Stanford Heuristic Programming Project - March 1977
Memo HPP-77-5

Computer Science Department
Report No. STAN-CS-77-596

A REVIEW OF KNOWLEDGE BASED PROBLEM SOLVING AS A
BASIS FOR A GENETICS EXPERIMENT DESIGNING SYSTEM

by
Mark J. Stefik and Nancy Martin

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERSITY

A Review of Knowledge Based Problem Solving
As a Basis for
A Genetics Experinent Designing System

STAN-CS-77-596
Heuristic Programming Project Mmp 77-5

Mrk 3. Stefik and Nancy Mrtin

ABSTRACT

It is generally accepted that problem solving systens require a wealth of dommin
specific knowl edge for effective performance in conplex dommins. This report takes
the view that all dommin specific knowledge should beexpresaed in a know edge base.
Wth this in mind, the ideas and techniques from problem solving and knowl edge base
research are reviewed and outstanding problemsare identified. Finally, a task
domrin is characterized in terns of objects, actions, and control/strategy

knowl edge and suggestions are made for creating a uniform knowledge base mnagenent
system to be used for knowledge acquisition, problem solving, and explanation.

KEY WORDS

GENETICS, HEURISTIC PROBLEM SOLVING ~ KNOW.EDGE BASES, MILGEN, PLANNING SYSTEM,
REPRESENTATION OF KNOWLEDGE.

The views and conclusions contained in this document are those of the authors and should
not be interpreted as necessarily representing the official policies, either express or
inplied, of the Defense Advanced Research Projects Agency or theUnited States
Governnent .

This research was supported by the Defense Advanced Research Projects Agency under
ARPA Order No. 2494, Contract No. DAHC 15-73-C-0435, and by The National Science
Foundation under Contract Nos. MCS76-=11649, and MCS76-11935, and by The National
Institute of Health under Contract No. RR-00785

A Review of Knowledge Based Problem Solving
As a Basis for
A Genetics Experiment Designing System

STAN-CS-77-596
Heuristic Programming Project Memo 77-5

Mark J. Stefik and Nancy Martin

ABSTRACT -- It is generally accepted that problem solving systems
require a wealth of domain specific knowledge for effective performance
in complex domains. This report takes the view that all domain
specific knowledge should be expressed in a knowledge base. With this
in mind, the ideas and techniques from problem solving and knowledge
base research are reviewed and outstanding problems are identified.
Finally, a task domain 1is characterized in terms of objects, actions,
and control/strategy knowledge and suggestions are made for creating a
uniform knowledge base management system to be used for knowledge
acquisition, problem solving, and explanation.

Key Words: Genetics, Heuristic Problem Solving, Knowledge Bases,
MOLGEN, Planning Systems, Representation of Knowledge

Support :

MOLGEN Grants National Science Foundation
MCST6-11649, Stanford University
MCST76-11935, University of New Mexico

SUMEX Grant National Institutes of Health

Biotechnology Resource Grant RR-00785

Heuristic Programming Advanced Research Projects Agency
Project Contract DAHC 15-73-C-0435

TIable of Contents

Chapter

Acknowledgments ¢ 4 e e e e e e e e
1. Introduction

I.1 History and Organization of this Document

1.2 Philosophical Overview , ,

IT.

I1I,

General Scope of the MOLGEN Project
I1.1 A Laboratory Assistant for Molecular Genetics

I11.2 An Analogy e e e e e e e e e,

Problem Solving and Planning
III.1 Introduction e e e e e e e
III.1.1 Problem Solving as Heuristic Search .
ITI.1.2 Problem Solving as Theorem Proving . e
I11.2 Fundamental Methods for Problem Solving . . .
111.2.1 Means-ends Analysis+ . ., .
111.2.2 Problem Reduction
I11. 2.3 Backtracking . . +,
ITI.2.4 Hierarchical Planning «
111.2.4.1 Well Spaced 'Planning Islands' .

IIT .2.4,2 Abstraction: The 'Planning Method' of
GPS & 0 s .

IIT.2.4.3 Hierarchy of Abstraction Spaces

111.2.4.4 Criticality Levels as Abstraction
Levels .

II1.2.4.5 Overview of Hierarchical Planning

111.2.5 Interacting Goals

Page

iv

11
12
13
14

15

16

17

19

19

111.2.6 Using Existing Plans

III.3 Summary of Planning Ideas

Knowledge Based Systems .« . . « . &«
Iv.1 Capabilities for a Knowledge based System
Iv.2 Design Principles for Knowledge Aggregation
IV.2.1 Criteria for Weak and Strong Interactions

IV.2.2 Demons and the Multiple Knowledge Sources
Model ce

IV.2.2.1 BEINGS and ACTORS

IV.2.2.2 Lessons from HEARSAY . . .
IV.2.3 Knowledge Access and Control by Description
IV.2.4 What We Have Learned

Iv.3 Design Principles for Knowledge Acquisition

IV.3.1 Extensibility in Programming Systems , .
IV.3.2 Ideas from Data Base Systems

IV.3.2.1 SCHEMATA: Data Definitions

IV.3.2.2 Data Models and Accessibility . .

IV.3.2.3 Beyond Retrieval

IV.3.3 Knowledge Based Systems for Artificial
Intelligence

IV.3.3. 1 Object Centered Factorization of
Knowledge

IV.3.3.2 Acquisition of Objects

IV. 3.3.3 The SCHEMA-SCHEMA . . .

IV.3.3.4 Acquisition of Actions -
IV.3.4 Summary of Knowledge Acquisition Work

Iv,4 Summary of Knowledge Base Research

Tentative Proposed Work «+. . . .

Vil Perspectives and Observations about the Direction
of this Research

ii

©

22

25

217
27
30

32

34
35
36
37
40
41
45
47
47
48

50

51

51
53
54
55
56

57

59

59

V.2 MOLGEN System Sketch

V.3 Strategy and the Planning Network

v.4 A Toolbox for Artificial Intelligence
V.l The Means-ends Tool
V.4.2 Means-ends Analysis in the Schemata Network
v.4.3 More From the Toolbox

V.4,4 Eliminating Special Cases

V.5 Concluding Remarks

Appendix I

Working Bibliography

iii

62
64
67
68
69
71

71

75

76

Acknowledgments

Sincere thanks —--

To Bruce Buchanan, Ed Feigenbaum, and Joshua Lederberg for
their enthusiasm and insightful suggestions and for providing such a
rewarding research environment.

To Harold Brown, Ray Carhart, Randy Davis, Jerry Feitelson,
Peter Friedland, Jonathan King, Penny Nii, Nils Nilsson, and Terry
Winograd, who all puzzled through earlier drafts of this manuscript and
gave generously of their time and ideas.

iv

Chapter 1

Introduction

I.1 History and Organization of this Document

Since the early days of the DENDRAL project, Bruce Buchanan, Ed
Feigenbaum, and Joshua Lederberg have wanted to collaborate on an
artificial intelligence project in molecular genetics. Periodically
they reviewed the potential for such a project considering the
developments both in molecular genetics research and in artificial
intelligence research. In the Spring of 1975, research was picking up
momentum in molecular genetics with the development of a number of
highly specific laboratory techniques based on restriction enzymes. At
the same time, progress was evident in the development of software for
management of knowledge time. A research group was formed at Stanford
calling itself the MOLGEN project. Several geneticists have become
involved 1in the project including Dusko Ehrlich, Douglas Wallace,
Douglas Brutlag, and Jerry Feitelson. The computer science research is
being done by researchers at the Heuristic Programming Project, which
is directed by Ed Feigenbaum and Bruce Buchanan. The MOLGEN research
effort is being directed by Nancy Martin. Many of the domain related
questions have involved graph theoretical research which has been
mostly done by Harold Brown. The MOLGEN project now includes three
computer science graduate students - Peter Friedland, Jonathan King,
and Mark Stefik. This report is a slightly revised version of Stefik's
thesis proposal submitted in December 1976.

The report which follows is divided into four major sections-
Chapter II is an overview of the task area in molecular genetics
which is the domain of the MOLGEN system, It reviews the nature of
some of the experiments in molecular genetics that are being done and
introduces the problem solving task for the MOLGEN system as the
interactive design of laboratory experiments. The design of
experiments requires the facilities of a problem solving system and
Chapter III is a review of fundamental ideas and recent research in
general problem solving. One of the challenges of molecular genetics
as a task area is the large amount of domain specific knowledge that
seens to be required for effective problem solving. Chapter IV is an
overview of the research that has been done in knowledge based systems
with emphasis on techniques for the acquisition and use of knowledge..
In this chapter, Section 1IV,2 offers a viewpoint on the aggregation
of knowledge which may be seen as Dbeing either weakly or strongly

interacting. Section IV.3.4 explores the contributions of research
in several areas of computer science, including data base management.
Finally, Chapter V re—-examines both the problem solving and

knowledge base work and proposes research and a design for the MOLGEN
System.

1.2 Philosophical Overvi'ew

Since Newell and Simon introduced their program Logic Theorist in
1956, many workers in artificial intelligence have done research toward
building computer systems capable of problem solving. For many
researchers the ambitition has been to create a computer system with a
general problem solving ability that could play a useful role in human
affairs. The difficulties of producing a general and powerful system
have lead researchers to limit their efforts in two possible ways, Some
researchers have concentrated on very small test domains (sometimes
termed "toy problems”) in order to develop techniques applicable to
larger domains, (See for example [Fikes72b] or [Green69]). Although
this research has uncovered some basic and fundamental problems and
solutions for some of them, the programs have not in fact developed
into powerful and general problem solving systems. One of the reasons
for this relates to the size of the knowledge base that is involved in
practical problems. For example, the knowledge base for designing
scientific experiments is of a different order of magnitude than that
for stacking Dblocks, The relevance for this remark is based on an
observation by Dijkstra, that any two things which differ in some
respect by a factor of a hundred or more are utterly incomparable. As
Dijkstra notes, one cannot design a jet airplane by taking the design
for a child crawling across the floor and scaling up by the ratio of
the relevant speeds. Entirely different design principles need to be
invoked ¢« Thus the methods of resolution theorem proving or Means-ends
analysis cannot be carried directly from the smll test domains into
the large systems. Significant problems arise simply from the size of
the knowledge base..

Other researchers have built performance programs in larger but
judiciously chosen areas of human problem solving and have demonstrated
-the importance of using a large amount of domain specific knowledge to
guide the problem solving process effectively+ (See for example
[Buchanan69] or [Nilsson74]). Although several of these systems have
achieved impressive results within their chosen domains, the systems
created have not illustrated a general problem solving power by
subsequent extension to other domains. One reason for this is that the
performance programs have typically used ad hoc approaches for
knowledge representation, which haved proved too rigid to accommodate a

variety of task domains. These systems have served to highlight what
are now recognized to be some major stumbling blocks for large
knowledge based systems -- acquiring the domain and strategy knowledge

from a user and integrating it into a knowledge base so that it can be
used effectively.

The difficulties in building and maintaining large computer
systems is not unique to artificial intelligence. Ideas about the
organization of such systems have come from several areas of computer
science: Dahl, Dijkstra, and Hoare have made important steps toward
creating a science of large program and system development. One of the
tenets of building large systems is based on an observation of the
limitations of the human mind. The observation is that precise thinking
is possible in terms of only a small number of elements at one time.
In programming terms, this suggests that a system should be designed
hierarchically in smallish chunks. This design process mandates that
the operation of the entire system can be comprehended in terms of the

subsystems which are mentioned in the top-level description of the
system. Proof of the correct functioning of the overall system at the
top 1level is based on the assumption that each of the . lower level
subsystems will function as specified. Each of the subsystems in turn
is also written as one of these chunks so that it, too, 1s easily
comprehended. This approach to designing a system in layers is an
embodiment of the power of abstraction which keeps the size of the
component pieces of the system manageable, Dijkstra has suggested in
[Dahl72] that this is a critical design principle for large systems.

Summarizing: as a slow-witted human being I
have a very small head and I had better learn to
live with it and to respect my limitations, rather
than try to ignore them, for the latter vain effort
will be punished by failure.

Dijkstra in [Dah172]

The same issues which arise in the development of a large program
are present in the development of a large knowledge base for an
artificial intelligence problem solving system. Both the extensive
domain knowledge and general problem solving knowledge necessary in a
large knowledge based system need to be organized into small
comprehensible chunks which can be acquired and used. Recently
techniques for knowledge acquisition and explanation for knowledge
based systems have been reported in [DavisT76c] or [Winograd73]. A basic
theme throughout this work is that a system can be in some sense awar
of what it knows when it has a knowledge of its own representations
It will be seen that models of knowledge (termed schemata) serve to
structure knowledge into its component parts and provide a source of
the system’s awareness of what it knows. Schemata also provide a model
for guiding the knowledge acquisition process and a means for
integrating new knowledge into an existing knowledge base. The
structuring of domain and planning knowledge, which facilitates human
understanding of that knowledge, also makes feasible its acquisition by
the system, its explanation to the user, and its effective wuse in
problem solving by the system.

Finally, the motivation and thrust of the MOLGEN project 1is the
solution of a broad class of problems from molecular genetics. These
problems are all drawn from the task of designing laboratory
experiments and will utilize the problem solving techniques that have
been developed in artificial intelligence. Chapter II discusses the
classes of genetic experiments to be considered and Chapter III
delineates and examines the variety of problem solving techniques in
artificial intelligence -- illustrating their differences, potentials,
and some unsolved problems. Thus, this project will include a
synthesis of ideas from the most recent problem solving systems, from
knowledge based systems, and from structured programming.

Chapter IV surveys this research and Chapter V proposes
a number of extensions to it.

Chapter II

General Scope of the MOLGEN Proiject

1.1 A Laboratory Assistant for Molecular Genetics

MOLGEN is to be a computer-based system capable of reasoning about
experiments in molecular genetics. For the purposes of MOLGEN, the
world of molecular genetics consists of genetic objects (mostly DNA
structures) and operations on these objects.

! Radioactivity,
| Observable Attributes: U. V. Absorption
[etc.

|

[Nucleotide Sequences
| Theoretical Attributes: Bonding Patterns

[etc.

Figure 1. Attributes of Structures in the world of MOLGEN

. The structures may be viewed as having both observable and theoretical
attributes. The observable attributes are the readings from actual
laboratory measurements and correspond to those features of structures
which can be measured. These includes such things as biological
activity, radioactivity, ultraviolet absorption, or electron microscopy
observations. The theoretical attributes are those molecular features
hypothesized in the theory of molecular structures which are not
directly viewable. This includes such things as DNA precise bonding
patterns or known nucleotide sequences. The dichotomy between
observable and theoretical attributes of genetic structures may appear
at times to be academic since many of the theoretical objects are only
one step away from being observable and it is natural to lump together
an attribute with the physical observation of that attribute. For
example, a bubble is a structural attribute which corresponds to a
particular substructure of DNA defined in terms of a characteristic
bonding pattern. If a structure containing a bubble is prepared for
viewing under the electron microscope and photographed, then a
characteristic picture is generally observed. It is tempting to use the
term bubble to mean the hypothesized physical attribute or the
observation interchangeably. In the system being proposed, the
preparation of the structure and the viewing of the photograph
constitute one of the MOLGEN transformations. This transformation
contains information relating to the probability that the structural
bubble will survive the preparation for viewing and the probabilities
that other non-bubble structures will be misinterpreted as bubble
observations due to unusual overlapping of structures. It is precisely

the practical information of this type which separates a hypothesized
bubble from its observation.

The MOLGEN transformations are the available laboratory techniques
which transform structures or which make no apparent physical change
but cause a theoretical structural attribute to become visible. These
transformations make up the "legal moves" in the laboratory and
sequences of these transformations may be put together to form
experiments. Since hierarchy in knowledge structuring has already been
mentioned in the introduction as being important, it should be noted
that biologists theqselves describe genetic knowledge hierarchically.
For example, Ecq RT ‘is the name of an enzyme which cleaves DNA inside
the nucleotide sequence "GAATTC", Use of this particular enzyme may
be considered to be a legal move in MOLGEN. Eco RI is a particular
example of a restriction enzyme, a class %f enzymes which can be
characterized in terms of restriction sites. A restriction enzyme is
a particular type of endonuclease, that class of enzymes which cuts DNA
at a non-terminal nucleotide, and endonucleases are a subset of the
nucleases which cut polynucleotides. Reasoning about these enzymes may
take place at any of these hierarchical levels of descriptions, so that
knowledge about MOLGEN transformations may be seen to be hierarchical.
Similarly it is well known that DNA can be organized into genes and
punctuation, and that these are further organized as sequences of
nucleotides. Thus, genetic structures are hierarchically organized.

Within the context of structural problems, there are two major
goals in genetics experiments: (1) structural synthesis and (2)
structural analysis. In the synthesis experiments, the program can be
given a starting sample of DNA as well as a target sample. Designing a
synthesis experiment involves finding a sequence of experimental steps
(or legal moves) to transform the initial structure into the target
structure. Synthesis may also be designed in a backward sense, seeking
any suitable starting structures which can be transformed into the
target structure. The general task of analysis 1is the structural
elucidation of an unknown sample. Specifically, an analysis experiment
seeks to discriminate between competing hypotheses of structure for a
sample. A very basic form for an analysis experiment is the binary
discrimination experiment. In this case we are given two competing
sample hypotheses. Designing an analysis experiment means to find a
sequence of experimental steps whose final outcome yields
distinguishable sample characteristics in the observable world of
genetics for the alternate sample hypotheses.

As an automated laboratory assistant, there are two major tasks
which the program is expected to perform: (1) experiment checking and

from Escherichia coli RY13

2 DNA consists of nucleotides which form the letters of the
genetic alphabet. Nucleotides have two parts -- a sugar backbone and a
base and are distinguished by their bases. The four common bases are
adenine, guanine, cytosine, and thymine. These are commonly abbreviated
as A,G,C, and T respectively.

3 Restriction sites are those places at which the enzyme will
cleave the DNA molecule. These may be characterized in terms of
nucleotide sequences characteristic for each enzyme.

(2) experiment designing. Experiment checking involves the computer
simulation of previously designed experiments. This means that a set
of input samples would be defined and a specific sequence of laboratory
steps would be given. The computer system would then simulate the
sequence of transformations on the representations of the samples
terminating finally with a set of new samples. These new samples can be
compared with actual laboratory results as a test of the initial
hypotheses or of the accuracy of the transformations in the knowledge
base. Such a system would be used by the system designers for debugging
the transformation knowledge base and by geneticists for comparing the
predicted results from the MOLGEN system against actual laboratory
experiments. The checking facility would also be used to compare
alternate experimental designs before investing any laboratory effort.
A more sophisticated task for the program is the designing of
experiments. This means that the program would need to know of the
strategies involved in building sequences of transformations. This
strategy knowledge would be in addition to the legal moves of genetics
and encompasses a broad range of knowledge including such things as
plan sketches for various contexts, design cost heuristics which
predict the costs of considering certain design options, and mechanisms
for evaluating the relevance and specificity of laboratory
transformations to the current problem.

A substantial part of the effort in creating a system capable of
designing experiments as a laboratory assistant centers around the
creation and maintenance of an extensive genetics knowledge base.
These imply a number of system capabilities to facilitate knowledge
acquisition, integration, and debugging which are discussed in Chapter
Iv.

I11.2 An Analogy

A knowledge based experiment designing program for molecular
genetics may be viewed constructively in terms of an analogy involving
an intelligent assistant (the design program) for using a very awkward
text editor (lab techniques), The genetic structures being investigated
form the "text" for the text editor. In a synthesis experiment, the
geneticist is using the text editor to enter or modify some text; for
an analysis experiment he is trying to read the text. The commands
that the editing program can accept for manipulating the text,
corresponding to the actual laboratory steps or legal moves of
genetics, are quite awkward and at times 1ll1 suited to the task at
hand. For example, some parts of the text are in invisible characters
forcing the geneticist to issue commands to first change the text in
specific ways ; to modify the text he must first find ways to protect
other regions of the text; to add new text he must limit himself to
adding pieces from other text which he has around,, The design program
can be viewed as an intelligent assistant which has a good deal of
experience with the ins and outs of the very awkward editting program.
In addition to giving good advice based on its understanding of the
text editor and the geneticist’s intent, the assistant must be prepared
to accept changes to its knowledge base since the manual for the text
editor is continually updated as the user discovers the effects of the
various commands, The assistant must also be prepared to accept new

IS

strategies for using the editor and incorporate these strategies
way which effectively improves the quality of his assistance.

in

a

Chapter TIT

Problem Solving and Planning

III.1 Introduction

Since LT, the Logic Theorist, was introduced by Newell, and Simon
in [Newell56], problem solving research has been concerned with
techniques of problem solving and methods for expressing the problems.
Nilsson in [Nilsson74] gives an excellent survey and family tree of
problem solving systems in artificial intelligence, The word planning
in artificial intelligence connotes prior analysis involving perhaps a
sense of abstraction or remoteness from the primitive details of
problem solving. An intelligent problem solver may be expected to plan
a strategy for solving a problem. 1In this terminology,t?e MOLGEN
project wants to use planning in the design of experiments. Chapter
IIT discusses the fundamental ideas from artificial intelligence which
can be used in the generation of plans; Chapter IV will deal
generally with the issues and problems of managing of a large knowledge
base, First some broad classical frameworks suitable for viewing
experiment designing as problem solving will be presented: These
frameworks will illustrate the task in a rather simplified form in
preparation for Section TIII.2 which will discuss the more specific
strategies for planning with insights into specific applicabilities and
limitations. Finally Section III.3 will summarize some of these
strategies and introduce some issues which show the impact of some of

‘the ideas from knowledge based systems on the open questions in problem
solving.

111.1.1 Problem Solving as Heuristic Search

The term heuristic search 2 has come into general usage in
artificial intelligence to characterize problem solving methods which
are represented as a large tree of subproblems, Solutions exist at
unknown locations in unexplored areas of the tree. Judgmental rules,
called heuri tics, are applied to direct the search towards finding a
satisficing solution. The program begins its search along partial

Section 111.2.4.1 illustrates the numerical meaning of the
word "planning".

See for example [SandewallT1].

3 Simon in [Simon69] coined the term "satisficing" methods to
characterize those methods that look for good or satisfactory solutions
instead of optimal ones, 1In many satisficing situations, the expected
length of the search depends on how high the standards for the solution
are set, Dbut hardly at all on the size of the search space. Simon
gives as an example the time required to search a haystack for a needle
sufficiently sharp for sewing, The time required depends on the density

paths and stores a tree of the paths it has explored- Typically a
number is attached to the end of each branch to express the estimate of
further gain should that path be completely explored.

Since the notion of heuristic search is so general, the problem
of designing a molecular genetics experiment fits within the paradigm
of heuristic search at several different levels. Although many of the
planning ideas that will be described below may be classified generally
as heuristic search, they represent specialized insights into
particular approaches which may be missed in the most general
framework. For this reason, the formulation of the experiment
designing problem which follows may be viewed as a rather simplified
rendition for using heuristic search which will be expanded upon in the
later sections. In this simplified formulation, the top node of the
search tree represents the formal starting state of a genetics
experiment, for example, the initial genetic structures in a synthesis
experiment. The alternatives at each step in the plan are the various
possible laboratory steps that could be applied to transform the
current genetic sample toward the desired structure. Similarly, a
binary analysis experiment can be represented as a heuristic search, In
'this case, the initial state is a pair of alternative hypotheses for
the structure and the desired goal state 1is a new state where some
difference between the hypotheses has become observable. As before, the
alternatives are the various laboratory transformations. The
heuristics, which guide the choice of transformations at each step in
planning, reflect the expertise and judgement of the geneticist.

Several algorithms have been developed to assist in choosing a
minimum cost path in a heuristic search tree [Nilsson71], where an
estimating function is available to measure how close any intermediate

state in the experiment is to a final state. In order to guarantee
that the algorithms will find a minimal path, the estimating function
must never overestimate the distance to the goal. For complex

problems, a practical difficulty continues to appear in many contexts,
Simply stated, it is sometimes best to retreat from a goal in order to
get closer to it. In mathematical theorems, this arises in those cases
where it is easier to solve a more general theorem than a specific one.
In organic synthesis, it is sometimes better to build up a rather
complicated structure which seems farther from a target compound than
some current step in the synthesis, but from which an elegant reaction
will transform the complicated structure almost directly to the desired
product. These difficulties in designing are not limited to scientific
problems, but arise almost immediately in the course of automatically
designing a sequence of actions in quite restricted domains.

III. 1.2 Problem Solving as Theorem Proving

Newell and Simon's Logic Theorist program, an early approach to
-automatic theorem proving mentioned 1in the introduction, was based on
the approach of heuristic search. In this framework, the situations are
viewed as theorems, the operators are the rules of inference, the
initial situation is a set of theorems assumed to be true, and the goal
situation is the theorem to be proved:. Much of the activity of the

distribution of sharp needles but not on the total size of the
haystack.

program centered around the problem of deciding which rule of inference
to apply next. Since that time, logicians have been developing
techniques for proving theorems in the first order predicate calculus.
Since first order predicate calculus allows quantification, itappears
to be rich enough to cover much of the mathematics in science and
engineering. = “J.A. Robinson in [Robinson65] introduced a procedure for
proving theorems using a single rule of inference, resolution, which
can easily be used in an automatic theorem proving program.
Performance of resolution based theorem proving systems reached such
impressive levels that it gave rise to the vision of expressing all
problems in the predicate calculus and using a single powerful theorem
proving engine to do the proofs. It seemed that an elegant solution to
theorem proving, which had started as a problem solving application,
could be used generally enough to treat problem solving itself as an
application. A number of systems based on this idea have been reported
in the literature: (See for example [Green69].)

In spite of some initial excitement for this idea, a number of
practical difficulties have become apparent. The problem of consistency
in a large knowledge base is at the heart of an inherent difficulty
with the general use of predicate calculus to express problems. Bobrow
in [Bobrow75b] gives the following three theorems as an example:

All birds can fly.
Ostriches cannot fly.
An ostrich is a bird.

The difficulty derives from the fact that any set of inconsistent
theorems can be wused to prove anything at all, for example, that two
equals three or that the moon is made of green cheese.

Another serious difficulty with the methodology was presented by
McCarthy as a challenge in [McCarthy64]. 1In this memo, McCarthy
presents the problem of covering with dominoes a checkerboard having
two opposite corners deleted. It is well known that it is impossible
to carry out this operation,. The difficulty of using a theorem-proving
engine in this problem lies in the fact that in some sense the real
problem is in realizing that the problem is impossible. Newell in
[Newell65] sketches an approach to this problem which demonstrates that
the proof that the covering 1is impossible may be expedited if the
program knows about mathematical induction and can find a suitable
invariant, namely the number of uncovered black squares minus the
number of white squares. Use of this ngw knowledge constitutes what
has been termed a representational shift.

Re-formulation of large problems into a form usable for theorem
proving is a difficult task. Even such simple classic examples as the
Tower of Hanoi or the Monkey and Bananas Problem typically require

__--'_n--__

See [Meltzer68)] or [Robinson68] for a very readable discussion
on the use of higher level or full predicate logics for expressing a
range of problems.
g See [Amarel68] for an example problem where a sequence of
shifts of representation are used to make the Missionaries and
Cannibals problem easier to solve,

10

several attempts by the user to represent them adequately. Much of the
awkwardness derives from the bookkeeping that seems to be necessary to
keep track of the changes 1in the world state as alternate paths are
explored in search of a solution. Delegating the responsibility of this
to a theorem prover often means that considerable theorem proving
effort is necessary to carry both changed and unchanged facts through
state transitions. A number of approaches to this problem, which has
been termed the frame problem, are discussed in [Raphael71]. The
difficulty of problem expression combined with the inherent sensitivity
of the system to inconsistency has led to a belief among many
researchers in artificial intelligence that a pure theorem proving
approach will not ©be practical for large real world problem solving.
(See for example [Feigenbaum71]).

The common wisdom 1in artificial intelligence regarding heuristic
search and theorem proving for problem solving systems is that the
heuristic search methods are more efficient at finding solutions
because the philosophy of the approach stresses the importance of
domain specific information to guide the system to a solution6 Theorem
proving systems, although they are more difficult to steer , are in
some ways more capable of using what they know because of their
reasoning abilities, This apparent dichotomy of abilities has lead
some researchers to try to combine the best of both approaches:. The
STRIPS problem solver reported in [Fikes72] used a heuristic approach
known as Means—-ends analysis (See Section III.2.1 below) to guide
the search for operators and a resolution theorem prover to check
operator applicability. Another system reported in [Kling71a], ZORBA-I,
used an approach to reasoning by analogy to guide a theorem proving
system, Both of these systems are described in more detail in Section
III.2.6 below.

III.2 Fundamental Methods for Problem Solving

Since the frameworks of simple heuristic search and theorem
proving described above are inadequate for general problem solving,
much work has gone into developing more powerful methods. A commonplace
observation has been that much domain-specific knowledge is needed but
it has been generally believed that much of what can be stated about
strategy must be in some sense domain independent. For example, people
who are good problem solvers in one area are often able to solve

problems in another area. This belief has lead to a search for
fundamental techniques, The following section describes the techniques
which have been recognized by this research* It ranges from rather

general notions like Means-ends analysis or abstraction to specific
proposals for incorporating notions of hierarchy in a domain-
independent way,

Resolution strategies like the unit preference rule, which
gives preferred status to resolutions which might lead to the null
clause, or the set-of-support strategy give the system a sort of
directionality. They do not amount to a full goal-driven or goal=-
seeking strategy in the sense of providing domain-specific guidance to
the selection of subgoals,

I11.2.1 Means-ends Analysis

Means-ends analysis is a technique for problem solvigg pioneered
by Newell, Simon, and Shaw in their classic GPS system . ' GPS was
designed for use in experiments in problem solving by computer and much
of the progress in this area has been inspired by this early effort.
In one GPS formalism, a representation is given for a current and a
desired goal state and a mechanism is given for detecting differences
between the states, Actions, which change objects or situations, are
also defined. The task for GPS is to select a sequence of actions to
remove the differences. To do this, GPS requires a table of connections
which associate each kind of detectable difference with the actions
relevant to reducing that difference. Implicit in this technique is the
reasoning that if there is a sequence of differences D1, D2, D3, ey
Dn and action Al removes difference D1, A2 removes D2, etc., then the
sequence Al, A2, An will transform the current situation into the
goal situation.

As Simon [Simon69] points out, one might say this reasoning is
valid in worlds where actions are additive or factorable, However, the
problems to which problem solvers must addresss themselves are seldom
completely additive in this way. Actions have side effects. The order
in which goals are achieved is important. (See Section III.2.5.)

In practice, the differences and their associated operators are
ordered 1in terms of importance to direct the process to the most
important differences first. Thus the system iterates a cycle of
finding the most important differences between the current situation
and the goal situation, and then finding an operator to act on that
difference.

The gne step at a time approach of this version of Means—ends
analysis is characteristic of a number of methods known as forwards
reasoning. The operators in such systems are sometimes represented in
terms of production rules and a set of such rules together with a
mechanism for their application is termed a production system. Fo
example, 1f A is an operation and B,C, and D are sufficient conditions
for its use then the following might be used to represent the operator:

Presuppositions: B and C and D
Operation: A

The productions are arranged in such a way that each application
of a production rule during the problem solving process makes changes
in the world to reflect progress toward the goal. These changes allow

" See [Neweli59] and [Ernst69].

8 A modified version of Means-ends analysis incorporating problem
reduction, as reported in [Ernst69], will be discussed in the next
section.

Y For forward reasoning systems, these conditions have sometimes
been termed "presuppositions". The implication is that they must be
satisfied before the operation can be applied. In the problem
reduction systems (See Section III.2.2.), the conditions can be
used to set up subgoals.

12

other prodqﬁtion rules to trigger and carry the solution another step

forward. In the Means-ends characterization above, each difference

corresponds to the conditional part of a production rule and the
associated operator corresponds to the action part or right hand side
of a production rule. The primary feature of this approach is its
flexibility. Although it is a relatively simple system, it affords
rather complex goal-seeking behavior with flexible reasoning from
states which may be close to or distant from the goal state. Forward
reasoning has been termed goal seeking in [NilssonT76]. The basic
simplicity of this method limits its ability to cope with large
problems since the worst case time to approach a goal N ﬁteps away
where there are K potential operators at each step grows as K .

IIIr2.2 Problem Reduction

One of the most basic techniques used to tackle large and complex
problems is the idea of factoring them into independent subproblems,
When the subproblems that are used correspond to simpler instances of
the original problem so that the same technique is applicable, this
process can be recursive: Because of the plans within plans nature of
this process, Simon in [Simon69] has called this a formal hierarchy in
contrast to a more general notion of hierarchy where the subproblems
are not necessarily independent,

Such techniques are called reduction methods. In many cases work
proceeds backwards from a goal state towards starting states and the
subproblems are encountered in the process of satisfying necessary
preconditions. For example, suppose that A is a goal state and B, C,
and D are necessary preconditions, Then the following reduction rule
may be used to represent the relationship.

Preconditions: B C D
Goal: A

Alternatively, if B, C, and D are actions, problem reduction could be
similarly expressed as follows.

To Achieve: A
Apply: BCD

The term backwards reasoning should not be taken as referring merely to
the direction that the problem solver uses on a problem, that is, from
a goal situation to an input situation using inverse operators. The
important point is that the problem is factored into independent
subproblems by establishing subgoals. Nilsson terms this technique
problem reduction or reasoning backwards‘, Some authors call it top
down or goal driven planning in contrast with forwards reasoning
systems which are termed bottom up or data driven.

The Means-ends analysis algorithm presented in the previous
section may be modified slightly to carry out problem reduction. This

See [DavisT76a] for an overview of some ways of representing
the memory aspects of a changing world state.

13

extension involves distinguishing between two basic criteria for
selecting operators termed desirability and feasibility by Ernst and
Newell. Desirability means that an operator should produce an object
that is similar to the desired situation. Feasibility means that the
operator should be applicable to the input situation. When GPS selects
an operator according to its desirability, this amounts to establishing
a subgoal: This version of Means-ends analysis was an 1important part
of GPS. The desirability considerations for a problem viewed in one
direction are equivalent to the feasibility considerations for the
opposite direction.

Returning to the representation of domain actions as production
rules, it is often wuseful to distinguish between conditions which are
"presuppositions" and those which are ‘'preconditions". Production
rules whose presupositions are satisfied may be said to be feasible.
For production rules which are desirable, it satisfaction of the
preconditions may be set up as a subgoal. Thus the operational
distinction between preconditions and presuppositions is whether any
planning effort can be allocated to satisfy them, If the costs and
potentials of satisfying conditions can change, it becomes a question
for the knowledge base which way a given condition should be treated,

Many authors have demonstrated that a system can at times usefully
employ a combination of forwards and backwards reasoning more
effectively than either alone. Whether to reason forwards or backwards
depends on the domain. If there are few goals and many rules, then
reasoning backwards is likely to be more efficient. If there are few
rules and many possible goals, reasoning forwards might be preferred,.

III.2.3 Backtracking

When it is possible to sketch out the solution path to a problem
as a single tree of fixed subproblems, then the technique of factoring
big problems into subproblems is entirely sufficient. For many
practical problems the component subproblems depend on the particulars
of each situation, Alternative approaches may be given with the
intention of picking the one that works best, This suggests that a
problem solver must have a mechanism for trying some steps in a plan in
a tentative fashion, leaving open the option of discarding them later
for something else.

Considerable work on this idea has come from the development of
the MICROPLANNER system, implemented at MIT by Sussman, Winograd, and
Charniak. (See [Sussman72].) The first implementation contained an
automatic backtracking strategy where the failure of any goal resulted
automatically in the undoing of the computation back to the failure
point where another alternative would be selected. If the alternatives
at that point are exhausted, backtracking would continue back further
to the next point. Experience showed that this strategy often resulted
in much wasted computation, For example, if a goal was to achieve (A
and B) and B failed after A succeeded, the failure would automatically
cause both steps in the plan to be undone. A subsequent alternative
might require A to be done over again resulting in an apparent
computational waste, Even more serious is the possibility that the
system will backtrack to another alternative which is doomed to perform
exactly the same calculation and fail again. One example is that of a

robot building a block structure. His programming is such that his
first alternative is to always try first to pick things up with his
right hand. In the course of building, he picks up a block which is
very hot and burns his right hand, He drops it at once, commences
automatic backtracking and tries again with his left hand. Criticisms
of automatic backtracking and suggestions for other mechanisms have
been reported in detail in [Sussman72] and resulted in the development
of a newer system known as CONNIVER,

An emerging consensus on the backtracking question is that the
backtracking concept has been used to cover too broad a spectrum of
situations. A variety of situations needs to be distinguished and
specialized solutions need to be used. One example of a general problem
formerly covered by backtracking is that of interactions between higher
level goals giving rise to conflicts deep in the refinement process,
Instead of simply backtracking and choosing new higher level
subproblems, it is generally better to use techniques which analyze the
nature of the interactions. (Techniques for handling interactions
between goals are discussed in Section III.2.5).

The CONNIVER philosophy switched from that of PLANNER toward
providing some lower level mechanisms from which a programmer could
implement his own particular approaches to the backtracking problem.
Following the ideas in [Bobrow72], the CONNIVER language included a
construct known as a context tree, where each context or data frame was
in effect a copy of the state of the world which could be passed to
daughter nodes.. For simple backtracking, any changes made by the
daughter process during problem solving would simply be discarded when
the daughter node returned. Alternatively using the ADIEU mechanism,
contexts may be selectively returned so that computations made by the
daughter node need not be repeated, Another CONNIVER construct, the
AU-REVOIR mechanism which permits computation to be resumed at a given
point in a daughter node, creating what Bobrow in [Bobrow74] called a
co-routine regime. The advantages and uses of the various control
mechanisms are not settled yet and more work will need to be done
before the issues are thoroughly clarified,

I1I.2.4 Hierarchical Planning

The notion of hierarchical planning reflects an inherent aspect of
planning - that planning, to be efficient, must take place in
successive levels of abstraction. This means that the highest levels
of planning must consider operations or legal moves that are in some
sense removed from the numerous alternatives at the primitive level of
the domain. Hierarchical planning reflects the wisdom that a program
which spends all of its time worrying about the details in a subject
area can achieve only the solutions to toy problems. The following
sections discuss the historical development of the ideas of
hierarchical planning and attempt to clarify exactly what the ideas
are. They start with an mathematical elaboration of the problem,
discuss some approaches to using this idea, and conclude with a
framework for hierarchical planning which may be useful in a variety of
domains.,

111.2.4.1 Well Spaced 'Planning Islands'

Generally speaking, a well chosen division of a problem into
subproblems can have enormous implications in the reduction of-search
tine. In his excellent early survey article of artificial intelligence
[Minsky61], Marvin Minsky demonstrated a reduction by what he termed a
fractional exponent. In a search tree with 10, ranches descending from
each node, a 20 step search might involve 10™ trials, clearly out of
the question for a real search. Suppose that four points or "planning
islands" along the path can be found at levels 4, 8, 12, and 16 of the
planning tree. This strategic placement divides the initial large
search into five ipdependent searches of four levels each requiring a
total of only 5 10 trials.

As Minsky concludes

Thus it will be worth a relatively enormous
effort to find such islands in the solution of
complex problems. 6 Note that even if one
encountered, say, 10 failures before success1 one
would still have gained a factor of perhaps IO = in
overall trial r‘eductioq1 Thus, practically any
ability at all to plan , ar analyze a problem
will be profitable if the problem is difficult.

This reduction is dramatic indeed although it depends heavily on
the placement of the islands, For example, if the islands were placed
at levels ,17,18, and 19 in the planning tree, the search would still
require 10 =~ 'trials. Thus we see that merely breaking a problem into
_subproblems is not nearly as powerful an idea as breaking it into well-
spaced subproblems. Perhaps the most straightforward approach to
finding planning islands is to use a simplified or abstracted model of
the problem situation, The idea is to have an abstract model which
preserves the character of the problem situation but with much of the
detail suppressed. A solution to the abstract problem could then be
used to provide planning islands in the more complex space of the
original problem. These islands may be regarded as a sequence of
subproblems in the original space. Even if the abstracted problem is
not a perfect homomorphism of the original, its solution may prove
useful as a guide. The next section introduces an approach to
abstraction used to supplement the Means-ends analysis of GPS.

111.2.4.2 Abstractiofhe 'Planning Method' of GPS

Newell, Shaw, and Simon reported an auxiliary technique for GPS

beyond Means-ends analysis termed the Planning Method in [Newell59] and
used it to find proofs in propositional logic. The main steps of the
method are:
Because of the central importance of this idea in pruning
problems down to manageable size, Minsky and other writers have termed
this activity planning to connote a high level of processing distinct
from the actual searching of the problem space. In the MOLGEN context,
this terminology would permit the wuse of the planning heuristic to do
experiment designing.

16

a. Abstracting by omitting details of the original
objects and operators to form an abstract problem
space,

b. Forming the corresponding problem in the abstract
space,

C Solving the abstract version of the problem using

Means-ends analysis.

d. Using the solution of the abstract problem to form
planning islands for the original problem.

e Solving the original problem,

The method actually contained failure points and loops between the
steps shown above so that, for example, alternate solutions from the
abstract space could be used for making planning islands 1in the
original space. The particular abstraction scheme that was employed for
both states and operators was to (1) ignore differences among logical
connectives (AND and OR), (2) ignore negations, and (3) ignore the
order of symbols,

This abstraction scheme may actually generate no plans or many
plans, although it can be guaranteed that an abstract plan exists if a
plan in the original space exists. Because of the abstraction process,
some of the plans that it generates may have no counterpart in the
original space, The method appeared to be very powerful in producing
proofs.

III.2.4.3 Hierarchy of Abstraction Spaces

As Polya has noted in [Polya5l], society's aphorisms contain great
kernels of wisdom if we can but learn when to apply them.

If a little bit helps some, try some more.

The abstraction scheme from GPS was only used at one level, Could
the abstraction itself be abstracted? Although the scheme used for GPS
would need a different approach to add more levels to it, Marvin
Manheim described a hierarchical approach for the particular problem of
highway route selection - and implemented a hierarchical strategy for
design in a computer program [Manheim66]. Manheim's procedure
incorporates two main notions:

a. The idea of refining a design progressively
in steps from the level of very general
plans down to the very precise level of
actual construction,,

b. The idea of assigning probabilistic wvalues
to plans at the high levels and
particularizing those plans having the the
greatest expected value,

17

Manheim's hierarchy consisted of the specification of several
increasingly constrained areas for locating the highway with more
elaborate estimations of cost as the route was more stringently
constrained.

Since Manheim used a Bayesian decision theory model to guide the
selection of paths, the costs of the actions even in the upper levels
of the abstraction spaces had to be estimated before the program could
decide which alternatives in the design to pursue. It was a weakness of
the procedure that these distributions had to be estimated by the user,
a highway engineer, although it 1is possible that other methods of
estimation would have proved satisfactory,

ITTI.2.4.4 Criticality levels as Abstraction Levels

The technique of using a hierarchy of abstraction levels has been
pursued in domains related to robot planning in the ABSTRIPS
[Sacerdoti73] system developed at Stanford Research Institute. The
process of abstraction used extends the methods described above in that
it is domain independent.

In the robotics systems, the abstraction spaces differ from the
original or ground level space only in the level of detail used to
specify the preconditions of operators. At each stage of a developing
plan , only those operators of sufficient significance need to be
considered; operators which achieve only details are simply ignored.
This approach makes the mapping of solutions from the higher
abstraction spaces toward ground level very straightforward. In
ABSTRIPS,1§he preconditions for the operators are assigned criticality

levels. By ranking some of the preconditions as details, ABSTRIPS
is essentially capable of taking big steps in developing a "length
" first" plan. The planning process at each criticality level is

completed all the way to an abstraction of the goal state before
dropping to the next lower abstraction levels

The appropriateness of any assignment of predicates to criticality
levels is reflected directly by program performance. In particular, a
good assignment can be characterized by a minimum of backtracking
during the refinement process. The importance of this assignment
brings attention to the practical problem of determining these values.
The ABSTRIPS system started with a user supplied partial ordering of
predicates, but reserved the right to boost the criticality value for a
literal if no short plan could be found to establish a goal value for
it, In Sacerdoti's subsequent project, the NOAH system, planning is
done in a hierarchical approach as in ABSTRIPS except that the
hierarchy is determined by the calling structure in the SOUP code of
the system, that is, it is expressed procedurally and is fixed in the
System.

It is worth comparing this idea to the notion of operator
selection used in GPS where at any stage of plan formation, an ordering
is used to determine which differences and operators to consider next.
GPS remains limited to seeing only one step ahead, even if that step is
a mere detail.

18

I1I1.2.4.5 Overview of Hierarchical Planning

Section 111.2.4 began with Minsky's numerical formulation of
planning islands which demonstrated the combinatoric significance of
abstraction but yielded no hints for practical application. Newell and
Simon's abstract planning idea from GPS then gave us an example from
theorem proving and illuminated the relation between planning islands
and abstraction spaces. Finally, Sacerdoti's hierarchical planning idea
provided an approach for establishing a hierarchy of abstract planning
levels applicable in a broad class of domains,

There remain two unexplored aspects of planning with criticality
levels in a complex domain. Firstly, interactions in a complex domain
are likely to be subtle so that the assignment of predicates in the
operators to criticality levels cannot be done simply by inspection,
Any automatic approach for making this assignment could prove
interesting.

Secondly, it may be possible to relax the notion of strictly
additive refinement somewhat. In Sacerdotis approach, each successive
refinement may add details % the existing solution, In analogy with
the near misses of Winston ~, a more general approach to refinement
might permit subtracting of part of a design proposed by an earlier
more abstract guess. This can be illustrated by an example from
molecular genetics+ The restriction enzyme, Eco. RI, which cleaves DNA
at a particular restriction site has been mentioned already in Section
11.1. Suppose that the experiment wunder consideration requires as an
initial step the isolation of two genes which are rather distant from
each other on a bacterial chromosome. A hierarchical approach to this
might permit reasoning about the use of an abstract restriction enzyme
to cleave the DNA and postpone the choice of a particular restriction
enzyme. The abstract restriction enzyme could be assumed to simply
split the bacterial chromosome in the center between the two genes and
designing could continue to later parts of the experiment. Later when
this step is refined, it is wunlikely that any particular restriction
enzyme suitable for separating the two genes will be found to split the
chromosome in precisely this way. It may cut a little closer to one
gene than the other or even remove some of the material between the
genes, Thus the refinement process must technically undo some of the
state predicted by the abstraction. Alternatively, this example may be
seen as involving a refinement of a positional specification. This
notion of refinement involves a flexibility in the representation of a
world state in addition to the assignment of criticality levels. A
number of difficulties arising from this relaxed form of hierarchical
abstraction will be discussed in Chapter V.

III.2.5 Interacting Goals

The powerful notion of hierarchical planning described above
involves judicious factoring of a large problem into independent
subproblems. The question arises whether it can still be applied if the
subproblems are not quite independent, Even very casual observation of
human problem solving behavior shows that people plan ahead without the
ability to foresee that their subproblems may interact. A shopper in an

See [Winston70]

19

unfamiliar supermarket who needs several items would certainly pick up
item B if he unexpectedly passes it enroute to item A. Thus the shopper
can re-order his activities and take advantage of any surprises while
he shops.

The type of interaction in plans that has been studied the most is
in the interactions between conjunctive goals. For example, if the goal
of a plan is to achieve both A and B, achieving one of these goals may
easily affect the achievement of the other. Problems in Blocks World
have proved rich enough to explore these interactions and the following
problem is probably the simplest instructive example.

Initial Situation Goal Situation

Figure 2. Interacting Goals

The interactive conjunction of goals is simply "A on B" and "B on C".
The rule is that a block can be moved only if it has a clear top,

The problem of achieving interactive conjunctive goals appears in
many types of problem solving. For example, any problem which is
stated with initial and final states will have several distinct

-differences between these states. Reducing that set of differences may
be viewed as the conjunction of reducing each of the individual
differences. Even if the differences are viewed in a hierarchy, this
merely postpones their inevitable appearance as the plan is refined
unless the high level subproblems are strictly independent,

Returning to the sample problem above, let us see what a Means-
ends analysis will do. Suppose it tries first to put A on B. After
clearing A, it can place A on B. But now, 1in order to put B on C, B
will have to be cleared - thus undoing the first goal that was
achieved. The situation is even worse if the first goal tried is to
place B on C.

A number of approaches to problems like this have appeared in the
literature. Sussman, whose HACKER system is presented in [SussmanT73],
makes what he calls a linearity assumption which simply means that
there is an order with which the goals can be achieved. His program
then continues in a manner analogous to Sussman's own programming. It
tries to create a plan; it discovers bugs; it modifies the program to
fix the bug. The bug fixing knowledge is contained in a set of critics
which can compare the bug with known types of problems caused by the
linearity assumption, and suggest revisions to the plan. For example,
HACKER has a mechanism called protection, which looks for actions that
violate previously achieved goals. The fix in this case is to try to
reverse the order of higher level goals. While HACKER will often

20

produce a correct plan eventually, it does so in some cases in a cycle
of building a wrong plan, suggesting revisions with critics, and then
building another possibly wrong plan. HACKER works effectively with
problems which can be fixed by re-ordering the goals. The problem in
Figure 2, unfortunately, is what Sussman terms an anomalous problem for
which HACKER achieves a non-optimal solution..

Austin Tate has suggested that it is possible to abstract the
nature of the interactions between goals and use this information to
suggest new approaches to this problem, His system, called INTERPLAN,
is described in [TateT74] and [Tate75] and makes use of the idea that
abstractions of the interactions between goals are easier to work with
than the original goals themselves: Tate finds it useful to abstract
the assumed holding periods, or periods over which goals are assumed to
be true, INTERPLAN analyzes the holding periods for both main goals
and first level subgoals in the plan with a view toward moving them
around to ease conflict situations. Moving a subgoal to an earlier part
of the plan is what Tate terms PROMOTING the subgoals INTERPLAN is
capable of creating an optimal solution to the problem in figure 2
after moving subgoals around so that the holding periods of the higher
level goals remain unbroken

Probably the most satisfying approach to this problem is used in
Earl Sacerdoti's NOAH system described in [Sacerdoti75al]. The key idea
is that NOAH avoids the linearity assumption and considers the
conjunctive goals in parallel as long as possible,. Within the NOAH
system, the parallel representation is achieved using Separate and Join
nodes in a procedural network, Instead of using critics in Sussman's
sense to fix bugs introduced by the linearity assumption, Sacerdoti
uses constructive critics to create an ordering for the goals based on
the interactions which are discovered. This is carried out by a resolve
conflicts critic, If an action in one conjunct deletes an expression
that is a precondition for a subgoal in another conjunct, then the
endangered subgoal may be moved so that it is achieved before the
action that would delete the subgoal,. This synthesis of the best ideas
from both Sussman and Tate is a very powerful mechanism for generating
plans. Used in conjunction with other critics, this approach to
resolving conflicts has enabled the NOAH system to tackle many problems
that are quite beyond the capabilities of both HACKER and INTERPLAN.

Sacerdoti sums up the basic philosophy of NOAH in [SacerdotiT75al
as

NOAH makes no rash assumptions .

Thus the linearity assumption in HACKER is rash because its effects
must often be undone, The philosophy is continued in the way NOAH binds
available objects in plans, For as long as possible, NOAH postpones
binding the objects to particular places in the plans and uses formal
variables. No guessing is done early to be undone later. 1In the end,
other critics are invoked to simplify the plan and remove redundant
preconditions. The basic idea of maintaining generality in planning
appears to be a very important principle for the generation of plans,
It is worth recalling at this point that the general problem of
interactions between goals has been specialized to the problem of
interactions between conjunctive goals* The algorithms described above

21

are not capable of dealing with interactions between disjunctive goals,
for example, "A on B" or "A on C". Goals in complex environments are
likely to contain complex expressions involving both conjunction and
disjunction.

III.2.6 Using Existing Plans

One of the characteristics of human intelligence is the ability to
use the solutions of old problems to aid in finding solutions for new
problems. In the most elementary form, this involves recognizing an old
problem and retrieving its solution. An approach known to make this
effective 1is to generalize the solutions that have been found
previously. For example, it is more effective to save a technique for
solving a wide class of linear equations than it is to save the
solution to just one equation. In many cases like this, the task of
solving a particular problem from first principles is entirely
equivalent to the task of finding a general solution,. This idea of
generalizing a solution 1s closely related to notions of reasoning by
analogy which will be discussed below. Finally, one of the motivations
for using old plans comes from the robotics research in planning and
executing plans. In executing a plan, a robot may encounter situations
in his world that were not anticipated or were not in its world model,
eg. the path is Dblocked by an unexpected obstacle. The idea is to
preserve as much as possible of the existing plan, to make local
modifications to deal with the difficulty, and generally to avoid
planning the entire problem from scratch over again with the new
knowledge incorporated.

The first version of STRIPS [Fikes71] used a combination of
theorem proving methods and Means-ends analysis. Within a given world
model, resolution-based theorem proving was used to decide whether

-operators were applicable and whether goals had been satisfied. For the
actual choosing of operators and searching through the world models,
STRIPS used means-ends analysis. In 1972, the MACROP feature was added
to STRIPS to increase its problem solving power (See [FikesT72b]) by
enabling STRIPS to generalize and save solutions to problems. A saved
solution or macro action could then be used as a single component of a
new plan to solve a new and typically larger problem.

A major new feature of the MACROP addition to STRIPS was the
capability to generalize plans.. The following simple two step plan for
achieving the goal of locating a box within a room will be used to
illustrate the process.

Go through DOORl1 from ROOM1 into ROOMZ2.

Push BOX1 through DOOR? from ROOM2 into ROOMt.

-The immediate impression from a plan like this is that it could be
generalized so that it does not mention specific objects.
Unfortunately, the simple idea of replacing each unique constant by a
parameter (eg. DOOR? by anydoorl) is not sufficient+ In the first
place, this approach doesn't always produce the most general plan. For
example, the basic plan above would still be valid if the robot started
from a room distinct from the one into which he pushed the box. 1In the

22

second place, some operators have restrictions on their applicability
to objects. The procedure that STRIPS uses for generalizing plans is a
domain independent manipulation of the old plan. First, constants which
are preconditions for any operator are replaced by distinct parameters
every time they appear, Then STRIPS constructs proofs and resolves the
clauses in the plan using the proofs of satisfiability in the original
specific plan as a model, At the end of this process, constraints which
appear while substituting parameters for constants in the new proof act
as constraints in developing the more general plan. For example, the
sample plan above would be constrained so that the GO operator takes
the robot into the room where the box is. At this point, some
excessively general steps may remain in the plan,- For example, if the
two clauses INROOM(R1) and INROOM{(R2) were produced as preconditions
for the plan, RI would be bound to R2 to prevent the plan from
appearing to accept situations where the robot was nonsensically in

more than one location initially. These over generalizations
correspond to those cases where two parameters are produced from a
single occurrence of a constant from a single clause. Such parameters

are bound together. Finally, steps whose outcome in the generalized
plan now depend on a unique assignment of parameters are modified to
check for this condition. For example, the plan

Push BOX1 to LOCATIONI.

Push BOX2Z to LOCATION2.

depends on BOX1 being distinct from BOX2. A check for this
condition is added to appropriate steps from the original plan.

The second phase in the use of generalized plans by STRIPS is the
monitoring of the execution of plans,, Much of this work is contained in
the PLANEX algorithm which makes use of a special data structure, the
"triangle table", to keep track of the effects of each operator used in
a macro plan on the changing world state. Considerable emphasis is
placed on efficiently finding the longest applicable "tail" or final N
steps of a plan, The motivation for this emphasis derives from problems
encountered during actual execution of robot plans. O0ften, when
execution fails and replanning is necessary, it is sufficient to
introduce a short sequence of operators to fix the problem thus'forming
a plan by appending these operators to an appropriate tail. The two
capabilities of the MACROP feature, generalizing plans to save as macro
plans and then using these generalized plans or parts of them to solve
bigger problems substantially increased the problem solving range of
the STRIPS system.

The idea of generalizing a plan used in STRIPS may be cast as one
form of reasoning by analogy. Generalizing involves finding a solution
which can encompass as special cases more than one specific plan,
Analogy covers a broader range of techniques in using a known solution
to assist in finding another, The first computer-oriented research in
analogical reasoning was reported by Tom Evans in [Evans68]. Evans
created a system, termed ANALOGY, which successfully worked problems
from the widely used Miller Analogies Test, This exam presents each
examinee with a pair of figures, A and B, for which some relation
holds, a third figure C which corresponds to A, and a set of five
potential answer figures. The question is invariably phrased as "A is

23

to B as C is to . .." . The computational task may be seen as exploring
a space of possible analogies and picking the one which is in some way
the best. Much of the computational work in Evans’ program 1is devoted
to the pattern-recognition aspects of processing the line drawings to
identify parts of the figures. Analogies are generated which consist of
a number of operations wused in the tests, for example adding or
deleting objects, rotation, reflection, and such. Rule strengths,
associated with each of the candidate operations in an analogy, are
used to rank potential analogies generated by the program. The
particular ranking used appears to be fairly specific to the analogy
tests. Finally, after the best analogical relationship is found, the
ANALOGY program is finished and does not use the relationship for any
further problem solving.

In 1971, Robert Kling reported a system, ZORBA-I, which used a
not ion of analogy to improve the performance of a problem solving
system. (See [Kling71bl). After recognizing a variety of techniques in
problem solving which have gone under the general rubric of reasoning
by analogy, Kling directed his efforts to adding one type of such
reasoning to QA3, an existing resolution-based problem solving system.
ZORBA-I accepted two theorems, T,, a theorem with a known proof, and
T,, ‘an allegedly analogous theorem whose proof was sought. Kling ‘s
approach was based on two fundamental ideas,

. That the proof for T, could be expedited if the data base was
limited to those datums most likely to be relevant in the proof.
This limitation was to prevent excessive floundering among
irrelevant inferences from irrelevant axioms.

2. That the subgoals or lemmas used in the proof of T1 could be used to
provide planning islands in the proof of TA'

To carry out the second idea, ZORBA-I creates an analogy which
consists of a one-to-one mapping of predicates appearing in the proof
of T1 to those appearing in T, and a one-many mapping between the
axioms used in the proof of T1 and the limited data base for proving
T,. ZORBA-I permits a user to supply a semantic template for each
predicate which is used to help constrain the predicate mappings to
more meaningful ones. Kling distinguishes between a complete analogy
which includes all the predicates and axioms appearing in the proof of
T, from a partial analogy which contains only some of them. ZORBA-I
develops a sequence of partial analogies that terminate in a complete
analogy by successive extensions and a heuristically guided clause
matching process. Kling’s particular approach to analogy was heavily
influenced by the kinds of information that can be incorporated by a
resolution-based theorem proving system: Although ZORBA-I communicated
with its theorem prover strictly via a modified data base, this proved
to be a powerful enough approach to allow the system to tackle a
variety of problems, particularly from algebra, which had previously
been beyond the capabilities of QA3.

At the present time there remain two rather fundamental problems
that are left concerning the use of generalization and reasoning by
analogy. The first problem is as follows.

When is a plan worth saving?

24

If every plan is saved, the system must face a continuously increasing
repertoire of stored plans. The second problem is related.

Given a new problem to solve, how can the
system find a previously solved analogous problem ?

Answers for Dboth questions may depend on mechanisms for classifying
plans and problems. The two questions require the inverse operations of
saving and retrieving for plans which have been classified by
applicabilities and costs Effective <classification systems are
generally based on hierarchy. In addition, plans may well be saved
with hierarchical suppression of particular plan details, A plan for a
robot solving problems in a number of interconnected rooms may well
suppress any details about opening doors if opening a door can be
viewed as a trivial subproblem. These ideas are among those to be
explored the next section.

II1.3 Summary of Planning Ideas

To conclude Chapter III on planning, it is worth looking back over
the fundamental ideas and reviewing what is known and where further
research is needed. We started with two classic views of problem
solving - heuristic search and theorem proving. The frame problem
highlights much of the awkwardness of a purely theorem proving approach
and in fact the combinatorics that come into play when theorem proving
is insufficiently directed can leave a system floundering about proving
irrelevant consequences, Heuristic search, whose philosophy is based on
the use of domain specific knowledge for gquiding this process, 1is too
general a notion to provide any deep insights: Means-ends analysis was
the first example of a forward planning formalism which offered a great
deal of flexibility in problem solving behavior at various distances
from the goal, It and other one step at a time systems, however, suffer
the combinatorie consequences of exponential worst case behavior. This
leads us to problem reduction with the conventional wisdom of divide
and conquer, The logical extension of this, hierarchical planning, can
cut down search by a fractional exponent, but leaves us with the
technical problem of determining the appropriate abstraction spaces for
a domain and for finding the mappings from the abstraction spaces into
the original problem space. The criticality 1level idea of making the
abstraction spaces correspond to successive levels of detail in the
domain was a first attempt at defining a domain independent notion of
abstraction, This transforms the designer’s search for suitable
abstraction spaces into a search for appropriate criticality level
assignments to the predicates describing the ground level
transformations in the problem domain. When we ask how knowledge of
the problem domain can be wused to determine these assignments we have
left planning questions behind and have entered the area of knowledge
base questions, .

The other planning topics from above also lead directly into
questions in the area of knowledge based systems. We considered the
problems of interacting goals and discussed the known solution to the
problem of ordering interacting conjunctive goals. Disjunctive goals

25

apparently require new mechanisms. We also discussed the STRIPS
technique for generalizing and saving plans and the ZORBA-I technique
for reasoning by analogy. This left us with two fundamental questions:

When is a plan worth saving ?
How can a system find a known solution to use for

analogical reasoning?

More generally, we are left asking how a problem solving system
should know what use to make of any transformation in the problem
domain - be it a previously solved plan or an elementary
transformation. This leads to more knowledge base questions:

How should plans be represented?

How can plans be classified?

How should the applicability or feasibility of
transformations be represented? How can this be made

flexible to accommodate changes in the knowledge base?

How can a system acquire strategy knowledge to guide the
problem solving process?

How should the knowledge ©be structured so that it can be
explained?

How can the system assist a domain expert in structuring

knowledge?

The practical application of the planning ideas that we have
discussed requires answers about the knowledge base itself and leads us
directly to Chapter IV.

26

Chapter IV

Knowledge Based Systems

Several artificial intelligence research projects have been
developed to meet the needs of an application as well as to satisfy
theoretical computer science interests, Researchers with such projects
have often tended to view computer science as an empirical science.
The design and theoretical work in such systems is motivated and
enriched from the encounter with the practical difficulties of creating
computer systems having capabilities for managing a knowledge base
which is large enough and flexible enough to meet the needs of the
application, Thus, a discussion of these capabilities is the starting
point for this chapter. Section IV: 1 proposes some capabilities for
MOLGEN which have been achieved separately in various other systems.
Attention is focused on two of the underlying aspects of the
capabilities which are discussed in detail in Section IV.2 and
Section IV. 3. Chapter V continues the discussion by proposing
an architecture for a system based on these principles,

Iv. 1 Capabilities for a Knowledge based System

In setting forth a set of capabilities for a knowledge based
system, one 1is reminded of the story of a family approaching an
architect to design a house for them. The architect may start out by
asking them what they have in mind, and the answer, if the story could
be abbreviated, is everything. The house should be small, and yet have
rooms for many purposes* The front room should be large for parties,
yet cozy for a small group. And of course, as the architect discovers
(and what is in practice the first question) the house should not be
too expensive. Even if the architect can work out compromises and stay
within the budget, his design may be obliterated and his estimates
thrown off if the family is allowed to suggest too many minor
modifications during the actual construction.

Since the design of a system depends directly on its desired
capabilities, and resources are too limited to try to achieve
everything, it would be useful to outline at this time some proposed
capabilities for the MOLGEN system,

217

apability to Solve

roblems Effectively

/\

g Q

Capability to Manage and |
Use a Large Knowledge Base |

/\ /\ /\ /\
I l l

____________________ i S, e
| Capability to 1 I | Capability | | Capability to |
| Acquire Knowledge | | | To Explain | | Use Knowledge |
| from a Domain ! | | The Use of | | When it is
i Expert I I i Knowledge | i Applicable
____________________ I ——— e —— e

/\ 1 /\

Adequate Internal
Representation

Chapter II has already explained the scope of the problem solving
. aspect of this project and Chapter III reviewed the state of the art in
problem solving. It is well known that effective pro?lem solving in a
sophisticated domain rests on a large knowledge base . In the MOLGEN
case, this knowledge base will include the information about the
objects and actions of molecular genetics and strategies for designing
experiments,. Management of the knowledge base includes the ability to
acquire and integrate new knowledge from an expert, to modify existing
knowledge, and to provide an organization of the knowledge that
facilitates competent use.

The development of a large knowledge base for MOLGEN will require
some expeditious means for incorporating the knowledge of molecular
genetics into the computer. The transfer of knowledge from a domain
expert may be seen as a pair of translations as follows:

[Mental Knowledge] => [External Form] -> [Internal Form]
Human Memory What is written Computer Memory

Although many early systems included a programmer in this chain, this
is an incumbrance we are seeking to avoid. The first translation in the
diagram above is carried out by the domain expert. The difficulty of

It may be noted that the knowledge base we have in mind is
large when compared to some early problem solving programs, but small
when compared to the size of some current data bases. Section IV.3
discusses these relative sizes.

28

the translation depends on what has been described as the conceptual
distance between his mental form and the external form, An important
objective of the design of the external form is to provide a structure
which parallels the conceptual model of the domain expert. In the
MOLGEN case, we believe that the characterization of the knowledge as
objects, actions, and strategies reflects this design objective.

The state of the art in knowledge acquisition techniques is still
a long way from being able to reduce the conceptual distance
substantially in a general way, A complete reduction might involve
entering directly the text, graphs, charts, and photographs from a
technical journal in the domain - for example, The Journal of Molecular
Biology. Other than the obvious technical problems of providing for
multiple media and the inadequate state of natural language and visual
processing techniques, there are two fundamental issues. The first is
that these journals assume a reader has a level of technical competence
and an inference capability. A novice in molecular genetics may miss an
important point simply because he fails to deduce some unwritten result
implied by the information 1in the journal. Brevity requires that the
"obvious" things be left unsaid. Other assumptions are unwritten
because the author does not realise that he is making them: The second
fundamental problem is the integration of the new information with the
rest of what is known about the domain. It is not enough to just know
a set of formulated facts. In order to integrate the new knowledge, one
needs to know how information is to be used ang when it is important.
The task of organizing knowledge automatically is far beyond current
capabilities. The creation of a system where a user can specify
information in a flexible way —— expecting the system to use it
effectively -- 1is at the state of the art,

Recent work has made tentative steps in addressing these
fundamental problems, Part of the minimal technical competence problem
is alleviated by having a model for the knowledge that is expected. In
Schank's work reported in [Schank76], a story understanding program
uses prefabricated scripts to fill in the unspecified elements of a
story, Within the context of knowledge acquisition as reported in
[Davis76c], the TEIRESIAS system builds models of domain knowledge from
its current knowledge base to create expectations about new instances
of knowledge. This work is described in Section IV.3.

Explanation systems need the ability to reverse the translations
of knowledge acquisition systems, Explanation systems may be used for
several different purposes such as:

1. Maintaining the trust and credibil% y of the user when the system
acts in the role of a consultant,

2. Providing wuser/system interaction during the problem solving
process.

3. Informing a novice of the relevant domain knowledge for solving a
particular problem,

Y, Providing part of a knowledge base debugging tool,

See [McDermott74] for a discussion of some capabilitiess

See [Shortliffe76], [Sacerdoti75b], or [Deutsch75].

29

Explanation should be geared to the expertise and purpose of the
user. The TEIRESIAS system mentioned above has a measure of the
difficulty of steps in a deduction so that it can accommodate either an
expert or a beginner with its explanations, Since we are including
strategies in the knowledge base, we must be able to explain not only
the genetics objects and actions but also the system's plans and
intentions. Many of the the genetic processes and strategies which the
MOLGEN system will be asked to explain will require significant
innovations in knowledge explanation systems.

Several representational methods are being investigated by
artificial intelligence researchers at the present time. Davis and
King presented a good overview of the power and applications of
production systems in [DavisT76al]l. Woods discussed some of the
foundations for semantic networks and common misconceptions involving
their use in [WoodsT75]. Hendrix suggested some means for coping with
fundamental difficulties for expressing quantification in semantic
networks in [Hendrix75]. An ambitious proposal for a general system for
representing knowledge isubeing developed by Bobrow and Winograd as
reported in [Bobrow77a].

Knowledge acquisition and explanation capabilities, as discussed
above are necessary components of a knowledge base management system
which is able to:

(1) Provide knowledge aggregation mechanisms so that the right

knowledge can be applied at the right time. (Knowledge 1is
aggregated in that it is found and brought together.) [Section
Iv.2]

(2) Provide for extensibility and addition of knowledge so that new
knowledge and new types of knowledge can be integrated into the
system. [Section IV:.3]

These two issues are discussed in detail in the following two
sections as noted. Then Chapter V will outline a proposed overall
design for the MOLGEN knowledge base.

V.2 Design Principles for Knowledge Aggregation

Historically the knowledge used by artificial intelligence
programs has been embedded within the procedures which used them.
Practically every large program was divided into a few large sections
and the organization of the knowledge base followed the same divisionss
Knowledge which was used together was aggregated into the data
structures available to the procedure which used it. Since procedures
had access to fixed sets of knowledge the aggregation was permanent.
Deciding what kinds of knowledge were potentially relevant was not part
of the computational task. For example, an early version of the
DENDRAL program was divided into a preliminary inference maker, a data
adjuster, a structure generator, a predictor, and an evaluation

See Section IV.3.3.1 and Section IV.2.3.

30

function. Each of these made wuse of its own sets of knowledge. When
programming modules contain the domain knowledge base, the modules are
sometimes termed Knowledge Sources (KSs). In this organization the
modularity of the knowledge base follows the modularity of the
procedures which use it.

In contrast with this is the organization of several question
answering systems already mentioned in Section III.1.2 which used a
uniform organization of knowledge as theorems. These efforts were aimed
at the creation of systems which could accept an arbitrary new body of
knowledge about a domain and use a standard set of reasoning methods to
do problem solving, These systems seem to have suffered from the
opposite extreme of the rigid procedurally modular systems in that they
have lacked adequate means for focusing on subsets of the knowledge
base.

Both views of organization have established important principles
of design. A static division of a knowledge base into clusters of
strongly interacting knowledge, reminiscent of Simon's nearly
decomposable systems, is in accord with the common wisdom that facts
'which are used _together should be grouped together, Such systems may be
realized within different representational methodologies: For example,
the modules may be the top few branches in a hierarchically organized
system or they may form a set of permanent clusters or partitions
within a network of knowledge associations. The conflicting common
wisdom from theorem proving is that a system should consist of a large
number of smaller facts which can be utilized in some uniform fashion,
The argument for the second view is that facts need to be used in
different contexts and that a system with fixed prior groupings of
facts will be unable to use what- it_knows _when faced with a new
context. Winograd summarized this conflict in [Winograd75b] as
follows:

+.. we must keep an eye on both sides of the
duality -- we must worry about finding the right
decomposition to reduce the apparent complexity,
but we must also remember that interactions among
subsystems are weak but not negligible: In
representational terms, thisforces us to have
representations which facilitate the "weak
interactions".

While weak and strong interactions have been discussed in
[Simon69] and [Winograd75b] and it is clear that knowledge which
interacts must be aggregated in some manner, two questions remain to be
clarified:

1. What are the criteria for distinguishing weak and strong
interactions?

2. What mechanisms can be used for finding knowledge which is weakly

interacting, that is, how can weakly interacting knowledge be
aggregated?

31

IV.2.1 Criteria for Weak and Strong Interactions

We offer the following definitions of strong and weak
interactions:

1. Knowledge is strongly interacting 1if it should be used together in
all problem solving contexts.

2. Knowledge is weakly interacting if it should be aggregated
differently depending on context.

Thus, a partitioning is inadequate for facilitating the weak
interactions when it is &ixkd completely independent of context.
Strongly interacting knowledge should be aggregated in a permanent
context independent manner and weakly interacting knowledge should be
aggregated in a temporary context dependent manner. As is explained in
detail below, we suggest that permanent links be established between
units of strongly interacting knowledge, while temporary links for weak
interactions should be established by pattern matching-

‘Methods of aggregating strongly interacting knowledge will be
explored in detail in Section IV. 2.3 and Section IV. 3:3:1.
In this section, we will be concerned with how temporary links are
formed to facilitate the temporary interactions between knowledge
sources.

In a system with many units of knowledge, most of the interactions
will be context dependent, We contend that many of the knowledge
sources must be activated according to the problem solving context of
the system. With undecomposable knowledge sources, the only means to
express weak interactions is by controlling access to the individual
-knowledge sources, Thus we must pay attention to the alternatives for
the creation of the links for context dependent interactions. The
temporary links for context dependent interactions can be established
in two ways. (1) By using knowledge sources as the primary index one
can establish links to relevant problem solving contexts, Demons embody
this approach by using pattern matching to recognize the context. The
link is made when the knowledge source becomes active. Alternatively,
(2) problem solving contexts can be used as the primary index with
links being established to the relevant knowledge sources. An example
of this approach is given from the TEIRESIAS system in Section
IV. 2:3. Again pattern matching can be used to establish the
temporary link. The difference lies in the location and nature of the
pattern, In (1) knowledge sources are activated when they recognize a
context, This idea is discussed in the next section-. Alternatively in
(2), contexts can have mechanisms for selecting or aggregating
knowledge sources according to the patterns in the knowledge sources,
This alternate approach is discussed in Section IV.2.3. Between
these two sections, Section IV.2.2.1 presents some of the
methodology and ideas which have evolved 1in representing domains as
communities of experts. In such frameworks, the knowledge within the
experts is strongly interacting and communication between the experts
facilitates the weak interactions. Some of the research in this area
started with the viewpoint in (1) above but has evolved to motivate the
ideas of (2).

32

R ST T U

To avoid losing the main ideas while exploring the side issues and
history of the ideas in what follows, the main points together with the
sections in which they are discussed are listed here.

I. The early designs for artificial intelligence programs
involved embedding the domain knowledge inside
procedures for using it, Modularity of domain
knowledge followed the modularity of the procedures,
This methodology introduced the idea of knowledge
sources in programs. [Section IV.2.1]

2. Interactions between knowledge have been characterized
in the literature as being weak or strong* Weak
interactions are those which are temporary and context
dependent; strong 1interactions are permanent and
context independent, [Section IV.2.1]

3+ The mechanisms for facilitating weak interactions play
an important role in the integration of new knowledge
in a system. Such facilities are expected to find and
apply knowledge sources 1in a system in those problem
solving contexts where they are relevant' [Section
v, 2. 1]

4, The basic mechanism for facilitating weak interactions
is pattern matching$% Knowledge sources can use
patterns to recognize contexts (as with demons) or
contexts can use patterns to recognize knowledge
sources » [Section IVs2.1]

53 Demons are a useful approach to organizing knowledge
sources when the contexts in which they can be applied
are diverse but easy to recognize, Such knowledge
sources are said to be event driven. [Section
IV.: 2.2]

6+ Demons should not be used as the sole mechanism for
implementing weak interactions since they do not
provide coordination for those weak interactions
involving multiple knowledge sources. These
interactions can be facilitated by attaching a pattern
of the knowledge sources and coordination information
to an agent of the problem solving context. [Section
Iv.2.2]

7« In the TEIRESIAS system, meta-rules act as agents for
the problem solving context. These strategy knowledge
sources contain patterns which can be matched against
the domain knowledge to find knowledge relevant to the
current problem solving context. The object level
rules in this system are the right decomposition of
domain knowledge into permanent context independent
chunks and the meta-rules express and coordinate the
temporary context dependent interactions between them.
[Section IVi 2,3]

8. Systems based on this methodology have developed in

33

the direction of using smaller and simpler knowledge
sources. Production rules can be used as knowledge
sources for both strategy and domain knowledge.
Content reference has been used as a mechanism for
pattern matching by strategy rules. [Section
IV.2.2.2 and Section IV.2.3]

9. Strategy knowledge sources can in theory cover a
hierarchy of types of knowledge and provide a powerful
and flexible representation for this knowledge. A
system which actually offers this power has yet to be
built and some extensions to the ideas above seem to
be needed. [Section IV.2,3]

10. Pattern matching facilities based on content reference
depend on the decomposability of the knowledge source..
The content reference ability in existing systems
match strictly according to the presence of certain
tokens in the rules, For more complicated rules where
the way these tokens are used has a bearing on the
classification, more powerful mechanisms are required..
Proposals are made to increase the expressive power of
rules while providing powerful methods for classifying
them. [Chapter V]

Iv.2.2 Demons and the Multiple Knowledge Sources Model

Demons are procedures which are activated when some activation
condition is satisfied in a data base. They are useful when a knowledge
source needs to be wused in a diversity of contexts which are easy to
recognize. In the PLANNER language reported in [Hewitt71], these are
the antecedent theorems, Whenever anything is asserted (ie. added to
the data base), all antecedent theorems are checked against the new
assertion. In production systems as described in [Newell73], each
production can be considered to be a demon waiting for a condition so
that it can fire. Bobrow and Raphael give a good overview of pattern
directed invocation in programming languages in [Bobrow74].

One outgrowth of the early work in demons and pattern directed
invocation was the attempt to extend this idea as far as possible, This
lead to the development of a computer system composed entirely of
demons acting as expert knowledge sources.

In the sections which follow, the BEINGS of Lenat and the expert
KSs of the HEARSAY system will be discussed, These sections will not

discuss or evaluate these systems in their entirety, but will
concentrate on the approaches these systems have followed in their
treatment of context dependent knowledge, The source of strength in

Lenat’s system, that each expert recognizes his own relevance and makes
his own contribution to the problem solving without being aware of the
nature of the other experts, is ultimately a source of weakness. That
the experts know how to organize themselves individually is no
guarantee that they can work effectively as a group. There 1s no
specific mechanism for coordinating the activities which may compete
for processor time. In the HEARSAY terminology, this is part of the
focus of attention problem.

34

Iv.2.2.1 BEINGS and ACTORS

Douglas Lenat used pattern directed invocation between procedures
as knowledge sources in his concept of "Beings" reported in ‘[Lenat75] .
He has suggested that problem solving knowledge can be organized as a
community of interacting modules where each module, termed a Being,
implements a particular expert in a small part of the domains As in
the case of the Actors described by Hewitt, Bishop, and Steiger in
[Hewitt73], this approach to organizing knowledge promotes the
following design methodology:

1. Decide on the kinds of experts to have in the
domain. Each expert corresponds to one aggregation of
strongly interacting knowledge.

2. Decide for each expert what messages it should
send and receive. These messages are used to form the
links for weak interactions between knowledge sources.

Lenat’s Beings differ from Actors in that they do not mention the name
of the expert to receive a message, but rather broadcast their messages
to the entire community. Each Being is responsible for recognizing and
answering messages within its domain of expertise, Within its special
part of the domain, each Being has a set of strategies for recognizing
its relevance to any proposed question. Lenat developed the PUP6 system
using Beings as a representational form as reported in [Lenat75]. PUP6
was an gutomatic programming system which wrote a concept formation
program”

Most of the Beings in PUP6 were rather complicated modules, Lenat
has suggested that this is appropriate since the behavior expected from
Beings is complex. They required the capability to send and receive
messages to achieve both the triggering and the coordination of the
Beings, Communication was constrained to a set of 29 standardized
questions which one expert could ask another. The vocabulary, syntax,
and semantics of these questions was contained as part of the code for
the Beings themselves. As new experts requiring extensions to the
vocabulary were added to the system, changes were required in existing
Beings .

In the terminology of the previous section, the Beings are the
modules of strongly interacting knowledge around which the problem
domain has been organized, The context dependent interactions are
facilitated by the message communication between the Beings. It is
conceivable that more than one Being would be activated by a given
message «+ For such situations, the Beings and their messages must be
carefully designed to provide a mechanism for arbitration, Putting
these arbitration mechanisms in ,the messages between Beings is in
conflict with the design goal that experts should not need to know of
each other’s existence. The HEARSAY system, which is discussed in the
next section, offers some special mechanisms for this control problem
which is part of what has been termed the focus of attention problem.

The concept formation program which was synthesized was based
on work by Winston reported in [Winston70].

35

Iv.2.2.2 Lessons from HEARSAY

The HEARSAY speech understanding system 6 also follows the
discipline of dividing the knowledge base into a set of procedural
Knowledge Sources (KSs) activated by pattern directed invocation. In
contrast to the systems mentioned above, HEARSAY has been under
development over a period of ten years and has undergone a design
review in light of this experience. The evolution of HEARSAY1l from
HEARSAY1 illustrates some important directions in the design of
knowledge bases.

HEARSAY1 was designed to make use of the following diverse sources
of knowledge: acoustics-phonetics, phonology, syntax, semantics, and
pragmatics. As with PUPH, one of the design goals of HEARSAY has been
that the experts would not need to know of each other's existence or
structure. The motivation here was to provide a system where new KSs
could be simply added or deleted for experiments in measuring their
impact on the effectiveness of the total system and for modularity in
developing the system. Because of the variable nature of the speech
signal and an inadequate theory of the production of speech, the KSs
are error prone and must work together cooperatively to correct each
other's mistakes. Communication between KSs takes place in a dynamic
global data structure, the blackboard, which contains the current state
of the world. This consists of a set of hypotheses or partial
hypotheses at the word level of recognized speech, Each KS may access
the blackboard to create, delete, or modify hypotheses. In HEARSAY1
the KSs are activated in a lockstep sequence of poll, hypothesize, and
test, The poll phase determines which KSs have something to contribute,
the hypothesize phase activates the KS showing the greatest confidence
about 1its contribution, and the test phase consists in having all the
KSs evaluate the hypothesis,

Many of the design decisions in HEARSAY1l which have come under
review are of general interest in the design of knowledge bases. First,
the limitation of the blackboard and hypothesize and test paradigm to
hypotheses at the word level in HEARSAY1l has proved too restricting.
HEARSAY11l uses a blackboard partitioned into seven distinct information
levels: The decomposition of the blackboard and problem space into
discrete levels makes it possible to decompose the KSs more finely. In
the terminology of Section IV.2.1, we would say that too much
information had been aggregated in the KSs and that in HEARSAY11l they
were decomposed into smaller modules which could interact in a context
dependent manner. Experience has shown that most KSs need to work with
only one or two levels so that they can be as simple in structure as
their knowledge permits, Secondly, the lockstep control sequence of
HEARSAY1 for the hypothesize and test paradigm inhibits interaction
between processes resulting in repeated computations and blocked
parallelism. HEARSAY11l replaced the sequential control sequence with
pattern directed invocation so that a KS could be activated when the
blackboard contained information satisfying a precondition of a KS.. In
this- framework the KSs may be viewed as production systems where the
precondition corresponds to the condition on the left hand side and the
KS corresponds to the action on the right hand side.

-----gm---

See [ErmanT76] and [Hayes-Roth76] for some recent articles about
this system,

36

In summary, the evolution of HEARSAY11l from HEARSAY1 involved the
following important changes in design,

(1) A decomposition of the KSs of strongly interacting
knowledge into smaller, simpler units which can
interact in a context dependent manner.

(2) A decomposition of the blackboard into more levels.
This facilitates (1) above,

(3) The blackboard was extended to show relationships
between hypotheses including support and structural
relationships. This made it possible to express the
contexts for the weak interactions between knowledge
sources, In HEARSAY terminology, this allowed the
sharing of partial hypotheses between KSs,

What remains to be discussed about HEARSAY11l is the mechanism for
coordination of the KSs. The coordination problem in HEARSAY1l is
termed the focus of attention problem and has two components:

1« Choice of a partial hypothesis (HEARSAY's meaning for context) in
the problem space for attention,

2. Choice of a Knowledge Source to use within this context.

Associated with each hypothesis are indicators telling how much
computational effort has been expended so far as well as combined
estimates from the KSs of the desirability of allocating more, These
indicators are used to direct the first part of the focus of attention
problem -- the selection of context in the problem space, For the
second aspect of focusing, the selection of a KS, HEARSAY1l takes
advantage of the production rule view of the KSs: Each plausible KS 1is
asked to evaluate its preconditions and to estimate its applicability.
Frederick Hayes-Roth and Victor Lesser have suggested several
fundamental principles for rating KSs in [Hayes-Roth76]. For example,
KSs may be favored which promise a best outcome, or which have the most
valid data to work from, or which are the least expensive or most
reliable.

We have seen that HEARSAY11l has provided a focus of attention
module with the ability to choose among competing knowledge sources for
allocation of computational resources. The next section generalizes
this idea by (1) using a number of context dependent strategy KSs
instead of just one focus of attention module, and (2) by applying a
pattern matching facility to the KS itself instead of to an abstraction
of it, We will see that the success of this approach depends on
continuing the trend toward small and simple KSs.

IV.2.3 Knowledge Access and Control by Description

TEIRESIAS 7, is a system which contains some 1interesting

innovations in the use of context information for structuring

See [DavisT76ec].

37

knowledge. In this section we will be concerned with TEIRESIAS’s
treatment of context dependent interactions. In Section IV.3.3 we
will return to this system in our discussion of knowledge acquisition.
TEIRESIAS was developed in collaboration with and integrated into the
MYCIN system for medical consultation The MYCIN system includes a
knowledge base of approximately four hundred production rules. These
production rules are the Knowledge Sources (KSs) within the
MYCIN/TEIRESIAS system. An example of a production rule follows:

If 1) the morphology of ORGANISM-1 is rod
2) the gram stain of ORGANISM-1 is gramnegative
3) the aerobicity of ORGANISM-1 is facultative
4) the infection with ORGANISM-1 was acquired
while the patient was hospitalized

Then there is suggestive evidence (.7) that the
category of ORGANISM-1 is enterobacteriaceae.

The MYCIN system conducts a medical consultation by evaluating in
depth first order an AND/OR tree formed by these production rules. As
of June 1976, the largest number of rules relevant to any one goal was
forty. At that stage exhaustive invocation was still computationally
feasible. In response to an expected continuing growth of the knowledge
base, a mechanism for guiding the selection process using meta-rules
was developed.

The meta-rule approach developed by Davis involved augmenting the
rule syntax above with new meta-level (strategy) primitives to provide
a language for strategy- The following is an example of a meta-rule in
the TEIRESIAS system,

If 1) the infection is pelvic-abscess and
2) there are rules which mention in their premise
enterobacteriaceae and
3) there are rules which mention in their premise grampositive rods,

Then there is suggestive evidence (.4) that the former should be
done before the latter.

In this example, the first clause about pelvic-abscess defines the
context. The second d&fdird clauses contain patterns which are
matched against the domain inl¢the knowledge base. A domain rule
will match if it mentions enterobacteriaceae or prampositive xods inm
its premise. The current implementation of meta-rules in TEIRESIAS
supports two kinds of statements. Meta-rules can make statements about
the likely utility of other rules and they can also impose a partial
ordering on the evaluation of other rules. This partial ordering is in
the same spirit as the allocation of processor power in HEARSAY. The
same principles for choosing between KSs discussed in [Hayes-Roth76]
can be implemented within production rules. It is interesting to
return to Winograd's suggestion as quoted in Section IV.2.1. The
object level rules 4in this case are the right decomposition of
knowledge -in the domain into permanent context independent chunks and
the meta-level rules express and coordinate the temporary context
dependent weak interactions between them, Thus the various premises and

38

actions of the object rules are permanently wired together while a
meta-rule indicates interactions between groups of rules in order to
coordinate their use. Thus, weak interaction is keyed by the context
described in the meta-rule.

In the strategy rules above, we see that the pattern, instead of
being associated with the object rules, can be contained within the
strategy rules, The pattern is the argument to the "mentions"™ function,.
Much of the motivation or the use of pattern matching in TEIRESIAS to
establish the context dependent links is the same as that in HEARSAY or
PUP6+ Use of pattern matching to find knowledge sources is the
mechanism that guarantees that as new knowledge sources are added to
the system, they will be automatically applied in those contexts in
which they are relevant, Davis refers to this matching process as
reference by description and distinguishes between two broad
approaches: (1) External Descriptors and (2) Content Reference,. The
external descriptors approach consists of a methodology where a number
of different characteristics are chosen and each KS is described in
terms of them., For a procedure this could include such things as the
procedure’s main effect or its preconditions, The second approach is
by direct examination of KS content, The meta-rules above have the
ability to examine the characteristics of object level rules. The
advantages of the second approach derive from the ease with which new
knowledge and strategies may be incorporated into a system,

TEIRESIAS decomposes the process of applying object level rules in
their corresponding contexts into two steps, First, pattern matching
is used to create sets of rules for each of MYCIN/TEIRESIAS's contexts,
In this system, there is a separate possible context for each object
that a rule may conclude about, These sets correspond to permanent
aggregations of knowledge discounting changes to the knowledge base,
Then MYCIN accesses these sets of rules as it traverses its context
tree, The meta-rules express temporary interactions between these
sets. This approach mixes the two types of referencing mentioned above.
It allows the prior computation of external descriptors while
preserving the flexible strategies and ease of adding new rules to the
system characteristic of the content reference approach, It should be
noted that in many systems, the number of problem solving contexts
would be too numerous to make this complete grouping of rules feasible*

Important design considerations for KSs to permit reference by
con tent are

I The contents of KSs should be accessible
(addressable),

2+ KSs should be simple (or at least regular) in
structures

A precise meaning for the notion of structural simplicity has not yet
been worked out nor has much work been done to clarify the trade-off
between simplicity and expressive power.. It is known, for example, that
expression of any form of iteration is awkward and generally difficult
to recognize in typical production systems, Another data point on the
simplicity vs expressive power scale follows from Sacerdoti ‘s work in
the NOAH system, The add and delete lists associated with each action
are used to represent the effects of an action for purposes of global

39

selection of actions. The system depended on the programmer to pick
the right actions to represent in these 1lists while various smaller
subactions were represented only in the QLISP code. Sacerdoti
suggested that the QLISP modules were not simple enough for inspection
by the system. In any case, the system did not know enough to carry out
a meaningful inspection, In Chapter V a technique will be suggested
for acquisition and management of extended rules which are more
powerful than these production rules and more restricted than QLISP.

A second observation about the structuring of knowledge sources,
strategy knowledge sources or meta-rules in particular, is that they
probably need more powerful mechanisms for pattern matching than those
that were used in TEIRESIAS. Davis suggested that meta-rules can be
extended through an arbitrary number of levels,. Thus the first level
strategies expressed in meta-rules direct the use of object level
knowledge, second order strategies (meta-meta-rules) direct the use of
strategies and so on. Although TEIRESIAS was programmed to accept meta-
rules of arbitrary order, the medical domain in which the system was
tested offered no instance of a rule of greater than first order.. Davis
gives a mathematical treatment of meta-rules suggesting that they can
reduce evaluation work by an exponential factor. There is, however, a
sleeper in the argument. Recall that the main content referencing
mechanism in TEIRESIAS' current meta-rule implementation is the
"mentions" function, This function examines premises and actions of
rules for the existence of particular tokens-. Unless there are
particular tokens used in meta-rules distinct from those in object
rules, meta-meta-rules can only ask about the same tokens again.. One
can imagine expressions about mentionings becoming awkwardly large and
complex. Davis hints at a fix for this problem in the context of a
poker playing example.

To win at Poker,
first try bluffing,
then try drawing three cards,
finally try cheating:

A rewritten version of this might be "First use any psychological ploy
to discourage the competition, then try something to improve your hand,
and finally do anything that will make sure you win." Each clause has
been written as a more general description of the actions. This
suggests that we need more powerful methods to describe rules than is
currently provided by reference by content. A proposal for doing this
is discussed in Chapter V.

Iv.2.4 What We Have Learned

Having completed our survey of knowledge base interactions, let us
summarize it. We began with a proposed classification of interactions
between chunks of the knowledge base as either weak or strong. Weak
interactions were characterized as temporary and context dependent;
strong interactions were characterized as being permanent and context
independent. Strongly interacting knowledge should be grouped as a unit
or knowledge source. Temporary links for context dependent
interactions between knowledge sources can be established by pattern
matching.

40

One approach to establishing the links for the context dependent
interactions is to provide a pattern of the relevant context to the
knowledge source, In this framework the knowledge sources themselves
are sometimes called demons. This approach has been discussed with
examples from the PUP6 system of Lenmat as well as the HEARSAY system.
The HEARSAY experience lead to a formalization of the focus of
attention problem, which includes the coordination of multiple
interacting knowledge sources which may compete for processor time in a
given problem solving context.

The MYCIN/TEIRESIAS example extends this aspect of the focus of
attention problem by providing multiple strategy knowledge sources
termed meta-rules. A meta-rule acts as an agent of the problem solving
context to coordinate the weak interactions between object level rules.
The object rules in this case are the right decomposition of the domain
knowledge into context independent chunks and the meta-rules express
and coordinate the temporary context dependent interactions between
them,

Both demons and meta-rules use a form of pattern matching for
controlling the use of knowledge in different contexts: In the case of
demons, the knowledge sources carry a pattern of the context in which

they should be applicable. In the case of meta-rules, the strategy
knowledge source associated with the context carries a pattern of the
plausible domain level knowledge sources. In both cases, simplicity in

the structure being matched, problem solving context or knowledge
source, 1s thought to be an important design consideration although a
definition of simplicity has not been given precise meaning.

Whenever new knowledge is entered into a system, 1its logical
relationships to the existing knowledge must be established, We will
see in the next section that a number of the ideas about descriptors
which have been discussed with regard to their use in controlling the
way knowledge is accessed also play a role in the way it can be
acquired by a system and integrated into a knowledge base.

IV.3 Design Principles for Knowledge Acquisition

Knowledge acquisition research has taken place on three rather
distinct fronts - in the area of programming languages, 1in database
management, and in the knowledge based systems of artificial
intelligence. This section examines them with three purposes in mind.
First, the simple ideas have been around for quite a while and it is
worth discussing them clearly so that they need not seem to be re-
discovered in later contexts. Secondly, the simple ideas have rather
limited power and it is important to delineate this power. Thirdly,
the powerful ideas are rather subtle and involve mechanisms which may
seem a bit complicated. The power and significance of these ideas is
best understood by comparison to the simpler approaches.

Although the main topic for this section is knowledge acquisition,
many of the ideas for organizing knowledge to facilitate acquisition
are important for broader purposes in the management of a knowledge
base, These points will be presented along with the the main ideas of
this section,

41

Knowledge base and data base researchers are currently attempting
to define the differences between their respective fields, There are
certain obvious differences, £Earlier when we stated that MOLGEN would
have a large knowledge base, we pointed out that the base would still
be small by data base standards. According to [Fry76], it is not
unusual to find government or commercial data bases of over one billion
characters. This is roughly a thousand times larger than any knowledge
base used 1in artificial intelligence. Many other differences result
from this size difference, With a huge data base, researchers must be
concerned with efficient retrieval of information. The information
retrieved is generally used as input to separate programs performing
specific tasks such as report generation, payroll, or a display of the
information for a human user. The data base contains limited knowledge
about itself and its uses. 1In early artificial intelligence systems,
the knowledge necessary to direct the problem solving was often part of
the control or problem solving program. As knowledge base researchers
have moved to separate data from code, they have tried to create
sys terns which reflected the dense interconnections necessary for
problem solving. Thus, knowledge bases must contain the rules of
inference, corresponding to the actions and strategies discussed
earlier, which provide he control information to the system. The
direction of this report is to include even more strategy information
in the knowledge base so that the knowledge base contains the
information to direct the use of knowledge in problem solving.

The differences 1in research orientation are tending to converge
somewhat as progress is made, Some researchers have built systems
integrating both knowledge bases and data bases, An example of this,
the Gus system, was reported in [Bobrow77b]. GUS converses in a mixed
initiative English dialog with a user about travel arrangements*

In the travel domain, the OQfficial Airline
Guide is a data base which GUS treats as a large
external formatted file, GUS can use an extract of
this data base but the information in the file does
not form part of its active working memory for the
same reason the Official Airline Guide does not
have to be memorized by a travel agent. Only that
portion of the data base relevant to a particular
conversation need be brought into the working
memory of the system.

In GUS, the frames which drive the dialog constitute part of the
knowledge base and the travel guides are part of the data base.

Research about knowledge acquisition began with the efforts in the
late sixties to make programming languages more powerful by making them
extensible. The idea was that a programmer could modify the language
by defining entities within it that were conceptually similar to the
mental structures he had for his problem. This corresponds to the
later work in knowledge based systems to facilitate effective
communication with an expert . Effective communication should take place
in terms and concepts close to those which are in general use in the
technical jargon of the domain. Much of the need for natural

See Chapter V.

42

terminology derives

classifications of knowledge that have evolved in a technical
Thomas Cheatham remarked in [Cheatham69]

Discussion of the motivation for extensible
language rests on a basic premise, namely that
there exist diverse programming language
requirements which are becoming more diverse, and
that it is of critical importance that each user
ven be provided with a language facility
appropriate to his problem area* .«v A part of this
premise is that it is not enough to have a language
which is formally sufficient to host the particular

from a desire to make use of the tried and true

areas As

data and unit transactions some user has in mind,
Rather it is of critical importance that the kinds
of data and wunit transactions which he wants to
think of as primitive be available, effectively as
primitives, in his language facility,

Again,

we list the main points together with the sections in which

they are discussed,

.

24

3.

6.

Effective communication mandates the use of tried and
true or natural classifications from a domain in order
to reduce the conceptual distance for a person
expressing domain knowledget This motivated the
development of extensible languages. [Section IV.31

The first work in extensibility was done in the
context of programming languages, The three
components of these languages - data, operations, and
control - correspond naturally to the three classes of
knowledge we have discussed earlier - objects,
actions, and strategy. [Section IVi3.1]

The main mechanism used to provide extensibility was
the ability to define new (larger) entities in terms
of a set of basic primitives, [Section IV.3:1]

Workers like Dahl or Liskov and Zilles have suggested
that the new data types and the allowable operations
on them be defined at one place in a cluster in order
to promote abstraction for structured programming.
[SectiOn IV, 31 1]

It was generally thought that extensibility in the
programming language would result in clear and
efficient programs and that these programs would be
much easier to write. [Section IVe3s 1]

The important lesson from this work was that the
amount of knowledge necessary for a user to mold the
nature of the system for his requirements had been
seriously underestimated, The systems themselves
remained too ignorant to provide much help. [Section
IV.3. 1]

43

10+

11,

13.

Faced with the requirements of enormous data bases,
data base management researchers have concentrated on
increasing a system’s knowledge about its data.
[Section IV.3.2]

The main idea was to have schemata associated with the
data itself to describe the logical relationships,
field names, formats, and physical layout. [Section
IV.3.2. 1]

The idea of procedural attachment has appeared in the
data base literature but it has not been implemented
very extensively. [Section IV.3:2. I]

Much of the research has been in comparing three
models for data organization - hierarchical,
relational, and network - for their relative
efficiencies and flexibilities for retrieval. [Section
1v.3,2.21

Some workers have suggested that type-checking
assertions for operations on data can be entered as
part of the data definitions. This is a step closer
to the object centered factorization of knowledge
ideas for knowledge based systems. [Section
IV.3.2:3]

The schemata for data base systems were used to
provide data definition capabilities for systems using
a uniform mechanism for storage of values. Knowledge
based systems have extended the power of schemata to
organize groups of values and procedures into
"oonceptual objeets" . [Section IV.3.3.1]

Schemata for conceptual objects are used in knowledge
based systems to guide the acquisition of new
instances of objects. Schemata can be used to ensure
the completeness of information about objects by
guiding the acquisition process. They also can guide
any necessary bookkeeping as new objects are added to
the system. Procedural attachment is helpful for
providing flexibility in filling out and checking the
values for instances of objects. [Section
IV.3.3.2]

14, Just as an object schema may guide the acquisition of

a conceptual object, a " schema-schema” my be used

guide the acquisition of a new schema. Using this
idea a system can acquire information about new kinds
of objects as well as new instances of objects. Thus

schemata can provide a mechanism for extensibility.
The essential knowledge that programming systems
lacked for providing assistance in extensibility is
contained in these schemata. Realization of this is
one of the important contributions of knowledge base
research. [Section IV. 3.3, 2]

Ly

15« Procedural attachment in schemata is also important
for assisting the management of changes in a knowledge
base so that when a change is made in one definition,
other dependent definitions can be located and changed
at the same time, [Section IV.3. 3:2]

16. Knowledge based systems have also provided examples of
the acquisition of actions, This has involved the use
of rule models which correspond to schemata for
actions except that the models contain information
derived from examples and they facilitate only very
limited structures for rules, In the MYCIN/TEIRESIAS
system, rule models are derived from rules in the
knowledge base. [Section IV, 3:3.:4]

17. Rule acquisition has used the problem solving context
as well as a rule model to guide the acquisition of a
new instance of an action, [Section IVe3. 3.4]

18. There is room for more research on the use of schemata
to support the classification and acquisition of new
kinds of actions and strategies. Proposals for this
work are presented. [Chapter V]

With these high points in uind, we begin with the development of
extensible programming languages.

. 3.1 Extensibility in Programming Systems

As Perlis remarked during 3n opening address for a SIGPLAN
symposium on extensible languages three things define a language:
data, operations, and control,, Not ‘surprisingly, these correspond to
the three classes of knowledge mentioned in Section IV< 1 - objects,
actions, and strategies, These three plus syntax form the axes at which
development in extensible languages has taken place. One of the major
efforts 1in extensible systems indicative of the the scope of these
efforts is the ECL system reported by Ben Wegbreit in [WegbreitT1].
This system was developed to assist programmers working on projects
where there is considerable interplay between design and development,
ECL allowed extension of syntax for specification of new linguistic
forms in terms of existing forms. It supported data type extension
allowing a programmer to define new data types and information
structures needed to model the task at hand. 1In this regard ECL
supplied a number of built in types - Boolean, integer, floating point,
character, symbols, and pointers - and provided mechanisms for
efficient access and storage of the structures. Much of this
corresponds to the record structures now available in Algol-like
languages « Operator extension allowed a user to define new operations
on the new data types and to extend old operations to cover the new
data types, Control extension allowed the creation, deletion, and
coordination of independent asynchronous processes. These extension
mechanisms were sufficiently broad to cover co-routines, Di jkstra’s P
and V operations, multiple parallel returns, and process scheduling,
The basic methodology behind all of these extensions was to provide a

See [Perlis69].

45

set of primitive entities in the language. A user could then define his
own higher 1level entities as special combinations of the basic
primitives. Some extensible language facilities involved the creation
of compiler-compilers and constrictors as mechanisms for keeping the
flexible user-defined language economic.

Barbara Liskov and Stephen Zilles were among the proponents of
extensible languages as an aid to structured programming. In
(LiskovTl], they emphasized the nature of user defined constructs as
abstractions, that is, mechanisms for the suppression of irrelevant
detail. They advocated a very restricted procedure for definition of
abstract data types where the representation (for example, record
structure) and operations on it (defined as unique procedures having
access to the representations) were defined together in one unit termed
a cluster. These user defined primitives, analogous to the familiar
primitives of the base language, would be abstract entities for
manipulation by the program only through the defined operations. Their
internal structure would be unknown (in fact unknowable) outside of the
cluster. This was thought to encourage a formulation of abstract data
types that was independent of representation and was in contrast to
those extensible systems where a user learns one mechanism to define
the representation and another to define the operations on it. Perhaps
the most widely known language which incorporates this philosophy is
SIMULA with its class definitions. Although the ,motivations are
somewhat different, the monitors discussed by Hoare in operating
system design reflect many of the same considerations.

It is interesting to view the changes in the ways people viewed
extensible programming systems after a period of trial and
experimentation. Thomas Standish, reviewing his own PPL system in
[Standish71] which was one of the most successful of all the extensible
language systems, termed PPL a language that failed. This was in spite
of the fact that it was fully implemented, was the language of choice
in Harvard's introduction to programming course, and was tested over a
diversity of application areas by over 450 users. It seems to have been
a case of expecting too much, As Standish remarked

It was thought that just as programmers decree
the organization of processes (by defining and
calling subroutines), they should also decree
appropriate organization for data and for notation,
in order to attain clarity and efficiency* .
What we did not fully grasp was the amount of
effort and knowledge required of a user to deform a
language in significant ways.

Finally Standish summarized it all again, the frustration of expecting
too much from the simple mechanisms.

Y ou c a ptdte something simple to am
unknowledgeable mechanical recipient and expect it
to alter its behavior in major ways.

See [Hansen73].

46

Perhaps the key word in this quotation is "unknowledgeable" which
leads us to the efforts by researchers in artificial intelligence to
make a system know what it knows.

Iv.3.2 Ideas from Data Base Systems

Data base technology can be traced back to the late fifties .
when several workers discussed the use of general routines capable of
sorting files of different formats and arbitrary contents « The
technology developed in response to the typical data processing
operation in the late sixties where every new need for data involved
writing a new program+ Using existing data files for a new program
generally meant that somebody had to understand the program that wrote
the files because the format of the data was locked up in some
combination of programs and control cards. Fry [Fry76] references a
scenario where a business manager knew that data bearing on a business
decision existed, but some of it had been produced on a different
mac hine , some had incompatible formats, and the description of the
logical organization of some of the data was unavailable. The manager
was unable to obtain answers in a reasonable amount of time even though
the data was in some sense in the system. This type of situation gave
rise to the vision of a system with all of the data integrated with
data definitions stored with the data and general purpose software to
access and manage the data files. This type of system has been termed
data base management as opposed to data management.

The rest of this section discusses the ideas from data base
management most relevant to knowledge base research: We will begin
with a discussion of data definitions to explore the limits of the
capabilities that have been provided, We will see that different
logical arrangements of the data have an impact on the accessibility of
the data. Some data models are thought to result in lower sensitivity
of programs to changes in the data and its definitioné& Finally we
will look at the work in an area on the border between knowledge bases
and data bases where some additional capabilities for consistency
checking in data bases have been explored,

IV.3:241 SCHEMATA: Data Definitions

Crucial to the capability of integrating data into a data system
for uniform manipulation and centralized management is the idea of a
data definition, usually termed a schema, Programming languages have
traditionally provided facilities for naming and characterizing data
elements within records. What is new with data bases is the idea that
these schemata are outside the code of the programs and stored with the
data, This creates the potential for allowing the use of generalized
data base management software to manipulate the data.

Schemata are used to specify structure and interrelationships of
data elements . Some of the structure specified in schemata is very
similar to the information associated with the RECORD structures in
ALGOL-like languages,- The names of the various fields and their types
(eg. integer, floating point, character) as well as length information

See [Fry76] for early references,

47

may be specified. Similarly such things as hierarchies of elements
(eg«s BIRTHDAY as Month Day Year) as in PL/1 and variable format in
terms of conditional elements or repeated groups may be specified.
References (pointers or symbolic) to other elements in the data base

were permitted. In addition to these application independent
specifications, schemata may contain information about units of
measurement or data domain classifications of the elements. Section

IV. 3.2+.3 discusses the use of this additional information for
maintaining data base integrity.

Gio Wiederhold discusses the use of procedural attachment in
schemata for data bases in [Wiederhold77]. These procedures may be
used to derive data when references are made to particular data,
Wiederhold distinguishes two kinds of procedure activation - actual and
potential. Theqﬁ correspond to the demons and servants respectively in
[BobrowT7al]. Actual results are those changes to the data base
which are propagated when a data element is updated. This means that
the data base administrator has attached a procedure in the schema
which 1s executed whenever a particular data element is changed-
Potential results are those which are computed on request. Wiederhold
discusses an example where the effect on company revenue of changing an
employee’s salary is computed using both approaches and makes some
implementation suggestions for a practical system* An example which is
less demanding computationally is one where a procedure is invoked to
convert an internal binary form for a date to a symbolic form suitable
for external presentation. In both of these examples, the procedure is
implemented by the data base administrator and is not considered to be
part of the data base. These ideas for procedural attachment have not
been extensively implemented within the data base systems although they
represent an important part of the research for artificial intelligence
applications.

Part of the reason for using general and uniform data base
management software to access the data has been the desire to create
programs which are insensitive to changes in the data layout. This has
been successful for the following kinds of changes: size of fields, the
addition of new fields in schemata, or modifications in the physical
(but not logical) layout of the data. This means that the schemata for
the data are changed and the data itself is changed correspondingly but
the program does not have to be changed. This facility is described as
creating a measure of " independence” of data layout .+ Marginal
independence of the logical structure of the data has been achieved but
it is not yet clear how much more independence can be achieved while
retaining sufficient efficiency,

Much of the debate in the choice of designs for data base centers
around the choice of different data models. It is believed that the
various models offer differing degrees of efficiency, flexibility, and
program sensitivity to changes in the structure of the data. This
choice is the subject of the next section.

Iv.3.2.2 Data Models and Accessibility

Three major models for data base systems have evolved and been

See Section IV. 3.3.1.

48

discussed in the literature - hierarchical, network, and relational.
Since the details of the different data models are not of great
interest for the rest of this report, the reader is referred to either
the recent book by Date ([Date75]) or the March 1976 issue of ACM

Computing Surveys for a review of the different models, Each model
casts the entire data base into a uniform formalism - either trees
(hierarchical), networks (eg. the CODASYL system), or tables

(relational system). The argument is basically that the relational
approach offers considerable flexibility, but that it would require an
associative memory to be efficient about its accesses, A theory of
normal forms has been worked out which can optimize some updating and
retrieval characteristics, The hierarchical approach is the simplest,
but is awkward when the data does not fit into a simple hierarchy. The
network approach 1is more general than the hierarchical approach and
there is considerable debate about the relative merits of it and the
relational approach.

Since these models accommodate differing degrees of efficiency and
flexibility —-- both important considerations -- the choice depends on
the application . Some models have been recommended as offering greater
degrees of logical data independence, that is, the capability to make
logical changes to the data base without significantly affecting the
programs which access it through the data management software. In data
base terminology, logical changes means something on the order of
changing the record structure of the files, 1In relational data bases,
the logical structure may be changed by changing the configuration of
the tables, Capabilities for this sort of flexibility are typically in
conflict with requirements for efficient access or report generation

along the lines of traditional data processing. For example, a
programmer may organize the access requests for efficiency by following
the actual physical 1layout of information in a file, The relational

approach offers in principle the kind of flexibility that would
preclude the necessity for re-organizing a program, but such systems
have not been implemented with the kind of associative memory that
would keep the programming efficient, In practice, the kinds of
capabilities for data independence are as follows:

1. The ability to support a variety of user views of the logical
structure of the data,

2. The ability to support retrieval after modest changes to the
schemata.

3. The ability to tune the data structure to optimize performance for
certain access patterns with diminished performance for other
access patterns,

Because of the ambiguity of the phrase data independence and the
great interest in representation systems which are in some sense
sufficient to represent a variety of kinds of knowledge, it 1is worth
looking briefly at what would be an ultimate form of data independence.
Full data independence would mean that a data base could continue to
retrieve information independent of any changes in format or
computations that are needed. For example, an entry could be deleted if
it were logically possible to compute it from other entries in the data
base. This would require that a system must know all of the
interrelationships in the data base, Expression and management of

49

these interactions was the purpose of the techniques in Section IV.2
and the data models mentioned above are by no means powerful enough to
subsume that work.

In Section IVv.3.3 we will suggest that the important
consideration for knowledge based systems is the grouping of
information into conceptual objects. The much smaller size of
knowledge base systems as well as an emphasis on a different set of
capabilities for applying knowledge at the right time have resulted in
the knowledge base research concentrating on a different set of issues.

IV.3.2.3 Beyond Retrieval

Most of the research in data base management has viewed the
computer system as neutral to the meaning of the data. Major emphasis
has been on the trade-off of flexibility versus fast access. Experience
has shown that users make mistakes when entering, transforming, or
retrieving data and some tentative work has been done to help protect
the integrity of a data base from certain errors due to carelessness or
lack of knowledge on the part of users. These sources of error are
distinct from those <caused by unauthorized access (security
violations), mechanical failure (reliability), or errors caused by
inadequate interlocks for controlling simultaneous access by multiple
users . These other errors, while important in the practical operation
of large data bases, require techniques and mechanisms in addition to
what will be discussed here.

Eswaran and Chamberlain [Eswaran75] and Hammer and McLeod
[Hammer75] have suggested an approach for maintaining integrity which
is based on (1) the specification of assertions about the data base to

. define the meaning of correctness and (2) the actions to be taken in
event of violations. These assertions may take the form of limits on
transitions in the data base (eg. The age of an employee is non-
decreasing) or limts on the values for specific items (eg. salary
ranges). These assertions can be checked whenever a change is made to
the data base. Eswaran has suggested that the appropriate place to
make many of these assertions is in the schema or data definition.
Associating such checks with the schemata is a little closer to the
object centered factorization of knowledge discussed in Section
IV.3.3.1.

In a complicated set of operations, some assertions may not be
satisfied during an intermediate state. For example, in the course of
transferring of funds from one account to another by first withdrawing
some funds from one account and then depositing them in another, the
books would not balance momentarily. This has 1lead to the idea of a
transaction or set of operations presented to the data base management
software as a unit. Checking can also be useful during accesses which
do not modify the data base. A user may specify a form of a retrieval
whi ¢ch involves the nonsense comparison of unrelated data. When an
operation involves comparison or arithmetic operations between elements
of data, a form of rudimentary type checking based on data definitions
can be used to detect user errors like adding dollars to doughnuts.
Eswaran suggests partitioning the data base into compatibility sets
within which these operations are permitted. Roussopoulos and
Mylopoulos have suggested in [Roussopoulos75] that such type checking

50

RCELERSR R

can be facilitated by augmenting the data base with a semantic network.
This work is by no means complete and the network that they proposed
has some theoretical difficulties with quantification, but the idea is
to augment the data base operations with network operations. and checks
for consistency.

This area of research on data bases is at the boundary of the work
on knowledge based systems which is the topic of the next section, We
will see that the extensions of these ideas lead to increased
capabilities for knowledge acquisition. No doubt as these ideas get
refined and developed, they will appear more regularly in data base
Systems.

IV.3¢3 Knowledge Based Systems for Artificial Intelligence

Knowledge acquisition generally involves the acquisition of new
instances of knowledge as well as of new types of knowledge. For
example in the MYCIN/TEIRESIAS system, the notion of organism is viewed
as a type of knowledge and the knowledge about the particular organism
E: coli is acquired as an instance of an organism, Acquisition of new
types of knowledge involves the most recent work on what might be
termed extensibility* The work on extensibility for programming
languages 1included capabilities for data, operations, and control,
corresponding to the three classes of knowledge which we have discussed
- objects, actions, and strategies, We will see that knowledge base
research in extensibility rests on many of the same ideas that were
used in data base systems, notably the notions of schemata, as well as
the programming language work and some new ideas. The work on data base
systems ignored extensibility for actions and control and concentrated
on the representation of objects,. The work on extensibility in the
knowledge based systems of artificial intelligence has also
concentrated on objects but considerable work in the acquisition of new
instances of actions in the form of rules has also been done, .

IV.3.3.1 Object Centered Factorization of Knowledge

One of the powerful ideas developed by researchers in knowledge
based systems is the representation of knowledge as conceptual objects,
This idea has been rigorously pursued by Davis with the MYCIN/TEIRESIAS
system reported in [Davis76c] and by Bobrow and Winograd with the KRL
language and GUS system reported in [Bobrow77al] and [Bobrow77bl« The
use of conceptual objects involves a synthesis of several of the ideas
from extensible language research and data base research as well as
some new ideas,

The idea of organizing knowledge into conceptual objects has the
same motivation as extensible language work, that is, minimizing the
conceptual distance for a user, Thus, conceptual objects in the
computer are expected to have many of the attributes of their
counterparts in our minds. For example, a conceptual door could be
opened or closed and would require its knob to be turned before it
could be opened, Furthermore, the idea of specifying the structure of
a conceptual object in terms of its components follows directly from
the work in defining and manipulating record structures in programming
language work, Continuing our example, a door may have components such

51

as a knob, hinges or panels. These components are in turn defined in
terms of simpler entities until we reach system primitive objects like
integers or strings, The conceptual objects idea also includes the
clusters of Liskov or classes from SIMULA so that the procedures for
the operations on an object are included as part of the object’s
definition, In our example, the operations open, close, lock, and
unlock would be procedures in the definition of the conceptual door. In
KRL, these operations take the form of attached procedures, The
knowledge base is said to be viewed as object-centered in that that the
objects are the primary index for accessing and they contain procedures
for the operations. This is contrasted with a procedure-centered
approach which uses operations as the primary index so that each
procedure has special cases for the various kinds of objects, Finally,
the conceptual objects idea includes the schemata from data base work.
The schemata constitute external descriptions of the objects. This
permits standard access methods to use the schemata as templates so
that all objects can be manipulated by uniform methods, .

The idea of conceptual objects relates to the discussion in
Section IV.2 about context dependent (weak) and context independent
(strong) interactions in that the components of a conceptual object are
seen as strongly interacting. When this is the case, the object-
centered factorization is an appropriate approach to reducing the
complexity of the knowledge in a domain.

In addition to being a synthesis of established ideas, the
conceptual objects idea includes some new ideas, In the first place,
conceptual objects in the knowledge base are linked together by various
kinds of relationships. Two important relationships are generalization
and specialization. In our example, a fancy carved door, which might
contain such components as a large gargoyle, would be a specialization
of the conceptual object for a door. Specializations may inherit
properties (eg. open and close procedures) from their generalizationg
Another relationship might express default information about objects.
Bobrow and Winograd discusses several additional kinds of relationships
in [Bobrow77al. Much of this work on linking objects together seems to
derive from work on semantic networks. In particular, the ideas for
inheritance of properties and for expressing relations in a network
have been expressed by several researchers. This research has not
emphasized the conceptual object ideas, eg., it has not involved the
use of schemata. A good overview of the semantic network research
research is [WoodsT75].

A second new idea for conceptual objects is that their schemata
can be used to guide the acquisition process. This idea is an
important facet of the MYCIN/TEIRESIAS research and is discussed in the
next section.

Since the conceptual object idea is a synthesis of many previous
techniques, it derives power from those approaches. In addition it
offers an approach to solving some additional problems important in the
research of knowledge base systems. One such problem is the multiple
representation problem diqgussed by Moore and Newell in their report
about the MERLIN system. Multiple representations can be useful in
simplifying many computations if the consistency of the various

See [MooreT73].

52

representations can be maintained: The importance of the matching
process in working with multiple representations is discussed in
[Bobrow77al]. It could also be noted that the procedural attachment
mechanism gives a simple approach to maintaining consistency among
multiple representations, Bobrow and Winograd distinguish between
procedures that are activated when some component is modified and those
which are activated in order to fill a component, (These are termed
demons and servants respectively,) Servants can provide a mechanism for
maintaining consistency between objects viewed as multiple
representations, In the door example above, a servant could be used to
update a connection table for conceptual rooms whenever a door was
opened or closed. In this example, there are multiple representations
for the state of the door. Presumably the connection table
representation is convenient for calculating paths between rooms.

Another major benefit of the grouping of the knowledge into
conceptual objects having schemata is the potential for system
assistance in the acquisition of instances of the objects based on
their descriptions, This is the subject of the next section,

IV.3.3.2 Acguisition of Obijects

The idea of using schemata to group facts together into large
entities has appeared in several places in arqaficial intelligence. In
KRL these are called units. In the GUS system = they are called frames,
In Schank’s work, they might be called scripts. The MYCIN/TEIRESIAS
system already discussed in Section IV.2.3 is unique in its use of
schemata to guide the process of acquiring knowledge, The use of
schemata to guide this acquisition process is an essential advance over
the extensibility techniques in the programming language research. The
schemata provide the knowledge about knowledge that the system needs in
order to provide assistance during the acquisition processs

In June 1976, the MYCIN/TEIRESIAS knowledge base contained
information about 125 different organisms. A single organism schema is
used to describe and guide the acquisition of the fairly complex
information structure required for each organism, In the early
versions of MYCIN adding a new organism to the system meant doing it
manually with little machine assistance and it was a common mistake to
forget some part of the substructure, In addition it was necessary to
appropriately update several other representations in the form of lists
and tables in the system. These two problems - maintaining
completeness of the substructures 1in representations and maintaining
interrelationships between them have provided a focus for the use of
schemata to guide knowledge acquisition,

The acquisition of a new organism in MYCIN/TEIRESIAS uses a schema
in creating a dialog with a users The schema provides the framework
for knowing what information will be required, how to ask for it, how
to check it, and how to update various internal lists automatically
without concerning the user, In addition, the schema ensures that the
creation of the new instance of an organism will be documented as to
author and date,

13 See [Bobrow77]

53

The information in the domain is organized into conceptual
objects, each of which has a schema. These schemata have access to
information relevant to filling in new instances of each conceptual
object.. They guide the interactive dialog with a user for entering new
instances of the objects. The schemata have two features which are
especially important for this;, The first is a limited form of
procedural attachment of the slot experts, which functions on the most
primitive representations in the system. Associated with each slot
expert are English phrases for prompting or displaying information to
the user and a procedure capable of filling in instances of the data
according to advice passed from the schemata. (This is the only
example of procedural attachment in the MYCIN/TEIRESIAS system with the
limited function of facilitating the filling of slots,) The second
important feature of the schemata is the specification of updates to
lists and tables used whenever a new instance is created. Thus
MYCIN/TEIRESIAS has two levels of data typing (1) the complicated
domain level structures configured by their schemata and used as
components in the rules and (2) lower level slots which have associated
slot experts and prompting information. Within the system these lower
level structures correspond to those entities which are in a sense too
small to be decomposed - so that their schemata are of an almost
trivial form.

The discussion above centered on the question of adding a new
instance of a knowledge type to the system. One of the important ideas
from the knowledge base research in [Davis76c] is the idea that
schemata can themselves be considered to be a type. This means that
many of the same mechanisms which are called into play to create a new
instance can be used to create a new type, This approach to
extensibility is the subject of the next section.

IV.3.3.3 The SCHEMA-SCHEMA

In the MYCIN/TEIRESIAS system in June 1976, there were 125
organisms but only one organism schema. There were 25 schemata for the
various data types in the system. Describing the format of every
schema in the entire system is the single schema-schema. These numbers
reflect a very high utility for each schema in the system and emphasize
the important role each schema can play in the acquisition process.

The process of acquiring a new type of conceptual object in
TEIRESIAS proceeds by first acquiring a schema for that object and then
acquiring an instance of that schema. In [Davis76ec] Davis gives an
example of the creation of a new schema for nutrients. This example
starts in the context of entering a new rule in the system when the
phrase "nutrient of the culture medium is blood-agar" is mentioned in
the premise, This initiates a dialog where the system uses the schema-
schema to guide the acquisition of a schema for nutrients. Creating
the schema involves acquiring English phrases for prompting as well as
establishing the relationship of a nutrient schema to other schemata in
the system. The schemata in MYCIN/TEIRESIAS are connected in a network
by the FATHER and OFFSPRING links in each schema and by the <datatype>-
INST links in the slots. The FATHER and OFFSPRING links determine a
network of schemata which is used to make possible the inheritance of
properties. In particular, a father schema may be viewed as a
generalized schema which contains all of the information that its

54

offspring have in common, At the end of this example, a new schema has
been created which points to its instances and which has been
integrated into the schema network. Any subsequent operations on the
network will involve the new nutrient schema as well as the other
schemata.

The acquisition process is skillfully guided by the schemata
network, Acquisition is broken down into small, easily understandable
steps. There are also two simplifying assumptions made which limit the
schemata which can be acquired by this dialog: The following
information is not acquired in this way.

1« New slots in the schema which are not inherited from ancestors in
the network,

2« Updating specifications for internal multiple representations,

This information, while important in many cases, was considered to
be beyond the expertise of the user, a domain expert. The
MYCIN/TEIRESIAS philosophy has been to isolate the user from
programming details with the small possibility that the knowledge base
may be compromised if the new data type is in fact related to an
existing internal structure, It should be noted that the program was
capable of acquiring this information from a user, but that it was
inhibitted from doing so for the reasons stated. These special kinds
of information were acquired by the use of a special network editting
program,

Section IV.3.1 discussed work that was done to provide
extensibility for three classes of knowledge, In the work described
above, we have focussed on extensibility for the objects of a system
and seen that the SCHEMA-SCHEMA provides the essential knowledge about
knowledge for acquiring new kinds of conceptual objects We have not
discussed extensibility for the actions of the domain. The reason for
this derives from the task of the deductive consultation program.
Although there are about 400 rules in the MYCIN/TEIRESIAS system, the
right hand sides for all of them (except for a few meta-rules) are
uniformly "CONCLUDE"' Similarly, the 24 predicate functions (for
example, SAME, KNOWN, DEFINITE) have been static over the life of the
project and it has not proved necessary to provide for extensibility in
these functions. Davis makes no claim of having solved the problems
for extensibility for either the predicate functions or new classes of
rules. Although this system has not included research into the
acquisition of new types of rules, it has provided some noteworthy
examples of the acquisition of new instances of rules, This is the
subject of the next section,

IV.3.3:4 Acquisition of Actions

Sometimes in the course of a diagnostic session a user may decide
that MYCIN/TEIRESIAS has drawn an unsatisfactory conclusion. This is
generally an indication that some change in the knowledge base is
required, In this event, he has the option of telling the system which
conclusion should or should not have been made and having the system
assist him in tracking down the problem* If this option is chosen,

55

TEIRESIAS will access its history list of the consultation and answer
questions about why certain rules were or were not invoked at any stage
of the consultation. When the user believes that he has found the
knowledge bug, he can modify a rule or add a new rule to the system. If
it is a new rule, the system will attempt to classify it and compare it
to similar rules in the system and may suggest some modifications to
the rule. For example, 1if almost all of the other rules which conclude
about the same organism mention portal of entry in their premise, the
system may ask the user if he wishes to add such a clause to the
premise,. These rule models differ from the object schemata in the
previous section in that (1) they are derived from the rules in the
knowledge base and (2) They are not used to guide the acquisition
process for rules as completely as schemata guide the process for
objects. For example, they do not have the ability to fill in parts of
a rule and they do not correspond to types of rules,. More about this
will be discussed in Chapter V.

Finally, the system can use the context in which a rule was
entered to check its suitability. When the user has completed his fix,
the system remembers the context in which the problem was discovered
and checks whether the fix actually remedies the situation. These
capabilities for acquiring knowledge from the user about actions are
one of the distinguishing features of knowledge based systems. Since
strategies in the MYCIN/TEIRESIAS system are also expressed in rules,
this gives the system the ability to acquire new instances of strategy
as well as domain level knowledge.

IV.3.4 Summary of Knowledge Acquisition Work

Having completed this section on knowledge acquisition, it is
worth reviewing the highlights briefly. The first work discussed was
in the area of programming languages, Extensibility for data,
operations, or control meant the ability to define new entities in
terms of existing ones. It was discovered that this idea was not in
itself powerful enough to significantly reduce the errors in
constructing a system or to reduce the conceptual distance.
Considerable knowledge about the system was needed to successfully
introduce new types,

The next area of work was in the area of data base management.
This work introduced the idea of a data definition or schema as well as
some tentative work for data type checking for operations in the data
base . The schema provided an external definition of the structure of
the data and made possible the manipulation and access of the data base
by standard routines,

It remained for the knowledge base research to use these ideas to
provide powerful techniques for knowledge acquisition based on an
object centered view of the knowledge base, In Section 1IV.3.3.1, the
notion of conceptual object was defined. The conceptual object idea
was seen partly to be a synthesis of ideas from programming language
and data base research. It used existing ideas for defining objects in
terms of their components and defining the procedures for operations on
objects with the objects themselves. This viewpoint has been termed an
object-centered viewpoint and may be traced back to Liskov in the

56

extensible language research. 15 A new aspect of the conceptual objects
idea included a network of relations which makes possible the
inheritance of properties between related objects. A large portion of
the work on conceptual objects has been done by Bobrow and Winograd in
their development of the KRL language,

In terms of the knowledge base interactions discussed in Section
IV.2, the conceptual objects may be seen to consist of components which
should be used together in all contexts.

One of the most important contributions of the knowledge base
research in [Davis76c] was the realization that the schemata for
conceptual objects could be used to guide the acquisition processs
These schemata provide the essential knowledge about knowledge that was
lacking in the extensible language research and make possible
considerable assistance from the system in acquiring objects,
Extensibility is achieved by having a schema for schemata so that the
system can acquire new types of knowledge by first acquiring schemata
for them, The schemata have access to procedures for filling values of
new instances and for maintaining consistency between multiple
representations of objects, The acquisition process can help insure
knowledge base consistency, More work is needed in this area to handle
(1) the acquisition of new slots in a schema other than those which are
inherited from ancestors and (2) the updating of multiple
representations, In particular it is worth exploring ways that the
system can assist the user in finding such representations and in
establishing procedures for updating,..

Most of the research on extensibility has concentrated on the
objects of the knowledge base, Knowledge base research on the
acquisition of rules has concentrated on the acquisition of new
instances of rules making good use of rule models and context
information, More work needs to be done on the use of schemata for
rules and possibly on the acquisition of functions, eg. predicate
functions. The next chapter suggests continuing this line of research
by creating schemata to guide the acquisition of rules including
relatively complex strategy rules.

IV.4 Summary of Knowledge Base Research

We began this chapter on knowledge base research by observing its
importance to problem solving. Effective problem solvers in complex
domains require significant amounts of domain specific knowledge, Some
questions for problem solving systems become significant for knowledge
bases of this size.

How can the knowledge be acquired?
How can changes in the knowledge base be accommodated?

It has also been an important element in Hewitt's ACTORS, and
in the SMALLTALK system. We have not attempted an exhaustive survey of
this idea.

57

How should knowledge be managed so that it can be used in several
_ different problem solving situations?

The first question was the concern of the previous section, Ideas
for the second and third questions lead us to Section IV.2 about
knowledge aggregation, Summaries of both sections have appeared above.

One of the unifying themes of knowledge base research is the idea
that meta-knowledge, that is, knowledge about knowledge can be used to
facilitate capabilities for the multiple uses of the knowledge base.
In Section IV.1, we discussed some desired capabilities for a knowledge
based system. We identified the needs for knowledge acquisition,
problem solving, and explanation. Three classes of domain knowledge as
the objects, actions, and strategy/control knowledge of the domain were
distinqguished . Strategy knowledge may be viewed as a form of meta-
knowledge about actions which facilitates problem solving. Schemata
may be viewed as a form of meta-knowledge which facilitates
acquisition, Procedures attached to the schemata can be a form of meta-
knowledge which facilitates automatic updating in the knowledge base.
Statistical knowledge derived from the knowledge base, for example the
rule-models of TEIRESIAS, may be viewed as the meta-knowledge for
checking new instances or for suggesting possible defaults. Information
about the problem solving performance of rules in different situations
could be wused as meta-knowledge for debugging the knowledge base or
guiding the selection of strategy methods during knowledge acquisition.

In the next chapter, we will propose extensions to these 1ideas to
extend the capabilities of the knowledge base for the following
additional requirements:

- 1. How can a variety of types of domain actions be accommodated in the
knowledge base?

2. How can a variety of types of strategy and control knowledge, (such
as those mentioned in Chapter III) be incorporated in a knowledge
base?

3+ How can a variety of types of problem solving states be expressed
and manipulated by the system?

4. How can the problem statements for a variety of types of problems be
acquired?

5. How does the expression and representation ofproblem solving states

relate to the expression of the domain and strategy knowledge?

In the next chapter, we will propose extending many of the kinds
of _meta-knowledge mentioned above to cover these additional
requirements of a knowledge-based problem solving system.

58

Chapter ¥V

Tentative Proposed Work

The applications goal of the MOLGEN project is the crafting of a
computer system which will perform as an informed assistant for the
design of experiments in molecular genetics. The artificial
intelligence goal is to test some ideas for the representation of
knowledge and the management of a complex knowledge base. In what
follows, we will be examining the knowledge and planning processes
involved in the design of a limited class of scientific experiments.

Of special interest will be the_management of strategy knowledge,
that is, the knowledge which directs the control structure for the
creation of experimental plans. Thus, strategy knowledge is not limited
to some set of useful heuristics which are invoked occasionally during
planning, Rather, the term strategy is being used in its broadest
sense to mean the knowledge which directs the entire problem solving
process. In this broad framework, the planning process is carried out
entirely under the control of strategy knowledge from the very
beginning of a MOLGEN problem when a top-level strategy rule is
invoked.

V. 1 Perspectives and Observations about the Direction of this
Research

Chapter IV traced the development of many of the ideas for
representing knowledge in a computer. The earliest work we examined was
the work on extensible programming languages, Perlis was quoted as
observing that three things define a language - data, operations, and
control. We observed that these correspond directly to three kinds of
knowledge for a knowledge base - objects, actions, and strategy. It
was generally thought that extensibility in a programming language
would result in clear and efficient programs and that these programs
would be easy to write. The important lesson from this work was that
the amount of knowledge necessary for a user to mold the nature of a
system for his requirements had been seriously underestimated. The
systems themselves remained too ignorant to provide much help.

Several of the ideas have been developed further in data base
research and knowledge base research. We saw that knowledge base
research was making headway on the extensibility issue in its efforts
to create problem solving systems that could use a large base of domain
knowledge Most of the progress in extensibility has taken place on the
definitions of objects and much less has been done for the actions and
strategies. The work on objects introduced the notion of conceptual
objects and the use of schemata to guide the acquisition process,
Schemata provide the essential knowledge about knowledge that was
lacking in the extensible language effort. A schema for schemata (the

1 See Section IV. 3.3.1.

59

SCHEMA-SCHEMA) made it possible to acquire a new type of object by
first guiding the acquisition of a schema for it and then using that
schema to acquire the instance of the object itself.

Some good work has been done on the acquisition of rules. In the
MYCIN/TEIRESIAS system, rule models, derived from rules in the
knowledge base, were _used to create expectations about new rules
acquired by the system . Differing in function from schemata, these
rule models were not used to fill in parts of a rule but rather were
used to create reminders for the user based on the assumption that new
rules would follow the patterns of rules already in ghe knowledge base.
Since the MYCIN/TEIRESIAS has only one kind of rule 5 the description
of rule components is built into the program for rule acquisition.

We propose to extend this line of research into the acquisition of
more types of action and strategy knowledge. The belief in the
feasibility of this proposal is based on a number of observations and
assumptions which are listed here,

1. Many important logical constructs are difficult to
express in the simple production rule format. For
example, iteration is awkward to express or recognize
in typical production rule systems. Examples of
control strategies will be presented in Section
V.3 and Section V.4 which could not be
expressed in a single MYCIN-like production rule.
Clarity requires that these strategies be expressible
in a single coherent module. (It is not satisfactory
to create a complicated structure involving several
rules and dummy linking variables in order to force
the expression into a restrictive production rule
style.)

2. In addition to a requirement for the ability to express
strategy and control information, it is important to
maintain the visibility of the components of the rule
so that a rule can be analyzed by the system, Thus,
the idea of using production rules and hiding the
important part of the algorithm in a non-decomposable
procedure named by the right hand side of the rule
defeats this purpose. Existing systems, such as NOAH
with its QLISP procedures, have required abbreviated
descriptions of the actions, supplied by the
programmer (in this case ADD/DELETE lists), to enable
the system to reason about the actions, Such systems
do not have the capability to abstract this
information from the rules directly,

3+ Parallel to the desire to make the components of a rule
available to the system for analysis is the desire to
make structure information available for guiding
knowledge acquisition.

See Section IV.3.3.4.

3 Every rule in TEIRESIAS could be viewed as an instance of a
schema with an "If" component and a "then" component.

60

I, Just as an object may be decomposed into its component
objects, an action (or strategy) may be decomposed
into its smaller component actions. It is proposed
tha schemata idea be extended _from objects to
cover knowledge about actions and strateqy as well.
Thus, a schema for a type of domain action would be
used to guide the acquisition of an instance of that
action.

5. The reference by content mechanism used in the
TEIRESIAS system for accessing rules by description is
inadequate for dealing with complex rules. The
reference by description mechanism, as implemented,
could distinguish the use of a token only by its
position as being either in the premise or action part
of a rule. Use of schemata for rules provides a
description of the rule substructure and facilitates
more sophisticated pattern matching facilities.

6+ Schemata for actions and strategy, like schemata for
objects, can be used to fill in default or computed
values for components, to insure that no necessary
components are left unspecified, and to tend to
updates in the knowledge base. For example, a schema
for Separation Technique actions would require
information about the basis and resolution of
separation. It would automatically fill in the parts
of the action rule which direct the system to loop
through all the structures in the current sample.
Furthermore it would update the knowledge base by
insuring that the new instance of a separation
technique was included on the appropriate lists so
that it would be used when necessary by the problem
solving process.

The sections which follow will fill in some of the details of this
proposal- We will see that the schemata for strategy knowledge create a
powerful approach for providing a toolbox of problem solving
techniques. These techniques can be instantiated to create strategy and
control rules for the knowledge base. A sophisticated type of
procedural attachment, termed inspectors, will be introduced which will
make it possible to express strategies without some of their
complicating special cases (because the system will already know about
them). Finally, meticulous adherence to the principle that everything
should have a schema will lead us to creating schemata for such things
as world-states and even the current state of the problem solving
process (termed the planning network), This approach enables us to
represent a spectrum of complex entities with a uniform and consistent
mechanism. This will greatly simplify the programming of the system
and make a great deal of information, which is typically represented in
an ad hoc manner, a visible part of the knowledge base.

61

LN

V.2 MOLGEN System Sketch

To provide reference points for the rest of this proposal, this
section will begin with a sketch of the proposed MOLGEN system.. The
MOLGEN system will be very large and will be built and designed by
several researchers. Much of it will consist of programs but most of it
will be the knowledge base. The following diagram shows the major
components of the system.

| Object | Rule
| Editor | |

Rule Knowledge
Base

i Object Knowledge
Base

Object Schemata
Objects

Domain Rules
Strategy Rules

|
|
|
i
Rule Schemata
'
[}
I

World State

Current Sample
World States Individual Objects

Experiment Steps

| I
I I
| Design Steps]
| i
| |
| I

System Utilities i Planning Program |

Pattern Matcher

List Manipulation

Rule Interpreter
Explanation System
Knowledge Access Monitor
Ground Level Data Access

Performance Measuring
and Evaluation System

Figure 4. MOLGEN System Components

The object editor and rule editor are programs for knowledge
acquisition, The object editor will be a system for entering schemata
and objects; the rule editor will specialize in the acquisition of
action and strategy knowledge. Both editors will use schemata to drive
the acquisition process. The term rule (as contrasted with procedure)
is meant to connote something which is structurally simple enough for

62

the system to examine and analyze* As will be discussed in the next
section, the rules of MOLGEN will be extended to cover much more
complex processes than were needed, for example, in the MYCIN/TEIRESIAS
system. The schemata for the strategy rules will embody a collection of
problem solving techniques termed the artificial intelligence toolbox.

All of the dynamic information, that is, information which changes
in the course of problem solving, will be contained in either the
planning network or the world state, The planning network is the
representation of the problem solving state and is discussed below in
Section V.3. The world state is the current sample (or samples)
containing all the information about substances and other entities (eg.
temperature) which are present in the simulated genetics environment at
the current moment in planning. Previous or pregicted future world
states are contained within the planning network. Both the planning
network and world state have prototype schemata in the object knowledge
base.. All of the actions in the rule knowledge base -- both domain and
strategy -- are defined 1in terms of the changes they induce in the
state information.

Finally we come to the planning program which is in many systems
the heart of the system. In MOLGEN, however, the structure of this
program will be very simple —-- since most of the work is driven by
information in the knowledge base: The operation of this program would
start with the acquisition from the geneticist user of a problem
statement. Since this involves acquisition of knowledge, it would be
guided by schemata and the work would actually be done by the object
editor: The acquisition process would include initializing the world
state and the planning network, The next step for the planning program
is to start the problem solving process with a top-level strategy rule.
This rule may be selected through the schema for the problem statement.
Given the name of this rule, the planning program invokes the rule
interpreter to start the problem solving process.

Further tasks for the planning program would be to field
interrupts from the user which re-direct the planning process. The
program would also manage a display of the evolving world state and
planning network. Attention of the experiment design process could be
manually re-directed when the expert interrupts the planning program
and invokes a strategy rule on a different aspect of the planning
network. He may elect to save the current planning network on a file
so that he can return to it later. Finally, the MOLGEN explanation
system could be invoked to explain the events of the problem solving
process. As the system becomes polished, smooth interfaces to the
object editor and rule editor to allow changing the knowledge base
during planning will be developed,

From this description of the planning program, we can see that
much of the programming work has been transferred into the general

The phrase "world state"™ is being used in the same manner as in
robot planning work, In this work, the planning and control
information is not considered to be part of the world state. In a
problem solver capable of considering alternate beliefs about the world
or many views of the world at different times, it is appropriate that
there are several world states. In such a system, one of them may be
designated as the current world state,

63

system utilities. The problem solving process is rule based so that
the knowledge which directs the process is contained in the knowledge
base and the programming effort is limited to building the routines for
creating the knowledge base and a rule interpreter.

The last component in the figure, the performance measuring and
evaluation system, will be integrated into the planning program and
knowledge base routines. When the system is designing experiments, we
may ask on what basis its effectiveness can be judged. Similarly, when
a user is entering strategy knowledge or the system is choosing between
strategies, on what basis can a selection be made? The idea is to
build mechanisms into the system which facilitate the gathering of
information on which to base these decisions. The creation of
measuring tools and evaluation procedures will be a central theme for
one of the MOLGEN researchers.

The next section suggests that this design offers tremendous
flexibility for trying out new strategies and planning paradigms. What
would traditionally have required a new planning program can be done in
this design by acquiring a new strategy rule. All of the power of
schemata-driven knowledge acquisition is available to make the
acquisition of and experimentation with new strategies as painless as
possible. We believe that this flexible design will result in a
powerful laboratory tool, so that MOLGEN can make some real
contributions to the practical design of interesting laboratory
experiments.

V.3 Strategy and the Planning Network

There are several sources of information which strategy processes
need to access and manipulate in order to create plans for experiments..
One source of information is the knowledge about the objects in the
domain. When a domain rule has a condition relating to an object,
knowledge must be Dbrought to bear for deciding whether to treat that
condition as a presupposition or a precondition. Similarly, the
desirablility of a given rule 1is determined in part by the effects it
has on objects in the domain, Thus strategy information must deal with
the knowledge of the objects and actions in the knowledge base. In
addition to this, strategy must deal with a knowledge of the current
world state. Determination of which domain actions are feasible is
possible only with a context provided by the current world state. The
nature of the knowledge in the world state may change, for example,
early in the experiment design process, the world state knowledge could
be of an abstract nature. Finally, strategy must be concerned with the
current problem solving state as indicated by the planning network
mentiond in the previous section. As will be discussed below, the
planning network provides for the expression of the orderings or
partial orderings of the steps of developing plans and the entire
history of world states and tentative planning steps that have been
sketched out by the planning process. Focus of attention directives can
be expressed in terms of the planning network, which provides a
language for directing problem solving effort to different facets of
the problem.

64

Since the planning state knowledge is important for the expression
of strategy in MOLGEN, it is worthwhile exploring briefly the nature of
this knowledge. It is useful to consider the planning network in
MOLGEN as being composed of three planes -- the experiment ‘plane, the
planning plane, and the focus plane, These planes contain (1) the
experimental steps and world states, (2) the planning and design steps
and (3) the focus of attention knowledge respectively. All three
planes of the network are built dynamically during the problem solving
process. Different types of nodes in the network correspond to the
different components of the problem solving process.

It is natural to begin with a brief description of the kinds of
nodes in the experiment plane, These nodes are express a solution to
the design problem: In the simplest case, this corresponds to a
sequence of laboratory steps that transforms the initial laboratory
conditions to a set of final conditions, These final conditions may
reflect modified structures or simply an increased state of knowledge,
More generally, there will exist branch points in the experiment plan.
These correspond to those places where design proceeds along alternate
paths depending on a laboratory measurement in the sequence, the
results of which cannot be known until an actual experiment is
per formed. In terms of nodes in the network, three kinds of nodes are
suggested. The first kind of node corresponds to the world states
along the way. These nodes would express the initial, final, and
intermediate states of the laboratory conditions in the experiment.
World state nodes carry the dynamic knowledge which can be changed in
the course of an experiment. Between world state nodes are the action
nodes which describe the genetic actions used to transform the states.,
These point to corresponding rules in the rule knowledge base which
describe the appropriate state changes for the experimental step, The
action nodes would also contain the values of the experimental
parameters (eg. gel voltage gradient) for each of the transformations,
Finally, a third kind of node expresses the conditions at the branch
points in the experiment plans,

As will become clear from later examples, the experiment plane may
be inhabitted by nodes which represent world states or laboratory steps
expressed at different 1levels of abstraction. Early in the design
process, nodes may be formed which deal with models of DNA that are
quite abstract and with very generalized laboratory steps. Typically,
these general steps will be refined to more specific ones as the design
process continues, for example, cutting may become an exonuclease or
separation may become electrophoresis. It is not too surprising that
the generalized steps and actions will appear in the experiment plane.
For some purposes, the design process may be stopped if the general
plan is already a complete enough answer for the user. Even the most
specific plans the program will produce will contain a certain amount
of abstraction,

In the planning plane above the experiment plane, is a
representation of most of the problem solving activity which creates
the design of the experiment. The nodes 1in this plane correspond to
the basic problem solving operations described in Chapter III. Just as
act ion nodes in the experiment plane point to domain rules which
express laboratory transformations, each kind of node in the planning
plane points to an appropriate type of strategy rule,. These rules
express such operations as generating an alternative, refining a step,

65

testing the suitability of world stages which have been created, or
ordering some partially ordered steps”. It is our contention that a
few types of these operations cover all of the problem solving
operations. In terms of schemata, this means that a small number of
schemata are needed to represent the many problem solving nodes in the
planning plane. For example, a refinement node schemata would have a
slot for a rule which maps a general world state state to a specific
one and a slot which maps a general action in the experiment plane to a
more specific one. The basic role of a refinement rule is the
proposing of subproblems. The refinement node keeps track of the
mapping rules which are active and the correspondence between states
and actions in the experiment plane. During a design process which
used hierarchical planning, many levels of refinement nodes (pointing
to other refinement nodes) would exist in the planning plane.

A basic question which dominates much of the design process is the
question of the allocation of resources. A growing network may contain
several approaches to a problem and several incomplete subproblems.
The focus of attention problem, discussed in Section IV.2.2.2, 1is the
problem of deciding where to allocate resources such as processor time
to the various competing places 1in the partially completed design
process. We propose the use of a number of focus of attention rules
which manage this process. In terms of the network elaborated above,
focus nodes located in the focus plane above the planning plane will be
responsible for allocating processor space and time to the activities
represented below in the planning and experiment planes. Since these
planes express the complete problem solving state, they provide a
language for expregsing the control necessary for the focus of
attention process. B focus of attention rule would base its decision
about resource allocation to areas of the problem on information
available in the slots for that part of the problem, For example, nodes

-which generate alternatives in the planning process could contain
estimates of the cost of generating the next alternative. The
suitability of an alternative could be estimated by activating the rule
in a test node. Each focus node would contain a measure of the
resources it had to spend, the name of its focus of attention rule, and
a pointer to that part of the planning network which was its particular
domain. One capability for a focus node is to insert another focus
node over a subset of its domain. This corresponds to a delegation of
authority which allows for specialized approaches to the allocation of
resources for different parts of the problem. This also promotes the
practice of describing the focusing process in terms of small modules.

It is interesting to compare the planning network to some related
structures in artificial intelligence. The planning network is like
the blackboard of HEARSAY in that it expresses the state of the problem
solving process. It differs in that the blackboard of HEARSAY11
contains a fixed decomposition of the speech understanding problem. The
structure of the MOLGEN planning network may be modified by changing
the schemata in the knowledge base for the nodes in the network,. Unlike
the knowledge sources of HEARSAY, those of the MOLGEN planning network

(As in the resolve conflicts critics of NOAH).
6 Each competing planning process is addressable through a node

in the network. A process could be initiated by activating the slot
which names the rule.

66

correspond to actions and strategies in an acquired rule knowledge
base. The planning network is also related to the procedural network of
NOAH. Both networks contain nodes for the actions, world states, and
abstractions of both of these: The planning network differs in that it
contains nodes for the strategy information. It also differs in that
the state information is retrieved from object schemata instead of the
ADD/DELETE lists. The idea for expressing focus of attention in nodes
distributed throughout the network is unique to the MOLGEN planning
network as 1s the 1idea of expressing these nodes wuniformly using
schemata.

Before leaving the subject of focus of attention, it is
interesting to recall from Section IV.2.2.2 that this process has two
components: (1) selection of a problem solving context in the problem
for further work and (2) selection among competing knowledge sources to
apply in that context. In the MOLGEN framework, these two components
are handled separately. The focus of attention rules are responsible
for the selection of a problem context, that is, for the appropriate
sites for further refinement or allocation of resources. The second
component, selection among competing knowledge sources, is a process
which will utilize pattern matching.. In this case, the search is among
competing domain or strategy rules to apply within the current planning
context. This search process is expressed in the generator and
refinement rules used in the network: The use of schemata to create
rules creates a description of substructure of the rules being searched
and facilitates this pattern matching process.

Corresponding to the classification of nodes in the planning
network into a few types is the potential for classifying their
associated rules into a few types. This refers to the central idea of
having schemata for each kind of action and strategy. Thus, focus of
attention rules are concerned only with the allocation of resources,
refinement rules are concerned with the generation of subproblems,
action rules are concerned with the transformation of state
information, and so forth. The schemata for these kinds of rules are
specialized so that that the acquisition process for these rules can be
based on a set of specific expectations. The next section pursues this
specialization process further by suggesting that the algorithms
internal to these rules may be discussed in terms of a set of standard
artificial intelligence tools.

V.4 A Toolbox for Artificial Intelligence

At the end of Chapter III, a number of issues were raised about
the management of strategy knowledge,

1. How should strategies be expressed?

2« How can strategy information be assimilated so that the
system will use it appropriately when designing or
explaining experiments?

3. How can a knowledge based system assist a domain expert

in structuring and expressing his ideas about
strategy?

67

-

In this section we will propose an approach to the acquisition and
management of strategy knowledge -- beginning with a familiar example.

Means-ends analysis is one of the simplest ideas in the ‘current
stock of methods for problem solving. As such, it should exist as a
tool in a toolbox of artificial intelligence techniques to be used as
needed. The current state of artificial intelligence, where a
researcher must re-code Means—-ends analysis any time he wishes to use
it is akin to a carpenter forging a new hammer for each job. In the
next few paragraphs we will explore this Means-ends analysis example
and examine the system capabilities that are necessary to create such a
tool kit. Many of the techniques for creating these capabilities are
natural extensions to those presented in the previous chapter. This
example will also provide a framework for introducing some terminology
for the sections which follow.

-

V.4.1 The Means-ends Tool

Initial World Difference Goal State
State Table or
Goal Test
D1 Al
D2 A2
Difference Function D3 A3
or e [P
Feature Function Dn An

Figure 5. Components of Means-ends Analysis

The elements of Means-ends analysis are presented in figure 5
above. Typically there is an initial world state and either a goal
state or a goal test. For a synthesis experiment in molecular
genetics, the initial state might be the initial molecule and the goal
state might be the molecule to be synthesized. Existing chemical
synthesis programs generally work synthesis 1in the reverse direction
working backward from the desired molecule to any acceptable precursor.
This alternate approach fits within the goal test paradigm, where the
testing function decides whether a candidate molecule is acceptable as
the starting precursor. An analysis experiment, such as the binary
discrimination experiment described in Section 11.1, could be expressed
within a goal test paradigm.

The classical Means-ends analysis calculation proceeds a step at a
time from the initial state to a goal state. At each iteration, a
difference function is invoked to find the differences between the
current state and the goal state and an ordered difference table maps
the -differences to their associated actions. In the goal test
paradigm, the difference function is replaced by a feature extraction
function and the table is used in much the same way,

One approach for making an instance of Means-ends analysis
available as a tool would be to provide a packaged program which
accepts arqguments for the various components of Means-ends analysis
(eg. a difference table, difference function, etc.). The alternative

68

.

being proposed here is a system which uses schemata to drive the
strategy acquisition process and which can guide a user through the
details. The goal is to create a supportive environment for the
painless testing of fairly high level strategies. Such a system should
be able to draw on its knowledge base to provide assistance in casting
a problem into a Means-ends framework.

V.l4.2 Means-ends Analysis in the Schemata Network

In terms of the planning network discussed previously, Means—ends
analysis corresponds to a specialization of one of the planning
operations, eg. a refinement process.

Knowledge-Structure Schema
/ 1 \
Objects] Genetic Actions

Strategies (& Nodes)

| |
Focus/ Generaté/Test Refiéement Srder Conéition
Means—énds Cliticality—Level
GoalTTe;t éoal—State
Separati;e Phyéical \Cutting
Tec hnique Measurement Operation
Figure 6. Fragment of the Schemata Network

The figure above illustrates the set of relationships between some
schemata which could exist in the MOLGEN knowledge bassi At the top of
this hierarchy is a schema for knowledge structure, Specializations
of this are the schemata for the three classes of knowledge for MOLGEN
- objects, actions, and strategies. For the purposes of this section,
only the specializations of strategy are expanded here. The schemata
at this level correspond to the kinds of nodes in the planning network
described in the previous section, Thus we have schemata for rules for
focus nodes, generate/test nodes, refinement nodes, order nodes, and
condition nodes. The schemata for the remaining kinds of nodes in the
planning network are not shown above. For example, the schema for world
states would appear under object nodes, and the schemata for genetic
actions and their abstractions would be specializations of the action
sehema. Continuing with the network above, specializations of the
schema for refinement rules include those refinements which are based
on Means-ends analysis and those based on criticality levels, The
network above shows two versions of Means-ends analysis - the goal
state and goal test versions. Under the goal test schema,

(This corresponds to the KSTRUC Schema in the MYCIN/TEIRESIAS
system.)

69

specializations for separative techniques and for physical measurements
are shown.

One purpose of this schemata network is to express the inheritance
relationships between the schemata. It is worth examining the
inheritance implied for the node labeled separative technique in the
diagram above. In the first place, it is a knowledge structure and in
particular a strategy. More particularly, it is a schema for a
refinement strategy which means that an instance of it in a planning
network will involve a refinement node and a corresponding abstract
action rule. (The abstract action rule, in this case, would be one
that carries out the separation on an abstraction of the world state,)
The refinement rule is concerned with proposing subproblems. The
network also indicates that this rule is based on a Means-—-ends
algorithm which means that the subproblems will be proposed by Means-
ends analysis of the input world state to the refinement process. The
particular type of Means-ends analysis is the goal-test paradigm, The
rule will wuse the goal-test paradigm to propose a refinement for a
separative technique. At this point we should note that the separative
technique schema is not itself a rule but rather it is the schema for
guiding the acquisition of such a rule.

Much of the information about the rule in our example is inherited

from the Means-ends analysis schema. For example, this schema would
indicate that a difference (or feature) table is required as well as a
difference function. The particulars of these must be acquired from

the user when he enters a rule, The schema may point to tests to be
performed at knowledge acquisition time which check the tables that are
entered. The differences are to be expressed in terms of the properties
of objects that are in the knowledge base, for example, particular DNA
structural features. To provide assistance, the system must scan its

—-object knowledge base and suggest features which should be in the
table. These differences must map to actions which are also drawn from
the knowledge base - the genetic actions or legal moves: In this
example, we see that at least one of the actions must correspond to a
separation technique. One can imagine tests in the schema which have
the capability to check that the actions chosen have an appropriate
relationship to the differences which are set to trigger them, Finally,
the loop inherent in Means-ends analysis would be filled in
automatically by the Means-ends analysis schema. Then the goal-test
schema would guide the acquisition of the feature extraction function
and the goal testing criteria.

In summary, the acquisition process for a strategy rule is broken
down into a number of small and manageable steps. The schema wused to
guide the acquisition process inherits many of its specifications for
creating the rule from its ancestors in the schemata hierarchy, It is
suggested that this process can be used to help prevent required
entries from being forgotten when a new rule is acquired* Much of the
structure of a rule can be filled in automatically - for example, the
iterative loop in the Means-ends analysis example. Tests on the sets
of acceptable values for the components of instances can be built into
the schemata as a further check on the correctness of what a user
enters. The goal of this process of assisted acquisition is to make
the acquisition of domain specific strategy rules as painless and bug-
free as possible.

70

TG TR T SRS e T O

V.4.3 More_From the Toolbox

Although the previous section emphasized the example of a Means-
ends analysis tool, the schema based approach would be used for any
problem solving technique that the system could apply. For example,
another technique would be the criticality level approach to
hierarchical planning.. The interactions between schemata would be
somewhat more complex in this technique but the methodology of
acquiring the knowledge 1in small pieces wusing schemata would be used
again, For example, one aspect of using a criticality level approach
is the assignment of criticality level numbers to objects in the
domain; Another aspect of it is the length first expansion of the
design. During the process of hierarchical planning, the planning
network might appear as follows:

F Key to Node Types
|
|
: WS World State
/- R -\ R Refinement
/ I\ \ F Focus of Attention
/ WSs. |l v.s..ws \ S Experimental Step
R R R
\ \ \
WSes s WSs .s WS. «Sv .WS

Figure 7. Fragment of Planning Network
During Hierarchical Planning

In this figure, we see two levels of the refinement process. The focus
node is in the focus plane, all of the refinement nodes are in the
planning plane, and the other nodes are in the experiment plane. The
top refinement node corrresponds to a general expression of the plan
and the other refinement nodes are the next level of refinement to the
design. Each refinement node corresponds to an experimental step with
associated world states in the experiment plane. The entire operation
of activating refinement rules and abstract action rules is wunder the
control of a focus of attention rule in the focus node shown,

For hierarchical planning or any of the complex types of strategy
that the system may be aware of, it is clear that the the schemata will
be fairly complex. The interesting aspect of this is that the
complexity is associated with the schema for the strategy. The schema
itself may be wused over and over again for each instance of that
strategy when the domain specific information is added during
acquisition of a rule, Much of the power of this approach is that when
the schema is bug-free, a large number of instances of that strategy
may be acquired and added to the knowledge base with confidence.

A factor that can complicate the structure of schemata and their

rules is the handling of exceptional cases. The next section proposes
some mechanisms for dealing with this,

V.l 4 Eliminating Special Cases

One of the motivations for using schemata to guide the acquisition

71

of rules is to simplify the acquisition of rules. The set of
exceptional <cases can potentially plague the statement of strategy
rules in a system. This section gives an example of such an exceptional
case and some mechanisms for stating the schemata for rules separately
from their exceptions. It should be mentioned that the mechanisms
mentioned in this section are somewhat tentative. Their purpose here
is to illustrate some of the knowledge base management issues that have
an impact on problem solving.

The MOLGEN knowledge base will contain a large number of
refinement rules for different planning situations.. Suppose that some
of these refinement rules propose as subproblems the satisfaction of
the preconditions of a given target rule. Let us presume further that
this strategy for proposing subgoals is adequate for almost all
situations with the following exception. When (1) the target rule 1is a
domain rule for a restriction enzyme having a precondition for a
somewhat basic pH, and (2) the DNA structures in the current world
gtate are double stranded with a high percentage of adenine and thymine

“(or if they are quite short), then these pH conditions will cause the
structures to denature (become single stranded) and prevent the later
successful application of the enzyme. In such cases the enzyme will
fail' to cleave the structures even though its preconditions are
satisfied. Thus, some means for choosing an alternate restriction
enzyme (or other cutting technique) needs to be employed.

There are several alternative places for the special case
information in this example. Each alternative has its own impact on
the amount of backtracking that has to be done, the complexity of the
rules, the expense of their evaluation, and the management of the
knowledge base. The following diagram illustrates the planning network
for this example and will be referenced in the comparison of
-computational work and backtracking.

F
| Key to Node Types
G/T
I F Focus
“““““ Rl =—emmeee G/T Generate/Test
I \ ‘ R/A Refinement
| WSt.. s ..WS2 | S Experimental Step
| ~ ws World State
R2 R3
\ \
WS3..S .. ws4 . . s ..WSH
(pH) (enzyme)

Figure 8. Planning Network for Enzyme/pH Example

The numbers after the world state nodes (WS) will distinguish them
in the following discussion. We presume that the focus node, the
generate/test node, WS1 and WS2 have been given as the problem

Such structures are termed A-T rich. Their hydrogen bonding is
weaker and they dissociate more readily in a low pH than A-T poor
structures.

12

statement. W31 expresses the 1initial state before application of the
restriction enzyme and contains the description of the A-T rich DNA
structures and other properties of the sample. WS2 contains a
description of the desired output of this part of the plan. The top
refinement node, R1, was created by the generator and points to the
refinement rule in the discussion above, The experimental step
associated with this refinement rule represents the abstract version of
the experiment. The mapping rules in the top refinement rule have
created the other refinement nodes R2 and R3. These nodes suggest no
further refinements but are associated with their corresponding actions
in the experiment plane —-- for the pH step and the enzyme step
respectively* When the state mapping in RI is run, it will create WS3
(a particularized version of WS1). The action mapping will create the
enzyme step,: The refinement rule can then detect the unsatisfied
precondition in the enzyme rule and create the pH step to satisfy it,
When the pH step and enzyme steps are simulated, WS4 and WS5 are
created,

There are four places where the special case information about the
use of this enzyme with A-T rich structure might be incorporated.

1. In a pre-condition associated with the enzyme action
rule.

2. In the Test rule.
3. In the Refinement rules (action mapping) for RI.
4, 1In a pH inspector.

The first option would prevent the selection of the enzyme by
making it appear inapplicable (in the current world state -- WSt) to
the refinement rule. The precondition could state that the enzyme was
inapplicable to structures having AT-rich regions. However, this would
also negate the possible use of this enzyme on a sample containing AT-
poor structures with the AT-rich structures. Other experiments which
might take advantage of the selective operation of this enzyme on the
AT-poor structures would never be proposed. This option illustrates
the motivation for the philosophy of stating the description of the
action of a genetic tool separately from the criteria for its use.

The next option for placing the exception knowledge is in a higher
level testing function for this part of the plan (ies+ a test rule in a
generate/test node.) The test rule would not have information specific
to this special case, but would be able to detect the failure of the
refinement by examining the results of the simulated steps. This
approach maximizes the amount of backtracking required for this example
and would proceed as follows,. First, the pH precondition for the
enzyme would be noticed by the refinement rule and proposed as a
subproblem as though nothing was wrong, When the subgoal to establish
a value for pH is expressed to the pH schema, a procedure attached to
the pH schema would be activated and would carry out the denaturation
process creating WSH, (It is important to note that this attached
procedure would be just another rule in the rule knowledge base that
happens to be activated by the subgoal mode of access to the schema for

(This is a servant in Bobrow and Winograd's terminology.)

73

pH.) Finally, after denaturation and after the restriction enzyme was
applied (ie. 1its abstract action was carried out), the test rule would
be invoked. It would discover the discrepancy between WS5 and WS2 and
report a failure to the focus node. This would initiate backtracking
resulting eventually in the selection of an alternate choice for the
enzyme.

Another option is to put this information in the refinement rule.
This approach would minimize backtracking since the use of the
particular enzyme would not be proposed in the network. To do this,
the refinement rule must avoid proposing the use of the enzyme when it
detected the AT-rich DNA in WS1. This mechanism suggests that the
special cases for any of the enzymes that this refinement rule may
propose as refinements must be incorporated into the rule. The
repetition and dispersal of special case information requires some
complications in the management of the knowledge base since one enzyme
may appear 1in several different refinement rules and each refinement
rule probably can utilize several different enzymes, Whenever the
specifics of an enzyme are modified, it will be necessary to check for
changes to all of the refinement rules which might reference it.

The fourth approach would be to associate the exception with pH
itself. This approach extends the responsibility for a procedure
attached to the pH schema. 1Instead of blindly carrying out the
denaturation process, procedure attached to pH could inspect the
current plan. It would find that the current structures would become
denatured by this wvalue for pH and also discover from the abstract
world state (WS2) that this denaturation was not a desired or expected
goal. We have called such attached procedures inspectors because of
their role in inspecting global aspects of a developing plan. The
inspector in this case would initiate backtracking immediately after
the pH subgoal was proposed.

Although the 1last approach may seem more difficult, it has the
advantage of associating special cases with the objects that cause
them. In this case, the knowledge is not specific to the special case
of our example, but is about rules which propose setting values for pH
in plans when the denaturation effect was not anticipated, Thus any
rule in the system which mentions pH invokes automatically this kind of
checking. This includes all of the strategy rules and all of the
domain rules. 1In this framework, rules which are based on simple
schemata, for example our Means-ends analysis example, may actually
invoke rather complicated behavior because of the inspectors associated
with the objects that are mentioned. The factorization of the
exceptions out to their associated objects follows the philosophy of
the object-centered factorization of knowledge described in Section
Iv.3.3.1.

The MOLGEN knowledge will be able to accommodate each of the
approaches to representing the special case knowledge in the example
above, Different approaches will be best for different situations -
depending on such things as the cost of backtracking, and the
probability of certain situations.

Before leaving this subject of special cases, it is worth

emphasizing some important points about attached procedures. In the
first place, the inspectors and servants as discussed above are not

14

LISP procedures like the, TEIRESIAS slot experts. They are rules from
the MOLGEN rule base. Since they can Dbe strategy rules, they can
perform any of the types of strategy operations, ie., they are not
limited to initiating backtracking as in the example above. Finally,
the concept of an inspector would be infeasible were it not for the
fact the the planning network has been designed to be visible to
strategy rules. As such, inspectors can work within the confines and
types of communication available to other rules of their type that are
invoked in the planning network,

V.5 Concluding Remarks

The thrust of this proposal is based on the contention that many
of the ideas which have proved important for the acquisition and
management of object knowledge may be extended to cover action and
strategy knowledge as well.

Parallel to the schemata based rule knowledge base is the concept
of expressing the dynamic knowledge of the problem solving process
through schemata, This leads to the development of the concept of a
planning network, This network provides a mechanism for expressing the
problem solving state in terms of a small number of node types
corresponding to basic problem solving steps used at all levels., The
planning network idea, described in Section V.3, combines and extends
the best elements of HEARSAY’s blackboard, NOAH’s procedural network,
and schemata based representations.

The synergistic effect of these design elements creates the
potential for a very exciting system. The same description of
substructure which is used to decompose the acquisition process into
small manageable steps makes possible the implementation of a
sophisticated pattern matcher for choosing between actions or
strategies, The schemata provide a framework where strategy knowledge
can be expressed in terms of available standard strategy algorithms®
This creates an available toolbox of problem solving techniques which
can be instantiated with the particulars of domain specific knowledge.
The planning network, which provides the lanqguage for strategy and
focus of attention, also motivates the classification of strategy rules
according to their basic stepss« Perpendicular to this classification
is one which is associated with the genetic knowledge.

As with any problem solving system, the success of the system will
depend on the knowledge that it has available. The system’s
performance will depend on the strategy rules, domain rules, and object
descriptions in the knowledge base. What is interesting about this
proposed design for a system is the array of techniques proposed
managing the knowledge base, acquiring the knowledge, and accessing it
during problem solving. It is hoped that this flexible design will
result in a powerful laboratory tool, so that MOLGEN can make important
contributions to the practical design of interesting laboratory
experiments,

(Perhaps they should be termed "attached rules”.)

75

Appendix I

Working Bibliography

Abbreviations

IJCAI Proceedings of the International Joint Conference on Artificial
Intelligence held May 7-9 1969 in Washington D.C.

21JCAI Proceedings of the Second International Joint Conference on
Artificial Intelligence held at Imperial College, London September
1-3 1971. [Copies available “rom the British Computer Society, 29
Portland Place, London WIN 4AP England]

31JCAI Proceedings of the Third International Joint Conference on
Artificial Intelligence held at Stanford University, Stanford
California, August 20-23, 1973 [Copies available from Stanford
.Reseach Institute Publications, 330 Ravenswood Ave, Menlo Park,
California 940251

UIJCAI Proceedings of the Fourth Internation Joint Conference on
Artificial Intelligence held at Tbhilisi, Georgia USSR, September 3-
8, 1975, [Copies available from Publications Department, MIT A.I.
Lab, 545 Technology Square, Cambridge, Massachusetts 02138]

AISB76 Proceedings of the AISB Summer Conference held at the University
of Edinburgh July 12-14 1976. [Copies available from Department of
Artificial 1Intelligence, University of Edinburgh, Forrest Hill,
Edinburgh U.K.]

VLDB75 Proceedings of the 1International Conference on Very Large Data
Bases held at Framingham, Massachusetts September 22-24 1975,
[Copies available from ACM for $15 1133 Avenue of the Americas, New
York, N.Y. 100361

AIM A.I. Memo, Computer Science Department, Stanford, California

SRI Stanford Research Institute, Menlo Park, California

MIT Masschusetts Institute of Technology, Cambridge, M.A.

CMU Carnegie Mellon University, Pittsburgh, Pennsylvania%

[AielloTld] Aiello J.M., An Investigation of Current Language Support
for Data Requirements of Structured Programming, MAC Technical Memo
51 (1974)

[Amare169] Amarel S., Problem Solving and Decision Making by Computer:
An Overview, in Garoin P.L. (ed.), Cognition: A Multiple View New
York: Spartan Books (1969)

76

[Amarel68] Amarel S., On Representations of Reasoning About Actions, in
Michie (ed.), Machine Intelligence 3, Edinburgh: Edinburgh
University Press, pp 131-171 (1971)

[AndersonT74] Anderson J.A., and Bower G.H., Human Associative Memory,
John Wiley and Sons, New York (1974)

[Balzer73] Balzer R.M., "A Global View of Automatic Programming”,
3IJCAI, pp U494-499 (1973)

[Becker70] Becker J.D., An Information-Processing Model of
Intermediate-level Cognition, AIM 119 (1970)

[Belady75] Belady L.A., Lehman M. M., The Evolution and Dynamics of
Large Programs, Report RC5615, IBM Research, Yorktown Heights

[Bobrow77a] Bobrow D.G., Winograd T., An Overview of KRL, a Knowledge
Representation Language, to appear in Cognitive Science Vol. 1 No.
1 (Jan 1977)

[Bobrow77b] Bobrow D.Gs, Kaplan R.M., Kay M., Norman D.A.., Thompson H.,
Winograd T., GUS, a Frame-Driven Dialog System, to appear in
Artificial Intelligence (Spring 1977)

[Bobrow75a] Bobrow D.G., Collins A., Representation and Understanding:
Studies in Cognitive Science, New York: Academic Press (1975)

[Bobrow75b] Bobrow D.G., Dimensions of Representation in [BobrowT75al] pp
1-34

[Bobrow75c] Bobrow D.G., Norman D.A., Some Principles of Memory
Schemata in [Bobrow75a] pp 151-184

[Bobrow74] Bobrow D.G., Raphael B., "New Programming Languages for
Artificial Intelligence," Computer Surverys, Vol. 6., No. 3
(September 1974)

[Bobrow73] Bobrow D.G., Wegbreit B., A Model and Stack Implementation
of Multiple Environments, CACM Vol 16 No 10 (1973)

[Bruce72] Bruce B.C., A Model for Temporal References and its
Application in a Question-Answering Program, Artificial
Intelligence Vol. 3, pp 1-25 (1972)

[Buchanan69] Buchanan B.G., Sutherland G.L., Feigenbaum E.A., Heuristic
DENDRAL: A Program for Generating Exploratory Hypotheses in Organic
Chemistry, in Meltzer B. and Michie D. (eds.), Machine Intelligence
4, New York: BAmerican Elsevier Publishing Company, pp 121-157
(1969)

[Chamberlain76] Chamberlin D D., Relational Data-Base Management
Systems, ACM Computing Surveys Vol 8 No 1, pp 43-66 (March T76)

[Cheatham69] Cheatham T.E., Motivation for Extensible Languages, ACM
SIGPLAN Notices Vol. 4 No. 8 pp 45-48 (August 1969)

[Codd70] Codd E.F., A Relational Model of Data for Large Shared Data
Banks, CACM Vol 13 No 6 pp 377-387 (June 1970)

7

[Corey69] Corey E.J., Wipke W.T., Computer-assisted Design of Complex
Organic Synthesis, Science, Volume 166 (178)[1969]

[Craik52] Craik K.J.W., The Nature of Explanation, Cambridge University
Press (1952)

[Dahl172] Dahl 0.J., Dijkstra E., Hoare C.A.R., Structured Programming,
New York: Academic Press (1972)

[Date75] Date C.J., An Introduction to DataBase Systems, Addison-
Wesley, Reading Massachusetts (1975)

[Davis76a] Davis R., King, J. "An Overview of Productions Systems",
Machine Representations of Knowledge, (Proceedins of the 1975
Advanced Study Institute, Santa Cruz, CA). Also AIM-271

[DavisT76b] Davis R., Buchanan B., Shortliffe E., "Production Rules as a
Representation for a Knowledge based Consultation Program,"
Artificial Intelligence (to appear), also AIM-266

[Davis76c] Davis R., Applications of Meta Level Knowledge to the
Construction, Maintenance and Use of Large Knowledge Bases, PhD
Thesis Computer Science Department Stanford University (July 1976)
Also AIM-283

[Deutsch75] Deutsch B.G., Establishing Context in Task-Oriented
Dialogs, SRI Technical Note 114 (Sept 1975)

[Erman76] Erman L.D., Overview of HEARSAY Speech Understanding
Research, ACM SIGART Newsletter, No. 6 pp 9-16 (Feb 1976)

- [Erman73] Erman L.D., Fenell R.D., Lesser V.R., Reddy D.R., System

Organizations for Speech Understanding: Implications of Network and
Multiprocessor Computer Architecures for AI, in 3IJCAI pp 194-199
(1973)

[Ernst69] Ernst G.W., Newell A,, GPS: A Case Study in Generality and
Problem Solving, New York: Academic Press (1969)

[Eswaran75] Eswaran K.P., Chamberlain D.D., Functional Specification of
a Subsystem for Data Base Integrity, in VLDB75 pp 48-67 (Sept 1975)

(Evans68] Evans T.G., A Program for the Solution of a Class of
Geometric-Analogy Inteliigence-Test Questions in [Minsky68] pp 271-
351 (1968)

[Fahlman75] Fahlman S.E., A System for Representing and Using Real-
World Knowledge, MIT AI MEMO 331 (May 1975)

[Feigenbaumb63] Feigenbaum E.A:, Feldman J. (eds.), Computers and
Thought, New York: McGraw-Hill (1963)

[Feigenbaumb68] Feigenbaum E.A., Artificial Intelligence: Themes in the
Second Decade, Morrell A.H. (ed.), Information Processing 68,
Amsterdam: New Holland Publishing Company, pp 1008-1022., Also AIM-
67 (1968)

78

ST RO TR T AN

[Feigenbaum71] Feigenbaum E.A., et.al., "On Generality and Problem
Solving", Machine Intelligence 6, pp 165-190, Edinburgh University
Press, (1971)

[Fikes76a] Fikes R.E., "Knowledge Representation in Automatic Planning
Systems", SRI Artificial Intelligence Center Technical Note 119,
(January 1976)

[Fikes76b] Fikes R.E., "Deductive Retrieval Mechanisms for State
Descripton Models, " 4IJCAI, Vol 1, pp 99-106

[FikesT72a] Fikes R.E., Hart P.E., and Nilsson N.J., "Some New
Directions in Robot Problem Solving," B. Meltzer and D. Michie
(eds.), Machine Intelligence, Vol. 7, Edinburgh University Press,
Edinburgh (1972)

[Fikes72b] Fikes R.E., Hart P.E., Nilsson N:.J., "Learning and Executing
Generalized Robot Plans," Artificial Intelligence, Vol. 3, No. 4,
pp 251-288 (Winter 1972)

[Fikes71] Fikes R.E., and Nilsson N.J., "STRIPS: A New Approach to the
Applications of Theorem Proving to Problem Solving," Artificial
Intelligence, Vol. 2, pp189-208(1971)

[Fikes70] Fikes R.E., REF-ARF: A System for Solving Problems Stated as
Procedures, Artificial Intelligence Vol. 1, pp 27-120 (1970)

[Findler71] Findler N.V., Meltzer R. (eds.), Artificial Intelligence
and Heuristic Programming, New York: Elsevier Publishing Company,
(1971)

[Flon74] Flon L., A Survey of Some Issues Concerning Abstract Data
Types, CMU (Sept 1974)

[Floyd67] Floyd R., Nondeterministic Algorithms, JACM Vol 14 No 4 pp
636-644 (1967)

[Fry76] Fry J.P., Sibley E.H., Evolution of Data-Base Management
Systems, ACM Computing Surveys Vol 8 No 1 pp 7-42 (March 1976)

[GallerT7l] Galler B., Extensible Languages, in Information Processing
74 published by Amsterdam: North Holland pp 313-316 (1974)

[Goldstein75] Goldstein I.P., Bargaining Between Goals, U4IJCAI, pp181-
188 (1975)

[Green69] Green C., Theorem-Proving by Resolution as a Basis for
Question-Answering Systems, in Meltzer B. and Michie D. (eds.),
Machine Intelligence 4, New York: American Elsevier Publishing
Company (1969)

[Green7l4] Green C.C., Waldinger R.J., Barstow D.R., Elschlager R.,
Lenat D.B., McCune B.P., Shaw D.E., Steinberg L.I., Progress Report
on Program-Understanding Systems, AIM 240, August (1974)

[Hammer75] Hammer M.M., McLeod D.J., Semantic Integrity in a Relational
Data Base System, in VLDB75 pp 25-68 (Sep75)

79

[Hansen73] Hansen, Per Brinch, Operating System Principles, Englewood
. Cliffs, New Jersey: Prentice Hall (1973)

[Hayes75] Hayes P.J., A Representation for Robot Plans, 4IJCAI, pp18i-
188 (1975)

[HayesT4] Hayes P.J., Some Problems and Non-Problems in Representation
Theory, Proceedings of AISB, Essex University, Sussex, pp 63-79
(July 1974)

[Hayes-Roth76] Hayes—-Roth F., Lesser V.R., Focus of Attention in a
Distributed Logic Speech Understanding System, CMU Computer Science
Technical Note (January 1976)

[Hendrix75] Hendrix G.G., Expanding the Utility of Semantic Networks
through Partitioning, SRI Technical Note 105 (June 1975)

[Hendrix73] Hendrix G.G., Modeling Simultaneous Actions and Continuous
Processes, Artificial Intelligence 4, pp 145-180 (1973)

[Hewitt75] Hewitt C., How to Use What You Know, in 41JCAI pp 189-198
(1975)

[Hewitt73] Hewitt C., Bishop P., Steiger R., A Universal Modular ACTOR
Formalism for Artificial Intelligence, 3IJCAI, pp235-245 (1973)

[Hewitt71] Hewitt C. Description and Theoretical Analysis (Using
Schemata) of PLANNER: A Language for Proving Theorems and
Manipulating Models in a Robot, PhD Thesis, Dept of Mathematics,
MIT (1971) (Also in MIT AI-Memo AI-TR-258 (April 1972))

[Hewitt69] Hewitt C., PLANNER: A Language for Proving Theorems in
Robots, IJCAI, pp 295-301 (1969)

[Interaction72] Interaction Associates, Strategy Notebook, Interaction
Associates, Inc. San Francisco California (1972)

[Irons70] Irons E.T., Experience with an Extensible Language, CACM pp
31-40 (Jan 1970)

[Keliey71] Kelley M.D., Edge Detection in Pictures by Computers Using
Planning, in Machine Intelligence 6, Meltzer B. and Michie D.
(eds.), pp 397-409, New York : American Elsevier Publishing Company
(1971)

[Kling71a] Kling R.E., Reasoning by Analogy with Applications to
Heuristic Problem Solving: A Case Study, Stanford Computer Science
Department phD thesis. Also AIM-147 (August 1971)

[Kling71b] Kling R.D., A Paradigm for Reasoning by Analogy, 2IJCAI, pp
568-585 Also in Artificial Intelligence Vol 2, pp 147-178. (1971)

[Laventhal75] Laventhal M.S., Verifying Programs which Operate on Data
Structures, ACM SIGPLAN Notices Vol 10 No. 6 pp 420 (June 1975)

[Lenat75] Lenat D.B., "BEINGS: Knowledge as Interacting Experts",
4IJCAI, pp126-133, (1975)

80

EeT e oy PRI S TU—.

Gatd

[Lenat76] Lenat D.B., AM: An Artificial Intelligence Approach to
Discovery in Mathematics as Heuristic Search, phD Thesis Computer
Science Dept Stanford University (1976)

[Liskov74] Liskov B., Zilles S., Programming with Abstract Data Types,
ACM SIGPLAN Notices Vol 9 No 4 pp 50-60 (April 1974)

[Low75] Low J.R., Automatic Coding: Choice of Data. Structures, AIM-242
(1975)

[Manheim66] Manheim M.L., Hierarchical Structure: A Model of Design and
Planning Processes, Cambridge: MIT Press (1966)

[Manna74] Manna Z., Waldinger, R., "Knowledge and Reasoning in Program
Synthesis", SRI Artificial Center Techical Note 98, (Nov 1974)

[Martin74] Martin W.A., "OWL Notes: A System for Building Expert
Problem Solving Systems Involving Verbal Reasoning," MIT, Project
Mac (1974)

[McLeod76] McLeod D¢d., High Level Domain Definition in a Relational
Data Base System, ACM SIGPLAN Notices, pp 47-57 (April 1976)

[McCarthy69] McCarthy J., Hayes P.J., Some Philosophical Problems from
the Standpoint of Artificial Intelligence, in B. Meltzer and D.
Michie (Eds.) Machine Intelligence 4, Edinburgh, pp 463-502 (1969)

[McCarthy6b4d] McCarthy J., A Tough Nut for Proof Procedures, AIM 16
(July 1964)

[McDermott76] McDermott D., Artificial Intelligence Meets Natural
Stupidity, ACM SIGART Newsletter No 57 pp 4-9 (April 1976)

[McDermott74] McDermott D., Assimilation of New Information by a
Natural Language Understanding System, MIT AI Memo 291 (1974)

[Meitzer68] Meltzer B., A New Look at Mathematics and it Mechanization,
in Michie D. (ed.), Machine Intelligence 3, pp 63-70 (1968)

[Michaeis76] Michaels A.S., Mittman B., Carlson C.R., A Comparison of
the Relational and CODASYL Approaches to Data-Base Management, ACM
Computing Surveys Vol 8 No 1 pp 125-151 (March 1976)

[Michie74] Michie D., On Machine Intelligence, Edinburgh: Edinburgh
University Press, ppl49-151 (1974)

[Michie71] Michie D., Formation and Execution of Plans by Machines, in
(Findler71], pp 101-124 (1974)

fMiller60] Miller G.A., Galanter E., Pribram K.H., Plans and the
Structure of Behavior, Henry Holt and Company (1960)

[MillerP75] Miller P., Strategy Selection in Medical Diagnosis, Project
MAC TR-153 (1975)

[Minsky68] Minsky M.A., Semantic Information Processing, Cambridge: MIT
Press (1968)

81

[Minsky67] Minsky M., Computation: Finite and Infinite Machines,
. Englewood Cliffs: Prentice Hall (1967)

[Minsky61] Minsky M., Steps toward Artificial Intelligence, Proceedings
of the Institute of Radio Engineers, Vol 4 Number 1 (Jan 1961) Also
in [Feigenbaumb63].

[Minsky74] Minsky M.A., A Framework for Representing Knowledge, in
Winston P. (ed) The Psychology of Computer Vision, New York:
McGraw-Hill (1975) (Also in MIT AI Memo 306 (June 1974))

[Model77] Model M.L., The Orthogonal Perspective Problem: A Problem for
Representation Theory, personal communication (5 January 1977)

[Moore73] Moore J., Newell A., How can MERLIN understand, in Gregg L.
(ed.), Knowledge and Cognition, Potomac, Maryland: Lawrence Erlbaum
Associates (1973)

[Newell73] Newell A., Production Systems: Models of Control Structures,
in Chase W.C. (Ed.), Visual Information Processing, pp U463-526,
Academic Press: New York (1973)

[Newell72] Newell A., Simon H.A., Human Problem Solving, Prentice Hall
(1972)

[Newell65] Newell A., Limitations of the Current Stock of Ideas about
Problem Solving, Proceedings of a Conference on Electronic
Information Handling, Kent A. and Taulbee 0. (eds.), New York:
Spartan, pp 195-208 (1965)

[Newell62] Newell A., Some Problems of Basic Organization in Problem-
Solving Systems, in Yovitts M., Jacobi G.T., Goldstein G.D. (eds.)
Self-Organizing Systems, New York: Spartan (1962)

[Newell59] Newell A., Shaw J.C., and Simon H.A., Report on a General
Problem-Solving Program, in Proceedings of the International
Conference on Information Processing (ICIP), pp 256-264, Paris:
UNESCO House (June 1959)

[Newell56] Newell A., Simon H.A., The Logic Theory Machine: A Complex
Information Processing System, IRE transactions on Information
Theory, Vol IT-2, No 3, pp 61-79 (1956)

[Nilsson76] Nilsson N.J., "Some Examples of AI Mechanisms for Goal
Seeking, Planning, and Reasoning", SRI Artificial Intelligence
Center Technical Note 130 (May 1976)

[Nilsson74] Nitsson N.J., Artificial Intelligence, IFIP Congress held
in Stockholm, Sweden August 5-10 1974. Also in SRI Artificial
Intelligence Center Technical Note 89 (1974)

[Nilsson71] Nilsson N.J., Problem Solving Methods in Artificial
Intelligence, McGraw-Hill (1971)

[Oyen76] Oyen R.A., Mechanical Discovery of Invariances for Problem
Solving, Computer Engineering Department of Case Western Reserve,
Cleveland, Ohio 44106

82

[Perlisb9] Perlis A.J., Introduction to Extensible Languages, in ACM
SIGPLAN Notices Vol 4 No 8 pp 3-5 (August 1969)

[Polya5l4] Polya G. How to Solve It, McGraw Hill, Princeton N.J. (1954)

[Pople75a] Pople H., Myers J.D., Miller R.A., DIALOG: A Model of
Diagnostic Logic for Internal Medicine, U4IJCAI pp 848-855 (1975)

[Pople75b] Pople H., Artificial-Intelligence Approaches to Computer-
based Medical Consultation, IEEE Intercon Conference (1975)

[Quinlan69] Quinlan J.R., A Task-Independent Experience-gathering
Scheme for a Problem Solver, IJCAI pp 193-197 (1969)

[Raphael71] Raphael B., The Frame Problem in Problem-solving Systems in
[Findler71], pp 101-124 (1971)

[Raphae168] Raphael B., SIR: Semantic Information Retrieval, in
[Minsky68] pp 33-134 (1968)

[Reboh73] Reboh R., Sacerdoti E.D., "A Preliminary Qlisp Manual", SRI
Artificial Intelligence Center Technical Note 81 (August 1973)

[Reddy73] Reddy D.R., Erman L.D., Fennell R.D., Eely R.B.N, "The
HEARSAY Speech Understanding System: An Example of the Recognition
Process", 3IJCAI, p185-193 (1973)

[Robinson68] Robinson J.A., New Directions in Mechanical Theorem
Proving, in Morell A.J.H. (ed.), Information Processing 68,
Amsterdam: North Holland Publishing Company, pp 63-67 (1968)

[Robinson65] Robinson J.A., A Machine-Oriented Logic Based on the
Resolution Principle, J. ACM Vol 12 No 1, pp 23-41 (Jan 1965)

[Roussopoulos75] Roussopoulos N., Mylopoulos J., Using Semantic
Networks for Data Base Management in VLDB75 pp 144-172 (Sept 1975)

[Rubin75] Rubin A.D., Hypothesis Formation and Evaluation in Medical
Diagnosis, MIT AI-TR-316 (Jan 1975)

[Sacerdoti75a] Sacerdoti E.D., "The Nonlinear Nature of Plans", U4IJCAI,
pp206-214, (also SRI Artificial Intelligence Center Technical Note
101) (1975)

[Sacerdoti75b] Sacerdoti E.D., A Structure for Plans as Behavior,
Stanford Computer Science Department phD thesis. Also SRI
Artificial Intelligence Center Technical Note 109 (August 1975)

[Sacerdoti73] Sacerdoti E.D., Planning in a Hierarchy of Abstraction
Spaces, 3IJCAI, pp 412-422 (1973)

[Sandewall75] Sandewall E., Ideas about Management of LISP Data Bases,
MIT AI Memo 332 (May 1975)

[Sandewall73] Sandewall E., Conversion of Predicate-Calculus Axioms,
Viewed as Programs, to Corresponding Deterministic Programs, 31JCAI
pp230-234 (1973)

83

[Sandewall71] Sandewall E., Heuristic Search: Concepts and Methods, in
[Findler71], pp 81-100 (1971)

[Schank76] Schank R.C., Abelson R.P., Scripts, plans, and Knowledge,
YIJCAI pp. 151-157, (1976)

[Schmidt76] Schmidt D.F., Sridharan N.S., Goodson J.L., Recognizing
Plans and Summarizing Actions, in AISB76 pgs 291-306 (1976)

[ShortiiffeT76] Shortliffe E., MYCIN: Computer-based Medical
Consultations, Ney York: American Elsevier (1976)

[Sibley76] Sibley E.H., The developement of Data-Base Technology, in
ACM Computing Surveys, Vol 8 No 1 pp 1-5 (March 1976)

[Siklossy73] Siklossy L., Dreussi J., An Efficient Robot Planner Which
Generates its Own Procedures, 3IJCAI, pp423-430 (1973)

[Simon73] Simon H.A., The Structure of Ill Structured Problems,
Artificial Intelligence Journal, Vol 4, 1973, pp181-201

[Simon69] Simon H.A., The Science of Design and The Architecture of
Complexity, in Sciences of the Artificial, MIT press (1969)

[Simon66] Simon H.A., On Reasoning about Actions, CMU Complex
Information Processing Paper No. 87

(Simon63] Simon H.A., "Experiment with a Heuristic Compiler", JACM 10:4
pp 493-503 (October 1963)

[Sridharan76] Sridharan N.S., An Artificial 1Intelligence System to
Model and Guide Chemical Synthesis Planning by Computer: A
Proposal, Technical Report DCS-TR 43, Department of Computer
Science Rutgers University, New Brunswick N.J. (1976)

[Sridharan76] Sridharan N.S., The Architecture of BELIEVER: A System
for Interpreting Human Actions., Technical Report RUCBM-TR-46,
Department of Computer Science, Rutgers University, New Brunswick
N.J. (1975)

[Sridharan76] Sridharan N.S., The Architecture of BELIEVER - Part II.
The Frame and Focus Problems in AI., Technical Report RUCBM-TR-47,
Department of Computer Science, Rutgers University, New Brunswick
N.J. (1976)

[Sridharan74] Sridharan N.S., A Heuristic Program to Discover Syntheses
for Complex Organic Molecules, Proceedings of the IFIPT4, (August
1974)

[Sridharan73] Sridharan N.S., Search Strategies for the task of Organic
Chemical Synthesis, 3IJCAI, pp 95-104 (1973)

[Standish69] Standish T.A., Some Features of PPL, A Polymorphic
Programming Language, ACM SIGPLAN Notices Vol 4 No 8 pp 20-26
(August 1969)

[Standish71] Standish T.A., PPL - An Extensible Language that Failed,
ACM SIGPLAN Notices Vol 6 No 12 pp 144-145 (Dec 1971)

84

[Sussman74] Sussman G.J., The Virtuous Nature of Bugs, Proceedings of
the AISB Summer Conference (July 1974)

[Sussman73] Sussman G.J., "A Computational Model of Skill Acquisition",
MIT Technical Note AI TR-297 (August 1973)

[Sussman72] Sussman G.J. and McDermott D.V., "Why CONNIVing is Better
than PLANNing", MIT 255A (April 1972)

[Tate75] Tate A., Interacting Goals and Their Use, U4IJCAI, p215-218
(1975)

[Tate74] Tate A., "INTERPLAN: A Plan Generation System which can deal
with Interactions between Goals," Memorandum MIP-R-109, Machine
Intelligence Research Unit, University of Edinburgh (December 1974)

[Taylor76] Taylor R.W., Frank R.L., CODASYL Data-Base Management
Systems, ACM Computing Surveys Vol 8 No 1 pp 67-103 (March 1976)

[Trigoboff76] Trigoboff M., Propagation of Information in a Semantic
Net in AISB76, pp 334-343 (1976)

[Tsichritzis76] Tsichritzis D.C., Lochovsky F.H., Hierarchical Data-
Base Management: A Survey, in ACM Computing Surveys Vol 8 No 1 pp
105-123 (March 1976)

[Waldinger75] Waldinger R., Achieving Several Goals Simultaneously, SRI
Technical Note 107 (July 1975)

[Warren76] Warren D.H.D., Generating Conditional Plans and Programs, in
AISB76, pp 344-354 (1976)

[Warren74] Warren D.H.D., "WARPLAN: A System for Generating Plans,"
Memorandum No. 76, Department of Computational Logic, University of
Edinburgh (June 1974)

[Waterman70] Waterman D., Generalization Learning Techniques for
Automating the Learning of Heuristics, Artificial Intelligence Vol
1, pp121-170 (1970)

[Wegbreit71] Wegbreit B., An Overview of the ECL Programming System,
ACM SIGPLAN Notices Vol 6 No 12 pp 26-28 (Dec 1971)

[Wickelgren7l4] Wickelgren W.A., How to Solve Problems, W.H. Freeman,
San Francisco (1974)

[Wiederhold77] Wiederhold G., Database Design, to be published by
McGraw-Hill (1977)

[Wiederhold] Wiederhold, G.,Data Base Structure and Schemas, in
preparation, partially available as class notes for MIS290, USCF

(Winograd75a] Winograd T., "Breaking the Complexity Barrier, Again,",
SIGPLAN notices, (Jan 1975)

[Winograd75b] Winograd T., Frame Representations and the
Procedural/Declarative Controversy" in [Bobrow75al, pp 185-210

85

[Winograd74] Winograd T., Five Lectures on Artificial Intelligence,
AIM-246 (Sept 1974)

[Winograd72] Winograd T., Understanding Natural Language, Academic
Press (1972)

[Winston70] Winston P.H., Learning Structural Descriptions from
Examples, MAC TR-76, MIT (September 1970)

[Wipke76] Wipke W. T., SECS —- Simulation and Evaluation of Chemical
Synthesis: Strategy and Planning, in Proceedings of the Symposium
on Computer-Assisted Organic Synthesis Planning" held by the
American Chemical Society (April 6-g 1976)

[Wipke73] Wipke W.T., Computer-Assisted Three Dimensional Synthetic
Analysis, in Computer Representation and Manipulation of Chemial
Information, W.T. Wipke et. al. (eds.), John Wiley (1974)

[Wirth71] Wirth N., Program developement by Stepwise Refinement, CACM
Vol. 14 pp 221-227 (1971)

[Woods75] Woods W.A., What's in a Link: Foundations for Semantic
Networks, in [Bobrow75a] pp 35-82 (1975)

[Zloof75] Zloof, M.M., Query by Example, in AFIPS National Computer
Conference Proceedings, Vol 44 pp 431-437 (1975)

86

