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A TRIVIAL ALGORITHM WHOSE ANALYSIS ISN'T

+
by Arne T. Jonassen—/ and Donald E. Knuth

Computer Science Department
Stanford University
Stanford, California 94305

Abstract.

Very few theoretical results have been obtained to date about the
behavior of information retrieval algorithms under random deletions,
as well as random insertions., The present paper offers a possible
explanation for this dearth of results, by showing that one of the
simplest such algorithms already requires a surprisingly intricate
analysis. Even when the data structure never contains more than
three items at a time, it is shown that the performance of the standard
tree search/insertion/deletion algorithm involves Bessel functions and
the solution of bivariate integral equations., A step-by-step expository
analysis of this problem is given, and it is shown how the difficulties

arise and can be surmounted.

Keywords: analysis of algorithms, Bessel functions, random deletions,

tree search.
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Ea Introduction.

An algorithm known as "tree search and insertion" has become one of
the most commonly used methods for maintaining a dynamically growing
dictionary or symbol table (see [ 3]). This algorithm was discovered
independently by several people during the 1950's, and in 1962 Thomas N.
Hibbard [1] showed that entries could also be deleted dynamically without
difficulty. At that time Hibbard proved one of the first results that
might be called a theorem of "pure computer science", because it was one
of the first results ever to be proved about data structure manipulations:
He showed that a random deletion from a random tree, using his algorithm,
leaves a random tree, Although the statement may seem self-evident when
stated in this way, it was in fact a surprising result, because the
deletion algorithm was necessarily asymmetric while random trees are
symmetric. Hibbard's theorem can be stated more precisely as follows:
"If n+tl items are inserted into an initially empty binary tree, in
random order, and if one of these (selected at random) is deleted, the
probability that the resulting binary tree has a given shape is the same
as the probability that this tree shape would be obtained by inserting
n items into an initially empty tree, in random order." It took great
foresight even to conjecture such a result in 1962; people rarely proved things
about computer programs in those days, unless perhaps numerical analysis was
involved, and binary trees were not well understood. Furthermore, the
proof was not simple.

Ten years later, Gary D. Knott proved a much deeper result [2 ]:

If n items are inserted into an initially empty binary tree, in random

order, and if the first k items inserted are subsequently deleted by

Hibbard's algorithm, in the same order as they were inserted, the resulting

binary tree is random., (In other words, the probability that the resulting

tree has a given shape is the same as the probability that this shape of

tree would be obtained if n-k items had been inserted into an initially

empty tree in random order.) The theorems of Hibbard and Knott seemed to a Ef’,
cettle the question of deletions, since they proved stability of the tree . g

distribution under a wide variety of deletion disciplines.

»!

! Dl nievitde, AVARBASILITY CODES

AVAIL,_3n¢/or SPEBML

| Al e




P R e

I v

i

B THe 4

-

R

R |

However, Knott also discovered a surprising paradox: Although

Hibbard's theorem establishes that n+l random insertions followed by
a random deletion produces a tree whose shape has the distribution of

n random insertions, it does not follow that a subsequent random

insertion yields a tree whose shape has the distribution of n+l random

insertions! For ten years it had been believed that Hibbard's theorem
proved the stability of the algorithms under repeated insertions and
deletions (ef. [1], p. 25, and [3 ], first printing, pp. L4L29-L432);
the discovery of a subtle fallacy in this reasoning therefore came as
a shock.

AR AP AN A

In order to understand the paradox, we need to know only what
Hibbard's algorithm does to binary search trees with three elements or

less. The five binary search trees on three elements x <y < z are

A(x, y, z) B(x,y, z) C(X:Y: z) D(X)Y: z) E(x,y,2)
z z ‘/\ '{
y X
X Z
y ¥

and the two possibilities on two elements x <y are

F(x,y) G(%,y)
/y x\
X N )

The standard insertion algorithm produces the following binary search tree

when inserting element 2z into a tree containing x and Yy :

Initial tree Result if 2z < x Result if x <z <y Result if y < 2

i

F(x,y) A(z,%,y) B(x,2,¥) C(x,y,2)
G(X)Y) C(Z:X)Y) D(x,2,Yy) E(x,y,2)

N
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In other words, 2z is simply attached "at the bottom" where it fits.

Hibbard's deletion algorithm operates as follows on a 3-element tree:

Initial tree Delete x Delete y Delete z
A(%,y,2) F(y, z) F(x,2) F(x,y)
B(x,y,2) F(y,z) F(x,z) G(x,y)
C(x,y,2) G(y, z) F(x,z) P(x,y)
D(x,y,2) G(y,z) G(x,2z) G(x,y)
E(x,y,2) G(y, z) G(x,2) G(x,y)

If we insert three elements x <y < z in random order, we get a trec

of shape A, B, C, D, E with the respective probabilities 1/6 , 1/t
2/6 , 1/6 , 1/6 ; then a random deletion leaves us with the following
six possibilities and probabilities:

F(x,¥) | F(x, 2) [F(y,z> | 6(x,y) [ 6(x, ) l a(y, 2)

3 L 2 3 2 i
18 18 18 18 18 18

The probability of shape F at this point is 2

s 1§ = , in accord with
Hibbard's theorem.

Mo

But now comes another random insertion, say w . The probability
is 1/b that w is the smallest of {w,Xx,y,z} ; and the other three
CESCE X AWV S 2y XIY S WS Ty XSy <z < W 1also oecur with
probability 1/4 . Thus the tree F(x,y) becomes A(W,X,y) , B(x,wy)
or C(x,y,w) with respective probabilities 1/4 , 1/4 , 1/2 ; and the
other cases F(x%,2);...,G(y,2) can be worked out similarly. We find

that the insertion of w produces a tree of shape A, B, C, D, E

+ 3 +
with the respective probabilities daniy Rl Rl el

T2 j - T2
3+h+) E+2+14 —
T2 7 72 z
o E RS W e Gl
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A random deletion now produces a tree of shape F with probability

i1 .2 1 .2 2 _ 109 1
72 5 T8 5 793 T e G

A study of this example shows where the fallacy occurred: The
"random" tree shape was not independent of the "random" values remaining.
For example, when x is deleted (relatively large values remaining), the
tree tends to be of shape G , but when 2z is deleted (relatively small
values remaining) the tree shape is not biased towards F or G .

Fortunately the deviation from randomness occurs in the right direction
here: the trees actually tend to get better, in the sense that the
balanced shape C (which requires less search time) becomes more probable,
Extensive empirical studies by Knott [ 2] give overwhelming support to
the conjecture that random deletions do not degrade the average search
time; but no proof has yet been found.

More precisely, Knott's conjecture is this: Consider a pattern of
ntk insertions and n deletions, in some order, where the number of
deletions never exceeds the number of insertions. For example, one of
the patterns with n =4 and k=L ds T T IDILEDTIIIDD.

To do each insertion, put a new random element into the tree, say a
uniform random number between O and 1 ; to do each deletion, choose a
random element uniformly from among those present, All of these random
choices are to be independent. Then for each fixed pattern of I's and
D's, the average path length of the resulting tree is conjectured to be
at most equal to the average path length of the pattern consisting
solely of k I 's.

In attempting to explore this conjecture, it is natural to investigate

the simple case of patterns
A A TN ST S DA AN SR III(DI)n e

for k=3 . Such patterns never require us to deal with more than three
elements in the tree at any time; so all we must do is study the following

trivial procedure.

\n
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e Let x , y be independent uniform random numbers. Insert x into
an empty tree, then insert y . (If x <y , we get the tree

G(x,y) , otherwise we get F(y,x) .)

2. Insert a new independent uniform random number into the tree.

3 Choose one of the three elements in the tree at random, each with
equal probability, and delete it using Hibbard's method.

k., Return to step 2.

At the beginning of the (ntl) -st occurrence of step 3, we have a
tree of shape A, B, C, D, or E , with certain probabilities
& 2> Py Gy dh 2
a "steady state." According to the conjecture, <, should be > 1/3 ,

e, 5 we want to show that these probabilities approach

because only shape C has a path length smaller than the other shapes.
The first two times we get to step 3, we have seen that (an,...,en)
are respectively (%,%,%,%,%) and (%,%’%, %,%,%)
What do these probgbilities look like after n deletions have been made,
for large n ? This is the problem we shall investigate in the remainder
of the paper.

It turns out that this problem is not as simple as it might appear
at first, in spite of the triviality of the algorithm; in fact, the
analysis ranks among the more difficult of all exact analyses of algorithms
that have been carried out to date, although it is "elementary" in the
sense that no deep theorems of analysis are required. From the form of
the answer we shall derive, it will be clear that the problem itself is

intrinsically difficult -- no really simple derivation would be able to

produce such a complicated answer, and the answer is right! Since the
difficulties we will encounter are interesting and instructive, an attempt

has been made to present the solution here in a motivated way, explaining

how it was found, instead of simply to present a polished proof.
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2 . The Recurrences to be Solved,

The behavior of the trivial algorithm depends only on the relative
order of the elements inserted, and the particular choice made at each
deletion step. Therefore one way to analyze the situation after the
pattern III(DI)n is to consider (n+3)!:3" configurations to be equally
likely, reflecting the relative order of the nt3 elements inserted and
the n 3-way choices of which element to delete. For example, when
n =1 there are T2 equally likely possibilities, and our analysis of
this case in (1.l) essentially considered them all.

However, such a discrete approach leads to great complications. The
following continuous approach which follows the algorithm more closely

} turns out to be much simpler: Let fn(x,y)dxdy be the differential
probability that the tree is F(X,Y) at the beginning of step 2, after

n elements have been deleted, where

X < X < edhida and. -y < ¥ < ytdy

bl

and let gn(x,y)dxdy be the corresponding probability that it is G(X,Y) .
Let an(x,y,z)dxdydz,...,en(x,y,z)dxdydz be the respective probabilities
that the tree is A(X,Y,Z);...,E(X,Y,Z) at the beginning of step 3,

for some x <X<x+dx, y<Y¥Y<y+dy, z<7Z<z+dz . Then it is

possible to write down recurrence relations for these differential

———

probabilities by directly translating the algorithm into mathematical

i formalism., First we have

(2.1) an(x,y,z) = fn(Y:Z) ’
bn(x;y: z) = fn(x, z)
Cn(x:y,vz) = fn(x;Y) 3 gn(y,vz) )
dn(x)Y; z) = gn(X: z)

en(x:Y:Z) = gn(x:b’) )

for KXzl

J
by considering the six possible actions of step 2. (These probabilities are,

of course, zero when x<O0, x>y, y>2z or z >1 ; at the boundaries

¥x=0,X=y, y=2, and z =1 there may be discontinuities, and it does

At

TN T AT R T M T e




not matter how we define the functions there, Secondly we have H

X
(2:2)  f,.00%) = 3 [ (o) +b (65 5))ar

-+

W=

Vi
fx (an(xlt:Y) +bn(x)t:Y) * Cn(X: t,y))dt
1

+

NI

fy(an(x,y,t)mn(x,y,t))dt ;

e

X
g (0¥) = ¥ [ (ealtrmy) +q (8353) + e (t7))at

<

+

N|H=

fx (dn(X: t,y) + en(XJ t,y))dt
AL

n

t (bn(x,Y:t)+dn(X:Y:t)+en(X)Y)t))dt ’

S L
<

TOrS 0SS ak<lly SSb

by considering the possible actions of step 3, Inserting (2.1) into (2.2)

and applying obvious simplifications yields the fundamental recurrences

L y r'y
(23) 46y = F( £,y +J; £ (t,y)at L e g
y 1 1L
] ey + [ £ (mt)at + [ g (yt)at |
x y ¥
1 X X |
&1 (0¥) = T g (xy) +f0 £ (t,x)at + Jy EalBry)as
X L Al
+j‘ gﬂ(t,x)dt + f gn(x,t)dt 4 ‘F f‘n(x,t)dt) ;
0 x y

for 0<x<y-

I/
’_.l

Consideration of step 1 also leads to the obvious initial conditions

(2.4) fo(x,y) = go(x,y) i for 0<x<y<1
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We have now transformed the algorithm mechanically into a set of
equations that precisely describe the distribution of its behavior. The

quantities of interest to us are

X Z ¥
(2.5) Eo B f J;) IO an(x:Y)Z)d-Xdydz: ees

0

en(x,y,z)dxdydz

namely the respective probabilities that a tree of shape A,...,E occurs
after the insertion/deletion pattern III(DI)" ; and

1.3 Lo
(2.6) £ = {;)JO £ (%,y)axdy g, = [ [ g(uy)axay ,

%) o

the probabilities that the tree shape is F or G after the pattern II(ID)n

Hibbard's theorem for trees of size 2 states that f. = f, and 8y =8

5 Sl - Lt 3
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5 Simplification of the Recurrences,

What can we do with such formidable recurrences (2.3)- (2,4)%
In the first place we can look for invariant relations that might be
used to simplify them,

When the algorithm reaches step 2, it is clear that the two numbers

X and Y 1in its tree are random, except for the condition that X < Y .
Thus we must have

(3.1) fn(x,y)+gn(x,y) =2 5 for DLEx<yi1l and >0 .,
(Et is 2 , mot 1 , since the probability that x <X < x+dx and
y<Y<y+dy given that X <Y is 2dxdy .) This formula could alsoc be
proved directly from (2.3) and (2.4), by induction on n .

Relation (3.1) means that we really have only one function to worry

about, namely fn(x,y) . Let us rewrite (2.3) and (2.4) to take account
of this fact:

(3.2} - Eay) =L

fn+l(x) Y) =

Ol

X y
2oy fn(x,y) +_j; fn(t,y)dt + j; fn(x,t)dt> .

for m >0 .

Henceforth we shall avoid mentioning the condition 0 <x<y <1,
for if we use (3.2) to define fn(x,y) for all x and y it will
agree with the true fn(x,y) when 0<x<y<l.
We have obtained a much simpler recurrence than (2,3)-(2.L4), but (3.2)
still has some undesirable features. Before proceeding any further, we

can use (3.2) to check what we have done so far, by computing the first
oo
few fn S

fl(X:Y) = 1 -3X+%’y 3 fl = ']2; 5
8 N il 2 1
fg(X:Y)=l-§X+§y+Ig(X-y) ’ f2='2(l)—? .
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We are hoping that the process converges for large n , and in this
case the limiting distribution fm(x,y) will have to satisfy the integral
equation

X

Y
(3.3) fm(x)}’) = %(2 ‘Ex"'fm(X)Y) + J fm(t:y)dt + I fw(x:t)dt) .
0

i

Before going on to find a solution to this equation, let us verify that
fn(x,y) will indeed converge to f_(x,y) if £f_(x,y) exists: Subtracting
(3.3) from (3.2) yields

-

X X
rn+l(x)Y) = %’(rn(x)Y) + J;) rn(tJY)dt + J;( rn(x,t)dt)

where rn(xfy) = fn(x:Y) 'fm(x:Y) . Now if Irn(xJY)l <& for O S x <y <
we will have
x Y
e L r 0 1+y o)
| (6¥)] < g(a+do adt +Jxadt) =Szacza .

Therefore if fw(x,y) exists, so that ro(x,y) is bounded, the remainder

rn(x,y) = O((2/3)n) convergas rapidly to zero, regardless of the initial
distribution fo(x,y) %

It remains to determine fm(x,y) , whose defining equation (3.3) can

be rewritten

(5.1) £(6y) = 1-x+ %(jx (£, y)at + jy fm(x,t)dt> .
0

X

The coefficient 1/2 can be removed from this relation by letting

Q(X;Y) = fw(2x,2y) ’
so that
x y
(3.5) a(x,y) = 1-2x + Jo a(t,y)at + [ q(x,t)at .
X

What is this function q(x,y) ? (It is suggested that the reader might

enjoy trying to find it before reading on.)

11
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L., Solving the Integral Equation.

In attempting to solve (3.5), perhaps the first thing we might try

is differentiation. Let q'(x,y) = da(x,y)/ox , and q,(x,y) = sa(xy)/oy ;
then

y
(1) @' (xy) = -2+ aloy) + [ o (nt)dt - alxx)
X
X
(k.2) q, (%y) = "J q, (t,y)at + a(xy)
(5.3) ' (%y) = q,(xy) + a'(wy) .

If we postulate that gq has a power series expansion

m n
(h.h) alxy) = X2 Sk
mnzo%ﬂlm n;
we find
Xm yn Xm yn
(L.5) ¢ (xy) = Z = = , q,(xy) = Z -
mn >0 %ﬁlﬂ] missing Y myn >0 %mn+l mi nl
Xm n
(xy) = T i g

g Y+l,n+l m: n!

Therefore (4.%) yields the simple relation
(4.6) Gpranl ™ St " Yedp + T RESR o

from which it is possible to determine all the @, in terms of the
)
boundary values q)}n and qm,O e

Setting x =0 'n (3.5) yields
« s -J
(haT) q(0,y) = L+ J “1(3,t)flt, 5
)
ience q(0,y) = ¢ and
L.8 - ) "
( ) 1, n i, for n >0
12
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Now comes a tricky manipulation, which was found while playing
around trying to determine q(x,0) . If we apply (4.1) with x and
interchanged, and add the two results, we get

J

Q' (xy)+q' (y,x) = -b+a(x,y)+q(y,x) -alx,x) -aly,y)

y
+[ (a'(xt) -q'(y,t))dt

y y
= b+ [ (@' (t,x)-q'(ty))at+[ (a'(xt)-q'(y,t))dt .
X X

Let s(x,y) be the symmetric function q'(x,y)+q'(y,x) ; we have just
proved that

y
(k.9) s(6,y) = -b+[ (s(xt)-s(yt))at .

But this equation implies that s(x,y) = =4 ! Let

m n

(4,10) s(x,y) = S =3 S = + :

( ‘ (%) z m, i miiny J m, n qm+l,n q'n+l,m
myn >0

The coefficients s, , for mtn =k >0 on the left-hand side of (4.9)
2

all arise as homogeneous linear combinations of the coefficients s

m, n
for mtn = k-1 , since

Y
J (xmtn o ymtn)dt 5 (men+l +Xn+lym E xn&n*rlyo 5 XOyrrr'-n+l

W erl) 3
X

hence we can prove by induction on k that T A Ol whenever (mén = kK > 0
)
T4

follows that

(k.11) Gt o ™ G0y for mn >0 and mn >0 .
o 5S4 )

When m=n =0 we have -k = 80,0 = ql,O+ql,O , hence q o= =2
relations (L4.6) and (4.8) imply that 4 , =n-2 for all n >0, and
; =

(4L,11) with n = 0 yields
(L.12) Qo ™ "% g = Z-m for m>2 .,
n, , M- 2

We have found the desired boundary conditions, and it remains to deduce

the genral formula using (4.6). The binomial coefficient
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mtn+a
mt+b

satisfies (4.6) for all integers a and b , so it suffices to find a
linear combination of these binomial coefficients, subject to the
condition that the known values of qm,n are obtained whenever m = 0
or n= 0. The solution in this form is not unique, because of
identities between binomial cbefficients; probably the most elegant

way to express it is
5 mn-3 Y\ [ mtn-3
Tou R TR i e i

Qur derivation has proved that qm,n must have this value if the power
series q(x,y) postulated in (4.L4) satisfies (3.5). Conversely, it is clear
that a power series solution to (3.5) exists, since the set of values
qm,n with mtn = k defines the set of values with mtn = k+1 after

integration. Therefore

(4.13)  alxy) = T ((m’fzﬁ) S Ty

m,n >0

solves (3.5). Note that iqm’nl s o™B | hence the power series is
absolutely convergent for all x,y , and (4.14) is the only power series
solution.

Finally let us try to express g(%,y) in terms of simpler functions,
possibly even "known" ones., The following somewhat surprising identity

is especially useful for functions of this type:




L ‘(Y!L /n

=X=Yy \ mrhnra 2 )

: (haaB) T ( )—'r e
;

mn >0 urh s
e
i jtm _kt+n
- T yE(mme) n po
Jsk,myn >0 1 Jemi Lt
= Z g-l ﬂ L (_l)j+k M N MtN=-j-kta
e i Nk M- j+b

N ot Z XM yN Z ( l)M+b+k M N -N+k-at+b-1
i T & j k M-j+b
M,N >0 5 J»k >0

M el id
=
=

x ¥ _\Mtbtk (N ) M-1i+k-atb-1
= Z MI N! Z (-1) k M+b
\ M,N >0 k>0
M N
- 3 P ( l)M+N+b M-N-at+b-1
- T T M-N+b

—

M, N >0

2|‘<
=

- B o EE(,) -
' Mo M-N¢+b

When M-N has a fixed value, the terms of this sum are readily expressed

-t

in terms of modified Bessel functions of the first kind, defined as usual
! by the formula

E . 2ktr
- +
4 (1‘..1-' /\ | ( z } = f_

I8

2

For example, if a > 0 all terms vanish except those for O < M-I+b < a

hence (L.15) reduces to a finite sum

a x'w' zy” ) & r-b Sk
< ‘ : . v
- (" ) Z Mo (r )(\/7 ) I._,(@Vxy) .
£ M,N -0 ”
Mtb = Nt r

1 the other hand, if a < 0 (as it unfortunateiy is in our case), another

ction ic apparently required.

B T T e
5
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Let h(x,y) be the double power series

n
L

1
.

Ix

(4.17) 2
m>n >0

m!

B

which converges absolutely for all x and y . We have

mtn

. («/— ) .

(4.18) h(x,y) b
m,n >0 m>0

Furthermore

(5.19) hbluy) = & T x 1% —J‘ tmdt)
m >0 me

o m m
=eX+y-eyf & ) ;’1—; dt
0 m>0 =

Vv
L Fn ey‘f o IO(Q'\/tx)dt ’
0

so h(x,y) can be expressed in at least two ways in terms of Bessel

functions; but it does not seem to have any simpler expressions in "closed

form", The definition of h(x,y) is already sufficiently simple that we

can consider it a known function; we will express q(x,y)
h(x,y) and Bessel functions.
By (L.1k) and (L4.15),

in terms of

m n

-X= X mm -n+2 m-n-2
e - B & & ((2)-(21))
my n 20 7
- X v mn
3 m>§;>o wi nl (=1 (bm - bn -2+35m,n+6m:n+1)

byl (xy) = bxh(-x, =y) + byh(-x, -y) - byi, (xy)

5 Eh(‘xi 'Y) + 3iO(XY) = Xll(x.Y)

where ir(z) = ZK>O zk/ki(k+r)$ . This yields the steady-state

16
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distribution fw(x,y) of the trivial algorithm, if we replace x and

¥y by x/2 and y/2 :

(4.20) £ (xy) = o(X*y)/2 ((2y-2x-2)h(-

for O<x <y el .,

17
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5. An Explicit Formula for fn(x,y) ;

Now that the limiting behavior has been found, we can look back
at the original recurrence (3.2) and see that it does not appear so

formidable any more. Let us define a sequence of polynomials as follows:

{5.3) PO(X:Y) =
(5.2) Pl(X:Y) = y-2x ,
V\X ﬂy
(5¢5) Pk+l(x:Y) = JO pk(t’y)dt 0 ‘J pk(x)t)dt 2 for k _>_ 1 #
X

1 2 1 o
Thus pe(x,y) =5 (x-y)° , p3(x,y) = Eyj , ete.; it is easy to see

that each term of pk(x,y) has total degree k .
These polynomials handle the complicated parts of recurrence (3.2).

If we assume that fn(x,y) is a linear combination of the p's, say

(5.4) £ (%y) = }EO cPn,k-pk(x,y)

with @ =1, relations (3.2) and (5.3) imply that fn+l(x,y) also has
)
such a representation, namely

n

fn+l(x’ Y) %(2 —2x+ fn(X,Y) A2 kgl q)n, }t:pk+l(x’ Y))

n

it
L+ = P X ® 2 .
3% 3 §] n,kpk( 22 +] Z>;O n,kpk+l( »¥)

Hence (5.4) holds for all n if the coefficients P, satisfy
)

(5.5) 1,

’pn+_‘v,0
i
Pt kel = 5 @p ey *Pqy) » for n>0 and k>0 .
Since Py, x = O for all k > 1, this recurrence is easy to solve, and we have
3

(5.6) Ppp ®= L (1‘1:1)51 , for n>0 and k>1 ,
i 1<j<n

18




e

Equation (5.4) would now be a fairly explicit formula for fn(x,y) >

if we only knew pk(x,y) .

Let n - « ; then

2 i = -k
(5.7) P = 2 f{_i)} domg™ ,  for k3.
2 jzl

Since fm(2x,2y) = q(x,y) , and since all terms of pk(x,y) have total

degree k , we must have

(5.8) axy) = Z p(xy) .
k>0

Therefore we can find pk(x,y) by selecting the terms of total degree k

in (4.14), namely i

(5.9) P loY) = £ z (?)((kf)-(?:ﬁ))xjyk'j .

We may also express pk(x,y) in "closed form", in terms of the Jacobi

polynomials defined by

(5.10) (x-y )" Pr(la,B)<x+_y ) = Z (nﬂ)( e )ijn-j %
i

2 J n-j
the result is

(5.11)  p(xy) = %Ox-y)k PO 22 ) et 25 H)\

/
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O. Approach to the Answers.

We have shown that the trivial algorithm leads to a (nontrivial)
limiting distribution. What we really want to know is the limiting
probabilities of the various tree shapes that arise, namely the
quantities 8 s eees € fn i and &, defined by the integrals in (2.5)
and (2.6), as n - ,

We clearly have
(6.1) a +b +tc +d +te = 1,
(6.2) f,tg, = 1 .
Furthermore since bn(x,y,z)+-dn(x,y,z) =2 by (2.1) and (3.1), we have

(6.5) bn+dn =

\N|

Another relation, slightly more subtle, also holds. We have

o, = fof I slpeiiagis = [ [ xf (gylaxdy
OSxSyizil 0<x<y<1
b = Sk £ (gz)axdyaz = [ [ (y-x)2_(x,y)axay
0<x<y<z<1l 0<x<y <l
1 g .
= -e = 2 (x,y)dxdydz = (1-y)f (x,y)dxdy .
S - o{igigzrgl i og”:’:ggrgl =
Therefore
5 £
(E.4) an o bn =P 3 - fn .

And still another relation, even more subtle, can be obtained by

looking more closely. If we integrate both sides of (3.2) over
0<x<y<1 we find




———e

-

T

-
o Z3 n .‘.
5 £ = =+ f 4 e £ (t,y)dt
3 E v J ) ¥y
1930 5 n 0<x <! <1 ‘o n
{l " .y ’
+ RN J In\x,t)dt
O<x<y<l X
2 . i
= =+ £ + + = - ¢ .
o) In bn 5 “n

o 2
B P = = +
(6.5) 3 thn 5 e tjn 3
i : £ : 109 L
For example, we know that al = 7—2 3 il =z and :,; = 518 ;s everything J

checks out beautifully.
From relations (6.1) - (6.5) we can determine all of Bseees€ 5T 58
knowing only the values of bn and i‘n for all n , Let us first look

at f_ , and especially at the component involving pk(x, y)

n

o L e - e R
- war 2 (5a)((7)-(53))
e () (35))
Stmilarly
6 S, wontevmy o g 2 (3H()-(32)) b

-y ((57)-(520)) -

21
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These quantities are nonnegative for all k > 0 , and since the

coefficients @ , in (5.4) and (5.6) are monotone nondecreasing,
J

with n , it follows that

(6.8) T =5 and b1 >b for n >0 ,

(A similar argument shows that €41 S € for all n.)

Let us now look at the limiting behavior. We have

iE
fm(x, Y) =TT e Pk(x’ v)
k>0 2

by (5.7), hence by (6.6) and (6.7) the probabilities f and b

increase to the limits

< < i 2k-2
G oo R
k>0 2k(k+2)l e

(
= Zo T (F)-(32))
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s wvaluation of the Final Sums.

The formulas in (6.9) converge rapidly, so we could compute them
and be done; but of course we would like to express the result in terms
of "known" mathematical quantities, for if there is a simple answer
we want to know about it. 1In order to get a cleaner sum to work with,

let us consider the similar series
k
) X/2 2k
(7.1) gz} = & é—-Lg—( )
)
12 k >0 kt+r k
which converges absolutely for all x . Differentiation yields

(7.2) tlx) = FE A ; (Ek_l)(Ek-Q)

o kt+r k-1

= 2 M(mﬁl;(gk)

B (ktr+l)! k

- kégo h—g‘%};— (2(k+r+l) - (2r+l))( 2;)

= 2sr(x) -(2r+l)sr+l(x) ¢

Thus if we define

-2X

(7.3) tr(X) = € Sr(x> )
we have
(s tl;(x) = -(Erfl)tﬁl(x) .

According to this relation, we obtain all tr(x) by starting with tj(x)
and differentiating.
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A curious thing happens when we look at to(x)

=D g ff\? o g_ 2
e X.so(x) = 2, Xk? ( k) jf ‘
k>0 J/O . |

: mgo (2x) §(m_ )( 1/2)
=m§0 L-aTxL<m 1/2

m
-x/2 2m
=z ﬁ_mL—L(m) =l s
using the familiar identities

RO e G e e

m m

In other words, to(x) = so(—x) , and e-xso(x) = exso(—x) is an even

function! This coincidence deserves looking intoj; let us write

k |
& so(x) =0 XEL?.L(Q}I:) 3 K_L |
k>0 ki i>0 i |
|
m
-x z
g mz>>o -(?3)_ um i
where |
k
6 . - m -1 2k ; |
a6 w = (%) (%) |

After a few moments of playing with this sum, an experienced binomial-

coefficientologist might hit on the following elementary method of evaluation:

2k




kK
\ -
b D Py m-1 (-1 2k
m m-1 X k-1 K k .
Ee %0 m- !-lz 2kt+2
m-1 K k+l k+1
m g-l}k 2k \ 2k+1
= B = Z
m-1 (k+l) k ( k ) m
k 2
3
k
E. — ‘Z: (—l) 2k 2k+2+zl m (-l) 2k }_
\ m-1 K k+l m k+1 k k m
) k 2
‘ . -0 e i Z; m (-l)k 2k
- = Tl T Ta T W K+l k k)7
3 k. 2
i
hence
nle +w. =) 5 m (-1 zk 2k ¥
3 b k+1 ok k 2
q s
‘ (m-1)(u_,+u_,.) = Z(m-l) (-l)k[%) = Z( " )———L('lk(gk) u
| n-1 " Yn-2 e S O S e S -1
j
Subtracting these equations yields
i
| my = (m-l)um_2 .
E : llow U, = 1 and u, = 0 , hence Uil = 0 , as we knew; and
H 1 2 L 1/ 2m
g > _ em-1 m-3 L me=- e » =M [ =
i (7.7) Yom * TEm e " F ° ( m ) il ) :
"* (Is there a simpler elementary proof of this formula?) We have shown that 4
%
E 2m 2m
; L -X ~x)" 3 x/2)° : |
(7.8) g R = o K(e_mz)T oy = & prmr = () s
m>0 m>0

s
I3
!
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so our friend the modified Bessel function has appeared again, The

above relations now yield the identities

2

s, (x) extr(x) A, s omeene o i e (™ In(x))

xr

so that

P T T Bl o

s;(x) = € (I (x) -14(x)) ,
sz(x) = %ex(IO(x) -2 Ié(x)+I'c')(x)) :
55(x) = 55 (T} -3 ) +3 T3) -T3 (x)) , ete.

It is easy to see from definition (4.16) that
(7.10)  I3(x) = I,(x) I3(x) = Iy(x)-x"" I(x)
3 0 i % 1 S50 il 2
hence we can express each sr(x) in terms of Io(x) and Il(x) .

Finally to get f_  and b_ we need to express the sums in (6.9) in

terms of sr(x) for various r . The problem boils down to expressing

the binomial coefficient (En:m) as a linear combination of binomial
coefficients of the form (22:?{) o« For m= 0 this is no problem,

and for m =1 we have

on+l A ent2 <
( B ) = -2— ( 4l ) it n 2 0 .

For m >2 we can reduce the problem to the cases m-1 and m-2 , since

( EnI:m) p ( 2n+2;(in-1)) i ( 2n+2r:~+(:an-2)) :




Iterating this idea leads us to the desired identity,

(7.11) (Enr:m) =3 I ?:ik)(mk)

In particular we get

E § for o > @ ¢

Ef
! Letting s, stand for sr(l) , we can now rewrite (6.9) as
1 ,! 4 9 i
¥ (1:12) e e 55 -5 S3 i (uo-l_l) +6(gl-l) -5 5 5 5
§ = -1—230+6sl-h52

-
&

e 10(1) -2 eIl(l) =l e

[}

R T
o’
1}

= - - s - S lS
3 h“o+lhsl lh2+¢5

- 1_2 \ %
= 2eIO(l) -Fe Il(l,-) -

27

|
i
!

Nl

8 [ 5, 7:b Y
5-5(.,0-1-1—‘5)+%(Sl—l-§)-72(u2'

o




B

A R

-~

The Bessel function values we need are readily computed to be

€7.32) 10(1) = 1.26606 58777 52008 33559 82L4Lé 25214 71753 76077 -

Il(l) = 0.56515 91039 92485 02720 76960 27609 86330 73289 - ,

Finally therefore we have the answers:

(7.4 & = % - = 0.15049 16196 41488 77320
b, = 0.19601 96040 80347 57536
e, = £ =8 = 0.35250 55369 95186 10505
(7.18) 4, = $-Db, = 0.13731 37292 52985 75797
e, = l+b_-2f = 0,16366 95100 29991 788L2
£ = 0.51617 50470 25177 89347
g, = Iaf = 0,48382 49529 74822 10653

The average internal path length of the tree just before the (n+l) -st
deletion is 3an-+5bn-+2cn-+3dn-+3en =3 -cn . We have proved that cn

converges to Ty which is greater than c¢ this is consistent

= 1.
O =
with the conjecture that deletions do not make the path length larger than

pure insertions do. However, it is interesting to note that the convergence

of ¢, to c, is not monotonic:
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¢y = % = 0.333%3
¢y = % = 0.34722 ‘ o
¢, = 5B = 0.35185
c, = — = 0.35309
c, = %g% = 0.353%20
! os = B2 - 055509

-
o
1

4667107 n
6 = Togre -
! 699791131
A G 198%01161100

Therefore random deletions do not always enhance the average path length;

@.3527L

B

the pattern IIIDIDIDIDI leads to a better average search time than does
the same pattern followed by DI , and an argument that does not rely on

such monotonicity will be necessary to prove Knott's conjecture.

-~




O W e Al

B e

-

g I TR W T A

L

8. Modified Deletioms.

To complete our study of this process we should also look at what
happens if the "improved" deletion algorithm discussed on p. 432 of [3] is
used. Here a new " step Hl% " is introduced, to simplify the deletion of
nodes having an empty left subtree,

The modified algorithm changes only one thing with respect to trees
with three or fewer nodes: the deletion of x from D(x,y,z)

now produces F(y,z) instead of G(y,z) . The net effect is that the
integral

i (t,y)dt
j;gn y)

moves from the sum for gn+l(x,y) to the sum for fn+l(x,y) i iR e

Fortunately this change makes the analog of (3.2) much simpler than
before; we now have

(8.1) fo(x,y) = 1

(2 + £ (%) + j‘y fn(x,t)dt )

X

W[

fn+l(x’y) =
for’ Eni>R0N,

sinze (3.1) remains valid. The relation corresponding to (3.3) reduces to
Y

1
(8.2) f (xy) = 1+§J; £ (x,t)dt

and by arguing as before (but with considerably fewer complications) we
can deduce the solution

(B3)  Eluy) = eWEYR

In fact, it is not difficult to establish the general formula

k t
Bh) ‘rimy e 5 Gl s (i)(t-l) TR e
n ogk<n B ycten b3 t-k 2
30
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Since fm(x,y) now has such a simple form, we can easily determine

the limiting integrals corresponding to (2.5) and (2.6):

(8.5) a_ = 8/e -13 = 0.1897701... ,
b = 20-124e = 0.2155M47...
e, = 1/3 = 05598555 v
a_ = 1/3 - b w 0.1179885 ...
e, = 1/3-a_ = 0,1435631... ,
£ = e -6 = 0.5048850... ,

o
1
_\]
]
=
o]
)

QL HOSIPLY S L

As expected, there is now a stronger bias towards the F tree. The unexpected
result is that c, has such a simple form compared to the others; in fact it

turns cut that
(8.6) c, = 1/3 for all n>0 ,

so the average internal path length is the same as that of a random tree
built up from three insertions! Eq. (8.6) follows easily from (8.4) and
the fact that

ur J J ((Y'X)k‘(z'y)k)d?(dydz = 0 for >0,
z

Since the values of e in the unmodified algorithm are greater than
1/5 , for n > 1, the average internal path length actually turns out to
be worse when we use the "improved" algorithm. On the other hand, Knott's
empirical data in [2] indicate that the modified algorithm does indeed lead

to an improvement when the trees are larger, i
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