (5.39) 1s not feasible and we must approximate the integral
in the right member by a numerical integration process (see LEROUX [301).

Then a (full) matrix S, is obtained and, once factorized, Sh = RN
the matrix Ty will be stored in the memory of the computer. However
we prefer the following process, which ought to be justified theore-

tically. For clarity we assume k=! and we start with the following

remark :

If Y is the cercle of radius = and centre 0 (see Figure 5.3.)

(=F |
Figure 5.3.
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then the operator

2
“ d -1/2

(5.40) S = (I- —5 ) /
do

-1/2 ,~ 1/2 2 -1/2 ,~1s an isomorphism of H / (Y) on n'/ (Y), symmetric and H / (v)-

elliptic. Now let us approximate S (s”! , 1n fact) as follows : let~ h Ny
= . ->

h = 1/N_ and define 4 : R R © by

(BE), = (E+E, -2€,)/h°A ] 2 h 1

~ ~2 .
_ - <1i<N. -

(5.41) (48), (&: 1785-1 28.)/h7 , 2 <isN-l,

A 6), = (E+5, 26 )/A2, VERDAy on 1725
h h h

The operator -A (resp. I-A) is symmetric positive semi-definite
{resp. positive definite) and in matricial form,

2 -1 -1

-1 2 -1

\ O
\

\

\

(5.42) -A = — —1 2-1
h 2 \

\

N\

O \
-1 2 -1

-1 -1 2

The interest of -b, is 1n the fact that its eigenvalues and eigenvectors
are known explicitly , therefore the computation of

-1 1/2
(5.43) Sp = (I Ap)

will be easy. In fact the reader will check that if N, 1s even the

eigenvectors of -A, are
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~ N N

Cj ={ cos2 1 Jj (1-1 hn , 0=3< nL )
(5.44)

, ~N NSs. = in 27 1(i- <1< __ 1.5 sin 2m j(1i Dh} 2, , 1 £3¢ > 1,

and the corresponding eigenvalues are

(5.45) §. = + gin? Tih
J ~2 2

h

If No is odd then

- N, N,- 1
Cy = {cos2mj(i-1)h}, , 05j<——

(5.46)

a h Yo. = my (i- , 19 s—=0s. {sin2mj(i-1)h i=] 1 <3 5

with the eigenvalues as in (5.45). Then to compute 5 we normalize
)

C. and S.
J J

c. = c./ |lc. ,ow cl lle lly
(5.47)

S. = s./ |s.ces ls ls

and we denote by I the unitary matrix that has C. and S. as column
J J

vectors

4 =(C C.S,...C.S....
(5.48) Ty (CC. 5, C, 8, ).

Then we denote by

1

143, O
148

\

(5.49) D. = \ ,
1+6.

O 144.

UN
\

\

and then
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I-A, = T.D T
h h hh

and

-1 ~ 1/2 _ 1/2,.t

and of course

1

VI1+3,

1 718
\

12 .
h "

\ 148.

O Fe144.
y

The matrices Sp and S| are full \N XN, symmetric positive definite
matrices.

Algorithm (5.5),(5.6) [in its equivalent form(5.8)(5.9))has been applied

to (P.) with Sp defined by (5.50) and the numbering of T being as in
Figure 5.1. The corresponding numerical experiments will be described

in a forthcoming publication by BOURGAT-GLOWINSKI-PIRONNEAU. In Sec. 8,

Remark 8.1 we suggest an alternate choice for sp (5°), in order to iterate
"approximately" in a2.

5.3. Gradient method with variable step size.

5.3.1. Orientation

Fixed step size steepest descent method have the drawback to require

the knowledge of the eigenvalues A, and Ay to find a feasible p. At
h

the cost of additional computations one may overcome this difficulty.

We shall indicate two methods for adjusting Pp at each iteration and

we shall give some details on the implementation of these methods.

These two methods are well-known as steenest descent method and

minimum residual method.
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5.3.2. Principle of the variable step size methods.

Let us first begin by recalling the principles of these methods and

then in the subsequent sections their applications to E).
N

In R, let£ be a NXN symmetric positive definite matrix and
N

BR eR. The linear system

(5.51) AE = B

has a unique solution. Let us solve (5.51) by the following algorithm

o _N
(5.52) £€ eR arbitrarily chosen ,

n+l n -1 n

(5.53) 3 =£-p5S (A &-8) ,

where in (5.53) S is a NXN symmetric positive definite matrix and p
n

is chosen "at best" at each iteration. We denote

n

(5.54) g_ = AER.

0) Method of steepest descent.
N

Let J : R > R defined by

1

J) . 5 (Ann) = (B,n)

Then the solution of (5.51) is the unique solution of the minimization

problem

N

J) Jn) VneR

_N
£E eR,

Therefore oN 1s computed such that

n -1 n n -1 n

JE=p S 8) 2 J(E-PS g)VpeER ,
(5.55)

P_ eR,
n
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It follows from (5.55) that

-1l n n - -

(5.56) b= (S 'g ,8 )/ (AS "5 e™)

which completes (5.52)(5.53). Let us note that og" satisfies

+1 -1

(5.57) g'’ = g ~p_sAS gt.

This relation will play an important role in the resolution of (E)-

©) Method of minimum residual.

We have still (5.52),(5.53), but oN is such that

- + - - n -1 n

sgeMcs (gpAs gM) Leto AST 8") Vo CR,
(5.58)

oR,

from which we find

-l n -1 n -1 -1 n -1 n

(5.59) p= (AS 'g,5 g)/(s AS g,AS g).

The relation (5.57) still holds in this case.

5.3.3. Application of the method of steepest descent for the solution

of (EE).

In the particular case of (Ep), algorithm (5.52),(5.53),(5.56) takes
the form :

lo)

(5.60) Ay € 7s

n+l n -] n

- (5.61) tA = r Ay 5 By

-l n n -1l n —-1 n

n n

(5.63) 8, = Ar Ay by -
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In case Ah is known explicitly the implementation of (5.60)-(5.63)

1s straightforward. Besides we think that 1t is not interesting to

use this method for solving (E,) when Ah is known explicitly.
Therefore let us assume that Ah has not been computed yet. By ins-

pection of (5.61),(5.63) it seems that two Dirichlet problems must

be solved at each iteration to compute gs then a linear system of
-1n Co -1 n

matrix Sh to find Sy 8, and agaln two Dirichlet problems for A Sy By -
However from (5.57)

n+l n -1 n

(5.64) By, = 8, TPhAnmSh Bp

so that one may proceed like this :

e Compute 8 from A (two Dirichlet problems) and compute sep
-1

and AL Sy gp (two more Dirichlet problems) then compute 0,
by (5.62) and Ash by (5.61), (5.64).

Compute ANF ntl pf 1 t gs”! I and gs”! oe° p n 8, ~P, from g by computing hn 8 @ Ay h 8, ( wo
Dirichlet problems) and by using (5.61),(5.64),(5.62).

In short :

®¢ One needs at each iteration to solve a linear system of matrix Spi
¢ And two Dirichlet problems per iteration (+ two more for the first

iteration).

This procedure 1s summarized as follows :

lo)

(5.65) A € Ms

0 lo)

(5.66) 8 = Ar Ab , n=0 ,

_ -1n n -1n ,-1n
(5.67) J (S, 8281) (AS 80 Sy 8.01 ;

n+l n -1 n

(5.68) r. A = r AL PSH 8h

n+l n. -1 n

(5.69) 8, = 8p p_Ay Sy gy, >

n=n+l and go to (5.67).
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Remark 5.6. : We could study the rate of convergence of algorithm

(5.60)-(5.63) by the techniques developped in MARCHOUK-KUZNETSOV

[33]. Similarly it would be interesting to study the propagation

of round-off errors in the numerical implementation of (5.65)-(5.69).

Remark 5.7. : When the Dirichlet problems and the linear system of

matrix Sy are solved by direct methods the feasibility of a pre-
factorization method (like Cholesky for instance) 1s evident.

'5.3.4. Implementation of the minimum residual method for solving (E,)

Everything said in Sec. 5.3.3. for the steepest descent method applies

also for the minimum residual algorithm. The two methods differ only

by their choices of 0. - The adaptation will be obtained by replacing
in algorithm (5.60)-(5.63) instruction (5.62) by

-1l n .~1 n -1 -1 n -1 n
= S .(5.70) Py = (ApS, 8ysSy 8p)h/ (Bp ApSy 8poApSh 8ply

Similarly when Ah is not known explicitly it is better to use (5.65)-

(5.69) with (5.67) replaced by (5.70). Remarks 5.6, 5.7 also apply

to this algorithm.

5.4. Solution of (E,) by the conjugate gradient method
5.4.1. Orientation.

The matrix Ah being symmetric positive definite it 1s natural to solve

(E,) by a conjugate gradient method. We recall that these methods are
super-linearly convergent and that when there are no round~off errors

they converge in a finite number of iterations.

We begin, in Sec. 5.4.2., by some recalls on the conjugate gradient

-method and then in Sec. 5.4.3. its implementation for solving (E)
1s discussed.
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5.4.2. Recalls on the conjugate gradient method.

Again let us consider problem (5.51), i.e. #AE& = B, where .&satisfies

the hypothesis of Sec. 5.3.2. For this problem the conjugate gradient

method is (see for example [13],[ 71, [39]).

0 N
(5.71) € eR , chosen arbitrarily,

lo

(5.72) g = A £°-8

(5.73) :' =g° , n=0 ,

n n n n, (*

(5.74) p= (z 8 ) / (Az zh
+1

(5.75) £" = gp 2"
n

n+l n+l n n

(5.76) Y, =(g ,8 )/(g,g)

(5.77) ntl _ gt vy 2"

n=n+l and go to (5.74).

Note that (5.75) implies that

+1 |

(5.78) 1 = gp Az".

This relation will play an important role in the resolution of (E).

5.4.3. Implementation on (E,)

In the particular case of (Ep), (5.71)=(5.77) takes the form

0

(5.79) A € my , chosen arbitrarily,

0 6)
5.80 = A -(5.80) 8, = AnTnk Py

(*) We also have p_ = 18®|%/ (AZ, 2).
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0 0) —
(5.81) z, = 8,» 0n=0,

n n n n n n nn

n+l n n

(5.83) r A = r A PLZ ,

n+l n+l

(5.84) 8, = Ar AL ~b>

n+] n+l n n

(5.85) y= (8, 8 )y/ (8581)

n+l n+l n

(5.80) Ze = 3 *Y, 2, ,

n=n+l, go to (5.82) .m

By inspection of (5.82),(5.84),(5.85) it seems that4 Dirichlet problems

are required at each iteration to implement (5.79)~-(5.86)

(two for Az) (resp. Ar Ah). m fact as for algorithms of Sec. 5.3.
one can reduce the number of Dirichlet problems to two. Because

n+l n n

(5-88)pis 8h = Bp PplApZp

Indeed if we use algorithm (5.79)-(5.83), (5.84). ,(5.85),(5.86) we note
that once AZ pu, are known, two Dirichlet problems are necessary to

ntl n+l

compute Az. Once this vector is known we can compute Ps Ay »&h
by (5.82), (5.83), (5.84). ; then the knowledge of gt! enables us

‘n+

to compute Yo and 2, by (5.85),(5.86)

Remarque 5.8. : The Remark 5.7 on the prefactorization of the matrices

also holds in this case.

Remark 5.9. : Algorithm (5.79)-(5.83),(5.84),. (5.85),(5.86) is more
sensitive to the round-off errors than algorithm (5.79)-(5.86) in which

+1

“gy is computed by (5.89). Therefore it 1s reasonnable to use on the
former algorithm a periodic reinitialization procedure of the type
n+l n+l n+l

Zp = 8p » 8 being computed by (5.84) instead of (5.84). -
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6. - The case § p-connected (p 2 1). (I) The continuous problem.

6.1. Formulation of the problem.

Let @r_q be a family of simply connected, bounded domains of R’
with a smooth boundary I» k=0,1,...p. We assume also (see Figure 6.1.)
that

Q Vk=1,...p.
(6.1) $< 8 k=1, P

We define then {8 and T by

Pp _

(6.2) @=@a =-|]&a ,r=an.
k=1

2r YZ

Z :
Ly

Figure 6.1.

We consider over {li the following Stokes problem

> > +»

- WAu + Vp = f over 9,

pe

Veu = 0 over ,

(6.3) -+ > > >
ul; = ug with I. ue ndl =0,

0 0

—

up = 0 Vk=l,...p.
k
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Let wus introduce

> | 1 -»>

(6.4) Vo=lveld ()xH (@), Vev = 0 p.p. o n 8},

+> ]
Vy ={veH (XH (Q), Vy =0 p.p. on £2,

(6.5) > -> +
vip =u, vil =0 VYk=1l,...p}.

0 k

> 1/2 1/2 > CL.
In (6.5) we assume that u €H (I) xH (Tr). If f is sufficiently smooth
then (6.3) has the following variational formulation

> > > > >

uf VueVv dx = fevdx Vvev
6-. 6) $ it

GeV
ue 5

> > > > g)

where f*v denotes the usual scalar of f and v inR"~. It follows from, e.g.

LIONS [31] that (6.6) has a unique solution.

6.2. A stream function formulation.

From the boundary conditions in (6.3) there exists a stream function ¥

such that

_ oy __ oy

(6.7) Y, = 3x, , u, = 3x. in 2,

(6.8) V(x) = | M ie dl’ Vx ¢T ;~~. Db (0) 0
X X

lo)

(6.9) Y = const. on I. Vk=1,...p,

oy > o>
(6.10) sole = —upeT,

0

ay
6.11) =|; = 0 Yk=1,...p.

k

Moreover Jy is the unique solution of the following variational problem

of of

) uf MpAPdx = ( 2-1! Yodx + (f n =f n_)odl
(6.12)

!

VoeW Yew,

>

where, in (6.12), n. = cos(n, 0x.) and
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2 3d
= mien = = = t.

Wo= {oe (@, 5p = 0, oly 0, *r cons
(6.13)

Vk=1l _...p},
\

_ 2 9) TT 9% Vie
wo= {peu (D) , Ba T_ =u *T , nT, 0 Vk=1,...p ,

(6.14)

| = " endl . o| = const. VYk=1,...pl.
I b fo) r

0) X X k
0

In (6.9) the constants are unknown. They are arbitrary in (6.13),(6.14).

Let us define by by by = ol p, , k=1,...p. It follows from (6.12)=(6.14)
thet (6.12) can be reformulated

af, of Pp
u AYApdx ol ( Tm Ban pdx + 3 by I. (fn, -f,n HdlIo Q 7 k=1 k

(6.15)

VoeW Ve W .

It follows from (6.15) that Y is also the unique solution of the following

minimization problem

(6.106) Min J()

db € Ww

where

y 2 af, of , P
(6.17) sy = | Jael%ax- (=~ 5— )ddx = > ¢ (f n,~f.n, dl, .2 0 Io IX, 9x, & k Ty 172 "271 k

6.3. A generalized biharmonic problem.

The problem (6.15)) (6.16) 1s actually a particular case of the slightly more

general biharmonic problem

~ p

APAGdx = fodx = IRA vo eu)k=1
(6.18) i z

be,
- where

_ 2 ad _ _ _

(6.19)

: Vk=l ,...p}.
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3/2 1/2
In (6.19) we have Iq €H (T,) Yk=0,1,...p, 8, e H (Ir) and the constants
are arbitrary ; (6. 18) has a unique solution.

It follows from (6.18),(6.19)that U is also the unique solution of

(6.20) Min J(¢)
e Wv g

where

J(¢) = S 0 | dx - fodx - 3 C ,
0 Q k=1

with J = 8 Cy Yk=1,...p.
k

6.4. An equivalent formulation of (6.18), (6.20).

In order to reduce (6.18),(6.20) to a set of ordinary biharmonic problems \*
the fundamental result 1s given by

Theorem 6.1. : Let us define C ¢RP by

(6.21) C, = vl; “8 + K=1,..0p,
k

where " is the solution of (6.18),(6.20). Then C is the unique solution of

i(C) <3j(C) YC eRP,

(6.22)

C ¢RP,

with

(6.23) j(C) = 1 | Ay | “dx - fydx - 5 YQ
2 1g Q ) kk

where, in (6.23),¥ is the solution in 12(Q) of the ordinary biharmonic
problem

2
Ay = ff over {,

Vln = 8g, , Vln = g,.+C, Vk=l,...p,
(6.24) Ls 10 ry kk

oy _
So T - By:

(x) i.e. like (P) of Sec. 1.
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Proof : Let CeRP and let Y be the corresponding solution of (6.24).
Then

6.25 €eW(6.25) V g

and

(6.26) §(C) = J) = Min J(9) = J(P) VC RP,
be W

g

Conversely, since H2(R) cH we obviously have from (6.18)
~ 2

(6.27) Abrgax = | fodx Vo € HO(Q)0

Q Q

which implies

2~
(6.28) AY = £ over QQ.

Moreover, since veu we have

and (6.21) implies

U = +C. VY k=l,...p.(6.30) vl; 8 tC Vk=l,...p
k

It follows from (6.23),(6.24),(6.28)-(6.30) that

(6.31) JW) = j(E) 2 inf j(C).

Cc eRP

Comparing (6.26)) (6.31) we obtain (6.22) and the uniqueness is obvious.®

Remark 6.1 : The minimization problem (6.22) may be viewed as an optimal

control problem in which the control variable is C, the state variable is

¥ , the state equation is (6.24) and the cost function is defined by (6.23) .»

The following result is an obvious consequence of Theorem 6.1. and relations

(6.23), ( 6.24).
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Pronosition 6.1 : The minimization nroblem (6.22) has a unique solution

which 1s also the solution of the linear svstem

9] ,4
(6.32) —= (C)=0, 1<k=<sp,

aC.
k

the matrix of which 1s symmetric and positive definite.m

6.5. — Mathematical expression of Vj and application to the solution of

(6.18), (6.20).

6.5.1. Expression of Vj.

In order to solve (6.18),(6.20) through (6.22) the following results are

fundamental

Theorem 6.2 : Let Y be the solution of (6.24) and w= = AY. Then if j(*)

is defined by (6.23),(6.24) we have

0] ow— = -— - k=1,...p.(6.33) 5g (©) I; on Tk Meo KThee oPk k

Proof : Let §¢ © R', then

P

t-to t IQ Q k=1

t#0

where, in (6.34), &Y is the unique solution in H (4) (and W) of
2
AS = 0 over Q,

Sul. = 0, S|. = 8C Vk=l,...p,
(6.35) Ls Ly k

2

== S| 1 = 0.

It follows from Green's formula that

2 0 3(6.36) AYASPdx = A"Pddx + | AY= SPpdx - ApSydl’

€2 Q I r

Since ay = f and w = -AY it follows from (6.34)-(6.36) that
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ow(6.37) Vi(C)+oC = 3 — dl -y oC VY &C eRP,on k 'k k
k=1 ‘T

k

which proves (6.33).m

ow

Remark 6.2 : Formula (6.33) is not correct since, usually, =~; 1s not
-3/2a function but an element of H / (I). Actually the correct expression

9] .

for 52 18
k

9) = << uw p> J. = .
6:30 50 © = Ne 5m TT Ne k=1,...p

where Xp is the function defined over [I such that

(6.39) X, |p =8 , . 2 =0,1,...p,
2

3/2 =3/2
and where <e,*>» denotes the duality between H (I) and H (I).

To prove (6.38) we should use Green's formula (2.2) (see Sec. 2.3) instead

of (6.36). =

Remark 6.3 : Let us denote by Xi. an extension of Xie over §l such that
Xi ¢ Hi(Q). Then from Green's formula we have

(C) = | Aw, dx + Ve VX, dx = Y=k Q Q
(6.40)

= Vue, dx -J £%, dx - v, , k=l,...p.IQ k 0 k k

The advantage of (6.40) by comparison to (6.33) is that it gives an expression

of CARERS which 2 does not occur explicitly. This 1s an important remark
in view of the approximate problem.

6.5.2. Application to the solution of (6.18),(6.20).

There are sevaral methods for solving (6.32) ; we can use either direct

- methods or iterative methods. As in Sec. 5, 6 we can use gradient or

conjugate gradient methods, without knowing the matrix of the system

(6.32). However, since p 1s usually small it can be convenient to compute

the matrix and the right hand side of (6.32).
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We have

(6.41)  3'(C) = BC-(dty)

where Y = tv bps d eR? and where B is a pXp symmetric positive definite
matrix ; B and d are not known a priori. Concerning {B,d} we can easily

prove the following

Proposition 6.2: We have

dy

642) dk = - | == dl, k=1,...D,
k

—_ - ; ; nf

where Kk = AY 45 Vy being the solution 2f

2

A by = f over {,

vol. = g, Yk=0,1,...p,tk
(6.43) d Fy

Ny }
an Ir = gy: [|

Proposition 6.3: Let B = {bat i<, vep? then
ow

(6.44) b 2% dr’ 1 <k,L <p,ki = on k
Tr
k

where, wy, = - Mpg , vy being the solution of

2

A bo = 0 over {,

= Vk=0,1,...
(6.45) blr, Oks ’ Ps

on 'T

Remark 6.4 : Remarks 6.2, 63 hold for (642) and Remark 6.3 holds for

(6.44). It follows in particular from (6.40),(6.44),(6.45) that

(6.46) bo _ IN ¥ VX; dx . m
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Remark 6.5 : Since B 1s symmetric we also have

RVRY < <

bg — ; Va VXq dx , 1<k,2<p.Q

In fact, from the symmetry of B it 1s convenient to construct B, column

by column, by computing only bo for the pairs {k,%} such that 1 < £ <k<p.m

Once B and k are known, solving (6.32), i.e.

(6.47) BC = d+y

is a trivial task which produces C. Once C is known, we obtain v from (6.24). 8

Remark 6.6 : The solution of the "generalized" biharmonic problem (6.18),(6.20),

through the solution of (6.32),(6.47)by a direct method, requires the solu-

tion over § of (p+2) "ordinary" biharmonic problems :

e 1 to compute d,

e p to compute B,

oe 1 to compute Y from C (this last one is (6.24)).

If we want to solve these ordinary biharmonic problems, using the decomposition

(2.26)-(2.30), studied in Sec. 2, we shall have to solve (p+2) "integral equa-

tions" like (2.28) and 2(p+3) Dirichlet problems for -A (a superficial analysis

would indicate 4&(p+2) Dirichlet problems).®

Remark 6.7 : The above matrix B depends of { only, therefore it remains

unchanged if f£, gy (k=051,...p), g, are modified. It can be constructed
once and for all for a given {i.®

6.6. A saddle-point property.

We use the notation of Sec. 6.4 ; taking LL g, as a linear constraint,
let us define a lagrangian #& : rP xu 1/2 (1) +R by

L2 5 —
(6-48) (Cw) = 5 [Bl dx = fudx + ol - 8,2 LTC

Q £2 k=1

-1/2 1/2
where in (6.48), <*,*> denotes the duality between H (I') and H "7° (T)

and where ¥ is a function of C and uy via
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2
AY = £ over QQ,

0 k

—-— | =ML =u.

Let us prove

Proposition 6.4. : Let y be the solution of (6.49) and w = - AY ; we have

then

OL _ dw — v Vie
k I

k

of oy
(6.51) 57 (Cow) = 25 - g

Proof : From (6.48), (6.491, we have :

3 wesc + ZC, dy = AYASHAx - | ESydx +
aC ou IO 0

(6.52)

+ < 9 su>+<6 WV _ _ SC

pey = 0

(6.53) J =0, S| 1 = 8C,,
0 k

- AY] 1 = du.

Relation (6.49) and Green's formula yield :

_ J d

(6.54) AYSAPdx foydx + ey AYSPdT' + < yy, a SY >= 0.
C2 y) Tr

Then using (6.53) and (6.54)

d _ ow B
MSAYdx = | £8pdx + <u, = SY > = = &p dT =

Q 0 n ron
(6.55)

5 sc | 22 ar, .
k=1 I
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Therefore :

3 x P AR BYputing ° rem ° = — - —_— — >(6.56) =g (C,u)*8C + oy (C,u) = du > (8c, a dr, )- < 8, dielk=1 ( IT,

which completes the proof.

Remark 6.8 : Remark 6.2. still holds for the proof of Proposition 6.4 and

for the above formulae.

Proposition 6.5

Let { and C be respectively the solutions of (6.18),(6.19) and (6.20). Let

\ be equal to Al , then {C,A is the unique saddle-point of#£ over
’P x 12D).

Proof : From (6.29), (6.32), (6.33), (6.50), (6.51) we have

¥ ~~
. LY) s A = ’(6.57) C (C, A) 0

0k nn
(6.58) 7 (C,A) = 0.

Then to prove that {c,\) is a saddle point of #over rR? xu” /2(1y, it is
sufficient to show that#£ is convex in C and concave in | ; and a necessary

and sufficient condition for this is

(6.59) ( 2£ (cc, 1) -22 (cur 8c > 0 Y6CeRP Vue i 2(r) '

(6.60) < or (C,u+dn) - = (C,u),0u> 20 vou € HED), vC «RP.
From (6.50) we must show that :

(6.61) 3 5C 9 4r »0  yéC RPk on k
k=1 I

k

where Ow = = AS8Y, and

(270 -0,
0 k

- ASY| = 0.
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Green's formula and (6.62) imply that

2 2 a

0= A“SY Sydx = [a8] “dx + == ASYSYdT
IQ Q Ip on

Therefore

0 Sw P 0 dw 2
nn Spdl' = > &C, a 40 = |A&Y| “dx 2 0 .

§ k=1 Ih Q

The proof of (6.60) is almost similar ; we leave it to the reader. =

From Proposition 6.5 and the convex-concave property of£ it follows

from GLOWINSKI-LIONS-TREMOLIERES [23, ch. 21 , FORTIN-GLOWINSKI [20]

that for solving (6.18)=(6.20) we can use the following algorithm of

Arrow-Hurwicz type (7%):

(6.63) (€®,2°1e RP «1 2p , arbitrarily given,

then for nz20

(6.64) M1 ono g7l 2 cy p50I ou

n+l n pL n .n+l
= - — > .(6.65) C C Py AC (CLA ) Py 0

-1/2 1/2 :
In (6.64), S is a duality mapping from H (DtoH ""(I).It 1 s

convenient to write (6.64), (6.65) in the following equivalent form

which is more suitable for computations :

- At! =f over QQ
(6.66)

n+l n
= ,Ww a.

+1 n 30Hn

Fy

+1 +1
_ he _ =

(6.68)

n+l _ n+l _ n+l _

0

(*) we only consider an algorithm with constant step PsPy-
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n+l n -1 ay!
(6.69) AV o= A + pS (5 = og).

Remark 6.9 If Ae LD) then S can be replaced by I in (6.69). =

Remark 6.10: The above algorithm is a precise formalization of some of

the concepts felt by PERRONNET C381.

Remark 6.11 : Thus the biharmonic problem on a multiconnected domain has

been replaced by a sequence of Dirichlet problems for Laplace's operator.

7. = THE CASE f p—-CONNECTED (p 21). (II) THE DISCRETE CASE.

7.1. Formulation of the approximate problem.

We assume in this section that 2 is a polygonal Vk=0,1,...p. The

spaces Vis Von My, being defined as in Sec. 3.1, we define Won by

Wop = Lvpeap) eV XV, “blr = 85h’ “lr, = 8p + comst.Vk=l,...p,

Wo Vi, dx = q, HM; dx i a " dT Vu ev}.
Y) QQ I

We approximate (6.18),(6.20) by

(7.1) Min Jp (vVi5ay)
(v; 59) LN

where

(7.2) J. (v.,q.) = = lq %dx - fv, dx - 5 Y, Ch' h’*h 2 h hh k k
{2 Y; h=1

with “lr, = 8x T C, Yk=1,...p.

The approximate problem (7.1) has a unique solution th, 0} and it is
also equivalent to

(7.3) Min_ j +(C)
CerP DM

with
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(7.4) 3,.(C) = = W dx - f dx - Y, C
h 2 IQ h Q hh rg k k

where in (7.4) tw} depends on C via the "state problem"

(7.5) Min J on (Vy 0 9)

in which

_ = Vk=1,...

(7.6) Wp (C) = {vaa) e Woy “lr 8h + Cp Vk=l,...p)
and

7.7 J. (v a.) = 1 |q.)%dx - f.v dx .(7-7) “on'Vn*%’ 7 I 9h h'h
Q Q

Clearly we have the following

Proposition 7.1 : The minimisation problem (7.3) has a unique solution
se sas odUNFHUEoo LO

Cy which 1s also the solution of the linear system

dj ~~
(7.8) —2 (C.) = 0 1<k<p| oC h !

k

the matrix of which 1s symmetric and positive definite.

7.2. Solution of (7.1) via (7.3).

7.2.1. Computation of Vig

We begin by stating the following

Proposition 7.2 : Let tw} be the solution of (7.5)-(7.7), then if
Ip (*) is defined by (7.4)~(7.7) we have

9p
(7.9) You (C) = | Vw, * VX, dx - £,X; 4% - Yy

k Y: Q

where

X, € Ms
(7.10)

X lp = 8, V8=0,1,...p.
2
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Proof : From (7.4) we have :

iH 5 5 5(7.11) INURL Ww, 0w, dx = £0 dx - Y, OC, .
h qb h Io 0 h | k k

Let us decompose Sv, into

dS SY), : Y(7.12) Wy =o + > 8C XxX
k=1

where

——— P ~~

Sb = Sb - 2 SC, Xie belongs to Von

Then from (3.12) with vy = 89, , we have :

: X Y §(7.13) | Vwe Voy, dx = | fy, 0%, dx + > I (Vw, Vy - £ ELS C,-Q Q k=1-'Q

Since Wy, } oe Woh we have

(7.14) vey "Vw, dx = Sw, w glx.
Q Q

Using (7.13)) (7.14) in (7.11) we find the discrete analogue of (6.38)

; X X

(7.15) Cc) 0 bos > oC, Va, VX, dx - £1, X, 4% - Yi | . Hk=1 0 Q

7.2.2. Application to the solution of (7.1)-(7.3).

As in the continuous case we can solve (7.8) by direct or iterative

methods.

7.2.2.1. +: Direct method.

We have

.y _ _

(7.16) JC) = B,C — (d,+Y)

where Y = tv, hos d, eR and where B is a pXp symmetric, positive
definite matrix ; B and dy are not known but can be computed from the
following
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Proposition 7.3 : We have

— PRVEY f Y = «ew

(7.17) d= 1 Vo, VK + £ KXdx , k=l,...pQ (2

where Wu, are the solutions of (7.5),(7.6) withC=0.

Proposition 7.4 : Let B = dan <p , then

(7.18) by _ Voy,, + Vi, dx
Q

where Wy gow gl is the solution of (7.5),(7.6) with

£, = 0, Blkh 0 Yk=0,...p, 8p = 0, Cr = Se .

Remark 7.1 +: Remarks 6.5, 6.6, 6.7 hold.

7.2.2.2 : Iterative methods.

As in Sec. 5,6 we can use gradient or conjugate gradient methods to

solve (7.8) without computing explicitly By and d, -

Moreover as in the continuous case, an alternative method would be to

compute the saddle-point 1n RP x my of

£. (C,u ) = % | Jw, | “dx - | £0,dx + | Ty 0 hx | Hwdx -
(7.19) 2- Hu 24 dl’ - Y C ’J. h ®2h eae] k k

where lob, } is a function of C and Hp via

| | Vw, *Vv, dx = fy vy, dx v vy € VohQ Q

pH © Von?

. _ v

; Vo, Vv, dx wv, dx v, € Von
Q Y

= = + .

Yn Vio hulp Boh bulr, Bich TC
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The reader will have no difficulties in finding the discrete analogues

of (6.50), (6.51) and of the Arrow-Hurwicz algorithm (6.64)—-(6.69).

Remark 7.2 =: If my is chosen as in(4.2), cf. Sec. 4.2, the above integrals
in (7.17)-(7.19) are in fact to be done on the boundary triangles only. ®

8. Further Remarks. Comments.

Remark 8.1 : Various sp (*5°) have been given in Sec. 5.2.3., 5.2.5.
The corresponding matrices Sh are symmetric and positive definite.

In view of iterating in 2, "approximately", we feel that a good

strategy 1s to choose Sy as the inverse matrix of the matrix related to
(5.19). Numerical experiments to test this conjecture are planned for

the near future. =u

Remark 8.2 : In the conjugate gradient method of Sec. 5.4 we have used the
N CL. .

canonical inner-product of R h, However it is also possible to use an 1inner-

product related to a matrix Sp symmetric and positive definite. The various
formulae will be a little more complicated, but the various remarks done

in the case of gradient methods about the choice of Sy and s, still hold
for these variants of algorithm (5.79)-(5.86).m

A large part of the results of this report were announced in GLOWINSKI-

PIRONNEAU [25], [26], [27]. In fact this document has to be followed

by other reports of GLOWINSKI-PIRONNEAU, BOURGAT-GLOWINSKI-PIRONNEAU, etc..,

in which the above results and methods will be extended to the numerical

treatment of

0 2
- 2A =® aT Y+ VAY f,

with appropriate boundary conditions,

e¢ Navier-Stokes equations,

etc... .
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About the choice between the various methods described above, it appears

from our numerical experiments that the two most efficient methods are :

(1) The conjugate gradient method of Sec. 5.1 1f the approximate

biharmonic problem has to be solved only a small number of times and/or

if Ny 1s very large.

(11) The "quasi-direct" method of Sec. 4 if we need a biharmonic solver

to be used a large number of times. It 1s in particular the case when

solving by some iterative methods the Navier-Stokes equations in the

{y,w} formulation.

To conclude we would like to point out that a fundamental tool for

obtaining these methods 1s the mixed finite element method of Sec. 3,

because its very fascinating (!) algebraic properties.

Some applications of the gradient method with constant step of Sec. 5

may be found in BOURGAT [5].
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