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Chapter1

Introduction

I.1 History and Organization of this Document

Since the early days of the DENDRAL project, Bruce Buchanan, Ed

Feigenbaum, and Joshua Lederberg have wanted to collaborate on an
artificial intelligence project in molecular genetics. Periodically
they reviewed the potential for such a project considering the

developments both in molecular genetics research and in artificial
intelligence research. In the Spring of 1975, research was picking up
momentum 1n molecular genetics with the development of a number of
highly specific laboratory techniques based on restriction enzymes. At

the same time, progress was evident in the development of software for

management of knowledge time. A research group was formed at Stanford

calling itself the MOLGEN project. Several geneticists have become
involved in the project including Dusko Ehrlich, Douglas Wallace,
Douglas Brutlag, and Jerry Feitelson. The computer science research is
being done by researchers at the Heuristic Programming Project, which

1s directed by Ed Feigenbaum and Bruce Buchanan. The MOLGEN research

effort 1s being directed by Nancy Martin. Many of the domain related
questions have involved graph theoretical research which has been

mostly done by Harold Brown. The MOLGEN project now includes three

computer science graduate students - Peter Friedland, Jonathan King,

and Mark Stefik. This report is a slightly revised version of Stefik's
thesis proposal submitted in December 1976.

The report which follows 1s divided into four major sections
Chapter II 1s an overview of the task area 1n molecular genetics

which 1s the domain of the MOLGEN system, It reviews the nature of

some of the experiments 1n molecular genetics that are being done and
introduces the problem solving task for the MOLGEN system as the
interactive design of laboratory experiments. The design of
experiments requires the facilities of a problem solving system and
Chapter III 1s a review of fundamental ideas and recent research in
general problem solving: One of the challenges of molecular genetics

as a task area 1s the large amount of domain specific knowledge that

seems to be required for effective problem solving. Chapter IV 1s an
overview of the research that has been done 1n knowledge based systems
with emphasis on techniques for the acquisition and use of knowledge..

In this chapter, Section 1IV,2 offers a viewpoint on the aggregation
of knowledge which may be seen as being either weakly or strongly
interacting. Section IV.3.U4 explores the contributions of research
in several areas of computer science, including data base management.
Finally, Chapter V re—examines both the problem solving and
knowledge base work and proposes research and a design for the MOLGEN
system.
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I. 2 Philosophical QOverview

Since Newell and Simon introduced their program Logic Theorist in

1956, many workers in artificial intelligence have done research toward
building computer systems capable of problem solving. For many
researchers the ambitition has been to create a computer system with a
general problem solving ability that could play a useful role in human
affairs. The difficulties of producing a general and powerful system

have lead researchers to limit their efforts in two possible ways, Some
researchers have concentrated on very small test domains (sometimes
termed "toy problems”) in order to develop techniques applicable to

larger domains, (See for example [Fikes72b] or [Green69]). Although
this research has uncovered sone basic and fundamental problems and

solutions for some of them, the programs have not in fact developed

into powerful and general problem solving systems. One of the reasons
for this relates to the size of the knowledge base that 1s involved in

practical problems. For example, the knowledge base for designing
scientific experiments is of a different order of magnitude than that
for stacking blocks, The relevance for this remark 1s based on an
observation by Dijkstra, that any two things which differ in some
respect by a factor of a hundred or more are utterly incomparable. As
Dijkstra notes, one cannot design a Jet airplane by taking the design
for a child crawling across the floor and scaling up by the ratio of
the relevant speeds. Entirely different design principles need to be
invoked « Thus the methods of resolution theorem proving or Means-ends

analysis cannot be carried directly from the small test domains into
the large systems. Significant problems arise simply from the size of
the knowledge base..

Other researchers have built performance programs 1n larger but

judiciously chosen areas of human problem solving and have demonstrated

-the importance of using a large amount of domain specific knowledge to

guide the problem solving process effectively+ (See for example
[Buchanan69] or [Nilsson74]). Although several of these systems have
achieved impressive results within their chosen domains, the systems

created have not illustrated a general problem solving power by
subsequent extension to other domains. One reason for this 1s that the

performance programs have typically used ad hoc approaches for
knowledge representation, which haved proved too rigid to accommodate a
variety of task domains. These systems have served to highlight what

are now recognized to be some major stumbling blocks for large

knowledge based systems —-- acquiring the domain and strategy knowledge
from a user and integrating it into a knowledge base so that it can be

used effectively.

The difficulties in building and maintaining large computer

systems is not unique to artificial intelligence. Ideas about the
organization of such systems have come from several areas of computer

sciences Dahl, Dijkstra, and Hoare have made important steps toward

creating a science of large program and system development. One of the

tenets of building large systems 1s based on an observation of the

limitations of the human mind. The observation 1s that precise thinking

is possible in terms of only a small number of elements at one time.
In programming terms, this suggests that a system should be designed

hierarchically in smallish chunks. This design process mandates that
the operation of the entire system can be comprehended in terms of the

yi



subsystems which are mentioned in the top-level description of the
system. Proof of the correct functioning of the overall system at the

top level 1s based on the assumption that each of the .lower level

subsystems will function as specified. Each of the subsystems in turn
is also written as one of these chunks so that it, too, 1s easily

comprehended. This approach to designing a system in layers 1s an
embodiment of the power of abstraction which keeps the size of the
component pieces of the system manageable, Dijkstra has suggested in
[Dahl72] that this is a critical design principle for large systems.

Summarizing: as a slow—-witted human being I

have a very small head and I had better learn to

live with it and to respect my limitations, rather

than try to ignore them, for the latter vain effort

will be punished by failure.

Dijkstra in [Dahl72]

The same 1ssues which arise in the development of a large program

are present 1n the development of a large knowledge base for an

artificial intelligence problem solving system. Both the extensive
domain knowledge and general problem solving knowledge necessary in a
large knowledge based system need to be organized into small

comprehensible chunks which can be acquired and used. Recently
techniques for knowledge acquisition and explanation for knowledge
based systems have been reported in [Davis76c] or [Winograd73]. A basic

theme throughout this work 1s that a system can be in some sense awarg
of what 1t knows when 1t has a knowledge of its own representations

It will be seen that models of knowledge (termed schemata) serve to

structure knowledge into 1ts component parts and provide a source of
the system's awareness of what it knows. Schemata also provide a model
for guiding the knowledge acquisition process and a means for
integrating new knowledge into an existing knowledge base. The

structuring of domain and planning knowledge, which facilitates human
understanding of that knowledge, also makes feasible 1ts acquisition by

the system, 1ts explanation to the user, and its effective use in

problem solving by the system.

Finally, the motivation and thrust of the MOLGEN project 1s the
solution of a broad <class of problems from molecular genetics. These

problems are all drawn from the task of designing laboratory
experiments and will utilize the problem solving techniques that have

been developed in artificial intelligence. ChapterII discusses the

classes of genetic experiments to be considered and Chapter III
delineates and examines the variety of problem solving techniques in
artificial intelligence -- 1llustrating their differences, potentials,
and some unsolved problems. Thus, this project will include a

synthesis of 1deas from the most recent problem solving systems, from
knowledge based systems, and from structured programming.

Chapter IV surveys this research and Chapter V proposes
a number of extensions to it.
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Chapter II

General Scope of the MOLGEN Project

11. 1 A Laboratory Assistant for Molecular Genetics

MOLGEN 1s to be a computer-based system capable of reasoning about
experiments 1n molecular genetics. For the purposes of MOLGEN, the

world of molecular genetics consists of genetic objects (mostly DNA
structures) and operations on these objects.

! Radioactivity, |
| Observable Attributes: U. V. Absorption

| etc.
| -
|

| Nucleotide Sequences |
Theoretical Attributes: Bonding Patterns |
| etc. |

Figure 1. Attributes of Structures in the world of MOLGEN

. The structures may be viewed as having both observable and theoretical

attributes. The observable attributes are the readings from actual
laboratory measurements and correspond to those features of structures

which can be measured. These includes such things as biological
activity, radioactivity, ultraviolet absorption, or electron microscopy
observations. The theoretical attributes are those molecular features

hypothesized in the theory of molecular structures which are not
directly viewable. This includes such things as DNA precise bonding

patterns or known nucleotide sequences. The dichotomy between

observable and theoretical attributes of genetic structures may appear
at times to be academic since many of the theoretical objects are only
one step away from being observable and 1t 1s natural to lump together
an attribute with the physical observation of that attribute. For

example, a bubble 1s a structural attribute which corresponds to a
particular substructure of DNA defined in terms of a characteristic

bonding pattern. If a structure containing a bubble is prepared for

viewing under the electron microscope and photographed, then a
characteristic picture 1s generally observed. It is tempting to use the
term bubble to mean the hypothesized physical attribute or the

observation interchangeably. In the system being proposed, the
preparation of the structure and the viewing of the photograph
constitute one of the MOLGEN transformations. This transformation

contains information relating to the probability that the structural

bubble will survive the preparation for viewing and the probabilities
that other non-bubble structures will be misinterpreted as bubble

observations due to unusual overlapping of structures. It is precisely

4



: the practical information of this type which separates a hypothesized
bubble from its observation.

The MOLGEN transformations are the available laboratory techniques

which transform structures or which make no apparent physical change
but cause a theoretical structural attribute to become visible. These

transformations make up the "legal moves" in the laboratory and
sequences of these transformations may be put together to form

experiments. Since hierarchy in knowledge structuring has already been

mentioned 1n the introduction as being important, it shouldbe noted

that biologists thegselves describe genetic knowledge hierarchically.
For example, Ecg RI ‘1s the name of an enzyme which cleaves DNA inside
the nucleotide sequence "GAATTC"., Use of this particular enzyme may

be considered to be a legal move in MOLGEN. Eco RI 1s a particular

example of a restriction enzyme, a class gt enzymes which can be
characterized in terms of restriction sites. A restriction enzyme 1s
a particular type of endonuclease, that class of enzymes which cuts DNA
at a non-terminal nucleotide, and endonucleases are a subset of the

nucleases which cut polynucleotides. Reasoning about these enzymes may
take place at any of these hierarchical levels of descriptions, so that

knowledge about MOLGEN transformations may be seen to be hierarchical.

Similarly it is well known that DNA can be organized into genes and
punctuation, and that these are further organized as sequences of
nucleotides. Thus, genetic structures are hierarchically organized.

Within the context of structural problems, there are two major
goals in genetics experiments: (1) structural synthesis and (2)
structural analysis. In the synthesis experiments, the program can be
given a starting sample of DNA as well as a target sample. Designing a
synthesis experiment involves finding a sequence of experimental steps
(or legal moves) to transform the initial structure into the target

structure. Synthesis may also be designed in a backward sense, seeking
any sultable starting structures which can be transformed into the

target structure. The general task of analysis 1s the structural

elucidation of an unknown sample. Specifically, an analysis experiment
seeks to discriminate between competing hypotheses of structure for a
sample. A very basic form for an analysis experiment 1s the binary

discrimination experiment. In this case we are given two competing
sample hypotheses. Designing an analysis experiment means to finda

sequence of experimental steps whose final outcome ylelds
distinguishable sample characteristics in the observable world of

genetics for the alternate sample hypotheses.

As an automated laboratory assistant, there are two major tasks

which the program is expected to perform: (1) experiment checking and

: from Escherichia coli RY13

DNA consists of nucleotides which form the letters of the

: genetic alphabet. Nucleotides have two parts -- a sugar backbone and a

g base and are distinguished by their bases. The four common bases are
; adenine, guanine, cytosine, and thymine. These are commonly abbreviated

as A,G,C, and T respectively.

3 Restriction sites are those places at which the enzyme will
cleave the DNA molecule. These may be characterized 1n terms of
nucleotide sequences characteristic for each enzyme.

5



| (2) experiment designing. Experiment checking involves the computer
simulation of previously designed experiments. This means that a set
of input samples would be defined and a specific sequence of laboratory

steps would be given. The computer system would then simulate the
sequence of transformations on the representations of the samples
terminating finally with a set of new samples. These new samples can be

compared with actual laboratory results as a test of the initial
hypotheses or of the accuracy of the transformations in the knowledge

base. Such a system would be used by the system designers for debugging

the transformation knowledge base and by geneticists for comparing the

predicted results from the MOLGEN system against actual laboratory

experiments. The checking facility would also be used to compare
alternate experimental designs before investing any laboratory effort.

A more sophisticated task for the program is the designing of

experiments. This means that the program would need to know of the
strategies involved in building sequences of transformations. This
strategy knowledge would be in addition to the legal moves of genetics
and encompasses a broad range of knowledge including such things as

plan sketches for various contexts, design cost heuristics which
predict the costs of considering certain design options, and mechanisms

for evaluating the relevance and specificity of laboratory
transformations to the current problem.

A substantial part of the effort in creating a system capable of
designing experiments as a laboratory assistant centers around the
creation and maintenance of an extensive genetics knowledge base.

These imply a number of system capabilities to facilitate knowledge
acquisition, integration, and debugging which are discussed in Chapter
IV.

I1I.2 An Analogy

A knowledge based experiment designing program for molecular
genetics may be viewed constructively in terms of an analogy involving

an intelligent assistant (the design program) for using a very awkward
text editor (lab techniques), The genetic structures being investigated
form the "text" for the text editor. In a synthesis experiment, the

geneticist 1s using the text editor to enter or modify some text; for
an analysis experiment he is trying to read the text. The commands
that the editing program can accept for manipulating the text,
corresponding to the actual laboratory steps or legal moves of
genetics, are quite awkward and at times 111 suited to the task at

hand. For example, some parts of the text are in invisible characters
forcing the geneticist to 1ssue commands to first change the text in

specific ways ; to modify the text he must first find ways to protect
other regions of the text; to add new text he must limit himself to

adding pieces from other text which he has around,, The design program
can be viewed as an intelligent assistant which has a good deal of
experience with the ins and outs of the very awkward editting program.
In addition to giving good advice based on its understanding of the
text editor and the geneticist’s intent, the assistant must be prepared
to accept changes to its knowledge base since the manual for the text
editor 1s continually updated as the user discovers the effects of the

various commands, The assistant must also be prepared to accept new

6



: strategies for using the editor and incorporate these strategies 1n a
’ way which effectively improves the quality of his assistance.
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Chapter IIT

Problem Solving and Planning

III.1 Introduction

Since LT, the Logic Theorist, was introduced by Newell, and Simon
in [Newell56], problem solving research has been concerned with
techniques of problem solving and methods for expressing the problems.

Nilsson in [Nilsson74] gives an excellent survey and family tree of
problem solving systems in artificial intelligence, The word planning
in artificial intelligence connotes prior analysis involving perhaps a

sense of abstraction or remoteness from the primitive details of
problem solving. An intelligent problem solver may be expected to plan

a strategy for solving a problem. In this terminology, the MOLGEN
project wants to use planning in the design of experiments. Chapter
IIT discusses the fundamental ideas from artificial intelligence which
can be used in the generation of plans; Chapter IV will deal

generally with the issues and problems of managing of a large knowledge

base, First some broad classical frameworks suitable for viewing

experiment designing as problem solving will be presented: These
frameworks will illustrate the task in a rather simplified form in

preparation for Section III.2 which will discuss the more specific
strategies for planning with insights into specific applicabilities and

limitations. Finally Section 1III.3 will summarize some of these
strategies and introduce some issues which show the impact of some of

“the ideas from knowledge based systems on the open questions in problem
solving.

111. 1.1 Problem Solving as Heuristic Search

The term heuristic search ’ has come into general usage in
artificial intelligence to characterize problem solving methods which
are represented as a large tree of subproblems, Solutions exist at

unknown locations in unexplored areas of the tree. Judgmental rules,
called heuri tics, are applied to direct the search towards finding a
satisficing 3 solution. The program begins its search along partial

| Section 111.2.4.1 illustrates the numerical meaning of the
word "planning".

2 See for example [SandewallT1].

3 Simon in [Simon69] coined the term "satisficing" methods to
characterize those methods that look for good or satisfactory solutions

instead of optimal ones, In many satisficing situations, the expected
length of the search depends on how high the standards for the solution

are set, but hardly at all on the size of the search space. Simon
gives as an example the time required to search a haystack for a needle

sufficiently sharp for sewing, The time required depends on the density
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paths and stores a tree of the paths it has explored- Typically a
number 1s attached to the end of each branch to express the estimate of

further gain should that path be completely explored.

Since the notion of heuristic search 1s so general, the problem

of designing a molecular genetics experiment fits within the paradigm
of heuristic search at several different levels. Although many of the

planning ideas that will be described below may be classified generally
as heuristic search, they represent specialized insights into

particular approaches which may be missed in the most general

framework. For this reason, the formulation of the experiment
designing problem which follows may be viewed as a rather simplified

rendition for using heuristic search which will be expanded upon in the
later sections. In this simplified formulation, the top node of the

search tree represents the formal starting state of a genetics

experiment, for example, the initial genetic structures 1n a synthesis
experiment. The alternatives at each step in the plan are the various

possible laboratory steps that could be applied to transform the

current genetic sample toward the desired structure. Similarly, a
binary analysis experiment can be represented as a heuristic search, In

'this case, the initial state 1s a pair of alternative hypotheses for
the structure and the desired goal state 1s a new state where some

difference between the hypotheses has become observable. As before, the

alternatives are the various laboratory transformations. The
heuristics, which guide the choice of transformations at each step in

planning, reflect the expertise and judgement of the geneticist.

Several algorithms have been developed to assist in choosing a
minimum cost path in a heuristic search tree [Nilsson71]}, where an
estimating function is available to measure how close any intermediate
state in the experiment 1s to a final state. In order to guarantee

that the algorithms will find a minimal path, the estimating function

must never overestimate the distance to the goal. For complex

problems, a practical difficulty continues to appear in many contexts,

Simply stated, 1t 1s sometimes best to retreat from a goal in order to
get closer to it. In mathematical theorems, this arises in those cases

where 1t 1s easier to solve a more general theorem than a specific one.
In organic synthesis, it 1s sometimes better to build up a rather

complicated structure which seems farther from a target compound than

some current step in the synthesis, but from which an elegant reaction

will transform the complicated structure almost directly to the desired

product. These difficulties in designing are not limited to scientific

problems, but arise almost immediately in the course of automatically
designing a sequence of actions in quite restricted domains.

III. 1.2 Problem Solving as Theorem Proving

Newell and Simon's Logic Theorist program, an early approach to
—automatic theorem proving mentioned 1n the introduction, was based on
the approach of heuristic search. In this framework, the situations are

viewed as theorems, the operators are the rules of inference, the
initial situation 1s a set of theorems assumed to be true, and the goal

situation is the theorem to be proved: Much of the activity of the

distribution of sharp needles but not on the total size of the

haystack.
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program centered around the problem of deciding which rule of inference

to apply next. Since that time, logicians have been developing
techniques for proving theorems in the first order predicate calculus.

Since first order predicate calculus allows quantification, 1tappears

to be rich gnough to cover much of the mathematics in science and
engineering. "J.A. Robinson in [Robinson65] introduced a procedure for
proving theorems using a single rule of inference, resolution, which

can easily be used in an automatic theorem proving program.
Performance of resolution based theorem proving systems reached such

impressive levels that 1t gave rise to the vision of expressing all

problems in the predicate calculus and using a single powerful theorem
proving engine to do the proofs. It seemed that an elegant solution to
theorem proving, which had started as a problem solving application,
could be used generally enough to treat problem solving itself as an

application. A number of systems based on this idea have been reported

in the literature. (See for example [Greenb69].)

In spite of some initial excitement for this idea, a number of

practical difficulties have become apparent. The problem of consistency

in a large knowledge base is at the heart of an inherent difficulty
with the general use of predicate calculus to express problems. Bobrow
in [Bobrow75b] gives the following three theorems as an example:

All birds can fly.

Ostriches cannot fly.
An ostrich 1s a bird.

The difficulty derives from the fact that any set of inconsistent

theorems can be used to prove anything at all, for example, that two
equals three or that the moon 1s made of green cheese.

Another serious difficulty with the methodology was presented by

McCarthy as a challenge in [McCarthy64]. In this memo, McCarthy
presents the problem of covering with dominoes a checkerboard having

two opposite corners deleted. It 1s well known that 1t 1s impossible

to carry out this operation,. The difficulty of using a theorem-proving
engine 1n this problem lies in the fact that in some sense the real
problem 1s 1n realizing that the problem 1s impossible. Newellin

[Newell65] sketches an approach to this problem which demonstrates that
the proof that the covering 1s impossible may be expedited if the
program knows about mathematical induction and can find a suitable

invariant, namely the number of uncovered black squares minus the

number of white squares. Use of this ngw knowledge constitutes what
has been termed a representational shift.

Re-formulation of large problems into a form usable for theorem

proving 1s a difficult task. Even such simple classic examples as the
Tower of Hanoi or the Monkey and Bananas Problem typically require

: See [Meltzer68] or [Robinson68] for a very readable discussion
on the use of higher level or full predicate logics for expressing a
range of problems.

: See [Amarelb68] for an example problem where a sequence of
shifts of representation are used to make the Missionaries and

Cannibals problem easier to solve,
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several attempts by the user to represent them adequately. Much of the

awkwardness derives from the bookkeeping that seems to be necessary to

keep track of the changes in the world state as alternate paths are

explored in search of a solution. Delegating the responsibility of this
to a theorem prover often means that considerable theorem proving
effort 1s necessary to carry both changed and unchanged facts through
state transitions. A number of approaches to this problem, which has

been termed the frame problem, are discussed in [Raphael71)]. The

difficulty of problem expression combined with the inherent sensitivity

of the system to inconsistency has ledto a belief among many
researchers in artificial intelligence thata pure theorem proving
approach will not be practical for large real world problem solving.
(See for example [Feigenbaum71]).

The common wisdom 1n artificial intelligence regarding heuristic
search and theorem proving for problem solving systems 1s that the

heuristic search methods are more efficient at finding solutions
because the philosophy of the approach stresses the importance of
domaln specific information to guide the system to a solution6 Theorem

proving systems, although they are more difficult to steer , are in

some ways more capable of using what they know because of their

reasoning abilities, This apparent dichotomy of abilities has lead
some researchers to try to combine the best of both approaches: The

STRIPS problem solver reported in [Fikes72] used a heuristic approach
known as Means—-ends analysis (See Section III.2.1 below) to guide
the search for operators and a resolution theorem prover to check

operator applicability. Another system reported in [Kling71la], ZORBA-I,
used an approach to reasoning by analogy to guide a theorem proving
system, Both of these systems are described 1n more detail in Section
I1I.2.6 below.

111.2 Fundamental Methods for Problem Solving

Since the frameworks of simple heuristic search and theorem

proving described above are inadequate for general problem solving,
much work has gone into developing more powerful methods. A commonplace

observation has been that much domain-specific knowledge 1s needed but

it has been generally believed that much of what can be stated about

strategy must be in some sense domain independent. For example, people

who are good problem solvers in one area are often able to solve

problems in another area. This belief has lead to a search for

fundamental techniques, The following section describes the techniques

which have been recognized by this research* It ranges from rather
general notions like Means-ends analysis or abstraction to specific

proposals for incorporating notions of hierarchy in a domain-
independent way,

6 Resolution strategies like the unit preference rule, which
gives preferred status to resolutions which might lead to the null

clause, or the set-of-support strategy give the system a sort of

directionality. They do not amount to a full goal-driven orgoal-
seeking strategy in the sense of providing domain-specific guidance to
the selection of subgoals,
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I1I.2.1 Means—-ends Analysis

Means—-ends analysis 1s a technique for problem solving pioneered
by Newell, Simon, and Shaw in their «classic GPS system . ~~ GPS was
designed for use 1n experiments 1n problem solving by computer and much

of the progress 1n this area has been inspired by this early effort.
In one GPS formalism, a representation is given for a current and a

desired goal state and a mechanism is given for detecting differences

between the states, Actions, which change objects or situations, are

also defined. The task for GPS 1s to select a sequence of actions to

remove the differences. To do this, GPS requires a table of connections
which associate each kind of detectable difference with the actions

relevant to reducing that difference. Implicit in this technique 1s the
reasoning that if there 1s a sequence of differences D1, D2, D3, Ce
Dn and action Al removes difference D1, AZ removes D2, etc., then the

sequence Al, A2, . . . . An will transform the current situation into the

goal situation.

As Simon [Simon69] points out, one might say this reasoning is
valid in worlds where actions are additive or factorable, However, the

problems to which problem solvers must addresss themselves are seldom

completely additive in this way. Actions have side effects. The order

in which goals are achieved is important. (See Section III.2.5.)

In practice, the differences and their associated operators are
ordered in terms of importance to direct the process to the most
important differences first. Thus the system iterates a cycle of
finding the most important differences between the current situation

and the goal situation, and then finding an operator to act on that
difference.

The gne step at a time approach of this version of Means—ends
analysis 1s characteristic of a number of methods known as forwards

reasoning. The operators in such systems are sometimes represented in

terms of production rules and a set of such rules together with a

mechanism for their application is termed a production system. Fog
example, 1fA is an operation and B,C, and D are sufficient conditions
for its use then the following might be used to represent the operator:

Presuppositions: B and C and D

Operation: A

The productions are arranged 1n such a way that each application

of a production rule during the problem solving process makes changes
in the world to reflect progress toward the goal. These changes allow

"See [Newell59] and [Ernst69].

: A modified version of Means-ends analysis incorporating problem
reduction, as reported in[Ernst69], will be discussed in the next
section.

) For forward reasoning systems, these conditions have sometimes
been termed "presuppositions". The implication is that they must be
satisfied before the operation can be applied. In the problem
reduction systems (See Section III.2.2.), the conditions can be
used to set up subgoals.
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other prodygtion rules to trigger and carry the solution another step
forward. In the Means-ends characterization above, each difference

corresponds to the conditional part of a production rule and the
associated operator corresponds to the action part or right hand side

of a production rule. The primary feature of this approach 1s its

flexibility. Although it 1s a relatively simple system, it affords

rather complex goal-seeking behavior with flexible reasoning from
states which may be close to or distant from the goal state. Forward

reasoning has been termed goal seeking in [Nilsson76]. The basic
simplicity of this method limits its ability to cope with large

problems since the worst case time to approach a goal N fteps away
where there are K potential operators at each step grows as K .

IIIr2.2 Problem Reduction

One of the most basic techniques used to tackle large and complex
problems 1s the idea of factoring them into independent subproblems,

When the subproblems that are used correspond to simpler instances of

the original problem so that the same technique is applicable, this

process can be recursive. Because of the plans within plans nature of

this process, Simon in [Simon69] has called this a formal hierarchy in
contrast to a more general notion of hierarchy where the subproblems
are not necessarily independent,

Such techniques are called reduction methods. In many cases work
proceeds backwards from a goal state towards starting states and the

subproblems are encountered in the process of satisfying necessary

preconditions. For example, suppose that A 1s a goal state and B, C,
and D are necessary preconditions, Then the following reduction rule
may be used to represent the relationship.

Preconditions: B C D

Goal: A

Alternatively, if B, C, and D are actions, problem reduction could be
similarly expressed as follows.

To Achieve: A

Apply: BCD

The term backwards reasoning should not be taken as referring merely to

the direction that the problem solver uses on a problem, that 1s, from

a goal situation to an input situation using inverse operators. The

important point 1s that the problem is factored into independent
subproblems by establishing subgoals. Nilsson terms this technique
problem reduction or reasoning backwards‘, Some authors call 1t top

down or goal driven planning 1n contrast with forwards reasoning
systems which are termed bottom up or data driven.

The Means—-ends analysis algorithm presented 1n the previous

section may be modified slightly to carry out problem reduction. This

10 See [DavisT6ba] for an overview of some ways of representing
the memory aspects of a changing world state.
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extension involves distinguishing between two basic criteria for
selecting operators termed desirability and feasibility by Ernst and

Newell. Desirability means that an operator should produce an object
that 1s similar to the desired situation. Feasibility means that the

operator should be applicable to the input situation. When GPS selects

an operator according to its desirability, this amounts to establishing
a subgoal: This version of Means-ends analysis was an important part
of GPS. The desirability considerations for a problem viewed 1n one

direction are equivalent to the feasibility considerations for the

opposite direction.

Returning to the representation of domain actions as production

rules, it is often useful to distinguish between conditions which are
"presuppositions" and those which are "preconditions". Production

rules whose presupositions are satisfied may be said to be feasible.
For production rules which are desirable, 1t satisfaction of the

preconditions may be set up as a subgoal. Thus the operational
distinction between preconditions and presuppositions 1s whether any

planning effort «can be allocated to satisfy them, If the costs and

potentials of satisfying conditions can change, 1t becomes a question
for the knowledge base which way a given condition should be treated,

Many authors have demonstrated that a system can at times usefully

employ a combination of forwards and backwards reasoning more

effectively than either alone. Whether to reason forwards or backwards

depends on the domain. If there are few goals and many rules, then
reasoning backwards 1s likely to be more efficient. If there are few

rules and many possible goals, reasoning forwards might be preferred,.

I1T.2.3 Backtracking

When 1t 1s possible to sketch out the solution path to a problem

as a single tree of fixed subproblems, then the technique of factoring
big problems into subproblems 1s entirely sufficient. For many
practical problems the component subproblems depend on the particulars

of each situation, Alternative approaches may be given with the

intention of picking the one that works best, This suggests that a
problem solver must have a mechanism for trying some steps in a plan in

a tentative fashion, leaving open the option of discarding them later
for something else.

Considerable work on this idea has come from the development of

the MICROPLANNER system, implemented at MIT by Sussman, Winograd, and
Charniak. (See [Sussman72].) The first implementation contained an
automatic backtracking strategy where the failure of any goal resulted

automatically in the undoing of the computation back to the failure
point where another alternative would be selected. If the alternatives

at that point are exhausted, backtracking would continue back further
to the next point. Experience showed that this strategy often resulted
in much wasted computation, For example, 1f a goal was to achieve (A

andB) and B failed after A succeeded, the failure would automatically
cause both steps in the plan to be undone. A subsequent alternative
might require A to be done over again resulting in an apparent

computational waste, Even more serious 1s the possibility that the
system will backtrack to another alternative which 1s doomed to perform

exactly the same calculation and fail again. One example is that of a
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robot building a block structure. His programming is such that his

first alternative 1s to always try first to pick things up with his

right hand. In the course of building, he picks up a block which is
very hot and burns his right hand, He drops 1t at once, commences

automatic backtracking and tries again with his left hand. Criticisms

of automatic backtracking and suggestions for other mechanisms have

been reported in detail in [Sussman72] and resulted in the development
of a newer system known as CONNIVER,

An emerging consensus on the backtracking question 1s that the
backtracking concept has been used to cover too broad a spectrum of

situations. A variety of situations needs to be distinguished and

specialized solutions need to be used. One example of a general problem
formerly covered by backtracking 1s that of interactions between higher

level goals giving rise to conflicts deep 1n the refinement process,
Instead of simply backtracking and choosing new higher level

subproblems, 1t 1s generally better to use techniques which analyze the

nature of the interactions. (Techniques for handling interactions
between goals are discussed in Section III:2.5).

The CONNIVER philosophy switched from that of PLANNER toward

providing some lower level mechanisms from which a programmer could

implement his own particular approaches to the backtracking problem.

Following the ideas in [Bobrow72],the CONNIVER language included a
construct known as a context tree, where each context or data frame was

in effect a copy of the state of the world which could be passed to
daughter nodes.. For simple backtracking, any changes made by the
daughter process during problem solving would simply be discarded when

the daughter node returned. Alternatively using the ADIEU mechanism,

contexts may be selectively returned so that computations made by the
daughter node need not be repeated, Another CONNIVER construct, the

AU-REVOIR mechanism which permits computation to be resumed at a given

point in a daughter node, creating what Bobrow in [Bobrow74] called a
co-routine regime. The advantages and uses of the various control

mechanisms are not settled yet and more work will need to be done
before the 1ssues are thoroughly clarified,

I1I1.2.4 Hierarchical Planning

The notion of hierarchical planning reflects an inherent aspect of

planning - that planning, to be efficient, must take place in

successive levels of abstraction. This means that the highest levels
of planning must consider operations or legal moves that are in some
sense removed from the numerous alternatives at the primitive level of

the domain. Hierarchical planning reflects the wisdom that a program

which spends all of its time worrying about the details in a subject
area can achieve only the solutions to toy problems. The following
sections discuss the historical development of the ideas of
hierarchical planning and attempt to clarify exactly what the i1deas

are. They start with an mathematical elaboration of the problem,
discuss some approaches to using this idea, and conclude witha
framework for hierarchical planning which may be useful in a variety of
domains.,
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111.2.4.1 Well Spaced 'Planning Islands’

Generally speaking, a well chosen division of a problem into
subproblems can have enormous implications in the reduction of: search

tine. In his excellent early survey article of artificial intelligence

[Minsky61], Marvin Minsky demonstrated a reduction by what he termed a

fractional exponent. In a search tree with [0,, ranches descending from
each node, a 20 step search might involve 10 trials, clearly out of
the question for a real search. Suppose that four points or "planning

islands" along the path can be found at levels 4, 8, 12, and 16 of the

planning tree. This strategic placement divides the 1nitial large
search into five independent searches of four levels each requiring a

total of only 5 (Gh piats,
As Minsky concludes

Thus it will be worth a relatively enormous
effort to find such islands in the solution of

complex problems. 6 Note that even if one

encountered, say, 10 faillures before Success, jone
would still have gained a factor of perhaps IO in

overall trial reduction, Thus, practically any
ability at all to plan , ar analyze a problem
will be profitable if the problem is difficult.

This reduction 1s dramatic indeed although it depends heavily on
the placement of the islands, For example, if the islands were placed

at levels 18,17, 18, and 19 in the planning tree, the search would still
require 10 = ‘trials. Thus we see that merely breaking a problem into

_subproblems 1s not nearly as powerful an idea as breaking it into well-

spaced subproblems. Perhaps the most straightforward approach to
finding planning islands 1s to use a simplified or abstracted model of

the problem situation, The 1dea 1s to have an abstract model which

preserves the character of the problem situation but with much of the

detail suppressed. A solution to the abstract problem could then be

used to provide planning islands in the more complex space of the
original problem. These islands may be regarded as a sequence of

subproblems in the original space. Even if the abstracted problem is
not a perfect homomorphism of the original, its solution may prove
useful as a guide. The next section introduces an approach to
abstraction used to supplement the Means-ends analysis of GPS.

111.2.4.2 Abstractiofhe 'Planning Method' of GPS

Newell, Shaw, and Simon reported an auxiliary technique for GPS
beyond Means-ends analysis termed the Planning Methodin [Newell59] and
used 1t to find proofs in propositional logic. The main steps of the
method are:

1 Because of the central importance of this 1dea in pruning
problems down to manageable size, Minsky and other writers have termed

this activity planning to connote a high level of processing distinct
from the actual searching of the problem space. In the MOLGEN context,

this terminology would permit the use of the planning heuristic to do
experiment designing.
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a. Abstracting by omitting details of the original
objects and operators to form an abstract problem

space,

b. Forming the corresponding problem 1n the abstract

space,

Cn Solving the abstract version of the problem using

Means-ends analysis.

d. Using the solution of the abstract problem to form
planning islands for the original problem.

e Solving the original problem,

The method actually contained failure points and loops between the

steps shown above so that, for example, alternate solutions from the
abstract space could be used for making planning 1slands in the
original space. The particular abstraction scheme that was employed for
both states and operators was to (1) ignore differences among logical
connectives (AND and OR), (2) ignore negations, and (3) ignore the
order of symbols,

This abstraction scheme may actually generate no plans or many

plans, although it can be guaranteed that an abstract plan exists 1if a
plan in the original space exists. Because of the abstraction process,
some of the plans that 1t generates may have no counterpart in the

original space, The method appeared to be very powerful in producing
proofs.

III.2.4.3 Hierarchy of Abstraction Spaces

As Polya has notedin [Polyabl], society's aphorisms contain great
kernels of wisdom if we can but learn when to apply them.

If a little bit helps some, try some more.

The abstraction scheme from GPS was only used at one level, Could
the abstraction itself be abstracted? Although the scheme used for GPS

would need a different approach to add more levels to 1t, Marvin

Manheim described a hierarchical approach for the particular problem of

highway route selection - and implemented a hierarchical strategy for
design in a computer program [Manheimé6]. Manheim's procedure
incorporates two main notions:

a. The 1dea of refining a design progressively

in steps from the level of very general

plans down to the very precise level of
actual construction,,

FT b. The idea of assigning probabilistic values
to plans at the high levels and

particularizing those plans having the the

greatest expected value,
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Manheim's hierarchy consisted of the specification of several

increasingly constrained areas for locating the highway with more
elaborate estimations of cost as the route was more stringently
constrained.

Since Manheim used a Bayesian decision theory model to guide the
selection of paths, the costs of the actions even in the upper levels
of the abstraction spaces had to be estimated before the program could

decide which alternatives in the design to pursue. It was a weakness of
the procedure that these distributions had to be estimated by the user,

a highway engineer, although 1t 1s possible that other methods of

estimation would have proved satisfactory,

III.2.4.4 Criticality Levels as Abstraction ILevels

The technique of using a hierarchy of abstraction levels has been

pursued 1n domains related to robot planning in the ABSTRIPS

[Sacerdoti73] system developed at Stanford Research Institute. The
process of abstraction used extends the methods described above in that

1t 1s domain independent.

In the robotics systems, the abstraction spaces differ from the

original or ground level space only in the level of detail used to

specify the preconditions of operators. At each stage of a developing
plan, only those operators of sufficient significance need to be

considered; operators which achieve only details are simply ignored.
This approach makes the mapping of solutions from the higher
abstraction spaces toward ground level very straightforward. In

ABSTRIPS, Lhe preconditions for the operators are assigned criticality
levels. ‘By ranking some of the preconditions as details, ABSTRIPS
1s essentially capable of taking big steps in developing a "length

© first" plan. The planning process at each criticality level 1s
completed all the way to an abstraction of the goal state before
dropping to the next lower abstraction levels

The appropriateness of any assignment of predicates to criticality
levels 1s reflected directly by program performance. In particular, a

good assignment can be characterized by a minimum of backtracking
during the refinement process. The importance of this assignment
brings attention to the practical problem of determining these values.

The ABSTRIPS system started with a user supplied partial ordering of
predicates, but reserved the right to boost the criticality value for a

literal 1f no short plan could be found to establish a goal value for
it, In Sacerdoti's subsequent project, the NOAH system, planning is
done in a hierarchical approach as in ABSTRIPS except that the
hierarchy 1s determined by the calling structure in the SOUP code of
the system, that 1s, it is expressed procedurally and is fixed in the
system.

12 It 1s worth comparing this idea to the notion of operator
selection used in GPS where at any stage of plan formation, an ordering

1s used to determine which differences and operators to consider next.

GPS remains limited to seeing only one step ahead, even if that step 1is
a mere detail.

18



II1.2.4.5 Overviewof Hierarchical Planning

Section 111.2.4 began with Minsky's numerical formulation of

planning islands which demonstrated the combinatoric significance of
abstraction but yielded no hints for practical application. Newell and

Simon's abstract planning idea from GPS then gave us an example from
theorem proving and illuminated the relation between planning islands

and abstraction spaces. Finally, Sacerdoti's hierarchical planning idea
provided an approach for establishing a hierarchy of abstract planning

levels applicable in a broad class of domains,

There remain two unexplored aspects of planning with criticality
levels 1n a complex domain. Firstly, interactions in a complex domain

are likely to be subtle so that the assignment of predicates in the

operators to criticality levels cannot be done simply by inspection,
Any automatic approach for making this assignment could prove
interesting.

Secondly, 1t may be possible to relax the notion of strictly
additive refinement somewhat. In Sacerdotis approach, each successive

refinement may add details %3 the existing solution, In analogy with
the near misses of Winston =, a more general approach to refinement

might permit subtracting of part of a design proposed by an earlier
more abstract guess. This can be illustrated by an example from

molecular geneticst+ The restriction enzyme, Eco. RI, which cleaves DNA
at a particular restriction site has been mentioned already in Section

11.1. Suppose that the experiment under consideration requires as an
initial step the isolation of two genes which are rather distant from
each other on a bacterial chromosome. Ahierarchical approach to this
might permit reasoning about the use of an abstract restriction enzyme
to cleave the DNA and postpone the choice of a particular restriction

enzyme. The abstract restriction enzyme could be assumed to simply

split the bacterial chromosome 1n the center between the two genes and
designing could continue to later parts of the experiment. Later when
this step 1s refined, it 1s unlikely that any particular restriction
enzyme suitable for separating the two genes will be found to split the

chromosome in precisely this way. It may cut a little closer to one
gene than the other or even remove some of the material between the

genes, Thus the refinement process must technically undo some of the

state predicted by the abstraction. Alternatively, this example may be
seen as 1nvolving a refinement of a positional specification. This
notion of refinement involves a flexibility in the representation of a

world state 1n addition to the assignment of criticality levels. A

number of difficulties arising from this relaxed form of hierarchical

abstraction will be discussed in Chapter V.

ITI.2+5 Interacting Goals

The powerful notion of hierarchical planning described above
involves judicious factoring of a large problem into independent
subproblems. The question arises whether it can still be applied 1f the

subproblems are not quite independent, Even very casual observation of
human problem solving behavior shows that people plan ahead without the

ability to foresee that their subproblems may interact. A shopper in an

TT13T,
See [Winston70]
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| unfamiliar supermarket who needs several items would certainly pick up
item B 1f he unexpectedly passes it enroute to item A. Thus the shopper
can re-order his activities and take advantage of any surprises while

he shops.

The type of interaction in plans that has been studied the most 1is

in the interactions between conjunctive goals. For example, 1f the goal

of a plan is to achieve both A and B, achieving one of these goals may
easily affect the achievement of the other. Problems in Blocks World
have proved rich enough to explore these interactions and the following
problem 1s probably the simplest instructive example.

| A

 B |

 C |

Initial Situation Goal Situation

Figure 2. Interacting Goals

The interactive conjunction of goals 1s simply"A on B"™ and"B on C",

The rule 1s that a block can be moved only if it has a clear top,

The problem of achieving interactive conjunctive goals appears 1n

many types of problem solving. For example, any problem which 1s
stated with initial and final states will have several distinct

—differences between these states. Reducing that set of differences may

be viewed as the conjunction of reducing each of the individual
differences. Even 1f the differences are viewed 1n a hierarchy, this

merely postpones their inevitable appearance as the plan is refined
unless the high level subproblems are strictly independent,

Returning to the sample problem above, let us see what a Means-
ends analysis will do. Suppose it tries first to put A onB. After
clearing A, it can place A on B. But now, 1n order to put B on C, B
will have to be cleared - thus undoing the first goal that was

achieved. The situation 1s even worse 1f the first goal tried is to

place B on C.

A number of approaches to problems like this have appeared in the
literature. Sussman, whose HACKER system is presented in [SussmanT73],
makes what he «calls a linearity assumption which simply means that

there 1s an order with which the goals can be achieved. His program

then continues in a manner analogous to Sussman's own programming. It

tries to create a plan; it discovers bugs; 1t modifies the program to
fix the bug. The bug fixing knowledge is contained in a set of critics
which can compare the bug with known types of problems caused by the

linearity assumption, and suggest revisions to the plan. For example,

HACKER has a mechanism called protection, which looks for actions that

violate previously achieved goals. The fix in this case 1s to try to
reverse the order of higher level goals. While HACKER will often

20



produce a correct plan eventually, 1t does so 1n some cases 1n a cycle
of building a wrong plan, suggesting revisions with critics, and then
building another possibly wrong plan. HACKER works effectively with

problems which can be fixed by re-ordering the goals. The problem in

Figure 2, unfortunately, 1s what Sussman terms an anomalous problem for
which HACKER achieves a non-optimal solution..

Austin Tate has suggested that it 1s possible to abstract the

nature of the interactions between goals and use this information to
suggest new approaches to this problem, His system, called INTERPLAN,
is described in [TateT4] and [Tate75] and makes use of the idea that

abstractions of the interactions between goals are easier to work with

than the original goals themselves: Tate finds 1t useful to abstract

the assumed holding periods, or periods over which goals are assumed to

be true, INTERPLAN analyzes the holding periods for both main goals
and first level subgoals in the plan with a view toward moving them

around to ease conflict situations. Moving a subgoal to an earlier part
of the plan 1s what Tate terms PROMOTING the subgoals INTERPLAN is

capable of creating an optimal solution to the problem in figure 2
after moving subgoals around so that the holding periods of the higher
level goals remain unbroken

Probably the most satisfying approach to this problem is used in
Earl Sacerdoti's NOAH system described in [Sacerdoti75a]. The key idea
1s that NOAH avoids the linearity assumption and considers the

conjunctive goals 1n parallel as long as possible,. Within the NOAH
system, the parallel representation 1s achieved using Separate and Join

nodes 1n a procedural network, Instead of using critics 1n Sussman's

sense to fix bugs introduced by the linearity assumption, Sacerdoti

uses constructive critics to create an ordering for the goals based on

the interactions which are discovered. This is carried out by a resolve
conflicts critic, If an action in one conjunct deletes an expression

that 1s a precondition for a subgoal in another conjunct, then the

endangered subgoal may be moved so that it 1s achieved before the

action that would delete the subgoal,. This synthesis of the best ideas

from both Sussman and Tate 1s a very powerful mechanism for generating

plans. Used in conjunction with other critics, this approach to
resolving conflicts has enabled the NOAH system to tackle many problems

that are quite beyond the capabilities of both HACKER and INTERPLAN.

Sacerdoti sums up the basic philosophy of NOAH in [Sacerdoti75a]
as

NOAH makes ne rash assumptions . . .

Thus the linearity assumption in HACKER 1s rash because its effects

must often be undone, The philosophy 1s continued in the way NOAH binds

avallable objects in plans, For as long as possible, NOAH postpones
binding the objects to particular places in the plans and uses formal

variables. No guessing is done early to be undone later. In the end,
other critics are invoked to simplify the plan and remove redundant

preconditions. The basic idea of maintaining generality in planning
appears to be a very important principle for the generation of plans,
It 1s worth recalling at this point that the general problem of

interactions between goals has been specialized to the problem of
interactions between conjunctive goals* The algorithms described above
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are not capable of dealing with interactions between disjunctive goals,

for example, "A on B" or"A on C". Goals 1n complex environments are

likely to contain complex expressions 1nvolving both conjunction and
disjunction.

I11I1.2.6 Using Existing Plans

One of the characteristics of human intelligence 1s the ability to

use the solutions of old problems to aid in finding solutions for new

problems. In the most elementary form, this involves recognizing an old

problem and retrieving its solution. An approach known to make this
effective 1s to generalize the solutions that have been found
previously. For example, it 1s more effective to save a technique for
solving a wide class of linear equations than it 1s to save the
solution to just one equation. In many cases like this, the task of

solving a particular problem from first principles 1s entirely

equivalent to the task of finding a general solution,. This idea of

generalizing a solution 1s closely related to notions of reasoning by
analogy which will be discussed below. Finally, one of the motivations

for using old plans comes from the robotics research in planning and

executing planss In executing a plan, a robot may encounter situations

in his world that were not anticipated or were not in its world model,

eg. the path 1s blocked by an unexpected obstacle. The idea is to
preserve as much as possible of the existing plan, to make local
modifications to deal with the difficulty, and generally to avoid

planning the entire problem from scratch over again with the new

knowledge incorporated.

The first version of STRIPS [Fikes71] used a combination of

theorem proving methods and Means-ends analysis. Within a given world

model, resolution-based theorem proving was used to decide whether

—operators were applicable and whether goals had been satisfied. For the

actual choosing of operators and searching through the world models,
STRIPS used means-ends analysis. In 1972, the MACROP feature was added

to STRIPS to increase its problem solving power (See [FikesT72b]) by
enabling STRIPS to generalize and save solutions to problems. A saved
solution or macro action could then be used as a single component of a

new plan to solve a new and typically larger problem.

A major new feature of the MACROP addition to STRIPS was the

capability to generalize plans.. The following simple two step plan for
achleving the goal of locating a box within a room will be used to
illustrate the process.

Go through DOOR1 from ROOM1 into ROOMZ.

Push BOX? through DOOR? from ROOMZ into ROOM1.

-The immediate impression from a plan like this 1s that it could be

generalized so that it does not mention specific objects.
Unfortunately, the simple idea of replacing each unique constant by a
parameter (eg. DOOR? by anydoorl) is not sufficient+ In the first

place, this approach doesn't always produce the most general plan. For

example, the basic plan above would still be valid 1f the robot started

from a room distinct from the one into which he pushed the box. In the
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second place, some operators have restrictions on their applicability
to objects. The procedure that STRIPS uses for generalizing plans 1s a
domain independent manipulation of the old plan. First, constants which

are preconditions for any operator are replaced by distinct parameters

every time they appear, Then STRIPS constructs proofs and resolves the

clauses in the plan using the proofs of satisfiability in the original
specific plan as a model, At the end of this process, constraints which

appear while substituting parameters for constants in the new proof act

as constraints 1n developing the more general plan. For example, the

sample plan above would be constrained so that the GO operator takes
the robot 1nto the room where the box is. At this point, some

excessively general steps may remain in the plan,- For example, if the
two clauses INROOM(R1) and INROOM(R2) were produced as preconditions
for the plan, RI would be bound to R2 to prevent the plan from

appearing to accept situations where the robot was nonsensically in
more than one location initially. These over generalizations
correspond to those cases where two parameters are produced from a

single occurrence of a constant from a single clause. Such parameters
are bound together. Finally, steps whose outcome in the generalized
plan now depend on a unique assignment of parameters are modified to
check for this condition. For example, the plan

Push BOX1 to LOCATIONI.

Push BOXZ2 to LOCATION2.

depends on BOX1 being distinct from BOX2. A check for this

condition 1s added to appropriate steps from the original plan.

The second phase in the use of generalized plans by STRIPS 1s the

monitoring of the execution of plans,, Much of this work is contained in
the PLANEX algorithm which makes use of a special data structure, the

"triangle table", to keep track of the effects of each operator used in

a macro plan on the changing world state. Considerable emphasis is
placed on efficiently finding the longest applicable "tail" or final N

steps of a plan, The motivation for this emphasis derives from problems

encountered during actual execution of robot plans. 0ften, when
execution fails and replanning 1s necessary, 1t 1s sufficient to

introduce a short sequence of operators to fix the problem thus'forming

a plan by appending these operators to an appropriate tail. The two

capabilities of the MACROP feature, generalizing plans to save as macro

plans and then using these generalized plans or parts of them to solve

bigger problems substantially increased the problem solving range of
the STRIPS system.

The 1dea of generalizing a plan used in STRIPS may be cast as one

form of reasoning by analogy. Generalizing involves finding a solution

which can encompass as special cases more than one specific plan,
Analogy covers a broader range of techniques in using a known solution

to assist in finding another, The first computer-oriented research in
analogical reasoning was reported by Tom Evans in [Evans68)]. Evans
created a system, termed ANALOGY, which successfully worked problems

from the widely used Miller Analogies Test, This exam presents each
examinee with a pair of figures, A and B, for which some relation
holds, a third figure C which corresponds to A, and a set of five
potential answer figures. The question is invariably phrased as "A is

23



u

to Bas C is to . .." . The computational task may be seen as exploring

a space of possible analogies and picking the one which 1s in some way
the best. Much of the computational work in Evans’ program 1s devoted
to the pattern-recognition aspects of processing the line drawings to

identify parts of the figures. Analogies are generated which consist of
a number of operations used in the tests, for example adding or
deleting objects, rotation, reflection, and such. Rule strengths,
associated with each of the candidate operations in an analogy, are

used to rank potential analogies generated by the program. The
particular ranking used appears to be fairly specific to the analogy

tests. Finally, after the best analogical relationship is found, the
ANALOGY program is finished and does not use the relationship for any
further problem solving.

In 1971, Robert Kling reported a system, ZORBA-I, which used a
not ion of analogy to improve the performance of a problem solving
system. (See [KlingT71b]):. After recognizing a variety of techniques in
problem solving which have gone under the general rubric of reasoning
by analogy, Kling directed his efforts to adding one type of such

reasoning to QA3, an existing resolution-based problem solving system.

ZORBA-I accepted two theorems, To a theorem with a known proof, and
Ty ‘an allegedly analogous theorem whose proof was sought. Kling ‘s
approach was based on two fundamental ideas,

I. That the proof for Ty could be expedited 1f the data base was
limited to those datums most likely to be relevant in the proof.
This limitation was to prevent excessive floundering among
irrelevant inferences from irrelevant axioms.

2. That the subgoals or lemmas used in the proof of T could be used to
provide planning islands in the proof of Ty:

To carry out the second idea, ZORBA-I creates an analogy which
consists of a one-to-one mapping of predicates appearing in the proof

of Tr, to those appearing in Ty and a one—-many mapping between the
axioms used in the proof of T, and the limited data base for proving
Ty ZORBA-I permits a user to supply a semantic template for each
predicate which 1s used to help constrain the predicate mappings to

more meaningful ones. Kling distinguishes between a complete analogy

which includes all the predicates and axioms appearing in the proof of

T, from a partial analogy which contains only some of them. ZORBA-I
develops a sequence of partial analogies that terminate in a complete

analogy by successive extensions and a heuristically guided clause
matching process. Kling’s particular approach to analogy was heavily
influenced by the kinds of information that can be incorporated by a

resolution-based theorem proving system: Although ZORBA-I communicated
with its theorem prover strictly via a modified data base, this proved
to be a powerful enough approach to allow the system to tackle a

variety of problems, particularly from algebra, which had previously
been beyond the capabilities of QAS3.

At the present time there remain two rather fundamental problems

that are left concerning the use of generalization and reasoning by
analogy. The first problem 1s as follows.

When is a plan worth saving?
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If every plan 1s saved, the system must face a continuously increasing
repertoire of stored plans« The second problem 1s related.

Given a new problem to solve, how can the

system find a previously solved analogous problem 2?

Answers for both questions may depend on mechanisms for classifying
plans and problems. The two questions require the inverse operations of

saving and retrieving for plans which have been classified by

applicabilities and costs Effective classification systems are

generally based on hierarchy. In addition, plans may well be saved
with hierarchical suppression of particular plan details, A plan for a
robot solving problems in a number of interconnected rooms may well

suppress any details about opening doors if opening a door can be
viewed as a trivial subproblem. These ideas are among those to be
explored the next section.

I1I.3 Summary of Planning Ideas

To conclude Chapter III on planning, it is worth looking back over
the fundamental ideas and reviewing what 1s known and where further

research 1s needed.We started with two classic views of problem
solving - heuristic search and theorem proving. The frame problem
highlights much of the awkwardness of a purely theorem proving approach

and in fact the combinatorics that come into play when theorem proving
1s insufficiently directed can leave a system floundering about proving

irrelevant consequences, Heuristic search, whose philosophy is based on
the use of domain specific knowledge for guiding this process, is too
general a notion to provide any deep insights: Means—-ends analysis was

the first example of a forward planning formalism which offered a great

deal of flexibility 1n problem solving behavior at various distances

from the goal, It and other one step at a time systems, however, suffer
the combinatoric consequences of exponential worst case behavior. This

leads us to problem reduction with the conventional wisdom of divide

and conquer, The logical extension of this, hierarchical planning, can
cut down search by a fractional exponent, but leaves us with the

technical problem of determining the appropriate abstraction spaces for

a domain and for finding the mappings from the abstraction spaces into
the original problem space. The criticality level idea of making the
abstraction spaces correspond to successive levels of detail in the
domain was a first attempt at defining a domain independent notion of
abstraction, This transforms the designer’s search for suitable

abstraction spaces 1nto a search for appropriate criticality level
assignments to the predicates describing the ground level
transformations 1n the problem domain. When we ask how knowledge of
the problem domain can be used to determine these assignments we have
left planning questions behind and have entered the area of knowledge
base questions, .

The other planning topics from above also lead directly into

questions in the area of knowledge based systems. We considered the
problems of interacting goals and discussed the known solution to the

problem of ordering interacting conjunctive goals. Disjunctive goals
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apparently require new mechanisms. We also discussed the STRIPS

technique for generalizing and saving plans and the ZORBA-I technique
for reasoning by analogy. This left us with two fundamental questions:

When 1s a plan worth saving ?

How can a system find a known solution to use for

analogical reasoning?

More generally, we are left asking how a problem solving system
should know what use to make of any transformation in the problem

domain - be 1t a previously solved plan or an elementary
transformation. This leads to more knowledge base questions:

How should plans be represented?

How can plans be classified?

How should the applicability or feasibility of
transformations be represented? How can this be made

flexible to accommodate changes in the knowledge base?

How can a system acquire strategy knowledge to guide the
problem solving process?

How should the knowledge be structured so that it can be

explained?

How can the system assist a domain expert in structuring
knowledge?

The practical application of the planning ideas that we have
discussed requires answers about the knowledge base itself and leads us

directly to Chapter IV.
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Chapter IV

Knowledge Based Systems

Several artificial intelligence research projects have been

developed to meet the needs of an application as well as to satisfy
theoretical computer science interests, Researchers with such projects

have often tended to view computer science as an empirical science.
The design and theoretical work in such systems 1s motivated and

enriched from the encounter with the practical difficulties of creating

computer systems having capabilities for managing a knowledge base
which 1s large enough and flexible enough to meet the needs of the

application, Thus, a discussion of these capabilities 1s the starting

point for this chapter. Section IV:1 proposes some capabilities for
MOLGEN which have been achieved separately in various other systems.

Attention 1s focused on two of the underlying aspects of the

capabilities which are discussed in detail in Section IV.2 and

Section IV. 3. Chapter V continues the discussion by proposing
an architecture for a system based on these principles,

IV. 1 Capabilities fora Knowledge based System

In setting forth a set of capabilities for a knowledge based
system, one 1s reminded of the story of a family approaching an
architect to design a house for them. The architect may start out by

asking them what they have in mind, and the answer, 1f the story could
be abbreviated, 1s everything. The house should be small, and yet have
rooms for many purposes* The front room should be large for parties,
yet cozy for a small group. And of course, as the architect discovers

(and what 1s 1n practice the first question) the house should not be

too expensive. Even 1f the architect can work out compromises and stay

within the budget, his design may be obliterated and his estimates
thrown off if the family 1s allowed to suggest too many minor

modifications during the actual construction.

Since the design of a system depends directly on its desired

capabilities, and resources are too limited to try to achieve
everything, 1t would be useful to outline at this time some proposed
capabilities for the MOLGEN system,

!
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Figure 3

Chapter II has already explained the scope of the problem solving

aspect of this project and Chapter III reviewed the state of the art in

problem solving. It 1s well known that effective problem solving 1n a
sophisticated domain rests on a large knowledge base . In the MOLGEN

case, this knowledge base will include the information about the

objects and actions of molecular genetics and strategies for designing

experiments,. Management of the knowledge base includes the ability to
acquire and integrate new knowledge from an expert, to modify existing

knowledge, and to provide an organization of the knowledge that
facilitates competent use.

The development of a large knowledge base for MOLGEN will require

some expeditious means for incorporating the knowledge of molecular

genetics into the computer. The transfer of knowledge from a domain
expert may be seen as a pair of translations as follows:

[Mental Knowledge] => [External Form] => [Internal Form]

Human Memory What 1s written Computer Memory

Although many early systems included a programmer in this chain, this
1s an incumbrance we are seeking to avoid. The first translation 1n the

diagram above 1s carried out by the domain expert. The difficulty of

| It may be noted that the knowledge base we have in mind is
large when compared to some early problem solving programs, but small
when compared to the size of some current data bases. Section IV.3
discusses these relative sizes.
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the translation depends on what has been described as the conceptual

distance between his mental form and the external form, An important

: objective of the design of the external form 1s to provide a structure
which parallels the conceptual model of the domain expert. In the

MOLGEN case, we believe that the characterization of the knowledge as

| objects, actions, and strategies reflects this design objective.

The state of the art in knowledge acquisition techniques is still

a long way from being able to reduce the conceptual distance

substantially in a general way, Acomplete reduction might involve
entering directly the text, graphs, charts, and photographs from a

technical journal in the domain - for example, The Journal of Molecular

Biology. Other than the obvious technical problems of providing for
multiple media and the inadequate state of natural language and visual

processing techniques, there are two fundamental issues. The first 1s
that these journals assume a reader has a level of technical competence

and an inference capability. A novice 1n molecular genetics may miss an
important point simply because he fails to deduce some unwritten result

implied by the information 1n the journal. Brevity requires that the
"obvious" things be left unsaid. Other assumptions are unwritten
because the author does not realise that he 1s making them: The second

fundamental problem 1s the integration of the new information with the

rest of what 1s known about the domain. It is not enough to just know
a set of formulated facts. In order to integrate the new knowledge, one

needs to know how information 1s to be used and when 1t 1s important.
The task of organizing knowledge automatically 1s far beyond current

capabilities. The creation of a system where a user can specify

information in a flexible way —— expecting the system to use it
effectively -- is at the state of the art,

Recent work has made tentative steps 1n addressing these
fundamental problems, Part of the minimal technical competence problem

1s alleviated by having a model for the knowledge that 1s expected. In
Schank's work reported in[Schank76],a story understanding program
uses prefabricated scripts to fill in the unspecified elements of a
story, Within the context of knowledge acquisition as reported 1in
[DavisT6c],the TEIRESIAS system builds models of domain knowledge from
its current knowledge base to create expectations about new instances

of knowledge. This work 1s described 1n Section IV.3.

Explanation systems need the ability to reverse the translations

of knowledge acquisition systems, Explanation systems may be used for

several different purposes such as:

1. Maintaining the trust and credibilty y of the user when the system
acts 1n the role of a consultant,

2. Providing wuser/system interaction during the problem solving
process;

3. Informing a novice of the relevant domain knowledge for solving a

| particular problem,
4, Providing part of a knowledge base debugging tool,

‘ See [McDermott74] fora discussionof some capabilities

3 See [Shortliffe76], [Sacerdoti75b], or [DeutschT75].
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Explanation should be geared to the expertise and purpose of the

user. The TEIRESIAS system mentioned above has a measure of the
difficulty of steps in a deduction so that it can accommodate either an

expert or a beginner with its explanations, Since we are including
strategies in the knowledge base, we must be able to explain not only
the genetics objects and actions but also the system's plans and
intentions. Many of the the genetic processes and strategies which the

MOLGEN system will be asked to explain will require significant

innovations in knowledge explanation systems.

Several representational methods are being investigated by
artificial intelligence researchers at the present time. Davis and

King presented a good overview of the power and applications of

production systems in [DavisT7ba]. Woods discussed some of the
foundations for semantic networks and common misconceptions involving

their use in [Woods75]. Hendrix suggested some means for coping with
fundamental difficulties for expressing quantification in semantic

networks in [Hendrix75]. An ambitious proposal for a general system for

representing knowledge is) being developed by Bobrow and Winograd as
reported in [BobrowT77a].

Knowledge acquisition and explanation capabilities, as discussed
above are necessary components of a knowledge base management system
which 1s able to:

(1) Provide knowledge aggregation mechanisms so that the right
knowledge can be applied at the right time. (Knowledge 1s

aggregated 1n that it is found and brought together.) [Section
IV.2]

(2) Provide for extensibility and addition of knowledge so that new
knowledge and new types of knowledge can be integrated into the

system. [Section IV:3]

These two 1ssues are discussed in detail in the following two

sections as noted. Then Chapter V will outline a proposed overall
design for the MOLGEN knowledge base.

IV.2 Design Principles for Knowledge Aggregation

Historically the knowledge used by artificial intelligence
programs has been embedded within the procedures which used them.

Practically every large program was divided into a few large sections

and the organization of the knowledge base followed the same divisions.

Knowledge which was used together was aggregated into the data

structures available to the procedure which used it. Since procedures
had access to fixed sets of knowledge the aggregation was permanent.

Deciding what kinds of knowledge were potentially relevant was not part

of the computational task. For example, an early version of the
DENDRAL program was divided into a preliminary inference maker, a data

adjuster, a structure generator, a predictor, and an evaluation

b See Section IV.3.3.1 and Section IV.2.3.
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function. Each of these made use of its own sets of knowledge. When
programming modules contain the domain knowledge base, the modules are

sometimes termed Knowledge Sources (KSs).In this organization the
modularity of the knowledge base follows the modularity of the

procedures which use 1it.

In contrast with this 1s the organization of several question

answering systems already mentioned 1n Section III.1.2 which used a
uniform organization of knowledge as theorems: These efforts were aimed

at the creation of systems which could accept an arbitrary new body of
knowledge about a domain and use a standard set of reasoning methods to

do problem solving, These systems seem to have suffered from the

opposite extreme of the rigid procedurally modular systems in that they
have lacked adequate means for focusing on subsets of the knowledge
base.

Both views of organization have established important principles

of design. A static division of a knowledge base into clusters of

strongly interacting knowledge, reminiscent of Simon's nearly
decomposable systems, 1s in accord with the common wisdom that facts

'which are used together should be grouped together, Such systems may be

realized within different representational methodologies: For example,
the modules may be the top few branches in a hierarchically organized

system or they may form a set of permanent clusters or partitions
within a network of knowledge associations. The conflicting common
wisdom from theorem proving is that a system should consist of a large

number of smaller facts which can be utilized in some uniform fashion,

The argument for the second view 1s that facts need to be used in

different contexts and that a system with fixed prior groupings of
facts will be unable to use what- it knows when faced with anew

context. Winograd summarized this conflict in  [Winograd75b] as
follows:

1+» We must keep an eye on both sides of the
duality -- we must worry about finding the right
decomposition to reduce the apparent complexity,
but we must also remember that interactions among
subsystems are weak but not negligible. In

representational terms, thisforces us to have

representations which facilitate the "weak
interactions".

While weak and strong interactions have been discussed in

[Simon69] and [Winograd75b] and it is clear that knowledge which
interacts must be aggregated in some manner, two questions remain to be
clarified:

1. What are the criteria for distinguishing weak and strong
interactions?

2. What mechanisms can be used for finding knowledge which 1s weakly

interacting, that 1s, how can weakly interacting knowledge be
aggregated?
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IvV.2.1 Criteria for Weak and Strong Interactions

. We offer the following definitions of strong and weak
interactions:

1. Knowledge is strongly interacting 1f it should be used together in
all problem solving contexts.

2. Knowledge is weakly interacting if it should be aggregated
differently depending on context.

Thus, a partitioning is inadequate for facilitating the weak
interactions when it is &nxkd completely independent of context.

Strongly interacting knowledge shouldbe aggregated in a permanent
context independent manner and weakly interacting knowledge should be
aggregated in a temporary context dependent manner. As 1s explained in
detail below, we suggest that permanent links be established between
units of strongly interacting knowledge, while temporary links for weak
interactions should be established by pattern matching-

‘Methods of aggregating strongly interacting knowledge will be

explored in detail 1n Section IV. 2.3 and Section IV.3: 3:1.
In this section, we will be concerned with how temporary links are

formed to facilitate the temporary interactions between knowledge
sources.

In a system with many units of knowledge, most of the interactions

will be context dependent, We contend that many of the knowledge

sources must be activated according to the problem solving context of

the system. With undecomposable knowledge sources, the only means to
express weak interactions is by controlling access to the individual
-knowledge sources, Thus we must pay attention to the alternatives for
the creation of the links for context dependent interactions. The
temporary links for context dependent interactions can be established
in two ways. (1) By using knowledge sources as the primary index one
can establish links to relevant problem solving contexts, Demons embody

this approach by using pattern matching to recognize the context. The

link 1s made when the knowledge source becomes active. Alternatively,

(2) problem solving contexts can be used as the primary index with
links being established to the relevant knowledge sources. An example
of this approach is given from the TEIRESIAS system in Section

IV. 2:3. Again pattern matching can be used to establish the
temporary link. The difference lilies in the location and nature of the
pattern, In (1) knowledge sources are activated when they recognize a
context, This idea is discussed in the next section-. Alternatively 1in

(2), contexts can have mechanisms for selecting or aggregating
knowledge sources according to the patterns 1n the knowledge sources,

This alternate approach 1s discussed in Section IV.2.3. Between
these two sections, Section IV.2.2.1 presents some of the

methodology and ideas which have evolved in representing domains as
communities of experts. In such frameworks, the knowledge within the

experts 1s strongly interacting and communication between the experts
facilitates the weak interactions. Some of the research in this area

started with the viewpoint in (1) above but has evolved to motivate the
ideas of (2).
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To avoid losing the main 1deas while exploring the side issues and

history of the ideas in what follows, the main points together with the
| sections 1n which they are discussed are listed here.

I. The early designs for artificial intelligence programs

involved embedding the domain knowledge inside
procedures for using 1it, Modularity of domain
knowledge followed the modularity of the procedures,

This methodology introduced the idea of knowledge

sources in programs. [Section IV.2.1]

2« Interactions between knowledge have been characterized

in the literature as being weak or strong* Weak
interactions are those which are temporary and context

dependent; strong interactions are permanent and
context independent, [Section IV.2.1]

3+ The mechanisms for facilitating weak interactions play

an important role in the integration of new knowledge
in a system. Such facilities are expected to find and

apply knowledge sources 1n a system in those problem

solving contexts where they are relevant‘ [Section
Iv, 2. 1]

4, The basic mechanism for facilitating weak interactions

1s pattern matching% Knowledge sources can use

| patterns to recognize contexts (as with demons) or

| contexts can use patterns to recognize knowledge
| sources » [Section IVs2.1]

5.3 Demons are a useful approach to organizing knowledge

sources when the contexts in which they can be applied
are diverse but easy to recognize, Such knowledge
sources are said to be event driven. [Section

6« Demons should not be used as the sole mechanism for

implementing weak interactions since they do not
provide coordination for those weak interactions
involving multiple knowledge sources. These
interactions can be facilitated by attaching a pattern

of the knowledge sources and coordination information
to an agent of the problem solving contexts [Section
IV.2.2]

T. In the TEIRESIAS system, meta-rules act as agents for

the problem solving context. These strategy knowledge

sources contain patterns which can be matched against

the domain knowledge to find knowledge relevant to the

current problem solving context. The object level
rules in this system are the right decomposition of

| domain knowledge into permanent context independentchunks and the meta-rules express and coordinate the
temporary context dependent interactions between them.
[Section IV. 2.3]

8. Systems based on this methodology have developed in
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| the direction of using smaller and simpler knowledge
| sources. Production rules can be used as knowledge

sources for both strategy and domain knowledge.
| Content reference has been used as a mechanism for

pattern matching by strategy rules. [Section
| IV.2.2.2 and Section IV.2.3]

9. Strategy knowledge sources can in theory cover a

hierarchy of types of knowledge and provide a powerful
and flexible representation for this knowledge. A

system which actually offers this power has yet to be
built and some extensions to the 1deas above seem to

be needed. [Section IV:2.3]

10. Pattern matching facilities based on content reference

depend on the decomposability of the knowledge source..

The content reference ability in existing systems

match strictly according to the presence of certain
tokens in the rules, For more complicated rules where
the way these tokens are used has a bearing on the

classification, more powerful mechanisms are required..
Proposals are made to increase the expressive power of

rules while providing powerful methods for classifying
them. [Chapter V]

Iv.2.2 Demons and the Multiple Knowledge Sources Model

Demons are procedures which are activated when some activation

condition 1s satisfied 1n a data base. They are useful when a knowledge
source needs to be used in a diversity of contexts which are easy to
recognize. In the PLANNER language reported in [Hewitt71], these are
the antecedent theorems, Whenever anything 1s asserted (ie. added to

the data base), all antecedent theorems are checked against the new
assertion. In production systems as described in [Newell73], each
production can be considered to be a demon waiting for a condition so

that 1t can fire. Bobrow and Raphael give a good overview of pattern
directed invocation in programming languages in [BobrowT74].

One outgrowth of the early work in demons and pattern directed
invocation was the attempt to extend this idea as far as possible, This

lead to the development of a computer system composed entirely of

demons acting as expert knowledge sources.

In the sections which follow, the BEINGS of Lenat and the expert
KSs of the HEARSAY system will be discussed, These sections will not
discuss or evaluate these systems in thelr entirety, but will

concentrate on the approaches these systems have followed in their
treatment of context dependent knowledge, The source of strength in
Lenat’s system, that each expert recognizes his own relevance and makes
his own contribution to the problem solving without being aware of the

nature of the other experts, is ultimately a source of weakness. That
the experts know how to organize themselves individually is no

guarantee that they can work effectively as a group. There 1s no

specific mechanism for coordinating the activities which may compete
for processor time. In the HEARSAY terminology, this is part of the
focus of attention problem.
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IV.2.2.1 BEINGS and ACTORS

Douglas Lenat used pattern directed invocation between procedures

| as knowledge sources in his concept of "Beings" reported in [Lenat75].
| He has suggested that problem solving knowledge can be organized as a

community of interacting modules where each module, termed a Being,
implements a particular expert in a small part of the domains As 1n
the case of the Actors described by Hewitt, Bishop, and Steiger in

[Hewitt73], this approach to organizing knowledge promotes the
following design methodology:

1. Decide on the kinds of experts to have in the

domains Each expert corresponds to one aggregation of
strongly interacting knowledge.

2. Decide for each expert what messages it should

send and receive. These messages are used to form the
links for weak interactions between knowledge sources.

Lenat“s Beings differ from Actors in that they do not mention the name
of the expert to receive a message, but rather broadcast their messages
to the entire community. Each Being 1s responsible for recognizing and

answering messages within its domain of expertise, Within its special
part of the domain, each Being has a set of strategies for recognizing
1ts relevance to any proposed question. Lenat developed the PUP6 system
using Beings as a representational form as reported in [Lenat75]. PUPG

was an automatic programming system which wrote a concept formation
program” s

Most of the Beings in PUP6 were rather complicated modules, Lenat
has suggested that this 1s appropriate since the behavior expected from

Beings 1s complex. They required the capability to send and receive
messages to achieve both the triggering and the coordination of the

Beings, Communication was constrained to a set of 29 standardized

questions which one expert could ask another. The vocabulary, syntax,
and semantics of these questions was contained as part of the code for

the Beings themselves. As new experts requiring extensions to the

vocabulary were added to the system, changes were required in existing
Beings .

In the terminology of the previous section, the Beings are the
modules of strongly interacting knowledge around which the problem
domain has been organized, The context dependent interactions are
facilitated by the message communication between the Beings. It is

concelvable that more than one Being would be activated by a given
messages+ For such situations, the Beings and their messages must be

carefully designed to provide a mechanism for arbitration, Putting
these arbitration mechanisms in ,the messages between Beings 1s 1n

conflict with the design goal that experts should not need to know of
each other's existence. The HEARSAY system, which is discussed in the

next section, offers some special mechanisms for this control problem
which is part of what has been termed the focus of attention problem.

> The concept formation program which was synthesized was based
on work by Winston reported in [Winston70].
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Iv.2.2.2 Lessons from HEARSAY

The HEARSAY speech understanding system 6 also follows the
discipline of dividing the knowledge base into a set of procedural
Knowledge Sources (KSs) activated by pattern directed invocation. In
contrast to the systems mentioned above, HEARSAY has been under

development over a period of ten years and has undergone a design

review in light of this experience. The evolution of HEARSAY11l from

HEARSAY1 illustrates some important directions 1n the design of

knowledge bases.

HEARSAY] was designed to make use of the following diverse sources

of knowledge: acoustics-phonetics, phonology, syntax, semantics, and
pragmatics. As with PUPH, one of the design goals of HEARSAY has been
that the experts would not need to know of each other's existence or

structure. The motivation here was to provide a system where new KSs
could be simply added or deleted for experiments 1n measuring their

impact on the effectiveness of the total system and for modularity in
developing the system. Because of the variable nature of the speech

signal and an inadequate theory of the production of speech, the KSs

are error prone and must work together cooperatively to correct each
other's mistakes. Communication betweenKSs takes place in a dynamic
global data structure, the blackboard, which contains the current state

of the world: This consists of a set of hypotheses or partial
hypotheses at the word level of recognized speech, Each KS may access

the blackboard to create, delete, or modify hypotheses. In HEARSAY]
the KSs are activated in a lockstep sequence of poll, hypothesize, and
test, The poll phase determines which KSs have something to contribute,

the hypothesize phase activates the KS showing the greatest confidence

about 1ts contribution, and the test phase consists in having all the
KSs evaluate the hypothesis,

Many of the design decisions in HEARSAY1 which have come under

review are of general interest in the design of knowledge bases. First,

the limitation of the blackboard and hypothesize and test paradigm to
hypotheses at the word level in HEARSAY1 has proved too restricting.

HEARSAY11l uses a blackboard partitioned into seven distinct information

levels. The decomposition of the blackboard and problem space into
discrete levels makes 1t possible to decompose the KSs more finely. In

the terminology of Section IV:i2.1, we would say that too much
information had been aggregated in the KSs and that in HEARSAY11l they
were decomposed into smaller modules which could interact in a context

dependent manner. Experience has shown that most KSs need to work with

only one or two levels so that they can be as simple in structure as

their knowledge permits, Secondly, the lockstep control sequence of
HEARSAY1 for the hypothesize and test paradigm inhibits interaction

between processes resulting in repeated computations and blocked

parallelism. HEARSAY11l replaced the sequential control sequence with
pattern directed invocation so that a KS could be activated when the

blackboard contained information satisfying a precondition of a KS.. In

this—- framework the KSs may be viewed as production systems where the

precondition corresponds to the condition on the left hand side and the

KS corresponds to the action on the right hand side.

6 See [Erman76] and [Hayes-Roth76] for some recent articles about
this system,
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In summary, the evolution of HEARSAY11l from HEARSAY1 involved the

following important changes in design,

(1) A decomposition of the KSs of strongly interacting
knowledge into smaller, simpler units which can
interact in a context dependent manner.

(2) A decomposition of the blackboard into more levels.
This facilitates (1) above,

(3) The blackboard was extended to show relationships
between hypotheses including support and structural

relationships. This made it possible to express the
contexts for the weak interactions between knowledge

sources, In HEARSAY terminology, this allowed the
sharing of partial hypotheses between KSss

What remains to be discussed about HEARSAY11l is the mechanism for

coordination of the KSs. The coordination problem in HEARSAY11l 1s

termed the focus of attention problem and has two components:

1« Choice of a partial hypothesis (HEARSAY's meaning for context) in

the problem space for attention,

2. Choice of a Knowledge Source to use within this context.

Assoclated with each hypothesis are indicators telling how much

computational effort has been expended so far as well as combined
estimates from the KSs of the desirability of allocating more, These

indicators are used to direct the first part of the focus of attention

problem -- the selection of context in the problem space, For the

second aspect of focusing, the selection of a KS, HEARSAY11l takes

advantage of the production rule view of the KSs: Each plausible KS 1is

asked to evaluate its preconditions and to estimate its applicability.

Frederick Hayes-Roth and Victor Lesser have suggested several
fundamental principles for rating KSs in [Hayes-RothT76]. For example,
KSs may be favored which promise a best outcome, or which have the most

valid data to work from, or which are the least expensive or most
reliable.

We have seen that HEARSAY11l has provided a focus of attention

module with the ability to choose among competing knowledge sources for

allocation of computational resources. The next section generalizes
this idea by (1) using a number of context dependent strategy KSs
instead of just one focus of attention module, and (2) by applying a

pattern matching facility to the KS itself instead of to an abstraction

of it, We will see that the success of this approach depends on
continuing the trend toward small and simple KSs.

IV.2.3 Knowledge Access and Control by Description

TEIRESIAS T 1s a system which contains some interesting
innovations 1n the use of context information for structuring

I
See [DavisTée].
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knowledge. In this section we will be concerned with TEIRESIAS’s
treatment of context dependent interactions. In Section IV.3.3 we
will return to this system in our discussion of knowledge acquisition.
TEIRESIAS was developed in collaboration with and integrated into the

MYCIN system for medical consultation The MYCIN system includes a
knowledge base of approximately four hundred production rules: These

production rules are the Knowledge Sources (KSs) within the
MYCIN/TEIRESIAS system. An example of a production rule follows:

If1) the morphology of ORGANISM-1 is rod
2) the gram stain of ORGANISM-1 1s gramnegative

3) the aerobicity of ORGANISM-1 is facultative
4) the infection with ORGANISM-1 was acquired

while the patient was hospitalized

Then there is suggestive evidence (.7) that the
category of ORGANISM-1 is enterobacteriaceae.

The MYCIN system conducts a medical consultation by evaluating 1n

depth first order an AND/OR tree formed by these production rules. As
of June 1976, the largest number of rules relevant to any one goal was
forty. At that stage exhaustive invocation was still computationally

feasible. In response to an expected continuing growth of the knowledge

base, a mechanism for guiding the selection process using meta-rules

was developed.

The meta-rule approach developed by Davis involved augmenting the

rule syntax above with new meta-level (strategy) primitives to provide
a language for strategy- The following 1s an example of a meta-rule in
the TEIRESIAS system,

If 1) the infection is pelvic-abscess and
2) there are rules which mention in their premise

enterobacteriaceae and

3) there are rules which mention in their premise grampositive rods,

Then there is suggestive evidence (.4) that the former should be
done before the latter.

In this example, the first clause about pelvic-abscess defines the
context. The second d&fdird clauses contain patterns which are

matched against the domain inl¢the knowledge base. A domain rule
will match 1f itmentions enterobacteriaceae or prampositive rods in
its premise. The current implementation of meta-rules in TEIRESIAS
supports two kinds of statements. Meta-rules can make statements about
the likely utility of other rules and they can also impose a partial

ordering on the evaluation of other rules. This partial ordering is in
the same spirit as the allocation of processor power in HEARSAY. The
same principles for choosing between KSs discussed in [Hayes-Roth76]
can be implemented within production rules. It is interesting to
return to Winograd's suggestion as quoted in Section IV.2.1. The

object level rulesdn this case are the right decomposition of
knowledgeAn the domain into permanent context independent chunks and
the meta-level rules express and coordinate thetemporary context

dependent weak interactions between them, Thus the various premises and
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actions of the object rules are permanently wired together while a

meta-rule indicates interactions between groups of rules in order to

coordinate their use. Thus, weak interaction is keyed by the context
described in the meta-rule.

In the strategy rules above, we see that the pattern, instead of

being associated with the object rules, can be contained within the

strategy rules, The pattern 1s the argument to the "mentions" function,.

Much of the motivation or the use of pattern matching in TEIRESIAS to
establish the context dependent links 1s the same as that in HEARSAY or

PUP6. Use of pattern matching to find knowledge sources is the
mechanism that guarantees that as new knowledge sources are added to
the system, they will be automatically applied in those contexts in

which they are relevant, Davis refers to this matching process as
reference by description and distinguishes between two broad
approaches: (1) External Descriptors and (2) Content Reference,. The
external descriptors approach consists of a methodology where a number
of different characteristics are chosen and each KS is described in

terms of them., For a procedure this could include such things as the

procedure’s main effect or 1ts preconditions, The second approach is
by direct examination of KS content, The meta-rules above have the

ability to examine the characteristics of object level rules: The

advantages of the second approach derive from the ease with which new

knowledge and strategies may be incorporated into a system,

TEIRESIAS decomposes the process of applying object level rules in

their corresponding contexts into two steps, First, pattern matching
is used to create sets of rules for each of MYCIN/TEIRESIASs contexts,

In this system, there 1s a separate possible context for each object
that a rule may conclude about, These sets correspond to permanent

aggregations of knowledge discounting changes to the knowledge base,
Then MYCIN accesses these sets of rules as 1t traverses 1ts context

tree, The meta-rules express temporary interactions between these

sets. This approach mixes the two types of referencing mentioned above.

It allows the prior computation of external descriptors while
preserving the flexible strategies and ease of adding new rules to the

system characteristic of the content reference approach, It should be

noted that in many systems, the number of problem solving contexts
would be too numerous to make this complete grouping of rules feasible”

Important design considerations for KSs to permit reference by
con tent are

I. The contents of KSs should be accessible

(addressable),

2+ KSs should be simple (or at least regular) in
structures

A precise meaning for the notion of structural simplicity has not yet
been worked out nor has much work been done to clarify the trade-off

: between simplicity and expressive power.. It 1s known, for example, that
! expression of any form of iteration 1s awkward and generally difficult
| to recognize 1n typical production systems, Another data point on the

simplicity vs expressive power scale follows from Sacerdoti ‘s work in

the NOAH system, The add and delete lists associated with each action

are used to represent the effects of an action for purposes of global
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selection of actions. The system depended on the programmer to pick

the right actions to represent in these lists while various smaller
subactions were represented only in the QLISP code. Sacerdoti

suggested that the QLISP modules were not simple enough for inspection

by the system. In any case, the system did not know enough to carry out
a meaningful 1nspection, In Chapter V a technique will be suggested
for acquisition and management of extended rules which are more

powerful than these production rules and more restricted than QLISP.

A second observation about the structuring of knowledge sources,

strategy knowledge sources or meta-rules in particular, 1s that they
probably need more powerful mechanisms for pattern matching than those

that were used in TEIRESIAS. Davis suggested that meta-rules can be
extended through an arbitrary number of levels,. Thus the first level

strategies expressed in meta-rules direct the use of object level
knowledge, second order strategies (meta-meta-rules) direct the use of
strategies and so on. Although TEIRESIAS was programmed to accept meta-
rules of arbitrary order, the medical domain in which the system was
tested offered no instance of a rule of greater than first order.. Davis

gives a mathematical treatment of meta-rules suggesting that they can
reduce evaluation work by an exponential factor. There is, however, a
sleeper in the argument. Recall that the main content referencing
mechanism in TEIRESIAS' current meta-rule implementation is the
"mentions" function, This function examines premises and actions of
rules for the existence of particular tokens-. Unless there are

particular tokens used in meta-rules distinct from those in object
rules, meta-meta-rules can only ask about the same tokens again.. One
can 1magilne expressions about mentionings becoming awkwardly large and
complex. Davis hints at a fix for this problem in the context of a

poker playing example.

To win at Poker,

first try bluffing,

then try drawing three cards,
finally trycheating.

A rewritten version of this might be "First use any psychological ploy
to discourage the competition, then try something to improve your hand,
and finally do anything that will make sure you win." Each clause has
been written as a more general description of the actions. This
suggests that we need more powerful methods to describe rules than is
currently provided by reference by content. A proposal for doing this
1s discussed in Chapter V.

IV.2.4 What We Have Learned

Having completed our survey of knowledge base interactions, let us

summarize 1t. We began with a proposed classification of interactions
between chunks of the knowledge base as either weak or strong. Weak

interactions were characterized as temporary and context dependent;
strong interactions were characterized as being permanent and context
independent. Strongly interacting knowledge should be grouped as a unit

or knowledge source. Temporary links for context dependent
interactions between knowledge sources can be established by pattern
matching.
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One approach to establishing the links for the context dependent

" interactions is to provide a pattern of the relevant context to the

knowledge source, In this framework the knowledge sources themselves
are sometimes called demons. This approach has been discussed with

examples from the PUP6 system of Lenatas well as the HEARSAY system.
The HEARSAY experience lead to a formalization of the focus of
attention problem, which includes the coordination of multiple
interacting knowledge sources which may compete for processor time in a

given problem solving context.

The MYCIN/TEIRESIAS example extends this aspect of the focus of
attention problem by providing multiple strategy knowledge sources

termed meta-rules. A meta-rule acts as an agent of the problem solving

context to coordinate the weak interactions between object level rules.

The object rules in this case are the right decomposition of the domain

knowledge into context independent chunks and the meta-rules express
and coordinate the temporary context dependent interactions between
them,

Both demons and meta-rules use a form of pattern matching for
controlling the use of knowledge in different contexts: In the case of

demons, the knowledge sources carry a pattern of the context 1n which

they should be applicable. In the case of meta-rules, the strategy

knowledge source associated with the context carries a pattern of the
plausible domain level knowledge sources. In both cases, simplicity in

the structure being matched, problem solving context or knowledge
source, 1s thought to be an important design consideration although a

definition of simplicity has not been given precise meaning.

Whenever new knowledge 1s entered into a system, its logical

relationships to the existing knowledge must be established, We will

see in the next section that a number of the ideas about descriptors

which have been discussed with regard to their use 1n controlling the

way knowledge 1s accessed also play a role 1n the way it can be

acquired by a system and integrated into a knowledge base.

IV.3 Design Principles for Knowledge Acquisition

Knowledge acquisition research has taken place on three rather

distinct fronts « in the area of programming languages, 1n database

management, and in the knowledge based systems of artificial
intelligence. This section examines them with three purposes in mind.

First, the simple ideas have been around for quite a while and it 1s

worth discussing them clearly so that they need not seem to be re-
discovered in later contexts. Secondly, the simple ideas have rather

limited power and it is important to delineate this power. Thirdly,
the powerful ideas are rather subtle and involve mechanisms which may

| seem a bit complicated. The power and significance of these ideas 1is
best understood by comparison to the simpler approaches.

Although the main topic for this section 1s knowledge acquisition,

many of the ideas for organizing knowledge to facilitate acquisition

are 1mportant for broader purposes in the management ofa knowledge
base, These points will be presented along with the the malin ideas of
this section,
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Knowledge base and data base researchers are currently attempting
to define the differences between their respective fields, There are
certain obvious differences, Earlier when we stated that MOLGEN would

have a large knowledge base, we pointed out that the base would still
be small by data base standards. According to [Fry76], it is not
unusual to find government or commercial data bases of over one billion

characters. This 1s roughly a thousand times larger than any knowledge
base used in artificial intelligence. Many other differences result
from this size difference, With a huge data base, researchers must be
concerned with efficient retrieval of information. The information

retrieved 1s generally used as input to separate programs performing

specific tasks such as report generation, payroll, or a display of the

information for a human user. The data base contains limited knowledge

about itself and its uses. In early artificial intelligence systems,

the knowledge necessary to direct the problem solving was often part of
the control or problem solving program. As knowledge base researchers

have moved to separate data from code, they have tried to create
sys terns which reflected the dense interconnections necessary for

problem solving. Thus, knowledge bases must contain the rules of

inference, corresponding to the actions and strategies discussed

earlier, which provide ghe control information to the system. The
direction of this report 1s to include even more strategy information

in the knowledge base so that the knowledge base contains the
information to direct the use of knowledge in problem solving.

The differences in research orientation are tending to converge
somewhat as progress 1s made, Some researchers have built systems

integrating both knowledge bases and data bases, An example of this,
the Gus system, was reported in [Bobrow77b]. GUS converses in a mixed
initiative English dialog with a user about travel arrangements*

In the travel domain, the Official Airline

Guide 1s a data base which GUS treats as a large
external formatted file, GUS can use an extract of
this data base but the information in the file does

not form part of its active working memory for the
same reason the Official Airline Guide does not

have to be memorized by a travel agent. Only that
portion of the data base relevant to a particular
conversation need be brought into the working

memory of the system.

In GUS, the frames which drive the dialog constitute part of the
knowledge base and the travel guides are part of the data base.

Research about knowledge acquisition began with the efforts in the

late sixties to make programming languages more powerful by making them

extensible. The 1dea was that a programmer could modify the language
by defining entities within it that were conceptually similar to the

mental structures he had for his problem. This corresponds to the
later work in knowledge based systems to facilitate effective

communication with an expert . Effective communication should take place
in terms and concepts close to those which are in general use in the
technical jargon of the domain. Much of the need for natural

-----g----
See Chapter V.
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terminology derives from a desire to make use of the tried and true
classifications of knowledge that have evolved in a technical areas As
Thomas Cheatham remarked in [Cheatham69]

Discussion of the motivation for extensible

language rests on a basic premise, namely that

there exist diverse programming language
requirements which are becoming more diverse, and
that it is of critical importance that each user

ces be provided with a language facility

appropriate to his problem area* .««A part of this
premise 1s that it 1s not enough to have a language

which 1s formally sufficient to host the particular
data and unit transactions some user has 1n mind,

Rather it 1s of critical importance that the kinds
of data and unit transactions which he wants to

think of as primitive be available, effectively as
primitives, in his language facility,

Again, we list the main points together with the sections in which
they are discussed,

|. Effective communication mandates the use of tried and

true or natural classifications from a domain 1n order

to reduce the conceptual distance for a person
expressing domain knowledget+ This motivated the

development of extensible languages. [Section IV.31

2 The first work in extensibility was done in the

context of programming languages, The three
components of these languages =- data, operations, and
control - correspond naturally to the three classes of

knowledge we have discussed earlier =- objects,

actions, and strategy. [Section IV.3.1]

3+. The main mechanism used to provide extensibility was

the ability to define new (larger) entities in terms
of a set of basic primitives, [Section IV.3:1]

4. Workers like Dahl or Liskov and Zilles have suggested
that the new data types and the allowable operations

on them be defined at one place 1n a cluster in order

to promote abstraction for structured programming.
[Section IVs3s1]

5. It was generally thought that extensibility in the

programming language would resultin clear and

efficient programs and that these programs would be
much easier to write. [Section IVe3s1]

6. The important lesson from this work was that the
amount of knowledge necessary for a user to mold the

nature of the system for his requirements had been

seriously underestimated, The systems themselves
remained too ignorant to provide much help. [Section
IV.3.1]
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7. Faced with the requirements of enormous data bases,

data base management researchers have concentrated on

increasing a system’s knowledge about its data.
[Section IV.3.2]

8. The main idea was to have schemata associated with the

data 1tself to describe the logical relationships,

field names, formats, and physical layout. [Section
IV.3.2. 1]

9. The idea of procedural attachment has appeared in the

data base literature but 1t has not been implemented
very extensively. [Section IV.3:2.I]

10+ Much of the research has been in comparing three

models for data organization - hierarchical,
relational, and network - for their relative

efficiencies and flexibilities for retrieval. [Section

Iv.3,2.21

11. Some workers have suggested that type-checking
assertions for operations on data can be entered as

part of the data definitions. This 1s a step closer

to the object centered factorization of knowledge

1deas for knowledge based systems. [Section
IV.3.2:3]

12. The schemata for data base systems were used to
provide data definition capabilities for systems using

a uniform mechanism for storage of values. Knowledge
based systems have extended the power of schemata to

organize groups of values and procedures into
"conceptual objects". [Section IV.3.3.1]

13. Schemata for conceptual objects are used in knowledge

based systems to guide the acquisition of new

instances of objects. Schemata can be used to ensure

the completeness of information about objects by
guiding the acquisition process. They also can guide

any necessary bookkeeping as new objects are added to

the system. Procedural attachment 1s helpful for
providing flexibility in filling out and checking the

values for instances of objects. [Section
IV.3.3.2]

1: Just as an object schema may guide the acquisition of
a conceptual object, a " schema-schema” my be used
guide the acquisition of a new schema. Using this
idea a system can acquire information about new kinds

of objects as well as new instances of objects. Thus

schemata can provide a mechanism for extensibility.

The essential knowledge that programming systems
lacked for providing assistance in extensibility 1is
contained 1n these schemata. Realization of this is

one of the important contributions of knowledge base
research. [Section IV. 3.3.2]
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15« Procedural attachment in schemata is also important

for assisting the management of changes in a knowledge

base so that when a change 1s made in one definition,

other dependent definitions can be located and changed
at the same time, [Section IV.3. 3.2]

16. Knowledge based systems have also provided examples of
the acquisition of actions, This has involved the use

of rule models which correspond to schemata for
actions except that the models contain information

derived from examples and they facilitate only very
limited structures for rules, In the MYCIN/TEIRESIAS

system, rule models are derived from rules in the
knowledge base. [Section IV, 3:34]

17. Rule acquisition has used the problem solving context
as well as a rule model to guide the acquisition of a
new instance of an action, [Section IVe3. 3.4]

18. There is room for more research on the use of schemata

to support the classification and acquisition of new

kinds of actions and strategies. Proposals for this
work are presented. [Chapter V]

With these high points in oind,we begin with the development of
extensible programming languages.

Iv. 3.1 Extensibility in Programming Systems

As Perlis remarked during gn opening address for a SIGPLAN
symposium on extensible languages three things define a language:

data, operations, and control,, Not ‘surprisingly, these correspond to
the three classes of knowledge mentioned in Section IVs1 - objects,

actions, and strategies, These three plus syntax form the axes at which

development in extensible languages has taken place. One of the major

efforts 1n extensible systems indicative of the the scope of these
efforts is the ECL system reported by Ben Wegbreit in [WegbreitT1].
This system was developed to assist programmers workingon projects

where there 1s considerable interplay between design and development,
ECL allowed extension of syntax for specification of new linguistic

forms in terms of existing forms. It supported data type extension

allowing a programmer to define new data types and information

structures needed to model the task at hand. In this regard ECL

supplied a number of built in types - Boolean, integer, floating point,

character, symbols, and pointers - and provided mechanisms for
efficient access and storage of the structures. Much of this

corresponds to the record structures now availlable in Algol-like
languages« Operator extension allowed a user to define new operations

on the new data types and to extend old operations to cover the new
data types, Control extension allowed the creation, deletion, and

coordination of independent asynchronous processes. These extension

mechanisms were sufficiently broad to cover co-routines, Di jkstra’s P

and V operations, multiple parallel returns, and process scheduling,
The basic methodology behind all of these extensions was to provide a

9 See [Perlis69].
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set of primitive entities 1n the language. A user could then define his

own higher level entities as special combinations of the basic
primitives. Some extensible language facilities involved the creation
of compiler-compilers and constrictors as mechanisms for keeping the
flexible user-defined language economic.

Barbara Liskov and Stephen Zilles were among the proponents of

extensible languages as an aid to structured programming. In

[LiskovTl4#], they emphasized the nature of user defined constructs as
abstractions, that 1s, mechanisms for the suppression of irrelevant

detail. They advocated a very restricted procedure for definition of

abstract data types where the representation (for example, record
structure) and operations on 1t (defined as unique procedures having

access to the representations) were defined together in one unit termed

a cluster. These user defined primitives, analogous to the familiar
primitives of the base language, would be abstract entities for
manipulation by the program only through the defined operations. Their
internal structure would be unknown (in fact unknowable) outside of the

cluster. This was thought to encourage a formulation of abstract data

types that was independent of representation and was in contrast to
those extensible systems where a user learns one mechanism to define

the representation and another to define the operations on 1t. Perhaps

the most widely known language which incorporates this philosophy is

SIMULA with 1ts class definitions. Although the [gotivations are
somewhat different, the monitors discussed by Hoare in operating

system design reflect many of the same considerations.

It 1s interesting to view the changes in the ways people viewed
extensible programming systems after a period of trial and

experimentation. Thomas Standish, reviewing his own PPL systemin
[Standish71] which was one of the most successful of all the extensible

- language systems, termed PPL a language that failed. This was 1n spite
of the fact that it was fully implemented, was the language of choice

in Harvard's introduction to programming course, and was tested over a
diversity of application areas by over 450 users.It seems to have been

a case of expecting too much, As Standish remarked

It was thought that just as programmers decree

the organization of processes (by defining and
calling subroutines), they should also decree

appropriate organization for data and for notation,

in order to attain clarity and efficiency* ...
What we did not fully grasp was the amount of

effort and knowledge required of a user to deform a

language 1n significant ways.

Finally Standish summarized it all again, the frustration of expecting

too much from the simple mechanisms.

Y ou c a ptdteé something simple to an

unknowledgeable mechanical recipient and expect it
to alter its behavior in major ways.

—————
See [Hansen73].
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Perhaps the key word in this quotation is "unknowledgeable" which
leads us to the efforts by researchers in artificial intelligence to

make a system know what it knows.

IV.3.2 Ideas from Data Base Systems

Data base technology can be traced back to the late fifties tl
when several workers discussed the use of general routines capable of

sorting files of different formats and arbitrary contents « The
technology developed in response to the typical data processing

operation 1n the late sixties where every new need for data involved

writing a new program+ Using existing data files for a new program
generally meant that somebody had to understand the program that wrote

the files because the format of the data was locked up 1n some

combination of programs and control cards. Fry [Fry76] references a
scenario where a business manager knew that data bearing on a business

decision existed, but some of it had been produced on a different
mac hine , some had incompatible formats, and the description of the

logical organization of some of the data was unavailable. The manager

was unable to obtain answers in a reasonable amount of time even though
the data was 1n some sense in the system. This type of situation gave

rise to the vision of a system with all of the data integrated with

data definitions stored with the data and general purpose software to

access and manage the data files. This type of system has been termed

data base management as opposed to data management.

The rest of this section discusses the ideas from data base

management most relevant to knowledge base research: We will begin
with a discussion of data definitions to explore the limits of the
capabilities that have been provided, We will see that different
logical arrangements of the data have an impact on the accessibility of

the data. Some data models are thought to result 1n lower sensitivity

of programs to changes in the data and its definitioné& Finally we
will look at the work in an area on the border between knowledge bases

and data bases where some additional capabilities for consistency

checking 1n data bases have been explored,

IVi3:241 SCHEMATA: Data Definitions

Crucial to the capability of integrating data into a data system

for uniform manipulation and centralized management 1s the idea of a

data definition, usually termeda schema, Programming languages have

traditionally provided facilities for naming and characterizing data
elements within records. What 1s new with data bases 1s the 1dea that

these schemata are outside the code of the programs and stored with the

data, This creates the potential for allowing the use of generalized

data base management software to manipulate the data.

Schemata are used to specify structure and interrelationships of

data elements Some of the structure specified in schemata 1s very
similar to the information associated with the RECORD structures in

ALGOL-like languages,- The names of the various fields and their types
(eg. integer, floating point, character) as well as length information

= ——gg=—-
See [Fry76] for early references,
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may be specified. Similarly such things as hierarchies of elements
(eg« BIRTHDAY as Month Day Year) as in PL/1 and variable format in
terms of conditional elements or repeated groups may be specified.
References (pointers or symbolic) to other elements in the data base

were permitted. In addition to these application 1ndependent
specifications, schemata may contain information about units of
measurement or data domain classifications of the elements. Section

IV. 3.2.3 discusses the use of this additional information for

maintaining data base integrity.

Gio Wiederhold discusses the use of procedural attachment in

schemata for data bases in [WiederholdT77]. These procedures may be
used to derive data when references are made to particular data,

Wiederhold distinguishes two kinds of procedure activation - actual and

potential. Thegg correspond to the demons and servants respectively in
[Bobrow77a]. Actual results are those changes to the data base
which are propagated when a data element 1s updated. This means that

the data base administrator has attached a procedure in the schema
which 1s executed whenever a particular data element is changed-
Potential results are those which are computed on request. Wiederhold

discusses an example where the effect on company revenue of changing an

employee’s salary 1s computed using both approaches and makes some
implementation suggestions for a practical system* An example which is

less demanding computationally 1s one where a procedure is invoked to
convert an internal binary form for a date to a symbolic form suitable

for external presentation. In both of these examples, the procedure is
implemented by the data base administrator and 1s not considered to be

part of the data base. These ideas for procedural attachment have not
been extensively implemented within the data base systems although they

represent an important part of the research for artificial intelligence
applications.

Part of the reason for using general and uniform data base
management software to access the data has been the desire to create

programs which are insensitive to changes in the data layout. This has

been successful for the following kinds of changes: size of fields, the

addition of new fields in schemata, or modifications in the physical

(but not logical) layout of the data. This means that the schemata for

the data are changed and the data itself 1s changed correspondingly but

the program does not have to be changed. This facility 1s described as

creating a measure of " independence” of data layout + Marginal
independence of the logical structure of the data has been achieved but

it 1s not yet clear how much more independence can be achieved while
retaining sufficient efficiency,

Much of the debate in the choice of designs for data base centers
around the choice of different data models. It 1s believed that the

various models offer differing degrees of efficiency, flexibility, and
program sensitivity to changes in the structure of the data. This
choice 1s the subject of the next section.

IV.3.2.2 Data Models and Accessibility

Three major models for data base systems have evolved and been

VA
See Section IV. 3.3.1.
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discussed 1n the literature - hierarchical, network, and relational.

Since the details of the different data models are not of great

interest for the rest of this report, the reader 1s referred to either

the recent book by Date ([Date75])or the March 1976 issue of ACM
Computing Surveys for a review of the different models, Each model
casts the entire data base into a uniform formalism - elther trees

(hierarchical), networks (eg. the CODASYL system, or tables
(relational system). The argument 1s basically that the relational

approach offers considerable flexibility, but that it would require an

associative memory to be efficient about its accesses, A theory of
normal forms has been worked out which can optimize some updating and

retrieval characteristics, The hierarchical approach is the simplest,
but 1s awkward when the data does not fit into a simple hierarchy. The

network approach 1s more general than the hierarchical approach and
there 1s considerable debate about the relative merits of 1t and the

relational approach.

Since these models accommodate differing degrees of efficiency and

flexibility —-- both important considerations —-- the choice depends on
the application . Some models have been recommended as offering greater

degrees of logical data independence, that 1s, the capability to make

logical changes to the data base without significantly affecting the
programs which access 1t through the data management software. In data

base terminology, logical changes means something on the order of
changing the record structure of the files, In relational data bases,

the logical structure may be changed by changing the configuration of
the tables, Capabilities for this sort of flexibility are typically in

conflict with requirements for efficient access or report generation
along the lines of traditional data processing. For example, a
programmer may organize the access requests for efficiency by following

the actual physical layout of information in a file, The relational

approach offers 1n principle the kind of flexibility that would

preclude the necessity for re-organizing a program, but such systems
have not been implemented with the kind of associative memory that

would keep the programming efficient, In practice, the kinds of
capabilities for data independence are as follows:

Ta The ability to support a variety of user views of the logical
structure of the data,

2; The ability to support retrieval after modest changes to the
schemata.

3. The ability to tune the data structure to optimize performance for

certain access patterns with diminished performance for other
access patterns,

Because of the ambiguity of the phrase data independence and the

great 1nterest 1n representation systems which are in some sense
sufficient to represent a variety of kinds of knowledge, it is worth
looking briefly at what would be an ultimate form of data independence.

Full data independence would mean that a data base could continue to

retrieve information independent of any changes 1in format or
computations that are needed. For example, an entry could be deleted if
it were logically possible to compute it from other entries in the data

base. This would require that a system must know all of the

interrelationships in the data base, Expression and management of
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j these interactions was the purpose of the techniques in Section IV.2

| and the data models mentioned above are by no means powerful enough to
subsume that work.

| In Section IV.3.3 we will suggest that the important
consideration for knowledge based systems is the grouping of
information into conceptual objects. The much smaller size of

knowledge base systems as well as an emphasis on a different set of
capabilities for applying knowledge at the right time have resulted 1n
the knowledge base research concentrating on a different set of issues.

IV.3.2.3 Beyond Retrieval

| Most of the research in data base management has viewed the
computer system as neutral to the meaning of the data. Major emphasis

has been on the trade-off of flexibility versus fast access. Experience
has shown that users make mistakes when entering, transforming, or

retrieving data and some tentative work has been done to help protect

the integrity of a data base from certain errors due to carelessness or

| lack of knowledge on the part of users. These sources of error are
distinct from those causedby unauthorized access (security

| violations), mechanical failure (reliability), or errors caused by
inadequate interlocks for controlling simultaneous access by multiple
users«+ These other errors, while important in the practical operation

of large data bases, require techniques and mechanisms in addition to
| what will be discussed here.

Eswaran and Chamberlain [ Eswaran75] and Hammer and McLeod

[Hammer75] have suggested an approach for maintaining integrity which
is based on (1) the specification of assertions about the data base to

. define the meaning of correctness and (2) the actions to be taken in

event of violations. These assertions may take the form of limits on

transitions 1n the data base (eg. The age of an employee is non-
decreasing) or limts on the values for specific items (eg. salary
ranges) . These assertions can be checked whenever a change 1s made to

the data base. Eswaran has suggested that the appropriate place to

make many of these assertions 1s in the schema or data definition.
Assoclating such checks with the schemata 1s a little closer to the

object centered factorization of knowledge discussed in Section
IV. 3.3.1.

In a complicated set of operations, some assertions may not be

satisfied during an intermediate state. For example, in the course of
transferring of funds from one account to another by first withdrawing

some funds from one account and then depositing them in another, the

books would not balance momentarily. This has lead to the idea of a

transaction or set of operations presented to the data base management

software as a unit. Checking can also be useful during accesses which

do not modify the data base. A user may specify a form of a retrieval
whi ¢h involves the nonsense comparison of unrelated data. When an

| operation involves comparison or arithmetic operations between elements
| of data, a form of rudimentary type checking based on data definitions

can be used to detect user errors like adding dollars to doughnuts.

Eswaran suggests partitioning the data base into compatibility sets

within which these operations are permitted. Roussopoulos and
Mylopoulos have suggested in [Roussopoulos75] that such type checking
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can be facilitated by augmenting the data base with a semantic network.

; This work 1s by no means complete and the network that they proposed
has some theoretical difficulties with quantification, but the idea is

to augment the data base operations with network operations. and checks
for consistency.

This area of research on data bases 1s at the boundary of the work

on knowledge based systems which 1s the topic of the next section, We
will see that the extensions of these ideas lead to increased

capabilities for knowledge acquisition. No doubt as these ideas get

refined and developed, they will appear more regularly in data base
systems.

IV.343 Knowledge Based Systems for Artificial Intelligence

Knowledge acquisition generally involves the acquisition of new

instances of knowledge as well as of new types of knowledge. For
example in the MYCIN/TEIRESIAS system, the notion of organism is viewed
as a type of knowledge and the knowledge about the particular organism
E:. coli 1s acquired as an instance of an organism, Acquisition of new

types of knowledge involves the most recent work on what might be
termed extensibility* The work on extensibility for programming
languages included capabilities for data, operations, and control,
corresponding to the three classes of knowledge which we have discussed

- objects, actions, and strategies, We will see that knowledge base
research in extensibility rests on many of the same ideas that were
used 1n data base systems, notably the notions of schemata, as well as
the programming language work and some new ideas. The work on data base
systems ignored extensibility for actions and control and concentrated

on the representation of objects,. The work on extensibility in the
knowledge based systems of artificial intelligence has also
concentrated on objects but considerable work in the acquisition of new
instances of actions in the form of rules has also been done,.

| IV.3.3.1 Object Centered Factorizationof Knowledge

| One of the powerful ideas developed by researchers in knowledge
based systems 1s the representation of knowledge as conceptual objects,

| This idea has been rigorously pursued by Davis with the MYCIN/TEIRESIAS
system reported in [Davis76c] and by Bobrow and Winograd with the KRL

| language and GUS system reported in [Bobrow77a] and [Bobrow77bl« The
| use of conceptual objects involves a synthesis of several of the ideas

from extensible language research and data base research as well as
| some new ideas,

The 1dea of organizing knowledge 1nto conceptual objects has the

same motivation as extensible language work, that is, minimizing the
conceptual distance for a user, Thus, conceptual objects in the
computer are expected to have many of the attributes of their
counterparts 1n our minds. For example, a conceptual door could be

opened or closed and would require its knob to be turned before it

could be opened, Furthermore, the idea of specifying the structure of
a conceptual object in terms of its components follows directly from
the work in defining and manipulating record structures in programming

language work, Continuing our example, a door may have components such
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as a knob, hinges or panels. These components are in turn defined in

terms of simpler entities until we reach system primitive objects like

integers or strings, The conceptual objects 1dea also includes the
clusters of Liskov or classes from SIMULA so that the procedures for

the operations on an object are 1ncluded as part of the object's
definition, In our example, the operations open, close, lock, and

unlock would be procedures in the definition of the conceptual door. In

KRL, these operations take the form of attached procedures, The
knowledge base 1s said to be viewed as object-centered in that that the

objects are the primary index for accessing and they contain procedures

for the operations. This 1s contrasted with a procedure-centered

approach which uses operations as the primary index so that each
procedure has special cases for the various kinds of objects, Finally,
the conceptual objects 1dea includes the schemata from data base work.

The schemata constitute external descriptions of the objects. This

permits standard access methods to use the schemata as templates so
that all objects can be manipulated by uniform methods,.

The 1dea of conceptual objects relates to the discussion 1n

Section IV.2 about context dependent (weak) and context independent
(strong) interactions in that the components of a conceptual object are
seen as strongly interacting. When this is the case, the object-

centered factorization 1s an appropriate approach to reducing the
complexity of the knowledge in a domain.

In addition to being a synthesis of established ideas, the

conceptual objects idea includes some new ideas, In the first place,
conceptual objects in the knowledge base are linked together by various

kinds of relationships. Two important relationships are generalization

and specialization. In our example, afancy carved door, which might

contain such components as a large gargoyle, wouldbe a specialization
. of the conceptual object for a door. Specializations may inherit
properties (eg. open and close procedures) from their generalization
Another relationship might express default information about objects.
Bobrow and Winograd discusses several additional kinds of relationships

in [Bobrow77al]: Much of this work on linking objects together seens to
derive from work on semantic networks. In particular, the ideas for

inheritance of properties and for expressing relations in a network
have been expressed by several researchers. This research has not

emphasized the conceptual object ideas, eg., it has not involved the
use of schemata. A good overview of the semantic network research
research is [WoodsT5].

A second new 1dea for conceptual objects is that their schemata
can be used to guide the acquisition process. This idea 1s an

important facet of the MYCIN/TEIRESIAS research and is discussed in the
next section.

Since the conceptual object idea 1s a synthesis of many previous

techniques, it derives power from those approaches. In addition it
offers an approach to solving some additional problems important in the

research of knowledge base systems. One such problem is the multiple

representation problem diggussed by Moore and Newell in thelr report
about the MERLIN system. Multiple representations can be useful in

simplifying many computations if the consistency of the various

Ea
See [MooreT73].
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| representations can be maintained: The importance of the matching
process 1n working with multiple representations 1s discussed 1n

[Bobrow7T7al]. It could also be noted that the procedural attachment

mechanism gives a simple approach to maintaining consistency among

multiple representations, Bobrow and Winograd distinguish between
procedures that are activated when some component 1s modified and those
which are activated inorder to fill a component, (These are termed

demons and servants respectively,) Servants can provide a mechanism for

maintaining consistency between objects viewed as multiple

representations, In the door example above, a servant could be used to

update a connection table for conceptual rooms whenever a door was
opened or closed. In this example, there are multiple representations

for the state of the door. Presumably the connection table

representation 1s convenient for calculating paths between rooms.

Another major benefit of the grouping of the knowledge into
conceptual objects having schemata 1s the potential for system
assistance 1n the acquisition of instances of the objects based on

their descriptions, This 1s the subject of the next section,

IV:3.3.2 Acquisition of Objects

The 1dea of using schemata to group facts together into large

entities has appeared in several places 1n artjficial intelligence. In
KRL these are called units. In the GUS system = they are called frames,

In Schank’s work, they might be called scripts. The MYCIN/TEIRESIAS

system already discussed in Section IV.2.3 is unique in its use of
schemata to guide the process of acquiring knowledge, The use of

schemata to guide this acquisition process 1s an essential advance over

the extensibility techniques in the programming language research. The
schemata provide the knowledge about knowledge that the system needs in

order to provide assistance during the acquisition process.

In June 1976, the MYCIN/TEIRESIAS knowledge base contained
information about 125 different organisms. A single organism schema is
used to describe and gulde the acquisition of the fairly complex

information structure required for each organism, In the early
versions of MYCIN adding a new organism to the system meant doing it
manually with little machine assistance and it was a common mistake to

forget some part of the substructure, In addition it was necessary to
appropriately update several other representations in the form of lists

and tables in the system. These two problems - maintaining
completeness of the substructures in representations and maintaining

interrelationships between them have provided a focus for the use of
schemata to guide knowledge acquisition,

The acquisition of a new organism in MYCIN/TEIRESIAS uses a schema

in creating a dialog with a users The schema provides the framework
for knowing what information will be required, how to ask for it, how

to check it, and how to update various internal lists automatically

without concerning the user, In addition, the schema ensures that the

creation of the new instance of an organism will be documented as to
author and date,

Sl Day
See [Bobrow77]
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The information in the domain is organized into conceptual

objects, each of which has a schema. These schemata have access to
information relevant to filling in new instances of each conceptual

object.. They guide the interactive dialog with a user for entering new
instances of the objects. The schemata have two features which are

especially important for this;, The first 1s a limited form of
procedural attachment of the slot experts, which functions on the most

primitive representations in the system. Associated with each slot
expert are English phrases for prompting or displaying information to
the user and a procedure capable of filling in instances of the data

according to advice passed from the schemata. (This 1s the only

example of procedural attachment in the MYCIN/TEIRESIAS system with the
limited function of facilitating the filling of slots,) The second

important feature of the schemata 1s the specification of updates to
lists and tables used whenever a new instance is created. Thus

MYCIN/TEIRESIAS has two levels of data typing (1) the complicated
domain level structures configured by their schemata and used as
components in the rules and (2) lower level slots which have associated

slot experts and prompting information. Within the system these lower
level structures correspond to those entities which are in a sense too

small to be decomposed - so that their schemata are of an almost
trivial form.

The discussion above centered on the question of adding a new

instance of a knowledge type to the system. One of the important ideas
from the knowledge base research in [DavisT76c] is the idea that

schemata can themselves be considered to be a type. This means that
many of the same mechanisms which are called into play to create a new

instance can be used to create a new type, This approach to
extensibility 1s the subject of the next section.

IV.3.3=3 The SCHEMA-SCHEMA

In the MYCIN/TEIRESIAS system in June 1976, there were 125

organisms but only one organism schema. There were 25 schemata for the

various data types in the system. Describing the format of every
schema in the entire system 1s the single schema-schema. These numbers

reflect a very high utility for each schema in the system and emphasize

the important role each schema can play 1n the acquisition process.

The process of acquiring a new type of conceptual object in
TEIRESIAS proceeds by first acquiring a schema for that object and then

acquiring an instance of that schema. In[Davis76c] Davis gives an
example of the creation of a new schema for nutrients. This example
starts in the context of entering a new rule in the system when the
phrase "nutrient of the culture medium is blood-agar" is mentioned in
the premise, This initiates a dialog where the system uses the schema-

schema to guide the acquisition of a schema for nutrients. Creating
the schema involves acquiring English phrases for prompting as well as

establishing the relationship of a nutrient schema to other schemata in
the system. The schemata in MYCIN/TEIRESIAS are connected 1n a network

by the FATHER and OFFSPRING links 1n each schema and by the <datatype>-
INST links in the slots. The FATHER and OFFSPRING links determine a

network of schemata which is used to make possible the inheritance of

properties. In particular, a father schema may be viewed as a
generalized schema which contains all of the information that its
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offspring have in common, At the end of this example, a new schema has

been created which points to 1ts instances and which has been

integrated into the schema network. Any subsequent operations on the
network will involve the new nutrient schema as well as the other

schemata.

The acquisition process is skillfully guided by the schemata

network, Acquisition 1s broken down into small, easily understandable

steps. There are also two simplifying assumptions made which limit the

schemata which can be acquired by this dialog: The following

information 1s not acquired in this way.

'« New slots in the schema which are not inherited from ancestors in

the network,

2« Updating specifications for internal multiple representations,

This information, while important in many cases, was considered to

be beyond the expertise of the user, a domain expert. The
MYCIN/TEIRESIAS philosophy has been to isolate the user from

programming details with the small possibility that the knowledge base

may be compromised 1f the new data type 1s in fact related to an

existing internal structure, It should be noted that the program was

capable of acquiring this information from a user, but that it was

inhibitted from doing so for the reasons stated. These special kinds
of information were acquired by the use of a special network editting

program,

Section IVs3.1 discussed work that was done to provide
extensibility for three classes of knowledge, In the work described

above, we have focussed on extensibility for the objects of a system

and seen that the SCHEMA-SCHEMA provides the essential knowledge about
knowledge for acquiring new kinds of conceptual objects We have not

discussed extensibility for the actions of the domain. The reason for
this derives from the task of the deductive consultation program.

Although there are about 400 rules in the MYCIN/TEIRESIAS system, the

right hand sides for all of them (except for a few meta-rules) are
uniformly "CONCLUDE"' Similarly, the 24 predicate functions (for
example, SAME, KNOWN, DEFINITE) have been static over the life of the

project and it has not proved necessary to provide for extensibility in

these functions. Davis makes no claim of having solved the problems
for extensibility for either the predicate functions or new classes of

rules. Although this system has not included research into the
acquisition of new types of rules, it has provided some noteworthy
examples of the acquisition of new instances of rules, This 1s the

subject of the next section,

IV.3.3+4 Acquisition of Actions

Sometimes 1n the course of a diagnostic session a user may decide

that MYCIN/TEIRESIAS has drawn an unsatisfactory conclusion. This is
generally an indication that some change in the knowledge base is

required, In this event, he has the option of telling the system which

conclusion should or should not have been made and having the system
assist him in tracking down the problem* If this option 1s chosen,
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TEIRESIAS will access 1ts history list of the consultation and answer
questions about why certain rules were or were not invoked at any stage
of the consultation. When the user believes that he has found the

knowledge bug, he can modify a rule or add a new rule to the system. If
it 1s a new rule, the system will attempt to classify it and compare 1it

to similar rules in the system and may suggest some modifications to

the rule. For example, 1f almost all of the other rules which conclude

about the same organism mention portal of entry in their premise, the
system may ask the user 1f he wishes to add such a clause to the

premise,. These rule models differ from the object schemata in the
previous section in that (1) they are derived from the rules in the
knowledge base and (2) They are not used to guide the acquisition

process for rules as completely as schemata guide the process for

objects. For example, they do not have the ability to fill in parts of
a rule and they do not correspond to types of rules,. More about this
will be discussed in Chapter V.

Finally, the system can use the context in which a rule was
entered to check its suitability. When the user has completed his fix,
the system remembers the context in which the problem was discovered

and checks whether the fix actually remedies the situation. These

capabilities for acquiring knowledge from the user about actions are

one of the distinguishing features of knowledge based systems. Since
strategies 1n the MYCIN/TEIRESIAS system are also expressed in rules,
this gives the system the ability to acquire new instances of strategy

as well as domain level knowledge.

Iv.3.4 Summary of Knowledge Acquisition Work

Having completed this section on knowledge acquisition, it is
- worth reviewing the highlights briefly. The first work discussed was

in the area of programming languages, Extensibility for data,
operations, or control meant the ability to define new entities in
terms of existing ones. It was discovered that this idea was not in

itself powerful enough to significantly reduce the errors 1in

constructing a system or to reduce the conceptual distance.
Considerable knowledge about the system was needed to successfully
introduce new types,

The next area of work was in the area of data base management.
This work introduced the 1dea of a data definition or schema as well as

some tentative work for data type checking for operations in the data

base« The schema provided an external definition of the structure of
the data and made possible the manipulation and access of the data base
by standard routines,

It remained for the knowledge base research to use these ideas to
provide powerful techniques for knowledge acquisition based on an

object centered view of the knowledge base, In Section 1IV.3.3.1, the
notion of conceptual object was defined. The conceptual object idea
was seen partly to be a synthesis of ideas from programming language
and data base research. It used existing ideas for defining objects in
terms of their components and defining the procedures for operations on

objects with the objects themselves. This viewpoint has been termed an

object-centered viewpoint and may be traced back to Liskovin the
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extensible language research. 15 A new aspect of the conceptual objects
idea included a network of relations which makes possible the

inheritance of properties between related objects. A large portion of

the work on conceptual objects has been done by Bobrow and Winograd in

their development of the KRL language, |

In terms of the knowledge base interactions discussed in Section
IV.2, the conceptual objects may be seen to consist of components which

should be used together in all contexts.

One of the most important contributions of the knowledge base
research in [DavisT76c] was the realization that the schemata for

conceptual objects could be used to guide the acquisition process:
These schemata provide the essential knowledge about knowledge that was

lacking in the extensible language research and make possible
considerable assistance from the system in acquiring objects,
Extensibility 1s achieved by having a schema for schemata so that the

system can acquire new types of knowledge by first acquiring schemata
for them, The schemata have access to procedures for filling values of

new 1nstances and for maintaining consistency between multiple
representations of objects, The acquisition process can help insure
knowledge base consistency, More work 1s needed in this area to handle

(1) the acquisition of new slots in a schema other than those which are
inherited from ancestors and (2) the updating of multiple
representations, In particular it is worth exploring ways that the
system can assist the user in finding such representations and 1n
establishing procedures for updating,..

Most of the research on extensibility has concentrated on the

objects of the knowledge base, Knowledge base research on the
acquisition of rules has concentrated on the acquisition of new
instances of rules making good use of rule models and context

information, More work needs to be done on the use of schemata for

rules and possibly on the acquisition of functions, eg. predicate
functions. The next chapter suggests continuing this line of research
by creating schemata to guide the acquisition of rules including

relatively complex strategy rules.

IV.4 summary of Knowledge Base Research

We began this chapter on knowledge base research by observing its

importance to problem solving. Effective problem solvers in complex
domains require significant amounts of domain specific knowledge, Some

questions for problem solving systems become significant for knowledge
bases of this size.

How can the knowledge be acquired?

How can changes in the knowledge base be accommodated?
!

15 It has also been an important element in Hewitt's ACTORS, and
in the SMALLTALK system. We have not attempted an exhaustive survey of
this idea.
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How should knowledge be managed so that 1t can be used in several
_ different problem solving situations?

The first question was the concern of the previous section, Ideas

for the second and third questions lead us to Section IV.2 about

knowledge aggregation, Summaries of both sections have appeared above.

One of the unifying themes of knowledge base research 1s the idea

that meta-knowledge, that 1s, knowledge about knowledge can be used to
facilitate capabilities for the multiple uses of the knowledge base.

In Section IV:s1, we discussed some desired capabilities for a knowledge
based system. We identified the needs for knowledge acquisition,

problem solving, and explanation. Three classes of domain knowledge as

the objects, actions, and strategy/control knowledge of the domain were
distinguished . Strategy knowledge may be viewed as a form of meta-

knowledge about actions which facilitates problem solving. Schemata

may be viewed as a form of meta-knowledge which facilitates
acquisition, Procedures attached to the schemata can be a form of meta-

knowledge which facilitates automatic updating in the knowledge base.
Statistical knowledge derived from the knowledge base, for example the

rule-models of TEIRESIAS, may be viewed as the meta-knowledge for

checking new instances or for suggesting possible defaults. Information

about the problem solving performance of rules in different situations

could be used as meta-knowledge for debugging the knowledge base or
guiding the selection of strategy methods during knowledge acquisition.

In the next chapter, we will propose extensions to these ideas to
extend the capabilities of the knowledge base for the following

additional requirements:

- 1. How can a variety of types of domain actions be accommodated in the

knowledge base?

2. How can a variety of types of strategy and control knowledge, (such

as those mentioned in Chapter III) be incorporated in a knowledge
base?

3+ How can a variety of types of problem solving states be expressed
and manipulated by the system?

4, How can the problem statements for a variety of types of problems be
acquired?

5. How does the expression and representation ofproblem solving states

relate to the expression of the domain and strategy knowledge?

In the next chapter, we will propose extending many of the kinds
of .-meta-knowledge mentioned above to cover these additional

requirements of a knowledge-based problem solving system.
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: Chapter V

Tentative Proposed Work

The applications goal of the MOLGEN project is the crafting of a
computer system which will perform as an informed assistant for the
design of experiments in molecular genetics. The artificial

intelligence goal 1s to test some ideas for the representation of

knowledge and the management of a complex knowledge base. In what
follows, we will be examining the knowledge and planning processes

involved in the design of a limited class of scientific experiments.

Of special interest will be the management of strategy knowledge,
that is, the knowledge which directs the control structure for the

creation of experimental plans. Thus, strategy knowledge is not limited
to some set of useful heuristics which are invoked occasionally during

planning, Rather, the term strategy 1s being used in its broadest
sense to mean the knowledge which directs the entire problem solving

process. In this broad framework, the planning process is carried out
entirely under the control of strategy knowledge from the very
beginning of a MOLGEN problem when a top-level strategy rule 1s
invoked.

Vo 1 Perspectives and Observations about the Direction of this
Research

Chapter IV traced the development of many of the ideas for

representing knowledge in a computer. The earliest work we examined was

the work on extensible programming languages, Perlis was quoted as
observing that three things define a language - data, operations, and
control. We observed that these correspond directly to three kinds of
knowledge for a knowledge base - objects, actions, and strategy. It

was generally thought that extensibility in a programming language

would result in clear and efficient programs and that these programs
would be easy to write. The important lesson from this work was that
the amount of knowledge necessary for a user to mold the nature of a

system for his requirements had been seriously underestimated. The

systems themselves remained too ignorant to provide much help.

Several of the ideas have been developed further in data base

research and knowledge base research. We saw that knowledge base
research was making headway on the extensibility issue in its efforts
to create problem solving systems that could use a large base of domain

knowledge Most of the progress in extensibility has taken place on the

| definitions of objects and much less has been done for the actions and
: strategies. The work on objects introduced the notion of conceptual

objects and the use of schematato guide the acquisition process,
Schemata provide theessential knowledge about knowledge that was

lacking in the extensible language effort. A schema for schemata (the

! See Section IV. 3.3.1.
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SCHEMA-SCHEMA) made 1t possible to acquire a new type of object by

first guiding the acquisition of a schema for it and then using that
schema to acquire the instance of the object itself.

Some good work has been done on the acquisition of rules. In the
MYCIN/TEIRESIAS system, rule models, derived from rules in the

knowledge base, were ,used to create expectations about new rules
acquired by the system”. Differing in function from schemata, these
rule models were not used to fill in parts of a rule but rather were
used to create reminders for the user based on the assumption that new

rules would follow the patterns of rules already in Lhe knowledge base.
Since the MYCIN/TEIRESIAS has only one kind of rule 5 the description
of rule components 1s built into the program for rule acquisition.

We propose to extend this line of research into the acquisition of
more types of action and strategy knowledge. The belief 1n the

feasibility of this proposal 1s based on a number of observations and

assumptions which are listed here,

1. Many important logical constructs are difficult to

express 1n the simple production rule format. For
example, iteration 1s awkward to express or recognize

in typical production rule systems. Examples of
control strategies will be presented in Section
V.3 and Section V.4 which could not be

expressed in a single MYCIN-like production rule.

Clarity requires that these strategies be expressible

in a single coherent module. (It is not satisfactory

to create a complicated structure involving several
rules and dummy linking variables in order to force

the expression into a restrictive production rule

style.)

2. In addition to a requirement for the ability to express

strategy and control information, 1t 1s important to
maintain the visibility of the components of the rule

so that a rule can be analyzed by the system, Thus,
the idea of using production rules and hiding the

important part of the algorithm in a non-decomposable
procedure named by the right hand side of the rule

defeats this purpose. Existing systems, such as NOAH
with 1ts QLISP procedures, have required abbreviated

descriptions of the actions, supplied by the
programmer (in this case ADD/DELETE lists), to enable
the system to reason about the actions, such systems
do not have the capability to abstract this

information from the rules directly,

3+ Parallel to the desire to make the components of a rule

avallable to the system for analysis 1s the desire to

make structure information available for guiding

knowledge acquisition.

2 See Section IV.3.3.4.

3 Every rule in TEIRESIAS could be viewed as an instance of a
schema with an "If" component and a "then" component.
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4, Just as an object may be decomposed into its component

objects, an action (or strategy) may be decomposed
into its smaller component actions. It is proposed
the schemata idea be extended from objects to

cover knowledge about actions and strategy as wells
Thus, a schema for a type of domain action would be

used to guide the acquisition of an instance of that
action.

5. The reference by content mechanism used in the
TEIRESIAS system for accessing rules by description 1s

inadequate for dealing with complex rules. The
reference by description mechanism, as implemented,
could distinguish the use of a token only by its
position as being either in the premise or action part

of a rule. Use of schemata for rules provides a

description of the rule substructure and facilitates
more sophisticated pattern matching facilities.

6. Schemata for actions and strategy, like schemata for

objects, can be used to fill 1n default or computed

values for components, to insure that no necessary
components are left unspecified, and to tend to
updates in the knowledge base. For example, a schema
for Separation Technique actions would require
information about the basis and resolution of

separation. It would automatically fill in the parts
of the action rule which direct the system to loop

through all the structures in the current sample.
Furthermore it would update the knowledge base by

insuring that the new instance of a separation

technique was included on the appropriate lists so
that it would be used when necessary by the problem

solving process.

The sections which follow will fill in some of the details of this

proposal- We will see that the schemata for strategy knowledge create a

powerful approach for providing a toolbox of problem solving
techniques. These techniques can be instantiated to create strategy and
control rules for the knowledge base, A sophisticated type of
procedural attachment, termed inspectors, will be introduced which will

make it possible to express strategies without some of their
complicating special cases (because the system will already know about
them): Finally, meticulous adherence to the principle that everything
should have a schema will lead us to creating schemata for such things
as world-states and even the current state of the problem solving

process (termed the planning network), This approach enables us to
represent a spectrum of complex entities with a uniform and consistent
mechanism. This will greatly simplify the programming of the system

and make a great deal of information, which is typically represented in
an ad hoc manner, a visible part of the knowledge base.
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V.2 MOLGEN System Sketch

To provide reference points for the rest of this proposal, this

section will begin with a sketch of the proposed MOLGEN system.. The

MOLGEN system will be very large and will be built and designed by
several researchers. Much of it will consist of programs but most of it

will be the knowledge base. The following diagram shows the major

components of the system.

| Object| | Rule |
Editor | | Editor|

| Object Knowledge | | Rule Knowledge|
| Base | | Base |

| |

. Object Schemata | | Rule Schemata |

| Objects | | Domain Rules |
TTTTTTTT TTT TTT TTT TTT Strategy Rules |

| Planning Network | | World State
| | | |

| Design Steps | Current Sample |
| World States | Individual Objects |
| Experiment Steps|

| System Utilities | | Planning Program |
TTTTTTTTTTTTTTT TTT

| Pattern Matcher |

List Manipulation a——

| Rule Interpreter | | Performance Measuring|
Explanation System | and Evaluation System

| Knowledge Access Monitor | TTT TTT TTT TTTTTT
. Ground Level Data Access|

Figure 4. MOLGEN System Components

The object editor and rule editor are programs for knowledge

acquisition, The object editor will be a system for entering schemata
and objects; the rule editor will specialize in the acquisition of
action and strategy knowledge. Both editors will use schemata to drive

the acquisition process. The term rule (as contrasted with procedure)

1s meant to connote something which is structurally simple enough for

62



the system to examine and analyze* As will be discussed 1n the next

section, the rules of MOLGEN will be extended to cover much more
complex processes than were needed, for example, in the MYCIN/TEIRESIAS
system. The schemata for the strategy rules will embody a collection of

problem solving techniques termed the artificial intelligence toolbox.

All of the dynamic information, that is, information which changes
in the course of problem solving, will be contained 1n either the

planning network or the world state, The planning network is the
representation of the problem solving state and is discussed below in
Section V.3. The world state 1s the current sample (or samples)

containing all the information about substances and other entities (eg.
temperature) which are present in the simulated genetics environment at

the current moment in planning. Previous or predicted future world
states are contained within the planning network. ‘Both the planning

network and world state have prototype schemata in the object knowledge
base... All of the actions in the rule knowledge base -- both domain and

strategy -- are defined in terms of the changes they induce in the
state information.

Finally we come to the planning program which 1s 1n many systems

the heart of the system. In MOLGEN, however, the structure of this
program will be very simple —-- since most of the work is driven by
information in the knowledge base: The operation of this program would
start with the acquisition from the geneticist user of a problem

statement. Since this involves acquisition of knowledge, 1t would be

guided by schemata and the work would actually be done by the object

editor: The acquisition process would include 1nitializing the world

state and the planning network, The next step for the planning program

1s to start the problem solving process with a top-level strategy rule.

This rule may be selected through the schema for the problem statement.

Given the name of this rule, the planning program invokes the rule
interpreter to start the problem solving process.

Further tasks for the planning program would be to field

interrupts from the user which re-direct the planning process. The

program would also manage a display of the evolving world state and
planning network. Attention of the experiment design process could be

manually re-directed when the expert interrupts the planning program

and 1nvokes a strategy rule on a different aspect of the planning

network. He may elect to save the current planning network on a file
so that he can return to it later. Finally, the MOLGEN explanation

system could be invoked to explain the events of the problem solving

process. As the system becomes polished, smooth interfaces to the

object editor and rule editor to allow changing the knowledge base
during planning will be developed,

From this description of the planning program, we can see that

much of the programming work has been transferred into the general

! The phrase "world state" is being used in the same manner as in
robot planning work, In this work, the planning and control
information 1s not considered to be part of the world state. In a
problem solver capable of considering alternate beliefs about the world

or many views of the world at different times, it 1s appropriate that
there are several world states. In such a system, one of them may be

designated as the current world state,
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: system utilities. The problem solving process is rule based so that
: the knowledge which directs the process 1s contained in the knowledge

base and the programming effort 1s limited to building the routines for

: creating the knowledge base and a rule interpreter.

The last component in the figure, the performance measuring and

evaluation system, will be integrated into the planning program and

knowledge base routines. When the system is designing experiments, we

| may ask on what basis its effectiveness can be judged. Similarly, when
a user 1s entering strategy knowledge or the system 1s choosing between

| strategies, on what basis can a selection be made? The idea 1s to

build mechanisms 1nto the system which facilitate the gathering of
information on which to base these decisions. The creation of

measuring tools and evaluation procedures will be a central theme for
one of the MOLGEN researchers.

The next section suggests that this design offers tremendous

| flexibility for trying out new strategies and planning paradigms. What
| would traditionally have required a new planning program can be done 1n

this design by acquiring a new strategy rule. All of the power of
schemata-driven knowledge acquisition 1s available to make the

| acquisitionof and experimentation with new strategies as painless as
| possible. We believe that this flexible design will result in a

powerful laboratory tool, so that MOLGEN can make some real

contributions to the practical design of interesting laboratory
experiments.

V.3 Strategy and the Planning Network

There are several sources of information which strategy processes

need to access and manipulate 1n order to create plans for experiments..

One source of information 1s the knowledge about the objects in the
domain. When a domain rule has a condition relating to an object,
knowledge must be brought to bear for deciding whether to treat that

condition as a presupposition or a precondition. Similarly, the
desirablility of a given rule is determined in part by the effects it
has on objects in the domain, Thus strategy information must deal with

the knowledge of the objects and actions in the knowledge base. In

addition to this, strategy must deal with a knowledge of the current
world state. Determination of which domain actions are feasible 1s

possible only with a context provided by the current world state. The

nature of the knowledge in the world state may change, for example,
early in the experiment design process, the world state knowledge could
be of an abstract nature. Finally, strategy must be concerned with the
current problem solving state as indicated by the planning network

mentiond in the previous section. As will be discussed below, the
planning network provides for the expression of the orderings or
partial orderings of the steps of developing plans and the entire

| history of world states and tentative planning steps that have been
sketched out by the planning process. Focus of attention directives can

be expressed in terms of the planning network, which provides a
language for directing problem solving effort to different facets of
the problem.

64



Since the planning state knowledge 1s important for the expression
of strategy in MOLGEN, it is worthwhile exploring briefly the nature of

| this knowledge. It 1s useful to consider the planning network in
| MOLGEN as being composed of three planes -- the experiment ‘plane, the

planning plane, and the focus plane, These planes contain (1) the
experimental steps and world states, (2) the planning and design steps
and (3) the focus of attention knowledge respectively. All three
planes of the network are built dynamically during the problem solving

process. Different types of nodes in the network correspond to the
different components of the problem solving process.

It 1s natural to begin with a brief description of the kinds of

nodes 1n the experiment plane, These nodes are express a solution to
the design problem: In the simplest case, this corresponds to a
sequence of laboratory steps that transforms the initial laboratory
conditions to a set of final conditions, These final conditions may

reflect modified structures or simply an increased state of knowledge,

More generally, there will exist branch points in the experiment plan.
These correspond to those places where design proceeds along alternate

paths depending on a laboratory measurement 1n the sequence, the

| results of which cannot be known until an actual experiment is
per formed. In terms of nodes in the network, three kinds of nodes are

suggested. The first kind of node corresponds to the world states
along the way. These nodes would express the initial, final, and

intermediate states of the laboratory conditions in the experiment.
World state nodes carry the dynamic knowledge which can be changed in

| the course of an experiment. Between world state nodes are the action
nodes which describe the genetic actions used to transform the states.,

These point to corresponding rules in the rule knowledge base which

describe the appropriate state changes for the experimental step, The
action nodes would also contain the values of the experimental

parameters (eg. gel voltage gradient) for each of the transformations,
Finally, a third kind of node expresses the conditions at the branch
points 1n the experiment plans,

As will become clear from later examples, the experiment plane may
be 1inhabitted by nodes which represent world states or laboratory steps

expressed at different levels of abstraction. Earlyin the design

process, nodes may be formed which deal with models of DNA that are

quite abstract and with very generalized laboratory steps. Typically,
these general steps will be refined to more specific ones as the design

process continues, for example, cutting may become an exonuclease or

separation may become electrophoresis. It is not too surprising that
the generalized steps and actions will appear in the experiment plane.

For some purposes, the design process may be stopped 1f the general

plan 1s already a complete enough answer for the user. Even the most

specific plans the program will produce will contain a certain amount
of abstraction,

In the planning plane above the experiment plane, 1s a
representation of most of the problem solving activity which creates

| the design of the experiment. The nodes in this plane correspond to
| the basic problem solving operations described in Chapter III. Just as

act 1on nodes 1n the experiment plane point to domain rules which

express laboratory transformations, each kind of node 1n the planning
plane points to an appropriate type of strategy rule,. These rules

express such operations as generating an alternative, refining a step,
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testing the suitability of world staf es which have been created, or
ordering some partially ordered steps”. It 1s our contention that a
few types of these operations cover all of the problem solving

operations. In terms of schemata, this means that a small number of
schemata are needed to represent the many problem solving nodes 1n the
planning plane. For example, a refinement node schemata would have a

slot for a rule which maps a general world state state to a specific
one and a slot which maps a general action in the experiment plane to a

more specific one. The basic role of a refinement rule is the

proposing of subproblems. The refinement node keeps track of the
mapping rules which are active and the correspondence between states
and actions in the experiment plane. During a design process which
used hierarchical planning, many levels of refinement nodes (pointing
to other refinement nodes) would exist in the planning plane.

A basic question which dominates much of the design process 1s the

question of the allocation of resources. A growling network may contain
several approaches to a problem and several incomplete subproblems.
The focus of attention problem, discussed in Section IV.2.2.2, 1s the
problem of deciding where to allocate resources such as processor time

to the various competing places 1n the partially completed design

process. We propose the use of a number of focus of attention rules
which manage this process. In terms of the network elaborated above,

focus nodes located in the focus plane above the planning plane will be
responsible for allocating processor space and time to the activities

represented below in the planning and experiment planes. Since these

planes express the complete problem solving state, they provide a

language for expregsing the control necessary for the focus of
attention process. A focus of attention rule would base its decision
about resource allocation to areas of the problem on information

avallable in the slots for that part of the problem, For example, nodes

—which generate alternatives in the planning process could contain

estimates of the cost of generating the next alternative. The

suitability of an alternative could be estimated by activating the rule
in a test node. Each focus node would contain a measure of the

resources 1t had to spend, the name of its focus of attention rule, and

a pointer to that part of the planning network which was its particular
domain. One capability for a focus node 1s to insert another focus

node over a subset of its domain. This corresponds to a delegation of

authority which allows for specialized approaches to the allocation of

resources for different parts of the problem. This also promotes the

practice of describing the focusing process in terms of small modules.

It 1s interesting to compare the planning network to some related

structures in artificial intelligence. The planning network 1s like

the blackboard of HEARSAY in that it expresses the state of the problem

solving process. It differs in that the blackboard of HEARSAY1l1l
contains a fixed decomposition of the speech understanding problem. The

structure of the MOLGEN planning network may be modified by changing

the schemata in the knowledge base for the nodes in the network,. Unlike

the knowledge sources of HEARSAY, those of the MOLGEN planning network

5 (As in the resolve conflicts critics of NOAH).

6 Each competing planning process 1s addressable through a node
in the network. A process could be initiated by activating the slot
which names the rule.
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correspond to actions and strategies 1n an acquired rule knowledge
base. The planning network 1s also related to the procedural network of
NOAH. Both networks contain nodes for the actions, world states, and

abstractions of both of these: The planning network differs in that it

contains nodes for the strategy information. It also differs in that

the state information 1s retrieved from object schemata instead of the
ADD/DELETE lists. The idea for expressing focus of attention in nodes

distributed throughout the network is unique to the MOLGEN planning
network as 1s the idea of expressing these nodes uniformly using
schemata.

Before leaving the subject of focus of attention, 1t 1s
interesting to recall from Section IV.2.2.2 that this process has two

components: (1) selection of a problem solving context in the problem
for further work and (2) selection among competing knowledge sources to

apply 1n that context. In the MOLGEN framework, these two components

are handled separately. The focus of attention rules are responsible

for the selection of a problem context, that 1s, for the appropriate
sites for further refinement or allocation of resources. The second

component, selection among competing knowledge sources, 1S a Process
which will utilize pattern matching... In this case, the search 1s among

competing domain or strategy rules to apply within the current planning

context. This search process 1s expressed 1n the generator and
refinement rules used in the network: The use of schemata to create

rules creates a description of substructure of the rules being searched

and facilitates this pattern matching process.

Corresponding to the classification of nodes 1n the planning

network into a few types 1s the potential for classifying their

associated rules into a few types. This refers to the central idea of
having schemata for each kind of action and strategy. Thus, focus of
attention rules are concerned only with the allocation of resources,

refinement rules are concerned with the generation of subproblems,
action rules are concerned with the transformation of state

information, and so forth. The schemata for these kinds of rules are

specialized so that that the acquisition process for these rules can be

based on a set of specific expectations. The next section pursues this
specialization process further by suggesting that the algorithms

internal to these rules may be discussed in terms of a set of standard

artificial intelligence tools.

V. 4 A Toolbox for Artificial Intelligence ,

At the end of Chapter III, a number of issues were raised about

the management of strategy knowledge,

1. How should strategies be expressed?

2« How can strategy information be assimilated so that the

| system will use it appropriately when designing or
explaining experiments?

3. How can a knowledge based system assist a domain expert

in structuring and expressing his ideas about
strategy?
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In this section we will propose an approach to the acquisition and

management of strategy knowledge —-- beginning with a familiar example.

Means—ends analysis 1s one of the simplest ideas in the ‘current

stock of methods for problem solving. As such, it should exist as a
tool in a toolbox of artificial intelligence techniques to be used as
needed. The current state of artificial intelligence, where a
researcher must re-code Means-ends analysis any time he wishes to use
it is akin to a carpenter forging a new hammer for each job. In the
next few paragraphs we will explore this Means-ends analysis example

and examine the system capabilities that are necessary to create such a
tool kit. Many of the techniques for creating these capabilities are

natural extensions to those presented in the previous chapter. This
example will also provide a framework for introducing some terminology
for the sections which follow.

V.4.1 The Means-ends Tool

Initial World Difference Goal State

State Table or

Goal Test

D1 Al

D2 A2

Difference Function D3 A3

or Tee * 5»

Feature Function Dn An

Figure 5. Components of Means-ends Analysis

The elements of Means-ends analysis are presented in figure 5

above. Typically there 1s an initial world state and either a goal

state or a goal test. For a synthesis experiment in molecular
genetics, the initial state might be the initial molecule and the goal

state might be the molecule to be synthesized. Existing chemical

synthesis programs generally work synthesis in the reverse direction

working backward from the desired molecule to any acceptable precursor.

This alternate approach fits within the goal test paradigm, where the

testing function decides whether a candidate molecule 1s acceptable as

the starting precursor. An analysis experiment, such as the binary
discrimination experiment described in Section 11.1, could be expressed

within a goal test paradigm.

The classical Means-ends analysis calculation proceeds a step at a

time from the initial state to a goal state. At each iteration, a
difference function is invoked to find the differences between the

current state and the goal state and an ordered difference table maps

the -differences to their associated actions. In the goal test

paradigm, the difference function 1s replaced by a feature extraction

function and the table 1s used in much the same way,

One approach for making an instance of Means—-ends analysis

avallable as a tool would be to provide a packaged program which

accepts arguments for the various components of Means-ends analysis
(eg. a difference table, difference function, etc.). The alternative

68



being proposed here 1s a system which uses schemata to drive the

strategy acquisition process and which can guide a user through the

details. The goal 1s to create a supportive environment for the
painless testing of fairly high level strategies. Such a system should

be able to draw on its knowledge base to provide assistance 1n casting

a problem into a Means-ends framework.

V.4.,2 Means-ends Analysis in the Schemata Network

In terms of the planning network discussed previously, Means—-ends

analysis corresponds to a specialization of one of the planning
operations, eg. a refinement process.

Knowledge-Structure Schema
/ | \

Objects | Genetic Actions

Strategies(& Nodes)

/ | | \ \

Focus Generate/Test Refinement Order Condition

/ \

Means-Ends Criticality-Level
/ \

Goal-Test Goal-State

/ | \

Separative Physical Cutting

Tec hnique Measurement Operation

Figure 6. Fragment of the Schemata Network

The figure above illustrates the set of relationships between some

schemata which could exist in the MOLGEN knowledge basg. At the top of
this hierarchy 1s a schema for knowledge structure, Specializations
of this are the schemata for the three classes of knowledge for MOLGEN

- objects, actions, and strategies. For the purposes of this section,

only the specializations of strategy are expanded here. The schemata
at this level correspond to the kinds of nodes 1n the planning network

described 1n the previous section, Thus we have schemata for rules for

focus nodes, generate/test nodes, refinement nodes, order nodes, and
condition nodes. The schemata for the remaining kinds of nodes in the
planning network are not shown above. For example, the schema for world

states would appear under object nodes, and the schemata for genetic
actions and their abstractions would be specializations of the action
sehema. Continuing with the network above, specializations of the
schema for refinement rules include those refinements which are based

on Means—ends analysis and those based on criticality levels, The

network above shows two versions of Means-ends analysis = the goal
state and goal test versions. Under the goal test schema,

7 (This corresponds to the KSTRUC Schema in the MYCIN/TEIRESIAS
systems)
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;

specializations for separative techniques and for physical measurements
are shown.

One purpose of this schemata network 1s to express the inheritance

relationships between the schemata. It 1s worth examining the
inheritance implied for the node labeled separative technique in the

diagram above. In the first place, it is a knowledge structure and in
particular a strategy. More particularly, 1t is a schema for a
refinement strategy which means that an instance of it in a planning
network will involve a refinement node and a corresponding abstract

action rule. (The abstract action rule, in this case, would be one

that carries out the separation on an abstraction of the world state,)

The refinement rule is concerned with proposing subproblems. The
network also 1ndicates that this rule 1s based on a Means—ends

algorithm which means that the subproblems will be proposed by Means-
ends analysis of the input world state to the refinement process. The
particular type of Means-ends analysis 1s the goal-test paradigm, The
rule will use the goal-test paradigm to propose a refinement for a

separative technique. At this point we should note that the separative
technique schema is not itself a rule but rather it is the schema for
guiding the acquisition of such a rule.

Much of the information about the rule in our example 1s inherited

from the Means—-ends analysis schema. For example, this schema would
indicate that a difference (or feature) table 1s required as well as a

difference function. The particulars of these must be acquired from
the user when he enters a rule, The schema may point to tests to be

performed at knowledge acquisition time which check the tables that are

entered. The differences are to be expressed in terms of the properties

of objects that are in the knowledge base, for example, particular DNA
structural features. To provide assistance, the system must scan its

—object knowledge base and suggest features which should be in the
table. These differences must map to actions which are also drawn from

the knowledge base =- the genetic actions or legal moves. In this
example, we see that at least one of the actions must correspond to a
separation technique. One can imagine tests 1n the schema which have
the capability to check that the actions chosen have an appropriate

relationship to the differences which are set to trigger them, Finally,

the loop inherent 1n Means-—ends analysis would be filledin
automatically by the Means-ends analysis schema. Then the goal-test

schema would guide the acquisition of the feature extraction function

and the goal testing criteria.

In summary, the acquisition process for a strategy rule 1s broken
down into a number of small and manageable steps. The schema used to

guide the acquisition process inherits many of its specifications for

creating the rule from 1ts ancestors in the schemata hierarchy, It 1s
suggested that this process can be used to help prevent required

entries from being forgotten when a new rule 1s acquired* Much of the

structure of a rule can be filled 1n automatically - for example, the

iterative loop in the Means-ends analysis example. Tests on the sets

of acceptable values for the components of instances can be built into
the schemata as a further check on the correctness of what a user

enters. The goal of this process of assisted acquisition 1s to make

the acquisition of domain specific strategy rules as painless and bug-

free as possible.
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| V.4.3 More—From the Toolbox
b

| Although the previous section emphasized the example of a Means-
| ends analysis tool, the schema based approach would be used for any

problem solving technique that the system could apply. For example,
another technique would be the criticality level approach to
hierarchical planning.. The interactions between schemata would be
somewhat more complex 1n this technique but the methodology of

acquiring the knowledge 1n small pieces using schemata would be used
again, For example, one aspect of using a criticality level approach
is the assignment of criticality level numbers to objects in the
domain; Another aspect of it 1s the length first expansion of the
design. During the process of hierarchical planning, the planning
network might appear as follows:

F Key to Node Types
|
|

WS World State

/ ~~ R = \ R Refinement

/ I\ \ F Focus of Attention

/ WSs.1 ..s..ws \ S Experimental Step
R R R

\ \ \
WSs: s WSs .s WS. «Ov .WS

Figure 7. Fragment of Planning Network
During Hierarchical Planning

In this figure, we see two levels of the refinement process. The focus

node is in the focus plane, all of the refinement nodes are 1in the
planning plane, and the other nodes are in the experiment plane. The
top refinement node corrresponds to a general expression of the plan
and the other refinement nodes are the next level of refinement to the

design. Each refinement node corresponds to an experimental step with
associated world states in the experiment plane. The entire operation
of activating refinement rules and abstract action rules 1s under the
control of a focus of attention rule in the focus node shown,

For hierarchical planning or any of the complex types of strategy

that the system may be aware of, 1t 1s clear that the the schemata will
be fairly complex. The interesting aspect of this 1s that the
complexity 1s associated with the schema for the strategy. The schema
itself may be used over and over again for each instance of that
strategy when the domain specific information 1s added during

acquisition of a rule, Much of the power of this approach is that when

the schema is bug-free, a large number of instances of that strategy
may be acquired and added to the knowledge base with confidence.

A factor that can complicate the structure of schemata and their
| rules is the handling of exceptional cases. The next section proposes

| some mechanisms for dealing with this,
V.d. 4 Eliminating Special Cases

One of the motivations for using schemata to guide the acquisition
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of rules is to simplify the acquisition of rules. The set of

exceptional cases can potentially plague the statement of strategy
rules in a system. This section gives an example of such an exceptional

case and some mechanisms for stating the schemata for rules separately
from their exceptions. It should be mentioned that the mechanisms
mentioned in this section are somewhat tentative. Thelr purpose here

1s to 1llustrate some of the knowledge base management issues that have

an impact on problem solving.

The MOLGEN knowledge base will contain a large number of

refinement rules for different planning situations.. Suppose that some
of these refinement rules propose as subproblems the satisfaction of
the preconditions of a given target rule. Let us presume further that
this strategy for proposing subgoals 1s adequate for almost all

situations with the following exception. When (1) the target rule is a
domain rule for a restriction enzyme having a precondition for a
somewhat basic pH, and (2) the DNA structures in the current world

gtate are double stranded with a high percentage of adenine and thymine
“(or if they are quite short), then these pH conditions will cause the

structures to denature (become single stranded) and prevent the later

successful application of the enzyme. In such cases the enzyme will

fail' to cleave the structures even though its preconditions are
satisfied. Thus, some means for choosingan alternate restriction

enzyme (or other cutting technique) needs to be employed.

There are several alternative places for the special case

information 1n this example. Each alternative has its own impact on

the amount of backtracking that has to be done, the complexity of the

rules, the expense of thelr evaluation, and the management of the
knowledge base. The following diagram illustrates the planning network
for this example and will be referenced in the comparison of

—computational work and backtracking.

F

| Key to Node Types
G/T

| F Focus

ES | & G/T Generate/Test

\ R/A Refinement

| WSt.. s ..WS2 | S Experimental Step
| ws World State

R2 R3

\ \

WS3..S +. Wwsd4 . . s ..WS5

(pH) (enzyme)

Figure 8. Planning Network for Enzyme/pH Example

The numbers after the world state nodes (WS) will distinguish them
in the following discussion. We presume that the focus node, the

generate/test node, WS? and WS2 have been given as the problem

® Such structures are termed A-T rich. Their hydrogen bonding is
weaker and they dissociate more readily in a low pH than A-T poor
structures.
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statement. W31 expresses the initial state before application of the
restriction enzyme and contains the description of the A-T rich DNA

: structures and other properties of the sample. WS2 contalns a
description of the desired output of this part of the plan. The top
refinement node, R1, was created by the generator and points to the

refinement rule 1n the discussion above, The experimental step

associated with this refinement rule represents the abstract version of

the experiment. The mapping rules 1n the top refinement rule have

created the other refinement nodes R2 and R3. These nodes suggest no

further refinements but are associated with their corresponding actions
in the experiment plane —- for the pH step and the enzyme step

respectively* When the state mapping in RI 1s run, 1t will create WS3

(a particularized version of WS1). The action mapping will create the
enzyme step,: The refinement rule can then detect the unsatisfied
precondition in the enzyme rule and create the pH step to satisfy 1it,
When the pH step and enzyme steps are simulated, WSY4 and WS5 are
created,

There are four places where the special case information about the

use of this enzyme with A-T rich structure might be incorporated.

1. In a pre-condition assoclated with the enzyme action
rule.

2. In the Test rule.

3. In the Refinement rules (action mapping) for RI.

4. In a pH inspector.

The first option would prevent the selection of the enzyme by

making it appear inapplicable (in the current world state -- WS1) to
the refinement rule. The precondition could state that the enzyme was

inapplicable to structures having AT-rich regions. However, this would

also negate the possible use of this enzyme on a sample containing AT-
poor structures with the AT-rich structures. Other experiments which
might take advantage of the selective operation of this enzyme on the
AT-poor structures would never be proposed. This option 1llustrates

the motivation for the philosophy of stating the description of the
action of a genetic tool separately from the criteria for its use.

The next option for placing the exception knowledge 1s 1n a higher
level testing function for this part of the plan (ies a test rule in a
generate/test node.) The test rule would not have information specific
to this special case, but would be able to detect the failure of the

refinement by examining the results of the simulated steps. This

approach maximizes the amount of backtracking required for this example

and would proceed as follows,. First, the pH precondition for the

enzyme would be noticed by the refinement rule and proposed as a

subproblem as though nothing was wrong, When the subgoal to establish

a value for PH 1s expressed to the pH schema, a procedure attached to
the pH schema would be activated and would carry out the denaturation
process creating WS4, (It 1s important to note that this attached
procedure would be just another rule 1n the rule knowledge base that
happens to be activated by the subgoal mode of access to the schema for

J (This is a servant in Bobrow and Winograd's terminology.)
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pH.) Finally, after denaturation and after the restriction enzyme was
applied (ie. 1ts abstract action was carried out), the test rule would
be invoked. It would discover the discrepancy between WS5 and WS2 and

report a failure to the focus node. This would initiate backtracking
resulting eventually in the selection of an alternate choice for the
enzyme.

Another option 1s to put this information in the refinement rule.

This approach would minimize backtracking since the use of the

particular enzyme would not be proposed in the network. To do this,

the refinement rule must avoid proposing the use of the enzyme when it

detected the AT-rich DNA 1n WS1. This mechanism suggests that the

special cases for any of the enzymes that this refinement rule may

propose as refinements must be incorporated into the rule. The
repetition and dispersal of special case 1nformation requires some

complications in the management of the knowledge base since one enzyme
may appear 1n several different refinement rules and each refinement

rule probably can utilize several different enzymes, Whenever the
specifics of an enzyme are modified, it will be necessary to check for

changes to all of the refinement rules which might reference it.

The fourth approach would be to associate the exception with pH
itself. This approach extends the responsibility for a procedure

attached to the pH schema. Instead of blindly carrying out the
denaturation process, procedure attached to pH could inspect the
current plan. It would find that the current structures would become

denatured by this value for pH and also discover from the abstract

world state (WS2) that this denaturation was not a desired or expected
goal. We have called such attached procedures inspectors because of

their role in inspecting global aspects of a developing plan. The
inspector in this case would initiate backtracking immediately after

. the pH subgoal was proposed.

Although the last approach may seem more difficult, it has the

advantage of associating special cases with the objects that cause
them. In this case, the knowledge 1s not specific to the special case

of our example, but is about rules which propose setting values for pH
in plans when the denaturation effect was not anticipated, Thus any
rule in the system which mentions pH invokes automatically this kind of

checking. This includes all of the strategy rules and all of the
domain rules. In this framework, rules which are based on simple

schemata, for example our Means-ends analysis example, may actually
invoke rather complicated behavior because of the inspectors associated

with the objects that are mentioned. The factorization of the

exceptions out to their associated objects follows the philosophy of
the object-centered factorization of knowledge described in Section
IV.3.3.1.

The MOLGEN knowledge will be able to accommodate each of the

approaches to representing the special case knowledge in the example
above, Different approaches will be best for different situations -
depending on such things as the cost of backtracking, and the

probability of certain situations.

Before leaving this subject of special cases, 1t 1s worth

emphasizing some important points about attached procedures. In the
first place, the inspectors and servants as discussed above are not
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LISP procedures like the, TEIRESIAS slot experts. They are rules from
the MOLGEN rule base. Since they can be strategy rules, they can
perform any of the types of strategy operations, 1e., they are not

limited to initiating backtracking as in the example above. Finally,

the concept of an inspector would be infeasible were it not for the
fact the the planning network has been designed to be visible to

strategy rules. As such, inspectors can work within the confines and
types of communication available to other rules of their type that are

invoked in the planning network,

V.5 Concluding Remarks

The thrust of this proposal 1s based on the contention that many

of the 1deas which have proved important for the acquisition and

management of object knowledge may be extended to cover action and
strategy knowledge as well.

Parallel to the schemata based rule knowledge base 1s the concept

of expressing the dynamic knowledge of the problem solving process

through schemata, This leads to the development of the concept of a
planning network, This network provides a mechanism for expressing the

problem solving state in terms of a small number of node types

corresponding to basic problem solving steps used at all levels., The
planning network idea, described in Section V.3, combines and extends

the best elements of HEARSAY'’s blackboard, NOAH’s procedural network,
and schemata based representations.

The synergistic effect of these design elements creates the

potential for a very exciting system. The same description of

substructure which is used to decompose the acquisition process into
small manageable steps makes possible the implementation of a

sophisticated pattern matcher for choosing between actions or

strategies, The schemata provide a framework where strategy knowledge
can be expressed in terms of available standard strategy algorithms’
This creates an available toolbox of problem solving techniques which

can be instantiated with the particulars of domain specific knowledge.
The planning network, which provides the language for strategy and
focus of attention, also motivates the classification of strategy rules
according to their basic stepss Perpendicular to this classification
1s one which 1s associated with the genetic knowledge.

As with any problem solving system, the success of the system will
depend on the knowledge that it has available. The system's
performance will depend on the strategy rules, domain rules, and object

descriptions in the knowledge base. What 1s interesting about this

proposed design for a system 1s the array of techniques proposed

managing the knowledge base, acquiring the knowledge, and accessing it
during problem solving. It 1s hoped that this flexible design will

result in a powerful laboratory tool, so that MOLGEN can make important
contributions to the practical design of interesting laboratory
experiments,

10 (Perhaps they should be termed "attached rules”.)
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