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A TRIVIAL ALGORITHM WHOSE ANALYSIS ISN'T

% by Arne T. Jonassen and Donald EK. Knuth |
Computer Science Department |
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J Abstract. |

Very few theoretical results have been obtained to date about the

4 behavior of information retrieval algorithms under random deletions, |

as well as random insertions, The present paper offers a possible

$ explanation for this dearth of results, by showing that one of the1 simplest such algorithms already requires a surprisingly intricate |

y analysis. Even when the data structure never contains more than |three items at a time, it is shown that the performance of the standard

! i tree search/insertion/deletion algorithm involves Bessel functions and
: |
2 the solution of bivariate integral equations, A step-by-step expository 1

analysis of this problemis given, and it is shown how the difficulties |
3 arise and can be surmounted.

| |
: Keywords: analysis of algorithms, Bessel functions, random deletions, |

: 1 tree search, |
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by l. Introduction. |

} | An algorithm known as "tree search and insertion" hac become one of
i the most commonly used methods for maintaining a dynamically growing |
3 | dictionary or symbol table (see [ 3]). This algorithm was discovered

| independently by several people during the 1950's, and in 1962 Thomas N, J
i Hibbard [1] showed that entries could also be deleted dynamically without
5 difficulty. At that time Hibbard proved one of the first results that

| might be called a theorem of "pure computer science'", because it was one
s of the first results ever to be proved about data structure manipulations: :

H He showed that a random deletion from a random tree, using his algorithm,

§ leaves a random tree. Although the statement may seem self-evident when
& stated in this way, it was in fact a surprising result, because the 1

E deletion algorithm was necessarily asymmetric while random trees are

: | symmetric. Hibbard's theorem can be stated more precisely as follows: :
; "If n+l items are inserted into an initially empty binary tree, in

3 random order, and if one of these (selected at random) is deleted, the ]
probability that the resulting binary tree has a given shape is the same

as the probability that this tree shape would be obtained by inserting

1 n items into an initially empty tree, in random order." It took great
foresight even to conjecture such a result in 1962; people rarely proved things

¥ about computer programs in those days, unless perhaps numerical analysis was
involved, and binary trees were not well understood. Furthermore, the

: proof was not simple, i

Cn Ten years later, Gary D. Knott proved a much deeper result [2 ]:

‘ If n items are inserted into an initially empty binary tree, in random |

! order, and if the first k items inserted are subsequently deleted by

i Hibbard's algorithm, in the same order as they were inserted, the resulting
1 binary tree is random. (In other words, the probability that the resulting
i tree has a given shape is the same as the probability that this shape of
i tree would be obtained if n-k items had been inserted into an initially

| i empty tree in random order.) The theorems of Hibbard and Knott seemed to ua a
cettle the question of deletions, since they proved stability of the tree » u |
distribution under a wide variety of deletion disciplines, i

| bo Dteiniesiton, AVABASILITY CODER |
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1 However, Knott also discovered a surprising paradox: Although | 1
§ 4

: Hibbard's theorem establishes that n+l random insertions followed by | 3

1 a random deletion produces a tree whose shape has the distribution of i
$ n random insertions, it does not follow that a subsequent random E
t insertion yields a tree whose shape has the distribution of n+l random {

| insertions! For ten years it had been believed that Hibbard's theorem 11
3 proved the stability of the algorithms under repeated insertions and 1
: deletions (ef. [1], p. 25, and [3 ], first printing, pp. 429-432); i
| the discovery of a subtle fallacy in this reasoning therefore came acs I
, a shock. |
} In order to understand the paradox, we need to know only what |
Li Hibbard's algorithm does to binary search trees with three elements or

1 less. The five binary search trees on three elements XxX <y < z are |

| ! A(x, y, z) B(x, y, Z) C(x, y, z) D(x, y,2) E(x,y, z)
Ea z z EE 3

| y X i Z NN
y J 3

i and the two possibilities on two elements x <y are 3
} ]

¢ J aN

i The standard insertion algorithm prcduces the following binary search tree
b when inserting element 2z into a tree containing x and y :

i: Initial tree | Result if z <x | Result if x<z<y | Result ir y< 2
| F(x,y) A(z, X,Y) B(x,2,y) C(x,y,2) 1

G(%,y) C(2y%X,¥) D(x, 2,Y) E(x, y, 2) |
] 3



In other words, z is simply attached "at the bottom" where it fits.

Hibbard's deletion algorithm operates as follows on a 3-element tree: :

Initial tree Delete x Delete y Delete z |

A(x, y,2) F(y, 2) F(x, z) F(x,y)

B(x,¥,2) F(y, z) F(x, z) G(x,y) 4

C(x,y, 2) G(y, z) F(x, z) (x,y)

D(%,Y,2) G(y, 2) G(x, 2) (x,y)

E(x,y,2) G(y, 2) G(x, 2) G(x,y)

|

: If we insert three elements xXx < y < z in random order, we get a trec |

{ of shape A, B, C, D, E with the respective probabilities 1/6, 1/6, ]

3 2/6 , 1/6 , 1/6 ; then a random deletion leaves us with the following ;

six possibilities and probabilities:

: F(x,y) F(x, 2) F(y, z) G(x, y) G(x, z) G(y,z) :

2 : 2 b. e L :
i is 8 1 ik] i) il

‘ The probability of shape F at this point 1s ig= 5» in accord with
¥ :

¢ Hibbard's theorem. J

But now comes another random insertion, say Ww . The probability :

is 1/4 that w is the smallest of {w,X,y,z} ; and the other three

% cases XT SWLy<z, x<y<wuw<z, TL<y<z<yw §glso occur with |
. probability 1/4 . Thus the tree F(x,y) becomes A(W,X,y) , B(xw,y)

or C(x,y,w) with respective probabilities 1/4 , 1/4 , 1/2 ; and the

: other cases F(%X,2)y+4.,G(y,2) can be worked out similarly. We find |
dS that the insertion of w produces a tree of shape A, B, C, D, E
: +4 + 5484+ + |
3 with the respective probabilities prises’ 3x22 ’ rut rivass |
{ Lek ) x 72 72 72 |
§ I=, —— 1 namely
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A random deletion now produces a tree of shape F with probability

i ,2 BB ,2 , 2 _ 07 1
gE ES el Sl Re |

A study of this example shows where the fallacy occurred: The

"random" tree shape was not independent of the "random" values remaining. :

For example, when x is deleted (relatively large values remaining), the :

tree tends to be of shape G , but when z is deleted (relatively small :
values remaining) the tree shape is not biased towards F or G . :

Fortunately the deviation from randomness occurs in the right direction |

here: the trees actually tend to get better, in the sense that the |

| balanced shape C (which requires less search time) becomes more probable,
| Extensive empirical studies by Knott [ 2] give overwhelming support to

| the conjecture that random deletions do not degrade the average search
| time; but no proof has yet been found.

| More precisely, Knott's conjecture is this: Consider a pattern of |

| n+tk insertions and n deletions, in some order, where the number of :

| deletions never exceeds the number of insertions. For example, one of |
the patterns with n=4% and k=% iz I IIDIIDIIIDD.

| To do each insertion, put a new random element into the tree, say a .
uniform random number between O and 1 ; to do each deletion, choose a

random element uniformly from among those present. All of these random

choices are to be independent. Then for each fixed pattern of I's and 1

D's, the average path length of the resulting tree is conjectured to be

; at most equal to the average path length of the pattern consisting

: solely of k I's. ]
: In attempting to explore this conjecture, it is natural to investigate 1

the simple case of patterns

| |
1X1 , I1IDT 5» ITIDIDY 5 see 3 111(DI)" ? see

| for k=3 . Ouch patterns never require us to deal with more than three r
elements in the tree at any time; so all we must do is study the following :

| trivial procedure, 3

p

ee. 8S y
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l. Let x, y be independent uniform random numbers. Insert x into

an empty tree, then insert y . (If x <y , we get the tree

G(x,y) , otherwise we get F(y,x) .)

| Ceo Insert a newindependent uniform random number into the tree, :

Se Choose one of the three elements in the tree at random, each with

equal probability, and delete it using Hibbard's method.

hk, Return to step 2. |

At the beginning of the (n+l) -st occurrence of step 3, we have a

tree of shape A, B, C, D, or E , with certain probabilities ]

a, b, y ©, 4, y ©, 3 We want to show that these probabilities approach ]

| a "steady state." According to the conjecture, c= should be > 3/35 }
| because only shape C has a path length smaller than the other shapes. J

| The first two times we get to step 3, we have seen that (8, ,ee0re) |

| are respectively (2.3.2.2. 7) and (2.2.2.2, 2). |
What do these probabilities look like after n deletions have been made, i

| for large n ? This is the problemwe shall investigate in the remainder i
of the paper. :

! It turns out that this problem is not as simple as it might appear

; at first, in spite of the triviality of the algorithm; in fact, the ]
analysis ranks among the more difficult of all exact analyses of algorithms

that have been carried out to date, although it is "elementary" in the :

; sense that no deep theorems of analysis are required. From the form of |
the answer we shall derive, it will be clear that the problem itself is

X intrinsically difficult -- no really simple derivation would be able to

: produce such a complicated answer, and the answer is right. Since the |
\ difficulties we will encounter are interesting and instructive, an attempt

has been made to present the solution here in a motivated way, explaining |

4 how it was found, instead of simply to present a polished proof.



2. The Recurrences to be Solved, |

The behavior of the trivial algorithm depends only on the relative

order of the elements inserted, and the particular choice made at each

deletion step. Therefore one way to analyze the situation after the :

pattern 111(p1)" is to consider (r+3)!3" configurations to be equally
likely, reflecting the relative order of the nt+3 elements inserted and

the n 3-way choices of which element to delete. For example, when

n =1 there are 72 equally likely possibilities, and our analysis of

this case in (1.1) essentially considered them all.
However, such a discrete approach leads to great complications. The

| following continuous approach which follows the algorithm more closely

| turns out to be much simpler: Let f(x, y)dxdy be the differential
probability that the tree is F(X,Y) at the beginning of step 2, after |

| n elements have been deleted, where

; X<X<x+dx and yEXI¥Ly+dy j

; and let g, (x, y)dxdy be the corresponding probability that it is G(X,Y) .
Let ay, (%, 7, 2)dxdydz, ...,e (%,¥,2)dxdydz be the respective probabilities
that the tree is A(X, Y,Z2)s...,E(X,Y,Z) at the beginning of step 3, :

: for some 2S X<x+dx, y<iIi<y+tdy, z<Z<ztdz . Then it is 4

possible to write down recurrence relations for these differenti 1i ible t ite d lati for these differential |
probabilities by directly translating the algorithm into mathematical

| formalism, First we have

: (2.1) a (x,y, 2) = £, (v2) ’ |
: b, (x, Y:2) = £, (x, z)
' |
5 c (x, Yy3) = £,(% y) + g, (¥> Zz) 3 i
A :

: d (%,y,2) = g,(x,2) ’ :
e, (%, Zz) = g,(%y) ’ |

1 for OS x<y<z <1, |
by considering the six possible actions of step 2. (These probabilities are, ;

of course, zerowhen x<O0, x>y, y>2z or z >1 3; at the boundaries i

x=0, X=Yy, y=2, and z =1 there may be discontinuities, and it does 4
 §
: y



not matter how we define the functions there. Secondly we have |

vs |
(2.2) fr ®Y) = 5) (a(txy) +b(t,%y))dt |

0 :

1 7
* 3 J (a (%,t,¥) to (%,1,¥) + c, (x t,y))dt 8

x

+ £J (a, (x,t) +e (xy,t))dt ’ 4

Lx

Ee (BY) = F J (ey (Bx,5) +d (t,x,5) +e (t,x,y))dt §
1 y |

| + 2 i (a (x t,y) + e (x t,y))dt ]
x |

| 7k
| + z J (bo, (x, y,t) + d (%,¥,t) ¥ e (%,¥,t))dt ’ 3

| by considering the possible actions of step 3, Inserting (2.1) into (2.2) ]
| and applying obvious simplifications yields the fundamental recurrences 3

| (2.3) Ty) = 5 G00y) + [ f(ty)at + [ £(xt)a
y 1 1 1

+ [ g, (ty) + I f(y, t)dt + | g, (v,t)dt ’ 3
| x y y 3

| eer (0Y) = F| guy) + [ f(tx)at + [ g(t,y)at{ 0 0

| X l i | $
| + | g(t, x)dt t [ 8, (x, t)dt + EH) f (x,t)dt > 1

0 x y 3

: for 0<x<y a |

| Consideration of step 1 also leads to the obvious initial conditions ]

(2.4) £53) = gn(%, 7) = 1 , for 0<x<y<l . i

1

-- 4 REA LA IT A hn ith



3 We have now transformed the algorithm mechanically into a set of |
| equations that precisely describe the distribution of its behavior. The ~

y quantities of interest to us are

1 z y |

3 (2.5) a = [ [ [ a(oyz)axdydz, ...,
O 0 O° :

| !

| l zy |

: 0 0 0

= namely the respective probabilities that a tree of shape A,...,E occurs |

 * after the insertion/deletion pattern IIT(DI)" ; and |x lL vy ly

1 0 © O O

- the probabilities that the tree shape is F or G after the pattern TI(1D)" . :
: . Hibbard's theorem for trees of size 2 states that £y = fy and 8 = 81 - 1

4 9 |
¥



y Se Simplification of the Recurrences,

y What can we do with such formidable recurrences (2.3)- (2.4)7

: In the first place we can look for invariant relations that might be ]

used to simplify them. :

| When the algorithm reaches step 2, it is clear that the two numbers
3 X ana Y in its tree are random, except for the condition that X < Y . :

Thus we must have

: (3.1) f(y) +g (xy) = 2 , for 0O<x<y<l ad n>0 ,

E (It is 2, not 1, since the probability that x < X < x+dx and

= y <Y<y+dy given that X<Y is 2dxdy .) This formula could also be
yf proved directly from (2.3) and (2.4), by induction on n .
| \ Relation (3.1) means that we really have only one function to worry |

about, namely £ (%Y) . Let us rewrite (2.3) and (2.4) to take account |
> of this fact: |

- (3.2) f(y) = 1 ; |
] : 1 X y |

£01(%Y) =F 2-2x+f (x7) + J f(t, y)dt + '] f(x, t)dt ;

1 { for n>0
a

: Henceforth we shall avoid mentioning the condition 0 <x<y <1,

: for if we use (3.2) to define £,(%V) for all x and y it will |2 agree with the true ff (%¥) vhen O<x<y<1l.,
We have obtained a much simpler recurrence than (2.3)-(2.4), but (3.2) |

» still has some undesirable features. Before proceeding any further, we
4

can use (3.2) to check what we have done so far, by computing the first |

& few tf, Vs: |
b |

E ” 2 1 ae |

3

4 8 4 1 2 109 |
E | = - =X F we VF - = —=

Good. |

§ |Bw 3

¥ 10 |

3 |

1 f
.» |

12 |
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| We are hoping that the process converges for large n , and in this |
: |

| case the limiting distribution f£ (XY) will have to satisfy the integral 5
equation

3 1 x y |

(3.3) £(xy) = 3 e -2x +f (x,y) + J £(t,y)dt + J £0 )ee) X || X

3 Before going on to find a solution to this equation, let us verify that 1
3 £ (%¥) will indeed converge to £ (xy) if f(xy) exists: Subtracting 4

| (3.3) from (3.2) yields ¥

fF 1 X y i

req (XY) = 1 CE + Js r (t,y)dt + J Xa ’
| |

x where r (xy) = f (%y) =f (xy) . Now if Ir, (x5) <d for DLa<y<li, |
 . we will have |Ey |

| x y |
| (0 - x 1+y 2

P| |r, 1 (x) < 4: + J dt + J ast) = GE = zo .Q x

Therefore if f_(x,y) exists, so that r(x,y) is bounded, the remainder

{ r (x,y) = o((2/3)") convergss rapidly to zero, regardless of the initial |
5 distribution NCI) . |

§ i It remains to determine f_(x,y) , whose defining equation (3.3) can |
; be rewritten

aan ; |
(3.4) £0) = L-2+ 50 [J £(t,y)00 + | £2 (n,000 ) |

: 0 x |

The coefficient 1/2 can be removed from this relation by letting :

r a(x,y) = £_(2x,2y) , |
 ; so that

) X y |
(3.5) q(x,y) = 1-2x + J q(t, y)dt $f g(x, tat |

H What is this function q(x%,y) ? (It is suggested that the reader might !
| & enjoy trying to find it before reading on.) }

:
x 11 {

. :



L. Solving the Integral Equation.

1 In attempting to solve (3.5), perhaps the first thing we might try

3 is differentiation. Let q'(x,y) = 0q(%y)/ox , and q, (%¥) = 0q(%¥)/o¥ ;
1 then

3 (k.1) q' (x,y) = -2+ g(x,y) + J q' (x,t)dt - q(x,x) ,

(4.2) q(xy) = [ q,(t,y)at + q(xy) ,

3 (4.3) a, (xy) = q,(xy) + ¢' (xy) .

 ¢ If we postulate that q has a power series expansion

; ¢ ( 2 iRY q XY) = 4 ry SE P)
 - myn 50 0 m: n!
: we find

i I = 0 i
£ (4.5) ey) = I = f= , q(xy) = XZ EE |

myn >0 +1, n mi nil ! myn >0 Un, n+1 m: nl!

4 x" y |
E m,n >0

Therefore (4.3) yields the simple relation

(L.6) Snel, n+l = 9, n+l + Ye, n y for myn >0 ,

5 from which it is possible to determine all the : in terms of thedily

boundary values and ing

® } Setting x= 0 'n (3.5) yields
a

E 3 (4.7) q(Oyy) = 1 + J q(0, t)dat ,
: 0

| i hence q(O0,y) = e’ and
?

| ( ) lo, n 1, for n> 0
; 12
®

:
»
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H
Now comes a tricky manipulation, which was found while playing

around trying to determine q(x,0) . If we apply (4.1) with x and y

interchanged, and add the two results, we get

32 q' (x,y) +q'(v,x) = -b+a(x,y)+q(y,x) -alx,x) -aly,y)

¥ y
Zz + (q' (x,t) -q'(y,t))dt
| X

y y |
| = =b+[ (q'(t,x)-q" (ty))at +] (q'(xt)-q'(y,t))dt .

X x

Let s(x,y) be the symmetric function q'(x%,y)+ q'(y,Xx) ; we have just

$ proved that

(4.9) s(x) = -b+[ (s(x,t) -s(y,t))at .
| x

y But this equation implies that s(x,y) = =k ! Let

| oF
¥ 4.10) glx, = = = + ;; (4410) (5 ¥) z “m,n m: nl 2 “m,n UIn+1,n +1, m

The coefficients §, , for mtn = kK > 0 on the left-hand side of (4.9)
» 2

® 3 21]l arise as homogeneous linear combinations of the coefficients $0.7
for mtn = k-1 , since

1

i - mn mn mnntl nlm _wntl 0 0 mwntl

; J (xt -y"th)at = (xy +X y =X y =Xy )/ (n+l) :
x

| hence we can prove by induction on k that Th O whenever mn =k > 0 ,J

3 [t follows that

w L I's) = - 0 = .‘ (L.11) bed, G+l,m > {oF mn>0 and mm >0
ie ] = - - = 5 = so a .i When m =n = 0 we have =i 0,0" 4.0 U0 hence 9 2 3

: relations (4.6) and (4.8) imply that Gy , =n-2 for all n >0, and5. | ’ -—

& (L,11) with n = 0 yields

by (L, 2) = =- = = ' n > 2 ‘

| i 1 4.12) %m, 0 9, m1 5 =m for m > |
We have found the desired boundary conditions, and it remainc to deduce

the genral formula using (4.6). The binomial coefficient

3
hh



1 mnt a
2 mtb

3 satisfies (4.6) for all integers a and b , so it suffices to find a

linear combination of these binomial coefficients, subject to the

| condition that the known values of dy. Ore obtained whenever m = 0J)

or n= 0. The solution in this form is not unique, because of

= identities between binomial coefficients; probably the most elegant
1 way to express it is

anys Le (V2 In)
¢

1 Our derivation has proved that Th must have this value if the powerh | >

; series q(x,y) postulated in (L.4) satisfies (3.5). Conversely, it is clear
2 that a power series solution to (3.5) exists, since the set of values

q, , with mn= kK defines the set of values with mtn = k+1 after
3 a 2

¥ | integration. Therefore
3 . | m n

| mtn- mtn=- X

5 (k.14) a(xy) = 2 (( m 5) -{ 2) mi oT

solves (3.5). Note that <2 1 th series is¥ 5.5), Note that | 9, nl <2 , hence the power series is
x absolutely convergent for all x,y , and (4.14) is the only power series
: solution.
i

| Finally let us try to express q(X,y) in terms of simpler functions,

 & possibly even "known" ones. The following somewhat surprising identity

: is especially useful forfunctions of this type:

+ 7

4

?

|
: 1h

{ od



|

(1 15 \ JeXwy S™ mtnta vy |
2 din y In bi ~ 0 mtb m!: n!gH

| _ ME AL al (7s) gl= <- E + Im? Kmm7 |3 Jy k,myn >0 Lad Jimi Kin |

” 5 x yo <« (-1)9E M N MtN=j=kta 1
| ® nF ~*~ INE M-j+b |
| M,N >0 Jr» kK >0 ;

M _N 7 |

M,N >0 M:N: J k M-j+b: y Jr k>0
' 9
¢ MN |

" via EE CTR 2 M-Ii+k-atb-1: = Tn Mi: Ni k Mt+b\ M,N >0 k >0 |

M _N

- . 3 Xx “y ( PRD M-N-at+b-1 1
4 Bh Ma I > 0 M: N. M-N+b ]

A Wo Se TIN
| iy z EW Code)LN >

H .

 § When M-N has a fixed value, the terms of this sum are readily expressed
in terms of modified Bessel functions of the first kind, defined as usual :

: by the formula 2
 , _2k#r
= (L 16) T (: z) = S Vs ”
b * | / i dial boo 83 <i (k+r)}

. ror example, if a > O all terms vanish except those for O < M-Ntb < 3,
3 hence (L.,15) reduces to a finite sum :

: & M y \| a fone r-bx ‘ < ~ WE |

| r M,N 0 r ;

Mth = tr :

On the other hand, if a < 0 (as it unfortunately is in our case), another i

function ic apparently required, |



4 Let h(x,y) be the double power series

Jon |
3 (4.17) 2 ep Lo ]
? m>n>0 :

| which converges absolutely for all Xx and y . We have :

mn nn m :
: X 3 |

(18) nny) = ZT Eo Go. TZ (FF) Lem). |y m,n >0 : * m>0 :

Furthermore |

; ¥ ; |

(2.19) h(oy) =e ZT E(1- =] etttat )
y m m

} + -t t |
y = i J - 4 J e Sy = dt
3 0) nS0- Fr :

y PIREENIET
: z © -e 7 e I, (2Wtx )at ) |

x so h(x,y) can be expressed in at least two ways in terms of Bessel

; functions; but it does not seem to have any simpler expressions in "closed :
 * form", The definition of h(x,y) is already sufficiently simple that we

]

3 can consider it a known function; we will express q(x,y) in terms of :
4 h(x,y) and Bessel functions. |
1 By (4.14) and (4.15), !

: y -X=-y x vil mtn m-n+2 mn-n-2 |. $ ny) = 2 ml nl (-1) (( m-n ) i] ( m-n-4 ) )
¥ mn

§ = EL ()™(m-tn-2ezm, +s)
#1 m>n >0 Us . 5) b

1 = bxyi, (xy) = bxh(-x,-y) + byh(-x, -y) - yi, (xy)

=" -2h(-x,-y) +31,(xy) - xi, (xy)

where i.(z) = Zr 50 2K fx (ktr)! . This yields the steady-state |



1 distribution f(x, y) of the trivial algorithm, if we replace x and |
| y by x/2 and y/2 :

3 (420) f(xy) =  (¥y)/2 (rere - Bie 2) (3-2y)I,([xy )

: for O<x<y<l ,

=

| :
H



| 5. An Explicit Formula for f(x,y) . :
Now that the limiting behavior has been found, we can look back |

at the original recurrence (3.2) and see that it does not appear so i

formidable any more. Let us define a sequence of polynomials as follows: t

(5.1) Po(%¥) = 1 , |

(5.2) p, (x, y) = y-2x , i

= ni

) 5:3) pulang = | plhyist + Fpdntith, wr kaa, |
x 2 1 ey 5

¢ Thus Pp, (%¥) = 5 (x-y)° , P5(%¥) =z vo , ete.; it is easy to see F
; that each term of p,(x,y) has total degree k . |
; These polynomials handle the complicated parts of recurrence (3.2).

1 If we assume that £, (XY) is a linear combination of the p's, say 3

: 54) tiny) = Ip . »Y) = P ‘Pp (x y) 3
n k >0 n,x *k :

with @ = 1, relations (3.2) and (5.3) imply that f.1(%Y) also has |J :

: such a representation, namely 1
;

fe1(®¥) = 3( 2-2x+£ (Hy) +y+ 2 Pp, 1Pp (0) ]
k>1 |

| l 3
; = 1+ g 2 i (%y)+ 2 © (x5) ,

y Hence (5.4) holds for all n if the coefficients P, x Satisfy |

P = = (p * Pr ed for n>0 and k > 0 |
2 ntl, k+l 3 Il, ktd n, k ) xi = : I

i ; cince Py x = O for all k > 1, this recurrence is easy to solve, and we have |. 3

(5.6) Ppp = 2 (£t)e? y for np20 and k3>1 , 1’ 1<j<n

§ 18



{

Bquation (5.4) would now be a fairly explicit formula for £ (5Y) ’ i
if we only knew Py (X,Y) - H

Let n = « 3; then ¥
§

(5.7) P = 2, J=1 5d - y for R21. |
. ®, K : k-1 ii :

Jd21 |

Since £_(2x,2y) = q(X,y) , and since all terms of py (% 7) have total ]
degree Kk , we must have

(5.8) any) = ZT pniny)
k >0

Therefore we can find Pp, (%¥) by selecting the terms of total degree k |
in (4.14), namely i

|

| No :
1 k k-3 k-3 J K=J ¥

| 9 = Tr . -— . ’ :

J :

| We may also express Py (X57) in "closed form", in terms of the Jacobi
: polynomials defined by ]

= n (0,8) xty n n+o nte yd. 0-3 1 .
| (5.10) (x-y) LS (2 ) B= 2 ( 3 I n-J X"y > i
: the result is 4
f 1

1 k (-3,0)( xty L k-4 (1,4) xty \ 3

| (5.11) p(%y) = (ew) Pe ell Sa HEA Fn 1

'

| 19
;



O., Approach to the Answers.

We have shown that the trivial algorithm leads to a (nontrivial) i

limiting distribution. What we really want to know ic the limiting 1

probabilities of the various tree shapes that arise, namely the

quantities CAEREEE 8, £ , and g, defined by the integrals in (2.5)
and (2.6), asa nn == ,

We clearly have i

5 + =| (6.1) a tb te +dte 1,

i = .

| (6.2) ft, © :

| : Furthermore since b (%y,2) +d (x,y,z) =2 by (2.1) and (3.1), we have :

(6.3) b td, 3

Another relation, slightly more subtle, also holds. We have :

| a = J J]  fuwzlaxdydz = [ [xf (xy)axdy
; 0<x<y<z<l O<x<y<l

b = J I J £ (x, z)dxdydz = [ f (y-x)f (x, y)dxdy ’ |
0<x<y<zs<l 0<x<y<l |

iY ,
z-e = [ [ [ 2 (xy)ixdydz = (1-y)f, (x,y)axdy .: > B ogbhabaiar © on 3

i Therefore 3
’ i

k 1 :
. é $ i = : k

i And still another relation, even more subtle, can be obtained by
; looking more closely. If we integrate both sides of (3.2) over |

0<x<y<1l we find |

‘ 20 il

:



5 3 = =+ 1 + | r (t y )dtYH (9 J o ¥y
| ntl 3 n 0<x<y¥<1 0 n |

rp "J /
+ 45 J f(x, 1)dt 3

O<xX<Yy=<l x |

gph 1 |
= =— + + -_—- 0 . ;3 t B + 3 €

Combining this with (0.4) yields the somewhat surprising formula |

\ Gm : 2)

: 1 : 106 J

For example, we know that a, = > 3 ry = 32 and Ls = 370 everything 5
{ checks out beautifully.

From relations (6.1) - (6.5) we can determine all of Gs wees © £ y &
: knowing only the values of [ and tr for all n . Let us first look
} at f_ , and especially at the component involving Pp, (%, y,) : i

| L k k K-3% 1 1 |
0<k<y<l a i : i 4 |

i |
¢ . Tr Tf k-3 k-3 |- (w2) Tan J (3a

’ A 1 2k-2 \ _ { 2k-2 :
p = (k+2)! k k-4 ’

i Similarly |

; ri 1 Kk’ k-3 ° =-5 NY 3 103 EF

| (5.7) Jd (y-x)p, (xy)axdy = 75 2 ( : )(( 214 =) ™ TS oe0<x<y<1 sy TAAN \ J FEL ie ae
§ ead br: §

- 1 < [ k+2 k-3\ _ [k-3 Cid

: RCI Oha J 3h J J 1]
1

sr 2k-1Y _( 2k-1 ) ) {- (k3)e k k=L : {

; 21 {
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These quantities are nonnegative for all k > 0, and since the 3

coefficients @ , in (5.4) and (5.6) are monotone nondecreasing, 3
J 3

with n , it follows that :

(6.8) fny 2 £ and b 11 > b, for n>0 .

(A similar argument shows that € +1 i e for all =n .)
Let us now look at the limiting behavior. We have

| tony) = TT =p
k>0 2 :

q by (5.7), hence by (6.6) and (6.7) the probabilities f, and b ]
increase to the limits :

L
i 1 Dk-2 Ok-2

ny(( k }+{ k-l )) :: k>0 2 (kt+t2)! |

| 1

| 1 2k-1 2k-1 =

we 3, mi THT®  k>0 2F(k+3)! k al §

=

|

: 3

| :
: 2p |



2 }

3 { tvaluation of’ the Final Sums. |

The formulas in (0.9) converge rapidly, so we could compute them

: and be doc; but of course we would like to express the result in terms ; |
of "known" mathematical quantities, for if there is a simple answer i

we want to know about it. In order to get a cleaner sum to work with, 1

let us consider the similar series

p - 2 2k

(7.1) s (x) = 2 es ( )+r).
| r 0 K+r k |

x which converges absolutely for all x . Differentiation yields |

| k-1
= . {x/D 2k-2 :

; 2) sp = BE een(F7) |

| ® Gor)T (CELL :

' {

H (x/2 2 ok i
| { se J nal (2(ktr+l) - (er+1))( % ) nNK>0 : :

} = 2s (x) =~ (2rtl)s,,, , (x) . i

i Thus if we define

y 1 (7.3) t (x) = € s..(x) ’ §
§

1 : we have :
4 '
¢ ‘ Awa)

© (7.4) t1 (x) = (2r+l)t 4 (x) ;

i According to this relation, we obtain all t..(x) by starting with t (x) .
and differentiating.

i

;



: A curious thing happens when we look at to (x) : |

ge 54 (x) = 2 = ( 3 bi) Lr || k >0 : po |

3 o m Kk |
5 a I ls (p)8(%) |: m >0 Hy Kk Re k

| n>0 me we \ I-k k Eb
R |

: 3 2) (3/2) |- ig m. m

& m >0 |
y 2 fs

= 2 fees ay ( 5 ) = 54(=x) ; |

: using the familiar identities |
=. m{ -1/2 m~-1/2 = -m/ 2m

E oy |
E In other words, to (x) = 84(-x) y 204 € 54(%) = SENES is an even

function! This coincidence deserves looking into; let us write |

| FF ul) = Cel (57) y LX |2 k>0 ‘ 30 7

: n>0 i

| : where |

® -f{ m -1 2k |

(7.6) Vy = (2) E38) |4 k 2 |
¥

3 After a few moments of playing with this sum, an experienced binomial-

coefficientologist might hit on the following elementary method of evaluation: |]

2L
5



| m m-1 " k-1 i K .

: ~ fu=-1Y (-1 K 2k+2: = Wu - ihm-1 ( k ) k+1 ( k+1 )kK 2

1 m (1 2k \ 2k+13 = lu - 2, a——————m-1 Pl k ( k ) m] k 2

m YC rm Name fn NCL 2E = UU - > — > —
' m-1 " k+1 k k m k+1 k k m

p T m-l m-1 m k+l k k ’
® k 2
2

- hence

: Cl FUE k K }
E » K 2

x Gb st) . SEE) ; ABRLT SR :: m-1 “m-2 % k+1 HK \ k x \ BL HK k m=-1

Subtracting these equations yields

5

5 mu = (m-1 J, .. .

E i low Uy = l and u, = O , hence Uyiq = 0 , as we knew; and

Lp = K 2m=% i m-1/2 . -mf{ 2m¥ (7.7) vy = FF FF + EF - ( m ) & 3 (2)

: (Is there a simpler elementary proof of this formula?) We have shown that ‘
:

x x 2m x/0 2m :

| (7.5) e o(%) = Z bal Vom, ® 2 22)= I(x) :8 m>0 m>0

‘ 3
»

L ¥ |



so our friend the modified Bessel function has appeared again, The

2 above relations now yield the identities

] cs r
ex ex (-1) d -X

: s..(x) = ¢€ t (x) = € 1+3 +... (2r-1 T (e I5(x)) ’
dx

Ee so that

ox
(7.9) s4(x) = € I(x) ’

3 5, (x) = eN(T,lx) - 50x)r= 0 0

‘ 5.0%) = & SUT.(x) -2 L0G)+ T(x)
| 2 3 0 0 0 :

3 s(x) = fr (I (x) -3 I§(x) +3 I(x) -I4' (x) , ete
- 5 15 0 0 0 0 ’ >

® It is easy to see from definition (4.16) that

" -1

' (7.10) I(x) = I, (x) ; 13 (x) = Ip(x) -x I, (x) ’
. hence we can express each s(x) in 1erms of I,(x) and I, (x) .

Ct Finally to get f_ and b_ we need to express the sums in (6.9) in
: terms of 5, (x) for various r . The problem boils down to expressing
yr |

: the binomial coefficient (2) as a linear combination of binomial
E coefficients of the form fod e« For m= 0 this is no problen,

| § and for m= 1 we have

on+l) _ 1 [ on+2

; (721) = 2( 52) if n>0.
3

| i For m > 2 we can reduce the problem to the cases m-1 and m-2 , since

| ( ontm) (geetinay) _ ( en+2+(m-2)n 5 n+l n+l 1



‘3 Iterating this idea leads us to the desired identity,

5 : + — pe ®

(7.11) ( ti ) = 5 (17 : | i v , form >1, n> -m/2.,
O0<k<m

In particular we get

2 2-2 [2-2 ) afm me), 1,| n = n-2 ~ 2 n n-1 2 *n,0 ?
F »

¥ gn-2) _ 1 [ 2neh ent2) 9 ( en ) fom-2Y 3n-4 TLD n+2 J ~2\ nel 2 n n-1 J) ~ 5 8,0 2

| n 2 n 2 “n,0
®

{ en=-1 lf 2ntb 7 2n+h ent? 7 en 1
= = - —- + T - mm + = A ;

f n-4 2 n+3 2 n+2 n+l 2 n 2 n,0

i for n>0.,

| Letting =, stand for s,.(1) , we can now rewrite (6.9) as

+ 1 1 } I a

: 3 = -1l-25,+*6s, -ks,

{ = 7 e Ip(l)-2e1,(1) -1 }

: I: 1 8 3 Tek i - 1 7
i vy = Boy -8(5-1-1-2) + B(s 1-5 ali GN ER .

== - - g + - S ) Ss :

| 3 al 0 hs, 1h p tH ;| 12 Bia

[ = 2eIy(1) = 5 € I,(1)-3 .
i 2

3
-

£8



| The Bessel function values we need are readily computed to be
| (7.13) I) = 1.26606 58777 52008 33559 82446 25214 T1753 76077 - ,

: I,(1) = 0.56515 91039 92485 02720 76960 27609 86330 73289 -

: | Finally therefore we have the answers:

i (7.24 a, = 5-1, = 0.15049 16196 M1488 T7320

® b_ = 0.19601 96040 80347 57536

y | g = L =e = 0.35250 55369 95186 10505

*® (7.1%) 4, =S=0, = 0.13731 37292 52985 75797

: : e, = l+b_=~2f = 0.16366 95100 29991 788L2
Ee 1

r_ = 0.51617 50470 25177 89347

1 g = 1-f = 0.48382 49529 74822 10653

H The average internal path length of the tree just before the (n+l) -st

| deletion is 38, +3b, +2¢, +30, +38, = 3 ~0, . We have proved that c,

: converges to SRE which is greater than Cy = 2 5 this is consistent
E with the conjecture that deletions do not make the path length larger than

] : pure insertions do. However, it is interesting to note that the convergence

| y of Cc, to c¢_ 1s not monotonic:
} :



ey = § = 0.333533 :

] c, = =5 = 0.34722 | -

3 143
Cs = To5 = 0.35300

00k :

' _ 1152983 5 :
2 Cs = 3505920 = 0,35303 |

1 ik ;x 6s = 13526976 = 0.35285
¥ | 699791131 |

 - Therefore random deletions do not always enhance the average path length; :

i the pattern IIIDIDIDIDI leads to a better average search time than does i 3

: the same pattern followed by DI , and an argument that does not rely on a

such monotonicity will be necessary to prove Knott's conjecture. ;

E & |



|

|

b | 8. Modified Deletions. |

3 To complete our study of this process we should also look at what
a happens if the "improved" deletion algorithm discussed on p. 432 of [3] is
a. 1" - . . . oy - . »used. Here a new " step DL3 1s introduced, to simplify the deletion of
: nodes having an empty left subtree, |
3 The modified algorithm changes only one thing with respect to trees

with three or fewer nodes: the deletion of x from D(x,y,z)

1 now produces F(y,z) instead of G(y,z) . The net effect is that the |
¥ integral :

E J og, (ty)at |
- 0

| moves from the sum for 81 (XY) to the sum for fq (XY) in (2.3).
4 Fortunately this change makes the analog of (3.2) much simpler than i
Bi before; we now have

¥ (8.2) filmy) = 1

| { f(y) = 22+ 2 ( + 4 f {(xt)dt |

1 for n>0 |§ |
| since (3.1) remains valid. The relation corresponding to (3.3) reduces to
; |

g 12 |
1 (8.2) £07) = Lex 25,0) , |
E » X |

 * and by arguing as before (but with considerably fewer complications) we
py = |

id can deduce the solution

 & (8.3) £ (%Y) = ly-2)/2 .

: In fact, it is not difficult to establish the general formula
H | (y-x)" 1 t t-1 |3 (8.4) ff (%¥) = 2 To va (3) (2) for n>0.,

0<k<n H k<ten’ |

n 50

4



1 Since £ (xy) now has such a simple form, we can eacily determine :
i the limiting integrals corresponding to (2.5) and (2.0):

(8.5) a = We -13 = 0IB9770L...

$ b_ = 20-124 = 0.2153447... |, t

1 8, = 1/3 = 0.3333333 «vv

f e = 1l/53=a = 0.143563... ,
fr = ble -6 = 0.594880... |, |

 ¢

2 As expected, there is nowa stronger bias towards the F tree. The unexpected
2 result i: that c_ has such a simple form compared to the others; in fact it |
} turns out that

r (3.6) c, = 1/3 for al n> 0 , |
1 so the average internal path length is the same as that of a random tree |
& built up from three insertions! Eq. (8.6) follows easily from (8.4) and

| ; the fact that |

E [ | J ((y=x)" = (z-y)N)dxdydz = O for k>0,
3 0<sxsy<zsl |
® Since the values of c, in the unmodified algorithm are greater than §
BF 1/5 , for n > 1 , the average internal path length actually turns out to ¥
1 be worse when we use the "improved" algorithm. On the other hand, Knott's

3 empirical data in [2] indicate that the modified algorithm does indeed lead i
| & £
| & to an improvement when the trees are larger. 1]
¢ §

i

|

!

| 7
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