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J : Preface |

! This thesis presents an analysis of the distribution of residues generated by the 2 order

21 linear homogeneous recurrence  Y.,x * Gp.1Ipex-1 * °° + Go), Mod PE when :

x*-a, x*? ~:~ aq is a primitive polynomial in Z [x] It is shown that for t<k the :
= | tuples of ¢ consecutive residues are equidistributed in ¢ dimensions in the limit as a + »,

| subject only to a much weaker condition on the distribution of the residues. When i

| specialized to |aAE I, the recurrence is the basis for a computer random number generator :
3 which can be efficiently implemented directly in floating-point arithmetic with no

multiplication and little machine dependence. The results of empirical tests comparing

1 generators of this type with standard linear congruential generators are also presented.
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4 CHAPTER | :

Introduction i

4 Let a and k be positive integers and let be a prime. Let f(x) = x®-a, xt! -::+=a4 be :
: a primitive polynomial in Z lx) In other words, the residue classes modulo f{x) of the |
: polynomial ring 2pix] form a finite field in which x is a generator of the multiplicative

| group. Consider the A*M_order linear homogeneous recurrence

J | Inok = Ox-1Inex-1 ++ 8gy, mod pC | (1.1) |
] for n=0, 1,2, ... and initial values (y,, ..., 95.1) * (0, ..., 0) mod p. The sequence of

j fractions <y/p%> Is a candidate for a pseudo-random sequence. If a = | then the length

| of the period of <y.> is p*-1,and if a> ' the length of the period is p2-c(p*-1), where c is |
} easy to compute and is often equal t-  “.ccerrences of type (1.1) with a = k = | and large |
= 1 p, or with k=l, p=2 and moderately ‘arge a, are the basis for some of the most
] | acceptable and widely used computer random number generators [Knuth69). Such
] | generators have |a,|>1 and require that a multiplication modulo p* be performed.
1 | Multiplication can be replaced by addition and subtraction if [a|< I; of course then k must |
3 | be greater than |. [Experimental evidence has been accumulating to the effect that |

| recurrences of type (1.1) with p = 2 and moderately large a and & are quite successful. (See

[Knuth69] p. 464 and [Brent73) pp. 163-164; also [Green59] and (Franklin64}) However,

theoretical justification for such success has been lacking. We will show that recurrences of |
1 type (1.1) are indeed excellent random number generators by showing that for ¢<k the |

| t-tuples of consecutive residues become equidistributed in ¢ dimensions in the limit as |
: a = =, subject only to a much weaker condition on the distribution of the residues. :

| In the remainder of this chapter we shall discuss known results on the length of the period

: of sequences of type (l.1). Chapter 2 defines discrepancy, a means of measuring
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] equidistribution, and presents a formula of Harald Niederreiter which expresses the .
4 discrepancy in terms of an exponential sum. In Chapter 3, exponential sums are used to
3 reduce the question of equidistribution of sequences of type (1.1) to a much weaker |

; distribution criterion, and in Chapter 4 the sequences are analyzed with respect to this
: criterion. It is believed that the analysis of Chapters 3 and 4 is new. Chapter 5 considers

implementation details and gives the results of empirical tests comparing higher order

: linear congruential generators of type (i.1) with standard linear congruential generators

: Ypey = 8Y,+b mod pe.

1 The simplest example of a sequence satisfying (1.1) with k>1 is the Fibonacci sequence

1 with p = 2 and initial conditions (34,9,) = (0, i). The recurrence is F,,, =F,+F_, |
| corresponding to the primitive polynomial x®-x-1 = x®4+x4+1 in Z,[x). The period is

3.2%"! and it is known that the sequence of ordered pairs (2°°F, 2°@F, ) becomes :

| evenly distributed mod | as a increases. (See [Marsaglia72)) However, the Fibonacci || sequence is not a suitable random number generator because successive triples are very .

| poorly distributed in three dimensions. To achieve satisfactory performance we must
consider recurrences of higher degree. |

| When considering such recurrences it is helpful to know some facts about the length of the
| period and some relationships between sequences satisfying the same linear congruence, but :
| with different initial conditions. The papers [Ward31), (Ward33), and [Hall38a) present ;

accounts of the theory for general linear recurrences. The length of the period of

recurrence (1.1) for a = 1 can be easily established using an idea from (Hall38a) |

Lemma 1.1. If fix) is primitive in Z [x] then the period of (1.1) for a = 1 is pk-1.

Proof. Corresponding to the R-tuple (y,, ...,¥,.4) associate the polynomial | |

Vix) = 9x"40-05.9" 24 4 Opg=0p19p0- =849¢) - (1.2)
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| Then xV(x) = yx" +(31-059x" "+ + +pq----0y90x = 9,x*1 4 (92-ap_ yyy"
+ +c +(yp----a,y,) (modulo flx)), and this is the polynomial associated with 3 ooh

3x). Thus iterating the recurrence corresponds to multiplying the associated polynomial by

; x. Since f(x) is primitive, x is a generator of the multiplicative group of the finite field !
VApx JI(f(x)) and has period pk - 1. Thus recurrence (1.1) has period p* - 1. |} :

a

I § We will use generating functions and congruences to a double modulus to analyze the

b § period and certain other properties of integer sequences satisfying (1.1) when a> 1. The

| notion of congruence to a double modulus is an extension of the usual notion of
| ; congruence. If fix), a(x), and x) are polynomials with integer coefficients, and if there |

| exist polynomials u(x) and ox) with integer coefficients such that || a(x) = &x)+flxhu(x)+ mu(x), then we will write a(x) = ix) (modulo f{x) and m), or also |
| a(x) = &(x) (modd m, f(x)). The following four lemmas are essentially exercise 3.2.2-11 of |

| [Knuth69). |
Lemma 1.2. Assume that f{0) is relatively prime to p and that p%>2. If

| | xT & 1 (modd p%, fx) and x7 x 1 (modd p%*!, Ax), |
: then

«PT = | (modd pO*1, fix) and xPT £1 (modd p%*2fx). |

| Proof. By definition of congruence to a double modulus there exist polynomials u(x), x(x)
| such that x7 = 1+flxu(x)+p%x). In addition ox) #0 (modd p, fx), or else

| xT = 14flxdu(x)+ pO(fJuy(x)+ pox) = 14fxXu(x)+ pPu(x)+ p&* Yo(x) = | (modd
| } p®* 1 fix), contradicting the assumption about x’ (modd p™*!, fix). If we raise x7 to |

{ | the pth power, the binomial theorem makes it clear that
{ xPT a 149% 1(x)+ p23 * 1o®(xXp-1)2 plus other terms which are congruent to zero

modulo f(x) and p®*2 Since p%>2 we have pT* (p-1)/2 x 0 modulo p2*2 and thus |

«PT = 14 p%* 1x) (modd p®°2 fix). Suppose that p@* u(x) = 0 (modd p* *2, f(x). i}
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: Then there exist polynomials a(x), Kx) such that p® * 'o(x) = a(x)f(x)+ p® * 2x), which "1g
implies that p%* }((x)- pix) = a(x)f(x). Since flO) is relatively prime to p we can apply

| Gauss’s lemma about the gcd. of the coefficients of the product a(x)f(x) and deduce that

p%* 1 divides a(x). This means that ox) = p"@*Va(x)f(x)+ pix) = 0 (modd p, fix)), which |
| is a contradiction. Thus p%* s(x) # 0 (modd p**2, fix) and therefore xPT # 1 (modd

| p22, fix). |
| Using generating functions we will next derive a relationship between period lengths and

the powers T for which x7 = | (modd m, f(x)). Let fix) = I-a,x- --- -a,x*, and let G(x) =

| fix) = Ag+ Ax+ Ayx+ ---. Denote by T(m) the length of the period of <4, mod m>.

| Lemma 1.3. T(m) is the least positive integer T such that x7 = 1 (modd m, f{x)).

Proof. Since T(m) is the period of <4, mod m> we have G(x)-xT MG(x) = |
Ag+ Ax+Ax 4 += Ap mye TO (modulo m), which implies 1-xT(M)< )

| fxXAg+ Ax+ + + any IY (modulo m), so 1-xT™) = 0 (modd m, fx). This
| shows that T(m)2T, since T was the smallest positive integer such that | -xT = 0 (modd m,
| fix). Conversely, taking x” -1 = 0 (modd m, f{x)) and multiplying by G(x) = 1/f{x) gives
| xTC(x)-C(x) = 0 (modulo m). Equating cr~fficients of x gives 4,-A4,,r & 0 (modulo m)

for all n20. Thus T(m)<T. | |

| We now restrict our attention to prime power moduli m = $& and show that when a is

A large enough, increasing a by 1 multiplies not only the modulus but also the period by p. |

| Lemma 1.4. If p@>2 and T(p®) » T(p%*) then T(p%* ¥) = p*7(p%). |
|

| Proof. It suffices to show that T(p%) » T(p®*') implies that T(p%*!) = pT(pT) w T(p** 2).

| From what we have already shown about the period, we know that T(p% ‘2 pT(p®) and |
| 4 4
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that T(p@* 1) divides pT(p*) but does not divide T(p%). Let T(p%) = $°q with and ¢

relatively prime. Then since T(p®*') divides p**'q but does not divide p%, it must be :

that T(p®*!) = p°*1d where d divides ¢. Since p°*'d is a period modulo poh it is
certainly also a period modulo p*. The smallest period divides all other periods, so pg ]
divides pe*ld. Thus ¢ divides d, ¢ = d and T(p™* !) pT(p%). § :

We have determined the period of <4, mod p®> where A_ is the coefficient of x” in the |
generating function G(x) = 1/{x) and fx) = |-g,x- --- -aol This sequence <4, mod :
p> satisfies (1.1), and we would like to know something about the set of all sequences |

satisfying (1.1). If G(x) = 95+ y,x+ ++ where y, x = ay1Ipex-1+ °° +84¥, for all n20, |
it is easy to see that f(x)G(x) is the polynomial glx) = y,+(y,-a,y,)x+ --- |
+(Pp-1-81Vx-2-82Vx-3= a, yx", hence g{x)/f(x) is the generating function for |

the sequence with initial values (yo, 94, .-., yx.1) The next lemma shows that the period

of <y, mod m> is the same as the period of <4, mod m>, in the cases of interest to us.

Lemma 1.5. Let m = p&. If fix) and g(x) are relatively prime modulo p then the period of

<y, mod m> equals the period of <A, mod m>. In particular, this holds when fix) is

irreducible and (34, ..., 95.4) ® (0, ..., 0) (modulo p).

Proof. Assume that T is the period of <y, mod m>. Then g(xX1-x") & 0 (modd m, f(x).

Because f(x) and g(x) are relatively prime modulo p, we can apply Hensel’s lemma and find

polynomials a(x) and &x) such that a(x)f{x)+dx)g{x) = 1 mod m.  Muliplying -

gxX1-xT) 20 (modd m, fix) by Kx) gives 1-x7 = 0 (modd m, f(x)), hence the period of
<y, mod m> is no shorter than the period of <4, mod m>. On the other hand it cannot be

longer, since <y, mod m> is a linear combination of sequences <A, , mod m> for various j.

If fix) is irreducible in Z lx] then f(x) is relatively prime to every nonzero polynomial of

lower degree, so the period of <y, mod m> will be the same as the period of <4, mod m>

unless g(x) = 0 mod p. This can only happen if all of the initial values (y,... 9, ,) are

p
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| divisible by p (again because of Gauss’s lemma). {1

The results which have been derived so far about the period may also be derived by !

formulating the recurrence relation (1.1) in terms of a matrix-vector product. This

alternative formulation is important because actual computation may be easier with the 1

: matrix than with the polynomials. Let

010 «- 0 |

coo! --- 0 ]

A =f (1.9) |

o00 --- |
Gp 8185 "°° Ox. 3

where the aj are the same coefficients as those in (1.1). Define :
3,7 = (9p Ypatr «+» Vnax-1) tO be the k-tuple of consecutive terms of (1.1) beginning with ]
the n” term. It is easy to see that 3, = Ay, and hence by induction that 2, = Ay, mod -

p®. By definition of the period T = T(p®) we have 3 = ATy, mod p%, so J

AT = 14 49B (1.4) :
for some matrix B. If p does not divide B then T is not the period mod p®*!. However, 3

APT « (14 p%B)P = 14 p@* 1B +p. b=1.p2ap? plus other terms divisible by p%*2 If :
p% > 2 then we see that APT = 14 p%*'B (modulo p®*2), and we have rederived the fact 1

that pT is the period modulo p%*' but not modilo p@*2 We can also note that ]

Yne1/p= dn E AT/Py -3, 5 p* By, (modulo p%). This says that as the modulus increases
the difference between vectors a period apart is merely multiplied by p. In the binary case b

p = 2 this means that the exclusive-or of y,,r,, and 3, gives the same pattern of bits, just 1

shifted one place left as the modulus increases. 3

If we consider A/T(@) for j = p* we see that 3
a_ ~ Nf

APIT@) (14 p98)" 1+p%p%B+ p% £1 p2ap2, ... 814p%B mod p3°1 (1.5)
6 3
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: ] ~~ When Eq. (1.4) is viewed as defining B as a function of a then Eq. (1.5) says that :
3 ] B(a) = B(2a) (modulo p%°!). In other words, as a increases B converges in the p-adic |
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: CHAPTER 2 |

] Discrepancy and Exponential Sums

In order to make meaningful statements about how well a sequence is distributed it is :

J necessary to have a measure of equidistribution. Discrepancy is such a measure. Let] be a

: unit interval, and for intervals j<1 let A(J,N) be the number of n, 0sn<N, with y_¢]J. |

Then the discrepancy of the points 9,, ..., 9. is defined as

D «Wicks - -A :No +s In-1) sup | ak Wad 0 (2.1)

where .A(J) is the measure of J. Thus the discrepancy measures the maximum difference |

between the actual fraction of hits in an iiiterval and the expected fraction of hits. It is ; |

| easy to see that O0sDy<| and that the sequences produced by a good random number :

generator should have small discrepancy. Definition 2.1 can be extended naturally to

define discrepancy for sequences of points 3, lying in a multidimensional unit interval 1, |
and we shali often use the extended definition. |

: Harald Niederreiter has developed an inequality relating the discrepancy to certain |
exponential sums [Niederreiter78). This inequality is important because it bounds the ]

discrepancy in terms of functions having nice mathematical properties. The properties will

be exploited when analyzing the discrepancy of linear congruential sequences (1.1). :

k :

] Niederreiter’s inequality is easier to state if some notation is introduced. For integers m and i

% ]

I if A = 0(mod m)
: A, m) =

m sin njiA/m|| if A » 0 (mod m) 3

-a a aR a a a a a i a ani _ im Rera a rv
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where ||? || is the distance from ¢ to the nearest integer. For lattice points 4 = (Ay. — 2

2° we write
| S

rit,m) = JT rik,m.
J=1

The summation symbol - > will designate a sum over the complete system of
h mod m

numerically least residues modulo m, consisting of all integers 2 with -m/2<Asm/2. The
x

summation symbol > refers to the same sum but with A = 0 deleted from the range of
h mod m

x

summation. The symbols > and p) will refer to analogous sums over the
h mod m h mod m

complete system of representatives of Z°/(mZ)” consisting of all h = (4,,...,4,) € 2° with

-m|2<h,;sm|2 for I sjss, possibly omitting A= (0, ..., 0). The notation x-y represents

the standard inner product of two vectors. The function &t) is defined for real values ¢ as

Lemma 2.1 (Niederreiter's lemma). Let 34, ..., 2y., be N lattice points in Z®. Then for

any integer m22 the discrepancy D, of the points my, a. may. satisfies

[} A | | >)D,< = + TE) | «Ay |N= m h 2, m Zo N n=0 ’

Proof. For k=(k,, ..., k,) «2% let A(R;N)=A(k,, ..., k,;N) be the number of n,

0snsN-1, such that 3, = & (modulo m), and let ¢, be the characteristic function of the

coset 2 +(m2)® of Z°/(mZ)®. Then for x = (X40 0%) € 2% we have

8

a= STI( ZS drpr-kpm)e LF dptx-tym).
is Mm” Je1 h, modm Mk mod m |

Therefore,

N-1 Nd ; N-1
ARN) Deas = 2 2 dilg,-Dim= — 3 d-hhim)3 eh im),

neo = Mm" n=0 hmod m Mm h modm n=0

and so

9 |

Ek ' EI IIE EI I am—_——_ a
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3 | Np N-1 , 5
ARN)- = = — 3 d-phm) dha,im). (2.2) |

E m Mm hmodm ne=0

Now let J =[a,, B,) x ... x [a, B,) be an arbitrary half-open subinterval of [0, 1)°.

For each j, 1sjss, we choose the largest closed subinterval of (a8) of the form [u/m, |

v/m) with integers u;<v,. The case where for some§ no such subinterval of [a, 6) exists

can be dealt with easily, since we have then A(J,N) = 0 and 8Joay< 5 hence

| | AER vip) «vip 5 23)
| In the remaining case, the integers u,, ..., u, v,, ..., 9, are well defined, and we obtain |

AGN-NYD= YS (AR;N)- x + Y g-uy+ 1) coe (o,-u +1) =NV())

| kiuyskysv, ih
& il (0-us+1) --- (v,—u,+1)

cL PT (FT drum dragm)eNA_v()) - 13
] MM hmodm Muskisv, po m :

by using (2.2). It follows that * i

| ALM yp) < 2 > > drim SF ) |: - < — ARIm A m

) m® hn mod m N u,sk,;sv, | N n=0 ed
; = vor (p.— |

0 fou AE Bh 5 uk ET (24)m

For fixed A = (A, ...,A) eZ" we have |
Py | 4 ro

| 2 damm|-| XT  dium|s]] | b> hpJ) : |
Riu Skis, RK OSK Sv -u, Jo1 ‘xm0

Now |

bo) . . ' ]2 opm] oul Smee ar |
if A; = 0 mod m, and |

10 :
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v,-u

nl I CY ORI COPDReLrRlCP |
if A; # 0 mod m, and so

s &

artim) < IT om = soi: (2.5) 1io Zc, | J=1 ym na, m 1
In order to estimate the second term on the right-hand side of (2.4), one shows first by

induction on 5 that |
3 .

[Vio Ya= 8rd] < 20 17,78]
whenever 0<7v, 8,51 for 1 sj<s. Consequently,

—————————————————————————————————— 4 = ——————t— - 0

nm? yi m yoy J "J
Sv -u +l |

d 4

From the definition of u, and uv, it follows that
u l v

a,s . <a,j+-— and B,- > < J <8,
so that

, V,~-u,+

| 6,-a))| < 1 for 1 £§<s.
Therefore,

(y-ug+1) - (v,—u,+1) | 5an (1) <5 |
and by combining this with (2.4) and (2.5), we arrive at |

x N-1

A(J;N) 5 i | JALN -V()| S = + TE) eh: m)|
In view of (2.3), this Inequality holds for all }, and by forming the supremum over J on the :

left-hand side, we obtain the desired inequality for D,. |

The latter part of this proof indicates that it is somewhat unfair to use arbitrary intervals J |
} when computing the discrepancy. The points <y,> lie on the coordinate lattice, and we may |

as well assume that J is an interval of the type [a,/m,b,/m) x ... x [aJm, bm). This |
assumption disposes of the term s/m in the statement of Lemma 2.1.

4 1 :
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; Lemma 2.2. For any integer m22 we have :
i ni < 2 log me 1)| h 2 ayy tA mn i 5)

Proof. (Niederreiter78) Since
HRY |

| it suffices to estimate the sum on the right-hand side. We have
| x [m/2)

l l A 2 nA

! mts cscfl=f) € 142 J) csc =,E h Z, m Te is Z, m ; m ) "
i and by comparing sums with integrals we get
|

[m/2] {m/2)} (m/2)nA n nA n nx

YoePewleY aca csc — dx |
h=1 h=2 :

n m hz n om n n._.m 2m
Sec Ze  ccrdtmesc Do Rlogeot gi <osc Xo Rigg 20 . ,

For m26 we have (m/n) sin (n/m)2 (6/n) sin (n/6), hence sin (n/m)28/m. This implies |
(m/2) |

nk _m 1 | n

: 2 oso < log me( 5 - log 5m for m26,
; and so :

Liz) nh _m m
> csc— < —logm+¢ for m 26.hei n i

This last inequality is easily checked for m = 3, 4, and 5, so that
l 2 7

< -logme for m23.;2 nm TA,m) =n log m+ ¢
For m = 2, Lemma 2.2 is shown by inspection. |

The papers [Niederreiter72}, [Niederreiter74], and [Niederrelter76) contain further theory all

of discrepancy and exponential sums. :



: Reduction to a Weaker Criterion |

CHAPTER §

Reduction to a Weaker Criterion

Chapter | introduced the linear recurrences we are investigating and gave some of the |

known results on the length of the period. Chapter 2 defined discrepancy as a measure of |

the distribution of a set of points and presented Niederreiter's lemma, which bounds the

discrepancy by an exponential sum. Computing the exponential sum is straightforward but

costly; even for small cases the amount of computation becomes prohibitive. Since we are

interested in the exponential sum mainly as a bound on the discrepancy and hence as an

indicator of the goodness of the distribution of the sequence, in this Chapter 3 we bound

: the exponential sum by a function involving the number of zeroes occurring in a related

sequence. The number of zeroes can be much larger than expected and the discrepancy of

the original sequence will still approach zero. The question of equidistribution of the

original sequence is thus reduced to a weaker distribution criterion.

In the case of higher order congruences we cannot expect the discrepancy to be less than

m™%, since some points are never generated by the recurrence; for example, no integer

congruent to 6 mod 8 will ever appear in the Fibonacci sequence. The problem in proving

small discrepancy lies in showing that the values which occur more often than expected do

not occur too often. Intuition for this problem comes from considering recurrences based on |

primitive trinomials with unit coefficients and looking at the carries that occur when the

addition in the recurrence is performed in radix-2 positional notation. The distribution of

carries should say something about the distribution of the sequence.

. In order to study the relationship between carries and distribution of digits, let us consider

the top 3 bits and the bottom 3 bits of <F, mod 64>. The period of <F, mod 8> is 12 and

13
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: Reduction to a Weaker Criterion

the period of <F_, mod 64> is 96. In the matrix formulation of Eqs. (1.3) and (1.4) we have
01 2 (89 144 1 11 18

A= (| ) and A’ - Core 299) x (o 2) +8( hl « 1+ 8B. Taking the difference of two |
vectors 12 apart, we see that 3,,,,-3, = A 2-1, - (A 12.1), = 8B3,, and in general

12 J 1 64m, ... |
Ryzgee—de = (A “7-1)y,= ((1+8B) ~1p, = (8jB+j-“5- 64B +---), 8 8By, mod 64. (3.1)

Breaking the period of <F_ mod 64> into 8 blocks of 12 and considering each block as a

point in 12-space, the points are a+8tb mod 64, where 3, b « 2 12 and 0st<?. The

coordinates of a are the first 12 terms of <F, mod 64>. The coordinates of b satisfy the

Fibonacci recurrence b= b+b,, mod 8, since they are the difference of two Fibonacci |
sequences. Here are two tables illustrating the relationship implied by Eq. (3.1). The first

gives <F_ mod 64> and the second gives <F, mod 64> where <F > satisfies the Fibonacci

recurrence, but with initial conditions Fo=2 F=. The entries In each table are octal ‘

integers.

Table 1. Octal values of F,,,,, mod 64 |

t 0 1 2 3 4 5 6 7 8 9 101
J
0 00 Of O01 02 03 05 10 (5 25 42 67 3 :
I 20 51 71 42 33 75 30 25 55 02 57 él
2 40 21 61 02 63 65 5 35 05 42 47 {| ;

3 60 71 51 42 13 55 70 45 35 02 37 41
4 00 41 41 0243 45 10 55 65 42 27 I :
5 20 11 31 42 73 35 80 65 15 02 {7 2I

6 40 61 21 02 23 25 50 75 45 42 07 51 ;
7 60 31 11 42 5% 15 70 05 7B 02 77 ol

20 50 70 40 30 70 20 10 30 40 70 $0 row difference

14 |
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Reduction to a Weaker Criterion

Table 2. Octal values of F,,,,, mod 64

to I 2 3 4 5 6 1 8 9 10 I
J
0 02 05O07 14 23 387 62 21 03 24 27 53

1 02 55 57 34 [13 47 62 S81 13 44 57 23
2 02 25 27 5¢ 03 57 62 41 23 64 07 78

3 02 75 77 74 73 67 62 51 33 04 87 43

4 02 4547 14 63 77 62 61 43 24 67 13
5 02 15 17 3% 5% O07 62 71 53 44 17 68
6 02 65 67 54 43 17 62 Ol 63 64 47 33

7 02 35 387 4 33 27 62 11 73 O04 77 08

00 50 50 20 70 10 00 10 10 20 30 50 row difference

This observation can be applied directly to the evaluation of the sum in Niederreiter's

Lemma. Let m = p24, <j,>= successive tuples of <3, mod m>, and N = length of one

period mod m. Then

] N-1 | ve! p01 ne p2-12, ery, /p%%) = 2, elha,+ph p>) = hg Jp>%) 2, elheth Jp) (3.2)
n=0 J=0 t=0 J=0 t=0

The inner sum is a geometric series with ratio (Ad Jp). In fact, the sum is zero if A.y= 0

mod $9, and is p% if Ab, = 0 mod p%. Also, the sum depends only on 4 mod p%, which is
A mod a'/2

Next we observe that <A«q_> satisfies the same recurrence as <y,>. To show this, let

Yn = 2, Then |
k-1 k-1 Kk-1 .

2% 9m; " 2 2 Ade; : b 20 0 ney ® 82pex ® Iner (3.9)
Furthermore, if 3, contains an element relatively prime to p, and if ss &, the gcd. of <A>

is equal to the gcd. of A; that is, <A> does not degenerate into a sequence in which all

elements are divisible by a power of p higher than the highest power of p dividing 4. It

’ suffices to prove the case for which the gcd. of A is I. Extend A to a A-tuple (Ago ...,

Ax.q) by adding k-s zero coordinates, and define the polynomial H(x) by

H(x) = hex” + “oo TY TE . Then the polynomial associated with <j> by Eq. (1.2) is

| 15



Reduction to a Weaker Criterion 4

HW (x) (modd p, fix). In the field 2px U(x) both H(x) and Y(x) are nonzero, hence .

tireir product is also nonzero. Therefore p does not divide all of the coefficients of ¥

FI(x)V(x) and thus <py> contains an element relatively prime to p. The foregoing I]

observations about <A-y> allow us to get rid of vector operations and return to plain ]

integer sequences. Let a = hea, b, = hb, y = hy... Then

N-1 N-1 N/p®-1 pT -1 1
2 hy Jp" = eyJpP N= Xela p?M) 3) ledJp) (3.4)

Tie full stun, and hence an estimate of the discrepancy for sequences which are 2a bits

wide, depends on the occurrences of 0 in <b p>, which is only a bits wide. Again we note ¥

that the inner sum is a geometric Series with a term ratio of elb Jp), and its sum is O if E

b, 7 0 mod p% or pif b, = 0 mod p<. Therefore |
N/p®-1 ia N/pT-1 I
2 clap? db Jp = p® 3 elajp) (3.5) 13
J=0 t=0 =o :

b = 0 mod p® ]

Taking the absolute value, |

N/p®-1 NIp®-1 |
$Y 2 eapsp | |

J=0 J=0

by = 0 mod p b= 0 mod p& | |

= p% (number of zeroes in <b, mod p%>). (3.6) |The number of zeroes in <b, mod p%> will be large if a high power of p divides A, since |

b, = Ab; To analyze this situation, let us go back to the original exponential sum of |
Niecderreiter's lemma and choose m = p%. Set I

* : T(pY)-1
Sede 2 ~— |—o & dbp) (37) g

where T(p®) is the period modulo p% and let a, be an exponent for which :
16 ’



Reduction to a Weaker Criterion F |

: T(p™0*Y)  pI7(p0) for all j20. Then for aa, : |
a | T(p%)-1 |

Sa)= 2, 2, a ior 2 hap q
1} modpt rik, p%) 1 T(p%) neo 1

i ged(p) = po i

a ; | | T(pY)-1 q= 2 2 mmr | 2 dbpa, 1 (pp) {
-d i y = n tprod bh mod pla ) v(h1p® d p/p? 9 T7(p%) AC

ged(h) = p@°9 :

a Tp?) i |

= Slag-De J pad 5 |-L 2, ely,I ) 1
ged(h) e 1 i:

Thus for aa, {

, T(p%)-1 {

SepTSa-Ds  —— |—— 3 el,! pV) (28) {
: h mod p% ne r%) “TH mo £

Collapsing the chain of inequalities back to the statement of Niederreiter’s lemma, for :

aza, 11
T(p9) i

3 S(2a-1) l | ] & 20 iDyep?ayS +20 3 —— | eben,| p50) |
PET 020 0 ea pra. Lap?) }

ged(h) FE | |
oy _ a :

< 2 + de + jo et : —E— «number of zeroes In <b, mod p%>) . (2.9) }
gcd(h)= 1 : )

For a>a, the gcd. of the components of b, Is 1, by Lemma 14. Thus by an earlier 1

remark the god. of the <b> is 1, because b, = heb, and the sum (3.9) is restricted to those 4 ] |
for which gcd(A) = I. Replacing the number of zeroes in <b, mod p%> by the maximum

$ number of zevoes in a nondegenerate cycle mod p%® and applying the bound of Lemma 2.2 Fk

| 17 3



Reduction to a Weaker Criterion

gives

s S(2a-1) 1
) Bo Wid

(c 2a) dics (maximum number of zeroes in nondegenerate cycle mod p%) . (2.10) ;

for some ¢, which depends on p but not on a. Remembering that T(p3®) is proportional to :

pha, we sec that the disacpancy in s<k dimensions will approach zero if the maximum 3

number of zeroes in a cycle modulo p is o(a™*p%). This is a very weak condition. If the 3

elements of the cycle are evenly distributed then the expected number of eroes is a 3

constant. Equation 2.10 shows that the discrepancy will tend to zero even if the number of

zeroes in a cycle is exponentially increasing, as long as the rate of increase is p-e¢ for some 3

3

¥

18 ]



Analysis of the Number of Zeroes in a Cycle I

CHAPTER 4 ;

Analysis of the Number of Zeroes in a Cycle :

The result of Chapter 3 expresses a bound on the discrepancy in terms of the number of |
zeroes occurring in sequences satisfying the recurrence. (See [Hall38b] for an early I
application of a similar bound.) In this chapter we will investigate the number of zeroes 3

appearing in any cycle, and try to bound it from above by a function which is small 3
enough to force the discrepancy to zero as the modulus increases. |

For the Fibonacci sequence modulo 2% the bound is particularly small. 1
: Theorem 4.1. At most two zeroes appear in a cycle satisfying the Fibonacci recurrence :

Ynez = Vpey +9, modulo 2% when y, and y, are relatively prime. ;

Proof. If a zero appears at all then shift the cycle so that the zero is the first element. 3

Then y, = 0, y, =4, and a must be odd since y, and y, are relatively prime. Thus the

cycle is merely a multiple of the Fibonacci sequence, where y, = 0, 3, = 1. Modulo 8 the j

Fibonacci sequence is 011235055271. By inspection there is one zero mod 2, one |
zero mod 4, and there are two zeroes mod 8. We will show by induction that :

Faoa-2+=2% and Fy .a-2_, = 142%"Yr where a28 and gq, r are odd integers. This is 3

true by inspection for a « 3. Assume that it is true for a « § Then using the relations

Funes =F24F2, and F,, = F(2F,,,~F,) we have Fy 4-1 = 2/*1g(14 20° 1r_ 27" 1g) i

and Fy4-1," 1420r 4220722, 92042 which is the property for a = j+ 1. Therefore the

period doubles and the number of zeroes remains constant as the modulus doubles. | |

We can use this fact to estimate the discrepancy in two dimensions of a complete cycle of 4

the Fibonacci sequence modulo 2%. Assume that S(a)<ca®2°/2 in the notation of Eq. i
19
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(3.8). For a2€ we have 7/5+(2/n)leg 29 <log 29. By Eq. (39), S(a+l)s f

2°2s(a)+ 2:921/2(4 4 ))29-(a+1)/2 - ca? a/2°2 | (q41)293/2 - (a+ )/2 -

a+ 1)22 @1)/2 ( 27/3 1% 1232) < das 1)227@VI2 4p 01802321). If we ;
also select ¢ large enough so that S(6) satisfies the inequality then a simple induction will

establish the bound for a26. Therefore Dys2V 4 ca?R ;

For recurrences of higher degree than the Fibonacci sequence, the number of zeroes in a

cycle can increase as the modulus increases. :

Theorem 42. If k>2 and aa then the maximum number of zeroes in a nondegenerate 1

cycle modulo p22 is at least p°. ]

Proof. Construct k initial elements ¥,, ..., 95. as follows. Set y, = 0 mod p23. Choose _

Ygr «oes Yx.q Mod p% so that ¢,By, = 0 mod p%, where B is the matrix defined in Eq. (1.4) 3

and ¢, = (1,0, 0, ..., 0) is a unit vector with a | in the first coordinate. Since y, has been }

specified, the constraint on y,, ..., ¥,., is one equation in 2-1 unknowns. For k = 2 (as

in the Fibonacci sequence), y, would have to be 0 mod p% and g.cd(y,, y,) would be p<. |
For k>2, well-known methods guarantee the existence of a nontrivial solution for y,, ..., 3

Yx-y- It is easy to see that y,, = Ay, = ¢,(I1+p"Blyg = ¢,90+ ¢4Jp®By, = 0 mod

p29 for 0<j< p® and that yyr are distinct elements of a cycle modulo p21 ]

In order to obtain a good bound on the discrepancy, it is necessary to show that, as the

modulus goes from p% to p@*}, the number of zeroes increases by a factor which is

eventually less than p. We will try to show that the number of zeroes eventually increases /

at a rate no faster than plk-2)(k“1) where k is the degree of the recurrence. 3

13
The fundamental idea will be counting in two different ways the total number of zeroes in i

the cycles corresponding to all of the possible initial conditions. Consider a large tabular }

20 14



] | Analysis of the Number of Zeroes in a Cycle : B
| array in which each cycle appears as a row. The first column of the array contains the first

: element of each cycle; the second column is composed of the second element from each cycle, 1

and so on. Let b, be the number of zeroes in the il row of the array. Then > (*)
counts the number of t-tuples of zeroes in the array, with all elements of a tuple required to |

| appear in the same row. The number of f-tuples of zeroes can be counted another way.
For each r-tuple of column indices, count the number of rows which have zeroes in all of ;

those ¢ columns. Since the two methods of counting must agree, a bound achieved by

considering one counting method can be applied to the other counting method. :

: To count the zeroes appearing in all of the cycles, we must first know how many cycles :
| there are. Each cycle is determined by its first x elements and each element can take on p< i

values, so there are pak possible cycles. Some of these cycles are isomorphic under cyclic

shift, and of course the number of zeroes in cycles which are cyclic shifts of one another is :

the same. To reduce our counting effort by applying knowledge of the isomorphism, we

should divide by the period. A cycle in which all the elements are divisible by ¢ has a

shorter period than a cycle containing an element relatively prime to p, so it is necessary to

count the cycles according to the highest power of p dividing all elements. Let a, be the

number of cycles for which p? is this highest power. Then by counting all the cycles we

have aj+a, +: +a, = pak. if p% is Marge enough so that the period is multiplied by p
| as the modulus increases from p% to p** I, then by considering what happens when the

zero unit's digit Is removed from a cycle in which all the elements are divisible by p, we see

! that 6,+ -*- +a, = p@VX Thys qa, « pak. pak pk_1)p@ DX Considering

only those cycles containing an element relatively prime to p and allowing for cyclic shifts,

| there are (p*- 1p @- 1k _ 1)p2-1-(c-1) = ¢, pla k-1) cycles.

Some of these cycles are isomorphic under multiplication by a number prime to p. Cycles :

which are multiples of each other have the same number of zeroes. In fact, a cycle may be

| non-trivially isomorphic to itself under such a multiplication. For instance, in the |
21 |
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Fibonacci sequence modulo 8 the second half cycle 0 552 7 | is 5 times the first half ? |
cycle 0 11235. In this situation the number 5 is called a multiplier. If a cycle has a

multiplier then obviously the number of zeroes in the cycle is a multiple of the number of i

zeroes appearing in the first partial cycle, which is called a block (Ward33). Multipliers |
complicate some of the later analyses. Any constant number of multipliers can be tolerated, |
but it is preferable not to deal with multipliers at all. Therefore we must be able to detect !

when a cycle has a multiplier. |

Suppose that a is a multiplier after n iterations of the recurrence, i.e, y, = ayq, ¥,.1 = a9,

... . Let g(x) be the polynomial corresponding to the initial conditions (y,, yy, -.., ¥5_¢)-

Then | |
x"g(x) = ag(x) (modd p2, f(x)

(x" -a)g(x) = 0 (modd p2, fix) :

(x"-a)glx) = flx)u(x)+ p%u(x) for some u(x), Ax). |

Since f(x) is primitive in Z[x], either flx) divides x"-a or fx) and x"-a are relatively
prime. Suppose they are relatively prime. Then by Hensel's Lemma we can find (x), d(x)

such that (x”- a)(x) +f{x)d(x) = | mod pa. Multiplying by g(x) we find i

(x" - a)g(x)c(x) +fix)glx)d(x) = g(x) mod p<

flhulx)e(x)+ pToix)e(x) +flx)glx)d(x) = glx) mod p*

0 = g(x) (modd p, fx).

Thus a would be a multiplier for the trivial cycle (0) only. Consider the other possibility,

that f(x) divides x"-a in Zlx] so that x" 2 a (modd p, f(x)). The multiplier a must be

relatively prime to p or else the recurrence could be run backwards to deduce that all of the

initial values were non-prime to p. Let § be the order of a mod p. Then x/" =a’ & | |

(modd p, x). Thus T(p) divides jn. Noting that p-1 divides pk-1 and that j divides

p~1, we have T(p)/(p-1) divides n. Specializing to p = 2, 7(2) divides n. If we consider |

the case in which n is the smallest number of iterations producing a multiplier then n

22 :



1 Analysis of the Number of Zeroes in a Cycle | J

- divides 7(p®). For p = 2 these two divisibility conditions restrict n to the form 2%(2%- 1), |

and thus a is a 2’ root of unity for some §. The powers a® a4 a% ... must also be :
| multipliers, and in particular one of the square roots of 1 must be a multiplier. The square |

| roots of i mod 2 are +i, -i, 2%141, and 2971-1. The case of +1 is trivial. If -1 or :
22-1} were a multiplier, it would correspond to 27 '7(2%) « 7(2%°!) iterations, |

contradicting the known period mod 2%). Therefore 22-141 must be. a multiplier :
| corresponding to one-half the period. In matrix formulation of Eq. (1.3) and (1.4), |

| AT/2% £ (2% V4 1)x mod 20 |
2% 'B+Dx = (2% 1+ 1)x mod 2%

| 22° YB _)x = 0 mod 2° :

Thus B-1 is singular mod 2. For recurrences of moderate degree this is not hard to

determine. In the nonsingular cases there can be no multipliers.

Back to considering cycles isomorphic under multiplication by a number relatively prime to |
p, we now assume that the recurrence itself has no multipliers. We can divide the number
of cycles by #(p%), which in the case p = 2 leaves ¢,2(a 1Xk-1)p00-1 = ¢, 200" Hx-D) cycles

containing an odd element and non-isomorphic under cyclic shift and multiplication by a |

constant. :

| Knowing the total number of cycles, we begin counting the zeroes by counting the rows
which have zeroes in specified columns.

| Theorem 4.3 [Hall382). There exists a sequence <j,> satisfying the recurrence (1.1) and not
identically zero modulo p< for which 9, = 0 mod p* for 2-1 arbitrary values of =. |

| Proof. Let the arbitrary values of n be Myr ees Mpg Write
| <p> = CQWatCWp q+ ot +65(Woop(> Where <w> is the unit sequence with initial ;

] conditions (0, 0, ..., 0, 1) and the c's are to be determined by the A-1 congruences :
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Yn, =n, = 0 Ip, mod p% . These are k-| homogeneous linear congruences in the
k variables cq, ..., ¢,, SO there must exist a solution in which not all the ¢’s vanish and 3,

does not vanish identically. }

Thus at least one cycle has zeroes for each set of k~1 arbitrary positions. To calculate the |

exact number of cycles having zeroes in the specified positions, we need to know the rank :

of the coefficient matrix. Suppose that the rank was 2-1. Then there would be one free

parameter in the solution set and the number of solutions would be proportional to p% as a |

varied. Varying the parameter would merely generate a solution which was a multiple of |

the previous solution, so that the corresponding cycles would also be multiples of each |
other. Thus if the rank of the coefficient matrix was k-| then there would be a constant

number of cycles having zeroes in the designated columns. To take advantage of the cyclic

shift isomorphism, we can demand that first column be one of the columns containing a i

zero. This leaves k -2 other columns which can be specified, so altogether the number of :

systems of simultaneous homogeneous linear equations we are considering is proportional to

pO (X-2) We have seen that if the coefficient matrices are of rank Xk -1 then each system Td

corresponds to a constant number of cycles. Letting b, be the number of zeroes in the !

row, this argument shows that PX (2) serp™®2, where the sum is over nondegenerate |

cycles with a zero in the first position. This implies that by"! sc pd (X-2) for each J, and |hence the maximum number of zeroes in a cycle mod $* would be. bounded by

ak Lat for some constants ¢,, ¢; This bound is good enough to force the |
discrepancy to zero as a increases. |

|

For recurrences of degree 3 that have no multipliers, the coefficient matrix is of rank |

2 = k-1. The rank cannot be zero because no & consecutive terms vanish, and if the rank :

were | then the second row would be a multiple of the first. Hence the preceding argument . |
proves the following theorem. |

2k :
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Theorem 44. If fix) is a primitive polynomial of degree 3 in Z[x] then the discrepancy
over an entire period of ¢-tuples generated by (1.1) tends to zero as a tends to infinity, for ;
ts3. | |

The cases in which the coefficient matrix determined by the k-1 column positions is of i

rank k-1-¢ for ¢>0 generate a number of essentially distinct cycles proportional to p&*, 1

Since the matrix is not of full rank there is some non-trivial linear combination of the rows |

which is the zero vector. Using the isomorphism (1.2) between sequences and polynomials, 1

the same non-trivial linear combination of the powers of x corresponding to the designated

column positions must be the zero polynomial modd p%, Ax). This means that we are now |

interested in the number of polynomials with k -¢ terms (one of which is the constant term |

cox”) which are congruent to zero modd p%, f(x). We can choose k-¢-1 exponents of x i
from a number of possible exponents proportional to p%. The coefficient for each of the |

k -¢ terms can be chosen in p& ways, but this gives p@ times too many choices because of

constant multiples. Thus the number of polynomials to consider is proportional to :
pa (k-t-1)ga(k-t),-a - pRa(r-t-1) If these polynomials were evenly distributed among the 1
p@X residue classes modd p%, f(x) then the probable number of polynomials congruent to i
zero would be pr(r-2t-2) and the number of (k-1) tuples of zeroes would be proportional

to p*{*-¢2) summing for ¢ from 0 to k-2 gives a number proportional to p*‘*"2) and

therefore b , < c pK D/A), |

Another way to attack the problem of bounding the maximum number of zeroes in a cycle

modulo pe uses the matrix formulation of the recurrence. Let A be the matrix (1.3).

Assume that a is large enough so that the period is multiplied by p as a increases by I,

L and that 9, = 0 mod p%. Let T = 7(p™) be the period mod p<, let 3 = Sy 1 Yoen-t) ;
be the R-tuple of residues at 9, let B be the matrix (1.4) so that AT = 14 p%B, and let

: ze(2, ...,2,,,.)7 = By. Let p%*'y_and p/llz,. If i<j then modulo p@ */*! there 1

will be no zeroes with indices congruent to n modulo T(p%). If {2f then as a increases | 3

| 25
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there will eventually be (p - 1)p? zeroes in each period with indices congruent to n modulo

T(p%). This shows that, given any initial conditions over the integers, the number of zeroes

in a cycle generated from those initial conditions will eventually be a constant. The

problem is that as the modulus increases the sets of initial conditions which are allowed {
1

also varies; the number of zeroes in a cycle converges pointwise (for each set of initial

values over the integers), but the question of uniform behavior is as yet unanswered.

Establishing a nontrivial bound on the number of zeroes in a period of a recurrence {

satisfying (1.1) is a worthwhile future project. Any bound which is o{a *p%) can be used |

in Eq. (3.10) to show that the discrepancy of a full period of A-tuples tends to zero as a

tends to infinity. The conjecture below might possibly be proved by establishing suitable |

bounds on the distribution among the residue classes modd p%, f(x) of polynomials with &

or. fewer terms and degree less than T(p%), or by other means.

Conjecture 4.1. The maximum number of zeroes in a nondegenerate period of a recurrence

generated by Eq. (1.1) is less than cp@(X-2)/(X-1) gor some ¢ depending on $ and & but not
on a.

20
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CHAPTER 5 :

{
Practical Considerations

{

In Chapter 4 we saw indications that, when considered over an entire cycle, the tuples of

residues probably become equidistributed as the recurrence is computed with more and

more bits. In any practical situation only a moderately large, fixed number of bits are used;

most current machiries use from 24 to 48 bits to store the fraction of a single-precision

floating-point number. Even so, it is highly unlikely that an entire period will ever be |used. Choosing p = 2, a = 24, and k> 50 implies a period of about gro which is in the |
range of the total number of states that all the computers in the world have ever been in |

} (22° machines + 2° years 228 seconds/year ° 229 states/machine-second). A truly random

sequence is locally non-random in some places; such places should not occur frequently in

the portions of a computer-generated sequence which are likely to be used. To be 1

recommended for general use, a random number generator must be efficient and easy to

implement on a variety of machines. This chapter addresses these practical considerations |
and presents the resuits of comparisons with a standard linear congruential generator :
Ppsy = GY,+b mod 2%. |
A random number generator based on recurrence (i.1) can be efficiently implemented.

Only the k most recent values of 9 need to be remembered, and these can be stored in an

array which is accessed cyclically. The number of arithmetic operations involved can be |

. minimized by choosing f(x) to be a primitive trinomial modulo 2. (Some primitive

polynomials mod 2 have been tabulated in [Watson62) and (Zierler68)) If fix) is chosen in

this way then the recurrence is 3, = 23,,23,., mod 2%, which requires no multiplication |

or division, only one addition or subtraction, and one reduction modulo 2%. Many |
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applications require only the fractions 3,/2%. These fractions can be computed exactly in

floating-point arithmetic without intermediate integer computation and conversion. This is

done by dividing each term of the recurrence by 2%, so that the computation is done in 1

floating-point numbers modulo 1. It is necessary to prevent any floating-point operation

from generating a result greater than 1.0, which would involve a right shift of the fraction

part and the possibility of losing one bit, making the computation no longer exact. This

can be insured by choosing the signs so that f(x) = x®*-x*J41 and the recurrence is |

Yn = In-y~In-x Mod 2%. This is allowed because +1 = -1 mod 2 and therefore x*-x*J4 |

is the same polynomial in Z, as x®+x4 1. If the subtraction JJ - 9,..x/2% produces
|

a negative result then we add 1.0 to bring the value back into the range 0<y/2% <1. ]

When performing this addition we must remember to actually perform two additions of 0.5

in order to guarantee that no bits will be lost. (Computers such as the Control Data

Corporation 6000 series effectively do not use any guard digits and hence one bit can be :
lost when preshifting 3/2 to align the radix point before the addition.)

To illustrate the fact that a random number generator based on (1.1) can be implemented

with little machine dependence, here is a coding in FORTRAN oi a generator based on |
x%®-%214 1 mod 2. Each time XRAND is called it returns the next random number. |

i

|

FUNCTION XRAND |

COMMON /XRANDX/ 1, J, X(55) : |
DATA | /55/
| = 1 -1
IF (1 .LE. ©) | = 585
J=1] -3l

IF (J .LE. 0) J = J + 55
X(1) = X(I) - X{(J)

IF (X(1) .LT. 0.08) X(I) = (X(I) + 0.5) + 0.5
XRAND = X{1)
RE TURN
END

The machine dependence lies in the initialization of the first 55 values of the array X. The v |g
initial values must be chosen so that 0sX(1) < I, 29X(1) is an integer, and 2°X (1) must

28
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be odd for at least one value of 1. One way to do this is to set X{1) = 1/2% and X(1) = 0 i

for 251555. However, this puts one of the local non-random areas at the start of the 4

generated sequence. It would be better to run the recurrence a million times (say), write out y

the values of X(I), and have some other routine place these values into X before using 1

XRAND. Alternatively, an auxiliary linear congruential generator can supply the initial ]

values; see [Brent73). |

The efficiency of generator XRAND compares favorably with that of standard first-order

linear congruential generators. On the Digital Equipment Corporation PDP-10, XRAND can ]

be encoded in 12 instructions, while a standard generator requires 10 instructions. (The :

number of instructions is for a routine which returns a floating-point value between 0 and

I, is guaranteed to not cause any interrupts, and includes the normal subroutine linkage.) }

. Execution time per call on a KL-10 processor is approximately equal because XRAND uses |

no multiplication. On the IBM S/370, comparable encodings are 16 instructions (46 bytes)

) for XRAND and 10 instructions (27 bytes) for a first-order generator. ;

Four generators were compared using several tests. The generators were ;

RANDU: jy, = (21%, 3»,.q mod 2, Jo = I. This generator is notorious for its ;
bad distribution in three dimensions. ]

GOODLC: y, = 3141592653y,_, + 2718281829 mod a Jo = 0. This is a standard
“linear congruential” generator. ]

ADDLC: 3, = 9,.55-9n-24 Mod 2%7, 3g = == = 955 = 0,354 = I. The tests began

with Yo = Ja55as- 1 his is an additive generator based on the primitive polynomial [3
a 288-23141 mod2. ;

BESTX: j,=x, XOR z, where x, = (3141582653x,, + 2718281829) mod 235, il

Xo= 0, 2, = 3141592702,, mod (2%°-31), and 24 = I. The number 238-31 is the |

29 i
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|

largest prime less than 235, and 314159270 is a primitive root. Here XOR is the , :
exclusive-or bit operation.

:

These generators were compared under the following tests. (See (Knuth69) sec. 3.3.2)

ID: A one-dimensional distribution test with the interval (0,1) divided into 4096

equal subintervals, and 8 hits expected in each subinterval.

2D: A two-dimensional distribution test with the interval {0,1) x [0,1) divided into

64 x 64 equal subintervals, and 8 hits expected in each subinterval. The ordered

pairs used for the test were non-overlapping, i.e, (3g, 99), (92,93) ... .

3D: A three-dimensional distribution test with the interval (0,1) x [0,1) x [0,1) !

divided into 16 x 16 x 16 equal subintervals, and 5 hits expected in each |

subinterval. The ordered triples used for test were (34, 94, 92) (93. 4 96) --- - |GAP: A test which considers the length of consecutive subsequences y, 3,4, -.. |

jar in which Osa <3, <B<1 for two fixed real numbers a and £, but the other

y's do not. This test was performed with a = 0, = 0.5, and thus was a test of "runs

above the mean”. Gaps of length 0 through 5 and gaps of length greater than 5

were counted until 500 gaps had been tabulated.

MAXI10: The maximum element of blocks of 10 consecutive values was selected

until 1500 maxima had been chosen. The distribution of the maxima was tested

against the theoretical distribution function by the Kolmogorov-Smirnov test.

RUN: The length r of consecutive subsequences for which |

9;29501> °° >50r$Y req Was tabulated until 500 runs had occurred. New runs ;

were started at jy, ,,, and runs of length 5 or more were grouped together for the ;

analysis. 1

PERMUT: The order relations among consecutive blocks of 4 values were ;
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tabluated, with each of the 24 possible orderings expected to occur 150 times.

Except for the test MAXI10, where the Kolmogorov-Smirnov (KS) test was used, the :

chi-squared statistic was calculated using the appropriate probabilities. Exceptions to the |
expected distribution were counted when the calculated statistic lay in the 5% tail at either 1

end of the theoretical distribution. Thus a perfectly random sequence would be expected to

fail 10% of the tests in each category. The chi-squared values themselves were tested in

groups of 16 by the KS test (both KS+ and KS- tests) against the hypothesis that they

came from a chi-square distribution. Exceptions were noted for the 5% tails at both ends of

the KS distribution.

Each test was repeated until a conveniently large percentage of the first 3.22% values of

: each generator had been tested. The following tables summarize the results. |

i Table 8. Results of tests on RANDU

es petitic % tail \ : X ails

ID 9% 12 12 3
2D 48 5 6 l

3D 48 48 6 6

MAXI10 384 50
GAP 192 20 24 4
RUN 192 26 24 6

. PERMUT 192 11 24 0

Table 4. Results of tests on GOODLC

ppetition $ tail . : K 2 ta

ID 9 10 12 3 |
2D 48 5 6 l

A 3D 48 4 6 0
MAXI10 384 39
CAP 192 19 24 2

' RUN 192 29 24 9
| PERMUT 192 20 24 2 rE

A 2
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Table 5. Results of tests on ADDLC ;

test repetitions 5% tails KS tes + 5% tails

1D 96 13 12 0
2D 48 6 6 0 4

3D 48 5 6 0 }

MAXI0 384 34 i
GAP 192 19 24 3
RUN 192 29 24 8
PERMUT 192 17 24 3

Table 6. Results of tests on BESTX

test repetitions 5% tails KS tests S 5% tails

ID 96 15 12 0 3
2D 48 6 6 | 3

3D 48 3 6 0

MAXI10 384 41
GAP 192 16 24 3
RUN 192 21 24 12 ;
PERMUT 192 13 24 0 v )

The tests conflrm the bad three-dimensional distribution of the values generated by

RANDU. All generators had difficulty with the RUN test. The code for thls test was

carefully examined for systematic errors, but none were found. The exceptional chi-square 1

values tended to be extremely small (less than 1.0) or just above the upper 5% tall cutoff.

Generator ADDLC compares favorably with GOODLC and BESTX In these tests. To 1

the extent that this testing procedure Is valid for a particular task requiring random /

numbers, ADDLC can be recommended as an acceptable generator.
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