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3 O. Introduction. |
: Nearly a century ago [7], [14, §12], a young man named Fabian Franklin

! published what was to become one of the first noteworthy American |
4 contributions to mathematics, an elementary combinatorial proof of
1 Euler's well-known identity :

1; (1-x9) e 1-%-E+2 +x - won x (1) CK *K)/2 . (0.1) :
ps Jl ~o<k<w i

: | His approachwas to find a nearly one-to-one correspondence between
E | partitions with an even number of distinct parts and those with an odd ;

number of distinct parts, thereby showing that most of the terms on the |

- left-hand side of (0.1) cancel in pairs. Such combinatorial proofs of

1 | : identities often yield further information, and in the first part of i
: ¢ this note we shall demonstrate that Franklin's construction can be used

J to prove somewhat more than (0.1). J

: In the second part of this note, we show that Sylvester's modification

of Franklin's construction can be applied in a similar way to obtain 1

generalizations of Jacobi's triple product identity

| | MT Q- 2)(2-22) 1-62) |
J=>1 ;

| : = 1-q(z+z7)+ q'(z2+272) -aas 2 (175K 2X ' (0.2)
5 » ol k<

| 1. The Basic Involution.

: | First let us recall the details of Franklin's construction. Let =x

} : be a partition of n into m distinct parts, so that =n = {a5.00ra }

# rs A for some integers 8 > eee >a, >0, where ajt.ota =n. We shall

3 | write :



¥ Bee ———e — re ———— i — INN, I

1 s(x) =n , w(x) =m , A(x) = a; (1.1) eS F

| for the sum, number of parts, and largest part of =n, respectively; if |

; nt is the empty set, we let x(x) = v(n) = p(n) = 0. Following Hardy and |
] |

3 Wright [8], we also define the "base" b(n) and "slope" s(x) as

1 B(n) = min{ | jen} , o(n) = min {J A(m)=-3¢ a} (1.2) :

1 : Note that if = is nonempty we have

3 Ax) > Bm) +v(n)-1 and (1) > o(x) . (2.3) |

3 a The partition F(n) corresponding to = under Franklin's transformation

i is obtained as follows: |

1 | (i) If p(n) <o(nr) and B(x) < y(n) , remove the smallest part, B(x), i

3 and increase each of the largest B(x) parts by one, :

1 (ii) If B(x) > a(x) and o(xn) < y(n) or o(n) #£ B(n)-1 , decrease

each of the largest o(n) parts by one and append a new smallest

3 part, d(x) . i

3 (iii) Otherwise F(n) = n . (This case holds if and only if =n is empty :
or a(x) = w(x) < B(x) < o(x)+1 .) |

’ These definitions are easily understood in terms of the "Ferrers graph"

: (1, p. 253] for the partition =n , as shown in Figure 1, It is not difficult 4
3 | to verify that F is an involution, i.e., that 9

F. F(F(n)) = = (1.4) .

+ for all =n . :
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i largest part )\ = 6 largest part A = 7

E | ® © © © o oo © © © © oo o

4 © © © o oo v=) parts¢ eo eo oo eo // 3
: v= U4 parts slope 0=2
x ® © 0 © _Silope 0=73 © © o oo :

= , A base B = 4 :
5 base B = 2 3

| Figure 1. Two partitions of 17 into distinct parts, obtained

1 | from each other by moving the two circled elements. :

For each { > O there is exactly one partition =n such that A(x) = ¢

1 and F(n) = m. We shall denote this fixed point of the mapping by f) 3 j

it has [{/271 consecutive parts, |

3 (see Figure 2.) Let | :

4 be the set of all such partitions. Note that the somewhat similar | 4

| partitions {2k+1,2k,...,k+2} and {2k,2k-1l,...,k} are not fixed under F , |
| although their bases and slopes do intersect. PB

I. ¥
SR y * oo ooo coco AER) 2
| CI ooo eo ooo e
= 1 ooo :

:

] 8 fg fy fp fy £) fs ¢ + |

2 Figure 2. The partitions which remain fixed under F.



2. Extended Generating Functions. :
| 1
§ If S is any set of partitions, we define the generating function 5

| of S by the formula
I nt §s Gg (% Vs z) = 2 ol ) A ) 2V (7) . (2.1)

; nes :

‘ The identities we shall derive from Franklin's construction are special f
’ cases of the following elementary result: 1

§ Theorem 1, If S is any set of partitions, 1

E i -— = RL + - '] .

| Gg (XY y) Gg (XV y) Ga\F (Ss) (%,¥5-Y) (2.2) |
4 Proof. |

Let =n be a partition with =#' = F(n) # n=, Then g(n') = g(x) ,

: An") = AM(n)T1, and v(n') = v(x) §1 , hence |
v 1 Tt bi n' n nt {

: This equation means that =n and =x' do not contribute to Gg (x y,~y) if |
| they are both members of S . The only terms which fail to cancel out are i

: from partitions meS with F(x) = nn, namely the elements of SN¢& , and

; those from partitions neS with F(x) ¢S , namely the elements of
F |
‘ | ;

1 S\F(S) « J
2

\ | 3, Three Identities,
k h

i | In order to get interesting corollaries of Theorem 1, we must find sets
E 1

o for which the corresponding generating functions are reasonably simple. J

| | First, let S be the set P of all partitions. Theorem 1 implies “

” that 4

E-



4 Cp(%¥:-y) = G(%y-y) (3.1)
i Now .

3 Gp (%5 Y,z2) = 1+ 2, x?! y? Z TT (1+ x92) (3.2) :
: t>1 1<j<t

A |

3 £(e+1)/2 - Le/2 1 (L2/2 +1)/2 1 [2/2]

: (3k°-k)/2 _2k-1 k. _(3k°+k)/2 2k k |
- = 1+ 2 =x y Z +X YZ . (3.4)
> k>1 !

a. Thus we have

b Corollary 1.1. |
| 2 2

f +1 j k-1 k -k)/2 3k-1 k +k)/2 3ky XY TT (1~99) = T (1) (x0 )/ vv + xO )/ vo } (5.5)
t>1 1<j<t k>1 3

¥ ‘ Franklin essentially considered the special case y = 1 of this ]

identity, when the left-hand side reduces to 1 - 1; >1 (1-xY) ]
Equation (3.5) was originally discovered by L. J. Rogers [10, §10(4)], who ;

| cave an analytic proof. The fact that Franklin's correspondence could be
2 used to obtain (3.5) was first noticed by M. V. Subbarao [12] and 3

1 | G. E. Andrews [2].
| | Although the power series identity of Corollary l.l is formally true, :
J i it does not converge for all x and y ; for example, if we set y = <L 1
2 . wl owl wl Ny 6 |
EA i we get the anomalous formula Xx =X +X =-l-x+Xx +x -... . To better

i o understand the rate of convergence, we can obtain an exact truncated version 1
Ei “ of the sum by restricting S to the set

ke ” P= (x(n) <n} . (3.6) |

; i since ;
B38 PAF(B) = {n|Ar(1) = n and B(x) < o(x) and B(x) < v(n)] |

k = {n| A(x) = n and B(x) < o(n) and B(n) < n/2] (3.7)
EA ! |
Brian B we have |



p \F(P (XY 2) = 2 SE i | 17 %) . (3.8)i n¥ vn 1<b<n/o b<j<n-b n-b<j<n J

3 Thus Theorem 1 yields 3

3 Corollary 1.2.

3 1<f<n 1<3<1 1<k<(n+l)/2 Er

E + bi (1)k"+k)/2k 3
| 1<k<n/2 |

1 TE C I anc | ce : iP| 1<b<n/2 b<j<n-b n-b<j<n 1 3

! | For example, the cases n =L4 and n=5 of this identity are !

xy? + 3°57 (Lexy) + Oy(1x) (1-55y) + 2 (Lx) (1-6) (1-0) i
2 2 5 3548, p 4 §

; - P+ EP XY xy EAP)+ PTT (3.9) i

xy + 20 (1-xy) + Oy(1-xy) (1-x7y) + xy (1-xy) (1-x°y) (1-y)

4 + 230 (1xy) (16%) (1-Fy) (1x'y) |
3 e P+ BP 0p - 0+20 ET1B(1a) + 5 0-Py) (a0)

| | Setting y = 1 and subtracting both sides from 1 yields truncated versions :
| of Euler's formula which appear to be new; e.g.,

Ri

F Lex-E+@ +x = (1-0){1-F)(1-2)(1-2) -P (1-2) a-P) + PH (3.11)



: exert DR tx 2m (1-x) (1-x°) Q-2) (3-2) (1-x") |

3 - 22 (GiB) (1-0) (2-2) + £13 (1-3) : (3.12)

3 pg. 5 7 I 35 Dy DV et WD daca: 1-x-X +X +x' =x =x" = (1-x)(1-x")(1-x") (2-x ) (1-x") (1-x") 3

xT (1-2) (1-2) (1x) A-©) + X01)a-x) - x02 | (5.13)

: Essentially the same formulas, but with n decreased by 2 , would have

- been obtained if we had set y = = in the identity of Corollary 1.2. :

b Let us also consider another family of partition sets with a reasonably !

] cimple generating function, ]

4 8, = {n|B(x) > \(x)-n and o(x) > A(%)-n} . (3.1%)

] These sets are closed under F , for if =' = F(x) # © we have either |

(1) A(x) = a(m)+1, B(x") >B(n)+1, and o(x') = B(x) , or

(11) A(x’) = A(m)-1, B(x") >0(x) , and o(x') > o(x) . Note that §_ :

: is finite, since me S§ implies that 2)(n)-2n < B(x) + o(x)-1 < p(n) , hence 3

] p(n) <2n . The set of fixed points SN& is {fy fi5see,f, }, and

3 Gg (%,y52) = Gp (%,y,2) + Z 2y's 11 (1+x%z) 11 x9z ’ (3.15) |
ge | n n n<i<on I-n<j<n n<j</¢ 3

k | { so Theorem 1 yields a companion to Corollary l.2: :

: } 5, b |



p Corollary 1.3.

1 ARE 3 k-1{ _(3x%-k)/2.35k-1, _(3k°+k)/2 3k3 5 ofp: 1] Gye ST AF Pex y
; 1<i<n 1<j<4 1<k<n

4 b_2btn bt
: + (-1)'y TT (1-xYy) TT x ‘
- 1<b<n b<j<n n<j<ntb

3 For example, the cases n = 2,3 of this identity are |

| 2. 2 AN 6 Ye LB +4 6
- xy© + XY (L-xy)= xy Foy- Ky xy’ - xy (1-xFy)+ T°; |

2p } > 5B I |
2 Xy + xop (L-xy)+ ©y  (1-xy) (1-xy) = xy xP- OY —x yxy + xy” |

L 2 Li+ L+5+6
1 Cx (1-xy) (1-y) +x ’y(1-Fy) - x afi

§ Setting y = 1 and subtracting from 1 leads to formulas somewhat analogous |

1 to (3.11) and (3.13):

3

1 lege ra = (1-x) (1-%°) In. OS } | (3.16) |
1 5 |

A tegefededd o 22.5 a DN-T) - 20D)

4 Let us restate the identities arising from Corollaries 1.2 and 1.3
when y= 1, where n is even in Corollary l.2:



ey | 2 2

| re FT (-1)% (3K -k)/2 (3k tk) /2
® | k_(2n+2)k - k(k+1)/2

| - HEE alt Cl TF ex) (3.18)
a 0<k<n k<j<en-k :

: k nkt+k(k+l)/2 j 1
4 = > (=1y*=x (et. WT a) . (3.19)

3 The latter formula was discovered by D. Shanks [11] in the course of some ]

] experiments on nonlinear transformations of series; he observed that it can ;

1 be proved by induction on n without great difficulty. There is also a 1

3 short proof of (3.18): Let i

| an) = (1-25)+ BSH? + oo + 20S LL FT) (3.20) 1

1 Then A(O,n) = 0, A(k,0) = 1-x*, A(k,-1) = 0, and it is not difficult b

: | to show that i

1 +1 +
- Alk,n) = 3-2 Et R(k,n) BL °a(k+1,n-2) it »n>0. (5.22) 3

5 | Iteration of this recurrence yields identity (3.18). The use of this £

Ir recurrence is actually only a slight extension of Euler's original technique 3

a [6] for proving (0.1). EE

2 It is interesting to compare (3.18) and (3.19) to "classical"” formulas #
gE on terminating basic hypergeometric series, as suggested in a note to the =

4 : authors by Gs E. Andrews, If we set a=1l, b=c=d=®®, and q=x 2
i BB in a highly general identity given by R. P. Agarwal [1l, Eq. (L.2)], we 2

: . obtain +



k (3%°-k)/2 (3k°+k) /2: | 1+ TT {=2) x +X i

; 5 k k(k+l)/2 J 34 = (-1)" x ji} (1-x7) 1EE 4 ok Te (3.23) ;
3 O<k<n k<j<en-k 1<j<n-k 1

j In particular, when n = 3 this formula gives the following analog of !

E (3.13) and (3.17): :

3 1-x-x + x’ PE SRL (1-x)(1-x 1-x Lo 1-x" )(1-x
a (1-x)(1-x ) (1-2)

- 1 (1-52) 3-2) (1-x) (1-) 1+2 1-x° Yor 1+2+3 :
i (1-x)(1-x") :

| Li. Sylvester's Involution. : - 3

3 Let us now turn to Jacobi's identity (0.2), which is formally equivalent : E

, | under the substitution T = uv and 2° = a to , ; i

}s Ca



3 i 41 (1 - uv? dy (1- uv? )(1 - wd™1yd)y a |
321 = |

q 2 2 i: 2 2 |
b - - + |

1 1s F (k(x +x)/2 (Pk)2,(6P-k) [2 (k xf ) fey) t
: k>1 3

3 The left-hand side of this equation can be interpreted as involving :

4 partitions of Gaussian integers mtni into distinct parts of the form :

4 ptqi , where max(p,q) > 0 and |p-q| < l ; the coefficient of wv? will E

1 be the excess of the number of such partitions with an even number of parts |

] | over those with an odd number of parts. The right-hand side says that

: there exists a nearly one-to-one correspondence between such even and odd |

1 partitions, the only unmatched partitions being of the forms i

3 An explicit correspondence of this sort was discovered by J. J. Sylvester |

i [1k §357-61, 6L-68] shortly after he had learned of Franklin's construction; 3

at that time Sylvester was a professor at Johns Hopkins University in 4
%

3 sattimore E

3 7 The literature contains several incorrect references to the history i:
| of Sylvester's construction. Sudler [13] says that the approach taken E
A by Wright [15] is essentially that of Sylvester; but in fact it is |

/ | essentially the same as another construction due to Arthur S. Hathway, 4
i% quoted by Sylvester in [1k, §€2]. Zolnowsky [16] independently rediscovered 4
nd Sylvester's rules (i)- (iv), and observed that these were sufficient to |

prove Jacobi's identity since they will handle all cases mtni with m >n . 3

| Sylvester's original treatment has apparently never been cited by E
be | anyone else, possibly because it comes at the end of a very long paper; ¥

| furthermore his notation was rather obscure, and he made numerous :
carelesc errors that a puzzled reader must rectify. Indeed, the present :

. authorc may never have been able to understand what Sylvester was talking y
 . about if Zolnowsky's clear presentation had not been available,

: | |



We shall represent complex partitions =n by three real partitions |

Nos Myo T_ containing respectively max(p,q) for those parts ptqi |
| in which p-q=+1, 0, or =-1 . For example, the complex partition

3 n= {5+2i, 2+i, 1, 3+3i, 1+i, 3+hi} 4

, of 13+1li will be represented by |

5

4 Sylvester noted that if i is artificially set equal to 2 , we obtain E

5 | a one-to-one correspondence between the complex partitions of mtni and |]

| a subset of the real partitions of m2n into distinct parts; Nos Ty os i
] and n_ map into the parts congruent respectively to +1, 0, and -1

modulo 3 , hence Jacobi's identity implies Euler's.
|

3 In order to present Sylvester's construction, we recall the definitions 1]

] of w(n) , v(x) , a(x) , B(n) , and o(n) for real partitions in Section 1 !
i above; we also add two more attributes, §

i t(n] = min{k | kt1¢ n} , (4.3) ]

2 aff] = min{k | ker and k > 1(n)} . (Lok) ¥

13 By convention, the minimum over an empty set is « ; thus, Bln] =

7 if and only if =n is empty, and Qn] = » if and only if = has the |
i

Ta form {1,2,...,k} for some k > 0 . Sylvester defined an involutionTi

4 F(n) on complex partitions =n by what amounts to the following seven

(i) if B(n,) < o(n,) , remove the smallest part, B (ry) , from =,

| | and increase each of the largest B(ny) parts of m_ by one. J :

(ii) If Bry) > a(n, ) > 0 and a(n, ) # A(r,) , decrease each of the 3

largest 0(n_) parts of =n by one and append a new smallest part, J

£5 | o(n,) , to Ty



: : (iii) 1f B(my) > o(x) = A(x,) and B(x) < a(x)+B(x_) , remove :
the smallest part, B(n,) » from =, and append a new largest 1

3 : part, O(n )+l, to =n and a new smallest part, B(,) - o(n, ) ’

# (iv) If B(n,) > a(n,) = A(n,) > 0 end B(my)+1 >on, )+p(n_) , remove

1 the largest part, on, ) , from n_ and the smallest part, B(x) , |

4 from =n_ and append a new smallest part, o(n, )+ B(n_)-1, to Ty o

2 (v) If A(n,) =0 and a(n) > By) + (x) and 1(n_) > 0, remove

3 the smallest part, B(ny) , from =, and replace the part (mn)

2 in n_ by (x )+B(x,) .

1 (vi) If a(n) =0 and a(n) < B(my) + 7(m_)+1 , replace the part

] | a(r_) in =n by (x _)+1, and append a new smallest part,

3 . a(n) -1(n_)-1 I) to Ty »

3 | (vii) Otherwise F(x) = n . (This happens if and only if =n has the |

] form (4.2).) |

; It can be shown that F(F(n)) = nn, and that in fact rules (i) - (ii),

1 (iii) = (iv), (v) = (vi) undo each other,
3 For example, Sylvester's correspondence pairs up the complex partitions |

x | | in the following way, if we denote partitions by listing the respective

Z | elements of =n, , ®, , 7% separated by vertical bars—/ :

A | | x At this point one cannot resist quoting Sylvester, who stated that these
be | : rules possess what he called Catholicity, Homoeogenesis, Mutuality, |
3 | : Inertia, and Enantiotropy: "I need hardly say that so highly organized
| : a scheme ,.. has not issued from the mind of its composer in a single
2 i gush, but is the result of an analytical process of continued residuation
| : or successive heaping of exception upon exception in a manner dictated at y
1 each point in its development by the nature of the process and the :
: i resistance, so to say, of its subject-matter." [1kL, p. 31L] 1
| : 2+/ These are the complex partitions whose sums have the form k+(11-2k)i . 3
3 ; Sylvester gave an incorrect table corresponding to these 12 partitions
| : at the bottom of [1kL, p. 315]; in his notation, he should have written 3
| "lst Species. 11 3.8; 6.5.2 6.53 5.2.1 3.5.2.1. |
ge 24 Species. 9.2 5.2.k,
ile 34 Species. 10,1 6.k.1; 7.4 3.7.1." s



|

3 || - Lk rules (i) and (ii) |
|

1 21|1|1 - 31] |2 rules (i) and (ii) :
3 lle] ~  2]2| rules (i) and (ii)

4 1|3| « 21]]2 rules (iii) and (iv)

3 j2j21 | | 41 rules (v) and (vi) |
1 |I1|31  - ||32 rules (v) and (vi) |
| 5. Generating Functions Revisited.  ]

3 : If S is a set of complex partitions, we let ¥

1 (1) Er) a(n) 0) ]
: O(n vsy,2) = T ofEVD ST AM, ) (5.2) §
3 eS i

§ | where t

J Ron) = £m) + 2m) + 2x) = v(x) :

gu(n) = (rn,) = v(m) + 2(ny) +2(xn_) 4

1 NEW if AM=)>0 3 4
1 A(x) = (5.2) ]
: -t(n_) if A(x) = 0 . 4

These definitionshave the property we want, as shown in the following :

S| |

| Theorem 2. Let S be any set of complex partitions, and let § be the

| set of all complex partitions of the form (4.2). Then |

2 . 4



3 . Proof. As in Theorem 1, we need only verify that if =n' = F(n) # = 3

4 we have g(n') = g(x) , A(x") = A(x)t1, and v() = vin) 51 K

f Rules (i), (iii), (v) all leave f unchanged, decrease v(x,) , and
3 increase (mn) ; rules (ii), (iv), (vi) are the inverses. There is one

3 : slightly subtle case worth discussing: Rule (iii) applies when a(n) =0 I

4 and it changes A(m,) to 1 ; in that case the hypothesis B(x) < B(n)

P implies that T(n_) = 0, hence p(n) =0. O :

1 6. Jacobi-like Identities.

| We shall apply Theorem 2 only to two infinite sets of partitions, }
] leaving it to the reader to discover interesting finite versions of Jacobi's

3 . identity analogous to Corollaries 1.2 and 1.3.

] If P is the set of all complex partitions, we have 1

! 0-1 -1 ju ;
1 Gps vyy,2) = | 2 abt TT asudvdtd TT (1+ud™1d)
4 151 1<j<1¢ Jj>1 i

3 +1 yt Iti ud ty Ili (1+ud™tvd) TT (1+udvIz); (6.1)
; £>0 1<j<t? Jd> J>1 i

¢ ~urthermore |

a (+k) /2_(k5-k)/2.k . _(K°-Kk)/2_ (K2+k)/2 -k
oa Gg (Ws ys 2) = 1+ XZ u v Yy +u Vv y . (6.2) E
| : k>1 3
4 | : i

| : Setting z = ~y in (6.1) gives the identity Gp (uy vy ¥5-y) = Gy (uv, ys -y) |
: : ; which can be rewritten as 4



|8 t |

A Ei

| Corollary 2.1. |

oy Z —d2 {TT (1+ud"1vd) (1+ud vd) (1-udvdy) 1
3 2<f<e J] (Au! ’v Y \ 321
: j>0 |

: (k°+k) /2 (k°-k)/2 k |= > u Vv y .
’ 0 {k<wm

: Our derivation makes it clear that this formula reduces to (4.1) if we set

: y = 1 and replace (w,v) by (-u,-v) ; it is therefore a three-parameter :

: generalization of Jacobi's identity. :

1 i The right-hand side of Corollary 2.1 can be expressed as |

| (k°+k)/2,. -1,(K°-k)/2 I-13 m1) (1agded1 jj 2| Zo (wy) (vy) = 1] @u™ vy) rudy) Q-udvd)

| ~-o<K<om J >1 . 03
by Jacobi's identity (4.1), hence Corollary 2.1 implies that

] 5 a.vi 1
~o< ff <oo TT (1+ud* Lydti-1y

"| «1; (1+ud vy (1+udvd ty) (1-udvd)®t o | csc —- s - . ° :

3 | j>1 (1+u’ 1.9) (1+udv? 1 (1-udvdy) |

| Let us set a = v1 ;, Q= uv, and Xx = uvy , to make the structure of
. | this formula slightly more clear; we obtain A



A] -
3 |

Yin te : :

| ; ath i wit ul)3 3 "| -e<n<o || (1-aq” 7) k>0  (1-a""q’ 7)(l-aq’)(1-xq")
320

This three-parameter identity turns out to be merely the special case b = 0 :

5 of a "remarkable formula with many parameters" discovered by S. Ramanujan :

] (see [8, Eq. (12.12.2)]); Ramanujan's formula, for which a surprisingly

» simple analytic proof has recently been found [5], can be written

| i he |

ER
~co<nN< ow Jj>0 1-aqY

y TT (1-ba™tgd )(1-a~ x10" (1-axg] (1-H) (6.4iii gr oI T% 3 3 ‘ 1) |
j>0 (1-ba "x "q")(1-a “q° 7)(1-aq’)(1-xq") |

If we let S be the set of all complex partitions with =_ nonempty, i

Gg (us v5 ys z) and Gg no (WVs¥s2) are given by the terms in (6.1) and (6.2) .
involving vy! for 2>1. The set S\F(S) consists of those partitions

with =n, = {1} and p(x) <pB(xn,) , hence

: b-1_b iJ j-1 J
fi Gop (5) (W Vs Ys Zz) = wy J, uv mT (1+uv92) (1+u? 19) ‘
| b>1 Jj>b ]

3 By Theorem 2, we obtain i

ol Corollary 2.2. | 9
EJ Z uv hy! TT aevhH | TT a-wdviy) aed-tv) ¥
bo £21 1<5<14 j>1 1

of (k°+k) /2 (k°-k)/2 k b_b 3.3 j=1.3 33 = 2, u v" y *+y Sy, wy 1 (1-u v y) (1+u vv’) 1
k>1 b>1l Jj>b -



: !

If we subtract this identity from that of Corollary 2.1, we get the : |

formula for the complement of S , namely - |

3 yt 11 wid TT (1+ud td) T7 (1-uvy) | |
£>0 1<j<! J> +l i2l i

f
(k°-k)/2_ (K°+k)/2_-k b b 3 j=1 3RR i v yr.y T uv’ I  (Q-u'vy)Qeu'™"v’) (6.5) }

k>0 b>1 j>b | 4

J STON. I 3
Putting y = 1 reduces the left-hand side to TT; Soll-u v Y(t Tv) :

| hence we obtain | 1

| b_b i 3 j=1. 3 (k°-k)/2_(k“+k)/2 I
TY oo [ adv)? = T wu v (6.6) 3
b>0 j>b k>0 | 4

[et g=uv and x = ot ; this formula is equivalent to the identity |

b $v pend k_(Ko+k)/2 5
> a |] (@-¢“)(1-gx) = 2 (~x)7q . (6.7) |

Equation (6.7) can be derived readily from known identities on basic | |

hypergeometric functions. Let us first divide both sides by ¥

| 11; »144°4 )(1-q“x) , obtaining ;
f n20 TJ] (Q-x¢7 1)(-¢7)

| 0<j<n

(K°+k)/2 :: ke :
TT (1-xa*" 7) (1-q“ 7) | k>0

: Now we use E, Heine's important transformation of such series, a five-

parameter identity [9, Eq. 79] which essentially states that .
|

bon of



ctfc - . o—

| |

'

’ |

£(u,v;a,b3q) = f(v,u3b,a3q) if |

.

J J J !
n (1-aq”) (1-vg*) 1- = |

n>0 0<j<n (1-bvg’)(1-q" 7) j>0 \ l-auq ’

In our case we let u=q, v=x/b, a=0, and b =» =o, obtaining the |
desired result: :

- MT ad? |ERR TREEh (1-71)
| n>0 IT @-x™hHa-d™h || 5x0

0<j<n :

n j 3

sf 22 XO Toler |
n>0 0<j<n j>0 (1-xqv 7)

It is not clear whether or not the more general equation (6.5) is related J

to known formulas in an equally simple way. :

An amusing special case of (6.7) can be obtained by setting q = x 1

and multiplying both sides by x :

k ; 9 k (k+1)2 -> 2 MN (x) 2 xx +27 vse =» T (<1) , (6.9) 1
] k odd Jd>k k>0 p

| "The partitions of n into an odd number of distinct parts in which the :
| least part is odd are equinumerous with its partitions into an even number :

:

| i of distinct parts in which the least part is odd, unless n is a perfect |
| | square.’ An equivalent statement was posed as a problem by G. E. Andrews 3

: | several years ago [3], and he has sketched a combinatorial proof in [L, |
| ! pp. 156-157]. However, there must be an involution on partitions which

| proves this formula! If the reader cun find one, it might well lead to a 1
»

3 number of interesting new identities. :

r= | |

aaron A 50
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