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Chapter 1. Overview
EE a

Indeed, you can build a machine to draw demonstrative conclusions for you, but 1
think you can never bulld a machine that will draw plausible inferences.

== Polya

L1, Abstract of this Thesis

—A program, called "AM", is described which models one aspect of elementary mathematics
research: developing new concepts under the guidance of a large body of heuristic rules.
“Mathematics” is considered as a type of intelligent behavior, not as a finished product.

The local heuristics communicate via an agenda mechanism, a global list of tasks for the
system to perform and reasons why each task is plausible. A single task might direct AM to
define a new concept, or to explore some facet of an existing concept, or to examine some
empirical data for regularities, etc. Repeatedly, the program selects from the agenda the
task having the best supporting reasons, and then executes it.

Each concept is an active, structured knowledge module. A hundred very incomplete
modules are initially provided, each one corresponding to an elementary set-theoretic
concept (eg. union). This provides a definite but immense “space” which AM begins to
explore. AM extends its knowledge base, ultimately rediscovering hundreds of common
concepts {eg., numbers) and theorems (eg. unique factorization).

This approach to plausible inference contains great powers and great limitations.

AN
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12, Five-page Summary of the Project

Scientists often face the difficult task of formulating nontrivial research problems which are
solvable. In any given branch of science, it is usually easier to tackle a specific given
problem than to propose interesting yet managable new questions to investigate. For
example, contrast solving the Missionaries and Cannibals problem with the more ill-defined
reasoning which led to inventing it.

This thesis is concerned with creative theory formation in mathematics: how to propose
interesting new concepts and plausible hypotheses connecting them. The experimental
vehicle of my research is a computer program called AM' Initially, AM is given the
definitions of 115 simple set-theoretic concepts (like “Delete”, "Equality”). Each concept is
represented Internally as a data structure with a couple dozen slots or facets (like
“Definition”, “Examples”, "Worth"). Initially, most facets of most concepts are blank, and
AM uses a collection of 250 heuristics — plausible rules of thumb — for guidance, as it tries
to fill in those blanks. Some heuristics are used to select which specific facet of which specific
concept to explore next, while others are used to actually find some appropriate information
about the chosen facet. Other rules prompt AM to notice simple relationships between
known concepts, to define promising new concepts to investigate, and to estimate how
interesting each concept is.

1.2.1. Detour: Analysis of a discovery

Before discussing how to synthesize a new theory, consider briefly how to analyze one, how
to construct a plausible chain of reasoning which terminates in a given discovery. One can
do this by working backwards, by reducing the creative act to simpler and simpler creative
acts. For example, consider the concept of prime numbers. How might one be led to define
such a notion? Notice the following plausible strategy:

“If { is » function which iransiorms elements of A into elements of B, end
B is ordersd, then consider just those members of A which are
transformed into extremal elements of B. This set is an interesting subset
of A”

When f(x) means “divisors of x", and the ordering is "by length", this heuristic says to
consider those numbers which have a minimal’ number of factors — that is, the primes. So
this rule actually reduces our task from “proposing the concept of prime numbers” to the
more elementary problems of “discovering ordering-by-length™ and “inventing divisors-of".

But suppose we know this general rule: "if { is an interesting function, consider its inverse.” It

' Tha original mesning of this mmamonic has been sbendoned. As Exodus states: | AM thet | AM
? The other axirems, numbers with a MAXIMAL number of factors, wes sho proposed by AM se werth investigating. Thve led

} AM te many interesting questions. See Appendix 4,



Chapter | AM: Discovery in Mathamatice ax Heuristic Search Fi;4

reduces the task of discovering divisors-of to the simpler task of discovering multiplication”.
Eventually, this task reduces to the discovery of very basic notions, like substitution, set.
union, and equality. To explain how a given researcher might have made a given
discovery, such an analysis is continued until that inductive taskis reduced to “discovering”
notions which the researcher already knew, which were his conceptual primitives.

1.2.2. What AM does: Syntheses of discoveries

T Ais leads to the paradox that the more original a discovery the more obvious it
seems afterwards. The creative act is not an act of creation in the sense of the
Old Testament. It does not create something out of nothing; it uncovers, selects,
re-shuffles, combines, synthesizes already existing facts, faculties, skills. The more
familiar the parts, the more striking the new whole.

~= Koastier

Suppose a large collection of these heuristic strategies has been assembled (eg, by analyzing
a great many discoveries, and writing down new heuristic rules whenever necessary).
Instead of using them to explain how a given idea might have evolved, one can imagine
starting from a basic core of knowledge and “running” the heuristics to generate new
concepts. We're talking about reversing the process described in the last section: not how to
explain discoveries, but how to make them.

Such syntheses are precisely what AM does. The program consists of a large corpus of

primitive mathematical concepts, each with a few associated heuristics®, AM’s activities all
serve to expand AM itself, to enlarge upon a given body of mathematical knowledge. To
cope with the enormity of the potential “search space” involved, AM uses its heuristics as
judgmental criteria to guide development in the most promising direction. It appears that
the process of inventing worthwhile new" concepts can be guided successfully using a
collection of a few hundred such heuristics.

Each concept is represented as a frame.like data structure with 25 different facets or slots.
The types of facets include: Examples, Definitions, Generalizations, Domain/Range, Analogies,
Intersstingness, and many others. Modular representation of concepts provides a convenient
scheme for organizing the heuristics; for example, the following strategy fits into the
Examples facet of the Predicate concept: “If, empirically, 10 times ss many elements fail some
predicate P, se satisfy it, then some generalization {(weskened version) of P might bs more
interesting than P™. AM considers this suggestion after trying to fll in examples of each

3 Pius noticing that multiplication 7 sssocistive and commutative.
4 Situstionfaction rules which function as local “plausible move generators”. Some suggest tasks for the system to carry

out, sot sugges! ways of sastinfying 8 given task, atc

B typically, "raw" moons mew to AM, not to Mankind; snd “worthwhile” can only ba judged in hindsight.
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predicate®,

AM is initially given a collection of 115 core concepts, with only a few facets filled in for
each. Its sole activity is to choose some facet of some concept, and fill in that particular slot.
In so doing, new notions will often emerge. Uninteresting ones are forgotten, mildly
interesting ones are kept as parts of one facet of one concept, and very interesting ones are
granted full concept-module status. Each of these new modules has dozens of biank slots,
hence the space of possible actions (blank facets to fill in) grows rapidly. The same
heuristics are used both to suggest new directions for investigation, and to limit attention:
both to sprout and to prune.

1.2.3. Results

The particular mathematical domains in which AM operates depend upon the choice of
initial concepts. Currently, AM begins with nothing but a scanty knowledge of concepts
which Piaget might describe as prenumerical: Sets, substitution, operations, equality, and so
on. In particular, AM is not told anything about proof, single-valued functions, or
numbers.

From this primitive basis, AM quickly discovered’ elementary numerical concepts
(correspondng to those we refer to as natural numbers, multiplication, factors, and primes)
and wande:ed around in the domain of elementary number theory. AM was not designed
to prove anything, but it did conjecture many well-known relationships {eg.. the unique
factorization theorem). |

AM was not able to discover any “new-to-Mankind™ mathematics purely on its own, but Aas
discovered several interesting notions hitherto unknown to the author. A couple bits of new
mathematics have been inspired by AMZ A synergetic AM-human combination can
sometimes produce better research than either couid alone.® Although most of the concepts
AM proposed and developed were already very well known, AM defined some of them in
novel ways (eg, prime pairs were defined by restricting addition to primes; that is, for
which primes p.q.r is it possible that pegqer??).

Everything that AM does can be viewed as testing the underlying body of heuristic rules.
Gradually, this knowledge becomes better organized, its implications clearer. The resultant
body of detailed heuristics may be the germ of a more efficient programme for educating

’ In fact, after AM attemples to find sxemples of SET-EQUALITY, so few are found that AM decides to gemeralize that
predicate. The result ia 1he craation of » new predicate which means “Hes-the-same-length-00" -- is, 8
rudimentary precursor lo naturel numbers.

7 *Dcovering” #8 concept means that {1} AM recognized it »e 3 dretinguished entity {eg, by formuleting ite definition) and
sleo (2) AM decided it was worlh investigating {either becsves of the interesting way it was formed, or
becouse of surprising praliminary smpiricel results}.

8 This i supported by Gelernter's experiences with his geomalry program: While lecturing about how it might prove a
cortain theoram sbout isosceles Irisngles, do came vp with 8 new, cute proof. Similarly, Guard snd Eastman
noticed an intermediate result of their SAM resobstion theorsm prover, snd wisely interpreted #1 #8 »
nontrivial result in lattice 1heory {now known se SAMs lemme)

¥ The anawer is that eitherp or § must be 2, snd thet the other two primes are a prime pair -- ie, they ditfer by two.
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math students than the current dogma’.

Another benefit of actually constructing AM is that of experimentation: one can vary the
concepts AM starts with, vary the heuristics available, etc, and study the effects on AM’s
behavior. Several such experiments were performed. One involved adding a couple dozen
new concepts from an entirely new domain: plane geometry. AM busied itself exploring
elementary geometric concepts, and was almost as productive there as in its original domain.
New concepts were defined, and new con jectures formulated. Other experiments indicated
that AM was more robust than anticipated; it withstood many kinds of “de-tuning™. Others
demonstrated the tremendous impact that a few key concepts (e.g. Equality) had on AM’s
behavior. Several more experiments and extensions have been planned for the future.

§.2.4. Motivation [optional]

We need a super-mathematics in which the operations are as unknown as the
quantities they operate on, and a super-mathematician, who does not know what
he is doing when he performs these operations.

-- Eddington

Although the motivation for carrying out this research of course preceded the effort, 1 have
delayed until this section a discussion of why this is worthwhile, why it was attempted.

First there was the inherent interest of getting a handle on scientific creativity. AM is partly
a demonstration that some aspects of creative theory formation can be demystified, can be
modelled as simple rule-governed behavior.

Related to this .s the potential for learning from AM more about the processes of concept
formation. This was touched on previously, and several experiments already performed on
AM will be detailed later.

Third, AM itself may grow into something of pragmatic value. Perhaps It will become a
useful tool for mathematicians, for educators, or as a model for similar systems in more

“practical” fields. Perhaps in the future we scientists will be able to rely on automated
assistants to carry out the “hack” phases of research, the tiresome legwork necessary for
"secondary creativity.

Historically, the domain of AM came from a search for a scientific field whose activities had
no specific goal, and in which natural language abilities were unnecessary. This was to test
out the BEING: [Lenat 75b] ideas for a modular representation of knowledge.

10 Currently, sn educator tskes the very best work any mathematician has aver done, polishes it until its brillisnce wn
blinding, than presents # to the student lo induce upon Many individuals (eg, Knuth and Polya) have
pointed out this blunder. A faw (ag, Papert at MII, Adame at Stenford) sre superimanting with more
reshelic strategies for “teaching” crestivity. Ses ihe raferances by these authors in the bibliography.
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It would be unfair not to mention the usual bad reasons for this research: the "Look ma, no
hands” syndrome, the Al researcher's classic maternal urges, ego, the usual thesis drives, etc.

1.2.5. Conclusions

AM is forced to judge a priori the value of each new concept, to lose interest quickly in
concepts which aren't going to develop into anything. Often, such judgments can only be
based on hindsight. For similar reasons, AM has difficulty formulating new heuristics
which are relevant to the new concepts it creates. Heuristics are often merely compiled
hindsight. While AM's “approach” to empirical research may be used in other scientific
domains, the main limitation (reliance on hindsight} will probably recur. This prevents
AM from progressing indefinitely far on its own.

This ultimate limitation was reached. AM’s performace degraded more and more as it
progressed further away from its initial base of concepts. Nevertheless, AM demonstrated
that selected aspects of creative discovery in elementary mathematics could be adequately
represented as a heuristic search process. Actually constructing a computer model of this
activity has provided an experimental vehicle for studying the dynamics of plausible
empirical inference.

1.3. Ways of viewing AM as some common process

This section will provide a few metaphors: some hints for squeezing AM into paradigms
with which the reader might be familiar. For example, the existence of heuristics in AM is
functionally the same as the presence of domain-specific information in any knowledge-
based system.

Consider assumptions, axioms, definitions, and theorems to be syntactic rules for the
language that we call Mathematics. Thus theorem-proving, and the whole of textbook
mathematics, is a purely syntactic process. Then the heuristic rules used by a
mathematician {and by AM) would correspond to the semantic knowledge associated with
these more formal methods.

Just as one can upgrade natural-language-understanding by incorporating semantic
knowledge, so AM is only as successful as the heuristics it knows.

Four more ways of “viewing” AM as something eise will be provided: {i} AM as a hill-
climber, (ii) AM as a heuristic search program, {ili} AM as a mathematician, and (iv) AM
as a thesis.

1.3.1. AM as Hili-climbing

Let's draw an analogy between the process of developing new mathematics and the familiar
process of hill-climbing. We may visualize AM as exploring a space using a measuring or
evaluation” function which imparts to it a topography.
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Consider AM’s core of very simple knowledge. By compounding its known concepts and
methods, AM can explore beyond the frontier of this foundation a little wherever it wishes.
The incredible variety of alternatives to investigate includes all known mathematics, much
trivia, countless deadends, and so on. The only “successful” paths near the core are the
narrow ridges of known mathematics (plus perhaps a few as.yet-undiscovered isolated
peaks).

How can AM walk through this immense space, with any hope of following the few, slender
trails of already-established mathematics (or some equally successful new fields)? AM must
do hifl-climbing: As new concepts are formed, decide how promising they are, and always
explore the currently most-promising new concept. The evaluation function is quite
nontrivial, and this thesis may be viewed as an attempt to study and explain and duplicate

the judgmental criteria people employ. Preliminary attempts! at codifying such
“mysterious” emotive forces as intuition, aesthetics, utility, richness, interestingness,
relevance... indicated that a farge but not unmanageable collection of heuristic rules should
suffice.

The important visualization to make is that with proper evaluation criteria, AM’s planar
mass of interrelated concepts is transformed into a three-dimensional relief map: the known
lines of development become mountain ranges, soaring above the vast flat plains of trivia
and inconsistency below.

Occasionally an isolated hill is discovered near the core;'? certainly whole ranges lie
undiscovered for long periods of time'>, and the terrrain far from the initial core is not yet
explored at all.

1.3.2. AM as Heuristic Search

As the title of this section — and this thesis — proclaims, AM is a kind of “heuristic search”
program. That must mean that AM is exploring a particular “space,” using some informal
evaluation criteria to guide it.

The Ravor of search which is used here is that of progressively enlarging a tree. Certain
"evaluation-function™ heuristics are used to decide which node of the tree to expand next,
and other guiding rules are then used to produce from that node a few interesting successor
nodes. To do mathematical research well, I claim that it is necessary and sufficent to have
good methods for 2p new concepts from existing ones, and for deciding how
interesting each “node” (partially-studied concept) is.

AM is initially supplied with a few facts about some simple math concepts. AM then

"1 trees took the form of informal simulations. Although far from controled sxperiments, they indicated the fesssbility of
sitempting to create AM, by yiniding an sppreximate figurs for the smeunt of informal knowledge such »
system would nead.

12 £2. Conway's numbers, 3s described in [Knuth 74}
13 £ 4. ron-Euchidesn geometries weren't thought of unt 1848
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explores mathematics by selectively enlarging that basis. One could say that AM consists of
an active body of mathematical concepts, plus enough “wisdom” to use and develop them
effectively. For “wisdom”, read “heuristics”. Loosely speaking, then, AM is a heuristic search
program. To see this more clearly, we must explain what the nodes of AM’s search space
are, what the successor operators or links are, and what the evaluation function is.

A M's space can be considered to consist of all nodes which are consistent, partially-filled-in
concepts. Then a primitive “legal move” for AM would be to {i} enlarge some facet of some
concept, or {ii} create a new, partially-compiete concept. Consider momentarily the size of
this space. If there were no constraint on what the new concepts can be, and no informal
knowledge for quickly finding entries for a desired facet, a blind “legal-move” program
would go nowhere — slowly! One shouldn't even call the activity such a program would be
doing "math research.”

The heuristic rules are used as little “plausible move generators”. They suggest which facet
of which concept to enlarge next, and they suggest specific new concepts to create. The only
activities which AM will consider doing are those which have been motivated for some

specific good'? reason. A global agenda of tasks is maintained, listing all the activities
suggested but not yet worked on.

AM has a definite algorithm for rating the nodes of its space. Many heuristics exist merely
to estimate the worth of any given concept. Other heuristics use these worth ratings to
order the tasks on the global agenda list. Yet AM has no specific goal criteria: it can never

“halt”, never succeed or fail in any absolute sense. AM goes on forever'®,

Consider Nilsson's descriptions of depth-first searching and breadth-first searching ({Nilsson
711). He has us maintain a list of “open” nodes. Repeatedly, he plucks the top one and
expands it. In the process, some new nodes may be added to the Open list. In the case of
depth-first searching, they are added at the top; the next node to expand is the one most
recently created; the Open.list is being used as a push-down stack. For breadth-first search,
new nodes are added at the bottom; they aren't expanded until all the older nodes have
been; the Opend-list is used as a queue. For heuristic search, or "best-first™ search, new nodes
are evaluated in some numeric way, and then “merged” into the already-sorted list of Open
nodes.

This process Is very similar to the agenda mechanism AM uses to manage its search. This
will be discussed In detail in Chapter 3. Each entry on the agenda consists of three parts:
(i} a plausible task for AM to do, (ii) a list of reasons supporting that task, and (iii) a
numeric estimate of the overall priority this task should have. When a task is suggested for
some reason, it is added to the agenda. A task may be suggested several times, for different
reasons. The global priority value assigned to each task is based on the combined value of
its reasons. The control structure of AM is simply to select the task with the highest
priority, execute it, and select a new one. The agenda mechanism appears to be a very well
suited data structure for managing a "best-first™ search process.

14 08 courne, AM thinks a resson ie “good” if -- and only i = it was told that by a heuristic rule; 30 those rules had better
be plaveble, prafersbly the ores sctuslly used by the saperts.

13 Technically, forever is about 100,000 fet cole and & couple cpu hours.
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Similar control structures were used in LT (Newell, Shaw, & Simon 57), the predictor part
of Dendrai [Buchanan et ai 69), SIMULA-67 [Dahl 68], and KRL [Bobrow & Winograd
771. The main difference is that in AM, symbolic reasons are used {albeit in trivial token-
like ways) to decide whether — and how much — to boost the priority of a task when it is
suggested again.

There are several difficulties and anomalies in forcing AM into the heuristic search
aradigm. In a typical heuristic search {e.g., Dendral [Feigenbaum et al 71), Meta-Dendral

Po ehaer et al 72), most game-playing programs [Samuel 67]), a "search space” is defined
implicitly by a "legal move generator”. Heuristics are present to constrain that generator so
that only plausible nodes are produced. The second kind of heuristic search, of which AM
is an example, contains no “legal move generator”. Instead, AM’s heuristics are used as
plausible move generators. Those heuristics themselves implicitly define the possible tasks
AM might consider, and all such tasks should be plausible one. In the first kind of search,
removing a heuristic widens the search space; in AM’s kind of search, removing a heuristic
reduces it.

Another anomaly is that the operators which AM uses to enlarge and explore the space of
concepts are themselves mathematical concepts (eg. some heuristic rules result in the
creation of new heuristic rules; “Compose” is both a concept and an operation which results
in new concepts). Thus AM shouid be viewed as a mass of knowledge which enlarges itself
repeatedly. Typically, computer programs keep the information they “discover” quite
separate from the knowledge they use to make discoveries'® |

Perhaps the greatest difference between AM and typical heuristic search procedures is that
AM has no well-defined target concepts or target relationships. Rather, its "goal criterion” —
its sole aim — is to maximize the interestingness level of the activities it performs, the
priority ratings of the top tasks on the agenda. It doesn’t matter precisely which definitions
or conjectures AM discovers — or misses — so long as it spends its time on plausible tasks.
There is no fixed set of theorems that AM should discover, so AM is not a typical problem-
solver. There is no fixed set of traps AM should avoid, no small set of legal moves, and no
winning/losing behavior, 30 AM is not a typical game-player.

For example, no stigma is attached to the fact that AM never discovered real numbers'’; it
was rather surprising that AM managed to discover natural numbers! Even if it hadn't
done that, it would have been acceptable'® if AM had simply gone off and developed ideas
in set theory.

18 Of course this i often because the two kinds of knowledge are very differsni: For a chass-player, the first kind is
"good board positions,” snd the second im “sirstegiee for making 8 good move” Theorem-provers are an
sxceplion. They produce 3 new lheorsm, and Then ves it {almost like 3 new operstor} in future proofs. A

| program to learn to play checkers [Samuel 67] has this same flavor, thereby indicating (hat this ‘self-help’
. property ie not 8 function of the tesk domain, nol simply a characteristic of mathamatice.

17 Thers are many “nice® things which AM didn't -- and can't -- do: 9.3, devising geometric concepts from its inftiel simple
set-theoretic knowledges. See the decuesion of the limitations of AM, Section 7.2.

13 Acceptetie to whom? fs there really o domein-invarient criterion for judging the quakty of AM's actions? See the
drecuesions in Section 7.1.



Chapter | AM: Discovery in Mathematics as Heuristic Search -10-

13.3. AM as a Mathematician

Before diving into the innards of AM, let's take a moment to discuss the totality of the
mathematics which AM carried out. Like a contemporary historian summarizing the work
of the Babylonian mathematicians, we shan't hesitate to use current terms and criticize by
current standards.

AM began its investigations with scanty knowledge of a few set-theoretic concepts (sets,
equality of sets, set operations). Most of the obvious set-theory relations {eg., de Morgan's
laws) were eventually uncovered; since AM never fully understood abstract algebra, the
statement and verification of each of these was quite obscure. AM never derived a formal
notion of infinity, but it naively established conjectures like "a set can never be a member of
itself”, and procedures for making chains of new sets (Tinsert a set into itself’). No
sophisticated set theory {e.g., diagonalization) was ever done.

After this initial period of exploration, AM decided that “equality” was worth generalizing,
and thereby discovered the relation “same-size-as”. "Natural numbers” were based on this,
and soon most simple arithmetic operations were defined.

Since addition arose as an analog to union, and multiplication as a repeated substitution
followed by a generalized kind of unioning'? it came as quite a surprise when AM noticed
that they were related (namely, N+N=2N}. AM later re-discovered multiplication in three
other ways: as repeated addition, as the numeric analog of the Cartesian product of sets,
and by studying the cardinality of power sets’. These operations were defined in different
ways, So it was an unexpected {to AM) discovery when they all turned out to be equivalent.
These surprises caused AM to give the concept ‘Times’ quite a high Worth rating.

Exponentiation was defined as repeated multiplication. Unfortunately, AM never found any
obvious properties of exponentiation, hence lost all interest in it.

Soon after defining multiplication, AM investigated the process of multiplying a number by
itself: squaring. The inverse of this turned out to be interesting, and led to the dehnition of
square-root. AM remained content to play around with the concept of infeger-square-root.
Although it isolated the set of numbers which had no square root, AM was never close to |
discovering rationals, let alone irrationals.

Raising to fourth-powers, and fourth-rooting, were discovered at this time. Perfect squares
and perfect fourth-powers were isolated. Many other numeric operations and kinds of
numbers were isolated: Odds, Evens, Doubling, Halving, etc. Primitive notions of numeric
inequality were defined but AM never even discovered Trichotomy.

The associativity and commutativity of multiplication indicated that it could accept 2 BAG

19 Talks two bage A and B Replace ssch slement of A by the bag B. Remove ore fevel of parentheses by taking the union of
alt sloments of the transfigured bag A Then thet new bag will have 28 many slements 29 the product of the
lengths of the two original bage.

20 Thu size of the set of all subsets of S is 2°. Thus the powsr ast of AUB hes length squs! 10 the product of the lengths
of the powsr sete of A and B individually {sssuming A and B are drejoint).
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of numbers as its argument. When AM dehned the inverse operation corresponding to
Times, this property allowed the definition to be: "any bag of numbers {>1) whose product is
x". This was just the notion of factoring a number x. Minimally-factorable numbers
turned out to be what we call primes. Maximally-factorable numbers were also thought to
be interesting.

Prime pairs were discovered in a bizarre way: by restricting addition {its arguments and its ‘
values) to Primes?! AM conjectured the fundamental theorem of arithmetic {unique
factorization into primes) and Goldbach’s conjecture {every even number >2 is the sum of
two primes) in a surprisingly symmetric way. The unary representation of numbers gave
way to a representation as a bag of primes (based on unique factorization), but AM never
thought of exponential notation. 22 Since the key concepts of remainder, greater-than, gcd,
and exponentiation were never mastered, progress in number theory was arrested.

When a new base of geometric concepts was added, AM began finding some more general
associations. In place of the strict definitions for the equality of lines, angles, and triangles,
came new definitions of concepts we refer to as Parallel, Equal-measure, Similar, Congruent,
Translation, Rotation, plus many which have no common name (eg. the relationship of two
triangles sharing a common angle). A cute geometric interpretation of Goldbach’s
conjecture was found?. Lacking a geometry “model” {an analogic representation like the
one Gelernter employed), AM was doomed to failure with respect to proposing only
plausible geometric con jectures.

Similar restrictions due to poor “visualization” abilities would crop up in topology. The
concepts of continuity, infinity, and measure would have to be fed to AM before it could
enter the domains of analysis. More and more drastic changes in its initial base would be
required, as the desired domain gets further and further from simple finite set theory and
elementary number theory.

2 That is, consider the set of triples par, ofl primes, Tor which peger. Than one of them must be “2°, snd the other two
must therefore form 2 prime pei.

22 5 \engentisl note: All of the discoveries mentioned sbova wera made by AM working by ites), with a human being
obsarving fle beh: Hf the level of sophistication of AW's concepts wers higher (er the level of
sophinticaton of Hs users wars lower), then # might be worthwhile 10 develop » nice vesr--aystem
ntorfece. The user in that case could — and ought te — work right slong with AM ae » co-resssrchwr.

23 Given of ongies of 3 prime number of degrees, (0,1,2.3.5,7,11,.,178 degrees), then ony engls between © ané 130
degrees con be spproximeted(te within | degree) as the sum of twe of those angles.
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1.3.4. AM ss a Thesis [optional]

Walking home along a deserted street late at night, the reader may imagine
Aimself to feel in the small of Ais back a cold, hard object; and to hear the words
spoken behind Aim, ‘Easy now. This is a stick-up. Hand over your money.’ What
does the reader do? He attempts to generate the utterance. He says to Aimself,
now if 1 were standing behind someone Aolding a cold, Aard object against Ais
back, what would make me say that? What would 1 mean by it? The reader is
advised that Ae can only arrive at the deep structure of tAis book, and through the
deep structure the semantics, if he attempts to generate the book for Aimself. TAe
author wishes Aim luck.

== Linderhoim

Don't be scared by the weight of the document you're now holding. If you flip to page 165,
you'll see that the last two-thirds are just appendices.

Each chapter is of roughly equal importance, which explains the huge variation in length.
Start looking over Chapter 2 right away: it contains a detailed example of what AM does.
Since you're reading this sentence now, we'll assume that you want a preview of what's to
come in the rest of this document.

Chapter 3 covers the top-level control structure of the system, which is based around the
notion of an ‘agenda’ of tasks to perform. In Chapter 4 the low-level control structure is
revealed: AM is really guided by a mass of heuristic rules of varying generality. Chapter 5
contains more than you want tc know about the representation of knowledge in AM. The
diagram showing some of AM’s starting concepts (page 105} is worth a look, even out of
context.

Most of the results of the project are presented in Chapter 6. In addition to simply running’
AM, several experiments have been conducted with it. It's awkward to evaluate AM, and
therefore Chapter 7 is quite long and detailed.

The appendices provide material which supplements the text. Appendix 2 contains a
description of all the initial concepts, some examples of how they were coded into Lisp, and
a partial list of the concepts AM defined and investigated along the way. Appendix 3
exhibits all 242 heuristics that AM is explicitly provided with. Appendix 4 is essentially a
math article, about the major discovery that AM motivated: maximally-divisible numbers.
Finally, Appendix 5 contains traces of AM in action: a long prose description, a long task-
by-task description, and a long undoctored transcript excerpt. Appendix | hasn't been
mentioned yet, and forms the subject of the remainder of this section.

This thesis — and its readers — must come to grips with a very interdisciplinary problem.
For the reader whose background is in Artificial Intelligence, most of the system's actions —
the “mathematics” it does — may seem inherently uninteresting. For the mathematician, the
word "LISP" signifies nothing beyond a speech impediment (to Artificial Intelligence types it
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also connotes a programming impediment). If 1 don't describe "LISP" the first time |
mention it, a large fraction of potential readers will never realize that potential. If 1 do stop
to describe LISP, the other readers will be bored.

In an attempt not to lose readers due to jargon, two glossaries of terms have been compiled.
Appendix 1.1 (p. 165) contains capsule descriptions of the mathematical terms, ideas, and
notations used in this thesis. Appendix 1.2 renders the analogous service for Artificial
Intelligence jargon and computer science concepts.
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Chapter 2. An Example: Discovering Prime Numbers
aE

This chapter will present an example of AM in action, an excerpt from the output of AM,
as It investigates some concepts.

After a brief discussion of AM’s control structure in Section 2.1, the reader will be told

what the point of this example is — and Is not. Section 2.3 provides a few eleventh-hour
hints at decoding the example.

The excerpt itself follows in Section 2.4. It skips the first half of the session, and picks up
at a point just after AM has defined the concept "Divisors-of. Soon afterward, AM defines
Primes, and begins to find interesting conjectures related to them. The excerpt goes on to
show how AM conjectured the fundamental theorem of arithmetic and Goldbach’s
conjecture. AM derived the notion of partitioning a collection of n objects into smaller
bundles, but failed to find any interesting con jectures about that process. Instead, AM was
side-tracked into the (probably) fruitless investigation of numbers which can be represented
as the sum of two primes in one unique way.

The final section of this chapter will recap this example the way a math historian might
report it.

2.1,Discussionof the AM Program

AM Is a program which expands a knowledge base of mathematical concepts. Each concept
is stored as a particular kind of data structure, namely as a collection of properties or
“facets” of the concept. For example, here is a miniature example of a concept:

! The right arrow ("+") in the box on the nex! page i» the symbol for “mples®. “Noe.” is an sbhbrevietion tor “Numbers™. The
vertical ber "|" is & symbol for the predicate “divides avenly inte”; the hook "=" is 3 symbel for the predicate
“the magation of”. "0" indeates srchnive or, snd the symbol “V" is read “for 2°. Phase consult the
glovsery, Appendix 1.1, for fuller diecunsion of theese, plus ether math terme ike “Prime peire”.
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NAME: Prime Numbers

| DEFINITIONS:
ORIGIN: Number-oi-divisors=of(x} = 2 |

PREDICATE-CALCULUS: Prime(x) » {(¥2){z2jx = 221 @ z=x)
ITERATIVE: (lor x>1); For | from 2 te Seri(x), ~{ikx}

EXAMPLES: 2,3,5,7,11, 13,17
BOUNDARY: 2, 3

BOUNDARY-FAILURES: 0, 1

| FAILURES: 12

| GENERALIZATIONS: Nos., Nos. with an sven no. of divisors, Nos. with a prime no. of divisors

SPECIALIZATIONS: Odd Primes, Prime Pairs, Prime Uniquely-asddables

CONJECS: Unique factorization, Goldbach's conjecture, Exirames of Number-of-divisors-of

INTU'S: A metaphor to the effect that Primes are the building blocks of all numbers

ANALOGIES:

| Maximally=divisible numbers sre converse sxiremes of Number-of-divisors-of
Factor a non=simple group into simple groups

INTEREST: Conjectures tying Primes to TIMES, to Divisors-ol, lo closely related operations

WORTH: 300

“Creating a new concept” is a well.defined activity: it involves setting up a new data
structure like the one above, and filling in entries for some of its facets or slots. Filling in a
particular facet of a particular concept is also quite well-defined, and Is accomplished by
executing a collection of relevant heuristic rules. This process wili be described in great
detail in later chapters.

1.2. Agendas and Heuristics

An agenda of plausible tasks is maintained by AM. A typical task is "Fili~in examples of
Primes”. The agenda may contain hundreds of entries such as this one. AM repeatedly
selects the top task from the agenda and tries to carry it out. This is the whole control
structure! Of course, we must still explain how AM creates plausible new tasks to place on
the agenda, how AM decides which task will be the best one to execute next, and how it
carries out a task.
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If the task is “Fill in new Algorithms for Sel-union”, then satisfying it would mean actually
synthesizing some new procedures, some new LISP code capable of forming the union of
any two sets. A heuristic rule is relevant to a task iff executing that rule brings AM closer
to satisfying that task. Relevance is determined a priori by where the rule is stored. A rule
tacked onto the Domain/range facet of the Compose concept would be presumed relevant to
the task "Check ihe Domain/range of insericDelete”.

Once a task is chosen from the agenda, AM gathers some heuristic rules which might be
relevant to satisfying that task. They are executed, and then AM picks a new task. While
a rule is executing, three kinds of actions or effects can occur:

(i) Facets of some concepts can get filled in (eg. examples of primes may actually be found
and tacked onto the “Examples” facet of the “Primes” concept). A typical heuristic rule
which might have this effect is:

To fill in examples of X, whara X is 2 Rind of Y¥ {for some more general concept VY),
Check the sxamples of Y;: somes of them may be sxsmples of X ss well.

For the task of filling in examples of Primes, this rule would have AM notice that
Primes is a kind of Number, and therefore look over all the known examples of
Number. Some of those would be primes, and would be transferred to the Examples
facet of Primes.

(il) New concepts may be created {e.g., the concept “primes which are uniquely representable
as the sum of two other primes” may be somehow be deemed worth studying). A
typical heuristic rule which might result in this new concept is:

It some {bul nol most) examples of X are also examples of ¥ {for some concept ¥),
Crsale a naw concept defined as the infersection of those 2 concapls (X and Y).

Suppose AM has already isolated the concept of being representable as the sum of two
primes in only one way {AM actually calls such numbers “Uniquely-prime-addable
numbers”). When AM notices that some primes are in this set, the above rule will
create 2 brand new concept, defined as the set of numbers which are both prime and
uniquely prime addable.

(ili) New tasks may be added to the agenda (eg. the current activity may suggest that the
following task is worth considering: "Generalize the concept of prime numbers”). A
typical heuristic rule which might have this effect is:

If very few examples of X are found,
Then add the foliowing task 10 the agendas: "Generalize the concept X".

Of course, AM contains a precise meaning for the phrase “very few”. When AM looks
for primes among examples of already-known kinds of numbers, it will find dozens of
non-examples for every example of a prime it uncovers. "Very few" is thus naturally
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implemented as a statistical confidence level?

The concept of an agenda is certainly not new: schedulers have been around for a long
time. But one important feature of AM’s agenda scheme is a new idea: attaching — and
using — a list of quasi-symbolic® reasons to each task which explain why the task is worth
considering, why it's plausible. if is the responsibility of the heuristic rules to include reasons
for any tasks they propose. For example, let's reconsider the heuristic rule mentioned in (lii)
above. It really looks more like the following:

If very low examples of X are found,
Then add the following ask fo the sgends: "Generalize the concept X”, for the following

reason: "X's are quite rere; a slightly less resirictive concept might be more
interesting”.

If the same task is proposed by several rules, then several different reasons for it may be
present. In addition, one ephemeral reason also exists: "Focus of attention”. Any tasks
which are similar to the one last executed get "Focus of attention” as a bonus reason. AM
uses all these reasons, eg. to decide how to rank the tasks on the agenda. The
“intelligence” AM exhibits is not so much “what it does”, but rather the order in which it
arranges its agenda®. AM uses the list of reasons in another way: Once a task has been
selected, the quality of the reasons is used to decide how much time and space the task will
be permitted to absorb, before AM quits and moves on to a new task. This whole
mechanism will be detailed in Section 3.3.2, on Page 33.

2.2, What to get out of —— and NOT get out of -- this example

The purpose of the example which begins on page 20 is to convey a bit of AM’s flavor.
A fer reading through it, the reader should be convinced that AM is not a theorem-prover,
nor Is it randomly manipulating entries in a knowledge base, nor is it exhaustively
manipulating or searching. AM is carefully growing a network of data structures
representing mathematical concepts, by repeatedly using heuristics both (a) for guidance in
choosing a task to work on next, and (b) to provide methods to satisfy the chosen task.

* Tha rate of examples found to non-sxamples stumbledover kes between 001 and 05. Philosophers outragedby thie may
be somewhat sppessad by knowledge that large changes in the precise numbers very rerdly siter All's
behavior.

3 Each reseon in an English sentence. Whils AM can tell whether two given reasons coincide, it can't actully do any interne!
procesuing on them H this lackof intelligencehad proved to be 3 hmiting problem, then mors work would
have been supended on giving AM some such shies.

, An alternstive scheme, perhaps sven s bit mors humen-lks,would be to (perhapsonly occasmwnally} sllowa burst of
pootly-motivated tasks to be proposed, and then uss some pruning criteris 16 weed oul the sbvious losers.
During this time, AM could type out to the veer (who otherwise would be tiossly monitoring ite actwites)
cute anthropomorphic phrase lite "I'm now sitting back and putfing on my pipe, oat in contemplation.”

5 For sxampls, sliernating 8 randomly-chosen task and the “best”task (the ene AM chose to do) only slows the system
downby 8 lector of 2, yet it telelly deeireys its cradbidly se 8 rotons! resssrcher (su judgedby the
human veer of AM). This is one conchueionof superiment 2 (see Section $22, page 129).
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The following points are important but can't be conveyed by any lone example:

{i) Although AM appears to have reasonable natural language abilities, this is a typical Al
illusion: most of the phrases AM types are mere tokens, and the syntax which the user
must obey is unnaturally constrained. For the sake of clarity, 1 have “touched up” some
of the wording, indentation, syntax, etc. of what AM actually outputs, but left the spirit

of each phrase intact. As the reader becomes more familiar with AM, future examples
can be “unretouched”, If he wishes, he may glance at Appendix 5.3, which shows
some actual listings of AM in action.

{ii) The reader should be skeptical of the generality of the program; is the knowledge base
"just right” (i.e, finely tuned to elicit this one chain of behaviors)? The answer is
"No"%. The whole point of this project is to show that a relatively small set of general
heuristics can guide a nontrivial discovery process. Each activity, each task, was
proposed by some heuristic rule (like “look for extreme cases of X") which was used
time and time again, in many situations. It was not considered fair to insert heuristic
guidance which could only “guide” in a single situation.

This kind of generality cant be shown convincingly in one example. Nevertheless,
even within this small excerpt, the same line of development which leads to

decomposing numbers (using TIMES’) and thereby discovering unique factorization,
also leads to decomposing numbers (using ADD") and thereby discovering Goldbach's
conjecture. The same heuristic which caused AM to expect that unique factorization
will be useful, also caused AM to suspect that Goldbach’s con jecture will be useless.

Let me reemphasize that the “point” of this example is not the specific mathematical
concepts, nor the particular chains of plausible reasoning AM produces, nor the few Rashy
conjectures AM spouts, but rather an illustration of the kinds of things AM does.

| 2.3, Deciphering the Example

Recall that in general, each task on the agenda will have several reasons attached to it. In
the example excerpt, the reasons for each task are printed just after the task is chosen, and
before it's executed.

AM numbers its activities sequentially. Each time a new task is chosen, a counter is
incremented. The first task in the example excerpt is labelled ax TASK 65 ==, meaning that
the example skips the first 64 tasks which AM selects and carries out. The reason simply is
that the development of simple concepts related to divisibility will probably be more
intelligible and palatable to the reader, than AM’s early ramblings i" ‘nite set theory.

i design of AM wae finaly tuned so that the smewer to this question would be "No™. Ponder thet one!
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In the example itself, several irrelevant tasks have been excised’. About half of those
omitted tasks were interesting in themselves, but all of them were tangential or unrelated to
the development shown. The reader can tell by the global task numbering how many were
skipped. For example, notice that the excerpt jumps from Task 67 to Task 79.

To help gauge AM’s abilities, the reader may be interested to know that AM defined
"Natural Numbers” during Task 44, and "TIMES" was defined during Task 57. AM
started with no knowledge of numbers, and only scanty knowledge of sets and set-operations.
Task 3, e.g. was to fil in examples of Sets.

The concepts that AM talks about are self-explanatory — by and large. Below are discussed
some nonstandard ones.

BAG is a kind of list structure, a bunch of elements which are unordered, but one in which

multiple copies of the same element are permitted. One may visualize a paper bag filled
with cardboard letters. Technically, we shall say that a set is not considered to be 2 bag. A
bag is denoted by enclosure within parentheses, just as sets are within braces. So the bag
containing X and four Y's might be written (X Y Y Y Y)}, and would be considered
indistinguishable from the bag (Y Y Y X Y).

Number will mean (typically) a positive integer.

TIMES"! is a particular relation. For any number x, TIMES (x) is a set of bags. Each
bag contains some numbers which, when multiplied together, equal x. For example,
TIMES '(18) « { (18) (2 9) (2 3 3) (3 6) }. Checking, we see that multiplying, eg. the
numbers in the bag {2 3 3) together, we do get 2x2x3=18. TIMES™!(x) contains all possible
such bags (containing natural numbers > 1}.

ADD! is a relation analogous to TIMES". For any number x, ADD (x) is also a set of
bags. Each bag contains a bunch of numbers which, when added together, equal x. For
example, ADD '(#) « { (4) (1 1 1 1) {1 12){1 3){(22) }. ADD !(x) contains all possible such
bags ining numbers >0); it finds all possible partitions of x.
Divisors-of is a more standard relation. For any number x, Divisors-of{x} is the set of all
positive numbers which divide evenly into x. For example, Divisors-of{18) = {I 236 9 18}.

The definitions for most of the mathematical terms used in the excerpt can be found in the
Glossary (Appendix 1.1). Whenever there is a conflict between “computer science jargon”
and "math jargon”, I have opted for the latter. So, eg. all “functions” are necessarily single.
valued for each member of their domain.

AM is an interactive computer program. It prints out phrases indicating what it is doing at
each moment, and a human being, referred to as the User, watches AM’s activities. At any
moment, the user can interrupt AM to ask questions or re-direct its energies. In the excerpt,
the user never re-directs AM, although he does occasionally ask AM to rename some
concept and to explain its behavior {eg., just after #2 TASK 106 #32). For the benefit of the
reader, I have bold-faced all the user's comments.

? Thin is Toir, despite the resuits of Experiment 2 {see Section $22) because the remaining Tasks clump tegether in
twoe, threes, alc; they sre uninterrupted lines of resssrch (ag, Teske $5.87), separated by very lorge
gape (og, the jump from Taek 87 te 79).
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My personal notes and comments occur right-justified, in italics.

2.4, The Example Itself

=x Task £5: 2»

Filling in examples of the following concept: "Divisors-of™,

3 Reasons: {1) No known examples for Divisors-of so far.
{2} TIMES, which is relsted to Divisors-ol, is now very interesting.
{3) Focus of attention: AM recently defined Divisors-ol.

26 examples found, in 9.2 seconds. e.g.: Divisors-of(6)={1 2 3 6].
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s% Took 66: 8s
Considering numbers which have very small sets of Divisors—of (i.e, very few divisors).

2 Reasons: (1) Worthwhile 10 look for extreme cases.
{2) Focus of atlention: AM recently worked on Divisors-of.

Filling in examples of numbers with 0 divisors.
0 examples found, in 4.0 seconds.
Conjecture: no numbers have 0 divisors.

Filling in examples of numbers with 1 divisors.
1 examplés found, in 4.0 seconds. e.g.: Divisors-of(1)={1}.
Conjecture: | is the only number with 1 divisor.

Filling in examples of numbers with 2 divisors.
24 examples found, in 4.0 seconds. e.g.: Divisors-of(13)={1 13}.
No obvious conjecture. This kind of number merits more study.
Creating a new concepl: "Numbers-with-2-divisors".

AM had previously derived the notion of singleton,
doubleton, etc. Above, AM was actually defining, ¢.g., the
set of numbers whick gets mapped into a doubleton of
numbers, by the operation Divisors-of. 1 took the liberty
of translating this into the above form, which uses, eg.,
the number "2".

Filling in examples of numbers with 3 divisors.
11 examples found, in 4.0 seconds. e.g.: Divisors-of(49)={1 7 49}.
All numbers with 3 divisors are also Squares. This kind of number merits more study.
Creating a new concept: "Numbers-with-3-divisors™,

How did AM notice that conjecture? It took a random
example of Numbers-with-3.divisiors, say 49. Then it
asked what other known concepts “49° was an example
of. The two answers were: Odd-numbers and Perfect-
squares. AM then tested these conjectures on the other
ten examples just found. The only surviving conjecture
was that oll numbers-with-3-divisors are also perject-
squares.
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2% Tosk 67: =x

Considering the square-roots of Numbers-with-3-divisors.

2 Reasons: {1) Numbers-wilth-3-divisors are unexpectedly also perfect Squares.
{2) Focus of attention: AM recently worked on Numbers-with-3-divisors.

All square-roots of Numbers-with-3-divisors seem to be Numbers-with-2-divisors.
e.g. Divisors-of{ Square-rool{169)} = Divisors-o0f{13) = {i 13}.

Formulating the converse to this stalement. Empirically, it seems lo be true.
The square of each Number-with-2-divisors seems {0 be a Number -with-3-divisors.
This is very unusual. It is nol plausibly a coincidence. (Chance of coincidence is < 001}

Boosting interestingness factor of the concepts involved:
intereslingness factor of "Divisors-of” raised from 300 to 400.
Interestingness factor of "Numbers-with-2-divisors™ raised from 100 lo 600.
interestingness factor of "Numbers-with-3-divisors”™ raised from 200 to 700.

USER: Call the set of numbers with 2 divisors “Primes”.

2% Task 68: x= |
Considering the squares of Numbers-with-3-divisors.

2 Reasons: {1} Squares of Numbers-with-2-divisors were interesting.
{2} Focus of atlention: AM racently worked on Numbere-with-3-divisors.

J

This gap in the sequencing — from task 67 to task 79 —
eliminates some tangential and boring tasks. See pape
19 for an explanation.

[

L
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xx Took 79: a2

Examining TIMES '(x), looking for patterns involving its values.

2 Reasons: (1) TIMES"! is related to the newly-interesting concept "Divisors-of".
{2) Many examples of TIMES™! are known, to induce from.

Looking specifically at TIMES (12), which is { (12) (2 6){2 2 3) (3 4} }.
13 conjectures proposed, after 2.0 seconds.
e.g. "TIMES }(x) always contains a bag containing only sven numbers”.
Testing the conjectures on other examples of TIMES.

§ false conjectures deal with sven numbers.
AM will sometime consider the restriction of TIMES"! to sven numbers.

Only 2 out of the 13 conjectures are verified for ali 26 known sxamples of TIMES":

Conjecture 1: TIMES"!(x) always contains a singleton bag.
e.g. TIMES" (12), which is { (12) (2 6) (2 2 3) {3 4) }, contains (12).
e.g. TIMES (13), which is { (13) }, contains {13).

Crealing a new concept, "Single-limes”.
Single-times is a relation from Numbers {0 Bags-of-numbers.

Single-times(x) is all bags in TIMES (x) which are singletons.
e.g. Single-times(i2)={ {12) }.
e.g., Single-limes(13}={ {13} }.

Conjecture 2: TIMES (x) slways coniains a bag containing only primes.
e.g., TIMES 1(12), which is { (12) {2 6) (2 2 3) (3 4) }, contains (2 2 3).
e.g., TIMES 1(13), which is { {13) }, contains (13).

Creating a new concept, "Prime-times”.
Prime-times is a relation from Numbers 10 Bags-of-numbers.

Prime-times(x} is al! bags in TIMES }{x) which contain only primes.
e.g. Prime-times{12}={ (23 3} }.
0.8, Prime-times{13)={ {i3) }.
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= Task 80: 82
Considering the concept "Prime-times”, |

2 Reasons: {1} Conjecs about Prime-times will tell much about Primes and TIMES.
{2) Focus of stiention: AM recently defined Prime-times.

Looking specifically al Prime-times{48), whichis {{22 2 2 3) }.
4 conjectures proposed, alter .6 seconds.
8.g.. “x is never inside sny member of Prime-times{x)".
Testing them on other axampies of Prime-times.

Only 1 out of the 4 conjectures are verified for all 23 known examples of Prime-limes:

Conjecture 1: Prime~times{(x) is always a singleton set.
That is, Prime-limes is a function, not just a relation.
e.g., Prime-times(48), which is { (2 2 2 2 3) }, is a singleton set.
2.g., Prime-times(47), which is { (47) }, is a singleton set.
This holds for all 17 known examples of Prime-times. (Chance of coincidence is .0001)
This fails for 2 of the boundary cases {exireme numbers): 0 and 1.
Conjeciure is amended: Each number >1 is the product of a unique bag of primes.

| suspect that this conjecture may be very useful.®

USER: Call this conjecture “Unique factorization conjecture”.

J

To show that AM isn’t really always right on the mark,
the next sequence of tasks includes a crime of omission
{ignoring the concept of Partitions) and a false start
{worrying about numbers which can be represented as the
sum of two primes in precisely one way). Notice the
skip Aere; 3 tasks have been omitted.

B ow did AM know this? One of the {unfortunately few!) mets-heuristics in AM said the Tollowing: “When sing the 'IOOK
al the inverse of axireme lems under the operation 1’ rule, Tack the following note onto the

interest facet of the new concept which is treated: ‘Conjectures involving this concept and § lor
=!) are natural, interesting, end probably useful’ Nov the concept PRARS wae defined
using the ‘extrema’ heuristic ruls, with tsDivisors-of. When PRIMES wes first created, the mete-rule we just

division {or multiplication) are natural, interesting, and probably useful’ Tha the
unigue fecteriation conjciure triggers this festure, wheres Goldbech's conjecivre woukin't.
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2% Took 84: 2%

Examining ADD Y(x), looking for patterns involving its values.

2 Reasons: (1) ADD! is analogous to the newly-interasting concept "TIMES",
{2} Many examples of ADD! are known, 0 induce from.

Looking specifically af ADD HE), whichis {(11 1110001112113) {1122)
{(11Q)(123)(15)(222)(24a8)(3 3) 8)}.

17 conjectures proposed, after 3.9 seconds.

eg “ADD (x) always contains a bag of primes”.
Testing them on other sxamplas of ADD.
Only 11 out of the 17 conjectures are verified for all 19 known examples of ADD":
3 out of the 11 conjeciures were false until amended.

Conjecture i: ADD" {x} never contains » singleton bag.

Conjecture 2: ADD '{x) always contains & bag of size 2 {also called 8 “pair” or a “doubieton™).
e.g, ADD (6) contains (1 5), (2 8), snd (3 3).
e.g.. ADD (4) contains (1 3), and {2 2).

Creating a new concept, "Pair-add".
Pair-add is a relation from Numbers to Pairs-of-numbers.

Pair-add(x} is all bags in ADD" (x) which are doubletons {i.e., of size 2).
e.g. Pair-add(12)={ {1 11){2 10)(3 9){4 8} (5 7){6 6) }.
e.g. Pair-add{d)={ {1 3} {2 2} }.

Conjecture 3: ADO (x) asiways contains a bag containing only i's.

Conjecture 10: ADD (x) always contains a pair of primes.
This conjecture is false. Conjeclure is amended:

“ADD!(x) usually {but not always) contains a pair of primes.”
e.g2., ADD (10) contains (3 7), and (5 5).
e.g., ADD" (4) contains (2 2).
e.g., ADD (11) does not contain a pair of primes.

Creating » new concept, "Prime-add’.
Prime-add is a relation from Numbers to Pairs-of-numbers.

Prime-add(x) is all begs in ADD™'(x) which sre pairs of primes.
2.3, Prime-add(12)={ (5 7) }.
e.g. Prime-add{10)={ {3 7) {5 5) }.
e.g, Prime-add{11) = { }

E
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ak Task 106: a%
Considering the set of numbers for which Prime-add is defined (has non-emply value).

1 Reason: {1) Prime-add often has non-ampty vaive. Worth isolating that case.

Warning: no task on the sgends has an interestingness value above 200!!!

Creating a new concept "Prime-addable”.
Prime-addable is a kind of Number. x is Prime-addable if Prime-add{x)} is non-amply.

Will spend 5.0 seconds filling in examples of Prime-addable.
18 examples found. Here are some of them: 456 7891012 13 i417 16 18.
Empirically, all even numbers are also in this sel (ignoring boundary cases: 0 2 4 $6).
So conjectured. Danger: must examine boundary ceses: the numbers 0, 2, 4, and 6.
Two exceptions noticed. The only exceptions are the smallest boundary cases: 0, 2.
Conjecture is amended: All even numbers >2 are the sum of two primes.

Warning: | expect this conjecture will be cute but useless.

USER: Why?

Because the concept of “Primes” originally arose as exireme cases of Divisors-of. The more
closely an operation X is relsted to the concept Divisors-of, the more natural will be any
conjecture involving both that operation X and Primes. Eg., conjectures involving both
Primes and Times will be natursl snd useful. But this conjectures, which involves Primes and

ADD!, will be cute but useless, since the relation "ADD!" is unrelsted to the relation
"Divisors-of".

End of sxplanation.

USER: Call this conjecture "Goldbach's con jecture”.

=x Task (07: 8%
Considering the set of numbers for which the relation Prime-add is single-vaived.

3 Reasons:  {1) Prime-add often has singleton value, Worth isolating thal case.
{2) Restricled lo this set, Prime-add would be a function.
(3) Focus of sttention: AM recently worked on Prime-add.

Creating a new concep! "Uniquely -prime-addable”.
"Uniquely-prime-addable” is a kind of Number.
x is Uniquely -prime-addable if Prime-add{x) is a singleton.
Will spend 10.0 seconds filling in examples of Uniquely-prime-sddable.
11 examples found. Here are some of them: 45789 12 I3.
No obvious conjeciure derived empirically.

Will forget "Uniquely-prime-addable numbers”, if no Ties found in near future.
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2.5,Recappingthe Example

Let's once again eavesdrop on a mathematician, as he describes to a colleague what AM
did.

This example was preceded by the momentous discoveries of multiplication and division.
Several interesting properites of these operations were noticed. The first task which was
illustrated {xe Task §5 =x) involves exploring the concept of “divisors of a number”
{meaning all positive integers which divide evenly into the given number). After tiring of
finding examples of this relation, AM investigates extreme cases: that is, it wonders which
numbers have very few or very many divisors.

AM thus discovers Primes in a curious way. Numbers with 0 or 1 divisor are essentially
nonexistent, so they're not found to be interesting. AM notices that numbers with 3 divisors
always seem to be squares of numbers with 2 divisors (primes). This raises the
interestingness of several concepts, including primes. Soon (s% JASK 79 =s), another
conjecture involving primes is noticed: Many numbers seem to factor into primes. This
causes a new relation to be defined, which associates to a number x, all prime factorizations
of x. The first question AM asks about this relation is "is it a function?”. This question is
the full statement of the unique factorization conjecture: the fundamental theorem of
arithmetic. AM recognized the value of this relationship, and assigned it a high
interestingness rating.

In a similar manner, though with lower hopes, it noticed some more relationships involving
primes, including Goldbach's conjecture. AM quite correctly predicted that this would turn
out to be cute but of no future use mathematically.

The last activity mentioned (sx TASK 107 ss) shows AM examining a rather nonstandard
concept: “numbers which can be written as the sum of a pair of primes, in only one way".
These are termed "uniquely-prime-addable” numbers. It was mildly unfortunate that AM
gave up on this concept before noticing that ps2 is uniquely-prime-addable, for any prime
number p, and that in fact these are the only odd uniquely-prime-addable numbers. The
session was repeated once, with a human user telling AM explicitly to continue studying this
concept. AM did in fact construct "Uniquely-prime-addable-odd-numbers”, and then notice
this relationship. Here we see an example of unstable equilibrium: if pushed slightly this
way, AM will get very interested and spend a lot of time working on this kind of number.
Since it doesn’t have all the sophistication (i.e, compiled hindsight) that we have, it can’t
know instantly whether what it's doing will be fruitless.
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Chapter 3. Control Structure
ai a ee a tt

‘Objectively’ given, ‘important’ problems may arise fin math]. But even then the
mathematician is essentially free to take it or leave it and turn to something else,
while an ‘important’ problem in [any other science] is usually a conflict,
contradiction, which ‘must’ be resolved. The mathematician Aas ¢ wide choice of
which way to turn, and Ae enjoys 8 very considerablefreedom in what Ae does.

== von Neumann

AM is one of those awkward programs whose representations only make sense if you
already understand how they will be operated on. A discussion of AM’s control structure
{this chapter and the next} must thus precede a discussion of concepts and how they are
represented (Chapter 5). Section 2.1 gave the reader a sufficient knowledge of AM’s
"anatomy" to follow these chapters. Thus armed with a cursory knowledge of the “statics” of
AM, we shall proceed to describe in detail its “dynamics”.

Section 3.1 will give the reader a feeling for the immensity of AM’s search space. This is
the “problem”. The next section will give the top-level “solution™: the flow of control is
governed by a job-list, an agenda of plausible tasks. Section 3.3 will present some details of
this global control scheme.

Chapter 4 deals with the way AM's heuristics operate; this could be viewed as the “low-
level” or local control structure of AM. Chapter 5 contains some detailed information
about the actual concepts (and heuristics) AM starts with, and a little more about their
design and representation. The reader is also directed to Appendix 5 which presents
several detailed examples of AM “in action’.

3.1, AM’s Search

To develop mathematics, one must always labor {0 substitute ideasfor calculations.

== Dirichlet

Let's first spend a paragraph reviewing how concepts are stored. AM contains a collection
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of data structures, called concepts. Each concept is meant to coincide intuitively with one
mathematical idea (eg. Sets, Union, Trichotomy). As such, a concept has several aspects or
parts, called facets (eg. Examples, Definitions, Domain/range, Worth). If you wish to think
of a concept as a frame’, then its facets are “slots” to be filled in. Each facet of a concept
will either be totally blank, or else will contain a bunch of entries. For example, the
Algorithms facet of the concept Union may point to several equivalent LISP functions, each
of which can be used to form the union of two sets’. Even the “heuristic rules” are merely
entries on the appropriate kind of facet (eg, the entries on the Interest facet of the
Structure concept are rules for judging the interestingness of Structures?).

At any moment, AM contains a couple hundred concepts, each of which has only some of its
facets filled in. AM starts with 115 concepts, and grows to about 300 concepts before
running out of time/space. Most facets of most concepts are totally blank. AM’s basic
activity is to select some facet of some concept, and then try to fill in some entries for that

stotd. Thus the primitive kind of “rask™ for AM is to deal with a particular facet/concept
pair. A typical task looks like this:

Check the eniries on the "Domain/range” facet of the "Bag-insert”™ concept

If the average concept has ten or twenty blank facets, and there are a couple hundred
concepts, then clearly there will be about 20x200=4000 "fill-in" type tasks for AM to work
on, at any given moment. If several hundred facets have recently been filled in, there will
be that many “check-entries” type tasks available. Executing a task happens to take around
ten or twenty cpu seconds, so over the course of a few hours only a small percentage of these
tasks can ever be executed.

Since most of these tasks will never be explored, what will make AM appear smart — or

stupid — are its choices of which task to pick at each moment.’ So it's worth AM’s spending
a nontrivial amount of time deciding which task to execute next. On the other hand, it had
better not be too much time, since a task does take only a dozen seconds.®

One question that must be answered is: What percentage of AM’s legal moves (at any

! The rassone Tor having multiple algorithms ie thet sometimes AM will want one thet is Test, sometimes AM will be more
concerned with sconomizing on storage, sometimes AM will went 19 “snalyze” an sigorithm, and for thet
purposs it must be 8 very un-optimized function, etc

2 A typical such rule is: “A structure is very interesting if all its slements are mildly intersting in precisely the same way.”
3 This » not quite completes In addition to filing in entries for a given Tacet/concept pair, AM may wish to check it, apt #

up, reorganize i, #lc

4 The procies "18 seconds average” figure i no! important. AR hauristic-search programs suffer this same handicap: As the
depth to which they've sessrched incresees, the percentages of nodes {at or sbove that level) which have
been examined decresuss sxpomentislly {sssuming the branching factor b is strictly larger than unity).

5 This is true of olf heuristic ssarch programs. The branchier the search, the more it spphes.
® The ensweri thet AM spends this “deciding” tima not jet before 2 tek i» picked, but rather aach time » task io added

to the agenda.A kitle under | cpu second Wm spent, on the average, to place the task preperlyon the
asgends,to seein it 8 meaningful numeric priority value. So “sclion time” i roughly one erder of magnitude
lerger then “deciding time".
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typical moment) would be considered intelligent choices, and what percentage would be
irrational? The answer comes from empirical results. The percentages vary wildly
depending on the previous few tasks. Sometimes, AM will be obviously "in the middle” of
a sequence of tasks, and only one or two of the legal tasks would seem plausible. Other
times, AM has just completed an investigation by running into dead-ends, and there may be
hundreds of tasks it could choose and not be criticized. The median case would perhaps
permit about 5 of the legal tasks to be judged reasonable.

It is important for AM to locate one of these currently-plausible tasks, but it's not worth
spending much time deciding which of them to work on next. AM still faces a huge search:
find one of the 6 winners out of a few thousand candidates.

Its choice of tasks is made even more important due to the 10-second “cycle time” — the time
to investigatefexecute one task. A human user is watching, and ten seconds is a nontrivial
amount of time to him. He can therefore observe, perceive, and analyze each and every
task that AM selects. Even just a few bizarre choices will greatly lower his opinion of AM’s
intelligence. The trace of AM’s actions is what counts, not its final results. So AM can't
draw much of its apparent intelligence from the speed of the computer.

Chess-playing programs have had to face the dilemma of the trade-off between “intelligence”
(foresight, inference, processing...) and total number of board situations examined. In chess,
the characteristics of current-day machines, language power vs. speed, and (to some extent)
the limitations of our understanding of how to be sophisticated, have to date unfortunately

still favored fast, nearly-blind’ search. Although machine speed and LISP slowness may
allow blind search to win over symbolic inference for sAallow searches, it can't provide any
more than a constant speed-up factor for an exponential search. Inference is slowly gaining
on brute forced and must someday triumph.

Since the number of “legal moves” for AM at any moment is in the thousands, it is
unrealistic to consider “systematically” walking through the entire space that AM can reach.
In AM’s problem domain, there is so much “freedom” that symbolic inference finally can
win over the “simple but fast” exploration strategy'®.

3.2, Constraining AM's Search |

7 ie, Using 3 very simple static avaluation function
8 Eg, ses [Berliner 74] There, searching 7 used mainly 10 verify plaveible moves {a convergent process), not to diecover

tham (3 bushier search).

9 sg. exhaustively, or using of 8 minimaxing, eic.
10 This = the suthor's opinion, partially supported by the results of AM Paul Coban disagrees, feeling that machine speed

should be the key to an sutomated methemalican's succes.
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T here exist too many combinations to consider all combinations of existing entities;
the creative mind must only propose those of potential interest.

== Poincare’

A great deal of heuristic knowledge is required to constrain the necessary processing
effectively, to zero in on a good task to tackle next. This is done in two stages.

I. A list of plausible facet/concept pairs Is maintained. Nothing can get onto this list
unless there is some reason why filling in {or checking) that facet of that concept
would be worthwhile.

2. All the plausible tasks on this "job list” are ranked by the number and strength of
the different reasons supporting them. Thus the facet/concept pairs near the top of
the list will all be very promising tasks to work on.

The first of these constraints is akin to replacing a legal move generator by a plausible
move generator. The second kind of constraint is akin to using a heuristic evaluation
function to select the best move from among the plausible ones.’’

The job-list or 2genda is a data structure which is a natural way to store the results of these
procedures. It is (1) a list of all the plausible tasks which have been generated, and (2) it is
kept ordered Ly (he numeric estimate of how worthwhile each task is. A typical entry on
the agenda might look like this:

Fil in the EXAMPLES focel of the PRIMES concept |

| Reasons for Alling in this facet
1. No examples of primes srs known so far.

2. Focus of sllention: AM just defined Primes. |

| Overall value of these reasons
| 250

H pyar ai pragrame {sg [Semunl §7]) have indicated thet constreining generation (1) is mors important then sephisticeted
srdoring of the resultant candidetes {2}. This wae tonfirmad by the sxperiments performed on AM
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The actual top-level control structure is simply to pluck the top task from the agenda and
execute it. That is, select the facet/concept pair having the best supporting reasons, and try
to fill in that facet of that concept.

While a task Is being executed, some new tasks might get proposed and merged into the
agenda. Also, some new concepts might get created, and this, too, would generate a furry of
new tasks.

After AM stops filling in entries for the facet specified in the chosen task, it removes that
task from the agenda, and moves on to work on whichever task is the highest-rated at that
{ime.

The reader probably has a dozen good questions in mind at this point {eg., How do the
reasons get rated?, How do the tasks get proposed?, What happens after a task is
seiected?...). The next section should answer most of these. Some more judgmental ones
(How dare you propose a numeric cakulus of plausible reasoning? If you slightly de-tune
all those numbers, does the system's performance fali apart?..) will be answered in Chapter
7.

33, The Agenda

Creative energy is used mainly to ask the right question.

== Holmos

35.1. Why an Agenda?

This subsection provides motivation for the following one, by arguing that a job-list scheme
is a natural mechanism to use to manage the task-selection problem AM faces. If that seems
obvious to you, feel free to skip ahead to section 3.3.2, page 33.

Recall that AM must zero in on one of the best few tasks to perform next, and it repeatedly
makes this choice. At each moment, there might be thousands of directions to explore
{plausible tasks to consider).

If all the legal tasks were written out, and reasons were thought up to support each one,
then perhaps we could order them by the strength of those reasons, and thereby settle on
the “best” task to work on next. In order to appear “smart” to the human user, AM should
never execute a task having no reasons attached.

Some magical function will be assumed to exist, which provides a numeric rating, a priority
value, for any given task. The function looks at a given facet/concept pair, examines all the
associated reasons supporting that task, and computes an estimate of how worthwhile it
would be for AM to spend some time now working on that facet of that concept.



Chapter 3 AM: Discovery in Mathamatics pe Heuristic Sesrch -33-

So AM will maintain a list of those legal tasks which have some good reasons tacked onto
them, which justify why each task should be executed, why it is plausible. At least
implicitly, AM has a numeric rating for each task. The obvious control algorithm is to
choose the task with the highest rating, and work on that one next.

Assuming the tasks on this list are kept ordered by this numeric rating, then AM can just
repeatedly pluck the highest task and execute il. While it's executing, some new tasks might
get proposed and added to the list of tasks. Reasons are kept tacked onto each task on this
list, and form the basis for the numeric priority rating.

Give or take a few features, this notion of a "job-list” is the one which AM uses. It is also

called an agenda.'? "A task on the agenda” is the same as "a job on the job-list™ is the same
as "a facet/concept pair which has been proposed” is the same as "an active node in the
search space”. Henceforth, I'll use the following all interchangeably: task, facet/concept pair,
node, job. This should break up the monotony.

The favor of agenda-list used here is similar to the control structure of HEARSAY-II
{Lesser/Fennel/Erman/Reddy 75]. Vast numbers of tasks are proposed and added to the
job.list. Occasionally, when some new data arrives, some task is repositioned

3.3.2. Details of the Agenda scheme

At each moment, AM has many plausible tasks (hundreds or even thousands) which have
been suggested for some good reason or other, but haven't been carried out yet. Each task
is at the level of working on a certain facet of a certain concept: filing it in, checking it, etc.
Recall! that each task aiso has tacked onto it a list of symbolic reasons explaining why the
task is worth doing.

In addition, a number (between 0 and 1000} is attached to each reason, representing some

absolute measure of the value of that reason (at the moment). One global formula'®
combines all the reasons’ values into a single priority value for the task as a whole. This
overall rating is taken to indicate how worthwhile it would be for AM to bother executing
that task, how interesting the task would probably turn out to be. The “intelligence” of
A M's selection of task is thus seen to depend on this one formula. Yet experiments show
that its precise form is not important. We conclude that the “intelligence” has been pushed
down into the careful assigning of reasons (and tAeir values) for each proposed task.

12 Borrowed from Kaplan's term for the job-list presant in KRL (ses {Bobrow & Winograd 77]). For en sarlier genersi
discussion of agandss, see [Kmith 88)

13 and cover my sloppiness. Seriously, thanks to English, sech of these terms will conjure up » sightly different image: »
*ob™ is something to do, 3 “node” ie an item in 8 seerch space, “facet/concept pair” reminds you of the
format of » teek

14 Here is that formula. Worth) « ISQRT{SUM RON x { 02aWortMA) + 03xWorth{F} « 05xWorth{C)], where J = job to be
prdged = {Act A; Facet F, Concept C), and Rr} are the retings of the reasom supporting J. For the sample
job pictured in the box below, AeFilin, FuExsmpies, CsSets, {R.1+{100,100,200). The formula wil be
repeated -- and sapleined — in Seclion 4.2, on pegs 20.
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A typical entry on the agenda might look like this:

TASK: Fill-in sxampias of Seis

PRIORITY: 300

REASONS: |
100: No known examples for Seis so far. |

100: Failed fo fillin axamples of Set-union, for lack of sxampias of Seis |

200: Focus of attention: AM recently worked on the concept of Set-union

Notice the similarity of this to the initial few lines which AM types just after it selects a job
to work on.

The flow of control is simple: AM picks the task with the highest priority value, and tries to
execute it. As a side effect, new jobs occasionally get added to the agenda while the task is
being executed.

The global priority value of the task also indicates how much time and space this task
deserves. The sample task above might rate 20 cpu seconds, and 200 list cells. When either
of these resources is used up, AM terminates work on the task, and proceeds to pick a new
one. These two limits will be referred to in the sequel as “time/space quanta” which are
allocated to the chosen task. Whenever several techniques exist for satisfying some task, the
remaining time/space quanta are divided evenly among those alternatives; i.e, each method
is tried for a small time. This policy of parceling out time and space quanta is called
“activation energy” in [Hewitt 76] and called “resource-limited processes” in [Norman
Bobrow 75]. In the case of filling in examples of sets, the space quantum {200 cells) will be
used up quickly (long before the 20 seconds expire).

There are two big questions now:
1. Exactly how is a task proposed and ranked?

How is a plausible new task first formulated?
How do the supporting reasons for the task get assigned?
How does each reason get assigned an absolute numeric rating?
Does a task’s priority value change? When and how?

2. How does AM execute a task, once it's chosen?

Exactly what can be done during a task’s execution?

The next chapter will deal with both of these questions. A detailed discussion of difficulties
and limitations of these ideas can be found in Section 7.2, on page 156.
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Chapter 4. Heuristic Rules

Assume that somehow AM has selected a particular task from the agenda — say “Fill-in
Examples of Primes”. What precisely does AM do, in order to execute the task? How are
examples of primes filled in?

The answer can be compactly stated as follows:
"AM selects relevant Aeuristics, and executes them.”

This really just splits our original question into two new ones: (i) How are the relevant
heuristics selected, and {ii} What does it mean for heuristics to be executed (eg.. how does
executing a heuristic rule help to fill in examples of primes?).

These two topics (in reverse order) are the two major subjects of this chapter. Although
several examples of heuristics will be given, the complete list is relegated to Appendix 3. !

The first section explains what heuristic rules look like {their “syntax”, as it were). The next
three sections illustrate how they can be exscuted to achieve their desired results (their
“semantics”).

Section 4.5 explains where the rules are stored and how they are accessed at the appropriate
times.

Finally, the initial body of heuristics is analyzed. The informal knowledge they contain is
categorized and described. Unintentionally, the distribution of heuristics among the
concepts is quite nonhomogeneous; this too is described in Section 48.

4.1, Syntax of the Heuristics

Let's start by seeing what a heuristic rule looks like. In general (see {Davis & King 75) for
historical references to production rules), it will have the form

If <situational fluent>
Then <actions>

As an illustration, here is a heuristic rule, relevant when checking examples of anything:

! There they ore condensed and phessed in Englioh. The reader wishing to sos samples of the heuristicsse they sctusily
wore coded in LISP should glance at Appendix 2.3.
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| if the current task is fo Check Examples of sny concept X,
and (Forsome Y) Y is a generalization of X,
and Y has at feast 10 axamples,
and sll examples of Y :re also examples of X,

Than print the following conjecture: X is really no more specialized than Y,
snd add it to the Examples facet of the concept named “"Conjeciures”,
snd add the following task io the agendas: "Check examples of Y™, for the reason: "Just

at Y was no more general than X, one-of Ganerslizations(¥Y) may turn out fo
be no more general then Y7, wilh 3 rating for that reason computed as the
average of:  [[Exempies{Generslizations(Y))l, JExamples(Y), ond
Priorily{Current task).

As with production rules, and formal grammatical rules, each of AM'’s heuristic rules has a
left-hand.side and a right-hand-side. On the left is a test to see whether the rule is
applicable, and on the right is a list of actions to take if the rule applies. The left-hand-side
will also be called the IF-part, the predicate, the preconditions, left side, or the situational
fluent of the rule. The right-hand-side will sometimes be referred to as the THEN-part, the
response, the right side, or the actions part of the rule.

4.1.1. Syntax of the Left-hand Side

The situational fluent is a LISP predicate, 2 function which always returns True or False
{in LISP, it actually returns either the atom T or the atom NIL). This predicate may
investigate facets of any concept {often merely to see whether they are empty or not), use the
results of recent tests and behaviors (eg., to see how much cpu time AM spent trying to
work on a certain task), etc.

The left side is a conjunction of the form Pl A P2 A.. All the con juncts, except the very
first one, are arbitrary LISP predicates. They are only constrained to obey two
commandments:

1. Be quick! (return either True or False in under 0.1 cpu seconds)
2. Have no side effects! {destroying or creating list structures or Lisp functions, resetting

variables)

Here are some sample conjuncts that might appear inside a left-hand side (but not as the
very first conjunct):

* More than half of the current task’s lime quantum is siready exhausted,

* There are some known sxamples of Structures...

* Some generslization of the current concept (the concept mentioned as pari of the
current task) has an empty Examples facet...

* The space quantum of the current task is gone, but its time allocation is less than 10%
used up,...

* A task recently selected had the form “Restructure facet F of concept X™, where F is
any facel, and X is the current concept...
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* The user has used this sysiem a! leas! once beiore,..

¢ it's Tuesday,..

The very first conjunct of each left-hand side is special. its syntax is highly constrained. it
specifies the domain of applicability of the rule, by naming a particular facet of a particular
concept to which this rule is relevant.

AM uses this first conjunct as a fast “pre-precondition”, so that the only rules whose left.
hand sides get evaluated are already known to be somewhat relevant to the task at hand. In
fact, AM physically attaches each rule to the facet and concept mentioned in its first
conjunct? This will be discussed in more detail in Section 4.5, "Gathering relevant
heuristics”. This first conjunct will always be written out as follows, in this document
{where A, F, and C are specified explicitly):

The current task {the one just selecled from the agenda) is of the form "Do action A
to the F facet of concept LC”

This can be viewed as the “syntax” of the very first con junct on each rule's left-hand side.
Here are two typical examples of allowable first conjuncts:

e The current task {the one last selected from the agenda) is of the form “Chath the

Domain/range facel of concep! X”, where X is any operation

« The curren! task is of the form "Fillin the examples facet of the Primes concept”

These are the only guidelines which the left-hand side of a heuristic rule must satisfy. Any
LISP predicate which satisfies these constraints is a syntactically valid left-hand side for a
heuristic rule. It turned out later that this excessive freedom made it difficult for AM to

inspect and analyze and synthesize its own heuristics; such a need was not foreseen at the
time AM was designed.

Because of this freedom, there is not much more to say about the left-hand sides of rules.
As the reader encounters heuristics in the next few sections, he should notice the

(unfortunate) variety of conjuncts which may occur as part of their left-hand sides.

4.12. Syntax of the Right-hand Side

“Running” the left-hand-side means evaluating the series of conjoined little predicates there,
to see if they ali return True. If so, we say that the rule “triggers”. In that case, the right-
hand-side is “run”, which means executing all the actions specified there. A single heuristic
rule may have a list of several actions as its right-hand-side. The actions are executed in
order, and we then say the rule has finished running.

Only the right-hand-side of a heuristic rule is permitted to have side effects. The right side
of a rule is a series of little LISP functions, each of which is called an action.

2 Sometimes, | will mention where 3 terlein rule is attached: mn thet cose, | can omit axphcit mention of the first conpmet.
Conversely, if | include that conpunct, | needn't tall you whats the rule is stored
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Semantically, each action performs some processing which is appropriate in some way to the
kinds of situations in which the left-hand-side would have triggered. The final value that
the action function returns is irrelevant.

Syntactically, there is only one constraint which each function or “action” must satisfy: Each
action has one of the following 3 side.effects, and no other side-effects:

1. It suggests a new task for the agenda.
2. It causes a new concept to be created.
3. It adds {or deletes) a certain entry to a particular facet of a particular concept.

To repeat: the right side of a rule contains a list of actions, each of which is one of the
above three types. A single rule might thus result in the creation of several new concepts,
the addition of many new tasks to the agenda, and the filing in of some facets of some
already-existing concepts.

These three kinds of actions will now be discussed in the following three sections.

This section discusses the “proposing a new task” kind of action.

Here is the basic idea in a nutshell: The left-hand-side of a rule triggers. Scattered among
the “things to do” in its right-hand-side are some suggestions for future tasks.These new
tasks are then simply added to the agenda list.

4.2.1. An Illustration: “Fill in Generalizations of Equality”

If a new task is suggested by a heuristic rule, then that rule must specify how to assemble
the new task, how to get reasons for it, and how to evaluate those reasons. For example,
here is a typical heuristic rule which proposes a new task to add to the agenda. It says to
generalize a predicate if it is very rarely? satisfied:

H the current task was (Fill-in axamples of X),
and X is a pradicale,
and more then 100 items sre knownin the domainof X,
andot least 10 cpu secondswere spent trying fo randomly instentiste X,
and the ratio of successes /lsiluras is both X0 and less then 05

. Then add the following lask to the egends: {Fill-in generalizetions of X), for the following
reason:

3 The most suspicious part of the situational Tivent (the F-part) is the number “05°. Where dud it coma from? Hint: if oll
hmans had  Imgers, thie would probably be 005 in bees 1. Seriously,one con change thie value (to D1 or
to 25) with virtually no change in A's behavior. This i the conchusion of experiment 3 (ses Section

|
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"X is rarely satisfied; a slightly less restrictive concept might be more interesting”.

This Fanon Tat is computed su three limes the ratio of nonexamples/examples
Even this is one full step above the actual LISP implementation, where “X is a predicate”
would be coded as “(MEMBER X (EXAMPLES PREDICATE))". The function EXAMPLES{X)

rummages about looking for already-existing examples of X. Also, the LISP code contains
information for normalizing all the numbers produced, 30 that they will lie in the range 0-
1000.

Let's examine an instance of where this rule was used. At some point, AM chose the task
*Fillin examples of List-aquality™. One of the ways it filled in examples of this predicate was
to run it on pairs of randomly-chosen lists, and observe whether the resuit was True or
False®. Say that 244 random pairs of lists were tried, and only twice was this predicate
satisfied. Sometime later, the IF part of the above heuristic is examined. All the conditions
are met, so it “triggers”. For example, the “ratio of successes to failures” is just 2/242, which
is clearly greater than zero and less than 0.05. So the right-hand-side (THEN-part) of the
above rule is executed. The right-hand side initiates only one action: the task “Fillin
generalizations of List-aquality” is added to the agenda, tagged with the reason “List-equality
is rarely satisfied; a slightly less restrictive concept might be more interesting”, and that
reason Is assigned a numeric rating of 3x(242/2) = 363.

Notice that the heuristic rule above supplied a little function to compute the value of the
reason. That formula was: “three times the ratio of examples/nonexamples found"
Functions of this type, to compute the rating for a reason, satisfy the same constraints as the
left-hand-side did: the function must be very fast and it must have no side effects. The
“intelligence” that AM exhibits in selecting which task to work on ultimately depends on the
accuracy of these local rule evaluation formulae. Each one is so specialized that it is “easy”
for it to give a valid result; the range of situations it must judge is quite narrow. Note that
these little formulae were hand-written, individually, by the author. AM wasn’t able to
create new little reason-rating formulae.

The reason-rating function is evaluated at the moment the job is suggested, and only the
numeric result is remembered, not the original function. in other words, we tack on a list of
reasons and associated numbers, for each job on the agenda. The agenda doesn’t maintain
copies of the reason-rating functions which gave those numbers. This simplification is used
merely to save the system some space and time. |

Let's turn now from the reason-rating formulae to the reasons themselves. Each reason
supporting a newly-suggested job Is simply an English sentence (an opaque string, a token).
AM cannot do much intelligent processing on these reasons. AM is not allowed to inspect
parts of it, parse it, transform it, etc. The most AM can do is compare two such tokens for
equality. Of course, it is not to hard to imagine this capability extended to permit AM to

‘ The True ores bacams sxampiss of Linl-squelity, snd the peire of te whith duin't satiety this predicate become known ae
non-ansmples {Taiures, fobies,.) A heuristic simider to this “rondom inslentistion™ ane is Wustrated in
Section 44, on page 48

5 in actuality,this would be checked to ensure thet the result ine between © snd 1000
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syntactically analyze such strings, or to trivially compute some sort of “difference” between
two given reasons.® Each reason is assumed to have some semantic impact on the user, and
is kept around partly for that purpose.

Each reason will have a numeric rating (a number between 0 and 1000) assigned to it
locally, by the heuristic rule which proposed the task for that reason. One global formula
will then combine all the reasons’ ratings into one single priority value for the task.

4.2.2. The Ratings Game

In general, a task on the agenda list will have several reasons in support of it. Each reason
consists of an English phrase and a numeric rating. How can a task have more than one
reason? There are two contributing factors: {i} A single heuristic rule can have several
reasons in support of a job it suggests, and (ii) When a rule suggests a “new” task, that very
same task may already exist on the agenda, with quite distinct reasons tacked on there. In
that case, the new reason(s) are added to the already-known ones.

One global formula looks at all the ratings for the reasons, and combines them into a single
priority value for the task as a whole. Below is that formula, in all its gory detail:

Worth{J} = §SQRT{SUM RN x { .2xWorth{A} + 3:Worth(F) + S5:Worth{C)]

Wheras J = job to be judged = (Act A, Face! F, Concept C)
and {R;} sre the ratings of the reasons supporting J

For example, consider the job ] = (Check examples of Primes). The act A would be
“Check”, which has a numeric worth of 100. The facet F would be “Examples”, which has
a numeric worth of 700. The concept C would be “Primes”, which at the moment might
have Worth of 800. Say there were four reasons, having values 200, 300, 200, and 500.
The double lines "i." indicate normalization, which means that the final value of the
square-root must be between 0 and 1, which is done by dividing the result of the Square-
root by 1000 and then truncating to 1.0 if the result exceeds unity.

In this case, we first compute Sqrt(2002 + 3002 + 2002 + 5002) « Sqri{420,000), which is
about 648. After normalization, this becomes 0.648. The expression in square brackets in

the formula’ is actually computed as the dot-product of two vectors®; in this case it is the
dot-product of (100 700 800) and {2 .3 .5), which yields 630. This is multiplied by the
normalized Square-root value, 0648, and we end up with a final priority rating of 408.

The four reasons each have a fairly low priority, and the total priority of the task is

®n im in Tact trivial10 IMAGINE 1. Of course DOINGA is quite3 bit lees trivial In fact,it probablyis the toughestof afl the
“open research problems” Il propose.

7 Namely, [ 0.25Worth(A) « 0 3xWorth(F) + 0.5xWorth(C) }
8 pomaly, <WerthA), Worth(F), Worth(C)> and < 2, 3, 5 >. The dot-product of <a! 32 83_> and <b! b2 53> is defined

oe (ol abi) es (62 x b2) « (ad 233)
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therefore not great. It is, however, higher than any single reason multiplied by 0648. This
is because there are many distinct reasons supporting it. The global formula uniting these
reasons’ values does not simply take the largest of them {ignoring the rest), nor does it
simply add them up.

The above formula was intended originally as a first pass, an ad Aoc guess, which | expected
I'd have to modify later. Since it has worked successfully, I have not messed with it. There
Is no reason behind it, no justification for taking dot-products of vectors, etc. 1 concluded,
and recent experiments tend to confirm, that the particular form of the formula is
unimportant; only some general characteristics need be present:

I. The priority value of a task is a monotone increasing function of each of its reasons’
ratings. If a new supporting reason is found, the task’s value is increased. The
better that new reason, the bigger the increase.

2. If an already-known supporting reason is re-proposed, the value of the task is not
increased (at Jeast, it's not increased very much). Like humans, AM is fooled
whenever the same reason reappears in disguised form.

3. The priority of a task involving concept C should be a monotone increasing
function of the overall worth of C. Two similar tasks dealing with two different
concepts, each supported by the same list of reasons and reason ratings, should be
ordered by the worth of those two concepts.

I believe that ail of these criteria are absolutely essential to good behavior of the system.
Several of the experiments discussed later bear on this question (See Section 6.2, page
125). Note that the messy formula given on the last page does incorporate ali 3 of these
constraints. In addition, there are a few features of that formula which, while probably not
necessary or even desirable, the reader should be informed of explicitly:

1. The task’s value does not depend on the order in which the reasons were discovered.
This is not true psychologically of people, but it is a feature of the particular
priority-estimating formula initially selected.

2. Two reasons are either considered identical or unrelated. No attempt is made to
reduce the priority value because several of the reasons are overlapping
semantically or even just syntacticaly. This, too, is no doubt a mistake.

3. There is no need to keep around all the individual reasons’ rating numbers. The
addition of a new reason will demand only the knowledge of the number of other
reasons, and the oid priority value of the task.

4. A task with no reasons gets an absolute zero rating. As new reasons are added, the
priority slowly increases toward an absolute maximum which is dependent upon
the overall worth of the concept and facet involved.

There is one topic of passing interest which should be covered here. Each possible Act A
(eg. Fillin, Check, Apply) and each possible facet F (eg, Examples, Definition, Name(s) is
assigned a fixed numeric value {by hand, by the author). These values are used inside the
formula on the last page, where it says 'Worth{(A)' and "Worth(F). They are fairly resistant
to change, but certain orderings should be maintained for best results. Eg, “Examples”
should be rated higher than “Specializations”, or else AM may whirl away on a cycle of
specialization long after the concept has been constrained inte vacuousness. As for the Acts,
their precise values turned out to be even less important than the Facets’

Now that we've seen how to compute this priority value for any given task, let's not forget
what it's used for. The overall rating has two functions:
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(i) The tasks on the agenda list are ordered by their ratings, and AM always chooses
the top task. Thus this rating determines which task to execute next. This is not an
ironclad policy: In reality, AM prints out the top few tasks, and the user has the
option of interrupting and directing AM to work on one of those other tasks
instead of the very top one.

{1i) Once a task is chosen, its overall rating determines how much time and space AM
will expend on it before quitting and moving on to a new task. The precise
formulae are unimportant. Roughly, the 0.1000 rating is divided by ten to
determine how much time to allow, in cpu seconds. The rating Is divided by two to
determine how much space to allow, in list celis.

43. Heuristics Create New Concepts

Recall that a heuristic rule’s actions are of three types:
1. Suggest new tasks and add them to the agenda.
2. Create a new concept.
3. Fill in some entries for a facet of a concept.

This subsection discusses the second activity.

Here is the basic idea in a nutshell: Scattered among the “things to do” in the right-hand-
side of a rule are some requests to create specific new concepts. For each such request, the
heuristic rule must specify how to construct it. At least, the rule must specify ways of
assembling enough facets of the new concept to disambiguate it from all the other known
concepts. Typically, the rule will explain how to fill in the Definition of — or an Algorithm
for — the new concept. After executing these instructions, the new concept will “exist”, and
a few of its facets will be filled in, and a few new jobs will probably exist on the agenda,
indicating that AM might want to fill in certain other facets of this new concept in the near
future.

4.3.1. An Illustration: Discovering Primes

Here is a heuristic rule that results in a new concept being created:

i the current task was {Fill-in sxamples of F), |
and F is an operation from domasin space A inlo range space B,
and more than 100 items are known sxamples of A {in the domain of Fj,
and more then 10 range items (in B) were found by applying F lo theses domain items,
and at least 1 of these range items is » distinguished member (esp: extremum)” of B,

Then {for sach such distinguished member 'b'¢B) creaie ihe following new concept:

be This is handled as follows: AM takes the given hat of range items. lt eliminates sny which are not interesting {according to
intereeta{B)) or axtrame (an antry on BExs-Bdy, the boundsry ssamples of B). Finelly, all those extreme
range items ars moved to the froal of this let. AM begine waking down this ei, cresiing new concepts
sccording lo tha rules Sooner or leter, a timer {er a storsge-epece-waicher} will terminates thie costly
activity. Only the frontmost few renge tems on the int wil have generated new concepis. Se “sepucially”
raslly jmt means priority tonemaraton
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Name: F-inverse-of-b

Definition: A {x} (F{x)is b)

Generalization: A

| Worth: Average(Worth(A), Worlh(F}, Worth(B), Worth(b), [IExamples(B)})
| interest: Any conjecture involving both lhis concept and either F or inverse(F)

In case the user asks, the reason for doing this is: "Worthwhile investigating those A's which
have an unusual F-valus, namely, those whose F-vaiuve is b”

The otal amount of time 10 spend right now on all of these new concepls is compuled as:
Half the remaining cpu lime in the current task’s time quenium.

The lola] amount of space 10 spend righl now on sath of these new concepts is computed ae:
The remaining space quantum for the current lesk.

Although some examples of F-inverse-of-b might be easily obtained (or already known) at
the moment of its creation, the above rule doesn’t specifically tell AM how to fill in that
facet. The very last line of the heuristic indicates that a few cpu seconds may be spent on
just this sort of activity: filling in facets of the new concept which, though not explicitly
mentioned in the rule, are easy to fill in now. Any facet X which didn't get filled in “right
now" will probably cause a new task to be added to the agenda, of the form: “Fillin facet X of
concept F-inverse-of-b". Eventually, AM would choose that task, and spend a large
quantum of time working on that single facet.

Heuristics for the new concept are quite hard to fill in. This was one of AM’s most serious
limitations, in fact (see Chapter 7). Above, we see a trivial kind of “heuristic schema” or
template, which gets instantiated to provide one new, specialized heuristic about the new
concept. That new heuristic tells how to judge the interestingness of any con jecture which
crops up involving this new concept. Whenever such conjectures get proposed, they are
evaluated by calling on just such heuristics.

Now let's look at an instance of when this heuristic was used. At one point, AM was
working on the task “Fill-in examples of Divisors-of".

This heuristic’s IF-part was triggered because: Divisors-of is an operation (from Numbers to
Sets of numbers), and far mor2 than 100 different numbers are known, and more than 10

different sets of factors were found altogether, and some of them were distinguished by
being extreme kinds of sets: empty-sets, singletons, doubletons and tripletons.

After its left side triggered, the right side of the heuristic rule was executed. Namely, four
new concepts were created immediately. Here is one of them:
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Name: Divisors-of-inverse=-oi-Doubleicn | |
Definition: A x) { Divisors-oi(x) is a Doubleton )

Generalization: Numbers

Worth: 100

Interest: Any tonjeclurs involving both this concept and either Divisors-of or Times

This is a concept representing a certain class of numbers, in fact the numbers we call
primes. The heuristic resets a certain variable, so that in case the user interrupts and asks
WAy?, AM informs him:

"This concept was created because it's worthwhile investigating those numbers which
have an extreme divisors-of value; in this case, numbers which have only two divisors”.

AM was willing to spend half the remaining quantum of time allotted to "Fillin exsmples of
Divisors-of™ on these four new concepts'®.

The heuristic rule is applicable to any operation, not just numeric ones. For example, when
AM was filling in examples of Set-Intersection, it was noticed that some pairs of sets were
mapped into the extreme kind of set Empty-set. The above rule then had AM define the
concept of Disjointness: pairs of sets having empty intersection.

4.3.2. The Theory of Creating New Concepts

All the heuristic rule must do is to fill in enough facets so that the new concept is
disambiguated from all the others, so that it is “defined” clearly. Should AM pause and fill
in lots of facets at that time? After all, several pieces of information are trivial to obtain at
this moment, but may be hard to reconstruct later {eg. the reason why C was created). On
the other hand, filling in anything without a good reason is a bad idea (it uses up time and
space, and it won't dazzle the user as a brilliant choice of activity).

So the universal motto of AM is to fil in facets of a new concept if — and only if — that
Alling-in activity will be much easier at that moment than later on.

In almost all cases, the following facets'! will be specified explicitly in the heuristic rule, and
thus will get filled in right away: Definitions, Algorithms, Domain/range, Worth, plus a tie to

10 come triviel details: One-aighth of the remaining lime i spent on each of thess & concepts: Numbers-with-O-divisors,
Numbers-with-1-divisor, Numbers-wilh-2-divisors, Numbers-with-3-divimors. The original timefapace Kmite
wore in reshtysbout 25 cpu seconds and 300 et cells, and st the moment this heuristic wes called, only
shout 10 seconds and $00 calls remained, 30 og. the concept Primes was dotted only 1.2 cpu secondsto
“get off the ground”. This was no problem, se it used for lass then that. The heuriatic rule states that sach
of the four new concepls may vse up the full remsining space allocation {800 cells), and, ag, Primes
needed only a fraction of that initially.

1 the reader may wish tu glence ahead To Section 5.2, page 87 to note the full range of facets that any concept may
possess: whet their nemas sre, and the kind of nformetion the! ie stored in each
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some related concept (eg. if the new concept is a generalization of Equality, then we can
trivially fll in an entry on its Specializations facet: "Equality”.)

On the other hand, the following facets will not be trivial to fll in: Conjectures, Examples,
Generalizations, Specializations, and Interestingness. For example, filling in the
Specializations facet of a new concept may involve creating some new concepts; finding some
entries for its Conjectures facet may involve a great deal of experimenting; finding some
Examples of it may iavelve twisting its definition around or searching. None of these is
easier to do at time of creation than any other time, 30 it's deferred until some reason for
doing it exists.

For each such “time-consuming” facet F, of the new concept C, one new task gets added to
the agenda, of the form “Fill in entries for facet F of concept C7, with reasons of the form
"Because C was just created,” and also "No entries exist so far on CF™'. Most of the tasks
generated this way will have low priority ratings, and may stay near the bottom of the
agenda until/unless they are re-suggested for a new reason.

Using the Primes example, from the last subsection, we see that a new task like “Fillin
specializations of Primes” was suggested with a low rating, and “Fillin sxamples of Primes” was
suggested with a mediocre'S rating. The ratings of these tasks increase later on, when the
same tasks are re-proposed for new reasons.

4.3.3. Another Jljustration: Squaring a number

Let's take another simple (but not atypical) illustration of how new concepts get created.
{The reader may skip this subsection; it contains more details about how AM actually sets
up hew concepts.)

Assume that AM has recently discovered the concept of multiplication, which it calls
"TIMES," and AM decides that it is very interesting. A heuristic rule exists which says:

if » newly-interasting operation Fix,y) takes a pair of N's as arguments,
Then create s new concept, s specislization of F, called F-itself, taking just one N =

argument, defined st F{x,x), with initial worth Worth(F).

In the case of F = TIMES, we see that F takes a pair of numbers as its arguments, so the
heuristic rule would have AM create a new concept called TIMES-itself, defined as TIMES-

12 CF is an shbraviation for facet F of concept €
13 Not oe tow & rating se the lask just mentioned Why? Each possible facet Mes 8 worth rating which ie fined once and for

all As an illustration, we mention that the facet Exemples is rated much higher than Specializations. Why ie
this? Because locking for sxamples of & concept is often 3 good expenditure of time, producing the raw
date on which empirical induction thrives. On the other hand, sech apecislization of tha new concept L would
Healf be 3 brand new concept. So filling in antries for the Specislizetions facet would be » very sxplosive
process.

14 5glancingBack st tha Primes sxsmpla, two subsections ago, page 42, you can imagingwhat this rule sctustly locked
He. Thereis nothing to be geined by stretching # out in a¥ ite glory,hence ve isan the liberty

| condeneing A, mearting pronoune, sfc.
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Itseif(x) * TIMES(xx). That is, create the new concept which is the operation of squaring a
number.

What would AM do in this situation? The global list of concepts would be enlarged to
include the new atom "TIMES-Itself”, and the facets of this new concept would begin to be
filled in. The following facets would get filled in almost instantly:

NAME: TIMES-Itselt

DEFINITIONS:

ORIGIN: {x,y} [TIMES.DEFN(x,x,y}]

ALGORITHMS: A{x) [TIMES.ALG{xx)}

DOMAIN/RANGE: Number = Number |

GENERALIZATIONS: TIMES

WORTH: $00

The name, definition, domain/range, generalizations, and worth are specihed explicitly by
the heuristic rule.

The lambda expression stored under the definition facet is an executable LISP predicate,
which accepts two arguments and then tests them to see whether the second one is equal to
TIMES-Itself of the iirst argument. It performs this test by calling upon the predicate
stored under the definition facet of the TIMES concept. Thus TIMES-Itself Defn{4,16) will
call on TIMES.Dein{4,4,16), and return whatever value tAat predicate returns {in this case,
it returns True, since 4x4 does equal 16).

A trivial transformation of this definition provides an algorithm for computing this
operation. The algorithm says to call on the Algorithms facet of the concept TIMES. Thus
TIMES-Itself.Alg(4) is computed by calling on TIMES. Alg{4,4) and returning tAat value
{namely, 16).

The worth of TIMES was 600 at the moment TIMES-Itself was created, and this becomes
the worth of TIM ES-Itself.

TIMES. Itself is by definition a specialization of TIMES, so the SPECIALIZATIONS facet
of TIMES is incremented to point to this new concept. Likewise, the
GENERALIZATIONS facet of TIMES-Itself points to TIMES.

Note how easy it was to fill in these facets now, but how difficult it might be later on, “out of
context”. By way of contrast, the task of, eg, filling in Specializations of TIMES-Itself will
be no harder later on than it is right now, so we may as well defer it until there's a good
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reason for it. This task will probably be added to the agenda with so low a priority that
AM will never get around to it, unless some new reasons for it emerge.

The task “Fili~In sxamples of TIMES-ltseli” is probably worthwhile doing soon, but again it
won't be any harder to do at a later time than it is right now. So it is not done at the
moment; rather, it is added to the agenda (with a fairly high priority).

incidentally, the reader may be interested lo know that the next few tasks AM selected (in
reality) were to create the inverse of this operation (i.e. integer square-root}, and then to
create a new kind of number, the ones which can be produced by squaring (i.e, perfect
squares). Perfect squares were deemed worth having around because Integer-square-root is
defined precisely on that set of integers.

4 4 Heuristics Fill in Entries for a Specific Facet

The last two subsections dealt with how a heuristic rule is able to propose new tasks and
create new concepts. This section will iltustrate how a rule can find some entries for a given
facet of a specific concept.

Typically, the facet/concept involved will be the one mentioned in the current task which
was chosen from the agenda. If the task “Fillin Exemples of Set-union” were plucked from the
agenda, then the “relevant” heuristics would be those useful for filling in entries for the
Examples facet of the Set-union concept.

There is an important class of exceptions to this, however: conjectures. Some rules will
specify plausible relationships to look for; if found, they constitute a new con jecture. For
example, the reader will see in Section 4.4.4, on page 52, that the unique factorization
theorem is proposed merely as an observation of the form “The range of operation F is not
just B but rather the more specialized concept BB". The particular case of the unique
factorization theorem leads to this statement: “The range of Prime-factorings'® is not just
‘Sets’ but rather ‘Singletons’.” In fact, this whole con jecture is recorded by merely replacing
<NumberaSet> by <Number-Singleton> as an entry on the Domain/range facet of the
concept Prime-factorings.

The reader may be surprised to learn that the only kind of conjecture AM can make is of
that form (add a new entry to some facet of some concept)'S. Apparently, this is sufficient to
plausibly notice and state most interesting con jectures. Good definitions make the statements
of theorems short and simple.!’

—

15 0, ime-tactorings(a), sles called Prime-timos(s), is the sat of all bagu-of-primes whose product ie xi ie, ofl ways of
factoring x into primes.

18 Thet's wi “conjecturing™ is tlaasifind under the “sdd-sn-entry” typeof hawrinlic rule ection
17 grnecine for the doubling resder: State the umique factorization theorem in purely set-theoretic terme. Serisusly, ene

wmporisnt way that definitions sre iwented is to see what bulky tonsint in 8 theerem con de collopesd inte
& single term. Typically ons hopes thet the term will be esd sleswhere, of course.
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We'll take these two kinds of “filling in entries” one at a time: first the standard “find an
entry for the facet of the concept mentioned in the current task’, followed by the interesting
but rarer activity of “looking for a conjecture’.

4.4.1. An Dlustration: "Fill in Examples of Set-union”

Becall that a task is typically of the form “Fill in facet F of concepl C". How can executing
relevant heuristic rules satisfy such a task? This subsection illustrates how a heuristic rule
might be executed to find some entries for the facet designated by the current task.

A typical heuristic, attached to the concept Activity, says:

H the current lask is 1o fill in examples of the activily '® F,
One way 1o gel them is io run F on randomly chosen examples of the domain of F.

Of course, in the LISP implementation, this situation-action rule is not coded quite so
neatly. it would be more faithfully translated as follows:

if CURRENT-TASK maiches (FILLIN EXAMPLES Fanyihing)},
and F isa Aclivily,

Then carry out the following procedure:
1. Find the domain of F, and zall il D3
2. Find examples of D, and call them E;
3. Find an algorithm lo compute F, and call it A;
4. Repestedly:

#3. Cnoose any member of E, and call it Ei.
db. Run A on £1, and call the result X.
dc. Check whelher <E1,X> salislies the definition of F.
dd. if so, then add <E1 — X> to the Examples facet of F.
As. If not, then add <E1 = Xb io the Non-examples facet of F.

Let's take a particular instance where this rule would be useful. Say the current task is “Fillin
examples of Sel-union™. The left-hand-side of the rule is satisfied, so the right-hand-side is
run.

Step (1) says to locate the domain of Set-union. The facet labelled Domain/Range, on the
Set-union concept, contains the entry (SET SET = SET), which indicates that the domain is
a pair of sets. That is, Set-union is an operation which accepts (as its arguments) a pair of
sets, and returns (as its value) some new set.

Since the domain elements are sets, step {2) says to locate examples of sets. The facet
labelled Examples, on the Sets concept, points to a list of about 30 different sets. This
includes {Z}, {A B,C.D.L}. {}. {A {{B}}}.

Step (3) involves nothing more than accessing some randomly.chosen entry on the
Algorithms facet of Set-union. One such entry is a recursive LISP function of two
arguments, which halts when the first argument is the empty set, and otherwise pulis an

18 “Activity” is 8 general concep! which inciudes operations, pradcates, relations, functions, etc.



Chapter 4 AM: Discovery in Methematice ae Heuristic Search -49-

element out of that set and SET-INSERTs it into the second argument, and then recurses
on the new values of the two sets. For convenience, we'll refer to this algorithm as UNION.

We then enter the loop of Step (4). Step {4a} has us choose one pair of our examples of
sets, say the first two {Z} and {A B.C,D,E}. Step (4b) has us run UNION on these two sets.
The result is {A,B,C D,EZ}. Step (4c) has us grab an entry from the Definitions facet of
Set-union, and run it. A typical definition is this formal one:

{ (SI $283)

{For all x in S1, x is in 53)
{For oll x in $2, x is in 53)
{For all x in $3, x is in S$! or xis in 52)

!
) }

It is run on the three arguments S1={Z}, 52«{A,B,C,D.E}, 53={A ,B.CD.E,Z]. Since it returns
“True”, we proceed to Step (4d). The construct <{Z}, {A,B,C,D,E} +» {A,B.CD,.EZ}> is added
to the Examples facet of Set-union.

At this stage, control returns to the beginning of the Step (4) loop. A new pair of sets is
chosen, and so on.

But when would this loop stop? Recall that each task has a time and a space allotment
(based on its priority value). If there are many different rules all claiming to be relevant to
the current task, then each one is allocated a small fraction of those time/space quanta.
When either of these resources is exhausted, AM would break away at a “clean” point (just
after finishing a cycle of the Step (4) loop) and would move on to a new heuristic rule for
filling In examples of Set-union.

This concludes the demonstration that a heuristic rule really can be executed to produce the
kinds of entities requested by the current task.

4.4.2. Heuristics Propose New Conjectures

We saw in the sample excerpt (Chapter 2) that AM occasionally notices some unexpected
relationship, and formulates it into a precise con jecture. Below is an example of how this is
done. As you might guess from the placement of this subsection,'’ the mechanism is our
old friend the heuristic rule which fills in entries for certain facets.

"In fact, a conjecture evolves through four stages:
t. A heuristic rule looks for a particular kind of relationship. This will typically be of

the form "X is a Generalization of Y", or "X is an example of Y", or "X is the
same as Y", or "F1.Defn(X.Y)" where Fl is an active concept AM knows about, or

9 or recell from the opening romerks of Section 44
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"F 1.Defn(Y,X)™°.
2. Once found, the relationship is checked, using supporting contacts. A great deal of

empirical evidence must favor it, and any contradictory evidence must be
“explained away" somehow.

3. Now it is believed, and AM prints it out to the user. It is added as a new entry to
the Con jecs facet of both concepts X and Y. It is also added as an entry to the
Examples facet of the Conjecture concept.

4. Eventually, AM will get around to the task "Check Examples of Conjecture’, or to the
task "Check Conjecs of X". If AM had any concepts for proving conjectures, they
would then be invoked. In the current LISP implementation, these are absent.
Nevertheless, several “checks” are performed: {i) see if any new empirical evidence
(pro or con} has appeared recently; {ii) see if this conjecture can be strengthened;
(iii) check it for extreme cases, and modify it if necessary; {iv) Modify the worth
ratings of the concepts involved in the conjecture.

T he left-hand-side of such a heuristic rule will be longer and more complex than most other
kinds, but the basic activities of the right-hand-side will still be filling in an entry for a
particular facet.

The entries filled in will include: {{) 2a new example of Conjectures, {ii} a new entry for the
Conjec facet of each concept involved in the conjecture, {iii} if we're claiming that concept
X is a generalization of concept Y, then "X" would be added to the Generalizations facet of
Y, and "Y" added to the Specializations facet of X, {iv} if X is an Example of Y, "X" is
added to the Examples facet of Y, and "Y" is added to the ISA facet of X.

The right-hand-side may also involve adding new tasks to the agenda, creating new
concepts, and modifying entries of particular facets of particular concepts. As is true of all
heuristic rules, both sides of this type of conjecture-perceiving rule may run any little
functions they want to: any functions which are quick and have no side effects (eg,
FORALL tests, PRINT functions, accesses to a specified facet of some concept).

4.4.3. An Nlustration: "All primes except 2 are odd”

As an illustration, here is a heuristic rule, relevant when checking examples of any concept:

20 hoe Inet two say thet FITKRY, and thet F1(Y)X, respectively.
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H the current task is to Check Examples of X,
and {Forsome Y} Y is a generalization of X,
and ¥ has at least 10 sxamples,
and ail examples of ¥ {ignoring boundary cases) are also examples of X,

Then print the following conjecture: X is really no more specialized then Y,
snd add it 10 the Examples face! of Conjeclures,
and if the user asks, inform him that the evidence for this was that all fExamples(Y)}] Y's

(ignoring boundary examples of Y's) turned out to be X's as wall,
and Check the truth of this conjecture on boundery examples of Y,
and add "X" {0 the Generalizetions facet of VY,
and add "Y™ lo the Specializations facet of X,
and {if there it an entry in the Generslizations facel of Y) add the following task 10 the

sgends "Check examples of Y", for the resson: “Just as Y wee no more
gonersl then X, one-of Generalizetions(Y} may turn out fo bs no more
general than Y", with a raling for that reason computed es:

0.4x/|Examples{Genaralizations(Y)}} *
0.InjlExamples(Y)i| *
0.3xPriority{Current lash).

Let's take a particular instance where this rule would be useful. Say the current task is
"Check examples of Odd-primes”. The left-hand-side of the rule is run, and is satished when
the generalization Y is the concept “Primes”. Let's see why this is satished.

One of entries of the Generalization facet of Odd-primes is "Primes". AM grabs hold of
the 30 examples of primes (located on the Examples facet of Primes), and removes the ones
which are tagged as boundary examples ("2" and 37). A definition of Odd-prime numbers
is obtained {Definitions facet of Odd-primes), and it is run on each remaining example of
primes (5, 7, 11, 13, 17, .). Sure enough, they all satisfy the definition. So all primes
{ignoring boundary cases) appear to be odd. The left-hand-side of the rule is satisfied.

At this point, the user sees a message of the form "Odd-primes is really no more specialized
than Primes”. If he interrupts and asks about it, he is told that the evidence for this was
that all 30 primes (ignoring boundary examples of primes) turned out to be Odd-primes.

Of the boundary examples (the numbers 2 and 3), only the integer “2° fails to be an odd-
prime, 30 the the user is notified of the finalized con jecture: "All primes (other than 2’) are
also odd-primes™. This is added as an entry on the Examples facet of the concept named
‘Conjectures.’

Before beginning all this, the Generalizations facet of Odd-primes pointed to Primes. Now,
this rule has us add “Primes” as an entry on the Specializations facet of Odd-primes. Thus
Primes is both a generalization and a specialization of Odd-primes (to within a single stray
exception), and AM will be able to treat these two concepts as if they were merged together.
They are still kept separate, however, in case AM ever needs to know precisely what the
difference between them is, or in case later evidence shows the conjecture to be false®!.

21 When space is srhausied, one emergancy messurs AM takes is to destructively coalesce a pair of concepts KY where X
is both a generalization of and a speciehzation of ¥, sven if thers are a couple "boundery™ exceptions.
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The final action of the right-hand-side of this rule is to propose a new task {if there exist
some generalizations of the concept Y, which in our case is "Primes”). So AM accesses the
Generalizations facet of Primes, which is "(Numbers)". A new task is therefore added to the

agenda: "Check examples of Primes”, with an associated reason: "Just as Primes was no more
general than Odd-primes, so Numbers may turn out to be no more general than Primes”.
The reason is rated according to the formula given in the rule; say it gets the value 500.

To make this example a little more interesting, let's suppose that the task "Check sxamples of
Primes” already existed on the agenda, but for the reason "Many examples of Primes have
been found, but never checked”, with a rating for the reason of 100, and for the task as a
whole of 200. The global task-rating formula then assigns the task a new overall priorityof
600, because of the new, fairly good reason supporting it.

When that task is eventually chosen, the heuristic rule pictured above (at the beginning of
this subsection) will trigger and will be run again, with X«Primes and Y«Numbers. That is,
AM will be considering whether {almost) all numbers are primes. The left-hand-side of the
heuristic rule will quickly fail, since, eg., 6 is an example of Numbers which does not
satisfy the definition of Primes.

4.4.4. Another illustration: Discovering Unique Factorization

Below is a heuristic rule which is a key agent in the process of “noticing” the fundamental
theorem of arithmetic??. (The reader may skip this subsection; it contains more details
about how AM actually proposed conjectures).

if F{a) is unexpectedly 2 B,
Then maybe (¥x} Fix) is 2 B.

Below, the same rule is given in more detail. The first conjunct on the IF-part of the
heuristic rule indicates that it's relevant to checking examples of any given operation F. A
typical example is selected at random, say F(x)=y. Then y is examined, to see if it satisfies
any more stringent properties than those specified in the Domain/range facet of F. That is,
the Domain/range facet of F contains an entry of the form A-B; so if x is an A, then all we
are guaranteed about y is that it is an example of a B. But now, this heuristic is asking if y
isn't really an example of a much more specialized concept than B. If it is (say it's an
example of a BB), then the rest of the examples of F are examined to see if they too satisfy
this same property. If all examples appear to map from domain set A into range set BB
(where BB is much more restricted than the set B specified originally in the Domain/range
facet of F), then a new conjecture is made: the domain/range of F is really A+BB, not A+B.
Here is that rule, in crisper notation:

e2 The unique factorization conjecture. ny positive mteger © can be representsd ae the product of prime numbers m
precisely ona way {to within reorderings of those prime factors) Thus 2B « 25217, and we don't
distinguish between the factorzston (22 7) and (2 7 2)
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it ihe current lask is 1o Check Examples of the operation F,
and F is an operation from domain A inte range B,
and F has at isast iC examples,

and a typical one of these examples is "<x-3y>" {s0 xtA and y¢B),
snd (Forsoma Specialization BB of B), y is a 8B.
and all exemples of F (ignoring boundery cases) turn out to be BB's,

Then print the following conjecture: “F(a) is always a BB, not simply & 87,
ond add it ic the Examples face! of Conjeciures concept,

and add “CA yo! 88)" a3 2 new enlry to the Domein/range fete! of F, replacing“(A-B>",
and if the user stks, inform him that the evidence for this was that all JExemples(Fli

sxamples of F {ignoring boundary axamplas} turned out to be BB's,
and check the truth of this conjecture by running F on boundary sxamples of A.

Let's see how this rule was used in one instance. In Task 79 in the sample excerpt in

Chapter 2, AM defined the concept Prime-times, which was a function transforming any
number n into the set of all factorizations of n into primes. For example, Prime-
times(12)={(2 2 3)}, Prime-times(i3)={(13)}. The domain of F=Prime-times was the concept
Numbers. The range was Sets. More precisely, the range was Sets-of-Bags-of-Numbers, but
AM didn't know that concept at that time.

The above heuristic rule was applicable. F was Prime-times, A was Numbers, and B was
Sets. There were far more than 10 known examples of Prime-times in action. A typical
example was this one: <21 + {(3,7)>. The rule now asked that {(3,7)] be fed to each
specialization of Sets, to see if it satisfied any of their definitions. The Specializations facet
of Sets was acccessed, and each concept pointed to was run (its definition was run) on the
argument “{(3,7)}". It turned out that Singleton and Set-of-doubletons were the only two
specializations of Sets satisfied by this example. At this moment, AM had narrowed down
the potential conjectures to these two:

1. Prime.times(x) is always a singleton set.
2. Prime-times(x) is always a set of doubletons.

Each example of Prime-times was examined, until one was found to refute each con jecture
{for example, <8-{(2,2,2)}> destroys conjecture 2). But no example was able to disprove
conjecture |. So the heuristic rule plunged forward, and printed out to the user "A new
conjecture: Prime-times(n) is always a singleton-set, not simply a set”. The entry
<Numbers-Singleton-sets> was added to the Domain/range facet of Prime-times, replacing
the old entry <Numbers-Sets>.

Let's digress for a moment to discuss the robustness of the system. What if this heuristic
were to be excised? Could AM still propose unique factorization? The answer is yes, there
are other ways to notice it. If AM has the concept of a Function, then a heuristic rule like
the one in the previous subsection (page 50) will cause AM to ask if Prime-times is not
merely a relation, but also a Function.

C—O——————— amor

23 A singln-voled relation Thet ie, for any domain element 1, Fix} containg precasly ons member. Bt is never ampty lie,
undafmed), nor 10 # aver leeger then» singlaten (ie, switple-velued).
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The past few sections should have convinced the reader that isolated heuristic rules really
can do all kinds of things: propose new tasks, create new concepts, fil in entries for specific
facets {goal-driven), and look for conjectures (data-driven empirical induction). The rules
appear fairly general?® — though that must be later verified empirically. They are
redundant in a pleasing way: some of the most “important”, well-known, and interesting
conjectures can {apparently} be derived in many ways. Again, we'll have to check this
experimentally.

45, Gathering Relevant Heuristics

Each concept has facets which contain some heuristics. Some of these are for filing in,
some for checking, some for deciding interestingness?®, some for noticing new conjectures,
etc.

AM contains hundreds of these heuristics. In order to save time (and to make AM appear
more rational), each heuristic should only be tried in situations where it might apply, where
it makes sense.

How is AM able to zero in on the relevant heuristic rules, once a task has been selected

from the agenda?

4.5.1. Domain of Applicability

The secret is that each heuristic rule is stored somewhere a propos to its "domain of
applicability”. This “proper place” is determined by the first conjunct in the left-hand side
of the rule.

What does this mean? Consider this heuristic:

If the current lask is to fill in examples of the operation F, <=—=

and some sxamplas of the domain of F are known,
Then one way fo ge! sxampies of F is lo run F on randomly thosan sxampiles of the domain

of fF.

This is a reasonable thing to try — but only in certain situations. Should it be tried when
the current task is to check the Worth facet of the Sets concept? No, it would be irrational.
Of course, even If it were tried then, the left-hand.side would fail very quickly. Yet some
cpu time would have been used, and if the user were watching, his opinion of AM would

24 tu, sppicable in many wituations it would be worse than useless f 3 rule sted which could lead to a single discovery
tka “Fibonacc: series” but never lead lo any other ducoveres The reasons for demanding genarality are
not only “farness”, but the msights whch occur when it 11 obesrved thet severest disparate concepts were
all motivated by the sama genaral principle (sg, “loclung for the inverse image of axtrema™)

25 The rasder has already seen sevars! heurisixs useful for filing in snd checking facets; hers i one for judging
intersalingrass: an entry on the interest facet of Compose says that 3 composition AcB » more mieresting
if the range of B equals the domam of A, than #f ff they only pertelly overisp
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decrease®

That particular heuristic has a precise domain of applicability: AM should use it whenever
the current task is to fill in examples of an operation, and only in those kinds of situations.

The key observation is that a heuristic typically applies to all examples of a particular
concept C. In the case we were considering, C=Operation. Intuitively, we'd like to tack that
heuristic onto the Examples facet of the concept Operation, so it would only "come to mind”
in appropriate situations. This is in fact precisely where the heuristic rule {s stored.

Initially, the author identified the proper concept C and facet F for each heuristic H which

AM possessed, and tacked H onto CF2”. This was all preparation, completed long before
AM started up. Each heuristic was tacked onto the facet which uniquely indicates its
domain of applicability. The first conjunct of the IF-part of each heuristic indicates where
it is stored and where it is applicable. Notice the little arrow (<=) pointing to that con junct
above.2%.

While AM is running, it will choose a task dealing with, say, facet F of concept C. AM
must quickly locate the heuristic rules which are relevant to satisfying that chosen task.
AM simply locates all concepts which claim C as an example. If the current task were
"Check the Domain/range of UnionoUnion™2, then C would be UnionoUnion. Which concepts
claim C as an example? They include Compose-with-Self, Composition, Operation, Active,
Any-concept, and Anything. AM then collects the heuristics tacked onto facet F {in this
case, F is Domain/range} of each of those concepts. All such heuristics will be relevant. In
the current case, some relevant heuristics might be garnered from the Domain/range facet of
the concept Operation. Any heuristic which can deal with the Domain/range facet of any
operation can certainly deal with UnionoUnion’s Domainfrange. A typical rule on
Operation. Domain/range.Check™ would be this one: |

it a Domjren eniry of F is of the form <D D D..D = R>, where R is » generslization of
D

Then test whether the range might not be simply O.

Suppose one entry on UnionocUnion.Dom/ran was ‘<Nonempty-sets Nonempty-sets |
Nonempty.sets + Sets>’. Then this last heuristic rule would be relevant, and would have
AM ask the plausible question: Is the union of three nonempty sets always nonempty? The

26 This notion of worrying sbout § human veer whe mn cbasrving AM run in res! time may appesr to be quite language- and
machina-depandent An incresss in speed of » couple orders of magnitude would radically sher the
qushitatrve sppesrance of AM In Chepler 7, however, the resder will grasp how dffecult it » to
objectively rate 8 sysiem like AM For that reason, all messuras of pdgment must be respected Also, to
the actus! human being using 1he system the really is ons of the moat mportant messures

4 Recalt that TF is on abbreviation for facet F of concept L

28 in the LSP implementation, these firal conjuncts are omitted, since the placement of & heuristic serves the same
purpose ae if it had some “pre-preconditions” {le these first conpncts] to delermne relevance guachly.

29 toi operstion i defined as: UnionoUnion(eyz) « (x Uy) Uz it sccopts 3 sate 3s arguments, and returne 8 new
sot au Hs value

30 1h Chock’ subfacet of the ‘Domain/rangs’ facet of the ‘Operation’ concept
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answer is affirmative, empirically, so AM modifies that Domain/range entry for
UnionoUnion. AM would ask the same question for Intersectolntersect. Although the
answer then would be ‘Nv, it's still a rational inquiry. If AM called on this heuristic rule
when the current task was “Fillin specializations of Bags”, it would clearly be an irrational act.
The domain of applicability of the rule is clear, and is precisely fitted to the slot where the
rule is stored {tacked onto Operation.Domain/range).

To recap the basic idea: when dealing with a task "Do act A on facet F of concept C°, AM
must locate ail the concepts X claiming C as an example. AM then gathers the heuristics
tacked onto X.F.A, for each such general concept X. All of them — and only they ~ are
relevant to satisfying that task.

So the whole problem of locating relevant heuristics has been reduced to the problem of
efficiently finding all concepts of which C is an example (for a given concept C). This
process is called “rippling away from C in the ISA direction”, and forms the subject of the
next subsection.

4.5.2. Rippling

Given a concept C, how can AM find all the concepts which claim C as an example?

The most obvious scheme is to store this information explicitly. So the Examples facet of C
would point to all known examples of C, and the Isa facet of C would point to all known
concepts claiming C as one of their examples. Why not just do this? Because one can
substitute a modest amount of processing time (via chasing links around) for the vast
amount of storage space that would be needed to have “everything point to everything”.

Each facet contains only enough pointers so that the entire graph of Exs/Isa and Spec/Genl
links could be reconstructed if needed. Since “Genl™' is a transitive relation, AM can
compute that Numbers is a generalization of Mersenne-primes, if the facet Mersenne-
primes.Genl contains the entry "Odd-primes”, and Odd-primes.Gen! contains a pointer to
“Primes”, and Primes.Genl points to “Numbers”. This kind of “rippling” activity is used to
efficiently locate all concepts related to a given one X. In particular, AM knows how to
"ripple upward in the Isa direction”, and quickly’? locate all concepts which claim X as one
of their examples.

It turns out that AM cannot simply call for X.Isa, then the Isa facets of those concepts, etc.,

3 “Geni” um an abbreviation for the Generslizations facet of 3 concept: smilarly, “Spec” means Speculizations, Exe means
Examples, atc “lea” is the converse facet to Exe; in, A ¢ BExs #1! B « Alea Saying "Genl is lransitrve™ asst
means the following: if A is » gorevalization of B, and B of C, then A ie sled a generalization of C.

32 With sbout 200 known concepts, with each lea facet and ssch Genl face! pomting io about J other concepts, about 25
tikes will be traced slong m order to focate shout a dozen nel concepts, each of which claims the given one
ss on example This whole rippling process, tracing 25 lnkages, uses Jess then 01 cpu seconds, in
compiled interkep, on 3 XL 10 type POP-1D.
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because Isa is not transitive™. For the interested reader, the algorithm AM uses to collect
Isa's of X is given below.

1. All generalizations of the given concept X are located. AM accesses X.Genl, then
the Genl facets of fAose concepts, etc.

2. The “Isa” facet of each of those concepts is accessed.
3. AM locates all generalizations of these newly-found higher-level concepts. This is

the list of all known concepts which claim X as one of their examples.

In regular form, one might express this rippling recipe more compactly as:

Gent®*(lsa(Gent®*(X))). There is not much need for a detailed understanding of this process,
hence it will not be delved into further in this thesis. This section probably already

contains more thar, anyone would want to know about rippling.

Now that all these relevant heuristics have been assembled, in what order should AM

execute them?” It is important to note that the heuristics tacked onto very general concepts
will be applicable frequently, yet will not be very powerful. For example, here is a typical
heuristic rule which is tacked onto the Examples facet of the very general concept Any-
concept:

If the current task is 10 fill in sxampies of any concept X,

Then one way 10 get them is lo symbolically instantiate®® a definition of X.

It takes a tremendous amount of inference to squeeze a couple awkward examples of
IntersectsIntersect out that concept's definition. Much time could be wasted doing so”.

33 x ine y, nd y ms x, than x i {generaliy)NOT » 2. This » dus te the introneitivityof “membar-of”. Uenersimstion un
transitive, on the other hand, because “oubset-of” ie tramitive.

3% for the very interested reader, #t is sxpivined in greet deteil in Tie RIPPLE[dw,dbi] at SAL This file has been
permanently archived at SAIL

I5 The siecussion below sesumes That the heuristics don't interact with sach other: is, That each one may act independently
of of others. The validity of this simphfication is tested empirically (ses Chepter 8) and discussed
theoretically (see Chepter 7} leter.

35 Symbolic instantiation” is a suphemiem for » bag of tricks which transtorm & declarative definition of 8 concept into
pariicuier anlities satisfying the! definition The only constraint on the tricks is that they not sctushy run
the definition One such trick might ba: if the definition i recursive, marsly Tind some entity thet satifiee
the bese step. A's symbolic inetantistion tricks ore too hand-crafied fo be of great interest, hance this will
mot be covered any more deeply here. The interseled reader is diwncied te the pioneering work by
{Lombardi & Raphest $4] or the mere recent Terature on thaes techniques applied te sutemetic pregram
verification (og, [Meore 75)).

37 incidentally, this Butrateswhy ne singls heuristic should be sllewed te monopolize the processing of any one task
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Just as general heuristics are weak but often relevant, specific heuristics are powerful but
rarely relevant. Consider this heuristic rule, which is attached to the very specific concept
Compose-with-Self:

if the current 1ask is to fili in examples of the comporition FoF,
Then include any fixed-points of F.

For example, since Intersect{pAiX) equals phi, so must Intersectolntersect(pAi,X,Y ).32
Assuming that such examples exist already on Intersect, this heuristic will fill in a few
examples of Intersectolntersect with essentially no processing required. Of course the
domain of applicability of this heuristic is minuscule.

As we expected, the narrower its domain of applicability, the more powerful and efficient a
heuristic is, and the less frequently it's useful. Thus in any given situation, where AM has
gathered many heuristic rules, it will probably be best to execute the most specific ones first,
and execute the most general ones jast.

Below are summarized the three main points that make up AM’s scheme for finding
relevant heuristics in a “natural” way and then using them:

1. Each heuristic is tacked onto the most general concept for which it applies: it is
given as large a domain of applicability as possible. This will maximize its
generality, but leave its power untouched. This brings it closer to the “ideal”
tradeoff point between these two quantities.

2. When the current task deals with concept C, AM ripples away from C and quickly
jocates all the concepts of which C is an example. Each of them will contain
heuristics relevant to dealing with C.

3. AM then applies those heuristics in order of increasing generality. You may wonder
how AM orders the heuristics by generality. it turns out that the rippling process
automatically gathers heuristics in order of increasing generality. In the LISP
system, each rule is therefore executed as soon as it's found. So AM nevers wastes
time gathering heuristics it won't have time to execute.

£6, AM' ing Heuristi

This section will briefly characterize the collection of 242 heuristic rules which AM was
originally given. A complete listing of those rules is found in Appendix 3; the rule
numbers below refer to the numbering given in that appendix.

3% 5 Ai in another name for the empty set, aiss written (1. This last sentence thus says thet since [} 1 X = [}, then ({} 0
X) 01 Y must sho equal |}
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Many heuristics embody the belief that mathematics is an empirical inquiry. That is, one
approach to discovery is simply to perform experiments, observe the results, thereby gather
statistically significant amounts of data, induce from that data some new conjectures or new
concepts worth isolating, and then repeat this whole process again. Some of the rules which
capture this spirit are numbers 21, 43-57, 81, 136-139, 146-148, 153-154, 212-215, 225,
and 241. As one might expect, most of these are “Suggest” type rules. They indicate
plausible moves for AM to make, promising new tasks to try, new concepts worth studying.
Almost ali the rest are “Fillin™ type rules, providing empirical methods to find entries for a
specified facet.

Another large set of heuristics is used to embody — or to modify — what can be called
"focus of attention”. When should AM keep on the same track, and when not? The first
rules expressing varying nuances of this idea are numbers 1.5. The last such rules are
numbers 209-216. Some of these rules are akin to goal-setting mechanisms (eg., rule 141).
In addition, many of the “Interest” type rules have some relation to keeping AM interested
in recently-chosen concepts (or: in concepts related to them, eg. by Analogy, by Genl/Spec,
by Isa/Exs,..).

The remaining “Interest” rules are generally some re-echoing of the following notion: X is
interesting if F(X) has an unexpected (interesting) value. For example, in rule 26, “F(X)"
is just "Generalizations of X". In slightly more detail, the principle characteristics of
interestingness are:

+ symmetry {eg., in an expanding analogy)
+ coincidence (eg. in a concept being re-discovered often)
*» appropriateness {eg., in choosing an operation H so that GeH will have nicer

Domain/Range characteristics than G itself did)
» recency {see the previous paragraph on focus of attention)
» individuality (e.g., the first entity observed which satisfies some property)
+ usefulness (eg. there are many conjectures involving it)
» association (i.e, the given concept is related to an interesting one)

One group of heuristic rules embeds syntactic tricks for generaliting definitions (Lisp
predicates), specializing them, instantiating them, symbolically evaluating them, inverting
them, rudimentarily analyzing them, etc. For example, see rules 31 and 89. Some rules
serve other syntactic functions, like ensuring that various limits aren't exceeded {(eg., rule
15), that the format for each facet is adhered to {eg., rule 16), that the entries on each
facet are used as they are meant to be {eg., rules 9 and 59), etc. Many of the "Check"
type heuristics fall into this category.

Finally, AM possesses 2 mass of miscelianeous rules which evade categorization. See, eg.,
rules 185 and 236. These range from genuine math heuristics (rules which lead to discovery
frequently) to simple data management hacks.

No detailed analysis has been performed on the set of heuristics AM possesses, as of the
time of writing of this thesis.
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4.6.2. Heuristics Grouped by How Specific They Are

Another dimension of distribution of heuristics, aside from the above functional one, is

simply that of how high up in the Genl/Spec tree they are located. The table below
summarizes how the rules were distributed in that tree:

LEVEL og Cons swilger shHeurs Avg AvgwiHersf¥ifin sSugg aCheck sint
0 Anything 1 l 10 100 100 0 5 0 5

{| 1 Any-Concept 1 I 110 1100 1100 39 30 20 21
1 2 Active 2 2 24 120 120 7 10 4 3

3 Operation 6 3 31 52 103 11 3 3 14
24 Union 100 11 63 06 57 26 i5 8 16

Here is a key to the column headings:
LEVEL: How far down the Genl/Spec tree of concepts we are looking.
e.g: A sample concept at that level.
e Con's: The total number of concepts at that level.
» wi/Heur: How many of them have some heuristics.
+ Heurs: The total number of heuristics attached to concepts at that level.
Avg: {s Heurs) / (s Concepts); i.e, the mean number of heuristics per concept, at that

level.

A vg w/Heur: (s Heurs) / (s w. Heurs)
o Fillin: Total number of “Fillin™ type heuristics at that level.
» Sugg: Total number of “Suggest” type heuristics at that level.
» Check: Total number of “Check” type heuristics at that level.
» Int: Total number of “Interestingness” type heuristics at that level.

The heuristic rules are seen not to be distributed uniformly, homogeneously among ali the
initial concepts. The extent of this skewing was not realized by the author until the above
table was constructed. A surprising proportion of rules are attached to the very general
concepts. The top 10% of the concepts contain 73% of all the heuristics. One notable
exception is the “Interest” type heuristics: they seem more evenly distributed throughout the
tree of initial concepts. This tends to suggest that future work on providing “meta-
heuristics” should concentrate on how to automatically synthesize those Interest heuristics for

newly-created concepts.
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Chapter 5. AM's Concepts
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This chapter contains material about AM'’s anatomy. After a brief overview, we'll look in
detail at the way concepts are represented (Section 5.2). This includes a discussion of each
kind of facet a concept may possess. Wedged in among the implementation details and
formats are a horde of tiny ideas; they should be useful to anycae contemplating working
on a system similar in design to AM.

The chapter closes by sketching all the knowledge AM starts with. The concepts will be
diagrammed, and will also have a brief description, sufficient for the reader to follow later
chapters without trouble. Instead of using up a large number of pages for an unreadable
listing of all of the specific information initially supplied re each concept, such complete
coverage is relegated to Appendix 2.1. !

The next chapter starts on page 1142

5.1, Motivation and Overview

Each concept consists merely of a bundle of facets. The facets represent the different aspects
of each concept, the kinds of questions one might want to ask about the concept:

How valuable is this concept? |
What is its definition?

If it's an operation, what is legally in its domain?
What are some generalizations of this concept?
How can you separate the interesting instances of this concept from the dull ones?
etc.

Since each concept is a mathematical entity, the kinds of questions one might ask are fairly
constant from concept to concept. This set of questions might change significantly for a new
domain of concept.

One “natural” representation for a concept in LISP is therefore as a set of attribute/value

| That sppendix Feta sach concept, giving & condensad Neting of the facts nitielly given (by the author) te AM shout sach
facet of that concept This materiel i trenclsted from LISP inte Englieh and atonderd math notation. The
appendix is precaded by an siphabeticel index of the contepie and the page rumber on which they sre
prevented That indexis on pege 17]. Some unmadilind “concepts” -- stilt in LISP -- ore deployed in
Appendix 23.

2 Though doveid of theoretical significance,thet sentence hes sles proved of Ngh empirical value.
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pairs. That is, each concept is maintained as an atom with a property list. The names of the
properties (Worth, Definitions, Domain/Range, Generalizations, Interestingness, etc)
correspond to the questions above, and the value stored under property F of atom C is
simply the value of the F-facet of the C-concept. This value can also be viewed as the
answer which expert C would give, if asked question F. Or, it can be viewed as the contents
of siot F of frame C.

5.1.1. A Glimpse of a Typical Concept

As an example, here is a stylized rendition of the SETS concept. This is a concept which is
meant to correspond to the notion of a set of elements. The format P: vy,vy... is used to

indicate that the value of property P is the list v| vo... That is, the concept Sets has entries

V{.Vo... for its facet P. For example, according to the box below, “Singleton” is one entry on
the Specializations facet of Sets.

I shall not digress here to explain each of these entries — and what are apparently
omissions. Such things will be done later in this chapter. For now, just glance at it to get
the Ravor of what a concept is like.

_ The individual facets will ba discussed one at a time. This particular concept is shown at sn intermediate state of being
filled in. Although savers! facets ars blank, mony sre filled in which were initisly empty {eg., Examples). The
reader wishing to ses whe! this concept was ike at the time that AM startedup should turn shesd to page
211 {inside Appendix 2).



Chapter AM: Discovery in Mathematics se Hourintic Search -$3-

Nomels): Set, Class, Collection
Definitions:

Recursive: \ {S) [S={} or Sel.Definition (Remove{Any-member(5),5))]
Recursive quick: A (S) [S={} or Sel.Definition {(COR(S))]
Quick: A {S) [Match S with {..} )

Specializations: Emply-sel, Nonemply=sel, Sel-of-structures, Singleton
Generalizations: Unorderad=Struclure, No-mulliple-elemenis-Struclure

Examples:

Typical: {{}}, {A}, {AB}, {3}

] Barely: {}, (A,B, {C, [{ {AC (3339) <41A,8},01H}
Not-quite: {AA}, {}, {BA}
Foible: <A, 1A, D>

Conjec's: All unordered-siruciurss are sets.
Intu's:

Geometric: Venn disgram. {See [Venn 89), or [Skemp 71].}
Anaslogs: bag, list, oset
Worth: 600

View:

Predicate: A {P) [x¢tDomein(P} | Pix}}
Structure: \ {S) Enclose=in=braces{Sori{Remove-mulliple-slemanis(S)))

Suggesi: H P is an interesting predicate over X, consider {x€X | P{x)}}.
in-domain-of: Union, intersaction, Sel-ditferance, Set-aquulity, Subset, Member
in-range-of: Union, intersection, Sel-difference, Satistying

To decipher the Definitions facet, there are a few things you must know. An expression of
the form "(» {x) E)" is called a Lambda expression after Church”, and may be considered
an executable procedure. it accepts one argument, binds the variable "x" to the value of
that argument, and then evaluates "E” {which is probably some expression involving the
variable x). For example, "(a {x) (x+5))" is a function which adds 5 to any number; if given
the argument 3, this lambda expression will return the value 8.

The second thing you must know is that facet F of concept C will occasionally be
abbreviated as CF. In those cases where F is “executable”, the notation C.F will refer to

applying the corresponding function. So the first entry in the Dehnitions facet is recursive
because it contains an embedded call on the function Set.Definition. Notice that we are

implying that the name of that lambda expression itself is "Set.Definition".

There are some bizarre implications of this: since there are three separate but equivalent
definitions, AM may choose whichever one it wants when it recurs. AM cam choose one via
a random selection scheme, or always try to recur into the same definition: as it was just in,
or perhaps suit its choice to the form of the argument at the moment.

For example, one definition might be great for arguments of size 10 0 38, but slow for
bigger ones, and another definition might be mediocre for ali size ar ents; then AM

4 Befors snd during Church, it's called 8 function. Ses [Church 41}
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should use the mediocre definition over and over again, until the argument becomes small
enough, and from then on recur only into the fast definition. Although AM embodies this
“smart” scheme, the little comments necessary to see how it does so have be excised from the
version shown above in the box. This will be explained later in this chapter, on page 90.

Al concepts possess executable definitions, though not necessarily effective ones. They each
have a LISP predicate, but that predicate is not guaranteed to terminate. Notice that the
definitions for Sets are all definitions of finite sets.

5.1.2. The main constraint: Fixed set of facets

One important constraint on the representation is that the set of facets be fixed for all the
concepts. An additional constraint is that this set of facets not grow, that it be fixed once
and for all. So there is one fixed, universal list of two dozen types of facets. Any facet of
any concept must have one of those standard names. All concepts which have some
examples must store them as entries on a facet called Examples; they can't call them
Instances, or Cases, or G00037's. This constraint is known as the "Beings constraint™®, and
has three important consequences:

1. OUTLINE: First, it provides a nice, distributed, universal framework on which to
display all that is known about a given concept. For example, when AM creates a
new concept like "Square-root”, the user can judge how well AM understands that
concept by examining Square-root's property-list {the list of entries for each of its
facets). Similarly, AM can instantly tell what facets are not yet filled in for any
given concept, and this will in turn suggest new tasks to perform. in other words,
this constraint helps define the “space” which AM must explore, and makes it
obvious what parts of each concept have and have not yet been investigated.

2. STRUCTURE: The constraint specifies that there be a set of facets, not just one.
This set was made large enough that all the efficiency advantages of a “structured”
representation are preserved (unlike totally uniform representations, e.g. pure
production systems with simple memories as data structures, or predicate cakulus).

3. UNIFORMITY: The most important benefit of the Beings constraint arises when
AM’ wants to get a particular question answered — especially if the information
pertains to related concepts. The advantage is that it'll have a very limited
repertoire of questions it may ask, hence there will be no long searching, no
misunderstandings. This is the same advantage that always arises when everyone
uses a common language.

We shall illustrate the fast two advantages by using the Sets concept pictured in the box a
couple pages ago. How does AM handle a task of this form: "Check examples of Sets? AM
accesses the examples facet of the Sets concept, and obtains a bunch of items which are all

3 Tha third definition, “{._}", may not Jook finite, but consider that elhipeis notation ie not permitted within any specific sel.
® Soe [Lonat 75b] Historically, sech concept module was called s “BEING”.
7 Actually, the requestoris not “AM” in toto, but rather simply 3 Clsuss which i » part of 2 haurnix rule, or 8 bit of code

aswbedded within an aniry on an executsbis facet, such as Algorithms.
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probably sets. If any isn't a set, AM would like to make it one, if that involves nothing
difficult. AM locates all the generalizations of Sets®, and comes up with the list <Sets,
Unordered-Structures, No-multiple-elements-Structures, Structures, Objects, Any-concept,
Anything>. Next, the “Check” facet of each of these is examined, and all its heuristics are
collected. For example, the Check facet of the No-multiple-elements-Structures concept
contains the following entry: "Eliminate multiple occurrences of each element” (of course this
is present not as an English sentence but rather as a little LISP function). So even though
Sets has no entries for its Check facet, several little functions will be gathered up by the
rippling process. Each potential set would be sub jected to all those checks, and might be
modified or discarded as a result.

There is enough “structure” around to keep the heuristic rules relevant to this task isolated
from very irrelevant rules, and there is enough “uniformity” to make finding those rules
very easy.

The same rippling would be done to find predicates which tell whether a set is interesting
or dull. For example, one entry on the Interestingness facet of the Structure concept says
that a structure Is interesting if all pairs of members satisfy the same rare predicate P(x.y)
[for any such Pl So a set, all pairs of whose members satisfy “Equality,” would be
considered interesting. In fact, every Singleton is an interesting Structure for just that
reason. A singleton might be an interesting Anything because it takes only a few characters
to type it out {thereby satisfying a criterion on Anything.Interest).

To locate ali the specializations of Sets, the rippling would go in the oppasite direction. For
example, one of the entries on the Specializations facet of Sets is Set-of-structures; one if its
Specialization entries is Set-of-sets. So this latter concept will be caught in the net when
rippling away from Sets in the Specializations direction.

If AM wants lots of examples of sets, it has only to ripple in the Specializations direction,
gathering Examples of each concept it encounters. Examples of Sets-of-sets {like this one:
{iA },{{C,D}}}) will be caught in this way, as will examples of Sets-of-numbers (like this one:
{1.4,5}), because two specializations of Sets are Sets-of-Sets and Sets-of-Numbers®.

In addition to the three main reasons for keeping the set of facets the same for all the
concepts {see previous page), we claimed there were also reasons for keeping that set fixed
once and for all. Why not dynamically enlarge it? To add a new facet, its value has to be
filled in for lots of concepts. How could AM develop the huge body of heuristics needed to
guide such filling-in and checking activities? Also, the number of facets is small to begin
with because people don't seem to use more than a few tens of such “properties” in
classifying knowledge about a concept'®. If the viability of AM seemed to depend on this
ability, 1 would have worked on it. AM got along fine without being able to enlarge its set
of facets, 50 no time was ever spent on that problem. 1 leave it as a challenging, ambitious
“open research problem’.

8 by “rippling” upward from Sats, in the Geni direction
¥ We ore eseuming that AM has run for some time, and dirsady discovered Numbers, snd siresdy defined Sete-of-Numbere.
10 Thie dats » gethered from introspection by myself end 8 few others, and should probably be tected by performing some:

peycholagical experiments.
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5.1.3. BEINGs Representation of Knowledge

Before discussing each facet in detail, let's inter ject a brief historic digression, to explain the
origins of this modular representation scheme.

The ideas arose in an automatic programming context, while working out a solution to the
problem of constructing a computer system capable of synthesizing a simple concept.
discrimination program (similar to [Winston 70]). The scenario envisioned was one of
mutual cooperation among a group of a hundred or so experts, each a specialist in some
minute detail of coding, concept formation, debugging, communicating, etc. Each expert was
modelled by one module, one BEING. Each BEING had the same number of slots (parts,
facets), and each slot was interpreted as a question which that BEING could answer. The
community of experts carried on a round-table discussion of a programming task which was

specified by a human user. Eventually, by Cooperating and answering each other'squestions, they hammered out the program he desired. See [Lenat 75b] for details.

The final system, called PUPS, did actually synthesize several large LISP programs,
including many variants of the concept-learning program. This is described fully sy go
7%a). Unfortunately, PUP6 had virtually no natural language ability and was therefore
unusable by an untrained human. Its modal output was "EA?"

The search for a new problem domain where this communication difficulty wouldn't be so |
severe led to consideration of elementary mathematics.

The other main defect of PUPS was its narrowness, the small range of ‘target’ programs
which could be synthesized. PUPS had been designed with just one target in mind, and
almost all it could do was to hit that target. The second constraint on the new task domain
was then one of having a non-specific target, a very broad or diffuse goal. This pointed to
an automated researcher, rather than a problem.solver.

These two constraints then were {i} elementary math, beciuse of communication ease, and
(ii) self-guided exploration, because of the danger of toy specific a goal. Together, they
directed the author to an investigation which ultimately resulted in the AM project.

52, Facets

How is each concept represented? Without claiming that this is the “best” or preferred
scheme, this section will treat in detail AM’s representation of this knowledge.

We have seen that the representation of a concept can loosely be described as a collection of
facet/value pairs, where the facets are drawn from a fixed set of about 25 total possible
facets.

The facets break down into three categories:
1. Facets which relate this concept C to some other one(s) Generalizations,

Specializations, Examples, Isa’s, In-domain-of, In-range-of, Views, Intu’s, Analogies,
Conjec’s

2. Facets which contain information intensive to this concept C: Definitions,
Algorithms, Domain/Range, Worth, Interest
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3. Sub-facets, containing heuristics, which can be tacked onto facets from either group
above. These include: Suggest, Fillin, Check

Some facets come in several flavors {eg., there are really four separate facets — not just one
— which point to Examples: boundary, typical, just-barely-failing, foibles).

This section will cover each facet in turn. Let's begin by listing each of them. For a change

of pace, we'll show a typical question that each one might answer about concept C:''

Name: What shall we call C when communicating with the user?
Generalizations: Which other concepts have less restrictive definitions than Cr
Specializations: Which concepts satisfy C's definition plus some additional constraints?
Examples: What are some things that satisfy C's definition?
1sa's: Which concepts’ definitions does C itself satisfy?'?
In-domain-of: Which operations can be performed on C's?
In-range-of: Which operations result in values which are C's?
Views: How can we view some other kind of entity as if it were a C?
Intu’s: What is an abstract, analogic representation for C?
Analogies: Are there similar (though formally unrelated) concepts?
Conjec’s: What are some potential theorems involving C?
Definitions: How can we tell if x is an example of C?
Algorithms: How can we execute the operation C on a given argument?
Domain/Range: What kinds of arguments can operation C be executed on? What

kinds of values will it return?

Worth: How valuable is C? {overall aesthetic, utility, etc)
Interestingness: What special features make a C especially interesting?

In addition, each facet F of concept C can possess a few little subfacets which contain
heuristics for dealing with that facet of C's:

F.Fillin: How can entries on C.F be filled in? These heuristics get called on when the
current task is “Fillin facet F of concept X", where X isa C.

F.Check: How can potential entries on C.F be checked and patched up?
F.Suggest: If AM gets bogged down, what are some new tasks (related to C.F) it might

consider? |

We'll now begin delving into the syntax and semantics of each facet, one by one. Future

Shapers will not depend on this material. The reader may wish to skip to Section 5.3 {page105).

5.2.1. Generalizations/Specializations

F1 in this discussion, "C” represents the nems of the concept whose facet in being discussed, and may be reed “the given
concept”.

'2 Notice thet C wil thereforsbe sn exampleof such member of laa's(C).
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Generalization makes possible conscious, controlled, and accurate accomodation of
one's existing schemas, not only in response to the demands for assimilation of
new situations as they ave encountered, but ahead of these demands, seeking or
creating new examples to fit the enlarged concept.

== Skemp

We say concept A "is a generalization of” concept B iff every example of B is an example of
A. Equivalently, this is true iff the definition of B can be phrased as "a {x) {A.Defn{x) and
P(x)]"; that is, for x to satisfy B's definition, it must satisfy A's definition plus some
additional predicate P. The Generalizations facet of concept C will be abbreviated as
C.Genl.

C.Genl does not contain all generalizations of C; rather, just the “immediate” ones. More
formally, if A is a generalization of B, and B of C, then C.Gen! will not contain a pointer to
A. Instead, C will point to B'2.

Here are the recursive equations which permit a search process to quickly find all
generalizations or specializations of a given concept X:

Genaralizations{X} = Gani®{X} = {X} U Generaslizations{X.Genl}

Specislizations(X) = Spec®(X) = {X} U Specializations(X.Spec)

For the reader's convenience, here are the similar equations, presented elsewhere in the text,
for finding all examples of — and Isa’s of — X:

Examples(X) = Spec¥(Exs(Spec*(X)))
Isa's(X) = Geni*iss(Geni®*(X}))

The format of the Generalizations facet is quite simple: it is a list of concept names. The
Generalizations facet for Odd-primes might be:

{Odd-numbers Primes)

13 jn general, CGeni will contein an entry X1; X1.Geni will contain an satry X2._; XnGenl will contain B 2s one entry; BGani
will contain ¥1..; YnGoenl will contain A
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Here is a small diagram representing generalization relationships. The only lines drawn
represent the pointers found in the Genl facets of these concepts:

Object

Number

Odd-numbers Primes

Odd-primes Even-primes

Mer senne-pr ines

Each of those lines represents an arrow which siants upwards, indicating a Geni link. For
example, we see that the Generalizations facet of Odd-primes contains pointers to both
Odd-numbers and to Primes. There is no pointer from Odd-primes upward to Number,
because there is an “intermediate” concept (namely, Primes). There is no pointer from
Mersenne-primes to Ob ject, since a chain of intermediate concepts links them.

The reason for these strange constraints is so that the total number of links can be
minimized. There is no harm if a few redundant ones sneak in. In fact, frequentiy-used
paths are granted the status of single links, as we shall soon see.

We've been talking about both Specializations and Generalizations as if they were very
similar to each other. It's time to make that more explicit:
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Specializations are the converse of Generalizations. The format is the same, and (hopefully)
A is an entry on B's Specializations facet iff B is an entry on A's Generalizations facet.

The uses of these two facets are many:
1. AM can sometimes establish independently that A is both a generalization and a

specialization of B; in that case, AM would like to recognize that fact easily, so it
can conjecture that A and B specify equivalent concepts. Such coincidences are
easily detected as cycles in the Genl {or Spec) graph. In these cases, AM may
physically merge A and B (and all the other concepts in the cycle) into one concept.

2. Sometimes, AM wants to assemble a list of all specializations {or generalizations) of
X, so that it can test whether some statement which is just barely true (or false) for
X will hold for any of those specializations of X.

3. Sometimes, the list of generalizations is used to assemble a list of isa’s; the list of
specializations helps assemble a list of examples.'

4. A common and crucial use of the list of generalizations is to locate all the heuristic
rules which are relevant to a given concept. Typically, the relevant rules are those
tacked onto Isa’s of that concept, and the list of Isa's is built up from the list of
generalizations of that concept. This was also mentioned on page 36.

5. To incorporate new knowledge. if AM learns, conjectures, etc. that A is a
specialization of B, then all the machinery {all the theorems, algorithms, etc.) for B
become available for working with A.

Here is a little trick that deserves a couple paragraphs of its own. AM stores the answers to
common questions {like "What are ail the specializations of Operation”) explicitly, by
intentionally permitting redundant links to be maintained. If two requests arrive closely in
time, to test whether A is a generalization of B, then the result is stored by adding "A" as
an entry on the Generalizations facet of B, and adding "B” as a new entry on the
Specializations facet of A. The slight extra space is more than recompensed in cpu time
saved.

If the result were False {A turned out not to be a generalization of B) then the links would
specify that finding explicitly, so that the next request would not generate a long search
again. Such failures are recorded on two additional facets: Genl-not and Spec-not. Since
most concept pairs A/B are related by Spec-not and by Genl-not, the only entries which pet
recorded here are the ones which were frequently called for by AM. If space ever gets tight,
all such facets can be wiped clean with no permanent damage done. |

These two "shadow" facets (Genl-not and Spec-not) are not useful or interesting in their own
right. If AM ever wished to know all the concepts which are not generalizations of C, the
fastest way would be to take the set-difference of ali concepts and Generalizations(C). Since
they are quite incomplete, Genl-not and Spec.not are used more like a cache memory: they
save time whenever they are applicable, and don't really cost much when they aren't
applicable. Because of their superfiuity, these two facets will not be mentioned again. I only
mentioned them above because they do greatly speed up AM'’s execution time, and because
they may have some psychological analog.

'4 This process was called RIPPLING, and was described in Chapter 4. See alec footnote 34 in thet chapter.
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5.2.2. Examples/isa’s

Usually, to show that a definition implies no contradiction, we proceed by example,
we try to make an example of a thing satisfying the definition. We wish to define
a notion A, and we say that, by definition, an A is anything for which certain
postulates are true. If we can demonstrate directly that all these postulates are
true of a certain object B, the definition will be justified; the object BD will be an
example of an A.

== Poincere’

Following Poincare’, we say “concept A is an example of concept B™ iff A satisfies B's
definition.!® Equivalently, we say that “4 isa B”. It would be legal (in that situation) for "A"
to be an entry on B.Exs {the Examples facet of concept B} and for "B" to be an entry on
A Isa {the Isa’s facet of concept A). Some earlier mention of the Examples and Isa’s facets
can be seen in Chapter 4, page 57.

The Examples facet of C does not contain all examples of C; rather, just the “immediate”
ones. The examples facet of Numbers will not contain “11” since it is contained in the
examples facet of Odd-primes. A “rippling” procedure is used to acquire a list of all
examples of a given concept. T he basic equation is:

Examplesix) = Specializations (Exs{Specializations{x)))

where Exs(x) is the contents of the examples facet of x. Examples(x) represents the final list
of all known items which satisfy the definition of X. Examples(x} thus must include Exs(x).

Specializations(x) might be more regularly written Spec’(x). That Is, all members of x.Spec,
all members of their Spec facet, etc. Note the similarity of this to the formula for Isa’s(x),
given on page 57. We could also write the above equation as follows:

Examples(x) = Spac®(Exs{Spec®(x)))

As an illustration, we shall show how AM would recognize that "3" is an example of
Object:

15 What does this mean? BDefn is 8 Lisp predicate, s Lambda snpression If it is fed A se fs argument, ond it returns True,
we say that A is 8 B, or thet A satisfies B's definition if B Dein returns NIL, we say thet A i» not a B, or
that A fails B's definition If BDefn runs out of time before returning a T/NIL vals, there is no definite
statement of this form we can maka. In that cose, AM might check 10 sea whether A satiafies the defindtion
of some specializationof B, or whether A fails the definition of some genersizationof B.
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Ob ject

Number

Odd-numbers Primes

Odd-pr imes

Mer senne-primes

3 :

As the graph above shows, AM wouki ripple in the Spec direction 4 times, moving from
Object all the way to Mersenne-primes; then descend once in the Exs direction, to reach "37;
then ripple 0 more times in the Spec direction. Thus “3” is seen to be an example of
Object, according to the above formula. Similarly, we see that "3" is also an example of
Number, of Primes, of Odd-number, of Odd-primes, and of course an example of
Mersenne-primes.

As with Generalizations/Specializations, the reasons behind the incomplete pointer structure
is simply to save space, and to minimize the difficulty of updating the graph structure
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whenever new links are found. Suppose a new Mersenne prime'® is computed. Wouldn't it
be nice simply to add a single entry to the Exs facet of Mersenne-primes, rather than to
have to update the Exs pointers from a dozen concepts?

There is no harm if a few redundant links sneak in. In fact, frequently-used paths are
granted the status of single links. If two requests arrive closely in time, to test whether A
jsa B, then the result is stored as an entry on the Isa facet of A, and the Exs facet of B. If
the result were False, then the links would specify that, so that the next request would not
generate a long search. In fact, there is a separate facet called Exs-not, and one called Isa-
not. These two shadowy facets are quite analogous to the unmentionable facets "Genl-not™
and "Spec-not”, discussed in the previous subsection.

"Isa’s” is the converse of “Examples”. The format is the same, and {if A and B are both
concepts) A is an entry on B.Isa iff B is an entry on A.Exs. In other words, A is a member
of Examples(B) iff B is a member of Isa's(A). Due to an ugly lack of standardization, non-
concepts are allowed to exist. Thus, "3" is an example of Primes, but is not itself a concept.
Examples of X sometimes are concepts, of course: “Intersectolntersect™ is an example of
Compose-with-self. And Isa's(x} are always concepts. The highest level concept is called
“Anything”. Its definition Is the atom T. That is, “A(x) T". This high-level concept can claim
everything as its examples.

The uses of the Exs/Isa’s facets are similar to those for Genl/Spec (see previous subsection).

Their formats are quite a bit more complicated than the Geni/Spec facets’ formats, when we
finally get to the implementation level, however. There are really a cluster of different facets
al! related to Examples:

1. TYPICAL: This is a list of average examples. Care must be taken to include a wide
spectrum of allowable kinds of examples. For “Sets”, these would include sets of
varying size, nesting, complexity, type of elements, etc.

2. BOUNDARY: Items which just barely pass the definition of this concept. This
might include items which satisfy the base step of a recursive definition, or items
which were intuitively believed to be non-examples of the concept. For “Sets”, this
might include the empty set.

3. BOUNDARY-.NOT: Items which just barely fail the definition. This might include
an item which had to be slightly modified during checking, like {A,B,A} becoming
{A.B}.

4. FOIBLES: Total failures. Items which are completely against the grain of this
concept. For “Sets”, this might include the operation “Compose”.

5. NOT: This is the “cache” trick used to store the answers to frequently-asked
questions. If AM frequently wants to know whether X is an example of Y, and the
answer is No, then much time can be saved by adding X as an entry to the Exs-not
facet of Y.

An individual item on these facets may just be a concept name, or it may be more
complicated. In the case of an operation, it is an item of the form <ajag.~V>; ie, actual

18 "Morsonns prime”, without » hyphen, refers to a number satisfying cerlein properties [see glossary] "Mersenne-primes”,
with 3 hyphen, refers to one specific AM concept, 5 data siructure with facets. Each Mersanne prime is an
example of he concept Marsanne-primes.
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arguments and the value returned. In the case of objects, it is an object of that form. An
Exs facet of the concept Sets might contain {a} as one entry.

Here is a more detailed illustration. Consider the Examples facet of Set-union. It might
appear thus:

TYPICAL: {AJU{A,B]={AB};

{A,BJU[A,B}-{A,B]}; oo
{A<3,4,3>,{A,BIU{3,A]={A,<3,4,3),[A,B},3}.

BOUNDARY: {Jux-=x !’
BOUNDARY=NOT: {A BJU{AC}={A BAC}

(A.B,COJUIEF,GHIII{ABCEF.GHIJ}
FOIBLES: <2,A,2>
NCT: no entries

The format for isa’s are much simpler: there are only two kinds of links, and they're each
merely a list of concept names. Here is the Isa facet of Set-union:

ISA: (Operation'® DomsineRange-op)
1SA=NOT: {Siruciure Composition Predicate)

At some time, some rule asked whether Set-union jsa Composition. As a result, the negative
response was recorded by adding “Composition” to the Isa-not facet of Set-union, and
adding "Set-union” to the Exs.not subfacet of the Examples facet of the concept
Composition (indicating that Set-union was definitely not an example of Composition, yet
there was no reason to consider it a foible).

5.2.3. In-Domain-of/In-Range-of

We shall say that A is in the domain of B {written "A In.dom-of B’)} iff
1. A and B are concepts
2. B isa Operation
3. A is equal to {or at least a specialization of) one of the domain components of the

operation B. That is, B can be executed using any example of A as one of its

arguments.'® |

For example, Odd-perfect-squares is In-dom-of Add, since Odd-perfect-squares is a
specialization of Numbers, and Numbers is one component of the following entry which is

iY Actually, AM is no! quite smart snough 19 Use the varisbie X se shown in the boundary examples. It would simply store
fow instances of this general rule, plus have an eniry of the form <Equivelent: denlity(X) and Set-
union{X.[})> on the Exe facet of Conjeciures. Notice that bacsuse of the seymmetrx way Set-union wae
defined, only ane psided boundary sxsmple wae foundi another definition were supphed, the converes
kind of boundary axamples would be found

i This entry ®» redundent.
19 pore formally, we ton say thet thie occurs whaneversome entry on the Domsin/rangefacet of B hee the form <D, Do

D; + R> with some D, s member of Generslaatione(A). Then A i» & spacivkzstionof soma domein component
of some antry on B.Domainfrange.
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located on Add.Domain/range: <Numbers Numbers + Numbers>. Since Odd-perfect-squares
is a specialization of Numbers, the operation ‘Add’ can be executed using any example of
Odd-perfect-squares as its argument.

As another example, Odd-perfect-squares is also In-dom-of Set-insert, one of whose
Domain/range entries is <Anything Sets =» Sets>. This is because Odd-perfect-squares is a
specialization of Anything. So Set-insert is executed on two arguments, and the first
argument can be any example of Odd-perfect-squares {the second argument must be an
example of Sets).?°

Although it can be recomputed very easily, we may wish to record the fact that A In-dom-of
B by adding the entry "B" to the In-dom-of facet of A. AM may even wish to add this new

entry to the Domain/range facet of B (where A is a specialization of the fh domain
component of B): |
< Dy Dg. Dy A Dj, Dy » R>. The two examples given above would produce new
domain/range entries of <Odd-perfect-squares Numbers + Numbers> for Add, and <Odd-
perfect-squares Sets + Sets> for Set-insert.

The semantic content of “In-dom-of is: what can be done to any example of a given
concept C? Given an example of concept C, what operations can be run on that thing?
Here are some illustrations:

"Odd-perfect-squares In-dom-of Set-insert™ tells us that Set-insert can be run on any
particular Odd-perfect-square we can grab hold of.

"Operation In-dom-of Compose” tells us that Compose can be run on any operation we
want.

"Dom=Range-operation In-dom-of Compose” tells us that Compose can be run on any
operation which has its range equal to one of its domain components.

"Primes In-dom-of Squaring” tells us that we can apply the operation Squaring to any
particular prime number we wish.

Let us now turn from In-dom-of to the related facet in-ran-of.

We say that concept A is in the range of B iff B is an Activity?! and A is a specialization
of the range of B. More precisely, we can say that "A In-ran-of B" iff

1. A and B are concepts
2. B isa Operation (ie, B is an example of the concept "Operation”)
3. Some entry on the Domain/range facet of B has the form <D; Do... D; +» R> with R

a generalization of A.

For example, Odd.perfect-squares is In-ran-of Squaring, since {i} both of those are concepts,
(2) Squaring is an operation, (3) one of its Domain/range entries is <Numbers+Perf.

20 ince Ddd-porfect-squeres is more ciosaly relsted to Numbers than te ihe concept Anything (halfae many Genl Jinks
sway), AM srpects that restricting Add te Odd-perfect-squares wili probably yield » mors promising new
speraion then resiricting Sel-insert to only neert edd parfect squerss into sete.

21 iq, #1 B ins Aciive, #! BXExamplasiActive), #1 ActivaDefa(B)Trus. Actusly, since the range of Predicates is merely
{1.F], we may ss woll sssums the! B is 30 eporetion, net o predicete. Thie i mn oct sosumed, in the tex? and
in the actuel Ald system.
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squares>, and Perf-squares is a generalization of Odd-perfect-squares®*.

Here is what the In-ran-of facet of Odd-perfect-squares might look like:

{Squaring Add TIMES Maximum Minimum Cubing)

Each of these operations will — at least sometimes — produce an odd perfect square as its
result.

Semantically, the In-.ran-of relation between A and B means that one might be able to
produce examples of A by running operation B. Aha! This is a potential mechanism for
finding examples of a concept A. All you need do is get hold of In-ran-of(A), and run each
of those operations. Even more expeditious 1s 10 examine the Examples facets of each of
those operations, for already-run examples whose values should be tested using A.Defn, to
see if they are examples of A's. AM relies on this in umes of high motivation; it is toc
"blind" a method to use heavily all the time.

This facet is also useful for generaung situations to investigate. Suppose that the
Domain/range facet of Doubling contairs only one entry. < Numbers + Numbers >. Then
syntactically, Odd-numbers is in the runge of Doubling. Eventually a heuristic rule may
have AM spend some time looking fcr an example of Doubling, where the result was an
odd number. If none is quickly found, AM conjectures that it never will be found. Since
one definition of Odd-number{x) is "Number{(x} and Not{Even-number(x)}", the only non-
odd numbers are even numbers. So AM will increment the Domain/range facet of

Doubling with the entry <Numbers+Even-numbers>, and remove the old entry. Thus Odd-
numbers will no longer be In.dom-of Doubling. AM can of course chance upon this
conjecture in a more positive way, by noticing that all known examples of Doubling have
results which are examples of Even-numbers.®.

A more productive result is suggested by examining the cases where Odd-perfect-squares
are the result of cubing. The smallest such odd numbers are 1, 729, and 15625. In general,
these numbers are all those of the form (2n+1)%. How could AM notice such an awkward
relationship?

The general question to ask, when A In-ran-of B, is "What is the set of domain items whese
values {under the operation B) are A's?" In case the answer is "All" or "None", some speci!
modifications can bsmade to the Domain/range facets and in-dom-of, In-ran-of facets oi
various concepts, and a new conjecture can be printed. In other cases, a new concept might
get created, representing precisely the set of all arguments to B which yield values in A. If
you will, this is the inverse image of A, under operation B. In the case of B a predicate,
this might be the set of ail arguments which satisfy the predicate.

22 Why? Becsuse Gererslastions(Odd-perfect-squarss) ie the set of concepts {Odd-numbers Parl-asquares Numbers
Objects Any-concep! Anything], hence tontsine Perf-squares. So Perf.aqueres ie » generalization of Ddd-
purfect-squares.

23 This positive approach ie in fect the way AM noticed thie particuier relationship
& Wrong Tha! was sn sxponent, nol a footnote!
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In the case of B=Cubing and A=Odd-perfect-squares, the heuristic m>ntioned above will
have AM create a new concept: the inverse image of Odd-perfect-squares under the
operation of Cubing. That is, find numbers whose cubes are Odd-perfect-squares. It is
quickly noticed that such numbers are precisely the set of Odd-perfect-squares themselves!
So The Domain/range facet of Cubing might get this new entry. <Ocid-perfect-squares «+
Odd-perfect-squares>. But not all squares can be reached by cubing, =nly a few of them
can. AM will notice this, and the new range would then be isolated anc might be renamed
by the user "Perfect-sixth-powers™. Note that all this was brought on br: examining the In-
ran-of facet of Odd-perfect-squares. "Cubing™ was just one of the seven entries there.
There are six more stories to tell in this tiny nook of AM’s activities.

How exactly does AM go about gathering the In-ran-of and In-dom=of lists? Given a
concept C, AM can scan down the global tree of operations {the Exs arid Spec links below
the concept ‘Active’). For if C is not In-dom-of F, it certainly won't be In-dom-of any
specialization of F. Similarly, if it can't be produced by F, it won't be produced by any
specialization of F. If you can't get x using Doubling you'll never get it by Quadrupling. So
AM simply ripples around, as usual. The precise code for this algorithm is of little interest.
There are not that many operations, and it is cheap to tell whether X 1s a specialization of
a given concept, so even an exhaustive search wouldn't be prohibitive. Finally, recall that
such a search is not done all the time. It will be done initially, perhaps, but after that the
In-dom-of and In-ran-of networks will only need slight updating now and then.

52.4. Views

Often, two concepts A and B will be inequivalent, yet there will be a: “natural” bi jection
between one and (a subset of) the other. For example, consider a finite set 5 of atoms, and

consider the set of ail its subsets, 2°, also called the power set of S. Now § is a member of,
but not a subset of, 2° (eg. if S={x.y...}, then x is not a member of 25). On the other hand,
we can identify or view S as a subset by the mapping v={v}. Then S iscassociated with the

following subset of 29. { {x}, ly}. }. Why would we want to do this? Weil it shows that S is
identified with a proper subset of 95, and indicates that S has = lower cardinality
(remember: all sets are finite).

As another example, most of us would agree that the set {x, {y]. 2} can: be associated with
the following bag: (x, {y}, 2). Each of them can be viewed as the other: Sometimes such a
viewing is not perfectly natural, or isn’t really a bijection: how could the bag (2, 2, 3) be
viewed as a set? Is {2,3} better or worse than {2,{2},3)?

The View facet of a concept C describes how to view instances of another concept D as if
they were C's. For example, this entry on the View facet of Sets explains how to view any
given structure as if it were a Set:

Structure: } {x) Enclose-in-braces(Sort{Remove-multiple-elements(x)))

If given the list <zaca>, this little program would remove multiple elements (leaving
<2,a,c>), sort the structure {making it <a,c.z>), and replace the "<..>" by "{..}", leaving the
final value as {ac,z}. Note that this transformation is not 1-1; the list <ac.2> would get
transformed into this same set. On the other hand, it nay be more useful than
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transforming the original list into {2,{a,ic.{a}}}}] which retains the ordering and multiple
element information. Both of those transformations may be present as entries on the View
facet of Sets.

As it turns out, the View facet of Sets actuaily contains only the following information:

Structure: X (x) Enclose=in-braces(x)

Thus the Viewing will produce entities which are not quite sets. Eventually, AM will get
around to executing a task of the form "Check Examples of Sets”, and at that time the error
will be corrected. One generalization of Sets is No-multiple-elements-Structures, and one of
its entries under Examples.Check says to remove all multiple elements. Similarly,
Unordered-structures is a generalization of Sets, and one of its Examples.Check subfacet
entries says to sort the structure. If either of these alters the structure, the old structure is
added to the Boundary-not subfacet {the *Just-barely-miss’ kind) of Examples facet of Sets.

The syntax of the View facet of a concept C is a list of entries; each entry specifies the name
of a concept, X, and a little program P. If it is desired to view an instance of X as if it were
a C, then program P is run on that X; the result is (hopefully) a C. The programs P are
opaque to AM; they must have no side effects and be quick.

Here is an entry on the View facet of Singleton:

Anything: A {x} Sel-inseri{x, PHI}

In other words, to view anything as a singleton set, just insert it into the empty set. Note
that this is also one way to view anything as a set. As you've no doubt guessed, there is a
general formula explaining this:

Visws(X) = View{Specislizations(X))

Thus, to find all the ways of viewing something as a C, AM ripples away from C in the
Spec direction, gathering all the View facets along the way. All of their entries are valid
entries for C.View as well.

In addition to these built-in ways of using the Views facets, some special uses are made in
individual heuristic rules. Here is a heuristic rule which employs the Viewing facets of
relevant concepts in order to find some examples of a given concept C:

IF the current task is 10 Fill-in Examples of C,
snd C has some eniries on ils View facet,
and one of those eniries O,P> indicales a concept X which has some known Examples,

THEN run the associaled program P on each member of Examples{X),
snd add the following task to the sgends: "Check Exampies of C", for the following

reason: "Some very risky techniques were used to find examples of C”, and
{hat reason’s rating is compuied ss: Average{Worth{(X), ihe examples of C
found in 1his manner}l).

Say the task selected from the agenda was "Fill-in Examples of Sets”. We saw that one
entry on Sets.View was Slructure: A(x} Enclose=in-braces(x). Thus it is of the form <X,P>,
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with Xs=Structure. The above heuristic rule will trigger if any examples of Structures are
known. The rule will then use the View facet of Sets to find some examples of Sets. So AM
will go off, gathering all the examples of structures. Since Lists is a Specialization of
Structure, the computation of Examples(Structures) will eventually ripple downwards anc
ask for Examples of Lists. If the Examples facet of Lists contains the entry <2,a.c,2,a>, ther
this will be retrieved as one of the members of Examples(Structure). The heuristic rule take:
each such member in turn, and feeds it to Set.View's little program P. In this case, the
program replaces the list brackets with set braces, thus converting <z,a,c2.a> to {2,233}.

In this manner, all the existing structures will be converted into sets, to provide examples of
sets. After all such conversions take place, a great number of potential examples of Sets will
exist. The final action of the right side of the above heuristic rule is to add the new task
"Check examples of Seis” to the agenda. When this gets selected, all the “slightly wrong"
examples will be fixed up. For example, {z,2c,2,a} will be converted to {ac.z}.

If any reliance is made on those unchecked examples, there is the danger of incorrectly
rejecting a valid conjecture. This is not too serious, since the very first such reliance will
boost the priority of the task "Check examples of Sets”, and it would then probably be the
very next task chosen.

2-2-5. Jntuitions

T he mathematician does not work like a machine; we cannot overemphasize the
fundamental role played in his research by a special intuition (frequently wrong),
which is not common-sense, but rather a divination of the regular behavior Ae
expects of mathematical beings.

== Bourbaki

This facet turned out to be a “dud”, and was later excised from all the concepts. It will be
described below anyway, for the benefit of future researchers. Feel free to skip directly to
the next subsection.

The initial idea was to have a set of a few (3-10) large, global, opaque LISP functions. Each
of these functions would be termed an “Intuition” and would have some suggestive name

like “jigsaw-puzzle”, “see-saw”, “archery”, etc. Each function would somehow model the
particular activity implied by its name. There would be a multitude of parameters which
could be specified by the “caller” as if they were the arguments of the function. The
function would then work to fill in values for any unspecified parameters. That's all the
function does. The caller would also have to specify which parameters were to be
considered as the “results” of the function.

For the see-saw, the caller might provide the weight of the left-hand-side sitter, and the final
position of the see-saw, and ask for the weight of the right-hand sitter. The function would
then compute that weight {as any random number greater/less-than the left-hand weight,
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depending on the desired tilt of the board). Or, the caller might specify the two weights
and ask for the final position.

The See-saw function is an expert on this subject; it has efficient code for computing any
values which can be computed, and for randomly instantiating any variables which may
take on any value {e.g the first names of the people doing the sitting). When an individual
call is made on this function, the caller is not told how the final values of the variables were

computed, only what those values end up as.

So the Intuitions were to be experimental laboratories for AM, wherein it could get some
(simulated) real-world empirical data. If the seesaw were the Intuition for ™>", and weight
corresponded to Numbers, then several relationships might be visualized intuitively {like the
anti-symmetry of ">"). This is a nice idea, but in practice the only relationships derived in
this way were the ones that were thought up while trying to encode the Intuition functions.
This shameful behavior led to the excision of the Intuitions facets completely from the
system.

As another example, suppose AM is considering composing two relations R and 5. If they
have no common Intuition reference, then perhaps they're not meaningfully composable. If
they do both tie into the same Intuition function, then perhaps that function can tell us
something about the composition. This is a nice idea, but in practice very few prunings
were accomplished this way, and no unanticipated combinations were fused.

Each Intuition entry is like a "way in” to one of the few global scenarios. It can be
characterized as follows:

1. One of the salient features of these entries — and of the scenarios ~ is that AM is

absolutely forbidden to look inside them, to try to analyze them. They are ppague.
Most Intuition functions use numbers and arithmetic, and it would be pointless to
say that AM discovered such concepts if it had access to those algorithms all along.

2. The second characteristic of an Intuition is that it be fallible. As with human
intuition, there is no guarantee that what is suggested will be verified even
empirically, let alone formally. Not only does this make the programming of
Intuition functions easier, it was meant to provide a degree of “fairness” to them.
AM wasn't cheating quite as much if the See-saw function was only antisymmetric
90% of the time.

3. Nevertheless, the intuitions are very suggestive. Many conjectures can be proposed
only via them. Some analogies (see the next subsection) can also be suggested via
common intuitions.

After they were coded and running, I decided that the intuition functions were unfair; they
contained some major discoveries “built-in” to them. They had the power to propose
otherwise-obscure new concepts and potential relationships. They contributed nothing other
than what was originally programmed into them; they were not synergetic. Due to this
dubious character of the contributions by AM’s few Intuition functions, they were removed
from the system. All the examples and all the discoveries listed in this document were made
without their assistance.

We shall now drop this de-implemented idea. I think there is some real opportunity for
research here. For the benefit of any future researchers in this area, let me point to the
excellent discussion of analogic representations in [Sloman 71]
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5.2.6. Analogies

T Ae whole idea of analogy is that ‘Effects’, viewed as a function of situation, is a
continuousfunction.

== Poincare’

As with Views and Intuitions, this facet is useful for shifting between one part of the
universe and another. Views dealt with transformations between two specific concepts;
Intuitions dealt with transformations between a bunch of concepts and a large standard
scenario which was carefully hand-crafted in advance. In contrast, this facet deals with
transforming between a list of concepts and another list of concepts.

Analogies operate on a much grander scale than Views. Rather than simply transforming a
few isolated items, they initiate the creation of many new concepts. Unlike Intuitions, they
are not limited in scope beforehand, nor are they opaque. They are dynamically proposed.

The concept of “prime numbers” is analogous to the notion of “simple groups”. While not
isomorphic, you might guess at a few relationships involving simple groups just by my
telling you this fact: simple groups are to groups what primes are to numbers 24

Let's take 3 elementary examples, involving very fundamental concepts.

1. AM was told how to View a set as if it were a bag,

2. AM was told it could Intuit the relation "2" as the predetermined "See-saw” function.

3. AM, by ::self, once Analogized that these two lists correspond:
<Bags Same-length ~~ Operations-on-and-into Bags>
<Bags-of-T's Equality Those operations restricted to Bags-of-Ts>

The concept of a bag, all of whose elements are "T's, is the unary representation of
numbers discovered by AM. When the above analogy (e3) is first proposed, there are many

known Bag-operations®>, but there are as yet no numeric operations®®. This triggers one of
AM’'s heuristic rules, which spurs AM on to finding the analogues of specific Bag-

24 if a group is not simple, it can be factored Unfortunately, the factorization of # group into simple groups ke not unique.
Another anslogizing contact: For each prime p, we can associa the cychc group of order p, which in of
courses simple AM never tame Up with the concept of simple groups; this & jimi an Mmtration Tor the
sophmicaled reader.

25 ie, oll antrige on in-dom-of{Beg} snd In-ran-of (Bag): 8 few of thess wre: Hag-imeert, Bag-union, Bag-interseciion
26 Exompies of Dperstion whose domain/renge contains “Number”.
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operations. That is, what special properties do the bag-operations have when their domains
and/or ranges are restricted from Bags to Bags-of-T's (i.e, Numbers). In this way, in fact,
AM discovers Addition (by restricting Bag-union to the Domain/range <Bags-of-T's Bags-
of -T's + Bags-of-T's>}, plus many other nice arithmetic functions.

Well, if it leads to the discovery of Addition, that analogy is certainly worth having. How
would an analogy like that be proposed? As the reader might expect by now, the
mechanism Is simply some heuristic rule adding it as an entry to the Analogies facet of a
certain concept. For example:

IF the current task has just created a canonical specialization C2 of concept Tl, with respect
{o operations Fil and F2, [i.e., two members of C2 satisly Fl ill they satisty
F2)

THEN add the following eniry to ihe Analogies facet of C2:
Cl Fl] Oparations-on-and-into{(C1 )»
C2 F2 Those operations restricted 10 C2's>

After generalizing “Equality” into the operation "Same-length”, AM seeks to find a
canonical?’ representation for Bags. That is, AM seeks a canonizing function f, such that
(for any two bags x.y) .!

Same-lenglhlx,y} iff Equal{ i{x), i{y) ).

Then the range of f would delineate the set of “canonical” Bags. AM finds such an f and
such a set of canonical bags: the operation f involves replacing each element of a bag by
"T", and the canonical bags are those whose elements are all T's. In this case, the above
rule triggers, with Cl=Bags, C2=Bags-of-T's, r [=Same-length, F2=Equality, and the analogy
which is produced is the one shown as example »3 above. |

The Analogy facets are not implemented in full generality in the existing LISP version of
AM, and for that reason | shall refrain from delving deeper into their format. Since good
research has already been done on reasoning by analogy®®, I did not view it as a central
feature of my work. Very little space will be devoted to it in this document.

An important type of analogy which was untapped by AM was that between heuristics. If
two situations were similar, then conceivably the heuristics useful in one situation might be
useful (or have useful analogues) in the new situation. Perhaps this is a viable way of
enlarging the known heuristics. Such “meta-level” activities were kept to a minimum
throughout AM, and this proved to be a serious limitation.

Let me stress that the failure of the intuitions facets to be nontrivial was due to the lack of

spontaneity which they possessed. Analogies facets were useful and “fair” since their uses
were not predetermined by the author.

27 4 naturel, standard form All bage differing in only “unimportant” ways should be transformed into the same canonical
form Two bags Bl and B2 which have the seme length should gat transformed mto the same canenical bag.

28 An excelent discunsion of ressoning by snslogy ie found in [Polya 54] Some serly work on emulating thie wae reported
: in [Evans $3); & mors recent thesis on this topic » [King 71]
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5.2.7. Con jec's

Basically, facet Conjec of concept C is a list of relationships which involve C. We shall
discuss its semantics {uses of this facet} before its syntax.

Perhaps the most obvious use for this facet would be to hoid conjectures which could not
be phrased simply. Yet it turns out that luckily {I think), all the conjectures “fell out”
naturally as trivial relationships, eg. simply as arcs in the Genl/Spec/Exs/Isas pointer

format. Specifically, the modal conjecture had the form “the range of F is not just C, but
actually 5.

For example, AM restricted TIMES to perfect squares, and noted that the result was not
merely a number but a perfect square each time. The unique factorization theorem was
noticed similarly (the range of Prime-factorings was always a singleton, not merely a set).

In all the cases encountered by AM, there was never any real need for a place to “park” an
awkwardly-phrased conjecture, because no awkward conjecture could ever possibly be noticed.
Why is this so? AM was constructed explicitly on the assumption that all (enough?)
important theorems could be discovered in quite natural ways, as very simple (already-
known) relationships on already-defined concepts. AM embodies several such assumptions
about math research; they are collected and packaged for display in Section 7.26, on
page 162.

What else might this facet be useful for, if not the storage of awkwardly-worded
conjectures? It might be a good place to store flimsy conjectures: those which were strong
enough to get considered, yet for which not much empirical confirmation had been done.
This in fact was one important role of this facet.

For example, AM was initially told that there are two specializations of Unordered-
structures, namely Bags and Sets. But AM was not given any examples of any structures at
all. Early on, it chose the task “Fillin exampies of Bags™ from the agenda. After filling them
in, a heuristic 1ule had AM consider whether or not this concept of Bags was really any

more specialized than the concept of Unordered-structures. To test this empirically, AM
tried to verify whether or not there were any examples of Unordered.structures that were
not examples of Bags. Failure to find any led to proposing the conjecture “All Unordered-
structures are really Bags”. This could have been recorded quite easily: Bags was already
known to be specialization of Unordered-structure, so all AM had to do was tag it as a
generalization as well (add "Bags to the Generalizations facet of the Unordered-structures
concept). But a heuristic rule which knows about such equivalence conjectures frst asked
whether there were any specializations of Unordered-structures which had no known
examples, and for which AM had not (recently, at least) tried to fill in examples. In fact,
such an entry was “Sets”. So the conjecture was stored on the Conjec facet of Unordered-
structures, and a new job was added to the agenda: "Fill in examples of Sets”. The reason
was that such examples might disprove this flimsy conjecture. In fact, the job already
existed on the agenda, 30 only the new reason was added, and its priority was boosted.
When such examples were found, they did of course disprove that con jecture: each set was
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an Unordered.structure and yet was not a Bag.?®

This last example has suggested another use for this facet: holding heuristic rules which are
reievant to filling in and checking conjectures. For example, the Conjec facet of Operations
has some special heuristics which look for certain kinds of relationships involving any
given operation (eg. "Pick any example F(x)=y. See what interesting statements can be
made about y. Then try to verify or disprove each one by looking at the values of all the
other known calls on operation F"). The Conjec facet of Any-concept will contain knowledge
which is much more general in scope {eg., "See whether concept C is an example of some
member of {C.Isa)Spec’). Compose.Conjec will contain more specific heuristics {eg., "See if
the composition AsB is really no different from B").

Given any concept C, AM will ripple upwards, locating Isas{C), and collect the heuristics
which are tacked onto their Conjec facets. These heuristic rules will then be evaluated {in
order of increasing generality), and some conjectures will probably be proposed, checked,
discarded, modified, etc. In fact, each Con jec facet of each concept can have two separate
subfacets: ConjecFillin and Conjec.Check. The former contains heuristics for noticing
conjectures, the second for verifying and patching them up.

There is yet another use for this facet, one of efficiency of storage. After discovering that
all primes except 2 are Odd-primes, there is very little reason to keep around Odd-primes
as a separate concept from Primes. Yet they are not quite equivalent. Primes.Conjec is a
good place for AM to store the conjecture "Prime(x) implies that x=2 or Odd(x)", and to
pull over to Primes any efficient definition/algorithm which Odd-primes might possess
(patching it up to work for "2"), and then destroy the concept Odd-primes. Another way

out is merely to destroy “Primes”, and make 2 a distinguished number tacked onto the Just-
barely-missed subfacet of Odd.primes.Exs {just like "1" is already).

Here is another example: AM discovers that Set-insertoSet-insert is the same as just Set-
insert. That is, if you insert x twice into a set §, it's no different than inserting it just once
(because Sets don't allow multiple copies of the same element). Then there's no longer any
reason for keeping Set-inserteSet-insert hanging around as a separate concept. Instead, just
add a small new entry to Set-insert.Conjec and forget that space-consuming composition
forever.

There is another use of the Con jec facet: untangling paradoxes. It is with no sorrow that |
mention that this facility was never needed by AM: no genuine contradictions ever were
believed by AM. What would one look like? Suppose a chain of Spec links indicates that X
is a specialization of Y, and yet AM finds some example x of X which does not satisfy
Y Definition). So X is — and is not — a specialization of Y. In such cases, the Conjecs
facets of the concepts involved would indicate which of those Spec links were initially-
supplied (hence unchallengable), which links were created based on formal verifications
(barely challengable), and which links were established based only on empirical evidence
(yes, these are the ones which would then fade into the sunset). If it has to, AM shouid be
able to recall the justification for each new link it created. AM can deduce this by
examining the Conjec facets of the concepts involved.

29 Bags are not multisete, sithough those two nolions sre very clossly rested to sach other. Each set is 5 multisst by
definition; but ssch set is guaranteed by definition to not be & beg.
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Periodically (at huge intervals) AM chose a task of the form "Check con jecs about C’, at
which time all the entries on C.Conjec would be re-examined in light of existing data. Some
would be discarded {perhaps causing some Exs/Isa/Spec/Genl links to vanish with them).
Some of the con jectures might be believed much more strongly now (causing some new links
to be recorded). This turned out to be a surprisingly ineffective activity; very few new
revelations were obtained this way. Ultimately, this kind of task was muztled (AM was
inhibited from doing this).

Theoretically, AM might possess rules which transformed a conjecture into a more efficient
algorithm for an operation, or which used the knowledge contained therein to speed up an
existing algorithm. Another sophisticated use of a conjec would be to set up a new
representation scheme for a concept™.

Finally, the Conjec’s facet is used as a showcase, to highlight some nice discovery that AM
wants to display. The user can look at the entries on each concept's Con jec facet (after a
jong run) and get a better feeling for AM’s abilities. If there are several powerful
conjectures listed for concept C, then it appears to the user that AM “understands” the
concept much better than if C.Conjecs is empty. ;

Let's recapitulate the uses of this facet:

|. Store awkwardly-phrased conjectures: this wasn't really useful.
2. Store flimsy conjectures: apparent relationships worth remembering, yet not quite

believed.

3. Hold heuristics which notice and check conjectures.
4. Obviate the need for many similar concepts: Collapse the entire essence of a related

concept into one or two relationships involving this one.
5. Untangling paradoxes: a historic record, which wasn't really used.
6. Improve existing algorithms, definition testing procedures, representations.
7. Display AM’s most impressive observed relationships in a form which is easily

inspectable by the user.

The syntax of this facet is simply a list of conjectures, where each conjecture has the form
of ‘a relationship: (R a b c.d). R is the name of a known operation {in which case, abc... are
its arguments and we claim that d is its value), or R is a predicate {and d is either True or
False), or R is the name of a kind of link (Genl, Spec, Isa, or Exs), and the claim is that a
and b are related by R. Here are three example of conjectures, illustrating the possible
formats:

1. (Compose Sate-insert Set-insert Ssi-insert). This says that if you apply the known
operation Compose, to the two arguments Set-insert and Set-insert, then the
resultant composition is indistinguishable from Set-insert.

2. (Same-size Insert(5,5) S False). That is, inserting a set into itself will always {for finite
sets) give you a set of a different length.

3. (Exemple-of Prime-factorings Function). This conjecture is the unique factorization

30 og, ater unique fectorizelion is discovered, begin representing numbers 8s & bag of primes: n i represented as the
prime factorization of n Thre is sxponentisily batter than unary notation: bags-of-T's. AM hed a tiny ability
for this kind of ongoing transformation, so crude it's better left undescribed
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theorem. The operation which takes a number n, and finds all prime factorizations
of n, is claimed to be a function, not merely a relation. That is, each n has
precisely one such prime factoring.

5.2.8. Definitions

A typical way to disambiguate a concept from all others is to provide a “definition” for it
Almost every concept had some entries initially supplied on its “Definitions” facet. The
format of this facet is a list of entries, each one describing a separate definition. A single
entry will have the following parts:

1. Descriptors: Recursive/Linear/lterative, Quick/Slow, Opaque/Transparent, Once-
only/Early/Late, Destructive/Nondestructive.

2. Relators: Reducing to the definition of concept X, Same as Y except... Specialized
version of Z, Using the definition of W, etc.

3. Predicate: A small, executable piece of LISP code, to tell if any given item is an
example of this concept.

The predicate or “code” part of the entry must be faithfully described by the Descriptors,
must be related to other concepts just as the Relators claim. The predicate must be a LISP
function which take argument(s} and return either T or NIL {for True/False), depending on
whether or not the argument(s) can be regarded as examples of the concept.

The argument "{A B}" should satisfy the predicate of any valid definition entry of the Sets
concept. This triple of arguments <{A B}, {A C}, {A B C}]> should satisfy any dehnition of
the Set-union concept, since the third is equal to the Set-union of the first two arguments.

Here is a typical entry from the Definitions facet of the Set-union concept:

Descriplors: Slow, Recursive, Transparent

Relators: Uses lhe algorithm for Set-inserl, Uses the definition of Emply-sel,
Uses the definilion of Sel-squal, ises the algorithm for Some-member,

Uses ihe sigorilhm for Set-delele, Uses the definition of Set-union

| Code: (ABC)

IF Emply-sei.Dein{A) THEN Sel-squalDefn(B,C) ELSE |
| X + Some-member.Alg{A)

A + Sat-delele Alg(X,A)

B = Sel-imserl Alg{X,B)

Set-union.Dein(A,B,C)

31 As EPAM studies showed [Feigenbaum $3], one con never be sure thet this definition will specify the concept uniquely
for all time. In the dwtant future, some how concept may differ in ways thought to be ignorable at the
present time
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Let me stress that this is just one entry, from one facet of one concept.

The notation "X « Some-member.Alg(A)" means that any one algorithm for the concept
Some-member should be accessed, and then it should be run on the argument A. The result,
which will be an element of A, i5 to be assigned the name "X". The effect is to bind the
variable X to some member of set A.

In the actual LISP implementation, the ELSE part of the conditional is really coded” as:

{Set-union.Detn (Set-delete.Alg (SETQ X (Some-member.Alg A})} A)
(Set-insert.Alg X B)
C

}

This particular definition is not very efficient, but it is described as Transparent. That
means it is very well suited to analysis and modification by AM itself. Suppose some
heuristic rule wants to generalize this definition. It can peer inside it, and, eg. replace the
base step call on Set-equal, by a call on a generalization of Set-equal (say "Same-length™).

How could different definitions help here? Suppose there were a definition which frst
checked to see if the three arguments were Set-equal to each other, and if so then it
instantly returned T as the value of the definition predicate; otherwise, it recurred into Set-
union.Defn again. This might be a good algorithm to try at the very beginning, but if the
Equality test fails, we don’t want to keep recurring into this definition. This algorithm
should thus have a descriptor labelling it ONCE-ONLY EARLY.

A typical kind of entry for the Definitions facet of an operation is to simply call on the
Algorithms part of that same concept. Here is such an entry from the Definitions facet of the
Set-union concept:

| Descriplors: none

Relators: Uses the definition of Sel-equal, Uses the sigorithm for Set-union

Code: ) {A BC) Set-squai.Dein(C, Sel-union Aig{A,B))

This definition is a trivial call on the “Algorithms” facet of Set-union. That is, one way to
test whether C is the set-union of A and B, is simply to run set-union on A and B, and
compare the result against C. The descriptors and relators of the particular algorithm
which is chosen will then be added to the descriptors and relators which exist so far on this
entry. Note that the box above (like the box on the previous page) is simply one entry on
the Definitions facet of the Set-union concept.

32 The expression “(fDefn al 32 )° mesns “spply the predicate part of s definition of f, to arguments al, 32,.". This
definition is to be randomly selecied from the entries on the Definitions facet of concept 1.

33 for dejoint sete, the new definition would specify the operation which we call “sddition”
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There are three purposes to having descriptors and relators hanging around:
1. For the benefit of the user. AM appears more intelligent because it can describe the

kind of definition it is using — and why.
2. For the sake of efficiency. When all AM wants to do is to evaluate Set-union{ABj,

it's best just to grab a fast definition. When trying to generalize Set-union, it's
more appropriate to modify a very clean, transparent dehnition — even if it is a
slow one.

3. For the benefit of the heuristic rules. Often, a left- or a right-hand-side will ask
about a certain kind of definition. For example, “if 8 transparent definition of X
sxisls, then try to specialize X".

Granted that Descriptors and Relators are useful, how do these "meta-level” modifiers get
filled in, for newly-created™® concepts? All such powers are embedded in the fine structure
of the heuristic rules. This is true for the Algorithms facet as well, and will be illustrated in
the very next subsection.

Let me pull back the curtain a little further, and expose the actual implementation of these
ideas in AM. The secrets about to be revealed will not be acknowledged anywhere else in
this document. They may, however, be of interest to future researchers. Each concept may
have a cluster of Definition facets, just as it can have several kinds of Examples facets.
These include three types: Necessary and sufficient definitions, necessary dehnitions, and
sufficient definitions. These three types have the usual mathematical meanings. All that
has been alluded to before {and after this subsection} is the neccksuff type of dehnition {x is
an example of C if and only if x satishes C.Def/neccksuff). Often, however, there will be a
much quicker sufficient definition (x satisfies C.Def/suf, only if x is certainly a C). Similarly,
entries on C.Def/nec are useful for quickly checking that x is not an example of C {to check
this, it suffices to verify that x fails to satisfy a necessary definition of C).

So given the task of deciding whether or not x is an example of C, we have many
alternatives:

1. If x is a concept, see if C is a member of x.ISA (if so, then x is an example of C).
2. Try to locate x within C.Exs. {depending upon the flavor of subfacet on which x is

found, this may show that x is or is not an example of C).
3. If x is a concept, ripple to collect ISA’s(x), and see if C is a member of ISA"s(x).
4. If there is a fast sufficent definition of C, see if x satisfies it.

5. If there is a fast necessary definition of C, see if x fails it {if so, then x is not an
example of C).

6. If there is a necessary and sufficient definition of C, see whether or not x satisfies |
that definition (this may show that x is or is not an example of C).

7. Try to locate x within C.Exs. {depending upon the flavor of subfacet on which x is
found, this may show that x is or is not an example of C).

8. Recur: check to see if x is an example of any specialization of C.
9. Recur: check to see if x is not an example of some generalization of C (if so, then x

is not an example of C),

In fact, there is a LISP function, IS-EXAMPLE, which performs those steps in that order.

34 For intially- supplied definition entries, the author hend-coded these modifiers.
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At each moment, there is a timer set, so even if there is a necessary and sufficient definition

hanging around, it might run out of time before settling the issue one way or the other.
Each time the function recurs, the timer is granted a smaller and smaller quantum, until
finally it has too little to bother recurring anymore. There is a potential overlap of activity:
to see if x is an example of C, the function might ask whether x is or is not an example of
a particular generalization of C (step 9, above); to test that, AM might get to step 8, and
again ask if x is an example of C. Even though the timer wou'd eventually terminate this
fiasco (and even though the true answer might be found despite this wasted effort) it is not
overly smart of AM to fall into this loop. Therefore, a stack is maintained, of all concepts
whose definitions the 1S.EXAMPLE function tried to test on argument X. As the function
recurs, it adds the current value of C to that stack; this value gets removed when the
recursion pops back to this level, when that recursive call “returns” a value.

5.2.9. Algorithms

Earlier, we said that each concept can have any facets from the universal fixed set of 25
facets. This is not strictly true. Sometimes, a whole class of concepts will possess a certain
type of facet which no others may meaningfully have. If C can have that facet, then so can
any specialization of C. Typically, there will be some concept T such that the examples of
C are precisely the set of concepts which can possess the new facet. That is, there will be a
domain of applicability for the facet, just as we defined such domains of applicability for
heuristics. For example, consider the “Domain/Range” facet. It is meaningful only to
“operations”, but really is an important feature of all operations. Its domain of applicability
is Operation.

The kinds of facets — including all such limited “jargon” facets — is fixed once and for ail.
New kinds of facets cannot be conceived and added by AM itself. Nor does AM have any
control over the domain of applicability of each facet.

If desired, one can view all this in a more general light. For each facet {, the only concepts
which can have entries for facet T are examples of some particular concept J{f) — th= "J"
stands for “jargon”. J(i) is the domain of applicability of facet f. If C is any concept which
is not an example of J(f), then it can never meaningfully possess any entries for that facet f.
For almost all facets f, J(f) is "Any-concept”. Thus any concept can possess almost any facet.
For example, J(Defn)="Any-concept’, so any concept may have definitions.

There are a few more restricted facets. For example, J(Domain/range)="Operation”. So only

operations can have domain/range facets.?® The concept “Sets”, which is not an operation,
can’t have a domain/range facet.

Similarly, J(Algorithms)="Actives’. This facet is the subject of this section. The Algorithms
facet is present for all — but only for — Actives (predicates, relations, operations).

The representation is, as usual, a list of entries, each one describing a separate algorithm. A
single entry will have thc following parts:

35 Actuaily, Predicates sles have domeinfrangs facets, sven though the Z>nge parte sre sil necessarily the same: {TF}.
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1. Descriptors: Recursive/Linear/iterative, Quick/Slow, Opaque/Transparent,
Once-only/Early/Late, Destructive/Nondestructive.

2. Relators: Reducing to the algorithm for concept X, Same as Y except... Specialized
version of Z's algorithm, Using the algorithm for W, etc.

3. Program: A small, executable piece of LISP code, for actually running C.

Mote the similarity to the format for the Definitions facets of concepts. Instead of a LISP
predicate, however, the Algorithms facets possess a LISP function (an executable piece of
code whose value will in general be other than True/False). That “program” part of the
entry must be faithfully described by the Descriptors, must be related to other concepts just
as the Relators claim, must take arguments and return values as specified in the
Domain/Range facet of C, and when run on any arguments, the resultant <args value> pair
must satisfy the Defnitions facet of C.

There is an extra level of sophistication which is available but rarely used in AM. The
descriptors can themselves be small numeric-valued functions. For example, instead of just
including the Descriptor “Quick”, and instead of just giving a fixed number for the speed of
the algorithm, there might be a little program there, which looked at the arguments fed to
the algorithm, and then estimated how fast this algorithm would be. The main reason for
not using this feature more heavily is that most of the algorithms are fairly fast, and fairly
constant in performance. it would be silly to spend much time recomputing their efficiency
each time they were called. If the algorithm is recursive, this conjures up even sillier
pictures. The main reason in support of using this feature is of course “intelligence” in the
long run, processing a little bit before deciding which algorithm to run fas to be the
winning solution. At the moment, it is not yet cost-effective.

Here is a typical entry from the Algorithms®® facet of the Set-union concept:

Descriptors: Slow, Recursive, Transparent

Relators: Uses the algorithm for Sei-insert, Uses the definition of Emply-set,
lises the algorithm for Some-member, Uses the algorithm for Sel-insert,
Uses ihe algorithm for Sel-union

Code: x {A B)

IF Emply-set.Defn{A] THEN B ELSE

X + Some-mamber.Alg{A}

A + Set-dalele AlgiX A}

B + Sel-inserl.Alg(X,B] |

Set-union Alg{A,B) |

3 note that # is similar te ~~ but not identical 15 -- the antry shown on page 86, of a Definition of Sel-union
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Note that the Descriptors don’t say whether this algorithm is destructive®’ or not. That
means that this same algorithm can be used either destructively or not, depending on what
AM wants. More precisely, it's up to the algorithms which get called on by this one. If they
are all chosen to be destructive, so will Set-union. If they all copy their arguments first then
Set-union will not be destructive. For example, note how the algorithm calls on Set-
insert{X.,B). If this is destructive, then at the end B will have been physically modified to
contain X; the original contents of B will be lost.

This particular algorithm is not very efficient, but it is described as Transparent. That
means it is very well suited to analysis and modification by AM itself. Suppose some
heuristic rule wants to specialize this algorithm. It can peer inside it, and, eg. replace the

variable X in (Set-insert X B} by the constant "T"3%

Why should AM bother storing multiple algorithms for the same concept? Consider this
example again, of Set-union. Suppose there were an algorithm which first checked to see if
the two arguments were Equal to each other, and if 50 then it instantly returned one of
them as the final value for Set-union; otherwise, it recurred into Set-union.Alg. This might
be a good algorithm to try at the very beginning, but if the Equality test fails, we don’t want
to keep recurring into this definition. This algorithm should thus have a descriptor
labelling it ONCE-ONLY EARLY.

Also, there is an iterative algorithm which checks to see if A equals B, and if so then it
returns B. If not, the algorithm proceeds to check that A is shorter than B, and if not it
switches them. Finally, it enters an iterative loop similar to the recursive one above: it
repeatedly transfers an element from A to B, using Some-member, Set-delete and Set-insert.
This iterative loop repeats until A becomes empty. While more efficient than the recursive
one, this definition is less transparent.

An even more efficient algorithm is provided, but it is totally opaque:

Descriptors: Quick, Non-recursive, Non-destriuctive, Opaque

Relators: none

| Code: (AB) (UNION A B)

This algorithm calls on the LISP function "UNION" to perform the set-union. It is the
“best” algorithm to choose unless space is critical, in which case a destructive algorithm must
be chosen, or unless AM wishes to inspect it rather than run it, in which case a transparent
one must be picked.

37 a LISP sigorithm is destructive if it physically, permanently modifies the fiat structures it is fed ss srguments. Set-
union{AB) is destructive if -- after running -- A and B don’t have the sams values they started with The
sdventeges of destruciive operations are incressed speed, decreased apace veed up, fewer sesignment
ststamants. The danger of courss m in accidentally destroying some information you didn't mean te.

38 This is 8 fairly useless new operation, of course. it edds T 10 8 uniear A is amply, in which case this operation has no
affect ot ak
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All the details about understanding the descriptors and relators are embedded in the fine
structure of the heuristic rules. A left-hand-side may test whether a certain kind of

algorithm exists for a given concept. A right-hand-side which fills in a new algorithm must
also worry about filling in the appropriate descriptors and relators. As with newly created
concepts, such information is trivial to fill in at the time of creation, but becomes much
harder after the fact.

Here is a typical heuristic rule which results in a new entry being added to the Algorithms
facet of the newly-created concept named Compose-Set-Intersect&Set-intersect:

IF the task is lo Fillin Algorithms for F,
and F is an example of Composition
and F has a definition of the form FsGoM,
and F has no transpareni, nonrecursive algorithm,

THEN add a new entry io the Algorithms facet of F,
with Descriptors: Transparent, Non-recursive
with Relators: Reducing to G.Alg and H.Alg, Using the Definition of <G.Domein>
with Program: A {|<G.Domain|},lj<H.Domain>}j-1.X)

(SETQ X (H.Aig JI<G.Domaim>}}))
(AND

(<G.Domain>.Dein X)

{(G.Aig X Ji<H.Domain>j|=1)}

The intent of the little program which gets created is to apply the first operator, check that
the result is in the domain of the second, and then apply the second operator. The
expression |[<G.Domain>{l means find a domain/range entry for G, count how many domain
components there are, and form a list that long from randomly-chosen variable names
(uv.wx,y.2).

For the case mentioned above, F = Compose-Set-Intersect&Set-Intersect, GC = Set-Intersect,
and H = Set-Intersect. The domain of G is a pair of Sets, 30 [|<G.Domain>j| is a list of 2
variables, say {u v). Similarly, ll<H.Domain>J}-1 is a list of 1 variable, say {w). Putting all
this together, we see that the new definition entry created for Compose-Set-Intersect&Set-
Intersect would look like this: |

Descriplors: Non-Recursive, Transparent

Ralalors: Reducing io Set-intersect.Aig, Using the definition of Sais

Code: A {uv,wX)

(SETQ X (Sel-Intersecl.Alg u v))
{AND

{Seis Dein X)

{Set-Intersect.Aig X w}

Let me make clear here one “kiuge™ of the AM program. At times, AM will be capable of
producing only a slow algorithm for some new concept C. For example, TIMES !(x) was
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originally defined by AM as a blind, exhaustive search for bags of numbers whose product
is Xx. As AM uses that algorithm more and more, AM records how slow it is. Eventually, a
task is selected of the form “Fillin new algorithms for C”, with the two reasons being that the
existing algorithms are all too slow, and they are used frequently. At this point, AM should
draw on a body of rules which take a declarative definition and transform it into an

efficient algorithm, or which take an inefficient algorithm and speed it up. Doing a good job
on just those rules would be a mammoth undertaking, and the author decided to omit them.
Instead, the system will occasionally beg the user for a better (albeit opaque) algorithm for
some particular operation. In general, the only requests were for inverse operations, and
even then only a few of them. The reader who wishes to know more about rules for
creating and improving LISP algorithms is directed to [Darlington and Burstall 73] A
more general discussion of the principles involved can be found in [Simon 721

5.2.10. Domain/Range

A nother facet possessed only by active concepts is Domain/Range. The syntax of this facet
is quite simple. It is a list of entries, each of the form < Dy Dy... # R >, where there can be

any number of Dj's preceding the arrow, and R and all the D;’s are the names of concepts.

Semantically, this entry means that the active concept may be run on a list of arguments
where the first one is an example of Dj, the second an example of Dy, etc, and in that case
will return a value guaranteed to be an example of R. In other words, the concept may be
considered a relation on the cross-product DxDox..xR. We shall say that the domain of

the concept is DyxDox.., and that its range is R. Each D; is called a component of the
domain.

For example, here is what the Domain/Range facet of TIMES might look like:

{

{ Numbers Numbars —= Numbers ) |
{ Odd-numbers Odd-numbers -» Odd=-numbers >

< Even-Numbers Even-Numbers - Even-numbers > |
< Odd=numbers Even-Numbers =» Even-Numbers >

{ Peri-Squares Peri-Squares — Peri-Squarss >

< Bags-of-Numbers = Numbers >

}

Here is what the Domain/Range facet of Set-Union might look like:

{
¢ Seis Seis = Sels >

< Nonemply-seic Seis — Non-emply-seis >
{ Sets-of-Seis 2 Sets >

}
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The Domain/Range part is useful for pruning away absurd compositions, and for
syntactically suggesting compositions and “coalescings’. Let's see what this means.

Suppose some rule sometime tried to compose TIMES.Set-union. A rule tacked onto
Compose says to ensure that the range of Set-union at least intersects (and preferably is
equal to) some component of the domain of TIMES. But there are no entities which are
both sets and numbers®?; ergo this fails aimost instantaneously.

This is too bad, since there was probably a good reason {(eg., intuition) for trying this
composition. If the activation energy (priority of the current task) is high enough, AM will
continue trying to force it through. The failure arose because Sets could not be viewed as if
they were Numbers. A relevant rule says:

iF you want lo view X's as if they wars Y's,
THEN seek an interesting operation F from X to Y, to do the viewing.

So AM had to locate any and all operations whose domain/range had an entry of the form
<Sets-Numbers>. The only such operation known to AM at the time was F=Length. So
the composition produced was TIMES[X, Length(Set-union(Y,Z)}].

Notice that if the composition Set-unioneSet-union is proposed, there will be no conflict,
since the range of Set-union obviously intersects one component of the domain of Set-union.
How can AM determine the domain/range of this composition? A rule tacked onto Compose
indicates that if F=GoH, and a domain/range entry for G is <A. X..B » C>, and an entry
for H is <D..E = ¥>, and Y intersects X, then an entry for F's domain/range is <A..D..E..B
=» C>. That is, the domain of H is substituted for the single component of the domain of G
which can be shown to intersect the range of H. Purely syntactically, AM can thus compute
some domain/range entries for the composition Set-unioneSet-union.

¢ Seis Seals = Sels> and < Sels Seis = Seis) combine 10 yield < Seis Seis Sets 2 Seis >:
<{Non-empty=-seis Seis —» Non-emply-sels) and (Seis Seis — Sels> combine lo yield

{Non-smply-sels Seis Sais = Non-amply-sels);

and so on. Similarly, one can compute an entry for the domain/range facet of the previous
composition of three operations TIM ESoLengthoSet-union:

< Seis Seals = Seis), < Sels = Numbers), and < Numbers Numbers = Numbers > combine fo
yisld < Numbers Seis Sets -» Numbers >

So when computing TIMES( X, Length{ Set-union(Y,Z))), both Y and Z can be sets, and X
a number, and the result will be a number.

The claim was also made that Domain/Range facets help propose plausible coalescings. By
“coalescing” an operation, we mean defining a new one, which differs from the original one
in that a couple of the arguments must now coincide. For example, coalescing TIM ES(x,y)
results in the new operation F(x} defined as TIMES{(x,x). Syntactically, we can coalesce a
pair of domain components of the domain/range facet of an operation if those two domain
components are equal, or if one of them is a specialization of the other, or even if they

39 Why? The number n, to AM, 1 represented in unary, as & bag of n T's None of these ars sete The composition
"TIMESoBAG-UNION™ would have made sanse ta AM, but would have been defined only for bage-of-T's. Then
TIMESoBAG-UNION(x,v.z)} wouldbe pel a{ysz).
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merely intersect. In the case of one related to the other by specialization, the more
specialized concept will replace both of them, In case of merely intersecting, an extra test will
have to be inserted into the definition of the new coalesced operation.

Given this domain/range entry for Set-insert: < Anything Sets -» Sets >, we see that it is ripe
for coalescing. Since Sets is a specialization of Anything, the new operation F(x), which is
defined as Set-insert{xx), will have a domain/range entry of the form < Sets = Sets >. That
is, the specialized concept Sets will replace both of the old domain elements (Anything and
Sets). F(x) takes a set x and inserts it into itself. Thus F({ab})={ab.{a,b}]. In fact, this new
operation F is very exciting because it always seems to give a new, larger set than the one
you feed in as the argument.

We have seen how the Domain/range facets can prune away meaningless coalescings, as well
as meaningless compositions. Any proposed composition or coalescing will at least be
syntactically meaningful. If all compositions are proposed only for at least one good semantic
reason, then those passing the domain/range test, and hence those which ultimately get
created, will all be valuable new concepts. Since almost ail coalescings are semantically
interesting, any of them which have a valid Domain/Range entry will get created and
probably will be interesting.

This facet is occasionally used to suggest conjectures to investigate. For example, a heuristic
rule says that if the domain/range entries have the form <D D D.. + genKD) >, then it's
worthwhile seeing whether the value of this operation doesn't really always lie inside D
itself. This is used right after the BagssNumbers analogy is found, in the following way.
One of the Bag-operations known aiready is Bag-union. The analogy causes AM to
consider a new operation, with the same algorithm as Bag-union, but restricted to Bags-of-
T's (numbers In unary representation). The Domain/range facet of this new, restricted
mutation of Bav-union contains only this entry: <Bags-of-T's Bags-of-T's + Bags>. Since
Bags is a generalization of Bags-of-T's, the heuristic mentioned above triggers, and AM sees
whether or not the union of two Bags-of-T's is always a bag containing only T's. It appears
to be 30, even in extreme cases, so the old Domain/range entry is replaced by this new one:
<Bags-of-T's Bags-of-T's » Bags-of-T's>. When the user asks AM to call these bags-of-T's
“numbers”, this entry becomes <Numbers Numbers +» Numbers>. In modern terms, then, the
conjecture suggested was that the sum of two numbers is always a number.

To sum up this fast ability in fancy language, we might say that one mechanism for
proposing conjectures is the prejudicial belief in the unlikelihood of asymmetry. In this
case, it is asymmetry in the parts of a Domain/range entry that draws attention. Such
conjecturing can be done by any action part of any heuristic rule; the Conjec facet entries
don't have a monopoly on initiating this type of activity.

5.2.11. Worth

How can we represcai the worth of each concept? Here are some possible suggestions:
1. The most intelligent (but most difficult) solution is “purely symbolically”. That is, an

individualized description of the good and bad points of the concept; when it is
useful, when misleading, etc.

2. A simpler solution would be to “standardize” the above symbolic description once
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and for all, fixing a universal list of questions. So each concept would have to
answer the questions on this list {How good are you at motivating new concepts?
How costly is your definition to execute?..). The answers might each be symbolic;
eg. arbitrary English phrases.

3. To simplify this scheme even more, we can assume that the answers to each question
will be numeric-valued functions (i.e, LISP code which can be evaluated to yield a
number between 0 and 1000). The vector of numbers produced by Evaluating all
these functions will then be easy to manipulate (eg. using dot-product, vector-
product, vector-addition, etc}, and the functions themselves may be inspected for
semantic content. Nevertheless, much content is lost in passing from symbolic
phrases to small LISP functions.

4. A slight simplification of the above would be to just store the vector of numbers
answering the fixed set of questions; i.e, don't bother storing a bunch of programs
which compute them dynamically.

5. Even simpler would be to try to assign a single "worthwhileness™ number to each
concept, in lieu of the vector of numbers. Simple arithmetic operations could
manipulate Worth values then. In some cases, this linear ordering seems
reasonable (“primes” really are better than “palindromes”.) Yet in many cases we
find concepts which are too different to be so easily compared {eg "numbers" and
“angles’.)

6. The least intelligent solution is none at all: each concept is considered equally
worthwhile as any other concept. This threatens to be combinatorial dynamite.

As we progress along the intelligent--trivial dimension, we find that the schemes get easier
and easier to code, the Worth values get easier and easier to deal with, but the amount of
reliable knowledge packed into them decreases.

Initially, scheme #3 above was chosen for AM: a vector of numeric-valued procedural
answers to a fixed set of questions. Here are those questions, the components of the Worth
vectors for each concept:

I. Overall aesthetic worth.

2. Overall utility. Combination of usefulness, ubiquity.
3. Age. How many cycles since this concept was created?
4. Life-span. Can this concept be forgotten yet?
5. Cost. How much cpu time has been spent on this concept, since its creation?

Notice that in general no constant number can answer one of these questions once and for
all (consider, eg., Life-span). Each ‘answer’ had to be a numeric-valued LISP function.

A few questions which crop up often are not present on this list, since they can be answered
trivially using standard LISP functions (e.g., "How much space does concept C use up?” can
be found by calling the function "COUNT" on the property-list of the LISP atom "C").

Another kind of question, which was anticipated and did in fact come up frequently, is of
the form "How good are the entries on facet F of this concept?”, for various values of F.
Since there are a couple dozen kinds of facets, this would mean adding a couple dozen more
questions to the list. The line must be drawn somewhere. If too much of AM's time is

drained by evaluating where it is already, it can never progress.
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The heuristic rules are responsible for initially setting up the various entries on the Worth
facets of new concepts, and for periodically altering those entries for all concepts, and for
delving into those entries when required.

Recent experiments have shown (see Experiment |, page 127) there was little change in
behavior when each vector of functions was replaced by a single numeric function (actually,
the sum of the values of the components of the “old” vector of functions). There wasn’t even
too much change when this was replaced by a single number. There was a noticeable
degradation (but no collapse) when all the concepts’ numbers were set equal to each other
initially.

For the purposes of this document, then (except for this page and the discussion of
Experiment 1), we may as well assume that each concept has a single number (between 0
and 1000) attached as its overall "Worth" rating. This number is set*® and referenced and
updated by heuristic rules. Experiment | can be considered as showing that a more
sophisticated Worth scheme is ric! necessary for the particular kinds of behaviors that AM
exhibits.

5.2.12. Interest

Now that we know how how to judge the overall worth of the concept "Composition", let's
turn to the question of how interesting some specific composition is. Unfortunately, the
Worth facet really has nothing to say about that problem. The Worth of the concept
"Compose has little effect on how interesting a particular composition is: "CounteDivisors-

of" is very interesting, and “InsertoMember™! is less 50. The Worth facets of tAose concepts
will say something about their overall value. And ye! there is some knowledge, some
“features” which would make any composition which possessed them more interesting than a
composition which lacked them:

Are the domain and range of the composition equal to each other?
Are interesting properties of each component of the composition preserved?
Are undesirable properties lost {i.e, not true about the composition)? |
Is the new composition equivalent to some already-known operation?

These hints about “features to look for” belong tacked onto the Composition concept, since
they modify all compositions. Where and how can this be done?

For this purpose each concept — including "Composition™ — can have entries on its
“Interest” facet. It contains a bunch of features which (if true) would make any particular
example of the current concept interesting.

The format for the Interest facet is as follows:

¢ Conflict-matrix

<Faature,, Value, Reason, Usedp |
Feature, Value, Reason, Used,

“0 The author initially sets this value for the 115 initial concepts. Heuristic rules set 1t far sach concept crestedby AM.
4] INSERToMEMBER(x,y x) if 2ty, then insert 7" into x, slew insert 'NiL’ inte &.
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Fealurey, Yaluay, Reassony, Used)
>

This is the format of the facet itself, not of each entry. The conflict-matrix is special and
will be discussed below. Each Feature/Value/Reason/Used quadruple wiil be termed an
“entry” on the Interest facet.

Each “Feature,” is a LISP predicate, indicating whether or not some interesting property is
satished. The corresponding “Value,” is a numeric function for computing just how
valuable this feature is. The “Reason,” is a token (usually an English phrase) which is
tacked along and moved around, and can be inspected by the user. The “Used,” subpart is

a list of all the concepts whose definitions are known to incorporate? this feature; ail
examples of such concepts will then automatically satisfy this Feature,

For example, here is one entry from the Interest facet of Compose:

FEATURE: Domain{Argl }=Range{Arg2)
VALUE: 4 + 4xWorth{Domain{Argl)) + 2xPriority{curreni task)
REASON: "The composition of Argl and Arg2 will map from a set back into thal same

sel”

USED: Compose~with-seli-DomainsRange-operation, interesling-compose-4

just as with Isa’'s and Generalizations, we can make a general statement about Interest
features:

Any feature lacked onto the Interest face! of any member of ISA's{C), also applies to C,

That is, X.Interest is relevant to C iff C is an example of X. For example, any feature
which makes an operation interesting, also makes a composition interesting.

So we'd like to define the function Interests{(C} as the union of the Interest features found

tacked onto any member of ISA'S(C).*> But some of thcse might have already been
con joined to a definition, to form the concept C {or a generalization of C). So all C's will
trivially {by definition) satisfy such features. The USED subparts can be employed to find
such features. In fact, the final value of Interests(C) is the one computed above, using
ISAS(C), but after eliminating all the features whose USED subparts pointed to any
member of ISA's(C).

This covers the pu = se of each subpart of each entry on a typical Interest facet. Now we're
ready to motivate the presence of the Conflict-matrices.

Often, AM will specialize a concept by conjoining onto its definition some features which
would make any example of the concept interesting. So any example of this new specialized

2 Not SATISFY the fest ra Thus the general concept DomaineRange-op incorporates the features “range{n)is one componant
of doman(x}" as pel one of the conpuncts m ite definition On the other hand, Set-unwon satisiws the
feature, since ite range, Sets, really nm one component of ite domain

3 Recall that the formuls for this 1s ISA's(C) = Generalizations (ise(Genershzations (CI)



Chapter 5 AM: Discovery in Mithematics as Heuristic Search -49.

concept is thus guaranteed to be an interesting example of the old concept. Sometimes,
however, a pair of features are exclusive: both of them can never be satisfied
simultaneously. For example, a composition can also be interesting if “arg” is an operation
from Range{argl) into a set which is much more interesting than either Domain{argl) or
Range{argl). Clearly, this feature and the one shown above can't both be true ("x=y" and
"x much more interesting than y" can’t occur simultaneously). If AM didn't have some
systematic way to realize this, however, it might create a new concept, called Interesting.
composition, defined as any composition satisfying both of those features. But then this
concept will be vacuous: no operation can possibly satisfy that over-constrained definition;
this new concept will have no examples; it is the null concept; it is trivially forgettable.
Merely to think of it is a blot on AM’s claim to rationality.

The "Conflict-matrix” is specified to prevent many such trivial combinations from eating up
a lot of AM’s time (and, as usual, it helps to make AM appear smarter). If there are K
features present for the Interest facet of the concept, then its conflict-matrix will be a K:K
matrix. In row i, column j of this matrix is a letter, indicating the relationship between
featuresi and |:

E Exclusive of each other: they both can’t be true at the same time.
- Implies: If feature i holds, then feature j must hold.
+ Implied by: If feature j holds, then so does feature i.
= Equal. Feature i holds precisely when feature j holds.
U Unrelated. As far as known, there is no connection between them.

These little relations are utilized by some of the heuristic rules. Here is one such rule. Its
purpose is to create a new, specialized form of concept C, if many examples of C were
previously found very quickly.

iF Current-task is {Fillin Specializations of C)
and {|C.Examplesi»30
and Time-spent-on-C-so-far { 3 cpu seconds,
and Interesis{C) is nol null,

THEN cresie * new concept named Inleresling-C,
Defined as ths conjunction of C.Dein and the highesi-valued member of interesis(C)

which is U {unrelated} fo any feature USED in the definition of C.
and add the following atk to the aganda: Fillin axampiss of Interesling-C, with value

compuled as the Value subpart of the chosen feature, for this resson: “Any
sxample of Interesting-C is sulomatically an interesting example of C",

snd add "Interesling-C" lo the USED subpart of tha eniry wheres {hat feature was
originally plucked from.

Of course, the LISP form of the above rule is really more detailed about what to do, but
the general Aavor of the interaction with the Interest facet should come across. As before,
the value desired is nol C.nterest, but rather the post-rippling value Interests(C). C.Int
contains a few features pertaining just to C's, but Interests(C} contains many additional
features which are not limited in scope to merely judging C's, but pertain to a more general
class of concepts. The quantity Time-spent-on-C-so-far’ is one component of the Worth
facet of C; it might just as well have been accessed from some “Past-history” record of AM's
activities. The numbers in the rule — and every little bit of that rule — were specified ad
hoc by the author. This is true for each rule initially present in AM. As Section 6.2 will
discuss, the precise numbers don't drastically affect the system's performance.
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5.2.13. Sugpest

This section describes a space-saving “trick”, and a “fix-up” to undo some potentially serious
side-effects of that trick. Readers not interested in this level of detail may skip to the next
subsection.

AM maintains a long list of tasks (the agenda), ordered by a global priority rating scheme.
Besides this, AM maintains two threshholds: Do-threshhold and a lower one, Be-threshhold.

When a new task is proposed, if its global priority is below Be-threshhoid, then it won't
even be entered on the agenda. This value is set so low that any task having even one
mediocre reason will make it onto the agenda.

After a task is finished executing, the top-rated one from the agenda is selected to work on
next. If its priority rating is below Do-threshhold, however, it is put back on the agenda,
and AM complains that no task on the agenda is very interesting at the moment. AM then
spends a minute or so looking around for new tasks, re-evaluating the priorities of the tasks
on the agenda already, etc.

One way to find new tasks (and new reasons for already-existing tasks) is to evaluate the
“Suggest” facets of all the concepts in the system. More precisely, each Suggest facet
contains some heuristics, encoded into LISP functions. Each function accepts a number N
as an argument {representing some minimum value tolerable for a new task), and the
function returns as its value a list of new tasks. These are then merged into the agenda, if
desired.

Semantically, each function is one heuristic rule for suggesting a new task which might be
very plausible, promising, and a propos at the current time. For example, here is one entry
from the Suggest facet of Any-concept:

IF there are no examples for concept C filled in so far,
THEN consider the iask "Fillin examples of C", for the following reason: "No examples

of C tilled in so far”, whose value is hall of Worth(C}). if that value is below
argl, then forget il; otherwise, iry 10 add 10 to the agenda.

The argument “arg” is that low numeric value, N, supplied to the Suggest facet.

This entry alone will produce a multitude of potential tasks; for concepts whose Worth
numbers are high, or for which a task is aiready on the agenda to fill in their examples,
these suggested tasks will be remembered; most of the other ones will typically be forgotten.

One use of this facet is thus to "beef up” the agenda whenever AM is discontented with all
the tasks thereon. At such a time, AM may call on all the Suggest facets in the system, and a
large volume of new tasks will be added to the agenda. Many of them will exist there
already, but for different reasons, so many old tasks’ priority values will rise. After this
period of suggesting is over, the agenda’s highest-ranking task will hopefully have a higher
value than any did before. Also at this time, the Be.threshhold and Do-threshhold
numbers are reduced. So there are two reasons why the top task may now be rated higher
than Do-threshhold. If it isn't, then the threshholds are lowered again, and again all the
Sugg facets are triggered (this time with a lower N value).
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Both threshholds are raised slightly every time AM succeeds in picking and executing a
task. So they follow a pattern of slow increase, followed by a sudden decrement, followed by
another slow increase, etc. This was intended to mimic a human's increasing expectations as
he makes progress."® It also mimics the way a human strains his mind when an obstacle to
that progress appears; if the straining doesn’t produce a brilliant new insight, he grudgingly
is willing to reduce his expectations, and perhaps resume some “old path” abandoned
earlier.

Another use of this facet is to re-suggest tasks that might have been dropped from {or never
made it onto) the agenda, because they weren't valued above Be-threshhold. How might this
work? Suppose that, at an earlier time, a task was proposed but never made it onto the
agenda because Be-threshhold was quite high. Now, suppose Be.threshhold is much lower
{due to a succession of failures). If a Sugg facet re-proposes that same task, it will be
accepted, will “stick” onto the agenda (albeit near the bottom). The Suggest facets can
reproduce most of the common tasks, and try to stick them on the agenda {though usually
for a mediocre to poor reason). It will still usually require another reason for such a task to
rise to the very top of the agenda, and be selected and executed.

So the use of the two threshholds is really an unaesthetic space-saving device, and the role
of the Suggest facets is merely to correct the errors introduced in this way. There may be
no convincing intuitive reason for having these facets at all in a “just” world.

5.2.14. Fillin/Check

To doubt everything doesn’t suffice; one must know why he doubts.

== Poincare’

There is one more level of structure to AM’s representation of a concept than the simple
“properties on a property-list” image. Each concept consists of a bunch of facets; each facet
follows the format layed down for it (and described in the preceding several subsections).
Yet each facet of each concept can have two additional “subfacets” {little slots that are hung
onto any desired slot) named Fillin and Check.

The “Fillin™ field of facet F of concept C is abbreviated CF.Fillin. The format of that
subfield is a list of heuristic ruies, encoded into LISP functions. Semantically, each rule in
C.E.Fillin should be relevant to filling in entries for facet F of any concept which is a C.
This substructure is an implementation answer to the qustion of where to place certain
heuristic rules.

As an illustration, let me describe a typical rule which is found on Compose. Examples Fillin.
According to the last paragraph, this must be useful for filling in examples of any operation

44 This wen based on personal introspection, and should be tested sxperimentally
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which is a composition. The rule says that if the composition AoB is formed from two very
time-consuming operations A and B, then it's worth trying to find some examples of A<B by
symbolic means; in this case, scan the examples of A and of B, for some pair of examples
xy {example of B) and y-z {example of A). Then posit that x=z is an example of AoB.
This rule applies precisely to the task of filing in examples of Examples(Composition).
Thus, it is relevant to the task "Fill in examples of Insertolnsert”. It is irrelevant if you
change the action {eg., "Check examples of Insertolnsert”), or if you change the facet to be
dealt with {eg., "Fill in algorithms for Insertolnsert’), or if you change the class of concept
{eg., "Fill in examples of Set-union}*.

As another illustration, let me describe a typical rule which is found on
Compose.Conjec.Fillin. It says that one potential conjecture about a given composition A.B
is that it is unchanged from A {or from B). This happens often enough that it's worth
examining each time a new composition is made. This rule applies precisely to the task of
filling in conjectures about particular compositions.

The subfacet Any-Concept.Examples.Fillin is quite large; it contains all the known methods
for filling in examples of C {when all we know is that C is a concept). Here are a few of
those techniques*®:

1. Instantiate C.Defn

2. Search the examples facets of all the concepts on Generalizations(C) for examples of
C

3. Run some of the concepts named in In.ran-of(C} i.e. operations whose range is C]
and collect the resultant values.

Any-Concept.Examples.Check is large for similar reasons. A typical entry there says to
examine each verified example of C: if it is also an example of a specialization of C, then it

must be removed from C.Examples and inserted” into the Examples facet of that
specialized concept.

Here is one typical entry from Operation.Domain/RangeCheck:

IF a domain/range entry has the form {DD D.. 2 R),
and all the D's are equal, and R is & generalization of D,

THEN il's worth sesing whether {OD D D.. = Dj} is consittent with all known sxamples of the
operation.

if thers To known sxamples, add # lask 10 the agenda requesting they be filled in.
if thers ars examples, and (D D D.. = D) is consistani, add it io the Domain/range facel

of this operation.
if there are some contradicling examples, create a new concepl which is defined as this

operation restricted io (DD D.. = D}.

45 Note that it does make wrasse if you replace the concept “insert o Insert” by any other example of a Composition (ag,
“Fill in sxomplen of Sat-Union o Set-intersection”)

% The interested resder will find them all listed in Appendix 3, beginning on page 233
"y Conditionally Since satie concept mw of finite worth, it in allotted & finite amount of space. A random number ia generated

to decide whethar or not to actually inser! this example into the Examples face! of the specialization of C.
The mors thal speciakzed concept is “sxceeding its quotas’, the narrower the range that the random number
mus! Tall into to have That new item inserted The probabildy is never preciely 1 or 0
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Note that this “Checking” rule doesn’t just passively check the designated facet; it actively
"fixes up” faulty entries, adds new tasks, creates new concept: etc. All the check rules are
very aggressive in this way. For example, one entry on No-multiple-elements-
structure. Examples.Check will actually remove any multiple occurrences of an element from
a structure.

As you might expect, the set Checks{C.F) of all relevant rules for checking facet F of
concept C is obtained as (ISA's(C))F.Check. That is, look for the Check subfacet of the F
facet of all the concepts on ISA'S(C)). Similarly, Fillins(C.F) is the union of the Fillin
subfacets of the F facets of all the concepts on ISA's(C).

When AM chooses a task like "Fillin examples of Primes”, its first action is to compute
Fillins(Primes.Exs). It does this by asking for ISA’s(Primes); that is, a list of all concepts of
which Primes is an example. This list is: <Objects Any-concept Anything>. So the relevant
heuristics are gathered from Objects. Exs.Fillin, etc. This list of heuristics is then executed,
in order (last executed are the heuristics attached to Anything Exs.Fillin).

It should now be clear what is meant when a concept’s facets are listed in the following
format:

| Name(s) Frob, Frobnalion

Algorithms Al A2

Examples El E2 EZ E4 £5 EG
Fillin Rule! Rule2

Check Rule3 Ruled Ruleb

Domain/range DRI DR2 DR3

Check Ruleb
Conjecs CIC2C3C4A4C5C6

Fillin Rule? Ruled

Check RuleS Rule

Eg. the entry RuleS is a heuristic rule which may help to check entries on the Conjecs facet
of any Frob®®. This notation will not be used actually in this document, partly for the
benefit of those readers who skip this subsection, partly for consistency between concepts
diagrammed before and after this subsection. Rather, all the Fiillin heuristics for a concept
will be gathered together into what appears to be just one coherent facet. Theoretically, of
course, one could organize them that way, with an extra precondition on each Fillin
heuristic to indicate which facet it is useful for flling in.

as ‘Frob' 7s # nonsense word, 8 verisble enlifmr which stands for any concept
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5.2.15. Other Facets which were Considered

Most facets (like "Definitions™) were anticipated from the very beginning planning of AM,
and proved just as useful as expected. Others {like “Intuitions”)} were also expected to be
very important, yet were a serious disappointment. Still others (like "Suggest”) were
unplanned and grumblingly acknowledged as necessary for the particular LISP program
that bears the name AM. Finally, we turn to a few facets which were initially planned, and
yet which were ad judged useless around the time that AM was coded. They were therefore
never really a part of the LISP program AM, although they figured in its proposal. Let me
list them, and explain why each one was dropped.

1. UN-INTERESTINGNESS. This was to be similar to the Interest part. It would contain
entries of the form feature/value/reason, where the feature would be 2 bad (dull,

trivializing, undesirable, uninteresting) property that an entity {a concept or a task)
might possess. If it did, then the vaiue component would return a negative number as its
contribution to the worth/priority of that entity. This sounded plausible, but turned out
to be useless in practice: {i) There were very few features one could point to which
explicitly indicated when something was boring; (ii) Often, a conjunction of many such
features would make the entity seem unusual, hence interesting; (iii) Most entities were
viewed as very mediocre unless/until specific reasons to the contrary, and in those cases
the presence a few boring properties would be outshadowed by the few non-boring ones.
In a sea of mediocrity, there is little need to separate the boring from the very boring.

2. JUSTIFICATION. For conjectures which were not yet believed with certainty, this part
would contain all the known evidence supporting hem. This would hopefully be
convincing, if the user (or a concept) ever wanted to know. In cases of contradictions
arising somehow, this facet was to keep hold of the threads that could be untangled to
resolve those paradoxes. As described earlier, this duty could naturally be assumed by
the Conjecs facet of each concept. The other intended role for this facet was to hoid
sketches of the proofs of theorems. Unfortunately, the intended concepts for Proof and
Absolute truth were never implemented, and thus most of the heuristic rules which
would have interacted with this facet are absent from AM. It simply was never needed.

3. RECOGNITION Originally, it was assumed that the location of relevant concepts and
their heuristics would be much more like a free-for-all (pandemonium) than an orderly

rippling process. As with the original use of BEINGs®, the expectation was that each
concept would have to "shout out” its relevance whenever the activities triggered some
recognition predicate inside that concept. Such predicates were to be stored in this facet.
But it quickly became apparent that the triggering predicates which were the left-hand-
sides of the heuristic rules were quick enough to obviate the need for pre-processing
them too heavily. Also, the only rules relevant to a given activity on concept C always
seemed to be attainable by rippling in a certain direction away from C. This varied
with the activity, and a relatively small table could be written, to specify which direction
to ripple in (for any given desired activity). We see that for “Fill-in examples of..", the
direction to ripple in is "Generalizations, to locate relevant heuristic rules. For "Judge
interest of.." the direction is also generalizations. For "Access specializations of", the

3 Interacting knowledge modules, sach module simulsting a different axpert 8! & round-table meeting. See {Lena 75b}
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direction is Specializations, etc. The only important point here is that the Recognition
facet was no longer needed.

53, AM's Starting Concepts

The first subsection presents a diagram of the top-level {general} concepts AM started with,
with the lines indicating the Generalizations/Specializations kinds of relationships (single
line links) and a few Examples/isa’s links {triple vertical lines). Several specific concepts
have been omitted from that picture. All the concepts initially fed to AM are then listed
alphabetically and described in Section 532. A full facet-by-facet description of each
concept is provided in Appendix 2. Finally, Section 5.3.3 discusses the choice of starting
concepts.

5.3.1. Diagram of Initial Concepts
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Anything

Any-concept  non-concepts

Fe Ob jectRelation / \ / | \
/ Predicates Operation Atom Conjec Structure

Logical-rein / \ |
Constant-pred Equality-pred | Truth-value | Struc-of-strucs

a. oe
Const-T Const-F Obj-equal Mult-eles Non-muit Ord Unordered

| \ /
: Coalescing Osets

Inver ted-operation

Canonization i

Composition Sets

Restricted-operation

L

Lists

Bags

Ord-pairs

The diagram above represents the “topmost” concepts which AM had initially, shown
connected via Specialization links (\) and Examples links {|). The only concepts not
diagrammed are examples of the concept Operation. There are 47 such operations.

Also, we should note that many entities exist in the system which are not themselves
concepts. For example, the number "3", though it be an example of many concepts, is not
itself a concept. All entities which are concepts are present on the list called CONCEPTS,
and they all have property lists {with facet names as the properties). In hindsight, this
somewhat arbitrary scheme is regrettable. A more aesthetic designer might have come up
with a more uniform system of representation than AM’s.
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5.3.2. Summary of Initial Concepts

Since the precise set of concepts is not central to the design of AM, or the quality of
behaviors of AM, they are not worth detailing here. On the other hand, a cursory
familiarity with their names and definitions should aid the reader in building up an
understanding of what AM has done. For that reason, the concepts will now be briefly
described, in alphabetical order. This is the same order as concepts are listed on page 173.
A fuller description of the concepts is provided in Appendix 2. The ordering within that
appendix is different; concepts are grouped together if they are semantically related, by
starting at the top of the diagram and meandering downward.

ACTIVITY represents something that can be “performed”. All Actives — and only Actives —
have Domain/range facets and Algorithms facets.

ALL-BUT-FIRST-ELEMENT is an operation which takes an ordered structure and removes the
first element from it. It is similar in spirit to the Lisp function "CDR".

ALL-BUT-LAST-ELEMENT takes an ordered structure and removes its last element.

ANY-CONCEPT is useful because it holds all the very general tactics for flling in and
checking each facet. The definition of Any-concept is "A {x) x¢CONCEPTS™. 'CONCEPTS’ is
A M's global list of entities known to be concepts. Initially, this list contains the hundred or
so concepts which AM starts with (eg, all those diagrammed on the preceding page).

ANYTHING is defined as "A {x) T"; i.e, a predicate which will always return true. Notice that
the singleton {a} is an example of Anything, but (since it's not on the fist CONCEPTS) it is
not an example of Any-concept.

ATOM contains data about all primitive, indivisible objects (identifiers, constants, variables).

BAG is a type of structure. It is unordered, and multiple occurrences of the same element
are permitted. They are isomorphic to the concept known as ‘multiset’, except that we
stipulate that sets are not bags.

BAG-DELETE is an operation which takes two arguments, x and B. Although x can be
anything, B must be a bag. The procedure is to remove one occurrence of x from B.

BAG-DIFF is an operation which takes two bags B,C. It repeatedly picks a member of C, and
removes it (one occurrence of it) from both B and C. This continues until C is empty.

BAG-INSERT is an operation which adds (another occurrence of} x into bag B.

BAG-INTERSECT takes two bags B,C, and creates a new bag D. An item occurs in D the
minimum number of times it occurs in either B or C.

BAG-UNION takes bag C and dumps all its elements into bag B.

CANONIZE is both an example of and a specialization of ‘Operation’. It accepts two
predicates P1 and P2 as arguments, both defined over some domain AxA, where Pl is a
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generalization of P2. Canonize then tries to produce a “standard representation” for
elements of A, in the following way. It creates an operation f from A into A, satisfying:
Piix,y) itt P2{f{x) Hy). Then any item of the form f(x] is called a canonical member of A.
The set of such canonical-A’s is worth naming, and it is worth investigating the restrictions

of various operations’ domains and ranges to this set of canonical-A's®™. “Canonize"
contains lots of information relevant to creating such functions f {given Pl and P2). Thus
Canonize is an example of the concept Operation. Canonize also contains information
relevant to dealing with any and ali such f's. So Canonize is a specialization of Operation.

COALESCE admits the same duality®'. This very useful operation takes as its argument any
operation F(ab,cd..}, locates two domain components which intersect (preferably, which are
equal; say the second and third), and then creates a new operation G defined as
G(abd. »F(abbd.). That is, F is called upon with a pair of arguments equal to each
other. If F were Times, then G would be Squaring. If F were Set-insert, then G would be
the operation of inserting a set S into itself.

COMPOSITION involves taking two operations A and B, and applying them in sequence:
AoB(x)*A(B(x)). This concept deals with {i} the activity of creating new compositions, given
a pair of operations; (ii) all the operations which were created in this fashion. That is why
this concept is both a specialization of and an example of Operation.

CONJECTURES are a kind of object. This concept knows about — and can store — conjectures.
When proof techniques are inserted into AM, this tiny twig of the tree of concepts will grow
to giant proportions.

CONSTANT-PREDICATE is a predicate which can afford to have a very liberal domain: it
always ignores its arguments and just returns the same logical value all the time.

DELETE is an operation which contains all the information common to all flavors of
removing an eiement from a structure {regardless of the type of structure which is being
attenuated). When called upon to actually perform a deletion, this concept determines the
type of structure and then calls the appropriate specialized delete concept {e.g., Bag-delete).

DIFFERENCE is another general operation, which accepts two structures, determines their type
(e.z., Bags}, and then calls the appropriate specialized version of difference (eg. Bag-diff).

EMPTY-STRUCTURE contains data relevant to structures with no members.

FIRST-ELEMENT is an operation which takes an ordered structure and returns the frst
element. It is like the Lisp function ‘CAR’.

IDENTITY is just what it claims to be. It takes one argument and returns it immediately. The
main purpose of knowing about this boring transformation is just in case some new concept
turns out unexpectedly to be equivalent to it.

50 in, lake an operation which used to have “A” as ore of its domain Components or ae ita range, snd Iry 10 creates & new
operation with sssantially the sams definition but whose domainfrangs says “Canonical-A" instead of "A".

Ll Both a specishization of Operation and sn example of Operation
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INSERT takes an item X and a structure S, determines S's type, and calls the appropriate
flavor of specialized Insertion concept. The general INSERT concept contains any
information common to all of those insertion concepts.

INTERSECT is an operation which computes the intersection of any two structures. It, too, has
a separate specialization for Bags, Sets, Osets, and Lists.

INVERT-AN-OPERATION is a very active concept. [t can invert any given operation. If
F:X~Y is an operation, then its inverse will be abbreviated F, and F*'(y) is defined as all
the x's in X for which F(x)=y. The domain and range of F*! are thus the range and
domain of F.

INVERTED-0OP contains information specific to operations which were created as the inverses
of more primitive ones.

LAST-ELEMENT takes an ordered structure and returns its final member.

LIST is a type of structure. It is ordered, and multiple occurrences of the same element are
permitted. Lists are also called vectors, tuples, and obags (for “ordered bags").

LIST-DELETE is an operation which takes two arguments, x and B. Although x can be
anything, B must be a list. The procedure is to remove the first occurrence of x from B.

LIST-DIFF is an operation which takes two lists B,C. It repeatedly picks a member of C, and
removes it {the first remaining occurrence of it} from both B and C. This continues until
there are no more members in C.

LIST-INSERT is an operation which adds (another occurrence of) x onto the front of list B. It
is like the Lisp function ‘CONS’.

LIST-INTERSECT takes two lists B,C, and creates a new list D. An item occurs in D the

minimum number of times it occurs in either B or C. D is arranged in order as {a sublist
of) list B.

LIST-UNION takes list C glues it onto the end of list B. It's like ‘APPEND’ in Lisp.

LOGICAL-RELATION contains knowledge about Boolean combinations: disjunction,
conjunction, implication, etc.

MULTIPLE-ELEMENTS-STRUCTURES are a specialization of Structure. They permit the same
atom to occur more than once as a member. (eg. Bags and Lists)

NO-MULTIPLE-ELEMENTS-STRUCTURES are a specialization of Structure. They permit the
same atom to occur only once as a member. {(eg., Sets and Osets)

NONEMPTY-STRUCTURES are a speciaiization of Structure also. They contain data about ail
structures which have some members.

OBJECT is a general, static concept. Objects are like the subjects and direct objects in
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sentences, while the Actives are like the verbs,

OBJECT-EQUALITY is a predicate. It takes a pair of objects, and returns True if {i} they are
identical, or (ii) they are structures, and each corresponding pair of members satisfies
Object-Equality. Often we'll call this ‘Equal’, and denote it as '=".

OPERATIONS are Actives which take arguments and return a value. While a predicate
examines its arguments and returns either True or False, an operation examines its
arguments and returns any number of values, of varying types. Assuming that the
arguments lay in the domain of the operation (as specified by some entry on its
Domain/range facet), then every value returned must lie within its range {as specified by
that same Domain/range entry).

ORDERED-PAIR is a kind of List. It has just two ‘slots’, however: a front and a rear element.

ORDERED-STRUCTURE is a specialized type of Structure. It includes all structures for which
the order of insertion of two members can make a difference in whether the structures are

equal or not. Ordered-structures are those for which it makes sense to talk about a front
and a rear, a first element and a last element.

OSET is a type of structure. It is ordered, and multiple occurrences of the same element are
not permitted. The short-term-memory of Newell's PSG [Newell 73] is an Oset, as is a
cafeteria line. Not much use was found for this concept by AM.

OSET-DELETE removes x from oset B (if x was in B).

OSET-DIFF is an operation which takes two osets B,C. It removes each member of C from B.

OSET-INSERT is an operation which adds x to the front of oset B. If x was in B previously,
it is simply moved to the front of B.

OSET-INTERSECY takes two osets B,C, and removes from B any items which are not in C as
well. B thus ‘induces’ the ordering on the resultant oset.

OSET-UNION takes oset C, removes any elements in B already, then glues what's left of C
onto the rear of B. |

PARALLEL-JOIN is an operation which takes a kind of structure and an operation H. It
creates a new operation F, whose domain is that type of structure. For any such structure S,
F(S) is computed by appending together H(x) for each member x of S.

PARALLEL-JOINZ is a similar operation. It creates an operation F with two structural
arguments. F(S,L) is computed by appending the values of H(x,L), as x runs through the
elements of 5.3

52 As in Engle, a particular Activity can somatimes iteslf ba the subject.
53 Here, the srge to PARALLEL-JOIN2sre two types of structures SS and LL, and sn operation H whose range is alec&

stnetursl types DD. Then 3 new operation ie crested, with domein SSxll and range DD.
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PARALLEL-REPLACE is an operation used to synthesize new substitution operations. It takes
a structural type and an operation H as its arguments, and creates a new operation F. F(S)
is computed by simply replacing each member x of S by the value of F(x). The operation
produced is very much like the Lisp function MAPCAR.

PARALLEL-REPLACERZ is a slightly more general operation. It creates F, where F(S,L) is
computed by replacing each x¢S by F{(x,L).

PREDICATES are actives which examine their arguments and then return T or NIL (True or
False). It is only due to the capriciousness of AM's initial design that predicates are kept
distinct from operations. Of course, each example of an operation can be viewed as if it
were a predicate; if F:A-B is any operation from A to B, then we can consider F a relation
on AxB, that is a subset of AxB, and from there pass to viewing F as a (characteristic)
predicate F:AxB-{T,F}. Similarly, any predicate on Ax.xBxC may be considered an
operation {a multi-valued, not-always-defined function) from Ax..xB into C. There are no
unary predicates. If there were one, say P:A-{TF}, then that predicate would essentially be
a new way to view a certain subset of A; the predicate would then be transformed into
{atA |P(a)}, made into a new concept, tagged as a specialization of A, and its definition
would be "a{a) [A.Defn{a} A P{a)]".

PROJECTIONI is a simple operation. it is defined as A {x y} x. Notice that Identity is just a
specialized restriction of Proji. Proji{Me,You)=Me.

PROJECTIONZ is a similar operation. it isdefined asA (x y} y.

RELATION is any Active which has been encapsulated into a set of ordered pairs. ‘Relation’
bridges the gap between active and static concepts.

REPEAT is an operation for generating new operations by repeating old ones. Given as its
argument a structural type SS and an existing operation H {with domain and range of the
form SSxS554SS), Repeat(SS,H) synthesizes a brand new operation F. The domain/range of
F is just that of H. F(S) is computed by repeating TEMP«H(x, TEMP) for each element x
of S. TEMP is initialized as some member (preferably the first element) of S.

REPEAT2 is similar, but requires that H take three arguments, and it creates ¥, where F(S,L)
is gotten by repeatedly doing TEMP«H(x,TEMP,L). |

RESTRICT is an operation which turns out new operations. Given an argument operation (or
predicate) F, the synthesized concept would have the same definition as F, but would have
its domain and/or range curtailed.

REVERSE-ORDERED-PAIR transforms the ordered pair <X.,y> into <y.x>.

SET is a type of structure. It is unordered, and multiple occurrences of the same element are
not permitted.

SET-DELETE is an operation which takes two arguments, x and B. Although x can be
anything, B must be a set. The procedure is to remove x from B {if x was in B), then
return the resultant value of B.
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SET-DIFF Is an operation which takes two sets B,C. It removes each member of C from B.

SET-INSERT is an operation which adds x to set B.

SET-INTERSECT removes from set B any items which are not in set C, too.

SET-UNION dumps into B all the members of C which weren't in there already.

STRUCTURE, the antithesis of ATOM, is inherently divisible. A structure is something that
has members, that can be broken into pieces. There are two questions one can ask about
any kind of structure: Is it ordered or not? Can there be multiple occurrences of the same
element in it or not? There are four sets of answers to these two questions, and each of the
four specifies a well-known kind of structure (Sets, Lists, Osets, Bags).

STRUCTURE-OF-STRUCTURES is a specialization of Structure, representing those structures all
of whose members are themselves structures.

TRUTH-VALUE is a specialized kind of atomic object. Its only examples are True and False.
This concept is the range set for ail predicates.

UNION is a general kind of joining operation. It takes two structures and combines them.
Four separate variants of this concept are given to AM initially {eg., Set-union).

UNORDERED-STRUCTURE is a specialized type of Structure. It includes all structures for
which the order of insertion of two members never makes any difference in whether the
structures are equal or not. Unordered-structures cannot be said to have a front or a rear, a
first element or a last element.

5.3.3. Rationale behind Choice of Concepts

A necessary part of realizing AM was to choose a particular set of starting concepts. But
how should such a choice be made?

My frst impulse was to gather a complete set of concepts. That is, a basis which would be
sufficient to derive all mathematics. The longer 1 studied this, the larger the estimated size
of this basis grew. It immediately became clear that this would never fit in 256k. >* One
philosophical problem here is that future mathematics may be inspired by some real-world
phenomena which haven't even been observed yet. Aliens visiting Earth might have a
different mathematics from ours, since their collective life experiences could be quite
different from we Terrans.

Scrapping the idea of a sufficient basis, what about a necessary one? That is, a basis which
would be minimal in the following sense: if you ever removed a concept from that basis, it
could never be re-discovered. In isolated cases, one can tell when a basis is not minimal: if

it contains both addition and multiplication, then it is too rich, since the jatter can be

4 This is the size of the cors memory of the computer | hed at my disposal
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derived from the former.>® And yet, the same problem about “absoluteness” cropped up:
how can anyone claim that the discovery of X can never be made from a given starting
point? Until recently, mathematicians didn't realize how natural it was to derive numbers
and arithmetic from set theory (a task which AM does, by the way)®. So 50 years ago the
concepts of set theory and number theory would both have been undisputedly placed into a
“minimal” basis. There are thus no absolute conceptual primitives; each culture {perhaps
even each individual) possesses its own basis.

Since 1 couldn't give AM a minimal basis, nor a complete one, | decided AM might as well
have a nice one. Although it can never be minimal, it should nevertheless be made very
small {order of magnitude: 100 concepts). Although it can never be complete, it should
suffice for re.discovering much of already-known mathematics. Finally, it should be
rational, by which I mean that there should be a simple rule for deciding which concepts do
and don't belong in that basis. |

The concepts AM starts with are meant to be those possessed by young children {age 4, say).
This explains some omissions of concepts which would otherwise be considered
fundamental: {i) Proof and techniques for proofidisproof; {fi} Abstract properties of
relations, like associativity, single-valued, onto; (iii) Cardinality, arithmetic; (iv) Infinity,
continuity, limits. The interested reader should see [Piaget 55] or [Copeland 70].

Because my programming time and the PDP-10’s memory space were both quite small, only
a small percentage of these ‘pre-numerical’ concepts could be included. Some unjustified
omissions are: (i) visual operations, like rotation, coloratior, {ii} Games, rules, procedures,
strategies, tactics; {iii) Geometric notions, e.g., outside and be:ween.

AM is not supposed to be a model of a child, however. It was never my intention {and it
would be much too hard for me) to try to emulate a human child's whimsical imagination
and emotive drives. And AM is not ripe for “teaching”, as are children.>” Also, though it
possesses a child's ignorance of most concepts, AM is given a large body of sophisticated
“adult” heuristicc. So perhaps a more faithful image is that of Ramanujan, a brilliant
modern mathematician who received a very poor education, and was forced to re-derive
much of known number theory all by fumself. Incidentally, Ramanujan never did master
the concept of formal proof.

There is no formal justification for the particular set of starting concepts. They are all
reasonably primitive (sets, composition), and lie several levels "below" the ones which AM
managed to ultimately derive {prime factorization, square-root). It might be valuable to
attempt a similar automated math discoverer, which began with a very different set of
concepts {eg. start it out as an expert in lattice theory, possessing all known concepts
thereof). The converse kind of experiments are to vary the initial base of concepts, and
observe the effects on AM’s behavior. A few experiments of that form are described in
Section 6.2.

55 by AM, and by sny mathematician As Don Cohen points out, if the researcher lacked the proper discovery methods, then
he might never derive Times from Plus.

56 The “mew math” 1m trying to ge! young children to do this as well. unfortunately, no one showed the slementary-school
teachers the underlying harmony, and tha results have been saddening

57 Learning paychologists might label AM as nec-behaviornix and cognitvistc. See [Lefrancoms}
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Chapter 6. Results

This chapter opens by summarizing what AM "did". Section | gives a fairly high-level
description of the major paths which were vxplored, the concepts discovered along the way,
the relationships which were noticed, and occasionally the ones which “should™ have been
but but weren't.

The next section (6.2) continues this exposition by presenting the results of experiments
which were done with (and on) AM.

Chapter 7 will draw upon these results — and others given in the appendices — to form
conclusions about AM. Several meta-level questions will be tackled there (eg, "What are
AM’s limitations?™).

6.1, What AM Did

Now we have seen that mathematical work is not simply mechanical, that it could
not be done by a machine, however perfect. It is not merely a question of applying
rules, of making the most combinations possible according to certain fixed laws.
The combinations so obtained would be exceedingly numerous, useless, and
cumbersome. The true work of the inventor consists in choosing among these
combinatio.s 50 as to eliminate the useless ones or rather to avoid the trouble of
making them, and the rules whick must guide this choice are extremely fine and
delicate. It is almost impossible fo state them precisely; they are felt rather than
formulated. Under these conditions, how imagine a sieve capable of applying
them mechanically? |

== Poincare’

AM is both a mathematician of sorts, and a big computer program.

By granting AM more anthropomorphic qualities than it deserves, we can describe its
progress through elementary mathematics. It rediscovered many well-known concepts, a
couple interesting but not-generally-known ones, and several concepts which were hitherto
unknown and should have stayed that way. Section 1.3, on page 10, recaps what AM did,
much as a historian might critically evaluate Euler's work. A more detailed prose
description of everything AM did is found in Appendix 5.1, beginning on page 287.
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Instead of repeating any of this descriptive prose here, Section 6.1.1 will provide a very
brief listing of what AM did in a single good run, task by task. A much more detailed
version of this same list is found in Appendix 52, beginning on page 294. The task

numbers there correspond to the numbering below’. These task-by-task listings are not
complete listings of every task AM ever attempted in any of its many runs, but rather a
trace of a single, better-than-average run of the program. The reader may wish to consult
the brief alphabetized glossary of concept names in the last chapter (page 107), or the more
detailed appendix of concept descriptions (following page 173).

Following this linear trace of AM’s behavior is a more appropriate representation of what it
did: namely, a two-dimensional graph of that same behavior as seen in “concept-space’.
This forms Section 6.1.2, and is found on page 123.

By under-estimating AM's sophistication, one can demand answers to the typical g' estions
to ask about a computer program: how big is it, how much cpu time does it use, what
language it’s coded in, etc. These are found in Section 6.1.3.

1. Fill in examples of Compose. Failed, but suggested next task:
2. Fill in examples of Set-union. Also failed, but suggested:
3. Fill in examples of Sets. Many found (eg. by instantiating Set.Defn) and then more

derived from those examples {eg., by running Union.Alg).
4. Fill in specializations of Sets (because it was very easy to find examples of Sets).

Creation of new concepts. One, INT -Sets, is related to "Singletons™. Another, "Bl-
Sets”, is all nests of braces {nc atomic elements).

5. Fill in examples of INT -Sets. This indirectly led to a rise in the worth of Equal.
6. Check all examples of INT -Sets. All were confirmed. AM defines the set of Nonempty

INT -Sets; this is renamed “Singletons™ by the user.
7. Check all examples of Sets. To check a couple conjectures, AM will soon look for

Bags and Osets.
8. Fill in examples of Bags.
9. Fill in specializations of Bags. Created INT-Bags (contain just one kind of element),

and Bl-Bags {nests of parentheses). |
10. Fill in examples of Osets.
11. Check examples of Osets.
12. Fill in examples of Lists.
13. Check examples of Lists.
14. Fill in examples of All-but-frst.
IS. Fill in examples of All-but-last.
I$. Fill in specializations of All-but-last. Failed.

! Theydo TI0C pracisely metch the tesk numbers sccompenying thesxamplegiven in Chapter 2.
2 jn fact,#1 is perhaps the best overall run. It sccurred in two stages (due to space problems; unimportant). In this particular

run, AM misses the Yow “very beet" discoveries #t aver made, since the rune they stourrsd wn went in

SSL Sttaron diwoctione. it aloo omits some of the more boring tasks: see, uj, the description of task
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17. Fill in examples of List-union.
18. Fill in examples of Projl.
19. Check examples of All-but-first.
20. Check examples of All-but-last.
21. Fill in examples of Proj.
22. Fill in examples of Empty-structures. 4 found.
23. Fill in generalizations of Empty-structures. Failed.
24. Check examples of List-union.
25. Check examples of Bags. Defined Singleton-bags.
26. Fill in examples of Bag-union.
27. Check examples of Proj2.
28. Fill in examples of Set-union.
29. Check examples of Set-union. Define 2 (x,y) xuy=x, later called Superset.
30. Fill in examples of Bag-insert.
31. Check examples of Bag-insert. Range is really Nonempty bags. Isolate the results of

insertion restricted to Singletons: call them Dcubleton-bags.
32. Fill in examples of Bag-intersect.
33. Fill in examples of Set-insert.
34. Check examples of Set.insert. Range is always Nonempty sets. Define A {x,S) Set-

insert(x,S)=5; i.e, set membership. Define Doubleton sets.
35. Fill in examples of Bag-delete.
36. Fill in examples of Bag-difference.
37. Check examples of Bag-intersect. Define & {x,y} xny={}, i.e. disjoint bags.
38. Fill in examples of Set-intersect.
39. Check examples of Set-intersect. Define A (x,y) xny=x; ie, subset. Also define

disjoint sets: 2 (x,y) xny={}.
40. Fill in examples of List-intersect.
41. Fill in examples 0” Equal. Very difficult to find examples; this led to:
42. Fill in generalizations of Equal. Define "Same-size”, "Equal-CA Rs", and some losers.
43. Fill in examples of Same-size.
44. Apply an Algorithm for Canonize to the args Same-size and Equal AM eventually

synthesizes the canonizing function "Size". AM defines the set of canonical
structures: bags of T's; this later gets renamed as “Numbers”.

45. Restrict the domain/range of Bag-union. A new operation is defined, Number-
union, with domain/range eniry <Number Number +» Bag».

46. Fill in examples of Number-union. Many found.
47. Check the domain/range of Number-union. Range is ‘Number’. This operation is

renamed "Add?"

48. Restrict the domain/range cf Bag-intersect to Numbers. Renamed “Minimum”,
43. Restrict the domain/range of Bag-delete to Numbers. Renamed "SUBI".
$0. Restrict the domain/range of Bag-insert to Numbers. AM calls the new operation

"Number-insert”. Its domain/range entry it <Anything Number » Bag».
51. Check the domain/range of Number-insert. This doesn't lead anywhere.
52. Restrict the domain/range of Bag-difference to Numbers. This becomes “Subtract”.
53. Fill in examples of Subtract. This leads to defining the relation LEQ (93
54. Fill in examples of LEQ. Many found.

Su » larger number is “sublrected” from a smaller, 1he resull is zero. AM explicitly defines the set of ordered pairs of
numbers having rere “difference”. <x,y> is in that set iff x is less thon or equal te vy.
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55. Check examples of LEQ.
56. Apply algorithm of Coalesce to LEQ, LEQ(x,x) is Constant. True.
57. Fill in examples of Paralleljoin2. Included is Parallel-join2{Bags,Bags,Proj2), which

is renamed "TIMES", and Parallel- join2(Structures Structures,Projl), a generalized
Union operation renamed "G-Union”, and a bunch of losers.

58. — 69. Fill in and check examples of the operations just created.
70. Fill in examples of Coalesce. Created: Self-Compose, Seif-Insert, Self-Delete, Self-

Add, Self-Times, Self-Union, etc. Also: Coa-repeat2, Coa.join2, etc.
71. Fill in examples of Self-Delete. Many found.
72. Check examples of Self-Delete. Self-Delete is just Identity-op.
73. Fill in examples of Seif-Member. No positive examples found.
74, Check examples of Self-Member. Self-member is just Constant-False.
75. Fill in examples of Self-Add. Many found. User renames this "Doubling".
76. Check examples of Coalesce. Confirmed.
77. Check examples of Add2. Confirmed.
78. Fill in examples of Self-Times. Many found. Renamed “Squaring” by the user.
79. Fill in examples of Self-Compose. Defined SquaringeSquaring. Created AddoAdd

(two versions: Add2l which is A (x,y.2) (x+y)e2, and Add22 which is xe(ysz)).
Similarly, two versions of TimesoTimes and of Compose.Compose.

80. Fill in examples of Add21. (x+y)«z. Many are found.
81. Fill in examples of Add22. x+(y+z). Again many are found.
82. Check examples of Squaring. Confirmed.
83. Check examples of Add22. Add2i and Add22 appear equivalent. But first:
84. Check examples of Add2]l. Add2l and Add22 still appear equivalent. Merge them.

So the proper argument for a generalized "Add" operation is a Bag.
85. Apply algorithm for Invert to argument ‘Add’. Define Inv-add(x} as the set of all

| bags of numbers (>0) whose sum is x. Also denoted Add" (x).
86. Fill in examples of TIMES21. (xy)z. Many are found.
87. Fill in examples of TIMES22. x{yz). Again many are found.
88. Check examples of TIMES22. TIMES2] and TIMES22 may be equivalent.
89. Check examples of TIMES2l. TIMES2] and TIMES22 still appear equivalent.

Merge them. Sg the proper argument for a generalized "TIMES" operation is a
Bag. Set up an analogy between TIMES and ADD, because of this fact.

90. Apply algorithm for Invert to argument TIMES’. Define Inv.TIMES(x) as the set
of all bags of numbers (>1) whose product is x. Analogic to Inv-Add.

91. Fill in examples of  Parailel-replace2. Included are Parallel-
replace2(Bags,Bags,Proj2) {called MR2.BBP2), and many losers.

92. — 107. Fill in and check examples of the operations just created.
108. Fill in examples of Compose. So easy that AM creates Int-Compose.
109. Fill in examples of Int-Compose. The two chosen operations G,H must be such

that ran{H)dom(G), and ran(G)dom{H), both G and H must be interesting.
Create G-UnionoMR2-BBP2° InsertoDelete, TimesoSquaring, etc.

110. — 127. Fill in and check examples of the compositions just created. Notice that G-
UnionoMR2.BBP2 is just TIMES.

128. Fill in examples of Coa-repeat2. Among them: Coa-repeat2(Bags-of-Numbers,
Add2} [multiplication again!)  Coa.repeat2{Bags-of-Numbers, Times)

“ on alternate derivation of the oparation of multiplication
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[exponentiation], Coa-repeat2(Structures, Projl) [CAR]. Coa-repeat2(Structures,
Proj?) [Last-element-of], etc.

129. Check the examples of Coa-repeat2. All confirmed.
130. Apply algorithms for Invert to ‘Doubling’. The result is called "Halving™ by the

user. AM then defines "Evens"

131. Fill in examples of Self-Insert.
132. Check examples of Self-Insert. Nothing special found.
133. Fill in examples of Coa-repeat2-Add2.
134. Check examples of Coa-repeat2-Add2. It's the same as TIMES.
135. Apply algorithm for Invert to argument ‘Squaring’. Define "Square-root”.
136. Fill in examples of Square-root. Some found, but very inefficiently.
137. Fill in new algorithms for Square-root. Had to ask user for a good one.
138. Check examples of Square-root. Define the set of numbers "Perfect-squares™.
139. Fill in examples of Coa-repeat2-Times. This is exponentiation.
140. Check examples of Coa-repeat2-Times. Nothing special noticed, unfortunately.
141. Fill in examples of Inv-TIMES. Many found, but inefficiently.
142. Fill in new algorithms for Inv-TIMES. Obtained opaquely from the user.
143. Check examples of Inv. TIMES. This task suggests the next one:
144. Compose G-Union with Inv- TIMES. Good domain/range. Renamed "Divisors”.
145, Fill in examples of Divisors. Many found, but not very efficiently.
146. Fill in new algorithms for Divisors. Obtained from the user.
147. Fill in examples of Perfect-squares. Many found.
148. Fill in specializations of TIMES. Timesl{x}sl+x, Times2(x)e2x, Times-sq is TIMES

with its domain restricted to bags of perfect squares, Times.ev takes only even
arguments, Times-to-evens requires that the result be even, Times-to-sq, ..

149. Check examples of Divisors. Define 0-Div, 1-Div, 2-Div, and 3-Div, the sets of
numbers whose Divisors value is the empty set, a singleton, a doubleton, and a
tripleton, respectively.

150. Fill in examples of 1-Div. Only one example found: "1°. Lower 1.Div.Worth.
151. Fill in examples of 0-Div. None found. Lower the worth of this concept.
152. Fill in ~xamples of 2-Div. A nice number are found. Raise 2-Div.Worth.
153. Check examples of 2-Div. All confirmed, but no pattern noticed. -
154. Fill in examples of 3-Div. A nice number found.
155. Check examples of 3.Div. All confirmed. All are perfect squares.
156. Restrict Square-root to numbers which are in 3-Div. Call this Root3.
157. Fill in examples of Root3. Many found.
158. Check examples of Root3. All confirmed. All are in 2-Div. Raise their worths.
159, Restrict Squaring to 2-divs. Call the result Square2.
160. Fill in examples of Square2. Many found.

161. Check the range of Square2. Always 3.Divs. Conjecture: x has 2 divisors iff x?
has 3 divisors.

162. Restrict Squaring to 3-Divs. Call the result Square3.
‘63. Restrict Square-rooting to 2-Divs. Call the result Root2.
}64. Fill in examples of Square3. Many found.
165. Compose Divisors-of and Square3. Call the result Div-5Sq3.
166. Fill in examples of Div-Sq3. Many found.
167. Check examples of Div-5q3. All such examples are Same-size.
{68. — 175. More confirmations and explorations of the above conjecture. Gradually,

all its ramifications lead to dead-ends (as far as AM is concerned}.

176. Fill in exampies of Root. None found. Conjecture that there are none.
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177. Check examples of Inv-TIMES. Inv-TIMES always contains a singleton bag, and
always contains a bag of primes.

178. Restrict the range of Inv-TIMES to bags of primes. Call this Prime-Times.
179. Restrict the range of Inv-TIMES to singletons. Called Single-Times.
180. Fill in examples of Prime-times. Many found.
181. Check examples of Prime-times. Always a singleton set. User renames this

conjecture "The unique factorization theorem”.
182. Fill in examples of Single-TIMES. Many found.
183. Check examples of Single-TIMES. Always a singleton set. Single-TIMES is

actually the same as Bag-insert!
184. Fill in examples of Self-set-union. Many found.
185. Check examples of Self-set-union. This operation is same as Identity.
186. Fill in examples of Self-bag-union. Many found.
187. Check examples of Self-bag-union. Confirmed. Nothing interesting noticed.
188. Fill in examples of Inv-ADD.
189. Check examples of Inv-ADD. Hordes of boring conjectures, so:
190. Restrict the domain of Inv-ADD to primes {inv-Add-primes), to evens {Inv-Add.

evens), to squares, etc.
181. Fill in examples of Inv-add-primes. Many found.
192. Check examples of Inv-add-primes. Confirmed, but nothing special noticed.
193. Fill in examples of Inv-add-evens. Many found.
194. Check examples of Inv-add-evens. Always contains a bag of primes.
195. Restrict the range of Inv-Add-evens to bags of primes. Called Prime-ADD.
196. Restrict the range of Inv-ADD to singletons. Call that new operation Single-A DD.
197. Fill in examples of Prime-ADD. Many found.
198. Check examples of Prime-ADD. Always a nonempty set (of bags of primes). User

renames this conjecture "Goldbach’s con jecture”.
199. Fill in examples of Single-A DD. Many found.
200. Check examples of Single-ADD. Always a singleton set. This operation is the same

as Bag.insert and Single- TIMES.
201. Restrict the range of Prime-ADD to singletons, by analogy to Prime-TIMES.? Cail

the new operation Prime-ADD-SING.
202. Fill in examples of Prime-ADD-SING. Many found.
203. Check examples of Prime-ADD-SING. Nothing special noticed.

204. Fill in examples of Times-5q.° Many examples found.
205. Check domain/range of Times-3q. Is the range actually Perfect-squares? Yes!
206. Fill in examples of Timesl. Recall that Times {xsTIMES(1.x).
207. Check examples of Times]. Apparently just a restriction of Identity.
208. Check examples of Times-sq. Confirmed.
209. Fill in examples of Times0.
210. Fill in examples of Times2.
211. Check examples of Times2. Apparently the same as Doubling. That is, Xex=2eX.

Very important. By analogy, define Ad2(x) as x+2.
212. Fill in examples of Ad2.
213. Check examples of Ad2. Nothing interesting noticed.

S In this case, AM i asking which numbers sre uniquely represanisbie ss the sum of two primes.
® Recak that this is just TIMES restricted to operate en perfect squares.
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214. Fill in specializations of Add. Among those created are: Add0 (x+0), Addl, Adds,
ADD-sq (addition restricted to perfect squares), Add-ev {sum of even numbers),
Add-pr (sum of primes), etc.

215. Check examples of Times0. The value always seems to be 0.

216. Fill in examples of Times-ev.” Many examples found.
217. Check examples of Times-ev. Apparently all the results are Evens.
218. Fill in examples of Times-to-ev.® Many found.
218. Fill in examples of Times-to-sq. Only a few found.
220. Check examples of Times-to-sq. All arguments always seem to be squares. Conjec:

Times-to-5q is really the same as Times-3q. Merge the two. This is a false
conjecture, but did AM no harm.

. 221. Check examples of Times-to-ev. The domain always contains an even number.
222. Fill in examples of Self-Union.
223. Check examples of Seif-Union.
224. Fill in examples of SubSet.
225. Check example of SubSet.
226. Fill in examples of SuperSet.
227. Check examples of SuperSet. Conjec: Subset{x,y) iff Superset{y,x). Important.
228. Fill in examples of ComposesCompose-1. AM creates some explosive combination

(eg. (ComposesComposelo({ComposesCompose)o(ComposecCompose)), some poor
ones (eg. SquaresCounteADD™'), and even a few — very few — winners (eg.
SUB 1.CountoSelf-Insert).

229. Check examples of ComposesCompose-1.

230. Fill in examples of ComposecCompose-2.? AM recreates many of the previous
tasks’ operations.

231. Check examples of ComposesCompose-2. Nothing noticed yet'?,
232. ~ 252. Fill in and check examples of the losing compositions just created.
253. Fill in examples of Add-sq (i.e, sum of squares).
254. Check domain/range entries of Add-sq. The range is not always perfect squares.

Define Add-sq-5q{x.y), which is True iff x and y are perfect squares and their sum
is a perfect square as well.

255. Fill in examples of Add-pr; ie, addition of primes.
256. Check Domain/range entries of Add-pr. AM defines the set of pairs of primes

whose sum is also a prime. This is a bizarre derivation of prime pairs.

4 Recall that Timas-ev is just lke TIMES restricted to opersting on sven numbers.
8 That is, conaider bags of numbers which multiply to give an even aumber.

y Recall that theati batwean this operstion snd the leet one ie merely in the order of the composing: Fol{GoH) versus0

10 Later on, AM will vss Thess new operations te decover the susocietivity of Compoes.
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6.1.2. Two-Dimensional Behavior Graph

On the next two pages is a graph of the same “best run” which AM executed. The nodes
are concepts, and the links are actions which AM performed. Labels on the links indicate
when each action was taken, 30 the reader may observe how AM jumped around. It should
also easy to perceive from the graph which paths of development were abandoned, which
concepts ignored, and which ones concentrated upon. These are precisely the features of
AM’s behavior which are awkward to infer from a simple linear trace {as in the previous
section).

In more detail, here is how to read the graph: Each node is a concept. To save space, these
names are often highly abbreviated. For example, "x0" is used in place of "TIMES-0".

Each concept name is surrounded by from zero to four numbers:
318 288

FROBNATION

310 291

The upper right number indicates the task number {see last section) during which examples
of this concept were filled in. The lower right number tells when they were checked. The
upper left number indicates when the Domain/range facet of that concept was modified.
Finally, the lower left number is the task number during which some new Algorithms for
that concept were obtained. A number in parentheses indicates that the task with that
number was a total failure.

Because of the limited space, it was decided that if a concept were ever renamed by the
user, then only that newer, mnemonic name would be given in the diagram. Thus there is
an arrow from "Coalesce” to “Square”, an operation originally called “Self-Times™ by AM.

Sometimes, a concept will have under it a note of the form sGROK. This simply means that
AM eventually discovered that the concept was equivalent to the aiready-known concept"
“Grok”, and probably forgot about this one {merged it into the one it already knew about).
The “trail” of discovery may pick up again at that pre-existing concept. A node written as
«GROK means that the concept was really the same as "Grok", but AM never investigated it
enough to notice this.

Each node may have an arrow leading into it, and any number of arrows emanating from
it. The arrows indicate the creation of new concepts. Thus an arrow leading to concept
"Frobnate™ indicates how that concept was created. An arrow directed away from Frobnate
points to a concept created as, eg, a specialization or an example of Frobnate. No
arrowheads are in practice necessary: all arrows are directed downwards.

The arrows may be labelled, indicating precisely what they represent {eg., composition,
restriction) and what the task number was when they occurred. For space reasons, the
following convention has proven necessary: if an arrow emanating from C is un-numbered,
ft is assumed to have occurred at the same time as the arrow to its immediate left which also

points from C; if all the arrows emanating from C have no number, than all their times of
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occurrence are assumed to be the lower right'! number of C. Finally, if C has no lower
right number, the arrow is assumed to have the value of the upper right number of C.

An unlabelled arrow is assumed to be an act of Specialization or the creation of an

Example.'? Labels, when they do occur, are given in capitals and small letters; concept
names (nodes) are by contrast in all capitals.

All the numbers correspond to those given to the tasks in the task-by-task traces presented
in the last section (p. 115) and in Appendix 5 (p. 294).

The first part of this graph (presented below) contains static structural (and ultimately
numerical} concepts which were studied by AM:

STRUCTURES

3 8 8 12 22

SES BA. OSC TS LISTS EMPTY-S _
——— (23)

* oo icaliry OMIure)
: ~~ anon hePo

INT-SET BI-SET  INT-BAC S1:00GS SINRBAC DOUBL-3AC TRIPL-BRC NUMBERS
130 {13814

RN 1 ,1 52 —154
SINGLETONS DOUBLETONS EVENS SQUARES 1-DIV #-0IV PRIMES 3-DIv

sENPTY 153 155

The rest of the graph {presented on the next page) deals with activities which were
investigated:

H This i= often true because many concepts are craated while checking srsmples of some known concept.
12 it should be clear in ach content which is heppening. i not, refer to the short 1race in The preceding section, and look up

ihe appropriates Took romber.
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6.1.3. AM as a Computer Program

When viewed as a large LISP program, there is very little of interest about AM. There are
the usual battery of customized functions (eg. a conditional PRINT function), the storage
hacks (special emergency garbage collection routines, which know which facets are
expendible), the time hacks {(omnisciently arrange clauses in a conjunction so that the one
most likely to fail will come first), and the bugs (if the user renames a concept while it's the
current one being worked on, there is a 5% chance of AM entering an infinite loop).

Below are listed a few parameters of the system, although I doubt that they hoid any
theoretical significance. The reader may be curious about how big AM, how long it takes to
execute, etc.

Machine: SUMEX, PDP-10, Ki.10 uniprocessor, 256k core memory.

Language: Interlisp, January '75 release, which occupies 140k of the total 256k, but which
provides a surplus “shadow space” of 256k additional words available for holding compiled
code.

AM support code: 200 compiled {not block-compiled) utility routines, control routines, etc.
T hey occupy roughly 100k, but all are pushed into the shadow space.

AM itself: 115 concepts, each occupying about .7k {about two typed pages, when Pretty-
printed with indentation). Facet/entries stored as property/value on the property list of
atoms whose names are concepts’ names.'3 Each concept has about 8 facets filled in.

Heuristics are tacked onto the facets of the concepts. The more general the concept, the

more heuristic rules it has attached to it." "Any-concept” has 121 rules; "Active concept”
has 24; "Coalesce” has 7; "Set.Insertion” has none. There are 250 heuristic rules in all,

divided into 4 Aavors (Fillin, Check, Suggest, Interestingness). Although the mean number
of rules is therefore only about 2.2 (i.e, less than | of each flavor) per concept, the standard
deviation of this is a whopping 1274. The average number of heuristics (of a given flavor)
encountered rippling upward from a randomly-chosen concept C {along the network of

generalization links) is about 35, even though the mean path length is only about 4.15

The total number of jobs executed in a typical run {from scratch) is about 200. The run
ends because of space problems, but AM’s performance begins to degrade near the end
anyway.

“Final” state of AM: 300 concepts, each occupying about lk. Many are swapped out onto

13 Snezzy festurs: Executable entries on facets (ag, an entry on UnionAlg) are red uncompiled until tha firat time they
sre ectusily called on, at which time they sre compied snd then srecuted

14 This was not done consciously, snd may or may nel hold some theoretical significance.
15 if the heurisics were homogeneously dutributed among the concepts, the rumber of heuristics {of 5 given type) slong »

typical path of length & would only be sboul 2, not 35 HK af the heuristics were tacked onto Anything and
Any-concept, the number encountered in any path would be 75, not 35
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disk. Number of winning concepts discovered: 25 (estimated). Number of acceptable

concepts defined: 100 {est.).'® Number of losing concepts unfortunately worked on: 60 (est).
The original 115 concepts have grown to an average size of 2k. Each concept has about 11
facets flied in.

About 30 seconds of cpu time were allocated to each task, on the average, but the task
typically used only about 18 seconds before quitting. Total CPU time for a run is about |
hour. Total cpu time consumed by this research project was about 300 cpu hours.

Real time: about 1 minute per task, 2 hours per run. The idea for AM was formulated in
the Fall of 1974, and AM was coded in the summer of 1975. Total time consumed by this
project to date has been about 2500 man-hours: 700 for planning, 500 for coding, 600 for
modifying and debugging and experimenting, and 700 for writing this thesis.

6.2, Experiments with AM

Now we've described the activities AM carried out during its best run. AM was working
by itself, and each time executed the top task on the agenda. It received no help from the
user, and all its concepts’ intuitions facets had been removed.

One valuable aspect of AM is that it is amenable to many kind of interesting experiments.
Although AM is too ad Aoc for numerical results to have much signihcance, the qualitative
results perhaps do have some valid things to say about research in elementary mathematics,
about automating research, and at least about the efficacy of various parts of AM’s design.

This section will explain what it means to perform an experiment on AM, what kinds of
experiments are imaginable, which of those are feasible, and finally will describe the many
experiments which were performed on AM.

By modifying AM in various ways, its behavior can be altered, and the quality of its
behavior will change as well. As a drastic example, one experiment involved forcing AM
to select the next task to work on randomly from the agenda, not the top task each time.
Needless to say, the performance was very different from usual.

By careful planning, each experiment can tell us something new about AM: how valuable a
certain piece of it is, how robust a certain scheme really is, etc. The results of these
experiments would then have something to contribute to a discussion of the “real
intelligence” of AM (eg, what features were superfluous), and contribute to the design of
the “next” AM-like system. Generalizing from those results, one might suggest some
hypotheses about the larger task of automated math research.

Let's cover the different kinds of experiments one could perform on AM:

(i) Remove individual concept modules, and/or individual heuristic rules. Then examine

Is For a Wet of most of the ‘winners’ and “scceptables’, see the final section in Appendit 2, page 224.
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how AM’s performance is degraded. AM should operate even if most of its heuristic rules
and most of its concept modules were excised. If the remaining fragment of AM is too
small, however, it may not be able to find anything interesting to do. In fact, this situation
was actually encountered experimentally, when the first few partially complete concepts were
inserted. If only a little bit of AM is removed, the remainder will in fact keep operating
without this “uninteresting collapse”. The converse situation should also hold: although still
functional with any concept module unplugged, AM’s performance should be noticeably
degraded. That is, while not indispensable, each concept should nontrivially help the
others. The same holds for each individual heuristic rule. When a piece of AM is
removed, which concepts does AM then “miss” discovering? Is the removed
concept/heuristic later discovered anyway by those which are left in AM? This should
indicate the importance of each kind of concept and rule which AM starts with.

(ii) Vary the relative weights given to features by the criteria which judge aesthetics,
interestingness, worth, utility, etc. See how important each factor is in directing AM along
successful routes. In other words, vary the little numbers in the formulae (both the global
priority-assigning formula and the local reason.rating ones inside heuristic rules}. One
important result will be some idea of the robustness or “toughness” of the numeric weighting
factors. If the system easily collapses, it was too finely tuned to begin with.

(iit) Add several new concept modules {including new heuristics relevant to them) and see if
AM can work in some unanticipated field of mathematics (like graph theory or calculus or
plane geometry). Do earlier achievements — concepts and conjectures AM synthesized
already — have any impact in the new domain? Are some specialized heuristics from the
first domain totally wrong here? Do all the old general heuristics still hold here? Are they
sufficient, or are some “general” heuristics needed here which weren't needed before? Does
AM Tslow down” as more and more concepts get introduced?

(iv) Try to have AM develop nonmathematical theories (like elementary physics, or
program verification). This might require limiting AM’s freedom to “ignore a given body
of data and move on to something more interesting”. The exploration of very non.
formahzable fields (eg. politics) might require much more than a small augmentation of
A M's base of concepts. For some such domains, the “Intuitions™ scheme, which had to be
abandoned for math, might prove valid and valuable.

(v) Add several new concepts dealing with proof, and of course add all the associated
heuristic rules. Such rules would advise AM on the fine points of using various techniques
of proofi/disproof: when to use them, what to try next based on why the {ast attempt failed,
etc. See if the kinds of discoveries AM makes are increased.

Just prior to the writing of this document, several experiments {of types i, ii, and iii
above'’) were set up and performed on AM. We're now ready to examine each of them in
detail. The following points are covered for each experiment:

1. How was it thought of?
2. What will be gained by it? What would be the implications of the various possible

outcomes?

i experiments of lypa (w} waren't tried and srs left as “open problems”, ss mwitations for future research afforts.
Experiment {v) will probably be carried out this year {19786).
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3. How was the experiment set up? What preparations/modifications had to be made?
How much time (man-hours) did it take?

4. What happened? How did AM’s behavior change? Was this expected? Analysis.
5. What was learned from this experiment? Can we conclude anything which suggests

new experiments {eg. use a better machine, 2 new domain) or which bears on a
more general problem that AM faced {eg. a new way to teach math, a new idea
about doing math research)?

6.2.1. Must the Worth numbers be finely tuned?

Each of the !15 initial concepts has supplied to it {by the author) a number between 0 and
1000, stored as its Worth facet, which is supposed to represent the overall value of the
concept. “Compose” has a higher initial Worth than “Structure-delete”, which is higher
than "Equality™'®,

Frequently, the priority of a task involving C depends on the overall Worth of C. How
sensitive is AM's behavior to the initial settings of the Worth facets? How finely tuned
must these initial Worth values be?

This experiment was thought of because of the ‘brittleness’ of many other Al systems, the
amount of fine tuning needed to elicit coherent behavior. For example, see the discussion of
limitations of PUPS, in [Lenat 75b] The author believed that AM was very resilient in

this regard, and that a demonstration of that fact would increase credibility in the power of
the ideas which AM embodies.

To test this, a simple experiment was performed. just before starting AM, the mean value
of all concepts’ Worth values was computed. It turned out to be roughly 200. Then each
concept had its Worth reset to the value 200.'% This was done “by hand”, by the author, in
a matter of seconds. AM was then started and run as if there were nothing amiss, and its
behavior was watched carefully.

What happened? By and large, the same major discoveries were made — and missed — as
usual, in the same order as usual. But whereas AM proceeded fairly smoothly before, with
little superfluous activity, it now wandered quite blindly for long periods of time, especially
at the very beginning. Once AM “hooked into” a line of productive development, it
followed it just as always, with no noticeable additional wanderings. As one of these lines
of developments died out, AM would wander around again, until the next one was begun.

It took roughly three times as long for each major discovery to occur as normal. This
“delay” got shorter and shorter as AM developed further. In each case, the tasks preceding
the discovery and following it were pretty much the same as normal; only the tasks
"between" two periods of development were different — and much more numerous. The
precise numbers involved would probably be more misleading than helpful, so they will not

18 An AM progres, JH notices something interesting shout Equality avery now and then, and pushes ite Werth value
19 The initial spread of vahueswas from 100to $00.
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be given?®

The reader may be interested to learn that the Worth values of many of the concepts — and
most of the new concepts — ended up very close to the same values that they achieved in
the original run. Overrated concepts were investigated and proved boring; underrated
concepts had to wait longer for their chances, but then quickly proved interesting and had
their Worth facets boosted.

The conclusion 1 draw from this change in behavior is that the Worth facets are useful for
making blind decisions — where AM must choose based only on the overall worths of the
various concepts in its repertoire. Whenever a specific reason existed, it was far more
influential than the “erroneous” Worth values. The close, blind, random decisions occur

between long bursts of specific-reason-driven periods of creative work.?!

The general answer, then, is No, the initial settings of the Worth values are not crucial.
Guessing reasonable initial values for them is merely a time-saving device. This suggests
an interesting research problem: what impact does the quality of initial starting values have
on humans? Give several bright undergraduate math majors the same set of objects and
operators to play with, but tell some of them (i) nothing, and some of them (ii) a certain few
pieces of the system are very promising, (iii) emphasize a different subset of the objects and
operators. How does “misinformation” impede the humans? How about no information?
Have them give verbal protocols about where they are focussing their attention, and why.

Albeit at a nontrivial cost, the Worth facets did manage to correct themselves by the end of
a long®® run. What would happen if the Worth facets of those 115 concepts were not only
initialized to 200, but were held fixed at 200 for the duration of the run?

In this case, the delay sull subsided with time. That 1s, AM still got more and more "back
to normal’ as it progressed onward. The reason 1s because AM’s later work dealt with
concepts hike Primes, Square-root, etc, which were so far removed from the initial base of
concepts that the initial concepts’ Worths were of little consequence,

Even more drastically, we could force all the Worth facets of all concepts — even newly-
created ones — to be kept at the value 200 forever. In this case, AM’s behavior doesn’t

completely disintegrate, but that delay factor actually increases with time: apparently, AM
begins to suffer from the exponential growth of “things to do” as its repertoire of concepts
grows linearly. Its purposiveness, its directionality depends on "focus of attention” more and
more, and if that feature is removed, AM loses much of its rationality. A factor of 5 delay
doesn’t sound that bad “efficiency-wise”, but the actual apparent behavior of AM is as
staccato bursts of development, followed by wild leaps to unrelated concepts. AM no longer
can “permanently” record its interest in a certain concept.

So we conclude that the Worth facets are {i} not finely tuned, yet (ii) provide important

20 Any reader who wishes to perform this experiment tan simply say [MAPC CONCEPTS {LAMBDA {c} {SETB ¢ WORTH
200] to Interhsp, just bafore typing (START) to begin AM

2] incidentally, GPS behaved ust this same way Ses, sg, [Newell Simon 72)
22 A couple cpu hours, about » thousand tasks total selected from the asgends
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global information about the relative values of concepts. If the Worth facets are completely
disabled, the rationality of AM’s behavior hangs on the slender thread of “focus of
attention’.

6.2.2. How finely tuned is the Agenda?

The top few candidates on the agenda always appear to be reasonable {to me). If 1 work
with the system, guiding it, 1 can cause it to make a few discoveries it wouldn't otherwise
make, and | can cause it to make its typical ones much faster (about a factor of 2). Thus the
very top task is not always the best.

If AM randomly selects one of the top 20 or so tasks on the agenda each time, what will
happen to its behavior? Will it disintegrate, slow down by a factor of 10, slow down
slightly,...?

This experiment required only a few seconds to set up, but demanded a familiarity with the
LISP functions which make up AM’s control structure. At a certain point, AM asks for
Best-task{(Agenda). Typically, the LISP function Best-task is defined as CAR - i.e, pick the
first member from the list of tasks. What 1 did was to redefine Best-task as a function

which randomly selected n from the set {1,2...,20}, and then returned the n'® member of the
job-list.

If you watch the top job on the agenda, it will take about 10 cycles until AM chooses it.
And yet there are many good, interesting, worthwhile jobs sprinkled among the top 20 on
the agenda, so AM’s performance is cut by merely a fac’~r of 3, as far as cpu time per given
major discovery. Part of this better-than-20 behavior is due to the fact that the 18" best
task had a much lower priority rating than the top few, hence was allocated much less cpu
time for its quantum than the top task would have received. Whether it succeeded or
failed, it used up very little time. Since AM was frequently working on a low-value task, it
was unwilling to spend much time or space on it. So the mean time allotted per task fell to
about i5 seconds (from the typical 30 secs). Thus, the “loser:™ were dealt with quickly, so the
detriment to cpu-time performance was softened.

Yet AM is much less rational in its sequencing of tasks. A topic will be dropped right in the
middle, for a dozen cycles, then picked up again. Often a “good” task will be chosen,
having reasons all of which were true 10 cycles ago — and which are clearly superior to
those of the last 10 tasks. This is what is 30 annoying to human onlookers.

To carry this investigation further, another experiment was carried out. AM was forced to
alternate between choosing the top task on the agenda, and a randomly-chosen one.
Although its rate of discovery was cut by less than half, its behavior was almost as
distasteful to the user as in the last (always-random) experiment.

Conclusion: Picking (on the average) the 10th-best candidate impedes progress by a factor
less than 10 {about a factor of 3), but it dramatically degrades the “sensibleness™ of AM’s
behavior, the continuity of its actions. Humans place a big value on absolute sensibleness,
and believe that doing something silly 50% of the time is muck worse than half as
productive as always doing the next most logical task.
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Corollary: Having 20 multi-processors simultaneously execute the top 20 jobs will increase
the rate of "big" discoveries, but not by a full factor of 20.

Another experiment in this same vein was done, one which was designed to be far more
crippling to AM. Be-threshhold was held at 0 always, so any task which ever got proposed
was kept forever on the agenda, no matter how iow its priority. The Best-task function was
modified so it randomly selected any member of the list of jobs. As a final insult, the Worth
facets of all the concepts were initialized to 200 before starting AM.

Result: Many “explosive” tasks were chosen, and the number of new concepts increased
rapidly. As expected, most of these were real “losers”. There seemed no rationality to AM’s
sequence of actions, and it was quite boring to watch it Roundering so. The typical length
of the agenda was about 500, and AM’s performance was “siowed™ by at least a couple
orders of magnitude. A more subjective measure of its “intelligence” would say that it
totally collapsed under this random scheme.

Conclusion: Having an unlimited number of processors simultaneously execute all the jobs
on the agenda would increase the rate at which AM made big discoveries, at an ever
accelerating pace (since the length of the agenda would grow exponentially).

Having a uniprocessor simulate such parallel processing would be a losing idea, however.
The truly “intelligent” behavior AM exhibits is its plausible sequencing of tasks.

6.2.3. How valuable is tacking reasons onto each task?

Let's dig inside the agenda scheme now. One idea I've repeatedly emphasized is the
attaching of reasons to the tasks on the agenda, and using those reasons and their ratings to
compute the overall priority value assigned to each task. An experiment was done to
ascertain the amount of intelligence that was emanating from that idea.

The global formula assigning a priority value to each job was modified. We let it still be a
function of the reasons for the job, but we “trivialized” it: the priority of a job was
computed as simply the number of reasons it has {normalized by multiplying by 100, and
cut-off if over 1000).

This raised the new question of what to do if several jobs all have the same priority. In
that case, | had AM execute them in stack-order {most recent first),

Result: I secretly expected that this wouldn't make too much difference on AM's apparent
level of directionality, but such was definitely not the case. While AM opened by doing
tasks which were far more interesting and daring than usual (eg, filling in various
Coalescings right away), it soon became obvious that AM was being swayed by hitherto
trivial coding decisions. Whole classes of tasks — like Checking Examples of C — were
never chosen, because they only had one or two reasons supporting them. Previously, one

3 Why? Because {i} #t sounds right intistively to me, (11) thes nm akm to human focus of attention, and mainly beacause (iii)
Ths 1 what AM did anyway, with ne axira modification
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or two good reasons were sufficient. Now, tasks with several poor reasons were rising to the
top and being worked on. Even the LIFO (stack) policy for resolving ties didn't keep AM’s
attention focussed.

Conclusion: Unless a conscious effort is made to ensure that each reason really will carry
roughly an equal amount of semantic impact (charge, weight), it is not acceptable merely to
choose tasks on the basis of how many reasons they possess. Even in those constricted
equal-weight cases, the similarities between reasons supporting a task should be taken into
account.

Another experiment, not yet performed, will pin down the value of this rule.attaching idea
even more precisely. A threshhold value — say 400 — will be fixed. Any reason whose rating
is above that threshhold will be called a good reason, and every other reason will be a
minor reason. Then tasks will be ordered by the number of good reasons they possess, and
ties will be broken by the number of minor reasons. Still another experiment would be to
randomly pick any task with at least one good reason.

6.2.4. What if certain concepts are eliminated/added?

Feeling in a perverse mood one day, I eliminated the concept “Equality” from AM, to see
what it would then do. Equality was a key concept, because AM discovered Numbers via
the technique of generalizing the relation “Equality” {exact equality of 2 given structures, at
all internal levels). What would happen if we eliminate this path? Will AM rederive
Equality? Will it get to Cardinality via another route? Will it do some set-theoretic things?

Result: Rather disappointing. AM never did re-derive Equality, nor Cardinality. It spent its
time thrashing about with various flavors of data-structures {unordered vs. ordered,
multiple-elements allowed or not, etc), deriving large quantities of boring results about
them. Very many composings and coalescings were done, but no exciting new operations
were produced.

It is expected that eliminating other, less central concepts than Equality will do less damage
tc AM’s progress. The reader is invited to try such experiments himself.

To eliminate a concept, like equality, one need merely type KILB(OBJ.EQUALITY?*) at the
beginning of the session, before typing (START).

An even kinder type of experiment would be to add a few concepts. One such experiment
was done: the addition of Cartesian-product. This operation, named C.PROD, accepts two
sets as arguments and returns a third set as its value: the Cartesian product of the first two.

Result: The only significant change in AM’s behavior was that TIMES was discovered first
as the restriction of C-PROD to Canonical-Bags. When it soon was rediscovered in a few
other guises, its Worth was even higher than usual. AM spent even more time exploring
concepts concerned with it, and deviated much less for quite a long time.

2% 14 tind out the precisa PNAME of each concept, ist type CONCEPTS.



Chapter & AM: Discovery m Mathematics as Heuristic Search -132-

Synthesis of the above experiments: it appears that AM may really be more specialized than
expected; AM may only be able to forge ahead along one or two main lines of development
— at least if we demand it make very interesting, well-known discoveries quite frequently.
Removing certain key concepts can be disastrous. On the other hand, adding some
carefully-chosen new ones can greatly enhance AM’s directionality (hence its apparent
intelligence).

Conclusion: In its current state, AM is thus seen to be minimally competent: if any
knowledge is removed, it appears much less intelligent; if any is added, it appears slightly
smarter.

Suggestion for future research: A hypothesis, which should be tested experimentally, is that
the importance of the presence of each individual concept decreases as the number of — and
depth of — the synthesized concepts increase. That is, any excision would eventually “heal
over, given enough time. The failure of AM to verify this may be due to the relatively
small amount of development in toto {an hour of cpu time, a couple hundred new concepts,
a few levels deeper than the starting ones).

6.2.5. What if certain heuristics are tampered with?

The class of experiments described by this section's heading should prove entertaining, but
it will probably be difficult to learn from their results.

Why is this? Some of the heuristics were added to correct a specific problem; removing
them would simply re-initiate that problem. Others were never actually used by AM, so
their deletion would have no effect. If AM enlarged the range of what it worked on, their
absence might then be felt.

What good would these experiments be, then? We might learn something about the
"redundancy of reasoning chains’. We'd stop AM just before it made a big discovery,
remove the heuristic rule it was about to use, and see if it ever makes that big discovery
anyway, later on. If not, perhaps the discarded rule was very important, or there are
alternate rules which exist but haven't been inserted in AM. If the same discovery is made
by an alternate route, does that indicate an unexpected duplication of heuristic knowledge?
If heuristic H2 is used now, instead of HI, does that suggest a new meta-rule: "if you want
to apply one of H1/H2 but can't, see if the other rule can be applied.”? Is that last sentence
really a Meta-meta-rule?

Before this discussion enters an infinite loop, I'd better extract myself — and the reader — by
commenting that there may be an idea ir all this, perhaps of use to whoever writes Meta.
AM. It was decided not to carry out a systematic series of experiments of this type until
AM is much further developed in abilities.
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6.2.6. Can AM work in a new domain: Plane Geometry?

A true strategy should be domain-independent.

== Adams

As McDermott points out [McDermott 76), just labelling a bunch of heuristics ‘Operation
heuristics’ doesn't suddenly make them relevant to any operation; all it does is give that
impression to a human who looks at the code (or a description of it). Since the author
hoped that the labelling really was fair, an experiment was done to test this. Such an
experiment would be a key determiner of how general AM is.

How might one demonstrate that the "Operation heuristics really could be useful or dealing
with any operation, not just the ones already in AM’s initial base of concepts?

One way would be to pick a new domain, and see how many old heuristics contribute to —
and how many new heuristics have to be added to elicit — some sophisticated behavior in
that domain. Of course, some new primitive concepts would have to be introduced (defined)
to AM.

Only one experiment of this type was attempted. The author added a new base of concepts
to the ones already in AM. Included were: Point, Line, Angle, Triangle, Equality of
points/iines/angles/triangles. These simple plane geometry notions were sufficiently removed
from set-theoretic ones that those pre-existing specific concepts would be totally irrelevant;
on the other hand, the general concepts — the ones with the heuristics attached — would still
be just as relevant: Any-concept, Operation, Predicate, Structure, etc.

For each new geometric concept, the only facet filled in was its Definition. For the new
predicates and operators, their Domain/range entries were also supplied. No new heuristics
were added to AM.

Results: fairly good behavior. AM was able to find examples of all the concepts defined,
and to use the character of the results of those examples searches to determine intelligent
courses of action. AM derived congruence and similarity of triangles, and several other
well-known simple concepts. An unusual result was the repeated derivation of the idea of
"timberline”. This is a predicate on two triangles: TimberlineT|, T2} iff Tl and T2 have a
common angle, and the side opposite that angle in the two triangles are parallel:
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A

Timberline(ABC,ADE)
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Since AM kept rederiving this in new ways, it seems surprising that there is no very
common name for the concept. It could be that AM is using techniques which humans don't
— at least, for geometry.

The only new bit of knowledge that came out of this experiment was a “use” for Goldbach’s
conjecture: any angle (0-180 degrees) can be built up {to within 1 degree) as the sum of two
angles of prime degrees {<180). This result is admittedly esoteric at best, but is nonetheless
worth reporting.

The total effort expended on this experiment was: a few months of subconscious processing,
ten hours of designing the base of concepts to insert, ten hours inserting and debugging
them. The whole task took about two days of real time.

The conclusion to be drawn is that heuristics really can be generally useful; their attachment

to general-sounding concepts is not an iHusion.2> The implication of this is that AM can be
grown incrementally, domain by domain. Adding expertise in 2 new domain requires only
the introduction of concepts local to that domain; all the very general concepts — and their
heuristics — already exist and can be used with no change.

The author feels that this result can be generalized: AM can be expanded in scope, even to
non-mathematical fields of endeavor. In each field, however, the rankings of the various

heuristics2® may shift slightly. As the domain gets further away from mathematics, various
heuristics are important which were ignorable before (eg. those dealing with ethics), and
some pure math research-oriented heuristics become less applicable ("giving up and moving
on to another topic” is not an acceptable response to the 15-puzzle, nor to a hostage
situation).

Well, it sounds as if we've shifted our orientation from ‘Results’ to a subjective evaluation
of those results, Let's start a new chapter to legitimize this type of commentary.

25 5r. it's » very good Musion! But note: if this phenomenonis repeatebleand useful, then (ike Newlonian mechenice) it
won't pragmaticelly matter whether i's only sn Hlusion

26 1a numeric values thet should be returned by the local ratings formulse which are stisched to the heuristic rules
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= —————————

Chapter 7. Evaluating AM
—

All mathematicians are wrong at times.

== Maxwell

This chapter contains discussions “meta” to AM itself.

First comes an essay about judging the performance of a system like AM. This is a very
hard task, since AM has no “goal”. Even using current mathematical standards, should AM
be judged on what it produced, or the quality of the path which led to those results, or the
difference between what it started with and what it finally derived?

Section 7.2 then deals with the capabilities and limitations of AM:
« What concepts can be elicited from AM now? With a little tuning/tiny additions?
« What are some notable omissions in AM’s behavior? Can the user eicit these?

« What could probably be done within a couple months of modifications?
« Aside from a total change of domain, what kinds of activities does AM lack (eg,

proof capabilities}? Are any discoveries (eg. analytic function theory) clearly
beyond its design limitations?

Finally, all the conclusions will be gathered together, and a short summary of this project's
‘contribution to knowledge’ will be tolerated.

7.1, Judging Performance

One may view AM’s activity as a progression from an initial core of knowledge to a more
sophisticated “final”! body of concepts and their facets. Then each of the following is a
reasonable way tc measure success, to "judge” AM:

I. By AM’s ultimate achievements. Examine the list of concepts and methods AM

! As has been stressed before, AM has no fixed goal, no “final” state For practical purposes, however, the totality of
sxplorstions by AM in about the same se the “Dest run so far"; sidher of these can be thought of as
defining wha! is meant by the “final” state of knowledge
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developed. Did AM ever discover anything interesting yet unknown to the user??
Anything new to Mankind?

2. By the character of the difference between the initial and final states. Progressing
from set theory to number theory is much more impressive than progressing from
two-dimensional geometry to three-dimensional geometry.

3. By the quality of the route AM took to accomplish these advances: How clever, how
circuitous, how many of the detours were quickly identihed as such and
abandoned?

4. By the character of the User—System interactions: How important is the user's
guidance? How closely must he guide AM? What happens if he doesn’t say
anything ever? When he does want to say something, is there an easy way to
express that to AM, and does AM respond well to it? Given a reasonable kick in
the right direction, can AM develop the mini-theories which the user intended, or
at least something equally interesting?

5. By its intuitive heuristic powers: Does AM believe in “reasonable” conjectures? How
accurately does AM estimate the difficulty of tasks it is considering? Does AM tie
together {e.g., as analogous) concepts which are formally unrelated yet which benefit
from such a tie?

6. By the results of the experiments described in Section 6.2 (beginning on page 125).
How “tuned” is the worth numbering scheme? The task priority rating scheme?
How fragile is the set of initial concepts and heuristic rules? How domain-specific
are those heuristics really? The set of facets?

7. By the very fact that the kinds of experiments outlined in Section 6.2 can easily be
"set up” and performed on AM. Regardless of the experiments’ outcomes, the
features of AM which allow them to be carried out at all are worthy of note.

8. By the implications of this project. What can AM suggest about educating young
mathematicians {anid scientists in general}? What can AM 3ay about doing math?
about empirical research in general?

9. By the number of new avenues for research and experimentation it opens up. What
new projects tan we propose?

10. By comparisons to other, similar systems.

For each of these 10 measuring criteria, a subsection will now be provided, to illustrate {i)

the biggest achievement and (li) the biggest failure of AM along each dimension, and (iii)
to try to objectively characterize AM’s performance according to that measure. Other
measures of judging performance exist®, of course, but haven't been applied to AM.

7.1.1. AM’s Ultimate Discoveries

2 The “veer” is 8 human who works with AM interactively, giving it hinls, commands, questions, stc. Notice that by “new” we
mean new to the user, not new lo Mankind This might occur if the user wars a child, and AM discovered
some slementary facta of arithmetic. This i not really so provincisl: mathematicians takes “new” to mean row
10 Mankind, not new in 1he Unwverss. | feel philosophy sipping in, vo this footnote mn terminated

3 For example, Coby sent transcripts of & session with PARRY te various peychistriste, and had them avaluate each
interaction slong several dimensions. The seme kind of survey could be done for AM A quite separate

TOABTA 1 BNA Ue 0 WIL aw Ne WE TS HTH Te Tae referte this work (and in
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Two of the ideas which AM proposed were totally new and unexpected:?
1. Consider numbers with an abnormally high number of divisors. If d(n) represents

the number of divisors of n,> then AM defines the set of "maximally-divisible
numbers” to be {ntN | {¥m¢n) d(midin)}]. By factoring each such number into
primes, AM noticed a regularity in them. The author then developed a "mini.
theory” about these numbers. It later turned out that Ramanujan had already
proposed that very same definition {in 1915), and had found that same regularity.
His results only partially overlap those of AM and the author, however, and his
methods are radically different.

2. AM found a cute geometric application oi Goldbach’s conjecture. Given a set of all

angles of prime degree, from 0 to 180%,° then any angle between 0 and 180 degrees
can be approximated to within 1% by adding a pair of angles from this prime set.
In fact, it is hard to find smaller sets than this one which approximate any angle to
that accuracy.

By and large, the other concepts which AM developed were either already-known, or real
losers. For example, AM composed Set-insert with the predicate Equality. The result was
an operation InserteEqual(x,y,z), which frst tested whether x was Equal to y or not. The
value of this was either True or False’. Next, this T/F value was inserted into z. For
example, InsertocEqual({1,2},{3,4],{56}) = {False,56]. The first two arguments are not equal,
so the atom ‘False’ was inserted into the third. Although hitherto “unknown”, this operation
would clearly be better off left in that state.

Another kind of loser occurred whenever AM entered upon some “regular” behavior. For
example, if it decided that Compose was interesting, it might try to create some examples of
compositions. It could do this by picking two operations and composing them. What better
operations to pick than Compose and Compose! Thus ComposesCompose would be born.
By composing that with itself, an even more monstrous operation is spawned:
ComposesComposesComposecCompose. Since AM actually uses the word “Compose”
instead of that little infix circle, the PNAME of the data structure it creates is horrendous.

Its use is almost nonexistent: it must take 5 operations as arguments, and it returns a new
operation which is the composition of those five. An analogous danger which exists is for
AM to be content conjecturing a stream of very similar relationships {e.g., the multiplication
table). In all such cases, AM must have meta.rules which pull it up out of such whirlpools,
to perceive a higher generalization of its previous sequence of related activities.

In summary, then, we may say that AM produced a few winning ideas new to the author, a
couple of which were new to Mankind. Several additional “new” concepts were created

o Note thet these are “ultimate discoveries” only in the seme of what hos been done at the time of writing this thesis. For
ona of AM's ideas to be “new”, it shouldbe previously unknown to both the suthor and the user. Why? If the
author knew sbout it, then the heuristics he provided AM with might unconsciously encode a path to that
knowledges. Hf the user knew shout thet ides, hie guidsnce might unconsciously help AM 10 derive it. An even
mors stringent interpretation would ba that the ides ba hitherto ynknown to the collective written record of
Mathematics.

Sop, 4012) = Sizel{1,23,4,8,12)) » 6
$ included are 0° and 12, 2s well as the “typicel” primes 2°, 3° 5°, 7°, 11°,_, 179°
7 Actually, in LISP, it wes ssvier 15 have such results shways be sither T or NIK
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which both AM and the user agreed were better forgotten. The “level” of AM’s fruits couid
be classified as an undergraduate math major, although this is deceptive since AM lacks the
breadth of abilities any human being possesses.

Even with men of genius, with whom the birth rate of Aypotheses is very Aigh, it
onlyjust manages to exceed the death rate.

-= W. H. George?

We can ask the following kind of question: how many “levels” did AM progress along? This
is a fuzzy notion, but basically we shail say that a new level is reached when a valuable new
bunch of connected concepts are defined in terms of concepts at a lower level.

For example, AM started out knowing about Sets and Set.operations. When it progressed
to numbers and arithmetic, that was one big step up 10 a new level. When it zeroed in on
primes, unique-factorization, and divisibility, it had moved up another level.

When fed simple geometry concepts, AM moved up one level when it defined some
generalizations of the equality of geometric figures (parallel lines, congruent and similar
triangles, angles equal in measure) and their invariants (rotations, translations, reflections).

The above few examples are unfortunately exhaustive: that just about sums up the major
advances AM made. Its progress was halted not 30 much by cpu time and space, as by a
paucity of meta-knowledge: heuristic rules for filling in new heuristic rules. Thus AM's
successes are finite, and its failures inhnite, along this dimension.

A more charitable view might compare AM to 2a human who was forced to start from set
theory, with AM’s sparse abilities. In that sense, perhaps, AM would rate quite well, The
“unfair” advantage it had was the presence of many heuristics which themselves were
gleaned from mathematicians: ie, they are like compiled hindsight. A major purpose of
mathematics education in the university is to instil these heuristics into the minds of the
students.

AM is thus characterized as possessing heuristics which are powerful enough to take it a
few “levels” away from the kind of knowledge it began with, but only a few levels. The
limiting factors are (i) the heuristic rules AM begins with, and more specifically (ii) the
expertise in recognizing and compiling new heuristics, and more generally (iii) a lack of
real-world situations to draw upon for analogies, intuitions, and applications.

$ Queted from [Beveridge 50}
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7.1.3. The Quality of AM's Route

Thinking is not measured by what is produced, dbut rather is a property of the
way something is done.

== Hamming

No matter what its achievements were, or the magnitude of its advancement from initial

knowledge, AM could? still be judged “unintelligent” if, eg., it were exploring vast numbers
of absurd avenues for each worthwhile one it found. The quality of the route AM followed
is thus quite significant.

AM performed better in this respect than expected. It is not obvious'® how well a human
would have fared under similar circumstances. Of the two hundred new concepts it defined,
about 130 were acceptable — in the sense that one can defend AM’s reasoning in at least
exploring them; in the sense that a human mathematician might have considered them. Of
these "winners’, about two dozen were significant — that is, useful, catalytic, well-known by
human mathematicians, etc. Unfortunately, the sixty or seventy concepts which were losers
were real losers. In this respect, AM fell far below the standards a mathematician would set
for acceptable behavior: all his failures should have at least seemed promising at the
beginning. Half of AM’s adventures were poorly grounded, and (perhaps due to a lack of
intuition) AM bothered with concepts which were “obviously” trivial: the set of even primes,
the set of numbers with only one divisor, etc. The human mathematician would
momentarily consider many poor courses of action, whereas AM on the other hand
managed to avoid truly lunatic activities without even momentary consideration of them,
But a human would only spend a significant amount of time on very promising tasks, and
AM wasted a huge amount of time on tasks which a human would have quickly recognized
as dead-ends.

Once again we must observe that the quality of the route is a function of the quality of the
heuristics. If there are many clever little rules, then the steps AM takes will often seem
clever and sophisticated. If the rules superimpose nicely, joining together to collectively
buttress some specific activity, then their effectiveness may surprise — and surpass — their
creator.

Such moments of great insight (i.e, where AM’s reasoning surpassed mine) did occur,
although rarely. Both of AM" "big discoveries” started by its examining concepts I felt
weren't really interesting. For example, 1 didn't like AM spending so much time worrying
about numbers with many divisors; 1 “knew” that the converse concept of primes was

9 not necesssrity WOULD be so judged Humane may very well consider an incredible number of silly idess before the right
poir of "hooked stoms™ collide inte a sensible thought, which in then considered in full consciousness. i, lie
humans, AM waa capable of doing thie processing wn a suffciently bref period of real tims, # would not
raflpct it on ts svalustion Of course, this may simply be the DEFINITION of “sufficiently brief".

10 Or whether that even makes sens to consider. Comparisons with mathematicions would be desirable, but srs beyond the
scope of this mvestigaton
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infinitely more valuable. And yet AM saw no reason to give up on maximally-divisible
numbers; it had several good reasons for continuing that inquiry (they were the converse to
primes which had already proved interesting, their frequency within the integers was
neither very high nor very low nor very regular, their definition was simple, they were
extremals of the interesting operation "Divisors-of, etc, etc) Similarly, I “knew” that
Goldbach’s conjecture was useless, 30 | was unhappy that AM was bothering to try to apply
it in the domain of geometry. In both cases, AM’s reasons for its actions were unassailable,
and in fact it did discover some interesting new ideas both times.

Sometimes AM’s behavior was displeasing, even though it wasn’t “erring”. Occasionally it
was simultaneously developing two mini-theories {say primes and maximally-divisibles).
Then it might pick a task or two dealing with one of these topics, then a task or two dealing
with the other topic, etc. The task picked at each moment would be the one with the highest
priority value. As a theory is developed, the interestingness of its associated tasks go up
arid down; there may be doldrums for a bit, just before falling into the track that will lead
to the discovery of a valuable relationship. During these temporary lags, the interest value
of tasks related to the other theory's concepts will appear to have a higher priority value:
i.e, better reasons supporting it. So AM would then skip over to one of fAose concepts,
develop it untii its doldrums, then return to the first one, etc. Most humans found this
behavior unpalatable’! because AM had no compunction about skipping from one topic to
another. Humans have to retune their minds to do this skipping. and therefore treat it
much more seriously. For that reason, AM was given an extra mobile reason to use for
certain tasks on its agenda: “focus of attention”. Any task with the same kind of topic as the
ones just executed are given this extra reason, and it raises their priority values a little.
This was enough sometimes to keep AM working on a certain mini-theory when it
otherwise would have skipped somewhere else.

The above “defect” is a cute little kind of behavior AM exhibited which was non-human

but not clearly "wrong". There were genuine bad moments also, of course. For example,
AM became very excited'? when the conjunction of “empty-set” and other concepts kept
being equal to empty-set. AM kept repeating conjunctions of this form, rather than stepping
back and generalizing this data into a (phenomenological) con jecture. Similar blind looping
behavior occurred when AM kept composing Compose with itself, over and over. In
general, one could say that “regular” behavior of any kind signals a probable hasco. A
heuristic rule to this effect halted most of these disgraceful antics. This rule had to be
careful, since it was almost the antithesis of the “focus of attention” idea mentioned in the

preceding paragraph. Together, those two rules seem to say that you should continue on
with the kind of thing you were just doing, but not for foo long a time.

The moments of insight were 2 in number; the moments of stupid misdirection were about
twenty times as many.

AM has very few heuristics for deciding that something was uninteresting, that work on it

I Although it might be the “beet” from & dynamic mensgement poinl of view,# probablywould be wrong in the fengrun.
Major advances resity de have lulls in their development.

12 Diese sxcues this anthropomorphiam. Technically,we mey say that the priority vakuof the best jobon the agends
the “level of sxcitoment™ of ANL 700 or higher in called “excitement”, on 3 scele of 0-1000.
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should halt for a long time. Rather, AM simply won't have anything positive to say about
that concept, and other concepts are explored instead, essentially by default. Each concept
has a worth component which corresponded to its right to life {its right to occupy storage in
core). This number slowly declines with time, and is raised whenever something interesting
happens with that concept. If it ever falls below a certain threshhold, and if space is
exhausted'?, then the concept is forgotten: its list cells are garbage collected, and all
references to it are erased, save those which will keep it from being re-created. This again
is not purposeful forgetting, but rather by default; not because X is seen as a dead-end, but
simply because other concepts seem so much more interesting for a long time.

Thus AM did not develop the sixty “losers” very much: they ended up with an average of
only 1.5 tasks relevant to them ever having been chosen. The “winners” averaged about
twice as many tasks which helped fill them out more. Also, the worth ratings of the losers
were far below those of the winners. 50 AM really did judge the value of its new concepts
quite well.

The final aspect of this important dimension of evaluation is the quality of the reasons AM
used to support each task it chose to work on. Again, the English phrases corresponded
quite nicely to the “real” reasons a human might give to justify why something was worth
trying, and the ordering of the tasks on the agenda was rarely far off from the one that |
would have picked myself. This was perhaps AM’s greatest success: the rationality of its
actions.

7.1.4. The Character of the User-System Interactions

AM is not a “user-oriented” system. There were many nice human-interaction features in
the original grandiose proposal for AM which never got off the drawing board. At the
heart of these features were two assumptions:

1. The user must understand AM, and AM must likewise have a good model of the
particular human using AM. The only time either should initiate a message is
when his model of the other is not what he wants that model to be. In that case,

the message should be specifically designed to fix that discrepancy.’
2. Each kind of message which is to pass between AM and its user should have its

own appropriate language. Thus there should be a terse comment language,
whereby the user can note how he feels about what AM is doing, a questioning
language for either party to get/give reasons to the other, a picture language for
communicating certain relationships, etc.

Neither of these ideas ever made it into the LISP code that is now AM, although they are
certainly not prohibited in any way by AM’s design. It would be a separate project, at or
above the level of a master’s thesis, for someone to build a nice user interface for AM >.

13 No concapts were forgotien in this way until neer the end of All's rune, when AM would vsusily collapses from several
couse including lack of space.

14 This ides was motivated by s lecture given in 1975by Terry Winograd
15 1 am not actually calling far this to be done, merely indicating the magnitudeof the sifort involved.A VERY nice user

interface might be much harder, st the level of » dusertation
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As one might expect, the reason for this atrophy is simply because very little guidance from
the user was needed by AM. In fact, all the discoveries, cpu time quotes, etc. mentioned in
this document are taken from totally unguided runs by AM. If the user guides as well as he
can, then about a factor of 2 or 3 speedup is possible. Of course, this assumes that the user
is dragging AM directly along a line of development he knows will be successful. The user's
“reasons” at each step are based essentially on hindsight. Thus this is not at all "fair". If
AM ever becomes more user-oriented, it would be nice to let children (say 6-12 years old)
experiment with it, to obsérve them working with it in domains unfamiliar to either of
them.'®

The user can “kick® AM in one direction or another, eg. by interrupting and telling AM
that Sets are more interesting than Numbers'”. Even in that particular case, AM fails to
develop any higher-level set concepts {diagonalization, infinite sets, etc.) and simply wallows
around in finite set theory (de Morgan's laws, associativity of Union, etc). When geometric
concepts are input, and AM is kicked in that direction, much nicer results are obtained. See
the report on the Geometry experiment, page 133.

There is one important result to observe: the very best examples of AM in action were
brought to full fruition only by a human developer. That is, AM thought of a couple great
concepts, but couldn't develop them well on its own. A human (the author) then took them
and worked on them by hand, and interesting results were achieved. These results could be
told to AM, who could then go off and look for new concepts to investigate. This
interaction is of course at a much lower frequency than the kind of rapidfire
question/answering talked about above. Yet it seems that such synergy may be the ultimate
mode of AM-like systems.

7.1.5. AM’s Intuitive Powers

Intuitive conviction surpasses logic as the brilliance of the sun surpasses the pale
light of the moon.

== Kline

Let me hasten to mention that the word “intuitive” in this subsection’s title is not related to

the {currently non-existent) “Intuitions” facets of the concepts. What is meant is the totality
of plausible reasoning which AM engages in: empirical induction, generalization,
specialization, maintaining reasons for jobs on the agenda list, creation of analogies between
bunches of concepts, etc.

1o Sterred {) sxercise for tha reader: carry aut such » project on » statistically sigmiicant sample of children, wait thirty
yours, snd observe the incidences of mathemeticiens snd scintinls in general, compared to the national
averages. Within whatever occupation they've chosen, rate their crestivity snd productivity.

'7 Yo actusily do tive, the user will type controk-1 1s interrupt AM. Ha then types | meaning “shar the interest of”, followed
by the word “Seta”. AM then aske whether thams 10 be remed or lowered He types back R, and AM seks
how much, on 2 1-10 acele. He rephes 3, soy, and 1hon repeats this process for 1he concept “Numbers”
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AM only considers conjectures which have been explicitly suggested: either by empirical
evidence, by analogy, or {de-implemented now:) by Intuition facets. Once a conjecture has
been formulated, it is tested in all ways possible: new experimental evidence is sought

(especially extreme cases), it is examined formally'® to see if it follows from already-known
con jectures, etc.

Because of this grounding in plausibility, the only conjectures the user ever sees (the ones
AM is testing) are quite believable. If they turn out to be false, both he and AM are
surprised. For example, both AM and the user were disappointed when nothing came out
of the concept of Uniquely-prime-addable numbers (positive integers which can be
represented as the sum of two primes in precisely one way). Several conjectures were
proposed via analogy with unique prime factorization, but none of them held
experimentally. Each of them seemed worth investigating, to both the user and the
s 19ystem.

A M's estimates of the value of each task it attempts were often far off from what hindsight
proved their true values to be. Yet this was not so different from the situation a real
researcher faces, and it made little difference on the discoveries and failures of the system.
AM occasionally mismanaged its resources due to errors in these estimates. To correct for
such erroneous prejudgments, heuristic rules were permitted to dynamically alter the
time/space quanta for the current task. if some interesting new result turned up, then some
extra resources wouki be allotted. If certain heuristics failed, they could reduce the time
limits, so not as much total cpu time wouid be wasted on this loser.

An example of a nice conjecture is the unique factorization one. A nice analogy was the
one between angles and numbers (leading to the application of Goldbach’s conjecture).
Another nice analogy was between numbers and bags (and hence betwcen bag-operations
and what we commonly call arithmetic operations).

Some poor analogies were considered, like the one between bags and singleton-bags. The
ramifications of this analogy were painfully trivial?

1.1.6. Experiments on AM |

The experiments described in Section 6.2 {page 125 ff) provide some resuits relevant to the
overall value of the AM system. The reader should consult that section for details; neither
the experiments nor their results will be repeated here. A few conclusions will be
summarized, to show that AM fared well in this dimension of evaluation.

The worth-numbering scheme for the concepts is fairly robust: even when all the concepts’s

18 corrently, this is done nn trivisl ways. An spon problem,which is under atfack now, i» to add more powerful formal
ressoning abilities to Akl

1” it je tif not known whether thers i anything interesting sbout thet concept ar not
20 The beg-operations, apphed to singletons, did net produce singletons as their result: (xily) ie (x,y) which is not a

singleton. Whether they did or net depandedonly an the squelityor insquahity of the two arguments. There
were meny tiny conjectures propoesad which merely re-schoed this general conchusion
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worths are initialized at the same value, the performance of AM doesn’t collapse, although
it is noticeably degraded.

Certain mutilations of the priority-value scheme for tasks on the agenda will cripple AM,
but it can resist most of the small changes tried in various experiments.

Sometimes, removing just a single concepts (e.g. Equality) was enough to block AM from
discovering some valuable concepts it otherwise got {in this case, Numbers). This makes
A M's behavior sound very fragile, like a slender chain of advancement. But on the other
hand, many concepts {eg. TIMES, Timberline, Primes?!) were discovered in several
independent ways. If AM’'s behavior is a chain, it is multiply-stranded®2. More
experiments of this sort should be done to test this general conclusion about AM.

The heuristics are specific to their stated domain of applicability. Thus when working in
geometry, the Operation heuristics were just as useful as they were when AM worked in
elementary set theory or number theory. The set of facets seemed adequate for those
domains, too. The Intuition facet, which was rejected as a valid source of information about
sets and numbers, might have been more acceptable in geometry {eg., something similar to
Gelernter's model of a geometric situation).

All in all, then, we conclude that AM was fairly tough, and about as general as its heuristics
claimed it was. AM is not invincible, infallible, or universal. Its strength lies in careful use
of heuristics. If there aren't enough domain-specific heuristics around, the system will simply
not perform well in that domain. If the heuristic-using control structure of AM is tampered
with?3, there is some chance of losing vital guiding information which the heuristics would
otherwise supply.

7.1.7. How to Perform Experiments on AM

The very fact that the kinds of experiments mentioned in the last section (and described in
detail in Section 6.2) can be "set up” and performed on AM, reflects a nice quality of the
AM program.

Most of those experiments took only a matter of minutes to set up, only a few tiny
modifications to AM. For example, the one where all the Worth ratings were initialized to
the same value was done by evaluating the single LISP expression:

{MAPC CONCEPTS "(x {c} (PUT ¢ "Worth 200)))

21 Primes was duwcoversd independently ss follows: all numbers (30) wera seen to be representable ss the sum of amailer
numbers; Add wes known to be analogous to TIMES, But not all numbers {>1) sppesrad to be repressnisbie
as the productof two smaller ones; Rule number B1 Iriggered {see Appendix 3, page 243), snd AM
defined tha set of sxceplions: the set of numbers whith could nol be sxprassed se the product of two
smaller one; ie, the primes

22 sxcep! Tor 8 tow wesk spots, kre Numbers. i 1hey don't get discovered, AM loses
23 sg, tras! ok reasons ss equivelent, so you st COUNT the number of ressons a task has, 1c determine its priority on

the sgends
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Similarly, here is how AM was modified to treat all tasks as if they had equal value: the
function Pick-task has a statement of the form

(SETQ Curreni-task {First-member-of Agands))

AH that was necessary was to replace the call on the function "First-member-0i"2? by the
function "Random-member-of.

Even the most sophisticated experiment, the introduction of a new bunch of concepts —
those dealing with geometric notions like Between, Angle, Line — took only a day of
conscious work to set up.

Of course running the experiment involves the expenditure of hours of cpu time, so only a
limited number were actually performed.*

There are certain experiments one can't easily perform on AM: removing all its heuristics,
for example. Most heuristic search programs would then wallow around, displaying just
how big their search space really was. But AM would just sit there, since it'd have nothing
plausibie to do.

Many other experiments, while cute and easy to set up, are quite costly in terms of cpu time.
For example, the class of experiments of the form: “remove heuristics x, y, and 2, and
observe the resultant affect on AM's behavior”. This observation would entail running AM
for an hour or two of cpu time! Considering the number of subsets of heuristics, not all
these questions are going to get answered in our universe's lifetime. Considering the small
probable payoff from any one such experiment, very few should actually be attempted.

One nice experiment would be to monitor the contribution each heuristic is making. That
is, record each time it is used and record the final outcome of its activation {which may be
several cycles later). Unfortunately, AM's heuristics are not all coded as separate Lisp
entities, which one could then “trace”. Rather, they are often interwoven with each other
into large program pieces. So this experiment can't be easily set up and run on AM.

Most of the experiments one could think of can be quickly set up — but only by someone
familiar with the LISP code of AM. It would be quite hard to modify AM so that the
untrained user could easily perform these experiments. Essentially, that would demand that
AM have a deep understanding of its own structure. This is of course desirable, fascinating,
challenging, but wasn't part of the design of AM 2

<q In LISP, this function ms sciually sbbrevisied "CAR".
25 Those described in the [ant chapter The serws of experiments began st the same time that this document was being

written, and was intended originally only se a diversion from the tedium of writing The interesting character
of their results convinced me they should be intivded, sven though they are few in number and quits
incomplete

26 A suggestion for future reswerch projects in this general ares: such systems should be designed in 3 way which
facilitates 8 poorly-tramed veer not only using the sysiem but axperimenting on i.
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7.1.8. Future Implications of this Project

One harsh measure of AM would be to demand what possible applications it will have.
This really means (i) the uses for the AM system, {ii) the uses for the ideas of how to create
such systems, {iii} conclusions about math and science one can draw from experiments with
AM.

Here are some of these implications, both real and potential:

I. New tools for computer scientists who want to create large knowledge-based systems to
emulate some creative human activity.

Is. The modular representation of knowledge that AM uses might prove to be
effective in any knowledge-based system. Division of a global problem into a multitude
of small chunks, each of them of the form of setting up one quite local “expert” on some
concept, is a nice way to make a hard task more managabie. Conceivably, each needed
expert could be hiled in by a human who really is an expert on that topic. Then the
global abilities of the system would be able to rely on quite sophisticated local criteria.
Fixing a set of facets once and for all permits effective inter-module communication.

Ib. Some ideas may carry over unchanged into many fields of human creativity,
wherever local guiding rules exist. These include: (a) ideas about heuristics having
domains of applicability, (b} the policy of tacking them onto the most general knowledge
source (concept, module} they are relevant to, (c) the rippling scheme to locate relevant
knowledge, etc,

2. A body of heuristics which can be built upon by others.
2a. Most of the particular heuristic judgmental criteria for interestingness, utility,

etc, might be valid in developing theorizers in other sciences. Recall that each rule has
its domain of applicability; many of the heuristics in AM are quite general.

2b. Just within the smail domain in which AM already works, this base of
heuristics might be enlarged through contact with various mathematicians. If they are
willing to introspect and add some of their “rules” to AM’s existing base, it might
gradually grow more and more powerful.

2c. Carrying this last point to the limit of possibility, one might imagine the
program possessing more heuristics than any single human. Of course, AM as it stands
now {s missing so much of the ‘human element, the life experiences that a

. mathematician draws upon continually for inspiration, that merely amassing more
heuristics won't automatically push it to the level of a super-human intelligence.
Another far-out scenario is that of the great mathematicians of each generation pouring
their individual heuristics into an AM-like system. After a few generations have come
and gone, running that program could be a valuable way to bring about ‘interactions’
between people who were not contemporaries.

3. New and better strategies for math educators. [optional]
3a. Since the key to AM’s success seems to be its heuristics, and not the particular

concepts it knows, the whole orientation of mathematics education should perhaps be
modified, to provide experiences for the student which will build up these rules in his
mind. Learning a new theorem is worth much less than learning a new heuristic which
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lets you discover new theorems.’ I am far from the first to urge such a revision (see,
e.g. (Koestler 67], p.265, or see [Papert 72).

3b. If the repertoire of intuition {simulated real-world scenarios) were sufficient for
AM to develop elementary concepts of math, then educators should ensure that children
(4-6 years old) are thoroughly exposed to those scenarios. Such activities would include
seesaws, slides, piling marbles into pans of a balance scale, comparing the heights of
towers built out of cubical blocks, solving a jigsaw puzzle, etc. Unfortunately, AM failed
to show the value of these few scenarios. This was a potential application which was
not confirmed.

3c. One use for AM itself would be as a “fun” teaching tool. If a very nice user
interface is constructed, AM could serve as a model for, say, college freshmen with no
math research experience. They could watch AM, see the kinds of things it does, play
with it, and perhaps get a real flavor for (and get turned on by) doing math research. A
vast number of brilliant minds are too turned off by high-school drilling and college
calculus to stick around long enough to find out how exciting — and different — research
math is compared to textbook math.

4. Further experiments on AM might tell us something about how the theory formation task
changes as a theory grows in sophistication. For example, can the same methods which
lead AM from premathematical concepts to arithmetic also lead AM from number
systems up to abstract algebra? Or are 2 new set of heuristic rules or extra concepts
required? My guess is that a few of each are lacking currently, but only a few. There is
a great deal of disagreement about this subject among mathematicians. By tracing
along the development of mathematics, one might categorize discoveries by how easy
they would be for an AM-like system to hnd. Sometimes, a discovery required the
invention of a brand new heuristic rule, which would clearly be beyond AM as
currently designed. Sometimes, discovery is based on the lucky random combination of
existing concepts, for no good ¢ priori reason. It would be instructive to find out how
often this is necessarily the case: how often can’t a mathematical discovery be motivated
and “explained” using heuristic rules of the kind AM possesses?

5. An unanticipated result was the creation of new-to-Mankind math (both directly and by
defining new, interesting concepts to investigate by hand). The amount of new bits of
mathematics developed to date is minuscule.

Bs. As described in (2c) above, AM might absorb heuristics from several
individuals and thereby integrate their particular insights. This might eventually result
in new mathematics being discovered.

Sb. An even more exciting prospect, which never materialized, was that AM
would find a new redivision of existing concepts, an alternate formulation of some
established theory, much like Hamiltonian mechanics is an alternate unification of the
data which led to Newtonian mechanics. The only rudimentary behavior along these
lines was when AM occasionally derived a familiar concept in an abnormal way {eg.,
TIMES was derived in four ways; Prime pairs were noticed by restricting Addition to
primes).

27 Usuelly. One kind of axception is the following: the shility to tsk a powerful theorem, and extract from it 3 new,
powerful heuristic. AM cannot de this, but A may turn oud that this mechoniem Bu quits crucial for humans’
ohtsining new heuristics. This is another spen resssrch problem
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7.1.9. Open Problems: Suggestions for Future Research

While AM can and should stand as a complete research project, part of its value will stem
from whatever future studies are sparked by it. Of course the “evaluation” of AM along
this dimension must wait for years, but even at the present time several such open problems
come to mind:

* Devise Meta-heuristics, rules capable of operating on and synthesizing new heuristic
rules. AM has shown the solution of this problem to be both nontrivial and
indispensable. AM’s progress ground to a halt because fresh, powerful heuristics
were never produced The next point suggests that the same need for new rules
exists in mathematics as a whole:

* Examine the history of mathematics, and gradually build up a list of the heuristic
rules used. Does the following thesis have any validity: "TAe development of
mathematics is essentially the development of new heuristics.” That is, can we ‘factor
out’ all the discoveries reachable by the set of heuristics available (known) to the
mathematicians at some time in history, and then explain each new big discovery
as requiring the synthesis of a brand new heuristic For example, Bolyai and
Lobachevsky did this a century ago when they decided that counter-intuitive
systems might still be consistent and interesting. Non-Euclidean geometry resulted,
and no mathematician today would think twice about using the heuristic they
developed. Linstein invented a new heuristic more recently, when he dared to

consider that counter-intuitive systems might actually have physical reality.2® What
was once a bold new method is now a standard tool in theoretical physics.

* In a far less dramatic vein, a hard open problem is that of building up a body of
rules for symbolically instantiating a definition {a LISP predicate). These rules may
be structured hierarchically, so that rules specific to operating on ‘operations whose
domain and range are equal’ may be gathered. Is this set finite and managable; ie.
does some sort of “closure” occur after a few hundred (thousand?) such rules are
assembled?

* More generally, we can ask for the expansion of all the heuristic rules, of all
categories. This may be done by eliciting them from famous mathematicians, or
automatically by the application of very sophisticated meta-heuristics. Some
categories of rules include: how to generalize/specialize definitions, how to find
examples of a given concept, how to optimize LISP algorithms.

* Experiments can be done on AM. A few have been performed already, many more
are proposed in Section 52, and no doubt some additional ones have already
occurred to the reader.

* Extend the analysis already begun (see p. 59) of the set of heuristics AM possesses.
One reason for such an analysis would be to achieve a better understanding of the

28 py Courant says, "When Enstain tried to reduce the netion of ‘simultaneousevents sccurring at diffaramt places’ to
sbearvable phonomens, when he unmasked 3s 3 metsphysicel propdiceihe belie? thet this conceptmuse!
have 2 sciontific mesning in Heel, he had found the hey to he theory of relativity.”
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contribution of the heuristics. In some sense, the heuristics and the choice of

starting concepts “encode” the discoveries which AM makes, and the way it makes
them. A better understanding of that encoding may lead to new ideas for AM and
for future AM. like systems.

» Rewrite AM. In Chapter |, on page 9, it was pointed out that there are two

common species of heuristic search programs. One type has a legal move
generator, and heuristics to constrain it. The second type, including AM, has only
a set of heuristics, and they.act as plausible move generators. Since AM seemed to
create new concepts, propose new conjectures, and formulate new tasks in a very
few distinct ways, it might very well be feasible to find a purely syntactic “legal
move generator’ for AM, and to convert each existing heuristic into a form of
constraint. In that case, one could, eg. remove all the heuristics and still see a
meaningful (if explosive) activity proceed. There might be a few surprises down
that path.

* A more tractible project, a subset of the former one, would be to recode just the
conjecture-inding heuristics as constraints on a new, purely syntactic legal
conjecture generator. A simple Generate-and-Test paradigm would be used to
synthesize and examine large numbers of conjectures. Again, removing all the
heuristics would be a worthwhile experiment.

« At the reaches of feasability, one can imagine trying to extend AM into more and
more fields, into less-formalizable domains. International politics has already been

suggested as a very hard future applications area.

* Abstracting that last point, try to build up a set of criteria which make a domain
ripe for automating (eg. it possesses a strong theory, it is knowledge-rich (many
heuristics exist), the performance of the professionals/experts is much better than
that of the typical practitioners, the new discoveries in that field all fall into a small
variety of syntactic formats,..?). Inmially, this study might help humans build better
and more appropriate scientific discovery programs. Someday, it might even permit
the creation of an automatic-theory-formation-program-writer.

+ The interaction between AM and the user 15 minimal and painful. Is there a more

effective language for communication? Should several languages exist, depending
on the type of message to be sent (pictures, control characters, a subset of natural
language, induction from examples, etc)? Can AM’ output be raised in
sophistication by introducing an internal model of the user and his state of
knowledge at each moment?

» Human protocol studies may be appropriate, to test out the model of mathematical
research which AM puts forward. Are the sequences of actions similar? Are the
mistakes analogous? Do the pauses which the humans emit quantitatively
correspond lo A M's periods of gathering and running ‘Suggest’ heuristics?

« Can the idea of Intuition functions be developed into a useful mechanism? If not,

how else might real-world experiences be made available to an automated
researcher to draw upon (for analogies, to base new theories upon)? Could one
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interface physical effectors and receptors and quite literally allow the program to
‘play around in the real world’ for his analogies?

» Most of the future implications’ discussed in the last section suggest future activities
(e.g.. new educational experiments and techniques).

« Most of the limiting assumptions’ discussed in a later section (page 157) can be
tackled with today's techniques {plus a great deal of effort). Thus each of them
counts as an open probiem for research. .

* Perform an information-theoretic analysis on AM. What is the value of each
heuristic? the new information content of each new conjecturer

» If you're interested in natural language, the very hard problem exists of giving AM
{or a similar system) the ability to really do inferential processing on the reasons
attached to tasks on the agenda. Instead of just being able to test for equality of
two reasons, it would be much more intelligent to be able to infer the kind of
relationship between any two reasons; if they overlap semantically, we'd like to be
able to compute precisely how that should that effect the overall rating for the task;
elc.

* Modify the control structure of AM, as follows. Allow mini-goals to exist, and
supply new rules for setting them up {plausible goal generators) and altering those
goals, plus some new rules and algorithms for satisfying them. The modification 1
have in mind would result in new tasks being proposed because of certain current
goals, and existing tasks would be reordered so as to raise the chance of satisfying
some important goal. Finally, the human watching AM would be able to observe
the rationality (hopefully) of the goals which were set. The simple “Focus of
Attention” mechanism already in AM is a tiny step in this goal-oriented direction.
Note that this proposal itself demonstrates that AM is not inherently opposed to a
goal-directed control structure. Rather, AM simply possesses only a partial set of
mechanisms for complete reasoning about its domain.

7.1.10. Comparison to Other Systems

One popular way to judge a system is to compare it to other, similar systems, and/or to
others’ proposed criteria for such systems. There is no other project {known to the author)
having the same ob jective: automated math research.2® Many somewhat related efforts have
been reported in the literature and will be mentioned here.

Several projects have been undertaken which overlap small pieces of the AM system and in
addition concentrate deeply upon some area no! present in AM. For example, the CLET

29 In {Atkin & Birch 1971] ag, wo find no mentionof the computer sxcept se » rumber cruncher.
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system [Badre 73] worked on learning the decimal addition algorithm®® but the
"mathematics discovery. aspects of that system were neither emphasized nor worth
emphasizing; it was an interesting natural language communication study. The same
comment applies to several related studies by IM5553.

Boyer and Moore's theorem.prover [Boyer&Moore 75) embodies some of the spirit of AM
{e.g.. generalizing the definition of a LISP function), but its motivations are quite different,
its knowledge base is minimal, and its methods purely formal.>®> The same comments apply
to the SAM program [Guard 69], in which a resolution theorem.prover is set to work on
unsolved probiems in lattice theory.

Among the attempts to incorporate heuristic knowledge into a theorem prover, we should
also mention [Wang 60), [Pitrat 70), [Bledsoe 71}, and [Brotz 74]. How did AM differ from
these “heuristic theorem-provers’? The goal-driven control structure of these systems is a
real but only minor difference from AM’s control structure {e.g.. AM’s "focus of attention” is
a rudimentary step in that direction; see p. 150). The fact that their overall activity is
typically labelled as deductive is also not a fundamental distinction (since constructing a
proof it usually in practice quite inductive). Even the character of the inference processes
are analogous: The provers typically contain a couple binary inference rules, like Modus
Ponens, which are relatively risky to apply but can yield big results; AM’s few “binary”
operators have the same characteristics: Compose, Canonize, Logically-combine (dis join and
conjoin). The main distinction is that the theorem provers each incorporate only a handful
of heuristics. The reason for this, in turn, is the paucity of good heuristics which exist for
the very general task environment in which they operate: domain-independent (asemantic)
predicate calculus theorem proving. The need for additional guidance was recognized by
these researchers. For example, see [Wang 60}, p. 3 and p. 17. Or as Bledsoe says:

There is a real difference between doing some mathemalics and being a
mathematician. The difference is principally one of judgment: in the selection of a
problem (lheorem to be proved); in determining its relevance;.. It is precisely in
these areas that machine provers have been so lacking. This kind of judgment has
io be supplied by the user... Thus a crucial part of the resolution proof is the
selection of the reference theorems by the Auman user; the human, by this one
action, usually employs more skill than that used by the computer in the proof.

Many researchers have constructed programs which pioneered some of the‘techniques AM
usesSd, [Gelernter 63] reports the use of prototypical examples as analogic models to guide
search in geometry, and [Bundy 73) employs models of “sticks” to help his program work
with natural numbers. The single heuristic of analogy was studied in [Evans 68] and

30 Govan the addition table up to 10 + 10, pive an English text description of what it mesns fo carry, how snd when to
carry, sic, actually write & program tapabie of adding two J-dgit numbers

3; Ses [Smith 74a], for sxample

32 This = not meant " criticism; considering the goals of those researchers, and the age of that system, their work is quiteagnifcant.

33 18iedece 71 p. 73
34 In many cases, thoes techniques were used for the first time, Manca wore thought of as “trcke™
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[Kling 71)3%

Theory formation systems in any field have been few. Meta.Dendral [Buchanan 74)
represents perhaps the best of these. Its task is to unify a body of mass spectral data
(examples of “proper” identifications of spectra) into a small body of rules for making
identifications. Thus even this system is given a fixed task, a fixed set of data to find
regularities within. AM, however, must find its own data, and take the responsibility for
managing its own time, for not looking too long at worthiess data.® There has been much
written about scientific theory formation (eg. [Hempel 52]), but very little of it is specific
enough to be of immediate use to Al researchers. A couple pointers to excellent discussions
of this sort are: [Fogel 66], [Simon 73], and [Buchanan 75] Also worth noting is a
discussion near the end of [Amarel 69], in which “formation” and “modelling” problems are
treated:

The probiem of model finding is relaled lo the following general question raised
by Schulzenberger [in discussion al the Conference on intelligence and intelligent
Systems, Athens, Ga, 1967}: ‘What do we want to do with intelligent systems that
relates to the work of matAematicians?. So far all we have done in this general
area is io emulale some of the reasonably simple aclivilies of mathemalicians,
which is finding consequences from given assumplions, reasoning, proving
theorems, A certain amount of work of this type was already done in the
propositional and predicate caiculi, as well as in some other mathematical systems.
But this is only one aspect of the work that goes on in mathematics.
Another very imporlanl aspect is the one of finding general properties of
structures, finding analogies, similarities, isomnrphisms, and so on. This is the
lype of activity that is exiremely important for our understanding of model-
finding mechanisms, Work in this area is more difficult than theorem-proving. The
problem here is that of theorem finding.

AM is one of the first attempts to construct a “theorem-finding™ program. As Amarel noted,
it may be possible to learn from such programs how to tackle the general task of automating
scientihc research.

Besides "math systems”, and “creative thinking systems”, and “theory formation systems”, we
should at least discuss others’ thoughts on the issue of algorithmically doing math research.
Some individuals feel it is not so far-fetched to imagine automating mathematical research
{(e.g.. Paul Cohen). Others (eg, Polya) would probably disagree. The presence of a high-
speed, general-purpose symbol manipulator in our midst now makes investigation of that
question possible.

There has been very little published thought about discovery in mathematics from an
algorithmic point of view; even clear thinkers like Polya and Poincare’ treat mathematical
ability as a sacred, almost mystic quality, tied to the unconscious. The writings of
philosophers and psychologists invariably attempt to examine human performance and
belief, which are far more managable than creativity in vitro. Belief formulae in inductive

a,

od Brotz's program, [Brotz 74] veen his to proposa ueaful mammals
36 in cons that wasn't clear: Mets-Dendral hae a fixed sat of templates for rules which it wishes to find, and a» fined

vocsbulsry of mass spectral concepts which can be plugged into those templates. AM also has only a few
stock formals for conpctures, but it selectively anlerges its vocabulary of math concepts.
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logic®’ invariably fall back upon how well they fit human measurements. The abilities of a
computer and a brain are too distinct to consider blindly working for results {let alone
algorithms!) one possesses which match those of the other.

1,2, Capabilities and Limitations of AM

The first two subsections contain a general discussion of what AM can and can't do. Later
subsections deal with powers and limitations inherent in using an agenda scheme, in fixing
the domain of AM, and in picking one specific model of math research to build AM upon.
The AM program exists only because a great many simplifying assumptions were tolerated;
these are discussed in Section 7.24 {p. 157). Finally, some speculation is made about the
ultimate powers and weaknesses of any systems which are designed very much like AM.

2.2.]. Cursent Abilities

What fields has AM worked in so far? AM is now able to explore a small bit of the theory
of sets, data types, numbers, and plane geometry. It by no means has been fed — nor has it
rediscovered — a large fraction of what is known in any of those fields. it might be more
accurate to be humble and restate those domains as: elementary hnite set theory, trivial
observations about four kinds of data types, arithmetic and elementary divisibility theory,
and simple relationships between lines, angles, and triangles. So a sophisticated concept in
each domain — which was discovered by AM — might be:

» de Morgan's laws

+ the fact that DeletesInsert®® never aiters Bags or Lists
+ unique factorization
* similar triangles

Can AM work in a new field, like politics? AM can work in a new elementary, formalized
domain, if it is fed a supplemental base of conceptual primitives for that domain. To work
in plane geometry, it sufficed to give AM about twenty new primitive concepts, each with a
few parts filled in. Another domain which AM could work in would be elementary
mechanics. The more informal the desired field, the less of AM that is relevant. Perhaps an

AM-like system could be built for a constrained, precise political task.3® Disclaimer: Even
for a very small domain, the amount of common-sense knowledge such a system would need
is staggering. It is unfortunate to provide such a trivial answer to such an important
question, but there is no easy way to answer it more fully until years of additional research
are performed.

Can AM discover X? Why didn’t it do ¥? It is difficult to predict whether AM will (without

7 for sxampis, soe [Hintidks 62], [Pietorinin 72] The latter sleo tontsine 5 good summary of Carnap's 3 of formalization
38 Take an item 5, ineart it into (the front of) structure B, then delete one (the first) occurrence of x from B
30 For wxample, such a politice-orianted AM-like system migM conceive the notion of a group of political antities which view

themesives se quite disparate, but which ars viewed from the outside se a single unit: ag, ‘the Arsbse', ‘the
Amaricon Indians’ Conjectures sbout this concep! might include its reputation ss 8s poor combatant {and
wiv). Many of the some facets AM uses would carry over to represent concepts = That new domain.
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modifications) ever make a specific given discovery. Although its capabilities are small, its
limitations are hazy. What makes the matter even worse is that, given a concept C which
AM missed discovering, there is probably a reasonable heuristic rule which is missing from
AM, which would enable that discovery. One danger of this "debugging" is that a rule will
be added which only leads to that one desired discovery, and isn't good for anything else. In
that case, the new heuristic rule would simply be an encoding of a specific bit of
mathematics which AM would then appear to discover using general methods. This must
be avoided at all costs, even at the cost of intentionally giving up a certain discovery. If the
needed rule is general — it has many applications and leads to many interesting results —
then it really was an oversight not to include it in AM. Although 1 believe that there are
not too many such omissions still within the small realm AM explores, there is no objective
way to demonstrate that, except by further long tests with AM.

In what ways are new concepts created? Although the answer to this is accurately given in
Section 4.3, page 42 (namely, this is mainly the jurisdiction of the right sides of heuristic
rules), and although 1 dislike the simple-minded way it makes AM sound, the list below
does characterize the major ways in which new concepts get born:

Fill in examples of a concept (s.g., by instantiating or running its definition)
Create 8 generalization of a given concept {e.g., by weakening its definition)
Creale a specialization of a given concept {0.g., by restricting its domsin/range)
Compose two operations fg, thereby treating a new one h. [Define hix)sf{g(x))]
Coalesce an operation { inlo a new one g. [Define gix)=f{x,x}}
Parmute the order of the arguments of an operation. [Define gix,y)ai{yx}}
inverl an operation [gix)=y iff {y)sx] {e.g., from Squaring, creale Square-rooling}
Cenonize one predicate Pl with respect 10 a more general one P2 [create a new concept 1,

an operation, such that: P2{x,y) iff P1{f{x),i{y}}]
Create a new operation g, which is the repeated application of an existing operation 1.
The usual logical combinations of existing concepls x,y: xAy, xvy, ~x, ete.

Below is a similar list, giving the primary ways in which AM formulates new conjectures:
Notice that concept Cl is really an example of concept C2
Notice that concept Cl is really a specialization (or: generalization) of C2
Notice that Cl is equal to C2; or: almost always equal
Notice that C1 and C2 are relaled by some known concep!
Check and update the domain/range of an exisling operation
if two concepls sre analogous, extend the analogy to their conjectures as well

In summary, we can say that AM has achieved its original purpose: to be guided
successfully by a large set of local heuristic rules, in the discovery of new mathematical
theories. Besides creating new concepts and noticing conjectures, AM has the key “ability”
of appearing to decide rationally what to work on at each moment. This is a result of the
agenda of tasks — containing associated reasons. Of course all of these abilities stem from
the quality and the quantity of local heuristic rules: little plausible move generators and
evaluators.

1.2.2. Current Limitations

Below are several shortcomings of AM, which hurt its behavior but are not believed to be
inherent limitations of its design. They are presented in order of decreasing severity.
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Perhaps the most serious limitation on AM's current behavior arose from the lack of
constraints on left sides of heuristic rules. It turned out that this excessive freedom made it

difficult for AM to inspect and analyze and synthesize its own heuristics; such a need was
not foreseen at the time AM was designed. It was thought that the power to manipulate
heuristic rules was an ability which the author must have, but which the system wouldn't
require. As it turned out, AM did successfuily develop new concepts several levels deeper
than the ones it started with. But as the new concepts got further and further away from
those initial ones, they had fewer and fewer specific heuristics filled in (since they had to be
filled in by AM itself). Gradually, AM found itself relying on heuristics which were very
general compared to the concepts it was dealing with (e.g, forced to use heuristics about
Objects when dealing with Numbers). Heuristics for dealing with heuristics do exist, and
their number could be increased. This is not an easy job: finding a new meta-heuristic is a
tough process. Heuristics are rarely more than compiled hindsight; hence it’s difficult to
create new ones “before the fact”.

AM has no notion of proof, proof techniques, formal validity, heuristics for finding
counterexamples, etc. Thus it never really establishes any conjecture formally. This could
probably be remedied by adding about 25 new concepts (and their 100 new associated
heuristics) dealing with such topics. The needed concepts have been outlined on paper, but
not yet coded. It would probably require a few hundred hours to code and debug them.

The user interface is quite primitive, and this again could be dramatically improved with
just a couple hundred hours’ work. AM's explanation system is aimost nonexistent: the user
must ask a question quickly, or AM will have already destroyed the information needed to
construct an answer. A clean record of recent system history and a nice scheme for tracking
down reasons for modifying old rules and adding new ones dynamically does not exist at
the level which is found, eg. in MYCIN [Davis 76]. There is no trivial way to have the
system print out its heuristics in a format which is intelligible to the untrained user.

An important type of analogy which was untapped by AM was that between heuristics. If
two situations were similar, conceivably the heuristics useful in one situation might be
useful (or have useful analogues) in the new situation (see [Koppelman 75)). Perhaps this
is a viable way of enlarging the known heuristics. Such "meta.level” activities were kept to
a minimum throughout AM, and this proved to be a serious limitation. My intuition tells
me that the “right” ten meta-rules could correct this particular deficiency.

The idea of "Intuitions” facets was a flop. Intuitions were meant to model reality, at least
little pieces of it, so that AM could perform (simulate) physical experiments, and observe the
results. The major problem here was that so little of the world was modelled that the only
relationships derivable were those foreseen by the author. This lack of generality was
unacceptable, and the intuitions were completely excised. The original idea might lead
somewhere if it were developed fully. As with all limitations of AM, I leave this as an open
suggestion for future research.

Several limitations arose from the constraints of the agenda scheme, from the choice of finite
set theory as the domain to work in, and from the particular model of math research that
was postulated. These will be discussed in the next few subsections.
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7.2.3. Limitations of the Agenda scheme

The following quibbles with the agenda scheme get less and less important. When you get
bored, skip to the next subsection.

Currently, it is difficult to include heuristics which interact with one another in any
signthcant way. The whole fibre of the Agenda scheme assumes perfect independence of
heuristics. The global formula used to rate tasks on the agenda assumes perfect
superposition of reasons: there are no “crossiterms. Is this assumption always valid?
Unfortunately no, not even for the limited domain AM has explored. Sometimes, two
reasons are very similar: "Examples of Sets would permit finding examples of Union™ and
"Examples of Sets would permit finding examples of Intersection”. In that case, their two
ratings shouldn't cause such a big increase in the overall priority value of the task "Fillin
examples of Seis.

“‘ometimes, a heuristic rule will want to dissuade the system from some activity. Thus a
neygofive numeric contribution to a task’s priority value is desired. This is not figured into
the current scheme. With a slight modification, the global formula could preserve the sign
(signum) of each reason’s rating.

1 asks on the agenda list are ordered by their numeric priority value. Each reason’s
numeric value 15 kept, too. When new reasons are added, these values are used to
compute a new priority for the task. Each reason’s rating was computed by a little
tormula found inside some heuristic rule. Those formulae are not kept hanging around.
Cine Lig improvement in apparent intelligence could be attained by tacking on those little
formulae to the reasons. When 2 new reason is added, the oid reasons’ rating formulae
would be evaluated again. They might indeed give new numbers. For example, suppose
one reason was Few examples of X are known". But by now, other tasks have meanwhile
inadvertantly filled in several examples of X. Then that littie reasons formula would come
up with a much ower value than it did originally. In fact, the value might be sc low that
the reason was dropped aitogether. If the formulae were kept, it might be good practice to
evaluate them for the top two or three tasks on the agenda, to see if they might change their
ordering. Also, the top task’s priority would then be more accurate, and recali that its value
is used to determine the cpu time and list cell space quanta that the task is allowed to use
up. At the moment, AM is not set up to store the little functions, and if modified to do so, it
uses up a lot more space than it can afford. Also, the top few jobs are almost never
semantically coupled {except by "focus of attention’), so the precise order in which they are
executed rarely matters.

Perhaps what 1s needed is not a single priority value for each task, but a vector of numbers.
At each cycle, AM would construct a vector of its current “interests” and needs, and each

task’s vector would be dot-multiplied against this global vector of AM’s desires. The
highest scorer would then be chosen. For example, one dimension of the rating could be
“safety”, and one could be "best possible payoff”, one could be "average expected payoff”, etc.
Sometimes, AM would have to break out of a stagnant situation, and it would be willing to
try riskier tasks than usual. This was not implemented because of the great increase in cpu
time it would cause. It is, however, probably a better design than the current one. Even
more intelligent schemes can be envisioned — involving more and more symbolic data being
stored with each task. Ultimately, this would be just the English reasons themselves; by that
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time, the task-orderer would have grown: into an incredibly complex Al program itself (a
natural language program plus an interrelator plus..).

The agenda list should really be an agenda tree*, since the ordering of tasks is really just
partial, not total. If this is clear, then skip the rest of this paragraph. There are some
“legitimate” orderings of tasks on the agenda; if task X is supported by a subset of the
reasons which support Y, then typically the priority of X will be less than or equal to the
priority of ¥. Two tasks of the form “Fillin examples of A", “Fill in examples of B” can be
ordered simply because A is currently much more interesting than B. But often, two tasks
will have no ironclad ordering between them: compare "Fillin examples of Sets” and "Check
generalizations of Union". Thus the ordering is only partial, and it is the artifice of the
global evaluation function which embeds this into a linear ordering. If multiprocessors are
used, it might be advantageous to keep the original partial ordering around.

7.2.4. Limiting Assumptions

AM only “got off the ground” because a number of sweeping assumptions were made,
pertaining to what could be ignored, how a complex process could be adequately simulated,
etic. Now that AM is running, however, those same simplifications crop up as limitations to
the system's behavior. Each of the following points is a ‘convenient falsehood’. Although
the reader has already been told about some of these, it's worth listing them all together
here:

* The only communication necessary from AM to the user is keeping the user
informed of what AM is doing. No natural language ability is required by AM;
simple template instantiation is sufficient.

* The only communication from the user to AM is an occasional interrupt, when the
user wishes to provide some guidance or to pose a query. Both of these can be
stereotyped and passed easily through a very narrow channel.’

* Each heuristic has a well-defined domain of applicability, which can be specified
just by giving the name of a single concept.

* If concept Cl is more specialized than C2, then Cl’s heuristics will be more
powerful and shouid be executed before T2's (whenever both concepts’ heuristics
are relevant).

* If hi and h2 are two heuristics attached to concept C, then it is not necessary to
spend any time ordering them.

* Heuristics superimpose perfectly; they never interact strongly with each other.

9C maybe an agends Hosp.

“1 £2. 5 vot of sucape characters, so TW means ‘Why did you do that? 1U wears ‘Uninteresting! Go on to
something else, orc
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* The reasons supporting a task can be mere tokens; it suffices to be able to inspect
them for equality. They need not follow a constrained syntax. The value of a
reason is adequately characterized by a unidimensional numeric rating.

* The reasons supporting a task superimpose perfectly; they never interact with each
other.

* Supporting reasons — and their ratings — never change with time, with one
exception: the ephemeron ‘Focus of attention’,

* It doesn’t matter in what order the supporting reasons for a task were added.

* There 15 no need for negative or inhibitory reasons, which would decrease the

priority value of a task. y

* At any moment, the top few tasks on thefend are not coupled strongly; it is not
necessary to expend extra processing time’to carefully order them.

* The tasks on the agenda are completely independent of each other, in the sense of
one task ‘enabling’ or ‘waking-up’ another.

* Mathematics research has a clean, simple model (see Section 7.25, page 162),
which indicates that it is a search process governed by a large collection of heuristic
rules.

* Elementary mathematics is such that valuable new concepts will be discovered fairly
regularly.

* The worth of each new concept can be estimated easily, after just a brief
investigation.

+ Contradictions will arise very rarely, and it is not disastrous to ignore them when
they do occur. The same indifference applies to the danger of believing in false
conjectures.

* When doing theory formation in elementary mathematics, proof and formal
reasoning are dispensable.

* Even as more knowledge is obtained, the set of facets need never change.

* For any piece of knowledge sought or obtained, there is precisely one facet of one

existing? concept where that knowledge ought to be stored, and it is easy to
determine that proper location.

* Even as more concepts are defined, the body of heuristics need not grow much.

az The only sliowsble exception nm that 3 new piece of information might require the creation of a brand mew concept, and
then require storage somewhere on thet concept
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» Any common-sense knowledge required by: AM is automatically present within the
heuristic rules. So, eg. no special spatial visualization abilities are needed.

It is worth repeating here that the above assumptions are all clearly false. Yet none of them
was too damaging to AM’s behavior, and their combined presence made the creation of
AM feasible.

7.2.5. Choice of Domain

The genesis of mathematical creation is a problem which should intensely interest
the psychologist. It is the activity in which the human mind seems to lake least
from the outside world, in which it acts or seems to act only of itself and on itself,
30 that in studying the procedure of mathematical thought we may Aope to reach
what is most essential in man’s mind.

«= Poincare’

Here are some questions this subsection will address:
* What are the inherent limitations — and adivantages — in hxing a domain for AM

to work in?

« What characteristics are favorable to automating research in any given domain?

« What are the specific reasons for and against elementary finite set theory as the
chosen starting domain?

Research in various domains of science and math © ceeds slightly differently. For example,
psychology is interested in explaining people, not. creating new kinds of people. Math is
not interested in individual entities so much as w kinds of entities. There are ethical

restrictions on physicians which prevent certair  eriments from being done. Political
experiments rarely permit backtracking, etc. Eack | has its own peculiarities.

If we want a system to work in many domains, we ive to; sacrifice some power. 3, Within a
given held of knowledge (like math), the finer the category we limit ourselves to, the more
specific are the heuristics which become available. So it was reasonable to make this first
attempt limited to one narrow domain.

This brings up the choice of domain. What should it be? As the DENDRAL project
illustrated so clearly? choice of subject domain is quite important when studying how
researchers discover and develop their theories. Mathematics was chosen as the domain of
this investigation, because

I. In doing math research, one needn't cooe with the uncertainties and faliability of

43 This ie assuming 8 system of s given fired size. H this restriction isn't present, than a reasonable “general-purpose”
system could be built as saversl systame kinked by one gisnt switch

“- ase [Feigenbaum at. sl. 71] in that case, the choice of subject was snsbledby [Lederberg $4]



Chapler 7 AM: Dracevery in Mathematics as Heuristic Search « 160-

testing equipment; that is, there are no uncertainties in the data (compared to, eg.
molecular structure inference from mass spectrograms).

2. Reliance on experts’ introspections is one of the most powerful techniques for
codifying the judgmental criteria necessary to do effective work in a Held: I
personally have had enough training in elementary mathematics so that 1 didn't
have to rely completely on external sources for guidance in formulating such
heuristic rules. Also, several excellent sources were available [Polya, Skemp,
Hadamard, Kershner, etc].

3. The more formal a science is, the easier it is to automate. For a machine to carry out
research in psychology would require more knowledge about human information
processing than now is known, because psychology deals with entities as complex as
you and 1. Also, in a formal science, the languages to communicate information can
be simple even though the messages themselves be sophisticated.

4. Since mathematics can deal with any conceivable constructs, a researcher there is not

limited to explaining observed data. Related to this is the freedom to investigate —
or to give up on — whatever the researcher wants to. There is no single discovery
which is the “goal”, no given problem to solve, no right or wrong behavior.

5. Unlike "sumpler” fields, such as propositional logic, there is an abundance of heuristiz
rules available for the picking.

The limitations of math as a domain are closely intertwined with its advantages. Having
no lies to real-world data can be viewed as a limitation, as can having no clear goal. There
is always the danger that AM will give up on each theory as soon as the first tough obstacle
Crops up.

Since math has been worked on for millenia by some of the greatest minas from many
d:fferent cultures, it is unlikely that a small effort ike AM would make any new inroads,
have any startling insights. In that respect, Dendral's space was much less explored. Of
course math — even at the elementary level that AM explored it — still has undiscovered
gems (e.g. the recent unearthing of Conway's numbers [Knuth 74).

One point of agreement between Weizenbaum and Lederberg" is that Al can succeed in
automating an activity only when a “strong theory” of that activity exists. AM is built on a
detailed model of how humans do math research. In the next subsection, we'll discuss the
model of math research that AM assumes.

Before that, consider for a moment how few other fields of human endeavor have a good
model, and also enjoy all the advantages listed above: other domains of math, classical
physics... not many others.

7.2.6. Limitations of the Model of Math Research

a5 Ses the quote at the fron! of the next subsection It is from {Lederberg 76], » review of [Weizenbaum 76] This review
also anists as file WERENLED{pub,ime JoSAK.



Chapter 7 AM: Dwcovery in Mathematics as Heuristic Search -i61-

Weizenbaum does point to projects in mathematics and chemistry where computers
have shown their potential for assisting Auman scientists in solving problems. He
correctly points out that these successes are based on Ae existence of “strong
theories” about their subject matter.

== Lederberg

AM, like anything else in this world, is constrained by a mass of assumptions. Most of these
are “compiled” or interwoven into the very fabric of AM, hence can’t be tested by
experiments on AM. Some of these were just discussed a few pages ago, in Section 7.2.4.

Another body of assumptions exists. AM is built around a particular model of how
mathematicians actually go about doing their research. This model was derived from
introspection, but can be supported by quotes from Polya, Kershner, Hadamard, Saaty,
Skemp, and many others. No attempt will be made to justify any of these premises. On the
next page is a simplified summary of that information processing model for math theory
formation:
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MODEL OF MATH RESEARCH

I. The order in which a math textbook presents a theory is almost the exact opposite
of the order in which it was actually discovered and developed. In a text, new
definitions are stated with little or no motivation, and they turn out to be just the
ones needed to state the next big theorem, whose proof then magically appears.
In contrast, a mathematician doing research will examine some already-known
concepts, perhaps trying to find some regularity in experimental data involving
them. The patterns he notices are the conjectures he must investigate further,
and these relationships directly motivate him to make new definitions.

2. Each step the researcher takes while developing a new theory involves choosing
from a large set of “legal” alternatives — that is, searching. The key to keeping
this from becoming a blind, explosive search is the proper use of evaluation
criteria. Each mathematician uses his own personal heuristics to choose the “best”
alternative available at each moment.

3. Non-formal criteria (aesthetic interestingness, inductive inference from empirical
evidence, analogy, and utility) are much more important than formal deductive
methods in developing mathematicaiiy worthwhile theories, and in avoiding
barren diversions.

4. Progress in any field of mathematics demands much non-formal heuristic expertise
tn many different “nearby” mathematical fields. So a broad, universal core of

knowledge must be mastered before any single theory can meaningfully be
developed.

5. It 15 sufficient {and pragmatically necessary) to have and use a large set of informal
heuristic rules. These rules direct the researcher's next activities, depending on
the current situation he is in. These rules can be assumed to superimpose
ideally: the combined effect of several rules is just the sum of the individual
effects.

6. The necessary heuristic rules are virtually the same in all branches of mathematics, |
and at all levels of sophistication. Each specialized field will have some of its
own heuristics; those are normally much more powerful than the general-purpose
heuristics.

7. For true understanding, the researcher should grasp*® each concept in several ways:
declaratively, abstractly, operationally, knowing when it is relevant, and as a
bunch of examples.

8. Common metaphysical assumptions about nature and science: Nature is fair,
uniform, and regular. Coincidences have meaning. Statistical considerations are
valid when looking at mathematical data. Simplicity and symmetry and synergy
are the rule, not the exception.

pi Have access to, relate to, store, be able to manipulsie, be sble to anewer questions about
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7.2.7. Ultimate powers and weaknesses

Consider now any system which is consistent with the preceding model of math research,
and whose orientation is to discover and develop new {to the system) mathematical theories.
This includes AM itself, but might also include a bright high-school senior who has been
taught a large body of heuristic rules.

What can such systems ultimately achieve? What are their ultimate limits? Answers to
ultimate questions are hard to come by experimentally, so this discussion will be quite
philosophical, speculative, and short. The model of math research hinges around the use of
heuristic rules for guidance at all levels of behavior. It is questionable whether or not all
known mathematics could evoive smoothly in this way. As a first order fixup, we've
mentioned the need to provide good meta-heuristics, to keep enlarging the set of heuristics.
If this is not enough (if meta.meta-..-heuristics are needed), then the model is a poor one
and has some inherent limitations.*” If some discoveries can only be made non-rationally
{by random chance, by Gestalt, etc.) then any such system would be incapable of finding
those concepts.

Turning aside from math, what about systems whose design — as a computer program - is
similar to AM?*® Building such systems will be “fun”, and perhaps will result in new
discoveries in other fields. Eventually, scientists {at least in a few very hard domains) may
relegate more and more of their “hack” research duties to AM-like systems. The ultimate
limitations will be those arising from incorrect (eg. partial) models of the activities the
system must perform. The systems themselves may help improve these models: experiments
that are performed on the systems are actually tests of the underlying model; the results
might cause revisions to be made in the model, then in the system, and the whole cycle
would begin again.

Before quitting, let's summarize what's worth remembering about this thesis.

+ It is a demonstration that a few hundred general heuristic rules suffice to guide an
automated math researcher as it explores and expands a large but incomplete
knowledge base of math concepts. AM serves as a living existence proof that creative
research can be effectively modelled as heuristic search.

7 i Piolamy had had sccess 10 a digital computer,all his dots could have been made to Tit {to any desiwad accuracy), just
by computing spi-cycles, spi-api-cycies, to the needed sumber of epi's. We in Al must comtantly be on
guard against that arror.

3 Having on sponds of tasks with ressons and resson-ratings combining to form » globsl priority for sach task, having
unita/modiles/frames/Beinge/Actors/concepts which have parta/elots/facets, atc. Heuristic rules are
tacked onto relevent concepts, snd ave sxecuted ts preduce new concepts, new iseke, new facet antries.
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* The thesis also introduces a control structure based upon an agenda of small research
tasks, each with a list of supporting reasons attached.

* The main limitation of AM was its inability to synthesize powerful new heuristics for
the new concepts it defined.

« The main successes were the few novel ideas it came up with, the ease with which a new
task domain was fed to the system, and — most importantly — the overall rational
sequences of behavior AM exhibited. |

* The greatest long-range importance of AM may well lie in the body of heuristics
assembled (Appendix 3), either as the seed for a huge base of experts’ heuristics, or as
a new orientation for mathematics education.
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Appendix 1. Glossary of Technical Terms

The “jargon” of a field facilitates communication among practitioners of that field, but it too
often excludes novices. I have tried to soften the impact of each “buzz.word™ when it was
first used, but the reader may need to frequently refresh his memory about the meanings of
certain terms.

This glossary is divided into two sections. The first contains primarily Mathematics terms,
strangely biassed because it just covers what is referenced in this thesis. The second
glossary, of Computer Science and Artificial Intelligence terms, suffers from the same tunnel
vision. They may suffice for reading this document, but they are certainly not meant to be
used for more general purposes.

Appendix 1.1. Gl 0 a m

Abduction: In logic, a syllogism of the form “from A, conclude that B is probably true”. If
your mental frame for an automobile contains a hundred necessary features, and you see
something satisfying only 90 of them, you can abductively conclude it is probably an
automobile.

Cardinality: the concept of "number”. Two sets are of the same cardinality iff they have the
same number of elements.

Composition of two relations R and S: This is a new relation denoted RoS, and defined as
ReS(x) = R(S(x)). So RoS maps elements of the domain of S into elements of the range of
R. Notice that if R and 5 are both functions, then so is ReS. The intuitive picture of this
process is to operate on x with the relation S, and tAen apply R to the results.

Function: an operation f which associates, to each element x of some set D, an element f(x)
of some set R. D and R are the domain and range of f. Notice that a function may be
considered a special kind of relation. For a relation f {on DxR) to be called a function, f
must satisfy two important constraints: {i) it must be always-defined on its domain; that is,
for all domain elements x¢D, f(x) must exist. (ii) f must be single-valued; that is, f(x) must
be a singleton.

If: if and only if; implies and is implied by; is equivalent to; <=>.

Integers: positive and negative whole numbers; ie. ...-2,-1, 0, 1, 2...

Map: used as a verb, this word indicates the action of applying a function or a relation; eg.
we say that squaring maps 7 into 49. Used as a noun, it is a synonym for function.

Mathematical concept: this is taken to mean all the constructipns, definitions, con jectures,
operations, structures, etc. that a mathematician deals with. Some examples: Set-intersection,
Sets, The unique factorization theorem, every entry listed in this glossary.
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Mathematical intuition: this is the mental imagery which can be brought to bear. Typically,
we transform the situation to an abstract, simplified one, manipulate it there, and re-
translate the results into the original notation. For example, our intuition about “ordering”
may involve the image of marks on a yardstick. We can then answer questions involving
ordering rapidly, using this representation. Three features of the intuitive image should be
noted: (i) it is typically fast and simple, {i1) it is opaque, one cannot introspect too easily on
"why it works”, and (iii) it is fallible, occasionally leading to wrong results.

Mathematical research: The fundamental idea here is that mathematics is an empirical
science, just as much as chemistry or physics. In doing research, the ultimate goal is the
creation of new, interesting theories, but the techniques used include looking for patterns in
empirical data, inducing new conjectures, modelling some aspects of the real world, etc.
Although the final product looks like a smooth, formal development, magically flowing from
postulates to lemmas to theorems, the actual research process involved untold blind alleys,
rough guesses, and hard work. (Analogy: The process of painting is rarely itself artistic.)

Mathematical theory: to qualify as a theory, we must have (i) a basis of undefined primitive
terms, (ii) definitions involving these, (iii) axioms involving all the primitives and defined
terms (iv) conjectures and theorems relating these terms. To be at all worthwhile, however,
the theory must also meet the fury requirements that (v) there is some correspondence
between the primitives and some “real-world” concepts, between the axioms and some “real”
relationships, and (vi) some of the theorems are unexpected, hard to prove, elegant,
interesting, etc.

Mersenne prime: a prime number which happens to be of the form 2P-1, where p is prime.

Natural numbers: non-negative integers; ie, 0, 1, 2, 3,..

No.: an abbreviation for "Number”.

Number: in the typical loose fashion of computer scientists, 1 intend this to mean a non.
negative integer: i.e, a natural number.

Ordering: the concept of “before” and after”. This distinguishes a list from a bag
(multiset). The formal axioms for ordering simply state the obvious properties of the
intuitive image of a list.

Prime numbers: natural numbers which have no divisors other than | and themself: eg. 17,
but not 15 (=3x5). Primes are interesting because of the myriad times they crop up in
diverse theorems — from the Chinese Remainder Theorem (solving systems of linear
congruence equations), to the Law of Quadratic Reciprocity, to Fermat's Theorem {for all

integers n, for all primes p, nP is congruent to n (mod p)). The “secret” of their value lies in
the fact that all integers can be factored uniquely into a set of prime divisors. This "Unique
Factorization Theorem” lets us reduce questions about integers to questions about primes.

Prime pairs: two prime numbers whose difference is two; eg., 17 and 19.

Relation: an operation which associates, for each element of some set D, a set of elements E
= {ey}, eg,..} of some set R. D and R are the domain and range of the relation. For example,
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the relation “¢" associates to 5 the set of numbers {5, 6, 7, 8...} — i.e, all integers which 5 is
less than or equal to. The domain and range of this relation are the integers.

Set.theoretic: having to do {in the context of this thesis) with elementary finite set theory,
and the primitive notions of mathematics (e.g. union, insert, predicate, conjecture).

Unity: a fancy way of referring to the natural number "1".

I The relation “divides-evenly-into". Thus we say 26.

~: The operation of negation. "=X" is read as "not X".

v: Disjunction. "AvB" is read as "A or B".

A: Conjunction. "AaB" is read as "A and B".

®: Exclusive or. "AeB" is read as "A or B, but not both".

-»; Implication. "A+B" is read as "If A then B".

»: Logical equivalence. "A»B" is read as "A if and only if B".

Vv: Universal quantification. "vX" is read as “For all X".

3: Existential quantification. "3X" is read as "For some X".
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Appendix 1.2. Glossary of Al Terms

ACTORs: A modular form of representation, useful for distributing of the task of control
among several components in a computer program. Each ACTOR is a black box, with no
parts or slots, but which does have some assertions {a “contract”™) which he must honor. It

merely responds to a fixed set of messages, by sending out certain messages of his own.
These are delivered via a bureaucracy. See [Hewitt 76].

Al an abbreviation for Artificial Intelligence.

Bag: A bag is a kind of list structure, a bunch of elements which are unordered, but one in

which multiple copies of the same element are permitted. One may visualize a paper bag
filled with cardboard letters. Technically, we shall say that a set is not considered to be a
bag. A bag is denoted by enclosure within parentheses, just as sets are within braces. So
the bag containing X and four Y's might be written (X YY Y Y), and would be considered
indistinguishable from the bag {(Y Y Y X Y).

BEINGs: A modular form of representation of knowledge, conceived as a collection of
cooperating experts. Each expert is modelled by one module, which consists of a list of
Question/Answering-program pairs. The set of questions is fixed for ail the Beings in the
system. When any Being has a question, he broadcasts it to the entire system, and some
Being who recognizes it will take over control and try to answer it by running Ais
appropriate Answering-program. In the process of running this, some new questions may
arise. Notice that Beings distribute responsibility for control and for static knowledge. See
{Lenat 75b).

Bug: a flaw in a computer program. As Corey Sacerdoti put it, a bug refers to something
which is broken but not badly.

Concept: within the context of this document, the word “concept” typically refers to a precise
frame-like data structure, a BEING. Semantically, each concept is meant to correspond to
one abstract entity that we would intuitively call a concept: an object, an operator, a
conjecture, etc. See “facet”.

Cooperating Knowledge Sources: Very often, in tackling a problem, one receives some hints
and some constraints from very different sources, phrased in very different languages, often
addressing different representations of the problem. For example, in trying understand a
human speaker, our memory of the previous discussion and knowledge of the speaker may
narrow down the possible meanings of what he is saying. Our ears, of course, register the
precise acoustic wave-forms he is uttering. Our English vocabulary forces us to interpret
imperfect signals as real words. Our eyes see his gestures and his lip movements, and give
us more information. All these different sources of information must be used, and yet they
all are talking in different “languages” to us. The most trivial solution is to keep all the
sources independent, and keep working until one of them can solve the problem all by itself.
A much better solution is to transform all their babblings into one canonical representation,
one single language. This way, all the knowledge sources can cooperate.

Coupled: two functional subsystems are causally connected; one influences the other. See the
entry for "Linear.



Appendix | AM Discovery in Mathematics as Housitic Search -169-

CPU time: Central-Processing-Unit runtime {cpu time) is the number of execution cycles of
the computer that the AM program has used up. This is conveniently measured ir. seconds,
minutes, and hours, where one cpu minute is the amount of processing done in one minute
of real time, when AM has 100% of the machine, and is runninng without any input or
output.

CS: an abbreviation for Computer Science.

Execution: a program is actually used by running it on a particular set of input data. This
process is known as program execution.

Facet: Within the context of this document, the word “facet” denotes a slot of the kind of

data-structure known as “concepts” (qv). Thus “a facet of the Compose concept” really just
means a slot of a particular frame, a part of certain BEING, one single attribute/value pair
taken from the property list of the Lisp atom named Compose. Semantically, each facet
holds information pertaining to a single aspect of the concept it is a part of; hence the
suggestive name: “facet”.

FRAMEs: A modular representation of knowledge. Each module is a list of Feature/Value
pairs. The value represents a default assumption which can be relied on untilfunless new
information comes in about that feature. Each frame has whatever features (calied “slots™)
seen appropriate. Whenever a situation $ is encountered, the frame(s} for S are activated.
As new information rolls in, it replaces the default information in various slots. Notice the
emphasis on distributing static knowledge (data), not necessarily control, in such a system.
See [Piaget 55] or {Minsky 75].

Function: a small, executable part of a program. When fed the proper kind of arguments),
a function will “run” and ultimately produce some sort of value. Unlike pure mathematical
functions (see the previous glossary), a Lisp function can have side effects (qv).

Garbage collection: As a Lisp program executes, various list structures {pointer networks)
are created. When the last pointer to a structure is removed, that structure has essentially
been irretrievably forgotten. If the operating system knew which storage cells were thus
“free”, it could recycle them, reuse them. The process of finding and liberating such
discarded lists is called garbage collection. This is performed automatically by the Lisp
language, whenever space is aimost all filled up.

Hack: A quick job that produces what is needed, but not well. Introducing a heuristic which
was only used once, in a predetermined way (eg. to fix a particular bug), would be a real
hack.

Hand-crafting: the human programmer carefully designs his system in such a way that the
pieces just manage to mesh. For instance: he provides just the perfect set of axioms 50 that
his theorem.prover can solve a certain problem, or he modifies the program's strategies so
that they efficiently manipulate the axiom set in just the right way.

Heterarchy: A kind of control structure for a computer program which is distinct from
hierearchy. Heterarchical structuring views the whole program as a collection of equal
partners, an unstructured set of functions. “Control” is viewed as a spotlight, which can be
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flicked from one function to another. The functions can affect who does or doesn't get
control next, but there is no guarantee who will get control, or that control will revert back
to some function which once had it. Aside from the lure of its democratic flavor, it is

clearly a natural way to represent cooperating knowledge modules.

Hierarchy: This term refers to a kind of control structure for a computer program. The
typical hierarchical structure is one in which a function calls a subroutine, which processes
and then returns a value to that function. A program is viewed as a tree structure, with
lines indicating "calling".

Interact: a dynamic mode of communication between a human and a computer program.
The human reacts to what the program is printing out on his terminal, and the program in
turn reacts to what the user types in. Thi: may take the form of questioning and answering,
or interrupting and commenting.

Interestingness: Note that this is not a valid English word. In the context of AM, it refers to
a numeric value, computed by little Lisp programs stored in the “Interest” facets of various
concepts. Despite the danger of imbuing such a humble scheme with all the mystique of
what is and isn't interesting, it is felt that a sufficient component of that evaluation has been
captured to warrant the name. Pragmatically, it is of much more use to the user to see
“Interestingness of Compose has just risen” than to see a message like “G00034
incremented”.

Kludge (or Kluge): This is a program feature which is an unfair shortcut around a specific
problem. One “kludgy™ way of improving the algorithm of a given concept is to ask the user
for a better algorithm.

Linear: a system whose components, inputs, and outputs superimpose — i.e, don't couple.

Lisp: a LiSt-Processing programming language. Primitive operations exist for manipulating
nested list structures. Since Lisp functions are also merely lists, it is easy to create and
modify entities which are then executed (qv).

Modular Representations of Knowledge in Al Systems: Knowledge is partitioned into
packets (called modules, frames, units, productions, Beings, experts, Actors) along lines of:
different applicabilities, expertise, purpose, importance, generality, etc. Each packet is
structurally similar to all the rest. Advantages: By having the knowledge discretized, pieces
tan be added and/or removed with no trouble. The knowledge of the system is easily
inspected and analyzed. The structural similarity yields several advantages: a simple control
system suffices to “run” all the knowledge, the modules can intercommunicate easily, new
modules can be inserted without knowing precisely "who else” is already in the system. In
general, the less similarly-structured the modules are, the simpler the inter-communication
media must be. Modular representation is a natural way to implement cooperating
knowledge sources.

Number: in the typical loose fashion of computer scientists, I intend this to mean a non-
negative integer: i.e. a natural number.

Open research problem: a limitation of the AM system.
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Recur: Often, part of a definition will refer back to that very same definition. This may
lead to an infinite circular loop, or it may terminate. The following definition of “is larger
than is recursive, because the last line recurs:

sol Ris larger than set §
if Ref} but S41}, or

if neither is smply and

Remove-siement(R) is larger than Remove=-slement(S).

Recurse: a transitive verb which means "to swear again.” It must be distinguished from
“recur”, above.

Side effects: while a function is executing, it may cause changes in the state of its
enivironment which persist even after the function has returned a value. This is like
hysteresis effects. For example, a function may create or destroy some list structure, define a
new function, reset some variable, etc. Such activities are called side effects of the function.

Space: The memory of a computer is quite hnite. Though it may be supplemented by slow
auxilliary devices (tapes, discs, etc), the actual number of storage cells in the computer's fast
“core” memory is a limiting factor in program behavior. Storage space, or just “space”, refers
to these internal memory cells. When space is exhausted, the only remedy is to perform a
garbage collection {gv).

System: this can mean a computer program, and occasionally is just an another way of
referring to AM. In general, a system is any collection of entities related to form a
meaningful whole.

Terminal: a communications device for passing information between a computer system and
a human. This could be a teletype, a TV screen and keyboard, etc. The terminal is usually
portable and remotely located from the computer.

User: the human being who sits at a computer terminal and watches AM run (occasionally,
perhaps, interacting with AM).
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Appendix 2. AM's Concepts
_—— — — ___ — ——— ——————————  —  ———————

The first part of this huge appendix (Appendix 2.1.2 to 2.1.75) lists the set of knowledge
AM started with: its initial concepts. It is not very readable, nor is it central to any of the
ideas on which AM is based. The reader is therefore warned to proceed at his own risk
through this material.

Section 2 of this appendix contains a brief description of those concepts which were only
partially implemented in AM (eg, "Destructive-op”). It was decided not to give each of
them a full "box of their own.

The third part of this appendix lists a couple concepts as they were actually coded into
Lisp. The reader is shown which entry — or heuristic rule — each bit of Lisp code
corresponds to.

Finally, starting on page 224, a list is provided of some of the concepts which AM created.
This is intended not as an exhaustive catalog, but merely to show the breadth of what was
done by AM, the smart guesses and the lunacies. This list could have been pieced together
by studying Appendix 5 wherein some examples of AM in action are given. There the
reader may dynamicaily observe what kinds of concepts — and infer what kinds of entries
for their facets — AM was able to derive from its initial base.

Appendix 2.1. Inu1al Concepts

Each concept will be listed, followed by a description of the entries in each of its facets’.
For each such “slot”, a condensation is provided (in English, LISP, and math notation) of
all the knowledge initially supplied to AM about that facet of that concept.

if there is any unmentioned facet for a concept, then it started out blank. Many of the
facets of the original concepts were left blank intentionally, knowing that AM would be able
to hil zAem in as well. After all, if you can fill in examples of any new concept, you ought to
be able to fill in examples of Sets!

The concepts are grouped semantically, much like the tree shown on page 105, like the
order in which heuristics are listed in Appendix 3. This section of the appendix is
prefaced by an index which is arranged alphabetically, since the primary use of it will
probably be as an encyclopedia. When the reader encounters a poorly-named or poorly-
explained concept somewhere in the text, he may wish to glance first at Chapter 5, page 107,
where very brief definitions of the concepts are also given alphabetically. If that
“dictionary” is insufficent, he can turn to the appropriate page in this appendix, and see the
same concept presented in much more detail.

Eachof these sntrigs wae supphedby hand, by the author.
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Appendix 2.1.1 Index to Initial Conce

CONCEPT PAGE CONCEPT PAGE

ACTIVE coos iccensemsanerscamesssssessisssnmessssnsns | 1D Muluple-elements-structure ................. 210
All-but-the-first-element ...........coccommmmmnen 201 Nor-multiple-elements-structure ................. 211
All-but-the-last-element ..........ccoveveen. 202 Nomemply-structure ........cooeoveemrevercrnnseennee. 211
ANY-CONCEPL .......ooocercrenccermnnsnssconssssssssssssssrsenss | 14 DUBIBE cmsimsmenisissssammmiisiiniss SL
BIYUYINGcommer S35 Ob ject-equality ...eveeerrrrrensscsssssennn. 176
ATOM-OD J cessssrsnireens. 208 OEEIAtON ......vssisrmrssreermsserssesrssssesssssssesssse. § 17
Bag-Delete ......rssrssesssrsrsisnns 184 L&TETT {T) £4 1
Bag-Dift canes. 194 OBPred-PUTS.ncn § 3
LETTERS11 EX. of SURO IOP |: Qeet-Delete ..........essisnsisenee:. 185
BY afHOE SORE oo. wcsisiiiivinininiiivmicion: 189 LOL88 § 11; SNOUT §. Ji
Bag-Union ...nesrsnsssneennanen. 191 JLTUMRUMIMI
Bags. | issn212 OS INIBIIOCL .......cciimcirsiimsinsirssisssessesrennenes. NBT
C anonmre rey: CELL CLE) Fe NUT § 4

COMPOSE. cecrcnnseemnsnssssssssenssrenrnee. | 18 ParalelJO)coum 199
COIL IBOIITR ninemsnTT Paralleljoin2 .......reenenisireenee. 149
Constant-False .......nimnsssssesmmssssssssen 177 Parallel-replace cerns. 167
Constant- predicate noice. 1 76 Paralle!-replace .....ccncnccsssscerienenn. 197
CORSIANTE-TIUE cisisinissiismmsmiresvismissiiions 1 6 Predicate ..meerernersssarnensessssonsssssessssnes. 1 19
DYCIOTE vintners. me SS Projection] ..ammemsmmiiin S53
DIffErence ......snsssmsssssosmsssessssonssons. 192 PIGIBCONTDmmm
Empty-structure ...ecmnneemmmsmmsnnsnsensnnns. 211 REIAUON ..oooerrereeessicccccrrrrrnssnsensensesessssssssssssnnes. 200
FATst-element ....iemeecneesssesessssssrssssens. 201 RODOM cocvsrerimmsimsosmimssiisisimisioieiiive TS
JIYmssSO REPEATiissimmo: TOS
ISOIL. ...... csisiiicsinsrimisniimnismrmsisiiiss. TT9 RESITICT auciorierrererrerensssssssnssaessssssssasenseceess 20%
153050 SRSAO | Reverse-ord-pair .....vensisennnneee. 200
INVEIT-AN-OPeTALION ...coceerensreennnssnsscnnine 205 Set-Delete .......oni comrrrsessssinsrrsisisens. 183
INVOIIRR-08nminS55 LL RE] Ear
Last-element .... ..ccccemrennsnsnsssssssssenes. 200 T381117.7 ¢ QNROROOORO |.1?
List-Delete ........eseersnsressrsnsnenenn. 184 STE16] 0.143 SOOT F
LASTANE |emma Te SL-UNION ..coccrcresrssesrssssirsmsnsnssmensiesirene. $91
LASL-AVERORTiciBE 7]+ JORORUORIIIOf b
List-Inter sect ..... cvsssssnissenssecssmrmsarsnnns. 186 SUHULMIIEcman 209
LBLURONmimi: 390 Structure-of-Structures .......cnerseee 209
Lrmmm————————. . Truth-valueerrr. 208
Logical-combination omen. 206 MTHDN cimssmmrsisssssisiisisiiissismimiisnias JY
MREBOADBE sss iim“SS Unord-Structure ........cenreronnssssenes 240
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Appendix 2.1.2 Anything

Nama{s): Anything, Enlily, Thing, lem
Delinilions:

Non-Recursive, Triviel, Quick: A {) T

Spacializations: Any=-concept, Non=concepls
Generalizations: none

Examples: Anything, Any-concept

isa's: Any-concepl
Worth: 100

interest: 5 heuristics (ses Appendix 3.1, page 229).

| Sugg: 5 heuristics |

| in-domain-of: Delete, Insert, Mamber, Proji, Proj2, identity, Constant-pred. |in-range-of: First-ele, Last-sle, Mambar, Projl, Proj2, idenlily.

Appendix 2.1.3 Any-concept

Namelz): Any-concep!, Any-Being, Anybody
Definitions:

Non-Recursive, Opaque, Quick: A {x} FMEMB{x,Concepis)

Non=-Recursive, Opeque, Quick: A {x) GETP{x,Name)

Specializations: Active, Object

Geanaralizalions: Anything

Examples: Anything, Any-concepl, Active, Object

[sa's: Anylhing, Any-concept
Worlh: 100

Yiew: io view any X az if it were a Y, find an 0p. whose domain contains”
| and whose range is conlained in Y, and apply that op. to tha given X. |

Filiin: 39 heuristics (see Appendix 3.2, beginning on page 230).
Check: 20 heuristics

interest: 21 havristics

Sugg: 30 heurislics

: In general, thin appendix will omit heurielice. They will insised be presented in one big colleciion, as the next appendix. For
ach concept, we will however mention how many heuristics of each variety sre present. The interested
rsader may turn immediately te Appendix 3 if he desires, to see those heuristic rules.

3 All four specializations of sach of Deletes {a g., Beg-delete) ond inser! (ag, Lint-maert} are alee listed hare.
4 That in, the domain of the operation is D1xD2xD3_, and X in 8 subast of some Di, & specialization of Di.
3 Ae veusl, the heuristice are ksted in Appendix 3, not here. But the reader is forewarned that this concept hae 30 many

Stee yy grouped by facet in the next appendix, occupying Appendices 3.2.1 through
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Appendix 2.1.4 Active

Namelis): Aclive, aclivity, action
Definitions:

Sufficient, Non=Recursivs, Quick: A {x} GETP{x,Algorithms)

Suflicienl, Non-Recursive, Quick: A {x} GETP{x,Dom/range)
Specializations: Predicate, Relation, Operation

Generalizations: Any=-concepl

Examples: none.
Isa’s: Any=concepl

In=domain=-of: Constructive, Deslruclive, Coalesce, Compose, Resirict

in-range-of: Compose, Coaslesce, Restrict. |
Worth: 100

Fillin: 7 heuristics.

Check: 4 heuristics

interest: 3 heuristics

Sugg: 10 heuristics

Appendix 2.1.5 Predicate

Nameis): Predicale, sometimes: logical operation, Boolean function. | |
Definitions:

Nonrecursive quick opaque: A {P) Range{P) is Trulh-vaive; i.e. {TF}.
Generalizations: Aclive

Examples: Equality, Constructive, Destructive, Empty, Nonemply, Constant-pred,

the Dein aniries of sach concept.”
in-domain-of: Candnize

Worth: 100

Fillin: 2 heuristics.

Sugg: 1 heurislic.

interest: { heuristic. |

b Rucail that each active will be sn sxample of an operation, pradicats, sic, hence need not be pointed to explicitly hers
J Thus the predate "Emply’, while it susts in AM, ® superflous, since the definition facet of "Emply-atruc’ contains that

vary pradcate.
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Name{s): Equality, Object squality, Obj-aqual, Equal, Same.
Definitions:

Nonrescursive opaque: A {x,y} EQUAL{x,y)

Sufficient, very quick, opaque: A {x,y} EQlx,y)).
Recursive slow: X (x,y) x snd y are both identical stoma,

or x and y sre both emply siructures,

or x and y ara both nonempty structures and

Equality. Defn{CAR(x),CAR{y)) and

Equality.Defn(CDR{x),COR{y}). |
Nonrecursive transform slow: A (x y) identity.Defn(x,y).

Quick: A {x,y} ysEquality. Algs{x).

Domain/range: (Object Object = {T,F}>

(Structure Structure = [TF]

Algorithms:

Nonrecursive quick: A {x) x.

Conjec: "Identity, restricted to Objects, is the same as Obj-Equelity.’
isa’s: Predicate

Worth: 200

What: the Equality of two list structures; closely ralsted to identity op.

Nemel(s): Constant=predicate, Const pred, Logical constant function.
Definitions: none.

Domain/range: {Anything... Anything = {TFD
Isé’s: Predicate

Specislizations: Conslent=-True, Constent-Faise

Conjec: {¥x,Vy) Comtant-pred.Defn{x)eConstant-pred.Deinly). |
Worth: 100

What: & predicate which always returns the seme Jogicsl value.

Appendix 2.1.8 Constant-1 rue

Nemea(s): Conslani=True, Constant 7, Always-T, sometimes: Always.

| Definitions:
| Nonrscursive, very quick: A {.} T.

Domein/range: (Anything... Anything = {T.Fp
{Anyihing... Anyihing = {Th

Generalizations: Conslant-Predicate

Worth: 100

What: a predicate which always returm True.
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| Name(s): Constani-False, Constant F, Always=F, somelimes: Never. |Definitions:

Nonracursive, very quick: A {...} 2
Domain/range: <Anylhing... Anylhing = {TF}

<Anything... Anything = [F}>
Generalizations: Constant-Predicale

Worth: 100

Whal: a predicate which siways relurns False.

Appendix 2.1.10 Operation

| Name(s): Operation, sometimes: funclion, mapping. |
Definitions: none.®

| Specislizations: inverted-op, Composition, Canonization, |
Coaslesced-0p, Constructivec,.'®

Generalizations: Aclive

Examples: insert, Delete, Union, Intersect, Difference, Compose, Canonize,
Coalesce, Identity, Projl, Proj2, Firstesle, Lest-sle, All-but-first-ele,

All-but-lssi-ele, Restrict, Raverse-ord-psir, Mamber, invert, Repest{2),
Paraliei=join(2), Poraliel=replece(2). |

In-domain-of: invert, Persllei=join(2), Paraliel~replece(2), Repesat(2).

In-range=-of: Canonize, invert, Parallei-join(2), Parsllel-replace(2), Repesi(2)
Worlh: 100

Fillin: 7 heuristics.

Check: 3 heurislics

Interest: i 1 heuristics

Sugg: 2 heuristics

8 Actually, the value returned is ‘NIL’, not False or F.
9 Recall thet ail this means is hat computationally, any snlity x is considered to be an Operation Hf it is in OperationExs, or

if it m on sxampleof soma Specislizationof 1Ne concept.

10 The concepts of Cometruciive and Deslructive operstione sre not encoded se concepts yet. The distinction between
specishzation of Operation and Example of speration is quite blurry. Eg, why not consider th clase of
insurtion operations a whole speciskzation of Dperation, instead of juat an sxampie? The ducision ss to what
statue sath operation would have wee guite arbitrary, Fm afraid
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Name{s): Compose, Composition, sometimes: afierwards;
Definitions:

Declarative slow: X {A,B,C) ¥x, C{x)eA{R{x).

Sufficient Nonrecursive Quick: A {A,B,C) C has the Nome ‘AB’.

Sufficient, Slow: Area-equivalent(C .Compose.Algs(A, B)).
Sufficient, Quick: CsCompose.Algs(A,B}.

Domasin/range: (Active Active =» Active)

{Operation Aclive = Operation!
{Predicate Aclive = Predicate}

{Relstion Relation = Relation

Algorithms: '2 |
Distributed: use the heuristics atiached 10 Compose 10 guide the filling

in of various facets of the new composition.

Generalizations: Operation

Isa’s: Operation
Worth: 300

Fillin: 9 heuristics.

Check: 2 heuristic.

Suggest: 2 heuristics. .
interest: 11 heuristics.

11 Note that while this sntry would imply thet Dperationin-ran-ef and Operstionin-dem-ofcould beth contain ‘Compose’ ae
anh ontry, only the mast general concept (ia, ‘Active’} hae ‘Compose’ in its In-dom-of and In-ran-of facats.

12 an sigerithm for COMPOSE is » procedure fer laking 8 pair of sparations, ia. 8 pair of concopte G and H, and creating»
mew active concept F which is defined to be their compesition, whess Algerithme facet centaine ™ (x)
G{H{x)Y, or, move precisely, "(APPLYE G ALCS (APPLYB H ALES 2).
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Appendix 2.1.12 Insert

Name(s): insert, insertion, sometimes: Add, Merge;
Definitions:

Qussi-recursive cases: A {x,A,B) [determine the type of structures that A and
8 are, say S, then use S-inseri.Defn{x,A,B}].

Necessary, Nonrecursive, Quick: A {x,A,B) Member.Dein{x,B).
Necessary Declarative: X (x,A.B) 2¢B iff 2¢A or zox.

Necesary, Declarative: A (x,A,B) [{VatA}(a¢B), and (Ybix ¢B)(b¢A), and x¢B)
Sufficient, Quick: Bainsert.Algsix,A).

Domsin/range: <Anything, Structures = Structuresy
| Algorithms: |

Quasi-recursive ceases: A (x,A) [determine ihe type of structure A is,
| say S, then use SeinsertAlgs(x,A)L

isa’s: Operation

Specializations: Bag-inserl, Sei-insert, Lisi=inserl, Osel-insert.
Worlh: 100

Check: 1 hauristic.
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Appendix2.1.18 Set-insert

Namelis): Set-inseri, Set insertion, sometimes: inserl, Tag.
Definitions:

| Declarative Slow: A (x,A,B) [(Ya¢A)(a¢B), and (Ybix €B)(beA), and x¢B]
Recursive Slow: A {x,A,B} (A={} snd Be{x], or else:

[AND: z+-Mambaer.Aig{A); Member .Dein{2,B};

Set-insert.Dain(x,Set-delete.Algi{z,A),Sel-deleteAlg{z,B)) ))
Recursive: A {x,A,B) {A«{} and B={x}, or else:

| [AND: 2+CAR(A); Member.Dein{(z,B);

Set=insert.Dein{x,COR{A),Set-delete.Alg{z,B)} 1} |
Declarative: A (x,A,B) (Vz) 248 ifi 2¢A ® zon.

Quick: BsSel-insert.Aige(x,A).

Domain/renge: CAnything, Sets = Seis

Aigorithms:'3 |
Non-recursive quick: A (x,A) (if Member Dein{x,A) then A, else MERGE(x,A)))
Non-recursive quick: A (x,A) (MERGE(x,A) and Elim=adjscent-mult-slements(A))
Recursive: A (x,A) {if As{} then {x}, aise if Asx} then A, aise

[2=CAR(A); if zx then A, else CONS(z,Set-insert.Alg(x,CORIAIN)).
| Generalizations: inseri

Worth: 100

Whats'® If x isn't already in A, then add it and re-sori the sei A. |

13 Actuslly, this speration, ite of the sther atructursl sperations, sre much mers sophisticated then this simple presentation
implivs. in this cove, if A is net supplind, AM chooses 2 randem szample of a Sot ond ineerts x inte that set.
¥# x ia missing, then AM finds 3 random sxample of Anything ond ineerteit inte A

14 The "What" facet doesn’t really axis, but is eccasionslly present in this Appendix for the oid of the reader. A fuller
English doetription of sny concept can be cbismedby locking in the diphabetical summary of toncepts,
Chapter 5, beginning on page 107.
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Appendix 2.1.14 _Oset-insert

| Name(s): Osel-inseri, Osel insertion, somelimes: insert;
Definitions:

Delcarative Slow: A {x,A,B) [(Va¢A){2¢B), and {Ybdx ¢B){b¢A), and x=CAR(B|
Recursive Slow: A (x,A,B) (As[) and Ba[x], or sise:

[AND: 2-Member.Alg{A); Member.Deiniz,B);
Oset-inserl.Dein{x,Oset-delate Alg{z,A),Otet-delate Alg(z,B)) ))

Non-recursive, Quick: x (x,A,B) {B=CONS(x,Oset-delete.Algs{x,A)}.
Quick: A (x,A,B} (BeDset-insart.Aigsix,A}).
Nacessary Quick: A (x,A,B) {xesCAR(B)).

Necessary, Declarative: A {x,A,B} (V2) 2¢B iff 2¢A ® zx.
Domain/range: Anything, Osels =~ Osels)
Algorithms:

Non-recursive quick: X {x,A) (CONS{x,[if Member.Defn{x,A) then DREMOVE{:,A)'5, |else A}j}

Non-recursive quick: A (x,A) (CONS{x,A) and DREMOVE(x,CDR{A}))
Non-racursive quick: A (x,A) (CONS{x,DREMOVE{x,A}) |
Recursive: A {x,A) (if A<[] then [x], eise if As[x..] then A, aise
CONS(x,Oset-delele.Aigsix,A))).

Generalizations: Insert

Worih: 100

What: Eliminale x from A and add x as the first siament of the osel A.

' The INTERLISP function DREMOVE(z,A} destructively removes sl sccurrances of x from the Ket structore A
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Name(s): List-insert, List inseriion, somelimes: insert, sometimes: CONS;
Definitions:

Nonrecursive Quick: & (x,A,B) {B=CONS{x,A}).

Nonrecursive: A (x,A,B) (AsCOR(B) and xsCAR{(B)).'®
Quick: A {x,A,B) (BaList=insori.Algs{x,A}}.

| Necessery Quick: A {x,AB) (xeCAR(B)).

Necessary Quick: \ {x,A,B) (A-COR(B)).
Domain/range: <Anylhing, Lisls = Lists)

Algorithms: |
| Non=recursive quick: A {x,A) CONS{x,A).

Recursive slow: A {x,A) {if A«O then G0, else

NCONC!1 7 {List-insert.Aigs(x,All=but-lsst Aigs{A)),CAR(A)).

Generalizations: insert |
Worlh: 100

What: Add the element x onto the front of the Lisl A.

Name(s): Bag-inserl, Bag imertion, somelimes: insert;
Definitions:

Nonrecursive Quick: A {x,A,B) (B=SORT{CONS{x,A)})).

Quick: A {x,A,B} (BaBag-insert.Algsix,A}}.
Domain/range: (Anything, Bags — Bags»
Algorithms:

Non-recursive quick: X {x,A} MERGE(x A).
Non-recursive: A {x,A) SORT{CONS(x,A)}).

Recursive slow: X {(x,A} {if Ae{) then (x), else

it CAR(A)C'x then CONS(CAR(A),Bag-incert.Algs(x,COR(A))), else CONS{xA)).
Generalizations: Insert

Worth: 100

What: Merge the element x into the Bag A.

'® Here's how this would really sppesr in LISP: (LAMBDA (x A 8) (AND [APPLYS 0BJ-EQUAL ALGS A {APPLYB ALL-BUT-
FIRST-ELE ALGS B)] [APPLYE DBJ-EQUAL ALGS x (APPLYB FIRST-ELE ALGS BI).

'7 This LISP function mesne '3(S;x) sdd-the siement £ te the end of ist 5. COR mesns AR-but-the-first-sioment, CAR
maar The-Tirsi-sloment.

13 Here, ‘lose then’ meene "precedes alphorumerically’, using ALPHORDER.
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Appendix 2.1.17 Delete

Name(s): Delete, Delalion, Remove, sometimes, Subtract:

Definitions: |
Quasi-recursive cases: A {x,A,B} [determine the lype of structure A and

B are, say S, then use S-Delele.Deinix,AB}]

Stow '%: A (x,A,B) List-delete.Deln(x,A,B)
Sufficient, Nonrecursive, Quick: A (x,A,B) NOT{Member.Dein{x,B}}.
Sufficient, Quick: BeDelote.Algsix,A).

Domain/range: (Anything, Structures = Structures)

| Algorithms:
Quasi=recursive cases: A {x,A) [delermine the type of struclure A is,

say S, then use S-Delete.Aligsix,A}).

Siow: Xx {x,A) List-delete Aigs{x,A).
isa’s: Operation

| Specializations: Set-delete, List-delele, Osel-deiste, Bag-delatle.
Worth: 100

What: Remove {one occurrence of} x from {the front of) structure A.

Appendix 2.1.18 Set-Delete

Namal): Set-Delele, Set Deletion, sometimes: Delete;
Definitions:

| Declaralive Siow: A {x,A,B} (VatA){atB xor azx} A {(VbeB)(béA} A -u(B

Recursive Slow: A (x,A,B) {As{} and B={}, or else As{x} and Bs{}, or else:
[AND: 2-Member.Alg(A) until 24x; Member.Dein{2,B);

Set-Delele.Deinix,Sei-delele.Aig{z,A),Set-deleteAlgiz,B)) 1}
Quick: BaSei-Delete.AlgelnA).

Domain/range: <Anything, Seis = Seis>

| Algorithms:

| Non-recursive quick: A {x,A) DREMOVE{xA}

Nonerecursive quick: x {x,A) {if NOT{(Member.Defnix,A}} then A,

| oise DREMOVE(x,A)}}
| Recursive: i {x,A) {if Ae} then {}; else if As{x} then {}, eise |
| [2=CAR(A); il 25x then COR{A}, else CONS{z,5e1-Delete.Aigix,COR(AIN)).

Generalizations: Delete

Worth: 100 |

What: remove the slement x from the set §, if it's thers initially. ]

19 The Lst-delete definitions and algorithms are relatively siow, since x might occur anywhere in A, and it might occur more
than once. Special tricks are available 10 speed up the other kinds of deletions. For Set-delete snd Osel-
delete, we. can ves DREMOVE, since deleting all occurrences of x is fine -- thare con anly be st most one
occurrence. For Bag-delots, we con walk down the bag and quit when any slement is seen io be

FNRI grasses tan 1. Thess speed-upe are the resson for maintaining four separasis kind of deletion
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Name{s): Bag-Delets, Bag Deletion, sometimes: Delete;
Definitions:

Recursive Slow: A {x,A,B} {As{} and Bai), or elise {As={x..} and B=CDR{A),

or slse Dag-deiete.Deinix,COR{A),COR(B).

Quick: BeBag-Deiete.Aigsix,A). |
Domasin/range: <Anylhing, Bags ~< Bags)
Algorithms:

Non-recursive quick opaque’: A (x,A} [2+ (MEMBER(x,A);
RPLACA{z,CADR(z}); RPLACO(z,CODR(Z})) |

Recursive: ) {x,A) lit As{) then {), else if CAR{A)}x thon COR(A}, sise
CONSI(CAR{A),Bag-Delate. Alg(x,COR(A))).

Generalizations: Delele

Worth: 100

What: remove one copy of x from the Bag A, if x wee int there initially.

Appendix21.20 List-Delete

Name(s): List-Delete, List Deletion, sometimes: Delete;
| Definilions:

Recursive Slow: A (x,A,B) {AsO snd BeO, or sise CAR{A)»x and COR(A RB,
| or sise List-delete.Deinix,COR{A),COR(B).
| Quick: Balist=-Deiste.Aigs(x,A).
| Domain/range: (Anything, Lists = Lists

Algorithme:

Non-recursive quick opaque: A {x,A) FRPLACD{z+{MEMBER(x,A),CODR(Z))
Recursive: A {x,A} (if A2O then O, sise if CAR{A)=x then COR(A), alse

CONS{CAR(A) List=Delate Alg(x,CORIA))}}. |
Ganeraslizations: Delete |

Worth: 100 |

Whel: remove the first copyof x fromthe List A, if x is in A.

20 1p sigorithmis lsbelled Opaque becsuse it comaine very light "enseky’ tede, implementing8 highly aer-etandard hnked
dats structure deletion algorithm. The coll on the Interkep function MEMBER binds z te the tail of A,
beginning with the firsi sccurrance of x.
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Appendix 2.1.2} Oset-Delete

Name(s): Uset-Deiele, Ose! Deletion, sometimes: Delete;
Delfinitions:

Recursive Slow: x {x,A,B) (A=[] and Bs[)}, or aise CAR(A)=x and COR{A JB,
or alse Osel-deleie Defn{x,CORI{A),COR(B}.

Recursive Slow: k {x,A8B} {A=[] and Bz[), or elise Ax[x] snd Bs[), or else:
[AND: 2=Member Aig{A) unlil 2/x; Member.Dein(2,B);

Set-Delele.Deinix,Set-delele.Alg(z,A),Set-deisis.Alg(z,B)) J}
Necessary Quick: A{x,AB) {CAR(ARCAR(B) nor CAR{A Jox).

Quick: BeDset-Delete Algsix,A).

Domain/range: {Anything, Osets = Osels]
Aigorithms:

Non-recursive quick opaque: A {x,A) DREMOVE(x A}.

| Non-recursive quick opaque: A {x,A) FRPLACO(z+ (MEMBER(x,A),CODR(z2))
} Recursive: & {x,A) {if As[] then [}, else if CAR{A)ex then COR(A), oise

CONS{CAR{A)},Ozsal-Delate. Aigix,COR{A}})).

Non-recursive quick: A {r,A) {il NOT{Member.Defn{x,A})) then A,
oise DREMOVE(x,A)j))

Non-recursive quick: x {x,A} DREMOVE(x,A)

Recursive: A {(x,A} {i As[] then [}, else if A=[x] then [], else |
| {z=CAR{A); if 20x thon CDR(A), else

] if 2>x then A, sise Oset-Delste.Aig{x,COR(A))))).
Generalizations: Delete |

Worth: 100

What: remove the element x from the Dset A, if it's present there initisily.
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Appendix 2.1.22 Intersect

Name{c): Intersect, Intersection, sometimes: Product;

Definitions:

Quasi~recursive cases: & {A,B,C) [determine the types of structure A and

B are, say 5, then use S=inlersect Deln{A,B,C)).

Slow: x {A,B,C) List~interseaci.Dein{A,B,C)

Necessary, Nonrecursive: A (A,B,C) Mamber.Dein{x,C} iff

Member .Dein{x,A} and Mamber.Dein{(x,B}.

Quick: Caintersecl Algs{A,B).

Domein/range: {Structures Structures = Structures’

Algorithme:

Quasi=recursive cases: & (A,B) [determine the type of struciure A and B are, |

cay §, 2! {hen use S~interseclAlge(A,B)].
Slow: A {A,B) List~Intersecl.Algs(A,B).

{sa's: Operation

Specializations: Sel-interseci, Bag-intersec!, Lisi=intersacl, Oset-intersect.
Worth: 100

Appendix 2.1.93 List-Intersect

Namels): Lisl-Intersect, Lisi=Intersection, sometimes: inlersecl. |
Definitions:

Recursive slow: A (A,B,C) if A=O then Ce), aise

if Member. Dein{CAR[A)},B) than [CAR{A)}CARI(C) and

| List-intersect.Deln{COR(A) Lisl-delete. Alg{CAR({A},8},COR(C)}], aise
List=intersect.Dein{CDR{A},B,C}.

Quick: Caligl-intersecl.Algs{A,B).

| Domain/range: <Lisls Lisis = Lisisd
| Algorithms:

Non-recursive: A {A,B} [for sach x in A {in order), do the following:

| if Member.Dafn{x,B) then Lict~delele.Alg{x,B), sise Lisi-delste.Algix,A).
| Finally, return the value of *A’ a3 the resull.

Recursive: A (A,B) if AsO lhen ©, else if Member. Defn{CAR{A),B)

then CONS{CAR(A)}List-intersect.Alg{CDR{A}List-delele Aig (CAR{A),B)}},
else Lisl-intarsecl.Alg{CDR{A},B).

Generalizations: intersect

Worth: 100

| What: Move along list A. Removs il (once) from B if it's there, site from A. Relurn A.

ig might be Sets’, or 5 con be "Liste, wie
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Appendix 2.1.24 Oset-Intersect

Name(s): Osei-Intersec), Oset-Inlerseclion, sometimes: intersect.
Definilions:

Recursive: A (A,B,C) if Az[] then Cs[], else
! if CAR(A}®°B then [CAR(A)sCARIC) and

Oset-intersect Dafn(COR{A),Oset~delelis Alg{CAR{A),B),CDR{C}}], elise
Oset-interseci.Defn(CDR{A)},B,C).

Quick: C=0sel~Iintersect.Algs{A,B}.

Once Early Quick Opaque: x (A,B,C) if B is shorter than A,

then Oset-inlersect.Dein{B,AC).

Domain/range: (Osels Oseis -* Osels)
Algorithms:

Once Early Quick Opaque: A (AB) if B is shorter than A,

then Dset-inlorsect.Alp(BA).

Non-recursive: X {AB} [for each x in A {in order), do the following:
if x~¢B then DREMOVE(x,A). Finally, return the value of A.

Non-recursive: A (A Bj} [for sach x in A {in order), do the following:

if x¢B then Osel=delete.Alg{x,B), else Osei-delate.Alg(x,A).
Finally, relurn the values of 'A’ as the rasult.

Recursive: x (A,B) if As[] then [], else if CAR(AKB

{hen CONS{CAR(A),Osel=intersect.Alg{COR{A},Osetl-delete. Alg(CAR{A),B)}),

sise Oset-intersect.Alg(CDR(A),B}.
Generalizations: intersect

Worth: 100

What: Move along Oset A, eliminating elements not found in Dset A.

22 The differance between this definition and the similar one for Lisl-intersect is that here we can vss the vary fast

REN. algorithm siored in Dset-DeletsAlg, whereas for lists it was necessary io use & slow List-delete
23 10 save space, we may henceforth write 'x¢B’ 10 masn "Member Defnix,B).
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Appendix 2.1.25 Set-Intersect

Name(s): Sel-intersect, Sel-intersection, sometimes: intersect.

Definitions:

Once Early Quick Opaque: A (A,B,C) if B is shorter then A,

{hen Set=intersect.Dein({B,AC).

Recursive: A {A,B,C) if As{} then Cs={}, else

z+Some-memb.Alg{A):

li Membaer.Dain{z,B)

then [Member.Defn(z,C) and Set-intersect.Dein(Sel-deiste.Algiz,A),
Set-delete.Alg(z,8),

Sat-delete.Alg{z,C)}]

else Sel~interseci.Dein{Sei-delele.Algiz,A}B.C).

Nonrecursive Declarative: For all x, x¢C iff x¢A and x€8,

Quick: CaSet-intersect.Algs{A,B}.

Domain/range: (Sets Seis = Sets)

Algorithms:

Once Early Quick Opaque: A (A,B) if B is shorier then A,
then Sel-inlerseci.Alg(BA)

Non-racursive: A (A,B) [for each x in A, do the foliowing:
if x~¢B then DREMOVE{x,A}. Finally, return the vaive of A.

Recursive: A {A B) if Asi} then {}, else if CAR(AKB

then CONS{CAR{A)},Sel~intersect.Aig{COR{A) Set-deiete. Alg{CAR({A},B))),

aise Sel-intersect Alg(COR{A),B).
Generalizations: inlersec!

Worth: 100

What: Eliminate any slemenis of Set A which ars absent from Set B.



Appendix 2 AM Discovery in Mathematics as Heuristic Search -189-

Appendix 2126 Bag-Intersect

Nameis): Bag-Intersect, Bag-interseciion, sometines: intersect.
Definitions:

Once Early Quick Opaque: A (A,B,C) if B ic shorter than A,

then Bag-inlersect.Dain{B,A,C}.

Recursive: A (A,B,C) if A={) then C={}, else

2+CAR{A); If Member Dein(z,B} then [Member Defn{z,C} and

Bag-intersec1.Dein(COR{A),Bag-delele.Aig(2,B),Bag-delete.Alg{2,C))]
sise Bag-inlersect.Deln(COR{A}B.C).

Quick: CsBag-intersect.Algs{A,B).

Domainfrange: <Bags Bags — Bags

Algorithms:
Once Early Quick Opaque: A (A,B) if B is shorler than A,

then Bag~intersact.Alg(B,A}.

Non-recursive: X (A,B) [for each x in A, do the following:

if x€8 than BeBag.delsle Alg{x,B), sise A+Bag~delete. Alg{x,A).
Finally, return the value of A,

Genaralizations: Intersect

Worth: 100

What: the intersection of bags A and B should contain all common slaments,
wilh ssch slement occurring the minimum number of timas it occurs in A or B.

Appendix2.1.27 Union

Name(s): Union, Join, Unite, somatimes: Combine, Append, Sum.
Definitions:

Quasi-recursive cases: A (A,B,C) [determine the type of structure A and

B ars, say S, then use S-Union.Dein{A,B,C)].
Necessary, Nonrecursive: A {A,B,C} For all x, x¢C iff x¢A or x¢B

Quick: C=Union.Algs{A,B). |

Domainfrange: (Slructures Structures = Struclures®

Algorithms:

Quasi-recursive cases: A (A,B) [determine the type of structure A and B ars,

say 5,%%hen use S-Union.Algs(A8).
Quasi-recursive tases: A (A,B) [determine the type of structures A and B ave,

say 5, than do S-insert.Aig{CAR{A)},Union{CDR{A)},B)}]}.
isa's: Operation

Spacializations: Sei-Union, Bag=Union, List=Union, Osetl=Union.
Worih: 100

8g might be Sats’, or S can be "Lists’, sic
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Name(s}: List=Union, Append, Neone, List=join, somalimes: Union.
Definitions:

Recursive slow: A {A,B,C} if AsO then CB, else

CAR(ABCAR(C} and List-union.Dein(COR(A},B,COR(C)).
Quick: Cslist-Union.Algs{A,B).

Domain/range: <Lisis Lisls = Lisi®>

Algorithms:

Nonrecursive, Quick, Non=destruclive, Opaque: i {A,B) (APPEND A B).

Nonrscursive, Quick, Destructive, Opaque: A (A,B) (NCONC A B).

Recursive: A {A,B} if AsC then B, else

CONS{CAR{A},List=Union.Alg(CDR{A},B)}.
Generalizations: Union

Worth: 100

What: Append list B to the end of list A.

Appendix 2.1.29 Oset-Union

Name{s): Osel-linion, Osel=join, sometimes: Union, Append.
Definitions:

Recursive slow: A (A,B,C) if As[] then CaB,
elise CAR{A}CAR(C) and

Oset-union.Defn[COR{A),

Osat-delete. Alg(CAR(A)},B),

Osat-delete Alg(CAR{A),C)].
Quick: CaDsel-UnionAigs{AB).

Doméin/range: Osels Osels - Dele

Aigorithms:

Nonrescursive, Quick, Non-destructive, Opaque: A {A,B} (APPEND A B).

Nonrecursive, Quick, Destructive, Opaque: A {A,B} (NCONC A B).

Recursive: X (A,B) if As[] then B, elise
CONS{CAR{A),Oset-Union.Alg{COR(A},Oset=delete.AIg{CAR{A),B))).

Generalizations: Union

Worth: 100

What: Append onlo Oset A any new members of Oset 8B.
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Appendix 2.1.30 Set-Union

Name(s): Set-Union, Sei-join, somelimes: Union, Append.
Definitions:

Nonrecursive Declarative: A {A,B,C) Vx, x¢C iff x¢A or x¢B.

Recursive slow: (A,B,C) if A=} then CsB, else CAR{ANC snd
Sel=union.Dein{CDR{A),

Sel-delete.Alg(CAR(A},B},Set-delele Alg{CAR{A}C)).
Quick: C=Set-Union.Algs(A,B).

Domain/range: (Seis Seis = Seis

Algorithms:

Honrscursive, Quick, Destructive, Opaque: A (A,B) {UNION A B).
Nonrscursive, Quick, Non-destructive, Opaque: X (A,B)

{Seli-intersect (APPEND A B)).

Racursive: A (A,B) if A={} then B, else

Sel-insert.Alg{CAR{A),Set-Union Aig(COR{A),Sei-delete. AIg{CAR(A},B})).
Recursive: A {A,B} if Az{} then B, else

MERGE (CAR(A},Set-Union.Alg{CDR{A),DREMOVE{CAR{A),B))).
Generalizations: Union

Worth: 100

What: Merge into Sel A any new members of Se! B.

Appendix 2.1.31 Bag-Unijon

Name(s): Bag-Union, Bag=join, somatimes: Union, Append.
Definitions:

Recursive slow: A {A,B,C} if A={} then C=B, sise CARIAXC and
Bag-union.Defn{

Bag-delete Alg{CAR(A),A},2°
Bag-delete. Alg{CAR{A),B),

Bag-delete.Alg{CARI{A),C)).
Quick: C=Bag~Union.Algs{A,B).

Domain/range: (Bags Bags — Bags>
Algorithms:

Recursive: A {A,B) if Al) then B, else

Bag-insert.Aig(CAR(A),Bag-Union.Alg(COR(A),Bag-deleteAig(CAR{A),B))).
Generalizations: Union

Worth: 100

Whal: Bag-union(A,B) contains any x belonging to either bag, with multiplicity of x
equal to the maximum of the multiplicity of the element x in A and in B.

25 Yes, this is really the same ss COR(A), and in the other concepts in this sppandix the shorter form is the one vesd.
Here, we decided to show the nice, symmetric form that AM actuslly contains.
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Appendix 2.1.33 Difference

Name(s): Difference, Siructure-difference, sometimes: Minus, Subtract, Complement.
Definitions:

Quasi-recursive cases: A (A,B,C) [determine the {ype of structure A and
B ars, say 5, then use S-Diif.Dein(A,B,C)).

Necessary, Nonrecursive: x (A,B,C) For all x, x¢C iff x¢A and ~x¢B

Quick: CaDifference.Algs{AB).

Domasin/range: <Siruclures Struciures = Structures)

Algorithms:

Quasi=recursive cases: A (A,B) [determine the type of structure A and B ars,
say S, then use 5-Diff.Aigs{A,B)].

Quasi-recursive cates: A (A,B) [determine the type of structure A and B wre,
say 5, than do S-delete.Aig(CAR{B)}Difference{A,COR{B})}].

isa's: Operation

Specializations: Sei-Diff, Bag-Diff, List-Diff, Dsel-Diif.
Worih: 100

| Appendix 2.1.33 List-Diff

Nemals): List-DiHference, List=diff.
Definitions:

Recursive slow: A {A,B,C} if AsO then Ca), aise

If CAR{A)B then List-Diff.Defn(COR(A) List-delete.Aig{CAR(A),B),C),
else CAR{A}=CAR(C} snd List=Dit{.Defn{CDR{A),B,CORIC)).

Quick: Calist-Dif{.Algs{A,B}.
Domain/range: <Lisis Lists = Lisls>

Algorithms:

Nonrecursive: X {A,B) for x in A {in order), if x is in B,
then use Lizsi-delele to ramove an x irom A and B.

Recursive: A {A.B) if AsO then ©, slse

If CAR(A}€B than List-Dif{.Alg{COR{A}Lisi~delels.Alg(CAR(A},B}}, |
else CONS{CAR{A),List=-Dit{.Aig(COR{A}B}).

Generalizations: Ditferance

Worth: 100

What: Move x slong A. If x is also in B, remove it from A snd from B.
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Appendix 2.1.34 (set-Diff

Nama{s): Oset-Difierence, Oset-diff. |

Definitions: | |
Recursive slow: A {A,B,C} if A=[] then Cz[), else

if CAR(Aj¢B then Oset-Dif{.Dein{COR{A),Osel-delete Alg(CAR{A},B}).C},

elise CAR{A}CAR(C) and Osel-Dif{.Dein{COR{A),B,COR(C)).

Quick: CsOsel-Diff.Algs{A,B).
Domain/range: <Csels Osets = Oselsd

Algorithms:

Nonracursive: X {A,B} for x in A, if x is in B, then remove x from A and B.

Recursive: A {A,B) if As{] then {[], else

If CAR{A}B then Osel-Difl. Aig{COR({A},Oset-delete.Alg{CAR{A),B)),
sise CONS{CAR{A),Oset=Dif{. Alg{CDR{A}),B)}.

Recursive: A {A,B) if As[] then [], else

If CAR{A)<B then Oset-Dif{.Alg{COR{A),B),

sise CONS(CAR{A),Osel-Diif.Alg{COR{A},B)).
Generalizations: Difference

Worth: 100

What: Moving along A, when an slement also in B is encountered,
use Osel-delele 10 remove il from A and from B.

Appendix 2.1.35 Set-Diff

Names): Sel-Dillerance, Sel-diif.
Definitions:

Recursive slow: A (A,B,C) if A={} then C={}, else

If CAR{A)¢B then Sel-Diff.Dein(COR(A},Sel-delete.Alg{CAR{A},B},C),
elise CAR{A=CAR(C) and 35e!-Difl.Defn{COR{A),B,CORI(C)).

Quick: CaSel-Diff.Algs({A,B).

Declarative Nonrecursive: A {A,B,C) ¥x, x(C iff x¢A snd ~x¢B.

Domain/range: (Seis Seis = Seis)

Algorithms:

Nonrecursive: A {AB} for xin A, il x is in B, then removas x from A and B.

Recursive: A {A,B) if As{} then [}, else

If CAR{A}B then Set-Diff.Alg(CDR{A),Sel-delele.Alg{CAR(A),B)),
eise CONS{CAR(A),Sel-Diff.Alg{COR{A)},B)).

Recursive: A {A,B) if As{} then |}, else

If CAR{A}B then Set-Diff.Aig{CDR{A),B),
sise CONS{CAR{A),Set-Dii{. Alg{COR{A},B)).

Generalizations: Difference

~~ Worth: 100

What: Members of se! A which are not in Set B.
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Appendix 2.1.36 Bag-Diff

Name(s): Bag-Difference, Bag-difi.
Definitions:

Recursive siow: X {A,B,C} if A=(} then Ca{}, else

If CAR(A)}B then Bag-Diff.Defn(COR(A),Bag~delete.Alg(CAR(A),B),C},
else CAR{A}CARI(C) and Bag-Diif.Dein{CDR{A}B.CORI(C)).

Quick: CoBag-Diff.Algs{AB}.

Domain/range: <Bags Bags = Bags»
Algorithms:

Nonrecursive: A (A,B) for x in A, if x is in B, then remove an x Irom A and B.

Recursive: A {A,B) if As{) then (}, else

if CAR(A)XB then Bag-Diff.Alg{COR(A),Bag-delete.Aig{CAR{A)},B)),
alse CONS{CAR({A},Bag-Diii.Alg{COR{A},B)}.

Recursive: A (A,B) ii Be{} then A, else

if CAR(B)¢A then Bag-diif.Alg{Bag-delete.Alg(CAR(B),A),CDR(B)),
sise Bag-dilf. Aig(A.CDR(B)).

Generalizations: Difference

Worlh: 100

What: Move x siong Bag B, removing one copy of sach x from Bag A.
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Name(s): Coalesce, Self-apply, Condente, Collapse, Argument coincidence.
Definitions:

Declarative slow: A {F,G) The domain of G has been collapsed, compared to F's,
by the removal of one domain component 0, and an algorithm for G
is just 2 call on F, with two arguements the same. The only constraint
on this situation is that the domain component from which

duplicate argument is drawn is itself a specialization of D.2®
Necessary, quick: A {F,G) The length of each Domainfrange entry for

F is ons larger than the length of sach entry on G.Dom/range.
Necessary, quick: A {F,G} The range of both F and G are equal.
Sutticis ni, slow: A {F,G) Are~equivalent{G,CoslesceAligs(F)).
Sufticient, quick: A {F,G) G=Coalasce.AlgsiF).

Domsin/range: Active = Active)

Operalion -» Operation
{Predicals — Predicate)

Algorithms:

Distributed: use the heurislics atieched fo Coslesce to guide the filling
in of various facets of the new Coalesced concept.

Generalizations: Operation
Isa's: Operation
Worth: 300

Fillin: 4 heuristics.

Chack: 1 heuristic.

Suggesi: 2 heuristics.

rn————————————————————ee ei

26 Somes examples of this: {i} Coslevce Dufn{TIMES Square), becans TIMES Domsin/rangs contains <Number Number
Numbar> and Square Domain/renge contains «Number + Number>, and & definition of Squares is Times(x,x)’,
and clearly Number ia a specialization of Number {a vacuous specislizstion}. So Square 7 8 coslesced form
of TIMES (#) CoslesceDefnlinseriSelf-insert), wheres the fatter concept is defined 28 Ineart(SS) The
domain of Insart is Anything x Structure: the domain of the new sparstion is ust Structure. This DETERS
Coalesce Dafn bacauss Structure is a specisiization of Anything: if we can insert ANYTHING into » structures,
then certainly it i=  pormisssble to insert a STRUCTURE inte 3 structure. {ni)
Coslnacs DetniEquatity,Conetant-T) becouse Equality is reflexive {xex shways),
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Name(s): Canonize, Canonicalize, Standardize, sometimes: normalize.
Definitions:

Slow: A {P1,P2,F) Pl and P2 are pradicates over AxA,
and F is an operalion from A {o A,

and (Vx,y€A) P1{x,y) iff P2(F(x),F{yN.¥
Sufficient, slow: Ars-equivelent{F Canonize.Aigs{P1,P2}).
Sufficient, quick: F«Canonize Algs{P1,P2).

Domain/jrange: (Pradicate Pradicale = Oparation> |
Algorithms:

Distributed: use the heurislics stisched to Canonize to guide the filling
in of various facals of the naw canonization.

Ganeralizations: Operation

isa’s: Operation
Worth: 200

Fillin: § heuristics.

Suggest: 5 heuristics.

27 Some wxampies of this: {i} PlaSeme-length, P2eEquality, Fslonglh, Asliste. {ii} Pi-Revarsed-at-top-level, P2-Reversed-
st-sil-iovels, FeReverse-sach-siament, Acliete. {ii} PleReversed-at-top-level, P2.Reversed-st-ail-levals,
Felash-sach-slamant, A<Lints. (v} Pl-Congruani-triangles, P2:identically-equel, FaTransiate-and-rotate-to-

§indard Besition A=Trianglne. The typical vee for ths concept ie: given P2, find Pt and F. Or: given PI and
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Appendix 2.1.39 Parallel-replace2

N.me{s): Parallei-replace2, Map-replace2, Parallel-substitute.
Definitions:

Quick: GeParallel-Replace2 Alps{S1,52F).

Domain/range: <Type-of-structure Type-of-structurs Operation — Operation>
Algorithms:

Nonrecursive: A {S1,52,F,G} G is an operation whose domain is S5ix52 and
whose range is Range(F). For any structures $1451, §2¢52,
Gisl,52) is compule by replacing each slement x of 5] by the |
value of F(x,s2). Notice this means that F must be an operation
with ¥ domain/range entry of the form <0 52 — R>, where R is
unconsirained, but D is either ‘Anything’ or == if §] is
of the form "Structure-of=E's' =~ E.

Non-recursive quick: A {S1,52,F) if F{x,y) doesn’t depend on Y,
then just do Paralisi-replace Algs(S1 F). |

Specializations: Paraliel-repiace
Is#’s: Operation
Worth: 100

What: create a new operation, which lakes 2 siruclures Si and 52, and replaces each
member x of 51 by F{x,52}.

Appendix 2.1.40 Parallel-replace

Name(s): Paralisl-replace, Map-replace, Parailei-substitute, MAPCAR.
Definitions:

Quick: A {S1,F,G) G=Parallsl-Replace.Algs{51,F).
Oomain/range: (Type-of-siructure Operation =» Operation?
Algorithms:

Nonrecursive: A {S1,F,G) G is an operation whose domain is $1 snd
whose range is Range(F). For any structure s1¢51,
G{s1) is compuled by replacing each slement x of by the
value of F(x). Notice this means that F must be an oparation
with a domain/range sniry of the form <D ~ R), where R is
unconstrained, bul D is either ‘Anything’ or == if $1 is
of the form 'Structure=-oi-E's’ == E.

Generalizations: Parallel-repiacs2
Worth: 100

Sugg: 2 heuristics.2®
Whal: create a new operation, which takes 8 structures 51, and replaces sach

member x of S1 by Fix).

Em eee————————————————————i peeeee

LL These actually deal with substitution operations, the RESULTS of applying Paralisi-replace and Parsiiel-roplece2.
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Appendix 2.1.41 Repeat?

Name(s): Repesi2, Map-repesi?, llerate2, Map2, MAP2CONC.

| Definitions:
| Quick: A {51,52,F,.G) G=Repeai2.Algs(S1,S2,F).

Domain/range: <Type-of=siruciurs Type-oi=siructure Operation = Operation)
| Algorithms:

Nonrecursive: X {(51,52,F GsRepeat2{S1,52,F) is an operation whose

domain is S1x52 and whose range is Range(F).

For any structures s1¢S1, s2¢52,

Gisl 52} is computed by the following algorithm:

| y~CAR{s1); s1+CDR{sl});

while s] do: y=F(y,2,CAR{sl}}; s1+=COR(s1):

Finally, relurn y.

| Notice this means thal F must be an operation whose domain/rangs
hat the form <sl S2 si = sl’,

Non-recursive quick: X {51,52,F} if F{x,y,2) doesn't depend on 2,
then just do Repest.Aige{S1,F).

Specializalions: Repest

Isa's: Operation

Worth: 100

What: create s new operation, which takes 2 structures S51 and $2, and repeats
Fix,y,52) slong the members x,y of Sl.

Name(s}: Repaat, Map, iterate, Sequance.

| Definitions:
| Quick: X {S1,F,G} GsRepaat Algs(S1.F).

| Domain/range: <Type-of-siruciure Dperstion = Operstiond |
Algorithme:

| Nonrecursive: A {S1,F) Repest(S1,F)«G is an operation whose domain

| is S1 and whose range is Range(F)}. For any structure ¢l¢S1,
Gis1) is computed by the following algorithm:
y-CAR{s1); s1+CDR(s1): |

while sl! do: y»Fly,CAR(s1)); s1+CDR{s!});
Finally, return y. |

Notice this means that F must be an operation whose domsin/range
has the form <sl al = sl). |

Generalizations: Repeat?
Worth: 100

| What: create a new opsralion which repeats F sll the way along an 51.
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Appendix 2.1.43 Parallel-join2

Name(s): Paraliel~join2, Map=join2, Parallel=union2, MAP2CONC.
Definitions:

Quick: A (S1,52,F,G} GeParaliel=join2. Algs{S1,52,F).

Domain/range: <Type-oi-siructure Type-of-tiructure Operation — Operation)
Algorithms:

Nonrecursive: X (S1,52,F,G} G is an operation whose domain ic Six$2 snd

whose range is Range(F). For any structures si€S1, s2¢52,
Gis1,52) is compule by appending together the values of F(x,s2),

| for each element x in 51. So F has {o be an operation
wilh a domain/range enlry of the form <D 52 = R), where R is
# type of struclure, but D is either ‘Anything’ or == if §1 is
of the form 'Siruclure-oi-E's’ «= E.

Non-recursive quick: A (S1,52,F} if Fix,y) doesn't depend on vy,
then just do Parsliel-joinAlgs(S1F).

| Specializations: Paraliel=join
lsa’s: Oparalion
Worth: 100

What: create s new operation, which takes 2 structures S1 and $2, and joins
together F{x,s2} for each mamber x of S1.

Appendix 2.1.44 Parallel-join

Name{s): Parailel=join, Map=join, Paralisl=union, MAPAPPEND, MAPCONC.
Definitions:

Quick: A {S1,F,G) GeParallel~join.Algei{Si F).
Domain/range: <Type-of-structure Operation = Operation)
Algorithms:

Nonrecursive: A {S1,F,G} G is an operation whose domain is S$! and

whose range is RangelF}. For any structure s1¢S1,
G(s!) is computed by appending together the values of Fix},
for sach xsi. Notice this means that F must be an operation
with 3 domain/range sniry of the form <D = R), where R it

a lype of structure, and D is either ‘Anything’ or == if $1 is
of the form 'Structure-ol-t's’ == E.

Generalizations: Parallei-join2
Worih: 100

What: create a new operation, which takes a siructure 51, and joins fogather
F of each member of Si.
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Appendix 2.1.45 Reverse-ord-pair

Name(s): Reverse-ord-pair, Reverse ordered pair, Switch CAR and CADR.
Definitions:

Nonrecursive quick: A {P,Q} First Alg{P)=Final AlgiQ),
and FinalAlg{P)sFirst.Alg{Q).

Quick: A {P,Q) QuReverse-ord-pair.Algs{P).

Domain/range: <Orderad=-pair -* Orderad-pair>

Algorithms:

Nonrecursive: A {P) Q+P; First.Alg{QFinal. AIg(P))?%; Final AlglQ,First.Alg{P}): Q.
Nonrescursive quick opaque, nondestructive: A {P) LIST{CADR(P),CAR(P).

Nonrscursive quick opaque, deslructive: A {P) z+Last-ele{P);
FRPLACA{CDR{P},CAR(P}); FRPLACAI(P,z); P.

Nonrecursive quick opaque, nondestructive: Xx {P) REVERSE(P).

Nonrecursive quick opaque, desiructive: A {P) DREVERSE(P).

Isa’s: Operation
Worth: 100

What: turn the ordered pair (x,y) into the ordered pair <yx.

Appendix 2.1.46 _Last-element

Name{s): Last-element, Final member.
Definitions:

Recursive: A (Sx) 2=First-element.Alg(S), and S+Delele.Alg(z,S),

and if Emply=struc.Defn{S) then x=3, eise Lasi~slement.Defn(Sx).
Quick: A {§,x) xsLast-alement.Algs(S).

Domain/range: {Ordersd=struciure = Anything>
Algorithms:

Recursive: X {5) z+First-siement.Alg(S), and S+=Dealete.Alg{z,S),
and if Emply-struc.Dein{S) then 2, else Lasi-element.Aig(S).

Nonrecursive quick opaque: A {5) CAR{LAST{S)).
isa’s: Operation
Worth: 100

| What: find the final member of the ordered structure 5.3 |

29 The supression First Alg(A x) will result in 8 RPLACA: the first slement of A will be removed, end in its place x will
sppear. Thus FirstAlgica b © d>, 2) will return as its value the new list <x b ¢ d>.

0 Actustly, this concept is much more sophisticated If Lant-slementAlgs is calied with TWO srgumants, S and v, then the
intention is taken to be to REPLACE the iss! element of S by the element v. Thus that last slemen! is
deleted, and v 1» added at ithe and of S This is done by: FRPLACA(LAST(S)v) Te review: Last

Somalia) sasits the final member of A fo x, while Last-element Defn{A x) merely tests whether the
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Appendix 2.1.47 First-element

Name(s): Firsi=alement, Initial member, Head, Front element, CAR.
Definitions:

Recursive: A {Sx} z+Last-sloment.Alg(S), and S+Delefe.Alz{2,5),
and if Empty-struc.Dein(S) then x=z, else First-sloment.Dein(S,x).

Quick: A {5,x) xsFirst-sloment.Algs(S).
Domain/range: <Ordered-structure = Anything
Algorithms:

Recursive: k (5) x+Lesteslemenl.Alg{S), and S=Delete.Alg(25),
and it Empty=siruc.Dein{S) then 2, sise First-slement.Alg{S).

Nonrecursive, very quick, opaque: A {S) CAR{S).
{sa’s: Operation
Worth: 100

| What: {ind the initial member of the ordered structure $3! |

Appendix 2.1.48 All-but-the-first-element

Name{s): Rear, All bul the first slement, Ali-but-first, COR, Tail, somatimes: back.
Definitions:

Nonrecursive: A {SR} List-delele.Defn{CAR{S},S,R).
Nonrecursive: A (5,R) List-insert.Defn{CAR{S)R,S}.
Nonrecursive: A {S,R} COR{S}R.

Quick: A {S,R) ReRear.Algs(S).
Domain/range: <Ordersd-siructure = Ordered=-structure)
Algorithms:

Nonrecursive, very quick, opaque: A {S) COR(S)

Nonrecursive: A {5} z=First-eie.Alg(S); List-delete Algs(z,5).
isa's: Operation
Worth: 100

What: remove lhe initisl member of the ordared structure S.

———————————————————————————————————————————————————

3 Actually, this operation's sigerithm, # fad two srguments S and v, will replace the first slament of § by v, using
FRPLACA(S,v). So this single concep! containe both CAR and FRPLACA knowledge. This is not shown
explicitly in the antries for First-elamantAlgs.
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| Appendix 2.1.49 All-but-the-last-element

Name{s): All-bul-the-lsst-element, All-but-last, somatimes: front.

Delinitions: |
Quick: A {5,R) ReAli-bul=-last.Algs{S).

Domain/range: <Ordered-struclure = Qrdered-siructure>

Algorithms:

Nonrecursive, very quick, opaque: A {S) FRPLACD(LAST{(S),NIL}.
isa’s: Operation
Worth: 100

What: remove the final element from the orderad structure S.

Name(s): Some-slement, Random member, Any siement of, Member, in, Some=-member.
Definitions:

Recursive: A {x,5) Nonempiy=siruc.Dein(S) and

if Firsi-ele.Dein(S,x) then True,

alse Membar Deinix,All=bul-first~ele.Alg(S)).
Nonrecursive quick opaque: A {x,5) MEMBER{x,S)}.

Sufficien!, very quick, opaque: x {x,5} FMEMB{x,5)).
Quick: A (Sx) xsMamber.Algs(S).

Domsin/range: (Siructurs =» Anylhing>
Algorithms:

Nonrecursive opaque: X (5S) CAR(RAND-PERMUTE(S)).

Nonrscursive quick opaque: A {S) CAR{S)).

Recursive slow: if 5 is amply then fail, otherwise if S=(x} then x,
else if RAND(O,1}=] then First-ele.Alg(S),

site MemberAlg{All-bul-last.Alg{S}).
{aa’s: Operation

Worth: 100 |
What: find a random member of the structurs S.
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Appendix 2.1.51 Projection]

Name(s): Projection], Firsl~argument, Projl.
Definitions:

Nonrscursive quick: X {x,y,..,2) z=x

Quick: A (x,y,..q,2} 2=Some-slement.Algsix,y,..q).

Domain/range: <~D Anything..Anything = 0% 32
Algorithms:

Nonrecursive quick: A {x,y,...q) x.
Isa's: Operation

Specisiizations: identity.
Worth: 100

What: sccep! s bunch of argumen!s and relurn the first one.

Appendix 2.1.52 Projection?

Name(s): Projection2, Second-srgument, Proj2.
Delinitions:

Nonrecursive quick: A {xy,..,2} 2sy

Quick: A {x,y,..q,z) zsSome-slement. Aigsix,y,..q).
Oomain/range: (Anything »D Anything..Anylhing = 'D%
Algorithms:

Nonrecursive quick: A {x,y,...q} v.
Isa’s: Operation

Specializations: Identity.
Worth: 200

What: accept 8 bunch of arguments and return the second one.

re ——— ee——eee————

32 This means that "0 con be anything, sc long as it's the same in both places in the domeinfrangs tampiate. Thus this
inchudes «Sets Anything Anything = Sates.
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Name(s): |dentity, identity-operation, no-op, Self, nc change.
Definitions:

Nonrecursive: A {x,y) Equslily.Defn{x,y)

Nonrecursive translorm: X {x,y) Projl.Defn{x,x,y}
Nonrecursive transform: A {x,y) Proj2.Defni{x,x,y)
Sufficient, very quick, opaque: A (x,y) EQ{x,y)}.

| Quick: A {x,y) ysldentity.Algsix).

Oomain/range: (Anything = Anything»
<Object = Dbject>
Structures = Structures

CAclive = Active)

Algorithms:

Nonrecursive quick: x {x) x.

Nonrecursive transform: X (x) Projection] Algs{x,x).
Nonrecursive transform: A (x) Projection. Algs{x,x).

Conjec: "Identily, restricted to Objects, is the same as Obj-Equality.’
Ganeralizations: Projection], Projection2.
Worth: 100

What: the identity operalion, closely related to Equality.

Name(s): Resirict, Constrain the domain/range of an active.
Delinitions:

Nonrecursive: A (F,G) The domain/range of G are more restrictive
than that of F, and G.Deln is just a call on F.Deln.

Sufficient, Quick: A {FG} G=Restrici.Alge(F).
Domain/range: (Aclive = Active)

{Operation =» Operation |
{Predicate —* Pradicate)

Algorithms:

Distributed: use the heuristics attached to Restrict to guide the filling
in of various facels of the new Restricted concept.
Pius: an axplicit little program for making the substitution

in the Domain/range facet, which is the essence of this concept.
isa's: Operation
Worlh: 200

Fillin: 3 heuristics.

33 That is, one (or more) compenent of the GDomain/range entry is » proper specialization of the corrasponding FDem/ran
aniry, and ali the other components match up agually.
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Appendix 2.1.55 Invert-an-operation

Name(s): invert, Find the inverse of an operation.
Definitions:

Deciaralive siow: A (F,G) The domain of G is the range of F, plus all the
domain components of F except one, D; the range of G is then D.
The vaive of G.Defn{xl,..r,...d} must be the same as ihe value

the value of F.Deinixl,. d,.,r), for any xl,...d, and r.

Necessary, quick: x (F,G) The lengih of each Domain/range eniry for

f iz the same as tha length of each eniry on G.Dom/range.
Necessary, quick: A (F,G} Taken as SETS, a domain/range eniry from F

and one from G are actually Equal.

Sufficient quick: A (F,G) G has the Name 'Finverse'.

Quick: x {F,G) Gainvert Aigs(F).
Domain/range: Operation =» Operation)

{Operalion = inverled-op>

Algorithms:

Distributed: use the heuristics altached {0 Invert to guide the filling
in of various facets of the new Inverled concept.

Isa’s: Operation
Worth: 300

Fillin: 1 heuristic.

Suggesi: 1 heuristic.

Appendix 2.1.56 Inverted-op

Name(s): Inveried operation,invarse, somelimes: converse.
Definitions:

Declarative slow: A (F} For some known operation G, invert.Dein{(GF).

Necessery, quick: X {F} The range of F is one single known concept.
Sufficient quick: A {F) F has the Name 'G-inverse’ for some G.

Generalizations: Operation

In-domain-of: Invert?

in-range=-oi: Invert
Worth: 200

34 This ass! mesns thet such operations are themselves sasily invertable,
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Name(s): Relation, reistionship.
Definitions: none.

Generalizations: Aclive

Specializations: Logical-combination
Worth: i100

Yiew: To view an operstion F as a relation, consider it as {he set of all ordered

pairs, s subset of Dom{F)xRan{F), containing <x,y> iti F.Dafnix,y).
NOTE: This concept exists in only rudimentary form in AM st the moment.

Nama(s): Logical Combination, Boolean relation.
Definitions: none.

Generalizations: Relation

Examples: Conjoin, Disjoin, imply, Negate™®
Worth: 200

Check: 1 heuristic

interes: 3 haurislics

| Sugg: 2 heuristics

NOTE: This concapt exists in only rudimentary form in AM at the moment.

_—

35 Thess aren't coded separsiely ss concepts in AM, yet.
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Appendix 2.1.59 Objecl

| Name(s): Object, static concept, Passive |
| Definitions: none.3¢

Specializations: Structure, Atom=-obj, Conjeciure’’
Generalizations: Any-concept
Examples: none.

lsa’s: Any=-concepl
In-domain=-of: Objeci~equality
Worth: {00

(No heuristicsy®® | |

Appendix 2.1.60 Conjecture

Name(s): Conjecture, Conjec, Hypothesis, Guess, Observation, Thetis, Belief.
Definitions:

Nonrecursive, Quick: X {x) Match x with <CONJEC: .0

Generalizations: Object

| In-domain=-of: Prova®?, Disprove, Test

| In-range-of: none, |Worth: 200.

-_—

3s Recall that all this means is thet computationally, sny snlity x is considered 10 be an Object iff it is en axample of some
Specialization of this concept. Thus the fist (3 A NIL) in on object, becauss it is a List, and List is one
Specialization of Structure, and Structure is a Specialization of Object.

37 This should be ‘Statement’, snd that concept should have Conjecture 2s » spaciaixation, slong with Theorem, Falsahood,
otc. This was never fully implemented in tha AM code, however.

38 The paucity of heuristics hare attests to the kittle that structures, statements, and stome dave in common They are
marely non-sctives. Thare is much thal does not apply fo any of tham {see the Active and Operation
concapte), but very few rules of 1humb applicable 10 all 3 of them

29 At the moment, none of hess three concepts is in AM
“C Conisctures are produced by heuristic rules, net mechanically by running some Active concept.
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Appendix 2.1.61 _Atom-ob)

Name(s): Atom, Alomic object, sometimes: element.
Definitions:

Nonrecursive, Quick, Opaque: A (x) ATOM(x)

Specializations: Truth-value, Variabie®', Identifier.
Generalizations: Object

in-domain-of: UNPACK: NthCHAR

in-range=-of: MKATTOM, PACK;

Yiew: To view any structure 5 as an atom, apply PACK to il.

| Worth: 100. 42 |

| Name{s): Truth value, Logics! constant, T/F, {TF}. |
Definitions: none.

Examples: Trus {T,Y,Yes), False {NIL ,F,N,No).

Genaralizations: Atom-obj

In~domain-of: Negation

Iin-range-of: all predicates; the Dein face! of each concept.

View: to view anything x as a truth value, do: A {x} NOT{Equality.Defn{x,NiL})).** |Worlh: 100.

a) Many of the nouns in this box sre not implemented se concepts in AM; og, Variable, identitiar, UNPACK, MKATOM,
92 The sbaance of sny heuristics here ust emphasizes the fact that liters conatants, identifiers, varisbies, T, atc. have very

ttle in common that ALL objects don't share.

+ 43 Since no definition ia provided, AM never generalized or spacisiized This concept, Jooked for new examples of it, ale.
“4 Thus, 0 in Lisp itealf, an entity is associated with False iff it is mull, and with True if it is snything oles in the world.
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Appendix 2.1.63 Structure
ETTe)

Name{s): Structure, Data-structure, sometimes:> List=structure,
Definitions:

Necessary, Non-Recursive, Quick, Opaque: X {x} LISTP{x)

Specializations: Ord=-struc, Unord-struc, Emply=-struc, Non-smply=-siruc,
Multiple=slemenis=siruc, Noe=mulliple-olements-siruc, Struc-of=strucs.

Generalizations: Object

in-domain=of: insert, Delete, Member, Empty, Nonemply, Ditfersnce, Union, intersect,
Parallel=replace(2), Paralial=join{2)}, Repeat{2).

In-range-oi: insert, Delete, Dilference, Union, intersect.

View: To view any enlily x a3 a struclure, insert x into an emply structure.
Worth: 200

Fillin: 2 heuristics.

interesi: 2 haurislics

Appendix 2.1.64 Structure-of-Structures

Name{s): Struclure=-of-structures, struc-of-strucs.
Definitions:

Recursive: A {5) Emply=struc.Dein(S) or

[Struclure.Defn{5) and z-Mamber.Alg(S} and Structure.Defn(z) and

Structure-oi=Structures.Dain{Delete.Algs{z,S})].
Daclarative PC: A (S) Structure.Defn(S) and (Yx¢S} Structure.Deln{x).

Specializations: none. !
Generalizations: Structure

Worth: 300

As That ie, the user might srronsously type "List-structure’ when be really means any kind of structure.
46 AM specialized this by replacing sach of the two calls on “Structure Dein’ inside Struc-of-strucasDefn by 3 coll on the

definition of » single type of structure, thereby creating, eg, Bag-of-Sate, Lint-of-Osete, Bag-of-Primes,
etc. Thess specialized concepts were then kept around so, ag, the sample traces in Chapter § and in
Appendix 5 sometimes refsr to them Also, thia concept and fs specializations can ba discovered
independently by AM, ueing heuristic rule number 232 {see Appendix 3) 15 form a new interesting type of
structure.
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Name(s): Ord-siruc, Ordered Siructure, sometimes: Lisi-struciure.
Definitions: none

Specislizaiions: Osels, Liss
Generalizations: Structure

in-domain-of: Firsi-els, Lasl=ale, All~but=-firsi=-ale, Ali-bul-last-als.

in=range=-of: Ali-bul=firsi=ale, All=but-lasi-als.

View: To view any unord=-siruc at an ord-siruc, do nothing to it, or permute it.
Worth: 200

Fillin: 2 heurislics.

Chack: 2 heurislics.

Interest: i heuristic

Appendix 2.1.66 Unord-Structure

Name{s): Unord-siruc, Unorderad Siruclure, somatimes: Collection
Delinilions: none

Spacislizations: Sais, Bags.
Generalizations: Structure

~ Yiew: Yo view any orderad-siruc ss an unord-struc, SORT il.
Worth: 200

Chack: i heuristic.

Appendix 2.1.67 Multiple-elements-structure

Name{s): Multiple~slamenis-siructure, Muit-sie-struc, sometimes: Lists.
Definitions: none

Specislizations: Lists, Bags
Ganeralizations: Structure |

In-domain-of: none.’

View: To view any nonmult=siruc as a muitesirue, do nothing to it,

or: topy some slemenis inside it a random number of limes.
Worth: 200

Fillin: 1 heuristic.

47 There srs many special funclions which tan anly make sense for multiple-ales structures, ag, Remove-1-sccurrenceixS),
versus Remove-all-occurrences{sS). Such operations have not yet been coded and added to AM
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Name(s): No-Mulliple=siements-siructura, Nonmult-strue, sometimes: Sets.
Definitions: none

Specializations: Sels, Ordered-sels
Generalizations: Structure

View: To view any mult-struc ss 3 nonmuli=struc, eliminate multiple sisments.
Worth: 200

Appendix 2.163 Em - C e

Name(s): Empty=struciure, Empty struc, sometimes: phi, NIL.
Definitions:

Nonrecursive quitk opaque: A {x} NULL{x)

Nonrecurgive: A (x) Struclure.Defn{x) and NOT{Member.Aig{x}).
Generalizations: Structure

View: To view any structure ss en empty=-siructure, repestediy apply Delete.
Worth: 100

Appendix 2.1.70 Nonempty-structure

Name(s): Nonemply=-siruclure, Nonemply siruc, somelimes: structure
Definitions:

Nonracursive quick opaque: A {x} LISTP(x) |
Nonrecursive: A (x) NOT(NOT{Member.Alg{x))).

Generalizations: Structures

In=renge-of: insert

View: To view any structure ss an Nonemply=structure, insert it into itself.
Worth: 100 | |
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Appendix 2.1.71 Sets

| Namseis): Set, Class, Collection |
| Definitions:9%

Recursive: A (5) {S=]} or Sel.Definition (Sei-Delete Alg(Member.Alg(S),5}})

| Recursive quick: A {S) {Ss{]} or Sel.Definilion {COR(S)))
Quick: x (5) {Match § with {..} }

| intuitions: none at present.” |
Specializations: Set-of-siruclures®
Generalizations: Unordered-Struclure, No-mullipie-siements=Siructure

in=domain=of: Sel=union, Sel=inlerseci, Sel-dilference, Sel=inseri, Sel-deiets

In=range=-of: Sel-union, Sel=intersect, Sel-dilference, Sei~inseri, Sel-deiete
View: To view any siruclure as a Set, do: A {x) Enclose~-in-braces(x} |

To view any predicate as a Set, do: A {P) S+{}.
Forall x in Examples{Domain(P)}: If P{x) then Sel-inserl.Aigix,S).

Worth: 400

Sugg: 1 heuristic.
Interest: 1 heurislic.

Appendix 2.1.72 Bags

| Name(s): Bag, somstimes: Multisel, sometimes: Collection.
Definitions:

| Recursive: . (5S) {S={ } or Bag.Definition(Bag-delete. Alg{Member.Alg{5},5)})
Recursive quick: A {S} {S={ ) or Bag.Definition (COR(S))) |

| Quick: A {S) (Mateh S wilh {..) }
| Specializations: Bag-of=-sfructures™

Generalizations: Unordered=Siructure, Multiple-elsments-Siructurs
Worth: 400

in-domain-of: Bag-union, Bag~inlersect, Bag-dilferancs, Bag-inserl, Bag-dalels

In-range-of: Bag-union, Bag-inlersect, Bag-difference, Bag=inseri, Bag-delete
View: To view any structure as a Bag, do: \ (x) Enclose=in=parens{x)

“8a surprising den, which fall out naturally while desigring the entrws for the definition facets of Sats, Bags, etc, is thet
the differances belwean these structures in pol in their definition sc much ae in the parlicular operators
which work on tham Thus ali & kinds of structures appear to have syntactically similsr concepts, evan
including their definitions. The reader must sxamine, sg. the definition of Bag-insert and Sel-imsert to
discover the ras! differences batwean the Set and Bag sinxtures which AM knows sbout.

49 Several nice intuitions wers onginally provided, then scrapped whan ALL intuitions were axcised from AM
50 This concep! was synthesized by AM, but was then left "permarently’ in place.
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Appendix 2.1.78 Lists

Neme(s): Lisi, List=structure, Vector, Tuple, n-lupls, Sequence, Ordered-bag
Definitions:

Recursive: A {8} (Ss< > or List.Definition{List=-Delete.Alg{Member.Aig{5),5)))
Recursive quick: X {S) (S=< > or List.Definilion (COR{S)))

Quick: A {S} {(Malch § with <..> }

Generalizations: Ordersd-Siructurs, Mulliple-elements=~Siruciure

© Specializations: Ordered-pairs
Worth: 400

In=domain=0f: List=union, List-intersect, Lisi-difference, Lisi~insert, List-delete.”!
In=range=of: Lisl=union, Lisi-intersecl, Lisi~diliersnce, Lisi~insart, Lisi-delele

View: To view any siructure ss a List, do: A {x} Enciose~in-angle-brackets(x)

Appendix 2.1.74 Ordered-pairs

Nama{s}: Ord-pair, Opair, Ordered pair, 2-luple, sometimes: i/o pair, pair.
Definitions:

Declarstive: A {S} There exist x and y such thal S=Cx,y>.
Nonracursive opaque: Lisl.Definition (S} and COR{S} and Null{CDDR{S)).

| Nonrecursive slow: & {S) List.Definition(S}, and SFO, and z=-Member.Alg(S),
and S+Lisi-delete.Alg(2,5), and S/O, and y=Member.Aig(s),
and Lisi=delete.Dein{y,5,0).

Nonrecursive quicis A {S) {Match § with ¢=x,*y> }
Genaralizations: Lists

Worth: 200

In-domain-of: Reverse-ord-pair |

In-range-of: Reverse-ord=-pair |

View: To view any entity x as an ordered pair, consider the pair (x0).
Yiew: To view an example of an active concep! F as an ord-pair, construct the

poir whose fire! element is a list of the arguments to F |
[or: THE argument fo F, if there is only one), and whose
second eiement is the value of F on those arg(s). |

View: To view an {ordered) structure S as an Dpair, consider the pair whose
first element is some member of (ihe first member of} §, and
whose second element is all the remaining members of S.

Yiaw: Transform the ordered structure (s b..c) into the Opair (a b) or {as ¢).

51 There sre many special functions which can only meke sense for lists, og, this ons: 'Betwean(x,5)' which returns » ist of
ali slements lying sfter the first occurrence of x in 5, but befors the second stcurrence. Such eperations
hove no! yo! been coded and added te AM
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Appendix 2.1.75 €

Name(s): Oset, Osel-siruciure, Ordered-se!, sometimes: Sel.
Definitions:

Recursive: X (S) {S=[ ] or Oset.Dafinition{Oset-Deleis.AlgiMambar.Alg(5),5)})
Recursive quick: X {5S} {Ss ] or Osel.Definilion (COR{S}))

Quick: A {S) (Match § with [...] )

Generalizations: Orderad-Structurs, No-muitiple-slements=Structure
Worth: 400

in~domain=0f: Osel=union, Oset=interseci, Osei-differance, Osal=inter!, Csat-deistle

in=range=of: Osel-union, Oset=intersecl, Oset-diffarence, Osat-insert, Oset-delate
View: To view sny structure es a (set, do: A {x) Enclose-in-squara-brackets{x}

Appendix 22. Concepts never fully implemented

The following concepts were designed “on paper” before AM was coded, but were never put
into AM — at least not fully. Future work on AM may include their coding, insertion into
AM, and debugging. An asterisk {eo} means that a crude, rudimentary version of the
concept was coded and placed in AM, but had little impact on its behavior.

Statement: would include conjectures, theorems, axioms, hypotheses, conclusions,
relationships.

Prove, Disprove, Proof, Counlersxample, Theorem, Tethniquet for proving existencs,
Techniques for establishing universal conjeciures,.: altogether about two dozen
concepts were designed.

Mathematical Induction, including double induction.

Mathematical theory, system, basis, foundation, axiom, isomorphism,...

. Cause and effect: their relation to theory formation.

Variable, Assignment, Binding, Quenlificalion, Scope,...: a dozen concepts along these lines.

Comstant, Identifier, PNAME/P2ZNAME,.: AM never really needed any non-opaque
information about these, although future expansion of the system should probably
include the coding and insertion of these concepts.

Inverse-coalesce: Given an active concept F(x), replace some occurrences of x in F.Defn
by "y", thereby making a new operation which iz a function of x and y.

Negate, Conjoin, Disjoin, Imply,.. These logical operators and relationships had too little
semantic information to make it necessary 10 encode each one into a concept.

(») Constructive, Destructive: these two predicates would judge any operation.
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(x) Non-concept: All entities which are not concepts. There was nothing to say about them, as
a whole.
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Appendix 23. Concepts and Heuristics as coded in LISP

The reader may wish to inspect the actual LISP encoding of concepts and their facets —
including heuristic rules. For that reason, a few pages are excerpted from the AM program
and shown below.

The facets of a concept are stored as properties on its property list. Each facet has a rigid
format that it must adhere to; that format varies from facet to facet.

Two concepts have been selected: Compose, which is larger than the typical concept, and
Oset-structure, which is a smaller and simpler concept.

Appendix 2.3.1. The ‘Compose’ Concept

Here is the property list of the atom "COMPOSE", when AM starts up. The reader should
look for {and fnd!} parallels between the complete entries below and the abbreviated
summaries on page 178. For that reason, after each entry, the corresponding summary line
is repeated {in a box).

ENGIN? (COMPOSE Compose Composition (Afterwards)

Appearance on page 178:

Name(s): Compose, Composition, sometimes: afterwards;

DEEN (TYPE NECRSUFF PC DECLARATIVE SLOW (FOREACH X IN (DOMAIN BA2)
RETURN (APPLYB™ BAI ALGS (APPLYB BAZ ALGS X]

DEFN-SUFF [TYPE SUFFICIENT NONRECURSIVE QUICK
{AND (ISA BA ACTIVE)

(ISA BAZ "ACTIVE)

(ISA BA3 ACTIVE)

(ARE-EQUIV BAJ (ALREADY-COMPOSED™® BAL BA2)
[TYPE SUFFICIENT QUASIRECURSIVE SLOW (ARE-EQUIV BA3

(APPLYB ‘COMPOSE "ALGS BA1 BA2)>
[TYPE SUFFICIENT QUASIRECURSIVE QUICK (EQUAL BA3

{APPLYB COMPOSE 'ALGS BAl BAZ))

Appearance on page 178:

S2 This 1» short for “English name”, and in the facet called “Nama(s)™ everywhere elas in this thesis.
53 The function "APPLYB" indicstes that 3 concept's face! is to be accessed and then axecuted (APPLYB C F x y.) means:

access an aniry on facet ¥ of concept C, and then run it on the argumants x,y

54 This LISP function checks fo see whether the two oparstions have been composed before.
53 The arguments tc Compose Defn (and to Compossdlgs as well) are called BAL, BAZ, Thus we would write sasch

definition of Compose as "x {BAl BAZ BAD) _"
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Definitions:

Declarative slow: A {A B.C) ¥x, Clx)}sA{B(x).

Sufficient Nonrecursive Quick: A {A,B,C} C has ihe Name ‘AB’.
Sufficient, Slow: Ars-equivalentiC,Compose.Aigs{AB)).
Sufficient, Quick: CeCompose.Algs{AB).

D-R «(OPERATION ACTIVE OPERATION)
{RELATION RELATION RELATION)
(PREDICATE ACTIVE PREDICATE)
{ACTIVE ACTIVE ACTIVE)

D-R-FILLIN] (PROGN (ARGS-ASA COMPOSE F1 F2) (CADAR (CON-MERGE-ARGS®® F1 F2)))
EXS-D-R-FILLIN] [PROGN (ARGS-ASA COMPOSE F1 F2)

[SETQ RANI {LAST (ANYIOF (GETB Fl 'D-R] {s RANI is the range of F1)
{SETQ DOM] (ALL-BUT-LAST {ANY1OF (GETB FI 'D-R]
[SETQ RANZ2 {LAST {ANYIOF (GETB F2 'D-R] {= RAN? is the range of F2)
[SETQ DOM2 (ALL-BUT-LAST (ANY OF (GETB F2 'D-R)

| [SETQ X (MAXIMAL RANZ DOM] ‘FRAC-OVERLAP]
{NCONC1 {LSUBST DOM2 for X in DOMI) RANI)

Appearance on page 178:

Domainfrange: <Active Aclive = Aclived

(Operation Aclive = Operation)
{Predicale Aclive = Predicate)

(Reistion Relation = Relation

Fillin: 2 {out of a total of 9) heuristics.
in Appendix 3, thass ars heuristics numbers 175 and 178.

ALGS «(TYPE QUASIRECURSIVE INDIRECT CASES [PROGN
{COND |

{{(NULL BAl)
{APPLYB ‘COMPOSE

‘ALGS

(RAND-MEMB (EXS37 ACTIVE)
BA2 BAI BA4))%S

TT ———————————————————————————————————reels

56 This is » LISP function, opaque to AM, which snslyzes the Domein/rangs facets of ihe twe operstions Fi and F2, and
sees how (if st all) the range of Fi con be made te overlap the domein of F2. Note that F2 ie apphed
AFTER F1. The LISP code for this function is presanied on page 221.

>7 The function "EXS” ripples sutward from ite argument, collecting examples a6 it gos.
5 Note what this clause says: if Composeiigs is aver called with its first argument mining, rondomly select an Active to

use 38 {hat conrelituent of the composition
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FAL
((ALREADY-COMPOSED BA BA2) {s Note: this sets GTEMP12) GTEMP12)
((AND BA1 BA2 (15-CON®® BAI)

{IS-CON BAZ)
{ISA BA ACTIVE)
{ISA BAZ ACTIVE)

{SETQ GTEMP!1 (CON-MERGE-ARGS BAl BAZ GTEMPI2))
{+ GTEMP12 is now the name of lhe new composition)
(CREATEB®! GTEMP12)
[SETQ GUPI (COND {{ISAG CS-B 'COMPOSE) C$-8) (T *COMPOSE]
{s GUPI is now the KIND of concept which GTEMP12 is to be an example of.

This will usually be "COMPOSE" or some variant of it. )
[INCRB®2 GTEMP12 "DEFN
(LIST "TYPE "APPLICATION "OF GUPI

(APPEND (LIST "APPLYB (Q™ COMPOSE) (Q ALGS) (KWOTE BA1) (KWOTE BA2))
(FIRSTN {LENGTH (CAAR GTEMP11)) BA-LIST]

{¢ Another way to fill in an eniry for GTEMP12.Defn)
{COND

{[SETQ GTEMP308 {CAR {SOME (EXS COMPOSE)
{FUNCTION (LAMBDA (C}

(MEMBER (LASTELE (GETB GTEMP12 *DEFN))
(GETB (LASTELE C) 'DEFN])

{FORGET-CONCEPT GTEMP12) :

(CPRINIS 8 GTEMP12 turned out to be equivalent to GTEMP308 DCR)!
GTEMP3I0B)

(T (INCRB GUP1 "EXS (NCONC! (GEARGS GUPL) GTEMPI2))
[SOME {RIPPLE GUP1 'GENL)

{FUNCTION {LAMBDA (G)
{SOME {GETB G 'D-R)

{FUNCTION (LAMBDA (D)
{AND (ISA BA1 (CAR D))

(ISA BA2 (CADR D))

{(INCRB GTEMP12 "UP" (CADOR D))
{INCRB {CADDR D) 'EXS GTEMP12)

{# This last INCRB says that if an operation f maps onto range C,
and we apply and get a new Being, then that Being ISA C)%¢

(INCRB GTEMP]2 'IN-RAN-OF GUP})

{INCRB BAZ "IN-DOM-OF GUP1) |
ees ——— A — a —— ee a ice

>9 Similar 1c last case: tskes care of missing second argument. The ampersand, “4”, indicates an omission from this lating.
89 An sbbravistion for (APPLYB "ANY-CONCEPT 'DEFN BAL): ia, test whether BAT is a bons fide tontept or not.
Bl CREATED is » function which sats up a new blank dats structure for a new concept.
62 The function call (INCRE C F X) means: add entry X to the F facet of concept C.
&3 The LISP function “Q" is like 5 double quote; after ens svalustion (Q X) returns “X; sfier one more svalustion, "X returns

X; after » final avaluation, we get the VALUE of X

8a A conditional print ststament. If the verbosity level is high enough {>8), this message is typed out 16 the user. Note tha
intermixing of varisbies (eg, “GTEMPI08") and undefined atoms (eg. “equivalent™). CPRINIS sxamines
sack srgumant, and if it is undefined, it quotes i.

5 The ISA's facet is called "UP" in the LISP program
os This in a streamlined, speciakzed version of the mere general heuristic rule number 154; see page 259.
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{INCRB BA! "IN-DOM-OF GUP1}

(s Now see if the composition GTEMP12 shares any ISA's entries with
either constituent operation: BA1 or BA2)%

[MAPC [INTERSECTION (SET-DIFF [UNION (GETB BA! "UP) (GETB BAZ *UP)
{GETB GTEMP12 "UP)

{FUNCTION {LAMBDA (2)
(COND

{{DEFN Z GTEMP12)
(INCRB I "EXS GTEMP12)
(INCRB GTEMP12 "UP 2]

{COND

[{GETB GTEMP12 *UP)
(SETB GTEMP12 'GUP (COPY (GETB GTEMP12 UP]

{T (INCRB GTEMP12 "UP OPERATION)
{(INCRB "OPERATION EXS GTEMP12))

& {s A similar search now for GENL/SPEC of the composition)
(SETB GTEMP12 'D-R {CAR GTEMPLL))
{INCRB GTEMP]2 "ALGS

{LIST "TYPE *NONRECURSIVE "APPLICATION "OF GUP] (CADR GTEMPI 1)
& (s Code for synthesizing a Defn entry for GTEMP12)
(SETB GTEMP12 "WORTH

{(MAP2CAR {GETB BA1 "WORTH) (GETB BA2 "WORTH) ‘TIMES1000))
(GS-CHECK®® GTEMPI2I)]

Appearance on page 178:

Algorithms:

Distributed: use the heuristics sttached tc Compose to guide the filling
in of various facets of the naw composition.

{The heuristics referred ic are shown in Appendix 3.6, on page 263.)
Fillin: 5 (out of a total of 9) heuristics.
Check: 1 heuristic {out of a total of 2)

Up (OPERATION)

Appearance on page 178: |

I ——————————— A —— a cid

87 This next MAPC is 1hus the LISP encoding of heuristic ruls number 177; see pags 263.
3 This is a gererai-purposs function for testing that there is ne hidden cycle in the Generalization metwork, that no two

concepts are both genersimstions and specisiizstions of sach ather, unless they are foggedae being
equivalent te sack ether,
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WORTH (300)

Appearance on page 178:

INT®® famaTRIX (1 2 3) (4 5)
{COND [{INTERSECTION (MAPAPPEND (GETB BAZ '0-R) 'LAST)

(MAPAPPEND (GETB BA1l 'D-R) 'ALL-BUT-LAST))
300

(IDIFF 400 (ITIMES 100 (IPLUS (LENGTH (GET BA! 'D-R))
{LENGTH (GETB BAZ 'D-R]

{REASON (¢ In some interpretation, Rangs-of-o0p2 is 1 component of Domain-of-opli)))
{COND [[MEMB [CAR (LAST (CAR (GETB 8A2 'D-R}

(ALL-BUT-LAST (CAR (GETB BAI D-R}
400

(IDIFF 1000 {ITIMES 100 (LENGTH (CAR (GET8 BAI 'D-R)}
{REASON (» In canonical interpretation, Range-of-op2 is 8 component of Domain of opi}

(COND [{INTERSECTION (GETB CS5-B TIES)
(UNION {GETB BA] TIESXGETB BA2 TIES)

100

(ITIMES 100 [LENGTH (INTERSECTION (GETB CS-B TIES)
(UNION (GETS BA1 TIESXGETB BA2 TIES)

(REASON (# This composition preserves some good properties of its constituents))))
{COND [{SET-DIFFERENCE (GETB CS-B TIES)

(UNION {(GETB BA1 TIESXGETB BA2 TIES)
100

{ITIMES 100 [LENGTH {SET-DIFFERENCE (GETB CS-B TIES)
(UNION (GETB BA1 TIESXGETB BA2 TIES)

{REASON (+ This composition has some new props, not true of either constituent))))
(COND [(OR (GREATERP (GETS BAl "WORTH) 500))

{GREATERP (GETB BA2 "WORTH) 500)))
300

{IQUOTIENT (ITIMES {(GETB BA1 "WORTHXGETB BA2 "WORTH))
1000)

(REASON (+ Opl and/or Op2 are very interesting themselves)}}}
{COND {[[IS-ONE-OF [CAR (LAST (CAR (GETB BA2 'D-R)

{ALL-BUT-LAST (CAR {GETB BAl 'D-R]
350

(IDIFF [ITIMES 100 (IDIFF
{LENGTH (CAR {(GETB BAl 'D-R}
{LENGTH (RIPPLE [IS-ONE-OF

[SETQ TMP4 {CAR (LAST (GETB BA2 'D-R)
(ALL-BUT-LAST (CAR (GETB BA] 'D-R]

'GENL

(ITIMES 50 (LENGTH (RIPPLE TMP4 'GENL]
{REASON {# In canonical interpretation, Rangs-ol-op2 is a specialization of component

of Domain-of-opl))}

9 Nots that sithough the Fillin and Suggest heuristics are blended inte the relevant facets (eg, into the Algorithms for
COMPOSE], the INTERESTINGNESS type heuristics are kept separate, in this facet.
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(COND {[MEMB [CAR (LAST (CAR (GETB BA! 'D-R)
(ALL-BUT-LAST (CAR {GETB BAZ 'D-R]

450
{IPLUS 300 (COND {{[MEMB [CAR (LAST (CAR {GETB BA! 'D-R]

” {ALL-BUT-LAST (CAR {GETB BAI 'D-R]}

{T 250)

{COND {[MEMB [CAR (LAST (CAR (GETB BA2 'D-R}
{ALL-BUT-LAST (CAR (GETB BA2 'D-R]

11)

(T 250)

(ITIMES 70 (LENGTH (RIPPLE [CAR (LAST (CAR (GETB BA1l *D-R] "GENL)
{REASON (s in canonical interpretation,

Rangs-of-opl is one component of Domain-of-0p2}}
&

(COND [{iSA [CAR {LAST {CAR (GETB BAl 'D-R]

app ro BUT-LASY {CAR {GET8 BA2 "D-R]
(iPLUS 50 (COND ([ISA [CAR {LAST {CAR (GETS BA! 'D-R)

(ALL-BUT-LAST (CAR {GETB BA! 'D-R)}
10}

{T 100))

{COND {[ISA [CAR {LAST (CAR {GETB BA2 'D-R]
(ALL-BUT-LAST {CAR (GETB BA2 D-R)

11)
{TY 100})

{ITIMES 50 {LENGTH (RIPPLE [CAR {LAST (CAR {GETS BA1 'D-R] "GENL]
{REASON (s Range-of-op1 is a specialization of a component of Domain-of-0p2)

Appearance on page 178: :

Interest: 11 heuristics.

The heuristic rules ancoded above are shown in English on page 268.

TR

Here is the code for CON-MERGE-ARGS, the function which decides how to overlap
the domainirange facets of its two arguments, Fil and F2:

{CON-MERGE-ARGS

[LAMBOA (FI F2 F12 PGMI SCH SAPL DOM DOMZ RAN! RANZ TL DOMI)

{SETQ RANI {LAST {CAR (GETS FI Li
{SETQ DOMi (GETS F1 'O-R)
[SETQ RANZ (LAST {CAR (GETB F2 'D-R}

{SETQ DOM2 nownr {GETS £2 'D-R)}
{SETQ DOMI {AND (COR DOM1)

(LIST (CADR (MIN2 {APPEND RAN2 RAN2 RANZ

RAN2} DOM) ‘FRAC-OVERLAP]
{+ As DOM: and RAN are located, Switchingof Arge mey ba required,inside PCM I}
{AND (MEMB (CAR DOMI) DOM2) {SETQ DOMJ NL)
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{SETQ GYEMP20 (LENGTH DOM2))

{SETQ SAPL {NCONC (LIST "APPLYB (KWOTE F1) (DQ ALGS)
{MAPCAR {SUB-ONCE X

[SETQ GTEMP1S (COND
((IS-ONE.OF {CAR RANZ} DOME)

[{SETH SCHK (ONE-1SAG DOM (CAR RAN2]
((SETQ SCHK {AND (SETQ TIL {EXS (CAR RAN2))

{CAR {SOME DOM! (FUNCTION (LAMBDA {D}

{INTERSECTION

TiL

{EXS D}
DOM)

(FUNCTION (LAMBDA 1}

{COND

(EQ ZX)
x}

(1 {SETQ GTEMP20 (ADD GTEMP20))

{CAR (FNTH BA-LIST GTEMP20]
{+ SCHX ts a flag which means that 12 maps us inte an slement of RAN2 which is not guaranteed
& priori 1c be an element of DOM], hence a check for this applicability of 1 will then have to be made)

{COND

{(FMEMB 'X SAPL)

{(SETQ DOM3 (REM-ONCE GTEMP13 DOMIN
(SETQ GTEMPZ (APPEND DOM3 DOMZ))

[COND
[(NEQ (LENGTH GTEMPT)

{LENGTH (SELF-INT GTEMPZ)D
(CPRINIS 8 CRLF CRLF AM can later coalesce the D-R of Fi12 DCR)

[ADD-CANDS {LIST {LIST (LIST 'APPLYB {Q COALESCE) (GQ ALGS) (KWOTE F12)}
(IPLUS 100 (QUO (DOTPROD {FIRSTN 2 (GETB F1 "WORTH))

(GETB F2 "WORTH)) 2000)

{LIST (SPLIST There is an overlap in the new combined
domain of the operation F12]

(SWHY § {There is an obvious evarlep in {8 GTEMP?)the raw combined domain of {@ F12)

The next piece of this function is the heuristic rule numbered 186 in Appendix 3.
{{SOME GYEMPY (FUNCTION (LAMBDA OX}

{IS-ONE-OF X (CDR (FMEME X GTEMP?]
{CPRINIS 10 CRLF CRLF AM may ister coalesce the D-R of F12 DCR)
[ADD-CANDS (LIST {LIST (L1ST "APPLYB (Q COALESCE} {Q ALES) (KWOTE F12))

(QUO (DOTPROD {FIRSTN 2 (GETB F1 "WORTHY
(GETB F2 "WORTH)) 2500)

{LIST (SPLISY There mey be an overlep
in the now combined domain of the operstion F112]

{SWHY 10 (Thare in 2 subtle overlap in (8 GTEMP7),the new combined domain of (9 F12]
{SETQ PGM (LIST "PROG

{LIST '%)

[LIST SETQ 'X
(NCONC {LIST 'APPLYB {(XWOTE F2) (Q ALCS)

(FIRSTN (LENGTH DOM2) {LIST "BA! 'BA2 'BA3) |
{LIST 'RETURN

{COND

{SCHK (LIST "AND

{LIST "APPLY: {Q DEFN) (XWOTE SCHK)
SAPLY)

{T {LIST "AND "X SAPL]
{LIST {LIST (APPEND DOM2 DOM3 RAN1)) PGMID

{T {« Composing is no! possible} NIL]
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Here is the actual property list of the data-structure corresponding to the Osets concept:

ENGN (0SET Oset Oset-structurs OSET-STRUC, Ordered-set (Set)
DEFN (TYPE NEC&SUFF RECURSIVE TRANSPARENT [COND

((EQUAL BAI {OSETN TY)
{T (APPLYB "OSET "DEFN (APPLYB 'OSET-DELETE "ALGS

Gs'SOME-MEMB “ALGS BAL)1

(TYPE NEC&SUFF RECURSIVE QUICK [COND
({(EQUAL BAl (OSET NT)

onBA1) {APPLYB "OSET "DEFN (RPLACD BA1 (CDOR BAL)
(TYPE NEC&SUFF NONRECURSIVE QUICK (MATCH BAI WITH ("OSET 8)))

GENL (0rD-sTRUC NO-MULT-ELES-STRUC)
WORTH  (a00)
IN-DOM-OF (0SET-J0IN OSET-INTERSECT OSET-DIFF OSET-INSERT OSET-DELETE)
IN-RAN-OF (0SET-JOIN OSET-INTERSECT OSET-DIFF OSET-INSERT OSET-DELETE)
VIEW (STRUCTURE (RPLACA BAI 'OSET))

Compare this with the way that the "Osets" concept appeared, on page 214 of Appendix
2.1: |

Name(s): Oset, Oset-strucivre, Ordered-set, sometimes: Sel. |
Definitions

Recursive: A (S) (Ss[ ] or Ouel.Definition{Oset-Delete.Alg{Momber.Alg($),$)))
Recursive quick: A {S) {Ss[ ] or Osel.Delinition (COR(S)))
Quick:A {S) (MatchS with [..] }

Generalizations: Ordered-Siructure, No-multiple-sloments=Structure
Worth: 400 |

In=domain=of: Deeteunion, Oset=-intersect, Ovet-ditierence, Oset-inser!, Oset-delete
In=range=-of: Oset-union, Dsst-intersect, Dset-ditiarence, Oset-irsert, Oset-delete
View: To view any structure se & Onset, do: X {x) Enclose~in=square=brachets{x)
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The list below is meant to suggest the range of AM's definitions; it is far from complete, and
most of the omissions were real losers. The concepts are listed in the order in which they
were defined.”% In place of the (usually-awkward) name chosen by AM, I have given either
the standard math/English name for the concept, or elise a short description of what it is.

Sets with less than 2 elements (singletons and empty sets).
Sets with no atomic elements (nests of braces).

Singleton sets.
Bags containing (multiple occurrences of) just one kind of element.
Superset (contains).
Doubleton bags and sets.
Set-membership.
Disjoint bags.
Subset.

Disjoint sets.
Singleton osets.
Same-length {same number of elements).
Same number of left parentheses, plus identical leftmost atoms.
Count (find the number of elements of a given structure).
Numbers {unary representation).
Add.

Minimum.

SUBI (A (x} x-1).

Insert x into a given Bag-of-T's (aimost ADD], but not quite).
Subtract (except: if x<y, then the result of x-y will be zero").
Less than or equal to.
Times.

Union of a bag of structures.
& (the ampersand represents the creation of several real losers.)
Compose a given operation F with itself (form FoF).
Insert structure S into itself.

Try to delete structure S from itself {a loser).
Double {add 'x’ to itself). |

Subtract 'x’ from itself (as an operation, this is a real zero’2).
Square {TIMES(x,x)).
Union structure S with itself.

Coalesced-replace2: replace each element s of S by F{s.s).
Coalesced-join2: append together F(s,s), for each member 5¢S.
Coa-repeat2: create a new op which takes a struc S, op F, and repeats F(3,t.S) all along S.
Compose three operations: A{(F,C,H) Feo{GeH).
Compose three operations: A{F,G,H) (FsC)oH.
oe tere ee ——

70 Soe Appendix 5.2, p. 204, for 3 detailed trace of how these concepts were discovered. Or see Sectien 8i,p 115
for a briafer version of the same development.

71 Thin is "natural-number subtract”, in the some spirit of Asming os we find for “integer division”
12 a natural zero?
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& (lots of losing compositions created, eg. Self-inserteSet-union.)
ADD (x): all ways of representing x as the sum of a bunch of nonzero numbers.
CoH, s.t. HIG(H(x))) is always defined (wherever H is), and G and H are interesting.
InsertoDelete.

Deletesinsert.

SizesADD". (3 (n) The number of ways to partition n)
Cubing
&

Exponentiation.
Halving (in natual numbers only; thus Halving{15)e?).
Even numbers.

Integer square-root.
Perfect squares.
Divisors-of.

Numbers-with-0-divisors.

Numbers-with-1.divisor.

Primes (Numbers-with-2-divisors).
Squares of primes (Numbers-with-S-divisors).
Squares of squares of primes.
Square-roots of primes (a loser).
TIMES!(x): all ways of representing x as the product of a bunch of numbers (>1).
All ways of representing x as the product of just one number {a trivial notion).
All ways of representing x as the product of primes.
All ways of representing x as the sum of primes.
All ways of representing x as the sum of two primes.
Numbers uniquely representable as the sum of two primes.
Products of squares. |
Multiplication by 1.
Multiplication by 0.
Multiplication by 2.
Addition of 0.

Addition of 1.

Addition of 2.

Product of even numbers.

Sum of squares.
Sum of even numbers.

& (losers: various compositions of 3 operations.)

Pairs of perfect squares whose sum Is also a perfect square (x2ey2az?),
Prime pairs {p.p+2 are prime).
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Appendix 3. AM's Heuristics
EERE=

Infallible rules of discovery leading to the solution of all possible mathematical
problems would be more desirable than the philosophers’ stone, vainly sought by
the alchemists. Such rules would work magic; but there is no such thing as magic.
To find unfailing rules applicable to all sorts of problems is an old philosophical
dream; but this dream will never b¢ more than a dream.

== Polys

To the extent that a professor of music at a conservatoire can assist Ais students
in becoming familiar with the patterns of harmony and rhythm, and with how they
combine, it must be possible to assist students in becoming sensitive to patterns of
reasoning end Aow they combine. T Ae analogy is not far-fetched at all

~~ Dijkstra

This appendix lists all the heuristics with which AM is initially provided. They are
organized by concept, most general concepts first. Within a concept, they are organized into
four groups:

+ Fillin: rules for filling in new entries on various facets.

+ Check: rules for patching up existing entries on various facets,

* Suggest: rules which propose new tasks to break AM out of stagnant loops.
* Interest: criteria for estimating the interestingness of various entities.

Each heuristic is presented in English translation. Whenever there is a very tricky, non-
obvious, or brilliant translation of some English clause into LISP, a brief note will follow
about how that is coded. Also given {usually) are some example(s) of its use, and its overall
importance. Concepts which have no heuristics are not present in this appendix.

Hundreds of heuristics were planned on paper but never coded {eg. those dealing with
proof techniques, those dealing with the drives and rewards of generalized message
senders/receivers), and whole classes of rules were coded but never used by AM during any
of its runs (eg, how to deal with contradictions, how to deal with Intu’s facets). Such
superfluous rules will not be included here. They would raise the total number of heuristic
rules from 242 to about 500.

Tne iuie numbering in this Appendix is referred to occasionally in other appendices. The
total number of rules coded in AM is actually higher, since many rules are present but
never used, and since many rules listed with one number here are really several rules in
LISP {eg., see rules $7 and 129).
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It would be advantageous to have a cross-indexing of the body of heuristics along several
dimensions {a multiple sorting by a small set of key parameters): sorted by interest, by
relevance {the current arrangement), by cost, by payoff, by frequency of usage, etc. This is
left as a starred excercise for the interested reader.
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Appendix 3.1. Heuristics for dealing with Anything

All these rules deal with any item X, be it concept, atom, event, etc. These rules are about
as general — and as mak — as one can imagine.

Anything . Suggest

I. If AM has recently referenced entily X,
. Then boost the priority of any {asks involving X.

2. li the user has recently referred to X,
Then boos! the priority of any tasks involving X.

The above two rules simply reaffirm the idea of "focus of attention”. The boost in ratings is
only slight, and only temporary {it decays toward zero exponentially with time). Besides this
gradual decline in task ratings, the rule below explicitly modulates this boosting, so that
infinite loops can be avoided.

3. it AM has recently deall with X wilh poor results,
Then lower the priorily raling of all {asks involving X.

4. it AM jus! referenced X and almost succeeded, but ro! quite,
Then look for & very similar entity ¥, and retry the activity with Y in pisce of X.

There is a separate precise meaning for “almost succeed”, “similar entity”, and “retry” for
each kind of entity and activity that might be involved. For example, If the activity were a
task (say to fill in examples of Odd-primes) and the entity X were a concept (in this case,
Odd-primes), then a ‘similar entity’ might be the concept Odd-numbers, and in that case the
result of this rule would be a new task {to fill in examples of Odd-numbers). If the failure
occurred while AM was trying to access the examples facet of Primes, with XsExamples,
then a ‘similar entity’ might be the Boundary-examples facet, and the above rule would
suggest that AM access instead the Boundary-examples facet of Primes. Of course, this rule
Is so weak that it is not often of much help.

S. if space is running oul, and AM hat not referenced X for a long time, and X is taking up a lot of
space, and no important conjeciures reference X,

Then X may be forgolien and ils space liberated. Probably the user should be informed of this,
at least tersely.

Just a general-purpose directive for emergency garbage-collection.
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Anything . Interest

6. Any entity X Is interesting If il is referred to in several interesting conjectures.

7. Any entity X is interesting if it is related {via a rere, interesting relation) to another entity
which arose in a very different way and is not obviously tied to X.

Unexpected connections are worth closer examination, typically. X might be ‘related to’ Y
because F(X)=Y (for some very interesting operation F), because Y(X) is true {for some
rarely-satished predicate Y), because some conjecture involving X is syntactically identical to
the same conjecture involving Y, etc.

8. Enlity X is (tenlatively) interesting if there is an anslegy in which X corresponds fo ¥, and ¥
has turned oul {0 be very interesting.

9. If enlity X is sn example of concept C, and X satisfies some festures on C.int,
Then X is interesting, end C's Interssetingness features will indicate & numeric rating for X.

This is practically the definiton of the Int facet. Below is a much more ususual rule:

10. if entity X is sn example of concept C, and X satisfies absolutely none of the features on Cnt,
snd X is just about ihe only C which doesn't satisly something,

Then X is interesting becouse of its unusual boringness.

Since most singletons are interesting because all pairs of their elements are Equal, the above
rule says it would be interesting actually to find a singleton for which not all pairs of its
members were equal. While it would be interesting, AM has very little chance of finding
such a critter.
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Appendix 8.0. Heuristics for dealing with Any-concept

This concept has a huge number of heuristics. For that reason, [ have partitioned off —
both here and in AM itself’ — the heuristics which apply to each kind of facet.

Appendix 3.2.1. Heuristics for any facet of Any-concept

The first set of heuristics we'll look at are very general, applying to no particular facet
exactly.

Any-concept . Fillin

11. When trying lo fill in fecs! F of concept C, for any C and F,
If C is analogous io concept X, and X.F has some eniries,
Then try to construct the analogs of those eniries, and see if they are really valid entries for

CF.

Recall that "C.F" is shorthand for “facet F of concept C". This rule simply says that if an
analogy exists between two concepts C and X, then it may be strong enough to map entries
on X.F into entries for C.F. Note that F can be any given facet. There is an analogy
between Sets and Bags. and AM uses the above rule to turn the extreme example of Sets —
the empty set — into the extreme kind of bag.

Any-concept . Suggest

12. If the F {acet of concept X is blank,
Then consider trying lo fill it in.

The above super-weak rule will result in a new task being added to the agenda, for every
blank facet of every concept. it is more of a legal move generator than a plausible move
proposer. The rating of each such task will depend on the Worth of the concept X and the
overall worth of the type F facet, but in all cases will be very small. The “emptiness” of a
facet is always a valid reason for trying to fill it in, but never an a priori important reason.
So the net effect of the rule is to slightly bias AM toward working on blank — rather than
non-biank — facets.

13. While trying lo fill in facel F of concept C, for any C and F, if C is known 10 be similer to tome
other concepi D, except for difference d,

Then try to fill in C.F by selecting ilems from DF for which d is nonexistent.

This rule is made more specific when F is actually known, and hence the format of d is
actually determined. For example, if CsReverse-at-all-levels, Faexamples, then {at one
particular moment) a note is found on the Conjecs facet of concept C which says that C is

———————————————————————————————————————————————

i The the LISP program has & separate concept salied "Exemplen-of-sny-toncept”, another concapt called "Definitions-of-
any-toncept’, sic
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just like the concept D=Reverse-top-level, except C also recurs on the nonatomic elements of
its arguments, whereas D doesn’t. Thus d is made null by choosing examples of D for
which there are no nonatomic elements. So an example like ‘Reverse-top-lavel(<a b ¢>)=<c b
8>" will be selected and will lead to the proposed example ‘Reverse-at-all-leveis{<s b c>)a<e
b #>°, which is in fact valid.

14. After dealing with concept C,
Slightly, temporarily boost the prierity value of each existing task which involves an Active

concept whose domain or range is C.

This is done efficiently using the In-dom-of and In.ran-of facets of C. A typical usage was
after checking the just-filled-in examples of Bags, when AM slightly boosted the rating of
Alling in examples of Bag-union, and this task just barely squeaked through as the next one
to be chosen. Note that the rule reinforced that task twice, since both domain and range of
Bag-union are bags.

Any-concept . Check

15. When checking facet F of concept C, {for sny F and C,)
Prune sway at ihe entries there until the face's size is reduced io the size which C merits.

The algorithm for doing this is as follows: The Worth of C is multiplied by the overall
worth of facet type F. This is normalized in two ways, yielding the maximum amount of list
cells that C.F may occupy, and also yielding the maximum number of separate entries to
keep around on C.F. If either limit is being exceeded, then an entry is plucked at random
(but weighted to favor selection from the rear of the facet) and excised. This repeats as jong
as CF is oversized. As space grows tight, the normalization weights decline, 30 each
concepts allocation is reduced.

16. When checking facetF of concept C,
Eliminate redundant aniries.

Although it might conceivably mean something for an eniry to occur twice, this was never
desirable for the set of facets which each AM concept possessed.

Any-concept . Interest

The interest features apply to tell how interesting a concept is, and are rarely subdivided by
relevant facet. That is, most of the reasons that Any concept might be interesting will be
given below.

17. A concept X in inleresting if X.Conjecs conlsins some interssting entries.

18. A concopt is interesting if is boundary secidontally coincides with anether, well-known,
interesting concept.
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The boundary of a concept means the items which just barely fall into {or just barely miss
satisfying) the definition of that concept. Thus the boundary of Primes might include 1,2,34.
If the boundary of Even numbers includes numbers differing by at most 1 from an even
number, then clearly their boundary is all numbers. Thus it coincides with the already-
known concept Numbers, and this makes Even-nos more interesting. This expresses the
property we intuitively understand as: no number is very far from an even number.

19. A concept is interesting if ils boundary accidentally coincides with the boundary of another,
very difierent, interesting concept.

Thus, for example, Primes and Numbers are both a little more interesting since the extreme
cases of numbers are all boundary cases of primes. Even numbers and Odd numbers both
have the same boundary, namely Numbers. This is a tie between them, and slightly raises
A M's interest in both concepts.

20. A concept is inleresting if it is == accidentally == precisely the boundary of some other,
interesting conceptl.

In the case mentioned for the above rule, Numbers is raised in interest because it turns out

tc be the boundary for even and odd numbers.

21. A concepl is boring if, aller several attempts, only a couple examples are found.

Another rule indicates, in such situations, that the concept may be forgotten and replaced by
some conjecture.

22. Concept C is interesling if some normally=-inefficient oparstion F can be efficiently performed
on C's.

Thus it is very fast to perform Insert of items into lists because (i) no pre-existence checking
need be done (as with sets and osets), and (it) no ordered merging need be done (as with
bags). So “Lists” is an interesting concept for that reason, according to the above rule.

23. Concept C is interesting if each example of C accidentally seams lo satisly the otherwise-
rarely salisfied predicate P, or {equivslently) if there is an unusual conjecture involving
Cc. |

This is almost a primitive affirmation of intererestingness.

24. Concept T ie interesting if C is closely related to Ihe very interesting concept X.

This is intererestingness by association. AM was interested in Divisors-of because it was
closely related to TIMES, which had proven to be a very interesting concept.

25. Concept C is interesting if there is an analogy in which C corresponds 10 Y, and the snalogs of
the interest features of Y indicate that C is interesling.

This might have been a very useful rule, if only there had been more decent analogies
Roating around the system. As it was, the rule was rarely used to advantage. It essentially
says that the analogs of Interest criteria are themselves (probably) valid criteria.
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26. A concept C is interesling if one of its generalizations or specializations turns out to be
unexpectedly vary interesling.

“Unexpected” means that the interesting property hadn't aiready been observed for C. If C
is interesting in some way, and then one of its generalizations is seen to be interesting in
exactly the same way, then that is “expected”. It's almost more interesting if the second
concept unexpectedly lacks some fundamental property about C. At least in that case AM
might learn something about what gives C that property. In fact, AM has this rule:

27. If concept C possesses some very interesting properly lschad by one of ils specializations S,
Then both C and S become slightly more interesting.

In the LISP program, ths is closely linked with rule 104.

28. If a concept C is re-derived in 3 new way, thet makes it more interesting.
If eoncepls Ci and C2 lurn out lo be squivaient concepts, then merge them. The combined

concept in now more interesting than either of its predecessors.

The two conditionals above are really the same rule, so they aren't given separate numbers.
C1 and C2 might be conjectured equivalent because their examples coincide, each is a
generalization of the other, their definitions can be formally shown to be equivalent, etc.
This rule is similar in spirit to rule number 114.

Appendix 3.2.2. Heuristics for the Examples facets of Any-concept

The following heuristics are used for dealing with the many kinds of examples facets which
a concept can possess: non-examples, boundary examples, Isa links, etc.

Any-concept . Examples . Fillin

29. To {ill in examplesof X, whereX is a kindof ¥ {for some more general concept VY),
inspect the examples of Y; some of them may be exampies of X as well,
The further removed Y is from X, the less cost-effective this rule is.

For the task of filing in Empty-structures, AM knows that concept is a specialization of
Structures, 30 it looks over ali the then-known examples of Structures. Sure enough, a few of
them are empty (satisfy Empty-structures.Defn). Similarly, for the task of filling in examples
of Primes, this rule would have AM notice that Primes is a kind of Number, and therefore
look over all the known examples of Number. It would not be cost-effective to look for
primes by testing each example of Anything, and the third and final clause in the above
rule recognizes that fact.

30. To fill in non-exemples of concept X,
Search the spacislizations of X. Look of sil iheir non-exemples. Some of them may turn out to

be nen-enamples of X as well.

This rule is the counterpart of the last one, but for non-examples. As expected, this was less
useful than the preceding positive rule.
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31. Hi the current task is 1o {ill in examples of any concept X,
Then one way fo get them is 10 symbolically instantiate a definition of X.

That rule simply says to use some known tricks, some hacks, to wring examples from a
declarative definition. One trick AM knows about is to plug already-known examples of X
into the recursive step of a definition. Another trick is simply to try to instantiate the base
step of a recursive definition. Another trick is to take a definition of the form "A {x} x isa

P, and <sub-expression>”, work on instantiating just the sub-expression, and then pop back
up and see which of those items are P's.

32. H{ the current lask iz lo fill in non-sxempies of concept X,
Then one fast way 10 get them is 10 pick sny random item, any example of Anything, and check

that il fails X.Deln. |

This is an affirmation that for any concept X, most things in the universe will probably not
be X's. This rule was almost never used to good advantage: non-examples of a concept X
were never sought unless there was some reason to expect that they might not exist. In those
cases, the presumption of the above rule was wrong, and it failed. That is, the rule
succeeded iff it was not needed.’

33. To {ill in examples of concept X,
if X.View lois how 10 view a 1 ss if it were an X, and some axamples of Z ara known,
Then just run X.View on those examples, and chack that the resulis really are X's.

Thus examples of osets were found by viewing other known examples of structures {eg.,
examples of sets) as if they were osets.

34. To {ill in examples of concept X,

Find an operation whose range is X,2 and find sxamples of that operation being applied.

To fill in examples of Even-nos, this rule might have AM notice the operation ‘Double’.
Any example of Double will contain an example of an even number as its vaiue: eg, <3-+6>
contains the even number 6.

35. If the current task is to {ill in examples of concept X,
One bizarre way is 10 specislize X, adding a strong constraint to X.Dein, and then look for

examples of that new spatislization.

Like the classical “insane heuristic®®, this sounds crazy but works embarassingly often. If 1
ask you to find numbers having a prime number of divisors, the rate at which you find
them will probably be lower than if I'd asked you to find numbers with precisely 2 divisors.
The variety of examples will suffer, of course. The converse of this heuristic — for non-
examples — was deemed too unaesthetic to feed to AM.

2 Cateh-22?

3 or at least INTERSECTS X Use the In-ren-of focate and 1he rippling mechaniem to find such an operation
fa herder took might ba sesier to do. A stronger theeram might be sssier to prove. This ie called "The inventor's Paradox”,

on page 121 of [Polya 57]
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36. To {ill in sxamples of X,

One ineflicient method is io examine random examples of Anything, checking each by running
X.Dafn 10 see if it is an X. Slightly better is to ripple outward from X in ail dirsclions,
testing ali the examples of the concopls encountered.

This is blind generate-and-test, and was (luckily) not needed much by AM.

37. To find mors examples of X {or: io find an exireme example of X), when a nice big example is
known, and X has a recursive definition,

Try to plug the known example into the definition and produce a simpler one. Repeat this until
an axample is produced which satisfies the bate-siep predicate of the definilion. That
entity is then an extremes (boundery) example of X.

For example, AM had a definition of a set as

"Set(S) if S={} or if Set(Remove-random-element(S))." When AM found the big example
{A.B.{{C].DL{{{E}}}.F} by some other means, it used the above rule and on he recursive
definition to turn this into {A B,[{{E}}},F} by removing the randomly-chosen third element.
{A,B,F} was produced next, followed by {B,F} and {F}. After that, {} was produced and the
rule relinquished control.

38. To find examples of X, when X has a recursive definition,
One method with low success rate but high payoff is lo try to invert that definition, thereby

cresting & procedure for generating new examples.

Using the previous example, AM was able to turn the recursive definition of a set into the
program “Insert-any-random-item(S)", which turns any set into a {usually different and
larger) new set. Since the rules which AM uses to do these transformations are very special
purpose, they are not worth detailing here. This is one very managable open problem,
where someone might spend some months and create a decent body of definition-inversion
rules. A typical rule AM has says:
“Any phrase matching ‘Removing an x and ensuring that P(x)’ can be inverted and turned
into this one: ‘Finding any random x for which P(x) holds, then inserting x'" The class of
definitions which can be inverted using AM’s existing rules is quite small; whenever AM
needed to be able to invert another particular definition, the author simply supplied
whatever rules would be required.

39. While filling in examples of C,

if two constructs x and y ere found which are very similar yet only one of which is an example
of the concept C,

Then one is » boundary example of C, snd the other is & boundary non-exsmple,
ond it's worth crealing more boundery examples and boundary non-exsmples by slowly

iransforming x and y into each ather.

Thus when AM notices that {a} and {aba} are similar yet not both sets, it creates {a,b},
{b.a}, {aa} and sees which are and are not examples of sets. In this way, some boundary
items (both examples and non-examples) are created. The rules for this slow transformation
are again special purpose. They examine the difference between the items x and y, and
suggest operators i Deletion) which will reduce that difference. This CPS-like strategy
has been well studied by others, and its inferior implementation inside AM will not be
detailed.



Appendix 3 AM Discovery in Mathematics 33 Heuristic Search -236-

40. If the main task now is lo fill in examplet of concept C,
Consider all the examples of "first cousing™ of C. Some of tham might be examples of C as

well.

By “first cousins”, we mean all direct specializations of all direct generalizations of a concept,
or vice versa. That is, going up once along a Genl link, and then down once along a Spec
link {or going down one link and then up one link).

41. If the main task now is fo fill in boundary (non=)examples of concept C,
Consider all the boundary {non=jexsmples of “first cousins” of C. Some of them might lie on

the boundary of C as wall.

If they turn out not to be boundary examples, they can be recorded as boundary non-
examples, and vice versa.

42. To fill in Isa links of concept X, {that is, to tind a list of concepls of which X is an examples),
Just ripple down the tree of concepls, applying a definition of sach concept. Whenever a

definition fails, don't waste lime frying any of ils specializations. The lsa’s of X are then
all ihe concepls triad whose definitions passed X.

When a new concept 1s created, eg, a new composition, this rule can ascertain the most
specific Isa links that can be attached to it. Another use for this rule would be: If the Isa

link network ever got fouled up (contained paradoxes), this rule could be used to straighten
everything out {with a logarithmic expenditure of time}.

Any-concept . Examples . Suggest

43. If some (but not most) examples of X are alse examples of ¥ {for some concept ¥),
and some (but not most) examples of ¥ are also examples of X,
Create a new concept defined as the intersection of those two concepls {X and ¥). This will be

s specialization of both concepts.

If you hapen to notice that some primes are palindromic, this rule would suggest creating a
brand new concept, defined as the set of numbers which are both palindromic and prime.
AM never actually noticed this, since it represented all numbers in unary. If pushed, AM
will define Palindrome(n) to mean that the sequence of exponents of prime factors is
symmetric; thus 273%5'7'11%133 is palindromic in AM’s sense because the sequence of its
exponents (3 8 | | 8 3) is unchanged upon reversal. In this sense, the only Prime
palindromes are the primes themselves (or: just 2), depending upon the precise definition).

44. i very few examples of X are found,
Then add the following task io the sgends: “Genersiize the concept X", for the following

reason: "X's are quite rere; a slighlly less restrictive concept might be more
interesting”.

Of course, AM contains a precise meaning for the phrase “very few". When AM looks for
primes among examples of aiready-known kinds of numbers, it will find dozens of non-

exainples for every example of a prime it uncovers. "Very few" is thus naturally
implemented as a statistical confidence level. AM uses this rule when very few examples of
Equality are found readily.
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45. if very many examples of X are found in a short period of lime,
Then try to create a new, specialized version of X.

This is similar to the preceding rule. Since numbers are easy to find, this might cause us to
look for certain more interesting subclasses of numbers to study.

46. If thers are no known examples for the interesting concept X,
Then consider spending some lime looking for such axamples.

I've heard of a math student who defined a set of number which had quite marvelous
properties. After the 20 incredible theorem about them he'd proved, someone noticed that
the set was empty. The danger of unwittingly dealing with a vacuous concept is even worse
for a machine than for a human mathematician. The above rule explicitly prevents that.

47. If ihe tolalily of axamples of concept C is too small fo be interesting,
Then consider these reactions: {i) generalize C; (ii) forget C completely; {iii} replace C by ons

conjecture.

This is a good example of when a task like "Fill in generalizations of Numbaers-wilh=1 divisors”
might get proposed with a high-priority reason. The class of entities which C encompasses
is simply too small, too trivial to be worth maintaining a separate concept. When C is
numbers-with-1-divisor, C is really just another disguise for the singleton set {1}. The above
rule might cause a new task to be added to the agenda, Fill in genaralizations of Numbers-
with=1=divisor. When that task is executed, AM might create the concept Numbers-with-
odd-no-of-divisors, Numbers-with-prime-number-of-divisors, etc. Besides generalizing that
concept, the above rule gives AM two other alternatives. AM may simply obliterate the
nearly-vacuous concept, perhaps leaving around just the statement “1 is the only number with
one divisor". That conjecture might be tacked onto the Conjecs facet of Divisors-of. The
actual rule will specify criteria for deciding which of the three alternatives to try. In fact,
AM really starts all three activities: a task will always be created and added to the agenda
(to generalize C), the vacuous concept will be tagged as “forgettable”, and AM will attempt
to formulate a conjecture (the only items satisfying C.Defn are C.Exs).

48. If the totality of examples of concept C is too large to be interesting,
Then consider these three possible reactions: {i) specialize C; {ii} forget C completely; {iii}

replace C by one conjecivre.

This is analogous to the preceding rule, but is used far less frequently. One common use is
when a disjunction of two concepts has been formed which is accidentally large or already-
known (e.g, "Evens u Odds" would be replaced by a conjecture).

49. Alter filling in examples of C, if some examples were found,
Look at all the operations which can be applied to C's {that is, access C.in-dom=-of), find those

which are interesling but which have no known examples, and suggest that AM fill in
examples for them, because some items ars now Rnown which sre in their domain,
namely C.Exs.

This rule had AM fill in examples of Set-insertion, as soon as some examples of Sets had
been found.

50. Aller filling in axampias of C, if some sxemples wars found,
Consider ihe task of Checking the exsmples face! of concept C.
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This was very frequently used during AM's runs.

51. Alter checking examples of C, if many sxamples remain,
Consider the lesk of Filling in some Conjecs for C'.

This was used often by AM. After checking the examples of C, AM would try to
empirically formulate some interesting conjecture about C.

52. After successiully filling in non-examples of X, if no examples exist,
if AM has nol recently tried lo find examples af X, then il should do so.

If AM has recenlly tried and failed fo find examples, consider the conjecture that X is vacuous,
amply, null, siways-Faise. Consider generalizing X.

53. After Irying in vain io find some non-examples of X, if many examples exist,
Consider the conjectures that X is universal, always=Trus. Consider specializing X.

54. After successfully filling in examples of X, if no non-examples exist,
if AM has nol recently tried to find non-examples of X, then it should consider doing so.
If AM has recently tried and failed 10 find non-examples, consider the conjecture that X is

universal, always-True. Consider specializing X.

55. After trying in vain lo find some examples of X,
H many non-examples exist,

Consider the conjecture thet X is vacuous, null, amply, siways-False. Consider generalizing X.

Any-concept . Examples . Check

56. if the curren! task is to Check Examples of concept X,
and {Forsome ¥} Y is a generalization of X with many sxamples,
and all examples of ¥ {ignoring boundary cases) are also examples of X,
Then conjeciure that X is really no more specialized than Y,
and Check the truth of this conjecture on boundary sxamples of VY,
end see whether Y might itself turn out 10 bs no more specialized then one of ifs

generalizations.

This rule caused AM, while checking examples of odd-primes, to con jecture that all primes
were odd-primes.

57. if the current task is lo Check Examples of concept X,
end {(Forsome Y) Y is & specialization of X,
and all examples of X (ignoring boundary cases) are also examples of Y,
Then conjsclure that X is really no mors general than Y,
and Check the truth of this conjecture on boundary examples of X,
and tee whether Y might ilself turn out to be no mors general than one of its specializations.

i nis rule is analogous to the preceding one for generalizations.
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58. When checking boundary sxamples of a concept C,
ensure that every scrap of C.Defn hes been used,

It 1s often the tiny details in the definition that determine the precise boundary. Thus we
must look carefully to see whether Primes allows | as an example or not. A definition like
“numbers divisible only by 1 and themselves” includes |, but this definition doesn't:
“numbers having precisely 2 divisors”. In the LISP program, this rule contains several
hacks (tricks) for checking that the definition has been stretched to the fullest. For example:
i the gehnition is of the form "all x in X such that..”, then pay careful attention to the
boundary of X. That is, take the time to access X.Boundary-exs and X.Boundary-non-exs,
and check them against C.Defn. |

53. When checking examples of C,
Ensure that sach sxampie satisfies C.Daln, and sach non-exampie fails il. The precise member

of C.Dein 10 use can be chosen depending on the example.

As described earlier in the text, definitions can have descriptors which indicate what kinds
of arguments they might be best for, their overall speed, etc.

60. When checking examples of C,
if an eniry ¢ is rejected (i.e, il iv seen 10 be not an axample of C after ili), then remove @

irom C.Exs and consider inserting il on the Boundary non-examples facel of C.

There is a complicated” aigorithm for deciding whether to forget e entirely or to keep it
around as a close but not close enough kind of example.

61. When checking sxamples of C,
Aller an entry @ has been verified as 3 bone fide example of C,
Check whether ¢ is 3lso a valid example of some direct specialization of C.
it it is, then remove It from CExs, and consider adding it fo the examples facet of that

specislization, and suggest the task of Checking examples of that specisiization.

62. When checking sxamples of C,
it an eniry @ is rejected,
Then check whether ¢ is nevertheless a valid example of some generalization of C.
If it is, consider adding it lo that concept's boundary-examples facet, and consider adding it to

the boundary non-examples {acet of C.

This is similar to the preceding rule.

63. When checking non-sxamples of C, including boundary non-examples,
Ensure that each one fails a definition of C. Otherwise, transfer it to the boundary examples

facet of C.

5 Not necessarily sophisticated Firat, AM sccesses the Worth of C. From this it determines how many boundary non-
sxampies C deserves to keep around (and how many total fet cells it merits). AM compares these quotas
with the currant number of {snd size of) sntries already listed on Chdy-non-sxs. The degree of need of
snother entry thers than sets the “edds” for inserlion versus forgetting. Finally a random number is
computed, and the odds delerming what range it must his in for » 19 be remembered
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64. When checking non~sxamples of C, including boundary non-exampies,
Afler an entry @ has been verified as & bone fide non-exampis of C,
Check whether & ic 2isc a non-exampls of some direct generalization of C.
if it is, then remove it from C.Non-Exs, and consider adding il to the non-sxamples facel of

thal generalization, and suggest the tack of Checking sxamples of thal generalization.

£5. When checking {boundary} non-sxamples of C,
if an entry @ is rejected, thet is if it turns out lo be an example of T alter ali,
Then check whether ¢ is nevertheless a non-sxample of some specialization of C.
If il is, consider adding il io that concept's boundary non-sxamples facet.

This 1s similar to the preceding rule.

Appendix 3.2.3. Heuristics for the Con jecs facet of Any-concept

Any-concept . Conjecs . Fillin

When the task is to look around and find con jectures dealing with concept C, the following
general rules may be useful

66. there it an analogy from X 10 C, and a nice item in X.Conjecs, formulate and test the
analogous conjecture for C.

Since an analogy is not much more than a set of substitutions, formulating the ‘analogous
conjecture’ is almost a purely syntactic transformation.

£7. Examine C.Exs for ragularities.

What mysteries are lurking in the LISP code for tAis rule, you ask? Nothing but a few
special-purpose hacks and a few ultra-general hacks. Here is a slightly more specific rule for
you seekers:

68. Look at CExs. Pick one slement st random. Wrile down statements true about that axampls ».
include # list of all concepls of which it is an example, all inlerests features it satisfies,
sic.

Then check sach conjeclure on his list against all other known examples of C. If any example
{excep! a boundary example) of C violales a conjaclure, discard i.

Take all the surviving conjectures, snd sliminals any which irivally follow from other ones.

This is a common way AM uses: induce a conjecture from one example and test it on all
the rest. A more sophisticated approach might be to induce it by using a few examples
simultaneously, but I haven't thought of any nontrivial way to do that. The careful reader
will perceive that most of the conjectures AM will derive using this heuristic will be of the
form "X is unexpectedly a specialization of Y', or "X is unexpectedly an example of Y", etc.
Indeed, most of AM’s conjectures are really that simple syntactically.

£9. Formulale a parameterized conjectura, a “templala™, which gets slowly specialized or
instantiated inlo a definite conjecture.
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AM has only a few trivial methods for doing this (eg. introduce a variable initially and
hind the constant value to plug in there later). As usual, they will be omitted here, and the
author encourages some research in this area, to turn out a decent set of general rules for
accomplishing this hypothesis template instantiation. The best #ffort to date along these
lines, in one specific sophisticated scientific field, is that of META-DENDRAL [Buchanan).

Any-concept . Conjecs . Check

70. i a universal conjecture (For ali X's, ..}) is conlradicled by empirical data, gather the data
{ogelher and iry to lind a regularity in those exceptions.

It this succeeds, give the exceplions a name N (if they aren't already a concept), and rephrase
the conjecture (For all X's which are not N's..). Consider making X=N a new concept.

Again note how “active” this little checking rule can be. It can patch up nearly-true
conjectures, examine data, define new concepts, etc.

71. Aller verifying a conjecture for concept C,
Ses if it slso holds for related concepts {a.g., s generalization of C).

There are of course bookeeping details not explicitly shown above, which are present in the
LISP program. For example, if conjecture X is true for all specializations of C, then it must
be added to C.Conjecs and removed from the Con jecs facets of each specialization of C.

Any-concept . Conjecs . Suggest

72. 1 X is probably related to Y, but no definite connection is known,
it's worthwhile iooking for s specific conjecture tying X and Y together.

How might AM know that X and Y are only probably related? X and Y may play the same
role in an analogy (eg. the singleton bag "(T)" and “any typical singleton bag” share many
properties), or they may both be specializations of the same concept Z (eg, two kinds of
numbers), or they may both have been created in the same unusual way (eg, Plus and
Times and Exponentiation are all creatable by repeating another operation).

Any-concept . Conjecs . Interest

73. A conjecture sbout X is interesting if X is very interesting.

74. A nonconsiructive existence conjecture is interesting.

Thus the unique factorization theorem is judged to be interesting because it merely
guarantees that some factoring will be into primes. If you give an algorithm for that
factoring, then the theorem actually loses its mystique and (according to this rule) some of
its value. But it increases in value due to the next rule.
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75. A construclive existence conjecture is interesting if it iz frequently uted.

76. A conjeclure C about X is interesting if the origin and the verification of C for each
specialization of X was quile independent of each other, and precaded C's baing noticed
applicable to ofl X's

This would be even more striking if proof techniques were known, and each specialized case
had a separate kind of proof. Many number theory results are like this, where there exists

a general proof only for numbers bigger than 317, say, and all smaller numbers are simply
checked individually to make sure they satisfy the conjecture. Category theory is built upon
practically nothing but this heuristic.

Appendix 3.2.4. Heuristics for the Analogies facet of Any-concept

Any-concept . Analogies . Fillin

77. To fill in conjeclures involving concep! C, where C is analogous to D,
Consider the analogue of sach conjeciure involving D.

78. if the current task involves a spacific analogy, and the request is to find more conjeclures,
Then consider the analog of each inlerssting conjecture about any concept invoived centrally

in the analogy.

That is, this rule suggests applying the preceding rule to each concept which is central to
the given analogy. The result is a flood of new conjectures. There Is a tradeoff {explicitly
taken into account in the LISP version of this rule) between how interesting a conjecture
has to be, and how centrally a concept has to fit into the analogy, in order to determine
what resources AM should be willing to expend to find the analogous conjecture. Note that
this is not a general suggestion of what to do, but a specific strategy for enlarging the
analogy itself. If the new conjecture is verified, then not only would it be entered under
some Conjecs facet, but it would also go to enlarging the data structure which represents the
analogy.

73. Let the anslogy suggest how lo specislize and generalize each concept inte what is at least
the analog of a known, very interesting concept.

Like the last rule, this one simply says to use the analogy itself as the “reason” for exploring
certain new entities, in this case new concepts. When the BagseNumbers analogy is made,
AM notices that Singleton bags and Empty bags are two interesting, extreme specializations
of Bags. The above rule then allows AM to construct and study what we know and love as
the numbers one and zero. The analogy is flawed because there is only one “one”, although
there are many different singleton bags. But just as singletons and empty bags have special
properties under bag operations, so do 0,1 under numeric operations. This was one case
where an analogy paid off handsomely. |
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80. It il is desired lo have an analogy belwaen concepts X and Y, then look for two siready~-known
analogies belween X« and 2eY, for any 1.

If found, compose the two analogies and ses if the resultant analogy makes sense.

Since the analogies are really just substitutions, composing them has a familiar, precise
meaning. This rule was never really used by AM, due to the paucity of analogies. The user
can push AM into creating more of them, and ultimately using this rule. A chain from
AeZeYwX can be found which presents a new, bizarre analogy from X to itself.

Any-concept . Analogies . Suggest

81. If an analogy is strong, and one concept has & very interasting universal tonjecture C (For all
x in 8..), but the analog conjeciure CT is false,

Then it's worth constructing the set of ilems in B' for which the conjecture holds. It's perhaps
sven mora inlerssling lo isolate the set of exceptional slemants.

With the AddeTimes analogy, it's true that all numbers n>] can be represented as the sum
of two other numbers (each of them smaller than n), but it is not true that all numbers {with
just a couple exceptions) can be represented as the product of other (hence smaller)
numbers. The above rule has AM define the set of numbers which can/can’t be so

represented. These are just the composite numbers and the set of primes. This second way
of encountering primes was very unexpected — both by AM and by the author. It expresses
the deep fact that one difference between Add and Times is the presence of primes only for
multiplication. At the time of its discovery, AM didn’t appreciate this fully of course.

82. if space is light, and nc use of the analogy has svar been made, and it is very old, and it takes
up & lot of space,

Then it is permissable to forget it without a trace.

83. if lwo valusbie conjectures are syntactically identical, and can be made identical by a simple
substitution, then tentatively consider the analogy which is that very substitution.

Thus the associative/commutative property of Add and Times causes them to be tied
together in an analogy, because of this rule.

84. If an analogy is very inlerssling and very complels,
Then spend some {ime refining it, looking for small sxceplions. If none ars found, ses whether

the {wo siluations sre genuinely isomorphic.

85. If concepls X and Y are analogous, look for analogies between their specializations, or
between their generalizations.

This rule 1s not used much by AM, although the author thought it would be.
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Any-concept . Analogies . Interest

86. An analogy which hes no discrepancies whatsoever is not ac inferssling as » slightly liawed
analogy.

87. An enslogy is inlerssling if il sesecietes {{or the first time) two concepls which ars each
unusally fully filled out {having many conjeclures, many examples, many interest
fealuras, atc).

Appendix 3.2.5. Heuristics for the Genl/Spec facets of Any-concept

Any-concept . Genl/Spec . Fillin

88. To fill in specializations of X, il it was vary easy lo find examples of X,
Grab some features which would indicate than sn X was inleresiing {some eniries from

X.Interesi, or more remole Interest predicates garnered by rippling), and conjoin them
onto the definition of X, theraby creating & new concept.

Here's one instance where the above rule was used: It was so easy for AM to produce
examples of sets that it decided to specialize that concept. The above rule then plucked the
interestingness feature “all pairs of members satisfy the same rare predicate” and conjoined
it to the old definition of Sets. The new concept, Interesting-sets, included all singletons
{because all pairs of members drawn from a singleton satisfy the predicate Equal) and
empty sets.

89. To fill in generalizations of concept X,
Take ihe definition e, and replace it by 8 generalization of #8. if & it a concept, use #.Genl: if

@ iz a conjunclion, then remove s conjunc or generalize® a conjunet; if @ is @
disjunction, then add a disjunct or generalize a disjunct; if @ is:negated, than specialize
the negate; if ¢ is an example of E, then replace » by "any sxample of E™; if @ satizfies

sny properly P, lhen replaces # by "anything satislying P ; if # is » constant’, then
repiace o by 8 new variable (or an existing one} which could sssume value a; if ® is &
variable, then enlarge ils scope of possibie bindings.

This rule contains a bag of tricks for generalizing any LISP predicate, the definition of any
concept. T hey are all syntactic tricks, however.

30. To {ill in generalizations of concept X, if some conjecture exisls about all X's and Y's" or "in
X or Y", for some other concep! Y,

Creste a new toncepl, a generalization of both X and ¥Y, defined ss their disjunclion.

. 19. 1OLUL,

7 Of course it's unlikely that s concep! is defined simply as » constant, but the preceding footnote shows ihe! this little
program can de enierad racuremvely, being fed 8 sub-sxprasvion of the definition
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This rule contains another trick for generalizing any concept, although 1t 1s more
meaningful, more semantic than the previous rule's tricks. Many theorems are true about
numbers with 1 or 2 divisors, so this might be one reasonable way to generalize Numbers.
with-1-givisor into a new useful® concept.

91 To fill in generalizations of concept X,
it other genersuzations GI, GZ of X exis! bul are TOO general,
Create 2 new concept, a generalization of X and a specialization of both G1 and G2, defined a

the conjuinchion of G1 and G2's delinilions.

Thus when AM generalizes Reverse-all-levels into Reverse-top-level and Reverse-first-
ciciient, the above rule causes AM to create a new operation, which reverses the top level
and which reverses the CAR? of the original list. While not particularly useful, the reader
huuld observe that at is in fact midway in generality between the original Reverse tunction
and the hrst two generalizations.

34 To Lain speuahzelions of concep! X,

tare Log definition &, and replace it by a specialization of @. It @ is a concept, use e.Genl; it o
's & disjunction, then remove & disjunct or specialize a disjunct; if is a conjunchion,
then add a conjunc or specialize a conjuncl; if 8 is negated, then generalize the
negate; if ® is "any sxample of E”, then replace # by a particular example of £; if ¢ is
“enyltung salistying PT, then replace @ by a parlicuiar satisfier of P; if w 15 a variabie,
inen 1wpiste it by 8 weli=chosen constant or restrict is scope.

This rule contains a bag of tricks for specializing any LISP predicate, the definition of any
concept They are all syntactic tricks, however. Note that the Lisp code for this rule will
typically call itselr (recur) in order to specialize small pieces of the original definition.

83. To fill in specializations of concept X, If some conjeclure exists about “all X's which sre also
Y's” or "in X and Y", for some other concept Y,

Lrezie a new concapl, a specialization of both X and ¥, defined as their conjunction.

This rule contams another trick for specializing any concept, although it 15 more
tovaningiul, more semantic than the previous rule's tricks. Many theorems about primes
contain the conaiuon "p>27; Le, they are really true about primes which are odd. So this
might be one reasonable way to specialize Primes into a new concept: by conjoining the
cenmitions of Primes and Odd-numbers, into the new concept Odd-primes. Here's another
usage of this rule: If AM had originally defined Primes to include ‘I’, then the frequency of
conjectures where 1 was an exception would trigger this rule to define Primes more normally
(p22).

84. To {ill in spacializations of concept X,
if other specializations Si, 52 of X exist but are TOO restrictive 1o be interasiing,
Create a new concept, a specialization of X and s generalization of both S§1 and 52, defined as

{he disjunclion of S1 and $2's definitions.

ma ere—————————————————————

8 lt least, savers! theorems will be stated more concmely veing this pew toncapt: Numbers with I or 2 divianrs.
9 also the CAR of the CAR, etc, unisl a non-liat is sncountarsd
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958. To fill in generslizatione of concept X, when a recursive definition of X exists,
If the definition containg two conjoined recursive calls, replace them by a disjunclion or

sliminale ons call entirely.
if there is only one recursive call, disjoin a second call, this one on 8 different destructive

function spplied fo the original argument. |! the original desiruclive function is one of
{CAR,CDR}, than ist the naw ons be the olher member of that pair.

AM uses the first part of this rule to turn Equal-hsts into two variantsof Same-length-as.
The second part, while surprisingly unused, could work on this definition of MEMBER: "x
(x,L) LISTP(L) and: [x=CAR(L) or MEMBER(x,COR(L}}]", which is just "membership at the top
level of", or € and transform it into this one of MEM, which represents membership at any
depth: "Ax,L) LISTPI%L) and: [x=CAR(L) or MEM(xCDR(L)} or MEM{x,CAR{L))]. The rule
noticed a recursive call on CDR(L), and simply disjoined a recursive call on CAR{L).

96. To {ill in specializations of concept X, when 8 recursive definition of C exists,
if the definition contains two disjoined recursive calls, replace them by a conjunclion or

eliminate one call antirely.

if there is only one recursive call, conjoin a second on another desiruclive function applied to
the original argument. Often the lwo recursiont will be on the CAR and the COR of the
original argument io the pradicate which is the definition for X.

This is closely related to the preceding ruie. Just as it turned the concept of ‘element of’ into
the more general one of ‘membership at any depth’, the above rule can specialize the
definition of MEMBER into this one, called AMEM: "xX {xl} LISTP{L) and: [x=CAR(L) or:

[AMEM(x,COR(L)) and AMEM(x,CAR(LN)!

§7. To {ill in specislizalions of concept X,
Find,, within s definition of X (at sven parily of NOT's), an expression of the form "For some x

in X, P(x)", and replace it either by "For all x in X, P{x)", or by Pix).

Thus “sets, all pairs of whose members satisfy SOME interesting predicate” gets specialized
into “sets, all pairs of whose members satisfy Equality”. The same rule, with “even parity”
replaced by "odd parity’, is useful for generalizing a definition. This rule is really 4
separate rules, in the LISP program. The same rule, with the transformations going in the
opposite direction, is also used for generalizing. The same rule, with the transformations
reversed and the parity reversed, is used for specializing a definition. Here is that doubly-
switched rule:

93. To {ill in specializations of concept X,
Find within a definition of X {al odd parily of NOT's} an expression of the form "For all x in X,

P{x}", and replace it either by "For some x in X, PU)", or by Pix). Or replace "P{ec)”,
where of iz a constant, by "For some x in A, P(x)" where A iz a concepl of which « is
Ona Sample.

10 The interlep function LISTP{L) tesls whather or not L 1 3 {nonnull} het
1 This operation is simost impossible to explain verbatly AMEM(x.1) mess that x is an slement of L, snd for sach mamber

M of L before the x, M 1 an erdered structure and 1 1 an element of M, and for wach mamber N of M

bufore the x which in inside M_ atc Eg, x} [Sax sbr cr xdad axtragh}fexidxiIxk [i] mr
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99. When creating in a specialization § of concept C,
Note that 5.Genl should contain C, and that C.Spec should contain S.

The analogous rule exists, in which all spec and genl are switched.

Any-concept . Genl/Spec . Suggest

100. After creating 8 new specialization S of concep! C,
Explicitly look for lies belween S and other known specializetions of C.

For example, after AM defines the new concept of Numbers-with-3.divisors, it looks around
for ties between that kind of number and other kinds of numbers.

101. Alter creating a new ganaralization G of concept C,
Explicilly look for ties between G and other tiose generalizations of C.

For example, AM defined the new predicates Same-size-CARs and Same-size-CDRs'? as
two generalizations of Equality. The above rule then suggested that AM explicitly try to
find some connection between these two new predicates. Although AM failed, Don Knuth
(using a similar heuristic, perhaps) also looked for a connection, and found one: it turns out
that the two predicates are both ways of defining the relation we intuitively understand as
“having the same length as”.

102. Alter creating » new specialization 5 of concept C,
Consider looking for examples of S.

This has to be said expiicitly, because all too often a concept is specialized into vacuousness.

103. After cresting a new generalization G of concept C,
Consider looking for non-examples of G.

This has to be said explicitly, because all too often a concept is generalized into vacuous
universality. This rule is less useful to AM than the preceding one.

104. If concept C possesses some very interesting property lacked by one of its specializations S,
Then considering creating a concep! intermediate in specialization between C and §, and see

whather thal possesses the property.

This rule will trigger whenever a new generalization or specialization is created.

105. if concept S is now very interesting, and S wae crested ss a specislization of some earlier
concept C

Give exira consideration to specislizing S, snd to specializing concept C again (but in
different ways than svar befors).

Se —————————EE—————————————rp ————

12 Two nts setinly Seme-siee-CORs Hf thoy hove 1he some number of members. Two liste satisfy Some-size-CARs iff
{whan writion out in stonderd LIBP notation) they have the sama number of initial loft parentheses and aise
have the some fiat wontifur following the! lsat initiel left parsntihasn.
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The next rule is the analog of the preceding one. They incorporate tiny bits of the
strategies of hill-cimbing and learning from one’s successes.

106. If concept G is now very interesting, and G was created as a generalization of some earlier
concept C,

Give axira Romideration to gensralizing G, and to generalizing C in other ways.
The analogous rules exist. for concepts that have become so boring they've just been
discarded:

107. If concept X proved fo be » dead-end, and X was created as a generalization of
(specialization of) some sarlier toncept C,

Give less consideration ic generalizing (specializing) X, and fo generalizing (specializing) C in
other ways in the fulure.

Any-concept . Genl/Spec . Check

108. When checking & generalization G of concept C,
Specifically test lo ensure that G is not equivalent to C.

The easiest way is to examine the non-examples {especially boundary non-examples} of C,
and look for one salislying G; or examine the sxamples of G (esp. boundary) and look
for one failing io satisfy C.

if they appear to be the same concept, look carefully at G. Are there any specializations of G
whose axamples have never been filled in? if so, then by all means suggest looking for
such concepis’ examples befors concluding that G and C are really equivalent.
If they are the same, then replace one by s conjecture.
If they sre different, make sure that some boundary non-example of C {which is sn

axample of G) is explicitly stored for C.

This rule makes sure that AM is not deluding itself. When AM generalizes Numbers-with-
i-divisor into Numbers-which-equal-their-no-of-divisors, it still hasn't gotten past the
singleton set {1}. 1 ne conjecture in this case would be "T Ae only number which equals its own
number of divisors is I". Typically, when a generalization G of C turns out to be equivalent
to C, there is theorem lurking around, of the form "All G's also satisfy this property..”,
where the property is the “extra” constraint present in C's definition but absent from G's.
This rule also was used when AM had just found some examples of Sets. AM almost
believed that all Unordered-Structures were also Sets, but the last main clause of the rule
had AM notice that Bags is a specialization of Unordered-structures, and that the latter
concept had never had any of its examples filled in. As a result, AM printed out this
message: "Almost concluded that Unordered-structures are also always Sets. But will wait
until examples of Bags are found. Perhaps some Bags will not be Sets.” In fact, examples
of Bags are soon found, and they aren't sets.

10S. When checking » specialization S of concept C,
Specifically test 10 ensura that S is not squivalent fo C.

Hl they sre the sama, than replace one by s tonjecturs.
i they are diiferent, make sure that some boundary sxampie of C (which iz not an

example of 3) is explicitly stored for C.
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This rule is similar to the preceding one. If adding a new constraint P to the definition
doesn’t change the concept C, then there is probably a theorem there of the form "All C's
also satisfy constraint P".

110. When checking a specialization S of a specislizalion X of » concept C,
if thers exist other specs. of specs. of C,
than ensure that none of them sre the same as 5. This is especially worthwhile if the

specializing operators in sach case were the same but reversed in order.

Thus we can add a constraint to C and collapse the first two arguments, or we can collapse
the arguments and add the constraint; either way, we get to the same very specialized new
concept. The above rule helps detect those accidental duplicates. Eg., Coalesced-Doms=Ran-
Compositions are really the same as Dom=Ran-Coalesced-Compositions, and this rule would
suspect tht they might be.

111. When checking the Geni or Spec facet antries for concept C,
ensure that C.Genl and C.Spec have no common member 1. If they do, then conjectures that C

and I sre sclually equivalent.

In fact, this rule actually ensures that Generalizations{(C) does not intersect
Specializations(C). If it does, a whole ‘cycle’ of concepts exists which can be collapsed into
one single concept. See also rule 114, below.

Any-concept . Genl/Spec . Interest

112. A generalization of X is interesting if sll the previously-known boundery non-sxsmples are
now boundary examples of the concept.

A check is included here to ensure that the new concept was not simply defined as the
closure of the oid one.

113. A specialization of X is interesling if ali the previously-known boundery exsmples sre now
boundary non-sxamples of the naw specisiized concept.

A check is included here to ensure that the new concept was not simply defined as the
interior of the old one.

114. H Cl is a generalization of CZ, which is a generalization of C3...., which is s generalization of
Cj, and it has just been learned that Cj is a generalization of C1,

Then ali the concepis C1,...Cj are squivalent, and can be merged, and the combined concept
wiil be much more interssling than sny single one, and the intersstingness of the new
composite concapl increases rapidly wilh J.

The Lisp code has the new interest value be computed as the maximum value of the old
concepts, plus a bonus which increases like the square of j. This is similar to rule number
28. A rule just like the preceding one exists, with ‘Specialization’ substituted everywhere for
‘Generalization’. Thus a closed loop of Spec links constitutes a demonstration that all the
concepts in that loop are equivalent. These rules were used more frequently than expected.
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Appendix 3.2.6. Heuristics for the View facet of Any-concept

Any-concept . View , Fillin

115. To fill in View facet entries for X,
Find an interesting operation F whose range it X,
and indicate that any member of Domain(F) can be viewed sz an X just by running F on i.

While trying to fill in the View facet of Even-nos, AM used this rule. It located the
operation Doubling, whose domain is Numbers and whose range is Even-nos. Then the rule
created a new entry: "to view any number as if it were an even number, double it". This is a
twisted affirmation of the standard correspondence between natural numbers and even
natural numbers.

Appendix 3.2.7, Heuristics for the In-dom/ran-of facets of Any-concept

Any-concept . In-dom-of/In-ran-of . Fillin

116. To fill in entries {or the In-dom-of facet of concept X,
Ripples down the tras of concepls, starting at Active, to empirically determine which active

concepls can be run on X's.

This can usually be decided by inspecting the Domain/range facets of the Active concepts.
Occasionally, AM must actually try to run an active on sample X's, to see whether it fails or
returns a value.!3

117. To fill in the In=ran-of facet of concept X,
Rippis dow~ the irss of concepls, siarling at Aclive, to empirically determine which active

concepts can be run lo yield X's.

This can usually be decided by inspecting the Domain/range facets of the Active concepts.
Occasionally, AM inspects known examples of some Active concept, to see if any of the
results are X's.

118. While filling in entries for the In-dom-of facet of X,
Look sspecially carefully for Operations which transform examples and non-examples into

sach other;
This is even better if the operation pushes boundary exs/non-exs 'scross the boundary’.

This was used to note that Insert and Delete had a lot to do with the concept of Singleton.

3 One kay fosturs of Lisp which permits this to be done is the Errorset featurs.
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A 8. Heuristics fo 0

Any-concept . Defn . Suggest

119. If thers are nd known definitions for concept X,
Then it is crucial that AM spend some time looking for such definitions.

This situation might occur if only an Algorithm is present for some concept. In that case,
the above rule would suggest a new, high-priority task, and AM would then twist the
algorithm into a {probably very inefficient) definition. A much more serious situation would
occur if a concept were specified only by its Intuition entries (created, eg., by modifying
another concept’s intuitions). In that case, rapidly formulating a precise definition would be
a necessity. Of course, this need never arose, since all the intuitions were deleted.

Any-concept . Defn . Check

120. When checking ihe Definition facet of concept C,
Ensure that each member of C.Exs satisfies sll definitions present, and sach non-sxampie fails

sli definitions. If there is one dissenting definition, modily it, and move the offending
examples 10 the boundary.

There is little real “checking” that can be done to a definition, aside from internal
consistency: If there exist several suposediy-equivalent definitions, then AM can at least
ensure they agree on the known examples and non-examples of the concept. If the Intuitions
facets were permitted, then each definition could be checked for intuitive appeal.

121. When chacking the Definition facet of concept C,
Try to tind snd eliminate any redundant constraints, iry io find and eliminate any circularity,

chack that any recursion will terminate.

Here are the other few tricks that AM knows for “checking” a definition. For each clause in
the rule above, AM has a very limited ability to detect and patch up “bugs” of that sort.
Checking that recursion will terminate, for example, is done by examining the argument to
the recursive call, and verifying that it contains (at some level before the original argument)
an application of a LISP function on Destructive-LISP-functions-list. There is no intelligent
inference that is going on here, and for that reason the process is not even mentioned
within the body of this document.
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pendix 3.3. Heuristics for dealing with any Active co cep

All the rules below are applicable to tasks which involve operations, predicates, relations,
functions, etc. In short, they apply to ali the concepts AM knows about which involve doing
something, which involve action.

Active , Fillin

122. if the current task is 1o fill in axamples of the activity F, |
One way to get them is fo run F on randomly chosen examples of the domain of F.

Thus, to find examples of Equality, AM repeatedly executed Equality.Alg on randomly
chosen pairs of objects. AM found examples of Compositions by actually picking a pair of
operations at random and trying to compose them. Of course, most such “unmotivated”
compositions turned out to be uninteresting.

123. While Valing in examples of the aclivity ¥, by running F.Algs on random srgumenis from£.Domain

it is worth the afforl fo specifically include axireme or boundary examples of the domain of
F, among the arguments on which F.Algs is run.

124. To fill in a Domain aniry for aclive concept F,
Run F on various enlities, rippling down the iree of concepts, to determine empirically where

F seams io be defined.

This may shock the reader, as it sounds dumb and explosive, but the concepts are arranged
in a tree {using Genl links), so the search is really quite fast. Although this rule is rarely
used, it always seems to give surprisingly good results.

125. To {ill in genaralizations of active F,
Consider just sxiending F, by snlarging ils domain. Revise FDein az little as possible.

Although Equality is initially only for structures, AM extends it (using the same definition,
actually) to a predicate over all pairs of entities.

126. To fill in specializations of sclive F,
Consider just resiricling F, by shrinking ils domain. Chack F.0ein 10 see if some oplimization

is possible.

127. After an sigorithm is known for F, if AM wants a beller One,
AM is permilled to ask {he usar to provids a fast but opaque algorithm for F.

This was used a few times, especially for inverse functions. A nontrivial open-ended
research problem (#)'* is to collect a body of rules which transform an inefficient algorithm

14 Following Knuth, we shall reserve a star {%) for those problems which sre quite difficull, which should 1ake the reader

reply 3 full lifetimes to master. Resders not believing in reincarnation should therefore skip suchproblem.
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into a computationally acceptable one.

128. If the current lask is 10 fill in boundary {non-Jexamples of the aclivily F,
One way io get them is to run F on randomly chosen boundary exampies and {wilh proper

sefeguards) boundary non-examples of the domain of F. : |

Proper safeguards are required to ensure that F.Algs doesn't loop or cause an error when
fed a slightly-wrong (slightly-illegal) argument. In LISP, a timer and an ERRORSET
suffice as crude safeguards.

129. H {he current task is io fill in (boundary) non-exomples of the activity F,
One low=interest way 10 get them is io run F on randomly chosen sxampies of ils domain,

and then replace the value sbisined by seme ether {very similiar) value. Also, be sure
fo check thal the resulisnt i/o pair doesn't accidentally satisty FDein.

The parentheses in the above ruie mean that it is really two rules: for doundary non-
examples, just change the final value slightly. For typical non-examples, change the result
significantly. If you read the words inside in the parentheses in the IF part, then read the
words inside the parentheses in the THEN part as well, or omit them in both cases.

Active . Check

130. When checking an algorithm for active F,
run that sigorithm and ensure that the input/output satisly F.Deln.

131. When checking a definition d for active concept F, |
Run one of ile sigorithme and ensure that the input/ouiput selisly d.

This is the converse of the preceding rule. They simply say that the definition and
algorithm facets must be mutually consistent.

132. While checking examples or boundsry sxamples of the active concept F,
Ensure thel sach input/output pair le consistent with F.Dom/range.

If the domain/range entry is <D1 D2.. Dk = R>, and the i/o pair Is <d de... dy , r>, then
each component d; of the input must be an example of the corresponding Di, and the
output r must be an example of R.

133. When chacking examples of ihe active concept F,
if any argumentis) io F were concapls, tag their in~domain=01 facels with 'F’.
if any values produced by F are concepis, lag their in-range-ef facets with 'F’.

For example, Restrict{Union) produced Add, at one time in AM’s history. Then the above
rule caused Restrict’ to be inserted as a new entry on Union.In-dom-of and also on Add.In-
ran-of.
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Active . Suggest

134. If thers are no known algorithms for aclive concep! F,
Then AM should spend some lime looking for such algorithms.

This situation might occur if only a Definition is present for some operation. In that case,
the above rule would suggest a new, high-priority task, and AM would then twist the
definition into a {probably very inefficient) algorithm. The rule below is similar, for the
Domain/range facet:

135. if the Domsin/range facet of active concept F is blank,
Then AM should spend some time looking for specifications of F's domain and range.

136. if 5 Domain of aclive concepl F is encountered frequently, either within conjeciures or as the
domain or range of olher operations and predicates,

Then define that Domain as s ssparate concep!, and raise the Worth of F slightly.

The ‘Domain’ here refers to the sequence of components, whose cartesian product is what is
normally referred to in mathematics as the domain of the operation. This led to the
definition of "Anything x Structures”, which is the domain of several Insertion and Deletion
operations, Membership testing predicates, etc.

137. Nl is worthwhile to explicitly calculate the values of ¥ for all distinguished {exirame, boundary,
interesting} members of and subsets of ils domain.

138. HH some domain component of F has & very interesiing specialization,
| Then consider restricting F {slong that component) to that smalier domain.

Note that these last couple rules deal with the image of interesting domain items. The next
rule deals with the inverse image (pre-image) of unusual range jtems. We saw earlier in this
document (Chapter 2) how this rule led to the definition of Prime numbers,

139. if he range of F contains interesting items, or an interesting specialization,
Then it is worthwhile to consider their inverss image under F.

140. When trying to fill in new Algorithms for Aclive concept F,
Try to transiorm any conjectures about F inio {pisces of} new algorithms.

This is one place where a sophisticated body of transformation rules might be inserted.
Others are working on this problem [Burstall & Darlington 75), and AM only contains a
few simple tricks for turning conjectures into procedures. For example, "All primes are odd,
except 2", Is transformed into a more eficient search for primes: a separate test for x=2,
followed by a search through only Odd-numbers,

141. After trying in vain fo fill in sxamples of aclive concept F,
Locate the domain of F, and suggest that AM try to fill in examples for sach component of

thal domain.
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Thus after failing to find examples for Set-union, AM was told to find examples of Sets,
because that could have let the previous task succeed. There is no recursion here: after the
sets are found, AM will not automatically go back to finding examples of Set-union. In
practice, that task was eventually proposed and chosen again, and succeeded this time.

142. After working on an Active concept F,
Give a slight, ephemers! boost 1o tasks involving Domain(F}: give a moderate size boost to

each tagk which asks to fill in examples of that domain/range component, snd give »
vary liny boost {io sach other task mentioning such s concept.

This is both a supplement to the more general "focus of attention” rule, and a nontrivial
heuristic for finding valuable new tasks. It is the partial converse of rule 14.

Active . Interest

143. An aclive concept F is interesting il there are other operations with the same domain as F,
ond if they sre {on the average) fairly interesting. If the other operations’ domain is
oniy similer, then they musi be very interesting and have some valuable conjectures
{ied to them, if they are to be allowed to push up F's interestingness rating.

The value of having the same domain/range is the ability to compose with them. If the
domain/range is only similar, then AM can hope for analogies or for partial compositions.

1&4. An aclive concept is interesting if it was recently created.

This is a slight extra boost given to each new operation, predicate, etc. This bonus decays
rapidly with time, and thus so will the overall worth of the concept, uniess some interesting
property is encountered quickly.

145, An active concept is interssting if its domain is very inferesting.

An important common case of this rule is when the domain is interesting because all its
members are equal to each other. The corresponding statement about ranges does exist, but
only operations can be said to have a specific range (not, eg. Predicates, Therefore, the
‘range’ rule is listed under Operation.Interest, as rule number 165.
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Appendix 3.4. Heuristics for dealing with any Predicate

Each of these heuristics can be assumed to be prefaced by a clause of the form "If the
current task is to deal with concept X, where X isa Predicate,..”. This will be repeated
below, for each rule.

Predicate . Fillin

146. If the current task was {Fill-in examples of X}, |
and X is 8 pradicate,
and more than 100 items are known in the domain of X,
and at least 10 cpu seconds were spent Irying to rendomly instantiate X,
and the ratio of successes/iailures is both >0 and less than 08

Then add the following tesk to the agenda: (Fill=in generalizations of X), for tha following resson:
"X is rarely satisfied; a slightly less restrictive concept might be mora interesting”.
This reacon’s rating iz computed as three limes the ratio of nonexamples/examples found.

This rule says to generalize a predicate if it rarely succeeds {returns T). One use for this
was when Equality was found to be quite rare; the resultant generalizations did indeed turn
out to be more valuable (numbers). A similar use was found for predicates which tested for
identical equality of two angles, of two triangles, and of two lines. Their generalizations
were aiso valuable (congruence, similarity, parallel, equal-measure). Most rules in this
appendix are not presented with the same level of detail as the preceding one, as the reader
has no doubt observed.

i147. To fill in Domain/range entries lor predicate P,
P can operate on the domain of any specialization of P,
P can operate on any specialization of the domain of P,
P can operate on some resiriction of the domain of any generalization of P,
P may be able to operate on some enlargement of its current domain,
The range of P will necessarily be the doubleton set {1,F},
P is guaranteed return T if any of ils specializations do, and F if any of its generalizations do.

This contains a compiled version of what we mean when we say that one predicate is a
generalization or specialization of anciher. Viewed as relations, as subsets of a Cartesian-
product of spaces, this notion of general/special is just that of superset/subset. The last line
of the rule is meant to indicate that adding new constraints onto P can only make it return
True less frequently, while relaxing P's definition can only make it return True more often.

Predicate . Suggest

148. It all the values of Active concept F happen 10 be Truth-values, and F is not known to be a
predicals,

Than conjecture thal F is in fact a predicates.

This rule is placed on the Suggest facet because, if placed anywhere else on this concept, it
could only be seen as relevant by AM if AM already knew that F were a predeicate. On
the other hand, the rule can't be placed, e.g, on ActiveFillin, since just forgetting (deleting)
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this “Predicate” concept should be enough to delete all references to predicates anywhere in
the system.

Predicate . Interest

143. A predicate P is interesting if ils domain is Any=-concept {the space of all known concepts).
This Is especially true if there is a significant positive correlation {theoretical or
empirical) belween concepls’ worthe and their P-values.

This very high level heuristic wasn't really used by AM during its runs.
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pendix 3.5. IE 18% 108 # dealing 1th a Operation

Operation . Fillin

150. To {ill in examples of operation F {with domain A and range B),
when many examples « of A ars already known,
and F maps some of those examples « inlo distinguished members {esp: sxirema) b of B,

Then (for each such distinguished member "b™¢B) study F-'{b) et a new concept. That is,
isolate {hose members of A whose F-value is the unusual item beB.

This rule says to investigate the inverse image of an unusual item b, under the interesting
operation f. When b=2 and f=number-of-divisors-of, this rule leads to the definition of
prime numbers. When b=Phi'® and f=Intersection, the rule led to the discovery of the
concept of disjointness of sets.

I51. To fill in Domain/range entries for operation ¥,
F can operate on the domain of sny specialization of F,
F can operate on the specialization of the domain of any specislization of F {including F

itself},
F can operate on some restriction of the domain of any generalization of F, atl least on iis

current domain and perhaps sven on a bigger space,
F may be sbie 1o operate on some generalization of (some component{s) of} its current

domain

F can only (snd will siways) produce values lying in the range of each generalization of F,
F can == with the propar arguments =~ produce values lying in the range of any parliculsr

specialization of F.

There are only a few changes between this rule and the corresponding one for Predicates.
Recall that Operations can be mulki-valued, and those values are not limited to the set
{T.F}.

152. To fill in Domain/range eniries for cperstion F, when soma exist sirsady,
Take an eniry of the form <D1 D2.. Dn = R> and see if DixR is meaningful for somei

{especially: isn).
If so, then ramove Di from the leit side of the eniry, and replace R by DixR, and modify the

delinilion of F.

In LISP, “meaningful” is coded as: either DixR is equivalent to an already-known concept,
or else it is found in at least two interesting conjectures. This is probably an instance of
what McDermott calls natural stupidity'®. This rule is tagged as being explosive, and is not
used very often by AM. |

153, To fill in # Range entry for operation F,
Run F on various domain examples, sspacially boundary examples, to collect examples of the

range. Then ripple down the tree of concepls io determine empirically where ¥ seems
{oc be sending its values.

15 the smpty set, NIL, {} :
Lo See McDermott 76] for natursl stupidity. He criticizes the vee of very intelligent-sounding names for atherwise-simple

program modules. But consider “Home sapiens”, which means “wise men”. Now thers's » misleading label.
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This may shock the reader, as it sounds dumb and explosive, but the concepts are arranged
in a tree {using Genl links), 10 the search is really quite fast. Although this rule is rarely
used, it always seems to give surprisingly good results.

154. If operation F has just been applied, and hes yielded » new concept C ae its result,
Than carefully examine F.Dom/range 10 iry ie find sut what Class should be. C.lss will be all

legal eniries listed as values of tha range of F.

When F=Compose, say AM has just created C=Emptyelnsert.!” What is C? It is a concept,
of course, but what else? By examining the Domain/range facet of Compose, AM finds the
entry <Active Active + Active>. Aha! So C must be an Active. But AM also finds the entry
<Predicate Active + Predicate>. Since "Empty" is a predicate, the final composition C must
also be a predicate. So C.lsa would be filled in with “Predicate”. AM thus used the above
rule to determine that Emptycinsert was a predicate. Even if this rule were excised, AM
couid still determine that fact, painfully, by noticing that all the values were truth-values.

155. If operation F has just been applied 10 Al AZ,.., snd has yielded a new concept C as ils
result

Then add F fo Cin-ran-of; odd F {0 the in-dom=of face! of sil the Al's which are concepts;
edd <A)...= CO to F.Exs.

There is some overlap here with earlier rules, but there is no theoretical or practical
difficulty with such redundancy.

156. When filling in exemples of operation F, if F takes some existing concepls Al, A2,. and
{may} produce & new concept,

Then only consider, as potential A's, those concepls which already have some exemples.
Prefer the A's lo be inlarasting, to have s high worlh rating, io have some interesting
conjeciures about them, io have savers! sxamples and several non-examples, sic.

The danger here is of, eg., Composing two operations which turn out to be vacuous, or of
Conjoining an empty concept onto another, or of proliferating variants of a boring concept,
etc.

Operation . Check

Below are rules used to check existing entries on various facets of operations.

17 in, insert x into » structures S and than see if § is empty. This leeds AM to realize thet insertingcan never result in an
amply sinaivre.
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157. To check the domsin/rangs eniries on the operation F,
IF a domainfrange sniry hat the form (CD D... + Rj,
snd all the D's are equal, and R is » generslizetion of D (or, with less enihusissm: if R and D

have a significant overiap),
THEN it's worlh seeing wheather {D OD D.. = D) is comsistent wilh all known examples of the

operation:

if thare ares no known axamples, add a {ask io the agenda requesting they be filled
in.

If there are examples, and (D OD D.. = Dj is consistent, add it io Ihe Domein/range
face! of this operation.

if thare ars some contradicting examples, creale s new concept which is defined
as this operation restricied 10 (DD D... = D).

When AM restricts Bag-union to numbers (bags of T's), the new operation has a
Domain/range entry of the form {Numbers Numbers + Bag). The above rule has AM
investigate whether the range specification mightn't aiso be narrowed down to Number. In
this case it is a great help. The rule often fails, of course: the sum of two primes is rarely a
prime, the cross-product of two lists-of-atoms is not a list-of-atoms, etc. Since this rule is
almost instantaneous to execute, it’s cost-effective overall.

158. When checking the domain/range eniries on the operation F,
IF a domsin/range aniry has the form (DD D.. = R)},
and ali the D's are equal, and R is a specisiizalion of D,
THEN it's worth inserting (OD D D.. = D} as a new entry on F.Dom/ran, sven though that is

redundant.

This shows that symmetry and aesthetics are sometimes preferable to absolute optimization.
That's why we program in Lisp, instead of machine language. On the other hand, this rule
wasn't really that useful to AM. Now, by analogy...?

159. When checking the Domain/range eniries for operation F,
Ensure thal the boundary itams in the range can actually be reached by F. Hf not, see

whether the range is really just some known specisiization of F.

This rule is a typical checking rule. Note that it is active, not passive: it might alter the
Domain/range facet of F, it it finds an error there. |

160. When checking examples of the operation F, for each such sxample,
if the valve returned by F is a concept C, add 'F' to C.in-range-of.

Operation . Suggest

161. Whenever the domain of operation ¥ has changed,

check whether the range has siso changed. Often the range will change analogously 10 the
domain, where the operation itself is the Anslogy.

162. Alter working on Operation F,
Give a slighl, sphemeral boost to {asks involving Range(F).
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This wil be a moderate size boost for each task which asks to fill in examples of that range
concept, and a very tiny boost for each other task mentioning such a concept. This is both
a supplement to the more general “focus of attention” rule, and a nontrivial heuristic for
finding valuable new tasks. It is an extension of rule number |42, and a partial converse to
rule 14.

Operation . Interest

163. An operation F is inleresiing H there are other spersiioms with the same domain and renge,
snd if they sre (on the average) fairly iMleresting.

164. An operation F is interesting if it is the first operslion connecting ils domein concept fo ite
range concept, and HH those domsin/renge components sre themssives valuable
concepls, and there is no anslegy belwesn them, snd thers srs some inlerssling
conjeciures involving the domain of F.

The above two rules say that F can be valuable becuase it's similar to other, already-liked
operations, or because it is totally different from any known operation. Although these two
criteria are nonintersecting, their union represents only a small fraction of the operations
that get created: typically, neither rule will trigger.

165. An operstion F is interesting i its range i» very interesting.

Range here refers to the concept in which all resuks of F must lie. It is the R in the
domain/range facet entry <D - R> for concept F. The corresponding rule for ‘domains’ is
applicable to any Active, not just to Operations, hence is listed under Active.interest, as rule
number 145.

166. An operationF is interestingif the values of F satisfy some ummual property which is not {in
general) satisfied by the argumentsfo F.

Thus doubling is interesting because it always returns an even number. This is one case
where the interesting property can be deduced trivially just by looking at the domain and
range of the operation: Numbers+Even-nos.

187. An operstion is interesting i its values are interesting.

This can mean that each value is interesting (eg. Compose is well-received because it
produces many new, valuable concepts as its values). Or, it can mean that the operations’
values, gathered together into one big set, are interesting as a set. Unlike the preceding rule,
this one has no mention whatsoever of the domain items, the arguments to the operation.
This rule was used to good advantage frequently by AM. For example, Factorings of
numbers are Interesting because {using rule 232) for all x, Factorings(x) is interesting in
exactly the same way. Namely, Factorings(x), viewed as a set, always contains precisely one
item which has a certain interesting property {see rule 233). Namely, all its members are
primes (see rule 232 again). This explains one way in which AM noticed that all numbers
seem to factor uniquely into primes.
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168. An operation is interesling if ils values ars interesting, ignoring ihe images of boundary
ilems from the domain.

That is, if the image of the domain — minus its boundary — is interesting.

169. An operalion is inlerssting if its values on the boundery items from the domain ars very
interssling. ignore the non-boundary paris of the domain.

That is, if the image of the boundary of the domain is interesting.

1790. An oparation is interesting if il leaves intact any interesting properlies of ile arguments).
This is sven beller if it sliminsles some undesirable properlies, or adds somes new,
desirable ones.

Thus a new, specialized kind of Insertion operation is interesting if, even though it stuffs
more items into a structure, the nice properties of the structure remain. The operation
“Merge” is interesting for this very reason: it inserts items into an alphabetized list, yet it
doesn’t destroy that interesting property of the list.

171. An operslion is interasling if ils domain and range are equal. If there is more than one
domain componeni, then a! least one of them should aqual the range. The more
componenis which are squal io the range, the beller.

Thus “Insertion” qualifies here, since its domain/range entry is <Anything Structures -
Structures>. But “Union” is even betier, since both domain components equal the range,
namely Structures.

172. An operalion is mildly interesting if ils range is related somehow (e.g. specislization of) fo
one or moras components of its range. The more the beller.

A weakened form of the preceding rule.

173. ii the result of applying operation F is a naw concept C,
Then the interastingness of F is weakly tied to thet of C.

If the new concept C becomes very valuable, then F will rise slightly in interest. If C is so
bad it gets forgotten, F will not be regarded quite as highly. When Canonize scores big its
first time used, it rises in interest. This caused AM to form poorly-motivated canonizations,
which led to dismal results, which gradually lowered the rating of Canonize to where it was
originally.
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Appendix 3.6. Heuristics for dealing with any Composition

Composition , Fillin

174. To fill in algorithms for operation F, where F is » composition Gol,
One algorithm is: apply H and then apply G io the result.

Of course this rule is not much more than the definition of what it means to compose two
operations.

175. Yo {ill in Domain/range eniries for operation F, where F is a composition Gol,
Tentatively assume thal the domain is Domain(H), snd renge is Renge(G). More precisely, the

domain will be the result of substiluling Domsin{K} for Range(H) wherever Rangel(H)
appears {or: just once) in Domain(G).

Thus for F=DividesoCount, where Divides:«<Number,Number +» {T .F}>, and Count:<Bag +
Number>, the above rule would say that the domain/range entries for F are gotten bv
substituting ‘Bag’ for ‘Number’ once or twice in Domain{Divides). The possible entries for
F.Dom/range are thus: <Bag,Bag + {T.F}>, <Number,Bag -» {T.F}>, and <Bag,Number
{T.F)>.

1786. To ill in Domsin/range entries for operation F, where F is a composition Gob, But Range(M)
does nol occur as & component of Domain(G),

The range of F is still Range(G), bul the domain of F ix computed as follows: Ascertain the
component X of Domain{G) having the biggesi {fractionsl} overlap with Rangei{H). Then
subslitute Domain{H} for X in Domain(G). The resull is the value to be used for
Domain(F).

This rule is a second-order correction to the previous one. If there is no absolute equality,
then a large intersection will suffice. Notice that F may no longer be defined on all of its
domain, even if G and H are. If identical equality is taken as the maximum possible
overlap betwen two concepts, then this rule can be used to replace the preceding one
completely. |

177. When trying to {ill in the isa entries for a composition FalaoH,
Examine G.lsa and Misa, and especially their interseclion. Some of those concepls may also

claim F as an example. Run their definition facet lo see.

To see how this is encoded into LISP, turn to page 219.

178. When irying to fill in the Genl or Spec eniries for a composition FaGoH,
Examine the corresponding facel on Gi and on H.

This rule is similar to the preceding one, but wasn't as useful or as reliable.

179. A satisfactory initial guess asl the Worth value of composition Falco is the rool-sume-ol=
squaras of G.Worth and HN.Worth.
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180. To fill in examples of F, where FelioH, and both G and H ars time-consuming, but whers
many examples of both G and MH axist,

Seek an example xy of H, and sn example y-z of G, and then return x—z as a probable
example of F.

Above, ‘seek’ is done in a tight, efficent manner. The examples are H are hashed into an
array, based on the values y of each one. Then the arguments of the examples of G are
hashed to see if they occur in this array. Those that do will generate an example of the new
composition.

181. To {ill in examples of F, whare FalioM, and G is limeconsuming, but many exempies of G exist,
and il is not known whelher H is time-consuming or not,

Spend & moment trying to access or frivislly fill in examples of K.
if this succeoads, apply Ihe praceding rule.
H this fails, then formally propose that AM fill in exemples of H, with priority equal to that of

the current task, for these two ressons: {i) il exemples of H existed, then AM could
have used the heuristic preceding lhis one, 10 fill in examples of F, and {ii} it is
dangerous ioc spend 3 long lime desling with Gol before sny examplas at ali of H sre
known.

This rule is of course tightly coupled to the preceding one. The same rule exists for the
case where just H is time-consuming, instead of G.

182. When trying fo fill in Conjecs about a composition FalsoH,
Consider that F may be the same 2s G {or the same at NH).

It was somewhat depressing that this ‘stupid’ heuristic turned out to be valuable, perhaps
even necessary for AM'’s top performance.

Composition . Check

183. Check {hat FoG is raally not the same as F, or the same as G. Spend some time checking
whether Fol is eguivsient 10 any siready=-known active concept.

This happens often enough to make it worth stating explicitly. Often, for example, F will
not even bother looking at the result of G! For example,
Proj2oSquare{x,y) = Proj2(Square(x)y) = y = Proj2{xy).

184. When checking the Algorithms eniries for a composition Fall,
If range{H) is nol wholly contained in the domain of G,
then the algorilhm must contain a Tlegality™ check, ensuring that Hix) is » valid member of

the domain of G.
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Composition . Suggest

185. Given on interesting operation F:ATA,
consider composing F with itself.

This may result in more than one new operation. From F=division, for example, we get the
two operations (x/y)/z and x/{y/z). AM quickly realizes that such variants are really
equivalent, and (if prodded) eventually realizes that F(F(x.y),t}=F(x,F(y.2)) is a common
situation {which we call associativity of F).

186. if the newly-formed domain of the composition Fao contains mors than one occurrences of
the conceptD, and this isn't true of G or H,

Then consider crealing eo new operation, a aspecislizstion of F, by Coaslesting the
domain/range of F, by eliminating one of the D components.

Thus when InserteDelete is formed, the old Domain/range entries were both of the form
<Anything Structure + Structure>. The newly-created entry for InserteDelete was <Anything
Anything Structure -+ Structure>; le, take x, delete it from S, then insert y into S$. The
above rule had AM turn this into a new operation, with domain/range <Anything Structure
-+ Structure>, which deleted x from $ and the inserted the very same x back into S.

Composition . Interest

187. A composition Fale is interesting if G and H sre very interesting.

188. A composition FeGoH is interesting it F has an interesting properly not possessed by either
GorH

189. A composition F=GeH is interesting if F has most of the interesting properties which sre
possessedby either G or H. This in elightly reduced if both CG and H possess the
property.

190. A composition Falol ie interesling if F lacks any undesirable properties true of G or N. This
is greally increased if both G and H possess the bad property, unisss G snd H are very
closely related to each other (e.g. HeG,or HeG').

The numeric impact of each of these rules was guessed at initially, and has never needed
tuning. Here is an area where experimentation might prove interesting.

191. A composition FeGoH is interesting if F maps interesting subsets of domain(H) into interesting
subsets of range((s).

F is to be judged sven more interesting if the image was not thought lo be interesting until
after it was axplicitly isolated and studied because of part 1 of this very rule.

Here, an “interesting” subset of domain(H) is one 30 judged by Interestsidomain{H)). A
completely different set of criteria will be used to judge the interestingness of the resultant
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image under F. Namely, for that purpose, AM will ask for range(G).Interest, and ripple
outwards to look for related interest features.

192. A composition FaGoH it interesting if F-' maps interesting subsets of renge(G) into
interesting subsets of domainiF).

This is sven betler if the preimage wasn't hitherlo reslized ss interesting.

This is the converse of the preceding rule. Again, “interesting” is judged by two different
sets of criteria.

193. A composition FaGoH is interesting if F maps interesting elements of domain(H) into
interesting subsets of range(G).

194. A composition FeGol is interesting it F~' maps interesting elements of range(G}) into
interasling subsets of domainiF).

This is sven betler if the subsel is only now seen fo be interesting.

This is the analogue of an earlier rule, but for individual items rather than for whole
subsets of the domain and range of F.

195. A componition FsGoH is interesting if range(H) is sequel 10, not just intersects, one component
of domain{G).

196. A composilion FulioH is mildly interesting if range{H) is a specislizelion of one component of
domsin{G).

This is a weakened version of the preceding feature. Such a composition is interesting
because it is guaranteed to always be applicable. If Range(H) merely intersects a domain
component of G, then there must be an extra check, after computing H{x), to ensure it lies
within the legal domain of G, before trying to run G on that new entity H(x).

197. A composition Falol is more interesting if rangaiG) is aqual fo 3 domain component of A.

This is over and above the slight boost given to the composition because it is an operation
whose domain and range coincide {see rule i71).

Insertion . Check

198. When checking sn sxample of any kind of insertion of x inte §,
Ensurethat x it a memberof 5.

- The only types of insertions known to AM are unconditional insertions, 30 this rule is valid.
It is useful for ensuring that a particular new operation really is an insertion-operation after
aif!
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Appendix 3.8. Heuristics for dealing with the operation Coalesce

Coalesce . Fillin

199. When cosiescing Fls,b,...), whose domain/range is (ABC... =» B,
A good choice of two domain components io cosiesce is 8 pair of identically squel ones.

Barring that, chooses a pair reisied by specialization {eliminate the more genersi one).
Barring thal, choose a pair with a common specislization S, and replece both by S.

Thus to coalesce the operation “InserteDelete” [which takes two items and a structure, deletes
the first argument from the structure and then inserts the second argument], AM examines
its Domain/range entry: <Anything Anything Structure + Structure>. Although it would be
legal to collapse the second and third arguments, the above rule says it makes more sense in
general to collapse the first and second. In fact, in that case, AM gets an operation which
tells it something about multiple elements structures.

200. When filling in Algorithme for a cosiesced version G of aclive concept F,
One natural slgorithm is simplyto call on F.Algs, with twe arguments the same.

Of course the two identical arguments are those which have been decided to be merged.
This will be decided before the definition and algorithm facets are filled in. Thus a natural
algorithm for Square is to call on TIMES.Alg(x.x). The following rule is similar:

201. When filling in Definitions for & coslesced version G of sclive concept F,
One natural Definitionis simply to coll on F.Deln, wilh two arguments the same.

202. When tilling in *he Worthof a new coalesced version of F,
A suitable value ls 0.9x{Worlh of F) » 0.Ix{Worth of Coslesce).

This is a compromise between (i) the knowledge that the new operation will probably be
less interesting than F, and (ii) the knowledge that it may lead to even more valuable new
concepts {eg., its inverse may be more interesting than F's). The formula also incorporates
a small factor which is based on the overall value of coalescings which AM has done so far
in the run.

Coalesce . Check

203. H G ond H ars seach two cosiescings away from F, for any F,

Theniin thet G end H sren't really the same, by writing their definitions aul in terms ofDetn.

Thus if R{a,bc) is really F(a,b,ac), and S{abc) is really F(abcc), and R and S get coalesced
again, into G(a,b) whch is R{a,b,a) and into H(a,b) which is ${a,b,a), then both CG and H are
really F(abaa). The order of coaleing is unimportant. This is a boost to the more
general impetus for checking this sort of thing, rule 110. This rule is faster, containing a
special-purpose program for untanzling argument-calls rapidly. If the concept of Coalesce is
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excised from the system, one can easily imagine it being re-derived by a more general
‘coincidence’ strategy, but how will these specific, high-powered, tightly-coded heuristics ever
get discovered and tacked onto the Coalesce concept? This is an instance of the main meta-
level research problem proposed earlier in the thesis (Chapter 7).

Coalesce . Suggest

204. If » newly-intaresting aclive concept Flx,y} takes s pair of N's as arguments,
Then creale a new concepl, & specisiization of F, called F-iizeif, taking just one N as

argument, defined as Fixx}, with initisl worth WorthiF}.
If AM has never cosiesced F before, his gate a slight bonus value.
if AM has coslesced F before, say nic S, then modily this suggestion's valve according 1o the

current worlh of §.

The lower the system's intersst-ihreshheold is, the morse stiactive this suggesiion becomes.

AM used this rule to coalesce many active concepts. Times(xx) is what we know as
squaring; Equality(x,x) turned out to be the constant predicate True; intersect{xx) turned
out to be the identity operator; Compose(f,f) was an interesting “iteration” operator'$; etc.
This rule is really a bundle of little meta-rules modifying one suggestion: the suggestion that
AM coalesce F. The very last part of the above rule indicates that if the system is
desparate, this is the least distasteful way to “take a chance” on a high-payoff high-risk
course of action. It is more sane than, eg. randomly composing two operations until a nice
new one is created.

205. i concep! F lakes only one srgument,
Then it is not worlhwhile io try lo coalesce il.

This rule was of little help cpu-timewise, since even If AM tried to coalesce such an active
concept,it would fall almost instantaneously. The rule did help make AM appear smarter,
however.

Appendix 3.9. Heuristics for dealing with the operation Canonize

Canonize . Fillin

206. If the ask is to Canonize predicates P1 and P2 (over AxA}'®, and the difference between &
definition of P1 and definition of P2 is just that P2 performs some exira check thal Pl
doesn't,

Then F should convert any tA into 2 member of A which aulomalically satisties that exira
conatraint.

Thus when Pi=Same.length, P2=Equality, A=Lists, the extra constraint that P2 satisfies is
just that it recurs in the CAR direction: the CARs of the two arguments must also satisfy

Is 8.3. Compose{Composs Compass} is an eperater whith takes 3 sperations 14,0 ond forms "f o g # A"; ie, their joint

19 viet is, find & function F such that Pl{x,y) #f P2F()Fiy)).
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P2. PI doesn't have such a requirement. The above rule then has AM seek out a way to
guarantee that the CARs will always satisfy Equality. A special hand-crafted piece of
knowledge tells AM that since "T=T" is an example of Equality, one solution is for all the
CARs to be the atom T. Then the operation F must contain a procedure for converting
each ember of a structure to the atom “IT. Thus (A C {Z A B} Q Q) would be converted
to {T TT T T). This rule is a specialized, “compiled” version of the idea expressed in rule
number 13.

207. if the task is ic Canonize P1 snd P2 over AxA, trying 10 synthesize F, where AsSiructure,
Then perhaps there is a distinguished type of structure B which the srgument to ¥ should

always be converied into. In thel case, consider Pi and P2 as two predicates over BxB.

This special-purpose rule is used to guide a series of experiments, to determine whether PF!
is affected by adding multiple copies of existing elements into its arguments, and whether its
value is affected by rearranging some of its arguments’ elements. In the case of Pl=5Same-
size, the answers are: multiple elements do make a difference, but rearrangement doesn't. So
the canonical type of structure for F=Size must be one which is Muit-eles-ailowed and also
one which is Unordered. Namely, a Bag. Thus F is modified so that it first converts its
argument to a Bag. Then Equality and Same-size are viewed as taking a pair of Bags, and
Size is viewed as taking one Bag and giving back a canonical bag.

208. After F is created from P) and P2, as Canonize(P1,P2),
an accoplable velue for the worthof F is the maximumof the wortheof Pi and P2.

In the actual Lisp code, an extra small term is added which takes into account the overall
value of all the Canonizations which AM has recently produced.

209. IF ihe current task has just createda canonical specialization 8 of concept A, with respect to
predicates Pl and P2, [i.e two members of B satisfy Pi iff they setiefy P2},

THEN add the following eniry to the Analogies facet of B:
(A Pl Operations-on-snd-inlo{A)>
<B P2 Those opersiions resiricted to B's)

This rather incoherent rule says that it's worth taking the trouble to study the behavior of
each operation when it is restricted to working on standard or “canonical” items. Moreover,
some of the old relationships may carry over — or at least have analogues — in this
restricted world. When numbers are discovered as canonical bags, all the bag operations
are restricted to work on only canonical bags, and they magically turn into what we know
and love as numeric operations. Many of the old bag-theoretic relationships have numeric
analogues. Thus we knew that the bag-difference of x and x was the empty bag; this is still
true for x a canonical bag, but we would word it as "x minus x i3 zero”. This is because the
restriction of Bag-difference to canonical bags (bags of T's) is precisely the operation we call
subtraction.

210. When Canonize works on P11, P2 {lwo predicates), and produces an operation, F,
Both predicetesmust share 3 common Domain, of the form AxA for some concept A, and the

now operation F con have <A = A> ss one of ils Domein/renge entries.
Hf & canonical specialization (say 'B') of A is defined, then the domain/range of F con sctuslly

Be WARES W0-<A. 4 15: 400 1 8 S00 Wr waplicly storing the redundent eniry <8-+ B.
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211. In the same situation as the last rule,

One conjecture is that P1 and P2 are equal, when restricted to working on pairs of B's [ise.,
pairs of Canonical A's, A's which are in F(A), range items for F, items x which are the
image F{s) of some a¢A].

After canonizing Equal and Same-size into the new operation Length, AM conjectures that
two canonical bags are equal iff they have the same size.

Canonize . Suggest

212. When Canonize works on Pl, P2, bolth predicates over AxA, and produces an operation
F:A-A

it is worth defining and studying the image F(A); i.e, the totality of A's which are canonical,
already in standard form. When this new toncep! Canonical-A is delined, suggest the
task "Fillin Dom/rangs enirias for Canonical-A".

Thus AM studied Canonical-Bags. which turned out to be isomorphic to the natural
numbers. What we've called ‘Canonical-A’ in this rule, we've referred to simply as ‘B’ in
earlier Canonizing rules.

213. HH Pl is a very interesting pradicale over AxA, for some inleresling concept A,
Then look over Pl.Spec for some other predicate P2 which is also over AxA, and which has

some inleresling properties Pl lacks. For sach such predicate P2, consider applying
Canonize{Pi,P2}.

214. Aller producing F as Canonize{Pi,P2) [bolh predicates over AxA}, and after defining
Canonical-A,

il is worth restricting operations in In~dom-of{A) lo Canonicsl-A. Some new properties may
smerge.

Thus after defining Canonical-Bags, AM looked at Bags.in-dom-of. In that list was the
operation “Bag-union”. So AM considered the restriction of Bag-union to Canonical-bags.
Instead of Bag-union mapping two bags into a new bag, this new operation took two
canonical-bags and mapped them into a new bag. AM later noticed that this new bag was
itself always canonical. Thus was born the operation we call “Addition”. -

215. Aller Canonical-A is produced,
It is marginally worlh trying lo restrict operations in In-range-ot{A} to map into Canonical-A.

This gives an added boost to picking Union to restrict, since it is in both Bags.In-dom-of
and Bags.In-ran-of. This rule is much harder to implement, since it demands that the range
be restricted. There are just a few special-purpose tricks AM knows to do this. Restricting
the domain is, by comparison, much cleaner. AM simply creates a new concept with the
same definition, but with a more restricted domain/range facet. For restricting the range,
AM must insert into the definition a check to ensure that the nal result is inside Canonical-

A, not just in A. This leads to a very inefficent definition.

216. Alter Canonical=A is produced,
It is worthwhile lo consider filling in examples (especially boundary) of that new concept.
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This is above and beyond the slight push which rule 12 gives that task.

Appendix 3.10. Heuristics for dealing with the operatior bstitute

Note that substitution operations are produced via the initial concepts called Parallel-replace
and Parallei-replace2. The following rules are tacked on there.

Parallel-replace . Suggest

217. if two different variables are used to represent the same enlity,%° then subslitlule one for
the other.

This is very important if the two occurrences are within the sama eniry on some facel of a
single concepl, and lass 30 otherwise.

The dominant variable should be the one typed out praviously to the user; barring that, the
older usage: barring that, the one tictest to the letter "a" in the alphabet.

This heuristic was used less often — and proved less impressive — than was originally
anticipated by the author. Since most concepts were begotten from older ones, they always
assumed the same variable namings, hence there were very few mismatches. A special test
was needed to explicitly check for "xsy" occurring as a con junct somewhere, in which case
we removed it and y substituted for x throughout the conjunction.

218. H two axprassions {sspecially: two conjectures) are siruciurally similar, and sppear to differ
by a certain subslitution,

Then if lhe substilution is permissable wa have just arrived at the same expression in
various ways, and lag it az such,

But if the substitution is not seen lo be lauvloiogous, then » new snalogy is born. Associate
the consliluent parts of bolh axpressions. This is made interesting if there sre several
concepls involved which are assigned new analogues.

The similar statements of the associativity of Add and Times led to this rule's identifying
them as analogous. If AM had been more sophisticated, it might have eventually
formulated some abstract algebra concepts like “semigroup” from such analogies.

pendix 3.11. Heuristics for dealing with the operation Restric

Restrict . Fillin

219. When filling in definitions {aigorilhms) for & restriction R of the aclive concept F,
One entry can simply be a call on FDein {F.Aigs).

Thus one definition of Addition will always be as a call on the old, general operation ‘Bag-
union.’ Of course one major reason for restricting the domain/range of an activity is that it
can be performed using a faster algorithm! So the above rule was used frequently if not
dramatically.

20 when we say that x and vy represen! the sams entity, whal we really meen nm thet they have the same domain of identity
{ag, ¥xtBags) and thay sre squally free (there ie 8 precise logical defmition of sll thie, but thare is Kittle
point to presenting it here.)
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220. When creating » restriction R of the aclive concept F,
Note that R.Genl should contain F, and that F.Spec should contain R.

221. When creating in a restriction R of the active concept F, by restricling the domain or range
to some specislization S of ils previous value C,

A viable initial guess for R.Worlh is F.Worlhk, augmenteZ Sv the difference in worth beiwaen
S and C. Hopelully, S.Worlh is bigger than C.Worth!

Appendix 3.12. Heuristics for dealing with the operation Invert

Invert . Fillin

222. When filling in definitions for an Inverse F! of the active concepl F,
One "Sufticent Dein” enlry can simply be a blind search through the examples of F.

If we already knew that 4-16 is an example of Square, then AM can use the above rule to
quickly notice that Square-Inverse.Defn(16,4) is true. This is almost the “essence” of
inverting an operation, of course.

Invert . Suggest

223. After creating an inverted form F-! of some operation F,
If the only definition and algorithm eniries ars the “obvious” inefficient ones,

Then consider the task: "Fill in algorithms for F-'™, because the old blind search is just foo
awiul io tolerate.

Appendix 3.13. Heuristics for dealing with Logical combinations

Eventually, there may be separate concepts for each kind of logical connective. For the
moment, all Boolean operators are lumped together here. Their definition is too trivial for
a 'Fillin’ heuristic to be useful, and even ‘Check’ heuristics are almost pointless.

Logical-combine . Check

224. The user may somelimes indicate ‘Conjunction’ when he really means ‘Repeating’.
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Logical-combine . Suggest

225. if there is something interesting io say about entities satisfying the disjunction (conjunction)
of two concepls’ definitions,

Then consider creating a new concept defined as that logical combination of the two concepts’
definitions.

226. Given an implication,
Try to weaken the left side ss much as possible without destroying the validity of the whole

implication. Similerly, iry 10 strengthen the right side of the implication.

Logical-combine . Interest

227. A disjunction {conjunction} is interesting if there is » conjeciure which is very interesting yet
which cannot be made about any one disjunct {conjuncl).

In other words, their logical combination implies more than any consituent.

228. An implication is interasting if the right side is morse interesting than the sft side.

223. An implication is interesling if the right side is interesting yet unexpected based only on
assuming the iefl side.

Appendix3.14. Heuristics for dealingwith Structures

Structure . Fillin |

230. To {ill in examples of a kind of structure S,
Start with sn empty S, pluck any other member of Examples{Siructure), and iransfer

members one at a lime from the random struclure into the embryonic S. Finally, check
that the resultant S really salisfies 5.Dein.

This is useful, e.g., to convert examples of lists into examples of sets.

231. To fill in specislizations of a kind of structures,
add a naw consiraint thal sach member must salisty, or a constraint on all pairs of members,

or & constraint on sli pairs of distinct members, or a constraint which the structure as a
whole must satisly. Such a constraint is often merely a stipulation of being an example
of an X, for some interesting concept X.

Thus AM might specialize Bags into Bags-of-primes, or into Bags-of-distinct-primes, or into
Bags-containing-a-prime.
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Structure . Interest

232. Structure S is mildly interesting if oll members of 5 satisfy the interesting predicate P, or
{equivalently} if they are all accidentally exampies of the interesting concept C, or
(similarly) if all pairs of members of S satisfy the interesting binary predicate P, oie.

Also: a KIND of structure is interesting if it sppesrs that each instance of such a structure
satisfies the sbove condition {for a fixed P or C).

Thus a singleton is interesting because all pairs of members satisfy Equal. The concept
“Singletons” is interesting because each singleton is mildly interesting in just that same way.
Similarly, AM defines the concept of a bag containing only primes, because the above rule
says it might be interesting.

233. A siruclure is mildly interesting if one member is very interesting. Even belter: sxaclly one
member.

Also: a KIND of siruciure is interesting if each instance satisties the above condition in the
sama way.

Thus the values of ADD" are interesting because they always contain precisely one bag
which is a Singleton.

npendi 15. I11€] 16 108 ’ dealing vith rde 3-8 HCLUIT OF

Ordered-struc . Fillin

234. To fill in some new sxamples of the ordered structure S$, when some siready exist,
Pick an existing sxample and randomly permuie its members.

235. To {ill in specislizations of & kind of ordered structurs,
dd 8 new comeiraint that each pair of adjecent members must satisfy, or a constraint on ali

orderad pairs of members in the order they appesr in the struclure. Such a constraint
is often merely a stipulation of being an example of en X, for some interesting concept
X.

Thus Lists-of-numbers might be specialized into Sorted-lists-of-numbers, assuming AM has
discovered “<” and assuming it is chosen as the ‘constraint’ relationship between adjacent
members of the list.

Ordered-struc . Check

236. If the structure is lo be accessed sequentially until some condition is met, and if the precise
ordering is superiiuous,

Then keep the siruciure ordered by irequency of use, the most useful slement first.

This is a simple data-structure management trick. If you have several rules to use in a
certain situation, and rule R is one which usually succeeds, then put R first in the list of
rules to try. Similarly, in a pattern-matcher, try first the test most likely to detect non-
matching arguments.
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237. H structure S is always to be maintained in siphsnumeric order,

Then AM con®’ actually maintein it ss an unordered structure, if desired.

Luckily this heavily implementation-dependent rule was never needed by AM.

Ordered-struc . Interest

238. An orderad siruclure § is interesting if each adjacent pair of members of § satisfies
predicaie P {for some rare, inleresting P).

When AM discovers the relation “s”, it immediately thinks that any sorted list of numbers is
more interesting, due to the above rule.

ADDENG (Ey \- 6Lics C dealing with 10LGeIea-airt 31 CE

Unord-struc . Check

239. To check an sxsmple of an unordered structure,
Ensure that it is in siphanumerically=soried order. if not, then SORT it.

All unordered objects are maintained in lexicographic order, so that two of them can be
tested for equality using the LISP function EQUAL. Because of this convention, any two
structures can therefore be tested for equality using this fast list-structure comparator.

appendix 8.17. Heuristics for dealing with Multiple-eles-str: <:

Mult-ele-struc . Fillin

240. To {ill in some new oxsmpies of the struciurs $, where S is & structure admitting multiple
occurrences of the same element, whan some examples siraady axist,

Pick sn existing oxample and randomly change the mulliplicity with which various members
octur within the structure.

Sets . Suggest

241. { P is a very inlerssting predicste over X,
Then study these two sets: the members of X for which P holds, snd the ones for which P

fails.

21 gus 10 the current LISP implementation of deta-structures
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While we humans know that this partitions X into two pieces, AM is never explicitly told
this. It would occasionally be surprised to discover that the union of two such complements
“accidentally” coincided with X. Incidentally, this rule is really the key linkage between
predicates and sets; it is close to the entry on Set.View which tells how to view any predicate
as a mt.

Sets . Interest

242. A sel S is interesting if, for some interesting predicate P, whose domain is X,
$ accidentally sppasrs io be relisted strongly te [x(X | Pix}}, i.e. lo those members of X

salistying P.

To the surprise of the author, this rule never found application in any of AM’s runs.
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Appendix 4, Maximally-Divisible Numbers
iiSL

T Ae Aonor ofyour machine is preserved.

Erdos’

This appendix discusses a discovery motivated by AM: a new little bit of mathematics that
was discovered. It is presented as if it were a math journal article, in a fairly formal way,
almost unmotivated.

After the concept was discovered, the author learned that Ramanujan, a self-taught Indian
mathematician, had worked on similar issues early in this century. The final subsection
contains a relaxed summary of what AM did, what the author did, and what Ramanujan
did.

We begin by asking the question, "What is the converse concept to prime numbers?” If we
define “primeness” to mean that a natural number has as few divisors as possible (namely,
just two of them: | and itself), then the converse kind of number would be one which had
an abnormally large number of divisors.

One could consider the following set M of maximally-divisible numbers:

M = {x¢N° | (Vy<x) (diy) < dix) ) }

where d(n) is the number of divisors of n,2 N* is the set of positive integers, and the vertical
bar, T is read such that’.

In words, this says that M is the set of all positive integers satisfying the property that every
smaller number has fewer divisors. That is, we throw into the set M a number x if (and
only if) it has more divisors than any smaller number. So 1 gets thrown in {the smallest
number with 1 divisor), 2 (having 2 divisors), 4 (3 divisors, namely 1, 2, and 4), 6 (4
divisors), 12 {6 divisors), etc. Another way to specify M is as the set containing {for all n)
the smallest number having at least n divisors. Notice that we are not going to include "the
smallest number with precisely 5 divisors”, since this number (which happens to be 2 or 16)
is bigger than 12 (which has 6 divisors). So no number in M has precisely five divisors.

! Remarked by Pau Erdos, after sxsmining some of This sppendn’s material
? Ee. 612)= M12340,12)0« 8.
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One of the questions at the heart of our study is "Given d, what is the smallest number
with at least d divisors?”

How can we even start on this question? The most powerful tool we have is the following
combinatoriaily-proved theorem:

(T'1) 1f we write n as 22!382-p,3 then d(n) = {aje1)Xagel).(a+1).

Our central question could be answered if we could somehow invert this formula into one
which expressed n as a function of d, and then found the minima of that function n{(d).
Coupled with the knowledge that each number can be factored uniquely into prime factors,
T1 provides a closed-form way of manipulating d(n). That is, n is really a function of the

sequence of exponents when written as 23'332__ 30 we can consider n = nay, ao.-). Then
T1 is really a way of expressing d(n) = d(a, 39,-).



Let's consider a special case. We'll restrict our attention to numbers n which are of the form

233%, So T1 says that d(n)=(as1)Xb+1). Consider fixing d, and asking how n varies with a
and b. Notice that we are now saying that {as1)bel)=d=constant. So we can say that
(be1)=d/(asl), 30 be{di{asi))-1. So our number n is really 208@W@ I-11 Aphat This is an
expression for n simply as a function of a. We can use calculus to find the minima of this
function. That will correspond to the optimal exponent a, from which we can compute the
optimal b.

dnjda = 2%(35(~d/(es112og(3)) + 310/110 (adyeq(2y)

= [(ae1Nog(2) = (be1dog(3))(n/(ael)).

This is zero when {a+ log(2) = (b+1)log(3).

So we have two equations now:

(0+) = (bel log{3)/log(2)

(ee]) = df{be1)

Together they say that (bel)log(8)log(2) = di(bs1), from which we derive (be1)2 =
log(2)d/log(3). Substituting this back in, we also get that {a+1)2 = log(3)d/log(2).

If real-valued exponents were allowed, our optimal n{d) would be:

OSQRT(eky)/ og(2)] , JSQRT(¢ieg(2)/ ieg(3))

Three observations we can make from intuition — and justify from reality — are {i) this
optimal real value is better than (i.e, £) any integral n {divisible only by 2 and 3) with at
least d divisors, (ii) the ideal n is very close to the best such integral n, (iii) the best such
integral n will have exponents a and b which are close to our theoretical real-valued “ideal”
a and b.

For example, if we choose to ask for a number with at least 8 divisors, our theoretical
values for a and b are about 26 and 1.2; the ideal n is then about 23. In actuality, the first

number with 8 or more divisors is 24, and it is factored into 2°3' (ie, the best integral
values for a and b are $ and |, respectively).
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Let's consider a second special case. We'll restrict our attention to numbers n which are of

the form 233P5C. So T1 says that d(n)e(as1Xbe1)ce1). Consider fixing d, and asking how n
varies with a, b, and c. Notice that we are now saying that (a+i)Xb+1)c+1)=d=constant. So
we can ay that {cel)sd/(aci)bel), 30 ca{d/{a+si)bei))}-1. So our number n is really
09gbxl(8/(00 1 Khe 1-1)

Viewing¢ as a functionof a and b, we can compute the differential

dc = d{di{a+1Xbs1)) |

« deld(1/(asi)be1))]

e del(1/CaeDX-1b 1)2)db + {1/(be1)X-1/(as1))da)

= {ce 1)/(b+1))db + {-{c+ Dias 1))da

We want to minimize this function n=n{a,b). It will turn out to be easier to iid the minima

of log(n), viewed as a function of a and b. The minima of n will occur precisely 2 the
minima of log(n). So to find the solutions to dn = 0, we just Bind the solutions to dLOGn = 0.
Now log(n) = log{2)a + log(3)b + log(3k. So the differential dLOGN = log(2)da + log(3)dd »
log(5)dc. Substituting in the value we obtained for dc, we get

dLOGA = log(2)da + log(3)db + leg(BX(-(ce1)/(oe1) + {=o )/lael Ide)

= [log(2)=(c+1 Yog(B)/{a1))dn * [logi3)-le+1 Nog(B)/ (bei ))db

One nice way to make this identicallyero is if the coefficientsof da and db become zero.

That is, n will have minima when both log(2) = Cas) and log(8) ={cs log{5)i(b+1) are true. That is, when (a+1)log(2) = (b+1)log(3) = (c+ 1 )log(3).

This is a generalization of the earlier resuk that minima occur when {asl)log(2) =

(b+1)log(8). We can easily see that the general pattern of the constraints are: (age Dial) -
log(p pllog(p).

What are the explicit formulae for the sxponents in the k=3 case? We can joive for them
in terms of d by using T1. Namely,

{asl ){bsl){csl) on d

{as]) = {co] Nog{3)/ieg(2)

{bel) = {el log(3)/log(3)

Substituting the last two equations into the first, we get {c+1)% (log(5)2 = d log(2log(9).
Hence c+] « CUBEROOTI(d log(2) log(s) / logX(5))
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For reasons of symmetry, we will transform this slightly into

c+1 » CUBEROOT] d log(2) 1oz(3) log(8) ] J '¢4i5)

The nicely symmetric equations for a+1 and b+i turn out to be:

a+! = CUBEROOT] d log(2) log(3) logi%) ] / log(2)

bel = CUBEROOT[ d log(2) jogi3) ogi) ] / tog{3)

Viewed in this way, we can rewrite our equation from the k=2 case into the same kind of
expression, namely:

+1 = SQUAREROOT[ d log(2) iog(3) ] / log(2)

bel = SQUAREROOT] d log(2) log(3) ] / log(3)

Again the general pattern seems to be evident:

3,01 = K'PROOT[ d logi2) log(3).loglpy) ] / loglp;)

As in the k=2 case, the equations for abc have real correspondence to the optimal integral
values of the exponents.

We are now ready to consider the most general case, namely when n = 231332..5,3k Ry Ty,
we know that d{n) = {ajsiXap+l).(a,+1). One generalization of our earlier work would
indicate that minima of n (for a given value of d) occur whenever

(T'2) [for all i and ] between 1 and k] (aj+ 1a) = toglpPrioglp)).

This is really a set of k-1 equations in the k different variables a;...a;. Using the formula

for d which T1 provides, we can solve this system of equations for each a; in terms only of
d. The resulting formulae are:

(T3) Lvigk) a;+1 = KPROOTI d log(2) log(3)..loglpy) 1 / loglp,)

The deriviation of T3 from T2 is straightforward. Below is the proof of T2, due to Knuth.
He uses Lagrange multipliers.

The task is to minimize n, for a given d. It suffices to find the minima of log(n). Thus
we wish to minimize ajlog(pyle-.saylogipy). for a given value of d=(ajsl)e..o(ap+1).
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But this latter constraint means that As{{aje1).(ap+1) - d] is identically zero for any
value of A Thus we may view our problem as the minimization of
aqloglpy)e..eagloglpy) + 2+l(aj+1).{ay+1) - dl For any i, the partial derivative of this
with respect to a; is loglpy) « Ac[{age1). {ap + DWaj+1). At an extremum, all such partial
derivatives vanish. That is, for any i, log{p;} + A*[(age!).(ay+1) a;e1) = 0. This says

that (a;+1)ioglp;) = -A+[(ay+1)..{ay+1)]. So, for any i, (a;+Dllog(p;) = -A*d. Since A and d
are independent of i, this proves T2.

Now that we know T2 and T3 to be true, we can actually compute the optimal® values for
n. It will simplify matters again to consider only log(n) for the moment. (note: SIGMA (...)
means “the sum, from i=1 to i=k, of ..."] Now

login) = a,log(2) + aglog(3) +...e ayloglpy)

= SIGMA {log{p; X(K'PROOTI d log(2) log(8)..log{py) Viog(p;)) - 1)]

= SIGMA,[KPROOT( d log(2) log(3)-loglpy)) - loglp;))

= k[KtPROOT( d log(2) log(3).loglp)) - SIGMA lloglp;)]

This then gives the nice result:

(5) n= {lk KIPROOT(d) K'MROOT (log(20g(3) lo (PN) /  fl0g(2) log(3).Jog pe)

If we let Fy represent the product of the first k primes, then this says

a « {lk KINROOT(d) K'PROOT(F,]} / Fi

If we let Gy be Jk K'MROOT(log(2)..loglpy)), then this becomes

3 Real, not integral The sxponents &, are sssumed to be allowed 10 have res] values.
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(T4) ,, . {GcKMROOT@)]} / FW

So by tabulating Gy and Fy, we can efficiently compute the ideal value for n (and for each
a;) given a desired d and allowable k.

Notice that if we are allowed more and more distinct prime factors, that is, as k grows, the

real-valued exponents a; get smaller and smaller, until finally they become negative, and we
have broken all ties to reality. Empirically, the ideal value seems to be obtained when no
exponent is allowed to be below 0.5; in those cases, the ideal real value for n is both close to,
and slightly lower than, any intergral solution.

Of course this is not satisfactory; what we now need is a formula which tells us, for a given
d, how many distinct prime factors any n must have, in order to have d divisors. That is,
we would like to know k as a function of d, or k as a function of n. Luckily, kin) is a very
siowly changing function.

For the numbers of form n=2+3+5e,., +p,, we can see from T1 that d- ¢X. For maximally-

divisibles, it seems likely that d will in general be larger; say it is of the form d=gk (where 8
is trivially seen to be 22). : Then we can plug this into (s):

n = elllog(d)iog®)18 K'"ROOTIIog2 log8..log pil} / 2.95..p,

But the geometric mean is roughly log(py). which is about log{log(d)). Also, the product of

the first k primes is roughly kX, which is about (log{d)/iog(8))lloglog(d)-loglog()l. Putting
these into the last equation, we get:

n > eillogld)/log(B)Xp- HHogllogld))}

n 2 dllogiogld) (8-1) / log(B)}

If the best we can do is the trivial result that £22, then we obtain the already-known
relation that

n > diloglog{d)/ log2}

If we can show that k is at least 3, then these ns jump to the squares of their former values.

‘ This is in fact the sharpest bound hitherto known for ald). § wae previously derived much mors tertusuely, using methods
not related to the calculus.



Appendin 4 AM Discovery in Mathematics 2s Heurintic Search -284-

This would be a much better bound, of course. In general, the sharpest bound will be
found by determining f sharply.

Appendix 45. An even stronger claim

A very constructive answer to this whole development could Le provided if the following
were true:

(TS) The set M of maximally divisible numbers coincides precisely with the set of integers
obtained in the following manner:

(1) For each natural number d, use 13 to compute the oplimal sxponents lor
nid), with k as large as possible such that no »; is below 0.3

{2} Round each sxponent io the nesres! integer, and compute the corresponding n.
Add this n to the sel.

There is probably a nice closed-form formula for such numbers, a sort of “compiled”
version of TS and T5. This is then the desired characterization of M. Exhaustive search

has in fact confirmed T5 for all d below 1500. T5 has the advantage of being intuitively
clear. Perhaps its proof will turn out to be nontrivial or nonexistent. I leave it as "AM’s
conjecture”. This is so far the only piece of interesting mathematics, previously unknown,
that was directly motivated by AM.

For example: consider d=1344. The largest that k can be without T3 calling for a, < 05 is
k=7. For this d and k, TS predicts exponents 59, 3.3, 20, 1.4, 1.0, 0.9, and 0.7. Rounding

this off, we get 6, 3, 2, I, 1, 1, 1. Next we compute 25335271 111131171. This is 735,134,400.
T1 tells us that this has in fact precisely 1344 divisors (coincidence). Exhaustive search tells
us that no smaller n has that many divisors (this is a verification of T5). Incidentally, the
ideal real value for n {for this k and d value, using (e)} is 603,696,064. Notice that it is close
to, and less than, the best possible integral n with 1344 divisors. |

Another such “rounded.exponent” number is
n=22835537211218117119'23129731137141143'47'53!. The progression of its exponents+1 (3 6
4332222222222 2) is about as close as one can get to satisfying the “logarithm”
constraint. By that I mean that 9/6 is close to log(3)/logl2), that 2/2 is close to
log(47)/log(43), etc. Changing any exponent by plus or minus | would make those ratios
worse than they are. This number n is about 25 billion, and has about 4 million divisors.
The AM conjecture is that there is nc smaller number with that many divisors.
Incidentally, the average number in the neighborhood of n has about 2108108 Nn divisors
{about 3 divisors, for numbers near this n).

% Ihe only faultis that the number4 is in M, yet n't foundby this procedure. This may be due to errors occurring near
small integers, or it may portend the sccasions! (perhaps infinitely often) failure of this precedurs 185,
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Appendix 46. AM and Ramanujan

! then adopt a different point of view [from Dirichlet, Wigert, and other
mathematicians who Aave studied d(n)]. I define a highly composite number as a
number whose number of divisors exceeds that of all its predecessors.

~« Ramanujan

What AM did: AM defined the set M, of maximally-divisible numbers. It thought the set
might prove interesting. AM found several members of M. It had recently learned about

unique factorization, 30 it factored each member: each number n=22!.p#* was replaced by
the sequence <aj,..a> While factored in this form, a rough kind of regularity was
noticed. AM didn't have the concepts of logarithms, exponentiation, ¢, analyticity, reals,
continuity, etc, so it couldn't possibly carry this work much further.

What the aythor did (aided and abetted by Randali Davis). Noticing the general pattern in
these sequences®, the author developed the results which were described in the past few
subsections. The major results are as follows:

1. The smallest possible number n with d or more divisors {where n is of the form

n=23l.pf) is ek-K!"ROOT{d+log2+logd+ .+loglpy)}j203. op, This is a real
number, which is a good lower bound on ni(d) (the smallest n with d or more
divisors). If k is approximable as log{d)/log(g), for some 8 (we know § is bigger
than 2), then the preceding formula can be simplified into:

n > diloglogld)(g-ileg(p)].
T' : higher one can prove § (>2) is, the better this result.

2. For such “idealized” real values of n{d), the exponents a; of the prime factors of n

can be computed by the formulae: s+1 = K'"ROOT{d*log(2)log(3)+..¢log(p)}/iog(p,).
These exponents satisfy the well-known relationship that the product of the {a+ 1)'s

is equal to d. They also satisfy the lesser-known’ relation that (a+1)+loglp;) is a
constant {the same for all values of the index i).

$ Nemaly, thay seamed to be describable as: <big no, medium no, medum-small-re,_, 2, 2, I, 1, I>
7 | thought thin was “unknown”, but later found that Remanvien hed found 3 very similer relationship.
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3. The elements of M appear to be those same numbers, but with the above real-
valued exponents (the a,’s) rounded to the nearest integer.

What Ramanujan did: Very recently, the author was directed to the work of Srinivasa
Ramanujan Aiyangar. This Indian mathematician was essentially self-taught. Receiving
little formal education, he had almost no contact with Western number theory. Yet he
became interested in number theoretic issues, and re-derived much of that field all by

himself. In that way, he is perhaps the closest human analogue to AM: he had ability,
techniques, background knowledge, and he was left to explore and redevelop much
elementary mathematics on his own. Let me quote from G. H. Hardy's final® sketch of this
genius:

“The limitations of Ais knowledge were as startling as its profundity... Here
was a man who..had found tAe dominant terms of many of the most famous
problems in the analytic theory of numbers, and yet..Als ideas of mathematical
proof were of the most shadowy description. All Ms results, new or old, right or
wrong, had been arrived at by.intuition and induction from numerical

| examples.”

It was exciting to learn that Ramanujan had also defined the very same set M, which he
called Aighly-composite numbers. His great interest in them has been almost unique® within
mathematics circles — until AM was led to consider them. In an article published in 1915,

Ramanujan derives the relationship: a;*log{p;)=const, which he says holds approximately,
for values of i which are much smaller than k. He establishes this using inequalities (and
using the distribution of prime numbers n(x}). Thus it has a different flavor from the
similar relationship derived using calculus (s2 above, and also found as statement T2 a
couple pages ago). Also, Ramanujan at this point went off on a different path, and missed
the other two results listed above (el and 3). Instead, he defined a specialization of this
concept, which he called ‘superior highly-composite numbers’, and investigated them in
detail. Neither AM nor the author had the sophistication to make that definition and to
find the results which Ramanujan subsequently uncovered about superior highly-composite
numbers. |

% Taken from Remanuien's sbituery notice, 1921. Found in the preface to [Ramanujan 27]

’ recently, Paul Erdos has bean studying these hghly-compoeite numbers.
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Appendix 5. Traces of AM in Action
_—_—————————————————————————

There are three types of traces which are represented in this appendix. First comes a high-
level prose desription, a commentary on AM as it goes through a long, successful run. This
is an expanded version of the historian's description of AM as a mathematician, found in
Section L.3, on page i0.

Next comes a detailed description of what AM did, on a numbered task-by-task basis. This
is an expanded version of the task-by-task trace given in Section 6.1, on page 115. For each
task, a paragraph is provided explaining what AM did, why, and what happened. These
task summaries start on page 294. The task numbers listed there correspond to the
numbering in Section 6.1.

Finally, several pages of traces are presented in totally undoctored form, so the reader can
see that (i) it is harder to follow than the slightly rephrased ones, and yet (ii) those earlier,
“doctored” traces didn't enhance (or alter the the spirit of) what AM printed out.

Appendix 5.1. Prose Traces

In this section are sketched many of the paths which AM explored during its runs. Besides
describing what AM did, this section will explain why, and indicate where each path led.
Along the way, some concepts were created which were interesting to us {in the smug
wisdom of millenia of hindsight) but which AM never bothered to develop. These will be

noted, and a stab will be made to apologize for AM'. A few exciting moments occurred
when AM became interested in a concept which had been ignored by humans — at least,
unknown to the author. Very often the "new discovery” was never shown to be anything
other than cute {eg. the concept of Timberline; see page 133 for a definition and diagram
of it).

AM began by exploring structures and structural operations. After it was started, with the
base of knowledge outlined in the previous chapter, the main activity AM did for the first
several minutes was to fill in examples of various kinds of structures (eg. Sets, structural
operations (e.g. Insert), and create new concepts of this type (eg. Singleton). In more detail,
here iz what was done:

Trying to fill in examples of set-operations, AM kept failing because there were no known
examples of Sets to “run” those operations on. So it turned to filling in examples of Sets.
Some of these came from the recursive definition of a set: °S is a set if S={} or if both (i) we
can pull an element y out of S using Some-member, and (it) Set-delete(y,S) is a set’. A
heuristic rule knew to extract the base ~asc from such a definition, yielding {} as one
example of a set. Ancilwer neuristic said to run operations whose range is ‘Sets’. One of
these is Set-insert. So a procedure for getting a new set is to take the given set §, and
anything y, and run Set-insert{y,S). When this was done, using S«{}, a bunch of singletons

L The typical sxcuse is tha! AM was detracted at that moment by some sven mors inlerssting lash
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were created. AM literally collected Examples(Anything) and randomly chose members y
from that big and varied assortment. Other set-operations were run just to provide some
additional examples of Sets. Not every attempt was successful, of course: one heuristic said
to find some examples of Lists, and then use the View facet of Sets to transform them Into
sets. Unfortunately, there were no examples of any other kinds of structures at the moment,
so this rule failed. After about 20 cpu seconds, the time and space quanta were both just
about exhausted. Roughly 30 examples of sets were found.

In similar ways, examples were found for Bags, Lists, Osets, and Ordered-pairs. Examples
of structural operations were found “incidentally” as above — to aid in producing examples
of a certain kind of structure. Occasionally, the primary task (the one selected from the
agenda) was to find examples of a given operation. In that case, AM spent a great dea of
time just on that one operation. For example, consider Set-union. When AM got around to
filling in some examples for it, many examples already existed under the concepts of Sets,
Bags, and Bag-union. One way to get examples of Set-union was by analogy to Bag-union.
This caused some slightly erronecus entries to be found (eg. {abcjulace}={aab.cce}).
Such errors were soon caught and corrected when the task "Check examples of Set-union™ was
chosen from the agenda. Similar errors and corrections occurred when AM viewed lists as
if they were osets, in order to find examples of osets.

The simple development described above was broken frequently by some new concept being
created and found to be very interesting. In fact, if left to its own judgment, AM would
never finish the above process, because of these interruptions. The user must interrupt and
tell it to ignore new concepts, if he really wants AM to finish finding examples of all those
structures and operations.

What kinds of concepts were created, and why? What did AM do to investigate them? In
general, what happened was this: As AM collected examples of a concept C, the
characteristics of Its efforts (how easy/hard to find examples, how varied they were, etc)
caused certain heuristic rules to trigger. Those rules then caused some new concepts to be
created, for a particular reason. AM would find examples of them, then compare the results
with already-known concepts.

The first instance of this process was when AM found many examples of sets so easily. A
rule said that in such cases, it was worthwhile specializing the concept Sets. That is, make a
new concept which would have fewer examples. One way AM did this was to look over the
Interest features of all generalizations of Sets, pluck a couple of them, and conjoin them
onto the definition of Sets, thereby getting a definition for a brand new concept, called
interesting-sets or INT -Sets for short. The feature selected first was the following: each pair
of elements of the structure satisfy the same rare predicate P, for some P. This was
previously tacked onto the Interest facet of Structures. Initially, there were very few
predicates known: Constantly-True, Constantly-Faise, Ob ject-Equality. The following three
types of INT-Sets were therefore eventuaily found:

(i) Sets — the same concept but in a new disguise {for any pair of members from any
set, Constantly-True would return True),

(ii) Empty-sets — an already known concept, but now with a new definition (for any
pair of members from any set, Constantly-False would never return True), and

(iii) Singletons ‘{a}’ (sets for which all pairs are Equal to each other).
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This immediately catapulted the empty set to stardom. Another heuristic rule had AM
restrict its attention to the predicates which were not trivial. In this case, both Constant.
True and Constant-False were no longer eligible. So the only remaining INT -Sets were
those for which all pairs of elements were Equal. AM decided to explicitly define a new
kind of set having just that definition. This became a specialization of INT -Sets, called
Equality-sets or Esets for short. Since the empty set was already distinguished, it was
decided not to include it as a valid Eset. So Esets were precisely the sets we would call
Singletons.

Unfortunately, the set-operation Union, when applied to Singletons, didn’t always yieid
singletons. By isolating the kind of sets they did yield, and not counting the few extreme
cases when they yielded singletons, AM discovered the concept of Doubleton: a set with
precisely two members Typically, the union of Singletons was a doubleton, their
intersection was the empty set, their Set-difference was a singleton, inserting anything into a
singleton was a doubleton, removing scmething left a singleton, etc. The exceptions were all
related to when the arguments were ¢jual.

Several more structural concepts were creaied and explored in this way, besides Singleton:
Doubleton, Tripleton, Function (an operation, all of whose values were singleton sets: ie, a
single-valued operation)... In general, these occurred because the intial primitive concepts
were too general, too easy to satisfy.

During its investigation of Set-intersection, AM noticed that sometimes XnY=X, and
formalized that relationship between two sets. This is just the relation we normally call
Superset. The notion of Subset also was discovered, but AM never had much interest in
either of these notions.

When AM looked for examples satisfying the predicate Object-Equality, abbreviated Equal,
the situation was just the opposite. A heuristic rule attached to "Active’ indicated that
examples could be found by randomly Inttantiating the two arguments of Equal with a pair
of objects. There were about 100 known examples of structures. AM gathered them into one
set, and then repeatedly chose a pair of them to run Equal on. Thus only about 1% of the
time did it succeed (did Equal return the value T). Another heuristic triggerred, and said
that in such cases, it was worthwhile trying to generalize the predicate Equal. A new task to
this effect was added to the agenda.

Soon, AM selected this task, and tried to create new concepts which were generalizations of
Equal. One definition of Equal was a transparent recursive one, which essentially said that
x and y were Equal iff their Cars and their Cdrs were, plus it had a base step that asked if
both arguments were empty (in which case Equal returned True), or if precisely one
argument was empty (in which case Equal returned False), or if both arguments were
identical atoms (True), or if they were nonidentical atoms or only one was an atom (False).

a (xy)
IF x and y are identical atoms, THEN return True;
ELSE IF aither x or y is not a list, THEN return False; Base

ELSE IF both x and y are Null lists, THEN return True; ases

ELSE iF only one of x or y is Null, THEN return False;
ELSE both of these must be true:

Equal{ CAR(x), CAR(y) )
Equal{ COR(x}, COR(y} }
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One heuristic rule that AM possessed suggested that this could be generalized in a small
way by weakening the base step. A couple new concepts were created this way, but they all
turned out to be trivial: either constantly returning T, or no different than Equal was.

Another heuristic suggested weakening the recursive step. One way to do this, since the
recursive step is & conjunction, is to remove one of the conjuncts. The rule checks to ensure
that the definition is still recursive: one of the remaining conjuncts must call on the function
itself. In this case, both conjuncts call on Equal, so AM can remove either one. Two new
concepts were generated in this manner. For example. here is one of them, which AM
named Equd™:

A (x,y)
{IF x and y ars identical atoms, THEN return True;

ELSE IF either x or y is not a list, THEN return False; Base

ELSE IF both x and y are Null lists, THEN return True; ases

ELSE IF only one of x or y is Null, THEN return Faise;
ELSE EquO{ COR(x}, COR(y) }

Note that the base cases were unchanged; the recursive step is a recursion in the CDR
direction, but no longer in the CAR direction. A note to that effect is placed inside the
definition of Equ0 itself, as a comment. Other parts of Equ0 can be filled in easily: it is a
generalization of Equal, it is an example of a Predicate, its domain/range is the same as
Equal, its worth is Initially set a little higher than Equal’, etc.

This predicate maps down two lists, one element at a time, and returns True iff they both
become empty at the same moment. That is, iff they have the same length. in fact, we can
assume that the user interrupts and orders AM to rename Equ0 as "Same-length”.

The other new generalization, called "Equi", examines the CAR's (Le, the first elements) of
a pair of lists, and returns True if they were identical atoms; if they were both lists, it
recurses on those two lists. A human LISP programmer's interpretation is as follows: when
the two lists were written out in standard notation {using parentheses), all the initial left
parentheses match, and the frst non-left-parenthesis entity of each list also matches.
Although this is isomorphic to numbers again®, AM didn't pursue this concept very far.
Most of the examples of lists AM knew about were only i-level deep, although they varied
significantly in length. If it had been otherwise, AM might have developed Equi into
Same-length, and Jost interest in Equ0. As it was, the Worth of this concept Equi slowly
declined, and very few *~sks involving it bubbled up to the top of the agenda.

The concept of Same. gth will form the springboard for the development of cardinality, a
tale which is related in a little while. Before moving on, let's mention a couple more set-
theoretic activities that AM did.

Several moderately interesting compositions and coalescings were done to set-operations.
(Actually, to structure.operations). First let's discuss the coalescings of operations f(x,y) into
new operations f(x.x} — where a pair of arguments is made to coincide. Coalescing Insert
(insert S into itself) 1d to an operation which always seemed to give a bigger set than it

2 Two fat structures ware trasted os equivalent # they have the seme number of left parentheses; zere is the et NIL;
adding 1 ie coraing with Ni; subtracting 1 isCAR
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started with. This led AM to the finitely-true conjecture that a set is never a member of
itself. The conjecture was rediscovered when the coalescing of Delete seemed to produce the
identity operation (Deleting S from S never seemed to change the value of S).

Coalescing Intersect also gave the identity operation; this showed that SnS=S (apparently).
Similarly for Union. Coalescing “Compose” gave a new operation of some value: the notion
of composing f with f. When this was applied to, eg. Intersect, it created the new operation
Intersectolntersect, which took 3 arguments and formed their common intersection. By
forming this in two ways — (xny)nz and also xn{ynz) — AM noticed that they were the same,
that the order didn’t matter. Since xnx had already been shown to be the identity operation,
multiple occurrences of an element in an intersection don’t make any difference. Finally, AM
had constructed xny and ynx as two separate operations, and then found them to be
equivalent. Taking all these results together, it was possible to view n as taking a set of sets
as its argument, and forming the intersection of all those sets. Thus n{{ {a,b,cl.{cg.h}{ace}
Pfc}

Some valuable compositons were formed. By forming xn(yuz) and (xny)u(xnz) as two
separate compositions, AM found their equivalence via experimental data. This was one
case where the Intuition functions had given AM an unfair advantage, since the Venn-
diagram abstract representation for sets suggested this relationship explicitly. When the
intuition was removed, the discovery was made much more valid. All of de Morgan's laws
were discovered in this manner, incidentally. Several special cases were singled out,

involving empty sets, singletons, and doubletons®

The compositon DeletecInsert is not quite so trivial as one might think: it takes a structre 5,
inserts an element e, and then removes element e. This simple operation can be used to test
the type of structure that S is: it never alters a Bag or a List, but it does alter Sets and
Osets. Orthogonally, InserteDelete always alters Lists and Osets, but can leave Bags and
Sets unchanged. The first composition tests for multiple elements, and the second
composition tests for order. AM defined both of these, and (at least partially) perceived their
abilities to distinguish structural types.

Operations formed by switching the two arguments of an old operation were marginally
interesting. They helped pin down the true nature of what kind of argument the operation
should be considered as taking. For example, Union(x,y)=Union(y,x), so Union can take an
unordered collection of sets as its argument, and form their union. Similarly, we see that
Insert{x.y) is in general quite different from Insert(yx). When AM tries to see what
invariants exist for this operation, it can notice only that the trivial constraint X=y is
sufficient to cause the order of arguments not tc matter. If it had the concept of the LISP
function "COUNT", which counts up all the storage space used, or "FLATTEN", which
removes all parentheses from a list structure, then AM would notice that the COUNT's of
both forms of Inserting were equal in number, and that their FLAT TEN's were equal sets
of elements.

Looking for invariants is one favorite pastime of AM. In general, two operations f and g

3 Eg, if x ie » uingleton, then :NiyUr} is squal 10 either xy or to xPz: if Doth “hose sels wers the seme, then of course
1fi{yUz} is squal to their comman vakm: if the two sete differ, then one i empty and the other i x, and the
ultimate intersection is equal to x. Or: that intersection is shways aither 2 or the empty set.
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will not coincide. AM wants to find a unifying operation U, such that Ui(x))=U{g(x)); or,
AM tries to find a U such that (UGE) This is of course the idea mathematicians
normally refer to as homomorphism. AM calls this process Canonizing. Canonizing the two
orders of Insert {x into y, and y into x) would hopefully find the operation UsFLATTEN
or U=sCOUNT. Canonizing Same-length will cause the operation of Length to be
synthesized. Canonizing the notion of angles-equal-in-measure were the operations we
normally call rigid motions in the plane.

Let's pick the main thread of development again, before we lose it entirely. Earlier, the
operation "Same-length™ was synthesized, as a generalized form of the predicate which told
when two structures were equal. Same.lengin(x.y) 's True iff x and y are two lst structures
which have the same length (i.e, the same number of elements). This new predicate was
examined by AM, and sure enough it let many more pairs of random ob jects return True
than Equality did, yet it didn't let too high a percentage through: just about 10%. This made
AM want to find an invariant, a canonizing function f, which put any given list structure x
into a standard form f(x), satisfying:

Same-lengihix,y) iff Equatitix),ily))

That is, Xx and y would have the same length precisely when the standard forms of Xx and y
were identically equal to each other.

AM had to synthesize this function {, step by step. First it performed some experiments, and
found that Same-length didn’t care what the type of its arguments were. If a certain Set §
did/didn’t satisfy Same-iength(R.S), then the same result would obtain if S were replaced by
Viewing S as a list, or as a bag, or as an oset. Thus the standard form of a structure could
be fixed as one specific type. But which should it be (bag, set, list, oset)? To find out, AM
ran two more experiments. The first experiment was to see whether Same-length(R,S) was
affected when the order of elements inside R were changed. This turned out to be negative.
So R might as well be an unordered structure: bag or set. The next experiment had AM
decide whether or not multple elements inside R would affect the value of Same-length(R,S).
This turned out positive, so multiple elements had to be taken into account. The canonical
type of argument was thus either bag or list. Together, the two experiments indicated that
the type had to be Bag. So the canonizing function f would first convert any argument R to
a bag. A note tacked onto the Same-length concept’s definition said that this concept didn't
ook at the Car's or value-celis of its arguments. That would mean that they should all be
replaced by some fixed value, like T. This checked out experimentally. So f should replace
each element in the structure R by the constant T. The hnal operation f synthesized was:

{{R) = Repiacc-aach-elemeni-by-T { Convert-lo--bag (R} ).

This operation would convert {a, (bt,{d}ee), q} into {T,T,T). The set of standard forms for

bags was called Canonical-bags, and renamed by the user as Numbers. The canonizing
operation { was called Length, by the user, since it converts any structure into a "number
which represents the length of that structure:

Same-iengih(R,S} it! Equel{LergihiR),Length{S))

AM now made explicit an important analogy: bagswnumbers, equalesame-iength, bag-
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operations«[those same operations, restricted to canonical-bags]. Several minutes were spent
developing these restricted bag-operations. The old operation of inserting a bag S$ into
itself provided a cute way to "add I" to any number. The Bag-union operation union
turned into what we call Addition:

Bag=union{ (TIT T)(TT)}= (TT TTT) means "3s2=5", in unary.

TIMES was discovered in four ways, as discussed previously in the thesis.

The intersection of two “numbers” is the operation we call MINIMUM:

intorsact{{T TT) {T TT T)) = (T T T} just says "Minimum({3,4)=3".

AM likes to find inverses, and the inverse of these operations turned out to be the ones we
call subtraction, factoring, division, less-than, etc.

AM likes coalescing, and some important operations were created that way, too: Add{xx) is
Doubling; Times(xx} is Squaring; the inverses of those were Halving and Square-rooting
{both restricted to natural numbers).

AM worried about which numbers could be halved or square-rooted, and this led to the
creation of the concepts Even-numbers and Perfect-squares. When asking when a number 2
can be the result of a multiplication involving x, AM derived the notion of Divides;
analogously, AM defined the relation which meant that Add of x and something else could
yield 2. That relation is just“, and was called LEQ by the user. AM noticed many simpie
properties of inequalities.

AM likes composing and reversing args, and thereby figured out that most arithmetic
operations like Add and Times take a dag of numbers to work on.

TIMES"! was, as we said, factoring: given n, find all possible bags of numbers (>1) whose
product yielded n. The identity of Times ("I") was intentionally excluded, since its presence
in any quantity would not affect the result of Times. AM soon asked itself about numbers
with extreme or unusuai factorings.

Primes were found in this way, as was Goldbach's conjecture. The example in chapter 2
went into this in great detail. A large number of spurious analogous concepts were created
and studied, to no avail. For example, AM asked itself about numbers which could uniquely
represented as the sum of two primes. As another example, AM defined the concept of
Square-roots-of-primes, which of course was not a winner.

The unique factorization of any number into primes was perceived quite naturally, but
many seemingly elementary concepts were left undiscovered. AM never defined ged (the
greatest common divisors) onits own; it was, however, possible to guide it to discovering that
concept.

The task-by-task trace in the next section cioses with the restriction of addition to primes;
Le, peq=r for primes p,q,r. This situation only occurs when p (say) is 2, and q,r form a
prime pair. That trace will of course delve into concepts not mentioned above, and
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conversely AM happended to miss, onthat run, some of those mentioned in this section.
Finally, both sections omit mention of several interesting acitivites AM performed:
maximally-divisibles and all the geometric concepts, for example. The line must be drawn
somewhere. The frustrated reader should try AM himself, and watch its progress.

Now that we've discussed this development at a fairly high level, let's list what AM did task
by task. The lines below give a highly compressed “trace” of AM's sequence of behavior.
The tasks in the "best run" are listed in order, and numbered. For each, I have condensed
AM’: printout, usually retaining some of the reasons AM had for atempting the task, the
methods AM used, the final outcome, and occasionally a bit of commentary (in italics). The
task numbers below correspond to the numbering used in Section 6.1, starting on page 115.

=x Tesk | =x Fill in sxamples of Compose, because Compose is highly-rated and no examples
of Compose are known yet. Several heuristics relevant, but none succeeded. One of them,
heuristic rule number 122, failed because no operations could be found which had
examples. Also important at this moment was heuristic rule number 156; see Appendix 3.

2x Tack 2 = Fill in examples of Sel-union, because Set-union is highly-rated, and no
examples of Set-union are known yet, and if some examples had been known earlier then
AM would have been able to Fill in examples of Compose. Several heuristics relevant, but
again none succeeded.

&% Task 3 ax Fill in examples of Sets, because Sets is highly-rated, and no examples of Sets
are known yet, and if some examples had been known earlier then AM would have been
able to Fill in example of Set-union, and AM was recently working on Domain(Set-union),
and AM was recently working on Range(Set-union). Several heuristic rules are relevant.
After rule 31 succeeded, 30 could many other techniques (eg. rule 38). In fact, it was so
easy for AM to crank out one example of a set after another, that rule 45 triggered.

=x Tack & = Fill in specializations of Sets, because it was very easy {0 find examples of Sets,
and no specializations of Sets exist yet, and Focus of Attention. Many ways of creating new
concepts, new specialized forms of Sets, were relevant. AM created INT-Sets, defined as “A
{(S)S is a set, and all pairs of members of S satisfy the rare predicate P". AM also created
Bl.Sets, defined as * A (S) S={}, or else both CAR(S) and CDR(S) are BI-Sets.” The former
specialization will lead to Singletons, the latter deals with nests of braces {sets with no atomic
elements).

sx Task 5 =x Fill in examples of INT-Sels, because any such item will automatically be an
interesting example of a Set, and INT-Sets was just created, and no examples of it are
known yet. Very slowly, 6 examples were found via inference, and then 7 more were
produced quickly via more brutish methods. After eliminating duplicates, only 3 remain: {},
{A}, and [B}. In each case, the predicate P was "Equal”, and the worth of the concept
Equal was raised slightly.
-—

4 5ctuslly, a couple “vary good” runs have been appended, but NOT spliced togather to the benefit of Al
s Recalt that {fallcs signify the author's comments, snc contain information which AM == and probably the user as wall --

could not have known at the time.
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xx Task 6 xx Check all examples of INT-Sels, because many unchecked examples are present
there, and Focus of Attention. All three examples were confirmed. No surprises were
encountered. One of the three INT-Sets turned out to be an Empty-structure, but no

con jecture was actually formulated at this time.

«x Task 7 tx Check all examples of Seis, because many were recently found and never
checked, and the previous task dealt with a specialization of the Sets concept. One small
modification had to be made to one of the sets (namely, {b,ab}+{2,b}). Based on empirical
evidence, AM hypothesizes that Sets may really be no more specialized than Unordered-
strucs. AM will reserve judgment until after it has tried to find examples of Bags. (See
heuristic rule 108, page 248) Similarly, AM considers the possibility that ali Non-muitiple-
elements.strucs are really Sets as well. Before relying on this flimsy conjecture, AM must first
look for examples of Osets, and see if they are really also Sets.

sx Task 8 =x Fill in examples of Begs, because no examples of Bags exist yet, and to help
settle the question about all unordered structures being sets. 10 examples found. None are
sets.

xx Task 9 2x Fill in specializations of Bags, because it was very easy to find examples of Bags,
and no specializations of Bags are known about yet, and Focus of Attention. Many ways of
creating new concepts, new specialized forms of Bags, were relevant. AM created INT-Bags,
defined as “A (S) S is a Bag, and all pairs of members of S satisfy the rare predicate P".
AM also created Bl-Bags, defined as ™ A (S) S=(), or eise both CAR(S) and CDR(S) are BI-
Bags.”

«x Task 10 %x Fill in examples of Osels, because none exist yet, and to help settle the question
about all nonmult-strucs being sets. 13 distinct examples found. None are sets.

x% Task|] s#* Check examples of Osets, because many unchecked examples of Osets exist on
Osets.Exs, and Focus of Attention. All confirmed. The prioirty rating of this task is not
high enough to inspire the creation of any new concepts. One weak conjecture made: all
ordered structures are Osets. Will settle this by:

sx Task 12 8% Fill in examples of Lists, because none exist yet, and to help settle the question
about all ord-strucs being osets. 29 examples found. None are osets.

ax Tosk |3 sx Check examples of Lisls, because many unchecked examples of Lists exist, and
Focus of Attention. All confirmed. Nothing special noted or motivated.

*% Task 14 =x Fill in sxamples of All=but=first, because no such examples exist yet, and AM
was just working on Domain{All-but-first), and AM was recently working on Domain(All-
but-fArst). The similarity of the last two reasons escaped AM, and points up one of its flaws.
AM is swayed by the presence of a slightly-different reason just as much as by a very-different
supporting reason. There is no processing done on the reasons. Choosing this task represents
a radical shift of attention for AM. 32 examples found, mostly by applying Ali-but-frst to
the examples of Lists and Osets aiready known.
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xx Task 15 =x Fill in examples of Ali-but-lasl, because none exist yet, and AM was recently
working on Domain{Ail-but-last). Another poorly-motivated task. Luckily for AM, the user
erroneously believes that this task is also chosen to be symmetric with the last task. 45
examples found.

xx Task 16 =x Fill in specializations of All=but-last, because it's so easy to find examples of it,
and no specializations exist yet, and Focus of Attention. The syntactic methods AM can
bring to bear are not enough to produce any meaningful new concepts, and this task Fails.
Failure of a task causes ‘Focus of Attention’ to go away for one cycle.

xx Task 17 xx Fill in examples of List-union, because none exist yet. Another wild shift of
attention. 3 examples derived by symbolic manipulation of the definition facet of this
concept, then 22 more derived using less inferential techniques (some were garnered by
running List-union.Alg itself on the early examples!).

#% Task 18 == Fill in examples of Projl, because none exist yet. 26 found.

xx Task 19 ax Check examples of All-bul-first, because many were recently found but not yet
confirmed. All check out. This task has no repercussions {new concepts, tasks, etc.).

xx Task 20 x» Check examples of All-bul-lasi, because many unchecked examples exist on the
Examples facet of All-but-last. All confirmed, with no repercussions. If tAe initial Worth
values of All-but-first and All-but-last are set high enough, AM defines a new concept at this
point, « new ind of ordered “'ructu~e: \ (5) All-but-first{S) = Albutlasi(S). in Jaci, the only
kind of Osets included herein are those which are singletons or empty. Among lists, it also
includes those which contain just one kind of element.

ax Tack 21 =x Fill In examples of Proj2, because none exist yet. 26 found. AM will typically
quit looking for examples if {i} the time allocated runs out, or {ii} the space allocated is used
up, or (iii) 26 examples are found, or {iv} 151 attempts to find examples fail. TAe cosmic
‘significance of 151 has rarely been recognized in print. Perhaps 151 iy more comic than cosmic.
Seriously, these numbers must be changed by almost an order of magnitude before any gross
change in AM’s behavior is noticed. |

2x Task 22 =x Fill in examples of Empty-siructures, because none exist yet, and the Worth of
this concept was increased recently (during task 6). Just by locking at the examples of
Structures (i.e. using heuristic rule number 28), AM is able to get four empty ones: {}, (], <>,
{); i.e, the empty set, oset, list, and bag. Although some of these are rederived in other ways,
there are no other examples ever found. This paucity triggers a rule which suggests this
task:
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=x Task 23 =x Fill in generalizations of Emply-structures, because it was very hard — but not
impossible — to find examples of that concept, and Focus of Attention. AM examines the
definitions of Empty-structure, but can't find any recognizable syntactic pattern it knows
about. It does find (NOT (SOME-MEMBER S)), and tries to replace SOME-MEMBER by a
specialization of same, but none is known to exist. If the user initially tells AM that First-
member and Last-member are specializations of Some-member, then AM can generalize Empty-
structures. In fact, it then comes up with what is equivalent to "Empty-struc uv Unord-struc’.
In the current setup, however, this task fails. If AM had a better understanding of
constructiveldestructive operations, it might have defined Structures-with-empty-CARs, or
perhaps Structures-with-empty-CDRs (Le, Singletons again).

xx Task 24 xx Check examples of List-union, because many were recently added but not yet
confirmed. This shows the mechanical patience that a ‘stack’ gives you. Since no higher-
priority task has been suggested, AM attends to a task which has been on there for a while.

sx Tesk 25 x= Check examples of Bags, because many examples and a couple specializations
exist. A few small modifications had to be made {eg,(ACB A) (A A B C)).

x% Task 26 == Fill in examples of Bag-union, because none exist yet, and AM was just
working on Domain(Bag-union), and AM was just working on Range(Bag-union). Note the
influence of heuristic rule numer 14. This task proceeded smoothly, with 26 examples being
generated.

%- Jesk 27 == Check axampler of Proj2, because several were recently found and not yet
checked. All confirmed, with no new suggestions generated,

#% Task 28 =x Fill in sxamples of Sel-union, because none exist yet. Again we see rule 14 in
action. 26 examples found.

=% Task 29 =x Check examples of Sel-union, because many examples have recently been
found, but not yet checked, and Focus of Attention (AM just worked on Set-union). A few
patches had to be made. Often, Set-union(x,y) was equal to one of its arguments. AM
therefore defined a new predicate Eq-union(x,y) which is True iff Set-union(x,y)ex. The
user later renamed this "Superset-of, since this is the relationship of containment. In typical
math texts, containment is introduced long before union, and then this is a theorem: "A>B iff
AuB=A". But AM used "U" to form the definitionof ">".

xx Task 30 =x Fill in examples of Bag-insert, because none exist yet, and AM was recently
working on Domain{Bag-insert), and AM was recently working on Range(Bag-insert). A
saddeningly stupid move for AM. It should have rated Superset Aigher, and continued
working on it. AM has no trouble finding many examples of insertions into bags.



Appendix 5 AM Discovery in Mathematics os Heuristic Search -298-

*#% Task 3] xx Check sxsmples of Bag-inseri, because many examples have recently been
found, but not yet checked, and AM just worked on Bag-insert. All examples were
confirmed. This operation always seemed to result in Nonempty bags. The Domain/range
facet was so amended. The value js never either of its arguments, but there is no concrete
action AM must take in such a situation, no compact way of noting that anti-relationship
(short of creating a full-blown conjecture). Restricted to singletons, Bag-insert never
produces a singleton or an empty bag. AM defines the concept of a bag gotten by doing a
Bag-insert on a singleton; i.e, the notion of a doubleton bag.

x Task 32 #% Fill in sxamples of Bag-inlersect, because none exist yet, and AM was recently
working on Domain{Bag-intersect), and AM was recently working on Range(Bag-intersect).
26 found without trouble.

xx Task 33 == Fill in examples of Sel-inesrl, because none exist yet. just another data-
gathering task, building up AM’s store of empirical results.

zx Task 34 sx Check examples of Set-inseri, because many examples have recently been
found, but not yet checked, and AM just worked on Set-insert. Applying this operation
always seems to result in Nonempty sets. Domain/range so amended. The value is
sometimes just one of its arguments. AM defines what wiil eventually be called Set-
membership in this way: A (x,5) Set-insert(x,S)=S. This is not the only important result here.
AM notices that Set-insert(x,S) is always related to S by Superset-of. That is, Superset-
of{Set-insert(x.S), S) [for any x] So conjectured. This doesn’t actuaily suggest anything
marvelous for AM to do next, however. Incidentally, during this task AM also defines the
concept of doubleton set.

=x Task 35 =x Fill in examples of Bag-delete, because none exist yet. Note that ‘working on
bags’ is so long past that it is no longer given as @ reason for {Ais task. Able to generate two
examples by manipulating definitions supplied with Bag-deiete, then a couple dozen more
were generated. Some were generated by accessing aiready-known examples of the domain
(i.e, the entries on the Examples facet of the Bags concept) and then running Bag-delete.Alg
on them.

*2 Task 36 = Fill in examples of Bag~difierancs, because none exist yet. 26 found. TAis is a
good vantage point to look back and ahead, and notice that while the surrounding tasks are all
reasonable data-gathering forays, the order in which they're performed is unimportant. Later
on, AM will follow threads of discoveries, and the order of tasks then will appear very
important.

as Task 37 us Check sxamples of Bag-intersect, because many examples have recently been
found, but not yet checked. So many examples were found that AM will entertain the idea
of creating a specialized new concept. Since the intersection of two randomly-chosen bags
was often empty, AM defined the concept of disjoint bags: A (x.y) Bag-intersect(x,y)=().

sx Task 38 == Fill in examples of Set-intersect, because none exist yet. Many found very
easily.
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ax Task 39 sx Check examples of Set-intersect, because many examples have recently been
found, but not yet checked, and Focus of Attention. 3 small modifications had to be made.
This time, AM noticed that the intersection of two sets was often empty, and defined the
Dis joint-sets concept. AM also noted that xny was often one of those very same arguments,
so it defined the relation which is eventually renamed Subset: X (x.y) Set-intersect(x,y)=x. At
the moment, AM didn't realize that there was any connection between Subset and Superset.
This tie came much, much later (Task number 227 {qv.) in this run).

ax Task 40 == Fill in examples of List-intersec!, because none exist yet, and the interest of
Intersect (the general concept of which this is a specialization) has recently been increased a
few times. 26 found without incident.

AM Is bored®! Will look at Suggesi-lype heuristics for naw things te do.

If “Equality” is excised at this moment, AM continues the preceding line of inquiry
for a while, and then defines Singleton-osets, as Osets all of whose members are
equal to each other. AM notices that All-but-first and All-but-last, restricted to
Singleton-osets, always yield the same result, namely the empty oset. AM then
“generalizes” this into the concept which is all the osets for which All-but-
first(x)=All-but-last(x). AM then turns (o relctionships involving Subset and
Superset, followed by a flurry of compositions ond coalescings, and (their
investigation. But Equality is present, s0 AM goes off on another course of
exploration.

ax Task 41 =x Fill in examples of Equal, because Equal has recently become more interesting,
and there are no examples known yet. Equal became more interesting gradually, as INT-
Sets were define and liked, Eq-union defined and liked, etc. Once chosen, this task does not
go smoothly. By inference methods, only a couple examples were derived. Later, when
heuristic rule number 122 was run, 151 failures were encountered and only 2 successes. This
is so small a success rate that a heuristic rule strenuously proposed this next task, with a
high enough rating to be chosen right away:

8 Ot course “Bored” in arat what AM types out. It rafiects ihe low value of the top 1ask on the sgends, end the meager
results obtained recently. Plesss forgive tha anthropomorphism; it is meant only 10 ba “cuts”, not misleading.
AM has no internal model which could be celled its “smotionst slate”, ss, ag, PARRY [Coby 73] chime.
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xx Task #42 =x Fill in generslizations of Equal, because Equal is apparently quite rarely
satishied, and there are no entries yet on Equal.Genl. Removing one of the two conjoined
recursive calls in the recursive definition given for Equal caused the creation of Equal-
except-CARs and Equal-except-CDRs. The first predicate tests whether x and y have the
same number of elements; the second tests whether x and y Aave the same number of leading
left parens and the same first atom after that final leading left parenthesis. As Knuth
pointed out, both of these concepts are valid ways of defining “numbers”: one counts the number
of elements, the other counts the number of leading left parentheses. But most structures
which AM knows about are just simple I-level affairs. Therefore, Equal-except-CDRs was
almost always the same as "CAR(x)=CAR(y)". So AM never realized this duality. If it Aad
pushed Bl-Sets and Bl-Bags further, it might have. Another concept created here is far more
bizarre. Instead of eliminating one of the two conjoined recursive calls, AM replaced the
AND with an OR. The new concept Genl-Eq3 was defined: {x,y} if x or y are non-lists,
then EQ{x.y), else {Genl-Eq3{CAR(x),CAR(y)) OR Genl-EqXCDR{x),CDR{y}1’ This is true
if x and y have the same length, or if the ith element of each is the same (for any j), or if
the §'h element of each has the same length (>0), or if the i" element of the |'* element of
each is the same or has the same length {for any i,j), or...

x Task 43 =x Fill in sxampies of Equal-excep!-CARs, because this is a new generalization of
Equal which must be examined, and because no examples exist yet. Only 10 examples were
found before the time quantum was exhausted, but this was still many more than were
found for Equal before. The user now renamed this concept "Same-size”. A whirlwind of
discovery is about to sweep the other two generalizations of Equal out of the top spot on AM’s
agenda for quite a while. If AM accidentally picked another of these to work on before Same-
size, only a small amount of time would Rave been spent before moving on. For example, AM
is unable to perform Canonize Algs(Genl-Eq3 Equal), so that would be a dead-end right there.

sx Tack 44 =x Apply sn Algorithm for Canonize to the args Same-size snd Equal, because a

heuristic rule’ explicitly suggested that, and there are no known examples of Canonize yet,
and AM was just working on Same-size, and AM was recently working on Equal, and
Same-size was recently created, and Same-size was just renamed by the user. AM performs
several experiments, and eventually synthesizes this canonizing function: £(S) takes a
structure S, converts it to a Bag, and replaces each element by “T". This function is later
renamed "Size" by the user. AM also defines the set of canonical structures: bags of T's.
The user renames Bags-of-T's as “Numbers”.

== Tesk 45 ms Restrict the Domsinjrange fecet of Bag-union, because Bags-of-T's (called
Numbers now) is a new, interesting specialization of Bags, and a heuristic rule explicitly
suggested this, and Focus of Attention, and many examples of Bag-union exist. A new
operation is defined, Number-union, with domain/range entry <Number Number -» Bag>.
This task used less than one cpu second.

2% Task 46 x3 Fill in examples of Number-union, because it is recently-interesting, and it was
just created, and AM was recently working on Domain{Number-unionj}. Several examples
are found. At this point, the author turned on a tricky LISP printing function, which
converted each bag of T's to base-10 exponential notation before allowing it to be typed out.

? The rule referred to is number 213,on page 270.
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xx Tosk 47 ®x Check the domain/range of Number-union, because a heuristic rule explicitly

suggested that the range might really be “Number”, and AM was just working on Number-
union, and AM was recently working on Domain(Number-union) [ie, working on
‘Numbers’. In fact, what the heuristic rule suggested purely from symmetry desires turned
out empirically to be true: the value of Number-union(x.y) did always appear to be a
Number (a bag of ail T's). The result of this was to amend the Domain/range facet of
Number.union. Although AM regards this uniformity as very interesting, it has no direct
suggestion for what to do next. The user renames this operation "Add2", since it takes
precisely 2 arguments (unary numbers) and adds them.

xx Task 48 sx Restrict the domain/range of Bag-intersect, to Numbers, for similar reasons as
above. After again noticing that the intersection of 2 numbers always seems to be a number,
this leads to the operation which the user renames “Minimum”. Since the pattern of tasks is
Restrict =» Fill in examples < Check examples, there is not much point in listing all three
tasks for all of these simple restrictions. Each one will only get a single number in thls listing.
Also, since the reasons for these restrictings are pretty much the same, they won't be repeated
for each task below.

o% Task 49 xx Restrict the domain/range of Bag-deielse, to Numbers. The user renames this

operation "SUBI", although this is not quite accurate. If x is not 'T", then applying this
operation to x and N (for some number N represented as a bag of T's) will not alter N at
all. AM does not possess the reasoning abilities needed to anticipate this.

sx Task 50 xx Restrict the domain/range of Bag-insert, to Numbers. The domain/range entry

is changed to <Anything Number » Bag>. Renamed Number-insert. Although this new
operation will in fact change a number N, it may not necessarily change it into a number.
The last operation, SUBI, would always produce a number, though it might sometimes fail
to change N at all. Here is the sad discovery of that asymmetry about Number-insert:

2% Tesk 51 ox Check the domain/range of Number-insert, because a heuristic rule explicitly

suggested that the range might really be “Number”. In fact, its quickly seen not to be. This
operation is lowered in worth, and never touched again. Due to AM’s imperfect heuristics,
the worth of SUBI is slightly higher still than this concept’s.

sx Tesk 52 *% Restrict the domain/range of Bag-differsnce, to Numbers. After again noticing
that the difference of 2 numbers always seems to be a number, this leads to the operation
which the user renames “Subtract”.

x Task 53 =x Fill in examples of Subiract, because none exist yet, and Subtract was just
created. Many examples are found. If a larger number is “subtracted” from a smalier, the
result is zero, according to this operation. Thus about half of these examples have the
value zero (empty bag). AM explicitly defines the set of ordered pairs of numbers having
zero difference. It turns out that {in modern terminology) <x,y> is in this new set iff x is less
than or equal to y. So the user renames this relation "LEQ.

ax Task 54 == Fill in examples of LEQ, because none exist yet, and LEQwas just created. 26
examples found. When random numbers are chosen, the success rate is (as we wise
observors know) a little over 50%. This is very nice and AM’s estimate of the worth of LEQ
rises.
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x% Task 55 x# Check examples of LEQ, because many examples have recently been found, but
not yet checked, and the worth of LEQ has recently risen. All confirmed. Unfortunately,
AM has derived Subset but not Subbag, else it might have noticed that (for all numbers x and
y, represented a3 bags of T's) x&y iff Subbaglxy) Then AM could simply observe that LEQ
was just Subbag restricted to Numbers. Looked at another way, AM has here discovered a
restricted version of the concept Subbag.

xx Task 56 =x Apply algorithm of Coslesce fo LEQ, because LEQ is an interesting operation,
recently created, many examples already exist for it, AM just worked on LEQ, LEQtakes
two of the same argument (Numbers), and no examples of Coalesce are known yet. The
new predicate is defined as A(x) x$x. But this is Always-True, 50 AM conjectures that each
number is LEQ itself, and forgets the new coalesced version of LEQ.

sx Yack 57 su Fill in examples of Poerallel-join2, because none exist yet. Included is Parallel-
join2(Bags,Bags,Proj2) (initially called M J2-BBP2), which turns out to be multiplication of
two numbers and is renamed “TIMES2™ by the user. Also included is Parallel-
join2(Structures,Structures,Projl), which is a generalized kind of Union operation {renamed
*G-Union™ by the user). Many losers are also created, however, like Parallel
join2(BagsSets,Set-diference)).

sx Task58 #%, - 69. Fill in and check examples of the operations just createad. Nothing out
of the ordinary is done here, just the routine legwork of gathering empirical data for later
use. No startling conjectures made.

xx Task 70 w= Fill in exsmples of Coslesce, because none exist yet. One shining example is
Self-compose, which takes any operation F (whose range is also a domain Joyand
forms FoF. Another example is Self-Insert, which takes a structure S and inserts S into S.
Also created were: Seif-Delete, Self-Add, Seif-Times, Self-Union, etc. A different kind of

coalescing was done for Parallel-replace2, Parallel-join2, and Repeat2; the two structural
arguments (the first and second arguments for each) were merged, creating three new
operations: Coa-repeat2, Coa-join2, Coa-replace2. Coa-replace, for example, takes a single
structure S and an operation F, and replaces each member x of S by the vaiue F(x5).

sx Task 71 =x Fill in examples of Seli-Delste, because none exist yet, and Self-delete was just
created. Many examples are found quite easily, of course, except:

sx Tosk 72 ®% Check exsmples of Seli-Delete, because many examples have recently been
found, but not yet checked. Since trying to delete S from S$ will never work, the value of
Delete(S,S) is just S all the time. Self-delete is the same as the identity operation. AM is
able to discover this and state it as a conjecture, obviating the need for bothering with this
concept ever again.

sx Task 73 s% Fill in examples of Seli-Member, because none exist yet, and Self-member was
recently created. Only negative instances are found.
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2% Task 74 sx Chack examples of Self-Member, because many examples have recently been
found, but not yet checked. This predicate is Always-False, empirically. Replace by a con jec:
Self-Member is the same as the predicate Always-False; Member(S S)=False for any §. Also,
an extra aigorithm entry is added to Member.Alg: Once Early Quick: A (x,y) if xuy then False.
Also, a new task is proposed, to generalize Self-Member. This never quite rises to the top
of theagenda, so it is never attempted.

xx Task 75 =x Fill in examples ¢f Sali-Add, because none exist yet. Many found. User renames
this “Doubling”, after he observes the many examples which are produced.

2 Task 76 sx Check exsmpias of Coalssce, because many examples have recently been found,
but not yet checked. All were confirmed. Some were already proving to be interesting, so
the value of Coalesce was raised.

sx Task 77 s= Check exampiet of Add2, because many examples have recently been found,
but not yet checked. All were confirmed. Somewhat disappointingly, AM didn’t notice
anything special about Add2 at the time.

sx Task 78 == Fill in examples of Self-Times, because none exist yet, and AM recently worked
on Isa(Self-Times) namely, worked on Coalesce] Renamed “Squaring” by the user. 20
examples found before quitting due to lack of alotted space.

xe Task 79 == Fill in examples of Self-Compose, because none exist yet. Created Add2.Add2
{two versions: Add21 which is X (x,y,z) {x+y)s2, and Add22 which is x«{y+2)). Similarly, two
versions of TIMES2.TIMES?2, called TIMES2] and TIMES22. Also, two versions of

ComposesCompose. Some losers were defined as well, like Member(Member{x.y),z) and
Paraliel- join2(S,R Parallel.oin2(P,Q,F)} — the latter of which accepts as arguments four
kinds of structures and a function name. Many minimally-acceptable concepts were created:
CoalescecCoalesce, SquaringeSquaring, DoublingeDoubling, etc.

sx Tesk 80 =x Fill in examples of Add2], because none exist yet, and Add21 was just created.
This operation is defined as XA (x,y,z) (xsy)e1. It is easy to find examples.

2% Task 81 =# Fill in examples of Add22, because none exist yet, and Add22 was recently
created. This operation is defined as A (x,y.2} x+(ysz). It is easy to find examples. Most of
these examples are gotten from the “cousin” concept Add2l.

3 Task82 sx Check sxamples of Squaring, because many examples have recently been found,
but not yet checked. All confirmed. It is unfortunate that this task intruded into AM’s line
of development.

s% Task $3 n= Check examples of Add22, because many examples have recently been found,
but not yet checked. During this process, AM notices that Add2]| and Add22 seem to be
equivalent. Before conjecturing this, though, AM will do this next task:
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sx Tosk 84 su Check sxamples of AddZl, because many examples have recently been found,
but not yet checked, and this task was specifcally suggested while AM was trying to check
examples of Add2l. After checking these examples, Add2i and Add22 still appear
equivalent. AM conjectures this and merges the two operations. One consequence is the
boosting of the worth of the new, combined operation. The most important aftereffect of
this is that AM now knows that the “proper” argument for a generalized kind of addition
will be a Bag, not a List, of numbers. This new kind of addition is calied Add, to
distinguish it from Add2. Add2 takes a pair of numbers and adds them, but Add accepts a
bag of numbers and forms their sum.

xx Task 85 wx Apply algorithm for Invert to asrgumen! ‘Add’, because Add is interesting,
recently worked on, and has never been inverted, and there are no examples yet for Invert,
and the worth of Add has recently risen, and Add was just created. By looking ar those
reasons, we see why some semantic processing should be available. There is tremendous overlap
there, and the task is not really supported by az many reasons as AM thinks. AM defines Inv-
add(x) (also called Add"'} as the set of all bags of numbers {>0) whose sum is x.

=x Tock 86 3% Fill in examples of TIMES21, because none exist yet. Defined as (x+y)*1. Many
are found.

xx Task 87 =x Fill in examples of TIMES22, because none exist yet. Defined as x»{y+1). Many
are found.

2% Tesk 88 »3 Check examples of TIMES22, because many examples have recently been found,
but not yet checked. As with Add, earlier, TIMES2]l and TIMES22 now appear
equivalent. Before saying this, AM must do this task:

=x Tesh 39 sx Check sxamples of YIMES21, because many examples have recently been found,
but not yet checked, and this task was specifically suggested while AM was trying to check
examples of TIMES22. After checking these examples, TIMES2i and TIMES22 still
appear equivalent. AM conjectures this and merges the two operations. One consequence is
the boosting of the worth of the new, combined operation. The most important aftereffect
of this is that AM now knows that the “proper” argument for a generalized kind of product
will be a Bag, not a List, of numbers. This new kind of multiplication is called TIMES, to
distinguish it from TIMES2. Notice the same property held true for Add2, earlier. AM
sets up an analogy between TIMES and ADD, because of this common fact. Te analogy
itself is close to what mathematicians call the concept of Semigroups.

#% Task 90 == Apply sigorithm for invert to argument 'TIMES’, because TIMES contains a new,
promising analogy, and the analog of TIMES has been inverted, and TIMES has never
been inverted, and the worth of TIMES has recently risen, and TIMES was just created.

AM defines Inv-TIMES(x) (also called TIMES™') as the set of all bags of numbers (>I)
whose product is x. AM noted that TIMES"! should probably be analogic to Add,
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ax Task 91 #2 Fill in examples of Paraliel-replace2, because none exist yet. I could kick AM
for doing this now!! The priority rating of Ais task happened to place it above all the others,
including those with extra bonusses because offocus of attention. This task is merely diverting,
not harmful in any lasting sense, but it does degrade the apparent level of purposefulenss of
the system. Several examples of Parallel-replace2 are found. Included are Parallel
replace2(Bags,Bags,Proj2} {called MR2-BBP2), and many losers. MR2-BBP2(S152)
replaces each element in S1 by a full copy of the whole of 52. TAis is the way that Skemp
suggests developing the notion of multiplication — and in fact AM will (in task 109) derives
an operation which is equivalent to TIMES2 just by unioning the results of this operation. In
task 127 AM realizes that this is in fact just multiplication, and merges those two operations,
concurrently boosting the worth of that combined concept greatly.

=x Task 92 #2 , - 107. Fill in and check examples of the operations just created. Nothing
really worth our time (or AM’s). Sigh.

sx Tesh |O8 =x Fill in examples of Compose, because none exist yet. It is very easy lo create

new compositions — most of them losers. Some of the concepts produced (eg., SizesAdd™')
were valuable but were lost amid the mass of losers (eg. InserteEqual). Because of this
flood of poorly-motivated new concepts, a heuristic triggers which has AM create a new
specialization of Compose, called Int-Compose, by conjoining onto Compose.Defn a few of
the features from Compose.Interest. The Worths of the new compositions just created are
all lowered, so that the {future} examples of Int-Compose will predominate. TAe lash first
considered in TASK 1 has finally bubbled back up to the top of the agenda, and Aas proved to
be quite wortAwaile.

=% Task 09 =x Fill in examples of Int~Compose, because none exist yet, and Int-Compose was
just created, and any example of Int-Compose is automatically an interesting example of
Compose, and the worth of Int-Compose is very high. The two chosen operations GH
must be such that ran{H)}dom(G), and ran{G)tdom(H); both G and H must be interesting
or at least newly-created. Well, two operations recently dealt with are G-Union and MR2-
BBP2. Since the range of MR2.BBP2 is ‘Bags of Bags), it is precisely equal to the domain
of the newly-synthesized operation G-Union. Sc one composition considered is G-
UnioneMR2-BBP2. This is an alternate derivation of the operation of multiplication. Also
included are: TIMESeSquaring, CoalescesCompose, InsertoDelete, Deletesinsert,
Add2:Times2, etc. Although most of these operations were never investigated very much,
they are much better than the random compositions produced during the previous task.
This seems clear even to AM, even before studying them very much.

se Task {10 sx , . 126. Fill in and check examples of the compositions just createad.
Nothing of great interest until...

#% Task | 27 xx Check axamples of G-UnionoMR2-BBP2, because many examples have recently
been found, but not yet checked. AM discovers that this operation is equivalent to M j2.
BBP2 (i.e, TIMES2). Since they arose in very different ways, the worth of the new, merged
concept module is greatly increased, as is that of the more general operation TIMES.
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wk Task 128 =x Fill in examples of Cos-repesiz, because none exist yet. 26 operations
synthesized. Foremost among them was Coa-repeat2(Bags-of-Numbers,Add2), which turned
out to be yet another derivation of multiplication! Also produced was Coa-repeat2(Bags-of-
Numbers, Times) ~ a definition of exponentiaion. Others included Coa-
repeat2(Structures,Projl), which turns out to be the same as First-element-of, i.e, CAR, and
Coa-repeat2(Structures,Proj2), which turns out to be Last-element-of.

xx Task 129 =x Check the examples of Coa-repest2, because many examples have recently
been found, but not yet checked, 2nd Focus of Attention. All confimed.

sx Task |30 sx Apply sigorithms for Invert to 'Doubling’, Doubling is interesting, and it has
never been inverted. The result is called "Halving™ by the user. AM decided to isolate the
domain of Halving (the range of Doubling). Such numbers are renamed by the user as
"Evens". Although pleased with the result of this task, it was somewhat jarring in the context
of the preceding development.

sx Task 13] =x Fill in examples of Seli-inserl, because none exist yet. AM has apparently lost
the “thread” of a development and is wandering around, taking care of only moderately
promising tasks. Many examples of this operation are found.

x3 Tosk 132 ss Chack examples of Self-Insert, because many examples have recently been
found, but not yet checked, and Focus of Attention. Nothing special found. The result is
never the same as the argument.

s% Tesk 133 == Fill in examples of Cos-repest2-Add2, because none exist yet. Many found
quickly, but at a large cost in terms of storage space.

2% Yosk ]34 vs Check axamples of Coa-repest2-Add2, because many examples have recently
been found, but not yet checked, and Focus of Attention. Confirmed. AM noticed it's the
same as TIMES. Boost the worth of TIMES even higher, far above that of any other
concept. AM will stay interested in TIMES for most of thefuture of thls run.

xx Task |35 sx Apply slgorithm for Invert to srgument ‘Squaring’, Squaring is interesting, has
never been inverted, is related to the very interesting concept TIMES, is related to the very
interesting concept Coalesce, is analogic to the aiready-inverted concept Doubling. AM
defines Inv-square(x) as the number® whose square is x. Renamed by user as "Square-root”.

s% Task 136 == Fill in examples of Square-rool, because none exist yet, and Square-root was
just created, and Square-root is related to the very interesting concept TIMES. AM spent
quite a while on this task, and only about 10 examples were found {discounting duplicates).

$ Actuelly: the sat of ol sumbers_
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#% Tosk 137 = Fill in new algorithms for Squere-root, because Square-root.Algs are all too

slow, and have been called on a great deal recently. AM Aa: some zero’? order rules for
improving algorithms, backed up by a marvelous tactic: ask the user. in this case, AM asks
the user for a better algorithm, and he supplies one. Of course, the new algorithm is
completely opaque to AM. The user never tells AM how to do something unless it Aad a (slow)
way to do that thing already. One fast new algorithm now exists.

x= Task 138 sx Check examples of Square-root, because many examples have recently been
found, but not yet checked, and Focus of Attention. AM is plagued by the frequency of
numbers not having square-roots, so it isolates those that do. It defined the set of numbers
having a square-root, and this concept was renamed “Perfect-squares” by the user.

sx Task 133 xx Fill in examples of Coa-repeai2-Times, because none exist yet, an~ this

concept is related to the very interesting concept TIMES. A moderately rational thing to
investigate. Examples are easily found, but they take up a lot of space.

xx Task 140 xx Check examples of Coa-repeai2-Times, because many examples have recently
been found, but not yet checked, and Focus of Attention. Nothing special noticed,
unfortunately (this is exponentiation, folks). If the user interrupts and tells AM that this is
really interesting, AM soon creates the specialization of it defined as Expon(x.2), and then
AM notices that this is just squaring. le, xZaxex: the base tie between exponentiation and
multiplication. On its own, AM doesn’t rate Coa-repeat2-Times high enough to start tAis chain
of discoveries.

2% Task ]41 =x Fill in examples of Inv-TIMES, because none exist yet, and Inv.-TIMES is
related to the very interesting concept TIMES. Many found.

xx Task 142 xx Fill in new algorithms for Inv-TIMES, because Inv. TIMES.Algs are all too slow,

and have been called on a great deal recently, and TIMES™ is related to the very
interesting concept TIMES, and Focus of Attention. AM asks the user, who supplies a
decent recursive algorithm for this function.

2% Task ]43 #x Check examples of Inv-TIMES, because many examples have recently been
found, but not yet checked, and Focus of Attention. This proceeds along, and =" are
confirmed. A heuristic rule notices that the domain/range is <Number + Sets-of-Bags-of-
Numbers»; it searchs for an operation whose Domain/range facet contains an entry
(compatible with) <Sets-of-Bags-of-Numbers -» Number>, and fails; next it looks for an
operation whose dom/range is <Sets-of-Bags -+ Set or Bag>, and finds that G-Union fils the
bill. Therefore, the rule suggests the following task {with a high rating}.

xx Task | 44 =» Apply Compose algorithm to G-Union and Inv-TIMES, because the three concepts
involved are interesting, related to TIMES, and this task was specifically suggested by the
preceding one. The composition is created, as specified in the task. This new operation has
domain/range <Number -+ Set-of-Numbers>, and is thus given a higher rating than either
of its constituents. It is renamed “Divisors™ by the user,
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«x Task 145 =x Fill in examples of Divisors, because none exist yet, and Divisors is related to
the very interesting concept TIMES, and divisors was just created. Many examples are
found, but only after much inefficient searching amid the set of all (known examples of)
numbers.

«x Task 146 =x Fill in new algorithms for Divisors, because Divisors.Algs are all too slow, and
have been called on a great deal recently. AM asks the user, who supplies a decent iterative
algorithm for this function.

xx Task 147 =x Fill in examples of Perfecl-squeres, because none exist yet, and Perfect-
squares is related to the very interesting concept TIMES. 15 found, after which the space
allocation was exhausted.

ex Tosk 148 x» Fill in specializations of TIMES, because TIMES is very interesting, has very
few known specializations, and it was very easy to find examples of TIMES. AM now
allocates a huge chunk of cpu time and space to this task. A few specializations of TIMES
are gotten by plugging in a distinguished value for one argument: Timesi{x)=1+x,
Times{x)z0sx, etc. Other new operations are simply TIMES with its domain restricted to a
bag of special numbers: Times-sq has its domain a bag of perfect squares, Times-ev takes
only even arguments, etc. Others (inefficient to compute) are TIMES with its range
restricted: Times-to-evens requires that the result be even, Times-to-sq for square results, etc.

«x Task 49 mx Check examples of Divisors, because many examples have recently been
found, but not yet checked, and Divisors is related to the very interesting concept TIMES.
Often, Divisors(x) is interesting {to AM) as a set; AM isolates the cases by defining 0-Div, 1.
Div, 2-Div, and 3-Div, the sets of numbers whose Divisors value is the empty set, a
singleton, a doubleton, and a tripleton, respectively. AM will gradually partition the
examples of Divisors into these categories, as AM tries to fill in examples of each kind of
number.

. This is the point where the example in Chapter 2 begins, and is also roughly the
point where the unadulterated LISP trace {Appendix 3.3) ends. Both this section
and the earlier condensed task-by-task trace,found in Chapter 6, go further.

xx Task 150 ®% Fill in examples of 1-Div, because none exist yet, and 1-Div was just created,
and is related to the very interesting concept TIMES. Only one example found: “1°. This
causes the Worth of 1-Div to be lowered.

xx Task |51 == Fill in examples of 0-Div, because none exist yet, and 0-Div was recently
created, and is related to the very interesting concept TIMES. None found. Lower the
worth of this concept.

== Task 152 = Fill in examples of 2-Div, because none exist yet, and this concept is related to
the very interesting concept TIMES. About 19 are found (out of about 170 attempts). This
is a nice ratio, a nice density within the natural numbers — not too many nor too few toc be
interesting. As a result, 2-Div.Worth is slightly raised.
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x8 Task [53 xx Check examples of 2-Div, because many examples have recently been found,
but not yet checked, and the worth of 2.div has just increased, and Focus of Attention.
The existing examples were confirmed, but no pattern noticed. This was Aeart-stopping,
since 2-Div is the notion of prime numbers; Aere AM is tossing it off as non-interest-catching/

2x Task |54 =x Fill in examples of 3-Div, because none exist yet, and 3-Div is related to the
very interesting concept TIMES. As with 2-Div, a nice number of examples were found
{albeit on the scarce side of nice).

x% Task 155 ®x Check sxamples of 3-Div, because many examples have recently been found,
but not yet checked, and 3-Div is related to the very interesting concept TIMES, and Focus
of Attention. All confirmed. All are perfect squares! Very unexpected {both by AM and
the user). AM greatly increased the worth of 3-Div. One suggestion, due to the fact that 3-
Div was now In-dom-of Square-root, was:

x% Task 156 =x Restrict Square-root lo numbers which are in 3-Div, Square-root is interesting,
3.Div is very interesting, and the preceding task specifically requested this action. AM calls
the new concept RootS.

sx Task 157 xx Fill in examples of Rool3, because none exist yet, and Root3 was just created,
and Root3 is related to the very interesting concept 3-Div. Many examples found. In fact, it
was easy to take the square-root of each known example of 3-Div.

xx Task |58 xx Check examples of Rool3, because many examples have recently been found,
but not yet checked. All confirmed. Each result turned out to be a 2-Div type of number.
Very surprising. Conjecture: the square-root of a number with 3 divisors is a number with
© divisors. AM raised the worths of ail the concepts involved. At this point, the user
renamed 2-Divs as “Primes”.

xx Tack 159 =x Restrict Squaring fo Primes, Squaring is interesting, Primes Is recently
interesting, and the preceding task specifically suggested this action. AM calis the result
Square.

xx Task 160 =x Fill in examples of Square2, because none exist yet, and Square? was just
created. Many found.

sx Task 161 ®x Check the domain/range facet of Square2, it has been specifically suggested
that the range of Square2 may be 3-Div, and 3-Div is very interesting, and Square? is
related to the interesting concept Primes, and Focus of Attention. As hoped for, ail are 3-
Divs. Conjecture: x is a Primes iff its square is a 3-Div iff it is the square-root of a 3-Div.

xx Task 162 x Resirict Squaring to 3-Divs, Squaring is interesting, 3-Div is interesting, and
an earlier task specifically suggested this action. The result is calied Square3. AM’s past
few successful tasks have now incremented the Worths of certain activities above their true
value: AM will now be tied up with restricting Squaring and Square-rooting to all the
concepts involved. The net effect will be to lower those inflated worth ratings, and to lower the
user's — and the reader's — opinion of AM.
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x Task 163 ®%x Reslrict Square-rooling to Primes, Square-rool is interesting, Primes is
interesting, and an earlier task specifically requestd this action. Tall the result Root2.

=x Task 164 =» Fill in examples of Square3, because none exist yet, and Squared js related to
the interesting concept 3-Div, and Squared was recently created. Only 9 examples found
before running out of space. By analogy, since Divisors-ofeSquare2 was interesting, AM
considers:

xx Task 165 ®x Compose Divisors-of snd Square3, Analogic to tripletons, and Divisors-of is
interesting, and Squared is interesting, and the preceding task specifically suggested this
action. AM calls the result Div-Sq3.

xx Task 166 =x Fill in sxamples of Div-Sq3, because none exist yet, and Div-5q3 was just
created. 9 examples found right away, by simply running Divisors-of.Aigs on the 9 known
examples of Squared.

xx Task 167 =x Check examples of Div-5q3, because many examples have recently been
found, but not yet checked. All such examples are Same-size. Although AM doesn’t have
the notion of ‘5.ness’ explicitly, they each have 5 members. A specialized hack heuristic
observes the general pattern: DivisorsePrimes are all of the same size
DivisorsoSquaringoPrimes are all of the same size; DivisorseSquaringeSquaringePrimes are
all of the same size; A new conjecture is formulated and typed to the user:
DivisorsoRepeat{Squaring)Primes will all be the same size.

This expresses the fact that, for a given n, p2° has the same number of divisors for
each prime p. AM was not able to figure out that number of divisors (it is 2n+l).
This would be a trivial sequence extrapolation problem, but AM of course Aad no
heuristics for dealing with numbers, hence no sequence extrapolation techniques.
Deriving the concept of sequence extrapolation itself would Aave been quite
astounding, but never occurred. Discovering the concept of inductive inference and
studying it explicitly in isolation is quite a sophisticated achievement — that's what
Al researchers spend much of their time trying to accomplish. This is one time when
AM was much further from discovering a theorem than it appeared lo the casual
observor.

*x Tesk 168 == , - 175. More confirmations and explorations of the above conjecture.
Gradually, all its ramifications lead to dead-ends (as far as AM is concerned).

x% Task 176 == Fill in examples of Root2, because none exist yet, and Root2 is related to the

interesting concept Primes. But no examples at all are found. This is not surprising, since
very few primes are also perfect squares. AM conjectures that there are none. Worth of
Root? is lowered.

xx Task {77 =x Check examples of Inv-TIMES, because many exampies have recently been
found, but not yet checked. This is a break in the previous smooth line of development.
Inv-TIMES appears to always contain a singleton bag; in fact, Inv-TIMES(x) always
contains the singleton bag (x). Another conjecture AM makes: Inv-TIMES{x) always
contains a bag of primes. This last hypothesis suggests the following two tasks:
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ax Task 178 =x% Restrict the range of Inv-TIMES lo bags of primes, because Inv-TIMES is
interesting, is related to the very interesting concept TIMES, primes are more interesting
than numbers at the moment, Focus of Attention, and the previous task specifically
suggested this action. AM calls the new result Prime-Times.

=x Tesk 175 =x Rasirict the range of Inv-TIMES {io singletons, because Inv-TIMLES is

interesting, is related to the very interesting concept TIMES, singletons are more interesting
than sets at the moment, a recent task specifically suggested this action, and Focus of
Attention. AM calls the new result Single-Times.

xx Task 180 =x Fill in examples of Prima-times, because none exist yet, and Prime-times was
recently defined, and Prime-times is related to the interesting concept Primes, and Prime-
times is related to the interesting concept TIMES. Many examples are found.

xx Task 181 =x Check examples of Prime-times, because many examples have recently been
found, but not yet checked, and Focus of Attention, and Prime-times is related to the very
interesting concept TIMES. The value of Primetimes(x) is always a singleton set.
Conjecture: Inv-TIMES(x) contains precisely one bag of primes. User renames this
conjecture “The unique factorization theorem”. AM prints out that this will probably be
very natural and important. The reason for this is that Primes-was itself derived from
TIMES, so any conjecture connecting them is quite natural. Any unexpected such natural
conjecture will probably be useful

sx Task 182 xx Fill in examples of Single~TIMES, because none exist yet, and this concept is
related to the very interesting concept TIMES. Many found.

xx Task 183 =x Check sxamples of Single=-TIMES, because many examples have recently been
found, but not yet checked, and it is related to the very interesting concept TIMES, and
Focus of Attention. The value of Single-times(x} is always a singleton set. Conjecture: Inv-
TIMES(x) contains precisely one singleton bag. Single-TIMES is actually the same as Bag-
insert, in the sense that both Single. TIMES(x) and Bag-insert{x) give the value {x} — the
bag containing only x. In the latter case, this 1s because Bag-insert is “smart” enough to
supply an empty bag as the second argument S to Bag-insert{x,S), if S is missing.

mx Task 184 %x Fill in examples of Self-sel-union, because none exist yet. AM Aas dropped the
momentum of its previous whirlwind of discovery, and is simply marking time, gathering
evidence. Many examples are found.

sx Task 185 == Check examples of Self-sei-union, because many examples have recently been
found, but not yet checked, and Focus of Attention. Apparently, this concept is the same as
Identity (but with domain/range restricted to Sets). Replace by a conjecture.

xx Task 186 =x Fill in examples of Seli-bag-union, because none exist yet. On the seme rack,
but boring. Many found.

s% Task ]87 s& Check sxamples of Self-bag-union, becaus: many examples have recently been
found, but not yet checked, and Focus of Attention. All are confirmed. Nothing interesting
noticed.
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x Task 188 =x Fill in sxamples of inv-ADD, because none exist yet. Slowly, examples were
found.

ax Task 189 =x Check examples of Inv-ADD, because many examples have recently been
found, but not yet checked, and Focus of Attention. Inv-ADD{(x} always contains a
singleton bag (x), a doubleton bag, a tripleton, a bag of I's... So many conjectures that:

=x Task 190 sx Restrict the domain of Inv-ADD, because Inv-Add is interesting, related to the
interesting concept Add, Focus of Attention, and the previous task specifically suggested this
action. When the domain is restricted to primes, AM defines ‘Inv-Add-primes’. When it
restricts Inv-Add to work only on evens, AM thereby defines the operation it calls ‘Inv-Add-
evens’.

«x Task 191 s= Fill in examples of Inv-add-primes, because none exist yet, and this concept
was just defined, and Focus of Attention. Many found.

*% Task {92 =2 Check examples of Inv-sdd-primes, because many examples have recently been
found, but not yet checked, and Focus of Attention. All were confirmed, but nothing special
noticed.

=x Task 193 =x Fill in examples of inv-add-svens, because none exist yet, and this concept was
recently defined. Many examples found. :

2% Task 194 s% Check sxamples of Inv-add-evens, because many examples have recently been
found, but not yet checked, and Focus of Attention. Confirmed. Inv-Add-evens(x) always
contains a bag of primes. This is mildly surprising, and prompts:

xx Task | 95 s& Restrict the range of inv-Add-evens to bags of primes, because Inv-Add.evens
is recently interesting, and Primes is more interesting than Numbers, and the previous task
specifically requested this action (hence Focus of Attention). AM names the new operation
Prime-ADD.

sx Task [96 sx Resirict the range of inv~-ADD to singletons, because Inv-Add is interesting,
singletons are more interesting than sets, AM just worked on Inv-Add, AM recently worked
on Inv-Add, and an earlier task specifically suggested this action. Thus Single-Add is born.

2x Task | 97 su Fill in examples of Prime-ADD, because none exist yet, and Prime-add was
recently defined. Many found.

s% Tesk ]98 sx Check sxamples of Prime~ADD, because many examples have recently been
found, but not yet checked, and Focus of Attention. The value of Prime-ADD(x) is always a
nonempty set {of bags of primes). So conjectured (domain/range changed). User renames
this conjecture "Goldbach's conjecture”.

sx Task |99 =2 Fill in examples of Single=ADD, because none exist yet, and this concept was
recently defined. Many found.
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¢%x Task 200 =x Check examples of Single-ADD, because many examples have recently been
found, but not yet checked, and Focus of Attention. The value of Single! ADD(x) is always
a singleton set. Conjeiture: Inv-ADD(x) contains precisely one singleton bag. Single-ADD is
actually the same as Bag-insert (and Single-TIMES).

2% Task 20] =x Resirict the range of Prime-ADD to singletons, because analogic to Prime-
TIMES, and Prime-Add is interesting, and Singletons is more interesting than Sets. This
was initiated by analogy, not by an earlier task specifically suggesting that the restriction be
done. In this case, AM is asking which numbers are uniquely representable as the sum of
two primes. The new operation is Prime-ADD-s.

2% Tesk 202 ux Fill in examples of Prime-ADD-s, because none exist yet, and Prime-ADD-3
was just defined. Many examples are found, but after a nontrivial processing effort.

sx Task 203 »% Check examples of Prime-ADD-s, because many examples have recently been
found, but not yet checked, and Focus of Attention. Nothing special noticed.

®% Tosk 204 == Fill in examples of Times-sq, because none exist yet. Losing fAe thread of
discovery, moving back to data-gathering blindness. Recall that Times.sq is just TIMES
restricted toc operate on perfect squares. Many examples found.

®% Tosk 205 m= Check domasin/range of Times-sq, because the range of this operation may
actually be Perfect-squares, and examples of Times-sq were just filled in, and this concept is
related to the very interesting concept TIMES, and Focus of Attention. The range really
does seem to be as hoped for. Conjecture: the product of perfect squares is a perfect square.

xx Jesk 206 =x Fill in examples of Times), because none exist yet. Recall that
Times1{x)»TIMES(1.x). Many found.

xx Task 207 xx Chack examples of Times], because many examples have recently been found,
but not yet checked, and Focus of Attention. Apparently Timesl is just a restriction of
Identity. Times! is therefore replaced by a lone conjecture: Times(x,1)=x.

2% Task 208 =x Check examples of Times=sq, because many examples have recently been
found, but not yet checked. Confirmed.

xx Teak 209 =x Fill in examples of Times0, because none exist yet, and Times0 is related to
the very interesting concept TIMES. Many found.

sx Tesk 2]0 =x Fill in examples of Times2', because none exist yet, and this operation is
related to the very interesting concept TIMES. Many found. Recall that Times2(x) is
defined as 2:x.

sx Task 211 == Check examples of Times2', because many examples have recently been
found, but not yet checked, and Focus of Attention. Apparently, Times2' is the same as
Doubling. That is, x+x=2¢x. A very powerful tie between Add and Times! This was
highly unexpected. It is not predicted by the existing analogy. By analogy, AM now defines
Ad2(x) as x+2, and will invesitigate that.
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®% Tesk 212 x Fill in axamples of Ad2, because none exist yet, and Ad2 was jsst created.
Many examples found.

ax Task 213 =x Check sxamples of Ad2, because many examples have recently been found,
but not yet checked, and Focus of Attention. Nothing interesting noticed. AM didn’t Aave
the notion of AddloAddl at that moment, or it could have derived the analogic conjecture
between successoriaddition that it found between addition/multiplication. The same lack of
knowledge about exponentiation inhibited the perception the timeslexponent analogic
relationship. Every little bit of knowledg about operations involving Add served to raise the
worth of Add slightly. Finally, the following task rises to the top:

®% Task 214 ox Fill in specislizations of Add, because there are very many examples of Add,
and Add has recently risen in interest. Among those created are: Add0 {x+0}, Addi, Adds,
Add-sq (addition restricted to perfect squares), Add-ev (sum of even numbers), Add-pr {sum
of primes), etc. The techniques used were the same ones used to specialize TIMES earlier.

*% Task 215 #% Check sxamples of Times0, because many exampies have recently been found,
but not yet checked. The value always seems to be 0. So conjectured. TimesC goes away.

*% Task 216 xx Fill in examples of Times-ev, because none exist yet. Recall that Times-ev is
just like TIMES restricted to operating on even numbers. Many examples found.

x Task 217 sx Check examples of Times-ev, because many examples have recently been
found, but not yet checked, and Focus of Attention. Apparently all the results are all Evens.
Conjecture: the product of even numbers is even. Note that no explicit task of the form
"Check DIR" had to be executed in order to notice and correct this. The net result Rere is the

same: a conjecture and an alteration of the Domain/range facet of Times-ev.

x% Task 218 x= Fill in examples of Times-to-sv, because none exist yet. That is, consider bags
of numbers which multiply to give an even number. Many found.

%% Task 213 «# Fill in examples of Times-to-sq, because none exist yet. Find bags of numbers
whose product is a perfect square. A few found right away, then great difficulty in locating
mare examples.

*% Task 220 2% Check examples of Times-10-sq, because many examples have recently been
found, but not yet checked, and Focus of Attention. All arguments always seem to be
squares. Conjec: Times-to-3q is really the same as Times-3q. Merge the two. TAls is a false
conjecture, since, ¢.g., the product of the numbers In the bag (2 2 3 3) is a perfect square, but
none of those numbers Is itself a square. This did AM no Aarm, and AM never detected its
mistake.

o% Task 22] s% Check sxamples of Times=lo-ev, because many examples have recently been
found, but not yet checked. The domain always seems to contain an even number. So
conjectured. le, If the product of some numbers is even, then 30 is one of those numbers. This
conjecture is true, at least.

®% Task 222 »% Fill in examples of Self-Union, because none exist yet. Reaching way back in
time. Ugh Many found.
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*% Task 223 *% Check sxamples of Seif-Union, because many examples have recently been
found, but not yet checked, and Focus of Attention. Nothing special noticed.

a% Task 224 == Fill in examples of SubSat, because none exist yet. Many found.

xx Task 225 =¢ Check sxampls of SubSet, because many examples have recently been found,
but not yet checked, and Focus of Attention. Nothing special noticed.

sx Tosk 226 == Fill in examples of SuperSel, because none exist yet. Many found.

=x Task 227 mx Check sxampies of SuperSel., because many examples have recently been
found, but not yet checked, and Focus of Attention. AM notices that if <x,y> are related by
SubSet, then Reverse-ord-pair(<x,y>} are related by SuperSet, and conversely. This is the
base connection between union and intersection (see Tasks 29 and 3S, where these two
concepts are defined). That is, xcy iff yox.

sx Task 228 == Fill in sxamplies of ComposscCompose=i, because none exist yet. AM creates

some poor combinations (eg, SquaresCountsADD™'), some explosive ones (eg.
(Compose.Compose)o{ComposesCompose)e{ComposesCompose)), and even a few — very few
— winners {eg., SUBI.CounteSelf-Insert). This is too muck like throwing "flying, Aooked
atoms™ up into the air, and hoping that three of them collide fortuitously. While a little
guidance may help you to find good collisions of 2 such fliers, the combinatorial explosion
swamps the poor researcher when Ae takes them on Aree af a time. As St. Augustine observed,
the Latin ‘cogito’ derives from ‘shake together’, but “intelligo’ derives from "select among’.

xx Task 229 == Check examples of ComposecCompose-1, because many examples have
recently been found, but not yet checked, and Focus of Attention. Nothing interesting to
find.

xx Task 230 =x Fill in sxampies of ComposecCompose=2, because none exist yet. Recall that
the difference between this operation and the last one is merely In the order of the
composing: Fo{GeH) versus (FoG)H. AM recreates many of the previous tasks’ operations.

2% Task 231 =x Check examples of ComposscCompose-2, because many examples have
recently been found, but not yet checked, and Focus of Attention. Nothing noticed yet.
Later on, AM finds that one after another of the operations created in the preceding task as,
say, ComposecCompose-I{FGH), is really the same as the corresponding operation created as
ComposecCompose-2(FGH). Eventually, AM conjectures that those two ComposesCompose
operations are really the same; that is, Compose is associative.

sx Task 232 #%, - 252. Fill in and check examples of the losing compositions just created.

ex Task 253 == Fill in examples of Add-sq, because none exist yet, and Add-3q is related to
the interesting concept Add. Recall that Add-sq Is just addition, restricted to perfect
squares. Many examples found.
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xx Task 254 xx Check domain/range entries of Add-sq, because the range may aiso be Perfect-
squares, and examples of Add-sq were just filled in (hence Focus of Attention), and Add.sq
is related to the interesting concept Add. The range isn't Perfect-squares {e.g 4+9 is not
square), but some values are, so AM defines the predicate Add-sq-3qi{x.y), which is True iff
x and y are perfect squares and their sum is a perfect square as well {eg., Add-3q-3q({16,9)).

Add-3q-3q.Defn is a predicate which is true if its 3 arguments are squares, say x2, y% 22,
and if the sum of the first two is equal to the third: x2sy2ur?,

xx Task 255 x# Fill in examples of Add-pr, because none exist yet, and Add-pr is related to
the interesting concept Add. That is, the sum of a pair of primes.

x% Task 256 2x Check Domasin/range entries of Add-pr, because many examples have recently
been found, but not yet checked. AM defines the set of pairs of primes whose sum is also a
prime (eg. Add-pr-pr(2,5)). In a rather bizarre way, AM Aas defined prime pairs. The sum
of two primes can be a prime iff one of them is 2. So Add-pr-pr can really be considered a
predicate on one prime argument x, which returns True iff x+2 is a prime; ie, iff x Is the

lower member of a prime pair. TAore is something at once swful and sublime about this
derivation of prime pairs. Perhaps thls captures the spirit of AM's actions as a whole, so let's
stop this trace right Aere.

Appendix 53. An ‘Unadulterated’ Trace

Here is the way that the AM program begins. The human user's typing will appear in
italics®. He first types (START) to start the system, after which AM asks him some
questions. Finally, the main Select&Execute-a-TASK loop of AM is entered.

The careful reader will notice several small changes in this transcript, compared to the
nicely doctored ones which preceded it. For one thing, the task numbering here is not
precisely the same as in the rest of this document. A task is called a "Cand", and the agenda
is called "CANDS". Only some of the reasons are printed out, and they are not as “chatty”
as the reasons in. eg. Chapter 2's example trace. The user has asked AM to type out the
top three tasks on the agenda at each “cycle”. in a better hardware environment, the user
could dynamically watch the top hundred tasks bubbling around on one side of a CRT
screen. To interrupt AM, the user types CONTROL-I. At that moment he has a very
limited syntax of questions he may ask. See {ux} below (page 319).

An approximate level of familiarity of the user with the AM program is maintained by
AM, as a numeric variable. Initially, its value is determined by the number of times the

human user has used AM in the past.'® It gradually changes in value as a single session
proceeds. Many print statements use this variable to determine the necessary level of detail
to type. For example, contrast the line pointed to by an arrow labelled (8) below with the
line labelled (€). In between, the variable increased to the point where a detailed message

9 Thin is not & doctoring: | heve written an i/o routing for AM which prints 14 balers sverything the uvesr types, and I+
afterwards. The 'PUE" documentation program interprate this 10 mean “swilch te font 4” snd "switch back
to font 1°. This document was PUBBed with fen! 4 defined se italics.

10 i shalt resint the temptation to call this 2 simple “user madel’, sven in a Testnets
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was thought to be superfiuous. The level of detail needed for clarity should not be confused
with the level of verbosity of output that is desired. Should the user see every function cali,
or the results of each task, or just monitor the overall character of what AM is doing? A
separate variable is maintained for this verbosity indication. Finally, another partially
independent dimension is the amount of control the user wishes to have on AM. Must he
approve each move AM makes, occasionally redirect AM, be able to ask questions? Another
variable indicates the level of user control in effect at the moment. The first several

questions deal with setting up these parameters.

INTERLISP-10 4-JAN-75 ..

Good afternoon, Doug.

«(ST ART)

Please type in your last name { then carrisge-return:FEIGENBAUM

Almost ready to enter AM's main loop, Ed. |

Ed, you have used AM once before.
Do you feel like you need some refreshing about how to work with it? Yes

AM has 113 concepls to start with, sach with only
about 5 of ils potential 30 facets { paris} filled in.

Repeatedly, AM selecls a part of a concept,
and tries to fill it in or check il. In this process, new
concepls may emerge and be granted full status; in those cases,
aimost all their parts will be amply at the lime of their creation.

CANDS is @# list of suggested fulure activities for AM.
Repeatedly, AM picks a Candidate from CANDS snd does what it says.
A typicsl Cand might be:

{ Fill in axamples of interesting compositions).
Each Cand also has a list of reasons sxplsining why it was

proposed, and & numeric rating of its overall valve.

DO-THRESHhold is 8 numeric variable that indicates the lowast
rating a Cond may heve and still be executed by AM.
if no Cand on CANDS measures up, then all the concepts try to suggest
new candidates, which srs merged into CANDS.

DISCLAIMER: The user interface is still unfinished, and in fact
the only polished part is the following message describing it! Try it
at your own risk!

You, Ed, can sifect this concep! growing process.
Al any time, you may hit Ti, which will Interrupt me.
Once interrupted, | will answer one question or perform one task;
s typical question | can answer is WHY;
a typical task is { Raise the Interest Level of the Frobnate Concept).

A second way 10 interact with me is 10 help me decide
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which Cand to do nex! each time. You can see my top choices, their
reasons, and overrule me if you want. The variable Seencands is
the number of Candidates you see each time, and Ucontrol indicates
the amount of control you have over my choosing.

To keep you informed, | will periodically print out messages.
The level of verbosity can be changed by interrupting me.

More delails can be obtained when you interrupt with Ti

Verbosily Level {1 - 10, or 7) ... { Please terminate your response
with a carriage-return) ..?

Verbosity = the amount of data that AM spews out to £d.
In this system, Verbosily is just a numeric-valued variable

which the Prinling funclions look at.
Verbosity level 0 suppresses all messages.
Verbosily level 5 lets mos! important messages get printed.
Verbosity level 10 dumps out enough to actually get some

feeling for the inner workings of AM.

The suggested value for Ed is 8.

Verbosity Level {1 - 10, or 7}... { Please terminale your response
wilh a carriage-return} ..I10

User-control Level {0 - 10, or ?}..}

User-control = the degree to which you supervise AM's activities
In this system, User-control is just 8 numeric-valued variable

which the lop-ievel control functions look at.
User-control level D lets you gain control only via TL
User-conirol level! 5 lets you see a few of AM's alternatives,

and waits 6 seconds for you to OK its choice.
User-control level 10 displays seversi siternative Candidates,

and wails indefinitely until you to seleci one.

User-control Level {0 - 10, or?) ..4

Before deciding which new Cand to work on, ['ll print my top choices.

How many Candidates would you like lo ses sach time? |
(| suggest 4): 3

Should | tell you my reasons for each Cand | am considering selecting
each time? No

Should | tell you my reasons for the Cand | actually select sach time?
Yes

If you have not typed anything within 4 seconds after a prompt,
then AM will {ill in a default answer for you.

A space will suffice to keep AM from defaulting on you,
while you think sbout what to reply to any question AM asks you.
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In general, your response should be larminated by a carriage return.

Would you like to reset this wailing time? No

Entering AM's main loop now.

No Cand on CANDS is good enuf.
Do-thresh reduced from 500 to 333

Must find new candidates and merge them into CANDS.

The top 3 Cands are:
1: Fill in some examples of Set-struc-intersect
2: Fill in some sxsmples of Set-struc-join
3: Fill in some sxamples of Coalesca

| choose first Cand. OK? yes.

The reason for considering this Cand is: (Ws have no examples :
for SET-STRUC-INTERSECT ye!)

Beginning 1st cycle.

Failed. Tried to fill in new examples of SET-STRUC-INTERSECT.

¢At this moment, the user hit control=l and interrupted AMS
n:(WLEMN?2Q? —{at)

Here are more detailed explanations of your options:
w Why: AM gives Ed the sxplanation behind its las! printed

message.

! Interest: Ed can modify the interast ratings of concepls and
Candidates.

E Evaluate: Ed types in an expression and AM runs EVAL on it.
bi Message: What was the las! message that AM did NOT type out

because the verbosity was too iow?
N Name: Rename some concept lo whatever you want to call il.
Q Quit: resumes execution.

In general, AM will automatically resume execution siter answering one
query. You mus! hit 1 again to interrupt.

>» W

Why: {No examples of SET-STRUC-INTERSECT were found; there
is no reason lo even consider specializing it further)

This Cand used 11.159 cpu ssconds.
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The top 3 Cands are:
1: Fill in some sxamples of Set-struc
2: Fill in some sxamples of Coalesce
3: Fill in some examples of Nonamply-struc

| choose first Cand. OK? wes.

The 2 reasons for considering this Cand are:
{Aclive-exs specifically asked for soma axamples of SET-STRUC

, while trying to Fill in some Set-struc-intersect examples)
{We have no examples for SET-STRUC yet)

Beginning 2nd cycle.

Creating new Being, similar to SET-STRUC, named INT-SET-STRUC, but
restricted so as to make it more interesting.

An INT-SET-STRUC is any SET-S5TRUC for which (Each pair of
elemenls satisfies the same interesting predicate P {for some P)).

Filled in examples of SET-STRUC.
0 examples existed originally on SET-STRUC.
11 potential new enlries were jus! proposed.

Eliminating duplicates, the newly consiructed sxamplas are:
(CLASS)
{CLASS DOUG CORDELL BRUCE)
{CLASS RO-7 R1-7 R2-7 R3-7 R4-7 RS-7 R6-7 R7-7)
{CLASS A)
{CLASS B)
{CLASS A B)
{CLASSODF IM)

After eliminating duplicate and siready-known #ntries, AM finds thal.
only 7 new, distinct sxampies of SET-STRUC had {0 be added.

Do-thresh raised from 332 toc 346 because this last Cand succeeded, 30

we raise our hopes-- and our stendards-- temporarily. wd8)

This Cand used 23.743 cpu seconds.

The lop 3 Cands sre:
1: Fill in some examples of int-set-siruc
2: Fill in some saxamples of Coalesce
3: Check all axamples of Set-siruc :

| choose first Cand. OK? yes.

The reason for considering this Cand is: {Any example of
INT-SET-STRUC is automatically an interasting example of SET-STRUC)
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Beginning 3rd cycle.

Won't try to create a restricted interesting version of INT-SET-STRUC.

Filled in examples of INT-SET-STRUC.
0 examples axisted originally on INT-SET-STRUC,
13 potential new eniries wers just proposed.

Eliminating duplicates, the newly constructed sxamples are:
{CLASS)
{CLASS A)
{CLASS B}

After eliminating duplicate and already-known entries, AM finds that.
only 3 new, distinct examples of INT-SET-STRUC had to be added.

Do-thresh raised from 346 to 358. domed}

This Cand used 11.88] cpu seconds.

The top 3 Cands are:
1: Fill in some examples of Obj-equal
2: Check ali examples of inl-set-siruc
3: Check all sxamples of Set-struc

| choose first Cand. OK? yes.

The reason for considering this Cand is: {We have no examples
for OBJ-EQUAL vel)

Beginning 4th cycle.

Record of attempis to tind examples;---<=ememesccemececcccecancececnen-
An ex { sought) is: {{CLASS A), (CLASS A) 4 T) #==ccccscsenncnncnn
amfe

etSe

Found & sxamples { and 15] non-exs), in 11.644 secs.
Ratio of exs to non-exs is too low { 6 / 151}; Exs are 100 sparse.

AM will sometime try to generalize 0BJ-EQUAL.
Won't try to create a restricted interesting version of OBJ-EQUAL.

Filled in examples of OBJ-EQUAL.
0 examples existed originally on 0BJ-EQUAL.
6 potential new entries were just proposed.

Eliminating duplicates, the newly constructed examples are:
{{CLASS A) {CLASS A} =» T)
{CLASSODF IM) {CLASSODFIM) =» 1)
(FALSE FALSE = T)
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After eliminating duplicale and aiready-known entries, AM finds that.
only 3 new, distinct examples of OBJ-EQUAL had lo be added.

Do-lhresh raised from 358 to 359.

This Cand used 17.886 cpu seconds.

No Cand on CANDS is good enuf.
Do-thresh reduced from 359 to 23%

Mus! find new candidates and merge them into CANDS.

The top 3 Cands are:
1: Fill in some sxamples of Sel-struc-intersscl
2: Check all examples of int-set-struc
3: Fill in some generalizations of Obj-equal

| choose first Cand. OK? yes.

The reason for considering this Cand is: (We have no examples
for SET-STRUC-INTERSECT yet)

AM recently ried lhis same Cand, so let's skip it now.

The top 3 Cands ars:
1: Check all examples of Int-sel-struc
2: Fill in some generalizations of Obj-equal
3: Check all examples of Set-struc

| choose first Cand. OK? yes.

The reason for considering this Cand is: {Some new , unchecked
examples of INT-SET-STRUC have recently been added)

Beginning 5th cycle.

AM is forgelling the entire SUGG facet of the INT-SET-STRUC concept.
Because: {No sense using this suggestion more than once).

Checked examples of INT-SET-STRUC and all entries were confirmed

This Cand used 11.362 cpu seconds.

The lop 3 Cands sre:
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1: Check all examples of Set-struc

2: Fill in some generalizations of Obj-squal
3: Fill in some examples of Coalesce

| choose first Cand. OK? yes.

The reason for considering this Cand is: {Some new , unchecked
examples of SET-STRUC have recently been added)

Beginning 6th cycle.

Based on empirical experiments, AM believes that SET-STRUC may really
be no more specialized than UNORD-OBJ

Closer inspection reveals that the avidence for this was quite flimsy.
AM will wait until some sxamples of any of these have been found: (
BAG-STRUC), and then see if they truly also are SET-5TRUC’s.

Based on empirical experiments, AM believes that SET-STRUC may really
be no more specialized than NONMULT-STRUC.

Closer inspection reveals that ihe evidence for this was quite flimsy,
AM will wait until some examples of any of these have been found:{
OSET-STRUC), and then ses if they truly also are SET-STRUC's.

Checked examples of SET-STRUC.
5 entries wera there initially.
1 small modifications had to bs made.
5 entries are present now,

This Cand used 8.008 cpu seconds.

The top 3 Cands are:
1: Fill in some examples of Bag-struc
2: Fill in some examples of Oset-struc
3: Fill in some generalizations of Obj-equal

| choose first Cand. OK? wes.

The reason for considering this Cand is: {Ws have no sxamples
for BAG-STRUC yet)

Beginning 7th cycle.

Filled in examples of BAG-STRUC.
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0 examples existed originally on BAG-STRUC.
19 potentisi new entries were just proposed.

Eliminating duplicates, the newly constructed axampies are:
(BAG)
{BAG A)

(BAG B)
{BAG A B)
{BAG A A)
{BAG A A B)
(BAGODF IM)
{BAG A B (BAG B) (CLASS)
{BAG BRUCE CORDELL DOUG)
{BAG RO-7 R1-7 R2-7 R3-7 R&4-7 R5-7 R6-7 R7-7}

After eliminating duplicate and alrsady-known entries, AM finds that.
only 10 new, distinct examples of BAG-STRUC had to be added.

XEQ-CAND |

Do-thresh raised from 239 to 264.

This Cand used 17.692 cpu seconds.

The top 3 Cands sre:
1: Fill in some generalizations of Obj-equal
2: Fill in some examples of Oset-siruc
3: Fill in some sxsmples of Coslesce

| choose first Cand. OK? yes.

The reason is: {The ralic of examples lo non-examples of
DBJ-EQUAL is too low ; OBJ-EQUAL is too specialized , too narrow)

Beginning Bth cycis. ;

Considering genlizing a recursive dein of OBJ-EQUAL
Will try to remove & conjunct.
2 possible conjuncts to chooses from.
AM generalizes OBJ-EQUAL into the new concept GENL-OBJ-EQUAL, by

not recursing on the CAR of sach arg.
i.e, GENL-OBJ-EQUAL will not have a recursive check
like this one, which is present in OBJ-EQUAL:

APPLYB

{QUOTE OBJ-EQUAL)
{QUOTE DEFN)
{CAR BA)

{CAR BA2)

AM generalizes OBJ-EQUAL into the new concept GENL-OBJ-EQUAL-1,
by not recursing on the CDR of seach arg.
i.e, GENL-OBJ-EQUAL-1 will not have a recursive check
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like this one, which is present in OBJ-EQUAL:

APPLYB

{QUOTE OBJ-EQUAL)
(QUOTE DEFN)
(COR BA1)

(COR BA2)

it any of {GENL-0BJ-EQUAL GENL-OBJ-EQUAL-1) ever seems 0 be 100

SpRcisiized, AM will consider disjoining it with other members of thatsel.

Filled in generalizations of DBJ-EQUAL.
0 generalizations existed originally on OBJ-EQUAL.
2 potential new entries ware just proposed.

Eliminating duplicates, the newly constructed generalizations are:
GENL-OBJ-EGUAL
GENL-OBJ-EQUAL-1

After eliminating duplicate and already-known sniries, AM finds that.
sll 2 new, distinct generalizations of OBJ-EQUAL had to be added.

Do-thresh raised from 264 to 335.

This Cand used 6.667 cpu seconds.

The top 3 Cands are:
i: Fill in some sxamples of Genl-obj-equai-1
2: Fill in some sxsmpies of Geni-obj-squal
3: Fill in some examplis of Oset-struc

| choose first Cand. OK? yes.

The reason is: {The generalization GENL-0BJ-EQUAL-1 of OBJ-EQUAL
is relatively new and has no exs of its own yet , excepling those
of OBJ-EQUAL)

Beginning 9th cycle.

nN

Rename which existing concept?! GENL-OBJ-EQUAL

What is its new name? SAMESIZE

Done.
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Record of attempts lo find examples:

An ex { sought) is: (VECTOR BAG) (VECTOR B (BAG B) (CLASS) A)j4--——--++
PREG SE gu SE BE EE at ae a EE StSl

aeoELLE 8 SEs

Found 26 examples { and 105 non-exs), in 8037 secs.
A nice ratic of exs/non-sxs was encountered for GENL-DBJ-EQUAL-1
Won't try to create s restricted interesting version of
GENL-OBJ-EQUAL-].

Filled in examples of GENL-OBJ-EQUAL-1.
0 examples existed originally on GENL-OBJ-EQUAL-1.
26 potential new entries ware just proposed,

Eliminating duplicates, ihe newly constructed sxemples are: '
{{(VECTOR BAG) (VECTOR B {BAG B) (CLASS) A) =» 7)
{OSETODFIMI(OSETODFIM) =» T)
{{(BAG} {BAG DON ED) = 1)
{{OSETOMIFOI(OSETDMIFO)=T)
{PAIR DOUG BRUCE) {PAIR DOUG BRUCE} =» T)
{VECTOR BAG} {(VECTORDMIF OQ} T)
{VECTOR B)(VECTORDMIFO)-»T}
{{BAG B} (BAG B} = 7}

((VECTORDMIFD)(VECTORAAB) = T)
{{(BAGA)(BAGAB)~T}
{(VECTOR)} (VECTOR B (BAG B} {CLASS} A)» T)
{{OSET BRUCE DON) (OSET BA) = T)
{{PAIR COMPOSE-EXS COMPOSE-EXS) (PAIR LIST-STRUC-INTERSECT

ANYB-SPEC) = T)
{(OSET R2-1 R2-2 R2-3 R2-4 R2-5 R2-6 R3-1 R3-2 R3-3I RI-4 RID

R3-6 R4-1 R4-2 R4-3 R4-4 R4-5 R4-6 RS-1 R5-2 R5-3 R5-4 RS-5 R5-6 Ré-1
R6-2 R6-3 R6-4 R6-5 R6-6) (OSETODF IM} = T)

{{OSET A B (BAG B) {CLASS)) {OSET B (BAG B) (CLASS) A) + 1)
{OSETODFIM{CSETB)=T)
{VECTOR A A) (VECTORAB)- T)
{{OSET DON ED) (OSET BAG} + T)
({(BAGAAB)(BAG =» T)

({OSET 8) {OSET BRUCE DON) =» T}
© {CLASS DON ED) {CLASS A) =» 1)
{PAIR LIST-STRUC-INSERT CANONIZE) {PAIR LIST-STRUC-INTERSECY

ANYB-SPEC) =» T)
{VECTOR) {VECTOR BAG) =» T)
{CSET AJ (OSETDMIFO0)}=T)
{(VECTOR BAG) (VECTOR BAG) + T)

After eliminating duplicate and siready-known sntiries, AM finds that.
only 25 new, distinct exampies of GENL-OBJ-EQUAL-] had to be added.

Do-thrash raised from 33% lo 367.

This Cand used 29.095 cpu seconds.



Appendix 5 AM Discovery in Mathematics ae Heuristic Search -327-

The top 3 Cands are:
i: Fill in some sxamples of Same-size
2: Check all examples of Genl-obj-squal-1
3: Fill in some examples of Coalesce

| choose first Cand. OK? yes.

The 2 reasons are:

{interestingness of SAME-SIZE has changed recently)
{The generalization SAME-SIZE of OBJ-EQUAL is relatively new

and has no exs of its own yet , excepting those of 0BJ-EQUAL)

Beginning 10th cycle.

Record of allempts to find examples:

An sx { sought} is: ({(VECTOR A} {OSET Bjj#---t--d-ccnsunctocactdbbonca-
ROR WP WE GIF TUS S—— SR SPREE SS SHEE LE att J

EE TPPery

Found 26 examples { and 102 non-exs), in 8.032 secs.
A nice ratio of exs/non-exs was encounterad for SAME-SIZE
Won't try to create a restricted interesting version of SAME-SIZE.

Filled in examples of SAME-SIZE.
0 examples existed originally on SAME-SIZE.
36 potential new entries wers just proposed.

Eliminating duplicates, the newly consiructed sxamples are:
{OSETODF IM (OSETODF IM) = T)
((OSETODMIFO)(OSETOMIFO)}=T)
{(PAIR DOUG BRUCE} (PAIR DOUG BRUCE} =» T)
{{(BAGB)(BAGB) =» T)
{(OSET BRUCE DON} (OSET B A} =» T)
{{PAIR COMPOSE -EXS COMPOSE-EXS) (PAIR LIST-STRUC-INTERSECT

ANYB-SPEC} =» T}

({OSET A B (BAG B) (CLASS) {OSET B (BAG B} (CLASS) A)-» T)
{VECTOR A A) (VECTOR AB)» T)
{PAIR LIST-STRUC-INSERT CANONIZE) {PAIR LIST-STRUC-INTERSECT

ANYB-SPEC) =» T)

((VECTOR BAG) (VECTOR BAG) =» T)
({(VECTOR A) {OSET B) = T)
((BAGAB){OSETBA)=T)

{{CLASSODFIM(BAGODFIM>T)
{{(VECTOR B) {BAG A) =» T)
{(PAIR LIST-STRUC-INTERSECT ANYB-SPEC) {PAIR DOUG BRUCE) =» 1)
({OSET DON ED) (PAIR LIST-STRUC-INTERSECT ANYB-SPEC) =» T)
{(BAGODFIM((VECTORDMIFO)=T)
{(VECTORB)(BAG BB)» T)
{{OSET BAG) {OSET A} = T}
(VECTOR A A)(BAG AA} + T)
{CLASS A) (VECTOR BAG} = 1}
{CLASS A B){OSET AB) =» T)
({PAIR COMPOSE -EXS COMPOSE-EXS) (OSET DON ED} =» T)
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(VECTOR A) {OSET A) = 1)
{{OSET BAG) {CLASS A} » T}
({OSET A) (CLASS A) = T)
({OSET B}{OSET A)» T)
((BAGODFIMI{OSETODFIM =T)
{{OSET DON ED) (OSET ED CORDELL)» T)
{(OSET ED CORDELL) (OSETB A)» T}
({(OSET A}(BAGB) =~» T}
{{OSET BA) (OSET AB) = 1)
{{(VECTOR B A) (OSET ED CORDELL) =» T)
{{OSET A) {VECTOR BAG) =» T)
{(OSET B A) (OSET DON ED) =» T)

After eliminating duplicate and aslrsady-known entries, AM finds that.
only 35 new, distinct examples of SAME-SIZE had to be added.

Do-thresh raised from 367 to 406.

This Cand used 21.725 cpu seconds.

The top 3 Cands are:
i: Check all examples of Same-size
2: Check all examples of Gani-obj-squsl-~1
3: Check all things which just barsly miss being sxamples of

Same-size

{ choose first Cand. OK? yes.

The reason is: (Some new , unchecked examples of SAME-SIZE
have recently been added)

Beginning 11st cycle.

Checked exampies of SAME-SIIE.
35 enlries ware there initially.
1 had to be completely discarded.
§ had to be transferred sisewhers.

30 entries ars presant now.

Do-thrash raised from 406 to 421.

This Cand used 6.917 cpu seconds.

The top 3 Cands are:
i: Check all examples of Genli-obj-aquai-1 ,
2: Check all things which just barely miss being examples of
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Same-size

3: Fill in some sxamples of Coaslesce

| choose first Cand. OK? yes.

The reason is: (Some new , unchecked sxamples of
GENL-0BJ-EQUAL-1 have recently been added)

Beginning 12nd cycle,

Checked examples of GENL-DBJ-EQUAL-1.
25 entries were thers initially.
1 had to be completely discarded.
4 had to be transferrad elsewhers.

20 eniries are present now.

This Cand used 4.711 cpu seconds.

No Cand on CANDS is good enuf.
Do-thresh reduced from 421 to 333
Must find new candidates and merge them into CANDS.

The top 3 Cands sre:
1: Canonize these 2 arguments: Genli-obj-equal-1 and Obj-equal
2: Canonize these 2 arguments: Same-size and Obj-equal
3: Fill in some examples of Coalesce

| choose first Cand. OK? yes.

The reason is: {it would be nice to find a canonical { with
respect lo Genl-obj-squal-1 and Obj-equel ) representation C for any
Object X ; that is,

{ GENL-OBJ-EQUAL-1 x y } iit

PBFA {Cx) (Cy).

Beginning 13rd cycle.

Experiments indicate that GENL-OBJ-EQUAL-1 is affected by the varying
the type of structure of its arguments.

GENL-OBJ-EQUAL-1 doesn't look at any elements of OBJECT except possibly
the cer of the structure which denotes its type, sc AM repiaces the

tail of OBJECT by a cenonical distinguished tail, say NIL.

Succeeded!

Some conjectures that AM considers believable:
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OBJ-EQUAL, restricted to canonical OBJECT’, is indistinguishable
from GENL-OBJ-EQUAL-1.

There is as powerful analogy between

GENL-0BJ-EQUAL-1................0BJ-EQUAL
OBJECT.....cmeennnnnenn CANONICAL -OB JECT
operators on and into those operators restricted to

OBJECT... errno CANONICAL -0BJECT
statements involving these....stalaments involving these

Do-thresh raised {rcm 333 to 341.

This Cand used 9.02 cpu seconds.

The top 3 Cands are:
1: Fill in some examples of Canonicai-objsct
2: Restrict the foliowing: Genl-obj-sguai-1 Canonical-object Domain
3: Canonize these 2 arguments: Same-size and Obj-squal

i choose lirst Cand. OK? yes.

The reason is: {Any sxample of CANONICAL-OBJECT is a canonical
example of OBJECT)

Beginning 14th cycle. :

AM will now try to produce examples of CANONICAL-OBJECT by running the
following operations: :

{CANONIZE-GENL-0BJ-EQUAL-18&08J-EQUAL).

Won't try to create a restricted interesting version of
CANONICAL-OBIECT.

Filled in examples of CANONICAL-OBJECT. |
0 examples existed originally on CANONICAL-OBJECT.
165 potential new entries were just proposed.

Eliminating duplicates, the newly constructed sxamples are:
{VECTOR}
{BAG)

{CLASS)
{OSET)
FALSE
A

. TRUE

{PAIR}
{T)
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{NIL}
{TRUE)

(FALSE)

After eliminating duplicate and already-known entries, AM finds that.
only 12 new, distinct examples of CANONICAL-OBJECT had to be added.

Do-thresh raised from 34] lo 391.

This Cand used 23.827 cpu seconds.

The top 3 Cands are:
1: Restrict the following: Genl-obj-equai-1 Canonicel-object Domain
2: Canonize these 2 arguments: Seme-size and Obj-equal
3: Fill in examples of Coalesce

| choose first Cand. OK? yes.

The reason is: (GENL-OBJ-EQUAL-1 was one of lhe predicates
which defined the new concept CANONICAL-OBXECT , so it is worth
considering the restriction of GENL-OBJ-EQUAL-1 lo that subset of
OBJECT ’s)

Beginning 15th cycle.

Succeeded!

Do-thresh raised from 331 to 431.

This Cand used 3.562 cpu seconds.

The top 3 Cands are:
1: Canonize these 2 arguments: Same-size and Obj-squal
2: Fill in some examples of Coaslesce
3: Restrict the following: Obj-equal Canonical-object Domain

| choose first Cand. OK? yes.

The reason is: {it would be nice to find a canonical { with
respect to Same-size and Obj-squasi } representation C for any Object
X; thet is |

{ SAME-SIZE x y } iff

VOR EAL {Cx} (Cy}).
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Beginning 161th cycle.

Experiments indicate that SAME-SIZE is not affected by varying the type
of structure of its arguments.

Experiments indicals that SAME-SIZE is not affected by reordering
elements of its structural arguments.

So any canonicsl arguments can be Bags and Sets.

Experiments indicate that SAME-SIZE is affected by the presence of
multiple elements in ils structural arguments.

S50 any canonical arguments can be Bags and Lists.

SAME-SIZE doesn't iook al the specific slements in OBJECT, like
OBJ-EQUAL does, 30 AM can replace them all by » single distinguished
slemsnt, say T.

Succeeded!

Some conjectures that AM considers believable:

OBJ-EQUAL, restricted to cenonicel BAG-STRUC's, is indistinguishable
from SAME-SIZE.

There is » powerful analogy belween

SAME-SIZE..ee OBJ-EQUAL
BAG-S5TRUC....ncceoo... CANONICAL -BAG-STRUC

operators on and inlo.........thoss operators restricted to
BAG-STRUC. coven. CANONICAL-BAG-STRUC

statements involving these___sistements involving these

Do-thresh raised from 431 to 457.

This Cand used 17.297 cpu seconds.

The top 3 Cands are: |
1: Fill in some examples of Canonical-bag-struc
2: Restrict the following: Same-size Canonicei-bag-siruc Domain
3: Restrict the following: Bag-struc-join Canonical-bag-struc Domain

| choose first Cand. OK? yes.

The reason is: {Any example of CANONICAL-BAG-STRUC is a canonical
example of BAG-STRUC)

Beginning 17th cycle.
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AM will now try to produce examples of CANONICAL-BAG-STRUC by running
the following operations:

{CANONIZE -SAME-SIZE&OBJ-EQUAL).

Filled in examples of CANDNICAL-BAG-STRUC.
O examples existed originally on CANONICAL-BAG-5TRUC.
211 potentis! new entries were just proposed.

Eliminating duplicates, the newly constructed sxamples sre:
{BAG)
(BAGTT) .

(BAGTTT)

(BAG T)
(BAGTTTTT
(BAGTTTT)
BAGTTTTTTTITTTITTITTITTTIITTTITIITTTNT |

TT

After sliminating duplicste and already-known entries, AM finds that.
only 7 new, distinct examples of CANONICAL-BAG-STRUC had to be added.

Do-thrash raised from 457 to 478.

This Cand used 35.918 cpu seconds.

The top 3 Cands are:
1: Restrict the following: Same-size Canonical-bag-struc Domain
2: Reslrict the following: Bag-siruc-join Canonical-bag-struc Domain
3: Restrict the following: Obj-squat Canonical-object Domain

| choose first Cand. OK? ges.

The reason is: (SAME-SIZE was one of the predicates which defined
the new concept CANONICAL-BAG-STRUC , so it is worth considering
the restriction of SAME-SIZE to thet subset of BAG-STRUC ’s)

Beginning 18th cycle. |

Succeasded!

Do-thresh raised from 478 to 495.

This Cand used 3.311 cpu seconds.

nN
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Rename which existing concept? CANONICAL-BAG-STRUC

What is its new name?! NUMBER

Done.

2 WLEMNLQN

Rename which existing concept? CANONIZE-SAME-SIZEWOB[-EQUAL

What is its new name? SIZE

Done.

The top 3 Cands are:
1: Check all axamples of Number
2: Restrict the following: Obj-equal Canonical-object Domain
3: Check all examples of Canonicai-object

| choose first Cand. OK? yes.

The 2 reasons ars:

{interestingness of NUMBER has changed recently)
{Some new , unchecked examples of NUMBER have recently been

added)

Beginning 19th cycle.

Checked sxamples of NUMBER and all entries were confirmed

This Cand used 1.909 cpu seconds.

The top 3 Cands ars:
I: Check all sxampies of Canonical-object
2: Check all things which just barely miss being sxamples of Number
3: Restrict the following: Bag-siruc-join Number Domain

| choose first Cand. OK? yes.

The resson is: (Some new , unchecked examples of
CANONICAL-OBJECT have recently been added)

Beginning 20th cycle.
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CANONICAL-0OBJECT has 7 sxamples which occupy 11 list cells, but is not
interesting enough to warrant taking up that much space; so sbout 2
will be selected at random and forgotlten.
Checked examples of CANONICAL-OBJECT.

12 entries were thers inilislly. :
10 were never confirmed or rejected.
2 had to be completely discarded.
5 antries sre present now.

This Cand used 16. §26 cpu seconds.

No Cand on CANDS is good enuf.
Do-thresh reduced from 495 to 340

Must find new cendidetss and marge them into CANDS.

The top 3 Cands are:
I: Fill in some examples of Size
2: Fill in some sxamples of Coalesce
3: Restrict the following: Bag-struc-join Number Domain

| choose first Cand. OK? yes.

The reason is: (We have no examples for SIZE yet)

Beginning 21st cycle.

Record of atlampts to find examples:
An ex { sought} is: (BAG T T)444240440844044 044044040044

Found 26 examples { and 0 non-exs), in .596 sacs.
A nice ratio of sxs/non-exs was sncountered for SIZE
Won't try to create a restricted interesting version of SIZE.

Filled in examples of SIZE.
13 sxampies existed originslly on SIZE. |
26 potential new entries were just proposed.

Eliminating duplicates, ths newly constructed sxamples are:
((BAGTT)=2{BAGT TH
{((BAGTTTTITN{BAGTTTTIN
{(BAG B) = (BAG T)
((BAG A A)» (BAG T T))
((BAGTTT)»{(BAGT TT)
{(BAGTTTT)-{BAGTTTTH
{((BAGAB)- (BAG T T)}
{{BAG R2-1 R2-2 R2-3 R2-4 R2-5 R2-6 R3-1 R3-2 R3-3 R3-4 R3-5

R3-6 R4-1 R4-2 R3-3 RA-4 R4-5 R4-6 RS-]1 RS-2 RS5-3 R5-4 RS5-5 RS-6 Ré-1
RO-ZRE-IRG-ARESRE-B)»(BAGTTTTTTTITTITTTITTITTITT
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TTITTITTITITTTN
{{(BAGAAB)-{BAGTTT)H
(BAGODFIM(BAGTTTTTH

{{BAG A} + (BAG T))

(BAGT TTT TYTTTYTYTTTTTITYTTTITITTITITTITTY
TTT) =+{BAGTTTTTTTTTTTITTTTITYITTITTITTITTITTY
TTT

{{(BAG DON ED} = (BAG T T))

{{(BAG AB{BAGB) + (CLASS)HBAGTTTTH
{{(BAGAB)~(BAGT TH

After sliminating duplicate and aslresdy-known entries, AM finds that.
only 14 new, distinct sxamples of SIZE had {0 be added.

Do~-thresh raised from 340 to 414.

This Cand used 9.2 cpu seconds.
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Appendix 6. Bibliography

Of all the articles, books, and memos which were read as background for AM, | have
selected those which had some impact on that work {or at least, on this document). While
numerous, they form a far from comprehensive list of publications dealing with automated
theory formativn, with Al in general, and with how mathematicians do research.

Preceding the listing of these references, Appendix 6.1 will provide some pointers to real-
world documentation, the AM program itself, etc.

Below are listed some references to earlier articles, to on-line documentation about AM, to

the AM program itself, etc.

The AM representation is a variant of the “Beings” ideas, a modular representation for
knowledge. In his summary of the state of Automatic Programming [Bierman 76], Bierman
compares Beings with Frames, Actors, etc, and gives a nice example of Beings in action.

History buffs may be interested in perusing the original thesis proposal for AM {about 50
pages long). It is kept as SYS4{tlk,dblJeSU-AL

The full body of knowledge provided to AM is found in English translation on file
GIVENItlk dbiJeSU-AL This is a longer, fuller treatment than the one found in this
document, in Appendix 2.1 and Appendix 3. The knowledge as used is of course the AM
program itself. Needless to say, it is much longer than the excerpts shown in Appendix 2.3.

Said running AM program is stored at SUMEX, on directory <LENAT>. From Interlisp,
one need only load in the file <lenat>LT. This in turn will load in three files: TOPS,
CONG, and UTIL6. Sc if you want to steal AM, take ali four fies!

Once loaded, the program is self-explanatory. It will instruct the user to type (START) to
begin AM itself. Once he does this, AM will ask him some questions, and then enter the
select-and-execute-a-task loop.

A crude “user's manual” is stored as file MANUAL[am,dblJeSU-Al. The reader may wish
to glance over it before running AM, since much of the actual LISP code is more
complicated than this thesis made it seem (e.g. there are two dynamically-adjusted variables,
Verbosity-level and Expert-level. The former variable determines which events generate a
message, and the latter variable affects the terseness of each of those printed messages.)
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